INTRATHecal ADMINISTRATION OF AAVrh10 CODING FOR β-GLUCURONIDASE CORRECTS BIOCHEMICAL AND HISTOLOGICAL HALLMARKS OF MUCOPOLYSACCHARIDOSIS TYPE VII MICE AND IMPROVES BEHAVIOR AND SURVIVAL

Author / Autora: Gemma Pagès i Pi
Director / Directora: Assumpció Bosch Merino

Doctorat en Bioquímica, Biologia Molecular i Biomedicina
Departament de Bioquímica i Biologia Molecular
Universitat Autònoma de Barcelona

2015
CONCLUSIONS

1. Intravenous administration of AAV9 and AAVrh10 in mice can transduce sensory neurons in DRG but not motor neurons in spinal cord.

2. AAV9 is more efficient than AAVrh10 in transducing brain and liver after intravenous administration in mice.

3. AAV9 raises more IgG than AAVrh10 after intravenous administration in immunologically naïve mice, which correlates to a rise in NAbs.

4. Intrathecal administration of AAVrh10 by lumbar puncture leads to widespread transduction in the brain, mainly infecting neurons but also some astrocytes and oligodendrocytes.

5. In C57BL/6 mice, intrathecal administration of AAVrh10 also transduces cells of brain blood vessels.

6. Intrathecal administration of AAVrh10 achieves transduction of somatic organs after drainage of AAV vector to the bloodstream.

7. Transduction of brain and liver can be achieved by lumbar intrathecal delivery of AAVrh10 with a dose 20 times lower than by intravenous delivery of AAV9 with comparable efficiency.

8. The intrathecal delivery of AAVrh10 coding for β-glucuronidase to MPS VII mice leads to a better outcome when mice are injected at a younger age and after a longer treatment duration.

9. A dose of 8.75 x 10^{11} vg/kg of AAVrh10-GUSB administered intrathecally to 8-week-old MPS VII mice can transduce the CNS and somatic organs of MPS VII mice and attain β-glucuronidase activity levels that provide therapeutic benefit.
10. The therapeutic benefit of intrathecal AAVrh10-GUSB delivery is evidenced by the decrease and even normalization of the pathological biochemical hallmarks of the disease of MPS VII mice in the CNS and somatic organs. These include LAMP-1 accumulation, lysosomal vesicle enlargement, astrogliosis and secondary elevation of lysosomal enzymatic activity.

11. In brain, there is a correlation trend between the level of β-glucuronidase activity and the biochemical correction attained.

12. The improvement of the physical, cognitive and emotional characteristics of MPS VII mice provided by the treatment allowed a general improvement in the mouse ethogram and a gain of function in their ability to swim.

13. Intrathecal AAVrh10-GUSB treatment attained a 105% increase in MPS VII mice life span, from median survival of 4.2 months to 8.6 months.
MATERIALS AND METHODS
MATERIALS AND METHODS

1. MATERIALS

1.1. VIRAL VECTORS

The AAV vectors used in this work were produced by the Viral Vector Production Unit (UPV) of the Centre de Biotecnologia Animal i Teràpia Gènica in the Universitat Autònoma de Barcelona (sct.uab.cat/upv), following standard operating procedures (Zolotukhin et al. (1999)).

The AAV vectors were produced by triple transfection with the following plasmids:

1. **pXX6**: the plasmid that contains the adenoviral genes required for AAV replication.

2. **rep2capX**: this plasmid contains the *rep* gene of AAV2 and the *cap* gene of the desired serotype. We used the plasmids rep2cap9 and rep2cap10, kindly provided by James Wilson at University of Pennsylvania, Philadelphia, USA.

3. The plasmid with the **expression cassette** flanked by the ITR sequences of AAV2.

The different AAV vectors produced are not strictly serotypes but pseudotypes, because the ITR and the *rep* sequences are from the AAV serotype 2, while the *cap* sequence is from a different AAV serotype. However, since the tropism depends on the capsid proteins, this does not influence the characteristics of the vector.

Briefly, the production procedure consists in a triple transfection of HEK293 cells, using polyetheleneimine as the transfection reagent. After 48 hours, the cellular pellet and the cell culture medium are separated by centrifugation. Both samples are used to isolate the AAV particles produced. The subsequent purification steps are freeze-thaw cycles to lyse the cells, centrifugation to eliminate cellular debris, and the addition of polyethylene glycol to favor the precipitation of AAV particles. Then, AAV vector particles are purified by ultracentrifugation in an iodixanol gradient (based on Zolotukhin et al. (1999)). The titration of the viral vector preps is performed using Quant-iT™ PicoGreen® dsDNA Assay Kit (Life Technologies, Carlsbad, CA, USA), an
intercalating agent that allows the vector DNA quantification by fluorescence detection (Piedra et al. (2015)).

Table 7 shows the characteristics of the expression cassettes of the vectors used, as well as the quantifications, in viral genomes (vg) per ml, of the vector preparations used in this work.

Table 7: AAV vector stocks used in this work

<table>
<thead>
<tr>
<th>vector name</th>
<th>promoter</th>
<th>transgene</th>
<th>post-transcriptional regulatory element</th>
<th>stock titration (vg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAV9-GFP</td>
<td>CAG*</td>
<td>GFP</td>
<td>WPRE**</td>
<td>1.12 x 10^{12}</td>
</tr>
<tr>
<td>AAVrh10-GFP</td>
<td>CAG</td>
<td>GFP</td>
<td>WPRE</td>
<td>Different stocks. Range: 4.2 x 10^{12} - 1.6 x 10^{13}</td>
</tr>
<tr>
<td>AAVrh10-GUSB</td>
<td>CAG</td>
<td>GUSB</td>
<td>WPRE</td>
<td>3.50 x 10^{12}</td>
</tr>
<tr>
<td>AAVrh10-mock</td>
<td>CAG</td>
<td>-</td>
<td>WPRE</td>
<td>1.70 x 10^{12}</td>
</tr>
<tr>
<td>AAV9-Luciferase</td>
<td>CMV</td>
<td>Luciferase</td>
<td>-</td>
<td>5.03 x 10^{12}</td>
</tr>
<tr>
<td>AAVrh10-Luciferase</td>
<td>CMV</td>
<td>Luciferase</td>
<td>-</td>
<td>4.33 x 10^{12}</td>
</tr>
</tbody>
</table>

*CAG is a synthetic promoter with strong and ubiquitous expression in mammalian cells constructed using the cytomegalovirus (CMV) early enhancer element, the promoter and the first exon and intron of the chicken β-actin gene, and the splice acceptor of the rabbit β-globin gene (Miyazaki et al. (1989)).

**WPRE is a sequence placed in cis at 3’ of the transgene in AAV vector constructs. When it is transcribed, WPRE sequence enhances the expression of the transgene (Loeb et al. (1999)). The GUSB cassette (Bosch et al. (2000)) does not contain this sequence because the expression cassette would be larger than what is recommended for efficient encapsidation of AAV vectors.

1.2. MICE

All the mice used in this work were bred in the SPF animal facility of the CBATEG in the Universitat Autònoma de Barcelona, with the exception of the mice used for intravenous injection, which were bred in the Servei d’Estabulari of the Universitat Autònoma de Barcelona. In both cases, mice were fed ad libitum with a standard diet (2018S Teklad Global; Harlan Laboratories Inc., Indianapolis, IN, USA) and kept under temperature and light controlled conditions (12 h light and 12 h dark).

In the first part of the work, we used two different standard mouse strains: ICR (CD-1®) Outbred Mice and C57BL/6 Inbred Mice. In the second part of the work, we used a MPS VII mouse model tolerant to human β-glucuronidase (Sly et al. (2001)), with a C57BL/6 genetic background. Heterozygote MPS VII mice were kindly provided by
Dr. William S. Sly (St. Louis University School of Medicine, St. Louis, MO, USA). Heterozygote mice were bred in the CBATEG SPF animal facility. At 1 month of age, weaning and mouse identification were performed. Using a tail clip homogenate, β-glucuronidase activity was analyzed in order to identify the mice as mutant (MPS VII), heterozygote (HTZ) or wild type (WT). The procedure for β-glucuronidase activity quantification is explained later on in this work.

1.3. ANTIBODIES AND COUNTERSTAINING REAGENTS

Antibodies were used as specific detection reagents in different experiments of this work. Table 8 specifies all the different antibodies used, and also two counterstaining reagents used in immunofluorescence staining.

1.4. BUFFER SOLUTIONS

The following standard buffer solutions were used in different techniques. Unless specified, all reagents purchased to Panreac, Castellar del Vallès, Barcelona, Spain.

Phosphate buffer: 0.1 M phosphate buffer pH 7.4, prepared by equilibration of NaH₂PO₄ and Na₂HPO₄. For 100 ml of phosphate buffer we used 2.565 g of NaH₂PO₄ · 1 H₂O and 13.502 g of Na₂HPO₄ · 2 H₂O.

Carbonate buffer: 0.1 M carbonate buffer pH 9.2, prepared by mixing 1 volume of Na₂CO₃ 0.1 M and 9 volumes of NaHCO₃ 0.1 M.

D-PBS (Dulbecco’s Phosphate Buffer Saline) pH 7.4: 137 mM NaCl, 3 mM KCl, 10 mM Na₂HPO₄ and 1.7 mM KH₂PO₄. Adjust pH using HCl 37%.

50 mM Tris-HCl pH 7.4: 50mM Trizma® base (Sigma-Aldrich, St. Louis, MO, USA). Adjust pH using HCl 37%.

1.5. IMAGING EQUIPMENT

Magnification with zoom stereomicroscope: Nikon SMZ800 zoom stereomicroscope with Nikon Coolpix 5400 camera (Nikon Corp., Tokyo, Japan).

Bright-field and epifluorescence microscopy: Nikon Eclipse E-800 microscope with Nikon Digital Camera DXM 1200F and ACT-1 software package.

Confocal microscopy: Leica TCS-SP2 AOB (Leica Microsystems GmbH, Heidelberg, Germany).
WESTERN BLOT

<table>
<thead>
<tr>
<th>PRIMARY ANTIBODIES</th>
<th>name</th>
<th>comercial</th>
<th>dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAMP-1 (90 kDa)</td>
<td>Monoclonal Rat anti-mouse CS107a (clone 1D4B)</td>
<td>BD Pharmingen, BD Biosciences, San Jose, CA, USA</td>
<td>1:4000</td>
</tr>
<tr>
<td>GFAP (52 kDa)</td>
<td>Monoclonal Mouse anti-GFAP (clone G-A-5)</td>
<td>Sigma-Aldrich, St. Louis, MO, USA</td>
<td>1:500</td>
</tr>
<tr>
<td>Tubulin (48 kDa)</td>
<td>Monoclonal Mouse anti-gamma-tubulin (clone GTU-88)</td>
<td>Sigma-Aldrich, St. Louis, MO, USA</td>
<td>1:5000</td>
</tr>
<tr>
<td>Actin (42 kDa)</td>
<td>Polyclonal Rabbit anti-actin</td>
<td>Sigma-Aldrich, St. Louis, MO, USA</td>
<td>1:1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECONDARY ANTIBODIES</th>
<th>name</th>
<th>comercial</th>
<th>dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-rat HRP</td>
<td>Polyclonal Sheep anti-Rat IgG, HRP conjugated</td>
<td>LifeSpan Biosciences, Seattle, WA, USA</td>
<td>1:10000</td>
</tr>
<tr>
<td>anti-mouse HRP</td>
<td>Polyclonal Sheep anti-Mouse IgG, HRP conjugated</td>
<td>GE Healthcare, Waukesha, WI, USA</td>
<td>1:10000</td>
</tr>
<tr>
<td>anti-rabbit HRP</td>
<td>Polyclonal Swine anti-Rabbit IgG, HRP conjugated</td>
<td>Dako, Agilent Technologies, Glostrup, Denmark</td>
<td>1:10000</td>
</tr>
</tbody>
</table>

IMMUNOFLUORESCENCE

<table>
<thead>
<tr>
<th>PRIMARY ANTIBODIES</th>
<th>name</th>
<th>comercial</th>
<th>dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeuN</td>
<td>Monoclonal Mouse anti-NeuN (clone A60)</td>
<td>Merck-Millipore, Merck KGaA, Darmstadt, Germany</td>
<td>1:200</td>
</tr>
<tr>
<td>GFAP</td>
<td>Polyclonal Rabbit anti-GFAP</td>
<td>Dako, Agilent Technologies, Glostrup, Denmark</td>
<td>1:500</td>
</tr>
<tr>
<td>APC</td>
<td>Monoclonal Mouse anti-APC (Ab7) (clone CC-1)</td>
<td>Merck-Millipore, Merck KGaA, Darmstadt, Germany</td>
<td>1:400</td>
</tr>
<tr>
<td>Collagen IV</td>
<td>Polyclonal Rabbit anti-collagen type IV</td>
<td>Merck-Millipore, Merck KGaA, Darmstadt, Germany</td>
<td>1:200</td>
</tr>
<tr>
<td>LAMP-1</td>
<td>Monoclonal Rat anti-mouse CS107a (clone 1D4B)</td>
<td>BD Pharmingen, BD Biosciences, San Jose, CA, USA</td>
<td>1:100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECONDARY ANTIBODIES</th>
<th>name</th>
<th>comercial</th>
<th>dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-mouse 568</td>
<td>Alexa Fluor® 568 Goat anti-Mouse IgG (H+L) Antibody</td>
<td>Molecular Probes, Life Technologies, Carlsbad, CA, USA</td>
<td>1:200</td>
</tr>
<tr>
<td>anti-rabbit 405</td>
<td>Alexa Fluor® 405 Goat anti-Rabbit IgG (H+L) Antibody</td>
<td>Molecular Probes, Life Technologies, Carlsbad, CA, USA</td>
<td>1:200</td>
</tr>
<tr>
<td>anti-rabbit 488</td>
<td>Alexa Fluor® 488 Goat anti-Rabbit IgG (H+L) Antibody</td>
<td>Molecular Probes, Life Technologies, Carlsbad, CA, USA</td>
<td>1:200</td>
</tr>
<tr>
<td>anti-rabbit 568</td>
<td>Alexa Fluor® 568 Goat anti-Rabbit IgG (H+L) Antibody</td>
<td>Molecular Probes, Life Technologies, Carlsbad, CA, USA</td>
<td>1:200</td>
</tr>
<tr>
<td>anti-rat 488</td>
<td>Alexa Fluor® 488 Goat anti-Rat IgG (H+L) Antibody</td>
<td>Molecular Probes, Life Technologies, Carlsbad, CA, USA</td>
<td>1:200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COUNTERSTAINING REAGENTS</th>
<th>name</th>
<th>comercial</th>
<th>dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoechst</td>
<td>Hoechst Stain Solution</td>
<td>Sigma-Aldrich, St. Louis, MO, USA</td>
<td>1:1</td>
</tr>
<tr>
<td>Nissl</td>
<td>NeuroTrace® 53061 S Red Fluorescent Nissl Stain</td>
<td>Molecular Probes, Life Technologies, Carlsbad, CA, USA</td>
<td>1:150</td>
</tr>
</tbody>
</table>

ELISA

<table>
<thead>
<tr>
<th>REAGENTS</th>
<th>name</th>
<th>comercial</th>
<th>dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse IgG</td>
<td>IgG from mouse serum, reagent grade</td>
<td>Sigma-Aldrich, St. Louis, MO, USA</td>
<td>serial dil.</td>
</tr>
<tr>
<td>anti-mouse HRP</td>
<td>Polyclonal Sheep anti-Mouse IgG, HRP conjugated</td>
<td>GE Healthcare, Waukesha, WI, USA</td>
<td>1:80000</td>
</tr>
</tbody>
</table>
2. METHODS

2.1. MOUSE HANDLING

All the experimental procedures with mice were approved by the Comité d’Ètica en Experimentació Animal i Humana of the Universitat Autònoma de Barcelona.

2.1.1. Surgical procedures

2.1.1.1. Intravenous injection

The intravenous administration of AAV vectors to 8-week-old ICR mice was performed by tail vein injection. Mice were immobilized into a restrainer and the AAV vector was injected by hand using a 1 ml plastic syringe with a 27 Gauge needle to a lateral tail vein in a single bolus. The injection volume was 475 µl in the tropism experiments and 150 µl in the immune response experiments.

2.1.1.2. Intrathecal injection

The intrathecal injection allows the delivery of the viral vectors to the CSF. It was performed to mice previously anesthetized by intraperitoneal administration of ketamine/xylacine. Then, the dorsum of the mouse was shaved and sterilized with 70% ethanol. An incision was made to visualize the lumbar vertebral column at the region of L3 and L4. The AAV vector was delivered manually, using a Hamilton syringe (Hamilton Company, Bonaduz, GR, Switzerland) and a 33 Gauge needle. The tip of the needle was introduced into the intervertebral foramen between L3 and L4 and the proper position of the needle was confirmed by a tail flick reflex. Then, AAV vector was slowly delivered into the CSF by manual injection. The needle was removed 30 seconds after the end of the vector delivery in order to favor spread through the CSF and avoid efflux to periphery. After injection, the epaxial muscles were sutured using absorbable sutures (Safil 5/0; B.Braun Medical SA, Rubí, Barcelona, Spain) and the skin was closed using Michel suture clips (Fine Science Tools GmbH, Heidelberg, Germany). Mice were surveilled until they recovered from anesthesia.
Materials and Methods

Figure 58: Intrathecal injection. Dorsal view of a mouse lumbar spine. The red arrow represents the site and direction of the injection. (Adapted from www.ucalgary.ca/microct/)

2.1.1.3. Anesthesia and euthanasia

For surgery procedures and before perfusion, mice were anesthetized by intraperitoneal injection of a mix of ketamine (Imalgene 50 mg/ml; Merial Laboratorios, Tarragona, Spain) and xylacine (Rompun; Bayer AG, Leverkusen, Germany) diluted in 0.9% saline solution (B.Braun Medical S.A.). The dosage for ICR mice was 100 mg/kg of ketamine and 10 mg/kg of xylacine, whereas the dosage for C57BL/6 mice, including MPS VII mice, was 120 mg/kg of ketamine and 12 mg/kg of xylacine.

Euthanasia of the mice was performed by different means, depending on the subsequent use of the mouse samples. In order to obtain fresh tissue samples, mice were first anesthetized by inhalation of isoflurane (Isoflo; ESTEVE, Barcelona, Spain) in a closed chamber, and decapitation was performed using scissors. When required, blood samples were taken at the moment of euthanasia. Then, organs and tissue samples were dissected and introduced into 1.5 ml eppendorf tubes, which were flash frozen into liquid nitrogen and preserved at -80ºC until they were required.

In order to obtain fixed tissue samples, mice were perfused with 4% paraformaldehyde (PFA). First, the mouse was anesthetized with ketamine/xylacine. The heart was exposed and 5 ml of phosphate buffer were injected to the left ventricle followed by 20 ml of 4% PFA. Organs and tissues were dissected and kept in 4% PFA at 4ºC until processing.

4% PFA: PFA in powder (Sigma-Aldrich) diluted in phosphate buffer 0.1 M pH 7.4. Overnight stirring at 60ºC was required for proper dilution, followed by filtration.

178
2.1.2. Behavioral analysis

Mice behavior was assessed by an abbreviated SHIRPA three-stage protocol (Giménez-Llort et al. (2002); adapted from Rogers et al. (1997)), with direct observation in the home-cage and several sensorimotor and behavioral tests.

2.1.2.1 Sensorimotor tests

Reflexes (visual reflex and posterior legs extension reflex) were tested by holding the mouse by its tail and gently lowering it to a black surface. With the aim to assess motor coordination and equilibrium, distance covered and latency to fall off were recorded when mice were placed onto a horizontal wooden rod (1.3 cm wide) divided into 10 segments. In order to increase the difficulty of the task, the test was repeated on a metal wire rod (1 cm diameter). The wire rod test was used to assess the prehensility and motor coordination of mice. It consists in allowing the mouse to cling with its forepaws from the middle of a horizontal wire (diameter: 2 mm; length: 40 cm; divided into five segments) for two trials of 5 s and a third trial of 60 s. Muscle strength was measured as the time until falling off the wire in the 60 s trial. Coordination was assessed as the number of segments covered before falling, and prehensility was revealed by the number of elements of support used (i.e. one hindpaw, both hindpaws, both hindpaws and the tail). All the apparatus were suspended 40 cm above a padded table.

