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Abstract

To gain competitive advantage in the global market, manufacturers have to quickly adapt their
systems to respond to fluctuating customer demands under high-quality service factors. The high
capital investment in flexible manufacturing systems (FMSs) together with the challenges of the
rapidly changing market conditions has made efficient resource utilization become essential. To
maximize the benefits of an FMS, appropriate scheduling techniques must be put in place to
fully exploit the manufacturing flexibilities. The overall objective of this thesis is to establish
a scheduling framework based on timed colored Petri net (TCPN) modeling for optimizing the
performance of FMSs through the development of tools and efficient search methods based on
the reachability graph (or state space) analysis. Reachability graph analysis is a powerful tool
that can be used to automate the decision-making activity in scheduling problems by tracking all
the possible behaviors of the modeled system. However, it suffers from the state space explosion
problem due to the computational complexity of production scheduling problems in FMSs. This
has limited its applicability to small-sized problems.

In the proposed TCPN-based scheduling methodology, the generation of an optimal production
schedule involves the construction and traversal of the state space with a search algorithm. Also,
a simulator is required for executing the TCPN model. It is quite natural to use graph search
algorithms since the underlying analysis method relies on the reachability graph. Graph search
strategy is an interdisciplinary technique that spans across the fields of Artificial intelligence (AI),
Operations research (OR), and Computer science. This thesis focuses on AI-based heuristic search
methods used in simulating only the best scenarios (as a shortest-path search problem). In this
method, the exploration of reachability graphs are guided with heuristic functions that rely on the
knowledge of the production plans.

The contribution of this thesis is fourfold. The first provides the platform in which the other
three contributions are implemented: an automated decision support and special purpose tool
called TIMed State space Performance Analysis Tool (TIMSPAT). Because of the complex data
structure, TCPN-based scheduling using reachability graph analysis has been merely looked at
in the literature. The use of TCPN for scheduling purposes has often been limited to simulation
only. Thanks to the common data structure of the heuristic search methods, TIMSPAT is capable of
incorporating different search algorithms in a single executable tool. So far, nine algorithms have
been implemented, which includes the search algorithms proposed in this thesis and those by other
authors.

Second, a memory-efficient approach is developed to alleviate the scalability problem that
appears in the state space exploration of FMS scheduling problems. It is aimed at reducing the
memory requirements of layered search algorithms that are compelled to store all the generated
states in memory to guarantee termination. The approach tackles the research questions: Is it
necessary to store all the generated states to guarantee an optimal solution without revisiting
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states? and how can we reduce the number of states to be stored so that larger problems can
be solved without forgoing optimality? It assumes that the state space graphs of a system with
increasing problem size may contain repetitive patterns while the underlying model structure
remains as constant as possible. These repetitive patterns transform into structural state space
equivalences determined by a new measure called layer detection scope. The challenge is to
determine whether or not the FMS behavior follows a regular repetitive pattern for any problem
size above a minimum problem size, regardless of a change in the problem size. The proposed
solution is based on the notion that the structural behavior captured in the state space of a solvable
smaller problem size can be extended to explore a larger size if the two problems share a certain
kind of similarity. The repetitive patterns in the graph structures are identified and leveraged
to optimize the scheduling problem for larger problem sizes which a priori cannot be solved by
closely-related existing approaches. Among the problems solved are the multiple lot size scheduling
problem with fixed layout configuration, and FMS problems of similar configurations where the
problem size differ by the number of jobs, resources and operations. The approach outperforms
previous works when repetitive FMS behavior influences scalability.

The third contribution presents two anytime heuristic search algorithms, developed to over-
come the drawbacks of conventional heuristic search algorithms. An anytime algorithm trades off
computation time and solution quality. It is capable of finding suboptimal solutions very quickly
and continuously improves the solution quality until the solution converges to the optimal solution.
This method has been proved successful in AI community. However, they are yet to be explored in
the PN research community. The first anytime algorithm adapts and improves an existing anytime
algorithm to TCPN-based scheduling, while the second proposes a new algorithm that combines
two heuristic search algorithms making them anytime for deadlock-free scheduling. The algorithms
are suitable for both off-line and on-line scheduling purposes due to their effectiveness in adapting
to different CPU constraints. Also, they can be used in a scheduling/rescheduling mode whenever
the system deviates from its original schedule or the system state changes due to disturbance or
machine failure.

The overall scheduling of an FMS can be so complex that it cannot be handled in an integrated
manner. Several scheduling approaches have treated scheduling problems in an independent man-
ner. The last contribution presents a TCPN-based approach to the simultaneous scheduling of
machines and automated guided vehicles (AGVs) with conflict-free routing. Unlike the existing
approaches that employ a decomposition framework, the entire scheduling problem is described
in a single model. Two simultaneous scheduling models are proposed and evaluated using an
event-driven vehicle assignment solution as opposed to the traditional dispatching rules.

Keywords: Timed colored Petri net · Reachability graph · Condensed state space · Scheduling
· Flexible manufacturing systems · Heuristic search · Optimization · Memory-efficient · Time-
efficient · Anytime heuristic search · Deadlock-free · Simultaneous scheduling · Automated
guided vehicles
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2 Chapter 1. Introduction

1.1 Manufacturing Systems: An Overview
The invention of the assembly line by Henry Ford in 1913 [3] marked the second industrial rev-
olution in the manufacturing sector for its reduced labor and increased rate of production over
the labor-intensive production system of interchangeable parts developed at the US Armories in
the 19th century. It enjoyed success during this period as motor vehicles (automobile) became
affordable for the low income earners and thus, expanding its outreach in the domestic market.
The transfer line is characterized by high volume production with dedicated equipment best suited
for mass production of identical products of a single product type.

As globalization sets in after the Second World War (1960s), market competition became
intense as a result of the changes in the buying behavior of customers in advanced economies. This
shifted the focus of the sector from a supplier-driven market to a customer-driven market. Product
cost was no longer the main concern [4] as manufacturers had to put up with the challenge of
rapidly changing market requirements and the delivery of custom-made products of high quality.
The frequent changes in the market trend greatly reduced the life cycle of products, with customers
craving for individualized products. This led to the production of smaller quantities of different
product types. The traditional manufacturing systems of highly specialized transfer lines were too
rigid and expensive to handle the production of varying product types.

To respond to these changes, flexibility and automation became critical to the survival of manu-
facturing companies in the fiercely competitive global market. Manufacturers have to quickly adapt
their systems to meet fluctuating customer demands under high quality service factors. Modern day
demands characterized by short product life cycle, high product variety and shorter delivery times,
brought about a transition from mass production to highly automated and flexible manufacturing
systems (FMSs) of mass customization (low to medium volume with product diversity).

Flexible manufacturing started off with the introduction of a numerically controlled (NC) ma-
chine center built in MIT in the 1950s. The center was originally intended to machine complex
operations, but due to its reprogrammable capability to process various operations like drilling,
milling, and boring, more NC machine centers were later developed and deployed for batch pro-
duction. These machine centers were further equipped in the 1960s by the provision of automatic
tool changers, and indexing work tables [3]. Soon after, control systems were integrated. This
led to the emergence of computer NC (CNC) that provided several automation benefits including
machine control programs, use of memory storage for part programs (a set of instructions that
describe how parts are to be produced on machines) and ability to communicate with a central
computer. The evolution took a step further when computer controlled (automated) material flow
was built into the system with automated material handling, transport and storage systems like
robots, automated guided vehicles (AGVs), and automated storage and retrieval systems.

The first fully automated FMS was pioneered in England in the 1960s, invented by Theodore
Williams at Molins, Deptford, London. The system named "System 24" was installed to manufacture
relatively complex alloy components for tooling in the tobacco industry [3]. Its name was coined
from the fact that it can operate without human intervention for 24 hours under computer control.
It comprises a group of CNC machines and an automated material handling system, together
with a centralized computer control coordinates the flow of jobs between the machines. With the
advancement in technology, FMS started gaining recognition worldwide in the 1980s and it has
become a mainstream in the industry since then.

With the growing use of smart devices and social network, a fourth industrial revolution called
Industry 4.0 had already begun. It is an initiative of the German high-tech strategy as part of
the strategic action plan 2020. As a manufacturing strategy, Industry 4.0 (also known as SMART
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factory) creates a collaborative cyber-physical system that allows parts, machines, humans, and
resources to communicate with each other as in a social network via sensors, mobile devices,
actuators, and internet of things [5]. The revolution is meant to shift the focus of productivity
from the shop-floor level [6, 7]. The parts and machines within the system will be considered
smart objects beyond the physical presence. Manufacturing will become highly flexible, and highly
customized and smart products will be manufactured. However, it is still not clear how production
management will be affected.

1.1.1 Flexible Manufacturing Systems

Maccarthy and Liu [8] defines an FMS as a production system capable of producing a variety of
part types simultaneously at low to medium volumes, which consists of CNC or NC machine tools
connected by an automated material handling system. It is operated under a centralized computer-
control system. From this definition, an FMS consists of three subsystems: 1. A machining or
processing subsystem: the group of CNC machines, 2. A material handling system (MHS): robots,
AGVs and conveyors responsible for part movement, and 3. A computer control system.

The cost involved in setting up an FMS is usually quite high, and not all companies can afford
to install a full-scale FMS. This is true for most small-to-medium manufacturing enterprises (SMEs)
like metal casting companies [9] where most of their production processes are labor intensive. [9]
asserts that SMEs find it difficult to implement an FMS due to severe resource constraints and
limited knowledge of automation methodologies. In these enterprises, the automated production
of the entire manufacturing plant may not be possible. Instead, they invest in smaller versions of
FMSs called cells [9, 10], to automate part of the manufacturing process rather than the whole
system.

Different classification schemes have been proposed by several authors to describe the different
types of FMSs based on their size, capacity, number of machines and layout arrangements, process
characteristics, the flow pattern of parts through the system, the physical flow, and the number of
part types [11–13]. In this thesis, we use the classification system given by Maccarthy and Liu [8].
Unlike the other classifications, they stress the importance of specific FMSs configuration taken
into account the operational and control characteristics. The scheme distinguishes the operation of
an FMS based on the number of machines and MHSs. Four types of FMSs are identified: 1. Single
flexible machine (SFM), 2. Flexible manufacturing cell (FMC), 3. Multi-machine FMS (MMFMS),
and 4. Multi-cell FMS (MCFMS). Some examples of these systems are given in Fig. 1.1. For
convenience, we recall the definitions of these FMS classes as presented in [8].

Definition 1.1 ([8]). An SFM is a computer-controlled production unit which consists of a single CNC
or NC machine with tool changing capability, a material handling device and a part storage buffer. The
material handling device in an SFM could be a robot or a special purpose pallet changing device. When
an SFM is used as a component of a larger system, the material handling device may be removed if its
function can be performed by the material handling devices of the larger system. Also, some SFMs may
not have individual buffer storage depending on the system configuration.

Definition 1.2 ([8]). An FMC is a type of FMS consisting of a group of SFMs sharing one common
material handling device.

Definition 1.3 ([8]). An MMFMS is a type of FMS which consists of a number of SFMs connected by
an automated MHS which includes two or more material handling devices or is otherwise capable of
visiting and serving two or more machines at a time.
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Fig. 1.1. Examples of different FMS configurations.

Definition 1.4 ([8]). An MCFMS is a type of FMS which consists of a number of FMCs, and possibly
a number of SFMs if necessary, all connected by an automated MHS.

1.1.2 Manufacturing Flexibility and FMS Problems

Several attempts have been made to define manufacturing flexibility [16–18]. However, no consen-
sus has been reached over a precise definition. For example, Gupta and Goyal [17] define flexibility
as "the ability of a manufacturing system to cope with changing circumstances or instability caused
by the environment", whereas, Upton [18] defines it from a comprehensive perspective as "the
ability to change or react with little penalty in time, effort, cost or performance". Notwithstand-
ing, most of the definitions given in the literature emphasizes on two aspects: the responsiveness
to changes or uncertainties, and the speed and ease at which the system respond. From a dif-
ferent viewpoint, Gerwin [16] emphasized that "a basic issue that must be resolved in defining
manufacturing flexibility is the level at which it is to be considered".

In a recent research survey on manufacturing flexibility [19], the authors reveal that the def-
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initions, types, and dimensions of manufacturing flexibility have been defined in the late 1980s
and the early 1990s. These definitions have been adopted and are still being used in the manu-
facturing domain (context) up to date. Seebacher and Winkler [19] produced a statistical review
using citation analysis, that the most widely accepted and significant definition of flexibility in the
literature can be traced to the work of Sethi and Sethi [20], followed by Gerwin [21] and Upton
[18]. Other works that have similar impact in the early and late 1980s are Browne et al. [11], and
Gerwin [16], Gupta and Goyal [17] respectively.

According to Sethi and Sethi [20], manufacturing flexibility is defined as the ability to reconfig-
ure manufacturing resources so as to produce effectively different products of acceptable quality.
Since the early works on manufacturing flexibility, different taxonomies have been used to classify
the various types of flexibility. Browne et al. [11] provide the first eight categories of flexibility
types that are then expanded to eleven by [20] classified into 3 categories that offers a strategic and
operational dimension rather than an independent variable [22]. The definitions of the flexibility
types are given as follows [20]:

1. Basic flexibilities

• Machine flexibility: a measure of the ease with which the machine can process various
operations.

• Material handling flexibility: a measure of the ease with which different part types can be
transported efficiently for proper positioning and processing within the manufacturing
facility.

• Operation flexibility: a measure of the ease with which alternative operation sequences
can be used for processing a part type.

2. System flexibilities

• Volume flexibility: a measure of the system’s capability to be operated profitably at
different volumes of existing part types.

• Expansion flexibility: the ease with which the system’s capacity and capability can be
increased when needed.

• Routing flexibility: the ability to produce a part by alternate routes through the system.

• Process flexibility: the set of part types that the system can produce without major
setups.

• Product flexibility: the ease with which new parts can be added or substituted for existing
parts.

3. Aggregate flexibilities

• Program flexibility: ability of a system to run for reasonably long periods without exter-
nal intervention.

• Production flexibility: variety of part type that a system can produce without major
investment in capital equipment.

• Market flexibility: the ease with which the system can adapt to a changing market
environment.
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While the flexibility provided by FMSs gives a significant cutting-edge advantage [23], it does
not automatically translate to benefits in the design and operation of FMS. Rather, it poses a
challenging problem to the decision making process. Thus, it becomes necessary to address the
major problems associated with the use of FMS. According to Stecke [24], there are three issues
that must be dealt with at the decision support level: 1. Design problems, 2. Planning problems,
and 3. Scheduling and control problems. These problems correspond to the three hierarchical
levels of decision making (strategic, tactical and operational) with respect to the problem type and
length of decision time involved.

Design problems involves the specification of the manufacturing requirements that includes the
determination of the part types to be produced within the FMS (the determination of what part
types to be processed and how they will be produced (process plan for each part type) within the
FMS), the type of FMS and flexibilities required, type and capacity of the MHS, buffer design and
the computer control architecture. These are long-term decisions that are made at the strategic
level. Given the design decisions, Stecke [24] refers to FMS planning problems as decisions that
have to be made before the start of production, typically at the medium-term (or at the tactical
level). They address resource allocation problems like part type selection, machine grouping and
loading problems [25].

FMS scheduling problems involves the assignment and sequencing of jobs on machines and the
determination of the start and completion times of each job operation, while FMS control problems
deal with continuous monitoring of the system and ensuring that production requirements are met
and taking appropriate actions in the event of a failure or disturbance such as machine failure,
preventive maintenance, arrival of new parts etc. This thesis focuses on FMS scheduling problems
and the development of methods and algorithms through a quantitative approach. The high capital
investment in FMS together with the challenges of the rapidly changing market conditions has
made efficient resource utilization become essential. Appropriate scheduling techniques must be
put in place to maximize the FMS benefits so as to fully exploit the manufacturing flexibilities. The
thesis covers the flexibilities that are relevant to FMS scheduling problems, basic flexibilities and
the routing and volume of system flexibilities.

1.2 FMS Scheduling
Scheduling is a decision making process that plays a vital role in improving the performance of an
FMS. A challenging problem inherent to production scheduling is how to maximize the utilization
of resources to perform a collection of tasks (jobs) while optimizing a certain performance measure
in response to changing customers’ demands and tight production requirements in an FMS context.
The objective is to determine the optimal schedule based on a selected criterion (makespan, mean
flow time, total tardiness etc) such that all technological precedence constraints are met, and
production costs are minimized so as to maximize customer satisfaction under high quality factors.
FMS scheduling problems are known to be very complex even for simple performance objectives
and have been proved to be NP-hard since the computation time to obtain an optimal schedule
grows exponentially with the problem size [26–28].

Let us recall some of the basic definitions related to FMS scheduling given by [29]:

• Machine operation: the processing over a continuous time period of a part on a machine

• Transport operation: the movement of parts from one machine to another in an FMS.
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• Job: a collection of all the operations needed to complete the processing of a part. A job may
contain a single part called single lot or a number of parts called multiple lot. A job or part
may be used interchangeably in case of a single lot.

• Dispatching: the process or decision of determining the next operation for a resource when
the resource becomes free, and determining the next destination of a part when the current
operation has finished.

• Sequencing: the decision determining the order in which operations are performed on ma-
chines.

• Machine set up: the process or decision of reassigning tools on a machine in order to perform
the next operation(s), from its initial state or working state arising from a previous operation.

• Part routing: the process of determining the machines in which each operation for a part is
to be performed, i.e. determining the route or sequence of machines for each part passing
through the system.

Scheduling can be performed either off-line or on-line [30]. The off-line approach (also called
static scheduling) schedule all operations for the entire planning horizon in which all parts are
assumed to be available before the start of activities. On the other hand, the on-line approach
(sometimes referred to as dynamic scheduling [30]) attempts during execution or at real-time to
schedule operations one at a time (or dynamically) as the system status changes or the scheduling
decision is needed. In off-line scheduling, a complete schedule of all operations is required based
on the complete knowledge of the system activities, whereas in on-line, the decision depends on
if one operation needs to be scheduled (a partial schedule or dispatching) or a complete schedule
needs to be produced (a revision or repair of the original schedule) called rescheduling. While the
time to solve off-line scheduling is not critical, on-line scheduling is time-constrained such that a
limited amount of computation time is given to produce a solution.

A wide range of scheduling problems has been developed. Liu and MacCarthy [29] give a
comprehensive framework for FMS scheduling problems classification that takes into account all
the significant factors which affects scheduling decisions. Five factors are used to characterize FMS
scheduling problems based on system type, capacity constraints, job characteristics, production
management environment, and performance measures. Independently of the FMS configuration
(Fig. 1.1), there are two subsystems that must be taken into account during the scheduling process:
1. the machining system, and 2. the MHS. However, it is common to treat the subsystems as two
independent problems to reduce the scheduling complexity.

In the literature, most works assume that machine is the only resource constraint in the system,
called machine scheduling (MS). MS involves the processing of a set of n jobs J = {J1, J2, . . . , Jn}
on a set of m machines M = {M1,M2, . . . ,Mm}. This is the method adopted for conventional
production systems like the job shop [28]. In a typical job shop scheduling problem, transportation
times are not taken into account, and MHSs are assumed to be always available whenever they
are needed. Likewise, MHS scheduling (for AGVs) has been treated as an independent problem
[31]. This creates a gap between the machining and transport systems. However, robots as MHSs
with a different behavior to that of the AGV have been included with some machine scheduling
problems. This is quite applicable in some FMS types like SFMs and FMCs where robots are used
for part transfers. The importance of MHS cannot be ignored in the scheduling process. In [9], the
automation of material handling has been shown to increase productivity and reduce labor costs
especially in small firms with high labor-intensive production processes. They affirm that "65% of
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the total production time is spent in manual handling of the material by human operators". As such,
the scheduling of machines and MHS must be handled simultaneously to achieve an overall system
performance. FMS scheduling problems are different from the traditional job shop problems [13]
due to the consideration of machine and routing flexibility, limited buffer capacity, transportation
capacity and time, and reduction of set-up times.

