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Abstract

Recent advances in the optics of endoscopic devices have increased their use for minimal
invasive diagnostic and intervention procedures. Among all endoscopic procedures (which
include exploration of patient internal organs from mouth to anus), bronchoscopy is one
of the most frequents with around 261 millions of procedures per year. Although the use
of bronchoscopy is spread among clinical facilities it presents some drawbacks, being the
visual inspection for the acquisition and assessment of anatomical measurements the most
prevalent of them. One of the basic interventions implies to obtain the percentage of airway
obstruction, which is known as stenosis. Errors in this measurement have a direct impact in
the treatment the patient will be prescribed. Therefore an objective computation of tracheal
stenosis in bronchoscopy videos would constitute a breakthrough for this non-invasive tech-
nique and a reduction in operation cost for the public health service due to the decrease in
interventions because of bad visual measurements. The calculation of the degree of stenosis
is based on the comparison of the region delimited by the lumen in an obstructed frame and
the region delimited by the �rst visible ring in a healthy frame. In order to obtain a good de-
limitation of these regions a reliable characterization of the needed tracheal structures: rings
and luminal area is needed. We propose in this thesis a parametric strategy for the extrac-
tion of lumen and tracheal rings regions based on models of their geometry and appearance
that guide a deformable model. In order to ensure a systematic applicability we present a
statistical framework to select the optimal parameters of our method. We have validated our
method in two ways: accuracy of the anatomical structures extraction and comparison of
the performance of our automatic method over manually annotated stenosis. Experiments
report results within inter-observer variability for both quality metrics. The performance of
our method is comparable to the one provided by clinicians and its computation time allows
for a on-line implementation in the operating room.
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Resum

Els aventatges recents en les �optiques dels dispositius endoscopis han fet que hi hagi un creix-
ement en el seu us per a diagnostics i intervencions no ivasives. Dins de tots els procediments
endoscopics (els cuals s'incloeix l'exploraci�o dels organs interns del pacient des de el nas al
anus), la broncoscopia es un dels mes freq•uents amb 261 millions d'intervencions a l'any.
Encara que el seu us s'exten per per la majoria de les cliniques presenta alguns problemes
o inconvenients com per exemple el m�es important de tots: el mesurament de forma visual
de les estructures anot�omiques. Una de les intervencions m�es b�asiques implica l'obtenci�o del
percentatge d'obtrucci�o anomenat estenosis. Enrrors en aquesta mesura tenen un impacte
directe al tractament del pacient, per tant, un mesurament objectiu de les estenosis traqueals
en videos de broncosc�opia constituiria una roptura en la utilitzaci�o d'aquesta t�ecnica no inva-
siva i una reducci�o en el cost de les operacions per la sanitat p�ublica per un decreixement en
les operacions repetides per mesuraments visuals errornis. El c�alcul del grau d'estenosis esta
basat en la comparaci�o de la regi�o delimitada per l<area luminal (en un frame patol�ogic) amb
la regi�o delimitada per el primer anell visible de refer�encia (en un frame sa). Per aconseguir
tenir una bona delimitaci�o d'aquestes regions, una bona de�nici�o de les estructures traqueals
(anells i lumen) es necess�aria. En aquesta tesis proposem una estrategia param�etrica per a
l'extracci�o de les estructures traqueals necessaries per al c�alcul de l'estenosis. Per assegurar
una aplicabilitat del sistema presentem un protocol estad��stic per seleccionar els par�ametres
m�es �optims. Els experiments demostren que el nostre m�etode est�a dins de la variabilitat dels
metges, per tant el rendiment es comparable a un metge amb la particularitat que el temps
de computaci�o permet una implementaci�o on-line en el moment del diagn�ostic.
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Resumen

Los �ultimos avances en la �optica de los dispositivos de endoscopia han motivado un incre-
mento en su uso en procedimientos m��nimamente invasivos de diagn�ostico y exploraci�on.
La broncoscopia, con m�as de 261 millones de intervenciones al a~no, es una de las t�ecnicas
endosc�opicas -exploraci�on de �organos internos desde la boca hasta el ano- m�as extendidas.
Aunque su uso se ha popularizado en las instalaciones sanitarias a�un dista de funcionar de
manera perfecta, presentando algunas carencias como la imposibilidad de obtener medidas
anat�omicas exactas debido a que �estas son tomadas mediante inspecci�on visual. De entre
todas las intervenciones broncosc�opicas nos centramos en el c�alculo de estenosis que permite
obtener el porcentaje de obstrucci�on traqueal. Un error en la estimaci�on del grado de ob-
strucci�on tiene impacto en el tratamiento que se le prescribe al paciente, por tanto un c�alculo
objetivo de la estenosis supondr��a un salto cualitativo para la t�ecnica as�� como una reducci�on
de costes para el sistema sanitario al evitar repeticiones de operaciones debido a toma de
medidas err�oneas. El c�alculo del porcentaje de estenosis se basa en la comparaci�on de la
regi�on delimitada por el lumen en una imagen de obstrucci�on traqueal y la regi�on delimitada
por el primer anillo visible en una imagen normal de tr�aquea. Para obtener una de�nici�on
adecuada de dichas regiones necesitamos de una caracterizaci�on e�ciente de las estructuras
traqueales involucradas: anillos y �area luminal. En esta tesis proponemos una estrategia
param�etrica para la extracci�on de dichas estructuras bas�andonos en un modelo de geometr��a
y apariencia que gu��a un modelo deformable. Con el �n de potenciar una aplicabilidad real
de nuestra propuesta proponemos un marco estad��stico para elegir de manera autom�atica los
par�ametros que optimizan el rendimiento de nuestro m�etodo. Nuestra propuesta es validada
tanto a nivel de caracterizaci�on de estructuras anat�omicas como a nivel global de porcentaje
de estenosis. Dicha validaci�on se ha realizado sobre bases de datos generadas en el contexto
de esta tesis, validadas y anotadas por personal cl��nico. Los experimentos realizados certif-
ican un rendimiento comparable al de los expertos cl��nicos, suponiendo nuestro m�etodo un
coste computacional asumible de cara a una prometedora futura integraci�on en los protocolos
actuales.
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Chapter 1

Introduction

1.1 Motivation and Goal

In-vivo exploration of human internal organs provides valuable information for pathology
identi�cation and diagnosis. The introduction of a tube inside the patient ori�ces has been
known since the ancient Greece to be a simple way to explore diagnose diseases. However, its
use was restricted to very speci�c (annal) exploration due to a lack of signi�cant development
of the very �rst rudimentary endoscopic devices.

Philip Bozzini was the �rst to create a rigid tube known as a Lichtleiter (light guiding
instrument) for studying the urinary tract, rectum and pharynx in 1806 (Fig. 1.1 (a)). In
1853, Antoine Jean Desormeaux introduced an improved "Lichtleiter" of Bozzini to the
body of a patient. This instrument consisted of a system of mirrors and a lens, in which
the improved light source consisted of a lamp ame (Fig. 1.1 (b)); the endoscope burned
a mixture of alcohol and turpentine. Liechester's was mainly used for urologic cases. Its
main drawback was the apparition of burns inside the patient. For many, Desormeaux is
considered the "Father of Endoscopy". He was the �rst to use the term Endoscope [1] [2].

One common feature of the before mentioned devices is that all of them were rigid. In
1932 Dr. Rudolph Schindler created the �rst exible gastroscope which consisted of a exible

(a) (b) (c)

Figure 1.1: Optical endoscopes : Rigid models (a,b), exible model and detail of
the light bulb attached at its tip (right) (c).

1



2 INTRODUCTION

(a) (b)

(c) (d)

Figure 1.2: Bronchoscopic instruments: Flexible bronchocopy (a), rigid tubular
device (b), interconnection channels (c) and instruments (d).

device with several lenses located along the tube and a mini-light attached (Fig. 1.1 (c)) [1].
This gastroscope allowed to bend the tube (with 75 cm of length and 11 mm of diameter)
some degrees, which lead to an improvement over the rigid device’ s since it allowed the
physician to look at more directions from the same place. From this moment on, research
was oriented to develop more sophisticated gastroscopes by building very small lenses, using
stronger light sources, and investigating new materials to develop more fl exible tubs. (see
Fig.1.1).

Since the introduction of High Defi nition Camera Compression (HDCC) in the early
90’ s [40], endoscopic devices have been signifi cantly improved in order to provide detailed
high resolution information about humans internal anatomy using scopes of reduced size.
Such an improvement in endoscopic quality and size has generalized its use in a wide range
of minimal invasive procedures, such as laparoscopic surgery, colonoscopy diagnoses or video-
bronchoscopy.

Videobronchoscopy is the endoscopic technique that allows interactive navigation inside
the respiratory pathways and facilitates the performance of minimal invasive interventions
such as tracheobronchial procedures. Bronchoscopic procedures are performed routinely,
with about 261 millions of interventions around the world per year. Videobronchoscopy
consists of visualizing the inside of pulmonary airways for diagnostic and therapeutic pur-
poses. A bronchoscope has a fi beroptic system that transmits an image from the tip of the
instrument to an eyepiece or video camera at the opposite end (see Fig. 1.2 (a)). The tip
of the instrument can be oriented using Bowden cables connected to a lever at the hand
piece, allowing the practitioner to navigate the instrument into individual lobe or segment
bronchi for disease diagnosis [51] [3]. Aside, the scope can be inserted into a rigid tubular
device (Fig. 1.2 (b)) that includes diff erent channels (Fig. 1.2 (c)) for introducing the instru-
mentation (such as needles, small forceps, suctionary aspiration tools) needed for a given
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Figure 1.3: Di�erent regions of the bronchoscopy process.

intervention procedure (Fig. 1.2 (d)).

During the exploration process, videobronchoscopy allows interactive navigation across
respiratory airways (see Fig. 1.3) as the physician operates the bronchoscope from the pa-
tient's nose or mouth to the main airway anatomical segments [3]. There are four main
explorations areas: larynx, trachea and main bronchi. The larynx (upper-left image in Fig-
ure 1.3) is the �rst segment explored in brochoscopy as the scope enters in the subglottic
area and goes through the vocal cords. The next segment is the tracheal path from larynx
to the main bronchi bifurcation (known as carina). The trachea (lower-left image in Fig-
ure 1.3) is almost a straight pipe composed of several equidistant tracheal rings in which
are semicircular structures that are concentric in brochoscopy frames. The area enclosed by
tracheal rings is the air path and is called lumen. The trachea ends at the carina, where
it divides into two main bronchus as shown in top right image of Fig.1.3. Main bronchi
are the second most explored area after the trachea. Starting at the carina the left/right
main bronchus (top-right image in Figure 1.3) is entered just by twisting the wrist (control
device) to the left/right and advancing for 1 -2 cm. From this point, and only for exible
bronchoscopy, the doctor can achieve four or �ve levels of the bronchial tree (named as
secondary bronchi) depending on the diameter of the scope. From these levels of bronchi
it branch into smaller tubes, known as bronchioles where just ultra-thin bronchoscopes can
reach (lower-right image in Figure 1.3).

The depth in airways levels that current devices can achieve with high quality image
recording and the development of instrumentation of minimal size have enlarged the number
and diversity of diagnosis and intervention protocols formed with bronchoscopes:

• Diagnostic Explorations. Bronchoscopy allows direct visualization of the airway
interior with minimal risk of trauma and discomfort for the patient. Therefore, it is a
unique tool used to investigate the source of obstructive diseases (such as bronchitis,
asthmatic inamation or tracheal tumours) causing a narrowing of airways, which
leads to increased work of breathing. The narrowing of airways is known as stenosis.
Depending on the stenosis degree (slight, moderate or severe) di�erent treatments will
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Figure 1.4: White light image with a tumor (right) and same image with a NBI
light (left).

be applied. In particular, severe obstructions might require placing a stent or, even,
a prothesis at the injured segment [34]. Therefore, accurate measures are key for
the diagnostic yield and further treatment. Visual assessment of the stenosis degree
in videobronchosocpic explorations has been reported to suff er from almost 50% of
misclassifi cation regardless of the bronchoscopist expertise [41].

Another potential use of the bronchoscopic internal view of airways is the identifi cation
of tumor regions. However, in white light standard bronchoscopic videos this is a
challenging task that requires the extraction of a tissue sample for biopsy analysis.
This fact has motivated the development of Narrow Band Imaging (NBI) [56] imaging
technology. NBI is an optical image enhancement technology that enhances vessels
in the surface mucosa by employing the light absorption characteristic of hemoglobin
at a specifi c wavelength. NBI uses two types of narrow spectrum light: 415 nm
light (blue) which is absorbed by capillary vessels in the surface layer of mucosa, and
540 nm light (green) which is absorbed by blood vessels located below the capillary
vessels in the surface layer of the mucosa. In Figure 1.4 we can observe an example of
NBI. Unfortunatelly, NBI is not available for all commercial devices (it is exclusive of
Olympus devices) and, thus, its use is restricted to experimental assays.

• Tracheal Procedures. Rigid bronchoscopy may also be used therapeutically for
several procedures such as for removing inhaled foreign bodies, resecting tumours or
placing stents to overcome severe airway obstruction. Among the usual interventions,
tracheal implants are one of the most expensive (average cost of 2200 euro per in-
tervention) and time-consuming ones [37]. In order to choose the most appropriate
prothesis the physician has to accurately estimate the diameter and length of the ob-
structed tracheal segment. As for the case of stenosis assessment, a main limitation
is related to visual inspection impact on obtaining accurate measurements. Moreover,
in this case there is an extra source of variability related to clinicians having to infer
3D measurements of the prosthesis length by only means of a simple inspection of the
2D video frames (2D images in perspective projection). The determination of the true
3D length strongly depends on the experience and the anatomical knowledge of the
doctor. Thus, not having objective measurements could imply a remodelation of the
prosthesis to fi t better the patient, with the additional cost that this supposes.

• Biopsy Collection. Another usual intervention is focused on biopsying tumor re-
gions. In order to achieve this a reliable navigation path that leads the clinician
through bronchial system to reach the tumour is needed. Navigation guidance is only
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done by using confocal technology and its use is currently at its experimental stage.

Although the use of bronchoscopy is spread among clinical facilities it presents some
drawbacks, being the visual inspection for assessment of anatomical measurements the most
prevalent of them. Measurement extraction is required for customization of tracheal stents
and implants and stenosis diagnosis. In the �rst case, errors in the measures obtained by
visual exploration choose the wrong prothesis in 25% of the cases, which might lead to the
repetition of the intervention [47,62]. Being 2200 euro the average cost of tracheal procedures,
this repetition rate has an impact in the healthcare system e�ciency as some of the resources
dedicated to bronchoscopy are not used to explore new patients.

Concerning stenosis, a recent study [41] demonstrates that its subjective assessment is
highly prone to errors and that the quality of this assessment does not depend on broncho-
scopist experience. There are two type of errors identi�ed related to whether the degree of
stenosis has been under or over estimated. In the �rst case such underscoring has several
consequences to both the patient and the healthcare system. The patient will be misdiag-
nosed and a consequently an new exploratory intervention will be necessary. This implies
a delay in providing the adequate treatment to the patient which compromises its safety.
In particular this problem appears for almost a quarter of the measurements. Regarding
the overestimation of stenosis degree, the patient will have undergone to a treatment that
was not necessary incurring in a waste of resources. As it can be seen in both cases there
is an economic cost associated either to the repetition of the intervention or to the waste
of resources by providing an erroneous treatment. Finally there is an emotional cost of the
patient that should also be taken into account which may a�ect the reputation of the clinical
institution in charge of the patient.

Therefore, a method for objectively quantifying the percentage and size of the obstructed
airway in the operating room would allow immediate and accurate diagnosis and treatment
[42,52]. Stenosis assessment is achieved by comparing the area of a reference healthy airway
to the area of the obstructed segment (as illustrated in Fig.1.5). The area of the healthy
segment is de�ned by the most external and complete tracheal ring, while the degree of
obstruction is given by the luminal area. Thus, a system aiming at a deployment in clinical

Figure 1.5: Graphical example of the desired output of our method. The healthy
reference ring on the left image and compared to the obstructed lumen show on the
right image.
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practice should be able to characterize on-line the main tracheal structures needed for the
measurements (lumen and tracheal rings) from diagnostic videos in the operating room.

1.2 State of the art and challenges

Although some methods have already been proposed either in the literature or as commercial
solution, we have to take into account that videobronchoscopy is a relatively new technology
(it appeared in the middle 90's) and consequently there is not much computational framework
yet. In this section we review existing works (either hardware or software) which aim to
improve the stenosis diagnostic yield. Stenosis degree can be assessed using either Computed
tomography (CT) scans or videobronchosocpy explorations.

