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5.1 Introduction

In this chapter, we present some angle resolved EELS experiments conducted on several

cuboid AuAg nanostructures corresponding to the early stages of the galvanic replace-

ment reaction [69]. As there were many uncertain issues about the three-dimensional

(3D) morphology of the hollow AuAg nanostructures presented in the Chapter 3, which

are effecting the local plasmonic properties dramatically, we have decided to proceed

with 3D plasmonic analyses of similar AuAg nanostructures. There have been several

studies showing the power of STEM-EELS technique for 3D characterization of differ-

ent materials [90, 244–247, 265, 266]. Most of these studies about EELS tomography

have dealt with the core-loss signals. On the other hand, 3D plasmon-field tomography

has been shown theoretically by Hörl et al. [267]. More recently, Nicoletti et al. [90]

reported the 3D EELS mapping of localized surface plasmon resonances of a 100 nm

Ag nanocube. With these studies paving the way to the 3D characterization of LSPRs

in solid metal nanostructures, we have decided to apply the technique to hollow metal

nanostructures and coupling between two nanostructures. In our case, the difficulty

falls on the size of the nanostructures (∼50 nm) and their complex morphology (hollow

structures with inner walls and holes). Previous works presented in literature studied

solid nanostructures which had perfectly defined symmetrical shapes and sizes about or

larger than 100 nm.

We have obtained low-loss EELS maps of several AuAg nanostructures (Fig. 5.1) with

high tilt angles (∼ ±60o, which may differ from sample to sample). Fig. 5.1 shows +40o,

0o, -40o tilted HAADF STEM micrographs of a 68 nm solid Ag@Au core-shell nanocube,

a 50 nm partially hollow AgAu nanocube, a 47 nm AuAg nanoframe, two Ag@Au core-

shell nanocubes with sizes of 59 nm and 53 nm standing with ∼22 nm separation and

a 63 nm Ag@Au core-shell nanocube and a 53 AuAg nanoframe standing with ∼14

nm separation. 3D plasmonic properties of these nanostructures are presented in the

following. The samples are deposited on 18 nm thick SiO2 grids as it was not possible to

tilt higher than ±45o by using 15 nm thick Si3N4 grids due to shadowing of the e-beam.

Although they are slightly thinner than the SiO2 grids, Si3N4 grids have 9 independent

0.1 mm x 0.1 mm windows and they are not suitable for high tilt tomography. On

the other hand, SiO2 grids have a 0.5 mm x 0.5 mm single window, allowing us to tilt

±60o. The EELS SI maps are obtained by using a monochromated STEM operated at

80 kV with typical energy resolutions around 120 meV and spatial resolution between

1.2 and 2.0 nm. Due to high number of tilt series and, more importanty, e-beam induced

transformation of the nanostructure morphologies after long aquisition times (which are

modaretaly visible at the -40o tilted HAADF STEM micrographs of Fig. 5.1), we had

to optimize the acquisition times to about 5 min per EELS maps. The signal-to-noise
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ratios of the obtained EELS data are somewhat lower than those presented in previous

chapters for 2D experiments, yet they contain the necessary information to generate

components related to different LSPR modes for each tilt angle. We have used spectral

unmixing with vertex component analysis (VCA) to process the EELS data, where we

have identified individual components from different tilt angles and used the obtained

spectra of the components to generate corresponding abundance maps, similar to the

Ref. [90]. We have obtained 5 different tomography sets but tomography reconstructions

of all datasets and relevant modelling studies are in progress and will be completed in

the near future, due to the complexity of the processing routines and time limitations

for my PhD studies.
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Figure 5.1: HAADF STEM micrographs of different AuAg nanostructures that
3D EELS maps are obtained: +40o, 0o, -40o tilts of a solid Ag@Au core-shell
nanocube, a partially hollow AuAg nanocube, an AuAg nanoframe, two Ag@Au core-
shell nanocubes standing with ∼ 22 nm separation and an Ag@Au core-shell nanocube

and an AuAg nanoframe standing with ∼ 14 nm separation.
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5.2 Ag@Au core-shell nanocube

5.2.1 Structural characterization

Figure 5.2: High resolution HAADF STEM micrograph of a 63 nm Ag@Au core-shell
nanocube. STEM-EDX maps of Ag (in green) and Au (in red). Detail of the upper

right corner with two different focus revealing the shell in different focus.

Fig. 5.2 shows high resolution HAADF STEM micrograph of a 63 nm Ag@au core-shell

nanocube. This nanocube is not the same where we have obtained 3D EELS maps

but it is essentially similar in terms of size and morphology. We could not perform all

the characterization studies of STEM-EELS, HR-STEM, and STEM-EDX on the same

nanostructures due to the e-beam induced morphological changes during STEM-EELS

and/or STEM-EDX measurements. Therefore, we had to choose different yet similar

nanostructures for HR-STEM and STEM-EDX studies. HR-STEM reveals the presence

of several nanometer thick, inhomogeneously distributed shell with a darker contrast

around the nanocube and elemental STEM-EDX maps confirm that the shell is rich in

Au compared to the other parts of the nanocube. Thus, we name this nanostructures as

Ag@Au core-shell nanocubes. Quantification of the STEM-EDX revealed that the center

of the nanocube has a composition of 93±0.5 at.% Ag and 7±0.5 at.% Au, whereas

the edges are comprised 61.75±1.45 at.% Ag and 38.25±1.45 at.% Au. The corners

have a higher Au content of 49±2.8 at.%, which can be interpreted from the elemental

distribution map of Au (in red) where the corners have brighter red contrast. Such an

inhomogeneous distribution can also be revealed by the detailed HR-STEM micrographs

of the upper right corner presented on the right of the figure. It has been observed

that the several atomic layers around the corners have slightly different focus than

the rest of the nanocube, which may be due to the freshly deposited Au during the

galvanic replacement reaction that did not form an alloy. Lu et al. [306] reported
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similar segregation behavior in the case of Pt deposition on Pd nanocubes which takes

place when the deposition rate is higher than the diffusion rate.

5.2.2 Angle-resolved local plasmonic properties

Figure 5.3: HAADF STEM micrographs (left) of the +40o, 0o, -40o tilts of a solid
Ag@Au core-shell nanocube and background subtracted local EEL spectra (right) of
different locations shown by black, blue, green and red squares. Note that the color of
each spectra corresponds to the color of the location indicated in the HAADF STEM

micrographs.
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Having reported the structural characteristics of the studied core-shell nanocubes, we

continue with their 3D plasmonic properties. Fig. 5.3 shows HAADF STEM micro-

graphs obtained from +40o, 0o, -40o tilted 68 nm solid Ag@Au core-shell nanocube and

background subtracted local EEL spectra of the different locations such as corners, edges

and bulk of the nanocube. The color of each EEL spectra correspond to the color of

the selected area in the HAADF STEM micrographs. As mentioned earlier, we have

obtained EELS SI in a relatively shorter time and, therefore the signal-to-noise ratio of

the data is not as high as the above presented EELS datasets. We have choosen a larger

area of 10 pixel x 10 pixel, which was 5 pixel by 5 pixel for the above presented EELS

maps, to extract the local EEL spectra from each location. A LSPR peak at around 2.7

eV is observed in the selected area EEL spectra from the corners and edges suggesting

that this LSPR mode can be present around the nanocube. Main LSPR peaks from the

corners are located ∼3.2 eV with slight variations from corner to corner. The selected

area EEL spectra from the edges revealed the presence of wide peaks which may contain

several LSPR modes including the one located at ∼3.6 eV corresponding to the main

edge/face mode of the Ag nanocubes. Selected area EEL spectra from the center of the

nanocube revealed the presence of bulk plasmon mode of Ag located at ∼3.8 eV, where

the EELS signals are multiplied by 10 in order to have a better comparison with the

other EEL spectra.

It will be revealed unambigously when the tomography reconstructions are completed

but one can see the effects of the substrate on the local EEL spectra presented in Fig.