Besides the machines and MHSs, buffer capacity is another constraint that must be considered
in FMS scheduling. Most FMS have limitations on the amount of work-in-process that can be held
in the system [13]. This may lead to blocking, resource starving, and deadlock. The buffer capacity
can vary depending on the system. When a zero-capacity buffer is considered, processed parts have
to wait on the machine until the material handling device becomes available to transfer it for the
next operation and/or the machine to be used for the next operation is free. These systems are
commonly referred to as manufacturing systems with blocking [32]. The problems found under
the buffer limitations and MHS constraints are usually denoted as deadlock-free scheduling [14].

Under the production management environment, scheduling decisions may involve processing
a single lot size for each part type (single lot size scheduling) or several number of parts for each
type (multiple lot size scheduling). In the multiple lot size scheduling, two possibilities exist. The
products can be manufactured in a repetitive manner periodically (called cyclic scheduling) or
in a non-cyclic manner [33]. From the findings of [33], non-cyclic scheduling is useful for small
demand, whereas cyclic scheduling is better for medium-to-large demand when both methods
are placed under the same conditions. Cyclic scheduling approaches are viable for high volume
production environments with constant demand where the lot size of each part type is relatively
large. There have been several arguments supporting the use of non-cyclic scheduling in an FMS
environment [34–37]. This is due to the fact that the lot size of part types may be smaller [38],
the part set may change frequently [39], parts may have different arrival rates, or the same cycle
cannot be repeated for different operations in cluster tools used for semiconductor manufacturing
[36]. Also, cyclic scheduling approaches are known to reduce the scheduling complexity of multiple
lot size scheduling problems [40] since only the smallest set of the part types to be produced is
considered in a cycle.

FMS scheduling has been well studied in the past few decades, and several solution methods
have been proposed. As indicated by Lee and DiCesare [41], "a complete and general scheduling
method must be able to formulate explicitly and concisely a scheduling problem and provide
an efficient and general technique to solve the formulated problem". According to Balogun and
Popplewell [42], there are six solution approaches to FMS scheduling problem: 1. Combinatorial
optimization, 2. Artificial intelligence, 3. Simulation-based scheduling with dispatching rules, 4.
Heuristics-oriented, 5. Multi-criteria decision making, and 6. Hybrid solution methods.

These scheduling approaches are known to provide effective solutions, but some like optimiza-
tion methods from the OR domain require fitting FMS description in particular mathematical
structures which sometimes introduce an oversimplification of the real dynamics. In modeling an
FMS scheduling problem, mathematical programming approaches have limited applicability since it
is quite difficult to mathematically describe practical constraints of FMS related to MHSs, resource-
sharing situations, deadlocks, buffer sizes, routing flexibility, multiple lot sizes, and stochastic times
[27].
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1.2.1 Petri Nets

To provide a realistic and dynamic evaluation of the interdependencies between the subsystem
components, FMS is formalized from a holistic modeling approach in which the system dynamics
can be described by events. In such an approach, each operation is characterized by a certain
number of preconditions, an estimated duration and a set of postconditions.

As a powerful graphical and mathematical modeling tool, Petri nets (PNs) support these dy-
namics and have been extensively used to model, simulate and analyze FMS characterized as
discrete event systems where there is a high level of concurrency, parallelism, causal dependency,
shared resources and synchronization [43]. PN has its origin in Carl Adam Petri’s PhD dissertation
on "Communication with automata" in 1962. Since its inception, PN has gained recognition in
the research community to address several manufacturing problems including its application in a
number of different disciplines like communications, robotics, engineering, business and air traffic
management. Murata [44], Silva and Valette [45], Silva [46] provide a detailed overview of the
applications of PN in flexible manufacturing.

A PN is a directed bipartite graph with two node types called places and transitions where
the nodes are connected via directed arcs. A place can contain tokens and is used to describe
resources in the system, a transition describes the event (the start or completion), and an arc is
used to model the flow of tokens from places to transitions and from transitions to places. In an
FMS description, a place can represent a resource or job status, a transition corresponds to an
FMS operation whether machining or transportation, while an arc models the flow of product.
Graphically, places, transitions and arcs are represented by circles, boxes, and arrows respectively.

PN modeling can be quite large and difficult to manage in terms of the size complexity when
the number of resources and parts increases. Here, a high level PN modeling called colored PN
(CPN) [47] is employed. CPN captures the high level abstraction of the system by enhancing the
modeling power of PN with the use and manipulation of data attributes (values) called colors. It
allows a concise representation of the system while maintaining the same modeling power of PN.
Furthermore, CPN benefits go beyond the use of colored tokens in reducing the graphical size of
the modeled system. For real industrial problems, there are several scheduling policies which rely
on key information such as the specification of machine properties depending on the processing
task, the due date of each product, the different penalties to meet the deadline for each customer
etc. Also, CPN models can easily adapt to changes in the manufacturing environment such that the
introduction of a new product, the addition or reduction of system resources and reconfigurations
would require only a minimum amount of effort for model maintenance. The untimed CPN provides
a qualitative approach to validating and verifying the system. However, it is usually not sufficient
to correctly model a scheduling problem for system performance improvement.

Time representation plays a key role in the decision making of scheduling problems. In addition
to its capability to describe the logical behavior and structure of discrete event systems in a concise
manner with colored tokens, the inclusion of the time concept in CPN called timed CPN (TCPN)
makes it possible to evaluate performance and investigate different scheduling strategies. With
TCPN, quantitative measures like delays, durations and deadlines can be explicitly described. Time
can be specified in the TCPN formalism as deterministic, interval (activity duration specified by an
upper and lower bound), or stochastic. In this thesis, only deterministic times are considered.

The consideration of deterministic times is simply based on the fact that the processing times
in FMS are often deterministic in nature since operations are computer-controlled [13]. However,
this does not mean that stochastic situations cannot be handled. Unlike the job shop where a direct
labor is required both during set up and machining operations [48], set ups between consecutive
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operations are automated and variations in processing times are quite minimal. In less predictable
environments where unplanned events such as machine breakdown and repairs, and dynamic
arrival of new parts, can occur, stochastic times are considered appropriate to handle such events.
Nonetheless, this is not the only approach to scheduling problems in such uncertain environments
[49–51]. Deterministic scheduling methods like scheduling/rescheduling can also be employed
whenever a disturbance occurs or the system deviates from its original schedule. Here, scheduling
is solved as a static problem each time the system requires a new schedule. The approach takes
into account the current state of the system (current shop-floor status) in an off-line scheduling
manner [50]. It reacts to stochastic events during execution when the system deviates from the
original schedule by revising the existing one and recomputing a new schedule. However, more
time may be needed for schedule recomputation.

1.2.2 PN-based Scheduling Methodology

PNs can be executed to simulate the system behavior. The simulation capabilities of PNs allows
the use of solution approaches in the operations research (OR), artificial intelligence (AI) and
simulation domains. Its combination with these methods provides an integrated approach to op-
timize FMS scheduling problems. The PN-based scheduling methodology consists of two parts:
1. Modeling the FMS scheduling problem using TPN/TCPN as a representation formalism, and
2. Solving the scheduling problem by combining the execution of the TPN/TCPN model with an
appropriate scheduling optimization technique. In this thesis, we use PN-based scheduling to cover
both TPN and TCPN, while TPN-based and TCPN-based are used separately to exclusively refer to
works using only the TPN and TCPN respectively. Although the focus is on FMS, the methodology
can be applied to different classes of scheduling problems.

PN-based scheduling emerged from the works of Hillion et al. [52], Hillion and Proth [53], Car-
lier and Chretienne [54]. Hillion et al. [52], Hillion and Proth [53] use timed event-graphs, a
special class of TPN to evaluate the steady-state performance of job-shop systems under a deter-
ministic and cyclic production process. Carlier and Chretienne [54] study TPN schedules based
on the firing sequence of the underlying PN. They propose two methods to compute the earliest
schedule depending on the sequence length. A polynomial algorithm is used if the length is finite
and an earliest state graph for the infinite case.

Tuncel and Bayhan [27] provide a comprehensive review of research works on the PN-based
scheduling methodology. Of the six approaches given by Balogun and Popplewell [42], Tuncel and
Bayhan [27] classify the existing PN-based approaches into four groups:

1. PN-based simulation with heuristic dispatching rules.

2. PN with graph search algorithms.

3. PN with mathematical programming approaches.

4. PN with metaheuristics.

Simulation with heuristic dispatching rules is typically used for on-line scheduling so that
acceptable solutions can be obtained in a short period of time. PNs are converted into simulation
models, and at each simulation step, dispatching rules are used to select the transition to fire from
a set of conflicting (simultaneously-enabled) transitions. However, heuristic dispatching rules are
considered myopic since they only use local information to make decision on the system’s global
objective.
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Simulation models are known to be capable of analyzing the operational efficiency of the exist-
ing system configuration and provide the baseline to new viewpoints and aid the decision making
of production managers. The benefits of simulation models have led to increased throughput, lead
time improvement, and reduced production and inventory costs. Discrete-event simulation can
be conducted to evaluate the performance of TCPN models using the CPN Tools software [55].
Earlier works [56–59] that have used TCPN simulation for scheduling purposes, employ a simpli-
fied version of the CPN formalism. A simple CPN can still be quite large in size compared to the
advanced CPN formalism [47]. They do not take into account important features like transition
guards, conditional expressions and functions. These features are made possible through the use
of programming language expressions.

In spite of its advantages, simulation is deemed insufficient to evaluate the different alternatives
of a system. For decision making purposes, it is only capable of exploring a limited number of
scenarios when applied to improve the performance of an FMS. Due to the inherent flexibility, the
performance optimization of FMS scheduling problems using simulation involves a large number of
decision variables which requires a large number of simulation runs [60]. Also, it does not appear
to be the only technique to obtain solutions in a timely manner, as the development of efficient
techniques in the other categories has proven otherwise. In comparison with simulation, the use
of mathematical techniques are rather limited since they require a particular class of PNs to model
the FMS [27], and their applications are mostly found in cyclic scheduling [61].

In the PN with graph search algorithms category, the scheduling problem is formulated as
a search problem through the generation of the reachability graph (or the state space) of the
TPN/TCPN model. The reachability graph is used to generate all the possible sequences of transition
firings from a given initial state to a desired or defined goal state where all the operations must
have been completed and free from deadlock. Each of the firing sequences corresponds to a feasible
schedule. As a quantitative analysis tool, decision support activity can be automated by analyzing
all the possible alternatives of the system configuration with the aim of selecting the best alternative
that minimize a given performance measure.

A basic intuition underlying the use of reachability graph is that the states of the system are
represented as nodes and the transformation of these states (i.e. transition firing) that triggers a
change in the state of the system, as edges. The graph can be constructed using classical search
algorithms like breadth-first search (BFS) and depth-first search (DFS). Reachability graph analysis
is a reliable and efficient method to obtain optimal schedules; however, the computational com-
plexity is so high that it is practically impossible to explore the full state space of an industrial-sized
system due to the explosion problem. The size of the state space grows exponentially with the
size of the system. The number of possible combinations explodes so fast that it outgrows the
computational resources within a small amount of time.

AI-based heuristic search methods [26, 62–64] have been proposed to simulate only the best
scenarios (as a shortest-path search problem) by generating partial reachability graphs with heuris-
tic functions that rely on the knowledge of the production plans (sequence of operations) captured
from the FMS. AI-based heuristic search methods explores the reachability graph systematically
[65] in an iterative manner. It starts from an initial state and constructs a partial schedule one at a
time, until a complete schedule (goal state) is found. The construction of the complete schedule is
obtained from the firing sequence from the given initial state to the goal state.

Tuncel and Bayhan [27] reviewed the works on PN-based scheduling with heuristic search
algorithms until 2004. Since then, other heuristic search methods have emerged. From their review,
the combination of TPN/TCPN modeling and AI-based heuristic search methods has proved to be
an efficient method for solving FMS scheduling problems. However, majority of the works on PN-
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based scheduling with AI-based heuristic search algorithms have used the TPN. From now on, the
PN-based scheduling with AI-based Heuristic Search methods will be referred to as PNAIHES.

It is quite natural to use graph search algorithms for PN-based scheduling since the underly-
ing analysis method relies on the reachability graph. As problem-independent solution methods,
metaheuristics have been applied to solve PN-modeled FMS problems [66–68]. They are known to
provide good solutions in short computational times but they cannot guarantee optimality. Unlike
the graph search application where a stepwise transition firing is used to systematically build the
graph, metaheuristics works with the complete firing sequence of transitions (schedule) described
as the candidate solution to the scheduling problem. They use a different representation that re-
quires coding and decoding schemes for the PN firing sequence. For instance, the genetic algorithm
first encodes a candidate solution called chromosome, with bit strings in which each position in the
string is interpreted as a gene. After the generation of new candidate solutions, a decoding scheme
is then used to enable a PN simulator check whether the solution is feasible or not. Unlike in PN
where a transition in the firing sequence can be directly represented as a gene in a chromosome
[66–68], it could be a great challenge for TCPN where a transition can be fired with different set
of token colors. A bit-string representation may not be sufficient to describe the firing sequence.
Also, an operation described in a TCPN can be a group of more than one transition that must be
fired sequentially. Seemingly, the operations may not follow a strict ordering in the firing sequence.

1.3 Motivation and Objectives
In a dynamic FMS environment, production managers are usually confronted with constantly
changing scheduling scenarios in their day-to-day activities on the shop floor. Different scenarios
may arise as a result of changes in the production mix, product types, due dates, part shortages and
unanticipated events like machine failure. The availability of a number of optimization algorithms
can allow production managers make better decisions considered acceptable for each scenario.
However, not all existing algorithms can be suited to all kinds of scheduling problems that arise
on the shop floor. While it is possible to adapt an algorithm to different production scheduling
scenarios, it may turn out to be inefficient for some. Putting different algorithms at the disposal of
the production managers given the situations they are best suited for, may go a long way to aid
their decision making. Therefore, it is important to provide the decision makers with a platform
that supports a neutral FMS representation in which the different optimization algorithms could
be automatically tested to select the best solution reached or the best algorithm suitable to solve
the given problem at hand. However, there is a lack of decision support tools based on PNAIHES
that can afford the aforementioned concept.

One of the advantages presented by the PNAIHES approach is that, different search algorithms
can be implemented in order to evaluate the best schedule of a particular manufacturing scenario.
Several heuristic search methods have been developed for PNAIHES [26, 62–64, 69, 70]. However,
it is quite difficult to evaluate and benchmark the efficiency of these algorithms in terms of solution
quality and time due to the different computing platforms, programming languages and data
structures used.

Although it is easier to perform TCPN-based simulations since there are readily available graph-
ical tools for simulating TCPN models, not much work has been done in its combination with
AI-based heuristic search methods. One of the reasons may be due to the difficulty that can be
encountered with handling the complex data structure for representation (syntax expressions),
storage and transition firing [27]. Apart from simulation limitations, existing tools have some
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drawbacks regarding the internal execution of TCPN models. They use the eagerness-to-fire prop-
erty for transition firings based on the global clock (model time) synchronization [71]. This concept
limits the high level of concurrency exhibited in asynchronous systems like FMS, and thus, pre-
cludes the generation of firing sequences that would lead to an optimal schedule. The occurrence
of an event should not be restricted by time constraints.

Searching for optimal schedules under the PNAIHES approach is quite a challenging task due
to the NP-hard nature of FMS scheduling problems. The construction of the reachability graph
requires the storage of all the encountered states to prevent duplicate search effort, and to obtain
the solution path from the initial state to the goal state. The latter requirement can be avoided by
attaching the path information to states as they are generated. On the other hand, the duplicate
search effort called duplicate detection is central to the performance of reachability graph algo-
rithms as redundant paths can be eliminated from the search space. It determines whether newly
generated states have been previously encountered in order to avoid revisiting an already stored
state. This is used to guarantee the termination of the state space exploration by preventing cycles.

However, the search can be very large, requiring a huge amount of memory to solve large-sized
problems. This is practically impossible due to the memory limitations. To tackle the intractability,
current research trend has focused on developing heuristic techniques by sacrificing optimality
in favor of suboptimal solutions that can be obtained efficiently with the reduction of the search
space and time. On the other hand, as pointed out in Kwok and Ahmad [72], Sinnen [73], optimal
schedule is still an industrial target that can offer significant advantages for the following reasons:
1. In critical applications in which performance is the primary objective, 2. In situations where
the same schedule is executed several times, and 3. To serve as a benchmark reference to test the
performance and quality of different heuristics. Considering this relevance, the research question
to be addressed is: how can we reduce the number of states to be stored so that larger problems
can be solved without forgoing optimality?

Despite the fact that it is desirable to obtain the optimal solution for off-line scheduling, the
decision making process considered as a non-added-value time [74], can naturally be short in time-
constrained manufacturing environments, and for short term and on-line scheduling applications.
Obtaining the optimal solution becomes intractable and impractical given the limited amount of
time required for decision making. Solutions must be obtained in relatively short computation
time especially when unexpected events occur. In these situations, near-optimal schedules are
considered to be more appropriate to avoid unnecessary delays in the manufacturing process.

Solving FMS scheduling problems with classical heuristic search methods usually requires a
great deal of search effort and time before the first and optimal solution is found. As a result,
their applications are limited to small and medium sized problems. Also, the existing PNAIHES
algorithms terminate the search as soon as the first solution is found [64, 69, 70]. However, there
is no guarantee on the quality of the solution produced and how close it is to the optimal solution.

The overall objective of this thesis is to establish a TCPN-based scheduling framework for model-
ing and maximizing the performance of FMSs through the development of tools and efficient search
methods based on the reachability graph analysis. To achieve this goal, the following objectives
were identified:

1. To provide a comprehensive survey of the existing heuristic search methods for the PNAIHES
approach in scheduling FMS along with a classification of each search method based on the
space-time tradeoff criterion.

2. To identify and explore the open research areas from previously published research findings.
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3. To develop a platform that allows the modeling of different scheduling problems irrespective
of the FMS description.

4. To develop a tool that is capable of integrating several heuristic search methods for bench-
marking and comparison purposes.

5. To tackle the effects of increasing problem size of FMS scheduling problems on the state
space explosion.

6. To develop efficient search algorithms suitable for off-line scheduling, on-line scheduling or
a hybrid of both schemes (scheduling/rescheduling approach) in order to produce optimal
or near-optimal schedules.

7. To cover the different classes of FMS scheduling problems ranging from machine-part schedul-
ing, deadlock-free scheduling to simultaneous scheduling of AGV-served FMS including the
conflict-free routing problem.

1.4 Contributions
Although the PN-based scheduling methodology is well studied, there exist open research areas
that are yet to be explored. Significant steps have been made to advance the existing body of
knowledge on PNAIHES approach by contributing new research findings. The main contributions
through the publications are detailed as follows:

1. TIMed State Space Performance Analysis Tool - TIMSPAT

Current existing software lacks the capability to support search optimization based on the
PNAIHES approach for TCPN models. While several heuristic search algorithms have been
proposed for PNAIHES albeit using only TPN, the practical application of these techniques
requires appropriate tool to facilitate the development and analysis of TCPN models for
optimization purposes. However, there is currently no tool supporting the optimization of
TCPN models for scheduling purposes, and comparing and benchmarking existing algorithms.

In this light, Paper I [75] proposes an automated decision support and special purpose tool
called TIMSPAT based on the PNAIHES approach. Thanks to the common data structure
of AI-based heuristic search methods, it is capable of incorporating several heuristic search
algorithms in a single executable tool. So far, nine algorithms have been implemented, which
includes the proposed search algorithms from this thesis and those by other authors: A∗ [76],
breadth-first iterative deepening A∗ (BFIDA∗) [77, 78], hybrid heuristic search algorithms;
Beam A∗ [63], A∗-BT [70], dynamic window search [62, 79], BFIDA∗-SLDD [80], and anytime
algorithms; anytime column adaptive search-TCPN [81, 82], anytime layered search [78],
and depth-first branch and bound (DFBnB) [83–85].

