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Abstract

For constraining cosmological models via the growth of large-scale matter fluctuations it is
important to understand how the observed galaxies trace the full matter density field. The
relation between the density fields of matter and galaxies is often approximated by a second-
order expansion of a so-called bias function. The freedom of the parameters in the bias
function weakens cosmological constraints from observations. In this thesis we study two
methods for determining the bias parameters independently from the growth. Our analysis
is based on the matter field from the large MICE Grand Challenge simulation. Haloes,
identified in this simulation, are associated with galaxies. The first method is to measure the
bias parameters directly from third-order statistics of the halo and matter distributions. The
second method is to predict them from the abundance of haloes as a function of halo mass
(hereafter referred to as mass function).

Our bias estimations from third-order statistics are based on three-point auto- and cross-
correlations of halo and matter density fields in three dimensional configuration space. Using
three-point auto-correlations and a local quadratic bias model we find a ∼ 20% overestimation
of the linear bias parameter with respect to the reference from two-point correlations. This
deviation can originate from ignoring non-local and higher-order contributions to the bias
function, as well as from systematics in the measurements. The effect of such inaccuracies
in the bias estimations on growth measurements are comparable with errors in our measure-
ments, coming from sampling variance and noise. We also present a new method for measuring
the growth which does not require a model for the dark matter three-point correlation. Res-
ults from both approaches are in good agreement with predictions. By combining three-point
auto- and cross-correlations one can either measure the linear bias without being affected
by quadratic (local or non-local) terms in the bias functions or one can isolate such terms
and compare them to predictions. Our linear bias measurements from such combinations
are in very good agreement with the reference linear bias. The comparison of the non-local
contributions with predictions reveals a strong scale dependence of the measurements with
significant deviations from the predictions, even at very large scales.

Our second approach for obtaining the bias parameters are predictions derived from the
mass function via the peak-background split approach. We find significant 5−10% deviations
between these predictions and the reference from two-point clustering. These deviations
can only partly be explained with systematics affecting the bias predictions, coming from
the halo mass function binning, the mass function error estimation and the mass function
parameterisation from which the bias predictions are derived. Studying the mass function
we find unifying relations between different mass function parameterisation. Furthermore, we
find that the standard Jack-Knife method overestimates the mass function error covariance
in the low mass range. We explain these deviations and present a new improved covariance
estimator.
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Resumen

Per à constrènyer models cosmològics mitjançant el creixement de les fluctuacions a gran
escala de la matèria és cabdal entendre com les galàxies que observem tracen el camp de
densitat de tot el conjunt de matèria. La relació entre el camp de densitat de matèria i el de
galàxies s’acostuma a aproximar amb una expansió de segon ordre de la funció anomenada
bias. La llibertat en els paràmetres d’aquesta funció redueix la informació cosmolgica que
es pot extreure de les observacions. En aquesta tesi estudiem dos mètodes per determinar
els paràmetres del bias independentment del creixement. L’anàlisi es basa en la distribució
de matèria de la gran simulació MICE Grand Challenge. Als halos, identificats en aquesta
simulació, se’ls associen galàxies. El primer mètode consisteix en mesurar diráectament els
paràmetres del bias d’estadstiques de tercer ordre de les distribucions d’halos i de matèria.
El segon en predir-los a partir de l’abundància d’halos en funció de la seva massa (concepte
al qual ens referirem com a funció de massa).

Les nostres estimacions del bias amb estadstiques de tercer ordre es basen en les autocor-
relacions i correlacions creuades de tres punts dels camps de densitat d’halos i de matèria,
en l’espai de configuració tridimensional. Usant les autocorrelacion de tres punts i un model
local i quadràtic del bias trobem una sobreestimació del ∼ 20% en el paràmetre lineal del
bias respecte a la referència provinent de correlacions de dos punts. Aquesta desviació es pot
deure a ignorar contribucions no locals i d’ordre superior a la funció bias, aix com sistemàtics
en les mesures.

L’efecte d’aquestes inexactituds en les estimacions del bias en les mesures del creixement
són comparables amb els errors en les nostres mesures, procedents de la variància de la mostra
i del soroll. També presentem un nou mètode per mesurar el creixement que no requereix un
model per a la correlació de tres punts de la matèria fosca. Els resultats d’ambdós enfocaments
estan en acord amb les prediccions.

Combinant les autocorrelacions i les correlacions creuades de tres punts, per una banda
podem mesurar el bias lineal sense ser afectats per termes quadràtics (locals o no locals) en les
funcions del bias, i de l’altra podem allar aquests termes i comparar-los amb les prediccions.
Les nostres mesures de bias lineal a partir d’aquestes combinacions són molt consistents amb
el bias lineal de referència. La comparació de les contribucions no lineals amb les prediccions
revelen una forta dependència de les mesures amb desviacions significatives de les prediccions,
incls a escales molt grans.

El nostre segon enfoc per obtenir els paràmetres de bias són prediccions derivades de la
funció de massa a través de l’aproximació de ”peak-background split”. Trobem desviacions
significatives del 5−10% entre aquestes prediccions i la referència a partir de les estadstiques de
dos punts. Aquestes desviacions poden ser explicades només en part a partir dels sistemàtics
que afecten les prediccions de bias, provinent del ”binning” de la funció de massa d’halos,
l’estimació de l’error de la funció de massa i la parametrització de la funció de massa a
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partir de la qual se’n deriven les prediccions de bias. Estudiant la funció de massa trobem
relacions entre diferents parametritzacions de la funció de massa. A més, trobem que el
mètode estàndard de Jack-Knife sobreestima la covariança d’error de la funció de massa en
el rang de baixa massa. Expliquem aquestes desviacions i presentem un nou i estimador de
covariança millorat.
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Chapter 1

Introduction

Cosmology has been a part of human culture for thousands of years. However, it remained
a subject of mythologies and philosophy until around one hundred years ago the technolo-
gical and theoretical advance made the study of the Universe become a subject of empirical
science. An analytical approach to a description of the complete Universe became possible
with the development of the theory of general relativity which relates the spacetime to the
universal energy content (Einstein, 1915). Based on this theory Friedmann (1922) predicted
an expanding universe as a solution of Einsteins field equations. Later Lemâıtre pointed
out that such an expansion is consistent with the correlation between distance and redshift
of galaxies, reported by Hubble (1929). The increasing precision in the measurements lead
finally to the discovery that the expansion of the Universe is accelerated (Riess et al., 1998;
Perlmutter et al., 1999).

Such an accelerated expansion can be explained with a constant term in Einsteins field
equations which possibly results from the intrinsic energy of the vacuum with the effect of a
negative pressure (e.g. Carroll, 2001). Current observations suggests that this so-called dark
energy constitutes roughly 73% of the energy in the Universe today. However, it is many
orders of magnitude weaker than the vacuum energy predicted by quantum field theory. Un-
derstanding the nature of the accelerated expansion therefore constitutes a major problem
in physics today. Its solution might require a more complicated dark energy model, possibly
with time and spatial dependency, interaction with matter or a modification of gravity at
large scales. Discriminating these different theories requires an increased precision in the
measurements of the cosmic acceleration, which is the purpose of several ongoing and future
observational programs, such as BOSS, VIPERS, PAU, DES or Euclid. This increase in pre-
cision can be archived by observing larger volumes of the Universe, increasing the number
densities of observed galaxies or improving the estimation of galaxy properties, such as shape
or redshift. Furthermore one can combine independent measurements of cosmological para-
meters (e.g. from baryon acoustic oscillations, supernovae, cluster counts) in a joint analysis.
Another important probe for cosmological models is the increase of large scale galaxy density
fluctuations with time.

An inhomogeneity in the large scale distribution of galaxies (historically referred to as
nebulae) has been notices already by Wright (1750), Messier (1781) or Herschel (1784). Hinks
(1911) was the first who suggested to ’discuss the spiral nebula distribution more on its own
merit, and less with an eye to the galactic poles’. The galaxy catalogue from the Lick survey
Shane and Wirtanen (1954) revealed for the first time the filamentary distribution of galaxies

ix



x CHAPTER 1. INTRODUCTION

in the sky. The study of these structures at different redshifts became possible with the
invention of photon counting detectors, which allowed for fast redshift measurements for large
numbers of objects. The first surveys using this technology where the CfA (Huchra et al.,
1983) and the CfA2 surveys (Geller and Huchra, 1989). Large scale structures in the galaxy
distribution can be expected from density fluctuations in the plasma, which filled the Universe
at early time (z & 1000). These initial fluctuations can still be observed today as temperature
fluctuations in the Cosmic Microwave Background (hereafter referred to as CMB). The growth
of these fluctuations is sensitive to different characteristics of the Universe, such as its mean
matter density, its expansion and also how matter interacts gravitationally at large scales as
outlined below.

1.1 Growth of matter density fluctuations in the expanding

Universe

If the Universe is homogeneous and isotropic (which is known as the cosmological principle)
its expansion can be described by the scale factor

a(t) = r(t)/r0, (1.1)

which relates a comoving scale r(t) at look back time t to the value which it has at a reference
time r(t0) = r0. The evolution of the scale factor therefore determines how a photon, emitted
with wave length λ at look back time t is stretched as it travels through the expanding space
before being observed at t0. This stretching introduces a redshift z in the spectra of observed
objects which is commonly quantified by λ(t0) = λ(t)(1 + z) = λ(t)/a(t).

The evolution of the scale factor can be predicted from Einsteins field equations. Assuming
the cosmological principle these equations can be reduced to the Friedman equations, which
relate time derivatives of the scale factor to the universal energy density content Ωtot. The
first Friedman equation is given by

H(a)2

H(1)2
= Ωtot. (1.2)

The Hubble parameter H(t) ≡ ȧ
a , was introduced by Hubble to describe the relation between

distance and the apparent velocities of nearby galaxies, determined from their redshift (i.e.
ṙ ≃ ȧr0 = Hr = cz), while c is the speed of light. The total energy density consists of
contributions from the curvature k, the cosmological constant Λ (also referred to as dark
energy), the radiation R and the universal cold (pressureless) matter content m:

Ωtot = ΩRa
−4 +Ωma−3 +Ωka

−2 +ΩΛ, (1.3)

while it is normalised by the critical density for gravitational collapse of an Einstein-de-Sitter-
Universe (k = 0, Λ = 0) at z = 0, i.e. Ωtot = ρtot/ρc, with ρc = 3H(1)/8πG, where G is the
Gravitational constant.

From equation (1.3) it is apparent that the radiation dominates the evolution of the scale
factor only in an early phase of the expansion in which a ≪ 1 and the matter is ionised.
As the scale factor increases photons are stretched and loose energy. Furthermore the total
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photon number decreases as matter cools down and builds neutral atoms, which is the time of
the CMB emission, z ≃ 1000. From this time the Universe is observable as photons can travel
long distances and the change of the scale factor is determined by the densities of matter and
dark energy. If the dark energy is constant, while the matter density decreases with a−3, the
former eventually drives the accelerated expansion. However, the expansion depends on the
actual values of the different energy components. Determining these values and testing if they
vary with redshift, observed direction or both is therefore of high interest for investigating
the nature of the accelerated expansion.

The energy densities can be determined from measurements of the Hubble parameter at
different redshifts. The first Friedman equation (1.3) delivers Ωk = 1 − Ωm − ΩΛ for the
present time (a = 1) and can therefore be rewritten as

H(z)2 = H(0)2
√

Ωm(z + 1)3 + (1− Ωm − ΩΛ)(z + 1)2 +ΩΛ. (1.4)

The Hubble parameter can be obtained from observations of matter fluctuations at different
redshifts in the following way. When the total energy density is dominated by Ωm and ΩΛ the
evolution of density fluctuations with time can be well approximated in the Newtonian limit
at scales much smaller than the Hubble horizon (Peebles 1980). By expressing the continuity
equation, the Euler equation and the Poisson equation in comoving coordinates in terms of
the normalised deviation form the mean density δ (hereafter referred to as density contrast)
and combining these equations one can derive for for |δ| ≪ 1

δ̈ + 2Hδ̇ = 2πGρ̄δ. (1.5)

Since this equation contains no spatial derivatives the solution for the density contrast can
be obtained with the ansatz δ(r, t) = D(t)δ(r, t0). The linear growth factor D describes how
the fluctuations of the full matter distribution change with time. The solution for D, given
in Section 2.3.1, depends on the energy densities. By measuring D in observations one can
therefore constrain cosmological models.

1.2 Galaxies as tracers of the full matter density field

A major limitation in constraining different cosmologies via the growth factor of the full
matter distribution arises from the fact that this distribution can be seen only at the discrete
positions at which galaxies are located. The change of galaxy density fluctuation with time
(or redshift) is not only affected by the growth factor, but also by the way galaxies form in
different environments of the cosmic web. Understanding the formation of galaxies within the
cosmic web is subject of intense research which typically relies on expensive simulations with
many degrees of freedom. Despite being very useful for understanding galaxy formation such
simulations are not practical for extracting information about the cosmological parameters
from observations. This situation calls for an analytical approach for describing the galaxy-
matter density relation.

Various observations, such as gravitational lensing, rotation curves of galaxies or the
velocity dispersion in galaxy clusters show that galaxies are surrounded by large densities
of matter which is not visible and therefore likely to consist of a new type or group of
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particles without or very weak electro-magnetic interaction (commonly referred to as dark
matter). These observations are consistent with the standard picture of galaxy formation in
which gas follows collapsing dark matter overdensities (referred to as haloes). In these high
density regions the gas then cools down to form stars in the centre, which are observed as
galaxies. Given that galaxies are surrounded by dark matter haloes, studies of the galaxy-
matter density relation often focus on descriptions of the halo-matter density relation, which
can be approached more easily theoretically and numerically.

The halo distribution can be related to the full matter distribution by simple analytic
models. The freedom of the parameters in these so-called bias models reflects a degeneracy
between the change of halo-density fluctuations with time and the growth of fluctuations in the
underlying matter density field (see Section 2.3). For constraining cosmological models with
the observed growth of galaxy densities it is therefore important to determine the parameters
in the bias models independently from the growth. This can be achieved by measuring them
directly in observations or predicting them from theory. In this thesis we investigate how
reliable these parameters can be derived with both approaches using the cosmological dark
matter N-body simulation MICE Grand Challange. The measurements of the bias parameters
are studied in Chapter 2 and 3 using second- and third-order statistics of halo- and matter
density distributions. In Chapter 4 we predict the bias parameters from the abundance of
haloes and compare them to the measurements from the previous chapters.

comment: check III
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Chapter 2

Growth of matter fluctuations from

third-order galaxy correlations

Abstract

Measurements of the linear growth factor D at different redshifts z are key to distinguish
among cosmological models. One can estimate the derivative dD(z)/d ln(1+ z) from redshift
space measurements of the 3D anisotropic galaxy two-point correlation ξ(z), but the degen-
eracy of its transverse (or projected) component with galaxy bias b, i.e. ξ⊥(z) ∝ D2(z)b2(z),
introduces large errors in the growth measurement.

Here we study a method which breaks this degeneracy by combining second- and third-
order correlations. This method uses the fact that, for Gaussian initial conditions and scales
larger than 20 h−1Mpc, reduced third-order matter correlations are independent of redshift
(and therefore of the growth factor) while the third-order galaxy correlations depend on b.
We use matter and halo catalogs from the MICE-GC simulation to test how well we can
recover b(z) and therefore D(z) with this method in 3D real space. We also present a new
approach, which enables us to measure D directly from the redshift evolution of second- and
third-order galaxy correlations without the need of modelling matter correlations.

For haloes with masses lower than 1014 h−1M⊙, we find 10% deviations between the
different estimates ofD and theory predictions, which are comparable to current observational
errors. At higher masses we find larger differences that can probably be attributed to the
breakdown of the bias model.

comment: check II

2.1 Introduction

Evidence that the expansion of the Universe is accelerating (Riess et al., 1998; Perlmutter et al.,
1999) has revived the cosmological constant Λ, originally introduced by Einstein as an un-
known fluid which may engine the observed dynamics of the Universe. Alternative explana-
tions for the accelerated expansion could involve a modification of the gravitational laws on
cosmological scales. Since these modifications of gravity can mimic well the observed accel-
erated expansion it is difficult to just rely on the cosmological background (i.e. the overall
dynamics of the Universe) in order to verify which model is correct. However, alternative
gravitational laws change the way matter fluctuations grow during the expansion history of

3
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our Universe. Measuring the growth of matter fluctuations could therefore be a powerful tool
to distinguish between cosmological models (see e.g. Gaztañaga and Lobo, 2001; Lue et al.,
2004; Ross et al., 2007; Guzzo et al., 2008; Song and Percival, 2009; Cabré and Gaztañaga,
2009; Samushia et al., 2012; Reid et al., 2012; Contreras et al., 2013; de la Torre et al., 2013;
Steigerwald et al., 2014).

On this basis, the goal of several future and ongoing cosmological surveys, such as BOSS1,
DES2, MS-DESI3, PAU4, VIPERS5 or Euclid6, is to measure the growth of matter fluctu-
ations. This can be achieved by combining several observables, such as weak gravitational
lensing, cluster abundance or redshift space distortions. Higher-order correlations in the
galaxy distribution provide additional observables which also allow for proving the growth
equation beyond linear theory from observations (e.g. see Bernardeau et al., 2002). Further-
more, higher-order correlations can be used to test the nature of the initial conditions and
improve the signal-to-noise in recovering cosmological parameters (e.g. Sefusatti et al., 2006).

The relative simplicity of the fundamental predictions about amplitude and scaling of
clustering statistics, must not make us overlook the fundamental difficulty that hampers
large scale structure studies. The perfect, continuous (dark matter) fluid in terms of which
we model the large-scale distribution of matter cannot be directly observed. Let’s imagine
that we are able to locate in the Universe all existing galaxies and that we know with an
infinite precision their masses. Without any knowledge of how luminous galaxies trace the
underlying continuous distribution of matter, even this ultimate galaxy sample would be of
limited use. The problem of unveiling how the density fields of galaxies and mass map into
each other is the so called galaxy biasing. Knowledge of galaxy bias, and therefore galaxy
formation, can greatly improve our cosmological inferences from observations.

A common approach to model galaxy bias consists in describing the mapping between the
fields of mass and galaxy density fluctuations (δdm and δg respectively) by a deterministic
local function F . This function can be approximated by its Taylor expansion if we smooth
the density field on scales that are sufficiently large to ensure that fluctuations are small,

δg = F [δdm] ≃
N
∑

i=0

bi
i!
δidm, (2.1)

where bi are the bias parameters. It has been shown that, in this large scale limit, such a local
transformation preserves the hierarchical properties of matter statistics (Fry and Gaztanaga,
1993). There is now convincing evidences about the non-linear character of the bias func-
tion (Gaztanaga, 1992; Marinoni et al., 2005; Gaztañaga et al., 2005; Marinoni et al., 2008;
Kovač et al., 2011). We address non-local contributions to the bias function in Chapter 3.
Since we only want to study correlations up to third order, in this thesis we shall consider
bias parameters up to second order, i.e. b1 and b2, which is expected to be sufficient at the
leading order (Fry and Gaztanaga, 1993). However, one of the goals of this Chapter is to
investigate at which scale and halo mass range this expectation is fulfilled.

To study the statistical properties of the matter field we need to find the most likely value
for the parameters bi. A general approach aims at extracting them from redshift surveys using

1https://www.sdss3.org/surveys/boss.php
2www.darkenergysurvey.org
3desi.lbl.gov
4www.pausurvey.org
5http://vipers.inaf.it
6www.euclid-ec.org
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higher-order statistics. If the initial perturbations are Gaussian and if the shape of third-order
statistics are correctly described by results of the weakly non-linear perturbation theory, then
one can fix the amplitude of bi up to second order in a way which is independent from the over-
all amplitude of clustering (e.g. σ8) and depends only on the shape of the linear power spec-
trum. This has been shown by several authors using the the skewness S3 (Gaztanaga, 1994;
Gaztanaga and Frieman, 1994), the bispectrum (Fry, 1994; Gaztanaga and Frieman, 1994;
Scoccimarro, 1998; Feldman et al., 2001; Verde et al., 2002), the three-point correlation func-
tion Q, (Gaztañaga et al., 2005; Gaztañaga and Scoccimarro, 2005; Pan and Szapudi, 2005;
Maŕın, 2011; McBride et al., 2011b; Maŕın et al., 2013), and the two-point cumulants C12

(Bernardeau, 1996; Szapudi, 1998; Gaztañaga et al., 2002; Bel and Marinoni, 2012).

The main goal of this Section is to present the bias derived from Q. We also show that,
with a new approach, the growth of matter fluctuations can be measured directly from obser-
vations by getting rid of galaxy bias and without requiring any modelling of the underlying
matter distribution. Despite the fact that in the present analysis we only consider real-space
observables (not affected by redshift-space distortions) we argue that, as long as reduced
third-order statistics are only weakly affected by redshift-space distortions at large scales
and for a broad range of masses (see Fig. 2.13 Gaztañaga and Scoccimarro, 2005), the pro-
posed method appears to be applicable on redshift galaxy surveys. Furthermore it might be
applicable to an analysis of projected galaxy density maps.

This analysis is based on the new MICE-GC simulation and extends its validation presen-
ted recently by Fosalba et al. (2013a); Crocce et al. (2013); Fosalba et al. (2013b).

Detail of this simulation are presented in Section 2.2. Our estimators for both, the bias
and the growth of matter fluctuations, are introduced in Section 2.3. We present our results
in Section 2.4 and a summary of the work can be found in Section 2.5 together with our
conclusions.

2.2 Simulation and halo samples

Our analysis is based on the Grand Challenge run of the Marenostrum Institut de Ciències de
l’Espai (MICE) simulation suite to which we refer to as MICE-GC in the following. Starting
from small initial density fluctuations at redshift z = 100 the formation of large scale cosmic
structure was computed with 40963 gravitationally interacting collisionless particles in a 3072
h−1Mpc box using the GADGET - 2 code (Springel, 2005) with a softening length of 50
h−1kpc. The initial conditions were generated using the Zel’dovich approximation and a
CAMB power spectrum with the power law index of ns = 0.95, which was normalised to be
σ8 = 0.8 at z = 0. The cosmic expansion is described by the ΛCDM model for a flat universe
with a mass density of Ωm = Ωdm + Ωb = 0.25. The density of the baryonic mass is set to
Ωb = 0.044 and Ωdm is the dark matter density. The dimensionless Hubble parameter is set
to h = 0.7. More details and validation test on this simulation can be found in Fosalba et al.
(2013a).

Dark matter haloes were identified as Friends-of-Friends groups (Davis et al., 1985) with
a linking length of 0.2 in units of the mean particle separation. These halo catalogs and the
corresponding validation checks are presented in Crocce et al. (2013).

To study the galaxy bias and estimate the growth as a function of halo mass we divide
the haloes into the four redshift independent mass samples M0, M1, M2 and M3, shown in
Table 2.1. They span a mass range from Milky Way like haloes (M0) up to massive galaxy
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Table 2.1: Halo mass samples. Np is the number of particles per halo, Nhalo is the number of
haloes per sample in the comoving output at z = 0.5. nhalo is the comoving number density
of haloes. Nhalo and nhalo are compared to the corresponding values in the light cone in Fig.
2.1.

mass range Np Nhalo nhalo

1012M⊙/h (10 Mpc/h)−3

M0 0.58 − 2.32 20− 80 122300728 4.22
M1 2.32 − 9.26 80− 316 31765907 1.10
M2 9.26 − 100 316− 3416 8505326 0.29
M3 ≥ 100 ≥ 3416 280837 0.01
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Figure 2.1: Top: Number of haloes in the four mass samples M0-M3 as a function of redshift
in the two comoving outputs at z=0.0 and z=0.5 (symbols) and the seven redshift bins in the
light cone (lines).Bottom: number density of the same halo mass samples as in the top panel.
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clusters (M3). In the same table we show the total number and comoving number density of
haloes at redshift z = 0.5, a characteristic redshift for current galaxy surveys, such as BOSS
LRG.

We are analysing two types of simulation outputs. For a detailed study of the dark matter
growth we use the full comoving output at redshift z = 0.0, 0.5, 1.0 and 1.5. For studying the
bias estimators with minimal shot noise and sampling variance we use haloes identified in the
comoving outputs at redshift z = 0.0 and 0.5. The investigation of the redshift evolution of
the bias and growth estimators is based on seven redshift bins of the light cone output with
equal width of 400 h−1Mpc in comoving space over one octant of the sky. Fig. 2.1 shows the
number and number density of haloes in the four mass samples for the comoving output and
the light cone with respect to the redshift.