5.3. The local EEL spectra obtained from the corners at 0o tilt (black and green areas)

contain contributions from the proximal and distal modes and look quite similar to one

another. When we check the local plasmon response at the corners at +40o tilt, we see

that the EEL spectra of the upper left corner (black) is different than the one of the

lower right corner (green). As it is discussed in the previous chapter, the presence of

the substrate splits the LSPR modes into proximal (in contact with the substrate) and

distal (not in contact with the substrate) modes where the proximal modes have lower

energies than their distal counterparts [90, 91]. Keeping this in mind, we can suggest

that the lower right corner (green) with a dominant plasmon peak located at ∼2.8 eV

is in contact with the substrate and this mode is the proximal corner plasmon mode

of the core-shell nanocube. Similarly, the upper left corner (black) with a dominant

plasmon peak located at ∼3.2 eV is not in contact with the substrate and contains

the distal corner plasmon mode. This can be confirmed by looking at the local EEL

spectra obtained from the -40o tilt where the upper corner (black) is in contact with

the substrate and contains the proximal corner plasmon mode with a dominant peak

located at ∼2.8 eV. The lower part of the HAADF STEM micrograph is not in contact
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with the substrate and the local EEL spectra from the green area contains the distal

corner plasmon mode at ∼3.2 eV.

5.2.3 Processing of 3D plasmonic properties

Fig. 5.4 shows the HAADF STEM micrographs obtained simultaneously with the EELS

SI at different tilt angles between +55o and -60o with different intervals. It was possible

to tilt up to ±60o by using the SiO2 grids with a 0.5 mm x 0.5 mm window. Notice that

the tilt degrees can be limited depending on the location of the nanocubes on the grid.

We have tried to use lower tilt intervals at higher degrees in order to minimize the so

called ”missing wedge” [261]. It should be noted here that the sample stability was quite

poor at higher tilt angles in both directions in terms of sample drift and e-beam induced

”charging” effects, as observed in the HAADF STEM micrographs obtained at +50 and

+55 degrees (Fig. 5.4). Even though we obtained the maps at low acquisition time (few

minutes), some of the measurements resulted in distortion and damaging of the cubic

morphology. We started to obtain EELS maps from the maximum positive (+55) degrees

and decreased the tilt until the maximum negative (-60) degrees. As the nanocube is

exposed to higher dose of e-beam exposure after certain number of EELS maps obtained

at different tilts, e-beam induced morphological changes and nanostructure degradation

started to appear as it is clearly visible in the HAADF STEM micrographs between -40

and -60 degrees.

After presenting the structural poperties of the core-shell Ag@Au nanocubes and angle-

resolved local plasmonic properties for selected angles, we will continue with the process-

ing of 3D plasmonic properties by means of VCA. In Fig. 5.5, 4 different components

obtained by VCA analysis and their corresponding abundance maps for selected tilt

angles (+55, +40, +20, 0, -20, -40 and -60 degrees) are presented. Component I has a

relatively wide plasmon peak located at ∼2.8 eV with a shoulder at ∼2.7 eV. Its cor-

responding abundance map at 0o tilt suggests that this mode has been generated from

almost all around the nanocube where the corners have slightly higher intensities com-

pared to edges. It is possible that it is a plasmon mode related to the proximal corner

modes, as discussed above in Fig. 5.3, with some contributions from the Au-rich AuAg

shell. As seen in this figure, the intensity of this plasmon mode decrease substantially for

the higher tilt angles. Since Fig. 5.5 shows a selection of 7 tilt angles among a total of

15, we think it is convenient to present plasmon maps of each mode for all the tilt angle

in separate figures for the integrity of the present thesis manuscript. Figures 5.6, 5.7, 5.8

and 5.9 shows the spectra of the components I, II, III and IV in Fig. 5.5, respectively,

along with their corresponding abundance maps for each tilt angles. The components II

and III are located at ∼3.0 eV and ∼3.2 eV, respectively. Their abundance maps reveals
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Figure 5.4: Series of HAADF STEM micrographs of the Ag@Au core-shell nanocube
obtained simultaneously with the EELS SI at different tilt angles between +55o and

-60o with different intervals.

that both are corner plasmon modes and have quite similar distributions for different

tilt angles. As discussed above in Fig. 5.3, these modes are distal corner modes corre-

sponding to Ag related plasmon resonances. These 3 different corner modes are in good

aggrement with the literature [90]. Similarly, the presence of multiple corner modes in

Ag nanocubes is shown in the previous chapter on the BEM simulations (Fig. 3.11).

Component IV is the well-known face plasmon mode of Ag nanocubes and located at

∼3.6 eV. Its corresponding abundance maps clearly reveal the presence of this mode at

the faces of the core-shell nanocube at tilt angles between ±40o, whereas its intensity is

decreased drastically for higher tilt angles. As a future work, we will complete the 3D

recontruction for all 4 localized surface plasmon resonance modes shown in this section

and it will be possible to visualize these corner and edge plasmon modes more clearly

in 3D.
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Figure 5.5: Spectra corresponding to 4 different components obtained by VCA and
their corresponding abundance maps for different tilts. Intensity of the abundance maps

are normalized within each component.

Figure 5.6: A. Spectrum of the component I in Fig. 5.5 and its corresponding abun-
dance maps for all tilt angles are shown in B.
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Figure 5.7: A. Spectrum of the component II in Fig. 5.5 and its corresponding
abundance maps for all tilt angles are shown in B.

Figure 5.8: A. Spectrum of the component III in Fig. 5.5 and its corresponding
abundance maps for all tilt angles are shown in B.
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Figure 5.9: A. Spectrum of the component IV in Fig. 5.5 and its corresponding
abundance maps for all tilt angles are shown in B.

Notice that we have presented only localized surface plasmon resonance modes from the

corners, edges and/or faces of the Ag@Au core-shell nanocube in this section. Neverthe-

less, we mention about the bulk plasmon mode of Ag in the local plasmonic properties

of nanocubes presented in Fig. 5.3, where it is indicated that the intensity of this bulk

mode is much lower than those of the other surface plasmon modes. The investigated

Ag@Au nanocube has been extracted from the very early stage of the galvanic reaction

and most of the nanocube is not alloyed with Au. Therefore, this solid nanocube, ex-

cept the few-nanometer-thick shell, contains the bulk plasmon mode of Ag all around

the nanocube. In general, HAADF STEM micrographs are sufficient enough to indicate

where the Ag is located in such a solid core-shell nanocube, hence, it can indicate the

location of bulk plasmon mode of Ag. Still, we have obtained the component related

to bulk plasmon mode of Ag at ∼3.8 eV as a proof of concept for this bulk mode. Its

spectrum along with its corresponding abundance maps for all tilt angles are presented

in Fig. 5.10. As seen in these maps, as, expected, this mode is present all over the

nanocube. It is worth pointing out that its intensity is really low expecially for the

higher tilt angles which makes it hard to distinguish from the background contributions.
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Figure 5.10: A. Spectrum of the component corresponding to the bulk plasmon res-
onance of Ag at ∼3.8 eV and its abundance maps for all tilt angles are shown in B.
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5.3 Partially hollow AgAu nanocube

5.3.1 Structural characterization

Figure 5.11: High resolution HAADF STEM micrograph of a 57 nm partially hollow
AgAu nanocube. STEM-EDX maps of Ag (in green) and Au (in red). Detail of the

centeral hollow part.

Fig. 5.11 shows high resolution HAADF STEM micrograph of a 57 nm partially hol-

low nanocube. This nanocube is choosen as a representative for the partially hollow

nanocubes. Even though its hollow part is slightly bigger than the one used for 3D

EELS mapping (Fig. 5.1), both possess quite similar structural features. Atomic resolu-

tion HAADF STEM reveals the presence of several nanometer thick, inhomogeneously

distributed shell with a darker contrast around the nanocube surface in addition to the

central part being hollow. E-beam induced damage on the nanocube is observed even

during Atomic resolution HAADF STEM analyses. Elemental STEM-EDX maps re-

veals that the outer part of the nanocube is richer in Au compared to the other parts.

