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List of symbols

J (f) Julia set of a holomorphic map f .
F(f) Fatou set of a holomorphic map f .
< w0 > The p-cycle {w0, · · · , f p−1(w0) = wp−1} of a holomor-

phic map f , where w0 denotes the marked point of the
cycle.

A(< w0 >) The basin of attraction of the p-cycle < w0 >.
A∗(wq) The connected component of A(< w0 >) containing the

point wq of < w0 >

A∗(< w0 >) The immediate basin of attraction of < w0 > given by?p−1
n=0 A

∗(wn).
D The unit disk.
D∗ The punctured disk D \ {0}.
S1 The unit circle.
I The reflection with respect to the unit circle z → 1/z.
R The real line.
?I The reflection with respect to the real line z → z.
C The complex plane.
C∗ The punctured plane C \ {0}.
?C The Riemann sphere C ∪ {∞}.
σ0 The standard complex structure.
µ0 The Beltrami coefficient of the standard complex struc-

ture.
Tτ The tongue of type τ .
rτ The root of the tongue Tτ .
aτ The tip of the tongue Tτ .
ETτ The extended tongue of type τ .
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Resum en Català

Aquesta tesi doctoral pertany a l’àmbit dels sistemes dinàmics discrets al pla com-
plex, és a dir, la iteració de funcions analítiques en una variable complexa. Hi ha una
llarga llista de resultats importants obtinguts gràcies a la complexificació de l’aplicació
logística i d’altres funcions unimodals i bimodals provinents de, per exemple, models
discrets biològics i econòmics o algorismes de cerca d’arrels, entre d’altres. Les eines
complexes ens permeten veure fenòmens que no són visibles a la recta real. Els com-
portaments caòtics que poden ser vistos per a aquests models (cascades de bifurcació,
etc.) adquireixen una nova dimensió quan són observats al pla complex, on poden ser
entesos molt millor.

Aquesta àrea de les matemàtiques va néixer a principis del segle XX com a conse-
qüència de les investigacions sobre el mètode de Newton, el ben conegut algorisme de
cerca d’arrels, al pla complex. Fins aleshores només s’havien dut a terme estudis locals,
però P. Fatou i G. Julia van encarar el problema des d’un punt de vista més global.
Van classificar les possibles òrbites estables, en termes de normalitat. La frontera entre
regions estables, coneguda actualment com a conjunt de Julià, és un objecte invariant
d’una gran bellesa i complexitat que fou descrit per Fatou i Julia de forma acurada tot
i no comptar amb l’ajut d’ordinadors.

Les bases de la teoria foren establertes durant aquests començaments, arribant tant
lluny com era possible amb les eines de que es disposava. Després vingueren uns quants
anys de relativa poca activitat que duraren fins a mitjans dels anys 80, quan la l’àrea
va renéixer degut a dos factors diferents. D’una banda, D. Sullivan [Sul85] va provar
una de les principals conjectures deixades obertes per Fatou i Julia, la no existència de
conjunts errants, per mitjà d’eines quasiconformes. Aquestes eines, provinents de l’àrea
de la geometria analítica, han estat clau per a molts resultats posteriors i són fortament
usades en aquesta tesi. D’altre banda, l’arribada dels primers ordinadors va permetre a
B. Mandelbrot dibuixar la primera imatge del que es coneix actualment com a conjunt
de Mandelbrot, l’espai de connectivitat del pla de paràmetres de la família quadràtica
z2 + c. La visualització dels primers conjunts fractals, juntament amb les noves eines
disponibles per encarar els problemes oberts deixats per Fatou i Julia, van atreure
l’interès de molts matemàtics. Com a conseqüència, es van fer avanços significatius,
alguns mereixedors del més alt reconeixement reconeixements en matemàtiques (com
ara J. C. Yoccoz i C. McMullen, medallistes Fields en 1994 i 1998, respectivament).

Donada una funció racional f : ?C → ?C, on ?C = C ∪ {∞} denota l’esfera de
Riemann, considerem el sistema dinàmic donat pels iterats de f . L’esfera de Riemann
es divideix en dos conjunts completament invariants per f : el conjunt de Fatou F(f),
definit com el conjunt de punts z ∈ ?C on la família {fn, n ∈ N} és normal en algun
entorn de z, i el seu complement, el conjunt de Julià J (f). La dinàmica de les òrbites
de F(f) és estable en el sentit de normalitat o equicontinuitat mentre que la dinàmica
a J (f) presenta un caràcter caòtic. El conjunt de Fatou F(f) és obert i, per tant,
el conjunt de Julià J (f) és tancat. Si a més el grau de la funció racional f és major
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2 Resum en Català

o igual que 2, aleshores el conjunt de Julià J (f) és la clausura del conjunt de punts
periòdics repulsors de f , sempre no buida.

Les components connexes de F(f), anomenades components de Fatou, són enviades
les unes a les altres per la funció f . Sullivan [Sul85] va provar que tota component de
Fatou d’una aplicació racional és o bé periòdica o bé preperiòdica. Se segueix del Teo-
rema de Classificació (vegeu Teorema 1.1.18), que tota component de Fatou periòdica
d’una funció racional és o bé la conca d’atracció d’un cicle atractor o parabòlic, o bé
un domini de rotació simplement connex (un disc de Siegel), o bé un domini de rotació
doblement connex (un anell de Herman). A més, qualsevol d’aquestes components
periòdiques està relacionada amb algun punt crític, un punt z ∈ ?C tal que f ?(z) = 0.
Més concretament, les conques d’atracció dels punts periòdics attractors o parabòlics
contenen almenys un punt crític mentre que els discs de Siegel i els anells de Herman
tenen orbites crítiques acumulant-se a les seves fronteres. Vegeu el capítol 1 per a una
introducció a la dinàmica de funcions racionals.

Tota aplicació holomorfa de grau finit del disc unitat D en sí mateix és un producte
d’automorfismes de D, i.e., un producte de Blaschke finit i, per tant, està definit (per
reflexió) a tota l’esfera de Riemann. Els productes de Blaschke han estat usats de forma
repetida com a models en dinàmica complexa. Per exemple, els productes Br,α(z) =
e2πiαz2(z − r)/(1 − rz), on α, r ∈ R i r > 3, van ser utilitzats per M. R. Herman
[Her79] per tal de provar l’existència dels anells de Herman (vegeu Figura 1.4 (d)) i,
amb paràmetres complexos, per X. Buff et al [BFGH05] per estudiar les deformacions
quasiconformes d’aquests objectes. També van ser usats, prenent r = 3, per provar
el celebrat resultat que ens diu que les fronteres dels discs de Siegel amb número
de rotació de tipus constant dels polinomis de grau 2 són corbes de Jordan (vegeu
els treballs de E. Ghys [Ghy84], M. R. Herman [Her86, Her87], A. Douady [Dou87]
i G. Świa̧tek [Świ88]). Aquest darrer resultat va ser generalitzat posteriorment per
C. Petersen i S. Zakeri [PZ04].

La família de Blaschke
L’objectiu d’aquesta tesi és estudiar la dinàmica dels productes de Blaschke de grau 4
donats per

Ba(z) = z3 z − a

1− āz
, (1)

on a, z ∈ C. Per tot valor de a ∈ C, els punts z = 0 i z = ∞ són punts fixos
superattractors de grau local 3 (c.f. [CFG15]). Denotem per A(0) i A(∞) les seves
conques d’atracció i per A∗(0) i A∗(∞) les seves conques immediates d’atracció, i.e.,
les components connexes de A(0) i A(∞) que contenen z = 0 i z = ∞, respectivament.
Si |a| ≤ 1 aquestes són les úniques components de Fatou, separades pel conjunt de
Julià que és necessàriament S1. Per qualsevol altre paràmetre, Ba té dos punts crítics
lliures (diferents si |a| ?= 2) que poden donar lloc a l’existència d’altres components
de Fatou diferents de A(0) i A(∞). Tanmateix, si |a| > 2, la família és essencialment
unicrítica per efecte de la simetria respecte de S1 que, en aquest cas, lliga en cert sentit
les òrbites dels punts crítics.

Volem remarcar que els productes de Blaschke Ba són pertorbacions racionals del
doubling map R2(z) = z2 (donat de forma equivalent per θ → 2θ (mod 1)). De fet, els
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Ba convergeixen de forma uniforme en subconjunts compactes del pla complex punxat
C∗ a e4πiArg(a)z2 quan a tendeix a ∞.

Els Ba són un cas particular d’una família de Blaschke de grau m+2 que, tal i com
veurem al capítol 7, comparteix moltes de les seves propietats. Ve donada per

Ba;m(z) = zm+1 z − a

1− āz
,

on a, z ∈ C i m ≥ 1 és un nombre natural. Aquestes funcions són gairebé bicrítiques
en el sentit que els Ba;m tenen z = 0 i z = ∞ com a punts fixos superatractors de
grau m+1 i dos punts crítics lliures que controlen l’existència de qualsevol component
de Fatou periòdica altre que A(0) i A(∞). Fixat m ≥ 1, Ba;m és una família racional
de pertorbacions de l’aplicació del cercle Rm(z) = zm. Si |a| ≥ (m + 2)/m, Ba;m|S1

és un cobriment de grau m del cercle (vegeu la secció 7.1). En particular, si |a| > 3,
aleshores Ba;1|S1 és un homeomorfisme del cercle i la dinàmica de Ba;1 és coneguda. De
fet, la família Ba;1 és una reparametrització dels Br,α usats per Herman [Her79] per
tal de provar l’existència dels anells homònims (vegeu Lema 7.1.1). Conseqüentment,
ens centrem en l’estudi de la dinàmica de Ba;m per m ≥ 2, que ve determinada per
la posició dels dos punts crítics lliures i el pol respecte del cercle unitat (vegeu la
secció 7.1). Tanmateix, les possibles configuracions són independents de m i, per tant,
les diferents dinàmiques que apareixen per als Ba;m, m > 2, també es donen per als
Ba = Ba;2. Aquest és el motiu pel qual ens centrem en l’estudi de la família Ba i
discutim després com els resultats obtinguts són generalitzats per als productes de
Blaschke Ba;m amb m ≥ 2.

La connectivitat del conjunt de Julià és una propietat topològica tot sovint molt
relacionada amb la dinàmica de la funció (vegeu e.g. [Shi87], [Prz89], [Pil96] and
[DR13]). És equivalent a que totes les components de Fatou siguin simplement con-
nexes. Donat un polinomi P , el seu conjunt de Julià J (P ) és connex si i només si
l’òrbita del punt crític no és capturada per la conca d’atracció d’infinit (c.f. [Mil06]).
Tanmateix, aquesta classificació no és vàlida per a funcions racionals generals. A
diferència dels polinomis, aquestes poden tenir anells de Herman que clarament des-
connecten el conjunt de Julià, que pot consistir fins i tot en un conjunt de Cantor de
corbes de Jordan (vegeu [McM88]). Això no obstant, la família Ba comparteix moltes
de les propietats dels polinomis en aquest aspecte, com ara la no existència d’anells
de Herman (vegeu Proposició 3.2.3). També provem el següent criteri de connectivitat
del conjunt de Julià que, per als paràmetres a tals que |a| ≥ 2, és similar al dels poli-
nomis. Es basa en la posició del punt crític c+ ∈ C \D respecte de la conca immediata
d’atracció d’infinit A∗(∞).

Teorema 3.2.1. Donat un producte de Blaschke Ba com a (1), tenim que:

(a) Si |a| ≤ 1, aleshores J (Ba) = S1.

(b) Si |a| > 1, aleshores les components connexes de A(∞) i A(0) són simplement
connexes si i només si c+ /∈ A∗(∞).

(c) Si |a| ≥ 2, tota component de Fatou U tal que U ∩ A(∞) = ∅ i U ∩ A(0) = ∅ és
simplement connexa.

Conseqüentment, si |a| ≥ 2, aleshores J (Ba) és connex si i només si c+ /∈ A∗(∞).
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Els productes de Blaschke Ba amb |a| > 2 que no tenen cap cicle atractor o parabòlic
a S1 poden ser relacionats amb els polinomis cúbics. Com veurem al capítol 4, per tals
paràmetres Ba|S1 és quasisimètricament conjugat al doubling map i es pot realitzar una
cirurgia quasiconforme que els relaciona amb la família Mb(z) = bz2(z − 1) on b ∈ C.
Aquesta cirurgia estableix una conjugació conforme entre Mb i Ba sobre el conjunt de
punts que no cauen mai a D sota iteració de Ba i els punts que no són atrets a z = 0
sota iteració de Mb. En particular, si Ba te un cicle atractor o parabòlic contingut a
C \ D, aquesta cirurgia conjuga Ba amb Mb conformement a la seva conca d’atracció.
Aquests polinomis cúbics amb un punt fix superatractor han estat l’objecte d’estudi
de diversos articles. Per exemple, J. Milnor va introduir, en una versió preliminar de
[Mil09], l’estudi dels polinomis cúbics amb un cicle superatractor de període p. Més
endavant P. Roesch [Roe07] va investigar el tall S1 de polinomis cúbics amb un punt
fix superatractor tot provant algunes de les conjectures plantejades per Milnor. També
van ser usats per Tan L. [Tan97] en l’estudi de l’espai de paràmetres de les aplicacions
de Newton NP provinents de polinomis cúbics P , per mitjà dels anomenats matings.

Si Ba té un cicle amb punts dins i fora de D aleshores la situació és diferent. Tot i
que la cirurgia descrita anteriorment encara és possible, molta informació és perduda
donat que, sota la nova aplicació, el punt crític sempre rau a la conca d’atracció de
z = 0. Els paràmetres per als quals l’òrbita de c+ ∈ C \D entra com a mínim un cop a
D són anomenats paràmetres d’intercanvi i les components connexes d’aquest conjunt
de punts són anomenades regions d’intercanvi. Dins d’aquestes regions, la dependència
no holomorfa dels Ba respecte del paràmetre a dona lloc al que semblen ser petites
“còpies” del Tricorni, l’espai de connectivitat dels antipolinomis pc(z) = z2 + c (vegeu
[CHRSC89] i Figura 5.4 (a)). Milnor [Mil92] va mostrar que una situació similar es
dona per als polinomis cúbics amb coeficients reals tot introduint el concepte d’aplicació
antipolynomial-like. Distingim dos tipus de cicles atractors per als paràmetres situ-
ats a les regions d’intercanvi. Diem que un cicle és bitransitiu si la conca immediata
d’atracció conté els dos punts crítics, cadascun d’ells en una component connexa difer-
ent. Diem que el cicle és disjunt si hi ha dos cicles atractors diferents dels de zero i
infinit. La dinàmica que es dóna a aquestes regions d’intercanvi ens permet construir
una aplicació polynomial-like de grau 2 o 4 en un entorn de cada paràmetre d’intercanvi
bitransitiu o disjunt. Si l’aplicació polynomial-like és de grau 4 fem servir les aplica-
cions antipolynomial-like introduïdes per Milnor per tal de veure que el polinomi de
grau 4 a el qual és híbridament equivalent és de la forma p2

c . L’equivalència híbrida és
un tipus de conjugació més forta que la topològica (i fins i tot que la quasiconforme).
Més concretament, provem el següent teorema.

Teorema 5.3.4. Sigui a0 un paràmetre d’intercanvi amb un cicle atractor o parabòlic
de període p > 1. Aleshores hi ha un obert W que conté a0 i un p0 > 1 divisor de p
tals que, per cada a ∈ W , hi ha dos oberts U i V amb c+ ∈ U tals que (Bp0

a ;U, V ) és
una aplicació polynomial-like. A més,

(a) Si a0 és bitransitiu, (Bp0
a ;U, V ) és híbridament equivalent a un polinomi de la forma

p2
c(z) = (z2 + c)2 + c.

(b) Si a0 és disjunt, (Bp0
a ;U, V ) és híbridament equivalent a un polinomi de la forma

p2
c(z) = (z2 + c)2 + c o de la forma z2 + c.
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Se sap que la frontera de tota component de Fatou acotada d’un polinomi, amb
l’excepció dels discs de Siegel, està acotada per una corba de Jordan. Tanmateix, això
no és cert per a funcions racionals sense condicions adicionals (e.g. finitud postcrítica
[Pil96]). En el nostre cas, com a conseqüència de les dues construccions prèviament
esmentades, sabem que la frontera de tota component connexa de la conca d’atracció
d’un cicle atractor o parabòlic no contingut a S1 i altre que z = 0 i z = ∞ és una corba
de Jordan (vegeu Proposició 5.4.1). De fet, si Ba té tal cicle, obtenim una conjugació
entre Ba i un polinomi que envia la conca immediata d’atracció del cicle de Ba a la
conca immediata d’atracció d’un cicle acotat d’un polinomi. En aquest sentit podem
dir que, si |a| > 2 i Ba|S1 no té cap cicle atractor o parabòlic, la dinàmica de Ba és
d’alguna forma polinomial.

Espai de paràmetres de la família de Blaschke
Després d’investigar el pla dinàmic dels productes de Blaschke Ba estudiem el seu
espai de paràmetres (vegeu la coberta i Figura 5.1). Una funció racional és hiper-
bòlica si totes les seves òrbites crítiques s’acumulen en cicles atractors. Una component
hiperbòlica és una component connexa del conjunt obert H = {a | Ba és hiperbòlic}.
La parametrització de components hiperbòliques és ben coneguda si les funcions de-
penen de forma holomorfa en els paràmetres (vegeu [DH85a], c.f. [BF14]). Altra-
ment, apareixen dificultats afegides. S. Nakane i D. Schleicher [NS03] estudien la
parametrització de components hiperbòliques amb cicles de període parell de la família
d’antipolinomis pc,d(z) = zd + c. Nosaltres ens centrem en la parametrització de com-
ponents hiperbòliques amb paràmetres de tipus disjunt fent server eines diferents de
les emprades a [NS03]. Noteu que, degut a la simetria dels Ba, els cicles disjunts són
simètrics respecte de S1 i, per tant, tenen el mateix període i multiplicadors conjugats
(vegeu Teorema 5.2.2). Conseqüentment, donada una component hiperbòlica Ω amb
paràmetres disjunts, té sentit definir l’aplicació multiplicador Λ : Ω → D que envia cada
a ∈ Ω al multiplicador del cicle atractor tal que la seva conca immediata d’atracció
conté c+.

Teorema 5.4.2. Sigui Ω una component hiperbòlica disjunta, Ω ⊂ {a ∈ C; |a| > 2}.
Aleshores l’aplicació multiplicador és un homeomorfisme entre Ω i el disc unitat.

Al teorema previ fem servir l’aplicació multiplicador per a veure que tota com-
ponents hiperbòlica disjunta de paràmetres tals que |a| > 2 és homeomorfa al disc
unitat. Donat que el multiplicador de qualsevol cicle bitransitiu és un nombre real no
negatiu (vegeu Proposició 5.4.3), el resultat previ no s’aplica a components bitransi-
tives. Aquest fenomen ja va ésser detectat a [NS03] per als polinomis p2

c,d.
Donada una família ha, a ∈ ∆, d’homeomorfismes del cercle que preserven l’orien-

tació, podem assignar un número de rotació a cadascun dels seus membres que descriu
la mitjana de rotació asimptòtica dels punts del cercle. Les llengües (racionals) dels ha
es defineixen com els conjunts de paràmetres a ∈ ∆ tals que ha té nombre de rotació
p/q ∈ Q. En aquest cas, ha té un cicle atractor o parabòlic de període q a S1. El
concepte de llengua va ser introduït per V. Arnold [Arn61] per la família estàndard de
pertorbacions de la rotació rígida
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θ → θ + α + (β/2π) sin(2πθ) (mod 1)

on 0 ≤ θ < 1, 0 ≤ α ≤ 1 i 0 ≤ β ≤ 1. Les llengües han estat estudiades per
diversos autors, tant per la família estàndard (vegeu e.g. [Boy86], [WBJ91], [EKT95]
o [dlLL11]) com per altres famílies d’homeomorfismes del cercle com ara els productes
de Blaschke de grau 3 Br,α introduïts per Herman [Her79]. Si les funcions ha no són
homeomorfismes sinó que són cobriments de grau 2 de S1, no els hi podem assignar
un número. Tanmateix, les llengües encara poden ser definides com els conjunts de
paràmetres per als que ha té un cicle atractor a S1. Podem associar un tipus τ (a)
a cada ha, on τ (a) és un punt periodic del doubling map que descriu com el cicle
atractor de ha rota asimptòticament. En aquest escenari, la llengua Tτ és definida com
els conjunts de paràmetres a ∈ ∆ de tipus τ . Aquestes llengües van ser estudiades
per M. Misiurewicz i A. Rodrigues [MR07, MR08] per la família estàndard doble de
pertorbacions del doubling map

θ → 2θ + α + (β/π) sin(2πθ) (mod 1)

on 0 ≤ θ < 1, 0 ≤ α ≤ 1 i 0 ≤ β ≤ 1. Més endavant, A. Dezotti [Dez10] va
usar l’extensió complexa de la família estàndard doble al pla complex punxat, donada
per z → eiαz2eβ/2(z−1/z), per tal de provar la connectivitat de les llengües. Aquesta
família també va ser estudiada per R. de la Llave, M. Shub i C. Simó [dlLSS08]. Més
específicament, fixat un nombre natural k ≥ 2, ells van estudiar l’entropia de la família
estàndard k-èsima θ → kθ + α + ? sin(2πθ) (mod 1) per ? petit.

Donat que els productes de Blaschke Ba són pertorbacions racionals del doubling
map, Ba|S1 pot ser considerat l’anàleg racional de la família estàndard doble. Tot i
que no hi ha una expressió simple de la restricció de Ba a S1, la seva dinàmica global
és més senzilla que en el cas transcendent. Si |a| ≥ 2, els Ba|S1 són cobriments de
grau 2 del cercle unitat i les llengües estan ben definides. Inspirats pels mencionats
treballs de Misiurewicz, Rodriguez i Dezotti, veiem que aquestes llengües són connexes
i simplement connexes. Més precisament, provem el següent teorema.

Teorema 6.2.1. Donat un punt periòdic τ del doubling map, tenim que:

(a) La llengua Tτ és no buida i consisteix en tres components connexes (només una si
considerem les simetries a l’espai de paràmetres donades per les arrels terceres de
la unitat).

(b) Cada component connexa de Tτ conté un únic paràmetre rτ , anomenat l’arrel de
la llengua, tal que Brτ té un cicle superatractor a S1. L’arrel rτ satisfà |rτ | = 2.

(c) Cada component connexa de Tτ és simplement connexa.

(d) La frontera de cada component connexa de Tτ consisteix en dues corbes que són
funcions continues respecte de |a| i s’intersequen en un únic paràmetre aτ anomenat
la punta de la llengua.

La fontera d’una llengua Tτ de període p és doncs la unió de dues corbes de paràme-
tres que s’intersequen a la punta aτ de la llengua per als quals Ba|S1 té un cicle parabòlic
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de període p i multiplicador 1. Al llarg de ∂Tτ \ aτ hi ha una bifurcació sella-node per-
sistent, dos cicles de període p col·lisionen a S1 i en surten. Cal remarcar que aquest
tipus de bifurcacions no es poden donar per famílies holomorfes uniparamètriques que
depenen holomorfament del paràmetre. La bifurcació sella-node a la recta real va ser
estudiada per M. Misiurewicz i R. A. Pérez [MP08] des d’un punt de vista complex.
Ells van caracteritzar, depenent del signe de la derivada Schwarziana, si el cicles de
periode p que surten del cercle unitat (o la recta real) són atractors o repulsors. Crowe
et al [CHRSC89] van mostrar que aquest tipus de bifurcacions també es donen al Tri-
corni, l’espai de connexitat dels antipolinomis pc(z) = z2 + c. El seu resultat va ser
generalitzat més endavant per J. H. Hubbard i D. Schleicher [HS12]. Ells van estu-
diar aquestes bifurcacions als Multicornis, l’espai de bifurcacions dels antipolinomis
pd,a = zd+a, tot fent servir l’índex holomorf dels punts fixos. Usant tècniques similars,
nosaltres provem el següent teorema.

Teorema 6.3.2. Sigui aτ la punta d’una llengua Tτ de període p. Aleshores, hi ha
un entorn obert U de aτ tal que si a ∈ U aleshores o bé a ∈ Tτ , o bé a ∈ ∂Tτ o bé a
pertany a una component hiperbòlica disjunta.

Si a pertany a l’anell obert A1,2 de radi interior 1 i radi exterior 2, aleshores els
productes de Blaschke Ba|S1 no són cobriments de grau 2 de cercle unitat. Tot i això,
el cicle atractor associat a una certa llengua pot ser continuat dins de A1,2. Aquest
fet dona lloc a les anomenades l lengües esteses ETτ , conjunts oberts de paràmetres a,
|a| > 1, per als que Ba|S1 té un cicle atractor que pot ser continuat real analíticament
fins al cicle atractor d’una llengua Tτ . Tanmateix, les llengües esteses no són disjuntes.
De fet, si a ∈ A1,2, aleshores els dos punts crítics c± de Ba rauen al cercle unitat i les
seves òrbites no estan relacionades per simetria. Conseqüentment, aquestes es poden
acumular en cicles atractors diferents tot permetent a un paràmetre pertànyer a dues
llengües esteses simultàniament. Nosaltres ens centrem en l’estudi de la llengua estesa
fixa ET0 i provem el següent resultat.

Teorema 6.4.3. Donades dues components connexes de la llengua estesa fixa T0, la
intersecció de les seves extensions a A1,2 és buida. La frontera de cada component con-
nexa de la llengua estesa ET0 consisteix en dues components connexes. La component
exterior consisteix en paràmetres per als quals hi ha un punt parabòlic fix de multipli-
cador 1. La component interior consisteix en paràmetres per als quals hi ha un punt
parabòlic fix de multiplicador −1. A més, hi ha una bifurcació de doblament de període
que té lloc al llarg de la corba de paràmetres interiors.

La tesi s’estructura com segueix. Al capítol 1 fem un repàs dels resultats preliminars
usats al llarg del text. Primer expliquem els conceptes bàsics de la dinàmica de les
funcions racionals. Després fem un repàs de les aplicacions del cercle, tot introduint
els conceptes de producte de Blaschke i llengües. Finalment, presentem la fórmula de
Riemann-Hurwitz i com s’aplica a la dinàmica de funcions racionals.

Al capítol 2 donem una introducció a la cirurgia quasiconforme. Primer de tot
definim els conceptes d’aplicació quasiconforme, estructures quasiconformes i pullback
sota funcions que preserven l’orientació i introduïm el Teorema Mesurable de Rie-
mann. Tot seguit mostrem com els conceptes previs són generalitzats per a funcions
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que giren l’orientació i veiem com això s’aplica a aplicacions que són simètriques res-
pecte del cercle unitat. Finalment introduïm els conceptes d’aplicació polynomial-like
i antipolynomial-like.

Al capítol 3 donem una visió general del pla dinàmic dels productes de Blaschke
Ba. Comencem estudiant les seves propietats bàsiques. Tot seguit mostrem que les
funcions Ba no poden tenir anells de Herman (Proposició 3.2.3) i provem un criteri de
connectivitat del conjunt de Julià J (Ba) (Teorema 3.2.1).

Al capítol 4 introduïm la família Mb de polinomis cúbics amb un punt fix super-
atractor. A continuació veiem com construir polinomis Mb a partir de productes de
Blaschke Ba sempre que Ba|S1 sigui quasisimètricament conjugat al doubling map, tot
obtenint una aplicació Γ que envia un subconjunt de l’espai de paràmetres de Ba a
l’espai de paràmetres dels polinomis Mb. També provem que l’aplicació Γ és continua
i és un homeomorfisme restringida a cada component hiperbòlica disjunta.

Al capítol 5 estudiem l’espai de paràmetres dels productes de Blaschke Ba. Primer
de tot en descrivim les simetries. A continuació classifiquem els diferents tipus de
comportaments hiperbòlics que es poden donar i veiem a quines regions de l’espai de
paràmetres poden aparèixer. Tot seguit construïm una aplicació polynomial-like al
voltant de tot paràmetre de no escapament contingut en una regió d’intercanvi que,
sota certes condicions, pot relacionar la dinàmica de Ba amb la dels antipolinomis
pc(z) = z2 + c (Teorema 5.3.4). Finalment parametritzem tota component hiperbòlica
disjunta els cicles atractors de la qual estan continguts a C∗ \ S1 (Teorema 5.4.2).

Al capítol 6 estudiem les llengües dels productes de Blaschke Ba. Inicialment
provem algunes de les seves propietats topològiques bàsiques com ara la seva con-
nectivitat mòdul simetria, la seva connectivitat simple i l’existència d’una única punta
per a cada llengua (Teorema 6.2.1). Tot seguit mostrem com es produeixen les bifur-
cacions en un entorn de la punta de cada llengua (Teorema 6.3.2). Finalment estudiem
com les llengües s’estenen per a paràmetres a tals que 1 < |a| < 2.

Al capítol 7 estudiem els productes de Baschke Ba;m i com es generalitzen els re-
sultats provats al llarg de la tesi.



Introduction

This PhD thesis belongs to the area of discrete dynamical systems in the complex
plane, i.e., the iteration of analytic functions in one complex variable. These systems
appear naturally in the study of analytic dynamics on the real line or the interval
for which a complex point of view has proven to be quite useful. Indeed, there is a
large list of important results obtained thanks to the complexification of the logistic
map and other unimodal and bimodal functions coming from, for instance, discrete
biological and economical models or root finding numerical methods among others.
Complex tools allow us to notice phenomena which are not visible from the real line.
The chaotic behaviors which can be observed for these models (bifurcation cascades,
etc.) acquire a new dimension when seen in the complex plane, where they can be
much better understood.

This area of mathematics was born at the beginning of the 20th century as a
consequence of the investigation of Netwon’s method, the well known root finding
algorithm, on the complex plane. Until then, only local studies existed but P. Fatou
and G. Julia faced the problem from a more global point of view. They classified the
possible stable orbit behaviors, in the sense of normality. The boundary between stable
regions, nowadays known as the Julia set, is an invariant object of great beauty and
complexity, which Fatou and Julia described quite accurately, remarkably without the
aid of computers.

During these very beginnings, the basis of the theory was established, getting as
far as possible with the available tools. Afterwards came a few years of relatively low
activity until the rebirth of the subject during the 80’s, due to two different factors. On
the one hand, D. Sullivan [Sul85] proved one of the main conjectures left by Fatou and
Julia, the non existence of wandering domains, by means of the use of quasiconformal
tools. These tools, which came from the area of geometric analysis, have been the key
for many later results and they are heavily used in this thesis. On the other hand, the
advent of the first computers allowed B. Mandelbrot to draw the first image of what
is nowadays known as the Mandelbrot set, the connectedness locus in the parameter
plane of the quadratic family z2 + c. The visualization of the first fractal sets, together
with the new tools available to face the open questions that Fatou and Julia had left
unsolved, awoke the interests of many mathematicians. As a consequence, many new
results were proven, some of which provided their authors with the highest prizes in
mathematics (e.g., J. C. Yoccoz, C. McMullen, Fields medalists in 1994 and 1998
respectively).

Given a rational map f : ?C → ?C, where ?C = C ∪ {∞} denotes the compactified
plane or the Riemann sphere, we consider the dynamical system given by the iterates
of f . The Riemann sphere splits into two totally f -invariant subsets: the Fatou set
F(f), which is defined to be the set of points z ∈ ?C where the family {fn, n ∈ N}
is normal in some neighborhood of z, and its complement, the Julia set J (f). The
dynamics of the points in F(f) are stable in the sense of normality or equicontinuity
whereas the dynamics in J (f) present chaotic behavior. The Fatou set F(f) is open

On a Family of Degree 4 Blaschke Products 9
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and therefore J (f) is closed. Moreover, if the degree of the rational map f is greater
or equal than 2, then the Julia set J (f) is not empty and is the closure of the set of
repelling periodic points of f .

The connected components of F(f), called Fatou components, are mapped under
f among themselves. Sullivan [Sul85] proved that any Fatou component of a rational
map is either periodic or preperiodic. By means of the Classification Theorem (see
Theorem 1.1.18), any periodic Fatou component of a rational map is either the basin
of attraction of an attracting or parabolic cycle, or a simply connected rotation domain
(a Siegel disk), or a doubly connected rotation domain (a Herman Ring). Moreover,
any such component is somehow related to a critical point, i.e., a point z ∈ ?C such that
f ?(z) = 0. Indeed, the basin of attraction of an attracting or parabolic cycle contains,
at least, a critical point whereas Siegel disks and Herman rings have critical orbits
accumulating on their boundaries. See Chapter 1 for an introduction to the dynamics
of rational functions.

Every holomorphic self-map of D of finite degree is a finite product of automor-
phisms of the disk, i.e., a finite Blaschke product, and therefore defined (by reflection)
on the whole Riemann sphere. Blaschke products have been used extensively as model
maps in complex dynamics. For instance, the products Br,α(z) = e2πiαz2(z−r)/(1−rz),
where α, r ∈ R and r > 3, were used by M. R. Herman [Her79] to prove the existence
of Herman rings (see Figure 1.4 (d)) and, with complex parameters, by X. Buff et
al [BFGH05] to study quasiconformal deformations of such objects. They were also
used, taking r = 3, to prove the celebrated result that the boundaries of Siegel disks
of bounded type of quadratic polynomials are Jordan curves (see the works of E. Ghys
[Ghy84], M. R. Herman [Her86, Her87], A. Douady [Dou87] and G. Świa̧tek [Świ88]).
This result was later generalized by C. Petersen and S. Zakeri [PZ04].

The Blaschke family
The aim of this thesis is to study the dynamics of the degree 4 Blaschke products given
by

Ba(z) = z3 z − a

1− āz
, (1)

where a, z ∈ C. For all values of a ∈ C, the points z = 0 and z = ∞ are superattracting
fixed points of local degree 3 (c.f. [CFG15]). We denote by A(0) and A(∞) their basins
of attraction and by A∗(0) and A∗(∞) their immediate basins of attraction, i.e., the
connected components of A(0) and A(∞) which contain z = 0 and z = ∞, respectively.
If |a| ≤ 1 these are the only Fatou components, separated by the Julia set which is
necessarily S1. But for every other parameter, there are two free critical points c±
(distinct unless |a| = 2) which may lead to the existence of stable components different
from A(0) and A(∞). If |a| ≥ 2, however, the Blaschke family is essentially unicritical
due to the symmetry with respect to S1 which, in this case, ties the two critical orbits
together in a certain sense.

