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RESUMEN 
!

La presente tesis doctoral versa sobre el transporte de calor llevado a cabo por los 
fonones en sólidos cristalinos semiconductores. La motivación de este trabajo es 
doble. En primer lugar, se pretende contribuir a entender mejor cómo funciona el 
transporte de calor a distintas escalas de tamaño: desde semiconductores con 
tamaño  bulk  (del orden de milímetros o mayores) hasta   semiconductores nano-
estructurados, como por ejemplo nanocables o láminas finas, cuyos tamaños 
característicos están en la escala nanométrica.  La intención es describir dicho 
transporte de calor en estas escalas en un amplio rango de temperaturas, 
prestando especial atención a las colisiones entre fonones, pues son la causa 
intrínseca de la propagación del calor en los sólidos cristalinos semiconductores.  
En segundo lugar,  se pretende mejorar la capacidad de predicción a la hora de 
describir el comportamiento de la conductividad térmica de los semiconductores 
más comunes por su implicación en procesos termoeléctricos, como son el silicio, 
el diamante, el germanio y el bismuto de telurio.   

Para lograr alcanzar estos objetivos, es necesario formular un nuevo modelo  que 
nos permita superar las dificultades asociadas a los modelos ya existentes, con el 
objetivo de cumplir dos condiciones muy deseables. Por un lado,  obtener una 
expresión general para la conductividad térmica válida para diferentes materiales, 
que pueda ser aplicada a muestras de dichos materiales con diferentes 
composiciones isotópicas, diferentes tamaños (desde la macro hasta la nano-
escala) y con diferentes geometrías.  Por otro lado, dicha expresión deberá tener 
el menor número posible de parámetros ajustables para asegurar la fiabilidad del 
modelo. La potencialidad de dicho modelo radicaría en servir como herramienta  a 
la hora de guiar el diseño de dispositivos termoeléctricos más eficientes.  

La presente tesis se organiza en 8 capítulos ordenados de la siguiente manera:   

En el capítulo 1 se contextualiza el tema en el que está enmarcado el presente 
trabajo de investigación y se presentan los conceptos físicos necesarios para 
trabajar con el transporte fonónico.  En el segundo capítulo se desarrolla la 
dinámica de la red para los distintos materiales que serán objeto de estudio en el 
presente trabajo, en particular se aplica el modelo Bond-charge  para obtener las 
relaciones de dispersión y la densidad de estados de los semiconductores del 
grupo IV (silicio, germanio, diamante y estaño gris) y análogamente se aplica el 
modelo Rigid-ion sobre el bismuto de telurio para obtener sus relaciones de 



dispersión y densidad de estados. Los tiempos de relajación apropiados  para 
dichos materiales se discutirán en detalle en el capítulo 3, proponiendo nuevas 
expresiones empíricas para describir las interacciones fonón-fonón.  En el capítulo 
4 se introducen y discuten los modelos de conductividad térmica más 
representativos  de la literatura y a continuación se presenta un nuevo modelo 
para predecir la conductividad térmica: el modelo  Kinetic-collective, cuya principal 
característica consiste en interpretar el transporte de calor en dos regímenes 
diferentes, el primero de ellos de tipo cinético donde los fonones son tratados 
como partículas libres y el segundo de tipo colectivo donde todos los fonones que 
participan en el transporte pierden su individualidad y se comportan como una 
colectividad de partículas. En el capítulo 5 el modelo  Kinetic-collective se aplica a 
silicio bulk con diferentes composiciones isotópicas, y a varias muestras de silicio 
nanoestructuradas con diferentes geometrías y tamaños efectivos. Se obtienen 
predicciones de la conductividad térmica en un amplio intervalo de temperaturas 
que concuerdan satisfactoriamente con las medidas experimentales y se discuten 
diversos aspectos novedosos sobre el transporte fonónico. En el  capítulo 6 el 
modelo  Kinetic-collective se aplica al resto de materiales componentes del grupo 
IV de semiconductores y se obtiene una relación teórica que nos permite predecir 
los valores de los parámetros libres asociados a los tiempos de relajación de 
dichos materiales y así poder predecir sus conductividades térmicas sin la 
necesidad de añadir nuevos parámetros. En el capítulo 7 vamos un paso más allá 
y aplicamos el modelo a  bismuto de telurio, obteniendo predicciones de la 
conductividad térmica  para nanocables con diferentes diámetros y discutimos los 
resultados en vista a posibles aplicaciones termoeléctricas. Finalmente,  el 
capítulo 8  está dedicado a recoger las principales conclusiones de este trabajo de 
investigación y a indicar posibles líneas futuras de trabajo surgidas a 
consecuencia de los resultados obtenidos. 
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Introduction

The aim of this theoretical work is twofold. First, to contribute to a better understand-

ing of phonon heat transport in bulk and nanostructured semiconductors, like thin-films or

nanowires, in a wide range of temperatures, paying special attention to phonon-phonon col-

lisions. Second, to improve the prediction capability of the thermal conductivity of the most

common semiconductors. To achieve this, it becomes necessary the formulation of a new

model allowing us to overcome the di�culties associated to the existing models, with the aim

to fulfill two desirable conditions: to provide a general expression for the thermal conduc-

tivity, valid for several materials with di↵erent size-scales and geometries in a wide range of

temperatures, and to have the smallest number of free adjustable parameters to assure the

reliability of the model. The potentiality of such model would be to serve as a useful tool to

design more e�cient thermoelectric devices.

The fruit of our study is the Kinetic-collective model which is developed in the framework

of the Boltzmann transport equation as a natural generalization of the Guyer-Krumhansl

model. Since phonon interactions are the source of thermal resistance, they deserve a special

discussion in any thermal conductivity study. Precisely, the keystone in our work is the

treatment of phonon-phonon collisions regarding their di↵erent nature.

The prediction capability of the model need to be tested on several materials. In particular,

we study five materials with thermoelectric interest. In first place, silicon, because it is an

ideal test material due to the considerable amount of experimental data available in the

literature, and because of its inherent scientific and technological importance. Secondly,

we extend our study to other materials with the same lattice structure as silicon, that is

the family of group IV element semiconductors (germanium, diamond, silicon and gray-tin),

which also have been object of intense study, specially germanium, due to the recent and

fast development of SiGe alloys and superlattices. Finally, we finish our study with a more

complicated material regarding its lattice structure, bismuth telluride, which is known to be

a very e�cient thermoelectric material due to its high figure of merit.
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16 CHAPTER 0. GENERAL INTRODUCTION

The Thesis is arranged in eight Chapters. The lay out is as follows: Chapter 1 con-

textualizes the topic of the work and briefly introduces the basic physics related to phonon

transport. In Chapter 2 the fundamental quantity necessary for considering any thermal

property, the phonon dispersion relations, have been obtained for the materials under study.

For this purpose, two lattice dynamics models are used: the Bond-charge model for group-IV

semiconductors (silicon, germanium, diamond and gray-tin), and the Rigid-ion model for bis-

muth telluride (Bi2Te3). Along with their corresponding phonon dispersion relations, phonon

density of states and specific heat results are also presented. The phonon relaxation times

that suit these materials are discussed in Chapter 3, where new expressions to account for the

phonon-phonon collisions are also presented. In the first part of Chapter 4 the most represen-

tative thermal conductivity models to date are introduced and discussed, in the second part,

a new model to predict the thermal conductivity, the Kinetic-collective model, is presented

and its conceptual di↵erences and advantages with respect to previous similar models are

discussed. In Chapter 5 the Kinetic-collective model is applied to silicon bulk samples with

di↵erent isotopic composition and several nanostructured samples with di↵erent geometries

(thin-films and nanowires) obtaining predictions for their thermal conductivity in a wide in-

terval of temperatures. Some novel aspects of phonon transport arising from these results

are discussed. In Chapter 6 the Kinetic-collective model is applied to the other group-IV

materials using theoretical expressions to predict their relaxation times and, eventually, their

thermal conductivity. Results for several samples with di↵erent isotopic compositions in a

wide range of temperature are presented and discussed. In Chapter 7 the Kinetic-collective

model is applied to Bi2Te3, providing thermal conductivity predictions for nanowires with

several diameter values, and the results are discussed in view of possible applications in ther-

moelectricity. Finally, in Chapter 8 the main conclusions of this Thesis are summarized and

possible future lines of work stemming from its several results are discussed.



Chapter 1

Heat transport in solids

La chaleur pénètre, comme la gravité, toutes les substances de l’univers, ses rayons

occupent toutes les parties de l’espace. Le but de notre ouvrage est d’exposer les

lois mathématiques que suit cet élèment. Cette théorie formera désormais une des

branches les plus importantes de la physique générale.

J. Fourier, “Théorie analytique de la chaleur”. (1822)

1.1 Introduction

Heat transfer is a process whereby thermal energy is transferred from place to place in response

to a temperature gradient. There are three ways of heat transfer: conduction, convection,

and radiation. In solids, heat transport at room or low temperatures is mainly due to con-

duction, since the bonding between atoms avoids convection, and in general radiation is only

important at very high temperatures. Thermal conduction in solids can be explained as the

combination of two main mechanisms: atomic lattice vibrations, i.e. phonons, and transla-

tional motion of electrons or holes. Then, the carriers of the transferred energy are lattice

waves and free electrons. When there is a temperature di↵erence in a body, the transport

occurs spontaneously, in absence of external forces, from the hot part to the cold part of the

solid and also, when two bodies at di↵erent temperature are in contact, it flows from the hot

end to the cold end, until thermal equilibrium is reached.

Heat conduction is described through the well known Fourier’s law, published by J. Fourier

17
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in 1822 in his classical work Théorie analytique de la chaleur [5]. It is written as

j = �rT, (1.1)

which states that the local heat flux density, j, is proportional to the negative local temper-

ature gradient �rT . The proportionality constant  is called thermal conductivity and it is

an intrinsic property of each material, denoting how easily heat is transported through the

material.

Although Fourier’s law describes correctly heat conduction in macroscopic systems, it fails

when applied to systems with reduced characteristic dimensions. The pioneering works on heat

transport by R. E. Peierls in 1929 [6], and later by H. B. G. Casimir [7], showed that collisions

of the energy carriers against the sample’s boundaries decrease its thermal conductivity when

the size of the sample is reduced. This situation is worsened with the miniaturization of the

systems. In fact, on theoretical grounds, such reduction was already studied in the 1920’s,

but the results at that time were more academic than practical. With the technology of our

time, experimentalists have been able to grow wires and thin-films with diameters within the

nanometer scale, and this has allowed us to observe that, indeed, the thermal conductivity

of a material is severely reduced when it is nanostructured. For instance, in the well-known

experiment by Li et al. in 2003, where silicon nanowires (NWs) were grown with diameters

between 115 nm and 22 nm, the measured thermal conductivities at room temperature were

found to be between ⇡40 W/mK for the 115 nm NW and ⇡9 W/mK for the 22 nm NW,

about two orders of magnitude lower than that of the bulk ( ⇡ 140W/m K) [8]. In the

recent experiment by Wignert et al. (2011), they grew very tiny germanium nanowires with

diameters of 15 nm and 19 nm, measuring a thermal conductivity of  ⇡1.54 and 2.26 W/mK

respectively, around 7 times smaller than that of 62 nm diameter NW ( ⇡ 13W/mK) [9].

However, if the size of the system is further reduced, below a couple of nanometers, quantum

confinement e↵ects can also modify  and may lead to a surprisingly increase. As show by

Ponomareva et al. with Molecular Dynamics simulations, the thermal conductivity of silicon

NWs with diameters between 8 nm and 1 nm decreases as diameter also does, but at a certain

size-threshold, found to be 1.5 nm,  begins to increase [10]. This striking behavior has also

been seen experimentally with graphene layers [11].

Another limitation of the macroscopic theories, like Fourier law, relies on the consideration

of the medium as a continuum and that there is local thermodynamic equilibrium everywhere.

The continuum assumption breaks downs when the characteristic size of the system is com-

parable to or smaller than the “mechanistic length”, that is, the carrier mean free path.
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The presence of high temperature gradients at small scales or during short periods of time

leads to non-equilibrium situations, where the local equilibrium hypothesis is not applicable.

Furthermore, there are other phenomena at the micro/nanoscale that reduce thermal conduc-

tivity, for instance discontinuous carrier velocities, temperature boundary conditions, wave

interferences, or tunneling of electrons and phonons [12, 13].

Thus, Fourier’s law with a size-independent thermal conductivity can no longer be used,

since it is not able to describe these observations, and the theories developed within the

macroscopic framework are no longer suitable to understand the heat transport behavior. A

microscopic formulation is clearly needed. The most widely used microscopic models are based

on a statistical physics framework and start from the Boltzmann transport equation. Besides,

between macro and microscopic models, there are also mesoscopic models for generalized

transport equations. In this framework, usually under a thermodynamic perspective, heat

transport equations are modified mainly through the inclusion of terms related to memory

and non-local e↵ects, leading to size and form-dependent e↵ective thermal transport proper-

ties [14]. It is important to recall that macro, meso and microscopic models are not at all

unbridgeable, and sometimes combining them appropriately may help to provide simplified

modeling of the complex microscopic heat transport.

The main result of this thesis is the development of a microscopic model to account for

the phonon thermal conductivity within the Boltzmann transport equation framework, able

to give some physical insights on the phonon contribution to heat transport in solids from the

macro to the nanoscale, enabling reliable predictions of the thermal conductivity for several

bulk and nanostructured materials. Since this work is devoted to the understanding of phonon

thermal transport, it will be restricted to semiconductors materials, where phonons are the

main heat carriers and the electronic contribution to thermal conductivity is very small. Heat

transport in other solids, like metals or even degenerate semiconductors, where electrons are

the main heat carriers and the phononic conduction is swamped by the electronic conduction,

is out of the scope of the present work. Note that the phonon contribution to thermal

conductivity is usually called lattice thermal conductivity, but here and onwards we refer to

it simply as thermal conductivity, for the sake of simplicity.

Previous to any attempt to model thermal conductivity in a microscopic approach, it is

important to know the mechanical and thermal properties of carriers present in the system,

as well as their interactions and some properties of the atomic movement in a semiconductor

crystal. In the next Sections we briefly introduce the necessary physical concepts to deal with

phonon transport.
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1.2 Phonons I: Mechanical properties

A crystal lattice is a solid structure in which the atoms, or ions, are arranged in periodic arrays,

with translational symmetry in three non-coplanar directions of the real space. The primitive

unit cell represents the minimum arrangement of atoms that will be repeated periodically

along the real space. It is conventional when defining a real structure in terms of its atomic

coordinates in real space to also define a set of vectors which corresponds to reciprocal space,

which is also called momentum or q-space. The unit cell in reciprocal space is called the

Brillouin zone.

The vibrational motion of the atoms around their equilibrium positions is considered

harmonic. When solving the equation of motion of the lattice we seek a solution representing

a wave with angular frequency ! and wave vector q with components (qx, qy, qz) parallel to

the principal axes of the lattice, such that the displacement of the jth atom is

uj / ei(qja�!t) . (1.2)

where a is the interatomic distance, and ja is the discrete equilibrium location of atom j. The

use of a discrete lattice coordinate is because the vibrations are only possible at the atomic

sites. Then, an infinitely divisible continuum coordinate x used in a continuos medium has no

sense. The wave vectors corresponding to the allowable vibrations are given by the Born-von

Karman periodic boundary conditions [15–17], yielding

q =
2⇡m

N
,m = 0,±1,±2, . . . (1.3)

where N is the number of atoms in the crystal. The total number of modes in the crystal is

equal to the number of atoms in the primitive cell n times the number of atoms in the crystal.

Thus, in a 3-dimensional crystal the number of modes is equal to 3nN , since the vibrations

can be emitted in the three directions of the space. The energies of the normal modes of a

crystal are quantized. A phonon is a quantum of energy ~! of the normal modes of vibration.

Clearly, in the harmonic approximation we have non-interacting phonons, and the anharmonic

terms (cubic and quartic expansion of the lattice potential) are latter introduced as phonon

renormalization or phonon-phonon interactions. Due to translational symmetry, in general

the calculations are restricted to the first Brillouin zone, which contains all the possible modes

within a range q 2 [�⇡/a, ⇡/a]. Let us know describe two important properties arising from

the study of the dynamics of the lattice: the dispersion relations and the density of states.
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1.2.1 Dispersion relations

The amount of thermal energy that a phonon with wave vector q can transport through the

crystal lattice is related to its frequency and velocity. The functional relations between the

frequency and the wave vector for each branch ⌫ are called dispersion relations !⌫(q)1.

When carrying energy from a hot region to a cold region, as in the case of the electron

movement in a band, phonons move with a group velocity given by

vq⌫ = rq!⌫(q) . (1.4)

At the edge of the Brillouin zone the group velocity of the phonons approaches zero, creating

a standing wave, this is reflected in the dispersion relations when the curves flatten for values

of q belonging to the edge of the Brillouin zone, also called boundary zone.

For each wave vector we have multiple allowed frequencies, depending on the number of

degrees of freedom of the primitive unit cell, that is, 3n, n being the number of atoms in the

unit cell. For instance, a lattice with one atom per unit cell will have 3 dispersion curves

in a given q-direction, which are, regarding polarization, one longitudinal acoustic (LA) and

two transversal acoustic (TA1 and TA2); if we have a lattice with 2 atoms per unit cell, as

in the case of silicon, as well as in germanium, diamond, and most III-V compounds, we will

have ⌫ = 6 phonon branches, which are, three optic branches, one longitudinal (LO) and two

transversal (TO1 and TO2), di↵erent in the di↵erent directions of the space, in addition to the

three acoustic branches. If there are more than 2 atoms per unit cell, we still have the three

acoustic branches and the others are optic branches. Generally, the split between acoustic and

optic branches is given by the range of the frequencies: we classify as optic modes those with

high frequencies, and acoustic modes those with low frequencies ranging from zero upwards.

We can find the frequencies of a given wave vector by solving the equations of motion of the

crystal lattice, since the frequencies, or more accurately the square of the frequencies, are the

solutions of the eigenvalue equation for a given q. This will be described in detail in the next

Chapter. The dispersion relations can be very complex, and it is common to use the linearized

expression provided by Debye [18, 19], which was originally proposed in 1912 to describe the

dependence of the specific heat on the temperature, especially at low temperatures (the well

known T 3 dependence of the specific heat at low temperatures), to improve the simpler but

pathbreaking model proposed by A. Einstein in 1907 [20], which described for the first time

1Note on usage: for the sake of simplicity, along this work we will drop, in most of the cases, the branch

subindex in any quantity A depending on the wave vector, such that Aq⌫ may be found as Aq.
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Figure 1.1: Sketch of the Debye dispersion relation given by Eq. (1.5) represented as solid lines.

Dashed lines stand for a real dispersion relation for a simplified model of crystal, where it can

be observed how the curve flattens at the Brillouin zone boundary, i. e. at the highest values of

wavevector (denoted ”k” in this sketch by Bruesch [21] ) in the Brillouin zone.

a vanishing specific heat at T ! 0 but with a wrong temperature dependence. The Debye

approximation assumes a linear relation between the frequency and the wavevector, such that

! = c|q| = cq , (1.5)

where c is a constant corresponding to the sound velocity in the crystal. The Debye approxi-

mation (1.5) implies that all the modes are approximated by three identical acoustic branches,

this means that the medium is considered isotropic, i. e. all phonon branches have the same

velocity in all directions.

However, this approximation is only valid at low enough frequencies, because a di↵erence

with respect to this behavior is observed as the wavevectors increase their value. In other

words, the Debye approximation assumes a non-zero group velocity at the boundary of the

first Brillouin zone (BZ), while experimentally it is observed that close to the border of the

BZ the dispersion relation flattens and the group velocity tends to zero, as shown in Fig. 1.1.

Furthermore, it is also not suitable for optic phonons, which are neglected. Nevertheless, (1.5)

is a good approximation at low temperatures, because most of the phonons have low energy,

or equivalently, low frequency, and the acoustic branches are the main heat carriers.

Many models used to calculate the thermal conductivity to the date are based on the
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Debye model or a modified version of it [22–27]. However, some authors have stressed that

using actual dispersion relations is crucial in order to predict thermal conductivity of mi-

cro/nanostructured systems [28]. Nowadays, the most active trend in research is to calculate

the complete phonon dispersion relations for the material under study using either ab initio

techniques or an appropriate model to account for lattice dynamics, both providing success-

ful results. Following this trend, we devote the next Chapter to find the actual dispersion

relations of the materials under study in this work using suitable lattice dynamics models.

1.2.2 Density of states

Once all the information about the modes present on a material is known thank to the

dispersion relations, we can calculate another interesting property of the crystals, the density

of states. The phonon density of states gives us the number of normal modes per unit volume

in a frequency interval [!,! + d!].

The general expression is

D(!) =
X

⌫

D⌫(!) =
X

⌫

1

V

dN⌫

d!
. (1.6)

being dN⌫ the number of states between !⌫ and !⌫ + d!⌫ in the phonon branch ⌫, but the

form of the constant energy surfaces (!⌫=cte and !⌫ + d!⌫=cte) in a real crystal is far from

trivial. We can write the number of states between these surfaces as

dN⌫ =
V

8⇡3

Z !
⌫

+d!
⌫

!
⌫

dq (1.7)

where we can express dq = dS!dq? (see Fig. (1.2)). Since rq! is perpendicular to the

!⌫ =cte surface, we have d! = |rq!⌫ |dq?. Then

dN⌫ =
V

8⇡3

Z !
⌫

+d!
⌫

!
⌫

dS!
d!

|rq!⌫ |
(1.8)

and substituting in (1.6) we have

D(!) =
1

8⇡3

X

⌫

Z

!

dS!

|rq!⌫ |
. (1.9)

In regions where the dispersion relation is very flat (commonly in the borders of the BZ or in

the case of optical modes), the density of states can be very high. In the case we consider de

density of states per branch D(!⌫) we call it partial density of states.
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Figure 1.2: Sketch of the transversal section of the q-mesh showing a surface of constant energy and

its elementary area dS!.

Integration of Eq. (1.9) requires, in first place the knowledge of the dispersion relations ,

and secondly a realistic integration over the whole Brillouin zone of the crystal under study.

Therefore, we need to calculate D(!) with a numerical method. For this purpose, we will use

the root sampling method [17]. In this picture, the density of states (1.9) can be expressed as

D(!) =
1

8⇡3

X

q⌫

�(! � !⌫(q)) (1.10)

using a large mesh of points in the q-space within the irreducible part of the Brillouin zone.

With this, we can compute D(!) by replacing the Dirac delta in (1.10) by a function ⇥ such

that

D(!) =
1

VBZ

X

q⌫

⇥(! � !⌫(q)) (1.11)
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(

(

Figure 1.3: Sketch of the Debye density of states compared with a real density of the states (Extracted

from [29]).

where

⇥(! � !⌫(q)) =

(
1 if |! � !⌫(q)|  �!/2

0 otherwise
(1.12)

with a suitable small frequency width �!, and being VBZ the volume of the Brillouin zone.

Nevertheless, it is worthy to compute the density of states in the Debye model (isotropic

approximation), since the problem simplifies considerably by assuming that the constant

energy surfaces are spheres. Then dq = 4⇡q2dq and rq!⌫ is the sound velocity in the branch

⌫, considering only 3 acoustic branches with identical velocity. From (1.9) we obtain the

Debye density of states

D(!) =
3

2⇡2c3
!2 . (1.13)

Since the total number of states in a three-dimensional lattice is 3nN , the Debye model

considers a cut-o↵ frequency !D defined from the expression

3nN =
V

2⇡2

3

c3

Z !
D

0

!2d! =
V

2⇡2

!D

c3
(1.14)

It is more convenient to define the Debye temperature ⇥D by equating ~!D = kB⇥D.

The Debye temperature is a very useful amount that works as a threshold. If T < ⇥D the

solid behaves a a quantum system, while in the case where T > ⇥D we recover the Dulong

and Petit law for the specific heat, as we shall see in the next Section, and the solid behaves

as a classical system.

In Fig. 1.3 we represent schematically the Debye density of states in comparison with a

more realistic density of states. As we will see in the next Sections, D(!) is directly linked to
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the calculation of the specific heat, and eventually of the thermal conductivity. The accuracy

of the calculation of D(!) for a given material is tested by successfully predicting its measured

specific heat. In the next Chapter, we show, along with the dispersion relations, the calculated

density of states for the materials under study in this thesis.

1.3 Phonons II: Thermal properties in equilibrium

Once that the mechanical information of phonons has been obtained through the dispersion

relations, we need to take into account the thermodynamic information they can provide.

In a thermalized system, the states, or modes, with higher energies are necessarily popu-

lated. This information is provided by the distribution function, which determines the prob-

ability of a specific state to be occupied in terms of its energy (frequency) and temperature.

From this function, we are able to calculate the thermodynamic information of the crystal,

like the internal energy or the specific heat.

1.3.1 Distribution function

Since the energy of the vibrational field of the lattice is quantized, the allowable energy levels

in a mode of frequency !q are (n + 1/2)~!q, where n is any positive integer. In addition,

phonons are bosons, they obey the Bose-Einstein statistics, so that their average occupation

number in the q-th mode in thermal equilibrium at temperature T is given by the Bose-

Einstein distribution function

n0
q =

1

e~!q/k
B

T � 1
(1.15)

where ~ is the Planck constant and kB is the Boltzmann constant. From expression (1.15),

we can observe that at low temperatures ~!q � kBT , thus n0
q ⇡ exp(�~!q/kBT ), this

means that the probability for a mode to be populated is exponentially small. At high

temperatures ~!q ⌧ kBT , and now n0
q ⇡ kBT/~!q, the modes get populated linearly with

temperature. At absolute zero temperature the phonon population is not zero, since the zero-

point energy is 1
2
~!q. Therefore, the phonon population in a crystal is determined by the

temperature. The phonon chemical potential is zero, at least not very far from equilibrium,

since far from equilibrium some authors [30] have proposed that phonons could have a non-

vanishing chemical potential, but here we will leave aside this topic, which is usually ignored

in the analysis of heat transport.
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1.3.2 Internal energy

The mean internal energy density of the crystal ✏ is the mean internal energy E per unit

volume V and it is defined in terms of the density of states D(!), the distribution function

n0(!) and the energy ~! of each mode as

✏ ⌘ E

V
=
X

⌫

Z
~! n0(!⌫)D(!⌫)d! . (1.16)

If we use the Debye model, we find, by substituting Eq. (1.13) in Eq. (1.16), that at high

temperatures ✏ = 3NkBT .

1.3.3 Specific heat

One way of studying the modes in a crystal is to analyze its heat capacity. This quantity

accounts for how fast a system increases its energy when the system temperature is raised,

and it is defined as the variation of the internal energy E with temperature T at constant

volume V , this is

Cv =

✓
@E

@T

◆

V

. (1.17)

It is directly related to the number of modes present in the system. If the system has a high

number of allowed modes, it will have a high heat capacity, while in the opposite situation,

the heat capacity will be low.

The specific heat cv is the heat capacity per unit volume

cv =
Cv

V
. (1.18)

We can obtain the specific heat from the internal energy density of a solid ✏. Hence,

substituting Eq.(1.16) in Eqs. (1.17) and (1.18) the phonon specific heat is calculated as

cv =
X

⌫

Z
~!⌫

@n0(!⌫)

@T
D(!⌫)d! . (1.19)

Notice that D(!) does not depend on the temperature.

Experimental observations in semiconductor crystals show us that at low-intermediate

temperatures Cv behaves as T 3. However, when the temperature of the system increases and

reaches a certain value, the Debye temperature, above which most normal modes are excited,

the heat capacity Cv approaches a constant value Cv ⇡ 3NkB, where N is the number
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Figure 1.4: Heat capacity of silicon as a function of the cubic temperature: experimental measure-

ments (symbols) and Debye model (solid line) from Rohlf [32]. The Dulong-Petit limit is plotted in

dashed-line. (Figure extracted from [33]).

of atoms in the crystal, in agreement with the Dulong and Petit law. Well above the Debye

temperature all the permitted states are occupied. The behavior of Cv, or analogously cv, with

temperature can be generally interpreted in terms of the Debye model [15, 19]. Considering

the Debye dispersion relations (1.5) and density of states (1.13) in the integral expression

(1.20) and using dimensionless variables x = ~!/kBT and xD = ⇥D/T , we can express the

specific heat capacity as

Cv = 9NkB

✓
T

⇥D

◆3 Z x
D

0

x4ex

(ex � 1)2
dx . (1.20)

At high temperatures x ⌧ 1, ex � 1 ⇡ x, so Cv = 3NkB. At low temperatures x � 1

and xD ! 1, so integrating we obtain Cv =
12⇡4

5
NkB (T/⇥D)

3 which holds the T 3 behavior

observed experimentally and an excellent fit to measurements at low temperatures has been

found for many materials (see Fig.1.4). Nevertheless, we must keep in mind that ⇥D is an

empiric parameter extracted from the fit to experiments [31], and when dealing with a real

crystal a more accurate treatment of the heat capacity is required in terms of real dispersion

relations provided by a realistic lattice dynamics model.
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1.4 Phonons III: Transport properties in local-equilibrium

The next step in a thermal transport study is to break the equilibrium condition used in the

previous Section, and apply a temperature gradient on the crystal. The thermal conductiv-

ity is a transport property, characteristic of each crystal, raised from this non-equilibrium

situation. To study the phonon transport in this situation, the simplest approach consists

of using the local-equilibrium hypothesis. This implies to assume that the thermodynamic

variables change their values from point to point, but smoothly enough to consider that nearly

in each point of the crystal we are able to define all the thermodynamic variables as we were

in equilibrium.

1.4.1 Thermal conductivity in simple kinetic theory

Despite of the limitations of the Fourier law, it describes correctly the average behavior of the

heat flow if we average the microscopic motion of the heat carriers in a region large enough

and over a long enough time interval. This is the basis of the simple kinetic theory, where the

thermal conductivity defined from the Fourier law is expressed in microscopic terms which

allows us to obtain concrete values of  for a given system [16,34].

Let us consider a system as sketched in Fig. 1.5, where the crystal is heated by being in

contact with a hot thermal bath at temperature Thot in one extreme, while the other extreme

has a colder temperature Tcold < Thot, and according to the Fourier law, a phonon di↵usion

current is originated transporting the heat energy from the hot to the cold side. We can

calculate the net heat flow jx in a certain direction x across some surface S as the di↵erence

between the energy fluxes the carriers transport while crossing S in the positive and the

negative direction before they scatter:

jx =
1

2
nEvx|x+v

x

⌧ �
1

2
nEvx|x�v

x

⌧ (1.21)

where n is the number of carriers per unit volume, E the energy of each carrier, and vx the

random velocity of the carrier in the x direction, and ⌧ is the relaxation time or collision time

(the average time between two successive collisions). Since the motion of the heat carriers

is random, we take half of them moving in the positive direction and the other half in the

opposite direction. The mean-free path is then ` = vx⌧ .

As we are in the neighborhood of S, x ! 0 and we can make a Taylor expansion

jx = �vx⌧
d(nEvx)

dx
. (1.22)
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Thot Tcold

S

vxτ vxτ

Figure 1.5: Sketch for the heat flux evaluation in simple kinetic theory. (After [16])

Assuming isotropy , that is, vx independent of the direction, we have the mean velocity of the

carriers v as v2x = v2y = v2z = 1
3
v2, then

jx = �1

3
v2⌧

d✏

dx
, (1.23)

where ✏ = nE is the internal energy density, and according to (1.17,1.18, 1.16) we can express

the net heat flux in terms of the temperature gradient and the specific heat

jx = �1

3
v2⌧cv

dT

dx
. (1.24)

Comparing with the Fourier law

jx = �dT
dx

, (1.25)

we obtain the thermal conductivity in the simple kinetic approach

 =
1

3
v2⌧cv (1.26)

which represents a useful tool and a widely used first approximation in thermal conductivity

modeling because of its simplicity. This expression relates the thermal conductivity to the

specific heat cv, the square of the average particle velocity v2, which in the Debye model

for phonons would be c2, and the collision time ⌧ . The specific heat is well known from

thermal measurements at equilibrium, c is the average speed of elastic waves,that is, the

sound velocity in the solid, but ⌧ , or equivalently ` is unknown. Of course, unless ⌧ is known

for each temperature, expression (1.26) is not useful to obtain the thermal conductivity. In

such a case, the knowledge of  leads to the knowledge of ⌧ (or equivalently `), rather than
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the opposite way. However, reasonable estimates of ⌧ or ` can be made using (1.26) when

we know the experimental value of  at a certain temperature. An accurate knowledge of

the relaxation times related to several scattering mechanism phonons may su↵er and their

microscopic understanding is a subtle matter, as it will be discussed at length in Chapter

3, and all along this thesis. This is a key-point in the microscopic models developed to find

 from an approximate solution of the Boltzmann transport equation. The main analytical

approach derived to solve the BTE in a first stage, is the Relaxation-time approximation

(RTA), which constitutes the equivalent of the simple kinetic theory providing the well known

integral version of (1.26). This and further microscopic models will be discussed in Chapter

4.