Moreover, substantial amount of Au can be observed in the nanocube as well, which was

not the case for the above presented Ag@Au core-shell nanocube. Quantification of the

STEM-EDX revealed that the alloyed parts have an average composition of 71.5±1.3

at.% Ag and 28.5±1.3 at.% Au. Even after such a progressed galvanic replacement

reaction, the nanocubes/hollow nanoboxes keep the mono crystallinity of the initial Ag

nanocubes. On the right of Fig. 5.11, an atomic resolution HAADF STEM micrograph

from the center of the partially hollow AgAu nanocube is presented, revealing that even

on the hollow part of the nanocube, the structural phase projection has a perfect mono

crystallinity.
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5.3.2 Angle-resolved local plasmonic properties

Figure 5.12: HAADF STEM micrographs (left) of the +40o, 0o, -40o tilts of a 50 nm
partially hollow AgAu nanocube and background subtracted local EEL spectra (right)
of different locations shown by black, blue, green, orange and red squares. Note that the
color of each spectra corresponds to the color of the location indicated in the HAADF

STEM micrographs.

Fig. 5.12 shows HAADF STEM micrographs obtained from +40o, 0o, -40o tilted 50

nm partially hollow AgAu nanocube and background subtracted local EEL spectra of

the different locations such as corners, edges and bulk of the nanocube. The color of

each EEL spectra correspond to the color of the selected area in the HAADF STEM

micrographs. In general, local EEL spectra obtained from the different parts of the
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partially hollow nanocube reveal the presence of wide peaks containing multiple shoulder

peaks which are related to different plasmon modes. Such wide peaks are observed

mainly due to the low signal-to-noise ratio of the EELS datasets, as its reasons are

explained previously. Several plasmon peaks located at ∼2.2 eV, ∼2.8 eV, ∼3.2 eV,

∼3.5 eV and ∼3.8 eV can easily be idendified in the first instance. The effects of the

hollow region on the local plasmonic properties can be seen by comparing the black and

blue, or orange and green regions in the 0 degree tilted EEL spectra, where the dominant

plasmon peaks of the hollow part are located at lower energies than those of the solid

part. Although its orientation is not letting us observe as clearly as the Ag@Au core-shell

nanocube presented in Fig. 5.3, the effects of the substrate can be seen by comparing

the local EEL spectra of the blue and green regions of the +40o tilted nanocube. The

dominant plasmon peak of the EEL spectrum obtained from the blue region, which is in

contact with the substrate, is located at ∼2.8 eV, whereas the dominant plasmon peak

of the green region, which is not in contact with the substrate, is located at ∼3.2 eV.

These two plasmon modes correspond to distal and proximal corner plasmon modes,

respectively. The local EEL spectra obtained from the -40o tilted nanocube mainly

reveals the presence of low energy plasmon modes related to the hollow structure as this

tilt angle allows the alignment of the void parallel to the e-beam. The effects of this

void on the plasmonic properties of the nanocube can be understood by comparing the

local plasmon resonances of the above presented Ag@Au core-shell nanocube (Fig. 5.3)

and the local plasmon resonances of the partially hollow AgAu nanocube (Fig. 5.12). In

aggrement with the conclusions of the previous chapter on plasmonic nanoengineering,

LSPR peaks shift to lower energies due to the hollow nanostructure.

5.3.3 Processing of 3D plasmonic properties

Fig. 5.13 shows the HAADF STEM micrographs of the partially hollow AgAu nanocube

obtained simultaneously with the EELS SI at different tilt angles between +60o and -40o

with different intervals. Similar to above presented set for the core-shell nanocube, we

started to obtain EELS maps from the maximum positive (+60) degrees and decreased

the tilt until the maximum negative degrees. As the nanocube is exposed to higher dose

of e-beam radiation after a certain number of EELS maps obtained at different tilts,

the e-beam induced morphological changes started to appear and we had to finish the

tilt series at a relatively lower angle of -40o due to high extend of particle melting. 3D

morphology of the partially hollow nanocube can be clearly seen in these HAADF STEM

micrographs, where the presence of a cylindrical void along two faces of the nanocube

is obviously revealed. In the following, the effects of this cylindrical void on the 3D

plasmonic properties of the partially hollow AgAu nanocube are presented.
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Figure 5.13: Series of HAADF STEM micrographs of the partially hollow AgAu
nanocube obtained simultaneously with the EELS SI at different tilt angles between

+60o and -40o with different intervals.

Figure 5.14: Spectra of 4 different components of the partially hollow AgAu nanocube,
obtained by VCA and their corresponding abundance maps for different tilts. Intensity

of the abundance maps are normalized within each component.

VCA processing on the EELS SIs obtained from the partially hollow AgAu nanocube

revealed the presence of 4 different components. Their spectra and correponding abun-

dance maps for selected +60, +40, +20, 0, -20 and -40 degrees are presented in Fig.

5.14. First component is a ∼0.5 eV wide peak located at ∼2.3 eV covering the plasmon

resonances generated by the hollow part. Its abundance maps clearly reveal that this
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mode is highly intense at negative tilt angles in which the void is aligned almost parallel

to the e-beam trajectory, which is in good agreement with the above presented local

EEL spectra from the -40o tilt. Similar to previous section, we present the abundance

maps for all the 4 components at every tilt angle in the following as separate figures.

The spectra and abundance maps for the components I, II, III and IV are presented

in Fig. 5.15, Fig. 5.16, Fig. 5.17 and Fig. 5.18, respectively. The component II is

located at ∼2.8 eV, which was introduced as the proximal corner mode of the nanocube

in Fig. 5.12. Its corresponding abundance maps reveal that it has contributions from

the plasmon resonances excited along the edge/face of the hollow part along with the

resonances from the corners. The component III, which is located at ∼3.15 eV, is an-

other corner plasmon mode present in along almost all tilt angles with high intensities.

The last component presented in this nanocube (component IV) is located at ∼3.5 eV.

Its abundance maps reveal that this mode is the Ag related face mode of the partially

hollow AgAu nanocube. It is worth pointing out that it is present inside the void similar

to the pinholed AuAg nanoboxes of the previous chapter (Figures 3.24 and 3.25).

Figure 5.15: A. Spectrum of the component I in Fig. 5.14 and its corresponding
abundance maps for all tilt angles are shown in B.



Plasmonic Properties in 3D 189

Figure 5.16: A. Spectrum of the component II in Fig. 5.14 and its corresponding
abundance maps for all tilt angles are shown in B.

Figure 5.17: A. Spectrum of the component III in Fig. 5.14 and its corresponding
abundance maps for all tilt angles are shown in B.
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Figure 5.18: A. Spectrum of the component IV in Fig. 5.14 and its corresponding
abundance maps for all tilt angles are shown in B.
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5.4 Hollow AuAg nanoframe

5.4.1 Structural characterization

Figure 5.19: Atomic resolution HAADF STEM micrograph ∼ of a 53 nm hollow
AuAg nanoframe. STEM-EDX maps of Ag (in green) and Au (in red). Details of

upper right and lower left corners.