We notice that the Blaschke products Ba are rational perturbations of the doubling
map of the circle R2(z) = z2 (equivalently given by θ → 2θ (mod 1)). Indeed, the Ba

converge uniformly over compact subsets of the punctured plane C∗ to e4πiArg(a)z2 as
a tends to ∞.
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The Ba are a particular case of a more general degree m+2 Blaschke family which,
as we shall see in Chapter 7, shares most of their properties. It is given by

Ba;m(z) = zm+1 z − a

1− āz
,

where a, z ∈ C and m ≥ 1 is a natural number. They are almost bicritical rational
maps in the sense that the Ba;m have z = 0 and z = ∞ as superattracting fixed points
of local degreem+1 and have exactly two free critical points which control the existence
of any periodic Fatou component other than the attracting basins of z = 0 and z = ∞.
For fixed m ≥ 1, Ba;m is a family of rational perturbations of the mth map of the circle
Rm(z) = zm (equivalently given by θ → mθ (mod 1)). If |a| ≥ (m + 2)/m, Ba;m|S1

is a degree m covering map of the circle (see Section 7.1). In particular, if |a| ≥ 3,
then Ba;1|S1 is a homeomorphism of the unit circle and the dynamics of the Ba;1 is well
understood. Indeed, the family Ba;1 is a reparametrization of the Br,α used by Herman
[Her79] to prove the existence of Herman rings (see Lemma 7.1.1). Therefore, we focus
on the study of the dynamics of Ba;m for m ≥ 2, which are determined by the position
of the free critical points and its pole with respect to the unit circle (see Section 7.1).
However, the possible configurations are independent of m and, therefore, all different
dynamics appearing for Ba;m, m > 2, already appear within the family Ba = Ba;2. This
is the reason why we restrict to the study of the family Ba and later on we explain how
the results generalize for the Blaschke products Ba;m with m ≥ 2.

The connectivity of the Julia set is a topological property often very related to the
dynamics of the map (see e.g. [Shi87], [Prz89], [Pil96] and [DR13]). It is equivalent to
the simple connectivity of every Fatou component. Given a polynomial P , its Julia
set J (P ) is connected if and only if it has no free critical point captured by the basin
of attraction of infinity (c.f. [Mil06]). However, such a classification does not exist for
general rational maps. Unlike polynomials, they may have Herman Rings which obvi-
ously disconnect the Julia set, which may even consist of a Cantor set of Jordan curves
(see [McM88]). However, the family Ba shares some of the features of polynomials in
this respect such as the non existence of Herman rings (see Proposition 3.2.3). We also
prove the following criterion of connectivity of the Julia set which, for parameters a
such that |a| ≥ 2, is similar to the one of polynomials. It is based on the position of the
critical point c+ ∈ C \ D with respect to the immediate basin of attraction of infinity
A∗(∞).

Theorem 3.2.1. Given a Blaschke product Ba as in (1), the following statements hold:

(a) If |a| ≤ 1, then J (Ba) = S1.

(b) If |a| > 1, then the connected components of A(∞) and A(0) are simply connected
if and only if c+ /∈ A∗(∞).

(c) If |a| ≥ 2, then every Fatou component U such that U ∩ A(∞) = ∅ and
U ∩ A(0) = ∅ is simply connected.

Consequently, if |a| ≥ 2, then J (Ba) is connected if and only if c+ /∈ A∗(∞).

The Blaschke products Ba with |a| > 2 which have no attracting or parabolic cycle
in S1 can be related to cubic polynomials. For such parameters, Ba|S1 is quasisymme-
trycally conjugate to the doubling map and a quasiconformal surgery can be performed
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obtaining cubic polynomials of the form Mb(z) = bz2(z−1) with b ∈ C (see Chapter 4,
c.f. [Pet07]). This surgery establishes a conformal conjugacy between Mb and Ba on
the set of points which never enter D under iteration of Ba and the points which are
not attracted to z = 0 under iteration of Mb. In particular, if Ba has an attracting
or parabolic cycle contained in C \D, this surgery conjugates Ba with Mb conformally
in its basin of attraction. These cubic polynomials with a superattracting fixed point
have been the object of research of several papers. For instance, J. Milnor introduced,
in a preliminary version of [Mil09], the study of cubic polynomials with period p su-
perattracting cycles. Later on P. Roesch [Roe07] investigated the slice S1 of cubic
polynomials with a superatracting fixed point proving some of the conjectures raised
by Milnor. They were also used by Tan L. [Tan97] in the study of the parameter plane
of Newtons maps NP coming from cubic polynomials P , by means of the so called
matings.

If Ba has a periodic cycle with points both inside and outside D the situation is
different. Although the previous surgery construction is still possible, a lot of infor-
mation is lost since, under the new map, the critical point is always captured by the
basin of z = 0. Parameters for which the orbit of c+ ∈ C \ D enters the unit disk
at least once are called swapping parameters and connected components of the set of
swapping parameters are called swapping regions. Inside these regions, the non holo-
morphic dependence of Ba on the parameter a gives rise to what appear to be small
“copies” of the Tricorn, the connectedness locus of the antipolynomials pc(z) = z2 + c
(see [CHRSC89] and Figure 5.4 (a)). Milnor [Mil92] showed that a similar situation
takes place for real cubic polynomials introducing the concept of antipolynomial-like
mapping. We distinguish between two types of attracting cycles for swapping parame-
ters. We say that a parameter is bitransitive if it has a cycle whose basin of attraction
contains the two free critical points. We say that a parameter is disjoint if there are
two different attracting cycles other than zero or infinity. The very special dynamics
taking place for swapping parameters allows us to build a polynomial-like mapping of
degree 2 or 4 in a neighborhood of every bitransitive or disjoint swapping parameter.
If the degree of the polynomial-like map is 4 we use the antipolynomial-like mappings
introduced by Milnor to prove that it is hybrid equivalent to a degree 4 polynomial of
the form p2

c . Hybrid equivalence is a type of conjugacy stronger than topological (and
even quasiconformal) conjugacy. More precisely, we prove the following theorem.

Theorem 5.3.4. Let a0 be a swapping parameter with an attracting or parabolic cycle
of period p > 1. Then, there is an open set W containing a0 and p0 > 1 dividing p
such that, for every a ∈ W , there exist two open sets U and V with c+ ∈ U such that
(Bp0

a ;U, V ) is a polynomial-like map. Moreover,

(a) If a0 is bitransitive, (Bp0
a ;U, V ) is hybrid equivalent to a polynomial of the form

p2
c(z) = (z2 + c)2 + c.

(b) If a0 is disjoint, (Bp0
a ;U, V ) is hybrid equivalent to a polynomial of the form

p2
c(z) = (z2 + c)2 + c or of the form z2 + c.

It is known that the boundary of every bounded Fatou component of a polynomial,
with the exception of Siegel disks, is a Jordan curve [RY08]. However, this is not true
for rational functions without additional conditions (e.g., postcritically finite [Pil96]).
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In our case, as a consequence of the two previous constructions, we know that the
boundary of every connected component of the basin of attraction of an attracting or
parabolic cycle of Ba not contained in S1 and other than z = 0 and z = ∞ is a Jordan
curve (see Proposition 5.4.1). Indeed, if Ba has such a cycle, we obtain a conjugacy
between Ba and a polynomial which sends the immediate basin of attraction of the
cycle of Ba to the immediate basin of attraction of a bounded cycle of the polynomial.
In this sense we can say that, if |a| > 2 and Ba|S1 has no non-repelling cycle, the
dynamics of the Ba are somehow polynomial.

Parameter plane of the Blaschke family
After investigating the dynamical plane of the Blaschke products Ba we study its pa-
rameter plane (see cover and Figure 5.1). A rational map is hyperbolic if all its critical
orbits accumulate on attracting cycles. A hyperbolic component is a connected com-
ponent of the open set H = {a | Ba is hyperbolic}. The parametrization of hyperbolic
components of rational functions which depend holomorphically on their parameters is
well known (see [DH85a], c.f. [BF14]). If the family of functions does not depend holo-
morphically on parameters, some extra difficulties appear. S. Nakane and D. Schleicher
[NS03] studied the parametrization of hyperbolic components with cycles of even pe-
riod for the family of antipolynomials pc,d(z) = zd+c. We focus on the parametrization
of hyperbolic components with disjoint parameters using different methods than the
ones of [NS03]. Notice that, due to the symmetry of Ba, disjoint cycles are symmetric
with respect to S1 and therefore have the same period and conjugate multiplier (see
Theorem 5.2.2). Hence, given a hyperbolic component Ω with disjoint parameters, it
makes sense to define the multiplier map Λ : Ω → D as the map which sends every
a ∈ Ω to the multiplier of the attracting cycle whose basin captures the critical orbit
of c+.

Theorem 5.4.2. Let Ω be a disjoint hyperbolic component, Ω ⊂ {a ∈ C; |a| > 2}.
Then, the multiplier map is a homeomorphism between Ω and the unit disk.

In the previous theorem we use the multiplier map in order to prove that every
hyperbolic component of disjoint parameters with |a| > 2 is homeomorphic to the unit
disk. Since the multiplier of any bitransitive cycle is a non-negative real number (see
Proposition 5.4.3), the previous result does not hold for bitransitive components. This
phenomena had already been noticed in [NS03] for the polynomials p2

c,d.
Given a family of ha, a ∈ ∆, of orientation preserving homeomorphisms of the unit

circle, one can assign a rotation number to each of its members which gives the average
asymptotic rate of rotation of points in the circle. The (rational) tongues of the ha are
defined as the sets of parameters a ∈ ∆ such that ha has rotation number p/q ∈ Q. In
this case, ha has a period q attracting or parabolic cycle in S1. The concept of tongues
was introduced by V. Arnold [Arn61] for the standard family of perturbations of the
rigid rotation

θ → θ + α + (β/2π) sin(2πθ) (mod 1)
where 0 ≤ θ < 1, 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. Tongues have been studied by many
authors, both for the Arnold standard maps (see e.g. [Boy86], [WBJ91], [EKT95] or
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[dlLL11]) and for other families of homeomorphisms of the unit circle such as the de-
gree 3 Blaschke products Br,α introduced by Herman [Her79]. If the maps ha are not
homeomorphisms but degree 2 covers of S1, we cannot assign a number to them. How-
ever, tongues can still be defined as sets of parameters for which ha has an attracting
cycle in S1. We can associate a type τ (a) to every such ha, where τ (a) is a periodic
point of the doubling map and describes how the attracting cycle of ha asymptotically
rotates. In this setting, a tongue Tτ is defined as the open set of parameters a ∈ ∆ of
type τ . They were studied by M. Misiurewicz and A. Rodrigues [MR07, MR08] for the
double standard family of perturbations of the doubling map

θ → 2θ + α + (β/π) sin(2πθ) (mod 1)

where 0 ≤ θ < 1, 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. Later on, A. Dezotti [Dez10] used
the complex extension of the double standard maps on the punctured plane, given
by z → eiαz2eβ/2(z−1/z), in order to prove the connectivity of the tongues. This
family was also studied by R. de la Llave, M. Shub and C. Simó [dlLSS08]. More
specifically, for a fixed k ≥ 2, they studied the entropy for the k-th standard maps
θ → kθ + α + ? sin(2πθ) (mod 1) for ? small.

Given that the Blaschke products Ba are rational perturbations of the doubling
map, Ba|S1 may be considered as the rational analogue of the double standard family.
Although there is no explicit simple expression for the restriction of Ba to S1, the global
dynamics are simpler than in the transcendental case. If |a| ≥ 2, the Ba|S1 are degree 2
coverings of the unit circle and the tongues are well defined. Inspired by the mentioned
works of Misiurewicz, Rodriguez and Dezotti, we show that they are connected and
simply connected. More precisely, we prove the following theorem.

Theorem 6.2.1. Given any periodic point τ of the doubling map the following results
hold.

(a) The tongue Tτ is not empty and consists of three connected components (only one
connected component if we consider the parameter plane modulo the symmetries
given by the third roots of the unity).

(b) Each connected component of Tτ contains a unique parameter rτ , called the root
of the tongue, such that Brτ has a superattracting cycle in S1. The root rτ satisfies
|rτ | = 2.

(c) Every connected component of Tτ is simply connected.

(d) The boundary of every connected component of Tτ consists of two curves which are
continuous graphs as function of |a| and intersect each other in a unique parameter
aτ called the tip of the tongue.

The boundary of a tongue Tτ of period p is the union of two curves of parameters
which intersect at the tip aτ of the tongue and have a persistent parabolic cycle of
period p and multiplier 1. Along ∂Tτ \ aτ there is a persistent saddle-node bifurcation
taking place, two period p cycles collide in S1 and exit it. Notice that these bifurcation
along curves cannot happen for a uniparametric family of holomorphic maps which
depend holomorphically in the parameter. The real saddle-node bifurcation was studied
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by M. Misiurewicz and R. A. Pérez [MP08] from a complex point of view. They
characterized, depending on the sign of the Schwarzian derivative, whether the period
p cycles exiting the unit circle (or the real line) are attracting or repelling. Crowe
et al [CHRSC89] showed that this type of bifurcations also occurs in the Tricorn,
the connectedness locus of the antipolynomials pc(z) = z2 + c. Their result was later
generalized by J. H. Hubbard and D. Schleicher [HS12]. They studied these bifurcations
in the Multicorns, the bifurcation loci of the antipolynomials pd,a = zd+a, by using the
holomorphic index of the fixed points. Using similar techniques, we prove the following
theorem.

Theorem 6.3.2. Let aτ be the tip of a tongue Tτ of period p. Then, there exists a
neighborhood U of aτ such that if a ∈ U then, either a ∈ Tτ or a ∈ ∂Tτ or a belongs to
a disjoint hyperbolic component.

If a belongs to the open annulus A1,2 of inner radius 1 and outer radius 2, then
the Blaschke products Ba|S1 are no longer degree two coverings of the unit circle.
Despite that, the attracting cycle associated to a given tongue may be continued for
parameters within A1,2. This leads to the concept of extended tongues ETτ , open
connected sets of parameters a, |a| > 1, for which Ba|S1 has an attracting cycle which
can be real analytically continued to the attracting cycle of a tongue Tτ . However,
extended tongues are not disjoint. Indeed, if a ∈ A1,2, then the two critical points c±
of Ba lie on the unit circle and their orbits are not related by symmetry. Therefore,
they may accumulate on different attracting cycles, allowing a parameter to belong to
two different extended tongues simultaneously. We focus on the study of the extended
fixed tongue ET0 and prove the following theorem.

Theorem 6.4.3. Given two connected components of the fixed tongue T0, the intersec-
tion of their extensions in A1,2 is empty. The boundary of every connected component
of the extended fixed tongue ET0 consists of two disjoint connected components. The
exterior component consists of parameters for which there is a parabolic fixed point
of multiplier 1. The interior component consists of parameters for which there is a
parabolic fixed point of multiplier −1. Moreover, there is a period doubling bifurcation
taking place throughout the curve of interior boundary parameters.

The thesis is structured as follows. In Chapter 1 we give an overview on the
preliminary results used throughout the thesis. First we explain the basics on the
dynamics of rational functions. Afterwards we give an overview on circle mappings,
introduce the concept of Blaschke product and define the concept of tongue. Finally we
present the Riemann-Hurwitz formula and how it applies to the dynamics of rational
functions.

In Chapter 2 we give an introduction to quasiconformal surgery. First we define
the concepts of quasiconformal mappings, almost complex structures and pullback by
orientation preserving maps and state the Measurable Riemann Mapping Theorem.
Afterwards we show how to generalize the previous results to orientation reversing
maps and see how this applies to functions which are symmetric with respect the
unit circle. Finally we introduce the concept of polynomial and antipolynomial-like
mappings.
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In Chapter 3 we give an overview of the dynamical plane of the Blaschke products
Ba. We begin by studying their basic properties. Afterwards we show that the maps
Ba cannot have Herman rings (Proposition 3.2.3) and prove a criterion of connectivity
of the Julia set J (Ba) (Theorem 3.2.1).

In Chapter 4 we introduce the familyMb of cubic polynomials with a superattracting
fixed point. Then we show how to build polynomials Mb from Blaschke products Ba

provided that Ba|S1 is quasisymmetrically conjugate to the doubling map, obtaining
a map Γ from a subset of the parameter plane of the Ba to the parameter plane of
the polynomials Mb. We also prove that the map Γ is continuous and restricts to a
homeomorphism on every disjoint hyperbolic component.

In Chapter 5 we study the parameter plane of the Blaschke products Ba. We first
describe the symmetries in the parameter plane. Then we classify the different hyper-
bolic dynamics which may take place and the sets of parameters for which they may
happen. Afterwards we build a polynomial-like map for all non-escaping parameters
contained in swapping regions which, under certain conditions, may relate the dynam-
ics of Ba with the one of the antipolynomials pc(z) = z2 + c (Theorem 5.3.4). Finally
we parametrize all disjoint hyperbolic components whose disjoint cycles are contained
in C∗ \ S1 (Theorem 5.4.2).

In Chapter 6 we study the tongues of the Blaschke products Ba. We first prove some
of their topological properties such as their connectivity modulo symmetry, their simple
connectivity and the existence of a unique tip for every tongue (Theorem 6.2.1). Then
we show how bifurcations take place along curves in a neighborhood of every tongue
(Theorem 6.3.2). Finally we study how tongues extend in the annulus of parameters a
such that 1 < |a| < 2.

In Chapter 7 we study the Blaschke products Ba;m and how the results proved
throughout the thesis are generalized for them.
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Preliminaries 1

The dynamics of rational functions has been a subject of interest for over a century.The
basis of the theory are now well established and we make intensive use of the main
results all over this thesis.

The aim of this chapter is to provide an overview of some notions and results
which are used in the following chapters. In Section 1.1 we introduce the basics of
the dynamics of rational functions in one complex variable. In Section 1.2 we give
an overview of circle mappings as well as some generalities about Blaschke products.
Finally, in Section 1.3 we state the Riemann-Hurwitz formula, an important tool in
our work.

1.1 Dynamics of rational functions
A rational map is a function of the form Q(z) = p(z)/q(z), where p(z) and q(z) are
non zero complex polynomials with no common roots. We also require that at least
one of them is not constant. Rational maps can be extended to holomorphic maps of
the Riemann Sphere ?C = C ∪ {∞} in the natural way. Vice versa, any holomorphic
map of ?C is a rational map.

The degree of a rational map is defined as the maximum of the degrees of the
polynomials p and q. It is important to point out that the degree, say d, of a rational
map Q coincides with its topological degree in the sense that every point w ∈ ?C has
exactly d preimages under Q counted with multiplicity. Therefore, a rational map is
a degree d cover of the Riemann sphere onto itself ramified over a number of branch
points which can be shown to be 2d − 2 (see Corollary 1.3.2 below). These are called
critical points and are precisely the points were the derivative of the rational map
vanishes, i.e., Q?(z) = 0. Its multiplicity is given by their multiplicity as zeros of Q?.

In this section we give an introduction to holomorphic dynamics in one complex
variable. We refer to [Bea91], [CG93], [Mil06] and [MNTU00] for general background
and proofs of the results.

We now proceed to give a short overview of normal families.

Definition 1.1.1. Let U ⊂ ?C be a domain. A family of holomorphic functions F
from U to ?C is normal if any sequence of functions {fn}n∈N ∈ F has a subsequence
which converges uniformly on compact sets to a limit map.

The concept of normality can be related to the one of equicontinuity by means of
Arzelà-Ascoli Theorem. We first recall the definition of local equicontinuity.

On a Family of Degree 4 Blaschke Products 17
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Definition 1.1.2. Let U ⊂ ?C be a domain. A family of holomorphic functions F
from U to ?C is locally equicontinuous if for every z ∈ U and every ? > 0 there exists
a δ > 0 such that, for all f ∈ F , if z1, z2 ∈ U belong to the spherical ball of center z
and radius δ, then d?C(f(z1), f(z2)) < ?, where d?C(·, ·) denotes the spherical distance.

Due to compactness of the Riemann sphere, Arzelà-Ascoli Theorem can be stated
in the particular case of ?C as follows.

Theorem 1.1.3 (Arzelà-Ascoli). Let U ⊂ ?C be a domain. A family of holomorphic
functions F from U to ?C is normal if and only if it is locally equicontinuous.

We finish this short introduction to normal families stating Montel’s Theorem,
which gives criteria of normality.

Theorem 1.1.4. Let U ⊂ ?C be a domain and F be a family of holomorphic func-
tions from U to ?C. If there exists three different points w1, w2 and w3 such that
f(U) ⊂ ?C \ {w1, w2, w3} for all f ∈ F , then the family F is normal in U .

Holomorphic maps induce a dynamical partition of the phase space. Given a holo-
morphic map f in S, where S = ?C,C or C∗, the application of the concept of normality
to the family of iterates {fn}n≥0 leads to a classification of the points in S. The orbits
of the points of the connected domains where the family is normal behave in the same
dynamical fashion. This fact leads to the concepts of Fatou and Julia sets.

Definition 1.1.5. Given a holomorphic function f : S → S, where S = ?C,C or C∗,
its Fatou set F(f) is defined to be the set of points z0 where the family {fn, n ∈ N}
is normal in some neighborhood of z0. Its complement J (f) := S \ F(f) is called the
Julia set.

The dynamics within the Fatou set are considered to be stable whilst the ones
within the Julia set present chaotic behavior. See Figure 1.1 for a first example of
Fatou and Julia sets.

Periodic points play an important role when studying the Fatou and Julia sets of a
map f . We denote by < z0 >:= {z0, z1, · · · , zp−1}, where f(zi) = zi+1 and subindexes
are taken modulus p, a p-cycle of f and refer to z0 as the marked point of the cycle.
We define the multiplier of the cycle as

λ(z0) = (f p)?(z0) = f ?(z0) · . . . · f ?(zp−1).

Definition 1.1.6. We say that a cycle < z0 > of a holomorphic map f is

• attracting if |λ| < 1 and superattracting if λ = 0,

• neutral (or indifferent) if |λ| = 1,

• repelling if |λ| > 1.

Moreover, a neutral cycle is

• parabolic if λ = e2πip/q with p/q ∈ Q, or

• irrational if λ = e2πiθ with θ ∈ R \Q.
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Figure 1.1: The dynamical plane of p−1(z) = z2 − 1. The black components correspond to
the basin of attraction of the 2-cycle {−1, 0}. The scaling from green to orange
corresponds to points which escape to infinity. The boundary between these
two regions is the Julia set J (p−1).

In Section 1.1.1 we shall discuss the local dynamics around each of the types above.
But first we state some properties from the global point of view.

Proposition 1.1.7. Repelling cycles are topologically repelling, i.e., given a point z0
of a repelling p-cycle, there is a neighborhood U of z0 such that for all z ?= z0 in U
there is an n > 0 such that fnp(z) /∈ U .

The following concepts of grand orbit and exceptional set will be important when
describing the properties of the Fatou and Julia sets.

Definition 1.1.8. Given a map f as before, the grand orbit of a point w in S is defined
as

GO(w) = {z ∈ S | f k(w) = f l(z), k, l ∈ N}.
If GO(w) is finite, we say that w belongs to the exceptional set E(f).

The following proposition shows some of the basic properties of the Fatou and Julia
sets.

Proposition 1.1.9. Let f : S → S, where S = ?C,C or C∗, be a holomorphic map.
Then the following statements hold.

(a) The Fatou set F(f) is open while J (f) is closed. Both sets are completely invari-
ant, i.e., F(f) = F(f k) for all k > 0.

(b) The Julia set J (f) is not empty. Moreover, either it has empty interior or it
coincides with S.
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(c) If f is a rational map and deg(f) ≥ 2, then J (f) contains a repelling fixed point
or a parabolic fixed point with multiplier 1.

(d) Every repelling or parabolic cycle of f belongs to J (f).

(e) The set of repelling cycles of f are dense in J (f).

(f) Given w ∈ S \ E(f), then J (f) ⊂ ?
n≥0 f−n(w).

(g) The Julia set J (f) has no isolated points. Moreover, it is either connected or has
uncountably many components.

(h) If U is an open set containing a point in J (f) then S \E(f) ⊂ ?
n≥0 f

n(U). If f is
a rational map, by compactness of ?C, there exists N > 0 such that, for all n > N ,
fn(U ∩ J (f)) = J (f).

Note that the Fatou set of a holomorphic map f may be empty. For instance, there
are known examples of rational maps (c.f. [Bea91, Sect. 4.3]) and entire trancentental
maps (see [Dev84]) for which J (f) = C. We also want to remark that there are exam-
ples of Julia sets which are not the whole phase space S but have positive Lebesgue
measure. Indeed, C. McMullen [McM87] proved that the Julia set of the entire tran-
scendental family fa,b(z) = aez + be−z has always positive Lebesgue measure. Later
on X. Buff and A. Cheritat [BC12] gave examples of polynomials whose Julia set have
positive Lebesgue measure.

1.1.1 Local dynamics
In this subsection we introduce some results about the linearization of holomorphic
germs around attracting, superattracting, parabolic or irrational cycles as in Defini-
tion 1.1.6. For simplicity we assume that the cycle consists of a single fixed point.
Recall that the multiplier of a fixed point z0 under a holomorphic germ f is given by
λ = f ?(z0). We refer to [Mil06] for a more general introduction to the problem.

The attracting case: |λ| = 1, λ ?= 0
The following result is known as Kœnigs Linearization Theorem (see [Mil06, Thm. 8.2]).

Theorem 1.1.10 (Kœnigs Linearization). With λ as before, there exists a local holo-
morphic change of coordinates w = φ(z), with φ(z0) = 0, so that φ ◦ f ◦ φ−1 is the
linear map w → λw for all w in some neighborhood of the origin. Furthermore, φ is
unique up to multiplication by a non-zero constant.

Let A(z0) denote the basin of attraction of z0 and let A∗(z0) denote the immediate
basin of attraction of z0, i.e., the connected component of A(z0) containing z0. Then,
the map φ can be extended to a unique holomorphic map such that φ(f(z)) = λφ(z)
for all z ∈ A(z0) (see [Mil06, Cor. 8.4]). The map φ is conformal in a neighborhood of
the attracting fixed point z0. Hence, we can consider, for ? small enough, the inverse
map ϕ? : D? → A? ⊂ A∗(z0). The following result shows the existence of a maximal
domain where the linearization is possible which has at least a critical point of f on
its boundary (see [Mil06, Lem. 8.5]).



1.1 - Dynamics of rational functions 21

Lemma 1.1.11. This local inverse ϕ? : D? → A? extends, by analytic continua-
tion, to some maximal open disk Dr about the origin in C. This yields a uniquely
defined holomorphic map ϕ : Dr → Ar = A with ϕ(0) = z0 and φ(ϕ(w)) ≡ w. Fur-
thermore, ϕ extends homeomorphically over the boundary circle ∂Dr, and the image
ϕ(∂Dr) ⊂ A∗(z0) necessarily contains at least one critical point of f .

Throughout the thesis we refer to A? as a linearizing domain or a domain of lin-
earization. We refer to the maximal set A given by Lemma 1.1.11 as the maximal
domain of linearization.

The superattracting case: λ = 0
When λ = 0, f can be expressed as

f(z) = z0 + a(z − z0)n +O(|z − z0|n+1)

on a neighborhood of z0 with a ∈ C, a ?= 0, and where n ≥ 2 is the local degree of the
superattracting fixed point. We begin with a result due to L. E. Böttcher (see [Mil06,
Thm. 9.1]).

Theorem 1.1.12 (Böttcher’s theorem). Let f be a rational map with a superattracting
fixed point z0 of local degree n. Then, there exists a local holomorphic change of coor-
dinates w = φ(z) with φ(z0) = 0 which conjugates f with the nth power map w → wn

on some neighborhood of z0. Furthermore, φ is unique up to multiplication by (n− 1)st
root of unity.

The Böttcher coordinate φ is conformal and defined in a neighborhood U of the
superattracting fixed point z0 ∈ A∗(z0). As before, we can consider, for ? small enough,
the inverse map ϕ? : D? → A? ⊂ A∗(z0). The following result tells us that ϕ? can
be extended to D unless there is an additional critical point in A∗(z0) (see [Mil06,
Thm. 9.3]).

Theorem 1.1.13. There exists a unique open disk Dr of maximal radius 0 < r ≤ 1
such that ϕ? extends to a map ϕ : Dr → A ⊂ A∗(z0). If r = 1, then ϕ maps D
biholomorphically onto A∗(z0) and z0 is the only critical point of the immediate basin
of attraction. If 0 < r < 1, then there is at least one additional critical point in A∗(z0)
which lies on the boundary of ϕ(Dr).

The parabolic case: λ = e2πip/q, p/q ∈ Q

Let g be a rational map with a parabolic fixed point z0 with multiplier λ = e2πip/q,
where p, q ∈ N are coprime. The point z0 is also fixed under f := gq and has multiplier
λq = 1. The map f can be expressed in a neighborhood of z0 as

f(z) = z + a(z − z0)n+1 +O(|z − z0|n+2),

where a ∈ C is not zero and n + 1 ≥ 2 is the multiplicity of the parabolic fixed point.
The main result on parabolic fixed points is known as Leau-Fatou Flower Theorem
(see [Mil06, Thm. 10.7]). It was proven in a preliminary way by L. Leau and improved
afterwards by Julia and Fatou. Before stating it we introduce the concept of petals.
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Definition 1.1.14. Let z0 be a parabolic fixed point of multiplicity n + 1 ≥ 2 of a
holomorphic germ f which is defined and univalent on a neighborhood U of z0. An
open connected set P ⊂ U is called an attracting petal for f if

(a) f(P) ⊂ P ∪ {z0}, and

(b) ?
n f

n(P) = z0.

An open set P ⊂ f(U) is called a repelling petal for f if it is an attracting petal for
f−1 : f(U) → U , where f−1 denotes the branch of the inverse of f fixing z0.

Theorem 1.1.15 (Leau-Fatou Flower Theorem). If z0 is a fixed point of multiplicity
n + 1 ≥ 2, then within any neighborhood of z0 there exist simply connected petals Pj,
where j ∈ Z/2nZ and where Pj is either attracting or repelling according to whether
j is even or odd. Moreover, they can be chosen so that {z0} ∪ P0 ∪ · · · ∪ P2n−1 is an
open neighborhood of z0. When n > 1, each Pj intersects Pj±1 in simply connected sets
Pj ∩ Pj±1 and is disjoint from the remaining Pk.

Figure 1.2: Dynamical plane of a quadratic polynomial with a parabolic fixed point with
multiplier λ = e2πi/2 = −1. It has a 2-cycle of attracting petals. When con-
sidering the germ g2 the situation becomes the one of Theorem 1.1.15, i.e., the
fixed point has multiplier 1 and two invariant attracting petals.

The following result explains the existence of a maximal domain within any con-
nected component of the immediate basin of attraction A∗(z0) of a parabolic fixed
point z0 in which the dynamics is conjugate to the translation z → z + 1 (see [Mil06,
Thm. 10.9 and Thm. 10.15]). It also states the existence at least a critical point on
every connected component of A∗(z0).

Theorem 1.1.16. For any attracting or repelling petal P there is a conformal embed-
ding α : P → C which is unique up to composition with a translation of C and which
satisfies the Abel functional equation α(f(z)) = 1 + α(z) for all z ∈ P ∩ f−1(P).

Every immediate basin of attraction of z0 contains at least one critical point of f .
Furthermore, each of them contains one and only one attracting petal Pmax which is
mapped univalently onto some right half plane under α and which is maximal with
respect to this property. This preferred petal Pmax always has one or more critical
points on its boundary.
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The irrational case
The solution of the linearization problem around an irrational fixed point depends
strongly on how well the irrational number can be approximated by rational numbers.
A formal conjugation can always be defined around it. However, the radius of conver-
gence of such conjugation may be zero. This leads to the so called problem of small
divisors studied initially by C. L. Siegel [Sie42] and A. Bryuno [Bry65]. They gave con-
ditions on the irrational number θ so that any holomorphic germ could be linearized
around a fixed point of multiplier λ = e2πiθ with θ ∈ R \Q (c.f. [Mil06, Chap. 11]).

Definition 1.1.17. Let f be a holomorphic germ and let z0 be an irrational fixed
point of f . We say that z0 is a Siegel point if the germ is linearizable around z0. The
maximal domain of linearization is known as the Siegel disk around z0. If the germ is
not linearizable around z0 we say that z0 is a Cremer point.

Siegel disks are simply connected domains foliated with invariant curves were the
dynamics are conjugated to the rotation z → λz (see Figure 1.3).

Figure 1.3: The dynamical plane of a degree 2 polynomial with a Siegel disk.

1.1.2 Fatou components
The Fatou set is open and it typically consists of infinitely many connected compo-
nents, known as Fatou components. They are mapped among each other under iter-
ation of f and, a priori, may be either periodic, preperiodic (i.e., eventually mapped
to a periodic one) or wandering. In the previous section we already described three
different types of Fatou components: basins of attraction of attracting or parabolic
cycles and Siegel disks. The following theorem gives a complete classification of peri-
odic Fatou components of rational maps. It is mainly due to H. Cremer [Cre32] and
P. Fatou [Fat20] (c.f. [Mil06]).

Theorem 1.1.18 (Classification Theorem). Let f : ?C → ?C be a rational map and let
U be a periodic Fatou component of period p ≥ 1. Then, one of the following holds.

• U contains a periodic attracting point z0 of period p such that fnp(z) → z0 as
n → ∞ for all z ∈ U . We say that U is an attracting Fatou component (see
Figure 1.4 (a)).
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• ∂U contains a parabolic point z0 such that fnp(z) → z0 as n → ∞ for all z ∈ U .
We say that U is a parabolic Fatou component (see Figure 1.4 (b)).

• U is simply connected and f p is conformally conjugate to a rigid rotation
Rθ(z) = e2πiθz for some θ ∈ R \ Q. The only fixed point under f p is an ir-
rational fixed point of multiplier e2πiθ and is called the centre of the Siegel disk
(see Figures 1.4 (c) and 1.3). Respectively, the irrational number θ is called the
rotation number of U .

• U is doubly connected and f p is conformally conjugate to a rigid rotation
Rθ(z) = e2πiθz in a round annulus for some θ ∈ R \ Q. Then U is called a
Herman ring (see Figures 1.4 (d) and 1.5) and the irrational number θ is called
the rotation number of the Herman ring.

Sullivan [Sul85] proved that rational maps have no wandering Fatou components.
His celebrated result makes intensive use of the techniques of quasiconformal surgery
(see Section 2.1).

Theorem 1.1.19 (Sullivan’s Non-Wandering Theorem). Let f be a degree d ≥ 2
rational map. Then F(f) has no wandering components.

The existence of Herman rings was proven by Herman [Her79] by using a family
of degree 3 Blaschke products (see Section 1.2) which restricts, for some values, to a
family of diffeomorphisms of S1. He proved that, for certain parameters, the circle
diffeomorphism is analytically conjugate to a rotation Rθ(z) = e2πiθz with θ ∈ R \ Q.
That analytic conjugation extends to an open neighborhood of the circle, leading to
the existence of Herman rings. Later on, M. Shishikura [Shi87] showed how to build
rational maps with Herman rings out of other rational maps with Siegel disks by means
of a quasiconformal surgery. In the same article Shishikura proved the following result.

Theorem 1.1.20 (Fatou-Shishikura inequality). Let f be a degree d ≥ 2 rational map.
Let A denote the number of attracting cycles of f , P denote the number of cycles of
attracting parabolic petals, I denote the number of irrational cycles and H denote the
number of cycles of Herman Rings. Then, the following inequality holds.

A + P + I + 2H ≤ 2d− 2.

Moreover, H ≤ d− 2.

The result is based on the fact that rational maps have at most 2d − 2 different
critical points (see Corollary 1.3.2). While the basin of attraction of every attracting
or parabolic cycle contains at least a critical point, it is also the case that every Siegel
disk and Herman ring needs at least a critical point whose orbit accumulates on its
boundary since, otherwise, the domain could be extended further. Shishikura proved
that these critical points cannot be shared, that a critical orbit accumulates on at most
a connected component of the boundary of a rotation domain.