2.1.2.2 Corner test

Corner test was used to assess neophobia to a new home-cage. The mouse was placed in the center of a standard cage (Makrolon, 35 x 35 x 25 cm) and its behavior was recorded during 30 s: number of visited corners, number of rearings, and latency of the first rearing.
2.1.2.3. Open-field test

A 5-minute open-field test was performed using a platform with walls (wooden, white, 50 x 50 cm surface, 20 cm high walls) with 10 x 10 cm squares drawn on the surface. The test started by placing the mouse in the center of the open-field (a 10 x 10 cm square) and lasted for 5 minutes, while several different events were recorded. The latency of the behavioral events that take place sequentially when mice are placed in the center of the open-field was recorded: latency of initial movement was used to record initial freezing; thigmotaxis (discrimination of unprotected/protected areas in the test) was assessed by the latency of leaving the central square and that of entering in the peripheral ring (5 cm to the walls); latency of the first rearing and that of the first rearing on the wall recorded the initiation of vertical activities; and the self-grooming behavior was the last event recorded in the sequence of behavioral events. In addition to the latency, the assessment of self-grooming behavior included the number of events and the total duration of groomings. Horizontal and vertical locomotor activities were recorded for each minute of the test, quantified as the number of crossings of squares, and the number of rearings, respectively. In addition, defecation and urination during the test were recorded.

2.1.2.4. T-maze test

T-maze test was used to assess the spontaneous exploratory behavior of the mice in a non-exposed environment using a T-shaped maze (wooden, black, one long arm 50 cm long, two short arms 25 cm long, 20 cm high walls). Animals were placed in the end of the long arm with their head facing the end wall. They were supposed to turn, travel up to the intersection and decide to explore one of the short arms, then go back and explore the second arm. The test finished when they had explored the whole maze, or after 180 s. The sequence of behavioral events until they crossed the maze intersection was recorded: latency to move, to turn, to arrive to the maze intersection and to cross it with the four paws. In addition, for the mice that completed the test exploring the three arms of the maze, the exploratory efficiency was recorded as the total time required for the exploration.
2.1.2.5. 2-Day water maze test

Mice were tested for spatial learning and memory in the 2-day water maze test (adapted from Gulinello et al. (2009)). The test was performed using a pool (90 cm diameter, 30 cm high) filled with water at 25°C that contained white non-toxic paint to make it opaque, and a platform (7 cm diameter) placed into the pool. The pool was located in the center of a room with an asymmetric distribution of the furniture, which provided visual orientation cues. The first day consisted in four trials (Vis1 to Vis4) of 60 s with a visible platform (1 cm above the water surface, indicated by a visible 5 x 8 cm striped flag). On the second day, 24 hours after the visible platform task, the hidden platform task was performed by three 60 s trials (Hid1 to Hid3), with 20 minutes between trials, where mice had to find a hidden platform (1 cm below the water surface, without flag) located at the opposite side of the pool than the previous day. Mice that failed to find the platform within 60 s were manually guided to the platform and placed on it for 5-10 s, the same period as successful animals. All the trials were video-recorded, and a computerized tracking system (SMART, Panlab, Barcelona, Spain) was used for the measurement of the escape latency and swimming distance before reaching the platform. Mean swimming speed was calculated using the distance and latency data of each trial.

2.2. BIOCHEMICAL TECHNIQUES

2.2.1. Protein extraction and quantification

Fresh tissue samples were flash frozen in liquid nitrogen immediately after dissection and kept at -80°C until processing.

Samples were homogenized in RIPA lysis buffer by sonication at 40 Hz with an ultrasonic processor (Vibra-cell™; Sonics & Materials Inc, Newtown, CT, USA) until they were completely homogenized. Homogenization was followed by centrifugation to eliminate cellular membranes and debris (10-15 min, 12000 rcf, 4°C using Eppendorf 5415R; Eppendorf AG, Hamburg, Germany). Protein homogenates were kept at -20°C. Protein quantification was performed by Pierce BCA Protein Assay Kit
(Thermo Fisher Scientific, Waltham, MA, USA) following manufacturer’s instructions. Briefly, 10 µl of a 1:10 dilution of each protein sample were mixed with 200 µl of the protein assay reagents, and incubated at 37ºC for 30 min. Absorbance reading at 520 nm was carried out with a microplate reader and the associated software. All samples were analyzed in duplicate.

Materials and Methods

RIPA lysis buffer: 50 mM Tris-HCl pH 7.4, 150 mM NaCl (Panreac), 1 mM EDTA (USB, Affymetrix, Santa Clara, CA, USA), 1% NP-40 (Sigma-Aldrich), 0.25% sodium deoxycholate (Sigma-Aldrich), 50 mM sodium fluoride (Sigma-Aldrich), 1 mM sodium orthovanadate (Sigma-Aldrich), 10 mM β-glycerophosphate disodium salt hydrate (Sigma-Aldrich), 5 mM sodium pirophosphate decahydrate (Sigma-Aldrich) and a protease inhibitor cocktail (concentration following manufacturer’s instructions; Calbiochem, Merck-Millipore, Merck KGaA, Darmstadt, Germany).

2.2.2. β-Glucuronidase and β-hexosaminidase activity

The quantification of enzymatic activities on fresh tissue protein extracts was performed using substrates that, after the enzymatic reaction, give rise to fluorescent products. Ten µl containing 1 to 20 µg of the protein extract were placed into opaque white 96-well plates (Corning Inc, Corning, NY, USA). The total quantity of protein depended on the intrinsic enzymatic activity of the sample (e.g. 1 µg for liver samples, 20 µg for cortex samples). The addition of 50 µl of substrate started the reaction, which was carried out at 37ºC during 1 hour, and stopped with the addition of 200 µl of stop buffer per well. The product fluorescence was detected with Wallac 1420 Victor3 (Perkin Elmer, Waltham, MA, USA) using F335-excitation and F460-emission filters. The fluorescence raw data of the reaction were normalized by the total amount of protein in each sample and expressed as relative light units (RLU) per mg of total protein.

Substrates:

- β-glucuronidase: 10 mM 4-methylumbelliferyl-β-D-glucuronide (Sigma-Aldrich)
- β-hexosaminidase: 0.01 mM 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide (Sigma-Aldrich)
- **Stop buffer:** 0.2 M Na₂CO₃
2.2.3. In toto β-glucuronidase activity staining

β-Glucuronidase activity was assessed on fixed tissue in order to visualize the extent of the transduction and enzyme spreading achieved throughout different organs.

2.2.3.1. Sample processing

Mice were anesthetized and perfused with 4% PFA as previously described. Organs were dissected, postfixed in 4% PFA for 30 min at 4°C and then kept in phosphate buffer until required. Samples were cut in 100 μm slices using a vibratome (Leica VT 1000S, Leica Microsystems GmbH). Due to their small size, spinal cord and dorsal root ganglia samples were embedded in 6% agarose (Amresco, Solon, OH, USA) to allow the slicing with the vibratome.

2.2.3.2. β-Glucuronidase staining

The staining procedure started with two 15-min incubations at 4°C with equilibration buffer followed with two 30-min incubations at 4°C with substrate buffer. Then the staining enzymatic reaction was conducted by incubation of the samples with reaction buffer at 37°C for four hours. Then, samples were decanted, slightly dried and mounted on glass slides with DPX mountant for histology (Sigma-Aldrich) and glass coverslips (Menzel-Gläser, Thermo Fisher Scientific). Photographs were taken under the zoom stereomicroscope and the bright-field microscope.

Equilibration buffer: 0.05 M NaOAc pH 4.5 (Panreac)

Substrate buffer: 0.25 mM Naphthol AS-BI β-D-glucuronide (Sigma-Aldrich) in 0.05 M NaOAc pH 4.5.

Reaction buffer: 0.25 mM Naphthol AS-BI β-D-glucuronide in 0.05 M NaOAc pH 5.2, with 1:1000 dilution of 2% hexazotized pararosaniline

2% hexazotized pararosaniline: prepared by mixing equal volumes of two components:

- Pararosaniline hydrochloride (Sigma-Aldrich): 0.4 g in 10 ml of 2 M HCl.
- Sodium nitrite (Panreac): 0.4 g in 10 ml of deionized water.

Add pararosaniline hydrochloride to sodium nitrite and filter if there is precipitate. Stable for 1 hour at RT.

2.3. ANTIBODY-BASED TECHNIQUES

2.3.1. Serum antibody analysis

2.3.1.1. ELISA

After the intravenous injection of the different AAV serotypes to mice as described before, we quantified the total IgG against the different AAV serotypes by ELISA. A home-made ELISA was set up based on methods previously reported (Boutin et al. (2010), Treleaven et al. (2012)), using F96 maxisorp microwell plates (Thermo Fisher Scientific). The wells were coated with 50 µl of virus diluted to 2 x 10^{10} pp/ml in carbonate buffer by an overnight incubation at 4ºC. A standard curve for absolute quantification was set by coating the appropriate wells with serial dilutions of mouse IgG (Sigma-Aldrich) in carbonate buffer starting from 1500 ng/ml. After overnight coating, plates were washed three times with wash buffer using an automated ELISA washer (ELX50 autostrip washer, Bio-Tek, Winooski, VT, USA). They were then incubated with blocking solution for 1 hour at 37ºC, and subsequently washed three times as above.

As the primary antibody source for the ELISA, 100 µl of serum dilutions in duplicate were added to appropriate wells. A range of 3- and 2-fold dilutions was tested to determine the optimum range for quantification with respect to the linear region of the standard curve (in most cases between 1:450 and 1:1350). The plate was then incubated for 1 hour at 37ºC. Note: serum dilution buffer was placed into the standard curve wells during blocking and primary incubation. Serum incubation was followed by three washes and the subsequent incubation with the secondary antibody, which was conjugated to horseradish peroxidase (HRP). The secondary antibody diluted to 1:80,000 in wash buffer was added to the wells (see Table 8) and incubated at 37ºC for 1 hour. Then wells were washed three times and were ready for detection.

For detection, 100 µl of freshly prepared 3,3’,5,5’ tetramethylbenzidine (TMB) substrate reagent (BD Biosciences, San Jose, CA, USA) were added to each well and the plate was incubated in the dark for 30 min. The reaction was quenched with 100 µl of 2M H₂SO₄ (Panreac) and the absorbance at λ = 450 nm was measured with a
microplate reader Power Wave HT and KC4 v3.3 software (Bio-Tek). The standard curve was obtained using a 4-parameter logistic nonlinear regression. Results were expressed as total IgG anti-AAV in µg/ml.

Wash buffer:	D-PBS pH 7.4, 0.05% TWEEN® 20 (Sigma-Aldrich)
Blocking solution:	D-PBS pH 7.2, 0.5% BSA (Sigma-Aldrich)
Serum dilution buffer:	D-PBS pH 7.4, 0.05% TWEEN® 20, BSA 0.5%

2.3.1.2. Neutralizing assay

After intravenous injection of the different AAV serotypes to mice, we performed a relative quantification of the neutralizing antibodies present in the mouse sera. This was done by analyzing the relative neutralizing capacity of the different sera when the corresponding viral vector coding for a luciferase reporter gene was incubated with the serum before infection of HEK293 cells. The viral vectors used in the in vitro analysis were AAV9-Luciferase and AAVrh10-Luciferase (see table 7). Each serum from AAV-injected mice was analyzed in vitro against its corresponding AAV serotype. We analyzed the raw serum and three dilutions (1:50, 1:100 and 1:200; diluted in infection medium) to detect a decrease in the neutralizing capacity of the serum throughout the dilutions.

The vector was incubated at 37°C for 30 min with the different dilutions of each serum. Then, serum-vector mixes were added in duplicate in a volume of 60 µl to HEK293 cells previously grown to 70% confluence in 96-well plates (Thermo Fisher Scientific). The incubation and addition of the serum-vector mix were performed so that the amount of viral vector added to each well was 10⁹ vg/well, which had previously been established by titration to give 100% infection without any neutralizing agent. Approximately 5 hours post infection, 100 µl of growth medium were added to each well and the cells were incubated for 48 hours at 37°C. After this period, the infection in each well was assessed by luciferase activity detection using Pierce Firefly Luciferase Flash Assay kit (Thermo Fisher Scientific), following manufacturer's instructions. Briefly, cells in each well were lysed in 100 µl of lysis buffer, and 20µl of each lysate were transferred to opaque white 96 well plates.
Luciferase activity was detected by adding luciferin substrate and reading the resulting luminescence using Wallac 1420 Victor3. In parallel, the total amount of protein in each sample was quantified following the procedure specified later on in this work without diluting the samples. Transduction efficiency was expressed as luminescence, normalized by the amount of protein per well, giving final values of luminescence per microgram of protein.

<table>
<thead>
<tr>
<th>Infection medium: DMEM, 10% FBS + 1% Penicillin/Streptomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth medium: DMEM, 2% FBS + 1% Penicillin/Streptomycin</td>
</tr>
<tr>
<td>(All culture mediums and supplements from PAA, GE Healthcare, Waukesha, WI, USA.)</td>
</tr>
</tbody>
</table>

2.3.2. Immunofluorescence

The immunofluorescence technique consists in the labeling of antigens on fixed tissue by specific antibodies and fluorophores. In this work, we used primary antibodies specific for the antigens and secondary antibodies conjugated to fluorescent molecules.

2.3.2.1. Sample processing

Fixed tissues were kept in 4% PFA at 4°C from dissection until processing. During the day, several 1-2 hour washes with PBS shaking were performed to remove the excess of PFA of the samples. Then, samples were cryoprotected in a solution of saccharose 30% (Panreac), in D-PBS. Each sample was placed into a Cryomold® and embedded in Tissue-Tek® O.C.T™ Compound (Sakura Finetechnical Co, Tokyo, Japan). Dry-ice frozen samples were kept at -20°C until they were sectioned. 10-20 µm sections were obtained using a cryostate (Leica CM1900). Sections were placed on glass slides (Menzel-Gläser Super Frost Plus; Thermo Fisher Scientific) and kept at -20°C until required for analysis.
2.3.2.2. Immunofluorescence staining

The immunofluorescence protocol started with hydration of the samples by a 5-10 min wash in 50 mM Tris-HCl pH 7.4 followed by two 5-10 min washes with wash buffer to permeabilize the cells. Then the samples were blocked, in order to avoid subsequent non-specific antibody binding, by incubation with blocking buffer 1 hour at RT. Then samples were incubated overnight at 4°C with the primary antibody or antibodies in case of multiple immunofluorescence (see Table 8), which were diluted in blocking buffer. After washing, samples they were incubated in the dark for 1 hour at RT with secondary antibodies, which were conjugated with fluorophores. At this point, unless some counterstaining was required, samples were ready to mount, for which we used Fluoromount (Sigma-Aldrich) and glass coverslips.

Some samples from brain and spinal cord were counterstained with a fluorescent Nissl stain (see Table 8) in order to visualize the morphology of the neurons and allow identification of different brain areas. The staining procedure was performed following manufacturer's instructions. Briefly, after washing in D-PBS, a 20-min incubation with the fluorescent Nissl Stain was performed at RT. Then samples were washed in D-PBS with 0.1% Triton X-100 (Sigma-Aldrich), followed by some washes with D-PBS. Besides, some samples were counterstained with Hoechst stain solution (see Table 8) to visualize the cell nuclei. Hoechst staining was performed for 10 min at RT without subsequent wash.

Images of the immunofluorescence analysis were taken using the epifluorescence microscope and the confocal microscope previously described.

Wash buffer: 50 mM Tris-HCl pH 7.4, 0.01% TWEEN® 20
Blocking buffer: 50 mM Tris-HCl pH 7.4, 0.01% TWEEN® 20, 0.05% BSA
Antibodies and counterstaining reagents: see Table 8
2.3.3. Western blot

The analysis of protein samples by western blot allows the identification of specific proteins, and also a relative quantification by subsequent image analysis software. First, a denaturing polyacrylamide gel electrophoresis (SDS-PAGE) separates the proteins by their molecular weight. Then, proteins are transferred to a PVDF membrane, on which the immunodetection of the desired proteins is performed using specific antibodies and a chemiluminescent reagent. The images of the immunodetection can be quantified by specific image analysis software, allowing the comparison of the amount of protein between different samples. Before comparing between different samples, they are normalized by the total amount of protein by a loading control. The loading controls used in this work were tubulin and actin, two proteins of the cytoskeleton.

2.3.3.1. Sample preparation

Tissue samples previously homogenized and quantified were used for western blot analysis. For each sample, 20 µg of protein were diluted in deionized water to an adequate volume before the addition of the appropriate volume of 6X loading buffer. Samples were denatured for 10 min at 98°C before loading to the electrophoresis gel. With this process, proteins are denatured and get a negative charge relative to their molecular weight that allows the separation by electrophoresis. To identify the molecular weight of the proteins, standards are required in each western blot (PageRuler Prestained Protein Ladder, Thermo Fisher Scientific)

6X Loading buffer: 0.35 M Tris-HCl pH 6.8, 3.3% glycerol (Sigma-Aldrich), 10% SDS (USB, Affymetrix), 0.015% bromophenol blue (Sigma-Aldrich), 0.6 M DL-dithiothreitol (Sigma-Aldrich).

2.3.3.2. Denaturing gel electrophoresis

Homemade discontinuous denaturing polyacrylamide gels were used for electrophoresis. The stacking part of gel allows the loading of the samples into wells and their concentration before entering the resolving gel, where they get separated depending on their molecular weight. Stacking gel contains 3.9% acrylamide while
the percentage of acrylamide of the resolving gel depends on the molecular weight of the proteins to be resolved (i.e. 12% for LAMP-1 and tubulin; 10% for GFAP and actin, in this work).

Electrophoresis was run using an electrophoresis chamber (Mini-Protean® Tetra Cell, Bio-Rad, Hercules, CA, USA) filled with electrophoresis buffer and connected to a voltage source (Bio-Rad). After loading the samples and the molecular weight marker into the wells of the gel, electrophoresis was run at low voltage (80-100 V) for 10-15 min until proteins reached the resolving gel. Then it was raised to 130-150 V until the end of the run, which was defined checking the prestained protein standards mobility.

Preparation of the polyacrilamide gels

Stacking gel: 3.9% Acryl/Bis 29:1 (Acryl/Bis 29:1 40% w/v solution (Amresco), 0.5 M Tris-HCl pH 6.8, 0.4% SDS.

Resolving gel: 10-12% Acryl/Bis 29:1, 1.5 M Tris-HCl pH 8.8, 0.4% SDS.

For polymerization, add 25-50 µl of ammonium persulfate (Amresco) and 5-10 µl of TEMED (N, N', N', N'-tetramethyl-ethylenediamine, Sigma-Aldrich).

Electrophoresis buffer: 25 mM Tris, 192 mM Glycine (Serva Electrophoresis GmbH, Heidelberg, Germany), 1% SDS

2.3.3.3. Transfer and blocking

After electrophoresis, proteins were transferred to a PVDF membrane (Amersham Hybond P 0.2 PVDF, GE Healthcare) using a semidry electrotransfer system (Trans-Blot® SD Semi-Dry Transfer Cell, Bio-Rad) connected to a voltage source (Bio-Rad). Before transfer, PVDF membrane required activation in methanol for 10 seconds and 10-min equilibration in transfer buffer. Polyacrylamide gel required 10-min equilibration in transfer buffer as well. The transfer sandwich was formed with the gel and the membrane stacked together between two extra-thick western blotting filter papers (Thermo Fisher Scientific) previously soaked in transfer buffer. Transfer was performed at 25 V during 45 min. Then it was checked by staining the membrane with Ponceau solution during 5 min shaking, followed by destaining with water.

Transfer buffer: 25 mM Tris, 192 mM Glycine, 20% methanol (Panreac)

Ponceau solution: 0.5% Ponceau S (Sigma-Aldrich), 1% acetic acid (Panreac)
2.3.3.4. Immunoblotting

For the detection of the desired proteins, specific primary and secondary antibodies are used. The antibodies used in this work are specified in Table 8, together with the dilution used for each one. Secondary antibodies are conjugated to horseradish peroxidase (HRP), which cleaves a chemiluminescent agent and the reaction produces luminescence in proportion to the amount of protein. This luminescence is detected and can be quantified.

In order to avoid non-specific binding of the antibodies to the membrane, it was blocked with the blocking solution for 1 hour shaking at RT prior to immunodetection. The membrane was incubated with the primary antibody diluted in blocking solution overnight shaking at 4°C. After three 10-min washes with TBS-T, the membrane was incubated with the secondary antibody diluted in blocking solution for 1 hour at RT. Three 10-min washes with TBS-T were used to remove the excess of secondary antibodies prior to immunodetection.