Fig. 5.19 shows atomic resolution HAADF STEM micrograph of a 53 nm hollow AuAg

nanoframe-like structure.It should be noted here that the synthesis procedure of this

nanostructure is different than the one presented in the previous chapter as AuAg

nanoframe (Fig. 3.37A). The present nanoframe-like structure is also from the initial

stage of the galvanic replacement reaction [69], yet, it get hollow due to the replacement

reaction taken fast and inhomogeneously. As seen in the HAADF STEM micrographs,

there are still unalloyed parts, with bright contrasts, at the corners of the nanoframe,

which was not the case for the nanoframe presented in Chapter 3, synthesized by a

slower galvanic replacement reaction. This nanostructure is choosen as a representative

for the hollow AuAg nanoframe presented in this chapter (Fig. 5.1). Elemental STEM-

EDX maps reveals that the outer part of the nanoframe is richer in Au compared to

the other parts, where the parts with brighter contrast are rich in Ag. Overall quantifi-

cation of the STEM-EDX revealed that this nanoframe is composed of 58.8±1.2 at.%

Ag and 41.2±1.2 at.% Au. It is clear from the elemental maps that the Ag and Au

are distributed quite inhomogeneously through out the nanoframe. For instance, it is

stated that outer parts are rich in Au compared to the inner parts. Quantification of

the STEM-EDX from the inner and outer parts of the edges revealed that the outer

parts are composed of 52.3±0.7 at.% Ag and 47.7±0.7 at.% Au, whereas the inner parts

have a composition of 72.7±0.3 at.% Ag and 27.3±0.3 at.% Au. There is about a 20

at.% difference between the inner and outer part of the same edge, suggesting that the

Au deposition takes places faster than the diffusion during the synthesis [306]. On the
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right, detailed atomic resolution HAADF STEM micrographs taken from the upper left

corner of the nanoframe are presented, showing the mono crystallinity of the solid and

projected hollow parts. The HAADF STEM micrograph from the lower right corner

reveals the different focus of the freshly deposited Au parts with a several atomic layer

thickness.

5.4.2 Angle-resolved local plasmonic properties

Figure 5.20: HAADF STEM micrographs (left) of the +40o, 0o, -40o tilts of a 47 nm
hollow AuAg nanoframe and background subtracted local EEL spectra (right) of differ-
ent locations shown by black, blue, and red squares. Note that the color of each spectra
corresponds to the color of the location indicated in the HAADF STEM micrographs.
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Fig. 5.20 shows HAADF STEM micrographs obtained from +40o, 0o, -40o tilted 47 nm

hollow AuAg nanoframe and background subtracted local EEL spectra of the different

locations such as corners, edges and center of the nanoframe. The color of each EEL

spectra correspond to the color of the selected area in the HAADF STEM micrographs.

It has been revealed in the Chapter 3 that plasmon peaks shift to lower energies as the

void size increases in the cuboid AuAg nanostructures. It is also shown that plasmon

resonances are distributed homogeneously around the hollow nanostructures such as

nanoboxes and nanoframes. The local EEL spectra from the hollow AuAg nanoframe

shown here (Fig. 5.20) and its comparison with the above presented local EEL spectra

from the Ag@Au core-shell nanocube (Fig. 5.3) and partially hollow AgAu nanocube

(Fig. 5.12) concur the conclusions drawn in the previous chapter. In general, local

EEL spectra obtained from the different parts of the hollow AuAg nanoframe reveal the

presence of plasmon peaks located at ∼2.3 eV with ±0.2 eV local modification depending

on the tilt angle and the location. It would be logical to assume the appearance of some

Ag-related plasmon resonances in this nanostructure, related to the presence of some

unalloyed areas, as observed in the HAADF STEM micrographs of Fig. 5.19. These Ag-

related plasmon resonances can be observed in the local EEL spectra obtained from the

centeral parts (indicated in red) as wide peaks at higher energies around 3.5 eV. However,

as shown in these EEL spectra, their intensities are significantly lower than those of the

main localized surface plasmon resonances generated around the hollow parts. It should

also be pointed out that, in some regions, two different plasmon resonances with quite

similar energies are observed from the same selected area. For instance, the local EEL

spectrum obtained from the red squared region of the +40o tilted nanoframe reveals the

splitting of the dominant peak into two peaks located at ∼2.15 eV and ∼2.35 eV.

5.4.3 Processing of 3D plasmonic properties

Fig. 5.21 shows the HAADF STEM micrographs of the hollow AuAg nanoframe obtained

simultaneously with the EELS SI at different tilt angles between +60o and -55o with

different intervals. The 3D morphology of the hollow nanoframe can be clearly observed

in the HAADF STEM micrographs, where the presence of voids with different sizes

are visible at different faces of the nanoframe. The cubic shape with rounded corners

seems to be homogeneous for all tilt angles, where the size of pinhole like voids are

differentiating from several nanometer to about 20 nm. Although partial morphological

changes are observed at the higher negative tilt angles as -50 and -55 degrees, we could

obtain reasonably high quality EELS maps at 16 different angles between +60o and

-55o. In the following, we present the processing of EELS datasets from each tilt angle

obtained by VCA.
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Figure 5.21: Series of HAADF STEM micrographs of the hollow AuAg nanoframe
obtained simultaneously with the EELS SI at different tilt angles between +60o and

-55o with different intervals.

Figure 5.22: Spectra of 3 different components of the hollow AuAg nanoframe, ob-
tained by VCA and their corresponding abundance maps for different tilts. Intensity

of the abundance maps are normalized within each component.



Plasmonic Properties in 3D 195

VCA processing on the EELS SIs obtained from the hollow AuAg nanoframe revealed

the presence of 3 different components. Their spectra and correponding abundance maps

for selected tilt angles of +60, +40, +20, 0, -20 and -40 degrees are presented in Fig.

5.22. As shown in the above presented local EEL spectra, main plasmon resonances

all around the nanoframe are located at similar energies and the spectral unmixing

obtained by VCA generated 3 components located at ∼2.15 eV, ∼2.35 eV and ∼2.5 eV.

Similar to the previous section, we present the abundance maps of all 3 components

for every tilt angle in the following as separate figures. The spectra and abundance

maps of components I, II and III are presented in Fig. 5.23, Fig. 5.24 and Fig. 5.25,

respectively. Abundance maps of the component I (located at ∼2.15 eV) reveal that

this mode is present all around the nanoframe with high intensities. Again, such a

distribution in hollow nanostructures is in good agreement with the literature [139, 140]

and the experimental and simulation results in Chapter 3. The second component, which

is located at a slightly higher energy of ∼2.35 eV, is also distributed intensely around the

nanoframe. Both of these localized surface plasmon modes are present along the inner

voids of the nanoframe. The third mode located at ∼2.55 eV seems to be a corner mode

with low intensities, especially at the negative tilt angles. As mentioned above, VCA

processing did not generate any Ag-related plasmon resonance at higher energies above

the main plasmon resonances of the hollow nanoframe within the primary components

due to their suppressed intensities.

Figure 5.23: A. Spectrum of the component I in Fig. 5.22 and its corresponding
abundance maps for all tilt angles are shown in B.
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Figure 5.24: A. Spectrum of the component II in Fig. 5.22 and its corresponding
abundance maps for all tilt angles are shown in B.

Figure 5.25: A. Spectrum of the component III in Fig. 5.22 and its corresponding
abundance maps for all tilt angles are shown in B.
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5.5 Plasmon coupling between two Ag@Au core-shell nanocubes

5.5.1 Angle-resolved local plasmonic properties

Figure 5.26: HAADF STEM micrographs (left) of the +40o, 0o, -40o tilts of a 59
nm and a 53 nm Ag@Au core-shell nanocubes standing with a separation of ∼22 nm.
On the right, the background subtracted local EEL spectra of different locations shown
by black, blue, dark green, green, turquoise, orange, violet, purple and red squares are
shown. Note that the color of each spectra corresponds to the color of the location

indicated in the HAADF STEM micrographs.
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In this section, we present the 3D EELS study conducted on two Ag@Au nanocubes (59

nm and 53 nm in sizes) standing next to one another with a gap of ∼22 nm in order

to investigate the coupling of plasmon resonances of two nanocubes in 3D. As these

core-shell nanocubes are essentially similar to the ones presented above, the structural

information is not presented again. Therefore, we start with the angle resolved plasmonic

properties of the selected areas. Fig. 5.26 shows the HAADF STEM micrographs taken

from the +40o, 0o, -40o tilted nanocubes and background subtracted local EEL spectra

of different locations indicated with colored squares (which are 8 pixel by 8 pixel).