1.1 - Dynamics of rational functions 25

(a) Douady’s rabbit. (b) The Cauliflower.

(c) A Siegel disk. (d) A Herman ring.

Figure 1.4: Figure (a) shows the dynamical plane of p(z) = z2 − 0.123 + 0.745i, also known
as Douady’s rabbit, which has an attracting cycle of period 3. Figure (b) shows
the dynamical plane of p(z) = z2 + 0.25, also known as the Cauliflower, for
which z = 0.5 is a parabolic fixed point. Figure (c) shows the dynamical plane
of pθ(z) = z2 + e2πiθz where θ is the golden number and pθ has a Siegel disk.
Figure (d) shows the dynamical plane of qλ,a = λz2(z − a)/(1 − az), where
|λ| = 1 and a > 3 are chosen so that qλ,a has a Herman ring. In all figures
we plot the points whose orbit escapes to infinity with a scaling from green
to orange. In Figure (d) we use the same colors if the orbit converges to the
superattracting fixed point z = 0.
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Figure 1.5: An invariant connected component of a Herman ring of a Blaschke product
qλ,a = λz2(z− a)/(1− az) whith |λ| = 1 and a > 3 (see Figure 1.4 (d)). We see
how it is foliated with invariant curves.

1.1.3 Hyperbolic rational maps
In this subsection we introduce the notion of hyperbolic rational map as well as some
of their main properties. We also give a classification of the dynamics of rational maps
with two free critical points. We refer to [Mil06], [CG93] and [Bea91] for proofs of the
results.

Definition 1.1.21. A rational map f is said to be expansive in a compact set C ⊂ ?C
if there are an open neighborhood U of C, a conformal metric µ defined on U and a
constant k > 1 such that ||Dfz||µ ≥ k for all z in U .

A rational map f is said to be hyperbolic if it is expanding on its Julia set J (f).

Notice that the Julia set J (f) of a rational map is compact since it is a closed
subset of a compact space. The following theorem provides a characterization of the
set of hyperbolic rational maps.

Theorem 1.1.22. A rational map f is hyperbolic if and only if the forward orbit of
all its critical points accumulate on attracting or superattracting cycles.

It follows from the previous theorem that the dynamics of hyperbolic rational maps
is stable in the sense that if f is hyperbolic, any nearby map is also hyperbolic. More-
over, J (f) has measure zero and depends continuously on f under hyperbolic pertur-
bations of it (see [MSS83] and [Lyu83, Lyu84]).

We finish this subsection giving a classification of the hyperbolic dynamics within
a family of rational maps with two free critical orbits. We first introduce a rigorous
definition of this concept.

Definition 1.1.23. Let Qa denote a family of rational maps depending continuously
on a parameter a. We say that the family Qa is almost bicritical if the maps Qa have
only two free critical points counted with multiplicity. By this we mean that all but
two critical points c± of Qa (which may collapse in a single one for certain values of
a) are permanently captured by (super)attracting cycles which do not depend on a. If
the number of critical points is two, we say that the family is bicritical.
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The Blaschke family Ba (Equation (1)) with a ∈ C∗ \ S1 is an example of an
almost bicritical family (see Section 3.1). Following [Ree90] and [Mil92], we classify
the hyperbolic parameters of an almost bicritical family Qa as follows.

Definition 1.1.24. We say that a hyperbolic map which belongs to an almost bicritical
family is

(a) adjacent if the free critical points belong to the same component of the immediate
basin of attraction of an attracting cycle (see Figure 5.3 (left)),

(b) bitransitive if the free critical points belong to different components of the same
immediate basin of attraction of an attracting cycle (see Figure 3.2 (b)),

(c) capture if one of the free critical points belongs to the immediate basin of attraction
of an attracting cycle and the other one belongs to a preperiodic preimage of it
(see Figure 5.3 (right)),

(d) disjoint if the free critical points belong to the immediate basin of attraction of
two different attracting cycles (see Figure 3.2 (c) and (d), Figure 3.4 (right) and
Figure 5.6 (right)),

(e) escaping if at least one of the free critical orbits is captured by attracting cycles
dominated by non free critical orbits. If both critical orbits escape we say that the
parameter is fully escaping (see Figures 3.4 (left) and 3.5).

Remark 1.1.25. If a hyperbolic parameter a is such that both free critical points of
Qa collapse, then it can only be escaping or adjacent.

1.2 Circle mappings
In this section we introduce some preliminaries on circle mappings which are used along
the thesis. We refer to [ALM00] and [dMvS93] for general background and proofs of
the results.

Definition 1.2.1. We say that a continuous map F : R → R is the lift of a continuous
circle map f if the following diagram commutes.

S1 f−−−→ S1

e2πix

?
?e2πix

R F−−−→ R.

Notice that every continuous circle map has infinitely many lifts. Indeed, the fol-
lowing result holds (see [ALM00, Prop. 3.1.6]).

Proposition 1.2.2. Let f be a continuous circle map. Then, two different lifts F1
and F2 of f differ in an integer constant. Moreover, there exits d ∈ Z such that
F (x+1) = F (x)+d for all F lift of f and all x ∈ R. The integer d is called the degree
of f .
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Notice that the notion of degree of a circle map that we introduced in the previous
proposition is not related with the notion of topological degree that we used previously.
A degree 2 circle map may have points with more than two preimages in S1. However,
the two different notions of degree do coincide when the circle map f is a positively
oriented degree d covering of S1. In particular, this is the case if F is strictly increasing.

The following result deals with families of lifts of degree 2 orientation preserving
coverings of the circle which are continuously parametrized. It tells us that all lifts
of such covering maps are semiconjugate to the doubling map x → 2x and that the
semiconjugacy depends continuously on the same parameters than the lifts (see [MR07,
Lemmas 3.1 and 3.3]).

Lemma 1.2.3. Let Fa : R → R be a continuous and increasing map depending contin-
uously on a. Suppose that Fa(x+ k) = Fa(x) + 2k for any integer k and for all x ∈ R.
Then, the limit

Ha(x) = lim
n→∞

F n
a (x)
2n (1.1)

exists uniformly on x. This map Ha is increasing, continuous, depends continuously on
a and satisfies Ha(x + k) = Ha(x) + k for any integer k and for all x ∈ R. Moreover,
Ha semiconjugates Fa with the multiplication by 2, i.e., Ha(Fa(x)) = 2Ha(x) for any
real x. Furthermore, if Fa is increasing with respect to a, then Ha is also increasing
with respect to a.

Now let f : S1 → S1 be a degree 2 orientation preserving map of the circle. Since
its lift F satisfies the conditions of Lemma 1.2.3, f is semiconjugate to the doubling
map R2(z) = z2 (equivalently given by θ → 2θ (mod 1)) by a degree 1 map of the
unit circle h whose lift H is given by Lemma 1.2.3. The following standard lemmas
deal with the semiconjugacy h. The first one tells us that the semiconjugating map is
unique (c.f. Lemma 7.3.2 and [Boy06]).

Lemma 1.2.4. Let f be a degree 2 orientation preserving map of the circle. Then there
exists a unique degree 1 map h of the circle which semiconjugates f with the doubling
map R2.

The next lemma tells us that the semiconjugacy sends periodic points to periodic
points of the same period (see [MR07, Lem. 3.2]). We add the proof for the sake of
completeness.

Lemma 1.2.5. The semiconjugating map h sends points of period k to points of period
k.

Proof. Let p be a periodic point of period k. Then, f k(p) = p. Since h semiconjugates
f with the doubling map R2, we have that Rk

2(h(p)) = h(p). Hence, h(p) is a periodic
point of period dividing k. Assume that its period is not k. Then, there are two points
x and y of the cycle of p which are mapped to the same point. Therefore, there is an
arc of points γ joining x and y which is mapped to the same point by h. Moreover, for
all j ∈ N, we have that f j(γ) is mapped under h to a point. Hence, we have that the
full circle is mapped onto a single point, which is a contradiction.
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Under certain conditions this semiconjugacy is a conjugacy.
Definition 1.2.6. Let f : S1 → S1 be a C1 map. We say that f is expanding if there
exist constants C > 0 and λ > 1 such that

|Dfn(x)| > Cλn

for all n ∈ N and all x ∈ S1.
Remark 1.2.7. An expanding map is monotone. Hence, if it has topological degree 2,
its lift F satisfies the conditions of Lemma 1.2.4. It follows from it that an expanding
map of the circle of topological degree 2 is semiconjugate to the doubling map.

Before stating the next result, we introduce the concept of quasisymmetry for circle
homeomorphisms. We shall revisit this concept in Section 2.1.
Definition 1.2.8. An homeomorphism h : S1 → S1 is quasisymmetric if there exists a
constant M > 0 such that, for all z1, z2, z3 ∈ S1,

|z1 − z2| = |z2 − z3| ⇒
1
M

≤ |h(z1)− h(z2)|
|h(z2)− h(z3)|

≤ M.

Proposition 1.2.9. Let g : S1 → S1 be an expanding map of topological degree 2. Then,
g is quasisymmetrically conjugate to the doubling map R2, i.e., the map h : S1 → S1

whose lift H is given by Lemma 1.2.3 is a quasisymmetric map such that

g = h−1 ◦ R2 ◦ h.
The following proposition gives conditions which ensure expansivity.

Proposition 1.2.10. Let g : S1 → S1 be a C2 covering map of degree d without
attracting or parabolic points and having no critical points. Then g is expanding.

1.2.1 Blaschke products
We dedicate this subsection to define what Blaschke products are and introduce some
of their properties. These products are circle maps which extend to ?C as rational maps.
Definition 1.2.11. A degree d (finite) Blaschke product is a rational function of the
form

B(z) = e2πiα
d?

i=1

z − ai
1− aiz

,

where α ∈ [0, 1) and |ai| < 1 for all i. We say that B is a degree d generalized Blaschke
product if α ∈ [0, 1) and ai ∈ ?C \ S1.

The following proposition contains some properties of finite Blaschke products.
Proposition 1.2.12. Let B be a Blaschke product and let I(z) = 1/z denote the
inversion with respect to the unit circle. Then, the following hold.

(a) The product B preserves S1 and, therefore, is symmetric with respect to S1, i.e.,
B(z) = I ◦ B ◦ I(z).

(b) The restriction to the unit disk B|D is a degree d branched cover of D.
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(c) The circle map B|S1 is a degree d covering of S1.

(d) If ?B : D → D is a proper holomorphic map then ?B is a Blaschke product of (finite)
degree d ≥ 1 (c.f. Lemma 1.2.13).

(e) Let U ⊂ ?C be a simply connected domain. If f : U → U is a proper holomorphic
map then f is conformally conjugate to a Blaschke product.

For the generalized Blaschke products, only property (a) of the previous proposition
is preserved. There may appear new preimages of the unit circle as well as preimages
of infinity in D. Even if the topological degree of a generalized Blaschke product B is
d, the degree of B|S1 as circle map may be smaller than d.

Generalized Blaschke products are often used as model maps in complex dynamics.
For instance, the products Bα,a = e2πiαz2(z−a)/(1−az) where used by Herman [Her79]
to prove the existence of Herman rings (see Figure 1.4 (d)). They were also used to
prove that the boundary of a Siegel disk of a quadratic polynomial with a bounded
rotation number is a Jordan curve (see [Ghy84, Dou87, Her86, Świ88, Her87], c.f.
[BF14, Sect. 7.2.2]). The following lemma tells us that all rational maps which preserve
the unit circle are generalized Blaschke products (see [Mil06, Lem. 15.5]).
Lemma 1.2.13. Let R be a degree d rational map and assume that R(S1) = S1. Then
R can be written as a degree d generalized Blaschke product.

We finish this subsection presenting a result due to C. Petersen [Pet07] which gives
weaker conditions than expansivity so that a generalized Blaschke product restricted
to the unit circle is quasisymmetrically conjugate to the doubling map. Recall that
the ω-limit set ω(z) of a point z is defined to be the set of accumulation points of the
orbit of z and that z is said to be recurrent if z ∈ ω(z).
Theorem 1.2.14. Let B : Ĉ → Ĉ be a generalized Blaschke product with poles in D
such that the restriction B : S1 → S1 is a (positively oriented) degree d ≥ 2 covering
and such that

(a) ω(c) ∩ S1 = ∅ for every recurrent critical point c,

(b) S1 contains no non repelling periodic point.

Then, B : S1 → S1 is quasisymmetrically conjugate to Rd(z) = zd.
We want to remark that one should not expect to get a much better result than

the previous one for maps of the circle having critical points. Indeed, H. Bruin [Bru96]
proved that given any family of degree d covering maps of the circle with critical points,
there exists a total measure subset of elements of the family on which does not exist a
quasisymmetric conjugacy.

1.2.2 Tongues
In this subsection we introduce the concept of tongue for almost bicritical families fa
(see Definition 1.1.23) which leave the unit circle invariant and such that fa|S1 is strictly
increasing of degree 2.

Given a family of fa, a ∈ ∆, of orientation preserving homeomorphisms of the unit
circle, one can assign a rotation number to each of its members which gives the average
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asymptotic rate of rotation of points in the circle. More precisely, if Fa is a lift of fa,
the rotation number of fa is given by

ρ(fa) = lim
n→∞

Hn
a (x)
n

, (1.2)

where x ∈ R. It is well known that the limit exists and it is independent of x. Moreover,
since any two lifts of fa differ by an integer constant, ρ(fa) is a well defined number
in R/Z. Hence, we may assume that ρ(fa) ∈ [0, 1). Moreover, ρ(fa) = p/q ∈ Q if and
only if fa has an attracting or parabolic q-cycle in S1. The (rational) tongues of the fa
are defined as the sets of parameters a ∈ ∆ such that fa has rotation number p/q ∈ Q.
The concept of tongues was introduced by Arnold [Arn61] for the standard family of
perturbations of the rigid rotation

θ → θ + α + (β/2π) sin(2πθ) (mod 1)
where 0 ≤ θ < 1, 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 (see Figure 1.6) , but were investigated later
on by many authors, for this family or other related ones (see e.g. [Her79], [Boy86],
[WBJ91], [EKT95] and [BFGH05]).

Figure 1.6: The tongues of the standard family. The x-axis shows α ∈ [−1/2, 1/2]
so that the tongue T0 appears centered. The y-axis shows the parameter
β ∈ [0, 1]. The figure shows, in order, the tongues with rotation numbers
1/2, 3/5, 2/3, 3/4, 4/5, 0, 1/5, 1/4, 1/3, 2/5, 1/2.

On the other hand, if the maps fa are not homeomorphisms but degree 2 covers of
S1, we cannot assign rotation number to them. Indeed, the limit

Ha(x) = lim
n→∞

F n
a (x)
2n

depends continuously on x and provides a semiconjugacy between fa and the doubling
map R2(z) = z2 (see Lemmas 1.2.3 and 1.2.4, c.f. Equation (1.1)). Nevertheless,
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tongues can still be defined as sets of parameters for which fa has an attracting cycle
in S1. Before formally defining them we need to introduce an auxiliary lemma.

Assume that fa : S → S, where S = ?C or C∗ and a ∈ ∆, is an almost bicritical
family of holomorphic maps such that, for all a ∈ ∆, fa|S1 is an increasing degree 2
cover of the unit circle and that either the free critical points are not in S1 or they
collapse in a unique critical point c. Then, the following result holds.
Lemma 1.2.15. Let fa as above. Then, fa|S1 has at most one attracting cycle < x0 >
in the unit circle. If there is such a cycle, the two free critical points lie in the same
connected component of A∗(< x0 >).

Proof. It follows from the Schwarz reflection principle that if the two free critical points
do not lie in the unit circle, then their orbits are symmetric with respect to S1. Hence,
if one of the critical orbits accumulates on an attracting cycle < x0 > in S1, so does the
other one. Given that any attracting cycle has a critical point in its basin of attraction,
this proves that there can be at most one attracting cycle in the unit circle. Moreover,
every connected component of A∗(< x0 >) intersects S1 and is symmetric. Hence, both
critical points lie in the same connected component.

Definition 1.2.16. Let fa be as above with an attracting cycle < x0 > in the unit
circle. The point xj ∈< x0 > such that the critical points lie in A∗(xj) is called the
marked point of the cycle.

We generally rename the cycle so that x0 denotes the marked point. Now we can
formalize the concept of tongue for degree two covers of the circle. Let Ha be the
continuous map given by Lemma 1.2.3 which semiconjugates the lift Fa of fa|S1 to the
doubling map. Then tongues for degree 2 families of coverings of the unit circle are
defined as follows.
Definition 1.2.17. Let fa as above. We say that a parameter a ∈ ∆, is of type τ if
fa|S1 has an attracting cycle < x0 > and Ha(x0) = τ , where x0 is the marked point
point of the cycle. The tongue Tτ is defined as the set of parameters a ∈ ∆, such that
a is of type τ .

The type τ (a) is a well defined number of R/Z by Lemma 1.2.4. Hence, we may
assume that τ (a) ∈ [0, 1). Notice that in the previous definition we use an abuse of
notation on the definition, naming x0 both the point in the unit circle and its lifted
equivalent in the real line.

It follows from Lemma 1.2.15 that the tongues are disjoint. Indeed, if two different
tongues would intersect, we would have sets of parameters with two different attracting
cycles, which is not possible.

Given that Ha sends periodic points to periodic points (see Lemma 1.2.5), any
realizable type τ ∈ S1 is a periodic point of the doubling map. It also follows from this
and the continuity of Ha with respect to parameters that tongues are open subsets of
∆. Hence, a parameter a ∈ ∂∆, such that fa has an attracting cycle in S1 of type τ is
not in the boundary of Tτ .

Misiurewicz and Rodrigues [MR07, MR08] studied the tongues of the double stan-
dard family of perturbations of the doubling map

θ → 2θ + α + (β/π) sin(2πθ) (mod 1)
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where 0 ≤ θ < 1, 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 (see Figure 1.7). Its complexification is the
family of bicritical entire transcendental maps of the punctured plane eiαz2eβ(z−1/z).

Figure 1.7: The tongues of the double standard family. The x-axis shows the parameter
α ∈ [−1/2, 1/2] so that the tongue T0 appears centered. The y-axis shows the
parameter β ∈ [0.5, 1].

The family Ba(z) = z3(z − a)/(1 − az), where a is such that |a| ≥ 2, satisfies the
required conditions for the existence of tongues. In Chapter 6 we shall study them in
detail (see Figure 6.1).

1.3 The Riemann-Hurwitz formula
The Riemann-Hurwitz formula is one of the main results used in the study of dynamical
systems in one complex variable. It relates the genus of two surfaces U and V if there is
ramified covering f : U → V . The following is a simplified statement which is enough
for our purposes (c.f. [Bea91], [Ste93]). It is stated using the connectivity of the open
domains instead of the Euler-characteristic. Recall that the connectivity mU of an
open domain U ∈ ?C is defined as the number of connected components of ?C \ U . In
particular, m?C = 0.

Theorem 1.3.1 (Riemann-Hurwitz Formula). Let U and V be two connected domains
of ?C of finite connectivity mU and mV and let f : U → V be a degree k proper map
branched over r critical points counted with multiplicity. Then

mU − 2 = k(mV − 2) + r.

This formula has several important corollaries which apply to complex dynamics.
We finish this section presenting two of them. The first of them gives us the number
of critical points of a rational map. Its proof is straightforward.

Corollary 1.3.2. Any rational map of degree d has 2d− 2 critical points.

The second corollary tells us that two or more different critical points are required
to map a multiply connected domain onto a simply connected domain by a proper
map. This result is quite useful when trying to prove that a Fatou component is
simply connected.
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Corollary 1.3.3. Let f be a rational map and let V be a simply connected domain.
Let U be a connected component of f−1(V ). If U contains at most one critical point
(of arbitrary multiplicity), then U is simply connected.

Proof. By construction, f |U : U → V is proper. Let r be the multiplicity of the critical
point. Then, f |U has at least degree r + 1. By The Riemann-Hurwitz formula, since
mV = 1, we have mU − 2 ≤ −(r + 1) + r = −1. Since mU is at least 1, we conclude
that it is indeed 1 and U is simply connected.



2Chapter Two

Preliminaries 2: Quasiconformal
Surgery

Quasiconformal surgery was first used in the setting of complex dynamics by Sulli-
van [Sul85] in his celebrated proof of non existence of wandering domains for rational
functions. Since then, it has become one of the main tools in the study of dynamical
systems in one complex variable. We use it in the proof of several results such as
Theorem 5.3.4, Theorem 5.4.2 and Theorem 6.2.1.

The aim of this chapter is to give an overview of the results used in quasiconformal
surgery. In section 2.1 we describe the basic properties of quasiconformal mappings.
In section 2.2 we generalize the previous results to orientation reversing maps. In
section 2.3 we introduce the theory of polynomial-like mappings, which makes intensive
use of quasiconformal tools.

2.1 Quasiconformal maps and almost complex
structures

In this section we introduce the basic definitions and results used on quasiconformal
surgery. For a more complete introduction and proofs of the results we refer to [Ahl06],
[AIM09], [Hub06] and [BF14].

Quasiconformal and quasisymmetric maps
Whereas conformal mappings cannot modify angles, quasiconformal maps can, but only
in a bounded fashion. We introduce two equivalent definitions of them, an analytic one
and a geometric one.
Definition 2.1.1 (Analytic definition of quasiconformal map). Let U and V be two
domains of C. Given K ≥ 1 we say that the map ψ : U → V is K-quasiconformal if
and only if the following conditions hold:

(a) ψ is a homeomorphism.

(b) The partial derivatives ∂zψ and ∂zψ exists in the sense of distributions and are
locally square integrable (i.e., belong to L2

loc).

(c) If k := K−1
K+1 , then |∂zψ| ≤ k|∂zψ| in L2

loc, i.e., almost everywhere.

A map is said to be quasiconformal if it is K-quasiconformal for some K.

On a Family of Degree 4 Blaschke Products 35
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Notice that the third condition of the definition implies that quasiconformal maps
are orientation preserving.

Before introducing the geometric definition of quasiconformal maps, we recall the
definition of modulus of an annulus. An open annulus A in C is a doubly con-
nected domain of Ĉ. It can be mapped conformally to an standard or round annulus
Ar,R = {z ∈ C; 0 ≤ r < |z| < R ≤ +∞}, which is unique up to multiplication by a
real constant.
Definition 2.1.2. Let A be an open annulus in C. Then, its conformal modulus is
defined as

mod(A) := mod(Ar,R) :=
? 1

2π log
R
r

if r > 0 and R < +∞
∞ if r = 0 or R = +∞.

Quasiconformal mappings modify the modulus of annuli in a bounded fashion. This
property may be used to define geometrically the concept of quasiconformal mappings.
Definition 2.1.3 (Geometric definition of quasiconformal map). Let U and V be two
open domains in C and let K ≥ 1. We say that a map ψ : U → V is K-quasiconformal
if and only if ψ is an orientation preserving homeomorphism so that, for any annulus
A compactly contained in U , the following inequality is satisfied

1
K
mod(A) ≤ mod(ψ(A)) ≤ Kmod(A).

The fact that these definitions are actually equivalent is one of the main results of
the theory. The following proposition states some of the most important properties of
these mappings.
Proposition 2.1.4. The following statements hold.

(a) If ψ is K-quasiconformal, then ψ−1 is K-quasiconformal.

(b) If ψ is K-quasiconformal, it remains being K-quasiconformal after precomposing
or postcomposing with conformal mappings.

(c) The composition of a K1 and a K2 quasiconformal maps is a K1K2-quasiconformal
mapping.

(d) A homeomorphism ψ is K-quasiconformal if, and only if, ψ is locally K-quasicon-
formal.

(e) Quasiconformal maps send sets of measure zero to sets of measure zero.

Notice that properties (a), (b) and (c) follow easily from the geometric definition
and properties (d) and (e) follow from the analytic definition.
Definition 2.1.5. Let U ⊂ C be an open set and K < ∞. A mapping f : U → C is
K-quasiregular if f is locally K-quasiconformal except at a discrete set of points in U .
A map is said to be quasiregular if there exists K ≥ 1 so that it is K-quasiregular.

The discrete set of points where a quasiregular map fails to be a local homeomor-
phism corresponds to the critical points of a holomorphic map. Indeed, the following
result holds.
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Proposition 2.1.6. Let U and V be two open sets of C and let ψ : U → V be
a quasiregular map. Then, there exist an open set W of C, a holomorphic map
f : U → W and a quasiconformal map φ : W → V such that ψ = φ ◦ f .

One of the main differences between holomorphic and quasiregular mappings is that
the last ones can be defined piecewise, which is a key property while performing the
surgeries. To properly state how this can be done, we introduce the following concept.

Definition 2.1.7. A Jordan arc γ is said to be a quasiarc if there exists C > 0 so that

diam(γ(z1, z2)) < C|z1 − z2| for all z1 and z2 in γ,

where γ(z1, z2) is taken to be the arc of smaller diameter in γ joining z1 and z2. We
say that a quasiarc γ is a quasicircle, if it is a Jordan curve.

Notice that points, lines and smooth arcs are quasiarcs. The following proposition
relates quasicircles and quasiconformal mappings.

Proposition 2.1.8. Let γ be a quasicircle. Then, there exists a quasiconformal map
ψ : C → C so that ψ(S1) = γ.

It follows from the next theorem that quasiconformal and quasiregular maps can
be defined piecewise.

Theorem 2.1.9. If Γ ⊂ U is a quasiarc and ψ : U → V is a homeomorphism that is
K-quasiconformal on U \ Γ, then ψ is K-quasiconformal in U. We then say that Γ is
quasiconformally removable.

Suppose that a domain U is separated into two domains U1 and U2 by a quasiarc γ.
Then, if the map ψ : U → V is a homeomorphism such that ψ|U1 is K1-quasiconformal
and ψ|U2 is K2-quasiconformal, it follows from the previous proposition that ψ is K-
quasiconformal with K = max{K1, K2}.

The following lemma, known as Rickman Lemma or Bers Sewing Lemma, is also
used to build quasiconformal maps by gluing procedures. We shall use it in Chapter 5.

Lemma 2.1.10 (Rickman Lemma). Let U ⊂ C be open, C ⊂ U compact and let ψ
and φ two mappings U → C which are homeomorphisms onto their images. Suppose
that ψ is quasiconformal on U , that φ is quasiconformal on U \ C, and that ψ = φ on
C. Then φ is quasiconformal on U and ∂zψ = ∂zφ almost everywhere on C.

When studying boundary properties of quasiconformal mappings, quasisymmetric
maps arise in a natural way.

Definition 2.1.11. A map h : S1 → C is quasisymmetric if h is injective and there
exists a constant M > 0 such that, for all z1, z2, z3 ∈ S1,

|z1 − z2| = |z2 − z3| ⇒
1
M

≤ |h(z1)− h(z2)|
|h(z2)− h(z3)|

≤ M.

The following theorem relates the concept of quasisymmetric maps and quasicircles.

Proposition 2.1.12. Let h : S1 → C be a quasisymmetric map. Then, h(S1) is a
quasicircle.
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We continue by giving a notion of what it means to talk about quasisymmetric
maps between quasicircles.

Definition 2.1.13. Let γj , j = 1, 2, be quasicircles. Let Gj be the Jordan domains
bounded by γj and Rj : D → Gj be two Riemann mappings. By Charatheodory’s
theorem, Rj extend continuously to the boundary giving parametrizations R̂j : S1 → γj ,
j = 1, 2. Then, we say that an orientation preserving homeomorphism h : γ1 → γ2 is
quasisymmetric if R̂−1

2 ◦ h ◦ R̂1 : S1 → S1 is quasisymmetric.

It follows easily from the definitions that the composition of two quasisymmetric
maps is quasisymmetric. The following results provide some examples of how quasisym-
metric maps can by related with quasiconformal maps via the boundary problems (see
[DE86], [BA56]).

Proposition 2.1.14. Let ψ : D → D be a quasiconformal map. Then, ψ extends
continuously to a map ψ̂ : D̂ → D̂ such that ψ̂|S1 is a quasisymmetric map. Conversely,
any quasisymmetric map h : S1 → S1 extends to a quasiconformal map H : D → D.

We remark that the quasiconformal extension of a quasisymmetric map h of the
unit circle to the unit disk is not unique.

Proposition 2.1.15. Let A1 and A2 be two annulus bounded by the quasicircles γij and
γoj , j = 1, 2. Let f : ∂A1 → ∂A2 be so that f |γi

1
: γi1 → γi2 and f |γo

1
: γo1 → γo2 are

quasisymmetric. Then, f can be extented quasiconformally to the whole annulus.

The interpolation can also be done if the boundary maps on the previous proposition
are not homeomorphisms. In that case the interpolating map is no longer quasiconfor-
mal but quasiregular. The following proposition, which corresponds to Exercise 2.3.3
in [BF14], tells us that this can be done depending continuously on a parameter if one
of the curves of the target annulus depends continuously on the parameter

Proposition 2.1.16. Let γoj for j = 1, 2, and γi1 and γi2(λ) be C2 curves with γi2(λ)
depending continuously on λ and being outer and inner boundaries of two annuli A1
and Aλ

2 in C. Suppose that there are two orientation preserving C1-maps of degree n
given by f i

λ : γi1 → γi2(λ) and f o : γo1 → γo2 such that the map λ → f i
λ(z) is continuous

for any fixed z ∈ γi1. Then, there exists a C1-extension fλ : A1 → Aλ
2 which is a covering

map of degree n and such that, for any fixed z ∈ A1, the map λ → fλ(z) is continuous.

Almost complex structures and the Measurable Riemann
Mapping Theorem
Before stating the main result necessary for surgery, we introduce a geometric approach
to the concept of quasiconformal mappings. We first introduce the concept of almost
complex structure.

Definition 2.1.17. Given an ellipse E, its dilatation KE and Beltrami coefficient µ(E)
are given by the formulas

KE = Major axis
Minor axis =

M

m
> 1, µ(E) = M −m

M +m
e2πiθ ∈ D,

where θ ∈ [0, π) is the argument of the direction of the minor axis.
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Let U ⊂ C be a domain and let TU = ?
u∈U TuU be its tangent bundle. Then, we

define an almost complex structure as follows.

Definition 2.1.18. An almost complex structure σ on U is a measurable field of in-
finitesimal ellipses in TU . By this we mean that we associate an ellipse Eu ⊂ TuU
defined up to scaling to almost every u ∈ U . Moreover, we require the map u → µ(Eu)
from U to D to be measurable in the Lebesgue sense. The measurable map µ is called
the Beltrami coefficient of σ. We define the dilatation of σ as

K(σ) = ess sup
u∈U

K(u), where K(u) = K(Eu) =
1 + |µ(u)|
1− |µ(u)| .

The standard complex structure σ0 is given by circles at each u ∈ U , i.e., µ(u) = 0
∀u ∈ U .

The concept of Beltrami coefficient in C can be generalized to Riemann surfaces
(c.f. [BF14]). It is common to refer to Beltrami coefficients as Beltrami forms when
working in a Riemann Surface.

Almost complex structures may be “pulled back” by quasiregular maps. Let
ψ : U → V be quasiregular and suppose that we have an almost complex structure σ
in V . Then we can define a new almost complex structure ψ∗σ in U as follows. To
almost each point u in U , we associate a new ellipse E ?

u given by

E ?
u = (Duψ)−1Eψ(u),

where Duψ denotes the differential of ψ at the point u. This pullback structure has
some interesting properties.

Proposition 2.1.19. Let ψ : U → V be L-quasiregular and let σ be an almost complex
structure in V . Then,

(a) K(ψ∗σ) ≤ L ·K(σ).

(b) The almost complex structure ψ∗σ0 is given by the measurable Beltrami form
µψ = ∂zψ/∂zψ.

It follows from the previous proposition and the fact that holomorphic maps are
1-quasiregular that pulling back an almost complex structure by a holomorphic map
does not modify its dilatation. Indeed, the following holds.

Proposition 2.1.20. Let f : U → V be holomorphic and let σ be an almost complex
structure in V . Then, K(f ∗σ) = K(σ). Moreover, if µ denotes the Beltrami coefficient
of the almost complex structure σ, then the following formula holds.

f ∗µ(u) = µ(f(u))∂zf(u)
∂zf(u)

. (2.1)

It is important to know whether an almost complex structure is preserved under
the iteration of a quasiregular map. The following definition introduces formally this
concept.
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Definition 2.1.21. Let σ be a complex structure in U and let ψ : U → U be a
quasiregular map. We say that σ is ψ-invariant if ψ∗σ = σ.

The following result, due to H. Weyl, tells us that quasiconformal maps which leave
invariant the standard complex structure are conformal. It is a particular case of Weyl’s
Lemma, which states that an L1

loc solution of the Laplace equation in the distributional
sense is a smooth function. For a proof of this particular case see [Ahl06, p. 16].

Theorem 2.1.22 (Weyl’s Lemma). If ψ is 1-quasiconformal, then ψ is conformal. In
other words, a quasiconformal map ψ is conformal if and only if ψ∗σ0 = σ0. Likewise,
a map ψ is holomorphic if and only if it is 1-quasiregular.

We now introduce the main theorem in quasiconformal surgery. It is due to C. Mor-
rey [Mor38], B. Bojarski [Boy57], L. Ahlfors and L. Bers [AB60]. It gives conditions
under which the Beltrami equation ∂zψ(z)µ(z) = ∂zψ(z) has a quasiconformal solution
ψ.

Theorem 2.1.23 (Measurable Riemann Mapping Theorem). Let U ⊂ S, where S = C
or ?C, be an open simply connected set (resp. U = S). Let σ be an almost complex
structure on U with Beltrami coefficient µ. Suppose that the dilatation of σ is uniformly
bounded, that is K(σ) < ∞, or equivalently that the essential supremum of |µ| on U
is bounded away by one, i.e., ||µ||∞ := k < 1. Then µ is integrable, i.e., there exists a
quasiconformal map ψ : U → D (resp. ψ : S → S), which solves the Beltrami equation,
i.e., such that

∂zψ(z)µ(z) = ∂zψ(z)

for almost every z ∈ U . Moreover, ψ is unique up to post-composition with automor-
phisms of D (resp. automorphisms of S).

The previous theorem may be used to obtain holomorphic maps from quasiregular
ones which preserve almost complex structures as follows. Let ϕ : C → C be a
quasiregular map and σ be a ϕ-invariant bounded almost complex structure. Let ψ be
the integrating map of σ given by the previous theorem. Then, the quasiregular map
ψ ◦ ϕ ◦ ψ−1 preserves the standard complex structure σ0. Therefore, it is holomorphic
by means of Weyl’s Lemma.

The following result tells us about the dependence on parameters of the integrating
map ψ.

Theorem 2.1.24 (Dependence on parameters). Let Λ be an open subset of Cn, n ≥ 1.
Let S be a Riemann surface isomorphic to C (or Ĉ), and let (µρ)ρ∈Λ be a family of
measurable Beltrami forms on S. Suppose that ρ → µρ(s) is holomorphic (respectively
continuous, differentiable, real analytic) in ρ for each fixed s ∈ S (whenever defined)
and that there is a k < 1 such that ||µρ||∞ ≤ k for all ρ ∈ Λ. Let ψρ : S → C
(or Ĉ) be the unique quasiconformal homeomorphism, normalized appropriately, which
integrates µρ . Then for any fixed s ∈ S the map ρ → ψρ(s) is holomorphic (respectively
continuous, differentiable, real analytic) in ρ.