Computed tomography (CT) imaging, also referred to as a computed axial tomography
(CAT) scan, involves the use of rotating x-ray equipment, combined with a digital computer,
to obtain images of the body. Using CT imaging, cross sectional images of body organs and
tissues can be produced. Though there are many other imaging techniques, CT imaging
has the unique ability to o�er clear images of di�erent types of tissue. CT imaging can
provide views of soft tissue, bone, muscle, and blood vessels [59]. However, the quanti�cation
of airway narrowing is di�cult in some patients for several causes such as, dyspnoeic or
uncooperative patients [32], patients with cognitive dysfunction and patients hospitalized in
the intensive care unit. Another important problem is that CT scan visualization is a�ected
by the secretions which could be confused as airway narrowing [50].

Nowadays CT imaging is used in bronchoscopy to create a planning of the intervention
in a methodology that is known as virtual bronchoscopy (VB). Unfortunately VB does not
directly allow to locate the clinician inside the trachea, it does not also consider patient
breathing dynamics or signi�cant intrasubject variations in airway lumen measurements
across sites [46] and involves radiating the patient which make these test poorly suited for
repeat testing, specially in younger patients [60]. Finally, virtual bronchoscopy is not prac-
tically feasible in intervention time as processing a stack of CAT images is computationally
hardware costly and the need of experienced interpreter of radiographical �ndings limits
their application in daily practice [45].

Current methods for measuring the size of tracheal airway using bronchoscopy can be
split into contact and non-contact procedures:

Contact procedures determine the diameter of tracheal rings by inserting endotracheal
tubes with increasing stepwise size [25, 43]. The endotracheal tube is inated to �t the
tracheobronchial airway to determine the size of the prothesis. A main concern is that the
introduction of endotracheal tubes can cause lesions to the soft tissues of the tracheobronchial
airway and also the patient has to be intervened two times: �rst for usual diagnostic and sec-
ond for the insertion of the endotracheal tube. Another concern is that such semi-quantitative
methods choose a wrong prothesis in a 25% of the cases, which leads to the repetition of the
whole procedure [47, 62]. Such procedure repetition is given because a wrong positioning of
the endotracheal tube or the low precision of the inated tube is 5mm.

Existing non-contact procedures can be divided according to their application into bron-
choscopic device improvement procedures and videobronchoscopic computer image analysis
ones. In the �rst case, a suitable modi�cation of the bronchoscope optics ( [23,28]) can pro-
vide accurate measurements with micrometer precision. However, these technologies are still
experimental and far from being commercially available. Regarding stenosis assessment from
videobronchoscopic computer analysis, it requires reliable extraction of the main anatomical
structures (lumen and tracheal rings) involved in the computation of the degree of stenosis.
The area of the healthy segment is de�ned by the most external and complete tracheal ring,
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(a) (b) (c) (d)

Figure 1.6: Examples of variability in lumen appearance: single (a) and multiple
(b) bronchoscopy image; centred (c) and biased (d) colonoscopy image.

while the degree of obstruction is given by the luminal area.

The majority of the relevant work in lumen localization and detection is related to gas-
trointestinal image analysis. Under the assumptions that the largest dark blob of the images
usually correspond to lumen [58] and it is always present in the images [48], there are several
works that segment the lumen using a region growing approach over the image grey level [4].
These approaches are accurate as far as the initial seed for the region growing is placed inside
the luminal area and their performance decrease in the presence of shadows or low contrast
images. Recent approaches use contrast changes to account for local di�erences in image
intensity. The authors in [17] characterize the luminal region in wireless capsule videos by
means of Haar features followed by a supervised boosting for detecting the probability of
having the lumen in a given frame. A main drawback for its application to standard bron-
chospcopy procedures is that its usual central navigation illuminates the luminal area and,
thus, reduces contrast changes (compare images in �gure1.6(a) and (b)).

A common limitation is that most methods can not handle having more than one lumen
in an image, which is quite frequent in bronchoscopy videos. The recent approach in [65]
detects multiple lumen areas by using mean shift [9]. Although it provides information about
multiple lumen, it might fail in the absence of any luminal area and it has a high computa-
tional cost not suitable for its use in intervention time. Other approaches for multiple lumen
detection in bronchoscopy [11, 14, 35, 36] are semi-automatic procedures which are applied
o�-line.

Concerning, the works on tracheal rings segmentation in videobronchoscopy, they are
even more sparse. As far as we know, there is no speci�c processing tools on tracheal
ring segmentation and the only work is the preliminary study reported in [55] assessing the
feasibility of a reliable extraction of rings. This study identi�ed the main issues that make
segmentation of tracheal structures (luminal area and rings) using image processing methods
a challenging task. Such artifacts were grouped into:

• Challenge 1: Appearance Artifacts.

The illumination is not the same for all the images from a given video due to the light
of the camera is not always in the same position. This implies that in some cases,
some parts of the trachea are more illuminated while others present more shadows
(see Figure 1.7 for an example of non-uniform illumination). In this way, specular
highlights (bright spots of light) can be a problem as their appear as a result of
the illumination on shiny objects. Another issue is the blurring of the images (see
Figure 1.7). This e�ect appears when the camera moves too fast also when the camera
objective fogs because of the breath of the patient. In this way, interlacing appears
when the camera is also moving fast. Interlacing consists of two sub-�elds taken in
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Figure 1.7: Image quality artefacts: fi rst row : ilumination problems, second row:
blurred problems.

sequence, each sequentially scanned at odd and even lines of the image sensor [10]. If
camera does not moves fast you cannot see the eff ect, but in our case camera is always
moving and sometimes is moving fast, so in some of the frames interlacing appears
(borders of the structures in the image are indented) (see Figure 1.8). Finally taking
a look at the main anatomical structures such as tracheal rings and lumen, in both
cases we can have diff erent appearance due to diff erent image acquisition methods or
diff erent appearances across the same sequence. In the case of tracheal rings image
intensity appearance is not enough to discriminate rings to other structures like veins
or carina structures.

• Challenge 2: Alien Artifacts. Videobronchoscopy scene can contain some elements
which may diffi cult tracheal structure characterization: for instance we can have el-
ements such as mucus, blood and bubbles which are substances or liquids that can
appear in human trachea or structures such as blood vessels which are present al-
ways in the trachea. Regarding blood vessels, they can have in some cases the same
appearance of the intensity valley that appears between tracheal rings. When the
bronchoscope is getting to the end of the trachea, the beginning of the bronchial sys-
tem starts to be seen (carina). This structure also contains rings which are related
to the main bronchis and consequently their identifi cation is out of our target and

Figure 1.8: Interlacing problem example.
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Figure 1.9: Non anatomical artefacts: fi rst row : carina artefact, second row: rigid
bronchoscope artefact.

their potential detection should be discarded. Finally in some images some part of the
instrumental is present (rigid bronchoscope). The presence of this instrumental also
conveys with valley information which may alter the performance of our methods.

• Challenge 3: Geometric Artifacts. In a 3D-2D projection, the 3D geometry of
the object can be severely distorted depending on the point of view. If camera is
centred in the axis of the trachea the tracheal structures can be easily defi ned. Out of
center deviations introduce two main artefacts in 2D images. The fi rst type of artifacts
happens whenever the camera is focused on the trachea wall (see Figure 1.10). In this
case, we cannot see the tracheal rings or we can only see part of them. We also have
to consider that for stenosis assesment we also need to have a clear and complete view
of the lumen. The second types is due to tracheal rings appearing as collapsed due to
the projection (see Figure 1.10). Since the camera is not well centred in the tracheal
axis, all the tracheal rings that we can see in the image are collapsed in a certain (close
to the camera position) point. Another geometrical issue is related to the number of
luminal area. When the camera is through the trachea only one lumen is present in
the scene whereas when the camera is passing through bronchial system we can have
several lumens in the image.

1.3 Contributions

The goal of this thesis is the development of an automatic method to estimate the degree
of stenosis in brochoscopy images. In order to achieve this and following clinical practice,
we need an accurate characterization of tracheal structures -tracheal rings and lumen- which

Figure 1.10: Geometric artefacts: fi rst row : trachea wall, second row: collapsed
tracheal rings.
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Figure 1.11: Graphical example of the process and desired output of our method.
The healthy reference ring calculation on the top process and compared to the ob-
structed lumen process show on the bottom process.

play a key role in the process (see Fig.1.5). We introduce in Figure 1.11 the general processing
scheme for stenosis assessment.

The main contributions of this thesis are:

• Contribution 1: System for automatic stenosis degree assessment

Stenosis degree is defi ned as the percentage of trachea obstructed and consequently,
our methodology needs of a defi nition of a healthy and an obstructed frame from
which to calculate the fi nal percentage of obstruction. Tracheal rings characterization
is used mainly to characterize the healthy airway size whereas lumen characterization
is needed for the obstructed airway size. Finally we compute the stenosis degree by
completing and selecting the reference ring for the healthy frame and segmenting the
obstructed lumen for the obstructed one.

• Contribution 2: Appearance and geometrical model for characterizing
anatomical tracheal structures

In order to obtain a reliable characterization of the needed tracheal structures we
have developed both physical and computational models for tracheal ring and luminal
area. These models combine geometrical and appearance features that describe those
anatomical structures in a way that discriminates them from other structures that we
have already presented in the challenges part.

• Contribution 3: Segmentation of main anatomical structures.

We propose a multi-step strategy for reference ring segmentation and obstructed lumen
segmentation in order to select the best parameters for its segmentation. For this
reason we also propose a novel statistical framework based on Analysis of Variance
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(anova) [39] for selecting the optimal parameters which ensure within inter-observer
variability performance.

• Contribution 4: Validation protocol and public databases.

One of the main drawbacks of all the proposed methods is the di�culty when compar-
ing their performance. Up to our knowledge, there is no public annotated database
of tracheal rings, lumen regions or stenosis assessment. This constitutes a major aw
for the development of generic algorithms able to achieve accurate results in a wide
range of images. We introduce of di�erent fully annotated databases to validate the
performance of the developed methods.

The remains of this thesis are structured as follows: Chapter 1 includes the introduction
to to videobronchoscopy by following with the state of the art, challenges and contributions
of the thesis. Chapter 2 is dedicated to the introduction and explanation of the models used
to describe the endoluminal scene and Chapter 3 presents the methodology and computer
vision tools used to use these models and segment the important endoluminal scene elements
for a �nal stenosis assessment. Chapter 4 introduces the databases, validation protocol and
a description for each experiment that have been carried out for the evaluation of the used
methods in the scope of the research. The results (quantitative and qualitative) of this
experiments are explained in Chapter 5 and the discussion of its validation, limitations and
applicability is done in Chapter 6. Finally, Chapter 7 closes the thesis by exploring the main
conclusions that can be extracted along with sketching the opened future lines of research.
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Chapter 2

Geometric and Appearance Model
of the Trachea

Stenosis assessment in diagnostic bronchoscopic explorations requires a reliable extraction
of trachea main structures (lumen and tracheal rings). In order that structure identi�cation
is robust against the variability of artefacts that are present in exploratory bronchoscopic
videos, the image processing algorithms used for their extraction will be based on geomet-
ric and appearance features that characterize them from other structures of the tracheal
scene. To do so, we will �rst characterize tracheal structures in videobronchoscopy on the
grounds of the physics that are involved in the bronchoscopic exploration. Such physical
model will provide with a description of anatomical structures that discriminates them from
other elements of the tracheal scene, such as intervention instrumentation and blood ves-
sels. Second, physical model describing tracheal structures features in videoframes will be
implemented using image operators able to cope with videobronchoscopy appearance and
geometric variability.

In this chapter we describe the geometric-appearance model of tracheal structures based
on acquisition videobronchoscopic physical principals. First, we describe our physical model
from how videobronchoscopy frames are acquired, and, speci�cally, how main structures
appear in the projected frames. Second, we derive the image processing operators that best
match the physical description of the main structures (lumen and tracheal rings) in the
bronchoscopic operations.

2.1 Physical Models

Trachea geometry, camera position, orientation and illumination, Phong's illumination model
and the light attenuation are the bases for modelling trachea images using a bronchoscope.
In this section, we will �rst describe the tracheal anatomy reported in morphological and
histological studies, second its geometric features after conical projection from the scope
camera point of view and, �nally, its intensity in images using a spot light source located
at the scope camera. In order to validate our physical model, we will compare synthetic
images generated using our camera-illumination model on two tracheal geometric models
to bronchoscospy video frames. After its validation, we will use our physical model to
characterize the geometry and appearance of tracheal structures in videobronchoscopy.

Anatomically, the trachea is a tube lying in front of the esophagus that connects the

13
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Figure 2.1: Trachea schema (left) and main anatomical elements in an histological
cut.2

pharynx or larynx to the bronchial system (as shown in the sketch in Fig.2.1). The trachea
has an inner diameter of about 21 to 27 millimetres (0.83 to 1.1 inches) and a length within 10
and 16 centimetres. It begins at the larynx in the �fth level vertebra and bifurcates into the
primary bronchi at the vertebral level of T4/T5 [21]. A main structural element are tracheal
rings [21]. There are about �fteen to twenty incomplete C-shaped cartilaginous rings that
reinforce the anterior and lateral sides of the trachea. The aim of the tracheal rings is to
protect and maintain the airway equally span along the tracheal tube. The trachealis muscle
connects the ends of the incomplete rings and contracts during coughing, reducing the size of
the lumen of the trachea to increase the air ow rate. The cartilaginous rings are incomplete
in order to allow the trachea to collapse slightly so that food can pass down the esophagus
(posterior to the trachea) [21]. The histologic cut of Fig. 2.1 shows the main anatomical
elements of a tracheal section: C-shaped rings, interconnectivity muscle and trachea lumen.
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(a) (b)

Figure 2.2: Composition of tracheal structures in a videobronchoscopy frame (a)
an in a histological cut (b).

The main structural elements observed in histological cut are also observed in video-
bronchoscopy frames as the clinician navigates through the tracheal lumen, as it can be
observed in an actual frame -Fig 2.2-. However, we would like to note that bronchoscopy
frames are acquired using a C-MOS video camera [63], thus, 3D structures are projected
using a conical projection. Such projection might distort the appearance and geometry that
trachea anatomy has in cross sectional histological cuts. The geometric appearance of the
trachea tubular structures in conical projection depends on the scope camera position and
point of view. In case the camera position is central to the lumen and it is oriented along
the tracheal medial axis, the conical projection looks like histological cross sectional cuts.
Tracheal rings appears as a set of concentric circles that preserve their c-shape, the trachialis
muscle that closes them at the esophagus region is fl at and lumen corresponds to the darkest
central circular shape. Fig 2.2 compares the geometric appearance of the main structures,
between a bronchoscopi frame taken in a central projection and a cross sectional histological
cut. Moreover, a vertical cut of the trachea allows us to see how the C-shaped cartilaginous
rings looks like, which is needed for an accurate tracheal structure characterization. Consid-
erable deviation of the camera from central navigation distorts the cross-sectional geometry.
Tracheal rings are not concentric any more and collapse in a certain pathway point and
lumen can be partially occluded by other structures, thus, loosing its circularity. In this
case, stenosis measurements would not be reliable and, thus, these images are automatically
discarded by experts (see Fig.2.3).

The intensity of tracheal structures in videobronchoscopy frames depends on the camera
illumination and the incident angles between camera light and trachea surface. The bron-
choscope has a spot light source and a camera attached to it in a way that both camera and
the source of light are in the same direction. This allows the modelling of the image intensity
as a pinhole camera following a given illumination model. We have chosen Phong’ s refl ection
model [49], because is the most simple and basic illumination model and it is enough for
having an idea on which is the refl ection between the incidence light and trachea surface.
Regarding the propagation of a spot light we consider that it is attenuated according the
inverse of the square of the distance.

Phong’ s refl ection model defi nes the illumination of each surface point as a combination

1http://academic.kellogg.edu/herbrandsonc/bio201 mckinley/Respiratory%20System.htm
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Figure 2.3: Frame valid for stenosis assessment (left), frame not valid for stenosis
assessment (right).

of the diff use refl ection of rough surfaces with the specular refl ection of shiny surfaces. It
is based on Bui Tuong Phong’ s informal observation that shiny surfaces have small intense
specular highlights, while dull surfaces large highlights that fall off more gradually. Phong’ s
illumination model also includes an ambient term to account for small amount of light
that is scattered about the entire scene. The graphical example of Fig.2.4 illustrates the
decomposition of the light refl ected into the three components: ambient, diff use and specular.
According to this model, the image intensity at a pixel is given by the cosinus of the incident
angle between light ray and the surface normal as:

I = IaKa + fattIp(Kd cosχ+W (χ) cos α ) (2.1)

where I stands for the light refl ected by the surface to the camera, Ia for the intensity of
ambient illumination, Ka for the ambient refl ection coeffi cient, fatt for the attenuation factor
of light distance, lp for the spot light intensity and Kd for the diff use refl ection coeffi cient.
In this case, χ determines the angle between the normal surface and the direction of the
incidence spot light whereas α represents the angle between the normal surface and camera
direction. Finally, W (χ) is used to represent the specular refl ection coeffi cient.