2. Description language for TCPN - TIMSPATLib

TIMSPAT includes a description language called TIMSPATLib, for TCPN model development.
TIMSPATLib is a C++ syntax library that allows the TCPN structure to be specified in a
textual format. The TIMSPATLib syntax combines the standard token expressions of the
TCPN formalism with mathematical and function expressions based on C++.
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3. Scaling up classical heuristic search algorithms to larger problem sizes for off-line
scheduling application

Paper IV [80] proposes a new space-efficient approach to alleviate the scalability problem
that appears in the state space exploration of FMS scheduling problems. It addresses the
major limiting factor of reachability graph analysis using the concept of duplicate detection.
This concept exploits a certain characteristic in the state space behavior of FMS scheduling
problems called structural equivalence, to reduce the memory requirements. The equivalence
is understood to be a consequence of the repetitive patterns inherent to FMS scheduling
problems when the problem size is scaled. Since the state explosion problem is caused by an
increase in the problem size and the state space of smaller problem sizes can be explored, it
is worth understanding if the state space behavior of smaller problem sizes can be scaled to
a larger size that is unsolvable.

The structural state space equivalence is based on the assumption that a certain structural
property should hold for a scalable FMS scheduling problem of any given size N above a
certain size N0. If this assumption holds, one can infer the behavior of a larger problem
size from a smaller one (set of instances) by studying the behavior of a few lot of smaller
size instances. This concept is then integrated into classical heuristic search methods so that
larger problem sizes can be handled without sacrificing optimality.

4. Space/time-efficient heuristic search algorithms

Papers II [81] and III [78] present two anytime heuristic search algorithms developed to
overcome the drawbacks of existing PNAIHES algorithms. An anytime algorithm trades off
computation time and solution quality. It is capable of finding suboptimal solutions very
quickly and continuously improves the solution quality until the solution converges to the
optimal solution. If given enough computation time, the algorithm will eventually obtain the
optimal solution. Also, it is guaranteed to return a solution when interrupted. This method
has been proved successful in artificial intelligence community. However, they are yet to be
explored in the PN research community.

Paper II [81] adapts and improves an existing anytime algorithm to TCPN-based scheduling,
while Paper III [78] propose a new algorithm that combines two heuristic search algorithms
making them anytime for deadlock-free scheduling. The proposed algorithms are suitable
for both off-line and on-line scheduling purposes due to their effectiveness in adapting to
different CPU constraints. Also, they can be used in a scheduling/rescheduling mode when-
ever a change in the operating conditions of the system requires a change in the previously
obtained schedule [86].

5. Simultaneous scheduling of machines and AGVs with conflict-free routing

The overall scheduling can be so complex that it cannot be handled in an integrated manner.
The scheduling complexity increases with the integration of AGV scheduling and routing.
Paper V [87] presents a TCPN-based approach to the simultaneous scheduling of machines
and AGVs. Unlike the existing approaches that employ a decomposition framework, the entire
scheduling problem is described in a single model, and the algorithm proposed in Paper III
[78] is used to find optimal or near-optimal solutions to the problem. The paper proposes
and evaluates two simultaneous scheduling models using an event-driven vehicle assignment
solution as opposed to the traditional dispatching rules.
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1.5 Extension of Scope
The primary objective of this thesis is focused on FMS scheduling problems. However, the tool
(formerly called RADIUS) and algorithms presented in this research work have been successfully
applied in other areas like air traffic management [88–92], and other discrete event systems such
as concurrent and distributed systems [93].

1.6 Thesis Organization
This thesis has been structured in such a way that the reader understands the context and can
duly follow the evolution of each method and its dependency in other papers. It is separated by
publication, and each chapter contains a full text version of a paper, with the exception of Paper
I [75]. Paper I has been expanded into three chapters; Chapters 2, 3, and 9. Chapter 2 gives the
background on TCPN modeling and TIMSPAT. Chapter 3 presents the state-of-the-art review on
PNAIHES approach, while Chapter 9 provides a benchmarking and comparative study of the nine
heuristic search algorithms implemented in TIMSPAT. The benchmark is performed on a case study
of a real flexible manufacturing cell of an eyeglass production system. Chapters 4, 5, 6, 7, and 8
present Papers II, III, IV, V, and an extension of Paper V to simultaneous scheduling of machines
and AGVs with conflict-free routing respectively.
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2.1 State of the Art Review on PN-based Tools
There are quite a handful of graphical and command line PN simulators available for modeling and
simulating discrete event systems. The PN tool database [94] provides a comprehensive list of the
existing tools for PN modeling. The database consists of both general-purpose (mostly) and special-
purpose tools. Due to the large number, it is quite difficult to evaluate each tool. Four search criteria
are used to filter the tools that closely match the requirements for the performance analysis of TCPN
models. The following keywords provided by the database search tool were used: State spaces, Petri
nets with time, high level Petri nets, simple performance analysis. Of the 85 tools registered in the
database, only 32 implement state space analysis. Among these 32, 13 support timed nets, 6 of the
13 support TCPN while 4 implement a kind of performance analysis technique. As the requirements
get stronger, the list keeps reducing. Most of the tools are developed as graphical editors (66) that
implements token game animation (46). Only four tools passed the filter: CPN Tools [55], INA,
JFern, Petruchio. However, none of these tools have directly supported the TCPNAIHES approach.

Although, they do not fulfill the requirements, it is worth mentioning those tools that have
been used for manufacturing systems. PNetLab [95] and SimQPN [96] are used for the control
and scheduling of manufacturing systems, and queueing systems respectively. Also, PN Toolbox
[97, 98] has been used for manufacturing applications. Tools like GPenSIM and PN Toolbox are
embedded into third-party commercial software packages like MATLAB. Users are required to learn
the MATLAB language to develop models. While PNetLab is standalone, it generates a simulator
executable each time a new model needs to be run. Some of the PN simulators (SimQPN, GPenSIM
[99]) claim to support CPN without including some of the important features of the advanced CPN
formalism [47]. Unlike PN, the complex data structure of CPN makes it difficult to find tools that
support model development using CPN. It even gets more difficult with TCPN modeling.

In spite of these drawbacks, CPN Tools stands out as an industrial strength tool that provides
both a graphical editing interface and an interactive graphical simulator for constructing and
analyzing models. CPN Tools has been used to analyze some FMS scheduling problems in the
literature. Aized [100], Aized [101] and He and Wu [102] use CPN Tools to model and analyze
the performance of an integrated automated guided vehicle system, multiple cluster tools system
with random failures, and the deadlock-free scheduling of cluster tools, respectively. However, the
literature reports the usage of the platform for simulation purposes only.

The disadvantages of using simulation have been highlighted in Chapter 1.2.2. Furthermore,
it is quite important to identify its weakness with respect to deadlock-free scheduling. In practice,
most FMS are deadlock-prone since it is usually difficult to manage the allocation of resources
due to inherent resource limitations like no buffer storage (blocking), limited buffer capacity,
and material handling systems availability. The concurrent competition for a finite number of
resources in a manufacturing environment usually results in deadlock situations, which brings the
system to a permanent halt state. The PNAIHES approach removes the overhead to guarantee the
liveness (deadlock-freeness) of the PN [41] before scheduling is performed. As such, deadlock
control policies are not a necessity to guarantee an optimal deadlock-free schedule [78](Paper
III). Provided the system is accurately described by the TCPN model (precedence constraints,
resource sharing and constraints), the defined goal state guarantees that a deadlock-free schedule
is obtained without uncertainty. The schedule generated from the firing sequence from the initial
state to the goal state, ensures that deadlock is avoided in the operation of the FMS if the schedule
is followed.
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On the other hand, deadlock control policies are a requirement for simulation. Since it considers
one scenario at a time, it stops evolving when a deadlock is reached. Simulation may fail to return
a feasible schedule if most of the scenarios considered lead to deadlock. Also, the downside of the
control policy integration with scheduling is that they are system specific and do not guarantee
optimality since they impose restrictions on the system evolution. This topic is well treated in
[78](Paper III). As a result, it is quite difficult to simulate deadlock-prone FMS using CPN Tools.
As clearly seen in the CPN Tools deadlock-free scheduling application described in [102], a deadlock
control policy is required.

Notwithstanding, CPN Tools has a state space analysis plug-in, but it has several limitations
to support the timed state space exploration of TCPN models [71]. It uses the eagerness-to-fire
property based on the global clock synchronization that may preclude the generation of firing
sequences that would lead to an optimal schedule (Section 2.5). In addition, the absence of
efficient search algorithms has limited its applicability. Only basic traversal algorithm like BFS is
implemented in the tool, which cannot scale up to industrial-sized problems. Also, CPN Tools offers
no support to integrate heuristic search methods.

Due to the limitations of the state space analysis tool, an extensible platform to CPN Tools called
ASAP [103] was developed to provide an implementation support for a wide range of advanced
state space methods for industrial-sized CPN models. ASAP was integrated into CPN Tools from
Version 3.0. Yet, the state space methods developed in ASAP are primarily aimed at untimed CPN
models for model checking and verification of behavioral properties. Also, they are limited to
memory-efficient search methods without the use of heuristic functions since model checking does
not require optimality.

Even with this extension, it is still difficult to integrate one’s search algorithm. Both tools
(CPN Tools and ASAP) rely heavily on Standard Markup Language (SML), a proprietary functional
programming language with a high learning curve. The steep learning curve of functional program-
ming makes it hard to use the platform to develop algorithms without having gotten a full grasp
of the language. Also, the syntax for complex mathematical expressions requires SML knowledge.
Unlike CPN Tools, the expressions used in TIMSPAT follow a more direct and natural syntax format.

To overcome these shortcomings, TIMSPAT has the following distinguished features from the
existing ones:

• It is a dedicated standalone tool for PNAIHES approach based on reachability graph analysis,
written in C++.

• It implements an event-driven scheduling solution that overcomes the shortcomings of the
global clock synchronization for optimization.

• It offers a localized enabling of transitions. Each transition structure is created as an object
and only the places required for enabling the transition are specified.

• Easy-to-write syntax expressions without the need to learn a programming language. Com-
plex mathematical expressions are supported in a plain language format. The syntax combines
the standard token expression for CPN and the strength of C++ syntax for mathematical and
customized function expressions.

• It allows the implementation of different heuristic search algorithms using a common data
structure.

• It offers a portable and standalone modeling library that can be easily integrated with other
applications or used by anyone willing to implement its own search algorithm.
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• It is not designed for graphical modeling. With a host of graphical editors and simulation
tools, an editor is not critical to TIMSPAT development. A specialized performance analysis
tool is thus paramount. The CPN structure is read from ASCII files and a syntax analyzer is
used for checking the correctness of the model prior to execution.

2.2 TIMSPAT Architecture
The architecture of the TIMSPAT is shown in Fig. 2.1. The TCPN model serves as the input to
the tool. Its structure is emulated using ASCII files whose definitions conform to the TIMSPAT
modeling library (TIMSPATLib) syntax language. The solutions to the TCPN model are generated
by the search algorithms via the state space storage. The main components of TIMSPAT are:

• Syntax checker: It validates the specification of the definition files to ensure that it is consis-
tent with the TIMSPATLib syntax instructions. The checker reports errors encountered in files
to the user and the files are only passed to the simulator if they have been certified okay.

• TIMSPATLib: It is a non-graphical modeling library designed for the specification of TCPN
models in a textual format provided in ASCII files using easy-to-learn syntax instructions.
TIMSPATLib interprets and stores the structure of the model in memory as specified in the
definition files.

• Simulator: It performs the discrete event simulation of TCPN models. However, its execution
is synchronized with the search algorithm module. The simulator uses the stored TIMSPATLib
model information to evaluate the states (or markings) of the system required by the search
algorithm. It interfaces with both the TIMSPATLib and the search algorithm module on a
continual basis until termination.

• Search algorithm: It is used to construct the state space according to a defined objective
function. The search algorithm drives the exploration of the state space toward a near-
optimal or optimal solution. Solutions are generated from the state space as a sequence of
transition firings when a goal marking is reached. They are generated either continuously
(when improved solutions are obtained) or at termination depending on the search algorithm
employed. It is mainly dominated by AI-based heuristic search methods.

2.3 TIMSPATLib for TCPN Modeling
A CPN is a directed bipartite graph with two node types called places and transitions where the
nodes are connected via directed arcs. It extends the classical PN with the use of a data value called
colored token. A place can contain tokens and is used to describe resources in the system while a
token consists of one or more colors describing the entity attributes. Each token can carry a weight
called cardinality. A transition describes the event (the start or completion) that may occur (or fire)
based on the preconditions of input arc expressions and guards. Graphically, places, transitions,
arcs, and guards are represented by circles, boxes, arrows, and square brackets.

For performance evaluation purposes, TCPN modeling is considered. A TCPN has a time notion
expressed by the introduction of a global clock. The global clock represents the model time and
each token carries a time attribute called time stamp. The time stamp describes the earliest time at
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Fig. 2.1. TIMSPAT architecture.
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Fig. 2.2. A TCPN model developed in CPN Tools.

which a token becomes available. With TCPN, one can model durations, delays, deadlines, etc. and
optimize the performance of a system. We assume the reader is familiar with TCPN formulations
and theory [47]. Figure 2.2 gives an example of a simple TCPN using the CPN Tools formalism
syntax.
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In TIMSPATLib, the specification follows the standard definition of a TCPN [47] with slight
modifications on color set labeling, variables and transition delay, including the goal marking
syntax.

Definition 2.1. Formally, a TCPNTIMS for TIMSPAT is defined as TCPNTIMS = (TCPN,M0,Mg)
where TCPN can be defined as a 11-tuple, TCPN = (P, T,A,

∑
, V, C,G,E, I, F,D) where:

1. P is a finite set of places {p1, p2, . . . , pm}.

2. T is a finite set of transitions {t1, t2, . . . , tn} such that P ∩ T = ∅.

3. A is a finite set of directed arcs {a1, a2, . . . , ak} such that A ⊆ P × T ∪ T × P .

4.
∑

is a finite set of nonempty types called colored sets that defines the number of token elements
(colors) and the operations and functions that can be used in the net inscriptions (i.e. arc and
initialization expressions). Each color set is either timed or untimed and an untimed set is either
static or otherwise.

5. V is a finite set of variables of numeric data types (integer or real).

6. C : P →
∑

is a color set function that assigns a color set to each place. A place p is timed if
C(p) is timed; otherwise, p is untimed or untimed static.

7. G : T → EXPRv is a guard function that assigns a guard to each transition t such that
Type[G(t)] = true or false.

8. E : A→ EXPRv is an arc expression function that assigns an arc expression to each arc a such
that Type[E(a)] = C(p)MS if p is untimed or untimed static and Type[E(a)] = C(p)TMS if p is
timed, where p is the place connected to the arc and CMS denotes the set of all multisets over C.

9. I : P → EXPR∅ is an initialization function that assigns an initialization expression to each
place p such that Type[I(p)] = C(p)MS if p is untimed or untimed static and Type[I(p)] =
C(p)TMS if p is timed.

10. F : P → EXPR∅ is a finalization function that assigns a finalization expression to each place
p such that F (p) = C(p)MS .

11. D : T → R+
0 is a time-delay function associated with each transition t ∈ T . It describes the set

of firing durations (transition delays). R+
0 denotes the set of all positive real numbers including

zero.

M0 is the initial timed marking defined by M0(p) = I(p)〈〉 ∀p ∈ P
Mg is the final or goal untimed marking defined by Mg(p) = F (p)〈〉 ∀p ∈ P

As in CPN Tools, EXPR denotes the set of expressions provided by the TIMSPAT library, and
Type[e] denote the type of an expression e ∈ EXPR, i.e., the type of the values obtained when
evaluating e. The set of free variables in an expression e is denoted V ar[e]. A free variable is a
variable which is not bound in the local environment of the expression [47].

Note that in this definition, variables do not belong to
∑

since variable types (integer and real)
are handled by default in the library. As such, variable definitions are not needed. Only the color
set description for each place is required.

The current state of the system is defined by the distribution of tokens over the places called
marking. An untimed marking Mu maps each place into a multiset of tokens M(p) ∈ C(p)MS [47].
TIMSPATLib adopts the functional token expression of CPN Tools.
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Definition 2.2. A multiset (MS)m over a non-empty set S = {s1, s2, s3, . . .} is a function m : S → R+
that maps each element s ∈ S into a non-negative integer m(s) ∈ R+, . It is written as a sum using a
single + and ′: ∑

s∈S
m(s)′s = m(s1)

′s1 +m(s2)
′s2 +m(s3)

′s3 + . . . (2.1)

The non-negative integer m(s) is the number of appearances of the element s in the multiset m.
m(s) is also called the cardinality (weight) of the token s.

An element s is a member of a multiset m if the number of appearances m(s) of s in m is greater
than zero, i.e., if m(s) > 0. The size of a multiset |m| is the sum of the number of appearances of the
elements in m, the number of tokens in a place p.

The other operations like addition, scalar multiplication, comparison and subtraction are defined
in [47]. The set of all multisets over S is denoted as SMS . The empty multiset over a set S, ∅MS is
defined as ∅MS(s) = 0, ∀s ∈ S.

The multiset of tokens in an untimed place is constructed using the single sum operator +
rather than the double ++ in CPN Tools. A timed place attaches a time stamp to each token.
For scheduling purposes (see Section 2.5), the time stamps of tokens in a timed place are also
constructed as a multiset using the single sum operator + and the @ symbol. Here, the timed
multiset is not used.

The multiset of token time stamps is expressed as:∑
s∈S

m(s)@tm[ts] = m(s1)@tm[ts1] +m(s2)@tm[ts2] +m(s3)@tm[ts3] + . . . (2.2)

where tm[ts] is the ordered time stamp list tm[ts] = [ts1, ts2, . . . , tstm(ts)] and tm[ts1] =
[ts1

1, ts2
1, . . . , tstm(ts1)

1] . It contains the time values ts ∈ TS for which m(s) 6= 0.The @ symbol is
omitted if m(s) = 1.

As such, the description of tokens in a place has two parts: the set of tokens and the set of time
stamps. For example, using CPN Tools, the tokens in a timed place represented by 2‘(4, 3)@5, 6 +
++ 1‘(2, 3)@3 + ++ 3‘(5, 5)@0 are expressed in TIMSPATLib as:

2′(4, 3) + 1′(2, 3) + 3′(5, 5);

5, 6 + 3 + 3@0;

A timed marking M is defined as a triple (Mu, TS, ts
∗) which consists of the untimed marking

Mu, the time set TS, a set of time values called time stamps, TS = R+
0 and ts∗ ∈ R+

0 , the value of
the global clock. The initial timed marking M0 represents the initial state of the system.

The TCPNTIMS definition given in Def. 2.1 considers timed transitions only, where transitions
are associated with a delay D(t) interpreted as the duration of the activity modeled in the event. A
transition delay can correspond to machine processing or transportation time in a manufacturing
environment. The delay uses the holding duration concept described in [71] for modeling the
performance optimization of scheduling problems. In this concept, a timed transition is fired
instantaneously but the output tokens will not be available for other transitions until the delay has
elapsed. This makes the transition behave as an operation with start and release times. The current
version of TIMSPATLib does not allow time delays to be specified for arcs.

The TCPNTIMS definition introduces an important feature called static place which can be
very useful when evaluating the reachability graph of an FMS.
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Definition 2.3. A static place pf is an untimed place with a static color set that does not change
during the evolution of the system. The token colors are never affected by transition firing. For a place
to be considered static in a TCPN, it must have two directed arcs (input and output) such that when
connected to any transition in the TCPN, the input and output arc expression is the same i.e. ∀A(a1, a2)
E(a1) = E(a2) where a1 ∈ (pf × t) and a2 ∈ (t× pf ), t ∈ T .

The standard CPN formalism allows one to add as many colors as required by the model for
simulating a system, be it static or dynamic information. While this is suitable for simulation pur-
poses, it seems impractical for state space construction particularly in the case of static data. These
data are commonly found in the problem definition of most FMS. Examples are: the deterministic
processing times, transportation times, AGV routing information, etc.