Let us notice, eventually, that for high temperature gradients or non linear gradients, the

expansion of Eq. (1.21) cannot be truncated to the lowest order and higher-order contributions

should be considered in Eq. (1.22), leading to expressions going beyond the Fourier law, like

j = �rT � `21r2(rT )� . . . (1.27)

In this case, description of thermal transport becomes considerably more complex than with

Fourier law. Therefore, here and onward, we will implicitly consider only small and linear

temperature gradients in our study2. In situations when `2r2T ⇠ T , however, additional

terms like that in (1.27) could not be ignored. This is the case of the so-called Burnett

approximation to the solutions of the Boltzmann equation, and is the subject of active interest

in some groups looking for generalized heat transport equations going beyond Fourier law.

1.4.2 The Boltzmann transport equation

The Boltzmann transport equation (BTE) is the usual starting point in a microscopic study

of the thermal conductivity. Its mathematical form and the physical interpretation of its

terms in thermal transport applications have been widely discussed in the literature [35–37].

2The experimental techniques used to measure the thermal conductivity  assumes, in general, small

thermal gradients and it is in agreement with most of the theoretical approaches. An example is the 3!

method, which requires to establish small gradients in the sample (roughly in the range rT ⇠ [1mK-1K]) to

avoid heat transfer between both thermal baths in contact with the sample due to the usually reduced size of

the sample, and to avoid a local temperature raising able to destroy the sample by thermal evaporation. If

the sample is big enough or is suspended between two thermal baths then it could be possible to put it under

bigger thermal gradients, always restricted to the sensitivity of the measurement set up.
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It was first introduced by L. Boltzmann in 1872 for monoatomic gasses [38] and here it can

be briefly explained in the case of phonons.

In the presence of a temperature gradient rT , phonons bring thermal energy from the

hot to the cold side of a sample. The temperature in each region of the sample will determine

the phonon population in that region. This is described through the distribution function nq,

which is temperature dependent and varies from place to place in the sample, but its form is

unknown a priori, unlike in the equilibrium situation (absence of thermal gradients), where

the distribution function in equilibrium n0
q is given by Eq. (1.15).

As hotter regions are more populated than colder ones, a phonon di↵usion current is

generated which will tend to equilibrate this situation. That is, the system tends to thermal

equilibrium. In their travel through the system, phonons will scatter with other phonons,

with impurities present in the material, electrons, defects or even the boundary of the system.

During the scattering process phonons gain or loose part of their energy, and the system

approaches towards thermal equilibrium.

The BTE relates the phonon di↵usion and the phonon scattering by equating the rate

of change of the phonon distribution out of thermal equilibrium nq due to both of these

processes, namely, ✓
dnq

dt

◆

di↵

=

✓
dnq

dt

◆

scatt

. (1.28)

The general form of the di↵usion term is
✓
dnq

dt

◆

di↵

⌘ @nq

@t
+ vq ·

@nq

@r
+

F

m
· @nq

@vq
, (1.29)

where r is the position vector, F the total external force acting on the particles, and m their

mass. In our case, it is usual to assume steady-state (@nq/@t = 0) and no external forces

(F = 0), then we obtain the di↵usion term directly in terms of the phonon group velocity

and the spatial gradient of the phonon distribution as
✓
dnq

dt

◆

di↵

⌘ vq ·
@nq

@r
. (1.30)

Under these assumptions the BTE is

vq ·
@nq

@r
=

✓
dnq

dt

◆

scatt

(1.31)

However, the scattering term is unknown a priori, and it is necessary to make approxima-

tions to derive it on physical grounds, and to solve (1.31) analytically.
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A good approximation to solve (1.31) is by using numerical methods. The computational

power nowadays allows the numerical solution of the BTE in combination with density func-

tional theory obtaining remarkable results in particular intervals of temperature. In spite of

this, the computational cost at low temperatures or for very small systems, like nanowires,

is out of the computational capability [39]. Furthermore, the complexity of this method may

mask the underlying physics in phonon transport. Then, phenomenological approaches to

provide analytic solutions are still a useful and desirable tool to study the thermal transport

properties in a crystal.

Let us now introduce the first and simplest approximation to solve analytically the BTE:

the standard relaxation-time approximation.

1.4.3 Standard Relaxation-time approximation

The relaxation-time approximation is the simplest approach to formulate and solve the BTE

and obtain an integral expression for the thermal conductivity. It states that, when the

phonon distribution remains near equilibrium, the rate of change of the phonon distribution

nq due to collisions depends inversely on the relaxation time ⌧ , that is

✓
dnq

dt

◆

scatt

= �
nq � n0

q

⌧
. (1.32)

It means that a perturbation in the distribution function will decay exponentially with a

relaxation time ⌧ , that, unlike in the standard RTA, can depend on the phonon frequency.

Recalling the Eq. (1.31), the BTE in steady-state and in absence of external forces can

be written as

vqrnq =

✓
dnq

dt

◆

scatt

, (1.33)

using the relaxation time approximation (4.2) we can express the BTE as

vqrnq = �
nq � n0

q

⌧
. (1.34)

This assumption allows us to obtain an approximate expression for the non-equilibrium

distribution nq in terms of the equilibrium distribution n0
q, making the assumption that the

displacements are small rnq ⇡ rn0
q, since we are not far from equilibrium. Thus

nq ' n0
q � ⌧vq rn0

q = n0
q � ⌧vq cos ✓

@n0
q

@T
rT (1.35)
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The thermal conductivity can be obtained from this last expression by using the micro-

scopic definition of the energy flux j, that is, the average over the phonon population of the

phonon energy ~! times the group velocity in the direction of the thermal gradient vg cos ✓ ,

that is

j =< ~!vq cos ✓ >=
X

⌫

Z
~! vq cos ✓ nq

d3q

(2⇡)3
(1.36)

Substituting Eq. (1.35) into Eq. (1.36) and considering that the integration of the first

term of (1.35) is zero because of the symmetry of the equilibrium distribution function, we

have

j = �
 
X

⌫

Z
~!⌧v2q cos2 ✓

@n0
q

@T

d3q

8⇡3

!
rT (1.37)

that, after the identification of this expression with the Fourier law (1.1), leads to an integral

expression of the thermal conductivity

 =
X

⌫

Z
~!⌧v2q cos2 ✓

@n0
q

@T

d3q

8⇡3
, (1.38)

where we are integrating in d3q ⌘ dqd✓d', and after performing the angular integral, we can

re-express the remaining dq integral in terms of the angular frequency of the phonons, since

dq/8⇡3 = D(!)d!. This leads to the well-known expression of the thermal conductivity in

the standard RTA approximation

 =
1

3

X

⌫

Z
~!v2g⌧

@n0(!)

@T
D(!)d! (1.39)

This expression is, in fact, a refinement of the simple kinetic theory expression (1.26),

and similarly, its advantage is being simple and easy to implement, and able to provide good

general trends of the behavior of  with the temperature. Despite of the fact that this approach

takes into account the whole phonon collectivity through the distribution function and the

density of states, the phonon collisions are deficiently described through a single relaxation

time. Chapter 3 is devoted to discuss phonon collisions, and further approaches based on the

RTA with a di↵erent treatment of phonon collisions will be presented in Chapter 4.



Chapter 2

Lattice dynamics

The general problem of lattice dynamics in a crystal is focused on obtaining the characteristic

dispersion relations of the crystal, namely, the relations between ! and q, as explained in

Chapter 1, and it can be summarized with the following steps:

• To choose a suitable interaction potential for the crystal considered, according to the

type of binding between atoms in the crystal and built the Lagrangian or the Hamilto-

nian (the second Newton law can also be used).

• To obtain the force constants by calculating the second derivative of the potential with

respect to the position.

• To use a wave expansion in order to transform the 3nN equations in 3n equations in a

Fourier space. We find the so called dynamical matrix.

• To obtain the eigenvalues (the frequency square for a given wavevector) and eigenvector

(given the atomic movement of the di↵erent atoms and thus giving the polarization)

of the dynamical matrix. The relationship between !⌫ and qj in three non-coplanar

directions of the space are the so called dispersion relations.

In the next Sections 2.1 and 2.2, we elaborate these steps giving the mathematical detail of

the general problem. Afterwards, in Secs. 2.3 and 2.4 we obtain the dispersion relations and

density of states of certain materials related to this research by using two main lattice dynam-

ics models suitable for these materials. Firstly, the Bond-charge Model, which describes very

well several element and compound semiconductor materials and we will apply it to calculate

the dispersion relations of silicon, germanium, diamond and gray-tin. These materials are

35
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used in this thesis for their thermal conductivity study, as we will see in Chapters 5 and 6.

Secondly, the Rigid-ion Model which is suitable to obtain the dispersion relations of Bi2Te3,

whose thermal conductivity study will be presented in Chap. 7. It is our intention to be

concise, so in the following Sections we present only the main steps in the calculations for

each model. Further mathematical details on the models can be found in Ref. [21].

2.1 General problem of Lattice Dynamics

Let us suppose a crystal with n atoms, or ions, per unit cell. We will use  = 1, 2 . . . n

to number the atoms within the unit cell l. These atoms have a mass given by M. The

equilibrium position of any  atom in the unit cell l is given by the vector

r

0
l = rl + r , (2.1)

where r

0
 is the equilibrium position vector of the atom  within the unit cell l, and

r

0
l = l1a1 + l2a2 + l3a3 , (2.2)

is the equilibrium position vector of the l unit cell relative to an origin located at any atom, ai

being the primitive lattice vectors defining the primitive unit cell, and l1, l2, l3 being integers.

These atoms are not in equilibrium, but vibrating around their equilibrium positions as a

result of thermal fluctuations in the crystal. Therefore, the actual position of any atom (l)

is given by

rl = r

0
l + ul , (2.3)

where ul are the small displacement of the ion (l) around equilibrium (see Fig. 2.1). The

kinetic energy of the vibrating crystal is

T =
1

2

X

l

Mu̇
2
l , (2.4)

and the potential energy is assumed to be a function depending on the position of all ions in

the unit cell

U = U({l}). (2.5)

Then, the Lagrangian of the system is

L =
1

2

X

l

Mu̇
2
l � U({l}) . (2.6)
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Figure 2.1: Equilibrium (r0i and r0j ) and displaced (ui and uj) atomic positions vectors of a pair of

ions i = (l) and j = (l00).

In order to arrive to the equation of motion, if the displacements of the atoms around

their equilibrium position are small compared with the interatomic distances, it is enough to

consider the harmonic approximation. It consists of expanding the potential energy U about

its equilibrium positions in terms of the small displacements u and cut the Taylor expansion

at second order.

Let us write

U({l}) = U0 +
X

l,↵

�↵(l)ul,↵ +
1

2

X

l,↵
l00,�

�↵�(l; l
00)ul,↵ul00,� (2.7)

where ↵ and � are Cartesian components and

�↵(l) =
@U

@ul,↵

����
u=0

(2.8)

and

�↵�(l; l
00) =

@2U

@ul,↵@ul00,�

����
u=0

. (2.9)

The term U0 is the energy of the crystal without considering the atomic motion and it can be

considered as the origin of energies i.e., U0 =0. The second term in the expansion yields the
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forces around equilibrium. But the total force on a given atom is zero in equilibrium (there

is a minimum in the potential energy, i.e. the atoms move around the equilibrium position).

Thus,

�l,↵ = 0 8 (l,↵) . (2.10)

After this simplification, the potential energy can be written, in the harmonic approximation,

as

U =
1

2

X

l,↵
l00,�

�↵�(l; l
00)ul,↵ul00,� (2.11)

and the Lagrangian of the system becomes

L =
1

2

X

l

Mu̇
2
l �

1

2

X

l,↵
l00,�

�↵�(l; l
00)ul,↵ul00,� (2.12)

If we need to solve the equation of motion, an explicit mathematical form of the potential

is needed. A suitable potential will be chosen depending on the crystal we are studying, this

will be detailed in the next sections, where we introduce the lattice dynamics models required

for the present work.

2.1.1 The equation of motion and the force constants

The Lagrange equations of motion are

d

dt

@L
@u̇l,↵

=
@L
ul,↵

. (2.13)

Taking the derivative of Eq. (2.12), it is found

Mül,↵ = �
X

l00,�

�↵�(l; l
00)ul00,� 8 (l,↵) , (2.14)

this is a set of 3nN equations, where the coe�cients �↵�(l; l00) given by Eq. (2.9) are called

atomic force constants.

2.1.2 Dynamical matrix: dispersion relations

We are looking for wave solutions for the displacements. Thus, the atomic displacement must

have the form

ul(!q, q) =
1

2
p
NM

Aqeqe
i(q·rl�!qt) + c.c. (2.15)
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Here, Aq is an amplitude (which can depend on the temperature and, of course, on the

physical properties of the material) and eq is the polarization vector, that is, an unitary

vector which indicates the direction of the atomic motion (longitudinal or transversal). Note

that, although the branch index has been omitted for simplicity, whenever we introduce a

parameter depending on q, the dependence can be substituted by q, ⌫, e. g. !q,⌫ , Aq,⌫ and

eq,⌫,. Introducing expression (2.15) into the equation of motion (2.14) yields

!2
qM

1

2
p
NM

Aqeq,↵e
iq·rl =

X

l00,�

1

2
p
NM0

�↵�(l; l
00)Aqeq0,�e

iq·rl00 (2.16)

Simplifying, one obtains

!2
qeq,↵ =

X

l00,�

1p
MM0

�↵�(l; l
00)eq0,�e

iq·(rl00�rl) (2.17)

By introducing the dynamical matrix

D↵�(q;
0) =

1p
MM0

X

l0

�↵�(l; l
00)eiq·(rl00�rl) , (2.18)

we can write (2.17) as an eigenvalue equation

!2
qeq,↵ =

X

0,�

D↵�(q;
0)eq0,� , (2.19)

which can be re-written as
X

0,�

⇥
D↵�(q;

0)� �0�↵�!
2
q

⇤
eq0,� = 0 . (2.20)

This equation can be written in terms of a determinant of order 3n⇥ 3n, giving 3n solutions

for a given q. These solutions are the dispersion relations of the crystal, i. e. the 3n

eigenmodes, or eigenfrequencies, corresponding to a given q. The Lattice Dynamical problem

consists of finding the solutions of the eigenvalue equation for a given q. For this purpose,

we need, in first place, to define the potential energy of our crystal taking into account some

considerations, as explained in the following Section.

2.2 Interatomic forces and Phonon dispersion relations

Generally, to define the potential energy of our crystal, we will suppose that U is originated

by a two-body interaction among all possible pairs of ions i = (l), j = (l00), although
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some times we will need to consider a three-body interaction, as it is the case of the Keating

potential. The interaction energy between two ions usually can contain two terms and can be

written as

U = UShort�range + ULong�range (2.21)

The first term is a short-range interaction of Van der Waals type, which accounts for the

repulsive forces. The basic short-range forces are stretching and bending forces between ions

in the crystal. The second term is the electrostatic interaction or Coulomb term, which

accounts for the long-range interactions and has an attractive and a repulsive component.

To deal with the short-range interactions it is necessary to chose a suitable potential for

the type of binding between the atoms in the crystal under study, some of the most used

potentials are Lennard-Jones, Keating, Morse or Stillinger-Weber potentials. We also need a

model to account for these interactions between first, second, or even third-neighboring atoms

in the crystal. In the next Sections, we particularize the lattice dynamics problem to study

two di↵erent types of materials, each one with the appropriate short-range potential within

the appropriate lattice dynamics model. The way of dealing with the long-range Coulomb

interaction is something general to all the crystals. The usual approach in a three dimensional

crystal is given by the Ewald’s method [40,41] and it has been summarized in Appendix A.

2.3 The adiabatic Bond-charge model

The adiabatic Bond-charge model (BCM) was developed by Weber [4, 42] to account for the

lattice dynamics of covalent crystals. It deals with the short-range interaction between atoms

in a crystal by including a set of massless charges called bond-charges, which presumably are

located at the position corresponding to the maximum density of charge in the bond between

atoms. These bond-charges account for the electrons shared by the atoms participating in

the covalent bond, which tend to be partially localized between the bonding atoms. The

number of bond-charges depends, thus, on the number of bonds. The long-range interactions

are treated from the usual Ewald’s method (see Appendix A).

As shown by Weber [42], the BCM provides accurate and complete dispersion relations

for the group of materials we are interested in: the group-IV element semiconductors, that

consist of silicon (Si), germanium (Ge), diamond (C) and gray-tin (↵-Sn). These materials

have the same lattice structure as the diamond lattice, which is a double interpenetrated FCC

lattice, where each atom in the crystal forms a covalent bond with other 4 atoms providing
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a tetragonal bond (see Figs. (2.2) and (2.4)). The covalent bond is usually formed from two

electrons, one from each atom participating in the bond. The bond-charge is constituted by

these two electrons, because they tend to be partially localized between the bonding atoms.

In our case, we deal with monoatomic crystals (Si, Ge, C and ↵-Sn), so the equilibrium site

of the bond-charge is in the middle of the two bonding atoms. The model has also been

extended to groups III-V compound semiconductors and to group II-VI, which are covalent

compounds of di↵erent atoms, (for instance GaN). In this case, the bond-charge equilibrium

site would be shifted toward the most electronegative atom.

One of the advantages of the BCM against other more simple models, like the rigid-ion

model we will present in the next Section, is that the dispersion relations can be obtained

with a minimum set of force constants, actually 4 parameters for diamond-like semiconductors

and 5 in the case of III-V or II-VI compounds [43]. Furthermore, the covalent semiconductors

with diamond or sphearalite structure (except diamond itself) have very low frequencies in

the transversal acoustic branches, and present a drastic change in the tendency of the curves:

the slope of the !(q) acoustic curves at q ! 0 (the zone center of the Brillouin zone) has high

values, while at q ! ⇡/a (the border of the Brillouin zone) the curves are very flat. The BCM

reproduces very well this behavior of the transversal acoustic branches, while other models

with more parameters are not able to do it, e.g. the valence-force-field model which needs

6 parameters as shown in [44]; the shell model with 5 parameters for germanium according

to [21], or the rigid-ion model which needs usually 11 parameters, as shown in [17,45]. Another

advantage is that the optic branches are also well reproduced within the BCM [46], what allows

us, eventually, to includes the contribution of optical phonons on the thermal conductivity,

neglected in the Debye approximation.

2.3.1 The diamond structure

The lattice structure of the group IV semiconductors is the diamond structure, which consist of

two FCC structures shifted (1/4, 1/4, 1/4)a along the diagonal, being a the lattice parameter.

The only di↵erence between these materials is, precisely, the value of a, indicated in Table

2.1. Therefore, we will elaborate the model using silicon as reference, being analogous for the

other materials.

The usual setting is shown in Fig. 2.2, with two atoms forming the basis of the lattice:

one Si atom at (0,0,0) (Si1), and another in

(1/4, 1/4, 1/4)a (Si2). The bonding around a given atom is tetragonal and all bonds have
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Table 2.1: Lattice parameters for group-IV semiconductors ordered from the lower to the higher

value. The lower the value of a, the higher the frequencies in the dispersion curves [3].

Material Diamond Silicon Germanium ↵-Tin

a (Å) 3.57 5.45 5.66 6.49

Figure 2.2: Diamond structure. It consist of a interpenetrated FCC lattice, or in other words, two

FCC lattices, one of them shifted (1/4, 1/4, 1/4)a along the diagonal from the other.
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Figure 2.3: Brillouin zone of a FCC lattice, with high-symmetry q points L= 2⇡
a (12 ,

1
2 ,

1
2),

X=2⇡
a (1, 0, 0), K=2⇡

a (34 ,
3
4 , 0) and � = (0, 0, 0) being a the lattice parameter, � is the center of the

BZ and the other points label the most important points in the BZ; the vectors bi are the reciprocal

lattice vectors. From Setyawan and Curtarolo [47].

the same length. The primitive cell is trigonal, with primitive vectors

a1 =

✓
1

2
,
1

2
, 0

◆
a ; a2 =

✓
0,

1

2
,
1

2

◆
a ; a3 =

✓
1

2
, 0,

1

2

◆
a (2.22)

The volume of the unit cell is

Va = a1 ⇥ a2 ⇥ a3 =

����������

1

2

1

2
0

0
1

2

1

2
1

2
0

1

2

����������

a3 =
a3

4
. (2.23)

It is convenient to write the atomic position of the ions as a function of the primitive vectors,

thus
Si1 0

Si2
1
4
a1 +

1
4
a2 +

1
4
a3 .

(2.24)

so they are separated a distance d0 = a
p
3/4, which is the bond length. The directions of the

bonds, arising in Si1 are:

a1 + a2 + a3; �a1 � a2 + a3; a1 � a2 � a3; �a1 + a2 � a3 (2.25)
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Figure 2.4: Scheme of the unit cell of the diamond structure with ions 1 and 2 (open circles) and

bond-charges 3-6 (solid circles). (Reproduced from [42]).

while the bonds arising in Si2 are directed along

�a1 � a2 � a3; a1 + a2 � a3; �a1 + a2 + a3; a1 � a2 + a3 (2.26)

Obviously, they have opposite sign as compared to the previous bond directions. As it is well

known, the reciprocal lattice of a FCC is a BCC structure. The corresponding first Brillouin

zone is shown in Fig. 2.3, where the vectors from the 2⇡�reciprocal lattice are

b1 =
2⇡

a
(111̄) ; b2 =

2⇡

a
(1̄11) ; b3 =

2⇡

a
(11̄1) . (2.27)

The center of the BZ is denoted by the point � = (0, 0, 0) and the high-symmetry directions

in the q-space correspond to the paths between the points �,X,L,U,K,W shown with red

lines in the figure.
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2.3.2 Bond-charges in the diamond structure

The unit cell of the diamond structure is shown in Fig. 2.4, where we have added the bond-

charges. Let us call d0 the Si1–Si2 bond length. The bond-charge is located in the middle of

them, that is, at d0/2 from the Si1 atom. There are four bond-charges in the unit cell, the

four around the Si1 and Si2atoms, which means there are two bond-charges per atom.

We need to number the bond-charges and to know their position in the lattice preferably

in terms of the primitive vectors, given by

bc1 :
1

8
(a1 + a2 + a3)

bc2 :
1

8
a1 +

3

8
a2 +

3

8
a3

bc3 :
3

8
a1 +

1

8
a2 +

3

8
a3

bc4 :
3

8
a1 +

3

8
a2 +

1

8
a3

(2.28)

2.3.3 Short-range interactions

We have considered three types of interactions: (1) a central potential �ii between nearest-

neighbor ions, which is a bond-stretching type; (2) a central potential �i�bc between nearest-

neighbor ions and bond-charges (bc), which is also a bond-stretching type; and (3) the inter-

actions between two adjacent bonds, that is, two bond-charges bonding a common ion, which

is a bond-bending (bb) type and it is described by Keating’s potential, given by

Vbb =
�

↵2

⇥
(rl00 � rl)·(rl0000 � rl) + ↵2

⇤2
(2.29)

where ↵2 = |(rl00 � rl)·(rl0000 � rl)|.
The ions interact between them and with the bond-charges via central potentials. Let us

denote these potential as �ii for the ion1-ion2 interaction (bond-streching type), and �i�bc for

the ion-bc interaction (also bond-stretching type). The bond-charges bonding a common ion

interact between them via a three-body Keating potential (bond-bending type).

We have limited the short-range ion-BC and BC-BC interactions to nearest neighbors.

According to the adiabatic correction introduced by Weber, the bond-charges are not fixed,

but they are allowed to move adiabatically between the bonded atoms [4]. To stabilize the

bond-charges in their site we need to introduce short-range forces between the bond-charges

and the atoms.
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Thus, the short-range potential energy is the combination of taking into account all the

these possible interactions between the ions and the bond-charges

UShort�range = 4[�ii(d0) + �i�bc(d0)] + 6[Vbb(d0, ✓) +  1] (2.30)

The mathematical detail can be followed from the works by Weber [4, 42]. Along these

Sections we only summarize the main steps.

2.3.4 Force constants

According to (2.9) we can calculate the force constants for the three types of interactions.

The mathematical detail can be followed from the works by Weber [4, 42].

Ion-ion interaction

The interaction potential in case of ion-ion interaction is �ii. Thus, according to (2.9) we can

calculate the force constants as

�i�i
↵� (q,,

0) ⌘ @2�ii

@xl00,↵@x0,�
=

@

@x0,�


�0
ii

@|rl0 � r0|
@xl00,↵

�
=

@

@x0,�


�0
ii

xl00,� � x0,�

|rl0 � r0|

�

(2.31)

where |rl0 � r0| ⌘ d0 is the ion-ion distance, that is, the bond length. After operating and

simplifying we obtain an expression of �i�i
↵� (q,,

0) in terms of the first �0
ii and second �0

ii

derivative of the interaction potential

�i�i
↵� (q,,

0) = ��↵�
�0
ii

d0
�

�00
ii +

�0
ii

t

�
1

d20

X

l0

(xl00,↵ � x0,↵) (xl00,� � x0,�) (2.32)

The condition of stable equilibrium relates the first derivatives of the short-range potentials

with the Madelung energy of the system [4]. Thus, �0
ii/d0 can be written as

�0
ii

d0
= �↵M

z2

"

e2

2d30
(2.33)

being ↵M the Madelung constant, z the charge of the bond-charge, e the electron charge and ✏

the dielectric constant, where substituting the value of the bond length d0 = a
p
3/4 in terms

of the unit cell volume Va according to (2.23) we obtain

�0
ii

d0
= �8

3
↵M

z2

"

e2

Va

. (2.34)

The terms �00
ii and

z2

"
remain as free adjustable parameter.
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Ion–bond-charge interaction

The potential related to the ion-bond-charge �i�bc for the ion-bond-charge situated at a dis-

tance d0/2. Let us calculate the related force constants from (2.9). First,

�i�bc
↵� (q,,0) =

@2�i�bc

@xl00,↵@x0,�
=

@

@x0,�


�0
i�bc

@|rl0 � r0|
@xl00,↵

�
=

@

@x0,�


�0
i�bc

xl00,� � x0,�

|rl0 � r0|

�

(2.35)

where |rl0 � r0| ⌘ d0/2 is the ion-bond-charge distance. After a little algebra we find

�i�bc
↵� (q,,0) = ��↵�

�0
i�bc

d0/2
�

�00
i�bc +

�0
i�bc

d0/2

�
1

(d0/2)2

X

l0

(xl00,↵ � x0,↵) (xl00,� � x0,�)

(2.36)

where the firs derivative of the potential is assumed to be zero �0
i�bc = 0 according to [4, 42].

The term �00
i�bc is a free adjustable parameters.

Bond-charge�bond-charge interaction

The contribution to the bond-charge–bond-charge force constants comes from the second

derivative of (2.29) according to (2.9),

�bc�bc
↵� (q,0,00) =

@2Vbb

@xl00,↵@x0,�
=

=
B1

4a21

"
X

l0l00

(rl00 � r0) (rl0000 � r0) + a21

#
�↵�

+
B1

4a21

X

l0l00

(xl00,↵ � x0,↵) (xl0000,� � x0,�)

(2.37)

2.3.5 The dynamical matrix within the bond-charge model

If we return to the equations of motion (2.14), namely

Mül,↵ = �
X

l00,�

�↵�(l; l
00)ul00,� 8 (l,↵) (2.38)

and we separate the contribution of ions (denoting their corresponding displacement hyper-

vector u[1 : 2])and bond-charges (denoting their corresponding displacement hypervector

u[3 : 6]), we get

M!2
u[1 : 2] = (R+CR)u[1 : 2] + (T +CT )u[3 : 6]

0 =
⇣
T

† +C

†
T

⌘
u[1 : 2] + (S +CS)u[3 : 6]

(2.39)
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Table 2.2: BCM parameters for group-IV semiconductors given in units e2/Va. The BCM for dia-

mond has one additional parameter a0 = 0.51r0/16. These values are those found by Weber in [4]

after fitting to experimental dispersion relations from neutron scattering data.

C Si Ge ↵-Sn

1
3
�00
ii -10.0 6.21 6.61 7.43

z2/✏ 0.885 0.180 0.162 0.163
1
3
�00
i�bc 50.0 6.47 5.71 5.59

� 12.56 8.60 8.40 7.80

where M is a diagonal matrix with the masses of the ions, note that the adiabatic approxi-

mation is expressed by having put the mass of the bond-charges equal to zero in (2.39). The

bond-charge coordinates u[3 : 6] can be eliminated, obtaining

M!2
u[1 : 2] =

h
(R+CR)� (T +CT ) (S +CS)

�1
⇣
T

† +C

†
T

⌘i
u[1 : 2] (2.40)

with the dynamical matrix being

D = M

�1/2
h
(R+CR)� (T +CT ) (S +CS)

�1
⇣
T

† +C

†
T

⌘i
(2.41)

according to the definition (2.18), where R, T and S are the dynamical matrices for the

short range ion-ion, ion-bc and bc-bc interactions; and CR, CT and CS are the corresponding

Coulomb matrices which are evaluated by Ewalds method described in Appendix A.

2.3.6 Dispersion relations and density of states of group IV semi-

conductors

We have applied the described adiabatic Bond-charge model to diamond, silicon, germanium

and gray tin, belonging to group-IV semiconductors. According to the procedure described

in the previous Sections and finding the eigenvalues of the dynamical matrix (2.41) for each

material, with the values of the parameters indicated in Table 2.2, we have obtained their

dispersion relations.

In Figs. 2.5 (a)-2.8 (a) we show the obtained dispersion relations for each material along

high-symmetry directions in q�space and compare them with data from neutron scattering

experiments. Note that there are 6 dispersion curves or branches, in some directions degener-

ated, according to ⌫ = 3n with n = 2 for these materials, corresponding to 3 acoustic branches
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Figure 2.5: Phonon dispersion relations and density of sates for diamond (C). (a) Solid lines:

theoretical dispersion relations obtained with the BCM along high-symmetry axes. Symbols: data

from neutron scattering experiments [48]. (b) Density of states calculated from BCM dispersion

relations.

and 3 optic branches. It can be observed that the predictions are in very good agreement

with data from such experiments. Particularly, transversal acoustic phonon branches close to

the border of the Brillouin zone (X,K and L points) are very well reproduced, as we discussed

in 2.3. In figures 2.5(b)-2.8 (b) we show the corresponding density of states in terms of the

frequency for each material calculated according to Eq. (1.11) using the obtained dispersion

relations. Note that the curve exhibits the peaks at the frequencies corresponding to the limit

of the BZ of each branch. The reliability of the calculation of the density of states lies in the

accuracy of prediction of the specific heat as a function of the temperature. We show in Fig.

2.9 the obtained specific heat as a function of temperature for the group-IV materials, where

the Debye temperature is marked with a grid.

2.4 Rigid-ion model

The rigid-ion model (RIM) is one of the simplest and usual approaches, together with the

shell model, to account for the atomic interactions in a crystal [21]. As we will see, its degree

of complexity is much lower than the Bond-charge model. In the RIM, the ionic charges of

the crystalline lattice are taken as point charges centered at the nuclei of the atoms. In fact,
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(a) (b)

Figure 2.6: Phonon dispersion relations and density of sates for silicon (Si). (a) Solid lines: theo-

retical dispersion relations obtained with the BCM along high-symmetry axes. Symbols: data from

neutron scattering experiments [49]. (b) Density of states calculated from BCM dispersion relations.
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Figure 2.7: Phonon dispersion relations and density of sates for germanium (Ge). (a) Solid lines:

theoretical dispersion relations obtained with the BCM along high-symmetry axes. Symbols: data

from neutron scattering experiments [49]. (b) Density of states calculated from BCM dispersion

relations.
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Figure 2.8: Phonon dispersion relations and density of sates for ↵-Sn. (a) Solid lines: theoretical

dispersion relations obtained with the BCM along high-symmetry axes. Symbols: data from neutron

scattering experiments [50]. (b) Density of states calculated from BCM dispersion relations.
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Figure 2.9: Specific heat of Si, Ge, C and ↵�Sn calculated with the BCM dispersion relations and

density of states.
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ions are polarizable, but with this rigid approximation we avoid the e↵ects of the electronic

polarizability over the electric field generated by the ions displacements and the e↵ective

dynamic charges, that eventually a↵ect the phonon frequencies. Despite of this simplification,

this model is believed to be the most suitable one, using the Morse potential to obtain the

dispersion relations of the material we are interested in, the bismuth telluride (Bi2Te3) [2,51].

Here, we follow the steps by Qiu and Ruan [2] to find the force constants from the second

derivative of the Morse potential, and eventually find the eigenvalues of the dynamical matrix.

2.4.1 Crystal structure of Bi2Te3

The Bi2Te3 has a rhombohedral lattice structure, although sometimes it is also represented

with the hexagonal structure, as it is shown in Fig. 2.10 (left). It can be seen that the

rhombohedral unit cell contains five atoms along the trigonal axis following the sequence Te1-

Bi-Te2-Bi-Te1. The lattice parameter of the rhombohedral unit cell is aR = 10.473 Å, and

the rotational symmetry angle is ✓R = 24.159; the corresponding parameters of the hexagonal

unit cell are a = 10.473 Å and c = 30.487 Å. In the rhombohedral structure, the Te1 atoms

have coordinates (±u,±u,±u), while Bi atoms have (±v,±v,±v) where u = 0.4001 and

v = 0.2095 [52]. According to [51–53] the bond length of the Te1-Bi bond is 3.07 Å, which is

shorter than that of the Bi-Te2 bond (3.25 Å), indicating that they may be of di↵erent bond

types, actually, the Te1-Bi bond has a higher bond energy and a higher force constant than

the Bi-Te2 bond, this indicates that the Te1-Bi bond is more ionic than the Te2-Bi bond. On

the other hand, the Te1-Te1 bond is the longest (3.64 Å) and is considered to be a Van der

Waals interaction, therefore with bond energy lower than that of a typical ionic or covalent

bond. The first BZ of the rhomboedral lattice is shown in Fig. 2.10 (right).