By applying Phong’ s illumination model to a 3D models of the trachea main structures,
we can derive their physical models of their intensity in a central projection. We have
considered two diff erent geometrical meshes of the trachea: computational synthetic models
and a mesh extracted from a CT scan. Scope navigation along the two geometric models
and Phong model illumination was simulated using 3D Studio Max (3Ds Max) to obtain the
cross sectional images in conical projection.

Figure 2.4: Decomposition of the light refl ected by the surface into the three com-
ponents: ambient; diff use and specular.
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Figure 2.5: Synthetic Model of the Trachea: sinusoidal tracheal surface (left) and
longitudinal cut showing the generating sinusiodal profi le, (right).

In central projection, the intensity of rings is determined by the profi le of a longitudinal
cut, which is repeated along the c-shape angular range. Such longitudinal profi le can be
modelled as a suface of revolution generated by rotation of a sinusoidal curve around the
z-axis. The sinusoid represents a radial coordinate (depending on z), which amplitude and
frequency models the cartilaginous tracheal rings. The angle of rotation is limited to the
angular range of the ring c-shape. Our computational model of the trachea is given in
cylindrical coordinates as (χ, z) as a functions in the z-coordinates given by:

Φ (χ, z) = (R(z)cos(χ), R(z)sin(χ), z) (2.2)

for (χ, z) ∈ [0 , 2π ] × [0 , L], being L the trachea average length in adults, and the radius
R(z) = Rmin+(RMx − Rmin)cos(λ (z/ 180 ∗ π )). The parameters Rmin, RMx are computed
so that R(0), R(360/ λ ) achieve the average trachea maximum and minimum diameters and
λ is set to have approximately the average number of tracheal rings in a segment of length
L.

Figure 2.5 shows one of our computational models simulating the 3D profi le of the trachea
with the main parameters used for its computation depicted in the left plot. Figure 2.6 shows
the Phong’ s refl ection model applied to the synthetic tracheal surface illuminated from a
central camera point of view. The left image shows the projected surface and the right plot
is the intensity along a central line. Bright pixels correspond to cartilage tracheal rings,
while dark shaded ones are inter-ring spacing. We observe that the width of bright zones
decreases with the distance to the camera due to the perspective projection. This narrowing
eff ect is signifi cantly reduced for shaded areas between rings.

In order to obtain a more realistic cross sectional profi le, the physical model (camera
navigation and Phong illumination) describing the acquisition of videobronchoscopy frames,
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Figure 2.6: Trachea illumination Appearance in synthetic trachea: main anatomic
structures in left image and radial intensity profi le in right plot.

has been applied to a mesh of the airways extracted from a CT scan of an adult volunteer
3. CT scan was acquired in axial orientation. The DICOM volume was segmented using
3DSeg. In this case, central navigation was done using the skeleton of the segmented airway
volume.

Figure 2.7 shows the airway mesh segmented from CT scans and a longitudinal cut of the
segmented trachea. We note that this longitudinal profi le matches the sinusoidal wave used
to generated our synthetic computational models. Figure 2.8 shows the Phong’ s refl ection
model applied to the segmented trachea illuminated from a central camera point of view. We
can see that the intensity profi le of the anatomical structures matches with the one analysed
with the synthetic computational model.

The validity of our model in real images can be visually assessed by comparing synthetic
images and radial profi les to those extracted from videobronchoscopy frames. Figure.2.9
shows a bronchoscopy frame and the grey intensity profi le along a radial line, L1, depicted
in white. As can be seen in the Fig.2.9, pixels in the boundaries between C-Shaped cartilage
(tracheal rings) have low grey level whereas pixels belonging to the tracheal ring appear
brighter. Consequently we have a jump in intensity in the border which separate consecutive
tracheal ring regions which constitute an intensity valley. We can also observe a region of
the image with low gray level which constitutes the luminal area which is defi ned by the
farthest points from the camera because of the light attenuation.

The analysis of both illumination and image radial intensity profi les obtained for the
synthetic and CT tracheal models, leads us to the following physical characterization of
tracheal structures (rings and lumen) in videobronchoscopy frames:

1. Tracheal Lumen Physical Model. As illustrated in Fig. 2.9, the amount of light
that falls on the scene decreases approximately according to the inverse of the square
of the distance between the light source and each 3D point. Consequently the farthest
parts of the image, such as the lumen, are poorly lighted. The fact that the amount of
light increases from the centre of the lumen outwards allows to incorporate geometric
gradient-based features to our characterization of the lumen. Our model of appearance
for lumen uses the former characterizes the lumen centre as the dark region of the image

3this data is courtesy of Bellvitge Hospital
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Figure 2.7: CT Model of the Trachea: bronchial system surface (left) and longitu-
dinal cut showing the trachea profi le, (right).

(appearance) which centre is the hub of image gradients (geometry). In this way, we
can also defi ne the centre of the lumen as the darkest and gradient centre point of the
lumen area.

2. Tracheal Rings Physical Model. Tracheal rings can be locally described as a
composition of valleys (between rings and shaded parts) and ridges (every ring and
between valleys). However, tracheal rings are not the only source of valley infor-
mation in bronchoscopy images. Other structures, such as surgical devices or other

Figure 2.8: Trachea illumination Appearance in CT: main anatomic structures in
left image and radial intensity profi le in right plot.
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Figure 2.9: Trachea illumination Appearance in Original Images: main anatomic
structures in left image and radial intensity profi le in right plot.

tracheal structures such as veins or the carina, have also a similar local intensity pro-
fi le (as illustrated in fi g.2.10). What allows us to discriminate rings from such alien
elements is their global geometric profi le identifi ed using our physical model. Using
their global disposition, we will identify tracheal rings as circles with a concentric
disposition around the protection axes which is the centre of the lumen. Moreover,
there are two aspects referring to the valley pattern across its concentric disposition.
First, the thickness of the rings decrease a far as they are from the camera, this eff ect
appears because of the conical projection. Second, the intensity of these valleys is
reduced as far as the rings are from the camera, this eff ect appears because of the
light attenuation with the distance.

Figure 2.10: Other tracheal structures such as veins (fi rst zoom) and carina (second
zoom) that have the same valley profi le as tracheal rings (third zoom).
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2.2 Computational Models

The physical description of the geometry and appearance that each tracheal structure has
in video frames should be implemented using image processing operators in order to sys-
tematically extract them. In this section, we provide the computational formulation of the
image features that characterize lumen and tracheal rings. The computational tools are de-
signed to minimize some of the geometric and appearance artifacts. In particular, we will
de�ne parametric operators to account for variability of tracheal structures geometry and
normalised operators giving a uniform response under illumination changes.

2.2.1 Tracheal Lumen Computational Model

The luminal region is characterized as the darkest and most circular blob in images. This
features are implemented using two di�erent descriptors. Circularity is characterized based
on the idea that the lumen centre is the source of all image gradients using a Directed Gra-
dient Accumulation (DGA). Meanwhile, dark blobs are detected by means of a convolution
with a Gaussian kernel, which is referred as Dark Region Identi�cation (DRI).

Directed Gradient Accumulation (DGA) is based on the assumption that gradient lines
tend to have the origin inside the luminal area, facing towards outside of the lumen. Consid-
ering this, DGA value for each point is calculated as the number of gradient-directed lines
that cross it. These lines have the same direction than the gradient and they are created by
extending gradient lines to cover the whole frame. Image gradient centralness is formulated
using the accumulation of the gradient lines of all image pixels. This operator is called
Directed Gradient Accumulation (DGA) and is computed as:

DGA(x, y) :=
∑

9�j(x;y)=(x0;y0)+�rI(x0;y0)

∇I(x0, y0)

where (x0, y0) + λ∇(x0, y0) corresponds to the parametric formulation of line through (x, y)
oriented across the image gradient ∇I(x, y), λ is the free parameter of the gradient line
equation and # denoting the number of elements in a set.

If a given image point is at the centre of a tubular structure, by Phong's illumination
model, image normal lines will accumulate around this point. It follows that DGA achieves
maximum values at either darker (i.e. lumen) or brighter (i.e. specular highlights) regions.
The synthetic images in Fig. 2.11 illustrate how DGA works. In this example all gradient
vectors are directed from the centre of the image (darkest part) to the brightest external part
and, thus, DGA maximum response corresponds to the centre of the image (Fig. 2.11 (d)).
It is worth mentioning that the direct output of DGA is not smooth and presents several
discontinuities. In order to overcome this we apply a gaussian smoothing to the DGA output
in order to obtain a more continuous DGA pro�le, as can be seen in Fig.2.12.

Dark Region Identi�cation (DRI) maps are calculated by applying a smoothing using a
gaussian kernel which σ is related to the scale of the lumen and it is determined using a
training set. We characterize dark areas of the image using our DRI given by a convolution
of the original image, I = I(x, y), with a gaussian kernel, g�, of size σ:

DRI(x, y) := g� ∗ I =
1

(2π)σ2
e
�
(

x2

2σ2 + y2

2σ2

)
∗ I(x, y)

for ∗ the convolution operator.
The response to DRI enhances dark values and, thus, the luminal area. Fig. 2.13 shows

the output of DRI for several scales. If we decrease the scale we increase the size of the
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(a) (b) (c) (d)

Figure 2.11: Graphical explanation of DGA algorithm: Original synthetic image
(a); Corresponding gradient vectors superimposed to the image (b); Example of the
extension of gradient vector lines (c), and resulting DGA accumulation map (d).

expected luminal area up to the point when this region stays stable for a given number
of consecutive scales. In this case the fi nal output of DRI will correspond with the fi nal
smoothed image with the stable scale.

As for DGA maps we show how DRI algorithm works by a graphical example. As can be
seen, if we increase the scale (reducing consequently the size of the resulting dark blobs) we
go from having a big dark blob (Figure 2.13 (b)) to a smaller one which matches the lumen
region (Figure 2.13 (e)). As can be observed the fi nal accumulation map could already be
used as an approximation of the luminal region. This method is also valid to diff erentiate
shadows from luminal regions as an smoothing with a small scale will increase shadow pixel
intensity values when combined with the structures shadows are originated from.

Figure 2.12: Real frame, result of applying DGA and its surface representation (fi rst
row). Gaussian smoothing applied to the result of DGA and its surface representation
(second row).
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(a) (b) (c) (d) (e)

Figure 2.13: Graphical explanation of DRI algorithm: Original bronchoscopy image
(a); Smoothed images with σ: 1 / 8 (b); 1 / 16 (c); 1 / 24 (d); 1 / 32 (e);

Our model aims to be applicable for a wide range of images and lumen pixel charac-
terization is based on both geometric and appearance cues which make it generalizable.
Considering our two diff erent descriptors we defi ne that a pixel belonging to the luminal
area will have a low DRI value and a high DGA whereas pixels belonging to tracheal rings
and folds will have high DRI and DGA value.

Our computational lumen model also acknowledges some of the challenges that video-
bronchoscopy frames present which can be grouped into three categories: diff erences in
appearance due to diff erent image acquisition methods, diff erent lumen appearances within
the same sequence and the possibility of having more than one luminal area -or none- in a
given image. Examples of these challenges are shown in Fig.2.14.

2.2.2 Tracheal rings computational model

The physical model of section 2.1 characterizes tracheal rings as a set of sinusoidal signals of
increasing radial wave length centred at the lumen. Given the tracheal ring physical model,
since valleys present a more stable profi le across the distance to the camera (radial direction
in Figure 2.9), we will restrict to valley detectors for a tracheal ring detection. Among all

Figure 2.14: Challenges in lumen appearance and geometry. Diff erences in acqui-
sition conditions (fi rst column), diff erences in appearance within the same sequence
(second column) and diff erences in number of lumens (third column).
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the valley detectors we can classify them into two main groups: geometrical and gaussian
detectors. In one hand, geometrical valley detectors are based on the level set curves. As
the authors in [33] explain the method is based on �nding the minimum value of level curves
(valleys). This method is very sensitive with small structures and it does not depend on the
orientation. On the other hand, gaussian detectors are based on applying second derivative of
an anisotropic gaussian oriented �lters into the images. In this case the parameters needed
are the number of orientations and range of scales. This method aims to �nd the best
intensity pattern that match with the de�ned gaussians. These gaussians have a multi scale
parameter (σ) between the range de�ned and also a number of orientations. The orientation
is the degree of position of the gaussian. Gaussian valley �lter gives the maximum value of
matching between all the the scales and orientations. Consequently geometrical detectors
introduce more noise and gaussian detectors seems to be more clean and also parameters
such as scale and orientation can be controlled which is better for our ring modelling. We
have chosen to use Normalized Steerable Gaussian Filters (NSGF) which are implemented
as convolution of the image with a second derivative of an anisotropic oriented gaussian
kernel [15]. Oriented anisotropic gaussian kernels are given by:

GΣ;� = G(�x;�y);� =
1

(2π)σxσy
e
�
(

x̃2

2σ2
x
+ ỹ2

2σ2
y

)
(2.3)

for (~x, ~y) the coordinates given by a rotation of angle θ:

~x = −x sin θ + y cos θ

~y = x sin θ − y cos θ
(2.4)

and the scale σx > σy usually given by σx = 4σy [16]. Thus, the anisotropic bank of �lters
is simply formulated as:

G�;� =
1

(2π)4σ2
e
�
(

x̃2

2(4σ)2
+ ỹ2

2σ2

)
(2.5)

The second partial derivative along the y axis constitutes the principal kernel for computing
ridges and valleys:

∂2
ỹG�;� = (~y2/σ4 − 1/σ4)G�;� (2.6)

In order to account for non-uniform illumination artifacts, we use a normalized convolution
operator:

NSGF�;� :=
∥∂2

ỹG�;� ∗ I∥
∥∂2

ỹG�;�∥∥I∥
(2.7)

for ∥ · ∥ the L2 integral norm and ∗ denoting the convolution operator. The response of the
operator is calculated as the maximum response for a discrete sampling of the angle and
scale domains:

NSGF := max (NSGF�;�) (2.8)

There are two main geometrical aspects of tracheal rings that allow their discrimination
from other anatomical structures: an increasing thickness across the radial direction and
a concentric disposition around the carina. These two features bound the angular and
scale ranges of the NSGF bank. Concentric disposition implies that, for each pixel, the
orientation of �lters should be perpendicular to radial rays emerging from the carina/luminal
area. Meanwhile, increasing radial thickness implies that the scale of the �lter achieving the
maximum response in Eq. (2.8) increases along each radial ray (see L1 pro�le in �gure 2.9).
The left scheme in �gure 2.15 illustrates the speci�c �lter design modelling the geometric
features of tracheal rings in the original image cartesian domain. To better model the
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Figure 2.15: Modelling of concentric disposition of tracheal rings in the polar do-
main: steerable �lters in the original cartesian domain (right) and in the polar trans-
form (left) .

geometric features (concentric and radial deceasing scales), images are transformed to polar
coordinates. This transformation needs of a de�nition of a centre of coordinates, which
is as identi�ed by the physical model, the centre of the lumen. In the polar domain the
ridge-valley pro�le of tracheal rings follows approximately an horizontal line in which carina
becomes to a wide strip at the top of images as shown in the right image of �gure 2.15. Rows
correspond to the radial coordinate and columns to the angular one.

Due to the perspective projection, the thickness range (scale of the valley) is always
within the same range for a given video camera and digital resolution. As scale range
depends on image size, a given range is not valid for every bronchoscopy sequence. In this
case, di�erences in resolution between videos can be easily solved by applying a correcting
factor depending on the resolution of the training and testing videos.

In order to reduce the impact of alien structrues in tracheal ring characterization we have
to consider that the maximum response of Eq. (2.8) includes most tracheal rings but also
carina components and some surgical devices (as illustrated in the left images of �gure 2.16).
Structures not belonging to tracheal rings are removed by forcing rings increasing thickness
across the radial direction.

In order to achieve this, we explore the radial pro�le of the scales achieving the maximum
value in (2.8). The bottom left image in �gure 2.16 shows the maximal scales at points
achieving a local maximum of NSGF. Higher intensity values correspond to larger scales
as indicated by the colorbar. The right plot shows the radial pro�le along the white line
labelled L1 and shown also in the close-up in the left part of the �gure. The cross in the
line L1 and its radial pro�le indicates the beginning of the carina.

We observe that, in the absence of non-ring artifacts (L1 pro�le), such pro�le keeps de-
creasing starting from the most external detections as rings are traversed. This is illustrated
by the scales of higher radius in the L1 pro�le corresponding to outermost rings in the left
image close-up. However, surgical devices and the carina cause the pro�le of the maximal
scales to increase, thus, violating the radial increasing thickness of rings (as illustrated by at
the minimal radius in L1 pro�le). Therefore, structures not belonging to tracheal rings are
removed by discarding the �rst encounter with increasing scale (as indicated by the vertical
dotted line in L1 pro�le). This greedy approach chooses a set of candidate points on tracheal
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Figure 2.16: Modelling of tracheal rings radial thickness by analyzing the profi le of
maximal scales.

rings, which are completed by hysteresis on the maximum response (2.8).
Once physical and computational models of tracheal structures have been presented

we will proceed in the next chapter on explaining how these structures can be accurately
segmented.