In general, the presence of wide peaks between ∼2.5 eV and ∼3.5 eV are observed in

the local EEL spectra at several locations. The selected area of the upper corners and

edge (areas indicated by black, blue and dark green squares) of the 0o tilted upper

nanocube reveals the presence of multiple peaks located at ∼2.6 eV, ∼3.1 eV and ∼3.6

eV, where their relative intensities change from location to location. For instance, the

dominant peak of the upper left corner is located at ∼3.1 eV, whereas the dominant

peak of the upper right corner is located at ∼2.6 eV. Another difference between the

local EEL spectra of these two corners can be the intensity of a lower energy plasmon

peak (located at ∼2.4 eV, seems to be hidden by the tail of the main plasmon peaks)

being higher at the right corner. These discrepancies can be understood by looking

at the HAADF STEM micrograph, where the unalloyed Ag part at the upper right

corner of the upper nanocube seems to be ”sharper” than the other corners resulting in

the lower energy plasmon resonances. This core-shell nanocube is quite similar to the

one presented in the previous chapter (Fig. 3.14), where it is also pointed out that such

morphological differences lead to different plasmon resonances. The local EEL spectrum

obtained from the gap between the two nanocubes also shows the presence of a wide

peaks containing multiple plasmon resonances two of which are located at ∼2.7 eV and

∼3.1 eV. Lower parts of the lower nanocube (the lower right corner in violet and lower

edge in purple) reveal the presence of a main plasmon peak at ∼2.6 eV. The presence

of such low energy plasmon resonances along the edges of the nanocubes as a dominant

plasmon resonance (see the EEL spectra from the upper edge of the upper nanocube (in

blue) and lower edge of the lower nanocube(in purple)), may be an indication of plasmon

coupling between two nanocubes as it was not the case for the above presented Ag@Au

core-shell nanocubes. The presence of a coupling resonance mode can be revealed in the

following with the VCA processed plasmon components and abundance maps. Moreover,

the presence of the bulk plasmon mode related to Ag can be clearly seen in the EEL

spectrum (in red) obtained from the center of the lower nanocube.

Local EEL spectra obtained from the +40o tilted nanocubes revealed the presence of

two main plasmon peaks in several locations. The first one is located between 2.7 and

2.8 eV, depending on the location, and it is highly intense at the edges of the lower



Plasmonic Properties in 3D 199

nanocube. On the other hand, the other peak located between 3.1 eV and 3.2 eV is

highly intense at the corners of the upper nanocube and at the region indicated with a

green square where the corners of two nanocubes seem to overlap. The local EEL spectra

obtained from the -40o tilted nanocubes show the presence of a relatively dominant peak

for every location, whose energy slightly varies locally between 2.5 eV and 3.1 eV. The

upper part of the upper nanocube (in blue) and the lower part of the lower nanocube

(in red) reveal almost identical local EEL spectra with the main plasmon peak located

at ∼2.5 eV, supporting the above mentioned claims about plasmon coupling.

5.5.2 Processing of 3D plasmonic properties

Figure 5.27: Series of HAADF STEM micrographs for the two Ag@Au core-shell
nanocubes obtained simultaneously with the EELS SI at different tilt angles between

+60o and -50o with different intervals.

Fig. 5.27 shows the HAADF STEM micrographs of the Ag@Au core-shell nanocubes

obtained simultaneously with the EELS SI at different tilt angles between +60o and

-50o with different intervals. As seen in this figure, we have rotated the HAADF STEM
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micrographs 90 degrees versus the clockwise direction for convenience when presenting

the data. We will also present the abundance maps of different components like these

HAADF STEM in the following. We could obtain EELS maps for the 15 tilt angles

+60o and -50o as indicated in this figure. It can be seen from these HAADF STEM

micrographs that the sample was drifting during the acquisition moslty due to the e-

beam induced charging. Nevertheless, we could obtained good enough EELS maps

allowing us to study the 3D plasmonic properties of these nanocubes. The HAADF

STEM micrographs reveal that the smaller nanocube (53 nm in size, on the right) has

more alloyed parts than those of the larger nanocube (59 nm in size, on the left), which

is related to the Au amount per surface area during the galvanic replacement reaction

[69]. Tilt axis of these series seems to be parallel to the alignment of nanocubes.

Figure 5.28: Spectra of 6 different components of the Ag@Au core-shell nanocubes,
obtained by VCA and their corresponding abundance maps for different tilts. Intensity

of the abundance maps are normalized within each component.

Spectra of 6 different components obtained from the EELS SIs for the two Ag@Au core-

shell nanocubes by VCA and their corresponding abundance maps for selected tilt angles

of +60, +40, +20, 0, -20 and -40 degrees are presented in Fig. 5.28. Again, similar to the

above presented results on 3D plasmonic properties, we present the components and their

corresponding abundance maps for every tilt angles in the following as separate figures,

where the abundance maps of the components I, II, III, IV, V and VI are presented in

Fig. 5.29, Fig. 5.30, Fig. 5.31, Fig. 5.32, Fig. 5.33 and Fig. 5.34, respectively.

The component I is located ∼2.45 eV. Its abundance maps reveal that it is present

mainly at the outer edges of two nanocubes forming a kind of bipolar plasmon mode.

We believe that such abundance maps for this mode suggest that it is generated due

to the interaction between the plasmon modes of these two Ag@Au nanocubes located
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∼22 nm away from one another. The fact that there is no intensity at the gap between

two nanocubes reveals that this is a bonding mode [93, 215, 286]. It is also clear that

this mode is highly intense at the negative tilt angles where there is a gap between two

nanocubes. The second component, located at ∼2.65 eV, is mostly generated from the

corners of the nanocubes. Its intensities are lower at higher tilt angles for both positive

and negative degrees. The component III is located at ∼2.8 eV and it is mostly present

at the corners with some contributions from the edges (see 0o tilt). The component

IV is another corner mode located at ∼2.95 eV. The plasmon resonances generated

from these corner modes of both of the nanocubes seem to be interacting with one

another. The reconstructions of each mode will reveal the extend of the interaction in

3D. The spectrum of component V shows a relatively wide peak located at ∼3.2 eV. Its

corresponding abundance maps, especially the ones at the lower tilt angles, indicated

that this mode is an anti-bonding coupling mode [215, 307]. The last plasmon mode

obtained from these two Ag@Au core-shell nanocubes, except the bulk plasmon mode

of Ag which is not presented, is the Ag-related face mode of the nanocubes located at

∼3.6 eV (component VI). As suggested by the name of the plasmon mode, it is present

along the faces of both nanocubes and visible, to some extend, for all tilt angles.

Figure 5.29: A. Spectrum of the component I in Fig. 5.28 and its corresponding
abundance maps for all tilt angles are shown in B.



Plasmonic Properties in 3D 202

Figure 5.30: A. Spectrum of the component II in Fig. 5.28 and its corresponding
abundance maps for all tilt angles are shown in B.

Figure 5.31: A. Spectrum of the component III in Fig. 5.28 and its corresponding
abundance maps for all tilt angles are shown in B.
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Figure 5.32: A. Spectrum of the component IV in Fig. 5.28 and its corresponding
abundance maps for all tilt angles are shown in B.

Figure 5.33: A. Spectrum of the component V in Fig. 5.28 and its corresponding
abundance maps for all tilt angles are shown in B.
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Figure 5.34: A. Spectrum of the component VI in Fig. 5.28 and its corresponding
abundance maps for all tilt angles are shown in B.
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5.6 Plasmon coupling between an Ag@Au core-shell nanocube

and an AuAg nanoframe

5.6.1 Angle-resolved local plasmonic properties

Figure 5.35: HAADF STEM micrographs (left) of the +40o, 0o, -40o tilts of a 63
nm Ag@Au core-shell nanocube and a 53 AuAg nanoframe standing with ∼ 14 nm
separation. On the right, the background subtracted local EEL spectra of different
locations shown by black, blue, dark green, green, turquoise, orange, violet, purple and
red squares are shown. Note that the color of each spectra corresponds to the color of

the location indicated in the HAADF STEM micrographs.
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In this section, we present another example of 3D plasmon coupling between a 63 nm

Ag@Au core-shell nanocube and a 53 AuAg nanoframe standing with ∼ 14 nm separa-

tion. We have obtained 3D EELS study on the Ag@Au nanocube and AuAg nanoframe

in order to investigate the coupling of plasmon resonances of a solid nanocube and hollow

nanoframe in 3D. Fig. 5.35 shows the HAADF STEM micrographs taken from the +40o,

0o, -40o tilted nanocube and nanoframe couple and background subtracted local EEL

spectra of different locations indicated with colored squares (which are 6 pixel by 6 pixel).