2.3 Growth and Bias Estimators

2.3.1 The growth factor

The large scale structure in the distribution of galaxies, observed today in cosmological sur-
veys, is believed to originate from some small initially Gaussian matter density fluctuations
that grew with time due to gravitational instabilities. Since the way the Universe is expanding
has an impact of the growth of structures, one can use measurements of the growth to put
constraints on various cosmological models.

We adopt the common definition for density fluctuations, given by δ(r) = ρ(r)/ρ − 1,
where ρ(r) is the density at position r smoothed (with a spherical top-hat window) over the
radius R, while ρ is the mean density of the Universe. In the linear regime (large smoothing
scales) density fluctuations of matter δm(r, z) evolve with the redshift z in a self similar way,
thus

δm(r, z) = D(z) δm(r, z0). (2.2)

The reference redshift z0 is usually arbitrarily chosen to be today, i.e. z0 = 0. In the ΛCDM
model the growth factor D(z) depends on cosmological parameters via the Hubble expansion
rate

H(z) = H(0)
√

Ωm(1 + z)3 + (1−Ωm − ΩΛ)(1 + z)2 +ΩΛ, (2.3)

where Ωm and ΩΛ are the densities of matter and dark energy respectively, and the growth
factor is then given by:

D(z) ∝ H(z)

∫ ∞

z

1 + z′

H3(z′)
dz′. (2.4)

However, in general D is also sensitive to modifications of the gravity action on cosmological
scales (e.g. see Gaztañaga & Lobo 2001 and references therein). Measurements of the growth
factor as a function of redshift can therefore be used to constrain cosmological models and
understand the nature of cosmic expansion.

The growth factor is related to the growth rate as

f(z) ≡ d lnD

d ln a
, (2.5)

where a = 1/(1 + z).
For a spatially flat universe, we can use the growth index α defined as
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f(z) ≡ [Ωm(z)]α(z) . (2.6)

Wang and Steinhardt (1998) found that it can be approximated by

α(z) ≃ 6

11
+

30

2662
[1− Ωm(z)].

Recently Steigerwald et al. (2014) found an even more precise expression

α(z) ≃ 6

11
− 15

2057
ln[Ωm(z)] +

205

540421
ln2[Ωm(z)].

Measuring the growth factor using equation (2.2) requires knowledge of the matter density
fluctuations δm at different redshifts, while in practice only galaxies can be observed as biased
tracers of the matter field. In the following sections we describe how we quantify and measure
this galaxy bias.

2.3.2 The local bias model

In this chapter our bias estimations are based on the local bias model (Fry & Gaztanaga
1993), which assumes that the galaxy (number density) fluctuation δg is a function of the
matter density fluctuation δdm at the same location: δg = F [δdm], while both fluctuations are
smoothed at the same scale R. For sufficiently large smoothing scales the density fluctuations
become small and we can expand this function, i.e. as in equation (2.1). For third-order
statistics it is enough to stop the expansion at quadratic order Fry and Gaztanaga (see e.g.
1993)

δg = b1

{

δdm +
c2
2
(δ2dm − 〈δ2dm〉)

}

, (2.7)

where b1 and c2 are, respectively, the linear and quadratic bias parameters which we are
measuring. The term 〈δ2dm〉 ensures that 〈δg〉 = 0, where 〈. . . 〉 denotes the average over all
spatial positions. Besides small density fluctuations, such a model for the bias assumes that
neither the environment nor the velocity field has an impact on galaxy formation.

Recent studies have shown, that the local assumption might not be accurate for small
smoothing scales when b1 is large (Chan et al., 2012; Baldauf et al., 2012). We study such
non-local contributions to the bias function in Chapter 3.

Using the information contained in the large scale distribution of galaxies at different
scales we measure bias and growth with second- and third-order statistics, as described in the
following sections.

2.3.3 Growth factor D from two-point matter auto-correlation

The spatial two-point auto correlation of density fluctuations can be defined as the mean
product of density fluctuations δi at the positions ri that are separated by the distance
r12 ≡ |r1 − r2|,

ξ(r12) ≡ 〈δ(r1)δ(r2)〉 = 〈δ1δ2〉(r12). (2.8)

Note that the two-point correlation function depends only on the separation and thus is not
sensitive to the shape of over-densities. This is in contrast with higher-order correlations: with
three points we will also be able to measure deviations away from the spherically symmetric
profile (Smith et al., 2006).
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From equations (2.2) and (2.8) one can derive that the growth factor is related to the
two-point correlation of matter as

ξdm(r12, z) = D(z)2ξdm(r12, z0). (2.9)

Our measurements of the matter correlation function in the MICE-GC simulation, presen-
ted in Fig. 2.2, indeed show a linear relation between the matter two-point correlations at
different redshifts z with respect to z0 = 0 on a wide range of scales. Note how at scales
around r12 ∼ 100 h−1Mpc the BAO peak induces some oscillations around the linear model,
but the model works well for intermediate scales of r12 ∼ 40− 60 h−1Mpc.

We measured the two-point correlation by dividing the simulation volume into cubical
grid cells and assigning density fluctuations to each of these cells. We then calculate the
mean product of density fluctuations in grid cells that are separated by r12 ± dr according
to definition (2.8). The measurements shown in Fig. 2.2 are based on 4 h−1Mpc grid cells.
Errors are derived by Jackknife resampling as described in Section 2.3.6.

As shown in Fig. 2.3, there is a good agreement between the growth factor measurements
from the two-point correlation (symbols) and the theoretical prediction from equation (2.4)
(dashed line) for the cosmology of the MICE-GC simulation. Deviations between predictions
and measurements are at the sub-percent level and result from to non-linearities 7. This
result demonstrates that, in principle, we can obtain constrains on cosmological models by
just measuring the two-point correlation function of matter.However such constraints are
difficult to realise as we have to infer the correlation of the unobservable full matter field from
the correlation of the observed galaxy distribution.

2.3.4 bias from halo and matter two-point correlations

A simple relation between the two-point auto correlation functions of matter and galaxies can
be obtained by inserting the model for galaxy bias, given by equation (3.1), into the definition
of the two-point correlation (equation 2.8). At leading order

ξg(r12, z) ≃ b21 ξdm(r12, z) +O[ξ2dm]. (2.10)

This relation only holds for sufficiently large separations r12, where we can neglect terms of
order ξ2dm, and small density fluctuations δdm in equation (3.1). To estimate the linear bias
from ξ we define

bξ(z) ≡
√

ξg(r12, z)

ξdm(r12, z)
≃ b1 (2.11)

which is expected to be independent of separation in the large scale limit.

The correlation functions of the halo samples M0 - M3, calculated with 4 h−1Mpc grid
cells, are shown in the top panel of Fig. 2.4 together with the corresponding measurement for
the dark matter field. The ratios of the matter and halo correlations, shown in the bottom
panel, confirm that both quantities can be related by the scale independent bias factor bξ
between 20 . r12 . 60h−1Mpc. We expect that bξ(r12) ≃ b1 at the mass and scale range of

7The increase of the deviations with redshift results from non-linearities in ξdm at z = 0.0. Since we use
the latter as normalisation, deviations between predictions and measurements transfer to the higher redshifts.
If we use ξ at high z as normalisation, as we do it later in the light cone, this effect goes into the opposite
direction.
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Figure 2.2: Top: two-point correlation ξ of the MICE-GC dark matter field measured in the
comoving outputs at redshift z = 0.0, 0.5, 1.0 and 1.5 (blue circles, green crosses, orange
squares and red triangles respectively) as a function of scale r12. Dotted Lines show a fit
of the amplitude of ξ at z = 0 to those from other redshifts between 40 − 60 h−1Mpc, via
equation (2.9). Bottom: growth factor D =

√

ξ(r12, z)/ξ(r12, 0) obtained from the ratio of
the above correlations together with the fits displayed as dotted lines with the same colour
code as the upper panel.
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Figure 2.3: Comparison between the linear growth of matter D as a function of redshift z
measured in the MICE-GC comoving outputs (symbols) and the corresponding theoretical
predictions from equation (2.4) (dashed line). The MICE-GC measurements are the best fit
values obtained considering the scale range 40-60h−1Mpc, shown as lines with the same colour
coding in Fig. 2.2.

our analysis (Crocce et al., 2013). To estimate bξ we perform a χ2-fit to the ratio of the halo
and matter two-point correlation in the aforementioned scale range (see Subsection 2.3.6 for
details). We find the χ2

min values to vary between 2.0 and 0.1. Values are smaller at z = 0.5
compared to z = 0.0. Restricting the fitting range to larger scales (30 . r12 . 60h−1Mpc)
also reduces the χ2

min. Both findings are expected since non-linearities enter equation (2.11)
at small scales and low redshift. However, restricting the fit to larger scales, as mentioned
before, causes a maximum change in bias values of 1.5 percent. We therefore consider our
bξ measurements as relatively robust, compared to the bias measurements from higher order
statistics. The fitted bias factors (bottom panel of Fig. 2.4) reveal the well known increase
of bias with the mass and redshift of the halo samples.

The robustness of the bias measurements from the two-point auto-correlation can be
further verified by comparing them to results from the two-point cross-correlation.

The two-point cross-correlation between halo- and matter density fields, ξ×, can be meas-
ured analogously to the auto correlations as the mean product of smoothed fluctuations
δ(r) ≡ (ρ(r) − ρ̄)/ρ̄ of each density field ρ(r), at the positions r1 and r2 as a function of the
scale r12 ≡ |r1 − r2|,

ξ×(r12) ≡ 〈δh(r1)δm(r2)〉. (2.12)

The measurements for the four halo mass samples M0-M3 at the redshifts z = 0.0 and
z = 0.5 are shown in the top panels of Fig. 2.5. The amplitude increases with halo mass as
expected from the peak-background split predictions from Chapter 4. The growth of matter
fluctuations further contributes to an increase with redshift. At around 110 h−1Mpc ξ×

shows a local maximum which results from baryonic acoustic oscillations in the initial power
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Figure 2.4: Top: two-point correlation ξ of the MICE-GC dark matter field (continuous
lines) and the four halo mass samples M0-M3 (blue circles, green crosses, orange squares and
red triangles respectively) in the comoving outputs at redshift z = 0.0 (left) and z = 0.5
(right) as a function of scale r12. Bottom: linear bias parameter bξ derived from the two-
point correlations via equation (2.11). Dotted lines are χ2-fits between 20 − 60 h−1Mpc.
The minimum χ2 values per degree of freedom are 1.05, 2.02, 0.37, 0.70 for M0, M1, M2, M3
respectively at z = 0.0 and 0.42, 0.78, 0.12, 0.82 for M0, M1, M2, M3 respectively at z = 0.5.



2.3. GROWTH AND BIAS ESTIMATORS 13

0.001

0.01

0.1

1

ξx

z = 0.0

dm
M0
M1
M2
M3

z = 0.5

fitting range: 
 20 < r12 < 60 h-1Mpc

1

2

3

4

5

16 32 64 128

b ξ
 =

 ξ
x  / 

ξ d
m

r12 [h-1Mpc]

16 32 64 128

Figure 2.5: Top: two-point correlation ξ of the MICE-GC dark matter field (continuous
lines) and the two-point halo-matter cross-correlation for the halo mass samples M0-M3 (blue
circles, green crosses, orange squares and red triangles respectively) in the comoving outputs
at redshift z = 0.0 (left) and z = 0.5 (right) as a function of scale r12. Bottom: linear
bias parameter bξ derived from the two-point correlations via equation (2.14). Colored lines
are χ2-fits between 20 − 60 h−1Mpc. The minimum χ2 values per degree of freedom are
1.05, 1.96, 1.54, 0.23 for M0, M1, M2, M3 respectively at z = 0.0 and 0.79, 1.46, 1.23, 0.77 for
M0, M1, M2, M3 respectively at z = 0.5. Thin solid lines are the fits to the bias from the
two-point auto-correlation, shown in Fig. 2.4. Grey lines show peak-background split bias
predictions from Chapter 4.
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spectrum of the simulation.
A relation between the two-point halo-matter cross-correlation, the two-point matter auto-

correlation, ξm(r12) ≡ 〈δm(r1)δm(r2)〉, and the halo bias can be obtained by inserting the
local bias model from equation (2.1) into equation (2.12),

ξ×(r12) ≃ b1 ξm(r12) +O[ξ2m], (2.13)

At large scales (r12 > 20h−1Mpc) we expect O[ξ2m] to be neglectable, which allows for meas-
urements of the linear bias as

b×ξ (r12) ≡
ξ×(r12)

ξm(r12)
≃ b1. (2.14)

The measurements of bξ are shown in the bottom panel of Fig. 2.5. We fit bξ between 20−
60 h−1Mpc, where the scale-independence is a good approximation. Non-linear terms impact
bξ at smaller scales, but also around the scale of baryonic acoustic oscillations. Comparing
these bias measurements from the cross-correlation to those from the auto-correlation we find
that non-linearities have a stronger effect on the auto-correlation.

The results described above allow us to estimate the growth factor of matter fluctuations
from equation (2.9) in terms of galaxy (or halo) auto correlation functions as:

D(z) ≃ b̂(z)−1Dg(z), (2.15)

where the growth factor is normalised to unity at an arbitrary redshift z0 (i.e. D(z0) ≡ 1).
The bias ratio b̂(z) is defined as

b̂(z) ≡ b(z)/b(z0) (2.16)

and the galaxy (or halo) growth factor Dg(z) is:

Dg(z) ≡
√

ξg(z)

ξg(z0)
. (2.17)

Both definitions (2.16) and (2.17) refer to large scales, i.e r12 between 20-60 h−1Mpc, while
we find changes in the results at the percent level when we vary the fitting range. The bias
at the two different redshifts z and z0 does not need to refer to the same galaxy (or halo)
populations. In Section 2.4.2 we demonstrate that taking different halo masses across the
explored redshift range does not lead to unexpected growth measurements.

Equation (2.15) shows that the matter growth factor, measured from the galaxy (or halo)
two-point correlation functions at different redshifts is fully degenerate with the ratio of the
linear bias parameters. We therefore need an independent measurement of the bias ratio to
break this degeneracy.

Note that the absolute values of the bias parameters, b(z) and b(z0), do not need to be
measured separately for measuring the differential growth factor between two redshift bins, as
it is commonly done. Instead of the absolute bias values, we only need to measure their ratio
b̂, which can be obtained directly from third-order galaxy correlations without assumptions
on the clustering of dark matter, as we will explain in Subsection 2.3.5.

By measuring the differential growth factor between two nearby redshift bins z2 and z1
one can also estimate the (velocity) growth rate f(z) defined in equation (2.5) at the mean
redshift z̄ ≡ z1+z2

2 . Since the growth rate is defined as logarithmic derivative of the growth
factor, it follows that
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f(z̄) ≃ − ln[D(z2)/D(z1)]

ln[(1 + z2)/(1 + z1)]

≃ − ln[b(z1)/b(z2)Dg(z2)/Dg(z1)]

ln[(1 + z2)/(1 + z1)]

(2.18)

Our new approach of measuring the bias ratio b̂ with third-order galaxy correlations will
enable us to measure the growth factor and the growth rate of the full matter distribution
directly from the distribution of galaxies (or haloes) without assumptions on the clustering
of dark matter, providing a new model independent constrain on cosmological parameters.
The same approach represents an additional tool to measure f(z), which is independent of
redshift space distortions method (Kaiser, 1987). Note that we do not need to select the same
type of objects (with respect to the halo mass) at the different redshifts. This feature allows
for maximisation of the galaxy number density at each redshift.

2.3.5 Bias from the halo and matter three-point auto-correlation

In analogy to the two-point auto correlation, we can define the three-point auto correlation
as

ζ(r12, r13, r23) ≡ 〈δ(r1)δ(r2)δ(r3)〉, (2.19)

where the vectors r12, r13, r23 form triangles of different shapes and sizes. In contrast to the
two-point correlation function ζ is sensitive to the shape of the matter density fluctuations. To
access this additional information, we fix the length of the two triangle legs r12 and r13 while
varying the angle between them, α = acos(r̂12 · r̂13). In the following we will therefore change
the variables for characterising triangles from (r12, r13, r23) to (r12, r13, α). Throughout the
analysis we use triangles with r13/r12 = 2 configurations, which restricts the minimum scale
entering the measurements to the size of the smaller triangle leg r12. Choosing configuration,
such as r13/r12 = 1 would introduce non-linear scales when triangles are collapsed (α = 0).

For detecting the triples δ(r1)δ(r2)δ(r3) we implemented the algorithm described by
Barriga and Gaztañaga (2002), using the same kind of mesh as for calculating the two-point
correlation with 4 and 8 h−1Mpc grid cells. From the three-point correlation we then construct
the reduced three-point correlation, introduced by Groth and Peebles (1977) as

Q ≡ ζ(r12, r13, α)

ξ12ξ13 + ξ12ξ23 + ξ13ξ23
, (2.20)

where ξij ≡ ξ(rij).

Perturbation theory shows that, to leading order in the dark matter field, Q (hereafter
referred to as Qdm) is independent of the growth factor. This is because ζ ∝ 〈δLδLδ2L〉 ∝ D4,
so D drops in the Q ratio above (Bernardeau, 1994; Kamionkowski and Buchalter, 1999), but
for galaxies Q depends on the bias parameters. These properties enable us to measure b1 and
c2 and break the growth-bias degeneracy in equation (2.15) (Frieman and Gaztanaga, 1994;
Fry, 1994; Bernardeau et al., 2002).

We test the assumption that Qdm is independent of the growth factor by comparing
measurements at different redshifts and scales in the MICE-GC simulation with theoretical
predictions derived from second-order perturbative expansion of ξ and ζ (Bernardeau et al.,
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Figure 2.6: Top: reduced three-point correlation Q measured from the MICE-GC dark matter
field in the comoving outputs at redshift z = 0.0, 0.5, 1.5 (blue squares, green circles, red
triangles respectively) for different triangle opening angles α using r12 = r13/2 = 12 h−1Mpc
(open symbols) and r12 = r13/2 = 24 h−1Mpc (filled symbols) compared with predictions from
second-order perturbation theory (PT) using a linear power spectrum. Bottom: Deviations
between Q from PT and measurements divided by the 1σ errors of the measurements (dashed
lines correspond to ±2σ discrepancies).
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Figure 2.7: Left : reduced three-point correlation Q measured from the MICE-GC dark matter
field and the four halo mass samples M0-M3 (black line, blue circles, green crosses, orange
squares and red triangles respectively) in the comoving output at redshift z = 0.5 for different
triangle opening angles α using triangles with r12 = 24 h−1Mpc and r13 = 48 h−1Mpc. Right :
Qdm versus Qg at the corresponding opening angle with the same colour coding as in the left
panel. Dashed lines are χ2-fits to equation (3.6). The minimum χ2 per degree of freedom is
6.0, 3.9, 2.0, 0.7 for M0, M1, M2 and M3 respectively. Results for redshift z = 0.0 are shown
in Appendix 2.

2002; Barriga and Gaztañaga, 2002). The predictions are based on the MICE-GC CAMB
linear power spectrum. Fig. 2.6 shows Qdm at z = 0.0, 0.5 and 1.5 for triangles with r12 = 12
h−1 Mpc and r13 = 24 h−1Mpc. The measurements are based on a density mesh with 4
h−1Mpc grid cells, which is the highest available resolution (see Table A.1 for details). As for
the two-point correlation we derive errors for Q by Jackknife resampling (see Section 2.3.6).
The values of Q show the characteristic u-shape predicted by perturbation theory, which
results from the anisotropy of the shape of matter fluctuations. The amplitude of Q increases
with triangle size because of the steeper slope in the two-point linear correlations at larger
scales. Also Q depends only weakly on redshift while deviations between predictions and
measurements become more significant at low redshift and small scales (see bottom panel of
Fig. 2.6). The same effect has been reported by Fosalba et al. (2013a), who also find that
the deviations decrease, when predictions are drawn from the measured instead of the CAMB
power spectrum. Furthermore, these authors demonstrated that additional contributions to
these deviations can result from the limited mass resolution of the simulation, especially at
small scales and high redshift.

Non-linear bias

A simple relation between the bias in the local model and Q can be derived in the limit
of small density fluctuations and large triangles by using equation (3.1) with the defini-
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tions (2.8), (2.19) and (2.20), and keeping second-order terms in the perturbative expansion
(Frieman and Gaztanaga, 1994):

Qg(α) ≃
1

bQ
[Qdm(α) + cQ]. (2.21)

Instead of using Qdm, we could also use the corresponding predictions, shown in Fig. 2.7.
However, this would introduce uncertainties in the bias measurement, due to the mismatch
between measurements and predictions. We interpret the parameters bQ and cQ as the first-
and second-order bias parameters b1 and c2 respectively, while we expect this interpretation
to be valid only in the linear regime at scales larger than roughly 20 h−1Mpc. We use the
notation bQ instead of b1 to refer to the fact that we are estimating b1 with Q.

To measure the bias we computed Qg for the four mass samples M0 - M3 at redshift
z = 0.0 and z = 0.5 using triangles of various scales with r13 = 2r12 configurations. The
triangle legs consist now of 3 and 6 ±0.5 grid cells (see Table A.1 for details). We vary
the size of the triangles by changing the size of the grid cells. This reduces computation
time, since the number of grid cells in the simulation volume required for the measurement is
minimised. Our bias measurements from Q can vary by less than 5%, when we increase the
number of cells per leg instead of increasing the cell size to measure Q at larger scales. We
show and discuss this effect in Appendix A.1.

Our results for r12 = r13/2 = 24 h−1Mpc triangles, shown in the left panel of Fig. 2.7
reveal a flattening of Q for high mass samples, as expected from equation (3.6) since b1
increases with halo mass. In the right panel of the same figure we demonstrate that the
linear relation between Qg and Qdm, given by equation (3.6) is in reasonable agreement with
the measurements. We perform χ2-fits of the dark matter results to those of the four halo
samples via equation (3.6) as described in Subsection 2.3.6 and obtain the bias parameters bQ
and cQ. These fits, shown as colored lines in Fig. 2.7, have the strongest deviations from the
measurements at the smallest and highest values of Q, which might result from measurements
at small angles dominating χ2 as those have the smallest errors. The corresponding minimum
values of χ2 per degree of freedom (given in the caption of Fig. 2.7) decrease for higher
mass samples as the errors of Q increase. In general we find a decrease with mass, scale and
redshift. Note that these results are affected by the covariance matrix in the fit which we
only know roughly from the Jackknife sampling (see Section 2.3.6 and Appendix A.1).

In order to use the bias parameter bQ to measure the growth factor via equation (2.15)
we first need to quantify deviations between bξ and bQ, i.e. the linear bias b1 inferred from
the two-point function and the one from Q in the fit to equation (3.6). If the local bias model
approximation works well, then we would expect bQ ≃ bξ. A comparison is shown for different
triangle scales and mass ranges in Fig. 2.8. In the top panel we show the linear bias derived
with ξ and Q at redshift z = 0.5 as lines and symbols respectively.

In bottom panel of Fig. 2.8 we see that bQ is up to 30% higher than bξ at large scales,
while differences increase for smaller scales and larger values of bξ. Such deviations between bξ
and bQ have also been reported by, e.g. Manera and Gaztañaga (2011), Pollack et al. (2012),
Baldauf et al. (2012), Chan et al. (2012), Moresco et al. (2014). Furthermore we find that bQ
for M3 is under predicted at small scales in contrast to results for the lower mass samples.
Deviations for small triangle sizes indicate departures from the leading order perturbative
expansion in which equation (3.6) is valid, while the strong deviations for the sample M3 sug-
gest that the quadratic expansion of the bias function might not be sufficient for highly biased
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Figure 2.8: Top: linear bias parameter b1 derived from the three-point correlation Q (bQ,
symbols) via equation (3.6) using triangles with r13/r12 = 2 as a function of r12. This is
compared with b1 derived from the ratio of dark matter and halo two-point correlations ξ
(bξ, lines) from Fig. 2.4. Different colours denote results for the mass samples M0 to M3
(from bottom to top) with the same colour coding as in Fig. 2.4. Bottom: relative difference
between bQ and bξ. Results for redshift z = 0.0 are shown in the Appendix.

samples. Furthermore, differences between bξ and bQ are expected due to non-local contribu-
tions to the bias function, as it has been shown in k-space by Chan et al. (2012). Performing
the same analysis at redshift z = 0.0 gives very similar results, which are shown in Fig. A.3 of
the Appendix A.1. We find in that case slightly larger deviations at small scales presumably
due to a higher impact of non-linearities on the measurement. The overestimations at large
scales are slightly smaller possibly as a result of smaller bias values at low redshift. We will
show in Chapter 3 that deviations between bξ and bQ decrease, when galaxy-matter-matter
cross-correlations instead of galaxy-galaxy-galaxy auto-correlations are analysed. In the fol-
lowing we will focus on the results for r12 = 24 h−1 Mpc which is a compromise between
having small errors and sufficiently large scales for linear bias estimation.