2.4.2 Interatomic Potentials and the Dynamical matrix

Let us now call U(rij) the interaction energy between two ions i ⌘ (lk) at position ri and

j ⌘ (l0k0) at position rj separated a distance rij = |rj � ri|. According to (2.21) U(rij) is

obtained taking into account two contributions: the short-range interactions described by a

suitable potential, which for Bi2Te3 is usually taken the Morse potential because it is a good

approximation of the vibrational structure of molecules, and the long-range interactions are,

as usual, the coulombian ones, thus

U(rij) = UMorse(rij) + UCoulomb(rij) . (2.42)
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Figure 2.10: Crystal structure of Bi2Te3 showing the rhombohedral and hexagonal unit cells. Left:

hexagonal structure is made of Te1-Bi-Te2-Bi-Te1 five-layer blocks. Right: The first Brillouin zone

for the rhombohedral cell with some high-symmetry axes and points. The crystallographic direction

[111] corresponds to the �� Z axis, and [110] corresponds to �� F . Extracted from Ref. [51].
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Short-range interactions

Following the simplified proposal by Qiu and Ruan [2], we will extend the short-range in-

teractions to first and second-neighbors, since considering third-neighbors would complicate

considerably the calculations, and the resulting dispersion relations and density of states

would not di↵er significantly [2]. The Morse potential is given by

UMorse(rij) = D[(1� e�A(r
ij

�r0
ij

))2 � 1] (2.43)

where for each type of interaction i-j, D is the potential depth, A the bond elasticity, and r0ij
the equilibrium bond distance between atoms i and j, namely

r0ij =

sX

↵

(x0
i↵ � x0

j↵)
2 (2.44)

being xi↵ the Cartesian coordinates (↵ = 1, 2, 3) of atom i and

rij =

sX

↵

(xi↵ � xj↵)2 =

sX

↵

(x0
i↵ � x0

j↵ + ui↵ � uj↵)2 (2.45)

where ui and uj are the displacement vectors respect to the equilibrium position of atoms

i and j for each possible interaction, (see Fig. 2.1). The values of these parameter for the

bismuth telluride are given in Table 2.3.

Long-range interaction energy in (2.42) is given by the Coulomb potential energy

UCoulomb(rij) =
zizje2

rij
(2.46)

where zie and zje are the point charges of ions i and j, respectively, and e = 1.6⇥ 10�19C is

the electron charge. The sum over all atomic positions rij should be performed by the Ewald’s

method, as indicated in Appendix A.

Now, we can calculate the force constants as

�↵�(ij) = �M
↵�(ij) + �C

↵�(ij) (2.47)

where �M
↵�(ij) and �C

↵�(ij) are the force constants derived from the Morse and Coulomb

energy, (2.43) and (2.46) respectively, and the subindex referring to the Cartesian coordinates

↵, � = x, y, z of the interaction between i, j.
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Table 2.3: Parameters for first and second-neighbors interactions of Morse potential (2.43) for

Bi2Te3, from Qiu and Ruan [2].

Interaction A (Å�1) D (eV) r0 (Å)

Bi-Bi 2.212 0.085 4.203

Te1-Te1 1.675 0.076 3.642

Te2-Te2 2.876 0.066 4.312

Bi-Te1 1.285 0.975 3.098

Bi-Te2 1.257 0.582 3.251

Te1-Te2 0.731 0.807 4.497

As explained before, the force constants are generally calculated as the second derivatives

of the potential, according to Eq. (2.9). The force constants of the Morse potential for the

interaction i� j, between di↵erent ions, is

�M
↵�(ij) =

@2UM

@r2ij
=

= �2DAe[�A(r
ij

�r
0

)]

(
A
�
2e[�A(r

ij

�r
0

)] � 1
� r↵ijr

�
ij

r2ij
+

"
�↵� �

r↵ijr
�
ij

r2ij

# �
1� e[�A(r

ij

�r
0

)]
�

rij

)

(2.48)

and for the interaction i� i it is found as

�M
↵�(ii) = �

X

j

�M
↵�(ij) (2.49)

and the force constant of the Coulomb potential is

�C
↵�(ij) =

@2UC

@r2ij
= zizje

2
�↵�r2ij
r5ij

(2.50)

and similarly

�C
↵�(ii) = �

X

j

�C
↵�(ij) (2.51)

The equations of motion, according to Eq. (2.14), can be now written as

M!2
u = Du (2.52)
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Figure 2.11: Dispersion relations of Bi2Te3 calculated in the present work using the RIM, in the

crystallographic direction [110].

with M being the mass-matrix and D being the dynamical matrix, which is calculated,

according to (2.18), for a given q as

D(0)
↵� (q) =

X

l0

�↵�(l; l
00) exp [iq(rl � rl00)] =

=
X

l0

(�M
↵�(l; l

00) + �C
↵�(l; l

00)) exp [iq(rl � rl00)] (2.53)

2.4.3 Dispersion relations and density of states of Bi2Te3

By finding the eigenvalues of the dynamical matrix (2.53), we have obtained the dispersion

relations of Bi2Te3 shown in Figs. 2.11-2.12

Note that the agreement between theoretical and experimental dispersion relations along

[111] is not completely satisfactory. In first place, we must notice that the available exper-

imental dispersion relations are obtain from a sample of polycrystalline powder of Bi2Te3
according to [1], this may induce some discrepancies with the theoretical models, where im-

plicitly monocrystallinity is considered. These discrepancies are mainly associated to the

optical modes, for instance the crossing optical branches near a 2 THz frequency, that can be

observed in Fig. 2.12 (a) are not possible to be reproduced within the classical interatomic
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Figure 2.12: Comparison between experimental and theoretical dispersion relations of Bi2Te3 in the

crystallographic direction [111]: (a) experiment by Ref. [1], (b) calculated using Morse interatomic

potential with the RIM by Qiu and Ruan [2], (c) calculated in the present work using the RIM.
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Figure 2.14: Specific heat of Bi2Te3 calculated from the RIM.

potential models, as shown in the works [2,51]. Furthermore, the overestimated height of the

optical modes is one of the weak points of the rigid-ion model, since the polarization in Bi

and Te atoms is neglected. Nevertheless, acoustic branches are in good agreement with the

experimental curves, and since the acoustic modes are the dominating modes in the thermal

transport, the dispersion relations found within this model are usually considered an enough

good approximation to study the thermal transport in such a complex material [2,51]. In Fig.

2.13 we show the density of states in terms of the frequency corresponding to the obtained

dispersion relations and calculated according to Eq. (1.11). The curve is in agreement with

previous calculations [2,51]. Once the dispersion relations and the density of states is known,

we can calculate the specific heat according to Eq. (1.20), which is shown as a function of the

temperature in Fig. 2.14. Note that the Debye temperature for the Bi2Te3 that can be found

in the literature is typically 160 K, which slightly higher to that arising from our calculations,

around 120 K, as it can be extracted from the plot.



Chapter 3

Phonon relaxation times

In the previous Chapter, we have presented the dynamics of the crystal lattice in the harmonic

approximation, corresponding to a quadratic potential. This first approximation is valid to

calculate quantities related to thermal equilibrium, for instance as we have done with the

specific heat. However, to study of the thermal conductivity we need the knowledge of phonon

interactions, which require to consider anharmonic terms in the potential.

Above the absolute zero temperature, the atomic displacements in the lattice give raise to

third, quartic and higher-order terms in the potential. If we keep only the harmonic (second-

order) term and neglect the anharmonic terms, the lattice waves, obeying the superposition

principle, will travel without interactions. In such case, they would never decay and the ther-

mal energy will be carried with no resistance. This yields, as first indicated by Debye [54], an

infinite thermal conductivity, contrary to experimental evidence. Then, the anharmonicities

result, fundamentally, into phonon-phonon interactions which are the source of the intrinsic

thermal resistance in a non metallic material.

Furthermore, the introduction of a displacement field in the crystal lattice as a result of

an external force or a lattice defect or impurity also leads to scattering processes experienced

by phonons. Besides, the finite size of a real crystal induces the moving phonons to collide

against the crystal boundaries.

These three scattering processes, phonon-phonon scattering, phonon-impurity scattering

and phonon-boundary scattering, are the fundamental mechanisms present in any real crystal

giving raise to thermal resistance. Other processes could be phonon collisions against geo-

metrical defects, such as dislocations, against electrons or holes, or they may interact with

photons, but we will not deal with them here, since they are out of the scope of this thesis. In

59
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the present Chapter, we examine the particular form of the relaxation time for each of these

scattering processes and its influence on the thermal conductivity.

3.1 Fermi Golden Rule

Generally, the scattering problem is treated within the standard time-dependent perturbation

theory [35]. The anharmonic terms of the potential, despite of their important e↵ects, are

significantly smaller than the harmonic term, so they can be considered as a perturbation to

an ideal harmonic crystal1. This method allows us to calculate the transition rates between

the interacting modes.

In this approach, the Hamiltonian of a real crystal can be split into two terms

H = H0 +H 0 , (3.1)

where H0 is the harmonic Hamiltonian of a perfect crystal, and H 0 is the perturbation Hamil-

tonian, whose form depends on the phonon interaction, i.e. scattering process, we want to

study. When we deal with the scattering problem, it is usual to express the Hamiltonian in

the language of quantum field theory. Thus, the harmonic Hamiltonian H0 = T + U , with
the kinetic energy T and the harmonic potential energy U given in Sec. 2.1 (Eqs. (2.4) and

(2.7) respectively), can be expressed in terms of phonon creation and annihilation operators,

a+q⌫ and aq⌫ respectively, depending on the phonon wave vector q and branch ⌫. The final

expression is

H0 =
1

2

X

q,⌫

~!2
q

✓
a+q⌫aq⌫ +

1

2

◆
(3.2)

The eigenstates of H0 are |nq⌫i, which denotes a state with n phonon of wavevector q in the

branch ⌫. The operators a+q⌫ and aq⌫ act on the eigenstate by increasing or decreasing in one

unit the number of phonons, such that

a+q⌫ |nq⌫i =
p

nq⌫ + 1|nq⌫ + 1i

aq⌫ |nq⌫i =
p
nq⌫ |nq⌫ � 1i . (3.3)

1Note that in the case of anharmonic scattering this approach is not strictly correct since we are facing

a many-body problem, that is, the potential extends all over the crystal volume, but still, it is a good

approximation. However, in the case of scattering with lattice impurities, standard perturbation theory is

adequate, since impurities act as scattering centers. Further discussion can be found in [55,56].
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Thus,

a+q⌫aq⌫ |nq⌫i = nq⌫ |nq⌫i . (3.4)

Then, one can easily find the eigenvalues ✏q⌫ of the harmonic Hamiltonian, as

H0|nq⌫i =
X

q⌫

✏q⌫ |nq⌫i (3.5)

with

✏q⌫ = ~!q⌫

✓
nq⌫ +

1

2

◆
, (3.6)

where 1
2
~!q⌫ is the zero-point energy corresponding to T = 0 K.

To calculate the e↵ect of the perturbation H 0 on an system in the initial state |ii of energy
Ei after a certain time t, we use the Fermi Golden rule. It states that the transition probability

to a final state |fi due to that perturbation is given by

P f
i =

2⇡

~ |hf |H 0|ii|2�(Ef � Ei) , (3.7)

where �(Ef �Ei) is the Dirac delta indicating that only the energy conserving transitions are

allowed to happen, and hf |H 0|ii is the so-called scattering matrix.

Calculation of the scattering matrix hf |H 0|ii is a formidable task, but eventually leads to

find expressions for the scattering rates associated to the transition i ! f .

In the following Section, we detail the main aspects of the transition rates of the three

types of phonon interactions considered in this work. This will lead us to find analytical

expressions for the relaxation times that we will use in the following Chapters in the thermal

conductivity calculations.

3.2 Phonon scattering processes

As we have previously introduced, phonons may su↵er several types of interactions. The

importance of these di↵erent mechanisms depends on the characteristics of the material un-

der study. Since the present work is focused on semiconductor crystals, we will deal only

with the main scattering processes which are nearly always present in this type of materials.

These processes are the boundary scattering due to the finite size of the crystal, mass-defect

scattering due to the presence of impurities, and three-phonon processes due to the crystal

anharmonicities, which can be classified into momentum conservative (normal scattering) or

non-conservative (Umklapp scattering) processes. We have depicted in Fig. 3.1 the general
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Figure 3.1: Scheme of the general behavior of the phonon thermal conductivity with temperature for

a non-metallic crystal. The dominant resistive scattering process in each range of temperature is

depicted qualitatively.

behavior of the thermal conductivity with temperature for a bulk sample, showing the domi-

nant scattering mechanism in each range of temperatures. At low temperatures the boundary

scattering is the main dominant process, as the temperature raises the thermal conductivity

reaches a maximum governed by the impurity scattering, and after the peak the thermal

conductivity decreases due to the Umklapp scattering. The role of normal process deserves

a deep discussion and represents one of the milestones of the present thesis. In the following

sections we explain the nature of each of these mechanisms and their contribution to thermal

resistance.

3.2.1 Three-phonon processes: Normal and Umklapp scattering

Even in a perfect crystal there is an intrinsic scattering process that avoids an infinite thermal

conductivity. This is the phonon-phonon interaction related to the third-order term in the

energy potential of the crystal, as pointed out by Peierls (1929) [6]; it allows two classes of

processes involving three phonons:

• Class 1 processes: Two phonons of wavevector and frequency (q1, !1) and (q2, !2)

collide turning into another one (q3, !3), being possible the reverse process.
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• Class 2 processes: One phonon (q1, !1) splits into two other phonons (q2, !2) and (q3,

!3), being also possible the reverse process.

These processes are illustrated with the Feynman diagrams in Fig. 3.2. There are also scatter-

ing processes involving four or more phonons (corresponding to quartic or higher terms in the

Hamiltonian), but as shown by Pomeranchuk [57], they mainly occur at temperatures compa-

rable to or higher than the Debye temperature. So let us focus our attention on three-phonon

processes. This interaction can exhibit di↵erent natures depending on the conservation laws

they fulfill. According to Peierls [6] these laws are, for Class 1 processes

!1 + !2 = !3 (3.8)

which represents energy conservation between the initial and the final states, since ~! is the

quantum of energy for a mode of frequency !, and

q1 + q2 = q3 +G (3.9)

with G a reciprocal lattice vector. For a vibrational mode, ~q is treated as a momentum.

Thus, Eq. (3.11) is interpreted as a momentum conservation law with G = 0. Analogously,

these laws for Class 2 processes are

!1 = !2 + !3 (3.10)

q1 = q2 + q3 +G . (3.11)

Now one must distinguish between normal scattering (N-processes) if momentum is conserved

(G = 0) and Umklapp scattering (U-processes) if momentum is not conserved (G 6= 0), but

transferred to the lattice (see the sketch in Fig. (3.3)).

The perturbation hamiltonian H 0 due to three-phonon processes is expressed as

H 0 =
1

3!

X

q1,⌫1;q2,⌫2;q3,⌫3

�q1+q2+q3,G Fq1,⌫1;q2,⌫2;q3,⌫3(a
+
q1,⌫1

�a�q1,⌫1)(a
+
q2,⌫2

�a�q2,⌫2)(a
+
q3,⌫3

�a�q3,⌫3)

(3.12)

where Fq1,⌫1;q2,⌫2;q3,⌫3 are scalar quantities proportional to the average of the Fourier trans-

formed anharmonic tensor projected over the directions of the polarization vectors2. In prin-

ciple, the sum of Eq. (3.12) is over the three modes participating in the scattering, but one

should consider only those events that are compatible with energy conservation (3.10) and
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Figure 3.2: Feynman diagrams for the possible three-phonon interactions. Top diagrams represent

Class 1 processes and bottom diagrams correspond to Class 2 processes.

momentum conservation (3.11) withG = 0 orG 6= 0 in the case of N-processes or U-processes,

respectively, as we shall see.

Invoking the Fermi golden rule (3.7) we can calculate the transition probability for three-

phonon processes, given that the initial state is

|ii ⌘ |nq1,⌫1 , nq2,⌫2 , nq3,⌫3i (3.13)

and the final state is, for Class 1 processes

|fi ⌘ |nq1,⌫1 � 1, nq2,⌫2 � 1, nq3,⌫3 + 1i (3.14)

and for Class 2 processes

|fi ⌘ |nq1,⌫1 � 1, nq2,⌫2 + 1, nq3,⌫3 + 1i . (3.15)

Let us first calculate the transition probability for Class 1 processes:

P q3⌫3
q
1

⌫
1

,q2,⌫2
=

2⇡

~ |hnq1,⌫1 �1, nq2,⌫2 �1, nq3,⌫3 +1|H 0|nq1,⌫1 , nq2,⌫2 , nq3,⌫3i|2�(~!3�~!2+~!1) .

(3.16)

where substituting (3.12) and after a little algebra we find

P q3⌫3
q
1

⌫
1

,q2,⌫2
=

2⇡

~ nq1,⌫1nq2,⌫2(nq3,⌫3 + 1)|Fq1,⌫1;q2,⌫2;q3,⌫3 |2�q1+q2+q3,G�(~!3 � ~!2 + ~!1) .

(3.17)

2We skip the complete expression of Fq1,⌫1;q2,⌫2;q3,⌫3 and related mathematical details for the sake of

brevity and simplicity, but they can be consulted in Refs. [17, 36].
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Note that the delta functions

�(!3 + !2 � !1) (3.18)

and

�(q3 +G+ q2 � q1) (3.19)

assure that the transition probability vanishes for those processes which do not fulfill the

energy and momentum conservation laws.

On the other hand, for the sake of simplicity, we can denote

Qq3⌫3
q
1

⌫
1

,q2⌫2
=

2⇡

~ |Fq1,⌫1;q2,⌫2;q3,⌫3 |2�q1+q2+q3,G�(~!3 � ~!2 + ~!1) . (3.20)

the intrinsic transition probability, which is independent of the phonon distribution, and so

(3.17) can be expressed in a simplified way

P q3⌫3
q
1

⌫
1

,q2⌫2
= nq1,⌫1nq2,⌫2(nq3,⌫3 + 1)Qq3⌫3

q
1

⌫
1

,q2,⌫2
. (3.21)

Analogously, we can obtain the transition probability for Class 2 processes, given by

P q3⌫3,q2⌫2
q
1

⌫
1

= (nq1,⌫1 + 1)nq2,⌫2nq3,⌫3Q
q3n3

,q2⌫2
q
1

⌫
1

. (3.22)

Since the intrinsic transition probability does not depend on the number of phonons nq⌫ , by

the principle of microscopic reversibility we have, for Class 1 processes

Qq3⌫3
q
1

⌫
1

,q2,⌫2
= Qq

1

⌫
1

,q2,⌫2
q
3

⌫
3

(3.23)

and analogously for Class 2 processes. Thus, similarly we can obtain the transition probabil-

ities for the Class 1 and Class 2 reverse processes, P q
1

⌫
1

,q
2

⌫
2

q
3

⌫
3

and P q
1

⌫
1

q
2

⌫
2

,q
3

⌫
3

respectively.

The total probability of mode q1 su↵ering a scattering can be obtained as

P ⌫
3

q
1

⌫
1

,⌫
2

=

Z Z
P q3⌫3
q
1

⌫
1

,q2⌫2
dq2dq3 =

Z Z
nq1,⌫1nq2,⌫2(nq3,⌫3 + 1)Qq3⌫3

q
1

⌫
1

,q2,⌫2
dq2dq3 (3.24)

Actually, this complicated integral with six degrees of freedom (each of q2 and q3 has

three) is reduced to a single integral with two degrees of freedom. This is thanks to the four

equations of the conservation conditions (3.8, 3.9), which let us fix four degrees of freedom

out of the six. The remaining two degrees of freedom define a surface S2 in the reciprocal

space, on which q2 must lie for the process in Eq. (3.9) to take place. The complete and

detailed mathematical description can be found in [17, 36, 58]. Still, this surface integral can

be quite complex. If we are using the Debye model for the dispersion relations (dispersionless



66 CHAPTER 3. PHONON RELAXATION TIMES

Figure 3.3: Sketch of a general three-phonon process q1 + q2 = q3 +G. The blue square represents

the first Brillouin zone. With the center as origin, two vectors q1 and q2 are drawn and their sum is

represented q3. In the case of U-process q3 falls outside the Brillouin zone, as indicated in the figure.

To bring vector q3 inside the Brillouin zone it is necessary adding or subtracting to it a reciprocal

lattice vector G, yielding q3 +G. The N-process is the particular case when G = 0, that is, q3 falls

inside the Brillouin zone.
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model), the surface S2 degenerates into a line of zero area, because all the lattice waves are

considered to have the same phase velocity regardless polarization, then the conservation laws

(3.11) and (3.10) are satisfied by taking q1,q2,q3 in the same straight line.

However, in the general case, dispersion in the phonon branches and anisotropy in the

crystal must be considered, and it leads to more complicated constructions, as discussed by

Herring [58]. To illustrate this, in Fig. 3.4 we show the curves representing the cross-section of

the energy conservation surface S obtained by Herring for two particular situations depending

on the wavevector of the interacting modes in the normal process q1 + q2 = q3; in the top

sketch are represented the curves for the case q2 much larger than q1 and in the bottom for

the case where q2 is comparable to q1. In the figures solid lines represent the cross-section

of the surface !(q) ⌘ !2 with origin at O1, dashed lines stand for the cross-section of the

surface !(q) ⌘ !1 + !2 = !3 with origin at O2 displaced from O1 by �q1. From the plots we

can observe in the top one, that in this case (q1 small) degeneracy is possible, that is, two

frequencies correspond to a single mode, as can be appreciated in actual dispersion relations

(see for instance the plots of the silicon dispersion relations presented in the previous Chapter,

Fig.2.6 (a)). This degeneracy is represented by the points Q and P , where solid lines cross.

On the other hand, in the bottom figure, when q1 ⇠ q2, we can observe a tangent F point

between !2-surface and !3 surface in the direction q1 occurring when !2 is small enough to

neglect dispersion. This is not likely to happen in the other case (top), represented by point

R. From these examples, that we have explained grosso modo here, it is easy to see that there

are some sort of ”selection rules” for the allowed three-phonon processes, which make even

more complex to find a solution of (3.24).

Although general expressions for the relaxation times associated to N- and U-processes,

⌧N and ⌧U , have not been derived to date, this thorough study by Herring [58] has provided us

at least with a rule for the frequency and temperature dependence of ⌧N in two temperature

limits, always under the Debye temperature, to consider that the probability of four-phonon

processes is negligible.

According to Herring, when considering long-wavelength modes, or equivalently short-

frequency modes, we have three modes q1,q2,q3 interacting through normal scattering such

that they belong to acoustic branches. Then, only Class 1 events are the most likely, since

Class 2 events implies that higher frequency modes are participating in the collision. There-

fore, these modes satisfy

q1 + q2 = q3 , (3.25)
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and since we are dealing with low-frequency modes, we can consider !(q) / q. This way, the

intrinsic transition probability (3.20) is found to be proportional to the wave numbers of the

interacting modes, such that the transition probability (3.21) can be expressed as

P q3⌫3
q
1

⌫
1

,q2⌫2
/ q1q2q3nq1,⌫1nq2,⌫2(nq3,⌫3 + 1) (3.26)

and similarly for the reverse process

P q
1

⌫
1

,q2⌫2
q3⌫3

/ q1q2q3nq3,⌫3(nq1,⌫1 + 1)(nq2,⌫2 + 1) (3.27)

Note that, even if q2 and q3 are high-energy modes where the approximation !(q) / q

is not valid (due to dispersion), while q1 belongs to an acoustic branch, we still have the

proportionality q1nq1,⌫1 in (3.26) and q1(nq1,⌫1 + 1) in (3.27). According to Klemens [59] the

relaxation time associated to mode q1 is defined as

⌧�1(q1) = � lim
nq

1

!n0

q1

(dnq
1

/dt)scatt
nq

1

� n0
q1

(3.28)

where n0
q
1

is the value of the occupation number nq
1

in thermal equilibrium, and (dnq
1

/dt)scatt
is the total rate of change of nq

1

due to phonon-phonon collisions when it departs from

equilibrium but all other modes have equilibrium occupation, and it can be expressed as the

sum of the transition probabilities
✓
dnq

1

dt

◆

scatt

=

Z
P q3⌫3
q
1

⌫
1

,q2⌫2
� P q

1

⌫
1

,q2⌫2
q3⌫3

dq2dq3 (3.29)

By evaluating integral (3.29) according to (3.26) and (3.27), and substituting it in (3.30)

we obtain

⌧�1(q1) /
Z

q1q2q3(n
0
q
2

,⌫
2

� n0
q
3

,⌫
3

)(@�!/@q2?)
�1dS2 (3.30)

where �! = !(q1 + q2) � !(q1) � !(q2) measures the departure from energy conservation

and q2? is the component of q2 perpendicular to the surface dS2. To determine the behavior

of the integral of (3.30) it is necessary to determine first the form of the energy conservation

surface S2 and the magnitude of the normal derivative of �! on it. However, it is possible

to derive two scaling laws for ⌧�1(q1) without this information, in the range of low and high

temperatures. Performing the limit in (3.30) in each temperature range, we have:

• Low-temperatures:

At temperatures low enough the temperature variance of (3.30) is given by

⌧�1(q1) / qa1T
5�a (3.31)
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where a is found depending on the crystal lattice geometry as

a = � lim
q!0

d ln ⌧(q, T )

d ln q
(3.32)

This is to the so-called fifth-power law, which is usually written in terms of frequency

with the general expression

⌧�1(!) / !aT b with a+ b = 5 . (3.33)

Herring also provided a table with the values of a calculated for several lattice geometries

according to crystallographic considerations [58].

• High-temperatures:

In this limit all the modes are highly excited, the transition probabilities (3.26) and

(3.27) in (3.30) contain T only through a term linear in the n0’s. Thus,

⌧�1(q1) / T�1 . (3.34)

E↵ect of normal and Umklapp processes on the thermal conductivity

Regarding the role of the three-phonon processes on the thermal conductivity, it is very

important to point out that Umklapp scattering is a resistive process, that is, it adds resistance

to heat transport since phonons lose momentum in the collision. In addition, after an Umklapp

collision the direction of the group velocity of the resulting phonon is very di↵erent from those

of the initial phonons, and since thermal energy is carried in the direction of the phonon group

velocity, the net e↵ect is to make the phonon distribution relax to equilibrium. In other words,

U-processes increase thermal resistance, and therefore reduce the thermal conductivity. In

contrast, normal scattering is the only non-resistive process, i.e. it does not contribute to

thermal resistance, because phonons conserve the initial momentum after colliding. This

prevents the phonon distribution to relax to equilibrium. Instead, the phonon distribution

is relaxed to a distribution displaced from equilibrium [34]. Because of this feature, the

role of N-processes in thermal transport has often been dismissed [25, 28]. Recently, the

scientific community seems to agree on the crucial role they play in some relevant aspects of

thermal transport. However, it is still under debate which is the right way to account for this

non-resistive process and how it exactly a↵ects thermal conductivity. As we will discuss in

the following Chapters, an appropriate treatment of normal and Umklapp scattering events

together with suitable analytical expressions is indeed crucial step in thermal conductivity

modeling.
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Figure 3.4: Sketch of the cross-section of the energy conservation surface in the q-space for a general

model (with dispersion), for two typical cases depending on the wavevector of the interacting modes in

the process q1+q2 = q3: (top) A longitudinal mode with q2 larger than q1; (bottom) A longitudinal

mode with q2 comparable to q1. Solid lines represent the cross-section of the surface !(q) ⌘ !2 with

origin at O1, dashed lines stand for the cross-section of the surface !(q) ⌘ !1 +!2 = !3 with origin

at O2 displaced from O1 by �q1. (Top) Q and R are points of degeneracy. Point F is the tangent

point between !2-surface and !3-surface in the direction q1 occurring when !2 is small enough to

neglect dispersion. Reproduced from Herring [58].
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Expressions for Normal and Umklapp scattering

As we have already pointed out, finding a formal equation for the scattering rate associated

to N- and U-processes is far from trivial. It is known that they are strongly frequency and

temperature dependent, but to the date there is no standardized equation to account for this

dependence. Furthermore, each material should exhibit a characteristic dependence, since the

lattice type is directly related to the anharmonicities.

Many expressions for ⌧N and, similarly for ⌧U , based on Herring’s work have been proposed

since then. In order to have a better perspective of the diversity of expressions for ⌧N and

⌧U , we have summarized chronologically in Table 3.1 the expressions proposed in the most

relevant works on silicon thermal conductivity from the last decades to the date. Note that

for ⌧U the is no agreement between the expressions, but for ⌧N , when considered, the tendency

is to use ⌧N / !2T 3 according to Herring’s calculations for the exponents [58]. Regarding the

parameters appearing in the expressions, usually denoted as B with a subindex indicating the

type of process (N for normal, U for Umklapp) and sometimes also the phonon branch (L for

longitudinal, T for transversal), they are usually treated as fitting parameters. Although there

have been attempts to find empirical expressions to calculate them in terms of some materials

properties, like atomic volume, atomic mass, Grüneisen parameter or group velocity [60]. This

will be further discussed in Chapter 6.

From this picture one can notice two things: first, the lack of agreement on how three-

phonon scattering should behave with frequency and temperature in a given material, and

second, the lack of direct experimental measurements on relaxation times in terms of frequency

and temperature that could shed light to this controversy.

Nevertheless, ab-initio methods have remarkably contributed to provide valuable informa-

tion about the frequency and temperature dependence of ⌧N and ⌧U in certain intervals of

temperature. With this technique, Ward and Broido [61] have recently proposed the following

expressions

⌧�1
N = BN!

2T [1� exp(�3T/⇥D)] (3.35)

⌧�1
U = BU!

4T [1� exp(�3T/⇥D)] (3.36)

for silicon and germanium valid in the temperature interval [100 � 300] K. Note that the

expression of ⌧�1
N provided by Ward and Broido does not follow the Herring’s fifth-power law.

According to Herring, for diamond-like materials, such is the case of silicon and germanium,

it is found the exponent a = 2 (see [58]), so there is an agreement between the frequency
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dependence !2 predicted by Herring and that obtained by Ward and Broido in (3.35). How-

ever, to fulfill the Herring’s fifth law at low temperatures (3.35) should exhibit a T 3 behavior,

and a term suitable for high temperatures should be also taken into account, as other authors

have indicated [23]. Since the ab-initio calculations are restricted to a certain range of tem-

peratures, a whole description of the behavior of ⌧N with temperature might not be found

with this method.

Since one of the objectives of this work is studying the thermal transport in a wide range

of temperatures, we propose to modify the ab-initio expression of ⌧N in order to extend it

to both lower and higher temperature regimes, respectively. In (3.35), we have corrected the

exponent of the temperature according to Herring’s fifth-power law (now T 3) and we have

added an additional term 1/(B0
NT ) to account for high-temperature intervals according to

(3.34). In this way, our final expression for ⌧N is

⌧N =
1

BNT 3!2[1� exp(�3T/⇥D)]
+

1

B0
NT

, (3.37)

and so it is expected to be valid in the whole temperature range.

Concerning U-processes, following the argument provided by Ziman [36], at low tempera-

tures the scattering of two phonons with wave vectors q1 and q2 cannot provide q3 +G, with

G 6= 0, since low temperature means low energy or low q. In other words, U-processes are not

possible at low temperatures. Therefore, we have established a temperature limit assuming

that 1/3 of the limit of the Brillouin zone, corresponding to a wave vector qU = 2⇡/3a (a

being the lattice parameter), the probability of U-processes to happen decreases exponen-

tially. We have denoted this temperature limit ⇥U , referring to it as the Umklapp extinction

temperature, and it can be calculated from the dispersion relations through the expression

~!q
U

⇡ kB⇥U . For silicon we have obtained ⇥U = 140 K. Then, we propose to add an expo-

nential factor exp(⇥U/T ) in the ab-initio expression of ⌧U to account for this behavior at the

limit of low temperatures, such that our final expression for U-processes is:

⌧U =
exp(⇥U/T )

BU!4T [1� exp(�3T/⇥D)]
. (3.38)

Note that at high enough temperatures, the numerator of Eq. (3.38) is 1 and the Ward and

Broido’s expression (3.36) is recovered.

In addition, we have studied how the temperature exponentials influence the behavior of

⌧U with T in (3.38). Let us rewrite Eq. (3.38) as

⌧U =
gi(T )

BU!4
(3.39)
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Table 3.1: Summary of most relevant expressions for Umklapp and normal scattering rates that can

be found in the literature for silicon and germanium. Subindex i = L,T denotes longitudinal or

transversal polarization for the acoustic branches.