TBS: 50 mM Tris, 136 mM NaCl, 40 mM KCl; pH 7.3
TBS-T: 0.1% TWEEN-20 in TBS
Blocking solution: 5% non-fat dry milk in TBS-T

2.3.3.5. Chemiluminescent detection and quantification

Immunodetection was performed by 5-min incubation at RT with a chemiluminescent substrate (EMD Millipore Immobilon™ Western Chemiluminescent HRP Substrate, Thermo Fisher Scientific) using ChemiDoc™ MP System (Bio-Rad) for luminescence detection. Luminescence data were acquired at different exposition times, and the best acquisition file was considered to be the one that displayed higher signal without image saturation. The best acquisition file was used for density quantification using Quantity One® software (Bio-Rad).
2.4. HISTOLOGICAL ANALYSIS

Histopathological features were analyzed on fixed tissue samples, which underwent paraffin inclusion and section, followed by general staining protocols.

2.4.1. Sample processing

Fixed tissue samples were enclosed into Tespa tissue-embedding cassettes (Casa Álvarez, Madrid, Spain) and were dehydrated with consecutive washes in increasing concentrations of ethanol (Panreac) and cleared with xylol (Panreac). Then samples were embedded in paraffin using an embedding station (Microm A280; Zeiss, Oberkochen, Germany) and paraffin (Casa Álvarez) melted at 59ºC, by overnight incubation and subsequent cooling. Then samples were sectioned with using a microtome (Leica RM 2125RT) obtaining 2-μm-thick sections that were placed on glass slides and kept at room temperature until required for staining and analysis.

2.4.2. Histological staining

Sections of different organs were stained for histopathological analysis using two different protocols: hematoxylin and eosin staining for liver, and toluidine blue staining for nervous system tissues. Before staining, samples were deparafinized with xylol, and rehydrated with decreasing concentrations of ethanol and water.

For hematoxilin and eosin staining, samples were placed in a solution of hematoxylin (Sigma-Aldrich) during 6 minutes, followed by a quick wash of 2 seconds in HCl 0.25% and a 5-min wash with running water. Then, eosin staining was performed with eosin solution (Sigma-Aldrich) during 30-60 seconds.

Toluidine blue staining was performed with a solution 0.5% toluidine blue O (Merck-Millipore) for 30 minutes, followed by washing with water.

After staining, samples were dehydrated and cleared. Then they were mounted using DPX mountant for histology and glass coverslips. Samples were analyzed by bright-field microscopy and pictures were taken with 1000X magnification.
2.5. VIRAL VECTOR DNA QUANTIFICATION

To detect and quantify the genomes of viral vector present in different organs and areas we performed Hirt DNA extraction followed by quantitative PCR (qPCR).

2.5.1. Hirt DNA extraction

This DNA extraction method (adapted from Hirt (1967)) is used to favor the extraction of low molecular weight DNA. Frozen tissue samples were kept at -80°C in microcentrifuge tubes. Approximately 10 µl of Hirt digestion buffer per mg of tissue were dispensed on frozen tissue samples and were incubated at 50°C overnight, shaking at approximately 120 rpm. After digestion, NaCl concentration was adjusted to 1 M using 5 M NaCl and samples were placed either on ice for three hours or overnight at 4°C. Then, debris was removed by centrifugation (> 14,000 rcf, 4°C, 30 min; Eppendorf 5415R) and supernatant was carefully taken and placed into a new tube. Then supernatant was diluted 2X with deionized water to reduce the salt concentration. One volume of phenol/CHCl3/isoamyl alcohol (25:24:1) was added to each sample (Amresco), which was then centrifuged to separate the aqueous and organic phases (300 rcf, RT, 10 min; Eppendorf 5415R). The upper phase was removed and placed into a new tube, where two volumes of 100% ethanol were added, followed by centrifugation (> 14,000 rcf, RT, 10 min; Eppendorf 5415R) to achieve DNA precipitation. Supernatant was discarded and DNA pellet was dried for 5 min at RT. DNA was resuspended in 30-50 µl of deionized water containing 100 µg/ml of RNase A (Qiagen, Valencia, CA, USA), and kept at -20°C until quantification or analysis. DNA quantification was performed using NanoDrop 1000 (Thermo Fisher Scientific).

Hirt digestion buffer: 20 mM Tris-HCl pH 8.0, 10 mM EDTA pH 8.0, 0.6% SDS, 0.2 mg/ml proteinase K (Roche Diagnostics, Basel, Switzerland).

Note: Proteinase K is freshly added to the buffer prior to use.
2.5.2. Quantitative PCR

To assess the vector genomes per cell in tissues, we performed quantitative PCR (qPCR) analysis using specific primers for a region of the CAG promoter present in the vector genome. In parallel, we performed qPCR analysis of cyclophilin B, a monocopy gene in the mouse genome (MGI:97750 in Mouse Genome Informatics; www.informatics.jax.org), to normalize the CAG copies per number of cells. For the absolute quantification of both sequences, a standard curve for each sequence was made with series of dilutions of known DNA concentration.

2.5.2.1. Standards for qPCR

A purified DNA preparation of the plasmid pAAV-CAG-GFP-WPRE, which had been quantified using NanoDrop 1000, was used to prepare a series of 1:10 dilutions that will be specified later on.

In the case of cyclophilin B, a 525 bp DNA sequence was amplified from mouse liver using specific primers. Subsequently, this PCR product was isolated by DNA electrophoresis, purified using GeneClean Kit (MPBio, Santa Ana, CA, USA) and quantified using Quant-iT™ PicoGreen® dsDNA Assay Kit (Life Technologies, Carlsbad, CA, USA) following manufacturer's instructions.

Cyclophilin B standard PCR

Template: 200 ng of mouse liver DNA.

Primers: Fwd = catgcctatggtcctagctt; Rv = ggtttctccacttcgatcttgc.

Polymerase and buffer: Dream Taq DNA polymerase (Thermo Fisher Scientific).

Reaction: 40 x (denaturing 15" at 95°C; annealing 30" at 57°C; extension 45" at 72°C)

Thermocycler: Mastercycler gradient (Eppendorf AG).

2.5.2.2. qPCR procedure

Quantitative PCR was performed using 384-well plates and the thermocycler Bio-Rad CFX284. Each sample or standard was analyzed in triplicate, in a total volume of 10 µl, which included 0.84 µg of DNA, 5 µl of iTaq Universal SYBR Green Supermix (Bio-Rad) and 0.4 µl of each primer (Table 9).
Materials and Methods

qPCR program (Fluorescence measured in extension step of PCR and in melting process)

- **Hot start:** 3' at 95°C
- **Reaction:** 40 x (10'' at 95°C; 20'' at 58°C; 20'' at 72°C) + 10'' at 95°C
- **Melting analysis:** stepwise T increase from 65°C to 95°C, in 0.5°C steps and 5'' periods

For each well, we obtained an amplification curve from the PCR procedure, from which a Cq value was extracted using Bio-Rad CFX Manager software and used for vector genome copies calculation. We also obtained a melting curve from the melting analysis, which was used for quality control of specific amplification.

The standard curves for CAG and cyclophilin B were prepared by 1:10 serial dilutions using the previously described standards. For each dilution, each specific DNA was mixed with stuffer DNA (DNA sodium salt from salmon testes, Sigma-Aldrich) up to a concentration of 1 µg/ml. After qPCR, the dilutions whose Cq values presented a linear correlation ranged from 10,000 to 10 fg for CAG standards, and from 1,000 to 0.1 fg for cyclophilin standards.

<table>
<thead>
<tr>
<th>Table 9: Primers for vector DNA quantification</th>
</tr>
</thead>
<tbody>
<tr>
<td>primer name</td>
</tr>
<tr>
<td>CAG Fwd</td>
</tr>
<tr>
<td>CAG Rv</td>
</tr>
<tr>
<td>cyclophilin B Fwd</td>
</tr>
<tr>
<td>cyclophilin B Rv</td>
</tr>
</tbody>
</table>

2.5.2.3. qPCR data analysis

Data obtained with the qPCR were a Cq value for each reaction, for both mouse DNA samples and standards. Replicates were checked for homogeneity and reliability with Bio-Rad CFX Manager software. Then, standard curves for each sequence were used to extrapolate the amount of DNA present in the tissue DNA samples, using the Cq values obtained for these samples. The quantity of sequence-specific DNA in each sample was converted to dsDNA copies using a general assumption of the molecular weight of dsDNA [MW (g/mol) dsDNA = (#nucleotides · 607.4) + 157.9] and the Avogadro number [6.023 x 10^23 DNA molecules DNA/mol]. Finally, a ratio between CAG and cyclophilin B copy numbers was calculated for each sample.
2.6. STATISTICAL ANALYSIS

All the statistics presented in this work were performed using IBM SPSS Statistics Version 21 software (IBM, Armonk, NY, USA). We used some general statistical tests and also other specific tests for some groups of data.

In general we used two-tailed t-tests to analyze a dependent variable between two independent variables (groups). We used one-way ANOVA to analyze one dependent variable among three or more independent variables (groups). In these cases, we used Tukey post hoc tests for pairwise comparisons between groups. Finally, we performed two-way ANOVA to compare the data of a dependent variable and check for the effects and interaction of two independent variables (e.g. "liver weight" as the dependent variable and "age" and "group" the independent variables). In most of the data analyzed, we did not compare the data between the two different ages due to experimental limitations in the sample processing and/or analyzing procedures.

Several specific statistical analyses were performed for some sets of data. Non-parametric tests were used for β-gluc and β-hex activities because the variances of the data presented high differences among groups, which prevented the use of ANOVA. The difference of the variances among groups was checked by Levene test, and the non-parametric statistical analysis was performed by Kruskal-Wallis test and was followed by successive Mann-Whitney U tests to do the pairwise comparisons. Another specific test, the Repeated Measures ANOVA, was performed to analyze the 2-day water maze test in order to check for differences in the learning patterns. Finally, Kaplan-Meier analysis was used for the survival data.

Data are represented as mean ± SEM, except for scatter plots, where — denotes the mean and SEM is not depicted. The statistical signification depicted on the graphs and tables corresponds to * $p < 0.05$, ** $p < 0.01$ and *** $p < 0.001$. The different pairwise comparisons are depicted using different symbols, which are specified in each graph or table.
REFERENCES

1. BIBLIOGRAPHIC REFERENCES

References

References

References

References

References

cartilage disease in mucopolysaccharidosis VII mice and dogs. Molecular Genetics and Metabolism 82:4-19.

References

References

References

References

References

2. WEB RESOURCES

Gene Therapy Clinical Trials Worldwide: www.abedia.com/wiley/

Clinical Trial Information for Study Participants & Doctors: www.clinicaltrials.com

UniQure – Glybera: www.uniqure.com/products/glybera

MPS Society UK – The Society for Mucopolysaccharide Diseases: www.mpssociety.org.uk

U.S. Food and Drug Administration Home Page: www.fda.gov

European Medicines Agency: www.ema.europa.eu

RCSB Protein Data Bank – RCSB PDB – 3HN3 Structure Summary: www.rcsb.org/pdb/explore/explore.do?structureId=3HN3

Micro CT Laboratory – University of Calgary: www.ucalgary.ca/microct/

DrTummy: www.drtummy.com

Mouse Genome Informatics: www.informatics.jax.org

Viral Vector Production Unit (UPV): http://sct.uab.cat/upv
Intrathecal administration of IGF-I by AAVrh10 improves sensory and motor deficits in a mouse model of diabetic neuropathy

Judit Homs¹, Gemma Pagès¹, Lorena Ariza¹, Caty Casas²,³, Miguel Chillón¹,⁴, Xavier Navarro²,³ and Assumpció Bosch¹

INTRODUCTION

The complications of diabetes represent the main volume in disability, reduced life expectancy, and economic cost associated with diabetes.¹ The most common and debilitating complication of diabetes is diabetic peripheral neuropathy (DPN), which affects 60–70% of patients and causes frequent hospitalization in diabetic patients still develop DPN.³ Although intensive insulin therapy to control blood glucose degeneration, nerve fiber loss, segmental demyelination, and remyelination are characteristic pathological features of human DPN.⁵ Although intensive insulin therapy to control blood glucose reduces the incidence of new clinically detected neuropathy, diabetic patients still develop DPN.

Gene therapy strategies for treatment of chronic pain, genetic and acquired peripheral neuropathies like DPN, or accelerating peripheral nerve regeneration could be envisaged if efficient gene transfer to the peripheral nervous system (PNS) would be achieved. Viral vectors offer the possibility to specifically target different cell types in the PNS. We and others have demonstrated transduction of mouse and human Schwann cells in vitro⁶ and in vivo in animal models of peripheral nerve trauma.⁷,⁸ Herpes simplex virus–based vectors were shown to efficiently transduce sensory neurons when injected subcutaneously in animal models, which has lead to the initiation of a phase 1 clinical trial for pain treatment (for review, see ref. 7). Several serotypes of adenovirus–associated viruses (AAV) also infect sensory neurons in the dorsal root ganglia (DRG) through direct administration into the cerebrospinal fluid (CSF), via retrograde transport or by intravenous administration.⁹–¹² Among the different AAV serotypes tested, AAVrh10, a nonhuman primate serotype, was proven to efficiently transduce neurons in the brain after intracranial administration, enabling a widespread diffusion, similar to AAV1 or AAV9.¹³,¹⁴ Moreover, intravenous administration of AAVrh10 in neonatal mice crosses the blood–brain barrier and drives one of the most efficient transduction to the spinal cord and central nervous system compared to other AAV serotypes.¹⁵,¹⁶

With the aim to study if AAVrh10 vector is capable to efficiently deliver a therapeutic gene to sensory and motor neurons, we tested the biodistribution of this vector and compared it with AAV1, AAV2, and AAV8, following intraneural and intrathecal administration in adult mice. Here, we demonstrate that after lumbar delivery of the vectors into the CSF, the AAV vectors were widely distributed to

¹Department of Biochemistry and Molecular Biology, Center of Animal Biotechnology and Gene Therapy (CBAPEG), Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; ²Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; ³Instituto de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain; ⁴Institut Catalá de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.

Correspondence: A Bosch (assumpcio.bosch@uab.es)

Received 6 November 2013; revised; accepted 7 November 2013;
the entire spinal cord, from lumbar to cervical segments. AAVrh10 efficiently infected neurons, both in DRG (near 60% of total sensory neurons) and in the spinal cord (up to 30% of motoneurons), while AAV1 was only able to transduce sensory neurons in the DRG. Finally, as a proof of concept, we demonstrated the efficacy of AAVrh10 in a mouse model of experimental diabetes, in which intrathecal delivery of AAVrh10 coding for insulin-like growth factor (IGF-I) was able to release the therapeutic protein into the CSF. In sensory and motor neurons of diabetic animals overexpressing IGF-I, we detected overexpression of vascular endothelial growth factor (VEGF) and activation of Akt/PI3K pathway as well as nerve regeneration and myelination in injured limbs. Moreover, we found increased nerve conduction velocity (NCV) in both sensory and motor nerves by AAVrh10-driven expression of IGF-I compared to green fluorescent protein (GFP)—treated mice, whereas only sensory nerve improvement was found using AAV1. These data demonstrate the potential of AAVrh10 for sensorimotor gene therapy.

RESULTS
AAVrh10 efficiently transduces sensory neurons in DRG
As a first approach to test AAVrh10 efficacy transducing sensory neurons, we delivered 1×10^{11} viral genomes (vg) into the CSF by lumbar puncture in the subarachnoid space, and it was compared to AAV1, AAV2, and AAV8. Animals were euthanized 3 weeks after administration, DRG sectioned, and GFP was quantified by direct fluorescent imaging. No transduction was obtained using AAV8, very small numbers of GFP-positive cells were counted with AAV2 (not shown), and the highest levels were achieved using AAV1 or AAVrh10. AAVrh10 tropism was characterized after intrathecal administration in the lumbar area by immunohistochemistry to specific neuronal markers. We quantified $13 \pm 1.3\%$ of transduced large neurons (NF-200 positive, Figure 1a–c) and $60 \pm 3.2\%$ of peripherin immunoreactivity (Figure 1d–f), showing GFP expression in lumbar ganglia ($n = 3$). Peripherin-positive neurons can be divided in calcitonin gene-related peptide or IB4-positive neurons. Here, $29.2 \pm 2.3\%$ of calcitonin gene-related peptide positive colocalized with GFP (Figure 1g–i) and $11 \pm 1.6\%$ of IB4 neurons were also GFP positive (Figure 1j–l; $n = 3$). AAV1 transduced both large and small neurons but to a lower extent, and numbers were not quantified (Supplementary Figure S1a–f).

Although viral vectors were administered between the third and fourth lumbar vertebrae, once delivered in the intrathecal space, the virus was diluted in the CSF and could reach more proximal segments. Thus, we quantified GFP-expressing sensory neurons in lumbar, thoracic, and cervical DRG at week 1, 3, and 6 after virus administration (Figure 2a; Supplementary Figure S2). For AAVrh10, the highest level of transduction in the DRG was achieved at the injection area, that is the lumbar ganglia, where 56.9 \pm 14.8% ($n = 3$ animals) of total DRG neurons showed GFP expression at 6 weeks (Figure 2a). Moderately lower levels of expression, although not significantly different, were quantified in the cervical area (36.1 \pm 13.5%; $n = 3$ animals). However, in the thoracic segments, significantly lower numbers were detected, particularly 1 and 3 weeks after treatment, a phenomenon already described for AAV6. AAVrh10-driven GFP expression was also evident along the axis of the transduced animals. Transversal sections of sciatic nerves showed around 50% of nerve fibers expressing GFP (Supplementary Figure S3a; $n = 3$ animals) that probably correspond to axons from infected nuclear bodies projecting to the hind limb. Moreover, direct intrasacral injection of 9×10^9 viral genomes of AAVrh10 coding for GFP and euthanized at 3 weeks. (b, e, h, k) Immunohistochemistry with broad and specific markers of sensory neurons; (b) NF-200, (e) peripherin, (h) CGRP, and (k) IB4. GFP-positive sensory neurons merged with specific sensory markers (arrows, c, f, i, l, l). Scale bar $= 81$ μm. AAV, adeno-associated virus; DRG, dorsal root ganglia; GFP, green fluorescent protein.

Intrathecal administration of AAVrh10 allows motor neuron transduction
Transduction of motor neuron after intrathecal administration of AAV9 was reported previously in mice, pigs, and nonhuman primates. In lumbar spinal cord sections of AAVrh10-injected animals, we also observed widespread GFP expression in both dorsal and ventral areas (Supplementary Figure S4). In the white matter, we observed punctate signals, corresponding to the dorsal and ventral afferences entering the spinal cord (Supplementary Figure S4), but most importantly, at the dorsal and ventral gray matter, we also found cell bodies expressing GFP with a neuronal pattern (Figure 3). Immunohistochemical analysis with selective markers allowed us to characterize the transduced cell types. We did not detect transduction of astrocytes (glial fibrillary acidic protein–positive cells; Figure 3d–f) and microglia (Iba1 immunoreactivity; Figure 3j–l) and only very few oligodendrocytes (APC1-positive cells; Figure 3g–i and arrowhead in i), GFP-positive cell bodies colocalized mainly with choline acetyltransferase immunostaining, a specific
marker for cholinergic neurons (Figure 3a–c, m). We observed the fluorescent protein.

Values are represented as the mean ± SEM (n = 3/group and time point).

Statistically significant differences were observed by two-way ANOVA

Figure 2 Quantification of GFP-positive sensory and motor neurons transduced by intrathecal AAVrh10. (a) Percentage of GFP-positive DRG neurons at different levels (lumbar, thoracic, and cervical) at 1, 3, and 6 weeks postinjection. (b) Number of GFP-positive neurons per section quantified at different segments of the ventral spinal cord (lumbar, thoracic, and cervical) after Nissl-positive colocalization. (c) Percentage of GFP-positive α-motoneurons quantified from b by size (>20 µm). Values are represented as the mean ± SEM (n = 3/group and time point).

Statistically significant differences were observed by two-way ANOVA and Bonferroni post hoc tests in a (P < 0.05) at week 3 for lumbar versus thoracic and cervical numbers but not in b or c. GFP, green fluorescent protein. AAV, adeno-associated virus; ANOVA, analysis of variance; DRG, dorsal root ganglia.