Despite the discrepancies between bQ and bξ shown in Fig. 2.8 we will still be able to
obtain a good approximation for the growth factor D(z) if bQ and bξ are related by the same
multiplicative constant at different redshifts. This is because D(z) only depends on the bias
ratio, as shown in equation (2.15).

Bias ratio b̂ from Qg at different redshifts

A fundamental limitation for the growth factor measurement described in Section 2.3.3 is
its dependence on the dark matter correlations, which cannot be directly observed. This
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problem is usually tackled by employing predictions for the dark matter correlations from
N-body simulations or perturbation theory (see e.g. Verde et al., 2002; McBride et al., 2011b;
Maŕın et al., 2013). Alternatively weak lensing signals can be used as a direct probe of the
total matter field (Jullo et al., 2012; Simon et al., 2013). Both approaches can add uncertain-
ties and systematic effects to the galaxy bias measurement and will therefore affect constrains
of cosmological parameters derived from the growth factor.

We therefore introduce a new approach for measuring the growth factor based on the
following consideration: in equation (2.15) we see that for measuring the growth factor D(z)
we only require knowledge about the ratio of the linear bias parameters at the redshifts z0
and z, while the absolute bias values are irrelevant. With the three-point correlation function
we can measure this ratio directly from the distribution of galaxies without knowing Qdm.
We can write equation (3.6) for the two redshifts z0 and z and combine them via Qdm under
the assumption that Qdm is independent of redshift, as shown in Fig. 2.6. We find

Qg(z) =
1

b̂Q
[Qg(z0) + ĉQ], (2.22)

where we have defined b̂Q ≡ bQ(z)/bQ(z0) and ĉQ = [cQ(z)− cQ(z0)] /bQ(z0). Equation (2.22)

allows us to estimate the bias ratio b̂Q from Qg measurements at two different redshifts. The

measurement of b̂ can then be used in equation (2.15) to estimate D(z) from the measured
Dg(z). The results will be shown later in Section 2.4.2.

2.3.6 Errors estimation and fitting

Since we use either one simulation at various comoving outputs (z = 0, z = 0.5, z = 1.
and z = 1.5), or one light cone, we estimate the errors of ξ, Q, S3, C12, bξ, bQ, cQ and D
measurements by Jackknife resampling. The Jackknife samples of the complete comoving
output are constructed from 64 cubical sub-volumes while in case of the light cone we use 100
angular regions (with equal volume at each redshift bin) in right ascension and declination
on the sky. Following Norberg et al. (2009), we generate for any statistical quantity X a set
of pseudo-independent measurements (Xj), from which we compute the standard deviation
σX around the mean X̄ (computed on the complete volume) as

σX =

√

√

√

√

(n− 1)

n

n
∑

j=0

(Xj − X̄)2, (2.23)

where n is the number of Jackknife samples.

We use the same fitting procedure for both bias estimations bξ, bQ, which takes into
account the covariance between ξ and Q measurements at different separations, opening
angles and smoothing scales (r12, α, R respectively). The covariance matrix C is computed
from the deviation matrix A, which in turn is estimated by Jackknife resampling as well:
a measurement in the jth Jackknife sub-volume and for the ith separation, angle or scale is
written Xij . Each element Aij of the deviation matrix is calculated as Aij = Xij − X̄i. Again
the mean X̄i is the measurement on the complete volume. The covariance matrix can then
be computed straightforwardly

C =
n− 1

n
ATA. (2.24)
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Deriving b̂Q requires a two-parameter fit, due to the mixing of the bias coefficients (see
equation (2.22)). The main problem arises from the fact that at a given redshift the errors of
Qg are correlated between the various angles. Furthermore the reduced three-point correlation
can also be correlated between the two redshifts z0 and z, where z0 is the reference redshift.
Based on equation (2.22), we define the variable

Z ≡ Qg(z0)− (b̂Qg(z) + ĉ), (2.25)

and vary b̂ and ĉ in order to obtain Z = 0 for all angles α. In other words we want to measure
the posterior probability distribution (hereafter referred to as likelihood L(b̂, ĉ)) of the two
parameters b̂ and ĉ given that Z is expected to be Null. Assuming a multivariate normal
distribution of Z, one can write the log-likelihood L ≡ −2 ln(L) as for measuring a given Z

L = B + ln(|CZ |) + χ2, (2.26)

where CZ is the covariance matrix of the Z, B is a normalisation constant and χ2 ≡
∑

i,j ZjC
−1
Z,ijZi. Note that, if the covariance matrix does not depend on the parameters of

the model, then the second term in expression (2.26) can be absorbed in the normalisation
constant B. However, from definition (2.25) follows that CZ explicitly depends on the fitting
parameters b̂ and ĉ. It can therefore be obtained from the covariance matrix of Qg(z0), Qg(zj)
and from the cross-covariance of Qg(z0) and Qg(zj):

CZ = CX + b̂2CY − b̂
(

CXY + C⊺
XY

)

, (2.27)

which explicitly shows the dependency of the covariance matrix CZ on the fitting parameter b̂.
Note that CX and CY are respectively the covariance matrix of Qg(z0) and Qg(zj) computed
with equation (2.24). The cross-covariance matrix CXY is defined as

CXY,ij =
n− 1

n
(Xj − X̄)(Yi − Ȳ ), (2.28)

where n is the number of elements in bothX and Y . In practice we shall neglect the correlation
between redshift bins, so that CXY = C⊺

XY = 0 in equation (2.27). Otherwise the inverse

covariance matrix C−1
XY,ij had to be computed for each tested value of b̂. The estimate of b̂ and

its error are obtained by marginalising over the ĉ parameter via the posterior marginalised
log-likelihood

L(b̂) = −2 ln

{
∫

L(b̂, ĉ)dĉ

}

.

2.4 Results

As we have pointed out in the Section 2.3 we use growth independent bias measurements from
third-order statistics to break the growth-bias degeneracy that appears in growth measure-
ments from two-point correlations. This approach is limited by the accuracy and the precision
with which third-order statistics can measure galaxy bias. We study the differences between
bias from second- and third-order correlations for different redshifts and halo mass ranges
and present the results in Section 2.4.1. In Section 2.4.2 we show the resulting estimations
for the linear growth measurements.
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Figure 2.9: Linear bias as a function of the redshift estimated from bQ in three mass bins of
MICE-GC light cone compared to the linear bias estimated from the two-point auto correla-
tion function bξ (coloured dashed lines). Blue crosses, green diamonds and orange triangles
correspond respectively to M0, M1 and M2. The colour code is the same as for bξ in Fig. 2.4.

Alternatively to the direct approach of growth measurement described above, we have
introduced a new method which does not require any modelling of third-order clustering of
dark matter. It takes advantage of the fact that only the ratio of the bias parameters at two
redshifts needs to be known to break the growth-bias degeneracy. This bias ratio can be dir-
ectly measured from third-order statistics of the halo field (see Section 2.3.3-2.3.5). In Section
2.4.2 we compare growth factor measurements from our new method and the more common
method of combining second- and third-order statistics with theoretical predictions (or sim-
ulations) for the dark matter field. In Section 2.4.2 we present growth rate measurements
derived with and without third-order correlations of dark matter.

2.4.1 Bias comparison

We conduct bias measurements in a light cone, which is constructed from the MICE-GC
simulation and includes redshift evolution of structures. The total volume probed by the
light cone is about 15 h−3 Gpc3 and we consider an octant of the sky (about 5000 deg2).
We study the deviation between the different bias estimations in five redshift bins between
0.4 < z < 1.42 using the mass samples M0, M1 and M2. We do not present results for the
highest mass sample M3 and for smaller redshifts, since the results are strongly scattered
due to small numbers of haloes (see Fig. 2.1). However, this mass and redshift range will be
analysed using the comoving outputs of the same simulation in Chapter 3.
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For measuring the bias we use the same (24, 48, α) configurations for Q as in the comoving
output. We estimate errors by Jackknife resampling of 100 angular regions of the light cone
(see Section 2.3.6).

The results for the bQ estimator are shown together with bξ in Fig. 2.9. They confirm
that bQ tends to overestimate the bias for the lower mass bins by about 30%. Moreover it
shows that the ratio between bξ and bQ is roughly a constant with respect to the redshift or
mass bins. Since in our approach we aim at measuring the linear bias in order to extract
information about the growth factor D of linear matter fluctuations, we focus on deriving a
direct measurement of it in the following section.

comment: check:I

2.4.2 Growth Measurements

In this subsection we present the growth factor D and the growth rate f , measured in the
MICE-GC light cone via the equations (2.15) and (2.18) respectively. We obtained these
measurements with the linear bias b, estimated with Q (equation (2.22)) at the redshift z
and the reference redshift z0. These growth measurements are compared to those from our
new approach for measuring D and f via the bias ratio b̂(z) = b(z)/b(z0). We can derive
b̂(z) directly by comparing Q of galaxies (or haloes) at z and z0 (equation (2.22)). This new
approach allows us to measure the growth of dark matter using only the observable second-
and third-order galaxy (or halo) correlations without the corresponding dark matter statistics
(see Section 2.3.5).

comment: check:I

Growth factor measured with Qdm

Fig. 2.10 shows measurements of the growth factor D, derived from the mass samples M0,
M1 and M2 in the MICE-GC light cone. Symbols denote results, which were derived by
using the same mass bins at both redshifts, z0 and z. Exploring the variation of our results
for different choices of mass bins, we measure the growth factor from all combinations of
mass bins. The median growth factor and the median error from all combinations are shown
as grey shaded areas in the same figure. The left panel show results, derived by using the
bias parameters bQ, which were measured at each redshift separately from equation (3.6)
and (2.11). This approach requires the knowledge or modelling of the dark matter Qdm.
Note that we normalised all measurements with respect to the highest redshift bin by setting
z0 = 1.25 in equation (2.15). This allows us to have a normalisation, which is performed
as much as possible in the linear regime and with the lowest possible sampling variance.
The measurements are compared to the theoretical prediction from equation (2.4), shown
as dashed lines in the same figure. We also show that combining different halo populations
(halo mass) at different redshifts we obtain results which are consistent with those derived by
following the same halo population across the considered redshift range. To be independent of
the normalisation we χ2-fit the normalisation of the predictions to the median measurements
from all mass sample combinations (i.e halo populations).

Our results in Fig. 2.10 show that the growth factor, measured with the bias from the
third-order statistics, decreases with redshift, as expected from predictions for the linear
growth factor. The good agreement between measured and predicted growth factor is re-
markable since the bias estimation, on which the measurement is based on, shows a 30% over



24 CHAPTER 2. GROWTH FROM THIRD-ORDER CORRELATIONS

D
(z

) 
/ D

(z
0=

1.
25

)

redshift z

with Qdm

MICE prediction with fitted normalisation

M0

M1

M2

 1

 1.2

 1.4

 1.6

 1.8

 0.4  0.6  0.8  1  1.2

without Qdm

 0.4  0.6  0.8  1  1.2

Figure 2.10: Growth factor measured from haloes in the mass samples M0, M1, M2 from
the MICE-GC light cone. Measurements are normalised to be unity at the reference redshift
z0 = 1.25. Symbols show results derived by using the same mass bin at redshift z and z0.
Median results with median errors from combining all mass bins are shown as grey areas.
Measurements are derived using the linear bias from Q(24, 48, α). The dashed line is the
theoretical prediction from linear perturbation theory in equation (2.4) for the MICE-GC
cosmology. Its normalisation was chosen to minimise deviations from the median measure-
ments and is therefore different in each panel. Results shown in the left panel are based on
separate measurements of bias at each redshift, by comparing Q in halo samples with the
corresponding dark matter measurements in the same redshift bin. The results in the right
panel are based on ratio measurements of bias at two redshift, by comparing Q at different
redshifts (no dark matter is used).
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estimation (see left panel of Fig. 2.9). We explain this finding by a cancellation in the bias
ratio b̂Q of the multiplicative factor by which bQ is shifted away from bξ. This cancellation
also happens for the median results from all mass bin combination, since this multiplicative
factor is similar for all masses and redshifts. Fluctuations of the growth factor measurements
at high redshifts probably result from fluctuations in the bias measurements. We expect an
additional uncertainty in the growth measurement from the resolution of the density grid,
used for computing bQ (see Appendix A.1). From equation (2.15) we estimate that the 5%
resolution error in bQ propagates into D as an error of below 10%.
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Growth factor measured without Qdm

In the bottom panel of Fig. 2.10 we show the growth factor measurements based on the
new approach, which uses the bias ratios b̂Q derived from equation (2.22). This means that
we compare the statistical properties only of the halo density field at different redshifts,
without requiring knowledge about the dark matter quantity Qdm. As in the top panel,
the symbols denote measurements using the same mass bins at both redshifts, while median
growth measurements and errors from all mass bin combinations are shown as grey shaded
areas.

We find that the estimation a slightly larger deviation from the linear theory compared to
the results from the separate bias measurement, shown in the upper panel. This discrepancy
tends to be larger as the redshift is decreasing, possibly due to three effects: i) noise in the
measurements of third-order galaxy (or halo) correlations Qg enters twice, ii) non-linearities
in the dark matter field become stronger at small redshift, iii) sampling variance does not
cancel out since the two halo correlations, on which the measurement is based on, come from
different redshifts.

In practice that last point iii) will also affect the first method, which uses Qdm to get the
absolute bias at each redshift. In our analysis, sampling variance cancels out between redshifts
because we use Qdm measured in the same simulation where we measure the corresponding
halo values Qg. In the analysis of a real survey this cancelation will not occur since one needs
to use models for Qdm.

We demonstrate this effect in Fig. 2.11. To study how the fitting range affects the growth
estimate we now restricted to opening angles between 0 < α < 60 degree, excluding large
triangles as we discuss later. The top panel shows the growth, measured with the separate
bias estimates of bQ, as shown on the top panel of Fig. 2.10. In the central panel we show
the more realistic growth measurements based on the same approach, but instead of using
the dark matter measurements in the same redshift as the halo measurements, we always
use the dark matter results of Q from the highest redshifts bin z0 = 1.25 (which is in good
agreement with the results from the comoving output, as it contains more volume than the
other redshift bins). Here, the sampling variance does not cancel, since the dark matter and
halo correlations are measured at different redshifts. This results in a larger scatter in the
central panel than in the top panel. Quantifying this scatter with respect to the predictions
as σ =

√

〈(D −DPT )2〉 confirms the visual impression (values are shown in Fig. 2.11). The
latter approach in the central panel corresponds more closely to how the first method would
be applied in a real survey: i.e. assuming a cosmology to run the dark matter model and
running a simulation for that cosmology (sampling variance will not cancel as the simulation
has different seeds than the real Universe). These latter growth measurements are distributed
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Figure 2.11: Impact of sampling variance on the linear growth factor, measured with
Q(24, 48, 0 < α < 60) and normalised at z0 = 1.25. The angular range excludes widely
opened triangles which are expected to be more strongly affected by sampling variance. The
top panel shows D(z) estimated from separate measurements of bias at each redshift, by
comparing Q in haloes with the corresponding dark matter measurements in the same red-
shift bin. The central panel shows the same measurements when we use the dark matter
measurements from z0.0 for all redshifts instead. In this case sampling variance between halo
and dark matter fluctuations does not canceled out, as it does in the top panel. Results in
the bottom panel are based on ratio measurements of bias at two redshift, by comparing Q
at different redshifts (no dark matter is used). Quantifying the scatter we show the standard
deviation σ =

√

〈(D −DPT )2〉, where DPT is the predicted growth factor (shown as black
dashed line) and 〈. . .〉 denotes the mean over all redshifts and mass samples.
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in a similar way around the theoretical predictions as the results derived from the ratio bias
approach using Q and ξ at the redshift z and redshift z = 1.25, shown in the bottom panel of
Fig. 2.11. This demonstrates that most of the difference between the top and bottom panels
of Fig. 2.11 comes from the artificial sampling variance cancelation in the top panel.

The restriction of the opening angles to 0 < α < 60 excludes widely opened triangles and
is a possibility to decrease the impact of sampling variance on the measurements. However,
comparing the growth in the bottom panel of Fig. 2.11 to the corresponding measurements
for 0 < α < 180 in the bottom left panel of Fig. 2.10 we find no significant improvement of
the growth measurements from restriction of the opening angles possibly due to larger errors.
The latter result from the smaller number of triangles.
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Growth rate measured with and without Qdm

We derived the growth rate f from the measured growth factor D via equation (2.18). The
product fσ8 can also be probed by redshift space distortions, while our measurements repres-
ent an additional, independent approach to the growth rate. Especially at higher redshifts,
where growth rate measurements via redshift space distortions are difficult to obtain, such
additional information is valuable. Besides the relation to redshift space distortions another
advantage of the growth rate with respect to the growth factor is that it is independent of
the normalisation. The latter cancels out in the ratio of the growth factors, which appears in
equation (2.18).

However, measuring f via D at a given redshift is not straightforward, since it depends
on measurements at two different redshift. We derived f at the redshift bin zi from growth
factor measurements at zi+1 and zi−1. This approach is motivated by the fact that the redshift
bins have equal width in comoving space. Constrains of cosmological parameters with such
measurements would require a more careful treatment of the assigned redshift. The employed
growth factors are the median results, derived via Q from all mass combinations, which are
shown as grey areas in the left panels of Fig. 2.10.

The results for f from D, measured with and without Qdm, are shown in Fig. 2.12. In
both cases the measurements are strongly scattered around the theoretical predictions for the
MICE simulation, while the scatter is stronger for results derived without Qdm. The increased
scatter at lower redshifts probably results from the smaller volume of the light cone, which
causes stronger fluctuations in D (see Fig. 2.10). We also expect an uncertainty from the
resolution of the density grid, used for computing bQ (see Appendix A.1). From the equations
(2.15) and (2.18) we estimate that the 5% resolution error in bQ propagates into f as an error
of below 10%. Note that the errors that we find at high redshifts are comparable, or slightly
better, than current errors from redshift space distortions (RSD) in the anisotropic two-point
correlation function. Note that measurements from RSD directly constrain f × D and not
f . Nevertheless, under some assumptions we can also infer f from RSD and the typical
errors found on SDSS, BOSS and WiggleZ are around 15−20% (Cabré and Gaztañaga, 2009;
Blake et al., 2011; Tojeiro et al., 2012), which are comparable to the ones we find here.

The MICE prediction is computed from equation (2.6) with Ωm = 0.25 and γ = 0.55.
To compare the scatter in our measurements with variations of the growth rate for different
cosmologies we also show predictions for γ = 0.35 and 0.75. We find that our errors in the
measurements are larger than the expected variations in the growth rate due to cosmology. It
would be worthwhile to conduct a similar comparison using larger mass bins and combining
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Figure 2.12: Growth rate f , estimated from the median measurements of D from all mass
bin combinations (shown as grey areas in the left panels of Fig. 2.10) via equation (2.18).
MICE predictions, derived from equation (2.6) with Ωm = 0.25 and γ = 0.55 are shown as
thick dashed lines. By changing the values of γ to 0.35 and 0.75, we derive the predictions
for different cosmologies, shown as dotted and dash-dotted lines, respectively. The large
errors could be decreased by measuring the bias bQ using a combination of different triangle
configurations.

measurements from different scales and configurations of Q, to decrease the error, but the
goal here is just to demonstrate the possibility of such measurements and the advantage of
using it.
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2.5 Summary & Discussion

The amplitude of the transverse (or projected) two-point correlation of matter density fluc-
tuations allows us to measure the growth factor D, which can be used as a verification tool
for cosmological models. Galaxies (in our study represented by haloes) are biased tracers of
the full matter field as their two-point correlation at large scales is shifted by a constant bias
factor b with respect to the matter two-point correlation. This bias factor is fully degenerate
with D. The reduced matter and galaxy third-order statistics are independent of D, while
the galaxy versions are sensitive to b. Combining second- and third-order statistics could
therefore enable us to break the growth-bias degeneracy, if the difference between the effect-
ive linear bias b1 probed by both statistics is smaller than the errors required for the growth
measurements.

In this thesis we have tested these assumptions and verified how well we can recover the
true growth of the new MICE-GC ΛCDM simulation (Fosalba et al., 2013a; Crocce et al.,
2013; Fosalba et al., 2013b) with them. We also further validate the MICE-GC simulation by
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comparing the linear growth with measurements from two-point matter correlation (Fig.2.2
and 2.3) and three-point correlations of the matter field to non-linear perturbation theory
predictions (Fig. 2.6).

The main goal of this Chapter is to compare bias (and the resulting growth) from the
reduced three-point auto correlation Q. We estimated this quantity from density fields of
matter in the MICE-GC simulation and those of haloes in different mass samples, expanding
previous studies significantly to a wider range of masses (between 5.8 × 1012 and 5 × 1014

h−1M⊙) and redshifts (between 0 and 1.2) with values of the linear bias b1 between 0.9 and
4.

Our results in Fig. 2.9 show that the linear bias from Q, bQ, systematically over estimates
the linear bias from the two-point correlation, bξ, by roughly 20 − 30% at all mass and
redshift ranges. Understanding the differences between bξ and bQ is crucial for constraining
cosmological models with observed three-point correlations. We will therefore deepen our
analysis in the following chapters by studying bias from halo-matter-matter cross-statistics
(Chapter 3) and predictions from the peak-background split model (Chapter 4) to disentangle
between non-linear and non-local effects on the different estimators.

For measuring the growth factor D we have introduced a new method. This new method
uses the bias ratio b̂(z) = b(z)/b(z0), derived directly from halo density fluctuations with
reduced third-order statistics. Its main advantage with respect to the approach of measuring
b(z) and b(z0) separately is that it does not require the modelling of (third-order) dark matter
statistics. Instead, it works with the hypothesis that

1. the reduced dark matter three-point statistics is independent of redshift z

2. the bias ratio b̂(z) = b(z)/b(z0) from two- and three-point statistics is equal.

The first assumption was tested in this study numerically, while the validity of the second
follows directly from our bias comparison.

In general the comparison between D from perturbation theory with measurements from
our new method and the standard approach reveals a good agreement. We explain this result
by a cancellation of the multiplicative factor by which bQ is shifted away from bξ in the bias

ratio b̂Q.
Our analysis shows that the new way to measure the growth factor from bias ratios

is competitive with the method based on two separate bias measurements. While having
larger errors the new method has the advantage of requiring much weaker assumptions on
dark matter correlations than the standard method and therefore provides an almost model
independent way to probe the growth factor of dark matter fluctuations in the Universe.

We demonstrated that besides the growth factor, D, the growth rate of matter, f , can also
be directly measured from the galaxy (or halo) density fields with bias ratios from third-order
statistics. This provides an alternative method to derive the growth rate, which is usually
obtained from velocity distortions probed by the anisotropy of the two-point correlation func-
tion (RSD). The typical errors found on SDSS, BOSS and WiggleZ using RSD are around
15 − 20% (Cabré and Gaztañaga, 2009; Blake et al., 2011; Tojeiro et al., 2012), which are
comparable to the ones we find in Fig. 2.12 when considering the high redshift bins (20%).

Our analysis is performed in real space to have clean conditions for comparing different bias
and growth estimates. This is a good approximation for the reduced higher-order correlations
on the large scales considered in this study, as measurements in redshifts space always seem
to be within one sigma error of the corresponding real space result (see Fig. 2.13). Note how
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Figure 2.13: Q for dark matter (dotted) and for halo samples (symbols) with two different
mass thresholds: b1 = bξ ≃ 1.09 (blue) and b1 = bξ ≃ 1.83 (red). We compare results in
real space (filled triangles) and redshift space (open circles), which agree within the errors on
these large scales (r12 = r13/2 = 24 h−1Mpc at z=0). Predictions are shown for both: the
local bias model (dashed lines) and non-local bias model (continuous). In both cases we have
fixed b1 = bξ and fit for c2.

the small, but systematic, distortions in redshifts space seem to agree even better with the
local bias model than in real space on the largest scales.