Equivalent conditions for the dependence on parameters may be found in [AIM09,
Lem. 5.3.5].
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2.2 Quasiconformal surgery in orientation revers-
ing maps

In this thesis we work with a rational family which is symmetric with respect to the
unit circle in the sense that, given any map B of the family, B(z) = I ◦ B ◦ I(z) for
all z ∈ C, where I(z) = 1/z denotes the reflection with respect S1. The symmetry
with respect to the unit circle I is an orientation reversing homeomorphism of the
complex plane onto itself. Therefore, it is important for us to know how symmetries
are preserved in almost complex structures.

In this section we introduce the so called antiquasiconformal maps, which are the
orientation reversing analogous of quasiconformal maps. Afterwards we explain how
to pull back almost complex structures by antiquasiconformal maps. We finally de-
scribe using orientation reversing maps how to obtain quasiconformal maps which are
symmetric with respect to the unit circle or the real line.

Antiquasiconformal maps
Let ?I(z) = z be the reflection with respect to R. Given a function f : U → V , we denote
by f the function f : U → ?I(V ) so that f(z) = f(z), where ?I(V ) = {z | z ∈ V }. If not
specified, the domains of definition of a function are taken so that it is well defined.

Definition 2.2.1 (First definition of antiquasiconformal map). Let K ≥ 1 and let U
and V be two domains. We say that a map ψ : U → V is K-antiquasiconformal if
ψ : U → ?I(V ) is K-quasiconformal. We say that a function is antiquasiconformal if it
is K-antiquasiconformal for some K ≥ 1.

Comparing to the analytic and geometric definitions of quasiconformal mappings
(Definitions 2.1.1 and 2.1.3), it is not difficult to see that the previous definition is
equivalent to the following two ones.

Definition 2.2.2 (Analytic definition of antiquasiconformal map). Let K ≥ 1 and let
U and V be two domains. We say that a map ψ : U → V is K-antiquasiconformal if
the following conditions hold.

(a) ψ is a homeomorphism.

(b) The partial derivatives ∂zψ and ∂zψ exists in the sense of distributions and are
locally square integrable (i.e., belong to L2

loc).

(c) If k := K−1
K+1 , then |∂zψ| ≤ k|∂zψ| in L2

loc, i.e., almost everywhere.

Definition 2.2.3 (Geometric definition of antiquasiconformal map). Let U and V be
two domains in C and let K ≥ 1. We say that a map ψ is K-antiquasiconformal if
and only if ψ is an orientation reversing homeomorphism so that, for any annulus A
compactly contained in U , the following inequality is satisfied

1
K
mod(A) ≤ mod(ψ(A)) ≤ Kmod(A).
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This last definition is obtained from Definition 2.1.3 by noticing that given an annu-
lus A, mod(A) = mod(?I(A)). The next proposition follows easily from the geometric
definition of quasiconformal and antiquasiconformal maps. It mainly tells us that the
composition of antiquasiconformal maps and quasiconformal maps works as one would
expect.
Proposition 2.2.4. Let U, V,W ⊂ C be open domains and let K1, K2 ≥ 1. Consider
ψ1 : U → V and ψ2 : V → W . Then,

(a) If ψ1 is K1-antiquasiconformal and ψ2 is K2-antiquasiconformal, then ψ2 ◦ ψ1 is
K1K2-quasiconformal.

(b) If ψ1 is K1-antiquasiconformal and ψ2 is K2-quasiconformal, then ψ2 ◦ ψ1 is
K1K2-antiquasiconformal.

(c) If ψ1 is K1-quasiconformal and ψ2 is K2-antiquasiconformal, then ψ2 ◦ ψ1 is
K1K2-antiquasiconformal.

As a corollary of this proposition, we obtain the following equivalent definition of
antiquasiconformal map. We use the fact that the map ?I(z) = z is anticonformal and,
hence, 1-antiquasiconformal.
Definition 2.2.5 (Fourth definition of antiquasiconformal map). Let K ≥ 1 and let
U and V be two domains. We say a map that ψ : U → V is K-antiquasiconformal if
?ψ ◦ ?I : ?I(U) → V , given by ψ̃(z) = ψ(z), is K-quasiconformal.

We now define the concept of antiquasiregular map.
Definition 2.2.6. We say that a map ψ : U → V is K-antiquasiregular if ψ is
K-quasiregular or, equivalently, if ψ is K-antiquasiconformal everywhere in U except
in a discrete set of points.

Pullback by orientation reversing maps
We now describe how to pull back almost complex structures under orientation revers-
ing maps. If f : U → V is antiquasiconformal, then its differential Duf : TuU → Tf(u)V
acts on the tangent bundles of U and V . This differential is used to pull back an almost
complex structure σ in V obtaining an new almost complex structure f?σ in U . As
in the orientation preserving case (see Section 2.1), to almost every point u in U , we
associate a new ellipse E ?

u given by

E ?
u = (Duf)−1 (Ef(u)),

where Duf denotes the differential of f at the point u. We denote it with ? instead
of ∗ to remark that we are pulling back by orientation reversing maps. They are
conceptually the same and we will not differentiate them throughout the thesis but we
keep this notation in this introductory section.

The following proposition describes how the pullback under an antiquasiconformal
map modifies a Beltrami coefficient of an almost complex structure. It is based on the
fact that (Duf)−1 (Ef(u)) =

?
Duf

?−1
(Ef(u)) (c.f. [BF14, Exercises 1.1.4, 1.1.5, 1.2.1

and 1.2.2]).
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Proposition 2.2.7. Let ψ : U → V be an antiquasiconformal map and let µ be a
Beltrami coefficient defined in V . Then ψ?µ satisfies

ψ?µ = ψ ∗µ, (2.2)

where µ(z) = µ(z).

The next result follows from the previous proposition.

Proposition 2.2.8. Let ψ : U → V be an antiholomorphic map and let σ be an almost
complex structure defined in V with dilatation Kσ. Then Kψ?σ = Kσ.

Proof. Let µ be the Beltrami coefficient of σ. It is enough to notice that ψ is holomor-
phic and that Kµ = Kµ. Then, the result follows from Proposition 2.2.7.

Proposition 2.2.9 (Weyl’s Lemma for antiquasiregular maps). Let ψ : U → V be
an antiquasiregular map and let σ0 denote the standard complex structure in V . If
ψ?σ0 = σ0, then ψ is antiholomorphic.

Proof. Let µ0 denote the Beltrami coefficient of σ0. By Proposition 2.2.7, we have

µ0 = ψ?µ0 = ψ ∗µ0 = ψ ∗µ0.

Hence, ψ ∗µ0 = µ0. Since ψ is quasiregular we conclude by Weyl’s Lemma (Theorem
2.1.22) that ψ is holomorphic. Therefore, ψ is antiholomorphic.

Symmetries
We denote by I(z) = 1/z and ?I(z) = z the reflections with respect to the unit circle
and the real line, respectively. A holomorphic map f : U → V , is said to be symmetric
with respect to the unit circle (resp. the real line) if I(U) = U (resp. ?I(U) = U) and
f(z) = I ◦f ◦I(z) (resp. f(z) = ?I ◦f ◦ ?I(z)) for all z in U . Throughout this subsection
we assume that all domains of definition of the maps are symmetric in the above sense.

Definition 2.2.10. An almost complex structure σ is said to be symmetric with respect
to the unit circle (resp. the real line) if and only if I?σ = σ (resp. ?I?σ = σ).

Sometimes it is useful to check explicitly if an almost complex structure σ is sym-
metric using its Beltrami coefficient µ. The following proposition provides a necessary
and sufficient condition so that an almost complex structure is symmetric.

Proposition 2.2.11. An Almost complex structure σ defined in an open set U with
Beltrami coefficient µ is symmetric with respect to the unit circle if and only if the
equality

µ(z) = µ(1/z)z
2

z2

holds for almost every z ∈ U . Respectively, σ is symmetric with respect to the real line
if and only if µ(z) = µ(z) for almost every z ∈ U .

Proof. The proof follows directly from Equation (2.1) and Definition 2.2.7.
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The following lemma tells us that if we pull back a symmetric almost complex
structure by a symmetric map we obtain another symmetric almost complex structure.
By “symmetric” we mean symmetric with respect to S1 or R.
Lemma 2.2.12. Let f : U → V be a quasiconformal map which is symmetric with
respect to the unit circle (resp. the real line) and let σ be a symmetric almost complex
structure defined in V . Then the almost complex structure f ∗σ is also symmetric with
respect to the unit circle (resp. the real line).

Proof. Assume f and σ are symmetric with respect to S1. Then f(z) = I ◦ f ◦ I(z)
for all z ∈ U . Therefore, f ∗σ = (I ◦ f ◦ I)∗σ = I?f ∗I?σ = I?f ∗σ as we wanted to
prove. The symmetric case with respect to R is analogous.

Finally we introduce a lemma which shows that given a symmetric almost complex
structure σ with bounded dilatation whose domain of definition is the whole Riemann
sphere, then the quasiconformal map given by the Measurable Riemann Mapping The-
orem (Theorem 2.1.23) can also be chosen to be symmetric.
Lemma 2.2.13. Let σ be an almost complex structure with bounded dilatation defined
in ?C and symmetric with respect to the unit circle. Let φ be the integrating map given
by the Measurable Riemann Mapping Theorem (Theorem 2.1.23) and normalized so
that it fixes 0 and ∞ and so that φ(x0) = x1, where x0, x1 ∈ S1. Then, φ is symmetric
with respect to the unit circle.

In the above setting, if σ is symmetric with respect to the real line, φ fixes two points
z1 and z2 = ?I(z1) /∈ R and is so that φ(x0) = x1 with x0, x1 ∈ R, then φ is symmetric
with respect to the real line.

Proof. We give the proof for the circular case, being the real one analogous. Consider
the quasiconformal map ?φ given by I ◦ φ ◦ I. It fixes 0 and ∞ and maps x0 to x1. If
we see that it also integrates σ then we are done by uniqueness of the integrating map
up to composition with Möbius transformations. Indeed,

?φ∗σ0 = (I ◦ φ ◦ I)∗σ0 = I?φ∗I?σ0 = I?φ∗σ0 = I?σ = σ.

2.3 Polynomial and antipolynomial-like maps
In the dynamical plane of many holomorphic maps, we sometimes find certain subsets
that look like the filled Julia set of a polynomial (see Figure 2.1). Recall that the filled
Julia set of a polynomial P is defined as the set of orbits which do not escape to infinity
under iteration of P . The theory of polynomial-like mappings, developed by Douady
and Hubbard in [DH85b], describes this phenomenon in a rigorous way. It explains
how an arbitrary holomorphic map f : S → S may act locally like a polynomial.
Definition 2.3.1. A triple (f ;U, V ) is called a polynomial-like (resp. antipolynomial-
like) mapping of degree d if U and V are bounded simply connected subsets of the plane
isomorphic to discs, U ⊂ V and f : U → V is holomorphic (resp. antiholomorphic)
and proper of degree d.
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Figure 2.1: The left figure shows the dynamical plane of the quadratic polynomial z2 − 1.
The right figure shows a zoom in the dynamical plane of a Blaschke product of
the form (1).

We remark that, for every (anti)polynomial P of degree d, there exists an R > 0 so
that (P ;DR, P (DR)) is a (anti)polynomial-like mapping (see Figure 2.2).

Definition 2.3.2. We define the filled Julia set of a (anti)polynomial-like map (f ;U, V )
as

Kf =
?

n>0
f−n(V ) = {z ∈ U | fn(z) ∈ U ∀n ≥ 0}.

Definition 2.3.3. Two (anti)polynomial-like maps (f ;U, V ) and (f ?;U ?, V ?) are said to
be hybrid equivalent if there exist neighborhoods Uf and Uf ? of Kf and Kf ? respectively,
and a quasiconformal conjugacy φ : Uf → Uf ? between f and f ? such that ∂zφ = 0
almost everywhere in Kf .

Kf

U
V

f

Figure 2.2: A polynomial-like map.



46 Preliminaries 2: Quasiconformal Surgery

Hybrid equivalence is the strongest type of conjugacy that one can define for poly-
nomials having connected filled Julia sets. Indeed, the following result holds.
Theorem 2.3.4. Let P and Q be two polynomials with connected Julia sets. Then, P
and Q are hybrid equivalent if, and only if, they are affinely conjugate.

The following theorem is the main result of polynomial-like theory. It tells us that
all polynomial-like maps are hybrid equivalent to a polynomial of the same degree.
Theorem 2.3.5 (The Straightening Theorem). Every degree d polynomial-like map-
ping (f ;U, V ) is hybrid equivalent to a polynomial P of degree d. If Kf is connected,
P is unique up to affine conjugation.

The antipolynomial-like theory was first introduced by Milnor [Mil09] in order to
study why small “copies” of the Tricorn appear in the parameter plane of real cubic
polynomials. Hubbard and Schleicher [HS12] used this theory afterwards in the study
of the Multicorns, the connectedness locus of the antipolynomial maps pc,d(z) = zd+ c.
They stated the Antiholomorphic Straightening Theorem. Its proof is analogous to
the one of the Straightening Theorem. We prove, for the sake of completeness, the
existence of the hybrid equivalency.
Theorem 2.3.6 (Antiholomorphic Straightening Theorem). Every antipolynomial-like
mapping (f ;U, V ) of degree d is hybrid equivalent to an antipolynomial P of degree d.
If Kf is connected, then P is unique up to affine conjugation.

Proof. The proof of the theorem is analogous to the one of the usual Straightening
Theorem (Theorem 2.3.5). It mainly consists in gluing z → zd to f .

We may assume, without loss of generality, that the sets U and V are bounded by
analytic curves. If this is not the case, we can define a new antipolynomial-like map
(f ; ?U, ?V ) with ?U ⊂ U ⊂ ?V ⊂ V which has the same filled Julia set than the original
one and is therefore hybrid equivalent to it.

Pick ρ > 1. Let R : Ĉ \ V → Ĉ \ Dρd be a Riemann map fixing infinity. Then, R
extends to the boundary as an analytic map. Indeed, it extends continuously to the
boundary by Charatheodory’s Theorem. Since ∂V is an analytic curve, this continu-
ation is analytic (see [BF14, Thm. 2.9]). Let ψ1 : ∂V → S1

ρd be the extension map.
Since ψ1 ◦ f : ∂U → S1

ρd is a real analytic map of degree d, we can choose a C1 (or real
analytic) lift ψ2 : ∂U → S1

ρ so that ψ1(f(z)) = ψ2(z)d.
Now consider the annuli A0 = V \ U and Aρ,ρd = {η; ρ < |η| < ρd}. By Propo-

sition 2.1.15, there exists ψ : ∂A0 → ∂Aρ,ρd quasiconformal such that ψ|∂U = ψ2 and
ψ|∂V = ψ1. Now we define our model map F as

F (z) =





f(z) for z ∈ U

R−1
?
ψ(z)d

?
for z ∈ V \ U

R−1
?
R(z)d

?
for z ∈ C \ V.

The map F (z) is antiquasiregular and has topological degree d by construction.
We continue by defining an F -invariant Beltrami coefficient µ. Observe that F is an
antiholomorphic map everywhere except on A0 = V \ U . Notice also that the orbit of
a point z can go at most once through A0. Denote An = {z | fn(z) ∈ A0}. Thus, it is
enough to define
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µ(z) =





ψ
?
µ0(z) for z ∈ A0

(fn)?µ(z) for z ∈ An

µ0(z) elsewhere.

By construction, F?µ = µ. Moreover, since f is an antiholomorphic function
and hence preserves dilatation, we have that Kµ = K

ψ
?
µ0

= Kψ∗µ0 . Thus, µ has
bounded dilatation. Let φ be an integrating map given by the Measurable Riemann
Mapping Theorem (Theorem 2.1.23) fixing infinity. Then, φ∗µ0 = µ. Finally, define
P = φ ◦ F ◦ φ−1. By construction, P?µ0 = µ0. Hence, P ∗

µ0 = µ0. Then, by Weyl’s
Lemma (Theorem 2.1.22), P is an entire map of topological degree d and, hence, a
polynomial of degree d.

The proof finishes by observing that µ ≡ 0 in Kf and, hence φ|Kf
is conformal.





3Chapter Three

Dynamical Plane

We consider the family of degree 4 products Ba(z) = z3(z−a)/(1−az). As all Blaschke
products, Ba leave the unit circle invariant. This fact has some relevant consequences
on the dynamics. They have two free critical points. If they lie in the unit circle their
orbits are not related and may lead to different stable dynamics. On the other hand,
if they do not lie in the unit circle, they have symmetric orbits and therefore their
asymptotic dynamics must also be symmetric.

The aim of this chapter is to give an overview of the dynamical plane of the Blaschke
products Ba. In Section 3.1 we introduce the basic dynamical properties of these maps.
In Section 3.2 we prove that the Fatou set of Ba cannot have Herman rings and give a
characterization of the connectivity of the Julia set J (Ba) for |a| ≥ 2.

3.1 The Blaschke family
In more generality, we consider the degree 4 Blaschke products of the form

Ba,t(z) = e2πitz3 z − a

1− āz
, (3.1)

where a ∈ C and t ∈ R/Z. Since Ba,t leaves invariant the unit circle, it is symmetric
with respect S1, i.e., Ba,t(z) = I ◦ Ba,t ◦ I(z) where I(z) = 1/z̄.

The next lemma tells us that, for the purpose of classification, we can get rid of the
parameter t. The proof is straightforward.
Lemma 3.1.1. Let α ∈ R and let η(z) = e−2πiαz. Then η conjugates the maps Ba,t

and Bae−2πiα,t+3α. In particular, Ba,t is conjugate to B
ae

2πit
3 ,0

.

Hence, we focus on the study of the family

Ba(z) = z3 z − a

1− āz
(1)

for values a, z ∈ C. We first give a few comments on Ba|S1 . For |a| > 1, the circle map
Ba|S1 has degree 2 in the sense that its lift Fa satisfies Fa(x + 1) = Fa(x) + 2 for all
x ∈ R. Indeed, it is given by

Fa(x) = 3x+ 1
2πi log

?
e2πix − a

1− āe2πix

?
, (3.2)

with x ∈ R. The logarithmic part of the formula corresponds to the lift la of the Möbius
map La(z) = (z − a)/(1 − az) which restricts to a homeomorphism of S1 and, hence,

On a Family of Degree 4 Blaschke Products 49
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la(x + 1) = la(x) ± 1. Since La has a pole in D, it maps D to ?C \ D. Therefore
la(x+1) = la(x)− 1 and Fa(x+1) = Fa(x)+ 2. If |a| = 1 then La(z) ≡ −a is constant
and Ba|S1 has degree 3. If |a| < 1 then Ba|S1 has degree 4 since la(x + 1) = la(x) + 1.
Therefore, Ba|S1 : S1 → S1 cannot be a degree 1 covering (and hence conjugate to an
irrational rotation). Consequently, every point z ∈ S1 either belongs to the Julia set
or to the basin of attraction of an attracting or parabolic cycle {z0, ..., zp−1} ∈ S1. For
further details on the dynamics of Ba|S1 see Chapter 6.

To have an idea of which stable dynamics the maps Ba may have, we should control
the critical orbits. Since these rational maps have degree 4, they have 6 critical points
counted with multiplicity (see Corollary 1.3.2). The fixed points z = 0 and z = ∞ are
critical points of multiplicity 2 and hence superattracting fixed points of local degree
3. The other two critical points, denoted by c±, are given by

c± := c±(a) := a · 1
3|a|2

?
2 + |a|2 ±

?
(|a|2 − 4)(|a|2 − 1)

?
. (3.3)

If 1 < |a| < 2, then the critical points satisfy c+ = a · k and c− = a · k, where

k = 1
3|a|2

?
2 + |a|2 + i

?
(4− |a|2)(|a|2 − 1)

?
∈ C.

In this case c+ and c− are not symmetric with respect to the unit circle and it follows
that |c+| = |c−| = 1 since otherwise its symmetric points would lead to two extra
critical points. On the other hand, if |a| > 2 or |a| < 1 the critical points c+ and c−
are free and satisfy |c+| ≥ 1, |c−| ≤ 1 and c− = 1/c+. Consequently, their orbits are
symmetric with respect to S1. The following lemma shows that the function may be
reparametrized in terms of the position of the critical points if |a| ≥ 2 or |a| < 1.

Lemma 3.1.2. Given a Blaschke product Ba,t as in (3.1) with |a| ≥ 2 or |a| < 1,
the parameter a is continuously determined by the critical points c±. Moreover, if the
image Ba,t(z0) ?= {0,∞} of a point z0 ∈ C∗ is fixed, then t depends continuously on a.

Proof. The continuous dependence of t with respect to a is clear. Let a = rae
2πiα,

where α ∈ R/Z and ra ≥ 2 (resp. ra < 1). It follows from Equation (3.3) that
the critical points c+ and c− have the same argument α as a. It is left to see that
ra depends continuously on |c+| = rc. It follows from symmetry that |c−| = 1/rc.
Consider R(rc) = rc + 1/rc. For rc ≥ 1, R is a strictly increasing function which
satisfies R(1) = 2. Using Equation (3.3) we have

R(rc)e2πiα = c+ + c− = 2a
3|a|2 (2 + |a|2) = 2

3
rae

2πiα

r2
a

(2 + r2
a),

and, therefore, ra · R(rc) = 2(2 + r2
a)/3. This quadratic equation yields two solutions

ra± = (3R ±
√
9R2 − 32)/4. The solution ra+(R) takes the value 2 for R = 2 and is

strictly increasing and tends to infinity when R tends to infinity. The solution ra−(R)
takes the value 1 for R = 2 and is strictly decreasing and tends to zero when R tends
to infinity. Therefore, each critical point c+ ∈ C, |c+| ≥ 1 (resp. |c+| > 1), determines
continuously a unique parameter a such that |a| ≥ 2 (resp. |a| < 1).
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For completeness we describe some features of the dynamics of Ba which depend
on the modulus of a. The first thing to consider is whether there is a preimage of ∞
in D. This family has a unique pole at z∞ = 1/a and a unique zero z0 = a. Their
position, together with the positions of c±, influence the global dynamics of Ba. We
proceed to describe the situation depending on |a| (see Figure 3.1).

z0c−
z∞

c+

(a) Case |a| < 1

z0z∞

c+

c−

γeγγi
Ωe

Ωi

(b) Case 1 < |a| < 2

z0

z∞
c

Ωi

Ωe

(c) Case |a| = 2

z0

c−z∞
c+

Ωe

Ωi

(d) Case |a| > 2

Figure 3.1: Different configurations of the critical points and the preimages of zero and
infinity depending on |a|.

When |a| < 1 we have that both critical points c± lie on the half ray containing
a. Moreover, |c−| < 1 and |c+| > 1. The only pole, z∞ = 1/a has modulus greater
than one. Hence, Ba : D → D is a holomorphic self map of D having z = 0 as a
superattracting fixed point. Since, by symmetry, there is no preimage of the unit disk
outside the unit circle, Ba|D is a degree 4 branched covering. By Schwarz Lemma we
have that z = 0 is the only attracting point of Ba in D and attracts all orbits in D.
Summarizing, we have:
Lemma 3.1.3. If |a| < 1, Aa(0) = A∗

a(0) = D and by symmetry Aa(∞) = A∗
a(∞) =

?C \ D. Hence, J (Ba) = S1.
When |a| = 1 both critical points and the preimages of 0 and ∞ collapse at the

point z = a, where the function is not formally defined. Everywhere else we have the
equality:

Ba(z) = z3 z − a

1− z/a
= −az3.

When 1 < |a| < 2 the two critical points lie in the unit circle, i.e., |c±| = 1 (see
Figure 3.1 (b)). Consequently, the critical orbits lie in S1 and are not related to each
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other by symmetry. The circle map Ba|S1 has no topological degree defined. Indeed,
it can be proven that some points in S1 have 2 preimages under Ba|S1 whereas other
points have 4 preimages (see Lemma 3.1.4 below). In Figure 3.2 We show the dynamical
planes of three maps Ba with 1 < |a| < 2.

(a) Dynamical plane of B3/2i (b) Dynamical plane of B3/2

(c) Dynamical plane of B1.07398+0.5579i (d) Zoom in (c)

Figure 3.2: Dynamical planes of three Blaschke products Ba with 1 < |a| < 2. The colors
are as follows: a scaling of red if the orbit tends to infinity, black if it tends to
zero, green if the orbit accumulates on the cycle < z0 > such that c+ lies in
A∗(< z0 >) and yellow if the orbit accumulates on a cycle < w0 > ?=< z0 > such
that c− ∈ A∗(< w0 >). In case (a) there are no other Fatou components than
the basins of zero and infinity. In case (b) both free critical orbits accumulate
on a period 2 cycle. In Figures (c) and (d) the critical orbits accumulate on
two different cycles of period 1 (green) and period 4 (yellow), respectively.
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Lemma 3.1.4. Let a satisfy 1 < |a| < 2. Then, there exists a unique preimage Ωe of
D not contained in D and, by symmetry, a unique preimage Ωi of ?C \ D not contained
in ?C \ D. Moreover, ∂Ωe = γe ∪ γ and ∂Ωi = γi ∪ γ, where γ ⊂ S1 is a curve joining
the two critical points. The curve γ is mapped univalently to another semiarc Γ ⊂ S1

whereas the curves γe and γi are mapped univalently to S1 \Γ. Consequently, the points
in Γ ⊂ S1 have 4 preimages in S1 whilst the points in S1 \ Γ have 2 preimages in S1.

Proof. For 1 < |a| < 2, the only preimages of the superattracting fixed points z = 0
and z = ∞ are z0 ∈ C \ D and z∞ ∈ D (see Figure 3.1 (b)). Hence, there is a
unique open set Ωe ⊂ C \D containing z0 which is mapped conformally under Ba onto
D. Analogously, there is a unique open set Ωi ⊂ D containing z∞ which is mapped
conformally under Ba onto ?C \ D. Due to symmetry, we have that Ωe = I(Ωi).

Since the critical points c+ and c− are in S1, there are arcs of preimages of points
in S1 attached to the critical points. These subarcs of preimages are contained in D
and C \D. Notice also that, due to symmetry and the fact that the critical points are
simple, there is a unique subarc of preimages γi,+ attached to c+ and contained in D.
Analogously, there is a unique subarc of preimages γi,− attached to c− and contained
in D. Due to the fact that D \ Ωi is a degree 3 branched covering of D, we conclude
that γi,± are contained in ∂Ωi. Therefore, ∂Ωi consists of the union of an arc γi ⊂ D
which contains the subarcs γi,± and a curve γ ⊂ S1. By symmetry, ∂Ωe consists of the
union of an arc γe ⊂ C\D and the curve γ. By Carathéodory’s theorem Ba|Ωe,i

extends
to homeomorphisms from ∂Ωe and ∂Ωi to S1 and therefore Ba|γ is univalent.

When |a| = 2 there is a unique critical point c = a/2 of multiplicity 2 in the unit
circle. There are two preimages of S1 which meet at c (see Figure 3.1 (c)). There may
or may not be an attracting or parabolic cycle in S1 when |a| = 2. The parameter
might be, for example, of Misiurewicz type (i.e., the free critical point is preperiodic).
In this situation the only Fatou components of Ba are the basins of z = 0 and z = ∞.
We also remark for further use that the map Ba|S1 is 2-to-1. In Figure 3.3 we show the
dynamical planes of two maps Ba with |a| = 2.

When |a| > 2, as is the case when |a| < 1, both critical points c± lie on the half ray
containing a and are symmetric with respect to S1. In this case there are two disjoint
preimages of the unit circle: one of them inside D, surrounding the pole z∞, and the
symmetric one outside surrounding the zero z0 = a (see Figure 3.1 (d)). As in the case
|a| = 2, Ba|S1 is 2-to-1. In Figures 3.4 and 5.3 (a) we show the dynamical planes of
three maps Ba with |a| > 2.

3.2 Connectivity of the Julia set
The goal of this section is to prove the following theorem, which gives a characterization
of the connectivity of J (Ba) if |a| ≥ 2. Notice that statement (a) has already been
proven in Lemma 3.1.3.

Theorem 3.2.1. Given a Blaschke product Ba as in (1), the following statements hold.

(a) If |a| ≤ 1, then J (Ba) = S1.
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Figure 3.3: Dynamical planes of B2 (left) and Ba0 , where a0 = 1.971917+0.333982i, (right).
In the left case the point z = 1 is a superattracting fixed point. The parameter
a0 has been chosen numerically so that Ba0 |S1 has no attracting cycle. The
colors are as in Figure 3.2.

Figure 3.4: Dynamical planes of Ba0 , where a0 = −0.87 + 2.05333i, (left) and B4 (right).
In the left case the critical point c+ belongs to A∗(∞) and the Julia set is
disconnected. In the right case each free critical orbit accumulates on a different
basin of attraction. The colors are as in Figure 3.2.

(b) If |a| > 1, then the connected components of A(∞) and A(0) are simply connected
if and only if c+ /∈ A∗(∞).

(c) If |a| ≥ 2, then every Fatou component U such that U ∩ A(∞) = ∅ and
U ∩ A(0) = ∅ is simply connected.

Consequently, if |a| ≥ 2, then J (Ba) is connected if and only if c+ /∈ A∗(∞).
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Figure 3.5: Dynamical plane of the Blaschke product Ba0 , a0 = 2.06547 + 1.91801i, for
which the critical orbit O(c+) enters in D before escaping to infinity, so that
c+ ∈ A(∞) \ A∗(∞). By means of Theorem 3.2.1 its Julia set is connected.
Color black denotes the basin of attraction of z = 0 whilst the scaling from
green to orange denotes the basin of attraction of z = ∞.

In Figure 3.5 we show an example of a Blaschke product for which c+ lies in
A(∞)\A∗(∞) and has connected Julia set by means of statement (b) of Theorem 3.2.1.
The proof of Theorem 3.2.1 splits into the following three propositions, which occupy
the remainder of the section.

Proposition 3.2.2. Let Ba be as in (1) and suppose |a| > 1. Then, the connected
components of A(∞) and A(0) are simply connected if and only if c+ /∈ A∗(∞).

Proof. By symmetry, the connected components of A(0) are simply connected if and
only if the ones of A(∞) are. Therefore, we focus on the simple connectivity of A(∞).
By means of the Riemann-Hurwitz formula (Theorem 1.3.1) and invariance of S1, the
connected components of A(∞) \ A∗(∞) are simply connected if and only if A∗(∞) is
simply connected since any connected component of A(∞) \ A∗(∞) can have at most
one critical point (see Corollary 1.3.3 and Figure 3.5). Therefore, it is sufficient to
prove that A∗(∞) is simply connected if and only if c+ /∈ A∗(∞). Let us consider the
Böttcher coordinate of the superattracting fixed point z = ∞ (see Theorem 1.1.12).
If there is no extra critical point in A∗(∞), the Böttcher coordinate can be extended
until it reaches ∂A∗(∞) and A∗(∞) is simply connected. If it does contain an extra
critical point, the Böttcher coordinate can only be extended until it reaches the critical
point (see Theorem 1.1.13). Let U be the maximal domain of definition of the Böttcher
coordinate at ∞. Then, either ∂U consists of the union of two topological circles, say
γ± , which are joined in a unique point which is the critical point (see Figure 3.6 (left)),
or ∂U is a topological circle containing the critical point (see Figure 3.6 (right)). If it is
the last case, there is an extra preimage of Ba(U) attached to the critical point. Hence,
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A∗(∞) would be mapped 4 to 1 onto itself. This is not possible since Ba is of degree
4 and the only pole z∞ is inside the unit disk and hence does not belong to A∗(∞).
Let V+ and V− be the disjoint simply connected regions bounded by γ+ and γ−. The
result follows by noticing that both Ba(V+) and Ba(V−) contain ?C \Ba(U) and, hence,
both of them contain the Julia set since J (Ba) is not empty and U is contained in
F(Ba).

U

Ba(U)

∞

c

γ−

γ+

∞

z∞

U

Ba(U)
c

γ+
γ−

1 : 1

3 : 1

Figure 3.6: Possible positions of the critical point c on the boundary of the maximal domain
of definition U of the Böttcher coordinate of z = ∞.

This concludes the proof of statement (b). We now begin the proof of statement (c).
In propositions 3.2.3 and 3.2.4 we prove that all periodic Fatou components other than
A∗(0) or A∗(∞) are simply connected.

Proposition 3.2.3. Let Ba be as in (1). Then Ba has no Herman Rings.

Proof. Shishikura [Shi87] proved that if a rational map has a Herman ring, then it has
two different critical points whose orbits accumulate on the two different components of
its boundary. It follows that Ba can have at most one cycle of Herman rings. If |a| ≤ 1,
the Julia set satisfies J (Ba) = S1 (see Lemma 3.1.3), so Ba cannot have Herman rings.
If 1 < |a| ≤ 2, the two critical orbits lie in S1 and, hence, there can be no Herman
rings.

We focus now on the case |a| > 2. Notice that no Herman ring can intersect S1

since Ba|S1 is not a homeomorphism (see Section 3.1). Hence, by Shishikura’s result
and symmetry, the cycle of Herman rings would have components both inside and
outside the unit disk. Thus, it would have at least one component in the preimage of
the unit disk Ωe = B−1

a (D) \ D and another one in the preimage of the complement
of the unit disk Ωi = B−1

a (C \ D) (see Figure 3.1 (d)). Recall that Ωe is a simply
connected set disjoint from S1. Moreover, all its preimages are bounded, none of them
can intersect the unit circle, and all of them are simply connected by Corollary 1.3.3.
Every component of the cycle of Herman rings is contained in a preimage of Ωe of some
order n ≥ 0. We claim that such a cycle must have a component which surrounds
either the unit disk or Ωe. If this is so, this component cannot be contained in a simply
connected preimage of Ωe, which leads to a contradiction.

Let I(z) = 1/z be the reflection with respect to S1. To prove the claim observe
that, due to symmetry, if A is a component of the cycle of Herman rings, then so
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is I(A). Moreover, since infinity is a superattracting fixed point, all components are
bounded and at least one of them, say A?, surrounds the pole z∞ (by the Maximum
Modulus Principle). Recall that z∞ is contained in Ωi and that, again by symmetry,
I(Ωi) = Ωe. Then, either A? surrounds the unit disk or surrounds Ωi or is contained
in Ωi. In the first case we are done. In the second case I(A?) surrounds Ωe and we are
also done. In the third case, Ba(A?) separates infinity and the unit disk and, hence,
surrounds the unit disk. This finishes the proof.

Proposition 3.2.4. Let Ba be as in (1) with |a| ≥ 2. Let < z0 > be an attracting,
superattracting or parabolic p-cycle of Ba other than {0} or {∞}. Then A∗(< z0 >) is
simply connected.