Chapter 3

Tracheal structures segmentation
for stenosis assessment

We present in this chapter our strategy for e�cient and reliable quanti�cation of the degree
of stenosis from videobronchosocpic explorations. According to clinic literature [41], such de-
gree can be assessed using the Stenosis Index (SI) metric. Stenosis Index degree is calculated
by the physicians from information given by two di�erent frames selected by themselves, one
showing a healthy tracheal view whereas the other shows an obstructed tracheal view. The
calculation of the �nal stenosis index is based on the comparison of the area delimited by
the �rst external ring in a healthy frame against the obstructed area delimited by the lumen.
The Stenosis Index can be further quantized according to the percentage SI [41] in 3 degrees:
Slight (SI < 50%), Moderate (SI ∈ (50%, 70%)) and Severe (SI > 70%). This partition
is currently perfomed by clinicians by means of visual inspection and it is used to decide
further treatment actions.

Following ( [41,42]) SI can be calculated as:

SI = (
AARef −AALumen

AARef
) · 100 (3.1)

for AARef the airway area of a reference normal segment and AALumen, the airway area
of the abnormal one. We observe that being SI an area ratio, it is independent of device
and image resolutions. The area AARef is computed as the area enclosed by the �rst
complete tracheal ring in a healthy segment, while AALumen is given by the luminal area
of the obstruction. Therefore, such tracheal structures have to be e�ciently detected in
bronchoscopy video frames. To achieve a system ready for a deployment in clinical practice,
we should develop a strategy able to cope with the main challenges of intervenctional videos.
We propose a multi stage strategy (sketched in Fig.3.1) approaching each of the challenges
identi�ed in Chapter 1:

• STAGE 1: Image Preprocessing. In order to mitigate some of the problems that
we have already pointed out in the previous section, a pre-processing step of the images
is needed. This step will clean and prepare the images to be processed in the next
stages of our methodology (�rst step in Fig.3.1).

• STAGE 2: Structure Characterization using our Physical Model. In this
stage we derive the image processing operators that best match the physical description
of the main structures (lumen and tracheal rings) de�ned in Chapter 2. With this

27
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Figure 3.1: Stenosis assessment workfl ow.

characterization we can reduce the impact of alien structures such as veins or responses
at the carina (second step in Fig.3.1).

• STAGE 3: Structure Segmentation with Optimal Parameter Setting. Once
we have characterized the main structures used for stenosis assessment we segment
in this stage the obstructed lumen (pathological frame) for the computation of the
abnormal area and the most external and complete ring (healthy frame) for the com-
putation of the normal area. In both cases we use a snake in polar coordinates to fi t
the shape we are looking for (third step in Fig.3.1). Finally a framework for optimally
adjust the parameters for stenosis assessment is used.

Being both structures convex curves centered at the lumen, we will model them in polars
as radial functions that depend on the angle χ ∈ [0 , 360]. We will note R = R(χ), L = L(χ),
the angular functions that segment the reference ring and the lumen in the polar domain.
AARef , AALumen are then given by the integral of each radial function, approximated it by:

AARef =

Nθ∑
i=1

R(χi)
2

2
hθ (3.2)

AALumen =

Nθ∑
i=1

L(χi)
2

2
hθ (3.3)

for χi = ihθ = i360
Nθ

a uniform sampling of the interval [0 , 360] of size Nθ using as step hθ.
The remains of this chapter are structured as follows. First we explain which is the

preprocess we apply to all images for mitigate the impact of alien structures. Then, we
describe the structure characterization of the luminal area which involves the calculation of
the the centre and we apply the computation model for tracheal ring characterization which
involves valley detector ans some postfi ltering. Finally we explain the segmentation of the
main structures (obstructed lumen and reference ring) using its characterization.

3.1 Preprocessing

• Interlacing suppression Interlacing appears due to the image acquisition process.
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In order to increase resolution and reduce acquisition time, video frames are recorded
twice at half resolution and then combined to obtain a frame at double resolution. The
�nal frame is obtained by distributing and interlacing each half frame rows into the odd
and even rows of the full frame. Camera motion and anatomy dynamics (breathing in
our case) introduce small changes between the two half resolutions acquisitions that
make odd and even lines not match. So that, we may �nd aliased contours or edges
in images. Although we suspect that for the majority of the frames the di�erence will
be minimal, we have decided to address the interlacing problem in a rather drastic
way [10]. In order to prevent the possible e�ects of time misalignment between odd
and even lines, we will only take one of each two lines and we will resize the image
in order to maintain the proportions. The process is as follows: Imagine we have an
image with size 600x400. If we take only one of each two lines, we obtain two images
of size 600x200. We discard one of them and, in order to keep the proportion we have
to pass from size 600x200 to 300x200, which can be done bye resizing the image along
the horizontal direction by a 0.5 factor.

• Image black frame inpainting Camera lens introduces a black frame that might
distort the output of the image operators introduced in Chapter 2. In order to minimize
the impact of the black frame in image operators without losing anatomic information,
we will extend (inpaint) image values to the black mask [6]. Inpainting is performed
in a two-stage process. First, image values at the boundary of the mask are extended
to the whole mask by using a di�usion process. Second, in a neighbourhood of the
black frame boundary extended values are blended with the original values in order
to obtain a smooth transitions for valley operators.

In the di�usion stage we di�use values from the original image into pixels with no value
which are under the detection mask M . We track the positions of the pixels under M
and, for each of them we perform as follows: we obtain a 3× 3 neighborhood around
the pixel and change its original value by the mean value of the valid neighbors. Valid
neighbours are those pixels which either do not belong to the original M mask or that
have already being modi�ed by the di�usion process. This process is repeated until
every pixel under M has a new value. Once this happens, we repeat the process until
the di�erence between the new and the previous value of pixels under M is smaller
than a threshold valuesth. We can see that for the calculation of the di�used value of
the pixels under M , which are painted in white, we only use information from valid
neighbors, painted in orange in the image.

The complete di�usion algorithm is:



30TRACHEAL STRUCTURES SEGMENTATION FOR STENOSIS ASSESSMENT

Algorithm 1 Inpainting diffusion algorithm

Data: Diffusion(I,FM ,MC)
Arg:(I: original image, M : detection mask, MC: minimum change threshold)

Result: Diffused image(Id)
Initialization of valid neighbors mask1 V NM = ¬M Calculation of diffused values for

pixels in M2 repeatwhile the image is modified over sth
3 stop = true;
4 forall the x⃗ ∈ I : M(x⃗) == 1 do

Definition of a neighborhood around a pixel5 Neigh = {p⃗|p⃗ ∈
Neighborhood(x⃗), V NM(p⃗) == 1}6 if #Neigh > 0 then

Calculation of the diffused value7 nv =
∑

p⃗∈Neigh Id(p⃗)

#Neigh Calculation of the stop

flag8 if V NM(x⃗) == 1 then
if |nv − Id(x⃗)| > sth then stop = false ;

else
stop = false

end
Actualization of the diffused image value9 Id(x⃗) = nv

end

end

until stop == true;

In order to obtain the �nal image we take into account that we want to assure that the
pixels under M do have their new value on the �nal image but we also have to consider
that if we do a direct substitution there will still remain a clear frontier between pixels
inside and outside the �nal image. In order to solve this we create an extended mask
which ponders the way we combine Io and Id in the Inp image. This M1 mask is
created by dilating the original M mask with a circle structural element and later
convolving the result with a gaussian kernel (see Eq. 9).

M1 = M ⊕ C� ∗G� (3.4)

Once this mask is obtained the �nal inpainted image Inp is calculated in the following
way:

Inp = M1 · Io + (1−M1) · Id (3.5)

As it can be seen in Figure 3.2, Io value of pixels under the original M mask are
completely replaced by their corresponding values in the Id. On the other hand, as we
depart from the original M mask, the contribution of the original Io values increases.

where Io(x, y) and In(x, y) correspond, respectively, to the original image and the
image where the values of the pixels belonging to pixels under the original M mask
have been changed and α corresponds to the decay factor of the mask. The α factor is
used to weight in the �nal image the contribution of the original version of the image
and its smoothed version. By doing this, pixels close to the boundary of the mask will
have more content of In(x, y) image and pixels further from the mask will keep their
original value.
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Figure 3.2: Graphical example of the extension of the M mask.

We only show here some graphical examples of the inpainting method applied to the
black mask in Fig.3.3.

• Structure Preserving Diff usion (SPD)

Bronchoscopy frames have two main artefacts hindering performance of image pro-
cessing operators. On one hand, non-uniform illumination may highligh some parts of
the trachea while others present more shadows. In the other hand, the impact of other
structures not belonging to the main structures (tracheal rings and lumen) should be
reduced. In this way, we propose to use structure preserve diff usion to keep valleys
from pixels in which the orientation of the gradient is continuous. Pixels with this
orientation profi le should only correspond to tracheal rings. Consequently fi ltering
will aim to mitigate those short structures with non continuous gradient orientation
such as veins. In order to enhance response at anatomical structures, while smoothing
texture and noise we will use Structure Preserving Diff usion (SPD) described in [19].

Diff usion is a mathematical foundation inspired in such a way that physics describe
as the propagation of heat on materials. In image processing, diff usion is a technique
to reduce image noise by preserving gray-level transitions between adjacent tissues,

(a) (b) (c)

Figure 3.3: Alternatives to solve the apparition of the black mask: (a) Original
image, where the biggest portion of the image without any black mask information
is marked by a green square; (b) Result of cropping the image by means of the green
square. (c) Inpainting of the area under the black mask.
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Figure 3.4: Vector fi eld representing level curves of an angiography for a vessel
(bottom-right image) and a background structure-less area (upper-right image).

while restoring contours consistent with anatomical structures. The structure pre-
serving diff usion restricts diff usion along the image gradient to preserve anatomical
information.

The second moment matrix [38] or Structure Tensor [27] provides a good description
of local image structures. The Structure Tensor tensor matrix, ST ρ , σ describes the
gradient distribution in a local neighborhood of each pixel by averaging the projection
matrices onto the image gradient:

ST ρ , σ = g(ρ) ∗

[ (
Ix(σ)

Iy(σ)

)
(Ix(σ), Iy(σ))

]
=

(
g(ρ) ∗ I2x(σ) g(ρ) ∗ Ix(σ)Iy(σ)

g(ρ) ∗ Ix(σ)Iy(σ) g(ρ) ∗ I2y(σ)

)
Image derivatives are computed using gaussian kernels, g σ , of variance σ (diff erentia-
tion scale):

Ix(σ) = g(σ)x ∗ I and Iy(σ) = g(σ)y ∗ I
The projection matrix onto the image gradient, ∇ I = (Ix(σ), Iy(σ)) is averaged using
a gaussian of variance ρ (integration scale). Since ST (ρ, σ) is the solution to the heat
equation with initial condition the projection matrix, its eigenvectors are diff erentiable
(smooth) vector fi elds that represent image level sets normal (principal eigenvector,
π) and tangent (secondary eigenvector, π⊥ ) spaces. In the absence of corners (like
anatomical contours in bottom right image in fi g.3.4), the vector π⊥ is oriented along
image consistent contours (in the sense of regular diff erentiable curves [57]). At tex-
tured or noisy regions, π⊥ is randomly distributed (upper right image in fi g.3.4).

The Structure-Preserving Diff usion (SPD) is given by:

It = (QΛ Qt ∇ I), I(x, y, 0) = I0(x, y) (3.6)

with:

Q =
(
π⊥ , π

)
and Λ =

(
1 0

0 0

)
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(a) (b)

Figure 3.5: SPD fi ltering example : Real image (a), Filtered image (b).

for π the principal eigenvector of ST (ρ, σ). By π⊥ distribution (fi g.3.4), SPD smoothes
image grey values along regular structures (bottom right image in Fig.3.4) and per-
forms like a gaussian fi lter at textured and noisy regions (upper right image in fi g.3.4).
Its geometric nature makes the restricted diff usion evolution equation converge to a
non trivial image that preserves the original image main features as curves of uniform
gray level [18]. In this manner, SPD output achieves a uniform response to local image
descriptors suitable for a further detection and segmentation of image (anatomical)
regions. In our case, we apply SPD to each RGB component to get a color diff used
image. Fig. 3.5 shows the benefi ts of SPD for the extraction of anatomical structures
based on ridge operators. Fig. 3.5 (a) shows the original color image and Fig. 3.5
(b) shows its SPD version. The response to NSGF is shown in bottom images. The
original SPD defi ned on greyscale images we apply it to color images by diff using
each channel using its structure tensor. As it can be seen Figure 3.5 it preserves our
interested structures while it is smoothing around them.

3.2 Structure Characterization

The computational physical model described in Chapter 2 are used to characterize and
discriminate tracheal structures present in the videobronchoscopy scene as follows.

3.2.1 Luminal Region

The operators given in Chapter 2 that describe luminal geometry and appearance in images
defi ne a 2-dimensional feature space that characterizes several elements of the endoluminal
scene. In particular, pixels belonging to the lumen have a low value of DRI and a high
DGA value, specular highlights and other bright protruding surfaces have high DGA and
DRI and structures like folds and rings (which generate shadows) have low DGA and DRI
values. Therefore, a classifi cation of the (DRI,DGA) feature space into this three classes
should characterize the luminal region. In order to account for possible non-gaussianity and
skip tedious manual labelling in a supervised scheme, the partition of the feature space into
this three classes is obtained by unsupervised 3-means clustering over a training set. Such
training set consist of a set of 30 images randomly sampled from 20 representative videos
of our dataset. These images were uniformly sampled to obtain a set of pixels that cover
the 2D feature space and are the input for the k-means classifi cation. The cluster with the
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Figure 3.6: Adequation of our feature space to videobronchoscopy.

lowest DRI and highest DGA values is selected as being the luminal one.
In order to have comparable values, the output of both descriptors has been normalized in

[0 , 1] range. This normalization has been obtained by means of the maximum and minimum
values achieved for the training set. Figure 3.6 shows the (DRI, DGA) normalized feature
space for the training set classifi ed in the three clusters. Red pixels correspond to the lumen,
green pixels to near walls and instruments, and blue pixels belongs to the folds and tracheal
rings. Bottom images in Fig.3.6 show one of the training frames and the classifi cation
using k-means. Given the visual quality of the luminal cluster (quantitatively assessed in
Experiment 5.1.1 before proceeding to further steps), we did not consider necessary to use
advanced supervised classifi ers (such as Support Vector Machine).

The distance of a pixel to the borders given by the clustering defi nes a likelihood map of
its belonging to the each of the classes. In our application this border has been approximated
by a linear plane of origin (DRI0 , DGA0) and normal direction (VDRI , VDGA), so, for each
feature point (DRI, DGA) its likelihood map LK is defi ned by:

LK(DRI, DGA) = (DRI − DRI0)VDRI + (DGA − DGA0)VDGA (3.7)

The likelihood map LK can be used to detect the lumen center and also to defi ne a
external energy guiding the fi nal snake that segments the lumen (as described in Section
3.3.1).

The center of the lumen can be calculated as the local maxima of the LK map. In this
case we use the local maxima and not the global maximum as we aim our model to be general
so it must contemplate that for some bronchoscopy frames -representing bifurcations in the
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Figure 3.7: Workfl ow for the lumen centre processing.

bronchial tree- there is more than one luminal area. We have to note that as we are training
our classifi er our model is able to cope with lumen absence: in the case of no luminal area
there will be no pixel which falls in the red region of the feature space. Figure 3.7 shows
diff erent examples of how the centre is obtained. We can see that our methodology allows
us to cover all possible lumen presence cases: our method is able to detect one lumen (fi rst
and third row), multilumen (second row) and gives no output where there is no lumen in
the image (last row).

3.2.2 Tracheal ring

Following the physical model described in Chapter 2, tracheal rings are characterized in
terms of image valleys computed using our NSGF operator given by convolution to a bank
of second derivatives of Gaussian kernels ξ 2

�yGσ , θ = (ỹ2 / σ4 − 1/ σ4)G σ , θ. The maximum
response for a discrete sampling of the angle and scale domains defi nes the valley feature:

NSGF := max
i, j

(
NSGF σ i , θj

)
(3.8)

for ‖ · ‖ the L2 integral norm and σi,χj discrete scale and orientation sampling. To account
for the global concentric-profi le, NSGF is computed in the image polar domain. The trans-
formation to polars is computed using the lumen centre (extracted following Section3.2.1)
as origin of coordinates.