Applying the method described above to obtain accurate bias and growth measurements
from observations will require additional treatment of redshifts space distortions or projection
effects. Two possible paths could be followed. In a three dimensional analysis redshifts space
distortions need to be modelled (e.g. Gaztañaga and Scoccimarro, 2005). The projected three-
point correlation can also be studied separated by in redshift bins (Frieman and Gaztañaga,
1999; Buchalter et al., 2000; Zheng, 2004). Both ways will result in larger errors, but we
do not expect this to be a limitation because our error budget is totally dominated by the
uncertainty in the bias. A more detailed study of this issue is beyond the scope of this thesis
and will be presented elsewhere. Mock observations, like the galaxy MICE catalogues (see
Crocce et al., 2013; Carretero et al., 2015) should be used to test the validity of such growth
measurements under more realistic conditions.
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Chapter 3

Non-local bias in three-point halo

correlations

Abstract

In this Chapter we pursue our study of halo clustering bias with second- and third-order stat-
istics of halo and matter density fields in the MICE Grand Challenge simulation. Combining
three-point auto- and cross-correlations we find, for the first time in configuration space,
evidence for the presence of non-local contributions to the bias function. These contributions
are consistent with predicted second-order non-local effects on the bias functions originating
from the dark matter tidal field. Samples of massive haloes show indications of bias (local
or non-local) beyond second order. Ignoring non-local bias causes 20 − 30% and 5 − 10%
overestimation of the linear bias from three-point auto- and cross-correlations respectively.
We present a third-order bias estimator which is not affected by second-order non-local con-
tributions. It consists of a combination of three-point auto- and cross-correlation and delivers
accurate bias estimations of the linear bias. Ignoring non-local bias causes higher values of
the second-order bias from three-point correlations. Our results demonstrate that third-order
statistics can be employed for breaking the growth-bias degeneracy.
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3.1 Introduction

With the increasing amount of data coming from current and future large-scale galaxy sur-
veys, errors on the observed statistical properties of the spatial galaxy distribution are rap-
idly decreasing. This high level of precision requires at least the same level of accuracy in
the modelling of the corresponding observables. An important observable is the growth of
large-scale density fluctuations with time, which is sensitive to the universal matter density,
the expansion of space as well as to the gravitational interaction of matter at large scales.
Measurements of the this growth therefore provide constrains on cosmological parameters
(e.g. Ross et al., 2007; Cabré and Gaztañaga, 2009; Song and Percival, 2009; Samushia et al.,
2012; Reid et al., 2012; de la Torre et al., 2013), possible deviations from General Relativity
(Gaztañaga and Lobo, 2001; Lue et al., 2004) or on alternative phenomenological descrip-
tion for the accelerated expansion, such as the effective field theory (Steigerwald et al., 2014;
Piazza et al., 2014). Growth measurements can be undertaken by comparing the second-

31
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order correlations ξ of galaxy distributions at different redshifts. A critical aspect of this
approach is the bias between the correlations of galaxies and those of the full matter density
field, as we pointed out in Chapter 3. This bias can either be predicted with the peak-
background split model (e.g. Bardeen et al., 1986; Cole and Kaiser, 1989; Sheth and Tormen,
1999, see also Chapter 4), or directly determined from observations using weak lensing observ-
ables, redshift space distortions or reduced third-order correlations at large scales. The latter
method relies on the fact that such third-order correlations are independent of the growth
at large scales, but sensitive to the bias. Third-order galaxy correlations therefore have the
potential to tighten constrains on cosmological models from observations (e.g. Maŕın, 2011;
Maŕın et al., 2013). However, how useful third-order correlation are for this purpose depends
on the accuracy and the precision of the bias estimations they deliver (e.g. Wu et al., 2010;
Eriksen and Gaztañaga, 2015).

Associating galaxies with dark matter we investigated in Chapter 2 growth measurements
based on bias estimations from third-order halo auto-correlations (halo-halo-halo) using the
MICE-GC simulation.

We found that linear bias estimations from the three-point auto correlations over-estimate
the true linear bias (probed by two-point correlations at large scales) by 20-30%. Understand-
ing these discrepancies between different bias estimators is crucial for constraining cosmolo-
gical models with observed third-order galaxy statistics. In the light of previous studies
(Manera and Gaztañaga, 2011; Pollack et al., 2012; Chan et al., 2012; Baldauf et al., 2012)
we pointed out that such discrepancies might originate from non-linear and/or non-local ef-
fects on the different bias estimators. Hence, in this chapter, we focus on the analysis of
three-point cross-correlations (halo-matter-matter) to decrease the impact of non-linearities
on our bias estimators in order to investigate the extension of the local bias model to a possible
non-local component.
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3.1.1 the non-local bias model

The bias expansion, given by equation (2.1), assumes a local relation between the density
contrast of matter and haloes. Inaccuracies of this deterministic relation might arise from
tidal forces in the matter field, leading to a non-local contribution in the bias relation. At
second order the non-local bias function can be expressed as

δh(x) = b1

{

δm(x) +
c2
2
(δ2m(x)− 〈δ2m〉) + γ2

b1
G2(x)

}

, (3.1)

where γ2 represents the non-local bias parameter (Chan et al., 2012; Baldauf et al., 2012).
This non-local component depends on the divergence θv of the normalised velocity field
(v/H/f)

G2(x) = −
∫

β12θv(q1)θv(q2)Ŵ [q12R]eiq12·xd3q1d
3q2, (3.2)

where β12 ≡ 1 −
(

q1·q2

q1q2

)2
represents the mode-coupling between density oscillations with

wave vectors q, which describe tidal forces. W [q12R] is the Fourier transform of a spherical
Top-hat window with radius R. In order to be consistent with the definition of second-order
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bias parameter, we express to the non-local component of the biasing relation (3.1) using the
quantity g2 ≡ 2γ2

b1
.

Evidence for significant contributions of such a non-local component to bias function has
been reported in Fourier space for different simulations (Chan et al., 2012; Baldauf et al.,
2012). However, it remains unclear how strongly these non-local contributions affect the bias
and consequently third-order statistics of large-scale halo distributions in configuration space.
We address this latter question in this Chapter and suggest possibilities to employ third-order
statistics for accurate bias measurements, independently of non-local bias.

This chapter is organised as follows. In Section 3.2 we present the employed bias estimat-
ors. In Section 3.3 we discuss and comment our results. Finally we summarise our work and
draw conclusions in Section 3.4.
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3.2 Bias from three-point auto- and cross-correlation

In this section we study various bias estimators from second- and third-order clustering stat-
istics of haloes and matter, in order to quantify and understand differences between these
estimations. Such an understanding is crucial for using third-order statistics in order to
break the degeneracy between the linear galaxy (or halo) bias and the linear growth of mat-
ter fluctuations, as we discussed in Chapter 2.

In this previous chapter we found that the linear bias from the reduced three-point correla-
tion in configuration space tends to overestimate the linear bias from the two-point correlation,
even when the analysis is performed at very large scales (> 30 h−1Mpc). Similar findings have
been reported in the literature (e.g. Manera and Gaztañaga, 2011). Such deviations can be
expected from non-local contributions to the bias function (Chan et al., 2012; Baldauf et al.,
2012). Furthermore, non-linear terms in the perturbative expansion of correlations functions,
which are usually neglected in the analysis of clustering measurements, can contribute to the
deviations between the different bias estimators (Pollack et al., 2012). The goal of this section
is to investigate the effect produced on various bias estimators of non-linear and non-local
contributions to the biasing function.

The three-point halo-matter matter cross-correlation can be defined similar to the three-
point auto correlation (equation(2.19)) as

ζhmm(r12, r13, r23) ≡ 〈δh(r1)δm(r2)δm(r3)〉, (3.3)

where the vectors r1, r2 and r3 form a closed triangle which can be parametrised in terms
of the size of its three legs rij ≡ |rj − ri| or in terms of the two legs r12, r13 and the angle
α23 = acos(r̂12 · r̂13) between them. Analogously to equation (3.3) one can define ζmhm and
ζmmh. For defining a growth independent reduced three-point cross-correlation we compared
to the hierarchical three-point cross-correlation (Fry, 1984a)

ζhmH ≡ ξhm12 ξhm13 + ξmh
12 ξhm23 + ξmh

13 ξmh
23 . (3.4)

Note that here ξhmij referrers to the two-point cross-correlation between haloes at position
ri and matter at position rj, which is called ξ× in the remainder of this thesis. Combining
equation (2.19) and (3.4) one can define the symmetric reduced three-point cross-correlation
function (Pollack et al., 2012)
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Figure 3.1: Left: three-point auto- and cross-correlation for matter and haloes (Qh, Q
× and

Qm) in the mass sample M2 at redshift z = 0.5, measured using triangles with fixed legs of 32
and 64 h−1Mpc for different opening angles α (circles, crosses and squares respectively). Fits
based on the local bias model (i.e. g2 = 0) to Qh and Q× from equation (3.6) and (3.7) are
shown as thick dashed-dotted and dash-double dotted lines. Predictions for the matter three-
point correlation and the non-local component from perturbation theory (QPT

m and QPT
nloc) are

shown as thick dashed and thin dash-dotted lines respectively. Right: the Qh and Q× versus
Qm relation, used for deriving the linear and quadratic parameters b1 and c2 in the local bias
model. Thin dashed-dotted and dash-double dotted lines show the non-local contributions to
Qh and Q× respectively, using g2 from ∆Qcg, equation (3.12).
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Figure 3.2: Linear bias of the halo mass sample M2 at the redshift z = 0.5, measured inde-
pendently of second-order contributions (local and non-local) to the three-point correlation
via equation (3.11) by combining Qh, Q

× and Qm (open circles). The fit to the measurements
is shown as solid line. The linear bias measurements, derived from ξ, Qh and Q× within the
local bias model (via equation (2.14), (3.6) and (3.7) respectively with g2 = 0) are shown as
dashed, dash-dotted and dash-double dotted lines respectively.

Q×
h ≡ 1

3

ζhmm + ζmhm + ζmmh

ζhmH
. (3.5)

The reduced three-point auto-correlations for matter and halo density fields are defined ana-
logously as Qm ≡ ζmmm/ζmm

H and Qh ≡ ζhhh/ζhhH (see equation (2.20)). Q×
h , Qh and Qm

quantify any departure from the hierarchical ansatz (Fry, 1984b). As in Chapter 2 we will
refer to the reduced three-point correlation as the three-point correlation in the following.

Inserting the non-local quadratic bias model (equation (3.1)) into the definition of the
three-point correlation for haloes yields, via a second-order perturbative expansion, in the
limit of small density fluctuations and large triangles

Qh =
1

b1

{

Qm + [c2 + g2Qnloc]
}

, (3.6)

which can be generalised to the case of three-point cross-correlation,

Q×
h =

1

b1

{

Qm +
1

3
[c2 + g2Qnloc]

}

(3.7)

These expressions differ significantly from the ones obtained from the local bias model, as they
include the non-local contribution to the three-point halo correlation Qnloc, which we present
in more detail below. The expression for the local model, which we assumed in Chapter 2
corresponds to a vanishing non-local bias parameter, i.e. g2 = 0. Since Qnloc is a function of
the opening angle α ≡ α23, the three-point halo auto- and halo-matter cross-correlations are
therefore no longer linearly related to the matter three-point correlation. This α dependence
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Figure 3.3: Left: The difference between the three-point auto- and cross-correlation Qh and
Q× (∆Qcg), multiplied with the linear bias from the two-point correlation (open circles) as
a function of triangle opening angle α for M2 at z = 0.5. According to equation (3.12)
this expression is equivalent to c2 + g2Qnloc. If the bias function is quadratic and local, the
measurements should correspond to the quadratic bias parameter c2, as measured from the
halo-matter cross-correlation via equation (3.7) with g2 = 0 (dash-dotted line). Fits from
equation (3.12), based on the PT prediction for the non-local component, Qnloc, are shown
as thick solid line. The quadratic bias parameter, derived from this fit (∆Qcg) is shown as
dashed line. The three-point correlations were calculated from triangles with fixed leg of
r12 = r13/2 = 32 h−1Mpc. Right: same as left panel, but showing the measurements versus
the Qnloc prediction for each opening angle.

arises from the fact that Qnloc originates from tidal forces, which modify the shape of matter
fluctuations.

We can predict Qnloc from the power spectrum, assuming that the perturbations of the
density field δm are small (i.e. the divergence of the velocity field θv in equation (3.2) is linear
and therefore equal to δm. It also requires to assume that the legs of the considered triangles
are large compared to the smoothing radius R (large separation limit, i.e. in equation (3.2),
W (Rq12) ≃ W (Rq1)W (Rq2)). For such conditions the perturbation theory (hereafter also
referred to as PT) offers the possibility to express the non-local three-point correlation Qnloc

in terms of

Γ123 ≡
[

ξ(r12) + 3
φ′(r12)

r12

] [

ξ(r13) + 3
φ′(r13)

r13

]

L2(cosα12), (3.8)

where
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Figure 3.4: Same as right panel of Fig. 3.3, but for the halo mass sample M3 at the redshift
z = 0.0. Results are shown for triangles with fixed legs r12 = r13/2 of 12 and 36 h−1Mpc (open
circles and filled triangles respectively). Dashed and dashed-dotted lines are the corresponding
fits to equation (3.12), used to derive the quadratic and non-local bias c2 and g2. The black
solid line corresponds to the local Lagrangian prediction for c2 + g2Qnloc with c2 = 0 and
g2 = 2γ2/b1, while γ2 = −(2/7)(b1 − 1). The γ2 values from these fits are shown in Fig. 3.6.

φ(r) =

∫

d3k
P (k)

k2
W 2(kR)

sin(kr)

kr
(3.9)

and φ′(r) ≡ dφ
dr (r). One can show that

Qnloc(r12, r13, α) =
2

3

{

Γ123 + Γ312 + Γ231

ζmm
H

− 1

}

. (3.10)

The angular dependence of the non-local component of the three-point halo auto- and cross-
correlation functions is encoded in equation (3.8) via the second-order Legendre polynomial
L2(cosα12). As shown by Barriga and Gaztañaga (2002) in their equation (8), at the tree-
level and for large separations, the matter three-point correlation can be expressed in the
same way as expression (3.10). That is with respect to circular permutations of a function
Γ̂123, expressed as a monopole, a dipole and a quadrupole in cos(α12) (similar Legendre
expansion have been used in Fourier space by Schmittfull et al., 2015) As a result, a non-
local component, such as the tidal field G2 (equation (3.2)), modifies the amplitude of the
quadrupole of Γ̂123 by an amount proportional to the non-local bias g2.

Moreover, by comparing equations (3.6) and (3.7) one can see that quadratic and non-
local contributions to the halo three-point correlation affect the cross-correlations by a factor
1/3 less than the auto-correlation. The linear bias, in contrast, affects the auto- and cross-
correlation equally. We will use this property to isolate the linear from the quadratic and
non-local bias, as explained below.

In the following we study non-local contributions to the halo bias in the MICE-GC simula-
tion. Ours measurements of the three-point correlation are based on the algorithm suggested
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in Barriga and Gaztañaga (2002) (see also Appendix A.1 for studies of numerical effects in
this algorithm and the impact of covariance between angular bins on the bias measurements).
Errors are derived from 64 cubical Jack-Knife samples. We first focus on the mass bin M2
at redshift z = 0.5 to present our methods for extracting the parameters b1, c2 and g2 from
three-point correlations, which were computed using triangles with fixed legs of r12 = 32 and
r13 = 64 h−1Mpc. Afterwards we will present results for all mass samples and redshifts at
various scales.
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3.2.1 Local bias

Our first method for measuring bias from three-point correlations is based on the local bias
model (g2 = 0). The linear and quadratic bias parameters are computed from the equations
(3.6) and (3.7) by fitting the b1 and c2 parameters which allows for mapping Qm into Qh

and Q×
h , i.e. Qh = (Qm + c2)/b1 and Q×

h = (Qm + c2
3 )/b1. This approach is equivalent to

the bias measurements from Q in Chapter 2, where we also explain the fitting procedure.
The two estimations of the doublet b1 and c2 are respectively called bQ, cQ and bQ

×, c×Q. In
Fig. 3.1 we show how well a linear relation, expected from the local bias model, describes
the mapping between the matter three-point correlation and the three-point auto- and cross-
correlation functions of haloes. However, we can see that the slope of the linear relation is
different when considering auto- and cross-correlations, which indicates that the two methods
deliver inconsistent results (see right panel of Fig. 3.1). As explained in Chan et al. (2012)
this linear relation between matter and haloes might arise from a projection effect due to
the fact that we neglect the non-local component g2Qnloc. In Fig. 3.1 we show that, if the
contribution of Qnloc is small compared to Qm (i.e. g2 is small, see Fig. 3.6), then they can
indeed be approximately related by a linear relation. The ignored non-local contribution to
halo three-point correlations can therefore be absorbed by b1 and c2, without substantially
decreasing the goodness of the Qh and Q× fits. The same effect has been shown in Fourier
space by Baldauf et al. (2012) in their Fig. 1. This ignorance might leads to incorrect bias
measurements, unless g2 = 0 as we show below.
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3.2.2 Non-local bias

Our second method for measuring bias from three-point correlations is a new a approach,
which combines auto- and cross-correlations. These two statistics can be combined in two
different ways which allow us to isolate the linear bias from quadratic and non-local con-
tributions to the bias model. Both combinations take advantage of the fact that the linear
bias, b1, affects Qh and Q×

h equally, which is not the case for the quadratic and non-local
contributions, c2 and g2. The linear bias can be obtained by combining the equations (3.6)
and (3.7),

b∆Q ≡ −2
Qm

∆Q
, (3.11)

where ∆Q ≡ Qh − 3Q×
h . The interesting property of this linear bias estimator is that it is

independent from quadratic (local and non-local) contributions to the bias function. It can
therefore be used to verify if such contributions are indeed the reason for deviations between



3.2. BIAS FROM THREE-POINT AUTO- AND CROSS-CORRELATION 39

 1

 2

 3

 4

 5

 6

b 1

M0

Q

Q (prediction)

Qx

∆Q

ξx

M1

z = 0.5

M2 M3

-1

0

1

2

3

c 2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

15 20 25 30 35

g 2
 =

 2
 γ

2 
/ b

1

r12 [h-1 Mpc]

local Lagrange

15 20 25 30 35

r12 [h-1 Mpc]

15 20 25 30 35

r12 [h-1 Mpc]

15 20 25 30 35

r12 [h-1 Mpc]

Figure 3.5: Scale dependence of bias measurements from three-point correlations. Measure-
ments were derived using triangles with r13/r12 = 2 configuration, while scale of the smaller
triangle leg, r12, is denoted on the x-axis (slightly shifted for clarity). Results are shown
for the four mass samples M0-M3 (from left to right) at redshift z = 0.5. The linear and
quadratic bias (top and central panel respectively), obtained from three-point auto- and
cross-correlations using the local bias model (g2 = 0) via the equations (3.6) and (3.7) are
shown as blue circles and green crosses respectively. Predictions for effective linear bias meas-
urements via Q while ignoring non-local bias (see Section 3.2.4) are shown as orange crosses.
The linear, quadratic and non-local bias, measured using combinations of three-point auto-
and cross-correlations (∆Q, equation (3.11) and (3.12)) are shown as red triangles. The lin-
ear bias is compared with reference measurements from the two-point cross-correlation (b×ξ ),
shown as black, dashed line. The non-local bias parameter g2 ≡ 2γ2/b1 (bottom panel) is
compared with predictions from the local Lagrangian model (γ2 = −(2/7)(b1 − 1)). (red
dashed line). Error bars denote 1σ uncertainties.
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linear bias estimations from two- and three-point correlations, as we speculated in Chapter 2.
Note that the relevant quantities involved in equation (3.11) depend on the opening angle α,
so does the estimator b∆Q. Hence, our final b∆Q measurement is derived by fitting a constant
to b∆Q(α). The use of ∆Q has also the advantage that off-diagonal elements in the covariance
matrix between different opening angles are smaller. This covariance is difficult to access and
its Jack-Knife estimation can affect the bias estimation at the 5% level (Appendix A.1).

We show b∆Q for M2 at z = 0.5 in Fig. 3.2 at each angle probed by the three-point
functions together with the corresponding fit. In the same figure we also display the estima-
tions for the linear bias, derived from three-point auto- and cross-correlations (bQ and bQ× ,
obtained from equations (3.6) and (3.7), assuming the local bias model, i.e. g2 = 0). As a
reference, we also include the linear bias measurements from the two-point cross-correlation,
b×ξ , which we consider to be a reliable estimate of the true linear bias (see Section 2.3). The
comparison in Fig. 3.2 reveals that the measurement and the fit of the hybrid bias estimator
b∆Q are consistent with the reference bξ, while we see that the biases obtained from bQ and
bQ× are over estimating the linear bias. This result confirms our speculation in Chapter 2,
that differences between bξ and bQ are mainly due to a non-local term in the bias model.

One can notice that, as expected in case of non-local bias, the overestimation is lar-
ger in case of the auto-estimator (bQ) compared to the cross-estimator (bQ×). Note that
Pollack et al. (2012) found an opposite trend, analysing a different simulation in Fourier space
with a different mass resolution and cosmology. Their linear bias measurements from the bis-
pectrum are closer to peak-background split predictions than measurements from three-point
cross-correlations, while the predictions might be lower than the true linear bias (see e.g.
Chapter 4 and references therein).
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3.2.3 Linear and quadratic terms

In order to further verify the presence of non-local contributions to the bias function we
separate Qnloc from Qm by subtracting Q×

h from Qh and define

∆Qcg ≡ Qh −Q×
h =

2

3

1

b1
[c∆Q + g∆QQnloc] , (3.12)

where c∆Q and g∆Q are the estimators of c2 and g2 in equations (3.6) and (3.7). If the bias
function is quadratic in δm and local then the non-local bias parameter g2 is zero. Hence,

c∆Q = b1∆Qcg(3/2) (3.13)

should correspond to c2, independently of the opening angle α. In the left panel of Fig. 3.3,
we show c∆Q, together with c2, estimated from Qh and Q× (cQ and cQ× respectively) from
the local bias model (equations (3.6) and (3.7), for g2 = 0). In the same figure we also show c2
derived from fitting ∆Qcg taking into account a possible non-local bias g2. The first important
point is that the measured c∆Q shows a very clear angular dependence, with a maximum at
around 80 degrees and a positive curvature. The local quadratic model therefore clearly fails in
describing the impact of bias on three-point correlations. The right panel of Fig. 3.3 displays
the measurements of ∆Qcg with respect to the tidal, non-local component of the three-point
function Qnloc, as predicted by equation (3.10). It shows that measurements are compatible
with a linear relation between ∆Qcg and Qnloc, which is expected in the second order non-local
bias model. It therefore confirms the presence of non-local bias due to tidal disruption (G2) in
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the matter field. For such a linear relation, the value of ∆Qcg corresponds to the second-order
bias c∆Q when Qnloc = 0, while its slope provides a direct insight to the non-local bias g2.
Finally, by comparing the various estimates of the second-order local bias c2, one can see
that, when assuming a local bias, the results differ significantly from the ones obtained when
taking into account a possible non-local component into the biasing relation. However, the
estimation of c∆Q

and g2 might be affected by shortcomings of the PT predictions for Qnloc.
To verify how well the PT predictions describe the measurements at different scales we show
the relation between ∆Qcg and Qnloc derived from triangles with fixed legs r12 = r13/2 of 12
and 36 h−1 Mpc respectively in Fig. 3.4 for the mass samples M3 at z = 0.0, for which we find
a large non-local bias amplitude. At large scales (r12 = 36 h−1 Mpc) the slope of the measured
∆Qcg - Qnloc relation is comparable with the local Lagrangian prediction. Interestingly at
small scales the ∆Qcg - Qnloc relation is also linear, while the slope has the opposite sign than
at large scales. The linearity at small scales indicates that higher-order terms enter the Q in
a similar way as second-order non-local contributions to the bias function. This suggests that
linear bias measurements can be improved by using the prediction for Qnloc, while using the
local Lagrangian prediction for the non-local bias g2 is only appropriate at extremely large
scales.
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3.2.4 Scale dependence

Based on the methods for measuring linear, second-order and non-local bias from Q and Q×

(bQ, bQ× , b∆Q, cQ, cQ× and c∆Q), which were presented above, we now apply our analysis to
each of the mass samples M0-M3 at z = 0.5. We study the scale dependence of our results as
before by varying the size of the triangle leg r12 between 12 h−1Mpc and 36 h−1Mpc) while
fixing r12/r13 = 1/2. The various bias estimations are presented in Fig. 3.5 for different
triangles sizes, defined by the length of r12.