Work Ref. ⌧�1
U ⌧�1

N

Callaway (1959) [22] B!2T 3 B!2T 3

Holland (1963) [23] Bi!2/ sinh(kBT/~!) BT!T 4

i = L,T BL!2T 3

Morelli et al. (2002) [27] Bi!2Te✓i/3T BT!T 4

i = L,T BL!2T 3

Mingo (2003) [28] B!2Te�C/T neglected

Chantrenne et al. (2005) [26] BL!2T 1.5 neglected

BT!T 4 neglected

Kazan et al. (2010) [62] Bi!2Te�✓
D,i

/3T BL!2T 3

i = L,T BT!T 4

Ward & Broido (2010) [61] BU!4T
⇥
1� e(�3T/⇥

D

)
⇤

BN!2T
⇥
1� e(�3T/⇥

D

)
⇤

with i = 1, 2, 3, 4, being

g1(T ) =
1

T
(3.40)

g2(T ) =
1

T (1� exp(�3T/⇥D))
(3.41)

g3(T ) =
1

T
exp(⇥U/T ) (3.42)

and

g4(T ) =
exp(⇥U/T )

T (1� exp(�3T/⇥D))
. (3.43)

Introducing g2(T ) in Eq. (3.39) yields the ab-initio expression (3.36), and g4(T ) in Eq. (3.39)

yields the expression (3.38) we have proposed in this work; g1(T ) accounts for the temperature

dependence of ⌧U without the correction of any exponential term, and g3(T ) accounts for the

e↵ect of the term exp(⇥U/T ) alone, standing for the Umklapp extinction temperature that

we have suggested in this work. In Fig. 3.5 we show the curves corresponding to the four

possible combinations g1(T ), g2(T ), g3(T ) and g4(T ) for silicon. We can observe that above

room temperature all the curves have the same behavior, which can be modulated in strength

through the fitting parameter BU in (3.39). At very low temperatures the behavior is di↵erent
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Figure 3.5: Comparison of several temperature functions gi(T ) intervening in ⌧U . It can be observed

that the curves di↵er from each other specially under room temperatures, and that the combinations

of the exponential factors in g2(T ), g3(T ), g4(T ) provides a smoother transition from the behavior

at high-temperatures towards the g(T ) ! 1 behavior at low temperatures. Curves are compute for

silicon with ⇥D=650 K and ⇥U=140 K.

for each function. Since the modes do not have enough energy to collide in a way such that

they generate a higher energy mode able to jump out of the first Brillouin zone, the Umklapp

processes cannot occur. This is translated as a divergence with temperature in the expression

of ⌧U . We can observe in the plot that the e↵ect of the exponential terms in gi(T ) is to smooth

this transition towards the divergence, or in other words, to increase the temperature at which

the transition from the high-temperatures behavior towards divergence at low-temperatures

(g(T ) ! 1) behavior occurs. Note that g1(T ), that is, the terms without exponential factors

correction, shows an abrupt divergence when T ! 0, while g4(T ) provides the smoothest

transition in agreement with a realistic extinction temperature.

The expressions (3.37) and (3.38) for ⌧N and ⌧U respectively, will be used to calculated the

thermal conductivity of the diamond-like materials under study in Chapters 5 and 6 and will

be further discussed in Chapter 7. As last remark, we wish to highlight that we have obtained

(3.37) and (3.38) following Herring’s work to avoid the thermal conductivity results could be

influenced by introducing ad hoc or empirical frequency and temperature dependences.
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3.2.2 Mass-defect scattering

The point-defect scattering is a general term referring to all possible scattering processes

between a phonon and a lattice defect, which can be due to several factors, for instance, a

di↵erence of mass between the lattice atom and the defect, a di↵erence in the binding be-

tween the defect and their neighbors, or anharmonic e↵ects of the distortion about the defect.

Although many substances can be obtained very pure chemically, it is di�cult to separate

the various isotopes from their natural composition. Therefore, this type of ”impurity” is the

most common and hardest to eliminate. Other defects may also be vacancies, or disclinations,

or more complex topological structures, requiring a more complicated analysis than that pre-

sented here (see Fig. 3.7). In the case of a di↵erence in mass, we call it mass-defect scattering,

which is, therefore, the process where a phonon scatters with a point of the lattice containing

a di↵erent atom, impurity or isotope, due only to the mass di↵erence. Some representative

examples are alloys, doped materials and isotopically enriched materials, respectively. In most

of the cases, the mass-defect scattering is the only one usually considered, since the composi-

tion of a sample is normally well known, and the theory related to this process is more precise

than in the other cases (distortion and misfit scattering) [63]. Therefore, let us consider in this

work only the relaxation time related to the mass-defect scattering due to isotopic disorder in

the crystal composition, often named in the literature impurity scattering, for simplification,

and denoted as ⌧I . In the present work we will focus on the e↵ect of mass-defect scattering in

the thermal conductivity as the results of di↵erent isotopic abundances in a given material.

In 1951, Klemens derived an expression for the mass-defect scattering rate using pertur-

bation theory described in Sec. 3.1.

According to Klemens [59, 63], in a mass-defect scattering process, the kinetic energy of

the crystal would be altered due to a mass di↵erence �M between an atom of the crystal and

the impurity. Then, the perturbed hamiltonian H 0 is given by

H 0 =
1

2
�M

✓
du

dt

◆2

(3.44)

being u(x) =
1

N1/2

X

q

aq⌫pq exp(iq · x) the displacement vector of an atom at the lattice-site

x, with N the number of atoms in the crystal, and pq the polarization vector. If the impurity

atom belongs to a di↵erent chemical element, (for instance SiGe alloys) the potential energy

of the crystal would also be altered by its presence, but this can be disregarded in our case,

since we will study the e↵ect of the impurity scattering on the thermal conductivity as a result
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1q

q2

1q

q2

Figure 3.6: Feynman diagrams for the phonon-impurity interaction. Note that this is an elastic

scattering, where the modulus is conserved q1 = q2 but not the direction.

of isotopic disorder in single element crystals (group-IV semiconductors3).

Following the works by Klemens [59,63] and later by Tamura [64], using the Fermi golden

rule, the scattering rate due to phonon-impurity scattering is expressed as

⌧�1
I =

X

⌫
2

Z
⇡

2
!2
1,⌫

1

(q1)|hq2|H 0|q1i|2�(! � !2,⌫
2

(q2))dq2 (3.45)

where energy and momentum are conserved, that is

!1 = !2, q1 = q2 (3.46)

since this type of scattering is an elastic collision (see the Feynman diagrams in Fig. 3.6).

After a little algebra (where we have also considered a cubic symmetry in the lattice)4 we can

find that

⌧�1
I =

⇡

12
!2
1,⌫

1

(q1)�
X

⌫
2

Z
�(! � !2,⌫

2

(q2))dq2 (3.47)

3Note that in the case of bismuth telluride (see Chap. 7), we will deal only with naturally occurring

samples.
4The full mathematical description can be found in the work by Tamura [64].
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Figure 3.7: Sketch of the atoms arranged in a lattice (filled circles) with the presence of impurities

(empty circles).

where

� =
X

i

fi
�
�M/M̄

�2
(3.48)

is the mass-fluctuation factor, being fi the isotopic fraction of the i-th isotope and M̄ =X

i

fiMi the mean mass, and the mass-di↵erence is �M = Mi � M̄ . From (3.47) it is found

that the relaxation time depends on the wave vector only through the frequency and then no

spatial anisotropy nor polarization dependence take place. Therefore, we can delete the su�x

⌫ and the variable q, and re-express (3.47) in terms of the density of states D(!)

⌧�1
I =

⇡

6
V �D(!)!2 , (3.49)

where V is the atomic volume. If one substitutes in the expression derived by Tamura (3.49)

the Debye density of states (see Sec. 2.1), we obtain the well-known expression first given by

Klemens5

⌧�1
I =

V �

4⇡v3
!4. (3.50)

This expression has been widely used in the literature and has become, in some way, standard-

ized [22–28, 61, 62, 65]. Despite the expression is obtained under Debye model assumptions,

5Note that in the Klemens’ expression the !4 dependence is the well-known Rayleigh scattering, applied

since 1895 to photon-molecule scattering in atmospheric optics, and it explains why the sky is blue.



78 CHAPTER 3. PHONON RELAXATION TIMES

it has provided remarkable results in a wide variety of materials. However, we must recall

that, usually, the quantity A ⌘ V �/(4⇡v3) has been neglected, using it instead as a fitting

parameter [22, 23, 28].

Although both equations (3.49) and (3.50) can provide calculated values for ⌧I , the advan-

tage of the Klemens’ equation (3.50) is that it is a very good approximation even using a real

dispersion relation model, because in the temperature interval this scattering is dominating

the transport, short-wavelength modes (large q) are not populated and one can approximate

with small error the region of long-wavelength modes in the real dispersion relation by the

Debye linear dispersion (1.5), so little error is induced. On the other hand, the advantage

of Tamura’s expression (3.49) is that, since it depends explicitly on the density of states, it

can provide a more precise description of the modes intervening in the impurity scattering for

each material under the considered symmetry.

Regarding the influence of mass-defect scattering on thermal transport, it has been ob-

served experimentally that the smaller the mass-fluctuation factor �, the higher the peak in

the thermal conductivity as a function of temperature (i. e. the maximum of Fig. 3.1). As

shown in Fig. 3.8, several samples of germanium and silicon with di↵erent isotopic composi-

tion exhibit peaks of di↵erent height in the thermal conductivity. One can observe that the

peak occurs at a certain interval of temperatures characteristic for each material. This means

that in this interval the mass-defect scattering is dominating. Before the peak, the dominant

scattering mechanism is the boundary scattering, since the samples have the identical struc-

ture and dimension, as reported by Inyushkin [65, 66], the thermal conductivity is the same.

After the peak, the three-phonons processes begin to dominate the transport and therefore,

are the cause for the lowering of the thermal conductivity, and as the temperature increases

all the samples tend to the same values of thermal conductivity. This information is very

valuable to tailoring the thermal conductivity of semiconductors.

3.2.3 Boundary scattering and the associated size e↵ect

In a finite size sample, there is a certain temperature below which the thermal conductivity

decreases as temperature reduces, as sketched in Fig. 3.1. This is due to the boundary scat-

tering, which is the process where a phonon scatters with the boundaries of the sample when

it arrives at the surface. The temperature at which boundary scattering is the leading scatter-

ing mechanism will depend on the size and geometry of the sample. In samples characteristic

sizes of the order of millimeters the boundary scattering dominance is restricted to a low
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Figure 3.8: Phonon thermal conductivity measurements of silicon and germanium bulk samples with

several isotopic compositions: (a) Naturally occurring silicon natSi (92.2%28Si, 4.7%29Si, 3.1%30Si)

and isotopically enriched silicon 28Si (99.983%28Si, 0.014%29Si, 0.003%30Si) from Ref. [65] and

(b) naturally occurring germanium natGe (20.5%70Ge, 27.4%72Ge,7.8%73Ge,36.5%74Ge,7.8%76Ge)

and isotopically enriched germanium with two di↵erent abundances 70Ge(99.99%) (99.99%70Ge,

0.01%73Ge) and 70Ge(96.3%) (96.3%70Ge, 2.1%72Ge, 0.1%73Ge, 1.2%74Ge, 0.3%76Ge) from Ref.

[66]. Since all the samples in (a) and (b) are the same size and shape, the e↵ect of the impurity

scattering is highlighted: the less concentration of impurities, the less impurity scattering and the

higher the peak of the curve.
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temperature range, while at the nanoscale the influence of the boundary scattering reaches

even room temperatures. This is highlighted by the drastic thermal conductivity decrease

observed, for instance, in silicon nanowires (see Fig. 3.9 (a)). Note the di↵erences in the

shape of  between these nanowires and the millimetric Si samples shown in Fig. 3.8 (a). In

addition, the thermal conductivity behavior with temperature exhibits a T 3 tendency at low

temperatures (see Figs. 3.8 and 3.9), i.e. the same temperature dependence as the specific

heat.

As the size of the system reduces drastically, we can observe that this slope smooths.

Experimentally, it has been observed a T 1 slope in very thin silicon nanowires (with diameter

⇡ 22nm, and surface considered smooth) [8] ( see Fig. 3.9 (a)). This could be interpreted

on the basis that, in this case, phonon motion is one-dimensional (implying Cv ⇠ T ), instead

of three-dimensional (implying Cv ⇠ T 3), but in the thicker nanowire the behavior is more

similar to T 3, as shown in Fig. 3.9 (b), where appears a zoom of the data in a logarithmic

scale, it can be observed how the slope of the conductivity of the nanowires smoothes as

the diameter reduces. This still it is a very puzzling result that suggests some confinement

quantum e↵ects may be involved in the drastic reduction of the thermal conductivity of very

thin nanowires [10].

Furthermore, the geometry of the system also a↵ects to the reduction of the thermal con-

ductivity [67, 68], since thin-films (two-dimensional system) and nanowires (one-dimensional

system) with equivalent e↵ective size have di↵erent thermal conductivity at the same tem-

perature, as shown by the experimental measurements in Fig. 3.10, where it can be seen that

a thin-film with thickness slightly smaller than the diameter of a nanowire, exhibits a higher

thermal conductivity.

Surprisingly, the boundary scattering is characterized by the following simple relaxation

rate given by Casimir (1938) [7]

⌧�1
B =

v

Le↵

(3.51)

where Le↵ represents the e↵ective dimension of the system, and v is the phonon group velocity.

Note that ⌧B is frequency-dependent through the group velocity, although in the original

expression by Casimir, it was used instead a constant value, the velocity of the sound in

the solid. Usually, the features of the surface, whether it is smooth or rough, are normally

taken into account through a correction factor F multiplying the e↵ective length [36]. For

the sake of simplicity, in the present work we restrict ourselves to the case of smooth surfaces,

where F = 1, since in the case of rough surfaces more complicated mechanisms, such as

backscattering, may occur. Although in nanowires with very rough surfaces this mechanisms
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Figure 3.9: (a) Experimental measurements of phonon thermal conductivity for several diameters

silicon nanowires. (b) Zoom at low temperatures where the curves T 3, T 2 and T are plotted for

comparison. (Figures reproduced from Ref. [8]).

has revealed as a useful tool to drastically reduce the thermal conductivity [69,70], to account

for it is out of the scope of this thesis. As such, we will use the expression (3.51) which has

become standard in the literature. On the other hand, with an appropriate e↵ective size Le↵

entering into Eq. (3.51), the size and geometry e↵ects should be correctly described. For this

purpose, Le↵ needs to be calculated regarding the geometry of the system. This way, following

Zhang [12], with a little algebra one can obtain for samples with square cross-section

Le↵ = 1.12
p
A (3.52)

where A = l1 ⇥ l2 is the cross-section of the sample, with l1 and l2 the width and thickness.

For cylindrical wires of diameter d we have

Le↵ = d (3.53)

and

Le↵ = 2.25h (3.54)

for thin-films of thickness h.
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Figure 3.10: Experimental measurements of phonon thermal conductivity of a 115 nm diameter

silicon nanowire [8] and a 110 nm thickness silicon thin-film [71].

3.3 Matthiessen rule

When there are several scattering processes taking place at the same time in the crystal, we

have to determine how they can be combined to yield an e↵ective scattering rate. The simplest

approach is to assume that the probability of scattering associated to each mechanism does

not depend on the other mechanisms, and then the frequencies corresponding to each collision

can be added, obtaining an e↵ective frequency given by

fe↵ = f1 + f2 + . . . fn (3.55)

where the fi is the scattering frequency of the i scattering mechanism. This is called the

Matthiessen rule. As the relaxation times are the reciprocal of the scattering frequencies, we

have
1

⌧e↵
=

1

⌧1
+

1

⌧2
+ · · ·+ 1

⌧n
(3.56)

where ⌧e↵ is the e↵ective relaxation time. In other words, if the phonons su↵er various scat-

tering processes, each process contributes additively to 1/⌧ . Here, it is crucial to remark that

this is only valid for resistive processes, and therefore, N-processes, which do not contribute
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directly to thermal resistance, should not be included in the Matthiessen rule, but require a

special treatment [36, 72], which will be discussed in Chapters 4 and 5.





Chapter 4

Thermal conductivity

As we have seen in the previous Chapter, several phonon scattering processes are the source

of the thermal resistance in a crystal. Therefore, they must be considered in a microscopic

study of the lattice thermal conductivity in solids, which is carried out mainly under three

di↵erent approaches: relaxation-time approach, variational approach, and Green’s function

or density matrix approach. Both the relaxation-time and the variational approach assume

that the lattice thermal conductivity can be studied from a solution of the linearized Boltz-

mann transport equation, while the Green’s function approach uses the quantum statistics

framework. Other possible techniques may be based on fluctuation-dissipation approaches,

as in the Green-Kubo relations.

Since our framework is the Boltzmann transport equation, in this work we will focus on

both the relaxation-time and variational approaches. With the aim of bridging up these two

approaches, we will present in this Chapter a new model on thermal conductivity developed

after discussing the main precedent models that have been devoted to provide an analytical

expression of the thermal conductivity within these approaches.

4.1 Discussion on the approaches to solve the Boltz-

mann transport equation

As we have introduced in Chapter 1, the BTE is a usual starting point in thermal conductivity

modeling. Summarizing, when a small temperature di↵erence �T is applied on a system, the

phonon distribution nq moves from equilibrium at a linear rate. On the other hand, collisions

turn the phonon distribution back to equilibrium at a rate that depends on the scattering

85
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transition rate. The BTE allows to obtain the resulting phonon distribution function by

relating both rates
@nq

@t

����
dri↵

=
@nq

@t

����
scatt

. (4.1)

As we have already discussed in Sec. 1.3, its exact analytical solution is unknown, both

because the form of the right-hand term is very complicated from the physical point of view,

and because of the mathematical complexity of the resulting equation when the scattering

term is specified.

Within the analytical framework, there are roughly two main approaches to solve the BTE:

the the relaxation-time approach or kinetic methods (KM) and the variational methods (VM).

KM can be applied when the distribution function is expected to be very close to equilibrium.

In this case, the collision term is usually simplified by assuming that it is proportional to the

inverse of a relaxation time, this is the relaxation-time approximation (RTA) presented in Sec.

1.4.3, where the several phonon modes are assumed to behave independently of each other.

Finding relaxation times for reduced regions of temperature and sizes is not di�cult. The

problem appears if one wants to extend the region of applicability to wider intervals using the

KM approach with the same RTA expression. In the last decades, the miniaturization has

worsened this situation, showing dramatic divergences between KM-RTA predictions and the

experimental results when bulk and nanoscale samples are simulated with the same relaxation

time expressions, as we will detail in the next Section.

In contrast, when the system is not so close to equilibrium, VM provide a better way to

solve the BTE. In general, the collision term in VM cannot be expressed analytically, instead

it has to be obtained by integration using a trial function. This trial function should be close

to the actual solution to have a good convergence. The main drawback of VM is that the

trial function is not necessarily the same at every temperature interval. In conclusion, this

approach is only useful in regions where the form of the phonon distribution is known to some

extent.

4.2 Relaxation-time approach: Kinetic methods

As we have shown in Sec. 1.4.3, the relaxation-time approximation (RTA) is the simplest

approach in order to formulate and solve the BTE and obtain an integral expression for

the thermal conductivity (see Eq. (1.39)). This approach assumes that, when the phonon

distribution remains near equilibrium, the rate of change of the phonon distribution nq due
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to collisions depends inversely on the relaxation time ⌧q, that is

✓
dnq

dt

◆

scatt

= �
nq � n0

q

⌧q
. (4.2)

It means that a perturbation in the distribution function will decay exponentially with a

relaxation time ⌧q. This relaxation time ⌧q should account for the scattering processes giving

raise to thermal resistance by adding their scattering rates through the Matthiessen rule

(see Sec. 3.3). Therefore, the role of non-resistive processes is not clear, since their only

perspective within this picture is whether to be neglected, or to be treated as another resistive

process being added in the Matthiessen rule. In words of J. Callaway ”It is well known that

normal processes (scattering processes which conserve the total crystal momentum) cannot by

themselves lead to a finite thermal conductivity. Consequently, it cannot be legitimate just to

add reciprocal relaxation times for the normal processes to those which do not conserve the

crystal momentum” [22]. With this in mind, he made the first attempt to improve the RTA

taking into account the special nature of N-processes. Let us see in the following Section the

formulation of his model.

4.2.1 The Callaway model

To improve the results provided by the standard RTA, in 1959 Callaway published his well-

known model for phonon heat transfer [22], becoming the most used expression in the liter-

ature for calculating phonon thermal conductivity. Since then, the Callaway model has been

deeply studied and it has su↵ered some variations and corrections [17, 23, 73].

The main contribution of Callaway consisted in taking into account the di↵erent character

of normal scattering processes. The model takes their role under consideration by splitting

the collision term of the Boltzmann equation in the RTA into two expressions, one depending

on resistive scattering that relaxes the phonon distribution nq to the equilibrium distribution

n0
q (see Eq. (1.15)), and a second one depending on normal scattering that relaxes nq to

another distribution denoted by nq(a), which is displaced from the equilibrium one, this is

✓
dnq

dt

◆

scatt

= �
nq � n0

q

⌧q
R

� nq � nq(a)

⌧q
N

(4.3)

where ⌧q
N

is the relaxation time for normal processes, and ⌧q
R

is obtained through the

Matthiessen rule (3.56) by adding reciprocal relaxation times of all the resistive processes
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participating in thermal transport in the system considered. Due to the non-resistive na-

ture of normal scattering, nq(a) must be a Bose-Einstein distribution function centered in a

non-zero momentum a · q in the direction of propagation, thus

nq(a) =
1

exp
⇣

~!�a·q
k
B

T

⌘
� 1

' 1

exp
⇣

~!
k
B

T

⌘
� 1

+
a · q
kBT

exp
⇣

~!
k
B

T

⌘

⇣
exp

⇣
~!
k
B

T

⌘
� 1

⌘2 . (4.4)

where a is a constant vector in the direction of the temperature gradient.

The BTE with scattering term given by (4.3) is

c ·rT
dnq

dT
= �

nq � n0
q

⌧R
� nq � nq(a)

⌧N
(4.5)

where c is the phonon velocity in the Debye approximation. If we define n1 = nq � n0
q, and

using (4.4) we can express (4.5) as

� ~!
kBT 2

c ·rT
e~!/kBT

(e~!/kBT � 1)2
+

a · q
⌧NkBT

e~!/kBT

(e~!/kBT � 1)2
�
�
⌧�1
N + ⌧�1

R

�
n1 = 0 (4.6)

where a combined relaxation time ⌧�1
C is defined as

⌧�1
C = ⌧�1

R + ⌧�1
N . (4.7)

We obtain n1 as follows:

n1 = �↵c ·rT
~!
kBT

e~!/kBT

(e~!/kBT � 1)2
(4.8)

Now we need to determine ↵q in terms of ⌧C and ⌧N , since after using (4.8), with the Fourier

law and the usual algebra (see Sec. 1.4.3), the thermal conductivity expression is

 =
1

3

Z
~!c2↵D(!)

dn0
q

dT
d! (4.9)

If we substitute (4.7) and (4.8) into (4.6) we obtain

~!↵
⌧CT

c ·rT +
a · q
⌧N

=
~!
T

c ·rT . (4.10)

Recall that a is a constant vector in the direction of rT , so if we define a parameter � with

dimension of a relaxation time, such that we can write

a = � ~
T
�c2rT (4.11)
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and given by the Debye approximation that q = c!/c2, we obtain

a · q = � ~
T
�c ·rT (4.12)

and then (4.10) simplifies yielding
↵

⌧C
� �

⌧N
= 1 (4.13)

Now, using the Debye dispersion relations and density of states and substituting ↵ from (4.13)

in (4.9), we obtain the following expression for thermal conductivity

 =
kB
2⇡2c

(I1 + �I2) (4.14)

which is split into two contributions, a first one

I1 =

Z k
B

✓
D

/~

0

⌧C
~2!2

k2
BT

2

e~!/kBT

(e~!/kBT � 1)2
d! (4.15)

and a second one

I2 =

Z k
B

✓
D

/~

0

⌧C
⌧N

~2!2

k2
BT

2

e~!/kBT

(e~!/kBT � 1)2
d! (4.16)

Finally, we only need to determine �. For this purpose, we make use of the momentum

conserving nature of the N-processes. Since the rate of change of the total momentum due to

normal collisions is set equal zero, we can write

Z ✓
dnq

dt

◆

N

qdq =

Z
nq(a)� nq

⌧N
qdq = 0 (4.17)

Substituting (4.4), (4.8) and (4.12) into (4.17), we obtain

� =

Z ✓
D

/T

0

⌧C
⌧N

x4 ex

(ex � 1)2
dx

Z ✓
D

/T

0

1

⌧N

✓
1� ⌧C

⌧N

◆
x4 ex

(ex � 1)2
dx

(4.18)

where x = ~!/kBT . In the first term I1 the normal processes are considered resistive through

the combined relaxation time ⌧C , which involves resistive and non-resistive (normal) scattering

processes.

Note that, as pointed by Ziman [36] and Callaway itself [22], the N-processes treatment as

if they were resistive processes and their inclusion into the Matthiessen sum (4.7) is not strictly
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correct. Thus, the second term of the thermal conductivity �I2 represents the correction due

to the e↵ect of N-processes to the first term I1. So, in fact, I1 is the standard RTA expression

including N-processes, whose inclusion is counterbalanced by �I2. Actually, in the case of

neglecting the N-processes ⌧N = 1, or when the transport is dominated by the resistive

processes ⌧R ⌧ ⌧N , we have ⌧C = ⌧R and ⌧C/⌧N = 1/(1 + ⌧N/⌧R) = 0, therefore we recover

the integral expression of  in the standard RTA Eq.(1.39) with a purely resistive relaxation

time.

The Callaway model provides a good approximation of the thermal conductivity behavior

in bulk samples below room temperatures, as shown by Callaway for Ge [22] (see Fig.4.1),

and shown in [74,75] for other materials, and Eq. (4.7), though incorrect, is assumed as a first

approach to deal with N-processes. Nevertheless, the predictive capability of the Callaway

model is low. It has been shown that when applying the Callaway model to nanoscale samples,

it leads to an overestimation of the thermal conductivity. Although several authors believe

that this drawback may be improved by using suitable expression of the relaxation times

or including other scattering mechanisms, like dislocation scattering or the decay of optic

phonons into acoustic, it is still not clear if the low predictive capability may be linked,

instead, to the treatment of N-processes in the model. Let us discuss next some of the most

relevant Callaway model derivatives that have been proposed in the last years with the aim

of improving thermal conductivity predictions.

4.2.2 Some Callaway-based models

The Callaway model has been the subject of many studies related to lattice thermal conduc-

tivity and usually taken as the standard model to calculate it. Here, we will briefly discuss

some of the works based in the Callaway model that have been proposed to improved the

thermal conductivity predictions in certain samples. The first refinement is provided by Hol-

land [23] a few years after the publication of the Callaway model. He improved the thermal

conductivity results on bulk silicon and germanium using the Callaway model, but this time

considering the polarizations of the acoustic modes (one longitudinal and two transversal),

this implies considering the sound velocity values in each polarization, as well as di↵erent De-

bye temperatures and parameters in ⌧U and ⌧N for the transversal and longitudinal branches

(see Table 3.1). In addition, to improve the predictions at high temperatures, firstly, he mod-

ifies the expressions of ⌧U and ⌧N to account for this temperature regime, and secondly, splits

the transversal contribution to the thermal conductivity with a threshold in the frequency
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APPENDIX. CHOICE OF PHONON-PHONON
RELAXATION TIMES

Herring' has established that the relaxation time of
a single low-energy mode of wave vector k via three-
phonon scattering processes depends on wave number
and temperature as

r '(k)=k'T' ' (A1)
I I l

5 I 0 20 50
Tempera t Ur e in Degrees Kelvin

Ioo

could easily account for much of the discrepancy near
the maximum. The eGect of the other approximations
mentioned above, which have their most serious eGect
in this region, is to give an underestimate of the thermal
conductivity. It is signi6cant that the theory gives
correctly the very-low-temperature deviations of the
conductivity of the normal material from the T' law,
which are important even at the lowest temperature
shown. These deviations are due to isotope scattering,
and the 6t indicates that the isotope contribution is
given correctly by this simple theory at low tempera-
tures.
The correction A~=KPI~/2~'c has been estimated

by numerical integration for T=75'K for the normal
material. An overestimate is made if we set B2=B~+B2
in (28). It is found on this basis that 6~=0.3 watt cm '
deg ', about 10%%uo of the observed value of K. The
correction to the conductivity of the single-isotope
material might be more serious, but cannot be reliably

FIG. 1.Thermal conductivity of germanium. The solid lines are
the theoretical curves whose computation is described in the text.
The open circles represent experimental points read from the
graph of Geballe and Hull.

where s is an exponent determined by crystal symmetry.
For reasons of mathematical simplicity, we have chosen
s=2 which is characteristic of longitudinal acoustic
modes in a cubic crystal. A short calculation leads to
the result that for s(3, the thermal conductivity of
single-isotope material will be proportional to T ',
independently of s, beyond the low-temperature
maximum. The restriction s(3 is necessary so that the
integral (20) will converge if these scattering processes
alone are considered. However, if isotope scattering is
included, the exponent of the temperature dependence
will depend on s. We have already seen in Eq. (24)
that if s=2, the thermal conductivity in the presence
of strong isotope scattering goes as T ' .If we choose
instead s= 1, a similar calculation shows that the tem-
perature dependence is T:.Of course, in a detailed
comparison of theory and experiment, boundary
scattering cannot be neglected.
It should be pointed out that the relation (A1) is

expected to hold only for phonons whose energies are
small compared to ET. The extent of the agreement
between theory and experiment suggests that at least
in some average sense, (A1) is valid for the bulk of the
phonons participating in thermal conduction in the
range 40—100'K.

Figure 4.1: Thermal conductivity of naturally occurring (normal) Ge and isotopically enriched Ge

calculated by Callaway with Eq. (4.14). Experimental results from Ref. [76]. (Reproduced from

Ref. [22])

spectrum, one for low temperatures, and another for hight temperatures. This way, Holland’s

results on germanium were significantly improved respect to those provided by Callaway, but

at the expense of multiplying the number of free adjustable parameters appearing in the

relaxation times expressions.

When experimental data for thermal conductivity from micro and nanoscale samples be-

came available in the late 90’s, the Callaway model failed in the prediction of these new

data, above certain temperature interval, and especially around room temperature. Since
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then, there has been a proliferation of several Callaway-like models introducing some changes

in order to fit bulk and micro or nanoscale data with a single thermal conductivity expres-

sion [24, 27, 28, 62].

As shown by Mingo [28] (see Fig. 4.2(a)), the predictions made with the Callaway model

for silicon nanowires with several diameters are overestimated. To improve this, Mingo pro-

posed to use real dispersion relations calculated atomistically for a wire, instead of the non-

dispersive relations given by the Debye model which are employed in the Callaway model [28].

The reason is that integration up to the limit given by the Debye frequency may increase

artificially the importance of the high-frequency phonons. In Fig. 4.2(b) we can see the the-

oretical predictions made by Mingo [28] with the Callaway formula using a cut-o↵ frequency

!C smaller than the Debye frequency !D, and a di↵erent set of expressions for the relaxation

times. We can observe that the predictions lower reasonably. However, there are two impor-

tant drawbacks i) this cut-o↵ is obtained by adjusting to experimental data, therefore it is not

predictive, and ii) the boundary relaxation times includes a fitted correction factor, and since

⌧B is the main scattering involved in the size-e↵ects, the predictive power lowers drastically.

Actually, in Fig. 4.2 we observe several curves corresponding to aleatory values of the correc-

tion factor. Furthermore, ⌧N is used for bulk calculations, but neglected for the nanowires. So

in fact, Mingo is using the RTA formula (1.39). The main contribution of Mingo is to advise

that more accurate dispersion relations must be used to get better descriptions of the thermal

conductivity in systems with di↵erent scales. Nevertheless, it has been shown that using bulk

actual dispersion relations is enough to describe nanowires with diameters wider than ⇡30

nm [77], rather than calculate complex dispersion curves that should take into account surface

features, like the cross-sectional shape of the wires, the roughness of the surface, the coating

etc.

Furthermore, confinement e↵ects are expected in the smallest (sub 30 nm) samples as

shown by Srivastava [10] and, when these e↵ects are important, we should observe a change

in the thermal conductivity slope at low temperatures from a T 3 dependence in larger samples

to a T 1 slope in the thinnest samples. Although in extremely reduced silicon nanowires this

change in the slope has been observed [8], in samples within 30-100 nm of diameter the slope

is closer to the T 3 behavior than to the T 1 expected for confined (e↵ectively one-dimensional)

systems. Therefore, a modification of the bulk dispersion relations and density of states should

not be, in principle, the main cause of reduction of the thermal conductivity in this interval

of sizes. To date, the general trend in thermal conductivity modeling is using bulk dispersion

relations calculated either with lattice dynamics, or with ab-initio techniques, since both are
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Figure 4.2: Thermal conductivity normalized by its value at T=320 K for Si nanowires of several

widths, calculated by the Callaway formula with cut-o↵ in the integrals at (a) Debye frequency !D =

86 ⇥ 1012 rad/s, and (b) an adjustable cut-o↵ !C = 42 ⇥ 1012 rad/s. Experimental results from

Ref. [8] appear in symbols as indicated in the legend. Inset: bulk Si thermal conductivity for the two

cases (overlapping almost complete) and experimental data from Ref. [23] (dots). (Reproduced from

Ref. [28])

in excellent agreement with measured data from neutron scattering experiments, as shown in

Chapter 2.