Proof. Case 1: First we consider the case in which each connected component of the
immediate basin of attraction contains at most one critical point (counted without
multiplicity). For the attracting case consider a linearizing domain A coming from
Kœnigs linearization around z0 (see Theorem 1.1.10). The subsequent preimages Un

defined as the components of B−n
a (A) such that z−n ∈ Un, contain at most one critical

point and are hence simply connected by Corollary 1.3.3. The result follows since
the nested subsequence of preimages {Unp} covers A∗(z0). The parabolic case follows
similarly by taking a petal instead of a linearizing domain (see Theorem 1.1.15) whereas
in the superattracting case we may use a Bötcher domain (see Theorem 1.1.12).

Case 2: Now we consider the case in which one connected component, say A∗(z0),
of the immediate basin of attraction contains the two different free critical points. This
excludes the case |a| = 2 (see Section 3.1). Without loss of generality we assume that
z0 is a fixed point. Indeed, the first return map from A∗(z0) onto itself has no other
critical points since the other components of the immediate basin of attraction contain
none.

Due to symmetry of the critical orbits, the fixed point z0 lies in S1. Hence, A∗(z0)
intersects S1, which is invariant. If z0 is attracting, take the maximal domain A of the
Kœnigs linearization (see Lemma 1.1.11). Its boundary ∂A contains, due to symmetry,
the two critical points. Each critical point has a different simply connected preimage
of Ba(A) attached to it. Now consider V = B−1

a (A). The map Ba|V : V → A is proper
and of degree 3 since z0 has three different preimages. Given that V contains exactly
2 critical points and Ba|V is of degree 3, it follows from the Riemann-Hurwitz formula
(see Theorem 1.3.1) that V is simply connected. Using the same reasoning all of its
preimages are simply connected. Finally, since A∗(z0) is covered by the nested sequence
of simply connected preimages of A, we conclude that A∗(z0) is simply connected.
The parabolic case is done similarly by taking P to be the maximal invariant petal
(see Theorem 1.1.16). Notice that, due to symmetry, for |a| > 2 there cannot be a
superattracting cycle of local degree 2 with an extra critical point in A∗(z0) .

We now finish the proof of statement (c). Assume that there exists a periodic Fatou
component other than A∗(0) and A∗(∞). Then, such a periodic Fatou component has
a critical point related to it. Indeed, if it is a Siegel disk, there is critical point whose
orbit accumulates on its boundary (see [Shi87]). If it is the basin of attraction of
an attracting, superattracting or parabolic cycle < z0 >, there is a critical point in
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c ∈ A∗(< z0 >) (see Theorems 1.1.11 and 1.1.16). Therefore, there is at most one
unoccupied critical point. Hence, by means of the Corollary 1.3.3 of the Riemann-
Hurwitz formula, any preperiodic Fatou component that is eventually mapped to a
periodic component other that A∗(∞) or A∗(0) is also simply connected.

The final statement of the theorem holds since the Julia set of a rational map is
connected if and only if all connected Fatou components are simply connected. We
conjecture that statement (c) on Theorem 3.2.1 also holds for 1 < |a| < 2.
Conjecture 3.2.5. If |a| > 1, then the Julia set of a Blaschke product Ba is connected
if and only if c+ /∈ A∗(∞).



4Chapter Four

The Blaschke Family and a Family
of Cubic Polynomials

When |a| > 2 the Blaschke products Ba may present locally polynomial dynamics (see
Figure 4.1). In this section we introduce the relation of the Blaschke products Ba with
the family of cubic polynomials with a superattracting fixed point Mb(z) = bz2(z − 1)
with b ∈ C. This relation is done by means of a cut and paste quasiconformal surgery
procedure (c.f. [BF14] and [Pet07]). Even if this surgery is interesting in itself, it has a
direct application to the study of the boundaries of the basin of attraction of disjoint
attracting cycles (see Proposition 5.4.1).

Figure 4.1: Dynamical planes of the Blaschke product B5.25 (left) and the cubic polynomial
M−5.5 (right). The black regions of both figures correspond to the basins of
attraction of the superattracting fixed points z = 0. For the cubic polynomial
we see in red the basin of attraction of a period two attracting cycle. The
Blaschke product has two different attracting cycles of period two. One outside
the unit disk (green) and the other one inside (yellow).

The goal of this chapter is to introduce the mathematical procedure relating the
dynamics of a Blaschke product Ba with the ones of a cubic polynomials Mb. In
Section 4.1 we give a first overview on the cubic family Mb. In Section 4.2 we study
quasiconformal surgery which relates the Blaschke family Ba and the cubic polynomials
Mb.

On a Family of Degree 4 Blaschke Products 59
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4.1 Cubic polynomials with a superattracting
fixed point

In this section we introduce the family of cubic polynomials Mb(z) = bz2(z − 1) with
b ∈ C. They have the point z = 0 as a superattracting fixed point. This one dimen-
sional slice of cubic polynomials (or a cover thereof) was introduced by Milnor in 1991
in a preliminary version of [Mil09]. Since then, these polynomials have been the object
of several studies. For instance, Roesch [Roe07] studied its bifurcation locus solving
some of the conjectures raised by Milnor. Tan [Tan97] used another parametrization
of this family in the description, by means of the so called matings, of the parameter
plane of the set of Newton maps NP coming from degree 3 polynomials P . In Figure
4.2 we show the parameter plane of the family Mb.

This family is in some sense complete, since every cubic polynomial with a super-
attracting fixed point can be conformally conjugate to one of its members. Moreover,
the slice contains only one representative of each conformal conjugacy class. In Figure
4.2 we show the parameter plane, drawn by computing the asymptotic behavior of the
orbit of the critical point c = 2/3.

Figure 4.2: Parameter plane of the family of cubic polynomials Mb(z) = bz2(z − 1). The
colors are as follows. Black if the free critical orbit tends to the superattracting
cycle z = 0 and red if it tends neither to z = 0 nor to z = ∞. The scaling from
green to orange corresponds to parameters for which the critical orbit tends to
z = ∞.

The connected components of parameters of the family Mb for which the critical
orbit tends to z = 0 are called capture components. They are plotted in black in
Figure 4.2. The large capture component surrounding the parameter b = 0 is called
the main capture component C0

M . It corresponds to the set of parameters such that the
critical point c belongs in the immediate basin of attraction A∗(0). Given a parameter
b ∈ C0

M , we have that the Julia set J (Mb) consists of the common boundary of the
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Fatou components A∗(0) and A∗(∞), which is a quasicircle. There is an analogous set
of parameters for the Blashcke family Ba given by |a| < 1. The only difference is that,
given a Blashcke product Ba, J (Ba) = S1, while J (Mb) is only a Jordan curve.

4.2 Surgery between Blaschke products and cu-
bic polynomials

We proceed to introduce the quasiconformal surgery which relates the Blaschke prod-
ucts Ba to the cubic polynomials Mb (c.f. [Pet07]). We refer to Chapter 2 for an
introduction to the tools used in quasiconformal surgery. The idea of the surgery is to
“glue” the map R2(z) = z2 inside D keeping the dynamics of Ba outside D whenever
the parameter a is such that Ba|S1 is quasisymmetrically conjugate to the doubling
map R2|S1 .

More precisely, we restrict to the set of parameters a such that |a| ≥ 2. For these
parameters, Ba|S1 is a degree 2 covering of the unit circle (see Section 3.1) and is hence
semiconjugate to the doubling map by a unique non decreasing continuous map ha,
not necessarily surjective, which depends continuously on a (see Lemmas 1.2.3 and
1.2.4). By Theorem 1.2.14 we have that, if |a| > 2 and the circle map Ba|S1 has neither
attracting nor parabolic cycles, then ha is a quasisymmetric homeomorphism of the
circle.
Definition 4.2.1. We define X to be the set of parameters a, |a| ≥ 2, such that ha is
a quasisymmetric conjugacy between Ba|S1 and the doubling map R2|S1 .

Let a ∈ X . Since the conjugacy ha is quasisymmetric, it extends to a quasiconformal
map Ha : D → D. We may choose the quasiconformal extension by Douady and Earle
[DE86], which depends continuously on ha. We define the model map as

Fa(z) =
?
Ba(z) for |z| > 1
H−1

a ◦ R2 ◦Ha(z) for |z| ≤ 1.
Proposition 4.2.2. Let a ∈ X . Then, there exists b ∈ C and a quasiconformal map
ψ : ?C → ?C such that ψ ◦Fa ◦ψ−1 = Mb, where Mb(z) = b2z(z− 1). Moreover, b = b(a)
depends continuously on a.

Proof. The map Fa is quasiregular since it is continuous in ?C, holomorphic outside D
and locally quasiconformal in D \ {0}. Moreover, the map Fa depends continuously on
a. Its topological degree is 3 since gluing the map z → z2 in D decreases the degree
of Ba by 1. Indeed, recall from Section 3.1 that Ba has three preimages of D and one
preimage of C \ D in D. Instead, F has only two preimages of D and none of C \ D in
D.

We now define an Fa-invariant almost complex structure σa, i.e., an almost complex
structure such that F ∗

aσa = σa, as

σa =





H∗
aσ0 on D

(Fm
a )∗(H∗

aσ0) on F−m
a (D) \ F−m+1

a (D), for m ≥ 1
σ0 otherwise,

where σ0 denotes the standard complex structure and ∗ denotes the pullback operation
(see Section 2.1). By construction, σa has bounded dilatation. Indeed, σa|D is the pull
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back of σ0 by a quasiconformal map. Everywhere else either we pull back σa|D by a
holomorphic map (so we do not increase the dilatation) or we use the standard complex
structure. Moreover, it depends continuously on a since Ha, Fa and the preimages of
the unit circle depend continuously on a.

Let ψa be the integrating map of σa given by the Measurable Riemann Mapping
Theorem 2.1.23 such that ψa(H−1

a (0)) = 0, ψa(∞) = ∞ and ψa(c+) = 2/3. Then, the
following diagram commutes.

(?C, σa) Fa−−−→ (?C, σa)?ψa

?ψa

(?C, σ0)
ψa◦Fa◦ψ−1

a−−−−−−→ (?C, σ0).

The composition ψa ◦ Fa ◦ ψ−1
a is a quasiregular map preserving the standard com-

plex structure and therefore, by Weyl’s Lemma (Theorem 2.1.22), ψa ◦ Fa ◦ ψ−1
a is a

holomorphic map of ?C. Since this map has topological degree 3 and no poles it is a
cubic polynomial. By the chosen normalization, z = 0 is a superattracting fixed point
and z = 2/3 is a critical point. Hence, ψa ◦ Fa ◦ ψ−1

a = Mb for some b ∈ C.
Finally, since σa depends continuously on a and we have chosen the normalization of

ψa to depend continuously on a (the critical point c+ and H−1
a (0) depend continuously

on a), we have by Threorem 2.1.24 that the map a → ψa(z) depends continuously on
a for all z ∈ ?C. Applying it to v+ = Fa(c+), which also depends continuously on a,
we conclude that ψa(v+) depends continuously on a. Since ψa preserves orbits and
therefore ψa(v+) = Mb(2/3) = −4b/27, we conclude that b depends continuously on
a.

The surgery described above above defines a map Γ : X → Y between the subset X
of the parameter plane of Ba (see Figure 5.1) and a subset Y of the parameter plane of
Mb (see Figure 4.2). It follows from Theorem 1.2.14 and the fact that every parameter
a, |a| > 2, such that Ba|S1 has a parabolic cycle belongs to the boundary of a tongue
(see Corollary 6.3.5) that, if |a| > 2 and a is not in any tongue or its boundary, then
a ∈ X .

The next lemma tells us that the image set Y does not include any parameter b in
the main capture component (i.e., the set of parameters for which the basin of z = 0
contains the critical point c = 2/3).

Lemma 4.2.3. Let Mb be a polynomial obtained with the construction of Section 4.2.
Then b /∈ C0

M .

Proof. Given Mb obtained by the construction of Section 4.2, we have that, in the
immediate basin of attraction of z = 0,Mb is quasiconformally conjugate to R2(z) = z2.
Since R2(z) has no extra critical point, Mb cannot have the critical point c = 2/3 in
A∗(0).

We conjecture that Γ is a degree 3 cover between X and Y . Indeed, the following
results hold.

Proposition 4.2.4. If a1 ∈ X and a2 = ξa1, where ξ3 = 1, then Γ(a1) = Γ(a2).



4.2 - Surgery between Blaschke products and cubic polynomials 63

Γ

X Y

Figure 4.3: By performing the construction, we obtain a map Γ from the exterior of the
components in the blue and green zone in the parameter plane of Ba (see also
Figure 5.1) to the exterior of the main capture component in the parameter
plane of Mb.

The proof of this result uses the following Lemma, which is a special property of
the Douady Earle extension [DE86].

Lemma 4.2.5. Let P1 and P2 be two degree 1 Blaschke products as in Definition
1.2.11, h be a quasisymmetric map of the unit circle and H denote the quasiconformal
extension of h given by Douady and Earle. Then the Douady-Earle quasiconformal
extension of P1 ◦ h ◦ P2 is given by P1 ◦H ◦ P2.

Proof of Proposition 4.2.4. The Blaschke products Ba1 and Ba2 are conformally con-
jugate by the rotation Rξ(z) = ξz (c.f. Lemma 5.1.1 below), i.e., Ba2(z) = Rξ ◦ Ba1 ◦
R−1

ξ (z). Using Lemma 4.2.5 we conclude that Ha2(z) = Rξ◦Ha1◦R−1
ξ (z) and, therefore,

Fa2(z) = Rξ ◦ Fa1 ◦ R−1
ξ (z) on D. Since Ba1 and Ba2 are conjugate by Rξ we conclude

that Fa2(z) = Rξ ◦Fa1 ◦R−1
ξ (z) on ?C. Moreover, by construction, σa1 = R∗

ξσa2 . Hence,
the following diagram commutes.

(C, σ0)
ψa1←−−− (C, σa1)

Rξ−−−→ (C, σa2)
ψa2−−−→ (C, σ0)?MΓ(a1)

?Fa1

?Fa2

?MΓ(a2)

(C, σ0)
ψa1←−−− (C, σa1)

Rξ−−−→ (C, σa2)
ψa2−−−→ (C, σ0).

Therefore, the quasiconformal map ψa2 ◦ Rξ ◦ ψ−1
a1 leaves the standard complex

structure σ0 invariant and is conformal by Weyl’s Lemma (Theorem 2.1.22). Then
MΓ(a1) are MΓ(a2) conformally conjugate. We conclude that Γ(a1) = Γ(a2) since the
cubic polynomials Mb have a unique representative of each conformal conjugacy class.

Proposition 4.2.6. Let Ω be a hyperbolic component with an attracting cycle contained
in C \ D. Then the map Γ|Ω : Ω → Γ(Ω) is a homeomorphism.
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Proof. Let Ω be a hyperbolic component of Ba with an attracting cycle contained in
C \D. Notice that the map Γ preserves the multiplier of the cycles of Ba contained in
C \ D since ψa is conformal in ?C \ ?

n≥0 B
−n
a (D). We shall see in Theorem 5.4.2 that

the multiplier map, which maps every a ∈ Ω to the multiplier of its attracting cycle in
C \ D, is a homeomorphism between Ω and the unit disk. The result holds since the
multiplier map is also a homeomorphism between every hyperbolic component of the
cubic family Mb with an attracting cycle in C∗ and the unit disk (c.f. [DH85a]).

Since F = Ba outside D, it follows that ψ is a quasiconformal conjugacy between
Mb(a) and Ba on this region, and so are all iterates on orbits which never enter D. There-
fore, for all parameters a ∈ X such that the orbit of the exterior critical point O(c+)
never enters D all relevant dynamics are preserved (see Figure 4.1). The study of the
parameters a ∈ X such that O(c+) meets D is done in Section 5.3. Another application
of this surgery construction is explained in Section 5.4 (see Proposition 5.4.1).



5Chapter Five

Parameter Plane

The non-holomorphic parametrization of the family Ba allows the presence of some
features which do not appear in holomorphicaly parametrized uniparametric families
families such as the existence of tongues or bifurcations along curves (see Chapter 6).
Furthermore, small “copies” of the Tricorn, the connectedness locus of the antiholo-
morphic polynomials pc(z) = z2 + c, seem to be observed numerically. Despite that,
the usual parametrization of hyperbolic components by means of the multiplier map
can be adapted to work in many of the hyperbolic components.

The aim of this chapter is to study the parameter plane of the Blaschke family Ba.
In Section 5.1 we briefly explain the symmetries of the parameter plane. In Section 5.2
we explain the different hyperbolic behaviors which may take place and describe in
which regions of the parameter plane these occur. In Section 5.3 we describe the
dynamics for parameters within the so called swapping regions. In Section 5.4 we give
a parametrization of all disjoint hyperbolic components with an attracting cycle in
C∗ \ S1.

5.1 Preliminaries on the parameter plane
Figure 5.1 shows the parameter plane of the family Ba. The plot shows the result
of iterating the critical point c+. Since the two critical orbits of Ba are related by
symmetry unless 1 < |a| < 2, this information suffices also for c− everywhere else. If
1 < |a| < 2, the critical orbits may have completely independent asymptotic behavior
(see Figure 3.2 (c), (d)).

There are some symmetries which seem to be observed when looking at Figure 5.1.
Indeed, the parameter plane appears to be symmetric with respect to complex conju-
gation. It also appears to be preserved with respect to rotation with respect to a third
root of the unity. The next lemma explains the observed symmetries.
Lemma 5.1.1. Let a, b ∈ C \ S1. Then Ba and Bb are conformally conjugate if and
only if b = ξa or b = ξa, where ξ is a third root of the unity.

Proof. Assume that Ba is conformally conjugate to another Blaschke product Bb. Then,
there exists a Möbius transformation η(z) = (cz−d)/(ez−f) such that Bb = η−1◦Ba◦η,
where c, d, e, f ∈ C and cf − de ?= 0. Since η maps superattracting fixed points
to superattracting fixed points preserving the local degree, we conclude that either
η(0) = 0 and η(∞) = ∞ or η(0) = ∞ and η(∞) = 0. In the first case we conclude that
η(z) = ξz with ξ ∈ C∗. In the second case we conclude that η(z) = ξ/z with ξ ∈ C∗.
Assume that η(z) = ξz. Then

On a Family of Degree 4 Blaschke Products 65
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Figure 5.1: Parameter plane of the Blaschke family Ba. The colors are as follows: red if
c+ ∈ A(∞), black if c+ ∈ A(0), green if O+(c+) accumulates on a periodic orbit
in S1, pink if O+(c+) accumulates in a periodic orbit not in S1 and blue in any
other case. The inner red disk corresponds to the unit disk.

η−1 ◦ Ba ◦ η(z) = ξ3z3 z − aξ−1

1− aξz
.

If |ξ| ?= 1, the previous map does not provide a generalized Blaschke product (see
Definition 1.2.11 and Lemma 1.2.13). It also follows from the previous equation and the
definition of Blaschke products that b = aξ−1 = aξ and, therefore, ξ−1 = ξ. Finally,
to ensure that the obtained Blaschke product belongs to the family Ba, we need to
require that ξ3 = 1. On the other hand, if we assume that η(z) = ξ/z. Then

η−1 ◦ Ba ◦ η(z) = ξ−2z31− aξ/z

ξ/z − a
= ξ−2z3 z − aξ

ξ(1− aξ−1z) = ξ−3z3 z − aξ

1− aξ−1z
.

As before, we conclude that |ξ| = 1, that ξ3 = 1 and that b = aξ.

As explained before, the parameter plane shown in Figure 5.1 is somehow incom-
plete in the annulus of inner radius 1 and outer radius 2. Another approach that
one can make to understand the parameter plane in this region consists in draw-
ing the bifurcation diagrams of both critical points simultaneously. These diagrams
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show where the orbits of the critical points accumulate for a certain range of param-
eters a such that |a| = λ and a certain λ. Figure 5.2 shows a computer drawing
of this bifurcation diagrams for λ = |1, 07398 + 0, 5579i| and a = λe2πiArg(a). The
x-axis shows Arg(a) ∈ (0.074, 0.079). The y-axis shows the different arguments in
(−0.5, 0.5] of the iterates of c+ and c−. The upper figure is done iterating c+ whilst
the lower one is done iterating c−. This choice of parameters has been done since, for
a0 = 1.07398 + 0.5579i, Ba0 has two disjoint attracting cycles (see Figure 3.2 (c) and
(d)). When Arg(a) ∈ (0.074, 0.0075), c+ lies in the immediate basin of attraction of an
attracting fixed point x0 whilst c− either lies in a preperiodic component of the basin
of x0 or O+(c−) accumulates in another attracting cycle (Arg(a) ∈ (0.0755, 0.0768)) or
c− lies in the Julia set.

Figure 5.2: Bifurcation diagrams for λ = |a0|, a0 = 1.07398 + 0.5579i, near the parameter
a0.

5.2 Hyperbolic parameters
We proceed to study the different types of hyperbolic dynamics which may take place
for the Blaschke family Ba. Recall that a rational map Q is hyperbolic if all critical
orbits are captured by the basins of attraction of attracting or superattracting cycles
(see Section 1.1.3). When restricting to parameters a ∈ C \ S1, the Blaschke family Ba

is almost bicritical in the sense of Definition 1.1.23. Indeed, the Blaschke products Ba
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have only two free critical points c± and two other non-free critical points (0 and ∞)
which are persistently superattracting.

Recall from Section 3.1 that the two free critical orbits are symmetric unless
1 < |a| ≤ 2, in which case they belong to S1. Hence, if one critical orbit accumu-
lates on the superattracting fixed point z = 0 (resp. z = ∞) the other one accumulates
on z = ∞ (resp. z = 0). Parameters for which this happens are called, following
Definition 1.1.24, escaping parameters. We shall denote by E the set of such points,
i.e.,

E = {a ∈ C | Bn
a (c+) → ∞ or Bn

a (c+) → 0 as n → ∞}.
Its complement,

B = ?C \ E ,
is the set of non-escaping parameters. Observe that B is not the connectedness locus of
Ba. Indeed, in view of Theorem 3.2.1, parameters in E may have a connected Julia set if
the critical points belong to A(0)\A∗(0) or A(∞)\A∗(∞) (see Figure 3.5). On the other
hand, some Julia sets for 1 < |a| < 2 (which belong to B) may, a priori, be disconnected
(even though we conjecture that this is never the case (see Conjecture 3.2.5)). Notice
also that, if |a| = 1, the Blaschke products Ba degenerate to degree 3 polynomials
without free critical points in which case the map Ba is not almost bicritical and we
shall say that a is neither escaping nor non-escaping.
Lemma 5.2.1. If |a| < 1 then a ∈ E . If 1 < |a| ≤ 2 then a ∈ B. The non-escaping
set B is bounded.

Proof. The first two statements have already been proven. To prove the third one we
have to show that, if |a| is large enough, then the parameter a is escaping. First we
prove that, if |z| > λ(|a| + 1) with λ ≥ 1, then |Ba(z)| > λ|z|. Indeed, one can check
that |z − a| > λ and that

|z|2 > |z|(|a|+ 1) = |za|+ |z| > |za|+ 1 > |1− az|.

Therefore, we have

|Ba(z)| = |z|3 |z − a|
|1− az| > |z|3 λ

|z|2 = λ|z|.

To finish the proof notice that, as |a| tends to infinity, the critical point c+(a)
tends to 2a/3. Consequently, the modulus of the critical value v+ = Ba(c+(a)) grows
as M |a|2 for some M > 0 and, for |a| large enough, |v+| > λ(|a| + 1) with λ > 1.
Therefore, |Bn

a (v+)| → ∞ when n → ∞. This concludes the proof.

Before presenting the main result of the section we want to remark that the Blaschke
family satisfies the necessary conditions presented in Section 1.2.2 for the existence
of tongues (see Definition 1.2.17). These tongues appear for |a| ≥ 2 as the sets of
parameters for which the circle map Ba|S1 has an attracting (or superattracting) cycle.
If a parameter a belongs to a tongue, due to symmetry, both critical points belong
in the same component of the immediate attracting basin of the cycle. Therefore,
parameters belonging to tongues are always hyperbolic. We study them more deeply
in Chapter 6.
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c+c−

c−

c+

Figure 5.3: Dynamical planes of the Blaschke products B2.5 (left) and B1.52+0.325i (right).
The colors are as in Figure 3.2. The left case corresponds to an adjacent pa-
rameter a in a tongue (see Definition 1.2.17). The right case corresponds to a
capture parameter.

Following Definition 1.1.24, non-escaping hyperbolic parameters of the products Ba

can only be adjacent, bitransitive, capture or disjoint. We proceed to describe in which
regions of the parameter plane of the Blaschke family the previous four possibilities
may take place.
Theorem 5.2.2. Let a ∈ B. Then, the following hold.

(a) If a is an adjacent parameter, either 1 < |a| < 2 or it belongs to a tongue. Con-
versely, any parameter a belonging to a tongue is adjacent.

(b) If a is a bitransitive parameter, then either 1 < |a| < 2 or c+ and c− enter and exit
the unit disk infinitely many times under iteration of Ba.

(c) If a is a capture parameter, then 1 < |a| < 2.

(d) If a is a disjoint parameter, then either 1 < |a| < 2 or |a| > 2. In the latter case
the orbits of the two attracting cycles are symmetric with respect to the unit circle
and, hence, have the same period. Moreover, if the multiplier of one attracting
cycle is λ, the multiplier of the other attracting cycle is λ.

Proof. We begin with statement (a). If a is an adjacent parameter, then both critical
points belong to the same component of the immediate basin of attraction of a periodic
cycle. Then, either 1 < |a| < 2 or, if |a| ≥ 2, then both critical points are attracted to
an attracting cycle in S1. In this last case, a belongs, by definition, to a tongue. The
converse holds by symmetry.

To prove statement (b) notice that, in the bitransitive case, the immediate basin of
attraction of the cycle on which the critical orbits accumulate has at least two different
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connected components. If |a| > 2, by symmetry, at least one is contained in the unit
disk and another one is in its complement. Thus, the critical orbits enter and exit D
infinitely many times.

Statement (c) follows directly from the fact that, for |a| ≥ 2, the critical orbits are
symmetric.

The first part of (d) follows from symmetry. In order to see that the attracting
cycles have conjugate multipliers, we conjugate Ba via a Möbius transformation M to
a rational map ?Ba that fixes the real line. The result follows then from the fact that
?B?
a(z̄) = ?B?

a(z) and that M preserves the multiplier of the periodic cycles.

5.3 Swapping regions
We begin this section by introducing the sets of the parameter plane which we shall
call swapping regions.

Definition 5.3.1. We say that a parameter a, |a| > 2, is a swapping parameter if
the exterior critical point c+ eventually falls under iteration in D (or equivalently if c−
eventually falls in ?C \ D). A maximal open connected set of swapping parameters is
called a swapping region.

The goal of this section is to describe the dynamics which may take place for swap-
ping parameters (see Figure 5.4 (b)). Exploratory work shows that small “copies” of the
Tricorn, the connectedness locus of the antipolynomials pc(z) = z2+c (see [CHRSC89],
[NS03] and Figure 5.4 (a)), and the Mandelbrot set seem to appear embedded inside
swapping regions (see Figures 5.4 (c) and (d)). We should no expect these “copies”
to be actual homeomorphic copies of the Tricorn (c.f. [IM14]). These Tricorn and
Mandelbrot-like sets appear as the accumulation set of parameters for which O(c+)
enters and exits the unit disk more and more times. These parameters are observed
in Figures 5.4 (c) and (d) as the red and black annuli surrounding the the Tricorn
and Mandelbrot-like sets. In the limit we may have parameters with attracting cycles
which enter and exit the unit disk (see Figure 5.4 (c) and (d)). In this situation, we
build, in Theorem 5.3.4, a polynomial-like map of degree either 2 or 4. Then we use
antipolynomial-like mappings (see Section 2.3) to prove that when the polynomial-like
map built in Theorem 5.3.4 is of degree 4, it is hybrid equivalent to a polynomial of
the form p2

c(z) =
?
z2 + c

?2
+ c = (z2 + c)2 + c. A similar phenomena was described by

Milnor [Mil92] for the cubic polynomials with real parameters.
The following lemma tells us that swapping regions are disjoint from tongues (see

Defintion 1.2.17).

Lemma 5.3.2. A parameter a with |a| > 2 such that Ba has an attracting or parabolic
cycle in S1 cannot be swapping.

Proof. Assume that Ba has an attracting cycle in S1. Let A be the maximal domain
of the Kœnigs linearization of the cycle (see Theorem 1.1.10 and Lemma 1.1.11). By
symmetry, c± ∈ ∂A. Moreover, A ∩ D is mapped into A ∩ D under Ba since Ba|S1 is
orientation preserving and the linearizer is injective. Therefore, O(c−) cannot exit the
unit disk and the parameter is not swapping. The parabolic case is derived similarly
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taking P to be the maximal petal having the critical points on its boundary (see
Theorems 1.1.15 and 1.1.16).

(a) The Tricorn. (b) A swapping region.

(c) A Tricorn-like set. (d) A Mandelbrot-like set.

Figure 5.4: Figure (a) shows the Tricorn. Figure (b) shows a swapping region within
(−3.39603,−3.05761) × (5.45471, 5.79312). It corresponds to the parame-
ters bounded by the big black component. Figure (c) shows a zoom of (b)
for which a Tricorn-like set can be observed (a ∈ (−3.22295,−3.22249) ×
(5.58172, 5.58218)). Figure (d) shows a Mandelbrot-like set inside another swap-
ping region within (2.080306, 2.080311)×(1.9339165, 1.9339215). In Figures (b),
(c) and (d) red points correspond to parameters so that O(c+) → ∞ whereas
black points correspond to parameters for which O(c+) → 0. Green points cor-
respond to bitransitive parameters (see Figure 5.6 (left)), whereas yellow points
correspond to disjoint parameters (see Figure 5.6 (right)).
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We are interested in the hyperbolic components contained in swapping regions.
We shall study them using the theories of polynomial and antipolynomial-like map-
pings. We focus in the bitransitive parameters which, for |a| > 2, are necessarily inside
swapping regions (see Theorem 5.2.2 (b)).

We recall some notation from Section 3.1. For |a| > 2 the unit circle has two
preimages different from itself and not intersecting S1, say γi ⊂ D and γe ⊂ C \ D
(see Figure 3.1 (d)). The map Ba sends γi and γe bijectively to S1. Let Ωi be the
region bounded by γi and contained in D and let Ωe be the region bounded by γe and
contained in C\D. Then, the maps Ba|Ωi

: Ωi → ?C\D and Ba|Ωe : Ωe → D are proper.
They have degree 1 since there is only one preimage of z = ∞ in D and one preimage
of z = 0 in C \ D. Therefore, Ba|Ωi

and Ba|Ωe are conformal and c± /∈ Ωi ∪ Ωe.
We now prove a lemma which describes the possible periods of attracting and

parabolic cycles for parameters inside swapping regions.
Lemma 5.3.3. Let a, |a| > 2, be a parameter inside a swapping region. If Ba has an
attracting or parabolic cycle, then its period is at least 3. Moreover, if a is bitransitive,
the period is even.

Proof. First of all notice that, from Lemma 5.3.2 and invariance of S1, no component
of the basin of attraction of the cycle can intersect neither γi nor γe. A parabolic or
attracting cycle needs to have a critical point in its immediate basin of attraction. The
component in which the critical point lies is contained neither in Ωi nor in Ωe since
Ba|Ωe,i

is conformal. Moreover, since the periodic cycle needs to enter and exit the
unit disk, the immediate basin of attraction of the cycle has a component in Ωi and
another one in Ωe. Then, the immediate basin of attraction has at least three different
components and, hence, the cycle has at least period three.

Now assume that a is bitransitive. Suppose without loss of generality that the
component which contains c+ is mapped under k > 0 iterates to the component which
contains c−. Because of symmetry, the first return map from the component of c−
to component of c+ also takes k iterates. Hence, the period of the attracting cycle is
2k.

The following theorem is the main result of the section.
Theorem 5.3.4. Let a0 be a swapping parameter with an attracting or parabolic cycle
of period p > 1. Then, there is an open set W containing a0 and p0 > 1 dividing p
such that, for every a ∈ W , there exist two open sets U and V with c+ ∈ U such that
(Bp0

a ;U, V ) is a polynomial-like map. Moreover,

(a) If a0 is bitransitive, (Bp0
a ;U, V ) is hybrid equivalent to a polynomial of the form

p2
c(z) = (z2 + c)2 + c.

(b) If a0 is disjoint, (Bp0
a ;U, V ) is hybrid equivalent to a polynomial of the form

p2
c(z) = (z2 + c)2 + c or of the form z2 + c.

Proof. First of all notice that, due to Lemma 5.3.2, A∗(< z0 >) neither intersects
γe nor γi. Since the cycle enters and exits the unit disk, A∗(< z0 >) has at least one
connected component entirely contained in Ωe. Let A∗(z0) be the connected component
of A∗(< z0 >) containing c+. Let n0 ∈ N be minimal such that Bn0

a0 (z0) = zn0 ∈ Ωe. Let
S0 be the connected component of B−n0

a0 (Ωe), containing c+ (and hence A∗(z0)). The
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set S0 is simply connected by Corollary 1.3.3 since Ωe is simply connected and Bn0
a0 |S0

has a unique critical point. Recursively define Sn to be the connected component of
B−1

a0 (Sn−1) containing the point z−n of the cycle (recall that the subindexes of the cycle
are taken in Z/pZ). Again by Corollary 1.3.3, the components Sn are simply connected
for all n > 0. Let p0 ∈ N be the minimal such that c+ ∈ Sp0 . Since ∂Ωe ∩ S1 = ∅,
we have that ∂Ωe ∩ ∂Sp0−n0 = ∅ and that Sp0−n0 ⊂ Ωe. Therefore, we have Sp0 ⊂ S0.
Notice that p0 is a divisor of p.

The map Ba0 |Sn : Sn → Sn−1 is conformal if Sn contains no critical point and 2-to-1
if it contains c+ or c− (it cannot contain both critical points at the same time since
Sn ∩ S1 = ∅). Hence, the triple (Bp0

a0 ;Sp0 ,S0) is a polynomial-like map of degree 4 or
2 depending on whether there is some Sq0 containing c− or not. As in Lemma 5.3.3,
if such q0 exists, p0 = 2q0. Notice that, if the parameter is bitransitive, this q0 exists
and, therefore, the degree is 4. Since the condition c+(a) ∈ Sp0(a) ⊂ S0(a) is open, the
polynomial-like map can be defined for an open set of parameters W around a0. From
now on we consider a ∈ W .

c−
c+

Ωe

Ωi
S0

?S0
Sq

S2q0

?Sq0

Bq0
a ◦ I

Bn0
a

Figure 5.5: Sketch of the situation described in Theorem 5.3.4 for the degree 4 case.