From the comparison between the different bias estimations we draw similar conclusions
as from the example of M2 at z = 0.5. On linear scales (sufficiently large triangles) the
linear bias parameters obtained from each method reaches a regime in which they become
scale independent. However, they do not converge to the same value. In case of the linear
bias, only b∆Q is in agreement with b×ξ , while bQ and bQ× overestimate the linear bias; this

overestimation is stronger in the case of Q than Q×. We compare this overestimation with
predictions. These predictions are based on the fact that both, the local and the non-local
bias model deliver relations between Qh and Qm, which agree with the measurements. Hence,
one can obtain the effective bias derived from anlaysing Q in the local bias model with the
ansatz Qh ≃ (Qm + c2 + g2Qnloc)/b1 ≃ (Qm + ceff2 )/beff1 . Using Qm and Qnloc from the
power spectrum and measurements of of b1, c2 and g2 from the ∆Q approach one can derive
the values for beff1 and ceff2 . The values for b1, shown in the top panel of Fig. 3.5, agree
with the bQ measurements. Hence the overestimation of the linear bias by bQ can indeed be
attributed to the negligence of the non-local bias (which is probably contaminated with local
second-order terms).

The scale dependence shown for the high mass bin M3 in Fig. 3.5 shows that, if the
analysis is performed at too small scales, then one can measure a positive non-local bias,
while it is in reality negative (as we see from the results derived at large scales). We indeed
verified that for highly biased tracers and small triangles, the curvature of c∆Q flips from
positive to negative. This scale dependence indicates a domination of the signal by non-linear
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Figure 3.6: Non-local bias parameters γ2 and g2 = 2γ2/b1 versus the linear bias from the
two-point cross-correlation, b×ξ . Measurements, derived from ∆Qcg = (Qh−Q×) via equation
(3.12) are shown as symbols with 1σ errors. Results are shown for Q measurements based
on triangles with fixed legs of r12 = 12, 24 and 36 h−1Mpc and r12 = r13/2 configurations
(from the top to the bottom). Crosses, open squares, open circles and open triangles show the
non-local bias, measured for the mass samples M0, M1, M2 and M3 respectively at redshift
z = 0.0. Stars, closed squares, closed circles and closed triangles show the corresponding
M0-M3 measurements at z = 0.5. The measurements for r12 = 36 h−1Mpc are approximated
with γ2 = −(2/7)(b1−0.8) (black dash-dotted lines) and compared with the local Lagrangian
prediction (γ2 = −(2/7)(b1−1)) as well as to a fit given by Chan et al. (2012, γ2 = −(2/7)(b1−
1.43)), shown as solid and dashed black lines respectively.
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terms in these cases. However, for lower mass samples and large scales, for which we expect
non-linear contributions to converge to zero, we still see a strong angular dependence of c∆Q,
which speaks for the presence of non-local bias contributions. Hence, we have shown that all
the mass sample used in the present analysis exhibit a detectable non-local component.

In case of estimators of the second-order bias c2 (middle panel of Fig. 3.5) we observe the
same tendency, however we do not have a reference estimate. As a result we shall be more
confident in the estimation of c2 coming from c∆Q. We compare the latter to measurements
from third-order moments in Section 3.3. A comparison with c2 derived from various methods
will be presented in Bel et al. (in preparation).

The bottom panel shows that each mass sample comprises non-local bias which signific-
antly differs from the local model γ2 = 0. These measurements therefore constitute the first
detection of non-local bias in configuration space. In the case of M0 and M1 the amplitude
of the non-local bias strongly differs from the local Lagrangian biasing relation between the
halo and matter field (Mo and White, 1996).

3.2.5 Non-local to linear bias relation

Following Chan et al. (2012), we compare our non-local bias measurements to the linear bias
derived from the two-point cross-correlation in the top panels of Fig. 3.6. This comparison
includes measurements at redshift 0.0 and 0.5 which are based on triangles with r12/r13 = 1/2
configurations. For very large triangles (r12 = 36 h−1Mpc) our results indicate a linear relation
between the non-local γ2 and the linear b1 bias, as expected for the local Lagrangian biasing.
However, the amplitude of this relation lies below the local Lagrangian prediction, which is the
opposite of what was reported by Chan et al. (2012). Some work is currently ongoing, aiming
to explain whether these differences result from the fact that Chan et al. (2012) conduct their
measurements using the Bispectrum in Fourier space, while we employ the reduced three-
point correlation in configuration space. A further contribution to the discrepancies could
arise from differences in the simulation, such as mass resolution effects, or differences between
cosmological parameters.

Our measured b1 − γ2 relation shows the same tendency as those of Baldauf et al. (2012),
Sheth et al. (2013) Saito et al. (2014) who also find γ2 to be below the local Lagrangian
prediction (see Table 3.1 for the cosmologies assumed in these studies). How strongly the
deviations between the results from different studies are driven by differences in the cosmology,
in the simulation analysis or in the halo definition remains subject of current studies.

Note also that the departures from the local Lagrangian prediction in Fig. 3.5 are strongly
scale dependent for highly biased samples (bξ & 2), which indicates the presence of non-linear
contamination to Qm and Qnloc (e.g. Saito et al., 2014).
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3.3 Results

In the previous section we studied measurements of the linear, quadratic and non-local bias
parameters (b1, c2 and g2 respectively). These measurements were derived from three-point
correlations taking two different approaches.

The first approach is to compare the three-point auto- or cross-correlation with the three-
point matter auto-correlation to derive the linear and quadratic bias parameters via equation
(3.6) or (3.7). This method is based on the assumption of a local bias model. The linear
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reference Om Ob σ8 h ns

MICE-GC 0.25 0.044 0.8 0.7 0.95
Saito et al. (2014) 0.279 0.0462 0.81 0.7 0.96

Baldauf et al. (2012) 0.272 0.0455 0.81 0.704 0.967
Chan et al. (2012) 0.27 0.046 0.9 0.72 1.0
Sheth et al. (2013) 0.25 0.04 0.8 0.7 1.0

Table 3.1: Cosmological parameters of the MICE-GC simulation (analysed in this work)
compared to other simulations used for studying non-local bias in the literature.

and quadratic bias parameters, derived this way from the auto-correlations are called bQ and
cQ respectively. The corresponding quantities derived from the cross-correlation are called
b×Q and c×Q. The second approach is to use particular combinations of three-point auto- and
cross-correlations. The linear bias parameters, derived this way via equation (3.11), b∆Q,
are independent of any quadratic contributions (local or non-local) to the bias function, as
explained in the previous section. The quadratic and non-local bias parameters are obtained
simultaneously by fitting predictions for the non-local component of the three-point correl-
ation function, QPT

nloc, to ∆Qcg, defined in equation (3.12). The quadratic parameters from
such measurements is called c∆Q.

In this section we aim at comparing the bias estimations coming from these two ap-
proaches. We therefore present the different linear and quadratic bias estimations for the four
mass samples M0-M3 in the comoving simulation outputs at the redshifts 0.0 and 0.5 versus
the mean halo mass in each sample in Fig. 3.7. Our bias measurements are performed using
the same three-point correlations as in the previous sections with 18 opening angles between
0 and 180 degree, which are based on triangles with r12 = r13/2 = 36 h−1Mpc. All error
bars denote the standard deviation, derived from 64 Jackknife samples as described in Section
2.3.6.

The linear bias estimations from the different methods are presented in the upper panel
of Fig. 3.7. We compare these estimations to reference measurements from the two-point
cross-correlation, defined in equation (2.14) and fitted over the range 20− 60 h−1Mpc, which
we consider as reliable (see Section 2.3). The relative deviations to this reference linear bias
are shown in the central panel.

We find that the estimator bQ, which neglects the non-local bias, overestimates the linear
bias by 10-30%. This result is consistent with the expected overestimation, derived via the g2
measurements from ∆Qcg and shown as black filled symbols on Fig. 3.7. Using bias estimator
b×Q we find weaker overestimation of 5-10%, which can be attributed to the lower impact of
non-local contributions to the three-point cross-correlation compared to the corresponding
auto-correlation, as discussed in the previous section. However, besides non-local terms,
the discrepancies between bξ×and bQ can also be caused by various other effects, such as
stochasticity or contributions of higher-order terms to the bias expansion (equation 3.1).
The Jackknife estimation of the errors and the covariance matrix introduces an additional
uncertainty in the bias measurement (see Appendix A.1).

The linear bias parameters from ∆Q is in excellent agreement with the reference for all
mass ranges and at both redshifts. Deviations are in the range of the 1σ of b∆Q, while the
latter roughly correspond to 1% of the amplitude. For the mass sample M3 deviations become
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Figure 3.7: Top: Summary of the linear bias measurements presented in this Chapter. Results are
shown for the redshifts z = 0.0 and z = 0.5 (left and right respectively) versus the mean halo mass
of each mass sample M0-M3, defined in Table 2.1 (lower and upper limits of the mass samples are
marked by vertical grey dashed lines. Symbols are slightly shifted along the the mass axis for clarity).
The smaller panel shows the relative deviation of each estimator with respect to the linear bias from
the two-point cross-correlation (b×ξ , solid lines). The estimators bQ, b

×

Q and b∆Q (from equations (3.6),
(3.7), (??) respectively) are displayed respectively by open squares, open circles and open triangles.
For measuring bQ and b×Q we assumed a local bias model, i.e. g2 = 0. Predictions for the effective linear
and quadratic bias measurements via Q while ignoring non-local bias (see Section 3.2.4) are shown as
closed symbols. Bottom: Summary of the second-order bias measurements cQ, c

×

Q and c∆Q from the
same bias estimation methods, as used for the linear bias in the top panel (equation (3.6)), (3.7)) and
(3.12) respectively). For estimations based on Q we used triangles with (r12, r13) = (36, 72) h−1Mpc
configurations. Error bars denote 1σ uncertainties.
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slightly larger and more significant. We find this agreement also for smaller triangle scales,
as we demonstrated for z = 0.5 in Fig. 3.5 and discussed in the previous section.

The lower panel of Fig. 3.7 shows how the methods compare in terms of estimating
the second-order bias parameter c2. Given the good agreement between b∆Q and b×ξ we
assume that c∆Q is a good estimate of c2. We find that the second-order bias estimated
from the three-point correlations, neglecting non-local bias (bQ and b×Q), leads to significant
departures from c∆Q. This trend is consistent with the expected deviation, shown again
black filled symbols. Interestingly the measured overestimation is stronger in case of the
cross-correlation, except for M3 at redshift z = 0.5. This might result be caused by an
incorrect estimation of the covariance between angular bins of Q, which enters the fits for
the bias estimations (see Section 2.3.6). We found in Appendix A.1 that the bQ estimation
is significantly affected by the covariance estimation, especially for sample with high halo
densities (low halo masses). The impact of the covariance becomes weaker for samples of
massive haloes, where the error is shot-noise dominated. For this reason the c2 estimations
from three-point cross-correlations might be more strongly affected by shortcomings of the
covariance estimation than estimations from the auto-correlations. Note that the covariance
between angular bin of the ∆Qcg estimator is lower than in the case of Qh and Q×, as
off-diagonal elements cancel out.

The bias measurements presented in this section will be compared with predictions from
the peak-background split in Chapter 4.
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3.4 Summary and Conclusion

We studied linear, quadratic and, for the first time in configuration space, non-local bias
of halo clustering with respect to the clustering of the dark matter field. We therefore em-
ployed various second- and third-order statistics of halo and matter density fluctuations in
the MICE-GC simulation. Our goal was to find if the overestimation of the linear bias para-
meter by the three-point auto-correlation, which we found previously in Chapter 2 (see also
Manera and Gaztañaga, 2011; Pollack et al., 2012), can be attributed to shortcomings of the
local quadratic bias model. Understanding this difference is crucial for breaking the degen-
eracy between growth and bias with three-point correlations, which would strongly amplify
the statistical power of large-scale structure surveys. To achieve this goal we employ auto-
and cross-statistics to disentangle the effects of linear bias on second- and third-order halo
statistics from those originating from non-linear and non-local bias.

Based on our findings in Chapter 2 we consider the two-point cross-correlation as an
reliable estimator for the linear bias. We therefore used it as reference in the subsequent
analysis.

For studying the impact of non-linear and non-local bias on the three-point correlation
we compared in Section 3.2 bias measurements from the (reduced) three-point halo-matter
cross-correlation to those from the auto-correlation, using the local quadratic model. We
found the linear bias from the cross-correlation to be closer to the reference than the linear
bias from the auto-correlation. This is expected from second-order perturbation theory, which
predicts the three-point cross-correlation to be less affected by quadratic local and non-local
bias than the corresponding auto-correlation (compare equation (3.6) and (3.7)). However,
the three-point cross-correlations delivers, as the corresponding auto-correlation, linear bias
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measurements, which lie significantly above the reference from the two-point correlation.
To further verify if this overestimation can be attributed to non-linear and non-local

contributions to the bias model we take advantage of the fact that three-point auto- and
cross-correlations are affected differently by non-linear and non-local bias, but equally by the
linear bias (see again equation (3.6) and (3.7)). This property allows for combinations of
the auto- and cross-statistics which isolate the linear from the non-linear and the non-local
bias. We find the linear bias, measured by such a combination of three-point correlations
independently of quadratic or non-local bias (equation 3.11) to be in excellent agreement with
the reference from the two-point correlation (Fig. 3.2). This finding is a strong indication that
non-local terms are indeed the reason for the overestimation of linear bias from three-point
correlation, when ignoring them by assuming a local quadratic bias model. This approach
could be used to measure linear bias by cross-correlating galaxy with lensing maps. The
presence of non-local bias also becomes apparent in our measurements of non-linear bias
contributions (local and non-local) via equation (3.12), which are in good agreement with
predictions for the non-local contributions to the three-point correlation (Fig. 3.3). Our
results therefore constitute the first detection of non-local bias in configuration space and
demonstrate the paramount importance of taking it into account when analysing galaxy
surveys. Using these non-local bias measurements we can predict how strongly the bias from
thee-point correlations is overestimated by three-point auto- and cross-correlations, when non-
local terms are neglected. These predictions are in good agreement with our measurements.

When the considered scales are two small (r12 . 30 h−1Mpc), the non-local bias para-
meter γ2, derived from our measurements, shows a strong scale-dependence, indicating the
presence of higher-order local or non-local terms in the bias function. Instead, for scales larger
than 36 h−1Mpc we find a linear relation between the non-local and the linear bias, over the
whole mass range, as predicted by the local Lagrangian bias model (Fig. 3.6). However, the
amplitude of this relation lies significantly below the local Lagrangian prediction. This is in
agreement with results from Baldauf et al. (2012) and Saito et al. (2014), but in contradiction
with results from Chan et al. (2012), who find the non-local bias to be above the local Lag-
rangian prediction. Whether this latter disagreement comes from the fact that Chan et al.
(2012) analysed the bispectrum in Fourier space using different simulations is the subject of
current investigations. An alternative reason for this discrepancy could be the inaccuracy
of the prediction of the non-local contribution to the three-point correlation of matter, from
which we derive the non-local bias parameter.

Comparing the quadratic bias from the different estimators we found the higher values
from the estimators which neglect non-local bias compared to results from the ∆Qcg measure-
ments, which corresponds to our exception. However, we also find indications for other effects
sources of uncertainties in the measurements, which could be shortcomings in the covariance
estimation.

Our results show that the local quadratic bias model is inadequate to describe halo bias
in the MICE-GC simulation. Non-local second-order terms need to be taken into account
for accurate measurements of the linear bias with three-point correlation function. Two
approaches are possible to do so. Non-local bias can be isolated from linear bias by combining
different third-order statistics (i.e. ∆Q), or the non-local contributions need to be directly
modelled. The first approach, on which we focused in this analysis, might be implemented in
terms of cross-correlations between lensing and galaxy maps. We will test the second approach
in a future analysis, but already provide here an expression for the non-local contribution
to the three-point correlation in configuration space. At scales below 30h−1Mpc we find
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indications for the presence of higher-order terms in the bias function (local or non-local).
Modelling the non-local bias as a linear function of the linear bias parameter, as suggested by
the local Lagrangian bias model, therefore appears to be only suitable at very large scales.

We compare the linear and second-order bias measurement, obtained in the present ana-
lysis to peak-background split predictions in Chapter 4. These various bias estimations can
be used to verify the universal relation between linear and non-linear bias parameters.
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Chapter 4

Comparing halo bias from

abundance and clustering

Abstract

In this Chapter we model the abundance of haloes in the ∼ (3 Gpc/h)3 volume of the MICE
Grand Challenge simulation by fitting the universal mass function with an improved Jack-
Knife error covariance estimator that matches theory predictions. We present unifying rela-
tions between different fitting models and new predictions for linear (b1) and non-linear (c2
and c3) halo clustering bias. Different mass function fits show strong variations in their per-
formance when including the low mass range (Mh . 3 1012 M⊙/h) in the analysis. Together
with fits from the literature we find an overall variation in the amplitudes of around 10% in
the low mass and up to 50% in the high mass (galaxy cluster) range (Mh > 1014 M⊙/h).
These variations propagate into a 10% change in b1 predictions and a 50% change in c2 or
c3. Despite these strong variations we find universal relations between b1 and c2 or c3 for
which we provide simple fits. Excluding low mass haloes, different models fitted with reas-
onable goodness in this analysis, show percent level agreement in their b1 predictions, but
are systematically 5 − 10% lower than the bias directly measured with two-point halo-mass
clustering. This result confirms previous findings derived from smaller volumes (and smaller
masses). Inaccuracies in the bias predictions lead to 5− 10% errors in growth measurements.
They also affect any HOD fitting or (cluster) mass calibration from clustering measurements.

4.1 Introduction

In the previous chapters we studied the halo bias using second- and third-order clustering
statistics. However, besides the clustering also the abundance of haloes as a function of
halo mass (known as the mass function) is related to the bias function. This relation can
be understood with the peak-background split model (hereafter referred to as PBS model,
Bardeen et al., 1986; Cole and Kaiser, 1989; Mo and White, 1996). In this model, large-scale
density fluctuations are superposed with fluctuations at small scales. These large-scale density
fluctuations modulate the background cosmology (i.e. the mean density and the Hubble rate)
around small-scale fluctuations (e.g. Martino and Sheth, 2009). The critical density contrast
for gravitational collapse therefore depends on the environment. In regions with large-scale
overdensities more small-scale fluctuations collapse to haloes than in underdense regions. This

49
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effect modifies the abundance of haloes and also their spatial distribution as they follow the
pattern of the peaks of large-scale fluctuations. Haloes are therefore biased tracers of large-
scale fluctuations in the full matter density field. If the matter power spectrum is known the
halo bias parameters can be predicted from the mass function via the PBS model.

The PBS bias predictions can be used to determine the dark matter clustering from ob-
served galaxy distributions if the halo masses of a given tracer sample are known (or the
other way round). Such an analysis requires that the bias parameters, predicted from the
mass function, are equivalent with the bias which affects the clustering. Studies of this equi-
valence have revealed that the PBS predictions for the linear bias b1 are around 10% below
measurements from two-point clustering statistics. Such deviations might result from assump-
tions of the PBS model, such as spherical collapse, or a local bias relation (e.g. Mo et al., 1997;
Desjacques et al., 2010; Paranjape et al., 2013; Schmidt et al., 2013). Further numerical ef-
fects, like the definition of haloes in N-body simulation, or systematic effects such as the
parametrisation and fitting procedure of the mass function might contribute to the discrep-
ancy between the bias from PBS and clustering (e.g. Hu and Kravtsov, 2003; Manera et al.,
2010). Predictions of the PBS for the relation between halo mass and bias are also employed
in Halo Occupation Distribution models to predict the bias as a function of galaxy properties,
such as luminosity or color (e.g. Cooray and Sheth, 2002; More et al., 2011; Coupon et al.,
2012; Carretero et al., 2015). Inaccuracies of the PBS can affect such halo model predictions
for galaxy bias or the average number of galaxies per halo. Moreover, halos of equal mass could
have different galaxy occupation, depending on their environment (e.g. Pujol and Gaztañaga,
2014). Besides clustering analysis the PBS can be employed for estimating the lower mass
threshold (or mass-observable relation) of observed galaxy samples. This so-called self cal-
ibration method (Lima and Hu, 2004, 2005) uses the fact that both, the clustering and the
abundance of haloes, depend on halo mass. Inaccuracies of the PBS model can change the
estimation of halo mass thresholds and therefore change the cosmological parameter estimates
from such an analysis (e.g. Manera and Gaztañaga, 2011; Wu et al., 2010).

The broad application of the PBS model in large-scale structure analysis and the preci-
sion of abundance and clustering measurements from incoming observational data calls for
a detailed validation of the PBS bias predictions. The purpose of this analysis is to pursue
the study of deviations between halo bias measurements from clustering and PBS predictions
using the wide mass range of the MICE Grand Challenge (hereafter referred to as MICE-GC)
simulation. We thereby focus on the effect of mass function parametrisation and fitting on
PBS bias predictions. The mass function fits are affected by the error estimations. Our
analysis therefore includes a detailed study of the mass function error and covariance. This
analysis leads us to an improvement of the standard Jack-Knife estimator. The study of
PBS bias predictions includes non-linear bias parameters which are important for an analysis
of higher-order correlations of the large-scale halo distribution and two-point correlations at
small scales. We further compare the mass function fits and bias predictions with results from
the literature based on different simulations, to verify a universal behavior of these quantities.

This chapter is organised as follows. In Section 4.2 we present the MICE-GC simulation
and mass function fits. In Section 4.3, we present new galaxy bias predictions, compare
with the literature and find a universal relation between bias parameters. In Section 4.4, we
compare these predictions with the bias directly measured with two-point and three-point
halo-matter cross-correlations of the MICE-GC simulation. Section 4.5 contains a summary
and conclusion. In the Appendix B, we present a new method to improve the Jack-Knife
covariance matrix estimation. This method can also be easily generalised to other statistics,
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such as the two-point correlation function (Hoffmann et al., in preparation).
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4.2 Halo Mass Function

4.2.1 Mass function definition and measurement

The unconditional mass function, dn(m), is defined as the comoving number density of haloes
with masses between m and m + dm. The mass function can be written in a form which is
nearly independent of redshift, cosmology and initial power spectrum (Press and Schechter,
1974; Bond et al., 1991; Sheth and Tormen, 1999) as

νf(ν) ≡ m

ρ̄

dn(m)

dln ν
, (4.1)

where ρ̄ is the mean comoving mass density. The hight of density peaks is defined as

ν ≡ δ2c/σ
2
m(m), (4.2)

where δc = 1.686 is the critical density for spherical collapse (which is the exact solution
value for the spherical collapse in an Einstein-de Sitter universe). The variance of matter
density fluctuations, σ2

m(m), smoothed with a spherical top-hat window with radius R(m) =
(mρ

3
4π)

1/3, can be calculated as

σ2
m(m) =

∫

dk

k

k3P (k)

2π2
W 2(kR(m)) (4.3)

where W (x) = (3/x3)(sinx − x cos x) is the spherical top-hat window in Fourier space and
P (k) is the linear power spectrum. Note that m refers to the matter density field when it
appears as lower index and to the mass, enclosed by R(m), when used as a variable. We
measure the mass function in the MICE-GC simulation at redshift z and convert it to νf(ν),
to predict the halo bias parameters b1, c2 and c3 via the PBS theory (Bardeen et al., 1986;
Cole and Kaiser, 1989; Mo and White, 1996). We do not apply the halo mass correction
suggested by Warren et al. (2006) for low mass resolution, since we analyse haloes down to
20 particles, while this correction was only proposed for larger numbers of particles per halo.
Furthermore, it is not clear that the FoF mass, corrected in such a way is closer to the halo
mass on which the PBS model is based on. More details about how we measure the mass
function are given in the Appendix B.1.