As seen in these figures, the solid core-shell nanocube and hollow nanoframe have quite

distinctive plasmon resonances, whereas the gap between two nanostructures contains

plasmon resonances of both. STEM micrographs reveal that the galvanic replacement

did not take place homogeneously for the Ag@Au core-shell nanocube where the upper

part of the nanocube is alloyed more than the other parts. The AuAg nanoframe has a

27 nm spherical void as revealed by the STEM micrograph taken at 0o tilt, which may

be different along the other faces. The presence of wide peaks at ∼2.5 eV, ∼2.9 eV,

∼3.1 eV and ∼3.6 eV are revealed at selected area EEL spectra taken from different

parts of the 0o tilted core-shell nanocube. The dominant plasmon peak of the upper

left corner, which is closer to the alloyed part, is located at lower energy of ∼2.5 eV, in

contrary to the dominant plasmon peak of the lower left corner located at ∼3.1 eV. The

EEL spectrum from the center of the solid nanocube (in turquoise) revealed the presence

of bulk plasmon resonance of Ag at ∼3.8 eV. The selected area EEL spectra from the

different parts of the hollow nanoframe revealed the presence of plasmon peaks with sim-

ilar energies of 1.8±0.1 eV all around the nanoframe. Such a homogeneous distribution

of plasmon resonances in hollow nanostructures is consistent with the above presented

results. The selected area EEL spectra taken from location with the shortest gap be-

tween nanostructures (indicated with orange in 0o tilted STEM micrograph) contains

two major peaks located at ∼1.8 eV, mostly related to the nanoframe, and at ∼2.5 eV,

mostly related to the core-shell nanocube. The selected area EEL spectra obtained from

the different parts of +40o tilted core-shell nanocube revealed the presence of different

peaks located at ∼2.4 eV, ∼2.7 eV and ∼3.1 eV. These plasmon modes are probably

present at the local EEL spectra taken from the 0o tilted nanocube but they are not

as visible as +40o tilted case amongst the wide plasmon peaks obtained at 0o tilt. The

same is valid for the selected area EEL spectra obtained from the -40o tilted nanocube

which reveal the presence of relatively sharp peaks at ∼2.5 eV and ∼3.1 eV. Proximal

and distal modes can be associated with the energy of the plasmon peaks obtained from

different corners of the -40o tilted nanocube where the area in blue is in contact with

the substrate and the area in orange is not. The plasmon peaks obtained from different

tilts of the nanoframe are located at the same energies (∼1.8 eV).
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5.6.2 Processing of 3D plasmonic properties

Figure 5.36: Series of HAADF STEM micrographs of the Ag@Au core-shell nanocube
and AuAg nanoframe obtained simultaneously with the EELS SI at different tilt angles

between +64o and -52o with different intervals.

Fig. 5.36 shows the HAADF STEM micrographs of the Ag@Au core-shell nanocube

and AuAg nanoframe standing with a ∼14 nm gap obtained simultaneously with the

EELS SI at different tilt angles between +64o and -52o with different intervals. We could

obtain EELS maps for the 20 tilt angles +64o and -52o, where the tilt interval decreased

with increasing tilt angle, i.e. 10o up to ±30o, 5o between 30o and 40o and 4o for tilt

angles higher than ±40o, as shown in this figure. The tilt axis was, more or less, parallel

to the alignment of the two nanostructures. These STEM micrographs clearly reveals

the inhomogeneously alloyed Ag@Au core-shell nanocube and voids among the faces of

the AuAg nanoframe.

We have obtained 7 different components from the EELS SIs of the Ag@Au core-shell

nanocube and AuAg nanoframe standing next to one another by VCA. Spectra of these

7 components and their corresponding abundance maps for selected tilt angles of +64,

+52, +40, +20, 0, -20, -40 and -52 degrees are presented in Fig. 5.37. We also present the

components and their corresponding abundance maps for all 20 tilt angles as separate

figures in the following. Figures 5.38, 5.39, 5.40, 5.41, 5.42, 5.43 and 5.44 show the

spectra and abundance maps for all tilt angles for the components I, II, III, IV, V, VI

and VII, respectively.
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Figure 5.37: Spectra of 7 different components of the Ag@Au core-shell nanocube
and AuAg nanoframe, obtained by VCA and their corresponding abundance maps for
different tilts. Intensity of the abundance maps are normalized within each component.

As presented above, the plasmon resonances generated by the AuAg nanoframe have

lower energies than those of the Ag@Au core-shell nanocube. Components I and II are

located at ∼1.75 eV and ∼1.9 eV, respectively. Their abundance maps reveal that these

two plasmon modes are typical LSPR modes of the hollow nanoframes being present all

around the nanostructure. It should be noted that they are highly intense at some local

points such as the component I has higher intensities at the upper right corner of the

AuAg nanoframe, whereas the component II has higher intensities at the upper part in

general as well as the void of the nanoframe. Both of the components are related to

the plasmon resonances from the inner and outer parts of the nanoframe indicating the

interaction between inner and outer plasmon modes of the hollow nanostructures. These

two components and their distribution along the nanoframe are qualitatively similar to

the plasmon modes observed for the above presented individual AuAg nanoframe (Fig.

5.22).

The component III is relatively wide peak located at ∼2.3 eV. Its abundance maps show

that it is generated by the alloyed upper part of the core-shell nanocube along with the

lower right corner of the hollow nanoframe. The plasmon resonances of the nanocube

and nanoframe for this mode seem to be interacting with each other. Similar to the

component III, component IV (located at ∼2.6 eV) is mostly related to the upper part

of the core-shell nanocube with fewer contributions from the nanoframe. Abundance

maps of the components V and VI reveal that these two components are two different

corner plasmon modes of the core-shell nanocube, which are located at ∼2.85 eV and
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∼3.15 eV, respectively. Some really weak contributions from possibly Ag-rich parts of

the nanoframe are observed at the abundance modes of different tilt angles for both

components. The final component obtained by VCA for the Ag@Au nanocube and

AuAg nanoframe couple standing with a ∼14 nm separation is located at ∼3.55 eV and

its abundance maps reveal that this mode is the face plasmon mode of the nanocube.

Interestingly, it is substantially generated by the nanoframe as well especially from the

lower part of the nanoframe. It may suggest the presence of Ag-rich segregation around

this part which shall be revealed more clearly after the tomographic reconstructions.

Figure 5.38: A. Spectrum of the component I in Fig. 5.37 and its corresponding
abundance maps for all tilt angles are shown in B.
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Figure 5.39: A. Spectrum of the component II in Fig. 5.37 and its corresponding
abundance maps for all tilt angles are shown in B.

Figure 5.40: A. Spectrum of the component III in Fig. 5.37 and its corresponding
abundance maps for all tilt angles are shown in B.
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Figure 5.41: A. Spectrum of the component IV in Fig. 5.37 and its corresponding
abundance maps for all tilt angles are shown in B.

Figure 5.42: A. Spectrum of the component V in Fig. 5.37 and its corresponding
abundance maps for all tilt angles are shown in B.
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Figure 5.43: A. Spectrum of the component VI in Fig. 5.37 and its corresponding
abundance maps for all tilt angles are shown in B.