Figure 3 Tropism characterization of AAVrh10 in spinal cord after intrathecal administration of the vector. (a, d, g, j) GFP-transduced cells in the ventral horn of lumbar spinal cord (given in green). (b, e, h, k) Immunohistochemical analysis of spinal cord cross-sections with specific cell markers, (b) ChAT for motoneurons; (e) GFAP for astrocytes; (h) APC1 for oligodendrocytes; and (k) Iba1 for microglia (all given in red). (c) Merged images (c, f, i, l) showed restricted colocalization only between GFP and ChAT (m), except for one cell in i (arrowhead) colocalizing between APC1 and GFP a–l, bar = 70 µm. Magnified merged images (m, n, o, p, scale bar = 31 µm). AAV, adeno-associated virus; ChAT, choline acetyltransferase; DRG, dorsal root ganglia; GFAP, glial fibrillary acidic protein; GFP, green fluorescent protein.

period of time and that viruses diluted in the CSF were able to transduce sensory and spinal motor neurons in all the subdivisions of the spinal cord. Small interneurons expressing GFP as well as dorsal horn neurons were also observed, mainly in the lumbar region. Contrary to AAVrh10, AAV1-injected animals did not show GFP expression in the spinal cord (data not shown). In addition, we did not detect transduction of the meninges with any of the viruses used.

Motor and sensory neuron overexpression of IGF-I in a mouse model of DPN

As a proof of principle to test for the efficacy of AAVrh10 in treating diseases affecting both sensory and motor neurons, we used a mouse model of diabetic neuropathy by combining induction of diabetes by multiple low doses of streptozotocin with sciatic nerve crush. Four weeks after initiation of diabetes, male CD-1 mice were intrathecally injected with 1×10¹¹ viral genomes of AAVrh10 or AAV1 coding for either IGF-I or GFP and submitted to sciatic nerve lesion on one leg to evaluate the regeneration delay that has been described in diabetic mice.²¹⁻²² Electrophysiological studies were performed at 3 and 4 weeks postcrush (7 and 8 weeks after streptozotocin treatment) after which the animals were euthanized and samples processed for molecular analyses. Animals were monitored for weight and glycemia every 2 weeks (Supplementary Figure S5). All mice showed established hyperglycemia on the day of surgery without significant changes along the duration of the experiment (Supplementary Figure S5b,d). No statistically significant differences were observed between the four groups in body weight (Supplementary Figure S5a,c). Student's
Electrophysiological studies showed evidences of peripheral neuropathy in the left intact hind limb of the diabetic mice that had significantly reduced motor and sensory NCV with respect to values of control mice. AAV vector injection did not induce further deterioration, and AAV-GFP mice had similar neuropathy as control noninjected diabetic mice (Table 1), despite variability between groups. Mice that received a vector for IGF-I expression showed less marked deterioration of peripheral nerve function during the month of follow-up that corresponding AAV-GFP mice. Mice with AAV1-IGF-I had significantly higher distal sensory NCV, whereas mice injected with AAVrh10-IGF-I had significantly higher amplitude of the sensory compound nerve action potential and proximal sensory NCV compared with their corresponding controls with vector encoding GDF (Table 1).

Regeneration capability of the diabetic hind limbs was assessed by electrophysiological parameters and pathological evaluations. The electrophysiological parameters included nerve conduction velocity (NCV) and compound motor and sensory nerve action potentials (CNAP and SNCVP, respectively), which were measured in the intact hind limbs of diabetic mice at 7 and 8 weeks after induction of diabetes (3 and 4 weeks after intrathecal injection of viral vector in the AAV groups).

Table 1: Results of electrophysiological tests performed in the intact hind limb of diabetic mice at 7 and 8 weeks after induction of diabetes (3 and 4 weeks after intrathecal injection of viral vector in the AAV groups)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Control (n = 10)</th>
<th>AAV1-GFP (n = 10)</th>
<th>AAV1-IGF-I (n = 21)</th>
<th>AAVrh10-GFP (n = 7)</th>
<th>AAVrh10-IGF-I (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week diabetes</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Plantar muscle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMAP (mV)</td>
<td>6.7 ± 0.4</td>
<td>6.5 ± 0.4</td>
<td>6.8 ± 0.4</td>
<td>6.3 ± 0.4</td>
<td>6.4 ± 0.3</td>
</tr>
<tr>
<td>MNCV (m/s)</td>
<td>36.4 ± 1.2</td>
<td>34.8 ± 1.1</td>
<td>33.1 ± 0.8</td>
<td>34.1 ± 1.1</td>
<td>38.8 ± 1.8</td>
</tr>
<tr>
<td>Digital nerve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNAP (µV)</td>
<td>29.4 ± 2.4</td>
<td>24.1 ± 1.1</td>
<td>31.9 ± 3.5</td>
<td>26.6 ± 2.2</td>
<td>32.2 ± 2.3</td>
</tr>
<tr>
<td>SNCVP (m/s)</td>
<td>36.5 ± 0.9</td>
<td>34.7 ± 0.9</td>
<td>36.9 ± 1.9</td>
<td>36.0 ± 1.8</td>
<td>39.9 ± 1.1</td>
</tr>
<tr>
<td>SNCVd (m/s)</td>
<td>29.2 ± 0.7</td>
<td>25.9 ± 0.7</td>
<td>29.1 ± 0.7</td>
<td>24.2 ± 0.8</td>
<td>32.0 ± 0.6</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SEM. All CMAP and CNAP amplitudes are given for nerve stimulation at the sciatic notch. CMAP, compound muscle action potential; CNAP, compound nerve action potential; MNCV, motor nerve conduction velocity; SNCVP, sensory nerve conduction velocity; d: distal nerve segment; p: proximal nerve segment.

DISCUSSION

The goal of this study was to analyze the potential of AAV vectors for treating DPN. Even if DPN widely affects the PNS, restricted administration to the target tissue may be crucial, avoiding the use of IGF-I in sensory neurons probably activated Akt signaling pathway, as shown by phosphorylation of Akt compared to total Akt protein levels in AAVrh10 IGF-I and but not in GFP-injected mice (Figure 5a). IGF-I is capable to activate different signaling pathways and to promote cell survival as well as to regulate the expression of different trophic factors, VEGF being one among them. VEGF has been shown to be essential for neuronal survival, and its secretion and mRNA expression in many tissues is being induced by IGF-I. In Figure 5b, we show a significant increase in VEGF protein in lumbar DRG of IGF-I–injected animals, compared to GFP–injected mice. On the other hand, growth associated protein 43 (GAP-43) is overexpressed by neurons in the process of regeneration, and it is located in the growth cones of regenerating axons. We analyzed GAP-43 in regenerating sciatic nerves from animals injected with vectors expressing IGF-I or GFP at the time of injury. We detected a significant increase in GAP-43 mRNA in DRG and GAP-43 protein in sciatic nerve, 4 weeks after AAVrh10 IGF-I treatment (Figure 6a,b, respectively), correlating with the electrophysiological results and confirming a positive effect of IGF-I in the regeneration of injured nerves in diabetes.

Levels of GAP-43 mRNA were also found increased in sciatic nerves of AAV1-injected animals but at lower levels than that in AAVrh10-injected animals. AAV1–mediated GAP-43 protein was not significantly increased in these animals (Supplementary Figure S6a,b).

Schwann cells play an important role in the regeneration process of PNS after injury. In this regard, Schwann cell survival, proliferation, motility, and myelination are crucial for a proper regeneration of the injured nerve, and all these processes can be promoted by IGF-I. We detected increased levels of PNS myelin proteins: myelin protein zero (P0), PMP22, myelin basic protein, and myelin-associated glycoprotein 4 weeks after injury in IGF-I–treated sciatic nerves (Figure 6c,d, Supplementary Figure S6c,d). Quantitative PCR of myelin proteins showed strongly increased mRNA levels in AAVrh10-injected animals and a similar tendency for AAV1–treated mice, although with lower levels. Myelin protein zero, accounting for 50% of PNS myelin proteins, was ten times enhanced in AAVrh10 IGF-I–injected animals and only four times in AAV1–injected mice, both of them being statistically significant (P < 0.05).

Intrathecal AAVrh10 for gene therapy for diabetic neuropathy

J Homs et al

Molecular Therapy — Methods & Clinical Development (2014) 7

© 2014 The American Society of Gene & Cell Therapy

t-test, n = 10 for GFP and 15 for IGF-I in AAVrh10-treated groups; n = 7 for GFP and 17 for IGF-I in AAV1-treated groups.

Statistically significant from GFP-treated animals (Figure 4c). Increased levels of GAP-43 mRNA in DRG and GAP-43 protein in sciatic nerve, 4 weeks after AAVrh10 IGF-I treatment (Figure 6a,b, respectively), correlating with the electrophysiological results and confirming a positive effect of IGF-I in the regeneration of injured nerves in diabetes. Levels of GAP-43 mRNA were also found increased in sciatic nerves of AAV1-injected animals but at lower levels than that in AAVrh10-injected animals. AAV1–mediated GAP-43 protein was not significantly increased in these animals (Supplementary Figure S6a,b).

Schwann cells play an important role in the regeneration process of PNS after injury. In this regard, Schwann cell survival, proliferation, motility, and myelination are crucial for a proper regeneration of the injured nerve, and all these processes can be promoted by IGF-I. We detected increased levels of PNS myelin proteins: myelin protein zero (P0), PMP22, myelin basic protein, and myelin-associated glycoprotein 4 weeks after injury in IGF-I–treated sciatic nerves (Figure 6c,d, Supplementary Figure S6c,d). Quantitative PCR of myelin proteins showed strongly increased mRNA levels in AAVrh10-injected animals and a similar tendency for AAV1–treated mice, although with lower levels. Myelin protein zero, accounting for 50% of PNS myelin proteins, was ten times enhanced in AAVrh10 IGF-I–injected animals and only four times in AAV1–injected mice, both of them being statistically significant (P < 0.05).

DISCUSSION

The goal of this study was to analyze the potential of AAV vectors for treating DPN. Even if DPN widely affects the PNS, restricted administration to the target tissue may be crucial, avoiding the use of IGF-I in sensory neurons probably activated Akt signaling pathway, as shown by phosphorylation of Akt compared to total Akt protein levels in AAVrh10 IGF-I and but not in GFP-injected mice (Figure 5a). IGF-I is capable to activate different signaling pathways and to promote cell survival as well as to regulate the expression of different trophic factors, VEGF being one among them. VEGF has been shown to be essential for neuronal survival, and its secretion and mRNA expression in many tissues is being induced by IGF-I. In Figure 5b, we show a significant increase in VEGF protein in lumbar DRG of IGF-I–injected animals, compared to GFP–injected mice. On the other hand, growth associated protein 43 (GAP-43) is overexpressed by neurons in the process of regeneration, and it is located in the growth cones of regenerating axons. We analyzed GAP-43 in regenerating sciatic nerves from animals injected with vectors expressing IGF-I or GFP at the time of injury. We detected a significant increase in GAP-43 mRNA in DRG and GAP-43 protein in sciatic nerve, 4 weeks after AAVrh10 IGF-I treatment (Figure 6a,b, respectively), correlating with the electrophysiological results and confirming a positive effect of IGF-I in the regeneration of injured nerves in diabetes. Levels of GAP-43 mRNA were also found increased in sciatic nerves of AAV1-injected animals but at lower levels than that in AAVrh10-injected animals. AAV1–mediated GAP-43 protein was not significantly increased in these animals (Supplementary Figure S6a,b).

Schwann cells play an important role in the regeneration process of PNS after injury. In this regard, Schwann cell survival, proliferation, motility, and myelination are crucial for a proper regeneration of the injured nerve, and all these processes can be promoted by IGF-I. We detected increased levels of PNS myelin proteins: myelin protein zero (P0), PMP22, myelin basic protein, and myelin-associated glycoprotein 4 weeks after injury in IGF-I–treated sciatic nerves (Figure 6c,d, Supplementary Figure S6c,d). Quantitative PCR of myelin proteins showed strongly increased mRNA levels in AAVrh10-injected animals and a similar tendency for AAV1–treated mice, although with lower levels. Myelin protein zero, accounting for 50% of PNS myelin proteins, was ten times enhanced in AAVrh10 IGF-I–injected animals and only four times in AAV1–injected mice, both of them being statistically significant (P < 0.05).
of large doses of vector and the chance of expression of recombinant proteins in undesired tissues, leading to development of secondary effects or stimulation of the immune response against the virus or the therapeutic protein.24,25 For this reason, we delivered AAV1 and AAVrh10 vectors to the CSF by lumbar puncture, a minimally invasive route that can be potentially performed in an outpatient setting, so to allow reaching sensory and motor neurons with minor exposure of peripheral tissues. Broad delivery to the PNS by targeting sensory and/or motor neurons is required to treat neuropathic pain, nerve trauma, or diseases like DPN, Charcot–Marie–Tooth, amyotrophic lateral sclerosis, or spinal muscular atrophy.16–20 Here, we demonstrate that AAVrh10 delivered by

Table 2

Results of electrophysiological tests performed in the right hindlimb of diabetic ICR mice at 7 and 8 weeks after induction of diabetes, and 3 and 4 weeks after sciatic nerve crush (w.p.i.) and intrathecal injection of viral vector.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>AAV1-GFP (n = 9)</th>
<th>AAV1-IGF-I (n = 21)</th>
<th>AAVrh10-GFP (n = 7)</th>
<th>AAVrh10-IGF-I (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMAP (mV)</td>
<td>12.5 ± 1.5</td>
<td>18.2 ± 1.8</td>
<td>12.6 ± 1.0</td>
<td>21.2 ± 1.1</td>
</tr>
<tr>
<td>Plantar muscle</td>
<td>0.54 ± 0.17</td>
<td>1.29 ± 0.34</td>
<td>0.41 ± 0.05</td>
<td>1.24 ± 0.21</td>
</tr>
<tr>
<td>MNCV (m/s)</td>
<td>11.3 ± 1.2</td>
<td>15.4 ± 0.8</td>
<td>11.3 ± 1.0</td>
<td>17.1 ± 1.1</td>
</tr>
<tr>
<td>Digital nerve</td>
<td>CMAP (µV)</td>
<td>3.7 ± 0.5</td>
<td>7.3 ± 0.5</td>
<td>4.2 ± 0.8</td>
</tr>
<tr>
<td>Pinprick score</td>
<td>3.3 ± 0.5</td>
<td>5.8 ± 0.7</td>
<td>2.7 ± 0.3</td>
<td>5.3 ± 0.4</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SEM. All CMAP and CNAP amplitudes are given for nerve stimulation at the sciatic notch. P < 0.05 versus AAVrh10-GFP at the same time of follow-up. ANOVA with Bonferroni post hoc tests.

ANOVA, analysis of variance; CMAP, compound muscle action potential; CNAP, compound nerve action potential; MNCV, motor nerve conduction velocity; SNCV, sensory nerve conduction velocity; -d: distal nerve segment; -p: proximal nerve segment; w.p.i.: weeks post infection.

Figure 4 IGF-I expression driven by AAV1 or AAVrh10 is detected in sensory and motor neurons and secreted to the CSF of diabetic mice. IGF-I expression is demonstrated 4 weeks after intrathecal administration of AAV vectors. (a) IGF-I immunohistochemistry in DRG and (d) ventral spinal cord sections from the lumbar area. Confocal microscopy detected increased IGF-I staining in sensory and motor neuron-like morphology in mice injected with AAV1-IGF-I and AAVrh10-IGF-I compared to control animals injected AAV coding for GFP. Images were obtained sequentially under identical scanning conditions for each independent channel (red channel: IGF-I; blue channel: TO-PRO-3 to counterstain nuclei; n = 2). (b) Quantitative PCR from lumbar DRG and ventral horn of spinal cord showed significant increase of IGF-I with both vectors compared to GFP (one-way ANOVA and Tukey’s multiple comparison test; **p < 0.01; ***p < 0.005; n = 5–7/group). (c) IGF-I ELISA from CSF of treated animals obtained at the time of sacrifice (n = 3/group). Statistically significant numbers were obtained for AAVrh10-treated animals but not with AAV1, compared to nontreated control animals (Student’s t-test, *p < 0.05, **p < 0.01). a, bar = 160 µm d, bar = 73 µm, AAV, adeno-associated virus; ANOVA, analysis of variance; CSF, cerebrospinal fluid; ELISA, enzyme-linked immunosorbent assay; IGF, insulin-like growth factor.
lumbar puncture infects both sensory and motor neurons along the different segments of the spinal cord, with only significant differences in the relative percentage of neurons transduced between lumbar and thoracic DRG, but no differences were found between motoneurons or even between lumbar and cervical DRG. With only 10 µl of viruses, we achieved up to 60% of sensory neurons and 30% of motoneurons transduced. Moreover, in this work, we have used single-strand AAV as a platform, reported to be 20-fold less efficient compared to self-complementary AAVs, and we did not use immunohistochemistry to quantify GFP expression in transduced cells to avoid overestimation due to background, so we may have, in addition, ten times lower sensitivity when quantifying transduction levels.

Studies in larger animals are important to evaluate the potential of the therapeutic strategy. As a matter of fact, intramuscular AAV6 in nonhuman primates could target 50% motoneurons in 1-cm-long lumbar spinal cord segment. Moreover, intravenous AAV9 was able to transduce motoneurons in adult cats up to 15% from lumbar to cervical segments, although peripheral tissues, including testis, were also labeled. Recently, intrathecal administration of AAV9 in pigs documented the capability of transducing sensory and motor neurons. However, most of transduced cells were astrocytes. This is also in accordance with the preferential transduction of astrocytes after intravenous administration of this vector in adult mice. Other serotypes, like AAV7, seem to be as efficient as AAV9 after intracisterna injection and targets both neurons and astrocytes. Herein, we demonstrate AAVrh10-specific tropism for neurons in the spinal cord and DRG, similar to what was reported for the central nervous system, but not for glial cells as found for AAV7 and AAV9, which may be an advantage because restricting cell type infection may decrease immunological response, although this needs to be analyzed. In this regard, a high percentage of humans are seropositive for different AAV serotypes. In adults, anti-AAV2 antibodies are the most prevalent (up to 70% of healthy humans), followed by serotypes AAV5, AAV9, and AAV8. Using a nonhuman AAV serotype in human gene therapy trials may have additional advantages compared to human serotypes like AAV9, since patients may not be preimmunized against this serotype, although cross-reaction between AAVrh10 and human AAV serotypes needs to be quantified.

As a proof of principle, we administered IGF-I as therapeutic gene in the mouse model of DPN. IGF-I provides trophic support to neurons of peripheral and central nervous systems. Through its tyrosine kinase receptor, IGF-I upregulates other neurotrophic factors including the hypoxic-inducible factor 1α and VEGF. Schwann cells express IGF-I receptors, and their activation promotes myelination and protects Schwann cell dysfunction induced by high glucose in vitro. Importantly, intrathecal daily delivery of IGF-I through an infusion pump in diabetic rats reversed slowing of motor and sensory conduction velocity as well as atrophy of myelinated sensory axons in peripheral nerve. In fact, the therapeutic effect of growth factors was demonstrated for DPN by promoting neuronal survival, stimulating repair of peripheral nerve injury, or inducing nerve regeneration under diabetic conditions (for review, see ref. 39). For that reason, clinical trials using nerve growth factor, brain-derived neurotrophic factor, VEGF, and C-peptide were proposed, although without significant benefit so far. Delivering factors continuously through gene therapy vectors may considerably improve the efficiency of these trials. Indeed, AAVrh10 vector may enable the long-term expression in sensory and motor neurons along the spinal cord without the risk of insertional mutagenesis. Delivering nonsecreted proteins through this method could be an additional challenge since only those neurons expressing the transgene will be corrected.

Unfortunately, animal models of diabetes do not reach the severity of human diabetic neuropathy. Animal nerves usually show relatively mild neurophysiological deficits and minor morphometric changes. The lack of degenerative neuropathy in diabetic rodent models seems to be a consequence of the short life span of rodents or the physically shorter axons. Degenerative neuropathy is minimal even in larger animals like dogs or primates, with the exception of cats. For this reason, we combined diabetes with nerve injury, because it is demonstrated that PNS regeneration is impaired in diabetic patients and animal models. The results presented here demonstrate that IGF-I delivery using AAVrh10 achieves higher transduction to sensory neurons and, more importantly, to motoneurons, leading to higher levels of the therapeutic protein to both sensory and motor nerves, which is probably the cause of the higher expression of IGF-I downstream signaling pathway like myelin proteins or GAP-43 observed in our model. Altogether, these data demonstrate that IGF-I delivery through intrathecal injection to sensory neurons with AAV1 is able to achieve a modest improvement of the neuropathy but not of nerve regeneration after injury in diabetic mice, while when driven by AAVrh10, IGF-I is able to significantly accelerate regeneration and myelination of the peripheral nerve of diabetic animals, with particular effect to motor neurons. These improvements may be relevant in diabetic animal models of longer evolution, in which neuropathy is more severe, and in larger species in which axonal regeneration through longer nerves takes more time. Despite our experimental design, we did not evaluate the effect of AAVrh10 coding for IGF-I on nerve regeneration without the effect of diabetes, our results suggest that intrathecal injection of AAVrh10 could be a promising tool to design gene therapy approaches for diseases affecting sensory and motor neurons, like DPN, as well as for peripheral nerve injury.
Figure 6 AAVrh10 coding for IGF-I promotes regeneration and myelin proteins expression in injured sciatic nerves of diabetic mice. Injured sciatic nerves and DRG from diabetic mice treated with AAVrh10 coding for GFP or IGF-I were dissected 4 weeks after treatment. Graphs represent means ± SEM (n = 3–5 animals). mRNA and protein of GAP-43, a marker for nerve regeneration, are significantly increased in IGF-I–treated animals as assessed by (a) quantitative PCR from DRG and (b) western blot from sciatic nerve protein extracts, where levels of GAP-43 were quantified and compared to actin. (c) Quantitative PCR from sciatic nerve shows increased mRNA for myelin proteins P0, PMP22, MAG, and MBP in animals that received IGF-I compared to GFP-treated mice. (d) Protein levels of myelin protein P0 analyzed by western blot corroborated quantitative PCR results. Student’s t-tests show statistically significant results (***P < 0.005; **P < 0.01; *P < 0.05). AAV, adeno-associated virus; DRG, dorsal root ganglia; GAP, growth associated protein; GFP, green fluorescent protein; IGF, insulin-like growth factor; MBP, myelin basic protein.