Our measurements of νf(ν) at z = 0.0 and z = 0.5, shown as symbols in Fig. 4.1,
agree visually with the expected weak redshift dependence of FoF mass functions for redshift
independent linking lengths (e.g. Press and Schechter, 1974; Jenkins et al., 2001; More et al.,
2011). Errors and covariances of the measurements were derived with a new estimator which
combines the Jack-Knife approach with predictions for sampling variance from the power
spectrum (see Appendix B.2). We also show in the Fig. 4.1 fits to the measurements, based
on the mass function parametrisation of Tinker et al. (2010, equation (4.4)). The model,
fitted over the mass range M123 (that is, excluding the first mass bin, see Table 4.2) is in
reasonable agreement with the measurements. Including the low mass sample M1 (haloes
with less than 80 particles) to the fitting range leads to poor fits of the model. The fits at
both redshifts differ by less than 5% for ν . 3, confirming low redshift dependence from the
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model reference constrains

Tinker Tinker et al. (2010) A, a, b, c, d free
Warren Warren et al. (2006) d = 0
ST Sheth and Tormen (1999) c = b, d = 1/2
PS Press and Schechter (1974) a = 0, c = 1, d = 1/2
proposal this work c = 1

Table 4.1: Constrains of parameters in equation (4.4) corresponding to different mass function
models. We refer to the models in the text using the abbreviations given in the left column.

measurements. When including lower masses, the redshift dependence is stronger, possibly
because of redshift dependent noise in the low mass FoF detection. At larger masses (ν > 3)
we find up to 10% deviations, which are comparable with the mass function errors. We have
verified that our conclusions also hold for fits over the higher mass range, M23, and different
mass function binnings. A detailed analysis of the mass function fits, including fits of other
mass function models over different mass ranges and different binnings as well as a comparison
with fits compiled from the literature, can be found in Section 4.2.2.

4.2.2 Mass function fits

In order to predict the halo bias from the mass function via the PBS approach we fit different
mass function models to the measurements. Several systematic effects, such as the choice
of the mass function model or the mass range over which the model is fitted can limit the
accuracy of the PBS bias predictions (e.g. Manera et al., 2010; Manera and Gaztañaga, 2011).
The objective of the subsequent analysis is to find out how strongly these effects impact
the predicted linear, quadratic and third-order bias. In particular we aim to verify if the
disagreement between PBS predictions for the linear bias and the corresponding measurements
from two-point correlations, presented in Section 4.4, is driven by possible shortcomings of the
mass function fits. We therefore study in this subsection the fitting performance of different
mass function models.

The latest model in our analysis with the highest number of free parameters is the expres-
sion given by Tinker et al. (2010) (hereafter referred to as Tinker model). It can be written
as

νf(ν) = A[1 + (bν)a]νde−cν/2, (4.4)

where A, a, b, c, d are the free parameters. Fixing certain parameters delivers expressions
which correspond to the mass function models suggested by Press and Schechter (1974),
Sheth and Tormen (1999) and Warren et al. (2006) (hereafter referred to as PS, ST and War-
ren model respectively). The corresponding parameter constrains are summarised in Table
4.1 together with the abbreviations for the reference of each model. In Table 4.1 we also
propose a new constrain, which constitute a new mass function fit. Its advantage is that it
has as many free parameters as the Warren model, but matches the mass function better
when we fit over the whole mass range, as we show later. In our analysis we will focus on the
models of ST, Warren, Tinker and our proposal. We determine the best fitting parameters
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Figure 4.1: Top: unconditional halo mass function, defined in equation (4.1), as a function of
the peak-hight ν ≡ δ2c/σ

2(m). Symbols show MICE-GC measurements with 1σ errors based
on FoF groups at the redshifts z = 0.0 and z = 0.5 (blue circles and red triangles respectively).
Lines show the mass function model of Tinker et al. (2010), fitted to the measurements over
the mass range M23 in the same colour coding as the symbols. C enter: significance of the
deviation between measurements and fits. Bottom: relative deviation between the fits at
z=0.0 and z=0.5 (black solid line). The 1σ errors of the measurements are shown as lines in
the same colour coding as in the top panels. Vertical blue dashed and red dash-dotted lines
denote the limits of the halo mass samples M0-M3 at z=0.0 and z=0.5 respectively, given in
Table 2.1.
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mass range halo masses [1012h−1M⊙] Np

M0123 ≥ 0.58 ≥ 20
M123 ≥ 2.32 ≥ 80
M23 ≥ 9.26 ≥ 316
M012 0.58 − 100 20− 3416

Table 4.2: Halo mass ranges for mass function fits and clustering analysis.

for each mass function model by minimising

χ2 =

Nbin
∑

ij

∆iĈ
−1
ij ∆j, (4.5)

with ∆i ≡ (Xfit
i −Xi)/σXi

and X = νf(ν). Ĉij and σXi
are derived from our new JK estim-

ator, introduced in Appendix B.2. For searching the best fitting parameters we implemented
a Monte Carlo Markov Chain algorithm to explore the parameter space.

In Fig. 4.2 we show the significance of the deviations between the mass function meas-
urements and the best fits by the different models. Results are shown at the redshifts z = 0.0
and z = 0.5, while at each redshift we fit the mass function over the different mass ranges,
which are shown in Table 4.2. The first includes all halo mass samples (M0123), the second
and the third exclude the low mass samples (M123, M23) and the fourth mass range excludes
the highest mass sample (M012). For each fitting range we show fits based on seven different
mass function binnings, dividing the mass range into 20, 25, 30, . . . , 50 logarithmic bins. We
find that the deviations between fit and measurement can vary with the binning. However,
we also see trends which are independent of this systematic effect.

All mass function models show a clear dependence of the best fit on the chosen mass
range, while this dependence is weakest for the ST model. At both redshifts and all mass
ranges the Tinker model fits the measurements best. This can be attributed to the fact that
it contains the highest number of free parameters. The best fit parameters for the Tinker
model are given in Table 4.3. For fits over the whole mass range (M0123) our proposed mass
function model seems to match the measurements almost as good as the Tinker model, while
having one free parameter less. It also has the advantage of producing stable values for the
parameters regardless of the range used for the fit. When the fits are performed only at the
highest mass range (M23) the Tinker and the Warren mass functions fit the data equally well,
while the proposed model is a slightly worse fit. The ST model delivers the poorest fits in all
cases. At z = 0.5 we find strong deviations between fits and measurements when the fitting
range includes the low mass sample M0. This indicates that the FoF detection of low mass
haloes can be strongly affected by shot-noise, while this effect is stronger at higher redshift.

For studying the goodness of the best fits for the different mass function models we present
their best fit parameters and the corresponding χ2 values per degree of freedom (d.o.f.) in Fig.
4.3, where the d.o.f. refer to the number of mass function bins used for the fit. Results are
shown for fits over the mass ranges M0123, M123 and M23, which correspond to the different
minimum peak-hights given by the x-axis. For clarity we show here only results at redshift
z = 0.0, while we find similar results at z = 0.5. For each fit we show mean results with
standard deviations from the seven mass binnings mentioned previously. In addition to the
results derived by taking the covariance between different mass function bins into account in
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Figure 4.2: Significance of the deviations between mass function fits and measurements versus
the peak-hight ν. The top, central top, central bottom and bottom panel show results from
fits over the mass ranges M0123, M123, M23 and M012 respectively. These fitting ranges are
marked by thick grey horizontal lines. Grey vertical lines denote the minimum and maximum
peak-heights of the different halo mass samples M0-M3. Dash-dotted and dashed-double-
dotted black lines denote 0 and 1σ deviations between fits and measurements respectively.
Results for the redshifts z = 0.0 and z = 0.5 are shown in the left and right panels respectively.
Blue, green and orange lines show fits to the models of Tinker, Warren and ST respectively,
while fits to our proposed model are shown as red lines. For each fit we show seven fits, which
were derived from mass function measurements based on dividing the whole mass range into
20, 25, 30, ..., 50 bins.
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z mass range A a b c d
χ2

min

d.o.f.

0.0 M0123 0.28 1.80 0.22 1.08 0.47 25.6
0.5 M0123 0.31 2.74 0.20 1.37 0.87 125.6
0.0 M123 0.24 1.39 0.22 0.94 0.34 3.4
0.5 M123 0.26 1.70 0.17 0.98 0.45 3.5
0.0 M23 0.17 1.10 0.55 0.85 0.01 1.5
0.5 M23 0.22 1.28 0.34 0.86 0.05 1.6

Table 4.3: Best fit parameters for the Tinker mass function model at the redshifts z = 0.0 and
z = 0.5. The mass function was fitted over the mass ranges, M0123, M123 and M23, defined
in Table 4.2. Results are shown as mean, derived from different mass function binnings and
are also displayed in Fig. 4.3 for z = 0.0. The corresponding standard deviations are typically
at the 2% level. The fits were performed taking covariance between different mass bins into
account.
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Figure 4.3: Top: best fit parameters for different mass function models as a function of the
minimum peak-hight (corresponding to the mass ranges M0123, M123 and M23, defined in
Table 4.2) used for fits at redshift z = 0.0. Symbols show the means with standard deviations
derived from seven mass function binnings (see Fig. 4.2). Results from fits performed with
and without taking the covariance between different mass function bins into account are
connected with solid and dashed lines respectively. In the latter case the symbols are slightly
shifted to the left for clarity. Bottom: minimum χ2/d.o.f. of the fits derived using our new
error estimator with 83 JK samples. Note that errors can be smaller than the symbol size.
We find similar results at redhsift z = 0.5.
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the fitting procedure we show results which were computed neglecting the covariance. We find
that neglecting the covariance can lead to different best fit parameters, especially when the
low mass range, where the off-diagonal elements of the covariance have the highest amplitudes,
is included in the analysis (see Appendix B.2). However, the bias predictions are only weakly
affected by the negligence of the covariance (see Fig. B.5). The final conclusions of this
chapter about the comparison between bias predictions and measurements will therefore not
dependent on the negligence or inclusion of the covariance in the analysis.

The χ2/d.o.f. results, shown in the bottom panel of Fig. 4.3, are very high when the
mass functions are fitted over the whole range (lowest minimum peak-hight). This poor
performance, which is even apparent for the Tinker model with its five parameters, is probably
related to the fact that our mass function measurements are not reliable in the low mass range.
In fact the M0123 sample includes haloes with down to 20 particles. For such low numbers
of particles per halo we expect strong systematic effect in the halo mass estimation and
therefore on the mass function (e.g. Warren et al., 2006; More et al., 2011). Furthermore, the
halo samples might be contaminated with spuriously linked FoF groups. If the analysis is
performed using only the high mass sample M23 (highest minimum peak-hight), the χ2/d.o.f.
values for the best fit models drop down to values between unity and four. If we perform
the fits ignoring off-diagonal elements in the covariance matrix we obtain substantially lower
χ2/d.o.f. values, especially when the fits are performed over the whole mass range. This
demonstrates that the covariance cannot be neglected in the fit for the evaluation of the
fitting performance of a mass function model. This statement is even true in the high mass
range where the covariance is dominated by shot-noise.

We also see in Fig. 4.3 that the χ2/d.o.f. can change for different mass function binnings,
which can already be seen in Fig. 4.2. This dependence on the binning is also apparent when
the off-diagonal elements of the covariance matrix are neglected in the fit. However, the best
fit values of each model and the corresponding bias estimations are only weakly affected by
this systematic effect.

Interestingly the best fit parameters of the Tinker model have the same values as the
ones from the Warren model when the fit is performed on the higher mass M23 sample.
Consequently the minimum χ2/d.o.f. are the same in both cases. This indicates that the
parameter d, which is set to zero in the Warren model is not required for fitting the high mass
range, but becomes necessary, when the low mass range is included in the fit. The χ2/d.o.f.
values of our proposed model are smaller than those for the Warren model for minimum peak
hights of ln(νmin) . 0 (M123). This agrees with the visual impression, gained from Fig. 4.2,
that our proposed model delivers better mass function fits than the model of Warren, unless
the analysis is restricted to the highest mass range M23. We come to the same conclusion
when analysing the mass function at z = 0.5.

Mass function universality

In Fig. 4.1 we demonstrated that the mass function, when expressed in terms of the peak-
high ν, depends only weakly on redshift. To verify if this universality also holds for other
cosmologies we compare our mass function fits to the Tinker and Warren model with fits to the
same models, compiled fromWarren et al. (2006, Table 8), Tinker et al. (2010, Table 4, ∆200),
Crocce et al. (2010, Table 2) and Watson et al. (2013, Table 2, FoF Uni.). Crocce et al. (2010)
and Watson et al. (2013) fit mass functions to the Warren model. Note that Crocce et al.
(2010) also used simulations from the MICE simulation suite, with the same cosmology as
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MICE-GC, but rely on the nested boxes approach to cover a similar mass range, while having
a higher resolution in the low mass end than MICE-GC. Tinker et al. (2010) used spherical
overdensities to define haloes. A universal behaviour would not only be useful for PBS bias
predictions, but also for constraining σ8 with galaxy luminosity functions, statistics of the
initial density field and various other application (see e.g. White, 2002).

We compare our mass function fits with those from the literature in Fig. 4.4. We find that
the different mass function fits agree at the 10% level in the low mass end, but differ by up
to 60% at high masses with a significance of about 2σ in terms of error in the measurement.
Departures from universality are expected for different cosmologies but also can result from
systematic effects, such as the halo mass definition (e.g. Lacey and Cole, 1994; Sheth et al.,
2001; Jenkins et al., 2001; White, 2002; Reed et al., 2007; Lukić et al., 2007; Tinker et al.,
2008; Crocce et al., 2010; Courtin et al., 2011; More et al., 2011; Bhattacharya et al., 2011;
Castorina et al., 2014). Furthermore, the fitting procedure affects the presented comparison
as well.

The comparison between the Warren fit from Crocce et al. (2010) and from this work
reveals the strong impact of the latter systematic effects on the fit. These two fits agree
well in the high mass end, when the fit is performed over the whole mass range M0123.
Interestingly we find that these fits differ more strongly from the measurements in the high
mass end than fits from other simulations. Excluding lower masses from the fit (M23) leads to
a better agreement between our fit and the measurement in the high mass end and therefore
to a stronger difference between the results from Crocce et al. (2010) and ours. The lower
amplitude of the Crocce et al. (2010) fit at low masses indicates that the low halo mass
MICE-GC halo samples include more spuriously linked FoF groups, which can be expected
from the low resolution as we concluded before in this section. Furthermore, a lower mass
resolution leads to an overestimation of halo masses. Correcting this effect as suggested by
Warren et al. (2006) and done by Crocce et al. (2010) results in a decrease of the amplitude,
which is shown as grey symbols in Fig. 4.4. The fact that our Warren corrected mass function
is lower than all mass function fits at in the low mass range (ln(ν) . 0) indicates that the
Warren correction leads to an underestimation of halo masses when it is applied on FoF groups
with order of 10 particles. For intermediate masses (0 . ln(ν) . 2) our Warren corrected
measurements are in better agreement with the results from Crocce et al. (2010) than those
without Warren correction. A comparison between the Warren corrected MICE-GC mass
function at z = 0.0 and the Crocce et al. (2010) fit, presented by Crocce et al. (2013), also
shows higher amplitude of the prediction compared to the measurement in the highest mass
bin at 6 1014M⊙h

−1 and an opposite trend for lower masses.

4.3 PBS bias predictions

The bias parameters bN , introduced in equation (2.1), can be obtained from derivatives
of the halo mass function via the peak-background split (hereafter referred to as PBS)
approach (Bardeen et al., 1986; Cole and Kaiser, 1989; Mo and White, 1996). Following
Scoccimarro et al. (2001) we derive the first-, second- and third-order bias parameters from
the mass function fits as

b1(ν) = 1 + ǫ1 + E1, (4.6)

b2(ν) = 2(1 + a2)(ǫ1 +E1) + ǫ2 + E2, (4.7)

b3(ν) = 6(a2 + a3)(ǫ1 + E1) + 3(1 + 2a2)(ǫ2 + E2) + ǫ3 + E3, (4.8)
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Figure 4.4: Top: mass function fits compiled from the literature compared with MICE-GC
measurements and fits from this work over the whole mass range (M0123) and the high mass
range (M23) at z = 0.0. Grey and black symbols show measurements computed with and
without Warren correction for halo masses respectively. All fits from this work are based on
the latter. Bottom: relative deviations between fits and measurements in the same colour
coding as the top panel.
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ǫ1 ≡ cν−2d
δc

ǫ2 ≡ cν(cν−4d−1)+2d(2d−1)
δ2c

ǫ3 ≡ cν[(cν)2−6(d+1/2)cν+12d2 ]−8d3+12d2−4d
δ3c

E1 ≡ −2a
δc[(bν)−a+1]

E2/E1 ≡ −2a+2cν−4d+1
δc

E3/E1 ≡ 4a2+12a(d−1/2)+2(2d−1)2+4d(d−1)−6cν(2d+a)+3(cν)2

δ2c

Table 4.4: Coefficients for computing halo bias parameters from the Tinker et al. (2010) mass
function model via equations (4.6), (4.7) and (4.8). a, b, c and d are the free parameters in
the Tinker model. Bias predictions for other mass function models can be obtained by using
the constrains for the fitting parameters, given in Table 4.1.

where the parameters a2 = −17/21 and a3 = 341/567 are given by the spherical collapse
model. E1, E2, E3, ǫ1, ǫ2 and ǫ3 are computed from the fitted parameters in the mass function
models as shown in Table 4.4. Note that the expressions for the non-linear bias parameters,
derived from the expressions in Table 4.4, are here presented for the first time for the Tinker
model. Applying the parameter constrains from Table 4.1 delivers the equivalent expression
for the PS, ST and the Warren models, as well as for our proposed model.

Predictions for b1, c2 ≡ b2/b1 and c3 ≡ b3/b1, derived from the Tinker mass function fits at
z = 0.0, are shown as a function of FoF halo mass in Fig. 4.5. The results are based on mass
function fits over the whole mass range (M0123) and fits over the higher mass ranges (M123
and M23). The b1 predictions for the different fitting ranges agree in the high mass end where
the fitting ranges overlap and the mass function fits agree as well (see Fig. 4.2). In the low
mass end we find a clear, but relatively weak dependence of the linear bias prediction on the
fitting range. In the case of c2 and c3 this dependence is stronger and reaches to higher halo
masses. This indicates that second- and third-order derivatives of the mass function, used to
derive c2 and c3 cannot be measured as reliable as first-order derivatives, used to derive b1.
We see the same trends when employing the ST and Warren mass function models as well as
for our proposed model, while in these cases the dependence on the fitting range is weaker
(see Appendix B.3). We also find a similar behaviour of the bias predictions at z = 0.5.

The absolute deviations between bias prediction from the Tinker mass function, fitted
over the range M123 and other predictions are shown in Fig. 4.6. These other predictions
are based on Tinker and Warren fits over different mass ranges and fits for the same models
compiled from the literature. We do not show relative deviations to avoid singularities at
the zero crossings of c2 and c3. For the linear bias we find absolute deviations between
the different predictions of ∆b1 ≃ 0.2, which roughly corresponds to relative deviations of
around 10%. The relative deviations for c2 and c3 are around 50%, but can go up to more
than 100%. Mass function fits over the high mass range M23 to the Tinker and Warren
models deliver almost identical bias predictions, which can be expected since also the fitted
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Figure 4.5: Bias parameters b1, c2 ≡ b2/b1 and c3 ≡ b3/b1 (top, central and bottom panels
respectively), derived from mass function fits of the Tinker model via the PBS approach
at z = 0.0. Grey lines show results based of mass function fits over the whole mass range
M0123, blue and red lines show results from mass function fits which exclude the lowest
and the two lowest mass samples (M123 and M23 respectively). Results based on fits to
mass function measurements with 20, 30 and 40 bins are shown as dashed, dashed-dotted
and dashed-double-dotted lines respectively. Results derived from fits of other mass function
models performed in this work are shown in Fig. B.5
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Figure 4.6: Deviations of PBS predictions for b1, c2 and c3 at z = 0.0 (top, central and bottom
panel respectively) derived from various mass functions fits with respect to the bias from our
Tinker mass function fit over the range M123 (shown as blue line in Fig. 4.5) as function of
the peak-hight ν. Deviations between 10 − 30% are marked by grey areas. The line color
coding is the same as in Fig. 4.4. Vertical dashed lines denote the ν limits of the halo mass
samples M0-M3.

parameters are very similar (see Fig. 4.3). In the high mass end these two bias predictions
agree with prediction from the fit to the Warren mass function given by Watson et al. (2013).
Comparing our results to those of Crocce et al. (2010) we find a reasonable agreement for
bias predictions based on the Warren model fitted over the whole mass range M0123.

4.3.1 Universal relation between bias parameters

A universal behaviour of the mass function, as studied in Section 4.2.2, would suggest that the
bias parameters, derived from the mass function are universal as well, when they are expressed
as a function of peak-hight ν. Our comparison with the literature shows that both, the mass
function from different simulations and the bias parameters derived from these mass functions
(especially c2 and c3) can differ significantly from each other. These disagreements might not
only arise from different cosmologies, but also systematic effects, as discussed previously.

We now aim to verify the universality of the relation between the bias parameters. Such
a universal behaviour would be useful for reducing uncertainties in linear bias measurements
from third-order statistics (e.g. Manera and Gaztañaga, 2011, , Chaper 2). In Fig. 4.7 we
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Figure 4.7: Second- and third-order bias parameters, c2 ≡ b2/b1 and c3 ≡ b3/b1, as a func-
tion of the linear bias parameter b1, predicted from the PBS model (top and bottom panel
respectively). Results from this work are based on mass function fits over the mass range
M123. Results from the literature are shown in the same colour coding as in Fig. 4.4. Note
that the mass function fits from Crocce et al. (2010) and Watson et al. (2013) are based on
the Warren model. Black solid lines show polynomials (equation (4.9)), which were fitted to
the PBS predictions of the Tinker model, based on MICE-GC mass function fits from this
work at z = 0.0 (magenta dashed line) with rms per degree of freedom of 0.02 and 0.12 and
for c2 and c3 respectively.
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show the PBS prediction of the second- and third-order bias parameters, c2 and c3, as a
function of the prediction for the linear bias b1. We find a 10% agreement for the b1 − c2, c3
relations for large values of the linear bias (b1 & 1.5). These relations appear to be well
described by second- and third-order polynomials in the case of c2 ≡ b2/b1 and c3 ≡ b3/b1
respectively, with

bN =

N
∑

n=0

αnb
n
1 , (4.9)

as we demonstrate in the same figure. This finding can be expected from expressing b2 and
b3 as functions of b1 with the PS model (Table 4.1). For this model the parameters αn can
be directly predicted as (α0, α1, α2) = (0.51,−2.21, 1) for b2 = b1c2 and (α0, α1, α2, α3) =
(−1.49, 8.02,−6.64, 1) for b3 = b1c3. However, we find smaller rms values with respect to the
Tinker and Warren predictions for the b1 − c2 and b1 − c3 relations, when we leave αn<N as
free parameters. We show values for αn from fits to the Tinker predictions in Fig. 4.7.

For predictions based on our fits over the whole mass range, M0123, we find deviation from
this universal behaviour, while these results involve the low mass samples which we found to be
unreliable previously, possibly due to low resolution and noise is the halo detection. For lower
b1 values the different predictions differ more strongly from each other. However, a weakly
universal relation, especially between b1 and c2, might already help to improve b1 constrains
from third-oder statistics as these two parameters are usually treated as independent. We
will further study this relation with direct measurements of b1 and c2 from simulations in a
future analysis (Bel, Hoffmann & Gaztañaga in preparation).

4.4 Bias prediction versus measurements from clustering

4.4.1 Comparison with bias from ξ

In the previous section we found that the PBS bias predictions depend on the employed mass
function model and the mass range over which the models are fitted. We now aim to verify
how the predictions for the linear bias, b1, in these different cases compare to linear bias
measurements from the two-point halo-matter cross-correlation.

To compare the PBS predictions for the linear bias with the measurements from the two-
point correlation we calculate the average bias prediction in each of the mass samples M0-M3,
weighted with the halo number density n(m),

bN (M) =

∫Mup

Mlow
bN (m)n(m)dm

∫Mup

Mlow
n(m)dm

. (4.10)

Mlow and Mup are the lower and upper limits of each mass sample M, given in Table 2.1. PBS
b1 predictions, based on fits to the Tinker model over the mass range M123, are compared
with the bξ(r12) measurements in the bottom panel of Fig. 2.5. For the high mass samples
M2 and M3 we find clear deviations between measurements and predictions as the latter are
significantly to low at all scales.