Figure 5.44: A. Spectrum of the component VII in Fig. 5.37 and its corresponding
abundance maps for all tilt angles are shown in B.



Plasmonic Properties in 3D 213

5.7 Summary and conclusions

In this chapter, we have shown the three dimensional localized surface plasmon reso-

nance properties of several complex cuboid AuAg nanostructures: solid Ag@Au core-

shell nanocube, partially hollow AgAu nanocube and AuAg nanoframe. Moreover, we

have shown the 3D LSPR properties of two nanostructures standing next to one another

in order to reveal the couplings of plasmon resonances in 3D, where we have investigated

two Ag@Au core-shell nanocubes with sizes standing with ∼22 nm separation and an

Ag@Au core-shell nanocube and an AuAg nanoframe standing with ∼14 nm separation.

In Chapter 3 we initially studied the plasmonic properties of complex, cuboid AuAg hol-

low nanostructures synthesized by galvanic replacement reaction by using EELS mapping

along 2D projections. It was then concluded that the local chemical and morphological

differences affect the local plasmonic properties dramatically. By the nature of their

synthesis process, the AuAg cuboid nanostructures are not perfectly symmetrical in

morphology, as well as they may be chemically inhomogeneous. Therefore, one needs

to know the 3D morphology of these chemically synthesized hollow nanostructures in

order to have a complete understanding on their LSPR properties. During the previous

chapters, we have studied the possible effects of chemical and morphological differences

on the LSPR properties of cuboid and 1D hollow AuAg nanostructures. By doing so, we

have gained valuable information about the plasmonic properties of different stages of

galvanic replacement reaction from Ag nanocubes to AuAg nanoboxes/nanoframe and

the influences of the local morphological differences. Moreover, we have optimized the

processing routine of the EELS datasets. We have shown that the components generated

by vertex component analysis have good fits with the BEM simulations, after comparing

the Gaussian fitting, blind source separation and vertex component analysis during the

processing of the EELS data obtained on the hollow nanobox/nanoframe and nanotube

structures.

With all these previous information, we have conducted angle resolved EELS exper-

iments for several cuboid AuAg nanostructures corresponding to the early stages of

the galvanic replacement reaction. As mentioned above, we have choosen three differ-

ent nanostructures of a nm solid Ag@Au core-shell nanocube, a partially hollow AgAu

nanocube and an AuAg nanoframe, where we have conducted low-loss EELS maps with

high tilt angles (∼ ±60o) in order to reveal the progressing galvanic replacement reaction

on the morphology, thus, the LSPR properties of AuAg nanostructures. In addition to

the 3D plasmonic properties of individual nanostructures, we have shown the 3D plas-

monic properties of two Ag@Au core-shell nanocubes with sizes standing with ∼22 nm

separation and an Ag@Au core-shell nanocube and an AuAg nanoframe standing with

∼14 nm separation. The samples are deposited on 18 nm thick SiO2 grids which has a 0.5
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mm x 0.5 mm single window, allowing us to tilt ±60o. The EELS SI maps are obtained

by using a monochromated STEM operated at 80 kV with typical energy resolutions

around 120 meV and spatial resolution between 1.2 and 2.0 nm. Due to high number

of tilt series and, more importanty, e-beam induced transformation of the nanostructure

morphologies after long aquisition times, we had to optimize the acquisition times to

about 5 min per EELS maps. The signal-to-noise ratios of the obtained EELS data are

somewhat lower than those presented in previous chapters for 2D experiments, yet they

contain the necessary information to generate components related to different LSPR

modes for each tilt angle. We have used spectral unmixing with VCA to process the

EELS data, where we have identified individual components from different tilt angles

and used the obtained spectra of the components to generate corresponding abundance

maps. We have only presented plasmon maps of each component for every tilt angle, yet,

tomography reconstructions of all datasets and relevant modelling studies are in progress

and will be completed in the near future, due to the complexity of the processing routines

and time limitations for my PhD studies.

After obtaining 3D plasmonic maps of different AuAg nanostructures, the following

general conclusions can be drawn:

1- The presence of different proximal and distal plasmon modes and their distribution in

3D are shown for Ag@Au core-shell nanocubes and partially hollow AgAu nanocubes.

2- 3D HAADF STEM micrographs of the partially hollow AgAu nanocube revealed that

the galvanic replacement can take place randomly in certain parts of the nanocube. 2D

projection of the partially hollow AgAu nanocube at 0 degree tilt suggested a central

part being hollow, which turned out to be a cylindrical void along two neighbor faces of

the nanocube after 3D tilt series.

3- Such a confined void generated lower energy plasmon resonances only around the

hollow part due to plasmon hybridization, whose relative intensities are strictly defined

by the alignment of the hollow part with respect to the e-beam projection.

4- Homogeneous distribution of plasmon resonances in AuAg nanoframe are revealed

in 3D. Along with the above mentioned partially hollow AgAu nanocube, these are the

first examples of 3D plasmonic properties on hollow nanostructures.

5- The presence of bonding and anti-bonding coupling modes between two Ag@Au core-

shell nanocubes standing with ∼22 nm separation is shown in 3D. Moreover, 3D plas-

monic properties of an Ag@Au core-shell nanocube and an AuAg nanoframe standing

with ∼14 nm separation revealed the presence of interacting plasmon resonances. To

the best of our knowledge, there is no reported literature about the plasmon coupling

in 3D, and first examples are shown here in the present thesis manuscript.
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This work presents a comprehensive investigation about the plasmonic properties of hol-

low AuAg nanostructures at the nanoscale by using electron energy-loss spectroscopy in

monochromated STEM. We have tuned the plasmonic properties of metallic nanostruc-

tures by engineering their morphologies from solid Ag nanocubes to hollow multi-walled

AuAg nanoboxes, or from Ag nanowires to novel AuAg nanotubes. The main purpose

of this thesis, thus, was the correlation of the effects of local morphological and chemical

variations on the plasmonic properties hollow metal nanostructures. Here, we present

the general conclusions obtained during this study. Moreover, we indicate some future

works on the topic, some of which are already on-going and some will be possible after

certain developments.

General Conclusions

In Chapter 3, we have shown the localized surface plasmon resonance properties of

several complex metal nanostructures: Ag nanocube, Ag@Au core-shell nanocube, pin-

holed AuAg nanobox, single-walled AuAg nanobox, AuAg nanoframe and double-walled

AuAg nanobox. We have compared the results obtained by three different data process-

ing techniques: Gaussian fitting, independent component analysis by using blind source

separation algorithm and spectral unmixing via vertex component analysis. We have

used BEM simulations in order to be able to better elucidate our experimental results as

well as for a further discussion about the shape and environmental effects. As a proof-of-

concept experiment for the enhanced plasmonic properties in the hollow nanostructures,

we have conducted a sensing experiment where we have compared the response of highly

sensitive spherical Au nanoparticles and single-walled AuAg nanoboxes to conjugation

events with Bovine Serum Albumin (BSA) and its antibodies (anti-BSA, Ab). We have

discussed the sensitivity of different Au nanostructures for the results obtained by BEM

simulations, taking the universal merit of sensitivity factor into account. Thanks to the

detailed experimental and computational studies presented in this chapter, we could

draw the following conclusions:

• The LSPR peaks of the Ag nanocube shifted to lower energies with the Au alloying

and/or increasing of void size due to both compositional and morphological effects.

It was concluded that morphological changes are more dominant than the chemical

modifications while determining the plasmonic properties of the nanostructures.

• The corner rounding in the experimentally investigated Ag nanocube resulted the

merging of corner and edge modes and the extend of its influence was discussed

throughly by using BEM simulations.
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• Galvanic replacement reaction took place unevenly during the inital stage of the

reaction, i.e. for the case of Ag@Au core-shell nanocubes and pinholed AuAg

nanoboxes, which resulted in the local modifications of plasmonic properties.

• Rather homogeneous distribution of plasmon resonances for the single- and double-

walled AuAg nanoboxes and AuAg nanoframe was observed experimentally and

supported by BEM simulations for the single-walled nanobox and nanoframe.