In the state space exploration of CPN models, all the information required to enable or fire
the transitions must be kept in the marking. Unfortunately, static data become redundant since
they are propagated from one marking to the other in the state space. The place information is
carried over in the marking description and repeated in every reachable state in the state space.
As a consequence, the state space can get blown up as quickly as possible, leading to a premature
explosion. In TIMSPAT, the static place tokens are stored once in a fixed memory location.

The static place offers a kind of flexibility to users if the information is too large to be written as
an if-then-else expression. The command if-then-else can be used in some cases, however, it cannot
completely replace the static place. For example, it is difficult to model alternative routings with
if-then-else when the firing of a transition is expected to produce more than one successor.

2.3.1 TIMSPATLIb TCPN Structure

The input definition files used to specify the TCPNTIMS structure consist of a main file MDF
(main.txt) and a set of N transition files TDF (transition1.txt,...,transitionN.txt). Each transition in
the TCPNTIMS is written into a separate file. The MDF specifies the initial marking M0 (Mu and
TS), the color set, the goal marking definition Mg, the information required for heuristic evaluation
(shared with the search algorithm module), constants (optional), and functions (optional) used
in the transition files. Each TDF list the arc expressions of places (both input and output where
applicable) acting on a transition, guard expression and time delay. TIMSPATLib assumes the
following for TCPN modeling:

1. Places and transition names are numerically labeled and must be sequential.

2. Color variables are limited to only two numeric types: integer (including large integer) and
real data types. As such, neither color variable and token type declaration nor initialization is
required by the user. The real type is fixed at a maximum of 3 decimal places using a built-in
function radiusdp() to differentiate an integer computation from a real one. The limitation
of the types is aimed at minimizing the memory usage of markings in the state space graph.
Complex data types like strings, Boolean, list, etc. are not suitable to optimize the marking
storage. These variables can be expressed numerically. For instance, if a token color must
take the string values "heavy", "medium", and "light", the three values can be represented as
1, 2 and 3 respectively. Same applies to Boolean colors.

3. The construction of a color set need not be explicitly defined, the library only accepts an
n-tuple, a product color set of integer and/or real where n ≥ 2 or a simple integer or real
where n = 1. It is only necessary to define n, a non-negative integer which describes the
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Table 2.1. TIMSPATLIb operators.

Operator Meaning Operator Meaning

= assignment > greater than
&& logical AND < less than
|| logical OR + addition
? : if then else C++ syntax − subtraction
<= less or equal / division
>= greater or equal ˆ power
! = not equal () parenthesis
== equal # empty set for place in Mg definition
∗ multiplication for TDF or any

color value or cardinality in Mg

definition for MDF

% guard separator or arc expression
multiset operator

number of colors that will reside in a place. List, union and enumeration color sets are not
supported for state space analysis.

4. The tokens used for input arc expressions are limited to explicit definition of color variables
only. TIMSPATLib does not allow numeric values, conditional expressions or computations to
be specified for input arc expressions. Also, the color variables must be unique on all input
arcs. Numeric values or equivalent colors intended to be used on input arc expressions can
be expressed as guards. This assumption allows quick evaluation of transition bindings [47].

5. Color variables are local to a transition file and can be reused for other token colors of place
in the other files without a prior declaration.

2.3.2 TIMSPATLIb Syntax for Operators and Functions

The TIMSPATLIb operators are already well known and used in object-oriented programming
languages like C++. The usage of these operators is practically the same, but there exists a minor
difference in the usage of some operators. The supported operators are shown in Table 2.1.

Also, TIMSPATLib supports mathematical functions with single and variable number of argu-
ments. The single argument functions include: sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh,
acosh, atanh, log2, log10, log, ln, exp, sqrt, sign, rint, abs, floor, and radiusdp. See [89] for the
usage of some of the mathematical functions. The list of some variable argument functions are:
min, max, sum, and avg. Additional mathematical functions not listed above can be added on
request. Like CPN Tools, the term empty is used in arc or conditional arc expressions to avoid the
addition of tokens to an output place.

2.3.3 TIMSPATLib Syntax for Modeling Objects

The syntax format for tokens in a marking has been explained in Section 2.3. The color set descrip-
tion for a place (in the main file) is described as:

CS colorset name = number of colors, timed/untimed,static;
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A place identifier is represented as X, where X is a sequential number starting from 1. Arbitrary
place numbers and text-based identifiers are not permitted. For example, an initial marking with
three places is written as: 1 2′(4, 6) + 5′(1, 3); 2 ; 3 1′(1, 1, 2); for Mu and 2@0 + 5@0; ; 0; for TS.
There are 7 tokens in place p1, place p2 is empty, and p3 has only one token.

The goal marking definition is preceded by a prefix EF followed by the untimed marking descrip-
tion for each place separated by semicolon. For simplicity and computation time considerations, we
adopt a single token description for each place by grouping multiple tokens into one. A wild card
∗ is used to identify any color or cardinality value or when the actual value in the goal marking is
not known a priori or indeterminate. The symbol # is used to specify an empty place. The main
idea behind this format is that not all token colors are relevant in detecting a goal marking. It
suffices to specify only the necessary token colors. For example, the goal marking for Fig. 2.2 can
be described as:

EF 2′(∗, 5);#;

This means that p1 must have 2 tokens with the second color value of each token equals 5, and
p2 must be empty. An arc expression is preceded by alphanumeric characters. It takes the form:

FAXY tc1%tc2% . . .%tcn;

where X represents the arc type, E for input, S for output, and Y represents the place identifier,
and % multiset summation symbol. For example, an input arc expression from a place p3 with two
tokens to a transition is represented as: FAE3 1′(x, y, z)%1′(a, b, c);, while an output arc expression
on p4 is given as: FAS4 1′(u, v, w);

A guard expression is an optional one-line expression in which each subset of the guard is
joined by the guard separator operator %. It goes by the syntax:

GU expr1 % expr2 % . . . % exprn;

Example: GU x == y % ((y > x+ z)||(y > z)) % x+ y <= z + 8;
Customized functions are written with the format:

FU function name(variables separated by comma):expression;

Example: FU addif(x, y) : x > y ? x+ y : x;. addif is the function name, and the variables used
in the expression are x and y. Functions are defined in the main file (main.txt).

A constant is expressed as:

CT constantname = constantvalue;

Example: CT pi = 3.142;. A transition delay is specified using:

FASD delayexpression;

The delay expression can either take a numeric value or a function. Fig. 2.3 shows the equivalent
TIMSPATLib syntax for the sample TCPN model in Fig. 2.2. More details on the syntax and examples
can be found on the TIMSPAT’s website http://grupsderecerca.uab.cat/timspat/. An online
version of the tool is available for testing by registering on the website.

http://grupsderecerca.uab.cat/timspat/
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main.txt
1 1′(1, 2) + 1′(3, 7); 2 2′(0);/*initial Mu*/
0 + 5; 2@0; /*initial time stamp set*/
CS DATA;INT; /*place color set */
EF 2′(5, ∗); 2′(∗); /*goal marking*/

%COLOR SET
CS INT=1,timed;
CS DATA=2,timed;

transition1.txt transition2.txt
FAE1 1′(x, y); FAS1 1′(z + 1, z);

FAS2 1′(z); FAE2 1′(z);

GU z < 4 % y == z;FASD 3;

FASD 2;

Fig. 2.3. Equivalent syntax expressions in TIMSPATLib for Fig. 2.2.

2.4 Simulator – Execution of a TCPN
The execution of TCPNTIMS is controlled by the simulator module. It involves the enabling
and firing of transitions according to the preconditions (guards) and estimated duration. Also, it
includes goal marking check.

The simulator uses the TIMSPAT’s model structure to evaluate markings using an event-driven
approach [71, 81] for the generation of successors (See Section 2.5). Each time it receives a mark-
ing from the search algorithm, it checks whether or not the transitions of the TCPN can be enabled
given the guard conditions and information from the TIMSPATLib. Once the enabled markings
are fired, the simulator determines which marking has reached the goal given the TIMSPATLib Mg

syntax. It then sends the reachable markings as successors with a goal marking header to the search
algorithm for further evaluation. The interaction between the three TIMSPAT components is based
on a continuous evaluation of markings until the search algorithm terminates the exploration. The
steps of the simulator algorithm are given as follows:

1. Get a new marking from the search algorithm module.

2. For each transition in the TCPN:

(a) Preprocessing: check if the number of tokens in each place can be reduced by evaluating
the guards with at most two variables.

(b) If one of the input places is empty or the number of tokens is less than the cardinality
or the multiset of tokens in the input arc expression, exit.

(c) Generate all the possible combinations of tokens (subsets) for all the input places.

(d) For each token combination subset:

i. Bind the colors of each token to their variables.
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ii. Check to ascertain whether or not it can enable the transition by evaluating the
entire guard expression.

iii. If the guard evaluates to true, go to Step 2e, else go to Step 2d.

(e) Fire the transition with the binding:

i. Remove the tokens from the input places of the marking and store their timestamps
if color set of the place is timed.

ii. Calculate the enabling time tauk by taking the maximum of all token time stamps
in the enabled token subset.

iii. Calculate the firing time by adding the transition delay d to tauk, (tk + d).
iv. Generate a new marking by adding new tokens to the output places by evaluating

the output arc expressions and attaching the computed time stamp (firing time) to
each token in a timed place.

v. If the new marking is a goal marking, mark as goal.

3. Send the computed successors of each transition if applicable to the HS module.

The enabling of transitions in a CPN is usually quite expensive [104]. It has been a subject of
much research in [47, 105–108]. The simulator must first compute the set of all possible bindings
B for a transition t, denoted as B(t) [47]. A binding b of a transition t, b ∈ B(t) assigns a value b(v)
to each variable v of the transition t. It binds the tokens in the input places of transitions to the
input arc expressions and guards. The variables of a transition t, denoted as V ar(t) ∈ V , consist
of the free variables specified in the guard and in any of the arc expressions of any arcs connected
to the transition t. For example, the variables of transition t1 in Fig. 2.2 is V ar(t1) = {x, y}. A
transition is enabled if the input places contain the multiset of tokens specified and the guard of
the binding G(t)〈b〉 is true.

It is easier to compute bindings for simulation purposes since only a subset is required and in
a situation where the model time is used to drive the state space exploration for TCPN models
as in CPN Tools (See Section 2.5). To reduce the combinatorial effects of transition bindings in
TIMSPATLib, we adopt the following rules: 1. The token multiset of input arc expressions must be
limited to two for input places with a large number of tokens, 2. Before evaluating the bindings,
the simulator first removes ineligible tokens from the input places with guards having at most two
variables. This is done to reduce the number of tokens to use in the combinatorial process, and 3.
When a static place is used, there must be sufficient guard conditions to trim down the number of
tokens in the place. If this is not possible, an if-then-else operator is recommended.

An enabled transition may fire. Firing means that the tokens are removed from the input places
and added to the output places of the firing transitions. In a TCPN, a transition t is time-enabled at
time τk in a marking M denoted by M [t〉τk if all the tokens to be consumed from the input places
have a time stamp not later than time τk [109]. If a transition t fires at time τk, it changes M to
a new marking M ′ denoted by M [t〉τkM ′. M ′ is said to be reachable from M . In TCPNTIMS , a
transition delay applies to all output tokens created at transition firing. The time stamp of a token
is defined at its generation time. Firing a transition t at time τk with a delay d, time stamps the
output tokens with the time value τk + d.
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2.5 Timed State Space Exploration
The performance analysis of TCPN involves the generation of a timed state space (TSS) and the
traversal of the state space with a search algorithm. A TSS can be defined as a reachability set
R(TCPN,M0) that comprises the set of all possible markings reachable from M0 which minimizes
a given objective function. The TSS is represented as a directed graph TSS = (N,E,M0) where N
is the set of nodes andE is the set of directed edgesE = {(M, t,M ′)τk ∈ N×(T×R)×N |M [t〉τkM ′}.
A node contains a reachable marking M including the parent identifier and any other information
required by the search algorithm. A marking M ′ ∈ V is a successor of (or reachable from) marking
M ∈ V if (M, t,M ′)τk ∈ E. The edges represent the transition bindings used to generate the
successor marking. Expanding a marking involves the computation of its successors. A visited
marking M is a marking that has been expanded. A path between two markings M0 and Mn is a
sequence of markings σ = M0[t0〉,M1[t1〉, . . . ,Mn−1[tn−1〉,Mn connected by a sequence of edges
with enabling times such that ∀i ∈ [0, n− 1], (Mi, ti,Mi+1) ∈ E.

Lakos and Petrucci [110] identify two different approaches to TSS generation based on their
firing rules: the conservative and the optimistic approach. The conservative approach called the
reduced earliest time state space (RSS), the TSS generation method used by CPN Tools, uses the
eagerness-to-fire property based on the global clock synchronization such that a transition is only
allowed to fire if τk ≤ r∗. As a consequence, the firing of a transition t′ enabled at τ ′k > r∗ for a
particular operation is delayed until the global clock advances to τ ′k or to a much later time than τ ′k
depending on the prior firing sequences. When used for the optimization of inherent asynchronous
systems like FMS which exhibit a high level of concurrency and parallelism [71], this property may
preclude the generation of firing sequences that would lead to an optimal schedule. Since there
are activities that can be performed concurrently, delaying the execution of the operation to a later
time can have a negative impact on the overall system performance. RSS is defined as a tuple
RSS = (N,E,M0) where E = {(M, t,M ′)τk ∈ N × (T ×R)×N |M [t〉τkM ′,@t′, τk′ < τk :M [t′〉τk′}

The optimistic approach called the earliest time state space (ESS) allows the firing of transitions
as soon as they are enabled i.e. it includes the transition firings with τk > r∗ in addition to those of
the RSS without the global clock constraint. As a result, the firing of transitions no longer depends
on the behavior of the global clock, hence, leading to an event-driven approach. ESS is a tuple
ESS = (N,E,M0) where E = {(M, t,M ′)τk ∈ N × (T × R) × N |M [t〉τkM ′, @τk′ < τk : M [t〉τk′}.
Piera and Music [71] investigated the use of the two approaches for FMS scheduling, highlighting
the shortcomings of RSS for optimization.

ESS can be explored either in a classical manner, by evaluating both the untimed marking
and time stamp together as one set for comparison in duplicate detection [80](Paper IV) or in a
compact form, as a condensed state space (CSS) [78, 81, 111, 112] (Papers II and III). The CSS
combine several markings into a single class using the notion of untimed marking equivalence.
During the search process, it excludes the time stamps from duplicate marking detection to avoid
exploring a large state space containing several markings with the same untimed marking but
different time stamp set. Here, the time stamps are used for calculating the firing times of transitions
and the creation times of new tokens, and to evaluate performance with respect to the objective
function. TIMSPAT implements both the ESS and its condensed version (CESS) in the heuristic
search algorithms. The CESS justifies the separation of the timed marking into untimed marking
and time stamp set in the descriptor used in Section 2.3.

As an example, consider a system that consists of two jobs and two machines [113]. The jobs’
requirements are given in Table 2.2. Operation M1(6) means the first operation of job J1 must be
performed on machine M1 during 6 time units. The TCPN model is described in Fig. 2.4. Fig. 2.5
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Table 2.2. Routing and processing times of jobs.

Job/Operation 1 2

J1 M1(6) M2(7)

J2 M1(5) M2(10)

shows the ESS graph of the instance constructed using BFS. For legibility, the @ symbol is used to
represent the time stamps of the tokens in the graph. The graph has a total of 15 nodes (M0 to
M14). Each edge shows the transition binding and the enabling time. The goal markings (M11 to
M14) described by EF 2′(∗, 0); 2′(∗); are found at the same level of the graph. The optimal solution
is in bold. In contrast to the ESS, Fig. 2.6 gives the condensed version of the graph. Markings M4

and M5 in the ESS are collapsed into one as M4 in the CESS. The same goes for M6 to M8 in
Fig. 2.6. For large state space graphs, it is impractical to keep the time stamp set of all equivalent
untimed markings in a class. An additional measure is required to select the most promising time
stamp set to be used for exploration. The CSS procedure CSS(g(Mstored), g(M

′)) described in
[80, 81] (Papers II and III) is used in the CESS graph.

2.5.1 Heuristic Search Algorithms for TSS

A classical AI heuristic search algorithm like A∗ [65] can be used to construct the TSS of a TCPN. A∗

is a best-first search that searches through the TSS by systematically expanding the most promising
marking one at a time, in order to find the shortest path from M0 to Mg. It guarantees that the first
solution obtained is optimal when all the markings with cost less than the optimal goal marking
cost have been expanded. The search is guided by an evaluation function f(M) = g(M) + h(M)
that determines the cost of each marking in the search space. Cost function g(M) is the actual cost
to reach a marking M from M0 and h(M) is a heuristic function that estimates the remaining cost
to reach Mg from M . A∗ guarantees that the search always finds an optimal solution if h(M) is
admissible i.e. it is a lower bound that does not overestimate the cost to goal, h(M) ≤ h∗ (M), ∀M
where h∗ (M) is the cost of the optimal path from M to Mg.

T1

P1

P2

GUJopJ<J3J6Jj==j1J
6Jop==oppJ6Jm==m1

FASDJt

FAE1J15(j,op) FAS1J(op==1)?1:2M15(j,2)M15(j,3)

15(1,1)+15(2,1);
0+0;

15(1)+15(2);
0+0;

FAE2J15(m) FAS2J15(m)

P3
FAS3J15(j1,m1,opp,t)

FAE3J15(j1,m1,opp,t)

JOB

MAC

PTM

15(1,1,1,6)+15(1,2,2,7)+
15(2,1,1,5)+15(2,2,2,10);

Fig. 2.4. The TCPN model of a 2× 2 job shop instance.
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P1: 1'(1,1)@0+1'(2,1)@0
P2: 1'(1)@0+1'(2)@0

P1: 1'(1,2)@6+1'(2,1)@0
P2: 1'(1)@6+1'(2)@0

P1: 1'(1,1)@0+1'(2,2)@5
P2: 1'(1)@5+1'(2)@0

P1: 1'(1,0)@13+1'(2,1)@0
P2: 1'(1)@6+1'(2)@13

P1: 1'(1,2)@6+1'(2,2)@11
P2: 1'(1)@11+1'(2)@0

P1: 1'(1,2)@11+1'(2,2)@5
P2: 1'(1)@11+1'(2)@0

P1: 1'(1,1)@0+1'(2,0)@15
P2: 1'(1)@5+1'(2)@15

P1: 1'(1,0)@13+1'(2,2)@11
P2: 1'(1)@11+1'(2)@13

P1: 1'(1,2)@6+1'(2,0)@21
P2: 1'(1)@11+1'(2)@21

P1: 1'(1,0)@18+1'(2,2)@5
P2: 1'(1)@11+1'(2)@18

P1: 1'(1,2)@11+1'(2,0)@15
P2: 1'(1)@11+1'(2)@15

P1: 1'(1,0)@13+1'(2,0)@23
P2: 1'(1)@11+1'(2)@23

P1: 1'(1,0)@28+1'(2,0)@21
P2: 1'(1)@11+1'(2)@28

P1: 1'(1,0)@18+1'(2,0)@28
P2: 1'(1)@11+1'(2)@28

P1: 1'(1,0)@22+1'(2,0)@15
P2: 1'(1)@11+1'(2)@22

T1: (1,1),(1), tk: 0 T1: (2,1),(1) tk: 0

T1: (1,2),(2), tk: 6 T1: (2,1),(1), tk: 6 T1: (1,1),(1), tk: 5 T1: (2,2),(2), tk: 5

T1: (2,1),(1), tk: 6 T1: (1,2),(2), tk: 6 T1: (2,2),(2), tk: 11 T1: (1,2),(2), tk: 11 T1: (2,2),(2), tk: 5 T1: (1,1),(1), tk: 5

T1: (2,2),(2), tk: 13 T1: (1,2),(2), tk: 21 T1: (2,2),(2), tk: 18 T1: (1,2),(2), tk: 15

M0

M1 M2

M3
M4 M5 M6

M7 M8 M9 M10

M11 M12 M13 M14

Fig. 2.5. The ESS graph of the 2× 2 job shop instance.