The dependence of these deviations on the mass function model and the mass range in
which the models are fitted is shown in Fig. 4.8. Fitting the mass function over the whole
mass range, M0123, delivers b1 predictions which tend to be 1−15%, below the measurements,
except for the low mass samples M0 and M1 at z = 0.0, for which we find up to 5% deviations
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in the opposite direction. We find the strongest variations between bias predictions from
different models when, i) the low mass range at z = 0.5 is included in the mass function
fitting range, or ii) when the bias is predicted for mass samples which are not within the
fitting range (e.g. bias predictions for the mass sample M1, based on fits over the mass range
M23). The first case i) might be explained by noise, contaminating the FoF halo detection,
which results in the poor mass function fits shown in Fig. 4.2 (see discussion in Section 4.2.2).
In this figure we also see that the mass function fits outside the fitting range can strongly differ
for different models. This could cause the strong differences in the bias predictions, described
above as case ii). We do not see that the deviations between PBS bias predictions and bξ
measurements decrease when the analysis is restricted to the higher mass range. This is true
for both redshifts z = 0.0 and z = 0.5 and consistent with results from Manera and Gaztañaga
(2011).

However, restricting the fitting range to the higher mass range M23 we find a good agree-
ment between the linear bias predictions from different mass functions models at z = 0.0 and
z = 0.5. The fact that the fitting performance strongly differs for the different models (see
Fig. 4.3), while all models predict a linear bias with similar deviations to the measurements,
suggests that the goodness of the mass function fit is not the only reason for these devi-
ations, as mentioned in the introduction to this chapter. These results line up with reports of
Manera et al. (2010), who also find the linear PBS bias prediction to lie below measurements
from the power spectrum and two-point correlations, especially at high halo masses. As in
our case their result is independent of the employed mass function model and the way it is
fitted to the measurements.

Furthermore, these authors investigate if differences between the predictions and meas-
urements are related to the mass definition of haloes. They therefore perform their analysis
using FoF groups with different linking lengths, as well as spherical overdensities to define
halo masses. In both cases they find that the PBS model underpredicts the linear bias meas-
urements. In fact one could expect that the halo mass should be higher than those of FoF
groups in order to match the PBS predictions (since shifting the bξ measurements in Fig.
4.8 to higher masses would decrease the deviations between measurements and predictions).
However, halo masses defined by spherical overdensities tend to be below those of FoF groups
(Tinker et al., 2008). This should lead to higher measurements of the linear bias for spherical
overdensities within a given mass range than corresponding measurements for FoF groups,
as found by Tinker et al. (2010). The 10% underprediction of linear bias measurements by
the PBS model, which we see for high mass haloes in Fig. 4.8, is therefore probably a lower
bound. The consideration above also suggests that applying the Warren correction on the
FoF masses could increase the differences between the PBS bias predictions and the meas-
urements. Hence, these differences might not only be related to the halo mass definition, but
also to assumptions of the PBS model, such as spherical collapse or a local bias relation (e.g.
Schmidt et al., 2013; Paranjape et al., 2013). The conclusion, that bias predictions are only
weakly dependent on the employed mass function model does not hold for the higher-order
bias predictions c2 and c3 (see Fig. 4.5, 4.6 and B.5).

Bias ratios

The degeneracy between the growth of matter fluctuations and the bias of observed galaxy
samples is one of the largest uncertainties for constrains of cosmological models derived from
large-scale structure observations. With estimations of the typical host halo masses of such
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Figure 4.8: Top: linear bias parameters b1 for the halo mass samples M0-M3 in the MICE-GC
comoving outputs at redshift z = 0.0 (left) and z = 0.5 (right) versus the mean halo mass of each
sample. Measurements from the two-point halo-matter cross-correlations, ξ×, via equation (2.14),
bξ× , are shown as black crosses with 1σ errors. PBS predictions, derived from MICE-GC halo mass
function fits from this work are shown as coloured symbols, which are slightly shifted to the left on
the mass axis for clarity. The mass range over which the mass function is fitted is marked by a thick
grey horizontal line. Error bars for the predictions are standard deviations derived from the seven
different mass functions binnings shown in Fig. 4.2. Bottom: relative difference between bξ and the
PBS predictions. The different panels show results for predictions based on mass function fits over the
mass ranges M0123, M123, M23 and M012, from the top to the bottom respectively.
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galaxy samples the PBS model can be employed to predict the bias of these samples to break
the growth-bias degeneracy. Besides the galaxies host halo mass estimation, the inaccuracy
of the PBS bias prediction constitutes an additional source of error in this approach. Here we
aim to quantify the impact of such inaccuracies on measurement of the linear growth factor.
The considered growth measurements are based on the ratio of the correlation functions of
galaxy samples at two different redshifts, z1 and z2, multiplied with the inverse ratio of the
bias of these samples (see e.g. Chapter 2). The bias ratio needs to be estimated or predicted,
while its uncertainties propagate linearly into the growth measurements.

In Fig. 4.9 we show the PBS bias ratio predictions for the redshifts z1 = 0.0 and z2 = 0.5
and all combinations of the four halo mass samples M0-M1 at these two redshifts. The
predictions are based on fits of the Tinker model to the mass function of the mass range
M123, which we found to be reliable at both redshifts previously. We find an overall variation
of 5 − 10% for the higher mass range M123, while deviations are stronger when the low
mass sample M0 at redshifts z = 0.0 is taken into account. This variation is stronger than
uncertainties expected from the bξ measurements. The strong deviations for the low mass
range are expected due to the poor mass function fit including M0 at z = 0.5 (see Section
4.2.2). The error in the bias ratio will propagate into 5 − 10% error of the growth factor
measurement. This uncertainty is lower than the uncertainties found for growth measurements
based on bias ratio estimations from the three-point correlation (see Chapter 2). However, the
estimation of the galaxies host-halo mass will introduce additional limitation in breaking the
growth-bias degeneracy. Furthermore, the precision of any HOD fitting or mass interpretation
from clustering measurements will be affected at similar level.

4.4.2 Comparison with bias from ∆Q

We saw in Section 4.3 that the PBS prediction for the second- and third order bias parameters
is more strongly affected by the choice of the fitting range than it is the case for the linear bias.
To verify in which case we can trust the prediction best we compare our measurements to
those from the combination three-point auto- and cross-correlations (∆Q), which we studied
in Chapter 3. The good agreement between the linear bias from ∆Q and ξ suggests that
also the quadratic bias measurements from the ∆Qcg 3.12 are reliable. We thereby use
measurements from 36 − 72 h−1Mpc triangle configurations, while we found in Chapter 3
that the scale dependence of the ∆Qcg is weak. For comparing the measurements from ∆Qcg

in the four mass sample M0-M3 we derive the average predictions, weighted with the halo
number density weighted with the halo number density n(m) via equation (4.10). The results
are shown in Fig. 4.10. The PBS predictions are based on the Tinker model, fitted over the
massranges M0123, M123 and M23 (defined in Table 4.2). We see again that the prediction
vary strongly in the low mass range, when it is excluded from the fitting range, while the effect
is stronger at higher redshift. The variation in the low mass range is comparable with the
variation which we find when employing different mass function models (see Fig. 3.7). The
overall agreement between the PBS bias parameter predictions with results from clustering
is best for the fitting range M123, where the low mass sample with 20 − 80 particles haloes
is excluded. Possible this fitting range constitutes a good compromise between excluding low
mass haloes and covering a large mass range.

The c2 measurements from the three-point cross-correlation enable a verification of the
universal relation between b1 and c2, which we found in Section 4.3.1. This comparison is
shown in Fig. 4.11 using the same measurements as for Q and the same PBS predictions as
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in Fig. 4.10. Regarding the PBS predictions we find the b1-c2 relation to be less tight for
high b1 than in our previous comparison between PBS predictions from the M123 Warren and
Tinker fits with results from the literature. This might results from the inclusion of the low
mass range in the M0123 fit, which we expect to be unreliable (see Section 4.3). Focusing
on the comparison between the predictions from mass function fits over the ranges M123 and
M23 we find them again to agree mutually in the high mass range. This this mass range also
the ∆Qcg measurements are consistent with a universal b1-c2 relation. For b1 ≃ 2 the ∆Qcg

measurements differ significantly from the different PBS predictions, while the latter mutually
agree. At b1 ≃ 1 the ∆Qcg measuremets are again consistent with the predictions based on
M0123 and M123 mass function fits. The predictions differ at b1 ≃ 1 from the measurements
when the mass function fit is restricted to the high mass range (M23).

4.5 Summary and Conclusion

We investigated bias predictions from the PBS model, derived via fits to MICE-GC FoF mass
functions. The accuracy of this model was tested by comparing its predictions for the linear
bias to direct measurements from two-point correlations. In order to verify how the bias
predictions are affected by the goodness of the mass function fit we study the performance
of four mass function models, fitted over different mass ranges at the redshifts z = 0.0 and
z = 0.5.
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Based on the new mass function error and covariance estimator we studied the performance
of different mass function models. We thereby show that the models of Press and Schechter
(1974), Sheth and Tormen (1999) and Warren et al. (2006) are special cases of the mass
function expression suggested by Tinker et al. (2010), as they correspond to certain values of
free parameters in the Tinker model (see Table 4.1). This finding motivated us to propose a
new model by fixing a different free parameter. The fitting performance of the mass function
models, quantified by the minimum χ2 values per number of analysed mass function bins
(d.o.f.), shows strong variations among different models and fitting ranges (see Fig. 4.3).
All models match the measurements better when the low mass range is excluded from the
analysis. This indicates resolution effects, given that we analyse FoF groups with down to 20
particles. We find that the model of Tinker et al. (2010) shows the best overall performance,
which can be expected, since it contains the highest number of free parameters. Our proposed
model delivers results similar to those from the Tinker model when the whole mass range is
analysed, while it has one free parameter less. These two models outperform the model of
Warren et al. (2006) for fits over the whole mass range. A restriction to the high mass range
(≥ 2.32 1012h−1M⊙) leads to very similar fitting performance of the Warren et al. (2006)
and Tinker et al. (2010) models with minimum χ2/d.o.f. values close to unity, while our
proposal is slightly worse. Fits to the model of Sheth and Tormen (1999) shows the most
significant deviations to the measurements in all cases. These findings are independent of
the mass function binning. We find that the inclusion of the covariance into the analysis
substantially increases the minimum χ2 values of the best fits and also has an impact on the
best fit parameters. However, our PBS bias predictions are only very weakly affected by the
mass function covariance, especially when the higher mass range is analysed, where errors are
shot-noise dominated.

The the results described above can be affected by the way the mass function errors and
the covariance between different mass function bins are estimated. We therefore conducted
a detailed study of these quantities which is presented in Appendix B.2. Given the one
MICE-GC realisation, we rely on the internal JK error estimator which we compared to
predictions. The comparison reveals that the JK method is in good agreement with the
predicted mass function error only in the shot-noise dominated high mass range (& 5 1014M⊙),
but overestimates the predictions by up to 80% in the lower mass range, where the errors
are dominated by sampling variance. We explain this difference with a wrong scaling relation
between sampling variance and sample volume, assumed by the standard JK estimator. By
introducing an improved scaling relation, predicted from the linear matter power spectrum, we
propose a new mass function error estimator. Deviations between errors of our new estimator
and the predictions are less than 10% (see Fig. B.1). The advantage of the new estimator
with respect to predictions is that it does not rely on a model for halo bias and the power
spectrum normalisation. We plan to extend this approach to error estimations for correlation
functions (Hoffmann et al. in preparation).

Verifying the dependence of the mass function on redshift, we find that our FoF mass func-
tion measurements show a significant . 5% change of the mass function amplitude between
the redshifts z = 0.0 and z = 0.5 when haloes with less than 80 particles are neglected in
the analysis (corresponding to a lower halo mass limit of 2.32 1012h−1M⊙, see Fig. 4.1).
When including lower masses, the redshift dependence is stronger, possibly because of red-
shift dependent noise in the low mass FoF detection. In order to investigate a dependence on
cosmology we compare our results with mass function fits from the literature. We find differ-
ences between 10% in the low mass end and up to 40− 60% in the high mass end. This is in
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agreement with studies on departures of the mass function universality. However, numerical
and systematic effects, such as halo mass definition, resolution effects or the fitting procedure
can contribute to such deviations with similar impact as the differences in cosmology (see
Section 4.2.2).

After comparing fits from different mass function models to MICE-GC measurements, we
study the bias prediction, derived from the best performing model of Tinker et al. (2010).
Note that the non-linear bias parameter expressions for this model are presented in this work
for the first time. We find that the bias prediction depends on the mass range over which the
model was fitted as the amplitude of the linear bias predictions shows varies by around 10%
for different fitting ranges. For the second- and third-order bias parameters the amplitude
can vary by more than 50%. This dependences of the bias predictions on the fitting range
are comparable with variations obtained when employing fits to other mass function models.
Furthermore we find deviations with similar amplitudes in a comparison with bias prediction
from mass function fits to other simulations, compiled from the literature (see Fig. 4.6).

A universal behaviour of the mass function would suggest that the bias parameters, derived
from the mass function are universal as well. Despite the strong variation among different
bias predictions we find a tight universal relation between b1 and c2 or c3 for b1 & 1.5 across
different simulations and mass function models. For smaller b1 values, these relations are more
dependent on the mass function fit, but still quite tight. The predicted b1 − c2 relation is in
rough agreement with measurements from ∆Qcg (see Chaper 3), especially in the low and high
mass range. Using the PS mass function model we derive that the second- and third-order bias
parameters b2 and b3 can be expressed as second- and third-order polynomials of the linear
bias b1 (see Fig. 4.7). These findings suggests that the linear bias can, at least, constrain the
non-linear bias parameter. This could be used to improve the linear bias measurements from
third-order statistics.

A common application of the PBS model is to predict the linear bias from clustering. We
measured the latter directly from the two-point halo-matter cross-correlation at large scales
in the MICE-GC and compare it to the PBS predictions. The comparison was conducted
using four different mass samples at the redshifts z = 0.0 and z = 0.5. Excluding the low
mass sample M1 with less than 80 particles per halo from the analysis, which we expect to
be affected by noise, we find that the linear bias, predicted from the PBS, model lies 5− 10%
below results from the two-point correlation (see Fig. 4.8). This effect is similar at the
redshifts z = 0.0 and z = 0.5 and independent of the employed mass function model and
the way it is fitted to the measurements, confirming previous findings (Manera et al., 2010;
Manera and Gaztañaga, 2011). Including the low mass sample delivers similar results, but
with a larger scatter among the models. From the analysis in the higher mass ranges we
conclude that shortcomings in the performance of the mass function model are not the main
reason for the discrepancy between PBS predictions for the linear bias and the corresponding
measurements from clustering. An alternative reason for such discrepancies might be given by
the overestimation of halo masses by the FoF algorithm, as those tend to be larger than halo
masses of spherical overdensities (Tinker et al., 2008). However, from our results in Fig. 4.8
we conclude that shifting the linear bias measurements of FoF halo samples to lower masses
would increase the deviations between measurements and PBS predictions. Hence, if FoF
masses are overestimations of the halo masses described by the PBS model then the differences
between linear bias predictions and measurements, found in this analysis, constitute lower
bounds for the inaccuracy of the predictions. This indicates that simple assumptions of the
PBS model, such as a local bias model or spherical collapse might limit the accuracy of the
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linear bias predictions.
We also tested how the bias predictions compare to those derived from ∆Qcg. We see in

Fig. 4.10 that the linear bias from ∆Qcg shows in general a better agreement with b×ξ than
the PBS predictions. Regarding the second-order bias we find measurements an prediction in
a rough agreement, depending on the mass function fitting range, employed for deriving the
predictions. However, its is not clear how reliable the ∆Qcg measurements are, since they can
suffer from short-coming in the Qnloc predictions. A future comparison with c2 measurements
from different methods will help to verify the reliability of the measurements.

The 5 − 10% deviations between linear bias predictions and measurements will affect at
similar level the precision of any HOD fitting or mass interpretation from clustering meas-
urements. We demonstrate the impact of these deviations on growth measurements from
two-point correlations. Such measurements are based on the ratio of the linear bias at two
different redshifts. Ignoring the unreliable low mass range we find 5−10% deviations between
PBS predictions for the bias ratios and measurements from the two-point correleation. This
inaccuracy would propagate linear into measurements of the linear growth factor, based on
PBS bias predictions.
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Chapter 5

Discussion and conclusions

The subject of this thesis was to study the accuracy of galaxy bias measurements from three-
point correlations as well as bias predictions derived from halo abundance via the peak-
background split model. These two methods allow for a determination of galaxy bias inde-
pendently of the growth, which breaks the growth-bias degeneracy - a major limitation in
constraining cosmological models (see Section 2.3).

5.1 Bias predictions from the abundance of haloes

Bias predictions from the peak back-ground split have a broad application in cosmology be-
sides growth measurements, such as cluster mass calibration or HOD modelling (see Section
4.5). These applications rely on the assumption that the bias parameters are predicted ac-
curately as a function of halo mass. Our results demonstrate that these predictions are only
accurate at the 10% level, which constitutes a limitation in the precise analysis of incoming
large data sets from observations. We find that this inaccuracy cannot be solely attributed to
systematic effects, coming from the binning or the fitting of the halo mass function. This find-
ing indicates shortcomings of the peak-back ground split model (see Paranjape et al., 2013;
Schmidt et al., 2013). In fact one might argue that the collapse of density peaks into haloes
does not only depend on the local background density, as assumed in the peak-background
split model, but also on the large-scale velocity field. Hence, the non-local environment might
affect the formation of haloes and therefore how their density distribution is biased with
respect to the full matter density field. Such effects might partly be covered by the fact
that the peak-background split argument is developed in Lagrangian space. Furthermore the
collapse of matter fluctuations can also be affected by the density distribution within the
haloes. More complications in the comparison between bias predictions and measurements
in simulations are introduced by the definition of haloes and the mass which is assigned to
them (see. e.g. Knebe et al., 2011, for a comparison between haloes identified by different
algorithms in N-body simulations).

5.2 Bias measurements from three-point correlations

Our bias measurements from clustering demonstrate that non-local contributions to the bias
function need to be taken into account for accurate bias measurements from three-point
correlations. Neglecting non-local bias causes 20 − 30% and 5 − 10% overestimation of the
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linear bias from three-point auto- and cross-correlations, respectively. This overestimation is
roughly independent of halo mass and redshift at large scales (see e.g. Fig. 2.9). Therefore, it
only has weak effects on the ratio of the linear bias at two different redshifts and consequently
also on the measurements of the linear growth factor. Hence, we were able to measure the
growth with an accuracy which is comparable to measurements from redshift-space distortions
without taking non-local bias into account. However, more accurate measurements (i.e. based
on larger halo samples) might require the inclusion of non-local bias.

This inclusion can be undertaken in two different ways. Non-local bias can be isolated
from linear bias by combining three-point auto- and cross-correlations or the non-local contri-
butions need to be directly modelled. In this study we focused on the first approach, obtaining
accurate measurements of the linear bias. However, the application of this method to obser-
vations is not trivial since halo-matter cross-correlations cannot be directly computed. Such
statistics may be accessible with cross-correlations between galaxy and lensing maps, which
directly probe the full matter field. This approach introduces additional systematic effects,
coming for example from galaxy luminosity or shape measurements. The second approach of
modelling non-local contributions to the three-point correlation (the g2Qnloc term in equation
(3.6)) is easier to implement, but also depends on assumptions on the power spectrum from
which Qnloc is predicted. Since the errors on the linear bias b1 from this approach will increase,
it would be useful to employ a relation between the nonlocal bias g2 and b1 (see e.g. Fig.
3.6). How strongly this b1 − g2 relation is affected by higher-order bias (local or non-local)
or velocity bias at different scales needs to be verified in future investigations. Especially at
smaller scales such non-linearities are important, which is a critical aspect when improving
the statistical power of large-scale structure data sets.

5.3 Non-local galaxy bias

The non-local contribution to the halo bias function arises from the fact that the collapse
of overdensities into haloes depends on the large-scale matter tidal field. However, the tidal
field might not only affect the collapse of haloes, but also the properties of the galaxies which
form in these haloes. This might happen due to various processes. One possibility might be
that the shock heating of the gas during the collapse, which is important for its radiative
cooling, depends on the matter tidal field (e.g. Ryu et al., 2003). Furthermore, the ram-
pressure stripping of hot gas from haloes falling into clusters depends on the infall velocity
(e.g. McCarthy et al., 2008; Font et al., 2008; Close et al., 2013). In addition streams of cold
gas, falling into clusters from the surrounding filaments can have a significant impact on
the properties of forming galaxies (e.g. Dekel and Birnboim, 2006; Klar and Mücket, 2012),
which might also depend on the infall velocity. Also the star formation and AGN activity
within galaxies, which are affected by merging events, might depend on the relative velocity
of two merging galaxies, which are related to the tidal field. All these different possible
relations between galaxy properties and the tidal field suggests that non-local contributions
could enter the galaxy bias functions differently than the halo bias function. In order to
decrease the impact of such effects it might be convenient to leave the non-local bias g2 as a
free parameter in the bias model instead of modelling it as a function of linear bias b1.

comment: change dekel 0.6 Dekel, A., Birnboim, Y., Engel, G., Freundlich,

J., Goerd
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5.4 Three-point correlations in observations

Our analysis has been performed in three-dimensional real space. However, real space is only
observable perpendicular to the line of sight of the observer, since the radial distances of
galaxies can not be measured directly. Distance estimates, derived from redshifts of galaxy
spectra, are affected by the peculiar motions of the galaxies which distort the apparent galaxy
distribution in two different ways. At small scales the thermal motion in gravitational bound
galaxy groups and clusters results in an apparent elongation of the galaxy distributions along
the line of sight. At large scales the coherent motion of galaxies towards overdensities causes
the latter to appear squeezed along the line of sight (Kaiser, 1987). Both effects have an
impact on the three-point correlation (Gaztañaga and Scoccimarro, 2005) and therefore need
to be taken into account for bias measurements in redshift space. A further complication in the
analysis of observational data is that in various modern surveys (e.g. DES or PAU) galaxy
spectra are often measured with low precision in order to efficiently observe many objects
in large volumes. Since this approach introduces strong uncertainties in galaxy distance
estimates such datasets are commonly analysed with angular correlations after binning the
galaxies in broad redshift ranges.

Such a two-dimensional analysis has also the advantage of being independent of assump-
tions on the cosmology, since redshifts are not translated into distances. The growth can
therefore be measured directly from angular (or projected) correlations as a function of red-
shift. This approach is complementary to growth measurements derived from redshift space
distortions, which rely on the line-of-sight signal in the two-point correlation. Another pos-
sible advantage of a two dimensional analysis is that non-local contributions to the three-point
correlation could wash out as a consequence of the line-of-sight integration. This might lead
to more precise bias measurements using the local model and could be studied empirically in
simulations as well as analytically, following Zheng (2004).

However, recent studies of bias and growth measurements from three-point correlations
focus on the 3D analysis (e.g. Maŕın et al., 2013; Moresco et al., 2014; Guo et al., 2014;
Gil-Maŕın et al., 2014) while literature on the angular analysis is relatively sparse (Zheng,
2004; Buchalter et al., 2000; Frieman and Gaztañaga, 1999; McBride et al., 2011a,b). Estim-
ations of the accuracy and the precision of such bias and growth measurements for modern
surveys have not been presented so far, while the volume of these surveys allows for meas-
urements at much larger scales than before, promising a better signal to noise ratios in the
linear regime than in previous analysis. It would therefore be interesting to put more effort
into investigation of projected three-point correlations.