MATERIALS AND METHODS

AAV vector construction, production, and titration

GFP cDNA was cloned into HindIII and NheI sites to the plasmid pAAV-CAG-polylinker-WPRE, containing the chicken β-actin promoter with the cytomegalovirus enhancer and the woodchuck hepatitis virus responsive element (WPRE). AAV2/1 and AAV2/rh10-CAG-GFP-WPRE were generated as previously described48 by triple transfection in HEK 293-AAV cells (Stratagene, Carlsbad, CA) with branched polyethylenimine (PEI; Sigma, St Louis, MO) with benzonase treatment48 by the Vector Production Unit at Center of Animal Biotechnology and Gene Therapy (Universitat Autònoma de Barcelona).

Animals

Eight to twelve-week-old male Hsd:ICR (CD-1) (Harlan Laboratories, Indianapolis, IN) mice were used. Mice were fed ad libitum with a standard diet (2018S Teklad Global; Harlan Laboratories; 17% calories from fat) and kept under a light–dark cycle of 12 hours (lights on at 8:00 AM) immediately before administration. Diabetes was induced by measuring blood glucose levels with a Glucomer Elite (Bayer, Leverkusen, Germany). Animal care and experimental procedures were approved by the Biosafety and the Animal and Human Experimentation Ethical Committees of the Universitat Autònoma de Barcelona.

Surgical procedures

Administration of viral vectors. Animals were anesthetized by intraperitoneal injection of ketamine (10 mg/kg of body weight; Imalgene 500; Rhône-Mérieux, Lyon, France) and xylazine (1 mg/kg of body weight; Rompun; Bayer). Sciatic nerve injection and injury were described previously. Three microliters of viral vectors were directly injected into the sciatic nerve using a 33-gauge needle and a Hamilton syringe connected to a Micropump (Micro4; World Precision Instruments, Sarasota, FL) at a rate of 400 nl/minute. Intrathecal administration was performed at the lumbar region. After lateral spine exposure, by paravertebral muscle dissection, local anesthesia with bupivacaine 0.5% (B.Braun, Melsungen, Germany) was applied. Ten microliters of viral vectors were slowly injected into the CSF through a 33-gauge needle and a Hamilton syringe connected to a Micropump (Micro4; World Precision Instruments). Appropriate access to the intrathecal space was confirmed by animal’s tail movement. The needle remained in place at the injection site for one additional minute after which muscle and skin were sutured.

CSF extraction. Mice were deeply anesthetized and immobilized in stereotaxic appliance. An incision was made from the occipital region of the skull to the cervical region of the spine, and the posterior neck muscles were separated to access the arachnoid at the cisterna magna. Local anesthesia with bupivacaine 0.5% (B.Braun, Melsungen, Germany) was applied. An aspirator tube (Sigma-Aldrich) assembled to a microcapillary pipette was used to extract the CSF. A slight pressure was made with the microcapillary pipette on the arachnoid membrane to access...
the cisterna magna. Then, 5 µl of CSF per mouse were withdrawn by aspiration. Animals were euthanized just after CSF extraction.

Sciatric nerve lesion. Under anesthesia as stated above, the right sciatic nerve was exposed at the mid-thigh and subjected to a crush lesion during 30 seconds for three times in succession with a Dumont #5 (World Precision Instruments, Sarasota, FL) forceps at a constant point, 42 mm from the tip of the third digit. The wound was then sutured by layers.

Functional tests

Nerve conduction studies were performed bilaterally in the sciatic nerve at two time points, 7 and 8 weeks after induction of diabetes, correspond- ing to 3 and 4 weeks following the surgical lesion on the right side.22 With animals under anesthesia (pentobarbital 40 mg/kg intraperitoneally), the nerve was stimulated percutaneously through a pair of small needle electrodes placed first at the sciatic notch and then at the ankle. Rectangular electrical pulses (Grass S88) of 0.01 ms duration were applied up to 25% above the voltage that gave a maximal response. The compound muscle action potentials were recorded from the third interosseous plantar muscle and from the tibialis anterior muscle with microneedle electrodes. Similarly, the sensory compound nerve action potential was recorded above the voltage that gave a maximal response. The compound muscle action potentials were used to calculate the nerve conduction velocity (NCV) for the sciatic nerve–ankle segment and from the tibialis anterior muscle with microneedle electrodes. The amplitude from the fourth toe near the digital nerves. All evoked action potentials were recorded from the third interosseous plantar muscle and from the tibialis anterior muscle with microneedle electrodes. The amplitude from the fourth toe near the digital nerves.

Quantiative real-time PCR

Sciatic nerves, DRGs, and spinal cord were homogenized with Qiazol (Qiagen, Valencia, CA) with FastStart Sybrgreen Master (Roche Diagnostics, Basel, Switzerland). Primer sequences used: reference gene m3884 (forward: AATAGGCTACAAGGCGCTCTG; reverse: AGCAGCCGAATGCAGATGG); IGF-I (forward: GGACCAUGACCTTCTGGG; reverse: GTGCCTCCGAATGCTGGAG); P0 (forward: GTGCTGCTGTGCTCGCTGTT; reverse: CAGGGATCTGTAGGTAAGAG); PMP22 (forward: CAACAGCAG); P0 (forward: TCTCAGGTCACGCTCTATGTC; reverse: CAGGTAGAAGAG); DRG-4 (forward: AGGCCATGTTGATCGAC); myelin basic protein (forward: GGTGCGGCC); myelin-associated glycoprotein (forward: AGCAGACGCTTGCTGAATG; reverse: GCCGAGGGCAGCTGCTGACT); GAP-43 (forward: ACTCTTGGGCGAGGGACGC); myelin-associated glycoprotein (forward: AGCAGACGCTTGCTGAATG; reverse: GCCGAGGGCAGCTGCTGACT); GAP-43 (forward: ACTCTTGGGCGAGGGACGC); anti-total Akt levels for Akt-P samples. Amplifications were performed as follows: heat inactivation (5 minutes, 95 °C, 1 cycle), followed by 40 cycles of 95 °C, 15 seconds; 58 °C (melting temperature for each pair of primers), 20 seconds; 72 °C, 20 seconds. Fluorescence detection of product was performed at the end of the PCR extension, and melting curves were analyzed by monitoring the continuous decrease in fluorescence of the SYBR Green signal. PCR products were verified for a single amplification product using melting curve analysis, and the molecular weight of each product was confirmed by agarose electrophoresis. Quantification relative to m3884 controls was calculated using the Pfaff method.25

Histology and immunological assays

Anesthetized animals were perfused with phosphate buffer, followed by 4% paraformaldehyde in phosphate buffer. Cryoprotected sciatic nerves, DRG, and spinal cord containing lumbar, thoracic, or cervical segments were embedded in Tissue-Tek OCT Compound (Miles, Elkhart, IN). Ten-micrometer-thick sections of sciatic nerves and DRGs and 20-µm-thick sections of spinal cord and brain were blocked and incubated with primary antibodies overnight at 4 °C. For sciatic nerves and DRG, the antibodies used were: anti-PGP 9.5 (1:500; UltraClone, Isle of Wight, UK), anti-S100 (1:500; DakoCytomation), anti-CRGP and anti-NF200 (1:500; Millipore), and anti-IGF-I (1:100; Abcam, Cambridge, UK). Sections were then incubated with the following secondary antibodies: Alexa Fluor Goat Anti-rabbit 568, Alexa Fluor Goat Anti-mouse 568, and Alexa Fluor Rabbit Anti-goat 568 (1:200; Invitrogen, Carlsbad, CA). Finally, sections were counterstained with Hoechst stain solution (Sigma-Aldrich) for nuclei labeling, and they were mounted in Gel Mount (Sigma-Aldrich). Fluorescence was detected with a laser-scanning confocal microscope (TCs SP2; Leica Microsystems, Heidelberg, Germany), and images taken for quantification. For DRG neuron counting, one every five sections was selected, and DRG neurons were identified as large, round cell bodies with large round nuclei, surrounded by satellite cells with small elongated nuclei, and counted by two independent researchers. At least five sections for each DRG were used. GFP was detected by direct fluorescence, without antibody enhancement.

For spinal cord neuron counting, 40 µm sections separated by 200 µm of each spinal cord were stained with Neurotrace red fluorescent Nissl (Molecular Probes, Eugene, OR) following manufacturer's instructions. GFP-positive cells localized in the ventral horn were counted, without antibody enhancement, along the spinal cord to estimate the number of ventral neurons transduced in each segment. For α-motoneuron counting, only choline acetyltransferase–positive neurons with diameters above 20 µm, with a prominent nucleolus and polygonal shape in the ventral horn were considered in Nissl-stained sections. Counting was performed by two different researchers, and data were pooled together.

Western blot. Sciatic nerves, DRGs, and spinal cord were sonicated and homogenized in RIA lysis buffer (50 mmol/l Tris–Cl pH 7.4, 1.5 mmol/l NaCl, 1 mmol/l ethylenediaminetetraacetic acid, 1% NP-40, and 0.25% sodium deoxycholate) and Complete Mini EDTA-free protease inhibitor cocktail tablets (Roche Diagnostics). Protein concentration was determined by BCA Protein Assay (Pierce, Rockford, IL), and 50 µg of proteins were separated on 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis gel (Bio-Rad, Hercules, CA). Polyvinylidene fluoride membranes were incubated with anti-VEGF (1:200; Abcam), anti-AG (Ser473) (1:500; Cell Signaling Technology, Danvers, MA), anti–gap -43 (1:500; Millipore) and anti-P (1:500; Abcam), and anti-rabbit conjugated to horseradish peroxidase (1:200; DakoCytomation) combined with western blotting detection reagent (ECL Plus; Amersham, Freiburg, Germany) according to the manufacturer’s instructions. The same membranes were stripped and incubated with anti-actin (1:500; Sigma-Aldrich) and anti-total Akt (1:500; Cell Signaling Technology). Band pixel intensities were quantified by GeneSnap software for gene Genius Bio Imaging System (Syngene, Cambridge, UK) and normalized by anti-actin levels in each line and by anti-total Akt levels for Akt-P samples.

Statistics

Values are represented as mean ± SEM. Statistical analyses using Student’s t-test or one- and two-way analysis of variance with Bonferroni or Tukey post hoc tests were performed for each set of data. Differences were considered statistically significant if P < 0.05.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

We thank the Vector Production Unit at CBATEG (Universitat Autònoma de Barcelona) that was supported by the Association Française contre les Myopathies (AFM) for producing AAV vectors, James M. Wilson (University of Pennsylvania) for providing AAV1 and AAV10 RepCap plasmids, and Mirenil Puig and David Ramos (CBATEG, UAB) for technical assistance. JH, GP and L.A. were recipients of postdoctoral fellowships (JH. from the AFM: AIP2009/B18522/AGD, G.P. and L.A. from the Generalitat de Catalunya: 2009FI_800219 and 2009FI_800762, respectively). A.B. was a beneficiary of the Ramon y Cajal Program. This work was supported by the EU (Treat-NMD Network of Excellence, FP7-HEALTH2007-230587, and Integrated Project INNPOWER, FP7-HEALTH-2010-222630, to A.B. and IANBIO; 006100561 to M.C., TERCCEL, and IANBIO; funds to K.N.), the Generalitat de Catalunya (SGR 2009-13030), the Marató TV3 (110432 to A.B. and C.C.) and the UAB (EME04-07).

Intrathecal AAVrh10 for gene therapy for diabetic neuropathy

J Homs et al

Molecular Thera

Intrathecal AAV10 for gene therapy for diabetic neuropathy

J Homs et al

REFERENCES

21 Sondhi, D, Hackett, NR, Peterson, DA, Stratton, J, Baad, M, Travis, KM et al. (2011). Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the murine central nervous system. Mol Ther 21: 1245–1254.

Central Nervous System Delivery of Helper-Dependent Canine Adenovirus Corrects Neuropathology and Behavior in Mucopolysaccharidosis Type VII Mice

Lorena Ariza,1 Lydia Giménez-Llort,2,* Aurélie Cubizolle,3,* Gemma Pagès,1 Belén García-Lareu,1 Nicolas Serratrice,3 Dan Cots,1 Rosemary Thwaite,1 Miguel Chillón,1,4 Eric J. Kremer,3 and Assumpció Bosch1

Abstract

Canine adenovirus type 2 vectors (CAV-2) are promising tools to treat global central nervous system (CNS) disorders because of their preferential transduction of neurons and efficient retrograde axonal transport. Here we tested the potential of a helper-dependent CAV-2 vector expressing β-glucuronidase (HD-RIGIE) in a mouse model of mucopolysaccharidosis type VII (MPS VII), a lysosomal storage disease caused by deficiency in β-glucuronidase activity. MPS VII leads to glycosaminoglycan accumulation into enlarged vesicles in peripheral tissues and the CNS, resulting in peripheral and neuronal dysfunction. After intracranial administration of HD-RIGIE, we show long-term expression of β-glucuronidase that led to correction of neuropathology around the injection site and in distal areas. This phenotypic correction correlated with a decrease in secondary-elevated lysosomal enzyme activity and glycosaminoglycan levels, consistent with global biochemical correction. Moreover, HD-RIGIE-treated mice show significant cognitive improvement. Thus, injections of HD-CAV-2 vectors in the brain allow a global and sustained expression and may have implications for brain therapy in patients with lysosomal storage disease.

Introduction

Mucopolysaccharidosis type VII (MPS VII or Sly Syndrome) is an autosomal recessive disease that belongs to a group of lysosomal storage disorders (LSD), referred to collectively as mucopolysaccharidoses (MPS), caused by the loss of function of one of several lysosomal enzymes. MPS VII is caused by a deficiency in β-glucuronidase (βgluc) activity (EC 3.2.1.31), a lysosomal hydrolase involved in the stepwise degradation of glucuronic acid-containing glycosaminoglycans (GAGs) dermatan sulfate, heparan sulfate, and chondroitin sulfate (Vogler et al., 1994). Lysosomal enzymes are essentially ubiquitously expressed; thus, multiple organs are impaired because of cells accumulating undegraded substrates. MPS VII patients display a range of clinical variability, from the most severe with hydrops fetalis to an attenuated phenotype with late onset and almost normal intelligence (Muenzer, 2011). The features of MPS VII include coarse facies, hydrocephaly, and multiple skeletal abnormalities. Affected individuals also frequently develop hepatosplenomegaly, heart valve abnormalities, developmental delay, and progressive intellectual disability (Shipley et al., 1993). The MPS VII mouse has been extensively used as a model of the human LSD as it shares clinical, biochemical, and pathological symptoms, including growth retardation (Birkenmeier et al., 1989; Vogler et al., 1998). Thus, MPS VII mouse is a useful tool for the evaluation of the effectiveness of experimental therapies for MPS VII disorders.

Among the treatments tested for MPS VII, bone marrow transplants, particularly in neonatal mice, can correct widespread lysosomal storage of MPS VII mice in bone, bone marrow, visceral organs, and brain; increase the lifespan to approach that found in normal mice; and correct cardiac abnormalities (Soper et al., 2001; Schultd et al., 2004). Another therapeutic approach for peripheral LSD symptoms is enzyme replacement therapy (ERT). ERT has improved pathologies in patients with Gaucher disease (Grabowski et al., 1998), Fabry...
disease (Eng et al., 2001; Wilcox et al., 2004), Pompe disease (Thurberg et al., 2006), MPS I (Kakkis et al., 2001), MPS II (Muenzer, 2011), and MPS VI (Harmatz et al., 2006). For MPS VII, data from animal models (O’Connor et al., 1998; LeBowitz et al., 2004) have supported the approval of a phase I/2 clinical trial (NCT01856218). However, this approach is limited by the permeability of the blood–brain barrier (BBB). As many LSD, including MPS VII, affect the central nervous system (CNS), a strategy that can cross the BBB is necessary.

One approach to address long-term CNS therapy is gene transfer via viral vectors that confer stable and long-term correction. This could provide sustained therapy if a sufficient level of enzyme was secreted in the brain. We and others have demonstrated the potential of different vectors in correcting neuronal pathologies in MPS II (Cardone et al., 2006), MPS IIIA and B (Cressant et al., 2004; Langford-Smith et al., 2012), and MPS VII mice (Bosch et al., 2006a,b; Liu et al., 2007) as well as in larger animal models for the disease (Ciron et al., 2006; Ellinwood et al., 2011). However, clinically relevant gene therapy using common human pathogens as vectors may be complicated by the high incidence of preexisting humoral and cellular immunity (Chirumle et al., 1999; Perreau et al., 2007a).

Human adenoviral vectors induce both innate and adaptive immune responses that trigger the elimination of transgene expression in a relatively short term. Helper-dependent (HD) adenovirus can circumvent the immune response once reaching the nucleus, although they could have been previously neutralized by antiaadenovirus antibodies (reviewed by Lowenstein et al., 2007). Canine adenovirus type 2 (CadV2), or commonly referred to as CAV-2) vectors preferentially transduce neurons, and retrograde axonal transport is efficient, leading to expression of the transgene in many areas of the brain after a single injection (Soudais et al., 2001; Salinas et al., 2009). Compared with human adenovirus serotype 5 vectors, CAV-2 vectors induce a low level of innate response and do not activate the human complement pathways (Keriel et al., 2006; Perreau et al., 2007b). In addition, limited presence and titers of neutralizing antibodies against CAV-2 are found in the human population (Kremer et al., 2000; Perreau and Kremer, 2005). In addition, HD-CAV-2 vectors lead to long-term transgene expression in rodents (Soudais et al., 2004), and have a cloning capacity of ~30 kb. This is an advantage compared with aden-associated viral (AAV) vectors, as it allows the possibility of modulating therapeutic genes with large, endogenous, or inducible promoters and/or regulatory sequences.

The aim of this study was to test the therapeutic efficacy of intrastriatal injection of an HD-CAV-2 vector expressing βgluc (HD-RIGIE) in MPS VII mice. We achieved global, long-term correction in MPS VII mouse brains with bilateral striatal injections of HD-RIGIE. We show recovery of biochemical and neuropathological abnormalities throughout the forebrain and midbrain, which led to significant cognitive improvement.

Materials and Methods

Animals

We used a tolerant mouse model for MPS VII (Sly et al., 2001) developed from the original βgluc-deficient mouse (Levy et al., 1996). Heterozygous (Gie+/-) mice, kindly provided by Dr. William S. Sly (St. Louis University School of Medicine, St. Louis, MO), were bred and mutants were identified at 1 month of age by the absence of βgluc activity from tail clip homogenates. Animal care and experimental procedures were performed in accordance with 86/609/EEC regarding the care and use of animals for experimental procedures and were approved by the Biosafety and the Ethics Committees of the Universitat Autònoma de Barcelona.

First-generation CAV-2 vectors

E1-deleted CAVGFP has been previously described (Kremer et al., 2000). Vector particles were produced in canine E1 trans-complementing cells (DKZeo), originally derived from the canine kidney cell line DK (ATCC CRL6247) (Kremer et al., 2000). Virus from the supernatant were concentrated by precipitation with ammonium sulfate (Schagen et al., 2000) and pooled with the cellular fraction to maximize recovery. This pool was purified using two CsCl density ultracentrifugation steps and CsCl was removed by size exclusion chromatography using PD-10 columns (GE Healthcare), and the virus was stored in 10% glycerol phosphate-buffered saline. Titers were 1.44×10^12 physical particles (pp)/ml with a pp to infectious particle (ip) ratio of 4:1.