P1: 1'(1,1)@0+1'(2,1)@0
P2: 1'(1)@0+1'(2)@0

P1: 1'(1,2)@6+1'(2,1)@0
P2: 1'(1)@6+1'(2)@0

P1: 1'(1,1)@0+1'(2,2)@5
P2: 1'(1)@5+1'(2)@0

P1: 1'(1,0)@13+1'(2,1)@0
P2: 1'(1)@6+1'(2)@13

P1: 1'(1,1)@0+1'(2,0)@15
P2: 1'(1)@5+1'(2)@15

T1: (1,1),(1), tk: 0 T1: (2,1),(1) tk: 0

T1: (1,2),(2), tk: 6 T1: (2,1),(1), tk: 6 T1: (1,1),(1), tk: 5 T1: (2,2),(2), tk: 5

T1: (2,1),(1), tk: 6 T1: (1,2),(2), tk: 11 T1: (1,1),(1), tk: 5

T1: (2,2),(2), tk: 13 T1: (1,2),(2), tk: 15

M0

M1 M2

M3
M4 M5P1: 1'(1,2)+1'(2,2) P2: 1'(1)+1'(2)

M1: @6 + @11 M1: @11 + @0
M2: @11 + @5 M2: @11 + @0

M6
P1: 1'(1,0)+1'(2,2) P2: 1'(1)+1'(2)

M3: @13 + @11 M3: @11 + @13

M4: @18 + @5 M4: @11 + @18

M7
P1: 1'(1,2)+1'(2,0) P2: 1'(1)+1'(2)

M4: @11 + @15 M4: @11 + @15

M5: @11 + @15 M5: @11 + @15

T1: (2,2),(2), tk: 5

M8
P1: 1'(1,0)+1'(2,0) P2: 1'(1)+1'(2)

M6: @13 + @23 M6: @11 + @23

M7: @22 + @15 M7: @11 + @22

g(M0)=0

g(M )=61 g(M2)=5

g(M3)=13
g(M4)=11 g(M5)=15

g(M6)=13 g(M6)=18 g(M7)=15

g(M8)=23 g(M8)=22

Fig. 2.6. The CESS graph of the 2× 2 job shop instance using g(M).
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Algorithm 2.1 A∗ search with TCPN execution
Require: TCPN , M0, Mg

1: dm ← 0
2: g(M0)← 0, f(M0)← h(M0)
3: OPEN ← {M0}, CLOSED ← {M0, dm}
4: while OPEN 6= ∅ do
5: M ← OPEN \ {Mbest}
6: if IsMg(M) then
7: Mf ←M ′, construct solution path

exit
8: else
9: for all enabled transitions t ∈ T :M [t〉τkM ′,@τk′ < τk :M [t〉τk′} do

10: if M ′(M ′u) 6∈ CLOSED then
11: CLOSED ← CLOSED ∪ {M ′, i+ 1}
12: OPEN [i+ 1]← OPEN [i+ 1] ∪ {M ′}
13: else
14: CSS((f(Mstored), g(Mstored)), (f(M

′), g(M ′)))
15: end if
16: end for
17: end if
18: end while
19: return Mf and solution path

Like A∗, most heuristic search algorithms use two data structures: the open and closed lists.
The open list (OPEN) is a queue that stores the markings that have been generated but not yet
expanded, whereas the closed list (CLOSED) which is usually represented by a hash table, stores
the already-expanded (visited) markings. The heuristic search algorithm determines how OPEN is
implemented, as a priority or non-priority queue. A∗ uses a priority OPEN in which markings are
sorted in the increasing values of f(M). Contrary to the standard approach, TIMSPAT implements
CLOSED as a list that keeps both the open and closed markings. This is due to the high run-time
cost incurred on performing duplicate detection on a queue. To avoid duplicating markings on
both lists, TIMSPAT keeps only the pointers to the open markings in OPEN and their corresponding
heuristic cost values. The common data structure allows TIMSPAT to integrate different heuristic
search algorithms in the tool.

The pseudocode for the A∗ search combined with TCPN execution is given in Algorithm 2.1.
Here, the algorithm uses both f(M) and g(M) for the CSS duplicate detection procedure
CSS((f(Mstored), g(Mstored)), (f(M

′), g(M ′))) in order to provide a more accurate estimate in
selecting the most promising time stamp set. Fig. 2.6 reveals that it is quite difficult to break ties
(Marking M4) using g(M) as the criterion to discard untimed marking duplicates. Also, the myopic
evaluation of g(M) can prevent the search algorithm from obtaining the best path that leads to an
optimal solution. Although a good lower bound f(M) estimate is required for the CSS procedure.

2.5.2 Heuristic Functions

Three admissible heuristic functions are commonly used in PNAIHES approach. The first one sets
h1(M) = 0 assuming no heuristic information is available. This is suitable for FMS with routing
flexibilities or alternative routings and in cases where the run-time overhead for heuristic computa-
tion is quite high. However, the resulting lower bound f(M) might be too weak to reach an optimal
schedule in a reasonable time. On the other hand, it can be very useful in cases where the algorithms
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are designed to return suboptimal solutions quickly [87] Paper V. The second one is called the job
heuristic function [114, 115]: h2(M) = maxk{ξk(M), k = 1, 2, . . . , N} calculated as the maximum
of each kth job remaining time on uncompleted operations, ξk(M) and N is the total number of
jobs. The third is called the machine heuristic function [26]: h3(M) = maxi{ξi(M), i = 1, 2, . . . , R}
where ξi(M) is the sum of operation times of those remaining operations for all jobs which are
planned to be processed on the ith resource when the current system marking is represented by
M and R is the total number of resources. These three functions have been used in [78, 80, 81]
Papers II, III and IV.

In the formulations of h2(M) and h3(M), the timed marking information is not used in the
computation. To this effect, Li et al. [115] propose tighter lower bound estimates for TPN that
consider the earliest available time of machines and jobs based on the information from the
timed marking. The individual time stamps of tokens are used to calculate the lower bound. The
modification f2m(M) for TCPN as proposed in [115] is as follows: Given a token sj of a job Jk
in place pn with color variables j (job identifier) and op (operation), to be processed on a set of
machine tokens smi in place pm, where i = {ops, ops + 1, . . . , opf} and mi is the machine list used
for the job’s operations from the next one ops to the last opf . Then, the fJk(M) for each job is
estimated as:

fJk(M) = max

tm[sj ] +
∑

ops≤i≤opf

D(t〈b(j)=k,b(op)=i〉), tm[smops
] +

∑
ops≤i≤opf

D(t〈b(j)=k,b(op)=i〉),

tm[smops+1 ] +
∑

ops+1≤i≤opf

D(t〈b(j)=k,b(op)=i〉), . . . , tm[smopf
] +D(t〈b(j)=k,b(op)=opf 〉)


(2.3)

where max(tm[sj ], tm[smops
]) corresponds to gJk(M), the earliest available time (firing time)

of job Jk and D(t〈b(j)=k,b(op)=i〉) is the transition delay for bindings b(j) = k and b(op) = i, the
processing time of the job for each operation.

The overall lower bound f2m(M) for h2m(M) is given as:

f2m(M) = max
{
fJk(M)

}
, k = 1, 2, . . . , N (2.4)

A similar modification is made to f3(M) where the earliest start time of the next job operation
on a machine is computed using fJk(M) before adding the sum of the operation times. To show the
effectiveness of these heuristic functions, Fig. 2.7 depict the A∗ search of the CESS graph of Fig. 2.6
using the previous f2(M) and modified f2m(M) job heuristic functions, while Fig. 2.8 shows those
of the machine heuristic functions. The x and y variables in the marking identifier Mx−y represent
the order of expansion of the CESS by BFS (Fig. 2.6) and A∗ respectively. As observed in the graphs,
the improved heuristic functions proved to be more informed than the previous ones, expanding
and storing fewer markings i.e. h2(m) ≤ h2m(M) and h3(m) ≤ h3m(M). Also, Fig. 2.7a shows the
importance of using a good estimate as the A∗ search degenerated into a breadth-first.

While the job and machine heuristic functions can be used separately, they can also be for-
mulated as f(M) = max(f2m(M), f3m(M)) [115] to give a more accurate lower bound. The
computation may become more time consuming, especially for TCPNs. However, in FMS with al-
ternative routings in which more than one machine can be used to process the operation (with
different processing times) of some jobs, only the job heuristic function and f1(M) seem applicable.
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Fig. 2.7. A∗ search using (a) f2(M), and (b) f2m(M).
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Fig. 2.8. A∗ search using (a) f3(M), and (b) f3m(M).

The job heuristic function is modified for alternative routings by replacing the processing time
of each operation, and the time stamp of machines with the minimum processing time, and the
machines with the earliest available time respectively.

fJk(M) = max

tm[sj ] +
∑

ops≤i≤opf

min(D(t〈b(j)=k,b(op)=i〉)),

minsmops
∈Sm(tm[smops

]) +
∑

ops≤i≤opf

min(D(t〈b(j)=k,b(op)=i〉)),

minsmops+1∈Sm(tm[smops+1 ]) +
∑

ops+1≤i≤opf

min(D(t〈b(j)=k,b(op)=i〉)),

. . . ,minsmopf
∈Sm(tm[smopf

]) +min(D(t〈b(j)=k,b(op)=opf 〉))
}

(2.5)

where tm[smi ] is the time stamp list of machines that can be used to process a job for a given
operation. In this formulation, the earliest available time of the machine with the minimum time
stamp is updated each time it is selected as the candidate machine. The machine will be considered
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Fig. 2.9. Relationship between the three components and the classes used in TIMSPAT.

to have processed an operation in case it is part of another set of alternative machines to be used
for subsequent operations. This ensures that the calculation of the lower bound advances without
overloading a machine, and resource utilization is spread out to the other machines.

A∗ offers completeness and optimality guarantee. However, it requires a large amount of search
space and computational time effort before an optimal solution can be reached. A∗ keeps all nodes
in memory, which has limited its applicability to small problems. Besides A∗, 7 other algorithms
have been implemented: 1. Breadth-first iterative deepening A∗ search (BFIDA∗) [77, 78] (Paper
III), 2. BFIDA∗ with scalable layered duplicate detection (BFIDA∗-SLDD) [80] (Paper IV), 3. Beam
A∗ search (BAS) [63], 4. A∗ with backtracking (A∗-BT) [70], 5. Dynamic window search (DWS)
[62, 79], 6. Anytime layered search (ALS) [78] (Paper III), and 7. Anytime column adaptive search
(ACAS) [81] (Paper II). ESS and CESS form the base classes of the heuristic search algorithms in
TIMSPAT despite the fact that BAS and DWS selects only a subset of successors generated at each
marking. The details of each algorithm can be found in its respective citation.

Fig. 2.9 shows the interaction between the three components and the relationships between
the classes used in TIMSPAT. The evaluator class is used to evaluate and compute guard conditions,
functions, and other mathematical expressions in the output arc.
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3.1 Introduction
There are two approaches to dealing with the space and time requirements of the reachability
graph under the PNAIHES methodology. The first approach termed heuristic function-dependent
methods (HFDM) adapts classical heuristic search algorithms like A∗ and beam search [116], and
devise efficient heuristic functions to reduce the search space to explore and possibly minimize the
time depending on the kind of function employed. A heuristic function can be admissible or non-
admissible. An admissible heuristic function is a lower bound that does not overestimate the cost
to the goal marking and guarantees that an optimal solution is obtained whereas a non-admissible
overestimates the remaining cost to the goal marking.

The commonly used heuristic search algorithm is A∗. However, the performance of A∗ highly
depends on the strength of the heuristic function. A tight lower bound (strong) function is usually
needed so that an optimal solution can be reached quickly. Conversely, a strong heuristic function
is usually too expensive to compute [117]. The closer the function value is to the exact h(M), the
lesser the number of markings to be explored. The decision to choose between a strong and a weak
heuristic function is a function of the space and time complexity. Using a strong and admissible
heuristic function may lead to a reduction in the search space. However, this does not automatically
reduce the search time. Apart from the time involved in computing a strong heuristic function, it is
generally impossible to predict the effectiveness of the function to deal with the time and memory
requirements. Most works adopts non-admissible heuristic functions to reduce the search space at
the cost of losing optimality.

The second approach focuses on the development of effective algorithms that combines one
or more search algorithms called hybrid heuristic search (HHS). The algorithms developed in this
thesis are related to the second approach. In PNAIHES, the common objective function considered
is the minimization of the completion time (makespan). Criteria like total tardiness and mean flow
time have been rarely used.

3.2 HFDM Review
Shih and Sekiguchi [118] propose the first application of a heuristic search method to on-line FMS
scheduling with routing flexibility. They combine transition-timed PN and beam search to solve
scheduling conflicts when one or more transitions are enabled. The beam search algorithm applies
the beam width at each level of the reachability graph in which partial schedules are constructed
and evaluated within a given beam depth until a complete schedule is obtained. The beam width
and beam depth are used to restrict the number of marking at each level and the number of levels
in the graph respectively. The approach does not guarantee optimality. Nonetheless, this is not a
requirement for on-line scheduling.

Lee and DiCesare [41] are the first authors that employ an intelligent global heuristic search
method called L1 algorithm, by adapting the A∗ search to TPN scheduling. They propose three
non-admissible heuristic functions in order to find near-optimal schedules in a reasonable amount
of time. The first heuristic function prefers markings that are deeper in the reachability graph (i.e.
closer to the goal marking), the second favors markings which has an operation ending soon, while
the third is a hybrid of the first two. The three functions are evaluated on different FMS examples
with routing flexibility and material handling systems (robot). Lee and DiCesare [119] extend the
application of the L1 algorithm to integrated scheduling of FMS employing AGVs.



3.2. HFDM Review 39

Jeng and Chen [120, 121] propose a modified heuristic function based on PN state equations
that considers the global state information unlike the previous functions proposed by Lee and
DiCesare [41]. A∗ search is adapted to avoid traversing the whole reachability graph and a pruning
technique based on concurrency information of the reachability graph decides whether or not to
remove markings with the same parent node from the state space. Experimental results show that
the method is better than [41, 119]’s solutions.

Also, Jeng and Chen [121] exploit the linear characteristics of the state equation. Because of
the mathematical properties, the use of this method is limited to small size problems. Jeng et al.
[122] use the same heuristic search method in [120, 121] for exploring the structural properties
of generalized symmetric net and asymmetric net. They propose a new heuristic function based on
the multiplication of a scaling factor and state equation solution to schedule FMS with assembly
operations.

Elmekkawy and Elmaraghy [123] evaluates the performance of three heuristic functions on the
HHS algorithm proposed by Abdallah et al. [124] to optimize the mean flow time for deadlock-
prone FMS. The functions are the remaining processing time, the average operation waiting time,
and the use of dispatching rules such as shortest processing time. These functions are used to relax
the optimality guarantee of the hybrid algorithm in order to obtain a quick solution.

Lee and Lee [114] propose four new heuristic functions (admissible and non-admissible) that
are useful for multiple lot size scheduling problems in FMS. The functions are evaluated using
A∗ search. The authors claim that the heuristic functions are more efficient in terms of space and
computation time than the admissible heuristic function based on resource cost reachability matrix
proposed by [64]. However, Huang et al. [125] provide some counter examples that demonstrate
that one of the proposed functions is not always efficient.

Huang et al. [126] propose a combination of admissible and non-admissible heuristic functions
to generate a more informed function in order to reduce the search time of A∗ search. Li et al. [115]
improved both the machine heuristic function proposed by [26] and the job heuristic functions
from [114, 126] for the single and multiple lot size scheduling problems. The modifications were
done by taken into account the earliest available time of shared resources and subparts. Also, they
emphasize on the role of heuristic functions in the A∗ search process and several functions were
evaluated on different sets of benchmark problems. The new new heuristic functions proposed
proved to be more informed than the existing ones.

Luo et al. [127] extend the HHS algorithm called dynamic window search (DWS) proposed
by Moro et al. [79] to deadlock-free scheduling, by integrating deadlock control policies. Also,
they presented three heuristic functions to improve the search performance. Huang et al. [128]
propose an admissible heuristic function for FMS with alternative routings based on place-timed
PN. The function is then used with a dynamic weighting A∗ search strategy for scheduling. All the
aforementioned research works are focused on TPN scheduling.

Cavalieri et al. [86] are the first authors that applied a TCPN-based scheduling framework with
heuristic search to improve a flexible semiconductor manufacturing system of the SGS-Thomson
plant in Italy. The L1 algorithm [41] is adapted by introducing color and a new heuristic function
to solve the problem of dispatching at each machine. They propose a linear combination of three
heuristic functions for multicriteria optimization, with each related to the minimization of a given
performance objective. The first two functions proposed by [41] is used to minimize the work-in-
process and makespan objective, and the third one calculates whether the current operation is late
with respect to its schedule in order to meet the due date.
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3.3 HHS Review
The efficiency of the existing PN-based HHS algorithms can be classified into three categories
according to the space/time tradeoff criterion: 1. Space-efficient (SE), 2. Time-efficient (TE), and
3. Space/Time-efficient (STE).

For an algorithm to be considered SE, the reduction of the memory requirements must not affect
the optimality of the schedule i.e. the heuristic function must be admissible and no inadmissible
pruning technique should be adopted. These algorithms are oriented toward obtaining optimal
solutions if given sufficient time, in addition to an efficient use of memory. Upper bounds are used
to remove paths whose markings will not lead to a better solution. The SE algorithms do not
terminate the search until the optimal solution is found.

For time efficiency, the only criterion is that the algorithm returns a solution (either optimal
or near-optimal) in a reasonable amount of time irrespective of the type of heuristic function and
the pruning technique employed. Here, optimality is sacrificed for computation time and memory
reduction. The TE algorithms terminate the search as soon as the first solution is obtained.

STE algorithms must meet the SE requirements in addition to returning solution at a reasonable
amount of time. Basically, they consist of anytime algorithms that report solution at different time
intervals and are guaranteed to provide the best solution obtained so far whenever interrupted.
STE algorithms can be considered as a special class of HHS methods. They do not stop the search
at the first solution. Instead, the solution is continuously improved over time until the search
obtains the optimal solution provided the available memory is sufficient to guarantee optimality.
The algorithms trade off solution quality and computational time. The incumbent best solution is
used as an upper bound to restrict the number of generated successors and to periodically prune
markings that will not lead to a better solution. According to the given classification, we review
the existing HHS algorithms.

3.3.1 SE Class

Not so much importance has been given to the SE class in the literature. The interest in this area
is practically non-existent for the PNAIHES approach. This may be due to the time requirements
and the trend of current research methods toward obtaining near-optimal solutions in a reasonable
amount of time. However, they are still very applicable to off-line scheduling problems where
enough time is provided before execution. The SE class is more of a research area explored by
the model checking and AI communities. Examples are: sweep-line method [129], frontier search
[130], transition locality [77, 131, 132] and breadth-first iterative deepening A∗ search [77].

The only existing method that closely matches the SE requirements is the time-line search
proposed for TCPN-based scheduling by Mujica and Piera [133], Mujica Mota and Piera Eroles
[134], Mujica Mota and Piera [135]. However, it was only used as an aid to reduce the memory
requirements of the state generation phase in the two-phase algorithm that is targeted toward a
TE solution rather than SE. Hence, the time sweep-line capability was not fully exploited.

The time-line search is based on the sweep-line method proposed by Jensen et al. [129] in
the model checking community. The sweep-line uses the concept of progress measure to delete
markings from the memory during state space exploration so as to reduce the peak memory usage.
Markings are stored and explored in a layered manner according to their progress values. Once all
the markings with the least progress value in a given layer are expanded, they are removed from
memory and the search continues exploration with the next layer. This search method is equivalent
to the breadth-first generation of the state space. The markings with a lesser progress measure
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Fig. 3.1. The time sweep-line exploration of the ESS graph in Fig. 2.5 using the global clock as the progress
value.

are safely deleted from memory since they will never be reached again and thus, not needed for
duplicate detection.