5.5 Outlook

A possible source of error in our study of non-local bias with the three-point correlations
Q is the assumption that the non-local contribution to Q is well described by perturbation
theory, i.e. Qnloc = QPT

nloc. With the methods employed in this work we are not able to verify
if this assumption is true, since we can probe Qnloc only in combination with b1, c2 and g2
via ∆Qcg ≡ Qh − Qx ≃ (c2 + g2Qnloc)/b1 (see Section 3.2). In the following we present a
simple method to probe g2 and Qnloc independently from each other. This method is based
on the multipole expansion of the three-point correlation, suggested by Szapudi (2004), i.e.
Q =

∑

QlP̂l, where P̂l are normalised Legendre polynomials and the coefficients
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Ql ≡ 〈P̂l, Q〉 (5.1)

are projections of the of Q on P̂l. Applying this projection on ∆Qcg ≡ Qh−Q× and assuming
∆Qcg = (c2 + g2Qnloc)/b1 delivers for l > 0

∆Ql
cg =

g2
b1
Ql

nloc. (5.2)

The bias parameters b1 and g2 are independent of the order of the Legendre polynomials l,
while Ql

nloc is independent of the analysed halo sample, defined for example by the halo mass
range with mean halo mass m. Hence, by combining different measurements of the linear
bias (bξ) and ∆Qcg from different halo mass samples mi one can directly measure ratios of
the non-local bias as

bξ(m1)∆Ql
cg(m1)

bξ(m2)∆Ql
cg(m2)

=
g2(m1)

g2(m2)
, (5.3)

independently of Qnloc. This approach might decrease systematic effects in studies of the
difference between g2(b1) relations in simulations with different cosmologies. Furthermore
one can study the relative contributions of different multipoles to Qnloc among measurements
in different simulations as well as theory independently of b1 and g2, since

∆Ql1
cg(m1)

∆Ql2
cg(m1)

=
Ql1

nloc

Ql2
nloc

. (5.4)

The left hand side can of this equation can be directly measured, while the right hand side
can be predicted from the power spectrum.
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Appendix A

A.1 Impact of covariance and resolution in Q on linear bias

estimation

The jackknife estimation of the covariance matrix for Q, Cij, measured for different opening
angles αi, is a potential reason for the discrepancy between the linear bias from two- and
reduced three-point correlations (bξ and bQ respectively). Studying how strong our bias
estimation is affected by the covariance matrix we compare bQ derived with the jackknife
covariance matrix to results measured without taking covariance into account, i.e. by setting
Cij = δij .

We show the covariance matrixes of Q with (24,48) configurations (see Table A.1 for
details) in Fig. B.2. For the low mass sample M0 Cij has a similar shape as results of
Gaztañaga and Scoccimarro (2005). The off-diagonal elements are close to unity, which cor-
responds to Q at intermediate opening angles (70− 80 deg) having covariance with values at
large and small angles. For the high mass sample M3 the covariance is dominated by noise.

Examples for how well the fits to equation (3.6) match the measured relation between Qg

and Qm are shown in Fig.A.2. The fits are shown as coloured line, while their inverse slope
corresponds to bQ and the crossing point with the y-axis marks cQ/bQ. Especially for the low
mass sample at redshift z = 0.0 bias measurements performed without jackknife covariance
seem to deliver better fits to the measurements. According to the covariance of Fig. B.2 the fit
allows deviations in the intermediate angle that are compensated with correlated deviations
at large and small scales. This produces a change in the value of the fitted bias. Whether
this change is correct or not depends on whether the covariance is correct or not. For the
higher mass samples and for both mass samples at redshift z = 0.5 results derived with and
without covariance appear to be more similar. In these cases the off-diagonal regions of the
covariance matrixes are less pronounced, especially for the high mass sample.

In the same figure we compare these fits to results, expected for a linear bias model with
bQ = bξ and cQ=0. For the low mass sample M0 at z = 0.5 we find that the slopes from such
a model match neither the measured Qg −Qdm relations nor the fits to these measurements
from equation (3.6). In all other cases differences between the slopes expected from the linear
bias model and the measured Qg −Qdm relations are less obvious.

A comparison between bξ and bQ measured with and without covariance at different scales
is given in Fig. A.3. Bias measurements from Q performed without covariance tend to lie
closer to the linear bias from the two-point correlation ξ, while the overall trend towards
overestimation remains. The fact that bQ measurements at large scales for low mass samples
at z = 0.0, measured without covariance, lie very close to the corresponding bξ values suggests
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Figure A.1: Normalised covariance Cij between the 18 opening angles of Q(24, 48, α) for the
mass samples M0 and M3 at redshifts z = 0.0 and z = 0.5.
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Table A.1: Characteristics of the triangles used to measure Q. r12 and r13 are the fixed sizes
of two triangle legs. n12 and n13 are the numbers of cubical grid cells per triangle leg. dn is
the tolerance for triangle leg sizes in units of grid cells used to define shells for constructing
triangles. lcell is the size of the cubical grid cells. The Figures showing results based on the
different characteristics are given in the right column.

r12 r13 lcell n12 n13 dn12 dn13 Fig.
h−1Mpc h−1Mpc h−1Mpc

12 24 4 3 6 0.5 0.5 2.6, 2.7, 2.8, A.3
16 32 4 4 8 0.5 0.5 2.8, A.3
24 48 8 3 6 0.5 0.5 2.7, 2.8, 2.9, B.2, A.2, A.3
24 48 4 6 12 0.1 0.1 2.6, A.3
32 64 8 4 8 0.5 0.5 2.8, A.3
32 64 4 8 16 0.1 0.08 A.3
36 72 12 3 6 0.5 0.5 2.8, A.3
36 72 4 12 18 0.05 0.06 A.3

that, besides the jackknife estimation of the covariance, departures from the quadratic bias
model for strongly biased halo samples with high mass at high redshift contribute in a non
neglectable way to the bξ and bQ discrepancy. Furthermore non-local contributions to the
bias model are expected to be strongest for such highly bias samples (Chan et al., 2012). We
concluded that the discrepancy between bQ and bξ cannot be only due to uncertainties in the
covariance matrix estimation.

In Fig. A.3 we also show examples for bQ derived using smaller grid cell sizes and thinner
shells to construct the triangles. These computations are more expensive than those based
on larger grids cells, but closer to the theoretical picture. We find that the bias values change
in most cases by around 5 percent. These changes can be driven by changes in the amplitude
of Q, but also by changes of the covariance matrix. Especially for high mass samples and at
large scales and higher redshift the amplitude of Q becomes more noisy, which can result in
larger χ2 values in the fit. The covariance becomes more diagonal since for smaller grid cells
the different triangle opening angles are more independent of each other.
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Figure A.2: Q for the high and low galaxy (or halo) mass samples M0 and M3 versus Q for
dark matter at the corresponding opening angle. Dotted and dash-dotted lines are χ2-fits
to the Qg-Qdm relation expected from perturbation theory (equation (3.6)). The fits were
performed with and without taking the jackknife covariance of Qg between different opening
angles into account (left and right panel respectively). Long-dashed and double dotted lines
show expected results for a linear bias model, using the linear bias measurement from the
two-point correlation, bξ. Bottom and top panels show results at redshift z = 0.0 and z = 0.5.
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Figure A.3: Relative deviations between the linear bias parameters bξ and bQ derived from
two-point and reduced three-point correlations respectively. bQ was derived using triangles
with r13/r12 = 2 configurations, while the r12 values are shown on the x-axis. Left and right
panels show, respectively, results obtained with and without taking the jackknife covariance
between Q at different opening angles into account. Bottom and top panels show results at
redshift z = 0.0 and z = 0.5 respectively. Open symbols show results from Q using triangles
consisting of 3 and 6 grid cells per leg, while the triangle scale is increased by increasing the
grid cell size. Closed symbols (slightly shifted to larger scales for clarity) show results from
using the smallest available grid cell size of 4 h−1Mpc, while the triangle scale is increased by
increasing the number of grid cells per leg. In the latter case also the shells use to contract
triangles are chosen to be thinner (see Table A.1 for details). Results for M3 then become
very noisy and are therefore not shown.
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Appendix B

B.1 Mass function measurements

The mass function measurements are based on a rewritten form of equation 4.1:

νf(ν) ≡ 〈m〉
ρ̄

dn(m, z)

dlg m

dlg m

dln ν
, (B.1)

where 〈m〉 is the mean halo mass in each logarithmic mass bin. If the mass bins are chosen
to be exactly equal in logarithmic space the mass function amplitude slightly oscillates in
the low mass range due to mass resolution effects. Since the errors are smallest in the low
mass range this artifact can significantly affect the fits, causing a strong dependence of the
fits on the number of mass function bins. Aiming to minimise this mass discreteness effect
we determine the minimum and maximum number of particles per halo in each logarithmic
mass bin, (Nmax

p and Nmin
p respectively. The width of the mass bin in then recalculated as

mp(N
max
p −Nmin

p +1), where mp is the particle mass. The value of ν of each bin is calculated

from the mean mass of haloes in the bin. The term dlg m
dln ν in equation B.1 is derived directly

from equation(4.3).

B.2 Covariance

In order to fit the mass function we estimate the errors and the covariance between different
mass bins. A direct measurement of these quantities would require a large set of independent
realisations of the simulation. Since just one realisation of the MICE-GC simulation was
run we estimate the errors and the covariance using the Jack-Knife (hereafter referred to as
JK) sampling technique. To validate these estimations we compare the results to theoretical
predictions, which we will describe first.

B.2.1 Covariance prediction

Following Crocce et al. (2010) we derive the covariance prediction for the comoving halo
number density from the linear bias relation at large scales,

n(m, r) = n̄[1 + b1(m)δm(r)] + δnsn(m, r), (B.2)

where n(m, r) = N(m, r)/Vtot is the number density of haloes with mass m in a volume (in
our case the simulation volume) around position r, δm(r) is the matter density contrast in the
same volume and b1 = δh/δm is the linear halo bias factor (as before m refers to the matter
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density field when it appears as lower index and to the halo mass when it is used as variable).
The last term, δnsn(m, r), corresponds to noise. We will assume δnsn to be Poisson shot-noise
and therefore independent of r. The predictions for the unconditional mass function can be
related to those for the halo number density via equation (4.1). For the sake of simplicity the
following considerations are based on the latter. The covariance matrix for number densities
of haloes in different mass bins i, j is defined as,

Cij ≡ 〈∆i∆j〉 =
1

Nsamp

Nsamp
∑

k

∆k
i∆

k
j , (B.3)

where ∆k
i ≡ (nk

i − n̄i) and 〈. . .〉 denotes the average over Nsamp statistically independent
volumes k. Note that the ∆ introduced here is not related to the ∆ used in equation (4.5)
for calculating the χ2 values of mass function fits. Inserting the expression for the number
density ni of haloes in mass bin i from equation (B.2) leads to

Cij = n̄in̄jbibj〈δ2m〉+ 〈δsni δsnj 〉. (B.4)

The variance of matter fluctuations 〈δ2m〉 = σ2
m(mtot) can be derived from the power spectrum

via equation (4.3), while mtot is the total mass within the volume in which the mass function
is measured (in our case the total mass in the simulation). Since this mass corresponds to
a very large smoothing radius we can compute σ2

m from the linear power spectrum. The
sampling variance contribution to the covariance is therefore given by

Cs
ij = n̄in̄jbibjσ

2
m(mtot) (B.5)

If the noise term δsn is Poissonian it averages out when taking the mean over many independ-
ent volumes. The contribution of shot-noise to the covariance is then given by

Csn
ij = δij

√
n̄in̄j

Vtot
, (B.6)

while here δij is the Kronecker delta. Based on these considerations we can write the total
covariance as

Cij = Cs
ij + Csn

ij . (B.7)

A more formal derivation for this relation is given by Smith and Marian (2011), see also
Robertson (2010); Valageas et al. (2011); Smith (2012). The diagonal elements of the covari-
ance matrix correspond to the predictions for the mass function variance,

σ2
i = Cii (B.8)

as given by Crocce et al. (2010). For fitting the mass function we work with the normalised
covariance Ĉij ≡ Cij/(σiσj) and differences normalised to σi. (note that here σi referes to the
variance of the mass function in the mass bin i and not to the variance of the matter field,
σm).

B.2.2 Jack-Knife estimation of covariance

For mass function fits in observations the covariance prediction is of limited use since it re-
quires knowledge about the bias and the power spectrum in advance. This problem might be
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solved with an iterative approach for the fit, starting from an initial guess for the power spec-
trum and the linear bias factor. Another possibility to obtain the covariance without know-
ledge of the bias and the power spectrum is to estimate it with the JK sampling technique.
Testing this approach we construct NJK JK samples by subtracting cubical sub-volumes
(hereafter referred to as JK cells) with the size Vtot/NJK from the total simulation volume
Vtot. The basic assumption of the JK approach is that the error scales with the size of the
subtracted volume (e.g. Norberg et al., 2009). We follow the common approach by rescaling
the covariance with the factor (NJK − 1), which leads to

CJK
ij ≡ (NJK − 1)〈∆i∆j〉 =

NJK − 1

NJK

NJK
∑

k

∆k
i∆

k
j . (B.9)

Again ∆k
i = (nk

i − n̄i), but now 〈. . .〉 is the average over the different JK samples k, nk
i is

the comoving number density of haloes in the mass bin i in each JK sample and n̄i is the
corresponding halo number density in the whole simulation volume. Note that the rescaling
factor, (NJK − 1)/NJK , is only weakly justified and can be improved, as we show in Section
B.2.4. As in the case of the predictions the diagonal elements of CJK

ij are the JK estimation

for the variance (σ2
i = Cii) and we normalise ĈJK

ij ≡ CJK
ij /(σJK

i σJK
j ). Note that we can

use the JK approach for studying the covariance between low and high mass bins because
of the large mass range of the MICE-GC simulation. This analysis would not be possible
using nested boxes, where the different mass ranges are covered by different realisations with
different box sizes (e.g. Warren et al., 2006; Crocce et al., 2010; Tinker et al., 2010).

B.2.3 Covariance prediction versus Jack-Knife estimation

A comparison between the error prediction from equation (B.7) and the corresponding JK
estimation from equation equation (B.9) (with σ2

i = Cii) is shown in Fig. B.1 for the redshift
z = 0.0. The error predictions are based on linear bias predictions from mass function
fits to the Tinker model over the whole mass range, for which we expect uncertainties of
around 10% (see Section 4.3). From the prediction we expect the error to be dominated by
sampling variance in the low mass end and by shot-noise in the high mass end. At halo
masses of Mh ≃ 2 1013M⊙ both sources are predicted to contribute equally to the total
error. The JK error estimation is in good agreement with the predictions in the high mass
end (Mh & 5 1014M⊙). This indicates that the JK method is working well for different JK
cell volumes when the error is dominated by shot-noise. Furthermore, the shot-noise is well
described by a Poisson distribution. At halo masses lower than 5 1014M⊙ we find the JK
error to be up to 80% higher than the prediction.

This overestimation is consistent with results reported by Crocce et al. (2010) using the
same simulation box size as the MICE-GC, while for smaller simulation boxes they find the
JK error to be lower than the prediction. The fact that the overestimation of the JK error in
the low mass end is larger for smaller JK cells indicates that the JK assumption of a linear
relation between errors and volume is inadequate when sampling variance is the dominating
source for error. However, increasing the size of the JK cells results in a smaller number of
samples and therefore a stronger noise on the estimated error. In Fig. B.1 we also show a
new JK error estimation, which is in good agreement with the predictions at all masses. This
new JK error is based on an improved scaling between the sampling variance in a JK cell and
in the whole simulation box using the linear power spectrum, as explained in Section B.2.4.
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Figure B.1: Top: mass function error, displayed as standard deviation divided by the mass
function amplitude. Black lines show predictions for the sampling variance and the Poisson
shot-noise contribution together with the resulting total error, derived from the equations
(B.5) - (B.7) (with σ2

i = Cii, dashed, dashed-dotted and solid respectively). Open circles show
the standard JK error estimation, open triangles show the errors from a new JK estimator,
derived from the equations (B.9) and (B.14) respectively. Both estimations are based on 83

JK cells. Bottom: relative deviations between the total predicted error and the new and the
standard JK estimations. The symbol types corresponds to those the top panel. Results
derived from 43 cubical JK cells are shown as grey solid symbols.
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In Fig. B.2 we compare the normalised covariance of the mass function between the mass
bins i and j, predicted via equation (B.7) with the JK estimation from equation (B.9) using
83 JK samples at z = 0.0. The shape of the covariance is in good agreement with results
from Smith and Marian (2011). The low mass bins are highly correlated because of sampling
variance, while high mass bins are uncorrelated as their errors are dominated by shot-noise.
For the comparison of the variances we find a reasonable agreement between the prediction
and the JK estimations, especially in the high mass end. In the low mass end the covariance
seems to be overestimated by the JK approach, while the new JK method reproduces the
prediction well.

We show a more detailed comparison of the covariance amplitudes in Fig. B.3, fixing one
mass bin i and varying the second mass bin j. For 83 JK cells we find the normalised JK
covariance amplitudes to be higher than the predictions with differences of up to 0.3. Using
larger JK cells this overestimation slightly decreases, while results become more noisy. Again
the improved estimation is in better agreement with the prediction. We have verified that
our conclusions also hold for redshift z = 0.5.

B.2.4 Improved Jack-Knife estimator

We now aim to understand the disagreement between the predicted mass function error
and the corresponding JK estimation in order to improve the latter. The NJK JK samples
are constructed by subtracting haloes in JK cells of the size Vtot/NJK from the total halo
distribution. The number of haloes in the remaining JK sample is then given by Nh

JK ≡
Nh

tot − Nh
JKcell. The volume of a JK sample is given by VJK ≡ Vtot − VJKcell. From the

definition of the number density, (n ≡ Nh/V ), and the deviation from the mean over the
total volume ∆ ≡ n − n̄ one can derive ∆JK = −(NJK − 1)−1∆(VJKcell). Note that this
relation also holds for the number density contrast, δJK = −(NJK − 1)−1δ(VJKcell). Hence,
subtracting an overdense JK cell from the total volume generates a slightly underdense JK
sample. This result leads to a relation between the variances of the number density, σ2 ≡ 〈∆2〉,
in the JK cells, and the corresponding variance for the JK samples,

σ2(VJKcell) = (NJK − 1)2〈∆2
JK〉. (B.10)

As for equation (B.3) 〈. . .〉 denotes the ensemble average. The variance of the JK samples is
therefore simply related to the variance at the scales of the JK cells. Note that 〈∆2

JK〉 is not
the variance at the scale of the JK sample volume, σ2(VJK), since the JK samples are not
independent from each other.

From the linear bias model we assume that the variance of the halo number density results
from shot-noise (σ2

sn) and sampling variance (σ2
s), as explained in Section B.2.2. The latter

contribution to the total variance of the JK cells, measured via equation (B.10), is therefore
given by

σ2
s(VJKcell) = (NJK − 1)2〈∆2

JK〉 − σ2
sn(VJKcell). (B.11)

Since n/VJKcell = NJKn/Vtot, the shot-noise for JK cells is related to the shot-noise of the
whole box as σ2

sn(VJKcell) = NJKσ2
sn(Vtot). To obtain the sampling variance at the scale of

the simulation box, σ2
s(Vtot), we multiply σ2

s(VJKcell) with a rescaling factor

rσ ≡ σ2
s(Vtot)/σ

2
s(VJKcell), (B.12)
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Figure B.2: Normalised covariance between mass function bins at redshift z = 0.0, derived
from predictions (top, equations (B.5) - (B.7)), the standard JK estimator (center, equa-
tion(B.9)) and the new JK estimator (bottom, equation (B.14)). The estimations are based
on 83 JK cells.
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which can be predicted from the linear matter power spectrum. This prediction is based on
the assumption that, at large smoothing scales, the sampling variance of the halo number
density is related to the dark matter variance by the linear bias factor, σ2

s = b1σ
2
m. Since

b1 is constant at large scales (see Fig. 2.5), it cancels out in the rescaling factor, hence
rhσ = rmσ = rσ. The prediction is then based on σm(V ), computed from the linear matter
power spectrum via equation (4.3). We can now write the expression for the sampling variance
of the simulation box, based on equation (B.11) in the general case of the covariance

Cs
ij(Vtot) = rσ[(NJK − 1)2〈∆i∆j〉 −NJKCsn

ij (Vtot)]. (B.13)

Note that we have now dropped the index JK in ∆ for simplicity and to be consistent with
equation (B.9) for the standard JK estimator. As in the latter equation the lower indices
refer to the mass bins i and j. With the Poisson shot-noise term from equation (B.6), the
total covariance is then given by equation (B.7) as Cij = Cs

ij +Csn
ij . The resulting expression

constitutes a new error estimation for the mass function which combines direct measurements
of sampling variance via the JK sampling with predictions for the rescaling factor and the
shot-noise. This new estimator can be written more explicitly as

CnewJK
ij = rσ(NJK − 1)2〈∆i∆j〉+ δij

√
ninj

Vtot
(1− rσNJK). (B.14)

As before the diagonal elements correspond to the variance, σ2
i = Cii. Note that for Poisson

shot-noise dominated errors the sampling variance can be approximated as Cs
ij(Vtot) ≃ 0 and

the new estimator reduces to the shot-noise term, CnewJK
ij ≃ δij

√
ninj

Vtot
. In this case we derive

from equation (B.13) that (NJK − 1)2〈∆i∆j〉 ≃ NJKCsn
ij (Vtot). For large numbers of JK

samples (NJK ≃ NJK − 1) this expression is equivalent to (NJK − 1)〈∆i∆j〉 ≃ δij
√
ninj

Vtot
.

The left hand side of this relation is the standard JK estimator. This consideration explains
the good agreement between standard JK estimator with the improved JK estimator and
the predictions at high masses, where the errors and the covariance are shot-noise dominated
(Fig. B.1, B.2 and B.3). In the low mass range our new method is in much better agreement
with the predictions than the standard JK error estimator (B.9). This can be understood
with the following consideration. For large numbers of JK samples (NJK ≃ NJK −1) the new
estimator corresponds to the standard JK estimator if rσ ≡ σ2

m(Vtot)/σ
2
m(VJKcell) = 1/NJK .

Since Vtot = NJKVJKcell, this condition is equivalent to Vtotσ
2
m(Vtot) = VJKcellσ

2
m(VJKcell).

The JK approach can therefore be described as the assumption that σm(V ) ∼ V −1/2 for large
NJK . We show σm(V ), computed from the linear power spectrum via equation (4.3) in Fig.
B.4. The JK assumption is in a clear disagreement with the prediction which causes a too
high rσ and therefore an overestimation of sampling variances at the scale of the simulation
box for the standard JK assumption.

The advantage of the new JK estimation with respect to the prediction is that it does not
require knowledge of the halo bias. Furthermore, this new approach is independent of the
normalisation of the power spectrum as it cancels out in the rescaling factor (equation (B.12)).
However, the large scale power spectrum still needs to be known for accurate rescaling of the
sampling variance via σm(V ). For simulations the linear power spectrum is given. In this
case the new method can be used instead of running several realisations for deriving mass
function errors and covariances. In observations the large scale power spectrum can only be
assumed. However, with such an assumption the accuracy of the error estimation can still be
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Figure B.4: The standard deviation of matter fluctuations, σm, predicted from the linear
MICE-GC power spectrum via equation (4.3) as a function of the volume, V , of the spher-
ical top hat smoothing window (solid line). The dash-dotted line shows the σm(V ) relation
which corresponds to the standard JK estimator (with an arbitrary normalisation, chosen to
coincidence with the predictions at the MICE-GC simulation volume V ). The volumes of the
simulation box and the JK cells are shown as vertical dashed lines.

improved with respect to the standard JK method, which also implies the strong assumption
of σ(V ) ∼ V −1/2. The advantage of the new JK estimation with respect to using independent
subvolumes for the error estimation is that the JK samples cover larger volumes with larger
average numbers of massive haloes. The covariance between the low- and high mass end
of the mass function is therefore better sampled by JK samples than subvolumes. In the
subsequent analysis we will employ our new method for the error and covariance estimation
using NJK = 83 samples.

B.3 PBS bias predictions

We show in Fig. B.5 the PBS bias predictions based on the mass function models studied in
this analysis. The different predictions are based on fits over the four mass ranges M0123,
M123, M23 and M012, defined in Table 4.2. The figure is analogous to Figure 4.5. We find that
the linear bias parameter b1 is less sensitive to the mass function model and the mass function
fitting range than the non-linear bias parameters c2 ≡ b2/b1 and c3 ≡ b3/b1. I addition to
Figure 4.5 we show that the bias predictions become unstable when the low mass sample, M1,
is included in the analysis. Furthermore we show bias predictions, based on mass function
fits over the range M123, which were derived neglecting the covariance between different mass
function bins. We find that the for this example the mass function covariance has a smaller
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Figure B.5: Same as Figure 4.5, but for all mass function models analysed in this work. In
addition we show bias predictions based on mass function fits over the whole MICE-GC mass
range (M0123). For predictions from fits over the mass range M123 we show in addition
results derived without taking the covariance in the measurements between different mass
function bins into account as light blue lines. Note that these lines are covered by other
results in most cases.
.

impact on the bias prediction than the choice of the mass function model, or the mass function
fitting range. We expect the impact of the mass function covariance to increase, when low
mass samples are included in the fit. However, the low mass range is hard to access for
analysis of halo abundance in the MICE-GC, do to resolution effects.
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