Figure 3.8 shows a frame in cartesian domain and its polar transformation. In the polar
image, rows correspond to the radial coordinate (with origin at the top row) and columns
correspond top the angular coordinate in the range [0 , 360]. We show in the polar image the
axis indicating the angular and radial coordinates. We observe that in the polar domain,
rings are the only horizontal structures covering the full angular range. Therefore, in such
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Figure 3.8: Workfl ow for tracheal ring characterization.

polar domain, the orientation and scales used to compute (3.2.2) are set to cover the scale
ranges of ring thickness and restricted to horizontal structures. It follows that, in the polar
domain, the pixel-wise radial orientation of the NSGF fi lters is reduced to an horizontal
orientation given by χ= 0. In order to account for any deviation in the circular profi le of
rings (see images shown in fi gure 4.4 for an example) the sampling of the angle defi ning
NSGF (σi , χj) considers a small range around 0 given by [ − ε , ε ]:

χj = { 2ε j
Nθ

− ε , ∀ j = 0 . . . Nθ} (3.9)

for Nθ the number of sampled angles.

Concerning scale sampling, we have to consider that σ is related to the thickness of the
valley. For a given sequence, let the range be defi ned as [σm , σM ] and the scale sampling
will be given by a uniform sampling of the former interval:

σi = { σm +
i(σM − σm)

Nσ
, ∀ i = 1 . . . N σ } (3.10)

for Nσ the number of sampled scales.

The response to NSGF using the restricted parameter ranges for Gaussian fi lter orien-
tation and scales is shown in the second polar image of fi g. 3.8. We observe that there is
almost no response at other valley-like structures present in the image. Such suppression
of artifacts is better appreciated in the close-ups showing an area inside the carina and an
region containing a vessel.

Tracheal rings correspond to the local maxima of the response to NSGF. Local maxima
of NSGF response are computed using Non-Maxima Supression [44], NMS. Non-maxima
are suppressed by keeping only those pixels such that NSGF value is maximum along the
orientation, χNSGF , of the fi lter that achieved the maximum response in (3.2.2). In order to
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keep valley geometric information, NMS values are given by the scales, σNSGF , of the �lter
that achieved NSGF maximum value, so that we de�ne:

NMSNSGF (θ,R) = (3.11)

=

{
σNSGF if NSGF > max(NSGFV +, NSGFV �)

0 otherwise

for V = (cos(θNSGF ), sin(θNSGF )), NSGFV + = NSGF (x + Vx, y + Vy) and NSGFV � =
NSGF (x − Vx, y − Vy). NSGFV + and NSGFV � images are computed using linear inter-
polation.

As a result, NMS should suppress all the pixels that are not candidates to be part of
the skeleton, therefore, all the pixels that are not a local maxima. The result is a thinned
one-pixel mask of the dominant valleys, as shown in Figure 3.8.

In order to suppress invalid responses due to anatomical elements such as veins and
carina, we apply a length and scale �lters. Our length �lter assess NMSNSGF connected
components of length below a given threshold, LCC. NMSNSGF segments length is com-
puted as:

CCi = {NMSNSGF (x, y)
i}nc (3.12)

AreaCCi =
∑

Ri
j(θ

i
j − θij+1) (3.13)

for Rj , θj the radial and angular coordinates of each NMSNSGF component in the polar
domain. Therefore, the length �ltered NMSNSGF is de�ned as:

NMSAF (x, y) = (3.14)

=

{
CCi if AreaCCi > AreaCC

0 otherwise

Where CCi are all the nc connected components, AreaCCi is the polar area (with radius
R and angle θ) of each of the CC and NMSAF is the �nal mask removing those components
that its area is higher than the mean area.

Although the length �lter already removes some response at the carina, the length of
some carina components can be close to 2π in polar domain and, thus, LCC in cartesians.
To remove such carina responses we use rings physical property that sets that they should
follow a decreasing thickness pattern in the polar domain that is if a external ring is detected
in scale σ1, scales of inner rings should be at lower scale values. The scale �lter is computed
by analysing the radial pro�le of NMSNSGF (�;R) for each angle. Let NMS(θo, R) the plot of
scales for a given angle θo and RSF = minR NMS(θo, R) the radius achieving the minimum
scale. We de�ne our scale �lter, NMSSF for each angle θo as:

NMSSF (θo, R) = (3.15)

=

{
NMS(θo, R) if R < RSF

0 otherwise
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3.3 Structure Segmentation

In order to obtain the curves that enclose the obstructed lumen and the reference ring areas
we will use active contour or snakes. A snake schema is de�ned as far as the external energy
and the initial curve are de�ned and the internal energy parameters are de�ned. In order
to ensure convergence to the target contour, the external energy should be convex or the
initial snake close enough to the target. Also, internal parameters might inuence snake
convergence and often require �ne tuning. Image noise and non-convex pro�les are visual
sources of snakes premature convergence that force an accurate initial curve. In this section
we will describe two strategies for ensuring convergence to obstructed lumen and reference
ring, independent of internal energy settings. Finally we present a novel framework based
on the use of Anovas to obtain the optimal parameter values that allows our methods for
stenosis assessment to reach inter-observer variability performance.

3.3.1 Obstructed Lumen

In this case the formulation of the snake L = L(θ), that segments the lumen region is:

Lt = ∂r(LExt) + α∂�(Lt�1) + β∂��(Lt�1) (3.16)

for α, β corresponding, respectively, to the weights for the sti�ness and elasticity snake
terms. In this case, the external energy LExt is given in terms of the linear classi�er as
follows:

LKl := (3.17)

|DRI · VDRI +DGA · VDGA −
−(DRI0 · VDRI +DGA0 · VDGA)| =
= |DRI · VDRI +DGA · VDGA − l|

for | · | the absolute value. The linear classi�er de�nes a 1-parametric family of likelihood
maps depending on the intercept, l. The top plot in Fig. 3.9 shows the (DRI,DGA) feature
space with two di�erent classi�ers at two di�erent intercept values, lk and lk+n (dashed
lines).

The values LKl can be interpreted as the distance (in the feature space) to the set of pixels
that de�ne the border (given by LKl = 0) between non-lumen and lumen points and, thus,
correspond to a local minima of LKl. We note that values within l ∈ [min(VDRI , VDGA),
max(VDRI , VDGA)] = [lm, lM ] produce likelihood maps that have a well de�ned curve of
minimal points. Outside this interval, LKi does not have any local minima because for such
values all image pixels would be classi�ed as either lumen or non-lumen. The set of LKl

mimimal points progressively approximate the lumen border as the interval [lm, lM ] is swept.
The optimal intercept value, lj that yields the best approximation will be computed using
the ANOVA design described in Section 3.3.3.

The solution to (3.16) using LExt = LKl would approximate the lumen border provided
that L0 is closed enough to the target curve or LKl is convex. Otherwise, the solution could
get trapped in a local minima which does not correspond to the lumen border. In order to
ensure convergence to the lumen border and also speed-up the process, we will consider a
family of snakes, (Lj)

j=Nl
j=1 , that solve (3.16) for a sampling of size Nl of the interval [lm, l]

given by lj = lm + j/Nl(l − lm). Each snake Lj is formulated as the steady state of:

Lj
t = ∂r(LKlj ) + α∂�L

j
t�1 + β∂��L

j
t�1 with Lj

0 = Lj�1 (3.18)
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being Lj�1 the solution for LExt = LKlj−1 and L0 ≡ 1. This progressive scheme overcomes
premature convergence of the snake and also minimizes the impact of its initialization and
internal energy parameters α, β. The snake for j = Nl is our �nal lumen segmentation in
the polar domain. The optimal intercept, l, de�nes the snake Ll to be used to segment the
lumen. l will be set using the ANOVA design described in Section 3.3.3.

The middle images in Fig. 3.9 show two di�erent LKlj energies in polar coordinates for
consecutive values lk1 and lk2 . The snake solving (3.18) for lj and lj+n is plotted on the
polar representation of the original image shown under each LKl map and on the cartesian
bottom image. The curve corresponding to l = lk1 is plotted in blue while the curve for
l = lk2 is plotted in white.

3.3.2 Reference Ring Segmentation

The output of tracheal ring characterization o�ers a set of lines -in the polar domain- which
are candidates to be the reference ring. The reference ring corresponds to the most external
complete ring and we segment it in a three step strategy sketched in Fig.3.10. First, a set
of candidate points (yellow lines in the �rst central image in Fig.3.10) are selected from the
response to the operator NMSSF (θ,R) �ltered at suitable scales. Second, these unconnected
segments are completed using the image geometric information. The result of this step is
shown as a grey line in the second central image in Fig. 3.10. Finally, a snake is used to
model a closed curve (blue line in both the second central and the right image of Fig. 3.10)
for AARef computation.

The candidate rings to be the reference one are selected by �ltering NMSSF in a sub-
range of scales from the ones used in the original NSGF calculation. This sub-range of scales
can be set to detect rings at a desired scale range but in our case we would look for the
limits of the optimal sub-range of scales, [σj , σj+k] that best separate reference ring from
the others. The obtention of this optimal sub-range will be set using the ANOVA design
described in Section 3.3.3.

The mask of candidate rings within the sub-range will be noted by χSF :

χSF (x, y) = (3.19)

=

{
1 if NMSSF (x, y) ∈ [σj , σj+k]

0 otherwise

The candidate rings (as illustrated in the central top image of Fig.3.10) tend to appear
as a fragmented set that should be completed in order to compute AARef . Completion is
achieved in a two-stage process that takes into account as much anatomical information as
possible.

First, we apply the Anisotropic Contour Closing, ACC, described in [20], to complete
each candidate ring connected component using the gradient information of the original
image in polar coordinates. The ACC operator is de�ned as the following restricted heat
operator:

ut = (Q�Qt∇u), u0 = χSF (3.20)

with Dirichlet conditions on χNSGF (x, y) equal to 1:

ujfθSF (x;y)>0g = 1 (3.21)

The symbol in (3.20) stands for the divergence operator and the di�usion tensor Q�Qt is
de�ned as:

Q :=
(
ξ?, ξ

)
and � =

(
1 0

0 0

)
(3.22)
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Figure 3.9: Consecutive lumen segmentations (lk1, lk2) of the feature space, top
of the image; likelihood maps (LKk1

l , LKk2
l ) and snake computation (Lk1, Lk2) in

polar coordinates in the middle images and snake computation in cartesian domain
in the bottom image.

where ξ, ξ? are the eigenvectors (ordered in decreasing eigenvalues) of the structure tensor,
ST (ρ1, ρ2), computed over the original image in polar coordinates:
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Figure 3.10: Workow for the tracheal ring segmentation. 1. original image, 2.
detected rings in white, candidate ones in yellow and the reference ring in red over
the image in polar coordinates, 3. shows the result of ACC closing (grey) and snake
completion (blue) and 4. represents the �nal reconstructed ring in the cartesian
domain.

ST (ρ1, ρ2) := g�1 ∗

[(
∂xI�2

∂yI�2

)
∂xI�2 , ∂yI�2

]
=

=

(
g�1 ∗ ∂xxI�2 g�1 ∗ ∂xI�2∂yI�2

g�1 ∗ ∂xI�2∂yI�2 g�1 ∗ ∂yyI�2

)
for g�1 a gaussian kernel of variance ρ1 and image derivatives being computed by convo-

lution with the derivatives of another gaussian kernel, g�2 , as:

∂xI�2 = ∂xg�2 ∗ I and ∂yI�2 = ∂yg�2 ∗ I (3.23)

Since ST (ρ, σ) is the solution to the heat equation with initial condition the projec-
tion matrix, its eigenvectors are di�erentiable (smooth) vector �elds that represent image
level sets normal (principal eigenvector, ξ) and tangent (secondary eigenvector, ξ?) spaces.
Therefore, the solution to (3.20) is a binary map of a closed model of the uncompleted initial
contour. Intuitively, the restricted operator serves to integrate the vector ξ?, so that it
interpolates the unconnected curve segments along it. Based on this interpretation, we can
derive a numeric implementation [26] that is computationally e�cient and, thus, could be
used in operation room time. Figure 3.10 central bottom image shows the ACC completion
(gray lines) of the fragmented curves shown on the top image. We observe that ACC is able
to restore the original ring pro�le, while stopping at axes where no geometric information is
available.

The ACC completion step gives connected contours that match the C-shape geometry
of tracheal rings and, thus, are open curves that end at the trachea lower part limiting with
the esophagus. In order to obtain as a result a closed curve, we use again a deformable
model [29] guided by the distance map to the reference ring. The reference ring is the most
complete ring covering approximately the 180 degrees of the C-shape arc. In case of having
more than one complete ring, the most external one having the maximum radial coordinate
is chosen. If we note by RExt the distance map that acts as the snake external energy, and
by ∂�R, ∂��R the �rst and second derivatives with respect to the angle θ, then the curve
that segments the ring is the steady state of:

Rt = ∂r(RExt) + α∂�(Rt�1) + β∂��(Rt�1) with R0 ≡ 1 (3.24)
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for α, β corresponding, respectively, to the weights for the sti�ness and elasticity snake
terms. The blue line in the central bottom image of Fig. 3.10 shows the �nal snake that
closes the selected ring completed with ACC (gray line). The ring in the Cartesian domain
is shown in the right most image of the same Fig. 3.10.

3.3.3 ANOVA design for optimal parameter setting

In medical diagnosis a new method is accepted as a diagnosis tool provided that it can
substitute the gold standard [64]. The usual criterion to assess such interchangeability is to
compare the output of the new tool to the one provided by the gold standard. In the context
of image processing for the extraction of anatomical structures, the gold standard (or ground
truth, GT) is provided by experts manual annotations. Meanwhile, the comparison is given
by one metric quantifying di�erences between manual and automatic regions or curves [24].

In case of having a unique GT, it is common to choose the method or parameter con-
�guration achieving the least average error (metric) for a training set. However, in order
that this conclusion can be generalized to the whole data set with a given con�dence, it is
mandatory to use some kind of statistical test for detecting multiple di�erences across the
tested methods [13].

We propose to detect signi�cant di�erences across parameter con�gurations using Analy-
sis of variance (ANOVA). ANOVA's [8] are powerful statistical tools for detecting di�erences
in performance across methodologies, as well as the impact of di�erent factors or assumptions.
We can apply ANOVA in case our data consists of one or several categorical explanatory
variables (called factors) and a quantitative response of the variable. The variability analysis
is de�ned as soon as the ANOVA quantitative score and the di�erent factors and methods
are determined. Training data (individuals) is grouped according to such factors and di�er-
ences among quantitative response group mean are computed. ANOVA provides a statistical
way to decide whether such di�erences are signi�cant enough with a given con�dence level
α. Given that di�erent observers produce di�erent GTs, a method is optimal if its metric
ranges are comparable to such inter-observer variability.

We will use ANOVA to compare multiple methods to inter-observer variability and ex-
plore sources of methods errors as follows. First we perform a 2-way ANOVA with factors
given by the several methods and the observers to check if methods rankings varies across
experts. The individuals and ANOVA variable are taken as before. The desired result of this
test would be a signi�cance in the method's factor, possibly a signi�cance across observers
and, most important, no signi�cant interaction. A non-signi�cant di�erence across observers
would indicate that there is no evidence of an inter-observer variability for the chosen set of
experts and, thus, that any of them could be used as GT. In case of signi�cant interaction,
a 1-way ANOVA with the combined method-observer factor should be used to detect the
sources of bias. Otherwise, we can compare the methods output to observer ranges by using
the following 1-way ANOVA.

The �nal comparison to inter-observer ranges in case of no interaction will be given by a
1-way ANOVA with factor groups given by the di�erent methods and the observers evaluated
against each other in a single group. For the methods, the ANOVA variable will be the metric
averaged over all observers, while for the observers control group we will average the metrics
obtained by evaluating each observer against the remaining ones. Given that in this case, the
observer group acts like a control group we want to compare methods to, the correction used
for the multicomparison test should be Dunnet [12]. The optimal methods con�guration will
be the ones such that Dunnet test does not �nd signi�cant di�erences.

In the context of parameter tuning, ANOVA groups would be de�ned by the di�erent
parameter settings and the ANOVA variable would be given by the region or curve compari-
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son metric for a random sampling of the annotated data set. In case of signi�cant di�erences
across ANOVA groups, a multiple comparison test with Tukey correction [61] would detect
those con�gurations that are signi�cantly worst. The remaining methods are good candi-
dates to substitute the observer that performed the manual annotations. However, it is a
fact that there are signi�cant di�erences across experts annotations and, thus, the variability
across them should be taken into account in the validation process [31].

Multi-comparison to inter-observer variability is not an easy task [30]. A usual strategy
consists in averaging the quality metrics obtained using each observer as GT and comparing
this score to the average metrics obtained by evaluating the observers against each other.
The method is considered to perform within inter-observer variability if the average ranges
are comparable. We note that this is a fair comparison provided that the methods ranking is
the same across observers and that agreement occurred by chance is corrected [22]. Ignoring
the impact of variability across observers in methods rankings could hide sources of vari-
ability and error bias in either methods performance or experts annotations that should be
further investigated. This framework will be applied for the di�erent structure segmentation
experiments that will be presented in the next chapter.
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Chapter 4

Experimental Settings and
Databases

We present in this chapter the di�erent experimental setups that we have created to assess
the performance of the di�erent methods developed within this thesis. In the one hand, we
have tested the accuracy of our methodology for the characterization of tracheal structures
-tracheal rings and lumen centre-. On the other hand, we propose di�erent experiments for
assessing main structures segmentation -reference ring and obstructed lumen- which are key
for the validation of automatic stenosis assessment. For each exeriment we report its goal,
databases used and validation protocol and metrics.