We now use antipolynomial-like mappings to see that, in the case of a degree
4 polynomial-like mapping, the degree 4 polynomial to which (B2q0

a ;S2q0 ,S0) is hy-
brid equivalent can be taken of the form p2

c(z) = (z2 + c)2 + c. See Section 2.2
for an introduction to antipolynomial-like mappings. We proceed to construct an
antipolynomial-like map (f ;S2q0 , I(Sq0)) of degree 2, where I(z) = 1/z denotes the
reflection with respect to S1. This antipolynomial-like map is hybrid equivalent to
an antipolynomial of the form z2 + c. The result then follows if f(I(Sq0)) = S0 and
(f 2;S2q0 ,S0) = (B2q0

a ;S2q0 ,S0).
Define ?Sq = I(Sq), where q ∈ N. It is easy to see that Sq0 ⊂ ?S0. Indeed, taking

n0 as in the definition of S0, by symmetry, Bn0
a ( ?S0) = Ωi. Since Bn0

a (Sq0) is contained
in Ωi, we conclude that Sq0 ⊂ ?S0 (see Figure 5.5). From Sq0 ⊂ ?S0 we can deduce that
S2q0 ⊂ ?Aq0 . Finally, take f = I ◦ Bq0

a . Since Ba = I ◦ Ba ◦ I we have that f 2 = B2q0
a .

Then, the antipolynomial-like map (I ◦ Bq0
a ;S2q0 ,

?Sq0 = I(Sq0)) satisfies the desired
conditions.

Theorem 5.3.4 tells us that all bitransitive parameters contained in swapping regions
can be related to the dynamics of p2

c(z), where pc(z) = z2+ c, since the polynomial-like
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map has degree 4. However, notice that if an antipolynomial pc(z) has an attracting
cycle of even period 2q, then p2

c(z) has two disjoint attracting cycles of period q.
Therefore, there are also disjoint parameters in the Tricorn-like sets in the parameter
plane of the Blaschke family (see Figure 5.4 (c) and Figure 5.6 (right)). These disjoint
parameters also lead to degree 4 polynomial-like maps. Finally, the polynomial-like
maps of degree 2 obtained from the other disjoint parameters are hybrid equivalent to
quadratic polynomials z2+c. These parameters correspond to the ones inside the small
Mandelbrot-like sets observed by means of numerical computations (see Figure 5.4 (d)).

Figure 5.6: The left figure shows a connected component of the bitansitive cycle of Ba1 ,
where a1 = −3.22271+5.58189i. The right figure shows a zoom in the dynamical
plane of Ba2 , where a2 = −3.22278+5.58202i is a disjoint swapping parameter.
The colors are as in Figure 3.2. Notice that, surrounding the basin of attraction,
appear some black and red annuli. These annuli correspond to orbits which
enter and exit D a finite number of times before entering A∗(0) or A∗(∞).

The next corollary follows from the proof of Theorem 5.3.4.
Corollary 5.3.5. Let a be a disjoint parameter contained in a swapping region which
can be related by polynomial-like theory to a polynomial of the from p(z) =

?
z2 + c

?2
+c.

Then, the period of the disjoint cycles is even.

5.4 Parametrization of hyperbolic components
By means of Theorem 5.2.2, a non-escaping parameter a such that |a| > 2 either is
disjoint, or is bitransitive, or is adjacent and it belongs to a tongue. We shall study
the tongues of the Ba in Chapter 6. The aim of this section is to study the multiplier
map of the bitransitive and disjoint hyperbolic components of the Blaschke family Ba

for parameters a such that |a| > 2. Recall that a hyperbolic component is a connected
component of the set of parameters for which Ba is hyperbolic and that the multiplier
map Λ sends every disjoint or bitransitive parameter a to the multiplier λ(< z0 >) of the
attracting cycle < z0 > of Ba whose immediate basin of attraction contains the critical
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point c+. Even if the parametrization of hyperbolic components of holomorphically
parametrized maps is well known (c.f. [DH85a]), the non-holomorphic dependence on
a of the family Ba adds some extra difficulties to the procedure.

This section is structured as follows: first we prove a proposition that is useful later
on, then we see that the multiplier map is a homeomorphism between any disjoint
hyperbolic component and the unit disk proving Theorem 5.4.2, which is the main
result of the section, and finally we study the bitransitive case.

The following proposition tells us that, given Ba with |a| > 2, the boundaries of the
connected components of every attracting cycle contained in C∗ \S1 are Jordan curves.
The result is a direct consequence of the relation of the family Ba with polynomials
which has been described in Proposition 4.2.2 and Theorem 5.3.4, respectively.
Proposition 5.4.1. Assume that Ba has an attracting cycle < z0 > which is contained
in C∗ \S1. Then, the boundaries of the connected components of the basin of attraction
A(< z0 >) are Jordan curves.

Proof. It follows from the hypothesis of the proposition that |a| > 2 since for 1 < |a| ≤ 2
any attracting cycle other than z = 0 or z = ∞ is contained in S1 and for |a| < 1 there
are no attracting cycles in C∗. It follows from Proposition 4.2.2 and Theorem 5.3.4
that the closure of every connected component of A∗(< z0 >) is homeomorphic to the
closure of a connected component of a bounded attracting cycle of a polynomial. Since
the boundary of every bounded Fatou component of a polynomial other than a Siegel
disk is a Jordan curve (see [RY08]), the boundary of every connected component of
A∗(< z0 >) is also a Jordan curve. Finally, since all critical points are contained in
the immediate basins of attraction of attracting cycles, the closure of every connected
component U of A(< z0 >) \ A∗(< z0 >) is mapped homeomorphically to the closure
of a connected component of A∗(< z0 >) and, therefore, ∂U is a Jordan curve too.

We now prove Theorem 5.4.2, which states that the multiplier map is a homeo-
morphism between any hyperbolic component with an attracting cycle in C∗ \ S1 and
the unit disk. Notice that, since the family Ba does not depend holomorphically on
a, we should not expect this homeomorphism to be conformal. Indeed, it may not
even extend to the boundary of the hyperbolic component (c.f. Theorem 6.3.2). The
main idea of the proof is to build a local inverse of the multiplier map Λ around every
Λ(a0) ∈ D. It is done performing a cut and paste surgery to change the multiplier of
the attracting cycle using a degree 2 Blaschke product with an attracting cycle of the
desired multiplier as a model (see [BF14, Chapter 4.2]).
Theorem 5.4.2. Let Ω be a disjoint hyperbolic component, Ω ⊂ {a ∈ C; |a| > 2}.
Then, the multiplier map is a homeomorphism between Ω and the unit disk.

Proof. Consider the family of degree 2 Blaschke products

bλ(z) = z
z + λ

1 + λz
,

where λ ∈ D. They have 0 and ∞ as attracting fixed points of multipliers λ and λ,
respectively. The only other fixed point 1−λ

1−λ
∈ S1 is repelling. The multiplier λ and

the repelling fixed point in S1 determine univalently the map bλ since any holomorphic
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self-map of degree 2 of D has the previous form. Its Julia set satisfies J (bλ) = S1.
Furthermore, for every r such that |λ| < r < 1, Dλ = b−1

λ (Dr) is a simply connected
open set which compactly contains the disk of radius r, Dr = {z, |z| < r}, whereas
bλ(Dr) is compactly contained in Dr.

Let a0 ∈ Ω and let λ0 be the multiplier of the attracting cycle < z0 > of period p of
Ba0 such that c+ ∈ A∗(z0). Since there is no other critical point in A∗(< z0 >) \A∗(z0)
and ∂A∗(z0) is a Jordan curve (Proposition 5.4.1), the map Bp

a0 : A∗(z0) → A∗(z0) has
degree 2 and a unique fixed point z?

0 in ∂A∗(z0). Let R : A∗(z0) → D be the Riemann
map sending z0 to 0 and z?

0 to 1−λ0
1−λ0

. The map R ◦ Bp
a0 ◦ R−1 is, by construction, the

restriction to D of the Blaschke product bλ0(z). Fix r? and r so that |λ0| < r? < r < 1.
We proceed now to perform a surgery to the product bλ0 which changes the multiplier
of the attracting fixed point 0 to λ for any |λ| < r?.

Let Dλ0 = b−1
λ0 (Dr) and let Aλ0 denote the annulus Dλ0 \ Dr. Define gλ : D → D as

gλ =





bλ0 on D \Dλ0

bλ on Dr

hλ on Aλ0 ,

where hλ is chosen to be a quasiconformal map which interpolates bλ and bλ0 depend-
ing continuously on λ. Such a interpolating map can be taken since the boundary
maps gλ|∂Aλ0

are degree 2 analytic maps on analytic curves. The inner boundary map
depends continuously on λ whereas the outer map is independent of it. Therefore,
the map hλ : Aλ0 → Aλ, where Aλ denotes the annulus Dr \ bλ(Dr), can be chosen to
be a quasiconformal covering map of degree 2 which depends continuously on λ (see
Proposition 2.1.16). We define recursively a gλ-invariant almost complex structure σ̃λ
as

?σλ =





σ0 on Dr

h∗
λσ0 on Aλ0

(bnλ0)∗ ?σλ on b−n
λ0 (Aλ0),

where σ0 denotes the standard complex structure. Notice that, since any z ∈ D
can go at most once trough Aλ0 , ?σλ has bounded dilatation. Indeed, ||h∗

λσ0||∞ :=
k(λ) < 1 since hλ is quasiconformal and the pull backs (bnλ0)∗ do not increase the
dilatation. Moreover, λ → ?σλ(z) varies continuously with λ for all z ∈ D since hλ
depends continuously on λ and Aλ0 does not depend on λ. Notice also that the al-
most complex structures have dilatation uniformly bounded by k := max|λ|≤r?k(λ) < 1
for all λ ∈ Dr? .

Once we have performed the multiplier surgery in the degree 2 Blaschke model, we
glue it in Ba0 . This is done preserving the symmetry of the family, i.e., the new map
is preserved under pre and post composition by I(z) = 1/z. Define the model map Fλ

as

Fλ =





(B−1
a0 )(p−1) ◦ R−1 ◦ gλ ◦ R on A∗(z0)

I ◦ Fλ ◦ I on I(A∗(z0))
Bλ0 elsewhere,

where (B−1
a0 )(p−1) denotes B−1

a0 ◦
p−1· · · ◦B−1

a0 . It is well defined since Ba0 : A∗(zi) → A∗(zi+1)
is conformal for every i ?= 0. The map Fλ depends continuously on λ, is symmetric
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with respect to S1 and holomorphic everywhere except in R−1(Aλ0) ∪ I(R−1(Aλ0)).
Notice also that the periodic cycle < z0 > of Fλ has multiplier λ and that Fλ has a
unique critical point in C \D which depends continuously on λ. We define recursively
an Fλ-invariant almost complex structure σλ as

σλ =





R∗ ?σλ on A∗(z0)
I∗σλ on I(A∗(z0))
(Bn

a0)∗σλ on B−n
a0 (A∗(z0)) \ A∗(z0)

(Bn
a0)∗σλ on B−n

a0 (I(A∗(z0))) \ I(A∗(z0))
σ0 elsewhere.

Notice that we are pulling back the almost complex structure σλ by the antiholo-
morphic map I(z) (see Section 1.2.1 of [BF14] for an introduction to pull backs under
orientation reversing maps) and that, since we only pull back under holomorphic and
antiholomorphic maps, ||?σλ||∞ = ||σλ||∞. By Theorem 1.2.14, Ba0 |S1 is conjugate to
the doubling map and, therefore, has a unique fixed point x0 ∈ S1. Let φλ : Ĉ → Ĉ be
the integrating map of σλ obtained from the Measurable Riemann Mapping Theorem
(see Theorem 2.1.23) normalized so that it fixes 0, x0 and ∞. Since σλ(z) depends
continuously on λ for all z ∈ Ĉ with dilatation which is uniformly bounded away from
1, the map φλ(z) depends continuously on λ for each z ∈ Ĉ. It follows from the
uniqueness of the integrating map and the symmetry of σλ with respect to S1 (i.e.,
σλ = I∗σλ) that φλ is also symmetric with respect to S1. Therefore, B̃λ = φλ ◦Fλ ◦φ−1

λ

is a degree 4 holomorphic map of Ĉ symmetric with respect to S1 which has z = 0 and
z = ∞ as superattracting cycles of local degree 3. Therefore, B̃λ is a Blaschke product
of the form Bã(λ),t̃(λ) (3.1). Since Fλ has a unique critical point in C \D which depends
continuously on λ and φλ(z) depends continuously on λ for each z ∈ Ĉ, Bã,t̃ has a
unique critical point c+(λ) ∈ C \D which depends continuously on λ. Therefore, since
Bã(λ),t̃(λ) fixes x0 ∈ S1, we have by Lemma 3.1.2 that ã(λ) and t̃(λ) depend continuously
on λ. Finally, by Lemma 3.1.1, Bã(λ),t̃(λ) is conjugate to a Blaschke product Ba(λ) (1),
where a(λ) = ã(λ)e

2πit̃(λ)
3 depends continuously on λ.

To finish the proof we check that a(λ0) = a0 and, therefore, every a(λ) belongs
to the same hyperbolic component Ω as a0. We have not justified that the quasi-
conformal interpolating map hλ0 equals bλ0 and, hence, Ba0 and Bã(λ0),t̃0 might be
distinct. However, the integrating map φλ0 is a conformal conjugacy between them in
?C \A(< z0 >) ∪ A(< I(z0) >) and is a quasiconformal conjugacy in a neighborhood of
their Julia sets. Define ?φλ0 to be the conformal map from A(< z0 >) ∪ A(< I(z0) >)
to A(< φλ0(z0) >) ∪ A(< I(φλ0(z0)) >) such that, restricted to every connected com-
ponent, coincides with the Riemann map normalized so that the attracting cycles
< z0 >, < I(z0) >, < z?

0 > and < I(z?
0) > are mapped to < φλ0(z0) >, < I(φλ0(z0)) >,

< φλ0(z?
0) > and < I(φλ0(z?

0)) > and their preimages are in correspondence. Since
Bp

a0 is conjugate to bλ0 (resp. bλ0
) in A∗(z0) (resp. A∗(I(z0))) and so is Bp

ã(λ0),t̃0 in
A∗(φλ0(z0)) (resp. A∗(I(φλ0(z0)))), the conformal map ?φλ0 is a conjugacy. Moreover,
it extends to the boundary of every connected component of the basins of attraction
since they are Jordan domains by Proposition 5.4.1. Given that φλ0 and ?φλ0 conjugate
Ba0 and Bã(λ0),t̃0 in ∂A(< z0 >) ∪ ∂A(< I(z0) >) ⊂ J (Ba0) they coincide since they
map periodic points to periodic points. Consequently, the map ϕλ0 defined as φλ0 in
Ĉ \ (A(< z0 >) ∪ A(< I(z0) >)) and ?φλ0 in A(< z0 >)∪A(< I(z0) >) is a global con-
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jugacy. Moreover, since ϕλ0 is quasiconformal in ?C \ (∂A(< z0 >) ∪ ∂A(< I(z0) >)),
coincides with φλ0 in J (Bλ0) and φλ0 is quasiconformal in a neighborhood of J (Bλ0),
ϕλ0 is quasiconformal by the Rickman Lemma (Lemma 2.1.10). Since ϕλ0 is conformal
a.e. in ?C, it is 1-quasiconformal and therefore a conformal map of ?C by Weyl’s Lemma
(Theorem 2.1.22). Since ϕλ0 fixes 0 and ∞, leaves S1 invariant and fixes x0 ∈ S1, we
conclude that ϕλ0 is the identity and Bã(λ0),t̃0 = Ba0 .

For every a0 ∈ Ω we have constructed a continuous local inverse to the multiplier
map Λ : Ω → D. Therefore, Λ is a homeomorphism.

We finish this section giving some ideas of what happens with bitransitive param-
eters (see Figure 5.4 (c)). It follows from Theorem 5.3.4 that these parameters are
strongly related to the quadratic antiholomorphic polynomials pc(z) = z2 + c. Indeed,
the polynomial-like map constructed in Theorem 5.3.4 is hybrid equivalent to a de-
gree 4 polynomial of the form p2

c(z) with a bitransitive attracting cycle. Therefore,
the polynomial pc(z) also has an attracting cycle of odd period since, otherwise, p2

c(z)
would have two disjoint attracting cycles. Nakane and Schleicher [NS03] studied the
parameter plane of the antipolynomials pc,d = zd+ c and, in particular, pc,2(z) = pc(z).
If the period of the cycles of a hyperbolic component was even, they proved a result
analogous to Theorem 5.4.2. They also showed that the multiplier map is not a good
model for the odd period hyperbolic components. The reason why the multiplier map
is not good for this case is the fact that the antiholomorphic multiplier ∂

∂z
f k(z0) of

a cycle < z0 > of odd period k of an antiholomorphic map f(z) is not a conformal
invariant, only its absolute value is. They proved that the multiplier of the period k
cycle < z0 > of the holomorphic map f 2(z) equals the square of the absolute value of
the previous antiholomorphic multiplier. Given a bitransitive hyperbolic component
Ω of p2

c(z), it also follows from their work that the set of parameters c ∈ Ω for which
the attracting cycle has multiplier λ ∈ (0, 1) is a Jordan curve and that Ω contains a
unique parameter c0 for which the cycle is superattracting. We expect a similar result
for bitransitive hyperbolic components of the Blaschke family Ba, but we only prove,
for the sake of completeness, the following result.
Proposition 5.4.3. Let < z0 > be a bitransitive cycle of a Blaschke product Ba as in
(1) with |a| > 2. Then < z0 > has non-negative real multiplier.

Proof. By Lemma 5.3.3, the cycle < z0 > has even period 2q. Let I(z) = 1/z. By
symmetry, I(Bq

a(z0)) = z0. Hence, z0 is a fixed point of the antiholomorphic rational
map f = I ◦ Bq

a. Moreover, B2q
a = f 2. Therefore, the multiplier of the cycle is given

by
∂

∂z
B2q

a (z0) =
∂

∂z
f(z0) ·

∂

∂z
f(z0) =

?????
∂

∂z
f(z0)

?????

2

.



6Chapter Six

Tongues in the parameter plane

In this chapter we study the tongues in the parameter plane of the Blaschke family Ba

as defined in Section 1.2.2. If |a| ≥ 2, the rational maps Ba restrict to increasing degree
2 covers of the unit circle (see Section 3.1) and hence the tongues are well defined as
open sets of parameters such that Ba has an attracting cycle on S1 (see Figure 6.1).
We recall the concept of tongues (c.f. Definition 1.2.17). Let Ha be the continuous
map given by Lemma 1.2.3 which semiconjugates the lift of Ba|S1 to the doubling map
x → 2x and let x0 be the marked point of the attracting cycle < x0 > of Ba|S1 , i.e., the
point of the cycle such that A∗(x0) contains both free critical points. Then, tongues
are defined as follows.

Definition. We say that a parameter a, |a| ≥ 2, is of type τ if Ba|S1 has an attracting
cycle < x0 > and Ha(x0) = τ , where x0 is the marked point point of the cycle. The
tongue Tτ is defined as the set of parameters a, |a| ≥ 2, such that a is of type τ .

T0

T1/3

T1/7

T2/7

T3/7

(a) Tongues (b) Zoom in the tongues

Figure 6.1: In figure (a) we show the tongues of the Blaschke family for a = re2πiα such that
0 < α < 1/6. Notice that we know, from the symmetries explained in Lemma
5.1.1, that these parameters give complete information about the family. In
figure (b) we zoom near the boundary of T0. We can see how smaller tongues
accumulate on it.

On a Family of Degree 4 Blaschke Products 79
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In Section 6.1 we introduce an alternative parametrization of the Blaschke family
which we use later. In Section 6.2 we prove that all tongues are simply connected and
connected modulo symmetry and that every tongue has a unique tip (Theorem 6.2.1).
In Section 6.3 we study how bifurcations take place on the boundary of the tip of every
tongue. Finally, in Section 6.4 we study how the tongues may be extended within the
annulus of parameters given by 1 < |a| < 2.

6.1 Preliminaries: reparametrizing the Blaschke
family

In this section we describe some alternative parametrizations of Ba. They are partic-
ularly useful when we restrict to the unit circle. Let a = re2πiα with r ∈ (1,∞) and
α ∈ [0, 1/3) (or α ∈ R/1

3Z). From Lemma 3.1.1 we know that Ba = Ba,0 (Equation
(1)) is conformally conjugate to Br,3α (Equation (3.1)). It is enough to restrict to pa-
rameters α ∈ [0, 1/3) due to symmetry (see Lemma 5.1.1). Notice that if α ∈ [0, 1/3)
we have a one to one correspondence between the parameters a for the family Ba and
the parameters (r, α) of gr,α := Br,3α|S1 . Summarizing, we consider the circle maps

gr,α(e2πix) = e6πixe6πiα e2πix − r

1− re2πix , (6.1)

where r ∈ (1,∞) and α ∈ [0, 1/3). Its lift has the form

hr,α(x) = 3x+ 3α + 1
2πi log

?
e2πix − r

1− re2πix

?
. (6.2)

We shall often use gr,α instead of Ba|S1 given that its lift is somehow simpler. Indeed,
it follows directly from its expression that hr,α is strictly increasing with respect to α.

Lemma 6.1.1. Let r ≥ 2. Then, the lift hr,α(x) satisfies that ∂
∂x
hr,α(x) is non-negative

for all x. Moreover, for any p ∈ N, the mapping α → hpr,α(x) ∈ S1 is strictly increasing
and, if r ≥ 3, then hpr,α(x) ≥ 1 for all x, α ∈ R.

Proof. We prove that ∂
∂x
hr,α(x) is non-negative for all x, and hence so is ∂

∂x
hpr,α(x) for

all p. Then, strict monotonicity with respect to α for all p follows from the fact that
we have it for p = 1. We also prove that ∂

∂x
hr,α(x) ≥ 1 if r ≥ 3. Notice that ∂

∂x
hr,α(x)

is given by the formula

∂

∂x
hr,α(x) = 3 + 1− r2

1 + r2 − 2r cos(2πx) . (6.3)

It can easily be seen that this expression is non-negative for r ≥ 2. Indeed, the
minimum of this function is taken whenever x = 0, and

∂

∂x
hr,α(0) = 3 + 1− r2

1 + r2 − 2r = 3 + (1 + r)
(1− r) .

For r > 1 this is an increasing function which is equal to zero for r = 2. Moreover, it
is greater than 1 when r ≥ 3.
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It will also be useful to consider the circle maps gr,α as restrictions of the rational
maps

Ga,b(z) = bz3 z − a

1− az
, (6.4)

where a, b ∈ C. The Ga,b define a degree 4 family of almost bicritical maps unless
a = ±1, when they degenerate to the degree 3 polynomials ∓bz3. Notice that the Ga,b

are not symmetric with respect to the unit circle. Similarly to the Blaschke products
Ba, the points z = 0 and z = ∞ are superattracting fixed points of local degree 3 of
the Ga,b. The two free critical points are given by

c± := c±(a) :=
1
3a

?
2 + a2 ±

?
(a2 − 4)(a2 − 1)

?

and are the solutions of 3az2−2(a2−2)z+3a = 0. In particular we have that c+ ·c− = 1
and none of them is equal to zero if a ?= 0 and a ?= ∞.

Recall from Definition 1.1.24 that a parameter (a, b) is said to be escaping if the
orbit of any of the critical points accumulates on z = 0 or z = ∞. We finish this section
studying the non-escaping set of the family Ga,b, i.e., the set of parameters (a, b) for
which none of the critical orbits accumulates on z = 0 or z = ∞.
Lemma 6.1.2. The non-escaping set of the family Ga,b is bounded in the a-parameter,
i.e., there exists a constant C > 0 such that if |a| > C then the parameter (a, b) is
escaping.

Proof. The proof is similar to the one of Lemma 5.2.1. However, in this family the
critical orbits are not symmetric as is the case for the Ba. We will prove that, if |a| is
big enough then one of the critical orbits accumulates on z = ∞ or on z = 0. Notice
that the other critical orbit may accumulate on a bounded attracting cycle even if |a|
tends to infinity.

We distinguish two cases. Assume first that |b| ≥ 1. Using a similar approach as
in Lemma 5.2.1 we have that, if |z| > λ(|a|+ 1) with λ ≥ 1, then |Ba(z)| > λ|b||z|. As
|a| tends to infinity the critical point c+(a) tends to 2a/3 and c−(a) tends to 3/(2a).
Consequently, the modulus of the critical value v+ = Ga,b(c+(a)) grows as M |a|2 for
some M > 0 and, for |a| large enough, |v+| > λ(|a|+ 1) with λ > 1. We conclude that
|Gn

a,b(v+)| → ∞ when n → ∞. Therefore, if |a| is large enough and |b| ≥ 1 then the
parameter (a, b) is escaping.

Consider now the case |b| < 1. First we prove that, if |a| > 1 and |z| < 1/(2|a|) then
|Ga,b(z)| < 3|b||z|/4. From these hypothesis we conclude that |z| < 1/2 and obtain the
inequalities

|z − a| < |z|+ |a| < 1
2|a| + |a| < |a|

2 + |a| = 3|a|/2

and
|1− az| > 1− |az| > 1− 1

2 = 1
2 .

Therefore, we have

|Ga,b(z)| = |b||z|3 |z − a|
|1− az| < |b||z|33|a| < 3

2 |b||z|
2 <

3|b||z|
4 .
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Since c−(a) converges to 3/(2a) as a tends to infinity, we conclude that the modulus
of the critical value v− = Ga,b(c−) decreases as M/|a|2 for some M > 0. Hence, for |a|
large enough, |v−| < 1/(2|a|) < 1/3 and |Gn

a,b(v−)| → 0 when n → ∞. Therefore, if |a|
is large enough and |b| < 1 then the parameter (a, b) is escaping.

Lemma 6.1.3. For fixed a0 ∈ C, a0 ?= ±1, the non-escaping set of Ga0,b is bounded
with respect to the parameter b, i.e., there exists a constant C(a0) > 0 such that if
|b| > C(a0) then the parameter (a0, b) is escaping.

Proof. It is enough to prove that if |b| is large enough then the orbit of one of the
critical points accumulates on infinity. The critical values of Ga0,b are given by

v± = Ga0,b(c±) = bc3
±
c± − a0

1− c±a0
,

where the critical points c± do not depend on b. Moreover, if a ?= ±1, at least one of
the critical values, say v, is different from zero. Indeed, the rational maps Ga,b have
a unique preimage of zero at z = a. The claim holds since the critical points collide
only if a = ±2 and c+(±2) = c−(±2) = ±1. If |b| is large enough the critical value v
satisfies |v| > λ(|a0|+1) with λ > 1. As in the proof of Lemma 6.1.2, we conclude that
the orbit of v accumulates on infinity and, therefore, for |b| large enough the parameter
(a0, b) is escaping.

6.2 Topological properties of the tongues
The goal of this section is to prove the following theorem, which states the main
topological properties of the tongues of the family Ba.

Theorem 6.2.1. Given any periodic point τ of the doubling map the following results
hold.

(a) The tongue Tτ is not empty and consists of three connected components (only one
connected component if we consider the parameter plane modulo the symmetries
given by the third roots of the unity).

(b) Each connected component of Tτ contains a unique parameter rτ , called the root
of the tongue, such that Brτ has a superattracting cycle in S1. The root rτ satisfies
|rτ | = 2.

(c) Every connected component of Tτ is simply connected.

(d) The boundary of every connected component of Tτ consists of two curves which are
continuous graphs as function of |a| and intersect each other in a unique parameter
aτ called the tip of the tongue.

The proof of Theorem 6.2.1 splits in the next two subsections.
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6.2.1 Connectivity of the tongues: proof of statements (a)
and (b) of Theorem 6.2.1

In this subsection we prove statements (a) and (b) of Theorem 6.2.1. The proof is
inspired by Dezotti [Dez10] and consists in performing a continuous change of the
multiplier of the attracting cycle < x0 >⊂ S1. Given a parameter a of type τ , with
multiplier λ ?= 0, we make a quasiconformal modification of the function that changes
the multiplier to ρ ∈ (0, 1) while leaving the rest of the dynamics unchanged, obtaining
a new parameter a(ρ). With this modification we obtain a path γ ⊂ Tτ landing on a
parameter rτ ∈ Tτ having a supperattracting fixed point, which is unique in Tτ .

We begin by changing the multiplier. The main steps of this quasiconformal con-
struction are the following.

(a) First we consider a linearising map φ of Bp
a around the attracting periodic point

x0, which has period p and multiplier λ ∈ (0, 1).

(b) Then we define a quasiconformal conjugacy X between the maps z → λz and
z → ρz, where ρ ∈ (0, 1).

(c) We continue by defining a Ba−invariant Beltrami form µρ. Around x0, it is defined
by pulling back the standard Beltrami coefficient µ0 ≡ 0 by the quasiconformal
homeomorphism X ◦ φ. Then we spread it by the dynamics of Ba.

(d) Finally we consider the map ϕρ ◦ Ba ◦ ϕ−1
ρ , where ϕρ is the integrating map of µρ

which fixes zero, infinity and x0 (see Theorem 2.1.23). This map is holomorphic
and linearly conjugate to a member Ba(ρ) of the Blaschke family.

We now proceed to make the construction precise. Let a ∈ Tτ . Recall from
the definition of tongues (see Section 1.2.2) that then Ba|S1 has an attracting cycle
< x0 >= {x0, ..., xp−1} ⊂ S1 of multiplier λ. We assume that x0 lies in the component
of the immediate basin which contains the critical points. Notice that λ ∈ R since Ba|S1

is an endomorphism of the unit circle. Let DR = {z, |z| < R} and let φ : A ? DR

be the Kœnigs linearizer of Bp
a around x0 (see Theorem 1.1.10) normalized as in the

following lemma.

Lemma 6.2.2. The map φ : A → DR may be chosen to satisfy φ(I(z)) = φ(z), where
I(z) = 1/z. Moreover, A = I(A)

Proof. The map φ sends invariant curves of Ba|A to invariant curves of z → λz, which
are straight lines going through z = 0 since λ is real. Hence, we may assume that
φ(A ∩ S1) ⊂ R postcomposing φ with a rotation. With the previous normalization,
notice that the holomorphic map ?φ(z) = φ(1/z) coincides with φ on A ∩ S1 and,
therefore, it equals φ. The symmetry of A follows from the symmetry of φ.

We now introduce a quasiconformal map X which is used to change the multiplier
of an attracting cycle (c.f. [Dez10] and [BF14]).
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Lemma 6.2.3. Let
X : C∗ → C∗

z → |z|αz,
where α ∈ (−1,∞) and let 0 < R < 1 and 0 < r < 1. Then the following hold.

(a) The Beltrami form µX = X ∗µ0, where µ0 denotes the Beltrami form of the standard
complex structure, satisfies

µX = ∂X /∂z

∂X /∂z
= α

2 + α

z

z
,

||µX ||∞ =
????

α

2 + α

???? .

(b) X is invertible and satisfies X (re2πiθ) = ξ(r)e2πiθ, where ξ(r) = rα+1.

(c) Let α = log r
logR

− 1. Then X sends the disk DR of radius R to the disk Dr of radius
r and, moreover,

||µX ||∞ = |1− log r/ logR|
1 + log r/ logR < 1.

(d) Let λ ∈ (0, 1). Let ρ = X (λ) = λ1+α. Then X conjugates the map multiplication
by λ with the map multiplication by ρ, i.e., the following diagram is commutative

DR
z→λz−−−→ DλR

X
?

?X

Dr
z→ρz−−−→ Dρr.

Proof. By definition, X (z) = |z|αz = zα/2+1zα/2. Then, we have

∂X
∂z

= α

2 z
α/2z(α/2−1)z,

∂X
∂z

= (α2 + 1)zα/2z(α/2−1)z.

We obtain, by Proposition 2.1.19,

µX = ∂X /∂z

∂X /∂z
= α

2 + α

z

z
.

From X (z) = |z|αz we also have that

X (re2πiθ) = rα+1e2πiθ = ξ(r)e2πiθ.

The commutativity of the diagram follows from (b). Finally, for α = log r
logR

− 1,

ξ(R) = Rα+1 = R
log r
log R = r,

so X sends DR to Dr.
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Notice that, since λ ∈ (0, 1) and α ∈ (−1,∞), we have that 0 < ρ < 1.

Lemma 6.2.4. The Beltrami form given by µρ = µX ◦φ = φ∗µX depends analytically
on ρ and is invariant under Bp

a. Moreover, I∗µρ = µρ on A.

Proof. The analytic dependence with respect to ρ is obtained from the explicit expres-
sion of µX and the fact that α = log ρ

log λ
− 1. Invariance under Bp

a follows from the next
commutative diagram.

(A, µX ◦φ)
φ−−−→ (DR, µX ) X−−−→ (Dr, µ0)

Bp
a

? z→λz

?
?z→ρz

(Bp
a(A), µX ◦φ)

φ−−−→ (DλR, µX ) X−−−→ (Dρr, µ0).

To see that I∗µρ = µρ, we have to check that µρ(z) = µρ(1/z)z2/z2 (see Proposi-
tion 2.2.11). From the explicit expression of the Beltrami form that we get from the
pullback (see Proposition 2.1.20), we have

µρ(z) =
α/2

1 + α/2
φ(z)
φ(z)

· φ
?(z)

φ?(z) .

The result follows since φ(1/z̄) = φ(z) and φ?(z) = −φ?(1/z̄)/z2.

Once we have this Beltrami form given by µρ in A, we spread it to C by defining:

µρ =





µρ on A
(Bn

a )∗µρ on B−n
a (A) \ B−n+1

a (A), for n > 1
µ0 otherwise,

where µ0 ≡ 0. Then µρ is well defined since it is Bp
a-invariant. It depends analytically

on ρ since we are pulling back by a holomorphic map an almost complex structure
which depends analytically on ρ. Furthermore, since µρ|A is symmetric with respect to
S1 and µρ is defined recursively by pulling back by Ba, which is also symmetric with
respect to S1, µρ also satisfies I∗µρ(z) = µρ(z) for all z ∈ C (see Lemma 2.2.12).

Since µρ is built by pulling back µX by holomorphic mappings and we have that
||µX ||∞ < 1, we also have that ||µρ||∞ < 1. Let ϕρ be the integrating map obtained by
applying the Measurable Riemann Mapping Theorem (see Theorem 2.1.23) such that
it fixes 0, x0 and ∞. The next lemma follows directly from Lemma 2.2.13 since µρ is
symmetric with respect to the unit circle.

Lemma 6.2.5. The integrating map ϕρ is symmetric with respect to S1.

Once we have ϕρ, we can build our new rational map.

Proposition 6.2.6. The map ϕρ ◦ Ba ◦ ϕ−1
ρ is a rational map of degree 4 of the form

Baρ,tρ (3.1), where tρ ∈ R and aρ ∈ C. The parameters aρ and tρ depend continuously
on ρ. Moreover, the attracting fixed point x0 of Bp

aρ,tρ has multiplier ρ.
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Proof. By construction, the quasiregular map ϕρ ◦ Ba ◦ ϕ−1
ρ preserves the standard

complex structure. Consequently, it is a holomorphic map of the Riemann sphere onto
itself by Weyl’s Lemma (see Theorem 2.1.22). It is of the form Baρ,tρ since it has local
degree 3 around 0 and ∞, it has global degree 4 and it is symmetric with respect to
the unit circle (see Lemma 1.2.13).