Another usually studied modification of the Callaway model is related to relaxation times,

either considering di↵erent scattering rate expressions for transversal and longitudinal polar-

izations, as first indicated by Holland [23], or including additional scattering mechanisms, like

the decay of optical phonons into acoustic phonons [62] or roughness in the surface [26]. Some

authors have also suggested that in order to predict nanoscale transport parameters, memory

and non-localities should be taken into account [14,78].

Nevertheless, what all these models have in common as a heritage of the Callaway model,

is that the N-processes have been either neglected or treated as if they had a resistive nature

in the Callaway fashion.

This perspective has motivated a recent work by Allen [73], where the Callaway model

is corrected by a more rigorous rethinking of the Callaway model itself, paying particular
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attention to the introduction of the normal scattering relaxation time into the expression of

the thermal conductivity. He found that in fact, I2 should contain ⌧C instead of ⌧C/⌧N , and

that � should contain ⌧C/⌧U in the denominator instead of 1
⌧
N

⇣
1� ⌧

C

⌧
N

⌘
, but still ⌧N remains

in the integrals in combination with ⌧R.

Despite of this variety of models, none of them has achieved the goal of describing bulk,

micro and nanostructured systems thermal conductivity without making some additional

assumptions depending on the studied system. Maybe this fact has stimulated, afterwards,

the activity on other modeling strategies, like ab-initio methods, Green-Kubo integral or

density functional theory [61]. The lack of generality and agreement related to the relaxation

times plus the special conservative nature of the N-processes, has led us to believe that a

more adequate treatment of N-processes in the thermal conductivity model may be the key

point to clarify this complex situation.

4.3 Variational method

The variational method gives and approximate calculation of a functional by using a trial

function, which is a first-order solution of a given equation. Since the BTE is a linear inho-

mogeneous integral equation, it is a good candidate to find a solution constructed formally

by applying the variational method to a general trial function. This was first developed by

Kohler [79, 80] and Sondheimer [81], and latter applied to lattice thermal conductivity by

Ziman [36] and Leibfried and Schlömann [60], as we briefly indicate next.

The distribution function is obtained as a function of �q, such that

nq = n0
q � �q

@n0
q

@(~!q)
(4.19)

where �q represents a measure of the deviation from equilibrium in the phonon distribution,

weighted by a factor which depends on the form of the distribution. In fact, it is the average

extra energy that the phonons have because of the transport process. Operating on n0
q, given

by Bose-Einstein distribution (1.15), we can rewrite (4.19) as

nq = n0
q � �q

1

kBT
n0
q(n

0
q + 1) . (4.20)

Following the derivation by Ziman [36], it is found the inverse of the thermal conductivity
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given by

1


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1

2kBT 2

Z Z Z
(�q + �q0 � �q00)2Qq00

qq0dqdq0dq00

����
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vq�q
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q

@T
dq

����
2 . (4.21)

must be a minimum when �q satisfies the Boltzmann equation.

In the case of N-processes dominating, the form of the trial function �q is usually taken

as

�q = q · u (4.22)

with u a fixed unit vector in the direction of the thermal gradient. It is easy then to see, that

(4.21) has its minimum value. In fact, the numerator vanishes and (4.21) is zero, since

�q + �q0 � �q00 = (q + q

0 � q

00) · u (4.23)

vanishes for N-processes (momentum is conserved) and yields infinite thermal conductivity.

This is a good starting point to obtain (4.21) for U-processes, since now, (4.21) takes the value

G · u, with G a reciprocal lattice vector (momentum is not conserved), and in the integrand

of (4.21) will only remain unknown the terms related to the scattering matrix Qq00

qq0 , which

are related to geometrical factors depending on polarization, dispersion, lattice structure, etc.

This complicates considerably a practical application of this method, and it is unavoidable

to make some approximations in terms of crystal properties, as suggested by Leibfried and

Schlömann [60]. Another drawback, is that (4.21) yields values of  as a results of the three-

phonon resistive processes, therefore its application is valid in the temperature range where

this scattering mechanism is dominating the transport.

4.4 Note on ab-initio methods

Recent works have focused their attention on the calculation of phonon scattering rates by

ab initio techniques [39, 61, 82–84]. These works suggest that the main reason for the poor

adjustment of current theories arises from the use of empirical potentials with adjustable

parameters or the use of empirical or analytical expressions for the relaxation times. The ab

initio method is a numerical method to find an approximate solution of the BTE by using

recursive iterations, that is, we need to start with a trial form of the distribution function.

This first trial function yields expressions for the scattering rates. These scattering rates

expressions are used to obtain a more accurate form of the distribution function, which is
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used again to obtain better expressions for the scattering rates, and so on, until a minimum

of certainty in the solutions is reached. With the obtained solutions, one can calculate the

thermal conductivity by using the integral expression (1.39).

The thermal conductivity of several materials has been calculated from this approach (see

Ref. [85] and references therein). In these works, the theoretical predictions agree very well

with experimental measurements of bulk materials in particular intervals of temperature, nor-

mally above 50 or 100K for Si and Ge, since for lower temperatures the required computational

power and time is too high [39]. Therefore, the peak of the thermal conductivity is usually

not shown. Furthermore, predictions for nanowires have not been able to stand comparison

with experiments since they provide larger values of , according to Ref. [39]. To date, this

kind of approach has not been able to obtain a single thermal conductivity solution valid at

all ranges of temperatures and sample sizes. Then, a combination between analytical models

and ab initio techniques is desirable. In this line of thought, recently, Fugallo et al. [84] have

calculated the thermal conductivity of natural diamond and isotopically enriched diamond

by solving the BTE using the variational principle and the conjugate gradient scheme. To

account for the interval of low temperatures, they introduced the scattering due to boundary

e↵ects with a shape factor to fit this temperature range. The model of Fugallo et al. [84] is a

good example where analytical and numerical methods are combined to provide results in a

wide range of temperatures.

In spite of these advances, the models based on ab initio techniques lose some of the ther-

modynamic features involved in the heat transport mechanisms, hidden behind the numerical

complexity of the models. At this stage, a phenomenological model is always desirable when

the physical processes can be clearly described.

4.5 Guyer-Krumhansl model

Returning to the contemporaries of Callaway, we can find in the literature a parallel approach

developed by Krumhansl and coworkers [86–88]. They were also motivated to o↵er a solution

of the BTE accounting correctly for the di↵erent natures of the resistive and normal processes.

Surprisingly, this model seems to have been ignored by the scientific community, maybe

because of its complex formulation, and it has been mainly applied to the research of second

sound, with successful results in Helium [89,90].

In the outstanding works published by Guyer and Krumhansl in the 60’s, they developed

a formal solution of the linearized BTE in terms of the eigenvectors of the normal process
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collision operator [87, 88]. They also provided an alternative expression for the thermal con-

ductivity to that given by Callaway, showing that the Callaway expression (4.14) is found as a

special case after some approximations. As Guyer and Krumhansl discussed in their original

papers, and other contemporary authors indicated [34, 36], one of the drawbacks of the Call-

away model is that normal scattering process, despite its non-resistive nature, is interpreted

as a resistive contribution appearing inside the thermal conductivity integrals, and this leads,

according to [88], to the inclusion of spurious terms in the equations.

The method followed by Guyer and Krumhansl was first indicated by Peierls [6, 35], who

remarked the special nature of the N-processes, di↵erent to the resistive processes, and sug-

gested to split the distribution function into di↵erent components accounting for this fact.

The formulation of Guyer and Krumhansl deals with the phonon transport problem in

an operator form and assumes that the phonon distribution depends on both position and

time n(q, r, t). It is also formulated using the isotropic dispersionless approximation (Debye

model). Then, the BTE is expressed as

Dn(q, r, t) = Cn(q, r, t) (4.24)

where D = (@/@t)+c ·rr is the drift operator, being c the mean group velocity in the Debye

model, and C the linearized collision operator, which must account for N-processes and R-

processes, then it may be split into two terms C = N + R, with N the normal processes

collision operator and R the resistive processes collision operator. Thus,

Dn(q, r, t) = (N+R)n(q, r, t) (4.25)

and when the inverse of the collision operator is known, the solution of Eq.(4.24) is

n(q, r, t) = C�1Dn(q, r, t) (4.26)

Their method to solve the equations was based on collecting the lower moments on the heat

flux (first-order moment), leaving only energy and heat flux as final quantities requiring

specific equations. The combination of the high-order moments is made by simple matrix

operations1. In this representation, they obtain a basis where the first terms are eigenstates

with null eigenvalue and the operator corresponding to normal collisions N is diagonal, so

1It is not our intention to detail this formulation in the present work and, for the sake of simplicity, the

notation has been modified and simplified. A complete mathematical picture of the operator representation

can be found in Refs. [86–88]
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that, in this basis, the equation

(D�N�R)n(q, r, t) = 0 (4.27)

takes the form
2
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0
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0 0 0
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75

0

B@
a0
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CA =

0

B@
0

0

0

1

CA (4.28)

where a0, a1 and a2 are the eigenvectors of N , a0 is the zero-order moment related to �T ,

a1 is the first-order moment related to the heat flux j and a2 is the second-order moment

related to the flux of the heat flux. The mean values of the operators are

D =

0

B@
D00 D01 0

D10 D11 D12

0 D21 D22

1

CA !

0

B@
@/@t c ·rr 0

c ·rr @/@t D12

0 D21 @/@t

1

CA (4.29)

R =

0

B@
0 0 0

0 R11 R12

0 R21 R22

1

CA !

0

B@
0 0 0

0 h⌧�1
R i R12

0 R21 h⌧�1
R i

1

CA (4.30)

N =

0

B@
0 0 0

0 0 0

0 0 N22

1

CA !

0

B@
0 0 0

0 0 0

0 0 1/h⌧Ni

1

CA (4.31)

where the brackets stand for averaging, which is calculated generally for a i process as

h⌧ii =

Z
~!⌧i(!)

@n0(!)

@T
D(!)d!

Z
~!@n

0(!)

@T
D(!)d!

. (4.32)

As it can be seen in (4.28) a0 (scalar) is an eigenstate with zero eigenvalue either for

normal and resistive scattering, while a1 = (a1x, a1y, az) has zero value for normal scattering

but not for resistive scattering. From (4.28) we can write the set of equations

D00a0 +D01a1 = 0

�D11a1 �D10a0 = �R11a1 � (R12 �D12)a2

(N22 +R22 �D22)a2 = �(R21 �D21)a1

(4.33)
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where a2 can be eliminated reducing the set from three to two equations

D00a0 +D01a1 = 0

�D11a1 �D10a0 = [R11 � (R12 �D12)(N22 +R22 �D22)�1(R21 �D21)]a1

(4.34)

where the quantity in brackets is defined as the phonon momentum relaxation operator,

namely

⌧̂ =
⇥
(R11 �D11)� (R21 �D21)(R22 �D22 +N22)

�1(R12 �D12)
⇤�1

. (4.35)

The physical identification of a0, a1 and a2 for an isotropic dispersionless medium is found

to be

E(x, t) = cv�T (x, t) =
kBT

µ
a0 (4.36)

and

j(x, t) =
kBT~c2
�x

a1x (4.37)

and analogously for a1y, a1z, where µ and � are renormalization constants. Identifying the

terms appearing in Eqs. (4.34), we can rewrite them as

@E/@t+rrj = 0

@j/@t+ (µ~c2/�)rE = �(⌧̂�1)j
(4.38)

and we can re-express the last equation in terms of the specific heat as

�1

3
cvc

2rrT =
@j

@t
+ (⌧̂�1)j . (4.39)

Actually, Eqs. (4.38) are the energy and momentum conservation equation, respectively.

Expression (4.39) assumes the introduction of hydrodynamics in phonon transport equa-

tion related to the time derivative of the heat flux, which eventually leads to the prediction

of second sound, i. e. the propagation of variations in the distribution function according to

a wave equation, which has been observed experimentally in certain materials [91].

In steady-state, the time derivatives vanish, this means D11 = D22 = @/@t ! 0 and

@j/@t = 0, then

⌧̂ =
⇥
(R11)� (R21 �D21)(R22 +N22)

�1(R12 �D12)
⇤�1

(4.40)

and Eq. (4.39) reduces to the Fourier law. Furthermore, in an homogeneous medium, the

spatial derivatives included in D, namely D12 and D21 vanish, then

⌧̂ =
⇥
(R11)� (R21)(R22 +N22)

�1(R12)
⇤�1

(4.41)
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whose mean value is found after identifying the matrix terms (4.30) and (4.31), but note that

the terms out of the diagonal R12 and R12 are not known a priori. If we consider two limiting

cases, when N-processes are negligible and the opposite case, with some algebra it is possible

to find suitable values for R12 and R21. Let us find ⌧̂ in both cases:

• N-processes dominate:

Since N22 = 1/h⌧Ni, when N22 ! 1, ⌧̂ ! (R11)�1, hence we make the identification

R11 = h⌧Ri. So in this limit

h⌧̂i = h⌧�1
R i�1 (4.42)

• N-processes negligible:

When N22 ! 0, ⌧̂ ! [(R11)� (R21)(R22)�1(R12)]
�1. This term is in fact the first term

of the inverse matrix R�1, that is

(R�1)11 =
⇥
(R11)� (R21)(R22)

�1(R12)
⇤�1

. (4.43)

We have R11 = R22 = h⌧�1
R i, so we need to set (R21)2 = (R12)2 = R11(R11 � 1/(R�1)11)

to fulfill (4.43). Then,

h⌧̂i = h⌧Ri . (4.44)

With all of this Eq.(4.41) becomes

h⌧̂i = h⌧Ri
h⌧Ni

h⌧Ri+ h⌧Ni
+ (h⌧�1

R i)�1 h⌧Ri
h⌧Ri+ h⌧Ni

. (4.45)

This leads to the expression of the thermal conductivity

 =
1

3
cvc

2h⌧̂i = 1

3
cvc

2
⇥
h⌧Ri(1� ⌃) + (h⌧�1

R i)�1⌃
⇤

(4.46)

where we have expressed it in terms of

⌃ ⌘ 1

1 + h⌧Ni/h⌧Ri
(4.47)

which is a factor that allows us to determine the relative importance of R-processes against

N-processes and viceversa. Then, the thermal conductivity can be seen as the combination

of two contributions depending on the relative importance of N-processes against R-processes

and viceversa. The main di↵erence in both contributions is in the way of performing the

average over the resistive processes. Note that when R-processes dominate h⌧Ni � h⌧Ri,
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so ⌃ = 0, and the thermal conductivity (4.46) reduces to the well-known kinetic expression

(1.26)

 =
1

3
cvc

2h⌧Ri (4.48)

In the opposite case, if N-processes dominate h⌧Ni ⌧ h⌧Ri, so ⌃ = 1 and the thermal conduc-

tivity (4.46) reduces to the kinetic expression di↵ering only in the averaged relaxation-time

 =
1

3
cvc

2(h⌧�1
R i)�1 (4.49)

where Guyer-Krumhansl denoted ⌧z ⌘ (h⌧�1
R i)�1. This phenomenology gives rise to what

Guyer and Krumhansl named as kinetic and Ziman transport regimes, corresponding to (4.48)

and (4.49) respectively, where the Ziman regime is, in fact, an hydrodynamic regime for

phonons.

To account for the surface e↵ects on the thermal transport, it is required to analyze the

phonon collisions against the system boundary separately in each regime. In the kinetic

regime it is included as usually through the boundary scattering ⌧B in the Mathiessen rule

together with the other resistive processes considered, such that

⌧�1
R = ⌧�1

B + ⌧�1
U + ⌧�1

I + . . . (4.50)

However, in the hydrodynamic regime the viscosity against the walls of the system is a↵ecting

the whole phonon flux, therefore it cannot be considered as an independent scattering mech-

anism included in the Matthiessen rule. Instead, it is required to add a geometrical factor G

in (4.49), such that the total thermal conductivity is

 =
1

3
cvc

2 [h⌧Ri(1� ⌃) + ⌧zG⌃] (4.51)

where the geometrical factor was calculated in particular for a cylindrical wire, depending

on its radius R, and is found by solving the transport equations (4.38) at first-order in the

Ziman limit imposing that the heat current is zero at the walls and then averaging the thermal

conductivity across the cylinder

G(R) = 1� 2
J1(iR/`)

iR

`
J0(iR/`)

(4.52)

where J0 and J1 are Bessel’s functions and ` = c
p
⌧N⌧z/5 is found to be the phonon mean-free

path in this limit. Note that now, the ⌧R included in ⌧z accounts for the resistive processes

through the Mathiessen rule excluding ⌧B.
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This model has opened a new line of thought about phonon behavior during thermal trans-

port. Although this is a good starting point to model the thermal conductivity accounting for

the N-processes in a more rigorous way, the main drawback of the Guyer-Krumhansl model

is that  in Eq. (4.46) is given in terms of mean values cv, c, h⌧Ri and h⌧�1
R i and h⌧Ni in the

framework of a Debye model (isotropic dispersionless phonons), and nowadays, as we have al-

ready discussed, it is very helpful using actual dispersion relations to provide a more accurate

description of the e↵ect of all the modes participating in the transport, including not only

acoustic branches but also optical branches. Another drawback is that Eq. (4.51) is derived

for a cylindrical wire, then at the time to calculate  of a given sample, we are constricted

to this geometrical shape. Nevertheless, this model has motivated us, in first place, to go

beyond it and find a new formulation general for any geometry and material in the macro and

the nanoscale, under a full dispersion relations framework, and in second place, to make con-

verge the preceding methods (Variational method and relaxation-time approximation model)

to take advantage of the strong points of both methodologies, as will be presented in the next

Section.

4.6 Kinetic-collective model: A generalization of the

Guyer-Krumhansl model

In this Section we present a new model which consist on a generalization of the Guyer-

Krumhansl model and goes deeper into the role normal scattering on the thermal conductivity

in semiconductor bulk, micro and nanoscale samples, and which is an original contribution of

the present doctoral thesis.

Thermal conductivity as a function of temperature undergoes a smooth transition from

a kinetic to a collective regime that depends on the relative importance of normal scattering

events as compared to resistive processes. In this transition, the key point is changing the

usual way of performing the average on the scattering rates. N-processes do not contribute

to thermal resistance because they do not change phonon momentum (in contrast to resis-

tive collisions), but they contribute to heat transport and they are crucial to determine the

transition from the kinetic to the collective regime.
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4.6.1 Resistive vs Normal scattering

As introduced in Chapter 3, phonons can relax by di↵erent mechanisms, mainly colliding with

boundaries, impurities, and between them. All these mechanisms are resistive except some

part of the phonon-phonon collisions: the normal scattering processes. Under small �T the

deviations from equilibrium, given by the Bose-Einstein distribution n0
q, are expected to be

small. In that case, we can expand nq and keep the first term in the expansion:

nq ' n0
q +

@nq

@"q
�" ' n0

q +
@n0

q

@"q
�q = n0

q +
n0
q(n

0
q + 1)

kBT
�q . (4.53)

Regarding the dominance of the N-processes, two limiting behaviors can be considered:

i) When resistive collisions are dominant and N-processes are negligible, momentum will

be completely dissipated and its average value is zero. The only way to move the phonon

distribution from equilibrium is by changing its temperature. In that case, the distribution

function takes the form

nq =
1

e~!q/k
B

(T+�T ) � 1
⇡ 1

e~!q/k
B

T e1��T/T � 1
. (4.54)

Comparing with Eq. (4.53) an expression for �q can be obtained

�q = ~!q
�T

T
. (4.55)

In this situation KM is the most suitable approach to use.

ii) When N-processes are dominant, the system will not be able to relax the momentum

to zero (the quasi-momentum is conserved) and a displacement u of the distribution function

in the direction of the thermal gradient is expected. The distribution function takes the

form [34,86]

nq =
1

e(~!q�u·q)/k
B

T � 1
(4.56)

which is in a non-equilibrium situation, with �q given by

�q = u · q . (4.57)

where u has dimensions of speed (recall that energy for phonons may be expressed as the

product of momentum times the phase speed). In this case the VM approach must be used,

as we will see.

Summing up, Eqs. (4.55) and (4.57) are the two forms of �q expected for the distribution

function in each approximation, KM and VM respectively, corresponding to two extreme
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situations described above. However, both expressions of �q may yield equivalent expressions

for the relaxation times. In Appendix C we show that the definition of the scattering rate in

terms of �q holds in both situations, given by the dominance of N-processes over the resistive

processes and viceversa.

4.6.2 Thermal conductivity regimes

Although thermal conductivity obtained within the KM and VM seems to be disconnected,

from thermodynamic reasoning we show in this Section that both can be derived from the

balance of entropy production. The main di↵erence between both approaches resides in

the way this balance is performed. The reason for this choice lies in the nature of normal

scattering. Entropy generation is related to resistive collisions and normal scattering is not

resistive. It is logical to think that entropy production can be modified when these kind of

collisions are dominant.

Starting from this point, it is easy to demonstrate that a general expression for the thermal

conductivity can be obtained by combining the distribution function in these two extreme

situations: the first one where resistive processes are dominant, and the second one where

normal processes are dominant.

The key point to notice is that N-processes, despite of being non-resistive, mix the di↵erent

modes, a↵ecting the balance between drift and collisions. If N-processes are not important

and mode mixing is low, the entropy production balance should be fulfilled individually by

each mode, that is, locally in momentum space. This leads to the thermal conductivity in the

kinetic regime. On the other hand, when mode mixing is high (N-processes dominate) the

entropy balance should be achieved globally, in this case we obtain the thermal conductivity

in the collective regime. In Fig. 4.3 we show a sketch illustrating the phonon behavior in both

limiting regimes. Depending on the intensity of the normal collisions we should select the

local or the global version for the entropy production balance. Next, we specify both regimes

of behavior and obtain the corresponding thermal conductivity contribution.

4.6.3 Kinetic regime

The density of entropy of a distribution of bosons is, in microscopic terms,

sq
kB

= nq lnnq � (nq � 1) ln(nq � 1) . (4.58)
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(a)

(b)

Figure 4.3: These sketches illustrate the behavior of the phonons in each regime: (a) In the kinetic

regime N-processes are negligible. The phonon distribution is near equilibrium and resistive scatter-

ings tend to bring it back to equilibrium. Each phonon mode contributes independently to the heat

flux and so the equation of the entropy balance must be fulfilled individually by each mode. (b) In

the collective regime N-processes dominate and the distribution is in non-equilibrium. Momentum

is conserved and shared among the phononic modes through N-processes. The phonons behave as

a collectivity, rising a total heat flux and so the equation of the entropy balance must be fulfilled

globally.
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The variation of entropy can be obtained from Eqs. (4.58) and (4.53), according to Ziman [36],

if we take only linear terms in �q this can be written as

ṡq|
scatt

=
@sq
@t

����
scatt

=
�q

T

@nq

@t

����
scatt

, (4.59)

Thermodynamically, the entropy variation can be also written in terms of the heat flux as

ṡq|
dri↵

=
@sq
@t

����
dri↵

= jq ·rr

✓
1

T

◆
=

j

2
q

qT 2
(4.60)

where the heat flux contribution of mode q is

jq = ~!qvq(nq � n0
q) = ~!qvqn

0
q(n

0
q + 1)

�q

kBT
(4.61)

and we have used (4.53) and the fact that the Fourier law holds per mode, that is jq =

�qrrT , where q is the thermal conductivity of mode q.

Equating (4.60) and (4.59) leads to an expression giving the thermal conductivity of each

mode

q =
j

2
q

T�q
@nq

@t

���
scatt

. (4.62)

Integrating (4.62) over all modes yields total thermal conductivity in this kinetic regime

kin =

Z
qd

3
q =

Z
j

2
q

T�q
@nq

@t

���
scatt

d3q (4.63)

and if we substitute Eq. (4.61) we finally obtain

kin =

Z
h
~!qvqn0

q(n
0
q + 1) �q

k
B

T

i2

T�q
@nq

@t

���
scatt

d3q (4.64)

4.6.4 Collective regime

In the second limiting case, phonons behave as a collectivity and each mode does not con-

tribute to the entropy production individually but as a whole. In this case the entropy

production balance should be achieved globally and the integration over the modes should be

performed before equating terms. Thus, the total entropy production is on one side

ṡtot|
scatt

=

Z
ṡq|

scatt

d3q =

Z
�q

T

@nq

@t

����
scatt

d3q (4.65)
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and on the other side, we must account for a total heat flux, giving

ṡtot|
dri↵

= jtot ·rr

✓
1

T

◆
. (4.66)

Using the Fourier’s law jtot = �rrT , we obtain

ṡtot|
dri↵

=
j

2
tot

T 2
. (4.67)

 being the global thermal conductivity in this regime. We denote it as coll and we obtain

its expression by equating (4.65) and (4.67)

coll =
j

2
tot

T 2

Z
�q

T

@nq

@t

����
scatt

d3q

, (4.68)

where the total heat flux is

jtot =

Z
jqd

3
q =

Z
~!qvqn

0
q(n

0
q + 1)

�q

T
d3q . (4.69)

By substituting this expression in Eq. (4.68), we have

coll =

Z
~!qvqn

0
q(n

0
q + 1)

�q

kBT
d3q

�2

T 2

Z
�q

T

@nq

@t

����
scatt

d3q

. (4.70)

This regime relies on a thermodynamic basis, and it can not be deduced from a framework

where normal scattering is treated as a resistive mechanism of independent phonon modes,

like in the Callaway model. After deriving the expression of the thermal conductivity in each

regime, we need to choose a quantity allowing us to know whether we are in the local or global

behavior, and in order to calculate the integrals in (4.64) and (4.70), we need to express them

in terms of frequency and relaxation-times. This will be done in the next section.

4.6.5 Thermal conductivity in terms of frequency and relaxation

times

We are now able to calculate the thermal conductivity from Eq. (4.64) for the kinetic regime

and from Eq. (4.70) for the collective regime. In order to obtain numerical results, first we
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need to express them in terms of the equilibrium distribution function and the relaxation

times. Using (4.53) and (1.34) in Eq. (4.64), kin can be rewritten as

kin =

Z
~!q⌧qv

2
q

@n0
q

@T
d3q , (4.71)

which is the usual expression for the thermal conductivity in the RTA (see Eq. (1.39)). (Note

that, here and onward, we have omitted the sum
X

⌫

and index ⌫ for the phonon branch in

the integrals for the sake of simplicity in the notation, but the integrals must be performed

per phonon branch and the summing all the branches).

For (4.70), we can make the same substitutions to obtain

coll =

✓Z
�qvq

@n0
q

@T
d3q

◆2

Z
�2

q

~!q

1

⌧q

@n0
q

@T
d3q

. (4.72)

The integrals kin and coll can be re-expressed in terms of frequency. This is done by integrat-

ing over the angular part of d3q ⌘ dqd✓d' and changing the integration variable dq ! D!d!,

being D! the density of states. For the kinetic regime this leads to the expression

kin =
1

3

Z
~!⌧!v2!

@n0
!

@T
D!d! , (4.73)

where now the frequency dependence is indicated with the subindex to not overload the

notation, and for the collective regime

coll =
1

3

✓Z
v!q!

@n0
!

@T
D!d!

◆2

Z
q2!
~!

1

⌧!

@n0
!

@T
D!d!

, (4.74)

where we have used the explicit form (4.57) to express �q in terms of the wavevector q!, which

is the mean modulus of the wavevector for a given frequency, obtained from the dispersion

relations.

As we have already pointed out, in both expressions (4.73) and (4.74) ⌧! is the same

and accounts for the total relaxation time contributing to thermal resistance (the treatment

of the boundary scattering in each regime will be detailed in the next Section). Then, we

denominate it ⌧R
!

. Finally, we need a quantity which accounts for the kind of regime the
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phonon distribution is undergoing at the di↵erent temperatures. As we have commented, this

is determined by the degree of mixing between modes. Since this is related to the dominance of

normal with respect to resistive processes, a switching factor weighting the relative importance

of these processes should be used. This factor can be calculated from a matrix representation

following the Guyer-Krumhansl model [88] and turns out to be (4.47)

⌃ ⌘ 1

1 + h⌧Ni/h⌧Ri
(4.75)

where ⌧N is the relaxation time due to N-processes and ⌧R is the relaxation time due to

resistive processes. Both relaxation times ⌧N and ⌧R are averaged over all modes. This is

calculated as

h⌧ii =

Z
~!⌧i

!

@n0
!

@T
D!d!

Z
~!@n

0
!

@T
D!d!

(4.76)

with subindex i indicatingN or R. Note that this is not an average over the phonon population

n0
!, but rather on the energy exchanged in the collisions.

The general expression of the thermal conductivity must include this switching factor to

account for all the intermediate regimes between the limiting regimes from kinetic to collective.

Thus, according to (4.46) one has

 = kin(1� ⌃) + coll⌃ (4.77)

In the kinetic (unmixed-mode) limit, ⌧N >> ⌧R, then ⌃ ! 0 and  ! kin. In the

collective (mixed-mode) limit, ⌧N << ⌧R, ⌃ ! 1 and ! coll, as it should be.

Di↵erent phenomenological behavior can be deduced from the mathematical di↵erence

in performing the averages in (4.73) and (4.74). These di↵erences are equivalent to adding

resistivities in series or parallel, if we interpret the scattering events on a particular mode as

a resistance. This can give physical insight to interpret the thermal conductivity behavior in

the di↵erent regimes. From Eq. (4.77) it can be understood why all models based on a single

approach (KM or VM) fail when extended to a global model in a large range of temperatures.

In such extension, they are used in an approximation where they are not supposed to be

valid, in other words, since there are certain ranges of temperature where one approach is

more suitable than the other, we cannot use only one approach to describe the behavior

of  in the whole range of temperatures. With (4.77), this fact is overcome thanks to the

combination of both approaches. This way the applicability of the model is extended to the

whole temperature range.
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Another aspect we need to remark is the way to account for the phonon collisions against

the system boundaries in both regimes. Let us discuss it next.

4.6.6 Size-e↵ects on the kinetic and collective terms

In an infinite semiconductor sample at near room temperature one can consider that only

impurities scattering and umklapp scattering participate significantly, then by means of the

Matthiessen’s rule

⌧�1
R

!

= ⌧�1
I
!

+ ⌧�1
U
!

. (4.78)

Relaxation times allow to calculate a related term, the phonon mean free path `, that is

the product between the relaxation time of a mode and its group velocity ` = v⌧ . If the size

of the system is finite and the temperature is low, intrinsic mean free paths can be larger than

the size of the system. In this case, boundary e↵ects need to be included.

In the kinetic regime of the thermal conductivity, as the phonons behave individually,

each mode experiences independently a scattering with the boundary. Then, an extra term

considering this e↵ect should be included in the kinetic term of Eq. (4.77) by using the

Matthiessen’s rule in combination with the intrinsic events, this is ⌧B
!

the relaxation time

due to boundary scattering

⌧�1
R

!

= ⌧�1
I
!

+ ⌧�1
U
!

+ ⌧�1
B

!

. (4.79)

However, in the collective regime some caution has to be taken. In this regime a scattering

rate is a quantity describing the distribution globally. In other words, one cannot assume an

extra scattering term in each mode independently because the boundary is noticed by the

whole phonon collectivity. Thermodynamically, this is the same situation as flow on a pipe.

Carriers in the center of the pipe notice the boundary not by themselves but through the

collisions with the rest of the particles. The net e↵ect on the flow is the reduction of the flow

on the surface. The usual solution for this situation is to assume that the flow on the surface

is zero. This is feasible if surfaces are rough enough. Once imposed this extra assumption, a

geometrical factor F (also called form factor) depending on the roughness and the transversal

size of the system should be included in the collective term of Eq. (4.77). In the work by

Guyer and Krumhansl [88] their form factor was calculated only for a system of cylindrical

shape. In order to generalize the form factor to account for several geometries and so extend

the range of validity of the collective term from bulk to small size samples, it is suitable to use

an expression derived in a work by Alvarez et al. [92, 93] in the framework of the Extended
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Irreversible Thermodynamics [78]

F (Le↵) =
1

2⇡2

L2
e↵

`2

 s

1 + 4⇡2
`2

L2
e↵

� 1

!
(4.80)

being ` the phonon mean free path and Le↵ the e↵ective transversal length of the system. By

geometrical considerations it can be deduced according to [12,36] (see Sec. 3.2.3). Regarding

the mean free path, from the works by Alvarez et al. [14] and Guyer-Krumhansl [88] it can be

easily deduced that ` = vg

q
h⌧Nih⌧�1

R i�1, reminding that mean relaxation times are calculated

from Eq. (4.76).