• Interaction of inner and outer plasmon resonances in such hollow nanostructures

was revealed experimentally for the first time, which was more obvious for the case

of nanoframe.

• Almost perfect correlation between the experimental findings and BEM simulations

was obtained for the single-walled nanobox and nanoframe.

• Among the three different processing routines, VCA provided more reliable plas-

monic components.

• Single-walled AuAg nanoboxes showed 5 fold more sensitivity than the solid Au

nanoparticles against conjugation events with BSA and its antibodies.

In Chapter 4, we have presented the plasmonic properties of hollow 1D nanostructures,

namely a completely hollow AuAg nanotube and a hybrid (a sequence formation of

solid Ag core with AuAg shell and hollow AuAg parts) AuAg nanotubes, respectively.

The completely hollow AuAg nanotube had a length of 655 nm and a diameter of 84

nm with 10 nm thick walls, whereas the hybrid AuAg nanotube was 1.24 µm long

and had a diameter of 89 nm. Presence of different Fabry-Perot type resonator modes

and LSPR modes were revealed experimentally by using Gaussian fitting and VCA

routines. BEM simulations on the 1D Ag nanostructures are conducted in order to

investigate the plasmonic properties of solid and hollow 1D nanostructures and the effects

of the substrate on the plasmonic properties of hollow 1D nanostructures. Finally, we

have simulated an AuAg nanotube composed of 60 at.% Au and 40 at.% Ag with the

same sizes as the experimentally investigated hollow AuAg nanotube. On the basis of

experimental and computational results obtained in this chapter, following conlusions

can be drawn:

• Presence of different Fabry-Perot type resonator modes along with LSPR modes

was revealed by both Gaussian fitting and VCA routines. VCA indicated the

presence of Fabry-Perot modes up to fourth order, where the first order mode was

located at 0.5 eV.
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• It was revealed that both Fabry-Perot and LSPR modes were present intensely

inside the hollow nanotube.

• It is worth noting that the presence of a dark plasmonic breathing-like mode lo-

cated at ∼0.3 eV has been observed during the simulations of Ag nanowire standing

in vacuum as well as some signatures suggesting its presence in the simulated AuAg

nanotubes standing on the substrate.

• An accurate fit between the results obtained by VCA and BEM simulations was

obtained.

• Hybrid AuAg nanotube revealed the presence of Fabry-Perot modes up to fourth

order and LSPR modes distinctive to the hollow AuAg parts and solid Ag parts,

including the bulk plasmon resonance of Ag.

• The presence of first order Fabry-Perot located at ∼0.44 eV was revealed thanks

to VCA, which could not be observed by Gaussian fitting as the background sub-

traction at this energy range was not possible.

In Chapter 5, we have shown the 3D LSPR properties of several complex cuboid AuAg

nanostructures: solid Ag@Au core-shell nanocube, partially hollow AgAu nanocube and

AuAg nanoframe. Moreover, we have shown the 3D LSPR properties of two nanostruc-

tures standing next to one another in order to reveal the couplings of plasmon resonances

in 3D, where we have investigated two Ag@Au core-shell nanocubes with sizes standing

with ∼22 nm separation and an Ag@Au core-shell nanocube and an AuAg nanoframe

standing with ∼14 nm separation. The need for 3D characterization of plasmonic prop-

erties became clear in the previous chapters as the cuboid AuAg nanostructures were

not perfectly symmetrical in morphology, as well as they had chemical inhomogeneities.

Therefore, we have mapped the plasmonic properties at different tilt angles of ∼ ±60o

and on the basis of angle-resolved EELS maps revealing the 3D plasmonic properties of

different AuAg nanostructures, the following general conclusions can be drawn:

• It was revealed that the hollow part could be randomly distributed in certain parts

of the nanostructures. For instance, 2D projection of the partially hollow AgAu

nanocube at 0 degree tilt suggested a central part being hollow, which turned out

to be a cylindrical void along two neighbor faces of the nanocube after 3D tilt

series. The plasmon resonances generated by this void were confined around the

void and located at lower energies compared to those generated by solid parts.

• The presence of different proximal and distal plasmon modes and their distribution

in 3D were shown for Ag@Au core-shell nanocubes and partially hollow AgAu

nanocubes.
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• Homogeneous distribution of plasmon resonances in AuAg nanoframe were re-

vealed in 3D.

• The presence of bonding and anti-bonding coupling modes between two Ag@Au

core-shell nanocubes standing with ∼22 nm separation was shown in 3D. More-

over, 3D plasmonic properties of an Ag@Au core-shell nanocube and an AuAg

nanoframe standing with ∼14 nm separation revealed the presence of interacting

plasmon resonances.

Future Work

As mentioned throughout the manuscript, some aspects of this study requires future

works. Moreover, we anticipate several future directions on the basis of the conclusions

obtained during this study. Here we present them in the order that they are suggested

through the manuscript.

• Developments in the synthesis process are needed in order to produce AuAg

nanoframes and multi-walled AuAg nanoboxes with high abundancies, as these

particular nanostructures are thought to have highly enhanced sensing properties

on the basis of their LSPR properties obtained by EELS, results also supported

by the BEM simulations.

• Similarly, if the sequence of the solid and hollow parts in the hybrid AuAg nan-

otubes would be controlled with improved synthesis routines, these novel nanos-

tructures would have many different applications as they hold the key to manipu-

late light over a wide range of energy, spanning over the infrared to UV regions.

• Simulations of the hybrid AuAg nanotubes are needed in order to have a better

understanding about the interaction between solid and hollow parts. As these

nanostructures are typically have lengths of several microns, their computation

requires long processing times and high memories. We are on the process of ob-

taining first simulation results but a systematical study would require some more

time.

• The tomographic reconstructions are needed for each component in order to reveal

the 3D plasmonic properties clearly. These studies are already on-going but as they

need careful processing, they will be fully obtained in the near future.

• We have reported the coupling between randomly located nanostructures. If we

could be able to control the assembly of the hollow nanostructures, the geometries

that would result in highly enhanced plasmonic properties could be engineered.

We are planning to apply polymer-assisted self assembly processes to control the
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assembly of the hollow nanoboxes presented in this study. Furthermore, if they

are done directly on the TEM grids, we could obtain EELS analyses both in 2D

and 3D on these coupled nanoboxes. As a result of the characterization of the

plasmonic resonances with different coupling geometries, these nanostructures can

be engineered specifically for desired applications.

• It is possible to create multifunctional plasmonic nanostructures by locating dif-

ferent nanostructures into hollow nanoboxes. We plan to extend our studies into

the direction of multifunctionality. For instance, it would be possible to have

magnetic resonance imaging and cancer therapy with the same magnetoplasmonic

nanostructures.
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[267] Anton Hörl, Andreas Trügler, and Ulrich Hohenester. Tomography of particle

plasmon fields from electron energy loss spectroscopy. Physical Review Letters,

111(August):1–5, 2013. ISSN 00319007. doi: 10.1103/PhysRevLett.111.076801.

[268] F. de la Peña, P. Burdet, M. Sarahan, M. Nord, T. Ostasevicius, J. Taillon, A. El-

jarrat, S. Mazzucco, V. T. Fauske, G. Donval, L. F. Zagonel, I. Iyengar, and

M. Walls. Hyperspy 0.8, April 2015.

[269] P. Trebbia and N. Bonnet. EELS elemental mapping with unconventional meth-

ods I . Theoretical basis: image analysis with multivariate statistics and entropy

concepts. Ultramicroscopy, 34:165–178, 1990.

[270] M Bosman, M Watanabe, D T L Alexander, and V J Keast. Mapping chemical and

bonding information using multivariate analysis of electron energy-loss spectrum

images. Ultramicroscopy, 106:1024–1032, 2006. ISSN 03043991. doi: 10.1016/j.

ultramic.2006.04.016.
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