Production of HD-RIGIE and HD-GFP vectors

HD-RIGIE expressed the human GUSB cDNA and GFP under the control of a Rous sarcoma virus promoter. The RIGIE cassette (RSV-JVS-GUSB-IRES-EGFP) was generated using classic molecular biology techniques. The human GUSB cDNA was a gift from William Sly (University of St. Louis). AscI/Nol-digested phd-RIGIE or phD-GFP were transfected into 5×10^6 DKZeo cells using 18 μl of Turbofect (Fermentas, Thermo Scientific) for 10 μg of linearized DNA/10 cm plate. The cells were infected with 100 pp of helper vector/cell. GFP+ cells were collected by flow cytometry 24 hr post-transfection, re-plated, and lysed by three freeze–thaw cycles 20 hr later. Cells were sorted after transfection until at least 2×10^6 of GFP+ cells were isolated. The cleared lysates were then incubated on a fresh monolayer of DKZeo cells using helper vector JBA5. Twenty-four hours postinfection, GFP+ cells were sorted by flow cytometry, replated, and lysed by three freeze-thaw cycles 20 hr later. The cleared lysate was used for amplification until 3×10^9 GFP+ cells were obtained. At each amplification step, DKZeo cells were coinfected with 100pp/cell of helper vector. Finally, the last amplification occurred in ~8×10^8 DKCre cells without adding helper vector. JBA5 contains a loxp-flanked packaging domain and an RSV-lacZ expression cassette (Soudais et al., 2001, 2004). When propagated in DkCre cells, an ~900 bp fragment containing the packaging domain and part of the RSV promoter was excised (floxed), and the resulting 32.3 kb vector was rendered packaging deficient (Soudais et al., 2004). The helper vector retained a minimal part of the RSV promoter, which promoted lacZ expression. To test the level of helper contamination in HD vector preparations, β-galactosidase activity was assayed by X-gal staining. HD-RIGIE was purified by triple banding on CsCl density gradients: an initial step gradient of 1.25 and 1.45 g/ml, and then two self-forming isopycnic gradients using 1.32 g/ml CsCl as previously described (Soudais et al., 2004). The purified stock was stored at ~80°C in phosphate-buffered saline (PBS)/10% glycerol.
Physical particles titers were determined by OD at 260 nm and quantitative polymerase chain reaction (qPCR) and were found to be $\sim 1.3 \times 10^{12}$ pp/mL. HD-RIGIE ip were determined by GFP expression. Combined, the pp-to-ip ratio was 60:1. Because of the relatively low level of GFP from the combination of the weak RSV promoter and IRES in DK cells, this ratio likely overestimates the pp-to-ip ratio. As assayed by X-gal staining and qPCR, helper vector contamination varied between preparations from $< 1 \%$ to $\sim 10 \%$.

Animal studies

Intracranial injections. Mice were anesthetized by intraperitoneal injection of ketamine (10 mg/kg of body weight; Imalgene 500; Rhône-Merieux) and xylazine (1 mg/kg of body weight; Rompun; Bayer) and mounted onto a stereotactic frame (David Kopf Instruments). The skull was exposed by a small incision. A small burr hole was made 1 mm caudal and 1.5 mm lateral to bregma. Three microliters of the vector preparation was loaded into a Hamilton syringe mounted to the stereotactic frame. The tip of the needle was inserted into the striatum 3.0 mm in depth from the skull surface in heterozygous mice and 2.6 mm in mutant mice, and 2 μL of HD-RIGIE, corresponding to 2×10^9 pp, was delivered with an ultramicropump (World Precision Instruments) at a rate of 0.5 μl/min. The needle was slowly withdrawn after an additional 5 min. Mock-injected control animals were injected in the same coordinates with 2 μL of PBS.

Transient immunosuppression. Cyclophosphamide (CFA; Sigma) was diluted in PBS and administered intraperitoneally at 50 mg/kg of body weight every 2 days, from day −3 to day + 13, considering day 0 as the intracranial injection time, as a modification of the treatment defined by Cao *et al.* (2011).

Behavioral tests

A standardized set of experimental procedures (abbreviated SHIRPA, Giménez-Holt *et al.*, 2002) were used to characterize the phenotype of treated mice. Observation of undisturbed behavior in the home-cage was followed by assessment of fluorimeter tasks.

Rod tests. Motor coordination and equilibrium were assessed by the distance covered and the latency to fall off a horizontal wood rod (1.3 cm diameter) and a wire rod (1 cm diameter) on two consecutive 20 sec trials.

Hanger test. Prehensility and motor coordination were measured as the distance covered on the wire hang test, where the animals were allowed to cling (2 mm diameter, 40 cm long) with their forepaws for two trials of 5 sec and a third 60 sec trial. Muscle strength was measured as the time until falling off the wire in the 60 sec trial. All the apparatus were suspended 40 cm above a padded table.

Tertiary screen was designed tailored to neuropsychiatric-like deficits, assessing spontaneous exploratory behavior, anxiety-like behaviors, and cognition in a series of tests involving different degrees of complexity.

Corner test. Neophobia was recorded in a new home-cage by the horizontal (n of visited corners) and vertical (n and latency of rearing) activity during a period of 30 sec.

Open-field test. Exploratory activity and anxiety-like behaviors were evaluated for 5 min by means of horizontal (crossings of 5×5 cm) and vertical (rearing) locomotor activities recorded for each minute of the test.

T-maze. The spontaneous exploratory behavior was tested in a T-shaped maze (arms, length 25 cm). Animals were placed inside the vertical arm of the maze facing the end wall. The performance was evaluated by determining the time elapsed until the animal crossed (four-paw criteria) the intersection of the three arms.

Spatial learning and memory in a 2-day water maze. On day 1, animals were trained to criterion (90% escaping under 60 sec) in a series of cued visible platform trials (7 cm diameter, 1 cm above the water surface, position indicated by a visible 5×8 cm striped flag, 20 min intertrial time) in a pool (Intex Recreation; 91 cm diameter, 40 cm deep, 25°C opaque water). This required four platform trials (CUE1–CUE4). The last visible platform trial of any animal was considered to be its posthabituation baseline and was designated CUE4 (cued visible platform trial 4). Mice that failed to find the platform within 90 sec were manually guided to the platform and placed on it for 5–10 sec, the same period as successful animals. Twenty-four hours after the last cued platform trial, animals were tested in a series of four hidden platform trials (PT1–PT4, 20 min apart). In these place-learning tasks, the hidden platform (1.5 cm below the water surface) was located in a new position, opposite the one used for cue learning. Escape latencies were measured with a stopwatch.

Biochemical assays

Detection of lysosomal enzyme activities in tissue extracts. The cerebrum was removed and sliced into 2-mm-thick slices using a mouse brain slicer (Zivic Instruments) and stored at -80°C. Tissues were homogenized in lysis buffer (25 mM Tris, 75 mM NaCl [pH 7.5]; both from Sigma) and centrifuged at 12,000 $\times g$ for 10 min at 4°C. Ten micrograms of each slice was assayed in a fluorimeter Wallac 1420 Victor3 (Perkin Elmer) for β-gluc activity in tissue sections. Animals were anesthetized and perfused with 4% paraformaldehyde, and brains were removed and postfixed. After cryoprotection with 30% sucrose, tissues were embedded in O.C.T. Tissue Tek compound (Miles Scientific) and cut into 10-μm-thick sagittal or coronal sections. Sections were incubated for 4 hr at 37°C with 0.004% hexazotized pararosaniline in 0.25 mM naphthol-AS-BI-β-D-glucuronide (Sigma) or 0.01 mM 4-methylumbelliferyl-β-D-glucuronide (Sigma) or 0.01 mM 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide (Sigma) as substrate, respectively.

Detection of β-gluc activity in tissue sections. Animals were anesthetized and perfused with 4% paraformaldehyde, and brains were removed and postfixed. After cryoprotection with 30% sucrose, tissues were embedded in O.C.T. Tissue Tek compound (Miles Scientific) and cut into 10-μm-thick sagittal or coronal sections. Sections were incubated for 4 hr at 37°C with 0.004% hexazotized pararosaniline in 0.25 mM naphthol-AS-BI-β-D-glucuronide (Sigma). For volumetric estimation of β-gluc extension, 100-μm-thick coronal sections were cut at 4°C after 5 hr postfixation with 4% paraformaldehyde using a vibratome (Leica). The whole cerebrum was sectioned, and one in every four sections was stained for β-gluc activity. Transduction volume was estimated based on the number of slides positive for β-gluc.
GAG quantification. Twenty milligrams of each 2-mm-thick slice was homogenized in papain extraction reagent at 65°C for 3 hr. GAG content was determined using the BlyscaN Sulfated Glycosaminoglycan Assay (Biocolor).

Histology and immunological assays

Ten-micrometer-thick cryosections were obtained as described above. Sections were blocked with 2% bovine serum albumin and incubated with rabbit anti-Iba1 (1:500; Wako Chemicals GmbH) or NeuN (1:200; Chemicon, Millipore) overnight at 4°C. Goat antirabbit Alexa Fluor 568 as a secondary antibody (1:200; Molecular Probes) and a Hoechst solution to stain the nuclei (Sigma) were used. To quantify cortical microglia, Iba1+ cells from different sections around the injected area were counted and normalized by the total number of cells counterstained with Hoechst.

Histopathology. About 100-µm-thick coronal brain sections were postfixed with 4% paraformaldehyde and 1% glutaraldehyde and then with 1% osmium tetroxide, and finally embedded in Epon (all reagents from Sigma). One-micrometer-thick sections were cut and stained with toluidine blue for 30 sec. Histological sections were evaluated morphologically by light microscopy. Sections were further examined, and 200 cells per section and brain structure were counted for each animal to evaluate the percentage of cells without or with very small cytoplasmic vacuoles.

Quantitative polymerase chain reaction

Genomic DNA was obtained from 2-mm-thick brain slices with 0.1 mg/ml of proteinase K (Roche Diagnostics), followed by phenol/chloroform extraction. HD-RIGIE genome copy numbers were measured by qPCR using the Bio-Rad CFX Manager (Bio-Rad Laboratories) and SYBR green PCR (Bio-Rad Laboratories). Briefly, vector sequences and mouse genomic cyclophilin (as reference gene) sequences were simultaneously amplified, and each sample was expressed in terms of its cyclophilin content. The results (vector genome copy number per cell, viral genomes [vg]/cell) were expressed as n-fold differences in the transgene sequence copy number relative to the cyclophilin gene copy number (number of vg copies for 2N genome). Samples were considered eligible for the study if the cyclophilin sequence Ct values were <26 and were scored vector-negative if the transgene sequence Ct value was >35. Thermal cycling conditions comprised an initial denaturing step at 95°C for 3 min, followed by 40 cycles at 95°C for 10 sec, 58°C for 10 sec, and 72°C for 30 sec. Each sample was analyzed in duplicate. Nucleotide sequences of primers are available on request.

Statistics

Values are represented as mean ± SEM. Statistical analyses using Student’s t-test or one- and two-way ANOVA with post-hoc tests were performed for each data set. Repeated-measures ANOVA with a two-factorial design T×G (T = effect of time; G = effect of group) was used for behavioral tests, followed by post-hoc Duncan’s test. Differences were considered statistically significant if p < 0.05.

Results and Discussion

Microglia activation prevents HD-CAV-2 expression in the mouse brain

CAV-2 can be retrogradely transported to different areas of the brain after a single injection into the striatum (Soudais et al., 2004). Thus, although MPS VII causes global CNS pathology, we asked if a single injection exclusively in the striatum of 8–10-week-old MPS VII mice with 2×10^9 pp of HD-RIGIE could be of therapeutic efficacy. Animals were euthanized 1 and 6 weeks after the injection. Brains were sectioned into six 2-mm-thick slices, rostral to caudal, as represented in Fig. 1a. GFP expression was observed 1 week postinjection at the injection area and in more distal regions of the brain such as the substantia nigra, containing neurons from the nigrostriatal pathway and projecting their axons to the striatum (Fig. 1b), indicating that CAV-2 vectors maintain retrograde transport in MPS VII brains. Animals euthanized 1 week posttreatment showed the presence of viral DNA in four of the six slices in the injected hemisphere, with a maximum of 16.83±4.41 vg/cell in S2, corresponding to the injection area. We also observed the presence of viral DNA in the contralateral hemisphere although at lower levels, which may be caused by retrogradely transported virus or to leakage of the vector in the cerebrospinal fluid that may lead to the infection of cells in the choroid plexus or in the ependyma around the ventricles, mainly contained in S2 (Supplementary Fig. S1; Supplementary Data are available online at www.liebertpub.com/hum). No DNA was detected in S5 and S6, slices containing the cerebellum and brainstem. However, no GFP expression was observed in the animals euthanized 5 weeks later, neither β-gluc activity (data not shown), correlating with the disappearance of vg in these slices (Fig. 1c).

Delivery of Ad vectors into the CNS induces dose-dependent innate immune responses in the form of acute inflammation, including microglial activation, macrophage recruitment, and T-cell infiltration (Thomas et al., 2001). Consequently, we detected Iba1-positive cells, a marker of microglia, in the brains of animals injected with CAV-2 vector and euthanized 1 week later, correlating with the presence of CAV-2 vg and GFP expression, as seen at the injection area (Fig. 1d) and at the substantia nigra (not shown). Quantification of this signal showed stronger Iba1 staining with first-generation CAV-2 vector than with HD vector at both times analyzed, consistent with a reduction in the immune reaction elicited by HD adenovirus (Fig. 1e). In animals euthanized 6 weeks after injection of HD-RIGIE, mild activation was present only at the injection point, nonstatistically different from brains injected with PBS or noninjected (Fig. 1e). Thus, in contrast to results seen in rats and other mouse strains (Soudais et al., 2004; Sotak et al., 2005), in our hands, E1-deleted and HD-CAV-2 vectors led to short-term transgene expression associated with Iba1 expression. Although HD-Ad vectors do not express viral antigens, innate inflammatory responses to high doses of Ad could trigger elimination of transduced cells even using HD vectors (Muhammad et al., 2012). Moreover, acute toxicity provoked by viral capsid proteins or residual helper vector could also elicit an immune response that could eliminate the transduced cells. Furthermore, in addition to viral proteins, immune responses may have occurred against GFP.
used in this proof-of-principle study as a marker to identify transduced cells. Clearly, a clinical-grade vector would not have a GFP expression cassette.

Because GAG and ganglioside accumulation are associated with chronic CNS inflammation, and the response to viral vector varies between genus, species, and even strains, we transiently immunosuppressed the animals with 50 mg/kg CFA (Supplementary Fig. S2), previously used to reduce inflammation and neutralizing antibody formation (Cao et al., 2011). Iba1 immunohistochemistry in the HD-RIGIE-injected and transiently immunosuppressed mice showed no activation compared with control mice (Fig. 2a). More importantly, β-gluc activity was detected in brain slices from MPS VII mice injected with HD-RIGIE 6 weeks earlier (Fig. 2b). Thus, 50 mg/kg of CFA treatment was followed for the rest of the experiments. CFA is widely used to treat autoimmune diseases, to prevent rejection after allograft organ transplantation and to suppress antibody formation (Moore et al., 2006). Probably other transitory immunosuppressants such as cyclosporine A could have also worked in our model. However, the clinical relevance of this treatable inflammatory response in mice is unknown because mice and humans have notably different reactions in many cases (Seok et al., 2013).

Lysosomal enzyme activities in HD-RIGIE-injected MPS VII mice

On the basis of these results, a group of 8–10-week-old animals was injected bilaterally in the striata (Fig. 1a). Control littermates (heterozygous and mutant mice) were mock injected with the same volume of PBS and treated with CFA at the same time and dose. Mice were euthanized at 6 and 16 weeks, and β-gluc activity was assayed using in situ coloration by incubating slices with hexazonated pararosaniline in 0.25 mM naphtol-AS-BI-β-D-glucuronide in 100-μm-thick sections, one in every 5 sections, along the whole brain. This is an insensitive assay that stains β-gluc activity in red. β-gluc activity was not detected in PBS-treated or heterozygous mice, showing the low sensitivity of

FIG. 1. Immune response avoids long-term expression of HD-CAV-2 vectors in CNS (a) Mouse brain diagram showing the coordinates used for the administration of HD-RIGIE, and the 2-mm-thick slices analyzed (S1–S6). CB, cerebellum; CC, corpus callosum; CX, cerebral cortex; HT, hypothalamus; LV, lateral ventricle; MB, midbrain; OB, olfactory bulb; SC, spinal cord; TH, thalamus. (b) Representative pictures of MPS VII mice injected with HD-RIGIE 1 week earlier: on the left image GFP expression at the injection point (scale bar=100 μm), and at the substantia nigra on the right image (scale bar= 50 μm). Nuclei counterstaining was with Hoechst (blue) and neurons with NeuN (red). (c) Viral genomes per cell were quantified by qPCR in 2-mm-thick slices of brains injected with HD-RIGIE 1 and 6 weeks later. Disappearance of viral genomes at 6 weeks was observed (ND, not detected). (d) Microglia activation is identified by Iba1 staining (red) at the injection area 1 and 6 weeks after administration (left panel) of CAVGFP (up) and HD-RIGIE (down). Nuclei were counterstained with Hoechst (blue). The right panel shows Iba1 staining in animals injected with PBS or noninjected, as a control. Scale bar=100 μm. (e) Percentage of Iba1+ cells/field in the different animals injected. Data are mean ± SEM, n=2 animals euthanized at Wk1 and n=5 animals euthanized at Wk6 postinjection; *p<0.05, **p<0.01 comparing noninjected with vector-injected animals; #p<0.05 comparing CAVGFP and HD-RIGIE at the same time points. CAV-2, canine adenovirus type 2 vectors; CNS, central nervous system; HD-RIGIE, helper-dependent CAV-2 vector expressing β-glucuronidase; PBS, phosphate-buffered saline; qPCR, quantitative polymerase chain reaction; Wk, week.
The brain of some of these animals \((n=7\) for each group\) was sliced into 2-mm-thick sections, as described in Fig. 1a, and protein extracts were prepared. For each slice, we measured \(\beta\)gluc and \(\beta\)-hexosaminidase \((\beta\text{hex})\) activity using a more sensitive fluorimetric assay. In several MPS diseases, \(\beta\text{hex}\) activity is elevated when another lysosomal enzyme activity is missing, likely because of transcription factor EB \((\text{TFEB})\) (Sardiello et al., 2009). Data were plotted as the percentage of activity of each enzyme compared with heterozygous mouse levels, which have a normal phenotype (Fig. 2d and e). This MPS VII mouse model was created to

FIG. 2. Lysosomal enzyme activity and GAG accumulation analysis 6 weeks postinjection. (a) Iba1 staining (red) in immunocompetent (left image) or transiently immunosuppressed MPS VII mice with 50 mg/kg of cyclophosphamide (right image) show lack of activated microglia after HD-RIGIE administration (scale bar = 50 \(\mu\)m; nuclei were counterstained with Hoechst [blue]). \(\beta\)gluc activity (red) in (b) 100-\(\mu\)m-thick (scale bar = 1 mm) and (c) 10-\(\mu\)m-thick brain slices at the injection area and other distal areas such as corpus callosum, substantia nigra, and cortex; red and black arrows indicate endothelial cells and cortical neurons, respectively, identified by morphology in cortex cryosections (scale bar = 100 \(\mu\)m). \(\beta\)gluc activity (d), secondary elevation of lysosomal enzyme \(\beta\)-hexosaminidase (e), and GAG accumulation (f) in 2-mm-thick slice homogenates from MPS VII mice injected with PBS or HD-RIGIE and compared with \(\beta\)gluc activity in heterozygous mice \((p<0.01\) for \(\beta\)gluc; \(p<0.01\) in S5 and S6 for \(\beta\text{hex}\); \(p<0.01\) in S5 and S6 for GAG). No statistically significant differences were seen among heterozygous and HD-RIGIE-treated mice in slices spanning between S1 and S4. Data are mean ± SEM; \(n=7\) for each experimental group.