Mujica and Piera [133], Mujica Mota and Piera Eroles [134] adopt a notion of time that uses
the firing time as the progress measure for TCPN-based scheduling in which markings with the
same firing time are kept at the same level of the state space. Though, a closely related method was
first presented by Christensen et al. [136] for the model checking of TCPN. They propose a time
sweep-line method using the increasing creation time values of markings for the CSS generation
of TCPN. The creation time of a marking is defined in [136] as the time at which the firing of a
transition changed the marking of the TCPN into this marking. Clearly, this is synonymous to the
firing time notion used by [133, 134] for the time-line search.

Notwithstanding, the time-line search does not consider the case of regress (backward) edges
[137] in which the successors of markings with higher progress values are duplicates of markings
with lower progress values, already removed from the state space. This may result in a repeated
exploration of some parts of the state space (cycles). Apparently, it is quite difficult to detect regress
edges if only progress values are used. As an example, let us explore the ESS graph in Fig. 2.5 with
the time sweep-line search. Fig. 3.1 shows the first 3 layers of the time sweep-line graph using
the global clock as the progress value. Before marking M1 is expanded, Layer 2 must have been
deleted from the memory. As a result, M4 will not be detected as an untimed marking equivalence
of the already deleted M5. This exploration will default to the classic ESS with memory savings
but clearly defeats the use of CSS for TCPN.

3.3.2 TE Class

The TE Class is a well-studied area. It is mainly composed of incomplete heuristic search algorithms
that do not guarantee optimality in which the aim is to find a first solution very quickly.

Sun et al. [138] propose a Limited-Expansion A∗ search algorithm that uses the idea of stage
search by employing a pruning procedure that removes less promising markings from the reacha-
bility graph when the OPEN list exceeds a given maximum capacity. The idea makes the algorithm
analogous to the beam search method. The algorithm uses one of the heuristic function proposed
by [41] for quick solution termination and employs a non-delay scheduling similar to the RSS
generation. The search method is applied to a PN modeling of an entire FMS that includes AGV
scheduling and control for multiple AGVs.
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Xiong et al. [139] propose two HHS algorithms that combines best-first strategy (BF) with
controlled backtracking (BT) to reduce the memory requirements at the expense of narrowing the
evaluation scope. They present an admissible heuristic function based on the operation time of the
remaining operations for all jobs. The first HHS algorithm called BF-BT applies BF at the top of the
reachability graph while BT is applied at the bottom through the depth-bound strategy. The second
HHS algorithm called BT-BF reverses the ordering of the search algorithms; BT at the top and BF at
the bottom. It is based on the notion that the quality of a schedule is more affected by the decision
taken at the early stages rather than toward the completion of the schedule (goal marking).

Xiong and Zhou [140] extend the two algorithms to deadlock-free scheduling of FMS with
shared resources and resources constraints such as limited buffer capacity and material handling
system. Also, Xiong and Zhou [26] evaluates the two HHS algorithms on semiconductor test facility
scheduling.

Moro et al. [79] propose a search method that deals with two aspects of search strategy:

1. Scope of selection: "the degree to which a search procedure allows the generation for further
exploration of all possible alternatives of a marking.

2. Scope of recovery: "the degree to which a search allows recovery from disappointing search
decisions to access previously suspended alternatives."

They propose an intelligent successor generation (IGS) based on active scheduling and a HHS
algorithm called dynamic window search (DWS). The DWS follows the basic working principles
of A∗ and stage search. It aims to reduce the size of the search graph by reducing the scope of
selection and recovery of A∗ and a truncation of the number of candidate markings. DWS keeps a
specified search window size of a certain number of levels in the graph guided by two parameters,
bottom-depth and top-depth. The search window dynamically advances using two rules: when the
size of the bottom-depth equals zero and when the number of markings at the top-depth exceeds a
given number of markings called max-top. This is done so as to reduce the backtracking capability
of A∗ and the number of paths for further exploration. DWS uses a third rule that limits the number
of markings stored at each level of the graph, called max-size.

The work of Moro et al. [141] is practically the same paper as Moro et al. [79] that uses the
same IGS and DWS, termed differently as controlled generator of successors (CGS) and dynamic
look-ahead stage search (DLSS).

Reyes et al. [62] propose a new class of PN called buffer-nets and a new heuristic function based
on resource cost reachability (hRCR) matrix. The hRCR uses the properties of the buffer-nets and
assumes that jobs can always follow the path with the lowest operation time. The DWS algorithm
is then adapted for scheduling.

Yu et al. [64] use the same hRCR function proposed by Reyes et al. [62] in conjunction with two
HHS algorithms. The first HHS algorithm combines A∗ and Hill climbing by limiting the maximum
number of successors that can be generated at each node in the graph while the second adapt the
DWS algorithm [79] on a different set of FMS examples.

Mejia and Odrey [63] propose a HHS that combines A∗ search with beam search called Beam
A∗ search (BAS) to find near-optimal schedules in a timely manner. The BAS algorithm uses three
pruning strategies (all non-admissible) to reduce the space and time complexity. The first pruning
avoids state explosion using controlled search deepening by limiting the number of markings to
be stored and expanded at each level called beam width. The second reduces the search space by
eliminating non-promising markings using non-delay scheduling. The third reduces the size of the
OPEN list by pruning markings from the list when the size reaches a certain cutoff value. However,
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the authors confirm that the non-delay scheduling strategy (RSS) is not suitable for deadlock-free
scheduling of FMS with a high number of deadlocks. They demonstrate with an extensive set of
benchmark examples that the proposed algorithm improves the performance and speed of prior
search algorithms proposed by [26, 41, 139, 142]

Mejia and Montoya [32], Mejía and Montoya [143, 144] extend the BAS algorithm to other
applications such as the minimization of the total tardiness, deadlock-free scheduling of FMS with
blocking (no buffer systems), and resource assignment and scheduling respectively.

Kim et al. [145] present a reactive graph search algorithm for dynamic scheduling of ma-
chines and AGVs. The algorithm consists of Real-Time A∗ search [146] and a rule-based supervisor
(dispatching rule) used to find near-optimal solutions with small computational efforts. The ob-
jectives are the minimization of the makespan and total tardiness. Instead of the conventional
scheduling technique where the scheduling process must be completed before the first execution,
the proposed method alternates the search phase and execution phase based on the current state
of the system. This is done to make the scheduling system adapt to unexpected changes in the
production environment. Also, they propose a modeling method that divides the TPN into two
submodels: System Net and Process Net. The System Net describes the physical behavior of FMS
such AGV and work-in-process behavior while the Process Net represents the logical behavior that
includes the job scheduling process on machines

Huang et al. [69] propose a combination of A∗ and DFS to reduce the computation time
requirements of A∗. It uses DFS to prioritize markings at the deeper level of the A∗ search graph. In
addition to the search speed, the algorithm controls the quality of the solution obtained such that
the cost does not exceed the optimal cost by more than a factor 1 + ε.

Huang et al. [70] present a hybrid heuristic search scheduling strategy by combining A∗ and
backtracking (BT). The algorithm performs A∗ locally and BT search globally to overcome the
drawbacks of the best performing HHS algorithm BT-BF proposed by Xiong and Zhou [26], Xiong
et al. [139]. The improvement over the previous algorithms Xiong and Zhou [26], Xiong et al.
[139] is demonstrated on a particular set of FMS examples.

All the works discussed so far are TPN-based. Only a few articles have considered TCPN-based
scheduling. The works of Mujica et al. [112], Mujica and Piera [133], Mujica Mota and Piera Eroles
[134], Mujica Mota and Piera [135], Mujica and Piera [147] are the most representative. They
are all based on a two-phase algorithm for optimizing scheduling problems based on TCPN. The
first step called the generation phase uses the DFS to generate the CSS in order to find a feasible
schedule. This step only considers the untimed state space and separates the time values from the
state space evaluation. The second step called the optimization phase analyze and optimize the
time values of the obtained feasible solution path including the stored time stamp set of equivalent
untimed markings.

Since the full CSS cannot be generated, different search strategies were provided by the authors
to improve the two-phase algorithm and further reduce its memory requirements. [133–135]
integrate the time-line search into the CSS method for the generation phase. Mujica et al. [112]
propose two non-admissible heuristic functions based on absolute time values and probabilistic
values, that helps guide the search process efficiently in the optimization phase. Mujica Mota
and Piera [135] propose an improved version of the time-line search that employs consistency
evaluation and better detection of duplicate markings to improve the time efficiency.

Mota and Piera [108] propose three improvements for the two-step algorithm related to the
state space exploration of TCPN vis-Ãă-vis transition evaluation, data management, and information
search for duplicate detection. The aim is to reduce the time consuming tasks in marking generation
and storage. For data management, an efficient data structure is presented to avoid the storage of
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redundant information in markings. It is based on the notion that there is only a minimal difference
in the marking information between a parent marking and its successor. Hence, it is not necessary
to store all the marking information each time a new marking is generated. However, most of these
improvements were mostly applied to small-sized problems (job shop problems like 3×3 and 6×6)
compared with prior works on TPN scheduling.

3.3.3 STE Class

The only STE algorithm applied to PN scheduling can be traced back to 1998. Abdallah et al.
[124, 142] present an efficient heuristic search algorithm to obtain optimal deadlock-free schedules
for a class of FMS called Systems of Sequential Systems with Shared Resources S4R. [142] is an
improved journal version of the conference paper [124]. The algorithm combines DFS with branch
and bound in two steps: initialization, and optimization.

The initialization step uses DFS to obtain a quick initial solution. This solution is then set as an
upper bound for the next step. The marking generation algorithm is based on priority rules such as
Least Work Remaining (LWKR) and shortest processing time (SPT), to determine which transitions
to fire first if there is more than one enabled transition. It fires only one transition at a time just
like in a simulation context using the global clock. The remaining transitions are stored and used
during the optimization process.

In the optimization step, the algorithm backtracks to the stage where alternative transitions
exists and repeats another DFS until a new goal marking is found. The search continues with the
backtracking-DFS procedure until all markings have been explored and the optimal solution is
reached. The upper bound keeps track of the best solution found and it is used to prune markings
whose time is greater than the current bound. Also, the search algorithm is extended with the
use of truncation techniques based on PN siphon concept. Though, the algorithm described only
returns the last found solution (i.e. optimal), the notion of time is not discussed and the incumbent
solution path (current best solution) is not stored. The algorithm is similar to DFBnB but differs in
the way backtracking is initiated. While the backtracking is controlled by the number of alternative
transitions, the DFBnB is strictly depth-first for all iterations.

3.4 Summary
This chapter has presented a comprehensive review on the application of PN and heuristic search
methods to FMS scheduling. Two different approaches have been identified. Since the inception of
the PNAIHES in 1991, several algorithms and heuristic functions have been proposed. In spite of
this, most of the algorithms have only been tested on TPN models. Also, no bechmarking platform
exists for these algorithms. From the review, only two areas have been well exploited by the PN
research community; the HFDM and the TE class of the HHS method. In this light, this thesis
focuses on the less developed areas: SE and STE classes.
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Abstract

To achieve a significant improvement in the overall performance of a flexible manufacturing system, the
scheduling process must consider the interdependencies that exist between the machining system and
transport system. However, most works have addressed the scheduling problem as two independent de-
cision making problems, assuming sufficient capacity in the transport system. In this paper, we study
the simultaneous scheduling (SS) problem of machines and automated guided vehicles using a colored
Petri net (CPN) approach under two performance objectives; makespan, and exit time of the last job.
The modeling approach allows the evaluation of all the feasible vehicle assignments as opposed to the
traditional dispatching rules, and demonstrates the benefits of vehicle-controlled assignments over the
machine-controlled for certain production scenarios. Based on CPN modeling, SS is performed using a
hybrid heuristic search algorithm to find an optimal or near-optimal schedule by searching through the
reachability graph of the CPN with heuristic functions. Large-sized instances are solved in relatively short
computation times, which were a priori unsolvable with conventional search algorithms. The algorithm’s
performance is evaluated on a benchmark of 82 test problems. Experimental results indicate that the
proposed algorithm performs better than the conventional ones, and compares favorably with other ap-
proaches.

Keywords: Flexible manufacturing systems · Petri nets · Simultaneous scheduling · Automated guided
vehicles · Hybrid heuristic search · Simultaneous scheduling of machines and AGVs · Timed colored
Petri nets

7.1 Introduction
In flexible manufacturing systems (FMS) [119], automated material handling systems (MHS)
facilitate the movement of raw materials and work-in-process between workstations according to
a given sequence of operations or task. The handling operations are usually performed by robots,
conveyors, automated guided vehicles (AGV) etc, to reduce the labor-intensive and time-consuming
tasks thereby increasing productivity as well as shortening the delivery time of products. Due to
their high degree of flexibility, AGVs have found increasing applications in modern manufacturing
systems. They are battery-powered unmanned vehicles that move along a defined path guided by
either wire or optic or magnetic. The advantages offered by AGVs such as increased flexibility, better
space utilization, improved floor safety, reduction in overall operating cost, and easier interface
with other automated systems [148], make them a suitable alternative to traditional MHS.

Scheduling is a decision making process that plays a vital role in improving the performance
of an FMS. In traditional machine scheduling models, it is assumed that MHS are always ready
and available to move parts whenever needed [149] such that material handling times are ignored
in the scheduling process. This assumption holds at the academic level and for those FMS in
which infinite transport capacity can be assured. In practice however, the physical layout constrains
the transport capacity, corroborating that material handling operations can have a considerable
influence on the overall performance of an AGV-served FMS. An AGV system is considered a critical
component of an FMS. There exist different spatio-temporal interdependencies between machines
and AGVs which requires a causal analysis of the tight couplings between machining and transport
operations. The schedule of a job for the next operation depends on the transportation times of
the AGV and vice versa. When the scheduling of machines and AGVs are treated separately, the
lateness in the delivery of the next part for processing would result to machine idling. This can
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create a gap within the system which can subsequently lead to bottlenecks in the system, and
an underutilization of its resources [150]. As a result, an optimal machine schedule becomes an
underestimation of the performance objective since the schedule of job operations depends on the
AGV scheduling within the same system.

To bridge the gap, several researchers have demonstrated the benefits of coordinating AGV
with machine scheduling [1, 151, 152] called simultaneous scheduling (SS), in terms of cost and
lead times. As noted by Ulusoy et al. [117], a significant improvement in the performance of the
FMS would be expected as a result of making the scheduling of AGVs an integral part of the overall
scheduling activity. Consequently, the complexity of FMS scheduling increases with the integration
of AGV scheduling. The SS problem involves not only the sequencing of job operations on machines
but also the assignment of material handling tasks to AGVs, and the conflict-free routing of vehicles.
To simplify the scheduling problem, most works have addressed the problem as two independent
decision making problems [152]. The two subproblems are both known to be NP-hard [117].

This paper investigates the SS of machines and AGVs (SSMV) using a Petri net (PN) approach.
PNs have been used extensively to model, simulate, and analyze FMS characterized as discrete
event systems [27] due to their capability to mathematically and graphically model concurrency,
parallelism, causal dependency, shared resources, and synchronization. The advantage of using PN
is its ability to describe the system dynamics and the performance evaluation of the SS problem
as a single model [119, 138], as opposed to the separate scheduling of other approaches [1, 153].
Colored PN (CPN) modeling (a high level PN) is preferred since it provides a concise representation
of the system with the use of a data value called colored token, while maintaining the same
modeling power of PN. The problem is formulated using timed colored Petri net (TCPN) modeling.
The inclusion of the time concept allows one to conduct the performance analysis of the system
which can be used to evaluate the different manufacturing scenarios under one or more objectives.

Based on CPN modeling, a reachability graph (or state space) is constructed to explore all the
possible alternatives in terms of the firing sequence of transitions, in order to determine the best
schedule that optimizes a performance objective. However, an exhaustive state enumeration is
practically impossible due to the well-known state explosion problem and cannot be used to find
optimal or near-optimal solutions to large-sized problems within reasonable computation times.
As a result, most scheduling methodologies based on PN modeling [26, 32, 64, 70, 80] employ
AI-based heuristic search methods to simulate the best scenarios by exploring a partial reachability
graph with heuristic functions.

A∗ [154] is the commonly used baseline search method due to its completeness and optimality
guarantee. However, the time and memory requirements have limited its application to small
problem instances. To reduce the long computation times, several hybrid heuristic search methods
based on PN modeling have been proposed. They combine two or more search methods to find
suboptimal solutions quickly at the expense of losing optimality. Previous works on FMS scheduling
have combined the A∗ search with backtracking [26, 70, 139, 155], beam search [32, 63], depth-
first search [69], and stage search [62, 64, 141]. Most of these algorithms perform inadmissible
pruning [138] to reduce the memory requirements of A∗. Also, they terminate the search at the
first solution even when the memory available can still be used to improve the obtained solution.
Moreover, there is no guarantee that a solution will be returned at memory run out.

Two types of scheduling schemes have been considered: off-line, and on-line. The off-line
approach schedule all operations for the entire planning horizon in which all parts are assumed
to be available before the start of activities, whereas on-line scheduling attempts during execution
to schedule operations one at a time as the scheduling decision is needed (or as the system status
changes) [30]. While the time to solve off-line scheduling is not critical, on-line scheduling is
time-constrained such that a limited amount of computation time is given to produce a solution.
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The main contribution of this paper is twofold. First, we present two SSMV TCPN models
that use an event-driven approach to evaluate all the possible alternatives for vehicle assignments
without an imposition of a specific dispatching rule. The approach differentiates and examines the
benefits of a vehicle-controlled assignment over the classical machine-controlled. Unlike previous
methods [151, 153, 156], priority rules are not imposed on the solution models, in which the
system’s performance depends on the vehicle dispatching rule adopted. Two objective functions
are considered: the makespan, and the exit time of the last job in the system. Second, we adapt
and improve the hybrid heuristic search method called anytime layered search (ALS) [78], based
on the reachability graph of TCPN in which optimal or near-optimal schedules can be obtained
in relatively short computation times. It is aimed at tackling one of the inherent problems of
A∗ when dealing with FMS problems where only weak heuristic functions can be applied [1].
The algorithm combines A∗ with suboptimal breadth-first branch and bound (sBFBnB) [77] and
backtracking. It does not stop the search when the first solution is found. Instead, the search offers
an anytime feature [81, 157] by finding a sequence of improving solutions while keeping track
of the best solution cost until the search converges to optimal. Also, it is guaranteed to produce
the best solution found even if the memory available is not sufficient to reach convergence. By
convergence, we mean the algorithm needs to verify that the incumbent solution is the optimal
before terminating the search process. The solution time efficiency makes it possible to adapt the
proposed algorithm to on-line scheduling where decisions must be made in a short period of time
[158].

7.2 Related Work
This section exclusively reviews the relevant literature on the SSMV problem. The problem has been
formulated using different modeling techniques. A number of approaches describes the problem
with mixed integer linear programming [1, 151, 153, 159–164] while a few works have considered
PN [119, 138, 165], and disjunctive graph modeling [166]. The other works whose methods
are based on evolutionary algorithms like genetic [117, 152, 167–169], differential evolution
[170, 171], and simulated annealing [172], use a solution vector with fixed-length strings to
represent a schedule called chromosome.