The form factor F (Le↵) includes in its derivation higher-order terms into the BTE expan-

sion, which can be important when the size of the samples are of the order of the phonon

mean free path, and it has some advantages: it is analytical, it can be used for di↵erent ge-

ometries and it takes automatically into consideration the degree of non-equilibrium present

in the sample, depending on the normal and resistive relaxation times. Further details can

be found in Appendix B.

4.6.7 Total thermal conductivity in the Kinetic-Collective Model:

a simple expression

Finally, the general expression of the thermal conductivity in the Kinetic-Collective model

can be written as follows

 = kin(1� ⌃) + coll⌃F (Le↵) (4.81)

entering Eq. (4.73) for kin, Eq. (4.74) for coll, Eq. (4.75) for ⌃, and Eq. (4.80) for F (Le↵).

Note that if `/Le↵ ! 0 (` ⌧ Le↵), then F (Le↵) ! 1 and we recover Eq. (4.77). In the

opposite limit, `/Le↵ ! 1 (` � Le↵), F ⇠ Le↵/⇡` ! 0. Note, that although we have

followed a di↵erent way to derive the integral expressions of the thermal conductivity in each

regime, the final equation can be seen as the generalization of the Guyer-krumhansl equation

(4.46), valid any geometry, from the low to the high temperature range, in a realistic frame

of phonon dispersion.

With this and using the calculated dispersion relations and density of states (see Chap.

2), and appropriate expressions for the relaxation times (obtained in Chap. 3), the model is

ready to be applied to several samples in order to test its validity and its prediction power,

which follows in the next Chapters.



112 CHAPTER 4. THERMAL CONDUCTIVITY

4.7 Kinetic-Collective vs. Ballistic-Di↵usive transport

As a last remark, it is worthy to note that, in the literature, the common way of discussing

phonon transport is to di↵erentiate between di↵usive and ballistic transport. For example,

transport in an infinite bulk system is always di↵usive, while nanostructuring leads to the

possibility of ballistic transport. This is because these regimes depend on the dominance of

boundary scattering over the remaining scattering mechanisms. In contrast, in the kinetic-

collective approach, the transport regime depends on the dominance of normal processes over

resistive processes. Therefore, both descriptions are not mutually contradictory. That is,

di↵use transport can be kinetic or collective, for instance, in the temperature interval where

the thermal conductivity shows a peak, mass-defect scattering is the dominant process, and

since it is a resistive process, we could describe the heat transport as di↵usive-kinetic. On the

other hand, at the temperature interval where the normal processes begin to participate in the

transport, we could speak about a transition to a di↵usive-collective regime. Similarly, the

ballistic regime can be kinetic or collective. Since in the ballistic transport we are restricted

to the range of low temperatures where the boundaries of the system shape the thermal con-

ductivity, we would have a ballistic-kinetic regime. However, there is a special case observed

in certain systems where normal processes gain importance over boundary collisions. It is

then said that we are dealing with a Poiseuille phonon flow, and therefore we could also have

a ballistic-collective regime.



Chapter 5

Applying the Kinetic-Collective model

to silicon

In this Chapter, the Kinetic-Collective model is applied to calculate the thermal conductivity

of silicon as a reference material, in order to test the validity of the model. Firstly, the model is

tested on bulk Si with the natural isotopic composition, obtaining a very nice fit to experimen-

tal data. Then, with the same parameters, we predict the thermal behavior of an isotopically

enriched Si sample to account for the e↵ect of the mass-defect scattering on thermal conduc-

tivity. Finally, in order to account for size-e↵ects, we calculate the thermal conductivity of

several Si thin-films and nanowires whose e↵ective sizes range from some microns to some

tenths of nanometers. The model provides a good prediction of the thermal conductivity

behavior with temperature for e↵ective sizes above 30 nm with the same single expression.

From the good agreement with experimental data obtained with the kinetic-collective model

in nanometer sized samples, we can confirm that the model permits to establish the limit of

classical theories in the study of the thermal conductivity in nanoscopic systems.

5.1 Inputs for the calculations

When calculating thermal properties of a material, it is desirable to simplify the theoretical

expressions to get the maximum information in terms of the less number of variables. One of

these simplifications is to assume isotropy. A medium is considered isotropic if the properties

of the crystal do not depend on a certain crystallographic direction. In the case of Si, and

other materials with the same lattice structure, the phase or group velocities are not so

113
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anisotropic, and so it is usually to be considered isotropic. Although, as has been shown

by Li et al. [39], there is little di↵erence in the thermal conductivity of bulk Si along the

crystallographic directions [100] and [001], if we assume isotropy, we may loose information

and accuracy hidden in the properties depending on the phonon frequency. Since we are using

in our calculation the Bond-charge model which accurately fit the dispersion relations in the

whole Brillouin zone (see Chap. 2), we will take into account the existing anisotropy of a cubic

material. Nevertheless, the assumption of an isotropic model would give a thermal resistivity

of the same order of magnitude than that calculated by our model, specially in bulk, but in

thin-films it has been seen that there is a di↵erence of the 15% between results provided by

both approaches, being more accurate the anisotropic model when comparing the results with

experimental data [94].

In addition, we have opted for using the dispersion relations in the whole Brillouin zone

rather than chose a certain direction, since we aim to reproduce experimental data on several

samples (not only silicon samples in this Chapter, but also germanium, diamond and gray-tin

samples in the following Chapter), where not always the direction of the crystal growth is

specified, and this way, we can take into account the participation of each phonon branch

(LA, TA1, TA2, LO, TO1 and TO2) in the thermal conductivity, as an average over the

whole Brillouin zone. Moreover, this procedure is appropriate to study the implication of

the whole phonon spectrum in the entire BZ, not in a single direction, in the heat transport,

as we will see in the next Sections. This procedure has already been checked by Sellan et

al. [94], who showed that using the dispersion relations of the full Brillouin zone, provides

a more accurate description of all the modes participating in the transport, despite of being

more time-consuming in the calculations. Group velocities v(!⌫) are always calculated from

dispersion relations.

Once we have the dispersion relations and density of states, we keep them fixed when we

change the size of the samples, so we can check the validity of bulk properties from bulk-size

samples down to a certain e↵ective size in the nanoscale, before quantum phenomenology

appears.

Regarding the relaxation times, we use expressions (3.37), (3.38), (3.49) and (3.51) for

⌧N , ⌧U , ⌧I and ⌧B, respectively, which were introduced and discussed in Chap. 3, and here we

summarize them in Table 5.1.

To calculate the thermal conductivity, we enter the dispersion relations, density of states,

group velocities and relaxation times in the kinetic-collective equation (4.81), where the kinetic

kin and the collective coll contributions are given by Eqs. (4.73) and (4.74) respectively; Eq.
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Table 5.1: Relaxation times for non-resistive and resistive scattering processes. ⌧N and ⌧U are

original contributions of the present thesis, while ⌧I and ⌧B are widely used in the literature. (See

Chap. 3)

Non-resistive Expression

Normal ⌧N(!⌫) =
1

BNT 3!2
⌫ [1� exp(�3T/⇥D)]

+
1

BN 0T

Resistive Expression

Impurity ⌧I(!⌫) =
6

⇡

�
V �!2

⌫D(!⌫)
��1

Umklapp ⌧U(!⌫) =
exp(⇥U/T )

BU!4
⌫T [1� exp(�3T/⇥D)]

Boundary ⌧B(!⌫) = Le↵/v(!⌫)

(4.75) is used for the switching factor ⌃ and (4.80) for the form factor.

In Table 5.2 we detail the characteristics of the silicon samples used in this study: Two

bulk samples with di↵erent isotopic composition but identical shape and size, these are nat-

ural occurring silicon naSi with composition (92.2%28Si, 4.7%29Si, 3.1%30Si) and isotopically

enriched silicon isoSi with composition (99.983%28Si, 0.014%29Si, 0.003%30Si) from Ref. [65].

The other silicon samples, thin-films (TFs) and nanowires (NWs), have natural composition,

but di↵erent shape and sizes.

5.2 Silicon thermal conductivity

In the following, we compare our calculations with the experimental data on the specified

silicon samples in a large temperature interval [1� 1000]K. The selected samples are chosen

regarding their diversity of sizes, geometries and isotopic composition to account for both the



116 CHAPTER 5. APPLYING THE KINETIC-COLLECTIVE MODEL TO SILICON

Table 5.2: Values of several properties for naturally occurring and for isotopically enriched Si bulk

samples (naSi and isoSi) and several thin-films (TFs) and nanowires (NWs): � is the mass-fluctuation

calculated according to Eq.(3.48), the dimension of the cross-section is specified in each case (cross-

section A for bulk, thickness h for TFs, diameter d for NWs) and the corresponding e↵ective size

Le↵ calculated according to Sec.3.2.3. The samples and their corresponding thermal conductivity

data are those from the indicated reference.

Sample �(⇥10�5) Dimensions Le↵ Reference
naSi bulk 20.01 A = 2.00⇥ 3.12mm2 2.8mm [65]1

isoSi bulk 3.2⇥ 10�2 A = 2.00⇥ 3.12mm2 2.8mm [65]2

1.6µm TF 20.01 h = 1.6µm 3.6µm [71]

830 nm TF 20.01 h = 830nm 1.87µm [71]

420nm TF 20.01 h = 420nm 945nm [71]

100nm TF 20.01 h = 100nm 225nm [71]

30nm TF 20.01 h = 30nm 67.5nm [71]

115nm NW 20.01 d = 115nm 115 nm [8]

56nm NW 20.01 d = 56nm 56 nm [8]

37nm NW 20.01 d = 37nm 37 nm [8]

22nm NW 20.01 d = 22nm 22 nm [8]
1,2 Data courtesy of A. Inyushkin.
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size-e↵ects and the e↵ect of isotopic disorder on the thermal conductivity. As a consequence

of the obtained results, we discuss some novel aspects of phonon transport involving normal

processes.

5.2.1 Bulk thermal conductivity: Kinetic and collective behavior

The first step is to calculate the thermal conductivity of bulk silicon with natural occurring

isotopic composition naSi (see Table 5.2) and find suitable values for the only three adjustable

parameters BN , BN 0 and BU , belonging to ⌧N and ⌧U (see Table 5.1), that provide the best

fit to the experimental data (reminding that the remaining scattering rates ⌧I and ⌧B do not

have adjustable parameters). The found values are shown in Table 5.3. The resulting thermal

conductivity is shown in Fig. 5.1 in black dashed-line and compared to data (black symbols)

from the work by Inyushkin et al. [65]. The agreement with data is very successful.

In Fig. 5.1 we also show the limiting curves corresponding to the pure kinetic kin (red

dash-dot line) and pure collective regime coll (green dashed-line) for naSi according to Eqs.

(4.73) and (4.74) respectively. It can be seen that in the low-temperature range the thermal

conductivity is in the pure kinetic regime, since boundary scattering is expected to be the

dominant process. As the temperature rises, N-processes begin to occur and gain importance

against the resistive processes, so  begins to separate from the pure kinetic regime and

experiences a smooth transition towards the collective regime.

It is worthy to point out that, although both limits kin and coll contain only resistive

terms in their integrals through ⌧R, the thermal conductivity of the pure collective regime coll
(see green line in Fig. 5.1) is significantly lower than the thermal conductivity of the pure

kinetic regime kin (see red dashed-line in Fig. 5.1). This seems to be in contradiction with

the fact that coll is governed by N-scatterings which have a non-resistive nature. Actually, the

ability of N-processes at distributing the energy between modes enhances the resistive nature

of the rest of the scattering mechanisms. In other words, the N-processes make sure that

the presence of resistive collisions is noticed by all the modes of the collectivity by bringing

about exchanges of energy between the modes. Therefore the thermal resistance increases,

or inversely, the thermal conductivity decreases. This physics can be explained thanks to the

di↵erent mathematical treatment of the relaxation times inside the integrals, interpreted in

terms of serial and parallel resistivities in Sec. 4.6.5. Our model allows us to understand this

unlike Callaway model and its derivatives, where normal scattering is considered inside the

resistive integrals.
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Figure 5.1: Total thermal conductivity as a function of temperature in a double logarithmic plot for
naSi as a result of fitting Eq. (4.81) to experimental data from Inyushkin et al. [65], with fitting

parameters shown in Table 5.3, and the prediction for isoSi using the same parameters, onlychanging

the mass-fluctuation factor. Pure kinetic kin (4.73) and collective coll (4.74) thermal conductivity

regimes for naSi are also plotted in dashed-lines.
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Table 5.3: Best-fit parameters for naSi bulk.

BU (s3K�1) BN (sK�3) B0
N (s�1K�1)

Kinetic-collective model 2.8⇥ 10�46 3.9⇥ 10�23 4.0⇥ 108

Another remarkable behavior is the important presence of N-processes even at room tem-

perature. One can expect Umklapp processes to dominate at high temperatures, but it can

be seen that is not the case of bulk silicon at room temperature. It can be observed in

Fig. 5.1, that the curves seem to suggest a change in the tendency at high temperatures. 

seems to tend to a more kinetic behavior at very high temperature. The temperature range

where kinetic regime happens at high temperature will depend on the height of the dispersion

relations that eventually determines the importance of Umklapp respect to normal scattering.

5.2.2 Predicting the e↵ect of the isotopic composition on the ther-

mal conductivity

In the work by Inyushkin et al. [65], two identical samples of silicon with natural composition

were built in the shape of bars with square cross-section of the order of millimeters (see

Table 5.3). One of the samples was isotopically enriched (isoSi), and their respective mass-

fluctuation factors were calculated using Eq. (3.48) and yield �isoSi = �naSi/625 (see Table

5.2). The thermal conductivity measurements on both samples show that their only di↵erence

is the peak, consequence of the dominating impurity scattering in this region, as can be seen

in Fig. 3.8 (a) and Fig.5.1. Therefore, according to Inyushkin et al., the thermal conductivity

of isoSi should be predicted from the thermal conductivity of naSi by only changing the value

of �. We have done this test with our model. Once we have fitted the bulk naSi, we recalculate

 introducing the corresponding value of � for isoSi (see Table 5.2). The result is shown in

Fig. 5.1 (blue solid line). Note that the position of the peak for naSi is correctly fitted and

for isoSi is correctly predicted (solid lines overlap experimental points in the plot) being the

only change between both samples the calculated mass-fluctuation factor. This is a check of

the consistency of our model and confirms the prediction given by Inyushkin et al. [65]. In

the following section we have done the same test for Callaway and standard RTA models,

obtaining worse results (see Fig. 5.7 in Sec. 6.3.2).
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5.2.3 Predicting the e↵ect of shape and size on the thermal con-

ductivity: Thin-films and Nanowires

The TFs are those from the work by Asheghi et al. [71], with thicknesses and other character-

istics reported in Table 5.2. Their respective e↵ective lengths Le↵ are calculated as explained

in Sec. 3.2.3. Results for silicon TFs thermal conductivity are shown in Figs. 5.2 (a). Note

that the calculations are the same as those performed for naSi bulk, without incorporating

any further additional fitting parameter, only introducing the corresponding e↵ective size for

each sample.

Note also that all these samples may contain a certain concentration of gold impurities

due to the fabrication process, according to [71], but we have kept the mass-fluctuation

factor corresponding to the natural isotopic composition �naSi for all the samples because

there is no reported data to calculate � more accurately. Note also that at low temperatures

the experimental data seem quite spread, this may indicate that some surface features (for

instance roughness or back-scattering) are a↵ecting the measures and should be taken into

account in the theoretical modeling, however, no error bars are provided, and no additional

information on the surface is given. Then, we focus here on the general trend of . Despite of

this and the fact that a more precise value of � could improve the predictions, the resulting

thermal conductivity of this set of TFs, with several thicknesses ranging from the micro to the

nanoscale, is in overall good agreement with the experimental data. Our results also provide

valuable information on the behavior of  at low and high temperatures, where there is a lack

of experimental measures, especially for the smallest samples (100 nm TF and 30 nm TF).

The NWs are those from the work by Li et al. [8], with diameters and other characteristics

reported in Table 5.2. The samples are grown in the shape of cylinders using the VLS

deposition technique, which assures to obtain a surface as smooth as possible [95]. Again,

the NWs samples only di↵er from naSi bulk in the geometry and size, which are taken into

account through Le↵ , the other parameters remain the same as in the case of naSi bulk. In the

case of cylindrical geometry, Le↵ is equivalent to the diameter of the cylinder. The resulting

thermal conductivities of this set of silicon NWs are shown in Fig. 5.2 (b). It can be observed

that all curves are in good agreement with the experimental data with the exception of the

thinnest NW (22 nm) and in some intermediate temperature region for the 37 nm NW, where

bulk properties, mainly those arising from the bulk dispersion relations, may not be enough

to describe the thermal transport at such small scale, and quantum e↵ects should be taken

into account to refine the predictions.
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Figure 5.2: Thermal conductivity as a function of temperature in a double logarithmic plot of (a)

Si TFs with several thicknesses and (b) several diameter Si NWs. In both plots, model predictions

are shown in lines and experimental data are shown in symbols according to the legend; in addition

the naSi bulk thermal conductivity is plotted for reference (black solid line). Experimental data is

extracted from [71] for TFs and from [8] for NWs .



122 CHAPTER 5. APPLYING THE KINETIC-COLLECTIVE MODEL TO SILICON

From the plots we can deduce that Eq. (4.81) is able to correctly describe thermal con-

ductivity behavior for general geometries and sizes without the inclusion of quantum phe-

nomenology above a certain threshold in the e↵ective size, approximately Le↵ >30 nm. Note

that the thermal conductivity of the smallest TFs, 100nm and 30nm, is bigger than the ther-

mal conductivity of the 115nm and 37nm NWs, because the Le↵ of the thin-film is bigger of

that of the nanowire (see Table 5.2), in other words, Le↵(30nmTF) = 67.5 nm is above the

threshold and so it is correctly predicted. Then, for TFs quantum phenomenology is expected

to appear for much thinner layers, probably below 15 nm.

5.2.4 Transition from the kinetic to the collective regime: ⌃

The smooth transition from one regime to another is determined by ⌃, shown in Fig. 5.3.

In general, at very low temperatures, the boundary scattering present in ⌧R is the dominant

process, then we have ⌧R ⇠ ⌧B ⌧ ⌧N and yields ⌃ = 0, we are clearly in the kinetic regime

 = kin. For bulk samples at room temperature, we can easily calculate the ratio of ⌧N/⌧U
(neglecting the boundary and the impurity scattering mechanisms) and realize that it is of

the order of 0.1, thus ⌃ ⇡ 1 (actually ⌃ = 0.9) and we are in the collective regime,  ⇠ coll.

It can be observed in Fig. 5.3 that for isoSi the transition to the collective regime is sharper

than for naSi. This is due to the fact that, for the bulk samples, the transition happens in the

region of impurity scattering dominance, between 20 K and 100 K, because the probability

of N-processes taking place increases as the temperature of the system raises.

This picture changes remarkably when the scale of the samples is shrunk and the size-

e↵ect begins to be the main cause of the drastic thermal conductivity reduction. It can be

observed in Fig. 5.3, that the smaller the e↵ective size of the sample is, the more kinetic the

thermal conductivity becomes. This is reasonable and expected, since at small sizes, boundary

scattering should contribute the most at thermal resistance, not only at low temperatures,

but also up to room temperatures. Actually, ⌃ 2 [0.4�0.5] for the 115 nm NW in the interval

of temperatures [100-1000] K. In particular, ⌃ = 0.46 at T = 300 K, which means that at

room temperature the 46% of the total thermal conductivity belongs to the collective regime

and the 54% to the kinetic regime. Both limits are shown in Fig.5.4.

5.2.5 Size-e↵ects in the collective regime: F (Le↵)

The size-e↵ects in the collective regime are taken into account through the geometric factor

F (Le↵) (see Eq.(4.80)), which depends on the e↵ective size of the sample Le↵ , or more precisely,
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Figure 5.3: Switching factor ⌃ as a function of temperature in a semilogarithmic plot for naSi and
isoSi bulk, 830 nm TF and 115 nm NW.
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the collective coll regimes are shown in red and green dashed-lines, respectively.
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on the Knudsen number `/Le↵ , and the temperature. F (Le↵) is required in the collective

regime of Eq. (4.77), as explained in Sec.4.6.6, to account for surface e↵ects and the geometry

of the system due to hydrodynamics considerations. In the collective regime, the heat flux

only feels the crystal boundaries in a region near the surface, but normal collisions allow that

the inner flow also notices the surface. As a result, there is a hydrodynamic profile similar

to the Poiseuille flow depending strongly on the e↵ective size of the system. This can be

observed in Fig. 5.5 (a), where we have plotted the behavior of F (Le↵) with `/Le↵ at room

temperature. As it can be observed in the plot, when the phonon mean-free path is much

larger than the e↵ective length of the sample, we have F (Le↵) ! 0. In this situation, if

the size of the sample were small enough to give ` � Le↵ even when normal scattering is

dominating the transport, the collective regime would be suppressed. However, this happens

at small enough e↵ective sizes, such as Le↵ <30 nm, where quantum confinement is expected

to appear [77]. In that case, the model should be modified to account for such quantum

e↵ects. The special case of materials with quantized transverse direction, like graphene, can

be considered as 2-dimensional bulk systems with in-plane heat propagation, then Le↵ should

not be calculated with the thickness of the film, but with the width of the in-plane layer.

On the other hand, when Le↵ � ` we have F (Le↵) = 1, this means that either the sample

is very big, for instance bulk, or the temperature is high enough and the collective phonon

flux does not feel the walls. From the plot we can see this happens for Le↵/` > 102 at room

temperature.Nevertheless, the e↵ect of F (Le↵) in the collective regime is observable as long

as ⌃ ! 1, since for ⌃ ! 0 we are in a kinetic regime  ⇡ kin, and both a negligible and

non-negligible value of F (Le↵) would not be appreciated, i. e. coll is suppressed by ⌃ ! 0,

and therefore, this feature does not mask the final thermal conductivity. This can be seen in

Fig. 5.5 (b), where we show F (Le↵) vs ⌃ for bulk, 830nm TF and 115nm NW. Note that for

the bulk F (Le↵) = 1 very quick, while for the NW never reaches this value, since viscosity

against the walls is expected to play an important role at such reduced sizes

5.2.6 Global overview of the thermal conductivity

In Fig. 5.6 we show the global prediction achieved by our model; with this plot one can

notice in a single view how the thermal conductivity works for the complete set of di↵erent

size, shape and composition Si samples in the [1-1000]K temperature interval.

Obviously, our phenomenological expressions for the relaxation times cannot be used to

obtain an extremely accurate fit. Further improvements of the model can be achieved by a
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Figure 5.6: Thermal conductivity of all the silicon samples studied in this work (Bulk, thin films and

nanowires). It can be seen that a very good global agreement is obtained at all ranges of size and

temperature.
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more precise treatment of scattering rates through ab-initio techniques, but we have demon-

strated that some issues related to relaxation times come from their incorrect averaging. We

can conclude that an appropriate treatment of the N-processes makes unnecessary the in-

troduction of new terms in the expression of . Probably rough surfaces [70] would need

additional considerations to improve the fit but this is out of the scope of the present work.

5.2.7 Comparison between standard RTA, Callaway and Kinetic-

collective models

In order to show the improvement of our model over the standard RTA and the Callaway

model [22], in this Section we compare our results with those obtained with these usual

approaches. The procedure we have followed to fit naSi using the standard RTA and the

Callaway model is the same as in our approach described in Sec.5.2. The same expressions

for the relaxation times (see Table 5.1) are used in the three approaches (RTA, Callaway

and Kinetic-collective) to highlight only the accuracy of the models. Note that in the RTA

approach we have included the normal scattering rate in the Matthiessen rule together with

the resistive scattering rates to account for the e↵ect of such treatment of the N-processes on

the conductivity, which can be found usually in the literature [26]. This is equivalent to the

combined relaxation time ⌧C in the Callaway model, and this way the first term of the thermal

conductivity I1 is equivalent to the RTA integral. The values of the fitting parameters that

provide the best results for naSi in each approach, RTA and Callaway, are shown in Table 5.4

together with those values previously found for the Kinetic-collective model. Then, to test

the prediction capability, we have calculated the thermal conductivity of the isoSi bulk and

the 115 nm NW with the standard RTA and the Callaway model. This method highlights

the predictive power of the used model regarding impurities present in the material (from
naSi to isoSi changing only �), and regarding size-e↵ects (from naSi to 115 nm NW changing

only Le↵). The resulting thermal conductivities of these three samples obtained within the

standard RTA and the Callaway model are shown in Fig. 5.7 compared to the results obtained

within the Kinetic-collective model (already shown in Fig. 5.6).

As expected, RTA reproduces very well naSi in the low temperature range. Although for

T > 200 K begins to slightly diverge from experimental data, in general the agreement is

good. On the other hand, the prediction capability when we change the isotopic composition

of the sample is poor: it underpredicts the isoSi peak and from this point forward. At the

nanoscale it also fails in the prediction, as shown in the plot, the resulting  of 115nm NW is
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considerably underpredicted. Regarding the Callaway model, although is able to reproduce

correctly the naSi sample, its prediction capability, though better than that provided by the

RTA, is still poor. Contrarily to the RTA, the Callaway model overpredicts isoSi and the 115

nm nanowire. With this, we have shown two important points. First, it is relatively easy to

provide a good fit to a single sample with any model. Second, the success in the prediction

capability reveals the strength of the used model.

Usually, in the literature we can find two kind of works on lattice thermal conductivity.

Firstly, there are some models focused on the prediction of the peak of the thermal conduc-

tivity providing fits to several bulk samples with natural and enriched isotopic composition in

the whole or in a partial temperature range, but they are not checked at the nanoscale [27]. In

contrast, we can find models focused on the fitting to nanoscale samples giving a good agree-

ment with measurements, but they are not checked at reproducing the thermal conductivity

of other isotopic composition bulks [26, 28]. Since providing a good fit at the peak region

for both bulks (naSi and isoSi) is very di�cult, most of the published models for the thermal

conductivity avoid the temperature interval corresponding to the peaks. Normally they show

fits and predictions for T > 50 K or T > 100K, i.e. higher temperatures than that of the

peak. With four simple and representative scattering events (boundary, impurities, normal

and umklapp) our model is able to provide a very satisfactory prediction from the macro to

the nanoscale in the whole range of temperatures.

5.2.8 E↵ect of N-processes on the thermal conductivity

In view of the poor prediction capability of the standard RTA and Callaway model, and

since we think it is due of the incorrect treatment of the N-processes, we have made a test.

It consist of neglecting ⌧N in the thermal conductivity calculation within the RTA and the

Callaway model. Therefore, in RTA thermal conductivity (see Eq. (1.39)) we use a pure

Table 5.4: Best-fit parameters for naSi bulk with the standard RTA, Callaway and Kinetic-collective

model.

BU (s3K�1) BN (sK�3) B0
N (s�1K�1)

Kinetic-collective model 2.8⇥ 10�46 3.9⇥ 10�23 4.0⇥ 108

Callaway model 1.4⇥ 10�46 3.5⇥ 10�24 1.0⇥ 107

standard RTA 1.9⇥ 10�45 9.3⇥ 10�23 3.2⇥ 105
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Figure 5.7: Thermal conductivity  as a function of temperature for naSi and isoSi bulk, and the 115

nm NW. We show the best fit provided by the standard RTA and the Callaway models against the

Kinetic-Collective model.

resistive relaxation time ⌧R = (⌧�1
B + ⌧�1

I + ⌧�1
U )�1, according to the Matthiessen rule. In the

Callaway model, if we neglect ⌧N , we have ⌧C = ⌧R, and the second term �I2 is vanished, so

we recover the RTA expression (see Sec. 4.2.1). The result of these calculations, with the

same BU parameters used before in each case (see Table 5.4), allows us to check how the

thermal conductivity is a↵ected when ⌧N are removed. In Fig. 5.8 we show  fitted with

⌧N (from the previous Section, see Fig.5.7) compared to the curve obtained without ⌧N . As

it can be observed in plot (I), at low temperatures, the RTA thermal conductivity with and

without ⌧N provides the same result (the curves are overlapped), as it is expected, since ⌧B is

the dominant scattering mechanism. If we remind our Kinetic-collective result (see Fig.5.1),

at this temperature region the total thermal conductivity belongs to the pure kinetic regime,
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Figure 5.8: Thermal conductivity for the three representative samples naSi and isoSi bulk, and 115nm

NW as a function temperature calculated using: (I) the RTA model and (II) the Callaway model. In

each plot, model (a) (blue lines) indicates that ⌧N are included in the calculations, as already shown

in Fig.5.7; and model (b) (red dashed-lines) shows the result of removing ⌧N .
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which is, in fact, the RTA. As the temperature increases, it can be seen that N-processes

begin to play a role in the transport, since the curves without ⌧N (red dashed-lines) diverge

considerably from the curves with ⌧N (blue lines) for the both bulk samples. In the nanowire

both curves are the same in the whole range of temperatures, since ⌧B is the limiting scattering

mechanism in the Matthiessen rule due to the very small Le↵ , then, the e↵ect of ⌧N is masked

when including them in the Matthiessen sum together with the other resistive scatterings.

Regarding the Callaway model, plot (II), the e↵ect of removing ⌧N in both bulks means we are

calculating  with the pure RTA (red dashed-lines), however the refinement of the RTA made

by Callaway by including the correction �I2 a↵ects specially at the nanoscale. We can observe

in the plot that the e↵ect of this correction due to ⌧N is to raise the thermal conductivity

from the purely resistive RTA prediction (neglecting ⌧N). Actually, this test on the e↵ect of

⌧N over the RTA and the Callaway model is an analogy we have done to compare with the

e↵ect of ⌧N in our model, since our limit kin corresponds to the maximum e↵ect of removing

⌧N , i. e. it is a purely resistive RTA result, and coll corresponds to the maximum e↵ect

that ⌧N can induce in the thermal conductivity.

5.3 Behavior of the relaxation times with frequency

Let us now discussed some important aspects of the behavior of the relaxation times ⌧N , ⌧U , ⌧I
and ⌧B with frequency and temperature (see Table 5.1): i) To study the whole frequency

spectrum, we have selected two branches: the longitudinal acoustic (LA) and the longitudinal

optic (LO), since representing the 6 phonon branches would complicate the plots. With

the LA we study the behavior of low-frequency phonons, and with LO the high-frequency

phonons. ii) To study the behavior at high and low temperature, we have selected T = 300K

and T = 30K respectively. iii) To compare the behavior of the relaxation times at the macro

and the nanoscale we have chosen two representative samples: bulk naSi and the 115 nm

diameter NW. Since they have di↵erent e↵ective sizes and the only size-dependent relaxation

time is ⌧B, both samples will have identical ⌧N , ⌧U and ⌧I and the size-e↵ect will be highlighted

through ⌧B.

This frame is represented in Fig. 5.9 and Fig. 5.10 for the LA and the LO branches

respectively.

Let us begin with the low-frequency phonons. In Fig. 5.9 we show the frequency depen-

dence of ⌧N , ⌧U , ⌧I and ⌧B for the LA branch at low 5.9 (a) and high 5.9 (b) temperatures, for

bulk naSi and the 115 nm diameter NW. At T = 30 K the bulk thermal conductivity exhibits
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Figure 5.9: Behavior of phonon relaxation times ⌧N , ⌧U , ⌧I and ⌧B with the frequency for the LA

branch at several temperatures: (a) T=30 K, (b) T=300 K. To highlight the size-e↵ect we have

plotted the set of relaxation times for two samples: bulk naSi and the 115 nm diameter NW. Note

that both samples have identical ⌧N , ⌧U and ⌧I , but they have di↵erent ⌧B due to their di↵erent sizes

(indicated in the legend).
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Figure 5.10: Behavior of phonon relaxation times ⌧N , ⌧U , ⌧I and ⌧B with the frequency for the LO

branch at several temperatures: (a) T=30 K, (b) T=300 K. To highlight the size-e↵ect we have

plotted the set of relaxation times for two samples: bulk naSi and the 115 nm diameter NW. Note

that both samples have identical ⌧N , ⌧U and ⌧I , but they have di↵erent ⌧B due to their di↵erent sizes

(indicated in the legend).
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the peak and ⌧I is expected to be the dominant scattering process. This can be observed in

5.9 (a), since ⌧I has the smallest values for the whole range of acoustic frequencies, except

for the modes under ⇡2 THz, which are still dominated by ⌧B. On the other hand, we can

see that for the NW the situation is di↵erent. As expected ⌧B is the dominating scattering

due to the small values of Le↵ . When the temperature increases, we can observe in 5.9 (b)

that now, the dominant scattering mechanism is ⌧N , for both Bulk and NW, except for the

short-frequency modes in the NW (below ⇡ 2THz) where ⌧B is still the dominating process.

Note that now, for both bulk and NW, ⌧U plays an important role. In the bulk, ⌧U is clearly

the dominant resistive scattering and for frequencies above ⇡ 6THz, becomes comparable to

⌧N , though higher, this makes ⌃ ! 1, we are in the collective regime. In the NW, even

at room temperature, the size-e↵ects still play an important role, as we can observe in the

plot, ⌧B for modes below ⇡ 6THz ⌧B is the limiting scattering, while for higher modes ⌧U
dominates.