The majority of transduced cells had morphology suggesting that they were neurons. We also detected cells underlying blood vessels, consistent with endothelial cell morphology (Fig. 2c). Overall, based on this assay, we estimated a transduction area with a diameter of 4 mm around the injection area.

the assay. In HD-RIGIE-treated MPS VII mice, we detected \(\beta\)gluc activity in striatum, several areas of the cortex, corpus callosum, substantia nigra, and around ventricles (Fig. 2b and c), consistent with the efficient retrograde transport described for CAV-2 vectors (Soudais et al., 2001; Salinas et al., 2009).
be tolerant for human β-gluc, by expressing a mutant inactive form of human β-gluc, although protein levels are almost undetectable in most tissues (Sly et al., 2001). Notably, β-gluc activity in heterozygous mice is 80% of the wild-type animals (data not shown). As seen in Fig. 2d, no β-gluc activity was detected in mock-treated MPS VII mice. By contrast, HD-RIGIE-treated mice showed near 50% of the β-gluc activity found in heterozygous animals from slice 1 to 4, with the maximum at the injection area (S2) (up to 57.55±14.02%) and around 20% in S5 and S6, corresponding to cerebellum and brainstem (p<0.01). Equally relevant, we found a significant decrease in the secondary elevation of β-gluc in all brain areas, consistent with the biochemical correction of β-gluc deficiency (Fig. 2c). β-gluc activity reached heterozygous levels (120.79±14.015% and 120.228±12.857% of heterozygous mice) in S2 and S3, respectively. We found an inverse correlation between β-gluc and β-gluc activities in all sections. Notably, there was not a significant difference between HD-RIGIE-treated and heterozygous mice for slices S1–S4. Therefore, by administering HD-RIGIE into the striatum, we could detect CAV-2 vg and transgene activity throughout the cerebrum, which led to global protein transfer in the brain.

In MPS VII mice euthanized 16 weeks post-HD-RIGIE injection, we also found β-gluc activity (n=4 for each group) in tissue sections of brains for a total of 4 mm (Fig. 3a). Similar to animals analyzed 6 weeks post-HD-RIGIE injection, enzyme activity detected by fluorimetry in protein homogenates of 2-mm-thick slices showed a high level of transduction, with β-gluc activity found in all the slices, spanning the whole brain. HD-RIGIE-injected mice expressed 40–65% of heterozygous activity from slices S1 to S4. The maximum activity was observed near the injection point in S2 and S3, with 63.8±2.75% and 60.86±4.88% of the activity of heterozygous animals, respectively (Fig. 3b). Activities around 20% were also detected in the slices corresponding to cerebellum and brainstem (S5 and S6), and no enzyme activity was detected in the MPS VII animals injected with PBS (Fig. 3b).

β-gluc activity showed similar pattern as in animals analyzed at 6 weeks postinjection and inversely correlated to the amount of β-gluc observed in each slice. While MPS VII mice treated with PBS had around 400% of heterozygous activity, HD-RIGIE-injected MPS VII mice showed correction in S1, S5, and S6, and were not significantly different from heterozygous mice in S2, S3, and S4 (Fig. 3c).

GAG accumulation in MPS VII-treated mouse brain extracts

MPS VII is characterized by the inability to degrade glucuronic acid-containing GAG. GAG quantification was used to evaluate the therapeutic effect of the HD-RIGIE treatment at 6 and 16 weeks post-HD-RIGIE injection. We reduced GAG accumulation in all sections of the brain, consistent with increased β-gluc and reduced β-gluc activities observed in Figs. 2 and 3. Mice were treated around 8–10 weeks of age and were analyzed 6 or 16 weeks later, that is, when they reached 3.5 or nearly 6 months of age. In the first experimental group, MPS VII animals had GAG levels near 1.5 µg/mg of tissue in all the slices of the brain, threefold more than heterozygous mice. Animals injected with HD-RIGIE showed no statistically significant differences in GAG levels between S1 and S4 compared with heterozygous mice and a 40% reduction in S5 and S6 compared with the same slices of MPS VII-PBS mice (p<0.01) (Fig. 2f).

MPS VII mice analyzed at 6 months showed greater GAG accumulation in all the slices, with levels reaching values of 2.7 µg/mg of tissue, fivefold higher than heterozygous mice. GAG quantification in MPS VII-HD-RIGIE mice showed a 50% decrease in S2, S3, and S4 and between 30% and 40% in S1, S5, and S6 compared with nontreated mutant mice (Fig. 3d). Although there were still statistically significant...
differences between HD-RIGIE-treated and heterozygous animals in S2 and S3 slices \((p<0.01)\), this reduction was greater at 6 months of age, when the pathology of the disease was much more severe and these animals were at the end of their life expectancy.

Correction of pathology in the HD-RIGIE-injected mouse brain

We evaluated brain pathology in treated animals 6 and 16 weeks postinjection in semi-thin sections from the cortex, striatum, and meninges around injection point (S2), cortex and striatum at S3 and S4 levels, and hippocampus.

Representative images of the different brain regions from animals euthanized 6 weeks postinjection showed a significant correction of neurons, and glial cells, which presented with greater distended lysosomal morphology in all areas analyzed (Fig. 4). More than 90% of the cells in the injection area and between 83% and 89% in more distal regions showed no, few, or minuscule vacuoles, compared with large vacuoles in nontreated MPS VII animals (Table 1). An additional group of animals received HD-RIGIE only in one hemisphere. Six weeks after treatment, contralateral hemispheres showed also correction in S2, mainly in striatum and cortex (Supplementary Fig. S3). Therefore, even when injecting in a single hemisphere, there was evidence of vg and lysosomal correction in the contralateral hemisphere (Supplementary Figs. S1 and S3). Although we cannot discard transport in the CSF and transduction of perivascular cells in this hemisphere via HD-RIGIE leakage from the injected area, the most plausible explanation would be via axonal transport of the vector and/or βgluc.

FIG. 4. Histopathological studies 6 weeks postinjection. Semi-thin sections of different brain areas surrounding the injection point were stained with toluidine blue to highlight the enlargement of vacuoles containing lysosomal storage material as seen in PBS-treated MPS VII mice. Representative images from (a) cortex, striatum, and meninges in MPS VII PBS (left), MPS VII HD-RIGIE (middle), and WT mice (right) at injection area, and at more distal areas (b), slices in S3 (left panel) and S4 (right panel), and (c) hippocampus. HD-RIGIE-treated mice show a pattern similar to WT animals in all tissues analyzed. Quantification of corrected cells is described in Table 1. Scale bar=20 μm. Black and white arrows indicate vesicle accumulation in glial cells and neurons, respectively.
Consistent with the biochemical correction, histopathology of proximal and distal areas to the injection point showed a significant reduction of enlarged lysosomes in neurons and glial cells in mice euthanized 16 weeks post-HD-RIGIE injection (Fig. 5). We also quantified the percentage of cells with recovered phenotype in animals treated 16 weeks earlier, and we found between 90% and 96% in the injection area and higher than 85% in more distal regions (Table 1). Together, these data demonstrated that HD-RIGIE therapy led to stable transgene expression at least for 16 weeks.

<table>
<thead>
<tr>
<th></th>
<th>Injection area</th>
<th>Distal regions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cortex (%)</td>
<td>Striatum (%)</td>
</tr>
<tr>
<td>HD-RIGIE 6wk</td>
<td>90±3</td>
<td>86±5</td>
</tr>
<tr>
<td>HD-RIGIE 16wk</td>
<td>94±3</td>
<td>90±6</td>
</tr>
<tr>
<td></td>
<td>Cortex (S3) (%)</td>
<td>Striatum (S3) (%)</td>
</tr>
<tr>
<td>HD-RIGIE 6wk</td>
<td>89±4</td>
<td>83±9</td>
</tr>
<tr>
<td>HD-RIGIE 16wk</td>
<td>91±5</td>
<td>88±7</td>
</tr>
</tbody>
</table>

HD-RIGIE, helper-dependent CAV-2 vector expressing β-glucuronidase; wk, week. Data are mean±SEM. Three fields of each animal and area were counted. S3 and S4 correspond to the slides represented in Fig. 1a.

Consistent with the biochemical correction, histopathology of proximal and distal areas to the injection point showed a significant reduction of enlarged lysosomes in neurons and glial cells in mice euthanized 16 weeks post-HD-RIGIE injection (Fig. 5). We also quantified the percentage of cells with recovered phenotype in animals treated 16 weeks earlier, and we found between 90% and 96% in the injection area and higher than 85% in more distal regions (Table 1). Together, these data demonstrated that HD-RIGIE therapy led to stable transgene expression at least for 16 weeks.

FIG. 5. Histopathological studies 16 weeks postinjection. Representative images from (a) cortex, striatum, and meninges in MPS VII PBS (left), MPS VII HD-RIGIE (middle), and WT mice (right) at injection area, and at more distal areas (b), slices in S3 (left panel) and S4 (right panel), and (c) hippocampus. HD-RIGIE-treated mice show a pattern similar to WT animals in all tissues analyzed. Quantification of corrected cells is described in Table 1. Scale bar = 20 μm. Black and white arrows indicate vesicle accumulation in glial cells and neurons, respectively.
throughout the mid- and the forebrain of MPS VII mice after bilateral striatal injections and that unilateral injection improved MPS VII pathology in the contralateral hemisphere.

HD-RIGIE reverses MPS VII-associated cognitive deficits

In MPS VII mice, progressive impairment in peripheral tissues and in the CNS causes behavioral alterations. Although MPS VII is a multisystem disease, our aim was to test the suitability of HD-CAV-2 in treating a global neurodegenerative disease. We analyzed the behavior of treated mice, mainly using animals treated for 6 weeks, because the poor overall physical condition of 6-month-old animals, at the end of their life, precluded interpretation of the results. This physical impairment may also contribute to the reduction in behavioral performances reported at different ages (Liu et al., 2005; Chen et al., 2012). For that reason, we chose tests with conditions and degree of difficulty to provide convergent validity (Gimenez-Lloret et al., 2002, 2007).

We evaluated spontaneous behavior and sensorimotor functions, behavioral and psychological symptoms (locomotor and exploratory activity, anxious-like behaviors), as well as cognition (learning and memory). Impairment of some muscle and lower motor neuron functions was found when MPS VII animals were assessed in the two-rod and hanger tests (Fig. 6a) (p < 0.001). MPS VII mice showed the poorest coordination and prehensility and lower muscular strength (p < 0.05), whereas equilibrium was normal. HD-RIGIE treatment restored coordination and improved prehensility (both, p < 0.05) but did not modify muscular strength. Not surprisingly, this suggests that some functions depending on somatic development will require systemic or a long-term treatment from early developmental stages (O’Connor et al., 1998).

Classical unconditioned tests such as the corner test (Fig. 6b), the T-maze test (Fig. 6c), and open-field test (Fig. 6d–f) involving different levels of anxiogenic conditions indicated reduced horizontal and vertical locomotor activities. Severe problems to interact with the environment were also evident by reduced exploration (Fig. 6d and e) (Time, T, p < 0.01; Time × Group, T × G, p < 0.05; Group, G, p < 0.001). HD-RIGIE treatment reversed the reduced activity in the corner test (Fig. 6b; Corners and Rarings, p < 0.001), freezing episodes (p < 0.001), forward locomotion (p < 0.001), the delay in the onset of vertical exploratory behaviors (p < 0.05), and the total vertical activity (p < 0.001).

In the T-maze for spontaneous alternation, MPS VII animals showed the poorest performance with a significant delay in the consecution of the behavioral events (Fig. 6c; latency to get started and to reach the intersection, both p < 0.05). Only 43% completed the test, while investing more time (exploratory efficiency, p < 0.01) and committing more errors (p < 0.01). HD-RIGIE treatment increased the incidence to 86%, corrected the delay to reach the intersection (p < 0.05), and reduced the number of errors (p < 0.05), although it did not modify the exploratory efficiency.

Assessment of spatial learning and memory in the 2-day water maze demonstrated that MPS VII mice had the poorest total cognitive capacity and deficits in the learning acquisition process as well as in both short- and long-term memories. Although all groups showed a similar acquisition curve of the simple cued-learning task (Fig. 6g; T, p < 0.001), MPS VII mice had the poorest total cognitive capacity (p < 0.05) and final outcome, as shown by their baseline performance in the last visible platform trial (p < 0.05), which was restored to heterozygous levels by HD-RIGIE treatment.

Place learning (PT) is a more difficult task because the platform is hidden and its location changed. Heterozygous animals spent more time in the platform’s prior location, but once it was found, they efficiently remembered it. In contrast, the behavior of MPS VII during the first PT trial (PT1) was similar to their first contact with the maze (CUE1). Moreover, the overall cognitive ability of MPS VII mice to solve the tasks was lower (Fig. 6h; p < 0.01), and long- and short-term memory was impaired (Fig. 6i; PT1-CUE4, p < 0.05; and Fig. 6i; PT1-PT4, p < 0.01, respectively) as compared with heterozygous and MPS VII HD-RIGIE mice (both, p < 0.05). HD-RIGIE treatment rescued the cognitive deficits (Fig. 6g–i) and, most importantly, the total learning and memory capacities (Fig. 6h).

Our experimental design shows that reduction in behavioral performances was mostly caused by a reduced exploratory activity, has a strong influence of novelty, and is limited by the cognitive capacity of the animal to confront the situation. Such deficiencies were more clearly shown in the time course of the performances and were improved, and even corrected, by HD-RIGIE treatment. Finally, the cognitive impairment of MPS VII mice was severe, as not only short- and long-term learning and memory processes but also the strategies to solve the tasks and the cognitive capacity, itself, were compromised. Cognitive dysfunction worsened with the difficulty (hidden PT), and their cognitive plasticity did not benefit from previous experience. In contrast, heterozygous animals remembered the prior location of the platform and insisted on searching for it. Place task learning also evidenced impairment in short-term memory and deficits in the total learning capacity of MPS VII as compared with heterozygous mice. However, the major findings are that HD-RIGIE treatment completely rescued the cognitive deficits, mostly in short-term memory, and the total learning and memory capacities.

Notably, this is the first study in which elevated enzyme levels in brain, reduction of lysosomal storage, and reversal of cognitive deficits have been observed after intracranial injection of a HD-CAV-2 vector in a mouse model of disease. Previous experiments with HD adenoviral vectors had demonstrated their potential in the treatment of gliomas after direct tumor injection (Muhammad et al., 2012) and in animal models for different diseases after intravenous injection (Dimmock et al., 2011; Crane et al., 2012). Recently, HD-CAV-2 vector was injected in the CNS of a mouse model of MPS IIIA, but although discrete long-term transgene expression was obtained, only 9% reduction of storage material was achieved at the injection point and no cognitive reversion was described (Lau et al., 2012). One significant difference was the transient immunosuppression in the MPS VII animals to achieve robust, long-term transgene expression in this study. However, immune response is dose dependent. The low transgene expression obtained in MPS IIIA animals may allow the escape of the immune response, but it is not sufficient to elicit a significant therapeutic effect in the MPS IIIA model. Similarly, Dindot et al. (2011) achieved long-term expression after intrathecal administration of
human HD adenovirus coding for GFP in a wild-type mouse. The authors administered 2.5×10^9 pp/mouse into the 40 μl volume that constitutes the mouse CSF. Here we injected a similar amount of pp but concentrated into a single injection in the brain parenchyma that may certainly lead to a higher local immune response as demonstrated by Iba1 immunochemistry (Fig. 1).

In summary, we have shown that intrastriatal injection of HD-RIGIE resulted in stable expression of βgluc in the brains of MPS VII mice, inducing correction in the brain of MPS VII mice.
these animals. These findings are relevant to the treatment of neurological abnormalities in humans with lysosomal storage diseases and may also be possibly used in neurodegenerative disorders, although it would be necessary to assess the vector performance in large animal models of the disease.

Acknowledgments

We thank the Vector Production Unit at Center of Animal Biotechnology and Gene Therapy (CBATEG; Universitat Autònoma de Barcelona), which was supported by the Association Française contre les Myopathies, for producing CAVGFP, and Meritxell Puig, David Ramos, and Angel Vázquez (CBATEG) for technical assistance. We are indebted to Laia Acarin (Universitat Autònoma de Barcelona) for help with Iba1 immunohistochemistry. We thank the Montpellier RIO imaging and, in particular, Miriam Boyer-Clavel for help with flow cytometry.

G.P. and B.G.-L. were recipients of predoctoral fellowships (G.P. from the Generalitat de Catalunya [2009FI_B00219] and B.G.-L. from the Ministerio de Educación [EDU/3445/2011]). E.J.K. is an Inserm fellow. Funding was provided by the European Commission through European Community’s 7th Framework Program (FP7/2007–2013; Grant 222992, BrainCAV to E.J.K. and A.B.), the Region Languedoc Roussillon (ARPE and CTP 115277 to E.J.K.) and AGAUR (2009 CTP 00030) to M.C., the Fondation de France (Grant #2008005416), Vaincre les Maladies Lysosomales, and the E-RARE 2009 program (project CAV-4-MPS funded by E-RARE to E.J.K. and to A.B. [Instituto de Salud Carlos III-PS0902674]).

Author Disclosure Statement

No competing financial interests exist.

References

Address correspondence to:
Dr. Assumpció Bosch
CBATEG, Edifici H
Campus Universitat Autònoma de Barcelona
08193 Bellaterra, Barcelona
Spain

E-mail: assumpcio.bosch@uab.es

Received for publication August 6, 2013; accepted after revision November 19, 2013.

Published online: December 3, 2013.
SHORT COMMUNICATION

AAVrh.10 immunogenicity in mice and humans. Relevance of antibody cross-reactivity in human gene therapy

R Thwaite1, G Pagès1, M Chillón1,2 and A Bosch1

Simian adeno-associated virus (AAV) serotype rh.10 is a promising gene therapy tool, achieving safe, sustained transgene expression in the nervous system, lung, liver and heart in animal models. To date, preexisting immunity in humans has not been confirmed, though exposure is unexpected. We compared the humoral immune response with serotypes AAVrh.10 and AAV9 in mice, and AAVrh.10, AAV9 and AAV2 in 100 healthy humans. Mice, injected-intravenously, raised significantly more anti-AAV than anti-AAVrh.10 IgG (immunoglobulins), and sera demonstrated greater neutralizing capacity, correspondingly. Antibody cross-binding studies in mice showed negligible cross-recognition between AAVrh.10, AAV9 and AAV2. In humans, IgG prevalence against AAV2, was 72%; AAV9, 47% and AAVrh.10, a surprising, 59%. Yet, neutralizing-antibody seroprevalences were 71% for AAV2, 18% for AAV9 and 21% for AAVrh.10. Thus, most anti-AAV9 and anti-AAVrh.10 IgG were non-neutralizing. Indeed, sera generally neutralized AAV2 more strongly than AAVrh.10. Further, all samples neutralizing AAVrh.10 or AAV9 also neutralized AAV2, suggesting antibody cross-recognition. This contrasts with the results in mice, and highlights the complexity of tailoring gene therapy to minimize the immune response in humans, when multiple-mixed infections during a lifetime evoke a broad repertoire of preexisting antibodies capable of cross reacting with non-human serotypes.

INTRODUCTION

Adeno-associated virus (AAV) vectors do not provoke a strong innate immune response as dendritic cells are poorly transduced. Consequently, markers of innate immunity tend not to be upregulated, though evidence is growing, concerning their relevance to the outcome of AAV-mediated gene transfer.1 More overtly problematic is the challenge posed by preexisting anti-AAV antibodies present in patients’ serum before therapy. These arise with prior exposure, given AAVs are widespread in humans (reviewed by Calcedo and Wilson2). In addition, generation of antibodies and T-cell responses against the transgene product, particularly a foreign protein, may depend on the AAV serotype and its capacity to infect antigen-presenting cells.3–5 Thus, selecting the appropriate viral capsid is critical when planning a therapeutic approach using AAV vectors, since it determines tropism6 and has major implications regarding the host immune response.

We focus on AAVrh.10, a rhesus macaque serotype,7 hypothesizing that humans are less likely to be exposed, hence preexisting antibodies should be minimal. Recombinant AAVrh.10 shows promise for gene therapy. It stably-transduces neurons and to a lesser extent oligodendrocytes, after intracranial or intrathecal administration, demonstrating capacity to revert different central- and peripheral-nervous system pathologies in mouse models such as late-infantile neuronal ceroid lipofuscinosis,8 metachromatic leukodystrophy,9 diabetic neuropathy,10 and amyotrophic lateral sclerosis11 among other diseases. Recently rAAVrh.10 was approved for two clinical trials to treat late-infantile neuronal lipofuscinosis (NCT01161576) and Sanfilippo Type A syndrome.12 Furthermore, intravenous administration of AAVrh.10 efficiently transduces liver, heart and dorsal root ganglia and reverses cardiomyopathy in a mouse model of Friedreich’s ataxia.13

Several studies report the prevalence of neutralizing antibodies (NAbs) against AAV serotypes 1, 2, 5, 6, 7, 8, 9 and the capsid hybrid rh32.33.14,15 However, no data on preexisting antibodies to AAVrh.10 in the general human population, nor on the immunogenicity of AAVrh.10 among serotypes have been reported. Here we show the humoral immune response to AAVrh.10 is significantly weaker than AAV9 in mice. Yet, in humans, immunoglobulin G (IgG) prevalence against AAVrh.10 is greater than against AAV9. However, these immunoglobulins are a mixed population of NAbs and non-NAbs. Further characterization suggests cross-reactivity with abundant pre-existing antibodies raised against AAV2.