Due to intractability, the existing scheduling methodologies based on mathematical formula-
tions adopt a decomposition framework. They solve the SSMV problem in two steps. First, a job-
shop scheduling heuristic procedure is used to find an optimal or near-optimal machine schedule
that excludes material handling activities. Then, given the machine schedule, a vehicle dispatching
rule finds a feasible solution to the vehicle scheduling problem by integrating AGV assignments.
Bilge and Ulusoy [1] present an iterative solution procedure that links the two subproblems in
order to facilitate the search for a good solution. The machine schedule is generated using two
algorithms, the Giffler and Thompson’s active and non-delay schedule algorithms, while the vehicle
schedule is handled by a sliding time window heuristic. They analyze the impact of processing and
travel times, and the complexity of material flow pattern on the process route, and on different
layout configurations. The other solution approaches like Raman et al. [159] use the concept of
project scheduling under resource constraints, Lacomme et al. [153] propose a branch-and-bound
coupled with discrete-event simulation framework, while Caumond et al. [162] extend the heuristic
framework proposed in [153].
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Instead of decomposing the problem, the metaheuristic solution methods use a chromosome
to represent operation sequencing and AGV assignment. Ulusoy et al. [117] present the first
genetic algorithm to solve the SSMV problem. They improve the solutions produced by the sliding
time window heuristic in Bilge and Ulusoy [1]. The other metaheuristic algorithms described in
[152, 167, 169–172] follow a similar approach. However, they differ in the solution representation
and evaluation, and the vehicle assignment heuristic algorithms used for AGV scheduling. Although
Lacomme et al. [166] modeled the problem as a job shop with several transport robots using
disjunctive graph, they propose an efficient memetic algorithm whose objective is to provide
solutions for large instances in short computational time.

Different FMS configurations have been considered depending on the guide-path layout,the
number of AGVs and machines, and other resource constraints like buffer size limit. Bilge and
Ulusoy [1] propose the most relevant benchmark instances on the scheduling problem which have
been used by several publications [117, 152, 158, 161, 167, 169–172]. The problem consists of
82 test instances with 4 different path layouts, and 2 AGVs. Also, the variants of this benchmark
problem have been studied: alternative routing of parts [170], and single AGV-based FMS with lim-
ited input/output buffer capacity at machines [153, 162]. Others consider just-in-time production
of complex assemblies under multiple capacity constraints [151], conflict-free routing [163], and
single AGV-based FMS in a closed loop [156, 160].

7.3 SSMV Problem Description
Consider an FMS that consists of a set of m machines M = {M1,M2, . . . ,Mm}, the load/unload
(L/U) station where parts enter and leave the system, and a set of identical k vehicles (AGVs)
V = {V1, V2, . . . , Vk} used for transportation of parts between two machines. There is a set of n
jobs J = {J1, J2, . . . , Jn} to be processed on one or more machines. Each job Jj consists of an
ordered sequence of nj operations Oij(i = 1, . . . , nj). Each operation Oij must be processed on
a dedicated machine µij ∈ {M1, . . . ,Mm} without preemption for pij > 0 time units [173]. A
machine can perform at most one operation at a time. Each machine has input and output (I/O)
buffers in which parts are stored before and after processing. The buffers serve as pick-up and
delivery (P/D) points for the AGVs.

Parts visit different machines in the system for different operations which in turn generates P/D
requests for the AGVs. An AGV performs a transportation operation between any two operations
Oij and Oi+1,j , to move a job from the source machine µij to the destination machine µi+1,j for
the next processing. AGVs perform two types of trips; a loaded trip, and a deadheading (or empty)
trip. A loaded trip is a delivery operation where the AGV moves a part from the output buffer of a
machine µij to the input buffer of another machine µi+1,j . In an empty trip, the AGV moves from
an idle position at a machine Mk without carrying a job in order to pick up a job waiting to be
transferred from µij to µi+1,j , where Mk 6= µij . Let tij represents the travel time between any two
machines Mi and Mj . The travel times are job independent and machine dependent.

The SSMV problem is formulated as follows: Given the FMS environment described, determine
the sequence of operations and the starting and completion times of each job on each machine,
and the trips between machines together with the assignment of transportation tasks to vehicles
according to two criteria:

• To minimize the makespan Cmax = maxnj=1{Cj}, where Cj represents the completion time
of the last operation Onj,j of job Jj .
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Fig. 7.1. Layout configurations used in the test example [1].

• To minimize the exit time of the last job from the system, where AGVs must return jobs to
the unload station Cmax−exit = maxn+1

j=1 {Cj}, where Cj represents the completion time of
the last transport operation Tµnj,j

,M0 , from the last processing operation Onj,j of job Jj to
the L/U station M0.

The problem is formulated under the following assumptions [1]:

• Machine operations and vehicle trips are non-preemptive, and there is sufficient I/O buffer
space at each machine and L/U station to avoid deadlocks.

• Processing, loading and unloading times are deterministic and known in advance.

• The number of AGVs is known, and they initially start from the L/U station.

• Guide-path layout is given, and the guide paths can be either unidirectional or bidirectional.
Travel times on each segment of the path are known.

• AGVs carry a single unit-load at a time, and they move along predetermined shortest paths,
with the assumption of no delay due to congestion.

• Traffic control issues like conflicts and congestion, and other unexpected events like machine
failure or downtime, scraps, rework, and vehicle dispatches for battery changer are ignored
here.

Figure 7.1 shows the four different layout configurations for the FMS problem proposed by [1].
Each FMS layout is composed of four machines, one L/U station, and two AGVs. The job sets and
travel times for the example are given in Appendices B.1 and B.2.
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7.4 TCPN Modeling for SSMV Problem
This section briefly introduces and recalls the basic definitions and concepts of TCPN, followed by
the TCPN models of the FMS problem using two different types of vehicle assignments. Interested
readers are referred to [47, 174] for a complete tutorial on CPN formulations and theory.

7.4.1 TCPN Preliminaries

A CPN is a directed bipartite graph with two node types called places and transitions, where the
nodes are connected via directed arcs. CPN allows the modularization of events and describes the
set of logical relationships that determine the interaction between subsystems’ components. A finite
set of places P = p1, p2, . . . , pq is used to specify the system components. In an FMS description,
a place represents a resource or job status. Each resource or job is described by tokens in the
place while a token consists of one or more colors describing the entity attributes, and carries
a weight called cardinality. An FMS operation corresponds to as an event whether machining
or transportation or AGV assignment. A finite set of transitions T = t1, t2, . . . , tn describes the
events (the start or completion) that may occur (or fire) based on the preconditions of input arc
expressions and guards. Graphically, places, transitions, arcs, and guards are represented by circles,
boxes, arrows, and square brackets respectively.

For performance evaluation and scheduling purposes, a CPN is extended with a time notion
expressed by the introduction of a global clock. The global clock represents the model time, and
each token has a time attribute called the time stamp. The time stamp describes the earliest
time at which a token becomes available. A TCPN [175] is formally defined as a tuple TCPN =
(CPN,R, r0) where CPN satisfies the requirements of a non-hierarchical CPN [174], R is a set of
timed values called time stamps, a subset of R closed under + and containing 0 and r0 is an element
of R, called the start time. In a TCPN, transitions can be associated with a delay interpreted as
production or transportation time in the FMS environment, represented as ’@+time value’. Also,
the CPN formalism allows time delays to be specified for places or arcs. This paper focuses on
transition delays that makes the transition behave as an event with start and release times using
the holding duration concept [71].

The current state of the system is defined by the distribution of tokens over the places called
marking. A marking maps each place into a timed multi-set of token elements and a timed marking
is a pair (m, r∗) which consists of the marking m together with the time stamps of the tokens and
r∗ ∈ R the value of the global clock [47]. The initial timed marking m0 consists of the markings of
each place in the model representing the initial state of the system. The untimed marking mu of a
marking m i.e. m(mu) is obtained by removing all the time stamps from the tokens in places.

A transition t is said to be time-enabled at time τk in a marking m denoted by m[t〉τk if all
the tokens to be consumed from the input places have a time stamp not later than time τk. The
enabling time τk of a transition t is the maximum of all the time stamps of the tokens consumed
[109]. If a transition t fires at time τk, it changes m to a new marking m′ denoted by m[t〉τkm′.
m′ is said to be reachable from m. This means that the tokens are removed from the input places
and added to the output places of the firing transitions. The number and color of the tokens are
determined by the arc expressions, evaluated for the occurring bindings [174]. A transition delay
applies to all output tokens created at transition firing. The time stamp of a token is defined at its
generation time. Firing a transition t at time τk with a delay d, time stamps the output tokens with
the time value τk + d.
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7.4.2 SSMV TCPN Models

While a job route (process plan) is specified for the machine scheduling problem, no prior vehicle
route exists for the AGV scheduling. The first step is to determine how vehicles should be assigned
to jobs or jobs to vehicles, called the vehicle assignment problem. This subsection proposes the two
TCPN models that provide solutions to the assignment problem within the SSMV framework in
which the vehicle assignment is either controlled by the machines, called machine-controlled SSMV
(MCSS) or vehicles, called vehicle-controlled SSMV (VCSS) during the scheduling process. This
paper employs an event-driven approach that does not take into account the number of vehicles
available or the number of outstanding P/D requests, but rather the state. As such, heuristic rules
for dispatching vehicles [176] may not be necessary in situations where a complete schedule needs
to be produced off-line or in a rescheduling process if the scheduling algorithm can output the best
schedule after evaluating all the possible combinations.

7.4.2.1 MCSS Model

Typically, a P/D request is generated whenever a machine unloads a part into its output buffer after
processing. In this classical approach, an AGV waits for a P/D request from the machine before
starting a trip. Figure 7.2 shows the TCPN model of the MCSS with the color set and variable
definitions for job set 1 and layout 1. It consists of eight places (P1, P2, . . . , P8) and four transitions
(T1, T2, . . . , T4). The interpretation of the places (including the conditional arc expression T4P1)
and colors is given in Table 7.1. The arc expression T4P1 describes the precedence constraints. It
is not placed in the figure for legibility. Likewise, the initial tokens in places P6 (MP6) and P7
(MP7) are not added due to the large number of tokens in each place. For clarity, the standard
timed multiset operator has been replaced with a single + while logical operators like andalso and
orelse by & and || respectively. The initial marking m0 consists of 5, 2, 4, 25, and 13 tokens in P1
(jobs), P2 (AGVs), P3 (machines), P6, and P7 respectively while the others are empty. The time
stamps of the tokens are written after the symbol @, and the global clock is at time 0. Places P6 and
P7 are untimed since they contain the transportation times between machines and the processing
times of each job operation. The same model can be used for different job sets and layouts by
replacing the initial tokens in P1, P6, P7, and the arc expression T4P1.

Transition T1 describes the vehicle assignment event. It is an immediate transition without
duration. Assignment depends on the availability of the AGVs in place P2 when the jobs in the
output buffer of the machines require a P/D service. Also, a job must not have completed its last
operation, described by the guard condition (op < 4). Since the assignment is machine-controlled,
an idle AGV waits for a task assignment from the machine before embarking on a P/D trip.

Once the vehicle is assigned after firing transition T1, the AGV has to perform two trips depend-
ing on its current position (pos). In this case, the AGV is said to be in a busy state. First, it performs
an empty trip (transition T2) either between the I/O buffers of the same machine or between
the input buffer of one machine and the output buffer of another machine. It is then followed
by a loaded trip (transition T3) from the machine that issues the service request. An empty trip
is required between the I/O buffer of the same machine given that the distance can be non-zero
[162]. The loaded travel time (d) in transition T3 includes both the loading and unloading time
of the job. An AGV becomes available (output arc T3P2 returning a token) as soon as it delivers
the job at the input buffer of the destination machine (output arc T3P4). The AGV stays idle at the
destination machine until another job request its service.
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Fig. 7.2. The TCPN model of the MCSS for job set 1 and layout 1.

Table 7.1. Interpretation of places and colors in the MCSS model.

Place Description Color Description

P1 Available jobs at the loading station for the
first operation or at the output buffers of ma-
chines, for AGV assignment

j Job identifier

P2 Available AGVs with current position in the
layout

m Machine identifier

P3 Available machines op Operation type identifier
P4 Jobs at the input buffer waiting to be pro-

cessed by machine
src Source machine

P5 Assigned AGV to pickup job dtn,dtnnDestination machine
P6 AGV transportation time matrix indicating

the source and destination machines, and
the travel time between the two

agv AGV identifier

P7 The processing time of each job operation
on machine

pos AGV current position

P8 Assigned AGV to load job d Empty travel time (T2), loaded travel
time (T3), machine processing time (T4)

T4P1 if j = 1&op = 1 then 1′(j,m, 2, 2) else if
j = 1&op = 2 then 1′(j,m, 4, 3) else if
j = 2&op = 1 then 1′(j,m, 3, 2) else if
j = 2&op = 2 then 1′(j,m, 2, 3) else if
j = 3&op = 1 then 1′(j,m, 4, 2) else if
j = 3&op = 2 then 1′(j,m, 1, 3) else if
j = 4&op = 1 then 1′(j,m, 2, 2) else if j =
5&op = 1 then 1′(j,m, 1, 2) else 1′(j,m, 0, 4)
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Transition T4 represents the machine scheduling event. It describes execution of a job’s opera-
tion in a machine with an assigned duration of @+d–the start and completion of the job processing.
T4 is enabled if the machine assigned to process the job is free, and there are jobs waiting to be
processed at the input buffer of the machine.

7.4.2.2 VCSS Model

Here, the decision of what machine to visit for a P/D task is determined by the vehicles. One of
the advantages of this approach is the reduction of the idle time of vehicles. For instance, in a
situation where there is no P/D request in the MCSS model often due to machining operations
of jobs or all the jobs are in the input buffers of machines or jobs are being transported by other
vehicles, an AGV stays idle until a part is deposited in the output buffer of a machine. Using
the VCSS model, the time between the ready time of jobs for pickup and the vehicle assignment
could be minimized if the AGVs can anticipate empty trips to machines with potential P/D request
immediately after a loaded trip according to a defined parameter. As such, the MCSS becomes a
subset of the VCSS (MCSS ⊆ V CSS) since the VCSS considers more alternatives that can be
explored during scheduling.

Since the machines’ buffers are the main source of P/D demands, the VCSS model predicts
potential service request using the I/O buffer size as a parameter for assignment. Hence, a vehicle
can be assigned to a machine with at least a part in its input or output buffer. Heuristic rules
such as maximum buffer size, ready time of jobs are not considered as measures as all possible
alternatives must be taken into account. An AGV can dispatch to any machine with a job waiting
to be transferred or wait for a job that is currently being processed, without restrictions on time
ordering or priority rules.

Figure 7.3 shows the TCPN model of the VCSS for the same job set and layout as in the MCSS.
The places have the same meaning as those in the MCSS with the exception of P5 with a different
color set. Place P5 (with five tokens) keeps the status of the buffers at each machine or L/U. Each
token in P5 contain four colors with variables < m/dtn, inp, out, ins > representing the source or
destination machine, the input buffer, the output buffer, and the I/O buffer size synchronization
between machine processing and AGVs’ P/D service respectively. Also, place P2 now includes an
additional color to specify an AGV state, described using color ctl. The arc expression T3P1 is the
same as T4P1 in the MCSS model.

Transitions T1 and T2 are used for AGV scheduling while T3 for machine scheduling. Transition
T3 performs the same function as T4 in the MCSS model with the addition of place P5 for updating
the machine buffers before and after processing. For the makespan minimization objective, the
output buffer is not updated for the last operation of the jobs (arc T3P5). No P/D service is required
at this point since the objective function does not take into account the transportation of completed
jobs to the L/U station. In this model, an AGV has two states: available for assignment after a
loaded trip, ctl = 0, and busy, ctl = 1. Unlike the MCSS model, an AGV in a busy state can either
be idling at a machine or performing a loaded trip.

The vehicle assignment is done by the AGVs via transition T2. Considering the buffer sizes
(guard (bin > 0 or bout > 0)), an available AGV selects the next machine to visit by performing an
empty trip immediately after the delivery of a job instead of staying idle at the last visited machine.
As such, both the assignment and empty vehicle trips are concurrently executed using transition
T2. The input buffer size is included as the assignment parameter for potential service request in
order to handle the non-availability of jobs at the output buffers of machines.
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Fig. 7.3. The TCPN model of the VCSS for job set 1 and layout 1.

Transition T1 is mainly used for loaded vehicle trips. An assigned AGV picks up a ready job at
the output buffer of the source machine, and transports it to the input buffer of the destination
machine. The AGV is expected to be at the same machine as the job to be picked up (guard
src = pos).

7.5 Heuristic Search for Timed State Space Exploration
The optimization process involves finding the optimal sequence of transition firings that will
transform an initial marking m0 to a given final or goal marking mf . This is usually done by
generating the reachability graph (or the state space) of a TCPN in order to evaluate all the
different configurations of the FMS. For the makespan minimization (the completion time of
the last job operation), the goal marking (without time stamps) for the MCSS model can be
represented as: mf = P1 4′(∗, ∗, ∗, 4); P2 2′(∗, ∗, 0); P3 4′(∗); P4 empty; P5 1′(0, 0, 0) +
4′(∗, ∗, ∗); P6 25′(∗, ∗, ∗); P7 13′(∗, ∗, ∗); P8 empty; (* means any color value). This means
that all the jobs must have completed their operations and must be in the output buffer (op = 4 in
place P1), the AGVs and machines are free (P2 and P3), there are no parts in the input buffer of
machines (P4), and all the jobs must have been unloaded from L/U for processing.

A∗ explores the state space in a best-first order, and expands markings according to the heuristic
function (f -cost); f(m) = g(m) + h(m) where g(m) is the actual makespan cost to reach marking
m from the initial marking m0, and h(m) is an estimate on the remaining cost to reach the goal
marking mf from m. A∗ guarantees that the search always finds an optimal solution if h(m) is
admissible i.e. it is a lower bound that does not overestimate the cost to goal, h(m) ≤ h∗ (m), ∀m
where h∗ (m) is the cost of the optimal path from m to the final marking [41]. A∗ maintains two lists:
the open list, and the closed list. The open list is implemented as a priority queue that stores the
markings that have been generated but not yet expanded whereas the closed list which is usually
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Fig. 7.4. The expansion behavior of A∗ in a breadth-first manner.

represented by a hash table, stores already-expanded (visited) markings. Expanding a marking
involves the computation of its successors while a visited marking is one that has been expanded
or encountered for the first time.

The performance of A∗ highly depends on the strength of the heuristic function. A tight lower
bound function is usually needed so that an optimal solution can be reached quickly. Conversely, a
strong heuristic function is usually too expensive to compute [117]. For the SSMV problem, it is
quite difficult to obtain a strong heuristic function due to unknown vehicle routes. A weak function
that is fast and easy to compute is considered acceptable for searching the state space. However, it
may result to exploring a large number of markings leading to an increased computational effort.

Assume A∗ is explored in a breadth-first (BF) manner using a layered structure such that all the
markings with the same minimum f -cost (fmin) in a layer L(i) are expanded before proceeding
to the next layer L(i + 1). N =

⋃dmax
i=0 L(i) where dmax is the maximum depth of the optimal

solution path (the number of layers required to reach the optimal solution). fmin is the least f -cost
of the open list . A layer L(i) comprises the set of markings with an exact distance of i (the level
index) from m0. Using Fig. 7.4 as an example, A∗ starts expanding from m0 with g(m) = 0 and
f(m) = 0. It breaks ties between markings with equal f -cost using the g(m) value. The red dotted
arrow indicates the path taken by A∗ to reach mf . Each time least f -cost value changes, the search
considers another path with the fmin at the top of the priority queue. In a BF ordering, A∗ implicitly
backtracks or performs a breadth-search to the layer having fmin in a situation where the f -cost
of the successor markings at the currently-expanding layer L(i) is greater than fmin. This behavior
can be seen in paths (m1,m2), (m5,m3), (m8,m7), (m7,m10) etc. When frequent backtracking
occurs, it may take a long computation time before a goal marking is reached.

Also, A∗ generates and stores all the successors of an expanded marking, some of which are
never expanded since they have an f -cost value greater than the optimal schedule. These markings
fill up the memory, and may prevent the search from reaching a goal marking if the search space
runs out of memory. Examples of these markings are m12, m14, m15, and m16 in Fig. 7.4.