Let see what happen with optic phonons. In Fig. 5.10 we show the frequency dependence

of ⌧N , ⌧U , ⌧I and ⌧B for the LO branch at low 5.10 (a) and high 5.10 (b) temperatures, again

for bulk naSi and 115 nm NW. At T = 30 K the dominating scattering is also ⌧I , as for the

acoustic modes. However, for the NW the situation chafes respect to the LA branch. Now,

the boundary scattering combined with the impurity scattering are the dominating processes,

since ⌧B and ⌧I are of the same order of magnitude. At room temperature the situation

changes remarkably. For both samples, bulk and NW, Umklapp and normal scattering are

of the same order of magnitude. ⌧U is the dominating resistive scattering, as expected, but

higher than ⌧N , since we are in a collective regime. Recall that when ⌧N << ⌧R, we have

 ⇡ coll.

5.4 Spectral thermal conductivity

Until now, we have described the behavior of the thermal conductivity at di↵erent temper-

ature intervals, but it is also important to study how the phonons with di↵erent frequencies

participate in the thermal transport at a given temperature. For this purpose, it is very useful

to represent the spectral thermal conductivity (!⌫) per phonon branch1, which is in fact the

1Let us now indicate the phonon branch dependence with the subindex ⌫.
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integrand of the thermal conductivity integral expression

 =
X

⌫

Z
(!⌫)d! (5.1)

where following the Kinetic-collective model, from Eq. (4.81) we have

(!⌫) = kin(!⌫)(1� ⌃) + coll(!⌫)F (Le↵)⌃. (5.2)

Recalling the expressions for kin and coll, see Eqs. (4.73) and (4.74), we can express

the spectral thermal conductivity in each regime in terms of a phonon di↵usion coe�cient

equivalent to the relaxation-time times the velocity square, that is, ⌥ ⌘ ⌧v2. Therefore, in

the kinetic regime we have

kin(!⌫) =
1

3
~!⌫⌥kin(!⌫)

@n0(!⌫)

@T
D(!⌫) (5.3)

where the kinetic di↵usion coe�cient is

⌥kin(!⌫) ⌘ ⌧R(!⌫)v
2(!⌫) (5.4)

where v(!⌫) is the group velocity obtained from the dispersion relations and ⌧R(!⌫) is the

e↵ective relaxation time that we have already employed in the previous calculations and it is

obtained with the Matthiessen rule as

⌧R(!⌫) =
�
⌧�1
I (!⌫) + ⌧�1

U (!⌫) + ⌧�1
B (!⌫)

��1
. (5.5)

It is important to notice that ⌥kin(!⌫) is frequency dependent through the relaxation time

and velocity, since in the kinetic regime, each mode contributes independently to thermal

resistance, so we have a di↵usion coe�cient per mode. However, in the collective regime the

phonon collectivity must be considered as a whole, raising a global (frequency independent)

di↵usion coe�cient ⌥coll obtained as a result of averaging the relaxation time and velocity in

the ”collective” fashion. This is equivalent to rewrite (4.74) as

coll(!⌫) ⌘
1

3
~!⌫⌥coll

@n0(!⌫)

@T
D(!⌫) (5.6)

with

⌥coll =

 
X

⌫

Z
v(!⌫)q⌫

@n0(!⌫)

@T
D(!⌫)d!

!2

Cv

X

⌫

Z
q2⌫
~!⌫

1

⌧ 0R(!⌫)

@n0(!⌫)

@T
D(!⌫)d!

. (5.7)
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Figure 5.11: Kinetic (green lines) and collective (red lines) phonon di↵usion coe�cients in terms

of frequency for Si bulk (naSi sample) at low and room temperature: T =30 K (a) and T =300 K

(b); and for the 115nm NW at the same temperatures: T =30 K (c) and T =300 K (d). Note that

the kinetic di↵usion coe�cient is a frequency dependent quantity, and therefore we show the values

for each branch: longitudinal acoustic (LA), transversal acoustic (TA1 and TA2), longitudinal optic

(LO) and transversal optic (TO1 and TO2), while the collective di↵usion coe�cient is a mean value

for the whole phonon collectivity, only depending on T.
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Recall that ⌧ 0R is the resistive relaxation time excluding the boundary scattering

⌧ 0R(!⌫) = (⌧�1
I (!⌫) + ⌧�1

U (!⌫))
�1. (5.8)

and Cv =
X

⌫

Z
~!⌫

@n0(!⌫)

@T
D(!⌫)d! is the specific heat. Summing up, the main di↵erence

between (5.4) and (5.7) is that the first is a per-mode expression and consequently depends

on frequency while the second is a frequency averaged constant.

In Fig. 5.11 (a),(b) we show the obtained di↵usion coe�cients ⌥ ⌘ ⌧v2 for the two

transport regimes (5.4) and (5.7) in terms of frequency at the same temperatures. For this,

we have used the same relaxation times expressions and the other inputs specified in 5.1.

We can observe the strong frequency-dependence of the kinetic di↵usion coe�cient for the

di↵erent branches (green lines), while the collective term is a constant (red line), shorter

than the kinetic one for low-frequency modes while for high frequencies it is larger. Di↵usion

coe�cient gives the capacity of a mode to carry energy from one point to another. This

means that the collective transport tends to enhance the contribution of high-energy modes

and reduce that of the low-energy modes in the transport process. Note that ⌥kin(!) is shorter

for the NW than for bulk due to the size-e↵ect through ⌧B, while ⌥coll is the same for bulk

and NW, as ⌧ 0R used in Eq.(5.7) does not include ⌧B.

The e↵ect of the di↵usion coe�cient on thermal conductivity can be seen in Fig. 5.12 where

we have plotted the total spectral densities of the thermal conductivities in the kinetic (5.3)

and collective (5.6) regime accounting for all the branches, that is, green dotted line representsX

⌫

kin(!⌫), let us call it k and red dashed-line coll(!⌫), let us call it c. We can observe

that in the low-frequency range the kinetic contribution is dominant and in the high-frequency

range the dominance is inverted. In a middle temperature region the contributions cross. The

dominance of collective term at high frequencies appears clearly in the plot, but it could be

hidden at low temperatures by the e↵ect of the specific heat per mode ~!⌫
@n0(!⌫)

@T
D(!⌫) in

Eq.(5.6), since at such temperatures the phonon population is very small.

The values of the kinetic and collective contributions need to be weighted by ⌃, giving the

fraction of the total avalaible flux in each regime that is actually contributing to the thermal

transport at a given temperature. This can be also observed in Fig. 5.12 where we have

plotted the kinetic k(1�⌃) (filled curve in green) and the collective c⌃ (filled curve in red).

As we know, ⌃ takes values between 0 and 1 depending on the importance of N-processes

over the rest of the resistive scattering mechanisms. When ⌃ = 0, that is, when resistive

scattering is dominant, we recover the usual kinetic expression. In that case green line is full
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Figure 5.12: Spectral thermal conductivity contributions in terms of frequency of both regimes at low

T = 30K and room temperature T = 300K for Si bulk (a),(b) and 115nm NW (c),(d), respectively.

In all the plots pure kinetic k and collective c regimes (shortened in the legend as k and c

respectively) are shown in dashed-lines, the reduction due to ⌃ is shown for each regime with filled

curves. For the NW the e↵ect of F (Le↵) in the collective regime is also shown (solid line), for the

bulk is omitted for the sake of simplicity, since F (Le↵) = 1 at both temperatures (see Fig. 5.5). Note

that in (a) and (b) the peaks of k appear cut because are out of scale.
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Figure 5.13: Normalized thermal conductivity contribution due to optical phonons for several sample

sizes.

and red line empty. When N-process is dominant ⌃ = 1 and we are in the pure collective

regime (red dashed-line is full and green dotted-line empty). Particularly, for bulk naSi we

obtain ⌃ = 0.31 at T = 30 K, i.e. the 69% of the kinetic phonons are contributing to ,

while from the collective phonons the 31% of them are participating. At T = 300K we have

⌃ = 0.92, now only the 8% of the kinetic phonons is participating against the 92% of the

collective phonons. In the case of the NW, we have ⌃ = 0.002 at T = 30K , this indicates

that clearly the transport is kinetic (99.8%, note the the kinetic curve is completely filled)

and ⌃ = 0.46 at T = 300K, this indicates that at room temperature we are in an intermediate

regime where 46% of the collective phonons are participating together with the 54% of the

kinetic phonons (note that both curves are half-filled)2.

From observing Figs. 5.11 and 5.12 one can see that the high-frequency modes (cor-

responding to the optic branches) have an important contribution in the collective regime,

while in the kinetic regime they are inhibited. From this, we deduce that the e↵ect of the

N-processes may be to enhance the contribution of the optic phonons in the thermal con-

2The filled part of the kinetic regime is behind the collective one and is not appreciated in this figure.
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ductivity. The general believe is that their contribution is so small that can be neglected in

the thermal conductivity integral, so when using the RTA or the Callaway-like models only

acoustic branches are usually considered. Other authors have indicated, that their contri-

bution, though small, should not be disregarded. Actually, according to Tian et al., their

contribution is specially significant at the nanoscale [96]. In Fig. 5.13 we show the contribu-

tion of the optical phonons to the total conductivity. Similar results were found by Tian et

al. with ab-initio methods [96]. Our model predicts a contribution of the 15% for the 115nm

NW, in agreement with Tian et al. The agreement between such di↵erent approaches may

indicate that indeed, optical phonons are an important feature in nanostructures. However,

the ab-initio methodology followed in [96] is not able to provide a physical interpretation of

this phenomena, while our model let us infer that the source of such contribution may lie

in the e↵ect of N-process in the thermal transport. Note that, our kinetic regime is in fact

equivalent to the RTA with a ⌧R and that in this regime, as seen in the plot, there is no optic

phonons population, it appears only in the collective regime, where N-process dominate the

transport. Although this hypothesis should be further studied and maybe some experimental

evidence would be of great help to support our explanation, we can conclude that our model

has let us to shed some light on this important topic.



Chapter 6

Applying the Kinetic-Collective model

to group-IV semiconductors.

As we have shown in the previous Chapter, the Kinetic-collective model has been tested on

bulk Si, with di↵erent isotopic compositions, and Si thin-films and nanowires. The agreement

of our theoretical predictions with experimental data from bulk to nanoscale in those silicon

samples in the whole range of temperatures is remarkable [77]. This good result on silicon

has motivated us, in first place, to check the robustness of the model by applying it to other

materials than silicon. We have stressed our attention into other materials with the same

lattice structure as silicon, under the hypothesis that, since they have the same diamond

structure, only di↵ering in the value of the lattice parameter, their dispersion relations are,

roughly, similar or even proportional in certain regions of the q-space, (as can be seen in Figs.

(2.5-2.8) in Chap. 2), and this proportionality could be extended to the behavior of phonon-

phonon interactions. These materials with the same diamond structure are the group-IV

element semiconductors introduced in Chapter 2: silicon, germanium, gray-tin and diamond

itself. This way, the validity of the Kinetic-collective model is checked to be extended to a

family of semiconductor materials without any additional phenomenology.

On the other hand, one of the drawbacks of phenomenological models is the inclusion of

adjustable parameters to fit individually the thermal conductivity of each material [24,27,97].

This individual fitting can be interpreted as a lack of predictive power in the model, if the

obtained values keep no relation between them. Therefore, our motivation is, in second

place, to predict the thermal conductivity of a set of samples of several materials without

fitting individually each sample but globally all of them. This global approach, and the large

141
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reduction in the fitting parameters, will stress the accuracy of the Kinetic-collective model

predictions.

6.1 Relations between phonon-phonon relaxation times

expressions

Let us discuss in this Section some aspects of the phonon-phonon relaxation times to be

able, eventually, to obtain theoretically the values of parameters BN , B0
N and BU involved

in phonon-phonon relaxation time expressions. In Table 6.1 we summarize the relaxation

time expressions that we will use along this Chapter. Note that we use expressions for the

Umklapp, normal and boundary scattering, (3.38), (3.37) and (3.51) respectively, are those

which were introduced and discussed in Chap. 3 and used previously in Chap. 5 (see Section

3.2 and Table 5.1). On the contrary, we use now for the impurity scattering the expression

provided by Klemens (3.50) instead of that provided by Tamura, and we will discuss later

this choice.

The exact functional form of phonon-phonon relaxation times ⌧U(!⌫) and ⌧N(!⌫) (let us

drop the !⌫ dependence here and onward for the sake of simplicity) is a matter of great

discussion. However, as we discussed in Sec. 3.2, ⌧U and ⌧N exhibit a behavior such that

⌧�1
U/N ⇡ B!aT b, where the dependence on frequency and temperature relies on empirical

values of the exponents a and b, and the presence of an adjustable parameter B is required.

Generally, the B parameters have appeared in the literature as fitting parameters, forgetting

the information they may hide. In an early work by Leibfried and Schlömann [60], it appears

for the first time a semiempiric expression to calculate BU and BN in terms of some properties

of the material with the dependence on frequency and temperature. Later recovered by Morelli

et al. [27], this expression is written for both parameters belonging to Umklapp and normal

processes, that we denote with the subindex U/N for brevity, as

BU/N ⇡
✓
kB
~

◆b �2~V 0(a+b�2)/3

Mv(a+b)
g

(6.1)

where kB is the Boltzmann constant, ~ the Planck constant, � the Grüneisen parameter and

M the atomic mass, being a, b the exponents of frequency and temperature respectively. This

expression can be used to relate the parameters of several materials with an expected similar

behavior of the phonon-phonon interactions.
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Table 6.1: Relaxation times for non-resistive and resistive scattering processes. ⌧N and ⌧U are

original contributions of the present thesis, while ⌧I and ⌧B are widely used in the literature. (See

Chap. 3)

Non-resistive Expression

Normal ⌧N(!⌫) =
1

BNT 3!2
⌫ [1� exp(�3T/⇥D)]

+
1

BN 0T

Resistive Expression

Impurity ⌧I(!⌫) =

✓
V �

4⇡v3(!⌫)
!4
⌫

◆�1

Umklapp ⌧U(!⌫) =
exp(⇥U/T )

BU!4
⌫T [1� exp(�3T/⇥D)]

Boundary ⌧B(!⌫) = Le↵/v(!⌫)

In our specific case for Umklapp scattering Eq. (3.38), we have from

⌧�1
U / !4T 1 (6.2)

therefore a = 4 and b = 1, and entering these exponents in Eq. (6.1) we have

BU =
kB�2V

Mv5g
(s3K�1) . (6.3)

Analogously, for normal scattering Eq. (3.37) we have: i) at low temperatures

⌧�1
N / !2T 3 (6.4)

therefore a = 2 and b = 3, and entering these exponents in Eq. (6.1) we have

BN =
k3
B�

2V

~2Mv5g
(sK�3) , (6.5)
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and ii) at high temperatures ,

⌧�1
N / !0T 1 (6.6)

therefore a = 0 and b = 1, and entering these exponents in Eq. (6.1) we have

B0
N =

kB�2

MvgV 1/3
, (s�1K�1) (6.7)

Since KB and ~ are constants, BU , BN and B0
N depend exclusively on material’s properties

�, vg, V and M . Note that BU , BN and B0
N depend on frequency indirectly through the group

velocity and on temperature through the Grüneisen parameter. They have dimensions of time

and temperature, but each of them has di↵erent units and magnitudes because they belong

to di↵erent scattering rate functional forms.

Now we can express the B parameters for each material of our group in terms of the values

of one of them through a conversion factor. Let us take Si as the reference material, since we

have already worked with it. Starting from the values BU,Si, BN,Si and B0
N,Si that provide the

best fit for naturally occurring Si (naSi), we can calculate the respective values for the other

materials as

BU/N,x = fxBU/N,Si (6.8)

and

B0
N,x = f 0

xB
0
N,Si (6.9)

where x denotes the material: Ge,C,↵-Sn, being

fx =
[�2V/Mv5]x
[�2V/Mv5]Si

(6.10)

the conversion factor for both parameters: BN in the low-temperature term of ⌧N , and BN in

⌧U ; and

f 0
x =

⇥
�2/MvV 1/3

⇤
x

[�2/MvV 1/3]Si
(6.11)

is the conversion factors for the parameter B0
N in the high-temperature term of ⌧N . Calculated

values of fx and f 0
x are given in Table 6.3.

6.2 Inputs for the calculations

In Chapter 2, we have presented the family of group-IV semiconductors with diamond lattice

structure and calculated their dispersion relations and density of states using the Bond-charge
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Table 6.2: Materials properties: Debye temperature ⇥D, atomic mass M , atomic volume V , mean

zone-center velocity v̄, and Umklapp extinction temperature ⇥U .

Material ⇥D (K) M (g mol�1) V (m3) v̄ (m/s) ⇥U (K)

Si 645 28.086 20.01⇥10�30 6272 126

Ge 375 72.63 22.75⇥10�30 3923 70

C 1850 12 5.67⇥10�30 13746 405

↵-Sn 230 118.69 34.05⇥10�30 2769 37

model (see Figs. 2.5 -2.8). Another important characteristic of each material arising from

the dispersion relations is the Debye temperature ⇥D. The higher the phonon branches are

in frequency, the higher ⇥D is expected. It is worthy then to calculate the specific heat cv
from the obtained dispersion relations for each material and check the increasing values of

⇥D. Calculated molar specific heats for C, Si, Ge and ↵�Sn where obtained in Chap. 2,

see also Fig. 2.9, where the Debye temperature for each material is marked with a grid in

the plot, the values are reported in Table 6.2. Note that the values keep a proportionality

between them and correspond to tabulated values in the literature [3].

To calculate the conversion factors we need the values of the Grüneisen parameter �,

atomic volume V , atomic mass M and group velocity vg for each material. Regarding V

and M we have used the standard values used in the literature for each material, reported in

Table 6.2. The Grüneisen parameter varies with frequency and temperature and is a current

subject of study. However, since we are interested in using a proportionality rule, according to

Ehrenreich et al. [98], the same mean value � = 0.7 can be used for all the group-IV materials

considered here. Regarding the group velocity vg, we also need a mean value v as input for the

conversion factors. We have calculated the mean value v̄ at the zone-center of the Brillouin

zone from the dispersion relations using the common expression [15,36]

v̄ = [2/3vT + 1/3vL]
�1 (6.12)

where vT and vL are the mean values at the zone-center of the BZ of the transversal and lon-

gitudinal branches respectively, obtained from our calculated BCM dispersion relations. The

found values are shown in Table 6.2 and are in very good agreement with both experimental

and other theoretical calculations of the group velocity at the zone-center of the BZ [99].

With this, we can calculate the conversion factors for each material in terms of the reference

values of the Si given in Table 5.3 using Eqs. (6.10) and (6.11) entering the values of the
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Table 6.3: Conversion factors fx and f 0
x calculated from Eqs. (6.10) and (6.11) for each material.

Parameter Factor ↵-Sn Ge Si C

BU/N fx 24.01 4.60 1 0.013

B0
N f 0

x 0.45 0.59 1 1.158

Table 6.4: Values of �, cross-section A and e↵ective size Le↵ for Si, Ge, C and ↵-Sn samples with

natural and enriched isotopic compositions.

Sample � A (mm2) Le↵(mm) Reference
naSi 20.01⇥ 10�5 2.00⇥ 3.12 2.8 [65]
28Si 3.2⇥ 10�7 2.00⇥ 3.12 2.8 [65]
naGe 58.7⇥ 10�5 2.46⇥ 2.50 2.78 [24]

70/76Ge 1.53⇥ 10�3 2.02⇥ 2.00 2.25 [24]
70Ge99.99 1.8⇥10�7 2.20⇥ 2.50 2.63 [24]
70Ge96.3 7.57⇥ 10�5 2.50⇥ 2.50 2.8 [24]

naC 7.54⇥ 10�5 :1⇥ 1 0.82 [100]
13C 6.94⇥ 10�6 1⇥ 2 1.58 [101]
naSn 33.46⇥ 10�5 2.5⇥ 2.5 2.8 -

material properties summarized in Table 6.2. The obtained values of fx and f 0
x for x =

Ge,C,↵-Sn are given in Table 6.3.

We have chosen the most representative set of samples of bulk Si, Ge and C with several

isotopic compositions, whose thermal conductivity measurements can be found repeatedly in

the literature. Analogously to what we did in the previous Chapter for the set of Si samples,

we have summarized in Table 6.4 the values of the mass-fluctuation factor, cross-section and

e↵ective size, as well as the reference to the work where the experiment can be found. In

the case of naturally occurring ↵-Sn there is a lack of experimental measurements on thermal

conductivity, to the best of our knowledge, therefore we have chosen random values for the

cross-section. Note that the samples naSi and 28Si are those we have already studied in the

previous Chapter.
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Table 6.5: Best-fit parameters for naSi bulk

BU (s3K�1) BN (sK�3) B0
N (s�1K�1)

Kinetic-collective model 2.8⇥ 10�46 2.2⇥ 10�23 3.7⇥ 108

6.3 Thermal conductivity of group-IV semiconductors

In this Section, we show the thermal conductivity predictions of our set of nine samples of

group-IV semiconductors with several isotopic compositions and we discuss the results. We

have first calculated the thermal conductivity of naSi using Eq. (4.77) entering into it the

relaxation times given in Table 6.1. The values of the normal and Umklapp relaxation times

parameters providing the best fit to naSi experimental data BU,Si, BN,Si and B0
N,Si are given

in Table 6.5. Note that the value of BU,Si is the same as in the previous fit from Chap. 5, but

the values of BN,Si and B0
N,Si are slightly di↵erent (see Table 6.5). This is due to the fact that

we have used di↵erent expression for ⌧I (Klemens’ vs. Tamura’s formula). While working

with other materials, we realized that the Klemens’ expression provided a better prediction

for germanium. We still do not know exactly the nature of this behavior, but we believe that

it has to be with the flat phonon branches at the boundary of the BZ and the density of

states.

The resulting  is shown in Fig. 6.1 together with measurements from [65]. Secondly,

as we did in Sec. 5.2, we have calculated  for the other naturally occurring samples using

the conversion factors given in Table 6.3 to calculate the B parameters as explained in Sec.

6.1. The obtained  for naC, naGe and naSn are shown in Figs. 6.1(b)-(d) respectively,

and compared with experimental data from [24] for germanium and from [100] for diamond.

Thermal conductivity prediction for naturally occurring ↵-Sn still awaits for experimental

evidence.

Finally, the isotopic e↵ect on thermal conductivity is also considered. The thermal con-

ductivity of isotopically enriched samples (13C, 28Si, 70/76Ge, 70Ge99.99, and 70Ge96.3) is

calculated in each case by only changing the value of � and Le↵ for the corresponding samples

reported in Table 6.4. The predictions are shown in Figs. 6.1 (a)-(c) and compared with

experimental data from [24,65,101].

These results are better than one could expect, as it is known that some of the materials

properties (like V or �) may depend on T . This may lead to consider that our phenomeno-

logical expressions are only valid to obtain general trends of the behavior of . However,
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Figure 6.1: Thermal conductivity of the set of group-IV semiconductors. The fit for naSi (solid line)

is shown in (a). Predictions (solid lines) are shown for 28Si in (a), for diamond samples in (b), for

Ge samples in (c) and for ↵-Sn in (d). The kinetic (dashed-dot lines) and collective (dashed lines)

contributions are plotted for each naturally occurring samples. Experimental data from [65] for Si,

from [24] for Ge and from [100,101] for C appear in symbols.

the agreement between our theory and the experiments is remarkably good. Note that we

have not considered the e↵ect of dislocations in 70Ge99.99 and neither unknown impurities in
naC, reported by their authors in each case. For these samples the predictions slightly di↵er

from experiments in the temperature region where  exhibits the peak, as it is logical since

dislocations and impurities are known to a↵ect the peak of the thermal conductivity.
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Figure 6.2: Thermal conductivity as a function of temperature for the naturally occurring samples.

Fit for naSi (solid black line) and predictions for naC (solid purple line) and naGe (solid blue line)

compared to experimental data (symbols). The kinetic (dashed-dotted orange lines) and collective

(dashed green lines) contributions are plotted for each sample. Note that they decrease from C to

Ge.

In Fig. 6.2 are also plotted the kinetic and the collective limits for naturally occurring

samples naSi, naC andnaGe. From them, it can be seen that as T rises,  makes a transition

from a purely kinetic to a collective behavior. At low temperatures resistive boundary scat-

tering is dominant and consequently the thermal transport is kinetic. As the temperature

increases, normal scattering is starting to be important and the collective behavior appears

making the total thermal conductivity separate from a pure kinetic regime. The importance

of the collective contribution is very similar in all the samples. The only di↵erence between

them is the temperature at which this behavior begins to be experienced. As we discussed in
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Sec. 5.2, the insu�cient attention to this transition in usual theoretical models may be the

cause for the di�culties in trying to obtain the same predictions by using, for instance the

Callaway model.

6.3.1 Transition from the kinetic to the collective regime: ⌃

To study the di↵erences in the transition from one regime to another between Si, Ge, C

and Sn, we show in Fig. 6.3 the behavior with temperature of the switching factor ⌃ for the

naturally occurring samples. Again, as we have observed with silicon in the previous Chapter,

at very low temperatures, the boundary scattering present in ⌧R behaves as ⌧B ⇠ Le↵ ⌧ ⌧N
and yields ⌃ = 0. Therefore, we are in the pure kinetic regime  ⇠ kin. At room temperature,

⌃ ⇡ 1 (actually ⌃ = 0.86 for naSi1) and we are in the collective regime,  ⇠ coll. It can be

observed in Fig. 6.3 that the transition to the collective regime is very similar for Ge and Sn.

For diamond the transition begins at a temperature higher than for the others. This is due

to the fact that the transition happens in the region of impurity scattering dominance, and

the peak of diamond occurs at much higher temperature than for the others.

To account for the e↵ect of impurities in the transition, let us take Ge as an example,

since we have a complete set of experimental data in the whole range of temperature includ-

ing samples with thermal conductivity higher and lower than the thermal conductivity of the

natural occurring sample. In Fig. 6.4 we show ⌃ for the set of Ge samples with di↵erent

isotopic compositions. We can observe that the sample with highest �, that is 70/76Ge, expe-

riences the transition in a wider interval of temperatures T ⇠ [10, 300]K. This is translated

as a flatter peak in the thermal conductivity (see Fig.6.1 (c)). On the contrary, in the sample

with the smallest �, that is 70Ge99.99, the transition happens in a more narrow interval of

temperature, T ⇠ [8, 80]K, and the peak of the thermal conductivity is sharper. This means

that the higher the isotopic purity is, the more abrupt and quick the transition from the

kinetic to the collective regime, and consequently, the sharper the thermal conductivity peak.

In terms of relaxation times, this situation is explained, because if � is very high, ⌧I is very

small and becomes the dominating scattering process or at least is competing with ⌧U during

a wider range of temperature, this slows down the transition.

1Note that in the previous Chapter, the value was 0.9, not much error is induced with this new set of

parameters.
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Figure 6.3: Switching factor ⌃ as a function of temperature in a semilogarithmic plot for the naturally

occurring samples.
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(a) (b)

Figure 6.5: Thermal conductivity of natural and enriched (a) germanium and (b) silicon, calculated

with Morelli’s model, compared to experimental measures from [24,74,102]. The isotopic composition

of the Ge and Si samples are naGe, 70Ge99.99, naSi, 28Si, from Table 6.4, but note that the Si samples

di↵er in size. Figures extracted from [27].

6.3.2 Comparison with other models

It is worthy to compare our model and results with previous works aiming to fit a set of

materials with a single model using a single set of relaxation times. Morelli et al. presented

quite recently a paper with this objective [27]. They calculated the thermal conductivity of

Ge, Si, C, SiC, BN and GaN using a Debye-Callaway formula taking into account transversal

and longitudinal acoustic branches. Let us focus on Ge, Si and C to compare with our model.

The set of relaxation times they proposed is the following:

⌧�1
U,i = BU,i!

2T exp (�⇥D,i/3T ) (6.13)

where i = L, T denotes the phonon branch.

⌧�1
N,L = BN,L!

2T 3 and ⌧�1
N,T = BN,T!T

4 (6.14)

⌧I,i =

✓
V �

4⇡v3i
!4
j

◆�1

(6.15)
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Figure 6.6: Thermal conductivity of natural and enriched diamond, calculated with Morelli’s model,

compared to experimental measures from [103]. The isotopic composition of the C samples are naC

and13C from Table 6.4. Figures extracted from [27].

⌧B,i = d/vi (6.16)

d is the e↵ective diameter of the sample which is fitted to the experimental data. From Eq.

(6.1) they obtain the values of the parameters BU,T , BU,L, BN,T , BN,L in terms of mean values

for the Grüneisen parameter and velocity for each branch �T , �L, vT and vL. The values

�T , �L are fitted for each material. Therefore, they have three adjustable parameters �T , �L
and d which are fitted individually to each material using the naturally occurring sample,

this raises a total of 9 fitting parameters in the model. The isotopically enriched samples are

then predicted changing the value of �, as usual. We show in Figs.6.5 and 6.6 the results

provided by Morelli et al. [27]. Note that the naturally occurring samples are well fitted, but

for the isotopically enriches samples are not correctly predicted, specially in silicon. Similar

modeling techniques have been used with diamond. See for instance the work by Barman

and Srivastava [97], where they also fit individually each parameter to each diamond sample

with di↵erent isotopic composition. The work by Morelli et al. is valuable because they study
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the dependence of the phonon-phonon relaxation time parameters in term of the properties

of the material. The main drawback of the Morelli’s model that they use Eq. (6.1) to

fit individually each material’s thermal conductivity, while we use Eq. (6.1) to related the

material’s parameters between them. Consequently our model let us not only to reduce the

number of free adjustable parameters, but to improve the prediction power.

From these results it can be deduced that usual relaxation times expressions are good

enough to calculate thermal conductivity, and that some of the issues when fitting experi-

mental values could be related to the phenomenological model. Further improvements of the

model can be achieved by a more precise calculation of the B as a function varying with tem-

perature or even with frequency, as B(!, T ) / �(!, T )/v(!). In conclusion, we have shown

that using a kinetic-collective model, the thermal conductivity can be predicted for a group

of samples of several materials without additional fitting parameters. The model allows to

interpret the behavior of the thermal conductivity as a transition from a kinetic to a collec-

tive regime. The transition happens as normal scattering gains importance versus resistive

scatterings. The results shed light on the understanding of the phonon-phonon interaction in

this kind of samples.



Chapter 7

Applying the Kinetic-collective model

to Bi2Te3

In this Chapter we apply the Kinetic-collective model to a well-known thermoelectric material:

bismuth telluride (Bi2Te3). Bi2Te3 is a highly anisotropic material with a lattice structure

considerably di↵erent from that of the group-IV materials examined in the previous Chapter.

As a consequence, the values of its thermal conductivity vary significantly when samples built

along di↵erent crystallographic orientations are measured [104]. This fact is clearly an ad-

vantage at the time to tailor the thermoelectric properties of this material. In a collaboration

between the Group of Nanomaterials of the Autonomous University of Barcelona (GNaM)

and the Institute of Microelectronics of CSIC-Madrid, some p-type Bi2Te3 nanowires with

diameters d=350 nm and d=120 nm have been grown oriented in the direction [110]. The

finality of this testing NWs is to study their thermoelectric e�ciency to eventually fabricate

a thermoelectric module made of p-type and n-type NW arrays embedded in a matrix. For

this preliminary study, theoretical predictions of the behavior with size of the NWs’ thermal

properties are desirable. Our role in this collaboration is to predict the thermal conductivity

of such NWs. Having tested previously our model on other materials, as shown in Chap. 5

and 6, this analysis on Bi2Te3 is a check that the model is consistent for di↵erent material

atomic structures, and we can provide, at least, a reliable picture of the global trend of the

thermal conductivity behavior with size and temperature. This way, our model intends to be

a concise tool for both theoretical and experimental researchers.
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Table 7.1: Bi2Te3 properties: Debye temperature ⇥D, atomic mass M , atomic volume V , and

Umklapp extinction temperature ⇥U .

Material ⇥D (K) M (g mol�1) V (m3) � ⇥U (K)

Bi2Te3 160 800.7 174.03⇥10�30 8.21⇥ 10�5 4

Table 7.2: Values of �, diameter d for NWs, and the e↵ective size Le↵ for naturally occurring Bi2Te3

samples.

Sample � dimensions Le↵

Bulk 8.21⇥ 10�5 - -

350nm NW 8.21⇥ 10�5 d = 350 nm 350 nm

120nm NW 8.21⇥ 10�5 d = 120 nm 120 nm

7.1 Inputs for the calculations

Some properties of the Bi2Te3 required for the thermal conductivity calculation are summa-

rized in Table 7.1. The properties of the samples appear in Table 7.2. The dispersion relations

along [110] were obtained in Chap. 2 (see Fig.2.11), where we also show the obtained density

of states (see Fig.2.13) and the specific heat (see Fig.2.14). On the other hand, the relaxation

times deserve a little discussion. Since the lattice structure of the Bi2Te3 is di↵erent from the

diamond structure, the expressions for ⌧N (3.37) and ⌧U (3.38) must be modified accordingly.