We now check the dependence on parameters. Recall that Ba has a unique criti-
cal point c+ ∈ C \ D (see Section 3.1). Since µρ depends real analytically on ρ, the
integrating map ϕρ(z) depends real analytically on ρ for all z ∈ C by the analytic depen-
dence on parameters of the Measurable Riemann Mapping Theorem (Theorem 2.1.24).
Therefore, the critical point ϕρ(c+) ∈ C \ D of Baρ,tρ depends real analytically on ρ.
We conclude by Lemma 3.1.2 that aρ depends continuously on ρ. The parameter tρ
is continuously determined by the parameter aρ together with the image of a point
z0 ?= 0,∞. Given that the Baρ,tρ(x0) = ϕρ ◦ Ba(x0) depends real analytically on ρ, we
conclude that tρ also depends continuously on ρ.

Finally, let ?φ(z) = X ◦ φ ◦ ϕ−1
ρ (z), where z ∈ ϕρ(A). By construction ?φ is a

quasiconformal map which conjugates Bp
aρ,tρ around x0 to the map z → ρz. Since it

preserves the standard complex structure, it is a conformal map by Weyl’s Lemma.
Hence, it is the linearizing function and ρ is the multiplier of the new cycle.

We know from Lemma 3.1.1 that Baρ,tρ is conjugate to Baρe
−itρ/3,0 = Baρe

−itρ/3 by
a conjugacy Lρ. This gives us a continuous curve in the set of parameters of our
Blaschke family. Indeed, we have a (real analytic) curve γ : (0, 1) → C \ D2 defined as
γ(ρ) = aρe

−itρ/3 = a(ρ).
Lemma 6.2.7. If the parameter a has type τ , then, for all ρ ∈ (0, 1), the parameter
a(ρ) has type τ .

Proof. We have already seen that Ba(ρ) has an attracting cycle, so it has type τ ?. It
is easy to check that the map ?(z) = Lρ ◦ ϕρ(z) conjugates Ba(ρ) and Ba, sending the
marked periodic point x0 to ?(x0). Moreover, the continuous map Ha ◦ ?−1 semiconju-
gates Ba(ρ) with the doubling map. Therefore, we have that

τ ? = Ha ◦ ?−1(?(x0)) = Ha(x0) = τ.

Now we have a path γ(ρ) = a(ρ) defined for ρ ∈ (0, 1) which gives, for each ρ, a
parameter a(ρ) ∈ Tτ . We want to prove that this path lands at a single point when
ρ → 0. Note that |a(ρ)| → 2 when ρ → 0 since |B?

a|S1 | > C > 0 when |a| > 2+ ?, where
? > 0 and C = C(?) is a constant. It follows from the continuous dependence on a of the
semiconjugacy Ha (see Lemma 1.2.3) that any limit point of γ has a superattracting
fixed point of period p.

Let ω be the limit set of γ(ρ) when ρ → 0. Since ω = ?
n γ((0, 1/n)) is a decreas-

ing intersection of connected compact sets, we conclude that it is a connected set of
parameters a such that |a| = 2.

We restrict now to parameters a such that |a| = 2. Let a = 2e2πiα. Throughout
the rest of the proof it will be convenient to work with B2,3α (Equation (3.1)) as in
Section 6.1 so as to use Lemma 6.1.1. This map is conformally conjugate to Ba = Ba,0
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(Equation (1)) by the rotation L(z) = e−2πiαz (see Lemma 3.1.1). For α ∈ [0, 1/3) we
have a one to one correspondence between the parameters 2e2πiα and the parameters
(2, 3α (mod 1)). Notice that, for all α, B2,3α has a unique critical point at c = 1.
Indeed, for a = 2e2πiα, the two critical points collapse in c(α) = e2πiα, which is sent to
c = 1 by the conjugacy L(z).

Assume that ω is not a single parameter. Then, we have an interval of parameters
with a superattracting periodic cycle. Therefore, the critical point c = 1 is periodic in
this interval of parameters, i.e., Bp

2,3α(1) = 1 for all parameters (2, 3α) ∈ ω. This is
impossible since B2,α is strictly increasing with respect to α (see Lemma 6.1.1). Hence,
ω is a single parameter rτ = limρ→0 a(ρ). Notice also that this parameter has type
τ . Indeed, given the fact that it has a superattracting periodic point, it belongs to a
tongue of type τ ?. Since tongues are open sets in C\D2 = {a s.t. |a| ≥ 2}, we conclude
that any curve of parameters contained in C\D2 and landing in ω necessarily intersects
Tτ ? . We conclude that τ ? = τ since a(ρ) have type τ for all ρ ∈ (0, 1) by Lemma 6.2.7.

In order to finish the proof of statements (a) and (b) of Theorem 6.2.1 we have
to show that the limit does not depend on the initial parameter a ∈ Tτ . We use the
following lemma.

Lemma 6.2.8. Let gα(x) := B2,3α|S1(x), x ∈ S1. Then, for any p ∈ N, the mapping
α → gpα(1) ∈ S1, α ∈ [0, 1/3), is strictly increasing and of degree 2p − 1.

Proof. The map gα is increassing by Lemma 6.1.1. We only have to prove that gα has
degree 2p − 1. The lift of gα is given by

hα(x) = 3x+ 3α + 1
2πi log

?
e2πix − 2
1− 2e2πix

?
.

The result is true for p = 1 in the sense that hα+1/3(x) = hα(x) + 1. By induction
over p and using that hpα(x + 1) = hpα(x) + 2p (gα has degre two as a circle map) we
have

h
(p+1)
α+1/3(x) = hpα+1/3(hα+1/3(x)) = hpα+1/3(hα(x) + 1) = hpα+1/3(hα(x)) + 2p

= hpα(hα(x)) + 2p − 1 + 2p = hp+1
α (x) + 2p+1 − 1.

It follows from this lemma that gpα has exactly 2p − 1 parameters α, α ∈ [0, 1/3),
such that the critical point is periodic of period dividing p. Indeed, for every natural
k ∈ {0, 1, ..., 2p − 2}, there exists a unique αp,k ∈ [0, 1/3) such that hpαp,k

(0) = 0 + k.
It can be computed using the expression of the semiconjugacy Ha (see Lemma 1.2.3)
that a parameter ak,p = 2e2πiαk,p has type τ (ak,p) = k/(2p − 1) (c.f. [Dez10, Lem. 4.2]).
Since the expression in the form k/(2p − 1) of a periodic point τ of period p of the
doubling map is unique, we conclude that, for a fixed a type τ , there exists a unique
parameter αp,k ∈ [0, 1/3) which has a superattracting cycle of type τ . Hence, we can
also conclude that no tongue Tτ is empty. It also follows from this that the limit ω is
unique up to conjugacy since, for a fixed a type τ , there exists a unique possible limit.
This finishes the proof of statements (a) and (b) of Theorem 6.2.1.



88 Tongues in the parameter plane

6.2.2 Boundary of the tongues: proof of statements (c) and
(d) of Theorem 6.2.1

The goal of this subsection is to prove statements (c) and (d) of Theorem 6.2.1. The
proof is inspired by Misiurewicz and Rodrigues [MR07, MR08]. In order to do so
we describe the boundary of the tongues and the parameters therein. We first show
that the boundaries of the tongues are bounded. This is a direct consequence of
Lemma 6.1.1, which states that there cannot be any attracting periodic cycle in S1 if
|a| ≥ 3.
Proposition 6.2.9. If a ∈ Tτ then |a| < 3. Consequently, tongues are bounded.

We now prove some preliminary results. The next lemma deals with parabolic
cycles of Ba. It is an extension of Lemma 1.2.15.
Lemma 6.2.10. Choose a such that |a| ≥ 2. Then, Ba|S1 has at most one attracting
or parabolic cycle < x0 > in the unit circle, which has a real multiplier. If the cycle is
attracting, the two critical points lie in the same connected component of A∗(< x0 >).
Moreover, if the cycle is parabolic, then it has multiplier λ = 1 and either every point
xn of the cycle lies in the boundary of a unique connected component of A∗(< x0 >)
or there are two such components which are symmetric and which do not intersect the
unit circle (see Figure 6.2).

Proof. If Ba|S1 has an attracting cycle then the proof is similar to the one in
Lemma 1.2.15. The multiplier is real since S1 is invariant under Ba. Now suppose
that < x0 > is a parabolic cycle. Then it has multiplier λ = 1. Indeed, since λ is real,
λ = ±1, but it is positive since Ba|S1 is increasing. Hence, all the connected compo-
nents of A∗(< x0 >) have the same period p as has the cycle < x0 >. Since there are
at most two free critical points, there can be at most two cycles of such components.
Assume that one of them intersects S1. In that case, the component is symmetric and
so are all other domains of its cycle L. Therefore, if U ∈ L contains a critical point
then it contains both and there can be no other cycle.

x0
x0

Figure 6.2: The left figure corresponds to the case of a parabolic fixed point x0 ∈ S1 whose
attracting basin intersects S1. The right figure corresponds to the case of a
parabolic fixed point x0 ∈ S1 which has two disjoint attracting basins, none of
them intersecting S1.
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The following corollary is a result of the fact that a parabolic cycle of Ba|S1 can
have at most one periodic petal intersecting S1.

Corollary 6.2.11. A parabolic cycle < x0 >∈ S1 of Ba cannot be attracting from
both sides in S1. More precisely, if x0 is a parabolic fixed point of Bp

a, there cannot
exist a neighborhood U of x0 in S1 such that all the points U are attracted to x0 under
iterations of Bp

a.

The next lemma states that parameters on the boundary of tongues have parabolic
cycles.

Lemma 6.2.12. If a belongs to the boundary of a tongue, then Ba has a parabolic cycle
of multiplier 1.

Proof. Let a0 ∈ ∂Tτ . Then, there exists a sequence of parameters an ∈ Tτ , n ∈ N,
such that an accumulate on a0. Let xn be the attracting periodic point of Ban having
the critical points in its immediate basin of attraction. Since S1 is compact, we may
assume that xn converge to a point x0 ∈ S1. Since Ba depends continuously on a, we
conclude that x0 is a periodic point of Ba0 . The multiplier of x0 has to be 1. Indeed, it
is real since x0 ∈ S1, it is positive since Ba|S1 is increasing and it cannot be smaller than
1 because otherwise would belong to the interior of a tongue Tτ ? , which is impossible
since tongues are disjoint.

From now on it will be convenient to work with the alternative parametrization of
the Blaschke family gr,α := Br,3α|S1 as in Section 6.1. We consider the parameter space
(r, α) with r ≥ 2 and α ∈ R/1

3Z instead of a ∈ C with |a| ≥ 2. The main reason to use
this alternative parametrization is to use the monotonicity with respect to α given by
Lemma 6.1.1.

Definition 6.2.13. We say that a parameter (r0, α0), r0 > 2, in a boundary of a
tongue Tτ of period p belongs to the left boundary of the tongue if there exists an ? > 0
such that, for all 0 < α < ?, (r0, α0+α) belongs to the tongue and (r0, α0−α) does not
belong to it. Conversely, we say that it belongs to the right boundary if there exists an
? > 0 such that, for all 0 < α < ?, (r0, α0 − α) belongs to the tongue and (r0, α0 + α)
does not belong to it. Finally, we say that it belongs to a tip of the tongue if there
exists an ? > 0 such that, for all α ∈ (−?, 0)∪ (0, ?), (r0, α0 +α) does not belong to the
tongue.

Using Lemma 6.1.1, we have the following result (c.f. [MR07, Lem. 4.1]).

Lemma 6.2.14. Let x0 be an attracting or parabolic periodic point of gr0,α0 of period
p and let Hr0,α0 be the semiconjugacy between gr0,α0 and the doubling map given by
Lemma 1.2.3. Let J be the set of points x ∈ S1 which are sent by Hr0,α0 to the same
point as x0, i.e., J = {x | Hr0,α0(x) = Hr0,α0(x0)}. Then, either J is a connected closed
interval or it consists of a single point. Moreover, gr0,α0 |J is a homeomorphism, the
endpoints of J are fixed points of gpr0,α0, and one of the following holds (see Figure 6.3).

(a) J is an interval. The left endpoint of J is parabolic, topologically attracting from
the right and repelling from the left, the right endpoint is repelling and there are no
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other fixed points of gpr0,α0 in J . In this case (r0, α0) belongs to the left boundary of
the tongue.

(b) J is an interval. The right endpoint of J is parabolic, topologically attracting from
the left and repelling from the right, the left endpoint is repelling and there are no
other fixed points of gpr0,α0 in J . In this case (r0, α0) belongs to the right boundary
of the tongue.

(c) J is an interval. Both endpoints of J are repelling, there is an attracting fixed point
of gpr0,α0 in J and there are no other fixed points of gpr0,α0 in J . this case (r0, α0)
belongs to the interior of the tongue.

(d) J consists of a parabolic periodic point which is topologically repelling in S1.

J

(a) Case (a)

J

(b) Case (b)

J

(c) Case (c)

J = x

(d) Case (d)

Figure 6.3: The four different behaviors which may occur in Lemma 6.2.14.

Proof. Throughout the proof we consider the points of S1 oriented anticlockwise. The
fact that J is either a single point or a closed interval follows since Hr0,α0 is an increasing
continuous function (see Lemma 1.2.3). Since gr0,α0 |S1 is an strictly increasing function
(see Lemma 6.1.1), we have that gr0,α0 |S1 is a local homeomorphism around each point.
It follows that gr0,α0 |J is a homeomorphism and its endpoints are fixed points of gpr0,α0 .

It follows from Lemma 6.2.10 that only these four cases can occur. It states that
gr0,α0 |S1 can have at most one attracting or parabolic cycle and that a parabolic cycle
cannot be topologically attracting from both sides.

It is left to see that case (a) corresponds to the left boundary of the tongue whereas
case (b) corresponds to the right boundary. We prove it for case (a). Case (b) is
analogous.

Assume that (r0, α0) satisfy the hypothesis of case (a). Then, there exists a periodic
point of period p which is repelling from the left and attracting from the right. Recall
that, from Lemma 6.1.1, we have that gpr,α is strictly increasing with respect to α for
any p ∈ N.

We first prove that there exists an ? > 0 such that if 0 < α < ?, then gr0,α0+α has an
attracting cycle of period p. Let x be a point of the parabolic cycle and let y be a point
in the immediate basin of attraction of x. Then x < y and gpr0,α0(y) < y. Since gpr,α is
strictly increasing with respect to α, there exists an ? > 0 such that if 0 < t < ?, then
gpr0,α0+t(x) > x and gpr0,α0+α(y) < y. Hence, there has to be a topologically attracting
periodic point of period p between x and y. Since, by Lemma 6.2.10, a parabolic
periodic point cannot be attracting on both sides, we get that this topological attractor
located between x and y is an attractor.

Now we have to see that there exists an ? > 0 such that if 0 < α < ?, then gb0,α0−α

has no periodic attracting cycles of period p. Since x is repelling from the left and
attracting from the right, there exists a δ > 0 such that if y ∈ (x − δ, x + δ), then
gpr0,α0(y) ≤ y. Using that gr0,α0+α is strictly increasing with respect to α, we can take
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?1 > 0 such that if 0 < α < ?1, then gpr0,α0(y) < y for all y ∈ (x − δ, x + δ). Doing the
same around all of the points xm of the parabolic cycle we obtain δ? > 0 and ?2 > 0
such that if 0 < α < ?2, then gpr0,α0(y) < y for all y ∈ (xm − δ?, xm + δ?). Hence, we
have erased the periodic points of period p in a δ?-neighborhood U of our cycle. Since
gpr0,α0 has finitely many fixed points in S1 \U , all of them repelling, we can take ?3 < ?2
such that if 0 < α < ?3, then gpr0,α0−α has no attracting fixed point at all.

We want to prove that case (d) of Lemma 6.2.14 corresponds to a tip of the tongue
(see Proposition 6.2.17). We first introduce some auxiliary lemmas. The following
lemma corresponds to Lemma 3.1 in [MR08].

Lemma 6.2.15. Let U be a neighborhood of the origin in R2 and let F : U → R be a
real analytic function. Set ft(x) = F (t, x). Assume that f0 has a topologically repelling
fixed point at x = 0 and that

∂F

∂t
(0, 0) ?= 0,

Then there are open intervals I, J containing 0 such that I×J ⊂ U and for every t ∈ I
the map ft has exactly one fixed point x ∈ J . Moreover, if t ?= 0, then the fixed point
has multiplier λ > 1.

We use the previous technical lemma in the following result.

Lemma 6.2.16. Consider a one parameter subfamily ft = gr(t),α(t) of the Blaschke
family such that r(t) and α(t) depend analytically on t. Assume that f p

t0 has a topo-
logically repelling parabolic fixed point x0 and ∂G

∂t
(t0, x0) ?= 0, where G(t, x) = f p

t (x).
Then there exists ? > 0 such that if t ∈ (−?, 0) ∪ (0, ?) then f p

t0+t has no attracting or
parabolic fixed point.

Proof. By Lemma 6.2.15, there exists ?1 > 0 and a neighborhood U1 of x0 such that
if t − t0 ∈ (−?1, 0) ∪ (0, ?1), then f p

t has no attracting or parabolic fixed point in U1.
Now, as in proof of Lemma 6.2.14, we can perform the same argument around the
other p − 1 points of the parabolic cycle, obtaining an ?2 > 0 and a neighborhood U
of {x0, ..., xp−1} such that if t − t0 ∈ (−?2, 0) ∪ (0, ?2) then f p

t has no attracting or
parabolic fixed point in U . Since f p

t has only finitely many fixed points in S1 \ U , all
of them repelling, we can take ?3 < ?2 such that if t− t0 ∈ (−?3, 0)∪ (0, ?3) then f p

t has
no attracting or parabolic fixed point at all.

This result gives us directly the following proposition.

Proposition 6.2.17. A parameter (r, α) in a boundary of a tongue for which case (d)
of Lemma 6.2.14 occurs, is a tip of that tongue.

From Lemma 6.2.14 and Theorem 6.2.17 we obtain the next corollary.

Corollary 6.2.18. Any parameter (r0, α0) of the boundary of a tongue Tτ either belongs
to the right or the left boundary of the tongue or is a tip of the tongue.

We now prove the remaining statements of Theorem 6.2.1. The following theorem
proves statement (c).
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Theorem 6.2.19. Given r0 ≥ 2, the intersection of any connected component of a
tongue Tτ with the parameter circle |a| = r0 is connected. In particular, every connected
component of a tongue is simply connected.

Proof. Assume that the intersection of a connected component of a tongue Tτ with the
parameter circle |a| = r0 is not connected. Then, there exists a parameter (r0, α0) and
? > 0 such that, for any α ∈ (−?, 0) ∪ (0, ?), the parameter (r0, α0 + α) belongs to the
tongue. That would imply that (r0, α0) is a parameter in the boundary of Tτ which
does not belong to the right or left boundary and which is not a tip of the tongue,
contradicting Corollary 6.2.18.

Finally, we prove statement (d) of Theorem 6.2.1.

Proof of statement (d) of Theorem 6.2.1. It follows from Theorem 6.2.19 that the left
and right boundaries are well defined curves. Both the left and the right boundary
begin in two different parameters a− and a+ with |a−| = 2 = |a+|. Both boundaries
are bounded by Proposition 6.2.9 and hence they have to end at a point where they
intersect, which is a tip. The only thing which is left to see is that the boundary of
a tongue cannot be flat for any r0, i.e., we have to see that the intersection of the
boundary of Tτ with any parameter circle |a| = r0 does not contain an interval of
parameters. Notice that, by Theorem 6.2.19, neither the left nor the right boundaries
can have local maximums. The points of such interval cannot be of the left boundary or
the right boundary by definition. Hence, the parameters of this open interval are tips
of the tongue. Therefore, we would have an ? > 0 such that Br0,α0+α has a topologically
repelling parabolic fixed point for all |α| < ? and for some α0 and r0. However, this
would contradict Lemma 6.2.16.

6.3 Bifurcations around the tip of the tongues
In this section we study the bifurcations which occur throughout the boundaries of the
tongues. Given a tongue Tτ , there is a persistent saddle-node bifurcation which takes
place along ∂Tτ \ aτ , two cycles collide in S1 and exit it (see Figure 6.4). The goal of
the section is to prove Theorem 6.3.2. We study the bifurcations in a neighbourhood
of the tip of the tongues and see that, if the parameter is close enough to a tip, then
the two cycles leaving the unit circle are attracting. We will need the following lemma,
which makes use of algebraic geometry. For an introduction to the topic we refer to
[Har77] and [Sha13].

Lemma 6.3.1. For fixed n > 0, there is only a finite number of parameters a ∈ C for
which the Blaschke product Ba has a parabolic cycle of exact period n, multiplier 1 and
multiplicity 3.

Proof. It will be convenient to work with the alternative parametrizations of the
Blaschke products Ba presented in Section 6.1. Recall that, if a = re2πiα with
r > 0 and α ∈ R, Ba is conjugate with Br,3α (Equation (3.1)). The Blaschke prod-
ucts Br,3α are embedded within the family Ga,b (Equation (6.4)), where a, b ∈ C. We
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(a) Dynamical plane of B3. (b) Dynamical plane of B2.65675+0.0389604i.

(c) Dynamical plane of B2.55309+0.063042i. (d) Dynamical plane of B2.64732+0.0421017i.

Figure 6.4: Figure (a) shows the dynamical plane of the tip a0 = 3 of the fixed tongue T0.
Figure (b) shows the dynamical plane of Ba, where a = 2.65675+0.0389604i is in
∂T0\a0. Figures (c) and (d) show the parameter plane of two Blaschke products
with parameters near the boundary of the fixed tongue T0. In Figure (c) we
have a = 2.55309 + 0.063042i and the parabolic fixed point has bifurcated into
two repelling points while in Figure (d) we have a = 2.64732 + 0.0421017i and
the parabolic fixed point has bifurcated into two attracting points. The colors
are as follows: green if the point belongs to a basin of attraction which contains
the critical point c+, yellow if the point belongs to a basin of attraction which
contains c− and not c+, black if the orbit accumulates on z = 0 and a scaling
from blue to red if the orbit accumulates on z = ∞.
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will prove that, for fixed n > 0, there is only a finite number of parameters (a, b),
where a, b ∈ C, for which Ga,b has a parabolic cycle of exact period n, multiplier 1 and
multiplicity 3.

We first show that the immediate basin of attraction of such a cycle contains both
free critical points. Indeed, a parabolic cycle < z0 > of exact period n, multiplier 1
and multiplicity 3 has two disjoint cycles of maximal attracting petals attached to it
(see Theorem 1.1.15 and Figure 6.4 (a)). Each of these cycles of maximal petals has at
least one critical point on the boundary of one of its components (see Theorem 1.1.16).
Therefore, the immediate basin of attraction of < z0 > contains both free critical points
of Ga,b. Notice also that it follows from this assumption that the multiplicity cannot
be greater than 3 since the rational maps Ga,b only have two free critical points.

Parameters which satisfy the hypothesis are solutions of the system of rational
equations





Gn
a,b(z) = z,

( ∂
∂z
Gn

a,b)(z) = 1,
( ∂2

∂z2G
n
a,b)(z) = 0.

(6.5)

Take the polynomials p1(z, a, b), p2(z, a, b), p3(z, a, b) and q(z, a, b) so that the pre-
vious system reduces to





p1(z, a, b)/q(z, a, b) = z,
p2(z, a, b)/q(z, a, b)2 = 1,
p3(z, a, b)/q(z, a, b)3 = 0.

Notice that p2 and p3 are combinations of p1, q and their derivatives. We obtain
the polynomial system of equations





p1(z, a, b)− zq(z, a, b) = 0,
p2(z, a, b)− q(z, a, b)2 = 0,
p3(z, a, b) = 0.

(6.6)

The solutions of (6.5) also solve (6.6). However, we have added solutions. They
come from points (z, a, b) on which either the numerator and the denominator vanish
simultaneously or are both equal to infinity. They can be equal to infinity if and only
if z = ∞ or a = ∞ or b = ∞. Such points are not solutions of the original system.
The point z = ∞ is a permanent superattracting fixed point (unless b = 0 or b = ∞)
and, therefore, does not satisfy the equations of a parabolic point. If a = ∞ then
Ga,b(z) degenerates to bz2, which does not have parabolic cycles. If b = ∞ then Ga,b

is constant and therefore does not have any parabolic cycle. The points for which the
numerator and the denominator vanish simultaneously come from the system

?
p1(z, a, b) = 0,
q(z, a, b) = 0. (6.7)

Notice that, if q(z, a, b) = 0 but p1(z, a, b) ?= 0 then the first equation in (6.6) is not
satisfied and, therefore the point (z, a, b) is not a solution. Assume that (z, a, b) solves
(6.7). Then there is a z0 such that the numerator and the denominator of
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bGn−1
a,b (z0)3 G

n−1
a,b (z0)− a

1− aGn−1
a,b (z0)

vanish simultaneously. This can only happen if b = 0 or a = ±1. If b = 0 the Ga,b is
constant and therefore (6.5) has no solution. If a = ±1 the family Ga,b(z) degenerates
to the polynomials ∓bz3 and the system (6.5) has no solution.

We also assumed that the parabolic cycle has exact period n. Thus, the parameters
which satisfy the hypothesis of the lemma are such that the equality

Gm
a,b(z) = z (6.8)

is not satisfied for any m < n. If Gm
a,b(z) = p̃m(z, a, b)/q̃m(z, a, b), the set of points

which satisfy the previous equality, are solutions of the polynomial equation

p̃m(z, a, b)− zq̃m(z, a, b) = 0. (6.9)

The set of solutions of (6.6) is an algebraic variety, say Y . Each point of Y is either
solution of (6.5) or corresponds to any of the degeneracy situations already described.
The set of solutions of (6.9) consists of the solutions of (6.8) and exactly the same
degeneracy solutions described for (6.6). Let Y ? be the quasiprojective variety obtained
by intersecting Y with the open set of the Zariski topology given by b ?= 0, b ?= ∞,
a ?= ±1, a ?= ∞, z ?= ∞ and p̃m(z, a, b) − zq̃m(z, a, b) ?= 0 for all m < n. If (z, a, b)
belongs to Y ? then it is a solution of (6.5) and does not solve (6.8). Therefore, < z >
is a parabolic cycle of Ga,b of period exactly n, multiplier 1 and multiplicity 3 whose
immediate basin of attraction contains both free critical orbits. Since by Lemma 6.1.2
the non-escaping set is bounded in a, we conclude that the projection of Y ? over the
variable a is bounded. We use now that the projection of a quasiprojective variety over
a variable is either dense or finite to conclude that the projection of Y ? over a is finite.
This last assertion follows from Chevalley’s Theorem (see [Gro67], c.f. [Har77, Exercise
3.19]) which states that any morphism of quasiprojective varieties sends constructible
sets to constructible sets. In particular, the image over C of a quasiprojective variety
under a regular map is either finite or dense in C. Summarizing we have that there are
finitely many a for which (6.5) has solution.

Finally, consider the previous equation systems with a0 ?= ±1 fixed. Let Y ? be the
quasiprojective variety of points (z, a0, b) which solve (6.5), do not solve (6.9) for any
m < n and the degeneracy conditions are not satisfied. By Lemma 6.1.3 we know that,
for fixed a0 ?= ±1, the non-escaping set is bounded on b. As before we conclude that
Y ? projects onto a finite number of b, which finishes the proof.

Notice that the condition of having exactly period n on the previous lemma is
necessary. Indeed, the family Ba has curves of parabolic parameters whose parabolic
cycle < z0 > of period n has multiplier −1 (see Theorem 6.4.3). The points z0 are also
parabolic fixed points of B2n

a of multiplier 1 and multiplicity 3. Therefore, if we do not
require exact period n then we may obtain infinitely many solutions of (6.5).

We now prove Theorem 6.3.2, which tells us that there is a neighborhood U of the
tip of any tongue such that if a ∈ U then either a belongs to the tongue, or to its
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boundary, or Ba has two disjoint attracting cycles (see Figure 6.5 and Figure 6.4 (a),
(b) and (d)).
Theorem 6.3.2. Let aτ be the tip of a tongue Tτ of period p. Then, there exists a
neighborhood U of aτ such that if a ∈ U then, either a ∈ Tτ or a ∈ ∂Tτ or a belongs to
a disjoint hyperbolic component.

a0

Figure 6.5: A zoom in a neighborhood of the tip a0 of the tongue To. The colors are as in
Figure 5.1. We see in green the fixed tongue T0 and in pink a disjoint hyperbolic
component which partially shares the boundary with T0.

Proof of Theorem 6.3.2. The main ingredient for the proof is the holomorphic index.
Given a fixed point z0 of a holomorphic function f , the holomorphic fixed point index
of z0, i(z0), is defined to be the residue of 1/(z − f(z)) around z0. If the fixed point
has multiplier ρ ?= 1, then i(z0) = 1/(1 − ρ) (see [Mil06]). Moreover, when n different
fixed points collide in a parabolic point z0 of multiplier 1, their indexes tend to infinity,
even if the sum of their indexes tends to the finite index i(z0) of the parabolic point.

Let < w0 > be the parabolic cycle of Baτ . Then, w0 is a parabolic periodic point of
multiplier 1, multiplicity 3 and exact period p of Baτ . Since, by Lemma 6.3.1, there is a
finite number of such parameters, it follows that there is an open neighborhood of the
parameter aτ which contains no other parameter a for which Ba has a parabolic cycle of
multiplier 1, multiplicity 3 and the same period than < w0 >. Take a parameter a close
to aτ . The map Bp

a has three fixed points, say z0, z+ and z−, which tend to w0 when
a tends to aτ . By symmetry and continuity of the semiconjugacy Ha(x) with respect
to a and x, at least one of the fixed points lies in S1, say z0, and satisfies Ha(z0) = τ .
Also by symmetry, if more than one fixed point lies in S1, the three of them do. In that
later case, since Ba|pS1 is strictly increasing, one of them is either parabolic or attracting
and satisfies Ha(z) = τ by continuity of Ha, so either belongs to the tongue Tτ or its
boundary. Assume that only z0 lies in S1 and is repelling (if it was attracting it would
belong to Tτ again by continuity of Ha). Then z0 has real multiplier η > 1 (compare
Lemma 6.2.10). Due to the symmetry, the other two fixed points, z±, are symmetric.
Moreover, their multipliers are complex conjugate say ρ and ρ (c.f. Theorem 5.2.2).

Consider the sum S of the indexes of the three periodic points.

S = i(z0) + i(z+) + i(z−) =
1

1− η
+ 1
1− ρ

+ 1
1− ρ

.
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The number S is a real quantity which tends to the index of the parabolic cycle of
the tip of the tongue whenever a tends to aτ . Moreover, i(z0) tends to minus infinity
when a tends to aτ . Hence, there is an open neighborhood U of a0 such that if a ∈ U
then S̃ = S − i(z0) > 1. Write ρ = 1 + ? = 1 + ?r + i?i, ?r, ?i ∈ R. Then, if a ∈ U , we
have

S̃ = 1
1− 1− ?

+ 1
1− 1− ?

= − 2?r
|?|2 .

It follows from this equation that, if a ∈ U , then ?r < 0. Finally, using that
|?|2 = −2?r/S̃, we have

|ρ|2 = (1 + ?r)2 + ?2
i = 1 + 2?r −

2?r
S̃ = 1 + 2?r(1−

1
S̃ ).

Since ?r ? 0 and S̃ > 1 we conclude that |ρ| < 1, which finishes the proof.

We finish the section showing some consequences of the construction presented in
the proof of Theorem 6.3.2. The next corollary follows from the previous theorem
and Theorem 6.2.19, which states that the boundary of any tongue corresponds to the
union of two arcs which intersect at the tip of the tongue. These two arcs can be
parametrized univalently with respect to the modulus of the parameter.

Corollary 6.3.3. Given a tongue Tτ , there exists a hyperbolic component of Ba of
disjoint type sharing part of its boundary with Tτ in a neighborhood of the tip aτ .

The following proposition tells us that all parameters with a, |a| > 2, such that
Ba has a parabolic cycle which is topologically repelling in the unit circle are tips of
tongues.

Proposition 6.3.4. If |a0| > 2 and Ba0 has a parabolic cycle of multiplicity 3 and
exact period n in the unit circle then a0 is the tip of a tongue of period n.

Proof. Assume that a0 is not a tip of a tongue of period n. Then the same perturbation
done in the proof of Theorem 6.3.2 can be performed, obtaining a disjoint hyperbolic
component of parameters which surrounds a0. Indeed, since a0 is not in the boundary
of a tongue of period n and there is a finite number of parameters with a parabolic cycle
of multiplier 1, multiplicity 3 and exact period n by Lemma 6.3.1, the perturbation
presented in the proof of Theorem 6.3.2 gives us an open neighborhood U of a0 such
that if a ∈ U , a ?= a0, then the Blaschke product Ba has two disjoint attracting cycles
other than z = 0 and z = ∞. Therefore, the set of parameters U would be contained
in a multiply connected disjoint hyperbolic component whose attracting cycles are not
in the unit circle, which is impossible by Theorem 5.4.2.

Corollary 6.3.5. If |a| > 2 and Ba has a parabolic cycle on the unit circle, then a
belongs to the boundary of a tongue.

Proof. If the parabolic cycle of Ba0 has multiplicity 2 then it is on the boundary of a
period n tongue by Lemma 6.2.14. If it has multiplicity 3 it is on the tip of a fixed
tongue by Proposition 6.3.4.
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6.4 Extended Tongues
The goal of this section is to give an idea of the dynamics that may take place for
parameters within the open annulus A1,2 of inner radius 1 and outer radius 2. The
section is structured as follows. We first notice that the tongues studied up to this
point may be extended within this annulus. Then we describe more precisely how the
fixed tongue extends. Finally we do some numerical computations to obtain an idea of
other phenomena which may take place.

The definition of tongues only makes sense for parameters a such that |a| ≥ 2.
However, given a tongue Tτ , its attracting cycle < z0 > can be analytically continued
for parameters 1 < |a| < 2 (see Figure 6.6), parameters for which Ba|S1 is not a degree
2 cover of the unit circle (see Section 3.1) and, therefore, is not semiconjugate to the
doubling map. We proceed to formally define the concept of extended tongue using
the analytic continuation of the attracting cycle.

Definition 6.4.1. An extended tongue ETτ is defined to be the set of parameters for
which the attracting cycle of Tτ can be continued analytically. More precisely, we say
that a parameter a belongs to the extended tongue ETτ (of period p) if 1 < |a| < 2,
Ba|S1 has an attracting periodic point of period p and there exists a curve of parameters
γ(t) such that γ(0) = a, γ(1) ∈ Tτ and Bγ(t)|S1 has an attracting fixed point of period
p for all t ∈ (0, 1) which depends continuously on t.

Given that the set of hyperbolic parameters is open in C and the roots of the
tongues (parameters for which the cycle is superattracting) have modulus equal to 2
(see Theorem 6.2.1) we conclude that ETτ ∩A1,2 is not empty for any periodic point τ
of the doubling map. Notice that, with the previous definition, parameters a ∈ Tτ also
belong to ETτ . The following lemma describes the parameters on the boundary of the
extended tongues. Its proof is analogous to the one of Lemma 6.2.12.

Lemma 6.4.2. If a belongs to the boundary of an extended tongue and |a| ?= 1, then
Ba has a parabolic periodic point of multiplier ±1.