One main contribution of this thesis has been the introduction of the only available
fully annotated databases, which are also presented for each experiment. All the frames
belonging to these databases have been provided by the Hospital de Bellvitge. Frames have
been extracted from several sequences following the speci�c requirements of each experiment.

4.1 Structure characterization

4.1.1 Lumen centre detection

The aim of this experiment is to validate our lumen centre characterization. Given an input
frame we apply our method for lumen centre detection and we check if this centre is inside of
the lumen region annotated by the expert (groundTruth). In order to be useful for validating
a wide range of algorithms, an annotated database should ful�l the following requirements:

1. The selected frames should be di�erent enough in order to have the maximum vari-
ability available of lumen appearance.

2. The database should also contain examples of frames both with multiple lumen (more
than one lumen centre) and without lumen (absence of lumen centre).

Taking these constraints into account, we have built up a database of 125 images1 ex-
tracted from 20 di�erent videobronchoscopy sequences. Table 4.1 gives a description of the
di�erent groups, Fig. 4.1 shows an example with its segmentation and Fig. 4.2 shows a
mosaic with some examples of the database.

1http://iam.cvc.uab.es/downloads/
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Index Type Resolution

1 − 100 Bronchoscopy 2 [144 × 144, 288 × 288, 186 × 186]

201 − 225 Bronchoscopy (15 multi-lumen and 10 no lumen) 2 [144 × 144, 288 × 288, 186 × 186]

Table 4.1: Description of the groundtruth of the lumen database.

The lumen centre detection has been validated in terms of true localizations (TL), false
localizations (FL) and no localizations (NL). We have used Precision and Recall scores to
summarize the performance:

Prec = #TL/ (#TL+#FL) (4.1)

Rec = #TL/ (#TL+#NL) (4.2)

Precision results will measure how good are our centres and Recall will give a sense of the
lumens we are missing.

4.1.2 Tracheal ring

The objective of this experiment is to see how good we are detecting just tracheal ring
structures. The importance of this stage relies on fi nding whether the method is able to
detect only either full rings or part of them for a further use in recovering the reference one.
This experiment has two diff erent parts: the fi rst one explores the relationship between the
scale parameter of our ring detector and the resolution of the input image; once this scale
parameter is set we aim to assess the performance of our tracheal ring segmentation method.
Considering this, given an input frame we detect the rings and we compare our results with
the two manual segmentation made by two experts.

Our data set consists of four sequences of healthy and pathological trachea cases pro-
vided by the Bellvitge hospital. Sequences have been obtained with either rigid and fl exible
bronchoscopes at diff erent resolutions. Scale parameters have been tuned empirically for the
sequence of lowest resolution and estimated for the remaining sequences by using the scaling
ratio between both resolutions. Scale ranges and video main features for all videos are given
in Table 4.2.

2Bellvitge Hospital Barcelona
3Beaumont and St. Vincents Hospistal Dublin

Figure 4.1: Examples of images from our database: real images (fi rst and third)
and its respective ground truth (second and four).
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Figure 4.2: Lumen dataset. Examples of bronchoscopy (three fi rst rows) with
one lumen (fi rst row), multilumen or bronchial lumens (second row) and no lumen
presence (third row).

In order to assess our geometric appearance model, we have compared automatically
detected rings with manual segmentations. Comparison has been made over a set of 60
representative frames uniformly sampled from each video. Figure 4.3 shows an example of
segmentation of two frame by two diff erent experts and Fig. 4.4 shows some of the frames
chosen for each of the sequences.

Diff erence between manual and automatically detected rings has been quantifi ed in terms
of true positives, TP , and false positives, FP . We have chosen this goodness measures
instead of standard distances to curves because they are more sensitive and discriminative

Table 4.2: Main features of our dataset: Scale ranges and bronchoscope type,
pathologies and resolutions.

Seq1 Seq2 Seq3 Seq4

Bronchoscope type Flexible Rigid Rigid Flexible

Pathology No Yes Yes No

Resolution 192x144 512x288 360x288 512x288

σ [0.9,2.9] [2.2,6.8] [1.8,5.6] [2.2,6.8]
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Figure 4.3: Example of our database: bronchoscopy image (fi rst), expert 1
groundtruth (second) and expert 2 groundtruth (third).

for the amount of lost rings (given by TP ) and alien structures included in detections (given
by FP ). In order to account for accuracy in ring location, TP are defi ned as those points
1 pixel distance away from manual curves. The percentage of TP and FP are reported in
terms of sensitivity and precision scores:

Sens = 100
TP

TP + FN
, Prec = 100

TP

TP + FP
(4.3)

Prec = 100
TP

TP + FP
(4.4)

where FN is the number of false negatives.
Two experts have annotated our data set in order to account for inter-observer variability.

Comparison to inter-observer variability was computed as follows. Each expert was used as
ground truth for computing Sens and Prec scores achieved by automatic detections. Inter-
observer variability was computed by taking one of the experts as ground truth and the
other one as detection output for computation of Sens and Prec. The diff erences of Sens
and Prec between observers and the automatic detections were analyzed using a Wilcoxon
signed-rank test.

4.2 Structure segmentation

4.2.1 Obstructed lumen segmentation

The objective of this experiment is to validate our automatic luminal area segmentation
method. Given an input frame we segment the obstructed lumen area and the we compare
the curve that limits this area against curves annotated by two diff erent experts. The
obstructed lumen database contains 80 frames selected from 20 diff erent explorations (see
Fig.4.6 with some examples of the database). The database covers diff erent appearances of
obstructions and balances the presence of examples of all the diff erent SI categories visually
classifi ed as 15 cases of Slight (SI < 50%), 15 cases of Moderate (SI ∈ (50%, 70%)), 30
cases of Severe (SI > 70%) and 20 frames of healthy trachea. For this database we have two
diff erent annotations made by two diff erent experts in order to be able to compare the results
with inter-observer variability. Fig.4.5 shows two examples of obstructed lumen frame and
its manual segmentation.
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Figure 4.4: Tracheal ring dataset.

Manual curves annotated by experts were compared to our automatic segmentations
by means of the average distances computed across curve angular parameter. Given two
diff erent curves in the polar domain, γ A(χ) = (χ, rA(χ)), γ B(χ) = (χ, rB(χ)), the average
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Figure 4.5: Examples of our obstructed lumen database: real obstructed lumen
frames (fi rst column) and its manual segmentation (second column) made by one of
the experts.

distance between them is computed as:

AvDA
B = ((

1

Nθ

∑
i

abs(rA(χi) − rB(χi)))/ sx) · 100 (4.5)

for χi = 360i/ Nθ a uniform sampling of the interval [0 , 360] of step hθ = 360 / Nθ and sx the
height dimension of the original image to account for diff erences in device resolution. For a
given curve annotated by observer Ok, we will note by AvD

Ok
Aut as the distance between the

curve of the observer and the output of our method.

4.2.2 Reference ring segmentation

The objective of this experiment is to validate our automatic segmentations of the reference
ring. Given an input frame our method provides as output the reference ring and we compare
the curve obtained against the ones given by the two experts. The performance of this
method is related with the output of tracheal ring segmentation, as part of the input of our
reference ring segmentation comes from the output of ring segmentation.

The reference ring database contains 80 frames selected from the same 20 explorations
used in the obstructed lumen database (see Fig.4.8 with some examples of the database).
The database covers diff erent appearances of rings. In order to build this database we
imposed the constraint that the camera has to be always always centred at the carina. For
this database we have two diff erent annotations made by two diff erent experts in order to
be able to compare the results with interobserver variability. Fig.4.7 shows four diff erent
examples of healthy trachea with the fi rst most external ring manually segmented.

Following the same strategy than for obstructed lumen segmentation, the validation of
our reference ring segmentation will consist of comparing curves provided by our method
and annotations made by experts. For a given curve annotated by observer Ok, we will note
by AvD

Ok
Aut as the distance between the curve of the observer and the output of our method.

AvD
Ok
Aut is calculated as depicted in Eq. 4.5.

4.3 Stenosis assessment

The objective of this experiment is to provide an automatic stenosis degree by using infor-
mation from reference ring segmentation and obstructed lumen segmentation. Given two
frames, one with and obstructed lumen segmented (output of the obstructed lumen experi-
ment) and a healthy frame with the reference ring segmented (output of the reference ring
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Figure 4.6: Obstructed lumen dataset. Some examples of bronchoscopy frames used
to validate our method of obstructed lumen segmentation.

segmentation) we compare the two areas to calculate the percentage of obstruction. Finally,
we compare this percentage with the one made by the two experts, in a visually way and
using an off line program (such as imageJ).

The data set used for this experiment is composed by 20 new cases of patients with
several degrees of stenosis 2 diff erent from the ones for obstructed lumen and reference ring
segmentation. Out of all this 20 cases, 3 were visually classifi ed as 3 slight, 10 as moderate
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Figure 4.7: Examples of our reference ring database: four examples of manual
segmentation made by one of the experts.

and as 7 severe obstructions. A pair of images showing a normal and an abnormal airway
view were extracted from each of the cases. A mosaic showing the pair of images for some
of the cases is shown in Fig. 4.10.

Experts assured that both normal and abnormal views were obtained with a same dis-
tance from the scope to either the obstructed area or the healthy one. The scope was kept
centred so that both the entire circumference of the airway lumen for obstruction and a
complete external ring for the case of a healthy shot can be visualized. Ground truth cor-
responding to this experiment was generated by two diff erent experts by means of ImageJ
software [42] -see Fig. 4.9.

The accuracy of the stenosis index SI has been quantifi ed by comparing the output of our
method obtained by means of 4.6 to the percentage obtained by the manual annotations of
obstructed lumen and reference ring made by the same two experts. In this case AARef refers
to the airway area of a reference normal segment and AALumen to the airway area of the
abnormal one. AARef is computed as the area enclosed by the fi rst complete tracheal ring in a
healthy segment, while AALumen is given by the luminal area of the obstruction.The stenosis
index determined by each expert measures will be noted by SIO1 and SIO2 respectively.

SI = (
AARef − AALumen

AARef
) · 100 (4.6)

4.4 Anova parameter tuning for stenosis assessment

Stenosis degree assessment is based on the calculation of two diff erent areas, one for ob-
structed luminal area and another for the area enclosed by the reference ring. The segmen-
tation of these structures is validated against curves annotated by experts: in this case anova
parameter setting is used to optimize the output of our segmentation methods in order to
decrease the distance of our curves to the ones provided by experts.

2Bellvitge Hospital Barcelona. Sampling size for clinical trial.
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Figure 4.8: Reference ring dataset. Some examples of bronchoscopy frames used to
validate our method of reference ring segmentation.

Regarding tracheal structure segmentation for each of the data set proposed, a random
sampling of 25 frames was used in the training stage. This stage aims to adjust the optimal
scale, [σj , σj+k] for reference ring segmentation and the optimal intercept, l for obstructed
luminal area segmentation. The optimal parameter setting will be tested in the remaining
55 images of each database, using fi rst, a 1-anova test over the test set (as in the training
data), and second, the best optimal parameter will be tested using a t-test for paired data
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Figure 4.9: Examples of our stenosis database: pair of images (each row) with area
of healthy (fi rst column) and obstructed (second column) airway (fi rst) segmented
by expert 1 (yellow line) and expert 2 (red line).

to check the actual inference. All tests have been done at signifi cant level α = 0 . 05.
The random variable for statistical tests is a measure of segmentation accuracy against

the annotations made by two diff erent experts using ImageJ [42]. For a given curve annotated
by observer Ok, we will note by AvD

Ok
ρ -see Eq. 4.5- as the distance between the curve of

the observer and the output of our method using a given parameter ρ. The parameter ρ
represents the scale interval [σj , σj+k] for tracheal ring segmentation and to the intercept lk
for lumen segmentation.

The variable and group of factors for the anova parameter setting is defi ned as follows.
For the 2-anova stage assessing interaction between method ranking and observers, the anova
groups are the observers for the fi rst factor and the diff erent parameters for the second
one. The anova variable is, thus, AvDOk

ρ computed for the 25 training frames. For the
1-anova test, groups are defi ned by the diff erent parameters and an average observer. In
this case the anova variable is given by averaging distance for the two observers: AvDO =
(AvDO1

O2
+ AvDO2

O1
)/ 2 for the observer group and AVD ρ = (AvDO1

ρ + AvDO2
ρ )/ 2 for the

method ones.
The samplings defi ning the diff erent anova groups for the method are given by uniform

samplings of size Nσ for ring scales and Nl for lumen intercept:

(([σj , σj+k])
Nσ − k
j=1 )Nσ

k=1; σj = σm + j(σM − σm)/ Nσ (4.7)

lk = lmk/ Nl · (lM − lm)

For the case of fi nal stenosis calculation, in order to compare the performance of our
method against the ground truth we have calculated the SI from each observers’ annotation.
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Figure 4.10: Stenosis dataset. Some examples of bronchoscopy frames used to
validate our method of stenosis assessment. For each patient pair of images (each
row) of healthy (fi rst and third column) and its respective obstructed airway (second
and fourth column).

The comparison between SI and SIOk was done using a 1-way anova with groups given by
SI, SIO1 and SIO2 . As depicted before, tests were done at signifi cant level α = 0 . 05 for
either the 1-way anova and the fi nal t-test validation experiment.
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Chapter 5

Experimental Results

We present in this chapter results of our automatic stenosis assessment system. As tracheal
characterization structure (lumen and tracheal rings) and structure segmentation (obstructed
lumen, reference ring) are part of the global stenosis degree calculation method, we �rst
present a break down of the results of each stage of our strategy.

5.1 Structures characterization

Lumen segmentation is used to obtain obstructed airway area and in order to achieve this
we �rst need to obtain a characterization of image pixels according to lumen content -using
LEM maps- and then lumen centre is obtained to guide segmentation of the �nal luminal
area.

5.1.1 Lumen centre detection

Lumen centre detection is a key point in our stenosis assessment system as it is used for both
obstructed airway area and reference airway area. The experiment involved the partition of
the feature space created with DRI and DGA. The �nal partition threshold -ThLK = 0.12-
is set during a training stage using 30 frames of the database. DGA does not need of any
parameter value and the optimal parameter value needed for DRI -σ = 1/24- has also been
set from the before mentioned training stage.

We present Precision and Recall results of lumen centre detection in Table 5.1. We use
TL, FL and NL metrics as explained in Section 4.1.1. As it can be seen, Precision and Recall
scores are over 93% regardless of the presence and the number of lumens in the images. We
can also observe that only 2 lumens are missed (all in multi lumen images).

Type of image TL FL NL Prec Rec

Bronchoscopy (single lumen) #lumen = 76 76 1 0 98.70% 100%

Bronchoscopy (multilumen) #lumen = 30 28 0 2 100% 93.33%

Bronchoscopy (no lumen) #total�images = 10 0 2 10 80.00% 80.00%

Table 5.1: Precision and recall results on lumen centre detection.

57
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Figure 5.1: Qualitative lumen centre detection results. Good detections marked
with green crosses and bad or missing ones with green circles.

Another interesting result from this experiment is that our methodology can be used to
assess lumen presence in the images: more precisely our method does not detect any center
in 80% of the images without lumen.

Fig. 5.1 shows qualitative results including good and bad detections. The fi rst 2 columns
in the Figure show examples of good lumen centre detection in single and multi lumen images.
Column 3 shows two examples of the potential of our method on detecting lumen presence:
we can observe that no centre point is marked in the image.

Erroneous detections (marked with a green circles) of our method are shown in the
bottom image. First column show a bad identifi cation of the centre of the lumen, second
column a missing centre in a multi lumen image and third column a show a detection when
there is no lumen in the image. It is worth to mention that in some cases like the ones shown
Fig. 5.1 it is unclear if our algorithm has not really performed well due to the fact that when
making a ground truth sometimes there is a great variability on delimiting the lumen region
-even the presence/absence of lumen in certain images depend of the experts’ criteria-.

5.1.2 Tracheal Ring segmentation

This fi rst stage is crucial to the performance of the overall system, as in the case that some
rings are missed from this stage the posterior selection of one of them as reference ring may
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(a) (b)

Figure 5.2: Results for each sequence: sensitivity (a) and precision (b).

lead to erroneous stenosis results if the chosen one was not really the reference ring. Before
starting with tracheal rings segmentation we will expose the results of a preliminary study
on checking which scales are optimal for this segmentation and the relationship of this scale
value with image resolution.