7.1.1 Relaxation times expressions

Preliminary measurements with the 3-! method at room temperature carried out by our

collaborators show that 350nmNW = 1.37 ± 0.2 Wm�1K�1 (see Ref. [105]) and 120nmNW =

0.7 ± 0.2 Wm�1K�1, while for the bulk bulk = 2.4 ± 0.2 Wm�1K�1. Note that the lack of

experimental measurements along with a wider range of temperatures for the bulk sample

increases the the uncertainty of the predictions, because the behavior of the phonon-phonon

interactions in this type of material is still very unclear and to the best of our knowledge

there are no feedback from ab-initio techniques providing expressions for ⌧U and ⌧N , unlike

the case of silicon. Nevertheless, in this work, as a first approximation, we suggest to use the

following expressions for the relaxation times. For the boundary scattering we maintain the

usual Casimir expression
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⌧B(!⌫) = Le↵/v(!⌫) , (7.1)

as we did in the previous Chapters for the other materials. For the impurity scattering we

use, as in the case of Silicon, the expression given by Tamura [64], since it accounts for the

density of states in the given direction

⌧I(!⌫) =
6

⇡

�
V �!2

⌫D(!⌫)
��1

, (7.2)

although this expression should be taken with caution, since in its derivation some approxima-

tions were made regarding the cubic lattice structure of diamond-like materials. The normal

and Umklapp relaxation times requires further discussion. As we know, their dependence with

frequency and temperature is such that ⌧U/N / !aT b. For the normal scattering we suggest

to use, for analogy, the expression used for Si, but the appropriate values of the frequency

and temperature exponents are a = 3 and b = 2 for the crystal structure of Bi2Te3 at low

temperatures, according to the values tabulated by Herring [58]. Thus,

⌧N(!⌫) =
1

BNT 2!3
⌫ [1� exp(�3T/⇥D)]

+
1

BN 0T
. (7.3)

For the Umklapp scattering, the situation is slightly di↵erent. Note that the Debye temper-

ature of Bi2Te3 is very low (⇥D=160 K). Room temperature (T=300 K) is well above ⇥D,

so it can be considered in the range of high-temperatures. At this range, the Umklapp scat-

tering is expected to behave, as in the case of normal scattering, as ⌧�1
U ⇡ BUT . Since the

thermal conductivity is very low, it is expected to be dominated by the Umklapp collisions.

Furthermore, the Umklapp extinction temperature ⇥U is found to be very low (⇡ 4 K). From

this reasoning, we suggest to use the expression

⌧U =
exp(⇥U/T )

BUT [1� exp(�3T/⇥D)]
. (7.4)

Recently, Cahill and collaborators [106] have proposed similar empiric expressions for ⌧U and

⌧N following the work by Morelli et al. we have discussed in the previous Chapter [27]. For

the Umklapp relaxation time they use the same expression as Morelli used for diamond-like

materials, that is

⌧U,i = (BU,iT!
2 exp(⇥D,i/3T ))

�1 . (7.5)

with i = T, L indicating the acoustic branch. However, they use di↵erent exponents a, b than

those used by Morelli for the normal relaxation time, being

⌧N,i = (BN,iT!
2)�1 , (7.6)
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Table 7.3: Fitting parameters for Bi2Te3 bulk.

BU (s3K�1) BN (sK�3) B0
N (s�1K�1)

This model 7.0⇥ 105 0.75⇥ 10�32 4.0⇥ 105

but no reasoning is given for such choice.

7.2 Bi2Te3 thermal conductivity

According to the procedure followed along this work, we have first calculated the thermal con-

ductivity of the bulk sample. The values of the fitting parameters BU , BN and B0
N providing

a reasonable tendency of the thermal conductivity with temperature, in agreement with the

available experimental data, are shown in Table 7.3. The resulting curve for (T ) is shown

in Fig. 7.1. Next, by changing the value of Le↵ by those corresponding to the NWs (see

Tab. 7.2), we obtain their thermal conductivity, also shown in Fig.7.1, being in reasonable

agreement with data at room temperature.

As expected, the thermal conductivity is very near to the pure kinetic regime, since this

material has a very low thermal conductivity (very resistive). This is a hint to believe that

along the considered temperature intervals, the dominating scattering mechanism is the Umk-

lapp scattering. As we discussed in the previous Section, as the temperature reaches the Debye

temperature the probability of resistive three-phonon processes to occur is very high, and ac-

cording to Pomeranchuk [107], even four-phonon processes should be taken into account since

their probability to happen increases when we exceed the Debye temperature.

Note that, due to the di↵erent synthesis and characterization techniques [108], it is still

not clear how much reduction may su↵er the thermal conductivity when nano structuring this

material, specially at the 50-100nm size-scale [109]. Actually, in the literature we can find

very di↵erent values of the thermal conductivity for such small wires. On one hand, values of

an order of magnitude lower than bulk [110]. On the contrary, values near those of bulk [111].

Therefore, it is very di�cult to figure out a theoretical way to predict which type of system

will have more desirable thermoelectric e�ciency. While awaiting more experimental data on

the reported nanowires, our theoretical thermal conductivity predictions on the behavior of

 with temperature and size may provide useful information to experimentalist, and it is a

useful tool to study the potential thermoelectric interest of these NWs, as we will discuss in

the next Section.
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Figure 7.1: (a) Thermal conductivity of bulk Bi2Te3 and NWs with several diameters oriented in the

crystallographic direction-[110] compared to experimental experimental measurements (symbols). (b)

Thermal conductivity prediction of a set of NWs with diameters ranging from 350 nm to 100 nm.

Bulk is also shown for reference.
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7.3 Thermoelectric applications

We assume a thermoelectric nanowire of radius r and length L whose ends are kept at temper-

atures TH and TL (High and Low temperatures, respectively). As a consequence of Seebeck

e↵ect, the temperature di↵erence produces a voltage di↵erence, which may be the source of

an electric current. The maximum e�ciency of the thermoelectric energy conversion is

⌘max =
TH � TL

TH

p
1 + ZTav � 1p

1 + ZTav + TL/TH

, (7.7)

with Tav the average temperature Tav =
1
2
(TH + TL). Thus, the thermoelectric figure of merit

Z = S2�/ (7.8)

with S the Seebeck coe�cient, � the electrical conductivity and  the thermal conductivity,

is the key material parameter in the expression for the e�ciency. As it is well known, one of

the ways of enhancing the value of Z is by reducing the thermal conductivity, which is the

sum of the phonon and the electron (and hole) contributions, p and e respectively.

We will take into consideration an important e↵ect: The increase of the e�ciency as a

result of a reduction of the thermal conductivity due to size-e↵ects.

Therefore, reducing r reduces the phonon e↵ective conductivity and enhances the value of

Z. Since the electronic mean free path is usually much shorter than that of phonons, we will

consider that e is not modified by the radius. In addition, p >> e, so we will consider e as

a constant value indirectly included in the fitting of p to the bulk data. If one considers only

the r dependence of the thermal conductivity, one has that the smaller the radius, the higher

value of Z, and there is not a finite optimal nanowire radius. To study the enhancement of

ZT due to the reduction of , we have simulated the 350 nm and 120 nm diameter NWs

with COMSOL Multiphysics. The nanowires have the same length 20 µm, and the bottom

of the nanowire is fixed at room temperature. The calculations are made are under vacuum

conditions to avoid heat dissipation. Further, we have assumed bulk values for S and � for the

sake of simplicity, since for these nanoscale sizes they are expected not to vary significantly,

but in general both will depend on the size as well. In Fig. 7.2 we show the calculated value

of the figure of merit as a result of the predicted .

If we apply an electric voltage to the NW, then a temperature di↵erence is generated

between the ends of the NW and viceversa. This is the thermoelectric e↵ect. In Fig 7.3

we show the results of the simulation of the �T generated for an applied voltage ranging



7.3. THERMOELECTRIC APPLICATIONS 161

100 150 200 250 300 350 400

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

T heoretica l4properties 4350nm4diameter4NW s

4

4

4S =10 >444(V /K )
4σ=1054(S /m)
4k 4 (W /K =m)
4Z T

u
.a
.

T empera ture 4(K )

100 150 200 250 300 350 400

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

*S ,10 *-4*(V /K )
*σ,105*(S /m)
*k * (W /K ,m)
*Z T

T heoretica l*properties *100nm*diameter*NW s

*

*

u.
a.

T empera ture *(K )

Figure 7.2: Bi2Te3 thermal properties for 350 nm and 100 nm NWs at several temperatures. S and

� are taken from bulk as it is not expected to change for these NWs’ diameter range.  is calculated

with the BCM. ZT calculated with Eq. (7.8) Courtesy of M.M. Rojo.
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ΔT
 

100nm 

350nm 

Figure 7.3: Voltage vs temperature di↵erence for the several NWs with diameters ranging from 350

nm to 100nm. Courtesy of M.M. Rojo.
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from [1-10] mV, for di↵erent diameters of the NWs. With this, we can calculate the ZTav

in terms on the voltage for each NW. The results are shown in Fig.7.4. In the plot we can

observe that the figure of merit ZT is expected to increase above 1.6 for the 100nm NW under

certain values of the applied voltage across the sample, while the 350nm NW remains near

bulk values. Although this preliminary study is a first approximation in ideal conditions, it

is a good starting point for further research. A refinement in the calculations will include

measured values of the electric conductivity and Seebeck coe�cient in the nanowires, and

taking into account the electronic contribution to the thermal conductivity by using a simple

model which could provide reliable values at the nanoscale.



Chapter 8

Conclusions

In this last Chapter we stress and summarize the main conclusions of this Ph.D. Thesis:

1. Thermal transport regimes

Whereas the role of resistive scattering (Umklapp, impurities, boundaries) is well-known

and it is the basis of most current models of thermal conductivity, the role of normal

scattering has been much more confuse and elusive. This work shows that a key point

for an accurate description of the thermal conductivity of semiconductor materials in

the whole range of temperatures is taking into account the e↵ect of normal processes

on the phonon collective behavior. The consequence of the well-defined incorporation

of normal processes, followed by the theoretical formulation by Guyer and Krumhansl,

led us to stablish two well di↵erentiated thermal transport regimes: the kinetic and the

collective, depending on which scattering mechanism (resistive or normal) is dominating

the transport. Here, for the first time, a complete study of the thermal conductivity in

terms of these two thermal transport regimes is developed and implemented in several

materials.

2. The Kinetic regime

In the kinetic regime N-processes are negligible. Each phonon mode contributes inde-

pendently to the heat flux and so the equation of the entropy production balance must

be fulfilled individually by each mode.

3. The Collective regime

In the collective regime N-processes dominate. Momentum is conserved and shared

among the phononic modes through N-processes, this enhances the e↵ect of the resistive
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processes. The phonons behave as a collectivity, rising a total heat flux and so the

equation of the entropy production balance must be fulfilled globally.

4. Switching factor

We have included a switching factor (Eq. (4.75)) that determines the transport regime

in terms of the normal and resistive mean scattering times. The continuos transition

between both regimes happens as normal scattering gains importance versus resistive

scatterings. Such a switching factor was already proposed by Guyer and Krumhansl,

but it had not been applied since then. Here, we have further clarified its physical

meaning and practical relevance.

5. Higher-order non-equilibrium e↵ects

We have also included higher-order non-equilibrium e↵ects through an analytical func-

tion F (Le↵) (Eq. 4.80) in the collective term of the thermal conductivity to generalize

the model to any kind of samples depending on its geometry and characteristic size.

This factor, which was not considered by Guyer and Krumhansl, improves the agree-

ment with the experimental data. It has also a conceptual interest, because in principle,

the Knudsen number acts as an indicator of when high-order e↵ects should be consid-

ered.

6. Thermal conductivity in the Kinetic-collective model

The expression of  (Eq. (4.81)) given by the Kinetic-collective model is valid for all

ranges of temperatures. This expression is obtained by combining both the variational

method and the relaxation-time approximation approaches under entropic considera-

tions. This equation provides a new insight into the underlying physics of thermal

transport. It introduces a thermodynamic perspective at a mesoscopic level that al-

lows us to understand the di↵erences in phonon behavior in terms of the average of the

phonon-phonon processes.

7. Predictions of thermal conductivity for bulk materials

We have applied the Kinetic-collective model to calculate the thermal conductivity of a

number of bulk samples of group IV semiconductors with di↵erent isotopic compositions

without additional fitting parameters. The model allows us to interpret the behavior

of the thermal conductivity in terms of temperature as a transition from a kinetic to a

collective regime. The results can shed light to the understanding of the phonon-phonon

interaction in this kind of samples.



167

8. Predictions of thermal conductivity at the nanoscale

Our thermal conductivity predictions of silicon thin-films and nanowires, and bismuth

telluride nanowires with characteristic sizes above 30 nm are in good agreement with

experimental data. We show that confinement or quantum e↵ects are not necessary

to understand the lattice thermal transport above these sizes and that the di�culty of

prediction at the nanoscale seems to be closely related to the thermodynamic treatment

of phonon-phonon interactions. At the same time, this allows us to establish a lower limit

for classical models, where bulk properties are enough to understand the phenomenology.

Only below this limit, of the order of a few tens of nanometers, confinement e↵ects may

play a role.

9. Role of optic phonons in thermal transport

By studying the spectral density of the thermal conductivity in silicon bulk and nanowires,

we have confirmed with our phenomenologic model, what other molecular dynamics

model predicted: a contribution of about 15% of the optical phonons in the thermal

conductivity in nanowires. Further, we have shown that the cause may be their en-

hancement through N-processes.

10. Relaxation times

We have proposed new expressions for phonon-phonon scattering rates which contain

only 3 adjustable parameters. We have found that for a family of materials with the

same lattice structure (group-IV) they are related between them through some material

properties. This makes possible to calculate their values instead of fitting them.

11. Lattice dynamics

A considerable part of the computational e↵ort of this thesis has been the explicit

calculations of the dispersion relations and the corresponding density of states of the

materials we have studied. Although it is not an original result, it has required a much

time-consuming e↵ort, but using realistic dispersion relations in the thermal conductiv-

ity integral it is a required step to study the participation in the thermal transport of

the whole frequency spectrum of phonons.

12. Overall conclusion

We have shown that an accurate treatment of N-processes not only leads to a correct

description of the thermal conductivity of samples made of a given material with sizes

ranging from macroscale down to nanoscale, but also provides an accurate description of
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the thermal conductivity of several materials with both similar and di↵erent character-

istics. Although the model may have some limits of application (not valid for extremely

reduced samples), it is expected to be general.

13. Publications

The results of this research have been presented in the following publications:

• C. de Tomas, A. Cantarero, A.F. Lopeandia, F.X. Alvarez, ”From kinetic to col-

lective behavior in the thermal transport on semiconductors and semiconductor

nanostructures.” J. Appl. Phys. 115, 164314 (2014).

• C. de Tomas, A. Cantarero, A.F. Lopeandia, F.X. Alvarez, ”Thermal conductivity

of group IV semiconductors from a kinetic-collective model.” Proc. Roy. Soc. A

470, 2169 (2014).

• C. de Tomas, A. Cantarero, A.F. Lopeandia, F.X. Alvarez, ”Lattice thermal con-

ductivity of Si nanowires”. J. Thermoelectricity, 4, 11 (2013).

• C. de Tomas, A. Cantarero, A.F. Lopeandia, F.X. Alvarez, ”The role of optic

phonons in thermal transport” (submitted).

14. Open perspectives

The open problems which could be explored with our method and concepts are:

(a) Application to other kinds of materials, as NGa, PbTe, and others, deserving much

current attention because of their interest in thermoelectric conversion.

(b) Application to more complicated geometries, as for instance, porous Si or porous

Ge phononic crystals or to SiGe superlattices. Application to functionally graded

systems, i. e. to continuously inhomogeneous systems along the heat flux direction,

trying to improve the ZT values in thermoelectric energy conversion.

(c) E↵ects of quantum confinement when the size of the nano system becomes com-

parable to the thermal wavevector of phonons by using the dispersion relations of

the nanosystem instead those of the bulk.

(d) To find an accurate description of backscattering e↵ects of phonons against rough

surfaces on the thermal conductivity.
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Appendix A

The Ewald’s method is a mathematical treatment of the Coulomb’s sum with the purpose

of accelerating the convergence of the series (an alternate series, slowly convergent) and was

derived by P.P. Ewald in the works [40, 41].

The Coulomb matrix is defined as

C↵�(q;
0) =

X

l0

�↵�(l, l
00)eiq·(rl�rl00 ) (8.1)

where l is a reference lattice, since we calculate the energy per unit cell (actually, we can take

l = 0). The force coe�cients

�↵�(l, l
00) = ez

@2�

@x↵,l@x�,l00
, (8.2)

are the derivative of the electrostatic energy or, extracting the factor ez, the derivatives of

the electrostatic potential due to the charge ez0 on the point where the charge ez is located,

times ez. This is also denominated interaction energy. The sum is performed over all the

atoms in the reference cell and all other atoms in the whole crystal.

Explicitly, the interaction energy (per unit cell) can be written as:

UCoulumb(l) =
1

4⇡"0

X

l00


e2zz0

|rl � rl00 | (8.3)

The Coulomb potential due to the charge ez0 is

�C(r � rl00) =
1

4⇡"0

ez0

|r � rl00 | (8.4)

Let us consider a Gaussian charge distribution

⇢G(r � rl00) = ez0

⇣⌘
⇡

⌘3/2

e�⌘|r�rl00 |2 (8.5)

In order to check the value of the charge corresponding to this distribution let us take the

origin of coordinates at rl00 .

q =

Z
⇢G(r)d3r = ez04⇡

⇣⌘
⇡

⌘3/2
Z 1

0

r2e�⌘r2dr = ez0
4p
⇡

Z 1

0

⇣2e�⇣2d⇣ (8.6)
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The integral in ⇣ can be obtained after integration by parts,

Z 1

0

⇣2e�⇣2d⇣ =

������

u = ⇣ du = d⇣

dv = ⇣e�⇣2d⇣ v = �1

2
e�⇣2

������
=

1

2

Z 1

0

e�⇣2d⇣ =

p
⇡

4
(8.7)

i.e. q = ez0 . The idea of Ewald is to add and subtract the point charge by an equivalent

charge distribution in the way:

�C = �G +
�
�C � �G

�
⌘ �G + �H (8.8)

The first potential is due to the Gaussian distribution and the second to the di↵erence between

the original Coulomb potential and the one corresponding to the Gaussian distribution. Actu-

ally, we need the second derivative of the potentials. Let us work first with the first potential

�G and arrive to a final expression for the Coulomb matrix corresponding to this contribution.

In order to find the derivatives it is more convenient to expand the potential in a Fourier series

as:

�G(r � rl00) =
X

⌧

�G(⌧ )ei⌧ ·(r�rl00 ) (8.9)

Thus,

�↵�(l, l
00) = ez

X

⌧

⌧↵⌧��
G(⌧ )ei⌧ ·(r�rl00 ) (8.10)

Now, we need the Fourier transform component of the potential. This is obtained through

the Poisson equation, expanding both the potential and charge density in Fourier series:

r2
X

⌧

�G(⌧ )ei⌧ ·(r�rl00 ) = �
X

⌧

⌧ 2�G(⌧ )ei⌧ ·(r�rl00 ) = � 1

"0

X

⌧

⇢G(⌧ )ei⌧ ·(r�rl00 ) (8.11)

Since the Fourier components are orthogonal,

�G(⌧ ) =
1

"0⌧ 2
⇢G(⌧ ) (8.12)

We need to calculate the Fourier component of the Gaussian distribution. From the book of

Born&Huang [Eq. (22.22), p. 216],

⇢G(⌧ ) =
1

va

Z

cell

⇢G(r)e�i⌧ ·rd3r =
1

V

Z

whole space

⇢G(r)e�i⌧ ·rd3r (8.13)

since we are dealing with a continuous distribution in the whole space (V is the total volume

of the crystal and va the unit cell volume).

⇢G(⌧ ) = ez0

⇣⌘
⇡

⌘3/2 2⇡

V

Z 1

0

r2dre�⌘r2
Z +1

�1

ei⌧r⇣d⇣ = ez0

⇣⌘
⇡

⌘3/2 2⇡

i⌧V

Z 1

0

rdre�⌘r2ei⌧r � c.c.

(8.14)
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If we change r by �r in the second integral, the integral to calculate becomes

Z 1

�1
rdre�⌘r2ei⌧r =

i⌧
p
⇡

2⌘3/2
e�⌧2/4⌘ (8.15)

This is the Fourier transform (in one dimension) of the function re�⌘r2 . The final result is

⇢G(⌧ ) =
ez0

V
e�⌧2/4⌘ (8.16)

and the potential

�G(⌧ ) =
ez0

V "0⌧ 2
e�⌧2/4⌘ (8.17)

From (8.18),

�G
↵�(l, l

00) =
e2zz0

"0

X

⌧

⌧↵⌧�
⌧ 2

e�⌧2/4⌘ei⌧ ·(rl�rl00 ) (8.18)

The Coulomb matrix becomes

CG
↵�(q;

0) =
e2zz0

"0

X

⌧

⌧↵⌧�
⌧ 2

e�⌧2/4⌘ei(⌧+q)·(r


�r0 )
NX

l0=1

ei(⌧+q)·(rl�rl0 ) (8.19)

The summation X

l0

ei(⌧+q)·(rl�rl0 ) = N (8.20)

if ⌧ + q belongs to the reciprocal lattice, otherwise

X

l0

ei(⌧+q)·(rl�rl0 ) = 0 (8.21)

This can be written in a close form as

NX

l0=1

ei(⌧+q)·(rl�rl0 ) = N
X

⌧ 0

�⌧ 0,⌧+q (8.22)

The final expression of the Coulomb matrix is

CG
↵�(q;

0) =
e2zz0

va"0

X

⌧

(⌧↵ + q↵)(⌧� + q�)

|⌧ + q|2 e�|⌧+q|2/4⌘ei⌧ ·(r�r0 ) (8.23)

We still need to calculate the contribution of

�H(r � rl00) = �C(r � rl00)� �G(r � rl00) (8.24)
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Let us take, for the moment, the origin of the coordinates system in rl00 . The expression we

have to calculate is

�H(r) =
1

4⇡"0


ez0

r
�
Z
⇢G(r � r

0)

|r � r

0| d3r0
�

(8.25)

Writing explicitly the charge distribution,

�H(r) =
ez0

4⇡"0

"
1

r
�
⇣⌘
⇡

⌘3/2
Z

e�⌘|r�r0|2

|r � r

0| d
3
r

0

#
(8.26)

Let us call R = r � r

0. We can imagine a sphere of radius r. The contribution of the charge

within this sphere can be written as the contribution of a point charge located at the origin

of coordinates, divided by 4⇡"0r (from Gauss’ Law). Thus, the previous equation can be

transformed into

�H(r) =
ez0

"0

⇣⌘
⇡

⌘3/2

1

r

Z 1

0

R2e�⌘R2

dR� 1

r

Z r

0

R2e�⌘R2

dR�
Z 1

r

Re�⌘R2

dR

�
(8.27)

and thus

�H(r) =
ez0

"0

⇣⌘
⇡

⌘3/2

1

r

Z 1

r

R2e�⌘R2

dR�
Z 1

r

Re�⌘R2

dR

�
(8.28)

The first integral,

Z 1

r

R2e�⌘R2

dR =

������

u = R du = dR

dv = Re�⌘R2

dR v = � 1

2⌘
e�⌘R2

������
=

r

2⌘
e�⌘r2 +

1

2⌘3/2

Z 1

p
⌘r

e�⇣2d⇣ (8.29)

The second integral has a primitive,

Z 1

r

Re�⌘R2

dR = v = � 1

2⌘
e�⌘R2

����
1

r

=
1

2⌘
e�⌘r2 (8.30)

The expression for the potential is finally

�H(r) =
ez0

4⇡"0r

2p
⇡

Z 1

p
⌘r

e�⇣2d⇣ =
ez0

4⇡"0r
erfc(

p
⌘r) (8.31)

The force constant

�H
↵�(l, l

00) = ez
@2�

@x↵,l@x�,l00
= �ez

@2�

@x↵,l@x�,l
= �ez

@2�

@X↵@X�

(8.32)

where X↵ is the ↵ cartesian component of R = rl � rl00
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�H
↵�(l, l

00) =
e2zz0

4⇡"0

@2

@X↵@X�

erfc(
p
⌘R)

R
(8.33)

We need to calculate the derivatives of the complementary error function. Let us call

H(
p
⌘R) =

2p
⇡

Z 1

p
⌘R

e�⌘⇣2d⇣

R
(8.34)

H 0(
p
⌘R) =

2

R

r
⌘

⇡
e�⌘R2 �

erfc(
p
⌘R)

R2
(8.35)

The second derivative,

H 00(
p
⌘R) =

4⌘3/2p
⇡

e�⌘R2

+
4

R

r
⌘

⇡
e�⌘R2

+
2

R3
erfc(

p
⌘R) (8.36)

@2H

@X↵@X�

=
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@X↵
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@R

@X�

H 0
◆

=
@2R

@X↵@X�

H 0 +
@R

@X↵

@R

@X�

H 00 (8.37)

@R

@X↵

=
X↵

R
(8.38)

@2R

@X↵@X�

=
@

@X↵

✓
X�

R

◆
=
�↵�
R

� X↵X�

R3
(8.39)

@2H

@X↵@X�

=


�↵�
R

� X↵X�

R3

�
H 0 +

X↵X�

R2
H 00 (8.40)
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Appendix B

The solution of the Boltzmann equation may be expanded in terms of higher-order deriva-

tives of the classical hydrodynamic variables (Chapman-Enskog approach) or of higher-order

fluxes (Grad approach). In this first case, the expansion parameter is `r, or equivalently

⌧c ·r. Since r is of the order of 1/R with R the radius of the system, the ratio `/R, i. e.

the Knudsen number, may reach values equal or higher than 1. In this case, it seems logical

that the solution of the Boltzmann equation should not be truncated at first-order.

From a mesoscopic approach, some authors have proposed to modify the thermal conduc-

tivity in terms of thermodynamic variables. This kind of models let us introduce in a more

natural way non-equilibrium e↵ects in situations where fluxes or gradients are high. The

inclusion of these non-equilibrium e↵ects cannot be easily made when using a microscopic ap-

proach, since the integral expressions are based mainly on equilibrium distribution functions

and these are not valid in non-equilibrium situations. From this point of view, the best and

most natural approach to include non-equilibrium e↵ects are non-equilibrium thermodynamic

models. In this work we include these e↵ects using the framework of the Extended Irreversible

Thermodynamics (EIT) [78].

When the system we are studying is very far from equilibrium it begins to be important

considering higher order terms in the fluxes equations. While the Guyer-Krumhansl formalism

stops at second order in the heat flux equation, the EIT goes beyond by including these terms

as a consequence of non-local e↵ects, which become more and more important when the size

of our samples is smaller and smaller.

According to [78], non-local e↵ects are included as a hierarchy of fluxes J (0), J (1), J (2), . . . , J (n)

with the vector J (1) standing for the heat flux j, the second order tensor J (2) standing for the

flux of the heat flux, etc. and being J (0) ⌘ rT�1. Thus, we can write

rT (�1) � ↵1J̇
(1) + �1rJ (2) = µ1J

(1) (8.41)

and generalizing

�n�1rJ (n�1) � ↵nJ̇
(n) + �nrJ (n+1) = µnJ

(n) (8.42)

being ↵i, �i, µi phenomenological coe�cients related to the relaxation times, correlations

lengths and transport coe�cients respectively. If we consider an infinite number of fluxes

and apply the Fourier’s transform to the previous equations we obtain the following expres-
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sion of the heat flux

ĵ(!,q) = �iq(!,q)T̂ (!,q) (8.43)

where upper hats designate Fourier’s transforms and (!,q) is the following continued-fraction

for the !,q-dependent e↵ective thermal conductivity

(T,!,q) =
0(T )

1 + i!⌧1 +
q2`2

1

1+i!⌧
2

+
q

2

`

2

2

1+i!⌧

3

+

q

2

`

2

3

1+i!⌧

4

+...

(8.44)

where 0(T ) is the bulk thermal conductivity in a hydrodynamic regime, that is coll, ⌧n =

↵n/µn is the relaxation time and `n is the correlation length defined through `2n = �2
n/µnµn+1.

Assuming that all the relaxation times and all the correlation lengths are equal (⌧1 = · · · =
⌧n = ⌧ and `1 = · · · = `n = `/2) independently of the order of the flux, the continued fraction

(8.44) reduces to the asymptotic limit

(T,!,q) = 0(T )
�(1 + i!⌧) +

p
(1 + i!⌧)2 + q2`22

1
2
q2`22

(8.45)

this way, with this expression, we are considering an infinite number of terms.

In the steady state approximation ! = 0, yielding

(T, q) = 0(T )

p
1 + q2`22 � 1

1
2
q2`22

(8.46)

and identifying q = 2⇡/Le↵ we finally have the expression

(T, `/Le↵) = 0(T )
L2
e↵

2⇡2`2

 s

1 + 4⇡2
`2

L2
e↵

� 1

!
(8.47)

where we call

F (Le↵) =
L2
e↵

2⇡2`2

 s

1 + 4⇡2
`2

L2
e↵

� 1

!
(8.48)

a function depending only on the mean free path ` and the dimension of the system through

Le↵ .
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Appendix C

Let us show with a little algebra, that the definition of scattering rate is valid in both the

RTA and the VM. In general, the collision term in the Boltzmann equation can be written,

for elastic scattering, as

@nq

@t

����
scat

=

Z
�q � �q0

kBT
P q0

q dq0. (8.49)

where P q0
q are the scattering transition rates from mode q to q0 when the distribution functions

correspond to equilibrium [36].

The integral (8.49) is expressing the fact that the relaxation process out of equilibrium

is modified by the terms �q � �q0 , i. e. they depend on the displacement with respect to

equilibrium of the di↵erent colliding particles. Expression (8.49) can be generalized for an

arbitrary number of colliding particles as

@nq

@t

����
scat

=
1

kBT

Z "
�q +

nX

i=1

�q
i

�
mX

j=1

�q0
j

#
P

q0
1

..q0
m

qq
1

...q
n

m

nY

i=1

j=1

dqidq
0
j , (8.50)

where q collides with {qi} giving as a result the modes
�
q

0
j

 
. Expression (8.50) shows the main

complexity of solving the BTE equation. The scattering term requires the actual distribution

function inside an integral expression establishing BTE as an integro-di↵erential equation.

To reach an analytical solution, the approaches we have presented, RTA and VM, are usually

based on the fact that the distribution used in the integral does not modify significantly the

final result in some limiting situations. In RTA we assume that the system is close enough

to equilibrium that the di↵erences between using the actual form of the distribution or the

equilibrium form in the collision integral (8.50) is small. This is equivalent to say that the

only mode out of equilibrium is that with wavevector q and that the other modes stay in

equilibrium. Thus

�q
i

= �q0
j

= 0 8 qi 6= q, q

0
j 6= q . (8.51)

In this case,

@nq

@t

����
scat

=
�q

kBT

Z
P

q0
1

..q0
m

qq
1

...q
n

m

nY

i=1

j=1

dqidq
0
j . (8.52)
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If we substitute Eq. (4.53) in (8.52) we have

@nq

@t

����
scat

=
nq � n0

q

n0
q(n

0
q + 1)

Z
P

q0
1

..q0
m

qq
1

...q
n

m

nY

i=1

j=1

dqidq
0
j . (8.53)

Thus, we can define the relaxation time ⌧q of mode q as

1

⌧q
=

1

n0
q(n

0
q + 1)

Z
P

q0
1

..q0
m

qq
1

...q
n

m

nY

i=1

j=1

dqidq
0
j (8.54)

and so, we obtain the BTE solution in the well known RTA approach

@nq

@t

����
scat

= �
nq � n0

q

⌧q
. (8.55)

We can make a similar assumption when normal scattering is the dominant relaxation

process. The only change is that the distribution function to which the actual distribution

function will relax is that given by Eqs. (4.56)-(4.57). In that case, the condition (8.51)

cannot be fulfilled locally by each mode, but in the linear regime not much error is made in

Eq. (8.50) [36] if we consider that

Z
�q

i

P
q0
1

..q0
m

qq
1

...q
n

dqi =

Z
�q0

j

P
q0
1

..q0
m

qq
1

...q
n

dqi = 0 8 i, j . (8.56)

This condition leads to the same result as that obtained near equilibrium (8.53)-(8.54), since

condition (8.56) applied to Eq. (8.50) cancels all the terms except the first one, as condition

(8.51) also holds. Thus, we can use the same expression for the scattering rates in both limiting

situations, near equilibrium and in non-equilibrium, despite of the very di↵erent nature of the

two situations. Note that by using Eqs. (4.54)-(4.55) and (4.56)-(4.57) in Eq. (8.56) we are

not stating that resistive processes are suppressed. In fact, P
q0
1

..q0
m

qq
1

...q
n

are the transition rates for

all the resistive scattering processes. We are only considering that the collision integral (8.56)

does not change significantly when one uses the actual form of the distribution function or

the proposed approximations in the corresponding regimes.
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