RESULTS AND DISCUSSION

We previously demonstrated serotype-dependent differences in the titers of NAbs generated after intrasciatic administration in mice. Three weeks post injection of AAV1, 2 or 8, AAV8-transduced animals had the lowest titers.16 In addition, using AAVrh.10, we have observed less NAbs were raised after intrathecal injection to mice compared with AAV serotypes 1, 8 and 9 (unpublished data). Here, we compared the immunogenicity of AAVrh.10 and AAV9 in mice first by quantifying the total anti-AAV IgG raised 3 weeks after intravenous injection of either virus, and then testing the sera’s capacity to neutralize the virus using a luciferase reporter. We chose AAV9 for comparison as it crosses the blood-brain barrier and is therefore a popular candidate for efficient central...
nervous system gene delivery to treat neurological diseases with somatic involvement, such as lysosomal storage diseases.17,18 Figure 1a shows that all the animals injected with AAV9 ($n = 9$) raised more anti-AAV IgG than the animals injected with AAVrh.10 ($n = 8$). Mean total IgG of each group (AAV9 = 2659 ± 326 μg ml$^{-1}$ and AAVrh.10 = 692 ± 97 μg ml$^{-1}$) was significantly different ($P < 0.05$). Note, in normal-mouse sera the typical IgG concentration range is 0.7–5 mg ml$^{-1}$.19 Thus, our quantification of the anti-AAV IgG subpopulation is physiologically compatible. Figure 1b demonstrates that sera with antibodies raised against AAV9 are more neutralizing than with antibodies against AAVrh.10. The percentage of infection-inhibition dropped significantly for AAVrh.10 over a series of serum dilutions, whereas for AAV9 it remained nearly 100% throughout. The mean percentage of infection-inhibition, comparing AAVrh.10 and AAV9, at 1:200 serum dilution is seen in Figure 1c which may be directly compared with anti-AAV IgG (Figure 1a). Pearson-correlation analysis showed a significant positive-correlation between IgG and NAbs ($r = 0.776, P = 0.0002, n = 17$). Supplementary Figure 1 shows similar correlation with green fluorescent protein as a reporter gene, using sera from mice injected with various AAV serotypes, ($r = 0.852, P = 0.0004, n = 12$).

When choosing a vector for gene therapy, immunogenicity (here referring to the capacity to raise NAbs) is a relevant consideration. The presence of NAbs does not necessarily preclude-successful transduction, provided that a critical threshold is not reached or depending on the tissue transduced or the administration route. In this vein, persistent expression of the transgene in both mice and non-human primates was achieved after administering AAVrh.10 interpleurally despite sustained presence of NAbs in the sera.20 This was also observed for AAV9 delivered intrathecally to non-human primates,21 although these results are controversial22 as NAbs in the sera prevented transduction after intravenous administration.21,22 Our results indicate, regarding the raising of NAbs in mice, AAVrh.10 is a more favorable choice of vector than AAV9, evoking fewer antibodies in the context studied.

We also performed antibody cross-binding studies in mice via indirect enzyme linked immunosorbant assay, using sera with IgG raised against either AAVrh.10, 9 or 2, to see if these antibodies would bind to the viral capsid of other serotypes. Table 1 shows that antibody binding to other capsids was negligible, results resembling naive control levels in all cases, indicating the absence of significant cross-reactivity of IgG against these three AAVs in mice. This is not strain specific, as we obtained similar results with C57bl/6 mice with AAV2 (data not shown). Lack of serological cross-reactivity across certain serotypes in serum raised against AAVs in animal models has been previously reported.8,23 Nevertheless, there is relatively high homology between the VP1-capsid protein among AAVs and recent reports show capsid antibodies to different AAV serotypes bind common regions.24,25 Indeed to reduce such problems, directed evolution26 or other

![Figure 1](image_url)

Figure 1. AAV9 is more immunogenic than AAVrh.10 in mice. Sera from 6–8 week-old mice, 21 days post-intravenous injection of 1×10^{11} vg ml$^{-1}$ of either AAV9 ($n = 9$) or AAVrh.10 ($n = 8$) in a total volume of 150 μl, comparing (a) total anti-AAV IgG μg ml$^{-1}$ determined by indirect enzyme linked immunosorbant assay, ‘—’ denotes the mean; (b) Neutralizing antibodies (NAbs) expressed as percentage of inhibition of adeno-associated virus (AAV) infection of HEK293 cells by the sera over a dilution range from 0 to 1:200, determined using luciferase reporter. Two-tailed t-tests: *$P < 0.05$, **$P < 0.01$, ***$P < 0.001$; and (c) scatter plot of NAb data at 1:200 dilution from (b), ‘—’ denotes the mean. All samples in A, B and C were tested in duplicates.
consequently, all neutralized AAV2 more strongly than AAVrh.10 against AAV2 than against AAVrh.10 (paired
more IgG against AAV2 than AAV9 (Table 2; paired
negative for IgG against any of the viruses (Figure 2a). The results
anti-AAV IgG was 72% for anti-AAV2, 47% for anti-AAV9 and a
and to compare with other published results. In our sample of 100
not harbor NAbs against AAVrh.10. With AAVrh.10 and AAV9, we
not have been exposed to a simian serotype, and would therefore
from antibodies raised against AAV2. Indeed, almost all sera
strongly inhibited by NAbs.

These results suggest antibody cross-recognition particularly from antibodies raised against AAV2. Indeed, almost all sera
containing anti-AAV2 IgG (98.6%) neutralized this virus, indicating
that these are highly specific antibodies, while only 38.3 and
35.6% of the sera containing anti-AAV9 and anti-AAVrh.10 IgG,
respectively, were neutralizing (comparing Figures 2a and b).
This suggests that the latter are not specific antibodies and could
have been raised against AAV2 but recognize epitopes present
in the AAVrh.10 capsid via homology with other serotypes. However,
we cannot discard that our in vitro assay has limited sensitivity as
previously described29 and optimized in vivo assays are needed to
confirm the results.

Along these lines, we highlight recent results from epitope
mapping of naturally occurring antibodies to AAV2, 5, 8 and 9 in
sheep, showing that animals harbor antibodies to both unique and
common capsid epitopes.30 Interestingly, since the antibodies
detected recognized surface and internal or buried-capsid
peptides, the authors premise that immunity is raised to intact
capsids, as well as, to capsid epitopes revealed after proteolysis.
This multiplies the potential repertoire of preexisting antibodies in
species where natural infection occurs.

Our results stress several key considerations for AAV vector
choice in gene therapy. First, serotypes differ in their propensity to
raise antibodies, exemplified by AAVrh.10 being less immunogenic
than AAV9 in mice. Second, the vector immune response in mice
may not predict the response in humans as seen in our cross-
binding studies. Finally, the serological response to an AAV is of
much greater breadth in humans, beyond the immune response
raised by a single vector administration. This is probably because of
multiple, mixed exposure to AAVs during a lifetime, as well as,
concomitant molecular evolution of the virus.15 This combination of
factors stimulates a broad repertoire of preexisting antibodies, both
neutralizing and nonneutralizing, with differing affinity to capsids of
other serotypes. Thus, despite promising results so far, the simian
origin of AAVrh.10 does not guarantee safe passage from preexisting antibodies for use in human gene therapy, as there
may be cross-reactivity with anti-human AAV antibodies. This is
particularly evident for human sero-positivity to AAV2, which might
be used as a flag for potential reactivity to other serotypes.

MATERIALS AND METHODS

Injection of mice with AAVs

Antibodies were raised against the capsid of AAV serotypes by
injecting 6-week-old naïve ICR (imprinting control region) male

Table 1. Anti-AAV IgG to AAVrh.10, 9 and 2 do not cross-react in mice

<table>
<thead>
<tr>
<th>Sera from mice injected with AAV</th>
<th>Mean OD</th>
<th>% Binding to capsid</th>
<th>Anti-AAV IgG (µg ml⁻¹)</th>
<th>Mean OD</th>
<th>% Binding to capsid</th>
<th>Anti-AAV IgG (µg ml⁻¹)</th>
<th>Mean OD</th>
<th>% Binding to capsid</th>
<th>Anti-AAV IgG (µg ml⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAVrh10</td>
<td></td>
<td></td>
<td></td>
<td>AAV9</td>
<td></td>
<td></td>
<td>AAV2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal 1</td>
<td>0.33±0.01</td>
<td>100</td>
<td>1444±54</td>
<td>0.004±0001</td>
<td>1.2</td>
<td>91±8</td>
<td>0.014±0003</td>
<td>4.1</td>
<td>203±22</td>
</tr>
<tr>
<td>Animal 2</td>
<td>0.328±0.020</td>
<td>100</td>
<td>1412±63</td>
<td>0.021±0004</td>
<td>6.4</td>
<td>262±28</td>
<td>0.006±0004</td>
<td>1.8</td>
<td>112±49</td>
</tr>
<tr>
<td>Animal 3</td>
<td>0.394±0.023</td>
<td>100</td>
<td>1624±75</td>
<td>0.007±0000</td>
<td>1.8</td>
<td>139±0</td>
<td>0.002±0003</td>
<td>0.5</td>
<td>55±44</td>
</tr>
<tr>
<td>Animal 4</td>
<td>0.347±0.018</td>
<td>100</td>
<td>1471±56</td>
<td>0.005±0003</td>
<td>1.4</td>
<td>101±38</td>
<td>0.004±0003</td>
<td>1.2</td>
<td>89±45</td>
</tr>
<tr>
<td>AAV9</td>
<td>Anti-AAVrh.10</td>
<td>Anti-AAV9</td>
<td>Anti-AAV2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal 1</td>
<td>0.007±0.003</td>
<td>1.4</td>
<td>135±36</td>
<td>0.508±0013</td>
<td>100</td>
<td>2005±48</td>
<td>0.005±0006</td>
<td>1.0</td>
<td>91±80</td>
</tr>
<tr>
<td>Animal 2</td>
<td>0.009±0.001</td>
<td>1.1</td>
<td>161±11</td>
<td>0.855±0013</td>
<td>100</td>
<td>2588±n/a</td>
<td>0.005±0003</td>
<td>0.6</td>
<td>107±44</td>
</tr>
<tr>
<td>Animal 3</td>
<td>0.006±0.000</td>
<td>1.5</td>
<td>150±30</td>
<td>0.528±0018</td>
<td>100</td>
<td>2076±63</td>
<td>0.003±0001</td>
<td>0.6</td>
<td>81±18</td>
</tr>
<tr>
<td>Animal 4</td>
<td>0.006±0.001</td>
<td>1.1</td>
<td>130±7</td>
<td>0.526±0001</td>
<td>100</td>
<td>2066±2</td>
<td>0.004±0001</td>
<td>0.8</td>
<td>91±8</td>
</tr>
<tr>
<td>AAV2</td>
<td>Anti-AAVrh.10</td>
<td>Anti-AAV9</td>
<td>Anti-AAV2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal 1</td>
<td>0.003±0.001</td>
<td>0.5</td>
<td>73±10</td>
<td>0.002±0001</td>
<td>0.3</td>
<td>47±36</td>
<td>0.644±0016</td>
<td>100</td>
<td>2523±65</td>
</tr>
<tr>
<td>Animal 2</td>
<td>0.005±0.001</td>
<td>1.0</td>
<td>106±7</td>
<td>0.001±0001</td>
<td>0.2</td>
<td>24±13</td>
<td>0.519±0006</td>
<td>100</td>
<td>2043±20</td>
</tr>
<tr>
<td>Animal 3</td>
<td>0.003±0.001</td>
<td>1.0</td>
<td>68±31</td>
<td>0.001±0001</td>
<td>0.3</td>
<td>12±0</td>
<td>0.309±0001</td>
<td>100</td>
<td>1351±2</td>
</tr>
<tr>
<td>Animal 4</td>
<td>0.006±0.003</td>
<td>1.5</td>
<td>147±34</td>
<td>0.004±0000</td>
<td>0.7</td>
<td>99±0</td>
<td>0.548±0001</td>
<td>100</td>
<td>2148±2</td>
</tr>
<tr>
<td>Naïve control</td>
<td>0.014±0.006</td>
<td>4.0</td>
<td>199±49</td>
<td>0.010±0006</td>
<td>1.7</td>
<td>162±63</td>
<td>0.005±0003</td>
<td>1.0</td>
<td>101±38</td>
</tr>
</tbody>
</table>

Abbreviations: AAV, adenovirus-associated virus; IgG, immunoglobulin G; OD, optical density; n/a = not available: one duplicate out of standard curve range.

Percentage binding to capsid normalized from OD. Percentage binding for control OD calculated using pooled mean OD of 4 animals at 100% binding for each viral capsid. Results are means of duplicates ± s.e.m.
mice intravenously in the tail vein with 1×10^{11} vg ml$^{-1}$ of AAV9, AAVrh.10 or AAV2 coding for green fluorescent protein in a total volume of 150 μl, plus one phosphate-buffered saline control. Animals were killed 3 weeks post injection for serum collection. All experimental procedures were approved by the Universitat Autònoma de Barcelona (UAB) Animal Experimentation Committee.

Human serum samples

Serum samples from 100 healthy adult donors were obtained from the Catalan ‘Banc de Sang i Teixits’ (BST), approved by the Human and Animal Experimentation Ethics Committee (UAB), the Clinical Investigation Ethics Committee at Vall d’Hebron Hospital and the Scientific Committee of the BST Biobank.

AAV vector production

AAV vectors were produced by the Viral Production Unit, UAB (VPU) (http://sct.uab.cat/upv), following standard operating procedures. Briefly, HEK293AAV cells (Stratagene, Carlsbad, CA, USA) were co-transfected with pX6 providing helper virus functions; pRep2CapX packaging plasmid expressing the rep gene of AAV2 and the cap genes of either AAV2, AAV9 or AAVrh.10 (provided by Dr JM Wilson, University of Pennsylvania), and pAAV-ITR containing luciferase or green fluorescent protein as reporter genes driven by the cytomegalovirus (CMV) promoter between AAV2 ITRs. Recombinant vectors were clarified after benzozase treatment (50U ml$^{-1}$, Novagen, Madison, WI, USA) and polyethylene glycol (PEG 8000, Sigma, St Louis, MO, USA) precipitation. Viruses were then purified on an iodixanol density gradient (Optiprep, Axis-Shield, Oslo, Norway).

Viral genomes per ml (vg ml$^{-1}$) were quantified by picogreen (Invitrogen, Carlsbad, CA, USA; M Chillon, manuscript submitted). Strictly speaking, recombinant AAVs are classified as pseudotypes, while distinct wild-type AAVs are serotypes. However, for the sake of simplicity we shall use serotype to refer to both recombinant and wild type throughout the text.

Total anti-AAV IgG in human and mouse sera

Indirect enzyme linked immunosorbant assays were set up on the basis of previously published reports. Maxisorp microwell plates (Nunc A/S, Roskilde, Denmark) were coated with 1x109 vg per well of virus. For the standard curve (mice only), mouse IgG (Sigma-Aldrich, St Louis, MO, USA) was coated in serial dilutions. Secondary antibodies were conjugated with peroxidase (rabbit anti-human IgG (whole molecule)-peroxidase (Sigma A8792, Sigma-Aldrich) for humans; and ECL sheep anti-mouse IgG, horseradish peroxidase-linked species-specific whole antibody (GE Healthcare (NA931), Little Chalfont, UK; for mice). Detection was via 3,3′,5,5′ tetramethylbenzidine (TMB) substrate reagent (BD Biosciences, Franklin Lakes, NJ, USA). Absorbance was measured at 450 nm in a Bio-tek power wave reader linked to KC4 software program version 3.3 (BioTek, Winooski, VT, USA).

Results were expressed as OD readings related to serum dilutions (humans), or as total IgG anti-AAV in μg ml$^{-1}$ for mice. For humans, individuals were considered negative for IgG antibodies against the AAV of interest when OD readings were similarly low over a range of dilutions in duplicate (1:20, 1:60, 1:180). A cut-off OD for negative samples was determined, taking the mean OD value for a minimum of 25 such samples, +3 s.d. (cut-off

Figure 2. Pre-existing immunity to AAV serotypes rh.10, 9 and 2 in healthy human sera from Catalonia, Spain (n = 100). (a) Distribution percentage of donors with titers of anti-AAV immunoglobulin G (IgG) determined by indirect enzyme linked immunosorbant assay. Titers classified using optical density (OD) at 450 nm: high (OD > 1.600), medium (OD < 1.600 and > 1.000), low (OD < 1.000 to negative cut-off) and negative when OD readings were similarly low over a range of dilutions in duplicate (1:20, 1:60, 1:180). Negative cut-off was the mean OD value for 25 such samples, +3 s.d. (b) Distribution percentage of donors with titers of NAb against each AAV, according to, if serum dilutions of 1:20 inhibited vector transduction by > 90%, very positive; > 50 and < 90%, positive; or < 50%, negative. All samples were tested in duplicates using a luciferase reporter. (c) Neutralization profiles of sera from the four donors (#11, 28, 63 and 89) showing percentage inhibition of adeno-associated virus (AAV) infection of HEK293 cells by the sera at 1:20, 1:60 and 1:180 dilutions in duplicate using a luciferase reporter.
Anti-AAVrh.10 cross-reactivity in humans

R Thwaite et al

AAVrh.10=0.575, AAV9=0.665 and AAV2=0.471). IgG titer based on the OD was established as: high=OD>1.600, med=OD<1.600 and >1.000, and low=≤1.000 to the cut-off (See Supplementary Figure 2 for examples).

Anti-AAV IgG cross-binding to different viral capsids
We performed enzyme linked immunosorbant assays, as described above, using sera from AAV9, AAVrh10 and AAV2-intravenously injected mice (four animals per group) and naive serum as a control. Sera were tested in duplicate for antibodies to the capsid of the injected virus and to the un.injected AAV9, AAVrh10 and/or AAV2 capsid, as appropriate. OD reading at 450 nm was considered as 100% binding (maximum OD) for sera containing IgG binding to the same AAV capsid that the antibodies were raised against. OD readings for binding to other capsids were expressed as a percentage of the maximum OD signal. ODs for naive serum were consistently negligible for all capsids that were tested.

AAV neutralizing assays
Serum from heat-inactivated human serum samples or mouse sera (non-heat inactivated) was serially diluted with infection medium (Dulbecco’s modified Eagle’s medium+2% fetal bovine serum (fetal bovine serum (FBS), PAA; (GE Healthcare, Buckinghamshire, UK), incubated for 30 min at 37 °C with virus to then infect HEK293QIE cells (QBiogene, Lachine, QC, Canada; 20,000 cells/well) at 1x10⁹ vg per well for AAV9 and AAVrh10, and 2x10⁹ vg per well for AAV2 to achieve similar transduction as determined by titration. Vector-transgene expression was quantified after 48 h, lysing the cells according to manufacturer’s instructions (Pierce Firefly Luciferase Flash Assay kit (ThermoFisher Scientific, Waltham, MA, USA)). Luminescence was read in VICTOR3 (PerkinElmer, Waltham, MA, USA). Transduction efficiency was expressed as luminescence, normalized by amount of protein per well (Perkin BCA Protein

Assay kit, (ThermoFisher Scientific)), giving final values of luminescence per µg protein. Serum samples were considered positive for NAb if they inhibited reporter gene expression by >50% compared with the maximum signal (average of three maximum values for negative sera, considered 100% transduction). If inhibition was >90% the serum was considered very positive.

Statistical analysis
Data analysis was performed with IBM SPSS statistics software (Armonk, NY, USA). Values are expressed as mean±s.e.m. Differences between mean values were compared using two-tailed t-tests, with one tailed paired t-tests, with P<0.05 considered statistically significant.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
We thank the Vector Production Unit at CBATEG (Universitat Autònoma de Barcelona) for producing AAV vectors, the LLEB (UAB) for the luminescence measurements, Dr James M. Wilson (University of Pennsylvania) for providing AAV9 and AAVrh10 RepCap plasmids and Dr Lorena Ariza (CBATEG, UAB) for experimental advice. We are also grateful to the Catalan Banc de Sang i Teixits (BST) for the human samples. GP was recipient of predoctoral fellowship from the Generalitat de Catalunya (2009FI_B00219). This work was supported by the Generalitat de Catalunya (2014 SGR 1354), the Instituto de Salud Carlos III (P090920) and the Marató TV3 (110432) to AB.

REFERENCES