Preliminary study on automatic scale definition This experiment checks for
existing relations between the scale range selected for NSGF �ltering and the resolution
of the frames of a given video. The experiment consists of de�ning a set of scale ranges
for a given reference sequence. This same scale range is used for the rest of the sequences
but pondered according to the di�erence in resolutions between the reference and the new
sequence -see Table 4.2-. The values for the reference sequence are set using a Phong illumi-
nation model [49] onto a synthetic trachea model simulated using sizes reported for human
adults [51].

The main objective of this experiment was not to obtain the best scale ranges which o�er
best tracheal ring segmentation performance but to observe whether the use of a given scale
range -pondered if necessary- leads to obtain a same performance trend for all the sequences.
Thanks to this experiment [54] we can also infer the optimal scale range in one reference
frame and we can apply it to the rest of the sequence.

Figure 5.2 shows the results for each sequence in terms of sensitivity and precision.
We show the tendency of sensitivity and precision interval for di�erent range of scales (see
Table 4.2) considered for each sequence. A remarkable issue is that, although these scale
ranges are di�erent -although equal if the ponderation is supressed-, all four sequences present
equal performance pro�les and attain these maximum values simultaneously. This validates
our illumination model for trachea appearance as a tool for automatically selecting NSGF
scales in terms of the bronchoscope resolution.

It has to be noted that this experiment was focused on the de�nition of the best scale
range and how this value, when calculated for a sequence, can be easily inferred to other
sequences. Considering this we have not included in this processing operations such as area
�ltering or decreasing scale-pattern which are part of our tracheal ring segmentation method.

Tracheal Rings Segmentation Once the best scale range has been selected we can
proceed to obtain tracheal rings segmentation using the methodology depicted in Section
3.2.2.
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Table 5.2: Comparison to Inter-observer Ranges.

AUT IO

Validation Sens Prec Sens Prec

Seq1 [71.16, 96.20] [57.67, 80.08] [71.21, 99.61] [71.70, 98.87]

Seq2 [66.11, 94.01] [52.22, 67.72] [56.13, 72.84] [56.32, 72.59]

Seq3 [60.29, 83.53] [51.25, 60.97] [59.56, 78.41] [59.70, 78.23]

Seq4 [57.87, 92.72] [51.16, 75.90] [62.66, 86.35] [62.84, 86.08]

Table 5.2 and 5.3 report the statistical analysis comparing automatic detections (labelled
as AUT ) and inter-observer variability (labelled as IO) for the four video sequences (rows).
Table 5.2 reports Sens and Prec ranges (given by mean ± standard deviation, computed for
the two experts) and table 5.3 the Wilcoxon signed-rank test p−val and con�dence intervals
for the di�erence in means between AUT and IO.

First, we observe that there is not a high agreement between experts, especially for
Seq2 and Seq3. Expert disagreement is mainly due to unmarked rings at most inner (Seq3
and Seq4 in �gure 5.3) and outer parts (Seq1 and Seq2 in �gure 5.3) of the trachea (as
illustrated in �gure 5.3). Such variability in most outer and inner rings signi�cantly increases
for pathological cases (Seq2 and Seq3).

Second, it is worth noticing that our detection includes the union of rings segmented by
the two manual trials. This increases sensitivity scores for sequences with a lower agreement
between experts, such as the pathological Seq2 and Seq3. It follows that sensitivity results
compares to inter-observer variability for Seq1, Seq3 (although with positive bias in di�er-
ences) and Seq4 (p− val > 0.3 in table 5.3), but for Seq2 our method has sensitivity ranges
above inter-observer agreement.

Third, concerning precision ranges, our methodology might drop its performance up to
a 20% compared to inter-observer ranges. This is mainly due to an over-detection of rings
rather than inclusion of non-anatomic artifacts. Figure 5.4 shows the results obtained as well
as ground truth for four representative frames from four di�erent sequences. For a better
visualization, our detections are shown in black lines and ground truth in thicker white lines.
We observe that, as expected, all rings are detected and include the union of the rings marked
by experts (as comparison to images in �gure 5.3 shows). This is the main source of precision

Table 5.3: Wilcoxon signed-rank test and con�dence intervals for di�erence in means
between AUT and IO and p− val.

Wilcoxon(CI, p− val)

Validation Sens Prec

Seq1 [−11.75, 4.74], 0.4856 [−23.58,−12.08], 0.0004

Seq2 [7.94, 24.14], 0.0006 [−11.06,−1.48], 0.0183

Seq3 [−0.70, 6.55], 0.3481 [−17.09,−8.61], 9.27 ∗ 10�6

Seq4 [−6.70, 8.27], 0.9031 [−18.18,−3.68], 0.0056
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Figure 5.3: Inter-observer variability in manual segmentations.

dropping in Seq1. Still, for some cases there are some extra structures decreasing our global
precision. In particular, part of the end probe, as well as, calci�ed spots are included at
some frames of Seq3. Also our method might include the ring continuation on the esophagus
(bottom part of Seq2 images in �gure 5.4) which is generally discarded by clinical experts.

Figure 5.5 shows the results obtained for the best scale ranges. Green lines are the
ground truth and blue lines the automated detection. We observe that, as expected, all
rings are detected, while there are some extra detected structures which have a negative
impact in precision results. There are two main sources of this performance decrease. The
�rst problem is that there are false positive rings in the carina in all sequences. Also,

Figure 5.4: Visual Assessment of Automatic Ring Detection.
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Figure 5.5: Qualitative results for each sequence. Green lines are the groundtruth
and blue lines our detection.

in the lowest precision sequence, there is a rigid artifact that we detect as a ring. Such
surgical device drastically drops precision graphics in Figure 5.5. Finally, there are some
rings (especially the most internal and external ones) properly detected by NSGF that were
not identi�ed by the expert.

As it can be seen, our experiments show that our tracheal ring segmentation method can
retrieve most clinically relevant tracheal rings. This is a promising result that indicates the
value of the proposed methodology as a tool for helping bronchoscopists in the operating
room in the sense that it will be further used to automatic select and reconstruct a reference
ring to be used as part of the �nal stenosis assessment.

5.2 Structures segmentation

Structure segmentation is used to obtain reference airway area: our processing stage has two
di�erent steps: the �rst involves obtaining all the tracheal rings in a given input image and
the second involves the selection of the reference ring -the most external- and the posterior
segmentation of the area that it encloses.

We present in this section results of the segmentation of tracheal structures which also
include the use of ANOVA-based parameter setting explained in the previous chapter.
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Figure 5.6: Multicomparison plot for the train set of the lumen segmentation.

5.2.1 Obstructed lumen segmentation

Regarding obstructed airway segmentation we will follow validation strategy using ANOVA
as explained in Chapter 4.4. In this case we compare the performance of our method with
two di�erent observers. For this experiment, the anova groups are the observers for the �rst
factor and the di�erent parameters for the second one.

Results of 2-anova test show that there is not interaction between observers and intercept
value (with p−val = 1), no signi�cant di�erences between observers (with p−val = 0.9653)
and detects signi�cant di�erences across intercept values (with p− val < 10�16).

The �rst result implies that the optimal intercept value does not depend on the observer:
this implies that 1-anova can be applied to obtain the optimal intercept l. Results of this
1-anova test are signi�cant (p − value < 10�16) and best performers are selected by using
a Dunnet multicomparison test. Fig. 5.6 shows the results of the multicomparison test
comparing the performance of each intercept (labelled lk) to inter-observer (IO). The plot
shows intervals for mean di�erences as in Fig. 5.9. Each level mean is represented as
horizontal lines centered at the level mean and vertically distributed according to the level.
The bottom line corresponds to the observer group and the remaining to the sampling lk.
We do not show results obtained with k > 24 as the likelihood map has not a minimum for
all frames. Fig. 5.7 shows the results of the multicomparison over the test set. We observe
that a same trend is kept for both training and test sets: the most permissive we are when
characterizing lumen pixels -frontier of the feature space closer to the one provided initally
by k-means-, the less precise we are when segmenting the lumen region. Conversely, the
most strict we are with the threshold value the less non-lumen information we include in our
�nal region. This trend is kept up to a given intercept value -l20 to l23-: from this intercept
values and go on the �nal luminal area segmentation also gets worse.

The second result indicates that any of the observers can be used as ground truth to
which compare our method: considering this we have built up a new observer as the mean
aggregation of the two original observers AvDO.

The �nal result from 2-anova test directly implies that there is an optimal parameter
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lk AvDO AvD AvDO � AvD p � value

l20 [1.43, 1.88] [1.78, 2.20] [�0.55,�0.10] 0.0042

l21 [1.43, 1.88] [1.61, 1.93] [�0.28, 0.05] 0.1874

l22 [1.43, 1.88] [1.63, 1.95] [�0.27, 0.01] 0.0632

l23 [1.43, 1.88] [1.75, 2.11] [�0.45,�0.09] 0.0032

Table 5.4: Statistical analysis results for the lumen segmentation method.

con�guration with yields with better segmentation results. Table 5.4 reports the statistical
analysis for the t-test comparing AvDO with the best visual performer of Fig. 5.6 and Fig.
5.7, which in this case corresponds to AvDl21. We show the same statistics as in Table 5.5.
There are not signi�cant di�erences (p− value = 0.18) between observers and our method.
Out of all the possible intercept values we will use for the following stages l21, as it is the one
which leads to obtain a higher p− value, meaning this that our method is closer to observer
for this intercept value. Consequently we will use l21 for SI computations.

Finally we present in Fig. 5.8 some qualitative results using the same color coding as in
Fig. 5.11. We observe that our method achieves performance results comparable to the ones
provided by both observers.

5.2.2 Reference ring Segmentation

Regarding reference ring segmentation we will follow the same validation strategy applied
for obstructed airway segmentation. In this case we also compare the performance of our
method with two di�erent observers. For this experiment, the anova groups are the observers
for the �rst factor and the di�erent parameters for the second one.

According to the 2-anova test there is no interaction between observers and scale ranges
(p−val ≃ 1), no signi�cant di�erences between observers (p−val = 0.9917) but a signi�cant
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Figure 5.7: Multicomparison plot for the test set of the lumen segmentation.



5.2. Structures segmentation 65

[j, j + k] AVDO AVD[2,15] AVDO � AVD[2,15] p � value

[1, 15] [2.68, 4.71] [3.65, 5.22] [�1.58, 0.11] 0.0883

[1, 16] [2.68, 4.71] [3.71, 5.32] [�1.66, 0.03] 0.0606

[2, 15] [2.68, 4.71] [3.65, 5.22] [�1.58, 0.11] 0.0883

[2, 16] [2.68, 4.71] [3.71, 5.22] [�1.66, 0.03] 0.0606

[3, 15] [2.68, 4.71] [3.83, 5.68] [�2.01,�0.09] 0.0324

[3, 16] [2.68, 4.71] [3.90, 5.77] [�2.09,�0.17] 0.0219

[4, 15] [2.68, 4.71] [3.81, 5.64] [�1.97,�0.07] 0.0351

[4, 16] [2.68, 4.71] [3.87, 5.74] [�2.06,�0.15] 0.0238

Table 5.5: Statistical analysis results for the ring segmentation method.

di�erence across scale values (p− val < 10�16).
These results indicate that the performance of our method does not depend on the

observer so that best performers can be selected by comparing to an average observer using
the 1-anova test described in Section 4.4. This 1-anova test detects a signi�cance (p−value <
10�16) in segmentation accuracy depending on the chosen scale. This signi�cance is further
explored using a Dunnet correction for a multicomparison test.

Figure 5.9 shows the results of the multicomparison plot for the training set of reference
ring segmentation. For the sake of notation each scale range [σj , σj+k] is labelled as [j, j + k]
and the average inter-observer is labelled as IO. The plot shows intervals for mean di�erences
for a representative set of the scale ranges. Each level mean is represented as horizontal lines
centred at the level mean and vertically distributed according to the level. Those scale
ranges that are not signi�cantly di�erent from IO (blue line) are plotted in black, while
scales with a signi�cant di�erent performance are depicted in red. We can observe from
Figure 5.9 that our method o�ers comparable performance to IO when scale ranges are
[1, 14], [1, 15], [1, 16], [2, 15], [2, 16], [3, 15], [3, 16], [4, 14], [4, 15], [4, 16]. It has to be noted that
the best scale ranges tend to include higher scale values as we aim to search for the most
external ring in the image.

Fig. 5.10 shows the multicomparison between [j, j + k] and IO for the test set with the
same labelling used in Fig.5.9. This test is done to con�rm the trends indicated by the previ-
ous multicomparison test. In this case we can observe that the trend in signi�cant di�erences
in performance is kept -best ranges are again [1, 14], [1, 15], [1, 16], [2, 15], [2, 16], [3, 15], [3, 16], [4, 14], [4, 15], [4, 16]-
.

Table 5.5 reports the statistics for the t-test comparing AvDO to AvD[j;j+k] for the ranges
mentioned before that visually achieved the least di�erence as observed in Fig.5.10. We show
con�dence intervals for the means ofAvDO, AvD[j;j+k] and the di�erenceAvDO−AvD[j;j+k],
as well as, the p-value for the t-test. In spite of a small negative bias, average distances are
within average inter-observer variability ranges with p− value > 0.05.

Figure 5.8: Qualitative results for the lumen segmentation with lk parameter �xed
in k = 21.
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Figure 5.9: Multicomparison plot for the train set of the reference ring segmenta-
tion.

Although we could use any of the 8 scale sub-ranges, we will use [2, 15] as it o�ers the
best performance for the testing set and equal performance to the best candidates in the
training set. Consequently, this scale range con�guration will be used to compute SI.

Figure 5.11 shows some qualitative examples of the tracheal ring segmentation. The blue
line corresponds to our method whereas the yellow triangles and red squares correspond
to each of the observers. The �rst two images show two examples in which our method
accurately approximates the curves outlined by experts. The last one is an example of a
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Figure 5.10: Multicomparison plot for the test set of the reference ring segmenta-
tion.
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Figure 5.11: Qualitative results for the tracheal ring segmentation with interval
parameter [σj , σj+k] �xed in j = 2 and k = 15.

point of view not centred at the carina with the most external ring partially out of the
frame. Following our annotation convention, experts outlined the �rst fully complete ring,
while our method detected the most external one as it only had a small portion outside the
image frame.

5.3 Stenosis assessment

Regarding stenosis assesssment we will only show performance results considering that we
are using the optimal intercept value l21 and scale range [2, 15] which best approximate the
response of our tracheal structure characterization to the one provided by experts. In this
case we will only perfom a 1-anova test as we are not aiming to �nd the best parameter
con�guration of our method but how it does compare with human observers.

According to this 1-anova we observe that there are not signi�cant di�erences across
observers and our automatic SI index (p − value > 0.83). This is also con�rmed in the
multicomparison plot of Fig. 5.12. Finally a t-test for paired data comparing SIAUT with
the average expert score SIO could not �nd any signi�cant di�erences (p− value = 0.96).

Table 5.6 reports con�dence intervals for SIO, SIAUT , the di�erence SIO − SIAUT and
the corresponding p-value. It is worth noticing SIAUT agrees to observer scores ±10%, which
is clinically acceptable according to the literatue [41].

In order to present our results in more detail we present in Table 5.7 the SI values
for each of the di�erent cases/patients and its corresponding SI index value for each of the
mentioned ground truths. Table 5.7 describes for each patient (�rst column) the visual degree
of airway narrowing (second column) and the measurements of the stenosis index using Image
J software by di�erent experts (third and forth column) and �nally our automatic detection.

By observing Table 5.7 we can see that there is a big discrepancy between experts for
some concrete cases such as 1, 3, 8, 12, 18 where there is a di�erence up to 20% in the �nal
stenosis index.

We present in Fig. 5.13 some representative examples of the output of our method in
comparison with manual annotations for normal airway (top images) and tracheal stenosis
(bottom images). It is worth noticing the high agreement achieved among observers and our

SIO SIAUT SIO � SIAUT p � value

[72.81, 83.01] [69.25, 87.03] [�10.3, 9.8] 0.962

Table 5.6: Statistical analysis results for the systematic stenosis quanti�cation.
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Figure 5.12: Multicomparison plot for the test of stenosis assessment.