Notice that the intersection of two different extended tongues might be a non empty
open set. Indeed, the critical orbits are not symmetric if a ∈ A1,2. Because of that, for
1 < |a| < 2, Ba|S1 might have two different attracting cycles (see Figure 3.2 (c) and
(d)), in which case a might belong to two different tongues (see Figures 6.6 and 6.8).

The extended fixed tongue
We now proceed to study the extended fixed tongue ET0 (see Figure 6.7). The following
theorem is the main result of this section. It describes the shape of the connected
components of the extended fixed tongue.

Theorem 6.4.3. Given two connected components of the fixed tongue T0, the intersec-
tion of their extensions in A1,2 is empty. The boundary of every connected component
of the extended fixed tongue ET0 consists of two disjoint connected components. The
exterior component consists of parameters for which there is a parabolic fixed point
of multiplier 1. The interior component consists of parameters for which there is a
parabolic fixed point of multiplier −1. Moreover, there is a period doubling bifurcation
taking place throughout the curve of interior boundary parameters.
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Figure 6.6: Parameter plane of the Blaschke family. The parameters correspond to −2.5 <
Re(a) < 3.5 and −3 < Im(a) < 3. We plot in orange the parameters for
which there is an attracting fixed point in S1. These parameters correspond
to an extended fixed tongue. Strong green corresponds to parameters having a
period 2 attracting cycle in the unit circle, whereas violet corresponds to period
4 cycles. These parameters may belong to extended tongues of period 2 or 4,
or to other kinds of components. The rest of the colors are as follows: red
for c+ ∈ A(∞), black for c+ ∈ A(0), pallid green if O+(c+) accumulates on a
periodic orbit in S1, pink if O+(c+) accumulates in a periodic orbit not in S1

and blue in every other case.

We need an auxiliary proposition to prove the previous theorem. The fixed tongue
T0 has three connected components, only one modulo symmetry (see Theorem 6.2.1).
Therefore, when studying the extended fixed tongue we restrict to the connected com-
ponent which intersects the real line. It is convenient to consider the parameter plane
given by (r, α), where a = re2πiα, 1 < r < 2 and α ∈ [0, 1/3). We then use the al-
ternative parametrization gr,α = Br,3α|S1 of Ba|S1 (see Section 6.1). We denote by hr,α
the lift of gr,α (see Equation 6.2). We want to remark that for r = 1 and x = 0 the
function is not well defined (see Section 3.1). Indeed, for r = 1, the two critical points
and the preimages of 0 and ∞ collapse at the point x = 0 and the function becomes a
degree 3 polynomial. The following proposition gives us the main properties of ET0.
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Proposition 6.4.4. Let ET0 denote the extended fixed tongue which intersects the real
line. Then, ET0 satisfies the following properties:

(a) ET0 is symmetric with respect to the real line.

(b) For fixed r0, 1 < r0 < 2, ET0 ∩ {α ≥ 0} ∩ {r = r0} is a connected set on which the
multiplier is strictly increasing with respect to α and takes values in (b, 1), where
−1 ≤ b < 0. Moreover, b = −1 if and only if r0 ≤ 5/3.

(c) If (r, α) ∈ ET0, then −1/6 < α < 1/6.

Figure 6.7: Boundaries of the three symmetric extended fixed tongues. The green curves
correspond to parameters for which a fixed point has multiplier 1. The blue
curves correspond to parameters for which a fixed point has multiplier -1. We
also plot in red the two circles of parameters |a| = 1 and |a| = 2.

Proof. For statement (a) we notice that the extended tongue is symmetric with respect
to the real line due to the symmetry of the parameter plane a → ā (see Lemma 5.1.1).
It is because of that property that we study it for α ≥ 0. We now use the lift hr,α of
gr,α (see Equation (6.2)) to prove (b) and (c). Recall that it is given by

hr,α(x) = 3x+ 3α + 1
2πi log

?
e2πix − r

1− re2πix

?
.

Since we want to study the extended fixed tongue ET0, we need to investigate for
which parameters we have an attracting fixed point which can be continued to the
superattracting fixed point x = 0 of h2,0. Notice that (2, 0) corresponds to the root
2 = 2e2πi0 of the fixed tongue T0.
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The point xr,0 = 0 is a fixed point of hr,0 for all r ∈ (1, 2]. We denote by xr,α the
fixed point of hr,α which is a continuation of xr,0 = 0. This point xr,α is well defined
as long as we do not reach a parameter for which it has multiplier 1. However, this
is not an obstruction since it is already a parameter in the boundary of the extended
tongue. Notice also that xr,α is strictly decreasing with respect to α since hr,α is strictly
increasing with respect to α.

Now we need to study the multipliers of these fixed points. Recall from Equa-
tion (6.3) that the derivative of the previous lift is given by the following expression.

h?
r(x) :=

∂

∂x
hr,α(x) = 3 + 1− r2

1 + r2 − 2r cos(2πx) ,

Notice that it does not depend on α. Moreover, h?
r is strictly increasing when x

decreases from 0 to −1/2. Since for all 1 < r ≤ 2 we have that

h?
r(−1/2) = 3 + 1− r2

1 + r2 + 2r > 1,

we conclude that no parameter (r, α) with xr,α = −1/2 can belong to the extended fixed
tongue or its boundary. Combining this last result with the fact that xr,α is strictly
decreasing with respect to α we conclude that, for fixed 1 < r < 2, the multiplier
λ(xr,α) of xr,α is strictly increasing with respect to α.

We now prove that for all r ∈ (1, 2], there exists an α1(r) which depends continu-
ously on r such that λ(xr,α1) = 1 and 0 < α1 < 1/6. First of all we notice that, given
a parameter (r, α1(r)) with a fixed point x1 of multiplier 1, the map hr,α1(r) can be
written as

hr,α1(r)(x) = x+ η(x− x1)2 +O((x− x1)3),

where η ∈ R. We conclude that α1(r) is a local graph with respect to r unless η = 0.
However, η is zero if ∂2/∂x2hr(x1) = 0, which can only happen if x1 = 0 or x1 = −1/2.
Since h?

r(−1/2) = 3+ (1− r2)/(1+ r2 +2r) > 1, x = −1/2 cannot be a parabolic fixed
point. Moreover, the point x = 0 can neither be a parabolic fixed point with multiplier
1 for 1 < r ≤ 2. Indeed, we have that h?

r(0) = 3 + (1 + r)/(1 − r). For r = 2 we have
h?

2(0) = 0. We also have that h?
r(0) is strictly decreasing from 0 to −∞ as r decreases

from 2 to 1.
Next we prove that α1(r) < 1/6 by contradiction. Assume that there is an r

for which this is not the case. Then, by continuity, there would be an r̃ so that
λ(xr̃,1/6) = 1. Because of the symmetries in the parameter plane, this parameter
would give us the intersection between the boundaries of the extension of two different
connected components of the fixed tongue. Therefore, at this parameter we would have
two different fixed points of multiplier 1. However, each of these parabolic points is
a fixed point of multiplicity two and, therefore, this situation would require at least 4
fixed points. This would contradict the fact that the Blaschke products Ba can have
at most 3 fixed points other than z = 0 and z = ∞.

Summarizing we have proven that, for all r ∈ (1, 2), the fixed point xr,0 = 0 of hr,0
can be monotonously continued to a fixed point xr,α of hr,α as long as α < α1(r) < 1/6,
where α1(r) is a continuous function with respect to r. Moreover, for 0 ≤ α < α1(r) the
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multiplier of xr,α is strictly increasing and takes values in [h?
r(0), 1), where h?

r(0) ≤ −1
if and only if r ≤ 5/3. This finishes the proof of the proposition.

Using the previous proposition we can prove Theorem 6.4.3.

Proof of Theorem 6.4.4. The fact that two extensions of connected components of the
extended fixed tongue cannot intersect follows from statement (c) of Proposition 6.4.4
using the symmetries of the parameter plane and that all connected components of the
fixed tongue are symmetric with respect to the rotations given by the third roots of
the unity (see Theorem 6.2.1).

The boundary of the connected components of ET0 is the union of a exterior bound-
ary with parameters of multiplier 1 and a interior boundary with parameters of multi-
plier −1 by statement (b) of Proposition 6.4.4.

We finally prove that there is a period doubling bifurcation taking place throughout
the interior curve. Let (r, α−1), r < 5/3, be a parameter of the interior curve. Then
hr,α−1 has a parabolic fixed point of multiplier −1, say x−. Hence, x− is a parabolic
fixed point of multiplier 1 of h2

r,α−1 . Using that hr,α−1(x−) = x− and h?
r,α−1(x−) = −1 it

is not difficult to prove that ∂2/∂x2h2
r,α−1(x−) = 0 and, therefore, x− is a parabolic fixed

point of multiplicity 3 of h2
r,α−1 . Hence, x− has two attracting petals which intersect the

unit circle since all critical points lie in S1. Consequently, x− is topologically attracting
on the unit circle. Using that h2

r,α−1 is monotonously decreasing with respect to α in an
open neighborhood of x− and performing the same perturbations as in Lemma 6.2.14
we conclude that, if α ∈ (α−1 − ?, α−1) ∪ (α−1, α−1 + ?) with ? > 0 small enough, then
h2
r,α has a topologically attracting fixed point. It follows from the monotonicity of the

multipliers of the fixed points of hr,α with respect to α shown in Proposition 6.4.4 that
either the parameters (r, α) with α < α−1 or the (r, α) with α > α−1 are such that hr,α
has a period two attracting cycle.

Other hyperbolic dynamics
We finish this section giving some ideas about the dynamics that take place on A1,2
other than the ones given by the extended fixed tongue. Numerical studies suggest that
the properties described for the extended fixed tongue ET0 are common to all extended
tongues. Indeed, we conjecture that all extended tongues have a similar structure than
the one presented in Theorem 6.4.4.
Conjecture 6.4.5. Given an extended tongue ETτ of period p > 1, its connected
components are disjoint. The boundary of every connected component of the extended
tongue ETτ consists of two disjoint connected components. The exterior component
consists of parameters for which there is a parabolic cycle of period p and multiplier
1. The interior component consists of parameters for which there is a parabolic cycle
of period p and multiplier −1. Moreover, there is a period doubling bifurcation taking
place throughout the curve of interior boundary parameters.

We also want to focus on how extended tongues, and more generally hyperbolic
components, accumulate on the unit circle. If we observe Figure 6.7 we see that the
boundaries of the extended fixed tongue accumulate tangentially to the unit circle
onto isolate points. Moreover they do it in pairs. By this we mean that given an
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accumulation point l, |l| = 1, the boundaries of two different connected components of
the extended fixed tongue land on it. This seems to happen for hyperbolic regions of
arbitrary period (see Figure 6.8).

Figure 6.8: Zoom in the parameter plane of the Blaschke family. We see in green how the
boundary of an extended tongue of period 2 accumulates onto a parameter l,
|l| = 1, together with another hyperbolic region of period 2 not coming from
the extension of a tongue. The colors are as in Figure 6.6.

Conjecture 6.4.6. Parabolic curves accumulate on the unit circle on isolate points
and tangentially to it. Moreover, if a parabolic curve accumulates on a parameter l,
|l| = 1, then there is another parabolic curve of the same period landing on l from the
opposite side.

Even though we do not go much further in the study of the parameter plane in the
annulus A1,2, we want to point out that the observed bifurcation structures are similar
to the ones described for more general maps of R2 (see [BST98, CMB+91, GSV13]).
Indeed, the observed structure around extended tongues is very similar to the one of
spring-areas associated to homoclinic tangencies. In that later case, it is proven that
there are cascades of period doubling bifurcations which are also observed for the family
Ba. In Figure 6.6 we can see these period doublings to period 2 and 4. In Figure 6.9
we show a zoom in the bifurcation diagram in a neighbourhood of the extended fixed
tongue ET0 for |a| = 1.30 where the mentioned cascade of bifurcations may be observed.
These same cascades of bifurcations may also be observed for a period two extended
tongue in Figure 5.2 (down). Other structures of bifurcations described in these papers
such as Cross-roads also seem to appear for the Blaschke family Ba when 1 < |a| < 2
(see Figure 6.10).
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Figure 6.9: Zoom in the bifurcation diagram for |a| = 1.3 in a neighbourhood of the
extended fixed tongue ET0 (c.f. Figure 5.2). For α ∈ [0.04, 0.065] we set
a = 1.3e2πiα and compute the accumulation set of c+ ∈ S1 under iteration
of Ba|S1 . In the x-axis we plot α and in the y-axis we plot the accumulation
points of O(c+) ∈ S1. When drawing the accumulation points we consider their
arguments in (−0.5, 0.5] and plot the ones with arguments in [−0.1, 0.3]. When
α ∈ (0.056, 0.064) the parameter a belongs to the extended fixed tongue ET0
and there is one attracting fixed point on which O(c+) accumulates. We observe
a cascade of bifurcations when α < 0.056.

Figure 6.10: Zoom in Figure 6.6. A period 4 Cross-road can be observed in violet. Param-
eters a are taken so that 1.2 < Re(a) < 1.24 and −0.02 < Im(a) < 0.02.



7Chapter Seven

Generalization of the Blaschke
Family

The Blaschke family Ba may be viewed as a rational perturbation of z2. It is a natural
generalization to consider the same type of perturbation applied to zm for m ≥ 2.

The goal of these chapter is to present the degree m + 2 Blaschke products Ba;m.
In Section 7.1 we introduce their dynamical properties. In Section 7.2 we study their
parameter plane. Finally, in Section 7.3 we investigate their tongues.

7.1 Dynamical plane of the degree m+2 Blaschke
families

In analogy to the Blaschke products Ba, for a fixed m ≥ 2, we consider the degree
m+ 2 Blaschke products which have z = 0 and z = ∞ as superattracting fixed points
of local degree m + 1. They are given by the formula

Ba,t;m(z) = e2πitzm+1 z − a

1− āz
, (7.1)

where a ∈ C and t ∈ R/Z. The next lemma tells us that, for the purpose of classifica-
tion, we can get rid of the parameter t. The proof is straightforward.
Lemma 7.1.1. Let α ∈ R and let η(z) = e−2πiαz. Then η conjugates the maps Ba,t;m
and Bb,t+(m+1)α;m, where b = e−2πiαa. In particular, Ba,t;m is conjugate to Bb,0;m, where
b = ae2πit/(m+1).

Hence, we focus on the study of the family

Ba;m(z) = zm+1 z − a

1− āz
(7.2)

for values a, z ∈ C and m ≥ 2. For |a| > 1, the circle maps Ba;m|S1 have degree m in
the sense that their lifts Fa;m satisfy Fa;m(x+1) = Fa(x)+m ∀x ∈ R (c.f. Section 3.1).
These Blaschke products are, indeed, rational perturbations of the map Rm(z) = zm

(alternatively given by θ → mθ (mod 1)). As |a| tends to infinity, the Ba;m(z) tend to
e4πiArg(a)zm uniformly on compact sets of C∗. On the other hand, if |a| < 1, the circle
maps Ba;m|S1 have degree m + 2.

In order to have an idea of which stable dynamics the maps Ba;m may have, we
should control the critical points. These rational maps have degree m + 2 and, hence,
have 2(m+2)−2 = 2m+2 critical points counted with multiplicity (see Corollary 1.3.2).

On a Family of Degree 4 Blaschke Products 105
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Since the fixed points z = 0 and z = ∞ are supperatracting of local degree m+1 and,
therefore, have multiplicity m as critical points there are only 2 free critical points
counted with multiplicity. Hence, the Blaschke families Ba;m are almost bicritical. The
two free critical points, denoted by c±(a;m), are given by the following formula.

c± := c±(a;m) := a ·
m + 2 +m|a|2 ±

?
(m2|a|2 − (m + 2)2)(|a|2 − 1)
2(m + 1)|a|2 . (7.3)

As in the case m = 2, it is useful to study for which parameters the critical points
lie on the unit circle. For the Blaschke products Ba;m, if 1 < |a| < (m + 2)/m then
the two critical points lie on S1. If |a| = (m + 2)/m the two critical points collide in
a single one in S1. If |a| > (m + 2)/m or |a| < 1 then the critical points do not lie
on the unit circle and are symmetric with respect to it. Together with the fact that
Ba;m have a single pole z∞ = 1/a and a unique zero z0 = a, this leads to the exact
same structure of preimages of the unit disk as in the case m = 2 (see Section 3.1 and
Figure 7.1). Summarizing, we have the following.

(a) If |a| < 1 the unit disk coincides with the basin of attraction of z = 0 and the Julia
set J (Ba;m) equals the unit circle.

(b) If |a| = 1 the Blaschke products Ba;m degenerate to a family of degree m + 1
polynomials.

(c) If 1 < |a| < (m + 2)/m then the critical points c± lie in the unit circle and the
circle map Ba;m|S1 has points with m and m + 2 preimages.

(d) If |a| = (m + 2)/m the two critical points collide in a single one lying on the unit
circle and there are two open sets Ωe and Ωi which are contained in ?C \ D and D,
respectively, whose boundary meets the unit circle at the critical point c and are
mapped conformally onto the unit disk and ?C \ D, respectively. The circle map
Ba;m|S1 is a degree m covering of the unit circle.

(e) If |a| > (m + 2)/m the two free critical points do not lie on the unit circle and
their orbits are symmetric with respect to S1. For such parameters the circle map
Ba;m|S1 is a degree m covering of the unit circle. Moreover, there are two open sets
Ωe and Ωi which are contained in ?C \ D and D, respectively, whose boundaries do
not meet the unit circle and are mapped conformally onto the unit disk and ?C \D,
respectively.

Using the location of the preimages of the unit disk and its complement that we
just described (see Figure 7.1) and which coincides exactly with the situation exposed
in Section 3.1 for Ba = Ba;2, the proof that we gave for Theorem 3.2.1 gives us the
following criterion for the connectivity of the Julia set J (Ba;m).

Theorem 7.1.2. Given a Blaschke product Ba;m as in (7.2), m ≥ 2, the following
statements hold.

(a) If |a| ≤ 1, then J (Ba;m) = S1.
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Figure 7.1: Different configurations of the critical points and the preimages of zero and
infinity depending on |a|.

(b) If |a| > 1, then the connected components of A(∞) and A(0) are simply connected
if and only if c+ /∈ A∗(∞).

(c) If |a| ≥ (m + 2)/m, then every Fatou component U such that U ∩ A(∞) = ∅ and
U ∩ A(0) = ∅ is simply connected.

Consequently, if |a| ≥ (m+2)/m, then J (Ba;m) is connected if and only if c+ /∈ A∗(∞).

Notice that this Theorem shows that the case m = 1 is intrinsically different than
the case m ≥ 2. Indeed, the Blaschke products Ba;1 may have Herman rings (see Figure
1.4 (d)) and, therefore, its Julia set may not be connected.

7.2 Parameter plane of the degree m+2 Blaschke
families

In Figure 7.2 we show the parameter planes of the Blaschke products Ba;m for
m = 2, 3, 4 and 5. In all the cases we observe an inner red disk which corresponds
to the unit disk. We see in blue how the annulus of parameters for which both critical
points lie on the unit circle becomes narrower as m grows (recall from Section 7.1 that
it is given by 1 < |a| < (m+2)/m). We also observe how the tongues are smaller when
m is larger. Indeed, it follows from Corollary 7.3.8 below that if a parameter (a;m)
belongs to a tongue of Ba;m then |a| < (m + 1)/(m− 1).
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(a) Parameter plane of the family Ba;2 = Ba. (b) Parameter plane of the family Ba;3.

(c) Parameter plane of Ba;4. (d) Parameter plane of Ba;5.

Figure 7.2: Parameter plane of the Blaschke family Ba;m for m = 2, 3, 4, 5. The colors are
as follows: red if c+ ∈ A(∞), black if c+ ∈ A(0), green if O+(c+) accumulates
on a periodic orbit in S1, pink if O+(c+) accumulates in a periodic orbit not in
S1 and blue in any other case. The inner red disks correspond to the unit disk.

The following lemma explains the symmetries that are observed in the parameter
planes of the Blaschke products Ba;m. Its proof coincides with the proof of Lemma 5.1.1,
which is the analogous result for the family Ba;2.

Lemma 7.2.1. Let a, b ∈ C \ S1. Then Ba;m and Bb;m are conformally conjugate if
and only if b = ξa or b = ξa, where ξ is an (m + 1)st root of the unity.

For fixed m ≥ 2, we denote by Em the set of escaping parameters, i.e., the set
of parameters a such that the orbit of the critical point c+ tends to z = ∞ or z = 0
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under iteration of Ba;m. We denote its complement, the set of non-escaping parameters,
by Bm. The following lemma tells as that the set Bm of non-escaping parameters is
bounded for all m ≥ 2.

Lemma 7.2.2. Let m ≥ 2. Then the following hold.

(a) If |a| < 1 then a ∈ Em.

(a) If 1 < |a| ≤ (m + 2)/m then a ∈ Bm.

(a) The non-escaping set Bm is bounded.

Proof. Statements (a) and (b) have already been proven. To prove statement (c) we
have to show that, if |a| is big enough, then the parameter a is escaping. First we
prove that, if |z| > λ(|a| + 1) with λ ≥ 1, then |Ba(z)| > λ|z|m−1. It follows from the
previous hypothesis that |z − a| > λ and that |z|2 > |z|(|a|+ 1) > |1− az|. Therefore,
we have

|Ba(z)| = |z|m+1 |z − a|
|1− az| > |z|3 λ

|z|2 = λ|z|m−1.

To finish the proof notice that, as |a| tends to infinity, the critical point c+(a) tends
to ma/(m + 1). Consequently, it is easy to check that the modulus of the critical
value v+ = Ba;m(c+(a)) grows as M |a|m for some M > 0 and, for |a| big enough,
|v+| > λ(|a| + 1) with λ > 1. We conclude that |Bn

a;m(v+)| → ∞ when n → ∞.
Therefore, for |a| big enough, a ∈ Em.

Notice that this proof fails for m = 1. It may be proven that the family Ba;1 has
attracting cycles in the unit circle for parameters with modulus as big as desired which
capture both free critical points (see Figure 7.6). Indeed, if r ∈ R and r ≥ 3, the
Blaschke products Br;1 have z = 1 as a permanent attracting fixed point.

As in the casem = 2, the dynamics of the attracting cycles of the Blaschke products
Ba;m are related to the ones of polynomials if |a| > (m + 2)/m. On the one hand, it
follows from Theorem 1.2.14 that the surgery presented in Chapter 4 can be performed
if Ba;m|S1 has no attracting or parabolic cycle. In that case, instead of gluing the
squared map R2(z) = z2 in the unit disk, we glue de mth power map Rm(z) = zm,
obtaining a degree m + 1 polynomial Mb;m(z) = zm+1 − m+1

m
zm with z = 0 as a

superattracting fixed point of local degree m. Therefore, if we have an attracting or
parabolic cycle of Ba;m contained in ?C\D, the previous surgery conjugates its dynamics
with the ones of a degree m + 1 polynomial (see Figure 7.3).

On the other hand, if a parameter a is swapping, i.e., the orbit critical point c+
enters at least once in the unit disk under iteration of Ba;m, the previous surgery erases
all relevant dynamics. In that case, all the constructions build in Section 5.3 apply
to the Blaschke products Ba;m, obtaining the following theorem, which corresponds to
Theorem 5.3.4 for m = 2.

Theorem 7.2.3. Let a0 be a swapping parameter of a Blaschke product Ba;m with an
attracting or parabolic cycle of period p > 1. Then, there is an open set W containing
a0 and p0 > 1 dividing p such that, for every a ∈ W , there exist two open sets U and
V with c+ ∈ U such that

?
Bp0

a;m;U, V
?

is a polynomial-like map. Moreover,
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Figure 7.3: Dynamical planes of the Blaschke product B2.5;3 (left) and the degree 4 poly-
nomial M−1.5;3 (right). The black regions of both figures correspond to the
basins of attraction of the superattracting fixed points z = 0. For the poly-
nomial we see in red the basin of attraction of a period two attracting cycle.
The Blaschke product has two different attracting cycles of period two (2.5 is
a disjoint parameter), one outside the unit disk and the other one inside.

(a) If a0 is bitransitive,
?
Bp0

a;m;U, V
?

is hybrid equivalent to a polynomial of the form
p2
c(z) = (z2 + c)2 + c.

(b) If a0 is disjoint,
?
Bp0

a;m;U, V
?

is hybrid equivalent to a polynomial of the form
p2
c(z) = (z2 + c)2 + c or of the form z2 + c.

The previous theorem explains why there are also “copies” of the Mandelbrot set
and the Tricorn appearing inside swapping regions of the Blaschke products Ba;m (see
Figure 7.4).

We want to finish this section remarking that the constructions build in Section 5.4
also generalize to m > 2. Therefore, we obtain the following theorem, analogous to
Theorem 5.4.2 for m = 2, which tells us that the multiplier map is a homeomorphism
between any disjoint hyperbolic component of Ba;m whose bounded attracting cycles
are not in the unit circle and the unit disk. Recall that, given a disjoint hyperbolic
component Ω, the multiplier map associates to every parameter (a;m) ∈ Ω the mul-
tiplier of the attracting cycle < z0 > of Ba;m whose basin of attraction contains the
orbit of the critical point c+.

Theorem 7.2.4. Let Ω be a disjoint hyperbolic component such that, if (a;m) ∈ Ω, then
Ba;m has an attracting cycle in C∗ \S1. Then, the multiplier map is a homeomorphism
between Ω and the unit disk.



7.3 - Tongues of the degree m+2 Blaschke products 111

Figure 7.4: Zooms in the parameter plane of the Blaschke family Ba;3. The left figure
shows a Tricorn-like set inside a swapping region (a ∈ (1.68561, 1.68702) ×
(0.808671, 0.810079)). The right figure shows a Mandelbrot-like set also in-
side a swapping region (a ∈ (1.693487, 1.693498) × (0.812587, 0.812598)). Red
points correspond to parameters for which O(c+) → ∞ whereas black points
correspond to parameters for which O(c+) → 0. Green points correspond to bi-
transitive parameters whereas yellow points correspond to disjoint parameters.

7.3 Tongues of the degree m+2 Blaschke prod-
ucts

The goal of this section is to show how to define the tongues for the Blaschke products
Ba;m and see that they share some properties with the tongues of the family Ba. We
first introduce some technical lemmas.

The following lemma provides us with a semiconjugacy between any orientation
preserving covering of degree m of the unit circle and the mth map θ → mθ (mod 1)
(equivalently given by Rm(z) = zm) (c.f. [MR07, Lemmas 3.1 and 3.3]).

Lemma 7.3.1. Let Fa : R → R be a continuous and increasing map depending contin-
uously on a. Suppose that Fa(x+ k) = Fa(x)+mk for any integer k and for all x ∈ R.
Then, the limit

Ha(x) = lim
n→∞

F n
a (x)
mn

exists uniformly on x. This map Ha is increasing, continuous, depends continuously on
a and satisfies Ha(x + k) = Ha(x) + k for any integer k and for all x ∈ R. Moreover,
Ha semiconjugates Fa with the multiplication by m, i.e., Ha(Fa(x)) = mHa(x) for any
real x. Furthermore, if Fa is increasing with respect to a, then Ha is also increasing
with respect to a.

For m = 2 the semiconjugacy ha obtained from Ha is unique (see Lemma 1.2.4).
However, for m > 2 it is not. The lift Ha of ha depends on the lift Fa of the covering
map that we may choose. Indeed, the following standard result holds (c.f. [IPRX14]).
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Lemma 7.3.2. Let f be a degree m covering of the unit circle, m ≥ 2, and let h1 and
h2 be two semiconjugating maps. Then h1 = ξh2 where ξ is a (m − 1)st root of the
unity.

Proof. Let F be a lift of f . Consider the operator TF (H)(x) = H(F (x))/m. This
operator acts in the space H of non decreasing continuous maps H : R → R such that
H(x+1) = H(x)+1 provided with the metric dH(H1, H2) = supR|H1(x)−H2(x)|. Since
H is a complete metric space and the operator TF is contracting (dH(TF (H1), TF (H2)) =
dH(H1, H2)/m), there exists a unique fixed point of TF in H. This fixed point satisfies
H(F ) = mH and therefore semiconjugates F with the mth map.

Let Fj(x) = F (x) + j, j ∈ Z, be any other lift of f and let H be the fixed point
of TF . Then, it is not difficult to show that the fixed point Hj of TFj

is given by
Hj(x) = H(x)− j/(m− 1). Therefore, H and Hj are lifts of semiconjugacies h and hj
such that h = ξhj where ξ is a (m− 1)st root of the unity.

To finish the proof it is enough to notice that given any lift H of a semiconjugacy
h of f there exist a lift F of f such that H(F ) = mH and, therefore, H is the fixed
point of the operator TF .

The following lemma is analogous to Lemma 1.2.5.

Lemma 7.3.3. Given a covering f of degree m of the unit circle, a semiconjugating
map h sends points of period d of f to points of period d of the mth map.

We can now define the tongues. Due to symmetry, the Blaschke products Ba;m can
have at most one attracting cycle (c.f. Lemma 1.2.15). In that case, we call the point
x0 of the cycle lying in the same connected component of the basin of attraction than
the critical points the marked point of the cycle. We would like to define the tongues
using the lifts of the semiconjugacy coming from Lemma 7.3.1. However, we cannot
do it as easily as in the case m = 2. For m = 2 we said that a parameter a has type
Ha(x0) = τ ∈ R/Z (see Definition 1.2.17). However, it follows from Lemma 7.3.2, that
if Ha;m is a lift of a semiconjugacy between Ba;m|S1 and the mth map θ → mθ (mod 1),
then Ha;m + 1/(m − 1) is the lift of another semiconjugacy between them. There-
fore, it is convenient to take the type of a parameter (a;m) modulus 1/(m − 1), i.e.,
τ = Ha;m(x0) ∈ R/

?
1

m−1

?
Z. Summarizing, we define the tongues as follows.

Definition 7.3.4. Let Ba;m (Equation (7.2)) be a Blaschke product and let Ha;m
be the lift of a semiconjugacy given by Lemma 7.3.1. We say that a parameter a,
|a| ≥ (m + 2)/m, is of type τ ∈ R/

?
1

m−1

?
Z if Ba;m|S1 has an attracting cycle < x0 >

and τ = Ha;m(x0) (mod 1
m−1), where x0 is the marked point point of the cycle. The

tongue Tτ = Tτ ;m is defined as the set of parameters (a;m) such that a is of type τ .

As in the case m = 2, every type τ is a periodic point of the mth map (see
Lemma 7.3.3). The following theorem is equivalent to Theorem 6.2.1 for m = 2. Its
proof is analogous.

Theorem 7.3.5. Given any periodic point τ of the mth map the following results hold.

(a) The tongue Tτ ;m is not empty and consists of m + 1 connected components (only
one connected component if we consider the parameter plane modulo the symmetries
given by the (m+1)st roots of the unity).
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(b) Each connected component of Tτ ;m contains a unique parameter rτ , called the root
of the tongue, such that Brτ ;m has a superattracting cycle in S1. The root rτ satisfies
|rτ | = (m + 2)/m.

(c) Every connected component of Tτ ;m is simply connected.

(d) The boundary of every connected component of Tτ ;m consists of two curves which
are continuous graphs as function of |a| and intersect each other in a unique pa-
rameter aτ called the tip of the tongue.

The bifurcations which take place in a neighborhood of the tip of every tongue for
m = 2 also appear for m > 2 (see Figure 7.5). The following theorem explains it. Its
proof is analogous to the one of Theorem 6.3.2.

Figure 7.5: A zoom in the parameter plane of the Blaschke family Ba;3 in a neighborhood
of the tongue T0;3.

Theorem 7.3.6. Let aτ be the tip of a tongue Tτ ;m of period p. Then, there exists a
neighborhood U of aτ such that if a ∈ U then, either a ∈ Tτ ;m or a ∈ ∂Tτ ;m or a belongs
to a disjoint hyperbolic component.

We finish the section proving that asm increases the tongues of Ba;m decrease. As in
Section 6.1, it is convenient to work with another parametrization of the Blaschle prod-
ucts. It follows from Lemma 7.1.1 that any Blaschke product Ba;m, where a = re2πiα,
is conjugate to Br,(m+1)α;m (Equation (7.1)). Let gr,α;m := Br,(m+1)α;m|S1 . Then we have

gr,α;m(e2πix) = e2(m+1)πixe2(m+1)πiα e2πix − r

1− re2πix ,

where r ∈ [(m + 2)/m,∞) and α ∈ [0, 1/(m + 1)). Its lift has the form

hr,α;m(x) = (m + 1)x+ (m + 1)α + 1
2πi log

?
e2πix − r

1− re2πix

?
.

Lemma 7.3.7. Let r ≥ (m + 2)/m. Then, the lift hr,α;m(x) satisfies that ∂
∂x
hr,α;m(x)

is non-negative for all x. Moreover, for any p ∈ N, the mapping α → hpr,α;m(x) ∈ S1 is
strictly increasing and, if r ≥ (m + 1)/(m− 1), then hpr,α;m(x) ≥ 1 for all x, α ∈ R.
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Proof. We prove that ∂
∂x
hr,α;m(x) is non-negative for all x, and hence so is ∂

∂x
hpr,α;m(x)

for all p. Then, strict monotonicity with respect to α for all p follows from the fact
that we have it for p = 1. We also prove that ∂

∂x
hr,α;m(x) ≥ 1 if r ≥ (m + 1)/(m − 1).

Notice that ∂
∂x
hr,α;m(x) is given by the formula

∂

∂x
hr,α;m(x) = m + 1 + 1− r2

1 + r2 − 2r cos(2πx) .

It can easily be seen that this expression is non-negative for r ≥ (m+2)/m. Indeed,
the minimum of this function is taken whenever x = 0, and

∂

∂x
hr,α;m(0) = m + 1 + 1− r2

1 + r2 − 2r = m + 1 + (1 + r)
(1− r) .

For r > 1 this is an increasing function which is equal to zero for r = (m + 2)/m.
Moreover, it is greater than 1 when r ≥ (m + 1)/(m− 1).

It follows from the previous lemma that, if r ≥ (m + 1)/(m − 1), there cannot be
any attracting periodic point in S1. Therefore, the following result holds.
Corollary 7.3.8. Let m ≥ 2. If a ∈ Tτ ;m then |a| < (m+1)/(m− 1), i.e., the tongues
are bounded for all m ≥ 2.

We finish this section noticing that for m = 1 all tongues are unbounded (see
Figure 7.6). If r ≥ 3, then gr,α;1 is a homeomorphism and, given a rational number
p/q, the tongue Tp/q;1 is defined to be the set of parameters (r, α) such that gr,α;1 has
rotation number p/q. Moreover, all tongues are unbounded since, for any fixed r ≥ 3,
as we move α from 0 to 1/2 we take all possible rotation numbers (c.f. [Her79]).

Figure 7.6: The left figure shows the parameter plane of the Blaschke family Ba;1, where we
observe that all tongues are unbounded. The right figure shows the parameter
plane of the same family taking ã = 1/a. With this second parametrization,
all tongues tend to zero. The colors are as follows: red if c+ ∈ A(∞), green if
O+(c+) accumulates on a periodic orbit in S1, pink if c+ /∈ S1 and O+(c+) is
not captured by an attracting cycle and blue otherwise.
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