Patient Visual SI Obs1 SI Obs2 SIAUT

1 Moderate 57% 74% 81%

2 Moderate 71% 76% 95%

3 Moderate 56% 97% 84%

4 Severe 91% 80% 91%

5 Slight 84% 83% 78%

6 Severe 91% 96% 50%

7 Moderate 82% 91% 77%

8 Slight 33% 76% 66%

9 Moderate 67% 76% 96%

10 Moderate 76% 73% 91%

11 Moderate 80% 94% 100%

12 Severe 80% 43% 79%

13 Slight 75% 88% 76%

14 Moderate 87% 88% 69%

15 Moderate 79% 83% 85%

16 Severe 80% 79% 69%

17 Severe 80% 80% 82%

18 Severe 86% 64% 15%

19 Moderate 69% 50% 80%

20 Severe 95% 92% 93%

Table 5.7: Description of tracheal stenosis quanti�cation.

method.
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Figure 5.13: Qualitative result for the calculation of the stenosis index. Normal
airways in the �rst row and its paired abnormal frame in the second row. Blue lines
correspond to the automatic method and yellow triangles and red squares correspond
to the ground truth of the di�erent experts.
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Chapter 6

Discussion

We have presented the main results of the di�erent methods developed in the context of this
thesis in the previous chapter. In this chapter we will deepen the details of some of these
results, following the same order than the used in their explanation, that is, we will start
by discussing some interesting results from structure characterization methods, followed by
structure segmentation and ending with a general discussion on the performance of the �nal
stenosis assessment method.

6.1 Structure characterization

The two main structures that we need to characterize are the tracheal rings and the luminal
region. Both structures are characterized by considering the de�ned geometrical and ap-
pearance physical models of the trachea. In this section we will discuss in depth some of the
results along with exposing some other domains where the developed techniques may be of
use.

6.1.1 Lumen centre detection

As it has been explained in previous chapters, the posterior segmentation of both structures
need of a good de�nition and detection of the lumen center therefore the performance of this
stage is crucial to the performance of the global method.

Our method has been proven to perform accurately for the possible cases we may en-
counter, that is, presence of multiple lumen -bifurcations of the bronchial tree- or in absence
of lumen -exploratory frames-. The performance of our method depends on the de�nition
of the feature space, more precisely in how we de�ne the border which separates lumen and
non-lumen pixels. In this case we use as borders the ones provided by k-means clustering
method and the only source of errors related to this could appear in uniformly illuminated
scenes where we do not have strong gradients which make it possible a di�erentiation using
DGA values.

Regarding this method, it is worth to mention that the detection of the lumen centre can
be useful for several applications, such as scene description, 3D reconstruction processes or
helping in computer aided diagnosis. Moreover, by detecting accurately the lumen centre we
can potentially obtain the navigation path inside the organ which could be useful for quality
assessment purposes or the following-up of injured tissues. Results of our lumen center
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Index Type Resolution

101 � 200 Colonoscopy 3 [500 � 577]

226 � 250 Colonoscopy (no-lumen) 3 [500 � 577]

Table 6.1: Description of lumen database.

detection method can also be used to automatically detect bifurcations, as our method is
able to detect accurately the presence of multiple lumens.

Finally, it is also important to mention that our algorithm can also be applied to other
type of endoscopic images o�ering similar performance results. More precisely we presented
in [53] results of lumen center detection in colonoscopy images. It is clear that in order
the method to be applicable a new feature space speci�c for colonoscopy images should be
created from a training set. The database used for this experiment was the same as the
one used in our lumen centre detection but with colonoscopy frames. Table 6.1 describes
which are the frames and its con�guration. We show in Table 6.2 results for lumen center
detection in colonoscopy. As it can be seen, our method reaches good performance values
for colonoscopy frames although in this case we have to consider that there are di�erences in
how lumen appears in colonoscopy and bronchoscopy. More precisely, lumen in bronchoscopy
tends to appear as circular whereas its shape can vary largely for colonoscopy frames, as the
clinician has more freedom to choose the point of view on the scene and consequently we
cannot guarantee a frontal view and the gradient pro�le is less concentric

6.1.2 Tracheal rings

Tracheal ring detection has been proven as a challenging task because there are many struc-
tures, not necessarily anatomical, that have similar appearance in images to tracheal rings.
We have introduced in this thesis a geometrical and appearance model aiming to di�erentiate
and enhance ring structures from other valley structures in the image. More precisely our
geometrical structure avoids any response at the carina and minimizes the impact of surgical
devices.

Our contribution in this �eld supposes an important breakthrough with respect to
intensity-based methods applied into transformed grey level bronchoscopic images. Regard-
ing this, Figure 6.1 shows two frames segmented using only intensity (second row) and our
geometrical appearance model (�rst row). Detections exclusively based on image intensity
include many responses at vessels and the carina. These responses do not follow the ring
geometric characteristics and, thus, are suppressed in our model.

Another interesting contribution is that our whole tracheal rings characterization method-
ology is robust as long as we can obtain a valid reference frame that we can use for the whole

3Beaumont and St. Vincents Hospistal Dublin

Type of image TL FL NL Prec Rec

Colononoscopy #lumen = 77 75 4 2 94.94% 97.40%

Colononoscopy #nolumen = 18 0 2 16 87.5% 87.50%

Table 6.2: Precision and recall results on lumen centre detection in colonoscopy.
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Figure 6.1: Advantages of combining appearance and geometry (1st row) of the
tracheal rings compared to intensity-based approaches (2nd row, images courtesy
of [55]).

sequence. Moreover, we have also proven that there is a strong correlation between the scales
of the rings and the resolution of the video frames. For this reason, we can automatically
infer the scale parameter in new cases from a given sequence where we have obtained the
optimal scale parameters of the method.

6.2 Structure segmentation

Before starting with the discussion on how structure segmentation methods perform it is
important to mention that their performance depends greatly on the �rst characterization
stage, for instance, if lumen centre is misdetected it will be impossible to obtain an accurate
lumen segmentation. Consequently and regarding the discussion of segmentation methods,
we will analyse their performance isolating those error sources that are not attainable to
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them but to previous stages.

6.2.1 Obstructed lumen segmentation

With respect to obstructed lumen segmentation, we have observed that our method o�ers
a comparable performance to clinicians although we have observed that there are some
discrepancies in the segmentation results. In this sense we can divide sources of errors in
two di�erent groups: those related to how ground truth has been created and those directly
attainable to our method.

The �rst one is related on the validation of our methods. Our experience has proven
that the de�nition on the lumen region itself is indeed a challenging task and even clinicians
do not agree when delimiting the area that the lumen occupies in a given frame. In this
case we have to consider that our method can be close to one of the two experts but as our
validation is against a mean observer, our performance score may be damaged by the great
di�erence between two observers.

Regarding errors directly related with how our method has been designed we have dis-
covered that the main source of errors is related to the use of a unique threshold value (lk)
for all the frames regardless of the sequence they come from. As can be thought, a given
threshold value may provide with optimal segmentation results for all the frames from the
same sequence but this parameter con�guration may not provide same performance levels
for other sequences.

One possible solution could be to automatically adapt the threshold for each sequence
by choosing a representative frame, which can coincide in time with the selection of the
obstructed frame. Another possibles solution, which was tested on colonoscopy frames for
Non Informative Region de�nition, could consist of the de�nition of an optimal threshold
value for each frame: this optimal value would be the one that separates better lumen region
from the rest of the image. In this case the optimal border of the luminal region will be the
one which o�ers maximum di�erence of energy between the two regions, as explained in [5].

6.2.2 Reference ring segmentation

Concerning reference ring segmentation we have identi�ed two main groups of sources of
errors, as for the case of obstructed lumen, one related on the de�nition of reference rings by
clinicians and another directly related with our method. In this case both sources of error
are directly related as it will be exposed next.

Regarding direct errors from our method it is worth to mention that the performance of
our method is related to whether the external ring appears completely and partially isolated
in the image or not. The performance of our method is clearly comparable to the one
provided by experts although two special cases were identi�ed: 1) Overestimation and 2)
Underestimation.

The �rst group of errors is again related on how experts have annotated our database.
There are some case where the �rst ring is not clearly visible but clinicians are inherently
able to identify them; in this case our method needs of stronger evidence of this presence to
detect the ring and will provide as reference ring the next visible one -second reference ring-,
as it is shown in Figure. In these cases we will o�er an underestimation of the reference ring.

For cases where the external ring surpasses image borders our method will tend to close
the structure outside the frame: in this case we will have an overestimation of the tracheal
ring (�rst and second case of the second row in Fig. 5.11). This is quite a frequent issue as
can be observed in Table 5.5 with the negatives values in the CI intervals.
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Finally we have another scenario where the �rst ring is not clearly visible due to either
an incomplete pro�le lying outside the frame or an appearance deviation from the valley
model. Incomplete pro�les mainly arise from a camera point of view not centred at the
carina, which distort the concentric disposition of rings. The impact of such cases is easily
minimized by standardizing the acquisition protocol for stenosis assessment, imposing how
healthy and abnormal frames should be selected.

6.3 Stenosis assessment

We have presented in this thesis the �rst, up to our knowledge, automatic tool for the sys-
tematic quanti�cation of tracheal stenosis. Our methodology presents a breakthrough for
stenosis assessment as it provides for the �rst time an accurate measurement of tracheal
obstruction from the analysis of videobronchoscopy images, which has a potential to objec-
tively compare and track stenosis, decide when it reaches a critical lumen and obtain the
measurement to choose the right stent. Our proposal allows a fast and accurate calculation
of stenosis degree which can be performed by clinicians in an intuitive way without altering
the intervention protocol. Therefore, our methodology needs very little human interaction,
although it requires a carefully choosing of the healthy and abnormal frame, especially re-
garding to whether the distance from the scope to the target is the same for both frames. If
this happens, the performance of our method has been proven to be comparable to expert
clinicians in a o�-line methodology.

One key feature of our methods is that it does not need to rely on a previous CT scan
to obtain stenosis degree as our calculations are performed only by means of the analysis
of videobronchoscopy frames. Our methodology seems especially appropriate for the case
of stenosis analysis in children, as it allows for an accurate calculation without needing to
radiate the patient [25]. Moreover, our methodology is also capable to cope with dynamic
stenosis, a condition in which airow is decreased or even stopped as intrathoracic preassure
increases. It can be a�ect only the posterior wall of the trachea or all the cartilage support,
in which case it is , also referred as tracheomalacia [7]. In these cases patients do not present
a �x obstruction degree but a variable one which can change as the patient breathes or
coughs. Current procedures based on CT scan information can only provide a static image
at maximum inspiration and at maximum expiration. Our methodology allows multiple
data acquisition for stenosis calculation to obtain accurate obstruction intervals for a given
patient, which can be key to certify tracheomalacia condition.

The analysis of the results presented show that our methodology reaches performance
comparable to physicians in tracheal structures characterization and stenosis assessment in
a computational time that could reach intervention time. This is a main advantage over o�
line methods based on manual annotations using ImageJ. Still there are some topics that
deserve some discussion.

The computation of SI relies on the identi�cation of a complete ring in images of a healthy
segment. This can be di�cult to obtain in severely ill patients (like the one shown in Fig.
6.2) with pathologies such as di�use tracheal inammation (post radiotherapy), in�ltration
(amyloidosis) or cartilage ring dismor�a (Tracheobronchopathia osteochrondoplastica). In
such cases, our method could under estimate the degree of obstruction, yielding an optimistic
diagnose. On one hand, these cases are not common in tracheal stenosis diagnosis. On the
other hand, they could be solved by computing the reference area using the lumen segmented
from a non-obstructed segment. From the clinical application point of view this would only
require asking the physicians to mark as healthy frame one where the lumen can be observed
without obstruction and indicate to the system that reference is lumen-like.
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Figure 6.2: Example of approximate ring annotation for the two experts (yellow
and red lines) and the ring detected by our methodology.

Regarding tracheal ring segmentation, we have observed that it is very di�cult to obtain
adjacent healthy tracheal rings in sever complex stenosis. Clinicians in these rare cases
calculate stenosis degree by approximating the original lumen region from the obstructed
image. Our method inherently will adapt to the �rst available visible and complete ring (see
Fig. 6.2), as our algorithm is designed to recover the most external and complete ring in
the healthy frame in a straight regular lumen. Consequently, our method will not o�er a
good performance in those cases where there is no visible ring or the lumen of the airway is
not straight and regular, as in main or lobar bronchi. Nevertheless, our proposal is already
prepared to cope with this problem, which could be easily in the following way: instead of
asking the physicians to mark as the healthy frame one in which tracheal rings are visible,
we can ask him/her to mark as healthy frame one where the lumen can be observed without
obstruction.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Image processing methodologies are becoming an important tool for using in medical imaging
for diagnosis, treatment and intervention. We have presented in this thesis the main contri-
bution based on a novel strategy for automatic real time stenosis degree calculation
from analysis of videobronchoscopy frames. The calculation of the stenosis index is based on
the comparison of the area delimited by the �rst external ring in a healthy frame against the
obstructed area delimited by the lumen. We have assessed the performance of each tracheal
structure characterization and segmentation by dealing with four main challenging problems:
Appearance Artifacts, Alien Artifacts, Geometric Artifacts. This challenging problems have
been solved by developing a multi-stage system that involve: Image Preprocessing, Struc-
ture Characterization using our Physical Model and Structure Segmentation with Optimal
Parameter Setting. The main conclusions for the others contributions of the novel strategy
for stenosis assessment are presented next:

• Appearance and geometrical model for characterizing anatomical tracheal
structures

We have developed an appearance and geometrical physical and its computational
models for the elements involved in the stenosis assessment framework. These ele-
ments are tracheal rings and luminal area which we have described using appearance
and geometric features that describe those anatomical structures in a way that dis-
criminates them from other challenging structures.

• Segmentation of main anatomical structures

We have developed a strategy for the segmentation of main anatomical structures
needed for stenosis assessment. In the one hand, we have proposed a three step
strategy for reference ring segmentation where our method selects the most complete
and external one from all the characterized rings. In the other hand, we have presented
a recursive step strategy for obstructed lumen segmentation where we are able to
distinguish luminal region from the rest of the videobronchoscopic scene using a 2D
feature space. Finally we have presented a validation protocol for evaluating each
of the strategy steps in order to ensure that the �nal calculation of the degree of
stenosis will not depend on the previous steps, so errors are not propagated. For this
reason we have proposed a novel statistical framework based on Analysis of Variance
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(anova) [39] for selecting the optimal parameters which ensure within inter-observer
variability performance in the segmentation of reference ring and obstructed lumen.

• Validation protocol and public databases

The main di�culty when comparing performance of the methods is the lack of, up to
our knowledge, public annotated databasse of tracheal rings, lumen regions or stenosis
assessment. This constitutes a major aw for the development of generic algorithms
able to achieve accurate results in a wide range of images. We have introduced of dif-
ferent fully annotated databases to validate the performance of the developed methods.
Databases which contain a balanced presence of all the possible appearances that we
may �nd in future procedures, including extremely abnormal examples.

Experimental results show that the performance of our method is comparable to clinicians
for structure characterization, structure segmentation and stenosis degree assessment. Aside
our method has a low computational cost that could have a real-time implementation to be
used in the operating room. Therefore, the output of our method has potential to be useful
for helping the doctor as part of a computer-aided diagnosis (CAD) system, as having an
accurate calculation of the degree of obstruction may lead to a reduction in the number of
repetitions of tracheal implant procedures. Our methodology could also help the doctor to
choose the appropriate stent or prosthesis diameter size. A main advantage is that it does
not requires information from CT scans and, thus, it reduces patients radiation.

7.2 Future research lines

Regarding future work, our methodology could be adapted to cope with other respiratory
system stenosis such as laringe or bronchi. An important remark is that, for bronchi, images
have a conic view that distort image proportions along a given branch. Such distortion
should be corrected for a practical use of a stenosis index computed from single images and
would eventually require a sort of 3D reconstruction from videos. The methods proposed in
this PhD thesis pave the way for several studies:

• Navegation System One of the algorithms developed in the context of this thesis
is related with lumen centre detection. Using this information it is somewhat easy to
imagine a navigation system using lumen centre detection to identify bifurcations. In
this case we can see a clear connection between VB planning systems and our method
for on-line navigation, as once the bifurcation is detected we could use planning infor-
mation to indicate the clinician the path he/she has to take. Lumen centre detection
could also be used to estimate how deep we are inside a given bronchi level, as if we
only see a single luminal area we can expect to be near to the beginning of the level
and as more luminal areas are identi�ed -lumen centres- we would be close to the end
of the level.

• Volume recovering using tracheal rings or lumen As we are able to segment
accurately both tracheal rings and luminal region in separate frames, it would also
be possible to extend these segmentations to a whole video aiming to obtain a 3D
volume representing trachea shape. In this case we would use the correlation between
consecutive frames to obtain a �rst representation.

• 3D reconstruction using optical ow Another objective of this thesis was to de-
�ne accurate anatomical landmarks that could be used to identify interesting tracheal
structures. If the detection of these landmarks is robust we could use two di�erent
frames from the same scene to obtain a rough 3D reconstruction using the corre-
spondence between features combined with some of state-of-the-art methods such as
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Structure from Motion, Optical Flow or SLAM. Once we have a 3D reconstruction of
the scene we would be able to obtain absolute, accurate and objective measurements
which, as has been shown throughout the thesis, is one of the main drawbacks of cur-
rent videobronchoscopy interventions. For instance and regarding tracheal implant we
could provide with a complete characterization of the prosthesis needed, giving both
diameter and length measures.
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