We consider two admissible heuristic functions for the scheduling problem. The first one
h1(m) sets h(m) = 0 i.e. f(m) = g(m), and the other h2(m) is adapted from [26]; h(m) =
maxi{ξi(m), i = 1, 2, . . . , NR} where ξi(m) is the sum of operation times of those remaining oper-
ations for all jobs which are planned to be processed on the ith resource when the current system
marking is represented by m. NR is the total number of machines. Although the AGV is a resource,
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it cannot be used to compute h(m) since the vehicle to be selected to perform the remaining
material handling operations is not known in advance.

7.5.1 Hybrid Heuristic Search Algorithm

To enhance the efficiency of A∗, the adapted ALS algorithm from [78] extends the A∗ explored in a
layered manner with sBFBnB [77] to obtain a quick suboptimal solution. Backtracking is then used
to find a stream of improving solutions until the search terminates with the optimal solution. The
ALS algorithm was originally proposed for the breadth-first iterative deepening A∗ search. Instead of
performing an immediate backtracking each time fmin changes, the ALS splits the state space into
two parts controlled by two upper bounds, the A∗ fmin upper bound mUB, and sBFBnB suboptimal
upper bound, sUB. The two upper bounds show a complementary behavior, more like that of IDA∗

fmin and DFBnB respectively [177]. Using [177] definitions, mUB is the lower bound on the cost to
the optimal solution and increases in each iteration until it reaches the optimal solution, whereas
sUB is the current best solution found so far, the upper bound on the cost to the optimal solution
and decreases until it reaches the optimal solution.

The ALS performs successive iterations of A∗ and sBFBnB. In the first iteration, it starts with A∗

with f(m0) as the first mUB value. If the search is unable to find a goal marking with mUB i.e. A∗

expansion stops at a depth dfrontier called the frontier layer, it continues to expand markings from
dfrontier+1 using sBFBnB until a goal marking is reached. The search terminates if the f -cost of the
goal marking is less than or equal to the fmin of any unexpanded marking in OPEN between d = 0
and dfrontier. At this point, the search is said to have converged, and an optimal solution has been
reached. Otherwise, it backtracks to the deepest layer having the fmin to start another iteration.
The search continues to find improved solutions until an optimal goal marking is reached.

In the upper part of the search space (layer L(0) to L(dfrontier)), markings are expanded with
f(m) = mUB according to A∗ while only markings with f(m) < sUB are considered for expansion
in the lower part from L(dfrontier+1) to L(dmax). New markings are generated using the earliest
time state space (ESS) of a TCPN defined as m[t〉τkm′,@τk′ < τk : m[t〉τk′} [110]. ESS enables
an event-driven exploration of the timed state space without taking into account time constraints
for transition firings. It does not restrict the number of markings to be explored, thereby, offering
an optimality guarantee [71]. The frontier layer dfrontier is the last depth of the A∗ search in the
current iteration where the markings have successors with f(m) > mUB. After each iteration,
mUB is set to the fmin of the OPEN list in the A∗ area. Also, sUB is used to periodically prune the
state space when the incumbent sUB is improved. It removes markings with f(M) ≥ sUB to avoid
keeping a large number of unexpanded markings that would not lead to an optimal solution. Like
sBFBnB [77], sBFBnB expands markings in a BFS order, and uses the same heuristic function as A∗.
However, sBFBnB only considers the markings at the frontier of the A∗ i.e. it starts constructing its
own search space from dfrontier + 1 and does not remove layers from memory.

The steps of the ALS algorithm are given as follows:

1. Set current layer index i = 0, dfrontier =∞, and dmax =∞.

2. Compute the f -cost of the initial marking f(m0) = h(m0), set mUB = f(m0) and sUB =∞.

3. Put the initial marking m0 on the list CLOSED and its corresponding pointer (marking pointer
on CLOSED, g(m0), f(m0)) on list OPEN[i].

4. if mUB ≥ sUB, terminate the search. Return the final best solution sUB obtained and its
corresponding goal marking Mf .
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5. Set upper bound UB to mUB.

6. If i > dmax or the list OPEN[i] is empty, go to Step 11

7. For all markings m on list OPEN with f(m) ≤ UB, do the following:

(a) Remove the first marking m from OPEN[i].

(b) Find the enabled transitions of m according to ESS m[t〉τkm′,@τk′ < τk : m[t〉τk′} and
generate the successor marking for each enabled transition.

(c) For each successor m′ of m, do the following:

i. Compute h(m′) and f(m′).
ii. If m′ is a goal marking, do the following:

A. If f(m′) ≥ sUB, go to Step 7c.
B. Set sUB = f(m′) and construct the solution path from m′ back to m0.
C. If dmax =∞ or dmax > i+ 1, set dmax = i+ 1.
D. Go to Step 7c.

iii. If f(m′) < sUB, do the following:
A. If the untimed marking m′u of m′ is already on CLOSED, compare f(m′) with

f(mstored) of the existing markingmstored. If f(mstored) is lower, discard the new
marking m′. If f(m′) is lower, replace mstored with m′ on CLOSED and on OPEN
if it has not been expanded. Ifmstored has been expanded, putm′ on OPEN[i+1]
and prune the descendants of mstored. If f(m′) is equal to f(mstored), compare
their g(m) values and follow the replacement steps for lower g(m) if necessary.
In case the tie continues, use the firing time τk and completion time τk + d of
the last operation of both markings to break it.

B. If the untimed marking m′u of m′ is not on CLOSED, put m′ on CLOSED and its
corresponding pointer on OPEN[i+1].

8. Increment layer index i by 1, i = i+ 1.

9. If the least f -cost of OPEN[i] is greater than mUB, set UB = sUB − 1 and dfrontier = i− 1.

10. Go to Step 6.

11. Get the new value of mUB from the list OPEN[k], ∀k ∈ [0, dfrontier].

12. Backtrack to the deepest layer l with the first marking from OPEN with mUB. Set i = l and
update dfrontier.

13. If sUB has improved in the last iteration, prune all the markings and their pointers from the
lists CLOSED and OPEN respectively with f(m) ≥ sUB.

14. Go to Step 4

The improved ALS algorithm uses a different data structure for the OPEN list by storing only
the pointers of the markings in the CLOSED list. This is to avoid checking both the OPEN and
CLOSED lists for duplicates. As a priority queue, the OPEN list incurs a high runtime overhead if it
performs the simultaneous function of storing unique markings and sorting them based on f -cost.
During the duplicate detection procedure (Step 7(c)iii), the algorithm uses the condensed state
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space (CSS) method [81, 111] that factors out the notion of time when markings are compared.
Here, the time stamps are ignored in the detection process to avoid keeping a potential set of
duplicates with equivalent untimed markings but differing time evolutions. This method has been
used to schedule FMS using TCPN and AI-based heuristic search in [80, 81].

One of the notable difference between the improved algorithm and that of [78] is the use
of both f(M) and g(M) for the CSS duplicate detection procedure CSS((f(Mstored), g(Mstored)),
(f(M ′), g(M ′))) in order to provide a more accurate estimate in selecting the most promising time
stamp set. Previous studies [80, 81] reveal that it is quite difficult to break ties using g(M) as the
criterion to discard untimed marking duplicates. Also, the myopic evaluation of g(M) can prevent
the search algorithm from obtaining the best path that leads to an optimal solution. Although a
good lower bound f(M) estimate is required for the CSS procedure.

The ALS algorithm corresponds to an A∗ search if it returns an optimal solution at the first
iteration. The ALS algorithm is complete and optimal provided that: 1. h(M) is admissible. 2. g(M)
does not discard markings leading to an optimal solution in the time stamp evaluation for CSS,
and 3. The two upper bounds converge before memory runs out or before the search is terminated.
To provide timely suboptimal solutions, we adopt the expansion width parameter ω in [78] to limit
the number of markings to be expanded at each layer in each iteration.

7.6 Experimental Results
Discrete event simulation can be conducted to evaluate the performance of TCPN models using
the CPN Tools software [55]. Each simulation run corresponds to a path in the reachability graph.
As such, the performance optimization of TCPN models with a large number of decision variables
requires a large number of simulation runs [60]. Also, CPN Tools offers no support to integrate
heuristic search methods, and its limitations to support TCPN models for performance optimization
has been described in [71].

In light of this, a non-graphical TCPN tool called TIMSPAT (http://grupsderecerca.uab.cat/
timspat/) is developed for the experiments, specifically designed for performance evaluation with
heuristic search methods. It takes the specification of the TCPN model structure from ASCII files
where the description of each transition (arc and guard expressions) is written into a separate
file. The syntax description follows the standard rules of CPN formalism. Also, the initial and goal
marking definition, and heuristic function are placed in a separate file.

The TCPN simulator together with ALS and A∗ algorithms were coded in C++. Several exper-
iments were performed on the 82 test problems proposed by [1] in Fig. 7.1 on a 2.60GHz AMD
Opteron processor PC with 4GB RAM. The CPU time limit was set to 3600s for the ALS algorithm,
and an expansion width of 5 was selected for quick and improving solutions [81]. The test prob-
lems are grouped into two sets. The first set contains 40 instances whose tik/pk ratios are greater
than 0.25, and the other set contains 42 instances with tik/pk ratios lower than 0.25. Each instance
code is designated with prefix EX followed by two digits that indicate the job set and the layout.
An extra digit of 0 or 1 is appended to the code of the second instance set. This implies that the
process times are doubled or tripled respectively, where in both cases, travel times are halved.

To select the best SSMV model that offers a better performance, Fig. 7.5a gives the performance
comparison between the MCSS and VCSS models on the 82 test instances using the ALS algorithm.
The percentage deviation from the best known solution (BKS) is used to compare the solution
quality. The deviation is calculated as: (Cbest−BKS)/BKS×100. Cbest represents the best solution
obtained by the model. Clearly, the VCSS outperforms the MCSS in about 50% of the instance set.

http://grupsderecerca.uab.cat/timspat/
http://grupsderecerca.uab.cat/timspat/
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Fig. 7.5. Performance comparison of assignment policies and heuristic functions.

The MCSS performs as good as the VCSS mostly in the second instance set (from instance number
41 to 82) with tik/pk < 0.25, outperforming the VCSS in only one of the instances (EX720). As seen
in Fig. 7.5a, the efficiency of the FMS is influenced by the vehicle assignment strategy implemented.
The VCSS proves to be the best option, and it is used as the base model for subsequent experiments.

One of the aims of the proposed approach is to obtain the first solution quickly, and return
improving solutions with less computation time. This is highly dependent on the heuristic function
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Table 7.2. Performance comparison between A∗-CSS and ALS algorithms for the instance set with
t/p > 0.25.

Inst.

A∗-CSS ALS
First solution Sol. at CPU (min) Best solution Convergence

Nmark Cmax CPU Cfirst CPU 5 10 20 40 Cbest CPUbest Nmark CPU

EX11 560,956 96 615.2 154 0.1 96 96 138.5 828,467 800.8
EX12 464,803 82 511.0 129 0.2 82 82 39.2 832,435 800.6
EX13 528,081 84 578.7 120 0.2 84 84 145.1 792,098 762.5
EX14 602,510 103 652.9 202 0.1 104 103 103 510.2 870,520 832.8
EX21 2,724,500 100* 3702.2 197 0.2 100 – – – 100 282.4 – –
EX22 850,640 76 1146.2 159 0.2 76 76 100.5 544,245 666.2
EX23 2,016,376 86 2752.3 147 0.2 86 – – – 86 96.6 – –
EX24 3,500,335 108* 4487.7 218 0.2 112 108 – – 108 475.9 – –
EX31 3,035,665 99* 3966.2 161 0.2 99 – – – 99 27.7 – –
EX32 2,704,103 85 3496.9 118 0.3 85 – – – 85 44.9 – –
EX33 2,580,088 86 3386.7 108 0.2 88 87 86 86 617.3 – –
EX34 4,201,454 111* 5499.5 199 0.2 113 111 – – 111 414.9 – –
EX41 3,862,536 112* 4361.2 213 0.2 112 – – – 112 255.4 – –
EX42 3,272,458 87* 3672.5 121 0.2 87 – – – 87 268.7 – –
EX43 3,246,865 89* 3639.2 132 0.2 89 – – – 89 216.5 – –
EX44 3,870,393 121* 4456.3 189 0.2 126 121 – – 121 452.0 – –
EX51 690,141 88 751.9 158 0.1 87 87 18.4 891,855 857.1
EX52 478,605 69 529.0 103 0.3 69 69 98.7 897,285 869.7
EX53 578,850 74 640.6 122 0.1 74 74 139.4 861,335 821.7
EX54 712,713 96 779.8 191 0.1 96 96 223.2 935,923 885.0
EX61 10,340,913 118* 13823.8 214 0.2 118 118 74.7 – –
EX62 4,569,909 98* 6199.1 161 0.2 98 98 66.6 – –
EX63 6,803,150 103* 9104.9 153 0.2 104 104 103 – 103 902.6 – –
EX64 10,485,849 120* 14041.4 284 0.2 123 120 – – 120 370.2 – –
EX71 o.o.m o.o.m o.o.m 222 0.2 114 111 – – 111 549.3 – –
EX72 o.o.m o.o.m o.o.m 173 0.2 87 87 87 85 79 2303.3 – –
EX73 o.o.m o.o.m o.o.m 142 0.3 90 90 86 85 83 2403.3 – –
EX74 o.o.m o.o.m o.o.m 300 0.2 131 131 129 128 126 3598.0 – –
EX81 o.o.m o.o.m o.o.m 189 0.2 164 164 164 161 161 1300.6 – –
EX82 o.o.m o.o.m o.o.m 193 0.2 151 – – – 151 2.7 – –
EX83 o.o.m o.o.m o.o.m 167 0.3 153 – – – 153 9.3 – –
EX84 o.o.m o.o.m o.o.m 296 0.2 163 – – – 163 295.8 – –
EX91 1,862,100 116 2075.1 219 0.2 116 116 57.0 2,723,154 2721.4
EX92 1,260,261 102 1400.8 169 0.2 102 102 284.0 2,631,991 2643.0
EX93 1,475,114 105 1654.4 160 0.2 105 105 54.1 2,574,261 2602.3
EX94 2,008,506 120 2216.0 229 0.2 120 120 1266.5 2,827,318 2867.3
EX101 o.o.m o.o.m o.o.m 236 0.2 146 – – – 146 115.5 – –
EX102 o.o.m o.o.m o.o.m 213 0.3 137 137 137 136 135 3252.9 – –
EX103 o.o.m o.o.m o.o.m 211 0.3 139 – – – 139 66.6 – –
EX104 o.o.m o.o.m o.o.m 355 0.2 159 159 157 – 157 822.2 – –
*–solution obtained by A∗ with CPU > 3600s, Bold solution–converged within CPU time limit.
Inst.– instance, o.o.m–out of memory, Dash–no solution returned for the time interval.

that picks out the best ordering of markings in the search space. To select the heuristic function that
best matches this purpose for the SSMV problem, we analyze the performance of the two heuristic
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functions h1(m) and h2(m) on the two instance set. Fig. 7.5b compares the CPU performance
when the best solution returned by the two functions matches. A value of CPU = 4000 s is used
when a function fails to return the best solution as the other within the given time limit. For
most of the instances, h1(m) produces more best solutions in lesser computation times than h2(m).
h2(m) requires more CPU time to achieve the same solution quality as h1(m) especially for the first
instance set. h1(m) obtained better solutions than h2(m) in 25 of the 82 instances within the same
limit. For the SSMV problem, h1(m) proves to be the more effective function that produces quick
and improving solutions for the ALS algorithm. As such, the type of heuristic function adopted
plays a crucial role in determining the strength of the algorithm.

Table 7.2 compares the performance between the A∗-CSS (A∗ based on condensed state space),
and the ALS algorithms for the first instance set. We use the CSS approach to enhance the A∗

search efficiency as the conventional one could not solve any of the instances. The Nmark column
indicates the number of markings expanded. Since the A∗-CSS search returns only one solution
at termination, we use h2(m) due to the slower convergence of h1(m) as observed in the table.
The A∗-CSS could only solve 16 instances within 1 hour of CPU, 12 instances over 1 hour, and it
took over 3 hours to find the optimal solution for the EX6* instances. However, A∗-CSS could not
solve the larger instances EX7*, EX8*, and EX10*. The ALS algorithm obtained the same optimal
solution as A∗-CSS in relatively short computation times (less than 3 min), even though the ALS
did not converge on time. As shown in the table, the capability of the ALS is not limited by the
problem size. It guarantees that solutions are always returned irrespective of the problem size.

Table 7.3 shows the performance comparison of the ALS algorithm with four off-line and two
on-line scheduling algorithms for test problems with t/p > 0.25. The off-line approaches are:
sliding time window heuristic (STW) [1], two hybrid genetic algorithms, AGA [167] and PGA
[152], and a hybrid local search with simulated annealing (SALS) [172]. The on-line algorithms
are taken from Erol et al. [158]: a multi-agent system (MAS), and the best performing dispatching
rule, shortest traveling distance (STD) in the comparison made by [158]. The percentage deviation
(Dev%) from the best known solution is used to measure the solution quality. ALS found two new
best known solutions and outperforms the other algorithms with the exception of EX103. The SALS
algorithm proves to be the most efficient evolutionary algorithm for the first instance set. More
recently, [164] obtained a new solution for EX103 with makespan of 137 using tabu search. The
results obtained by the on-line algorithms (MAS and STD) could not compete with ALS. Almost all
the solutions were significantly outperformed by ALS in less than 3 min given the time intervals
in Table 7.2. Computation times were not reported in [158]. As such, the CPU times cannot be
compared. This demonstrates the suitability of the ALS algorithm for on-line scheduling, and the
superiority of the VCSS model over dispatching rules. Fig. 7.6 shows the Gantt chart of the new
best known solution obtained for EX104 instance. For the second instance set (t/p < 0.25), the
ALS obtains the best known solutions for all instances and solves most of them in less than 3 min
with an average of about 5 min across the 42 test instances.

The Cmax−exit minimization criterion has been rarely studied in the literature. So far, only
two works have solved the SSMV instances considering the exit time of the last job: the SALS
algorithm, and the memetic algorithm (MEMA) proposed by [166]. Table 7.4 gives the performance
comparison of the results obtained for the 40 instances of the first instance set. For the ALS
algorithm, the table summarizes the solutions produced by presenting the exit time value and CPU
of the first and best solutions. The ALS outperforms SALS and compares favorably with MEMA. Out
of the 40 instances, the proposed approach found 35 best known solutions and two new solutions.
However, the ALS needed over 1h CPU time to obtain the best known solutions for 5 instances.

In general, an off-line schedule remains acceptable as long as the operating conditions of the
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Table 7.3. Performance comparison of ALS with existing approaches for problems with t/p > 0.25.

Inst.
STW AGA PGA SALS MAS STD ALS

Cbest Dev% Cbest Dev% Cbest Dev% Cbest Dev% Cbest Dev% Cbest Dev% mUB Cbest Dev%

EX11 96 0 96 0 96 0 96 0 130 35.42 126 31.25 95 96 0
EX12 82 0 82 0 82 0 82 0 98 19.51 104 26.83 81 82 0
EX13 84 0 84 0 84 0 84 0 109 29.76 110 30.95 83 84 0
EX14 108 4.85 103 0 103 0 103 0 168 63.11 164 59.22 102 103 0
EX21 105 5.00 102 2.00 100 0 100 0 143 43.00 147 47.00 59 100 0
EX22 80 5.26 76 0 76 0 76 0 86 13.16 104 36.84 47 76 0
EX23 86 0 86 0 86 0 86 0 98 13.95 118 37.21 49 86 0
EX24 116 7.41 108 0 108 0 108 0 169 56.48 172 59.26 66 108 0
EX31 105 6.06 99 0 99 0 99 0 142 43.43 138 39.39 58 99 0
EX32 88 3.53 85 0 85 0 85 0 114 34.12 116 36.47 48 85 0
EX33 86 0 86 0 86 0 86 0 103 19.77 126 46.51 48 86 0
EX34 116 4.50 111 0 111 0 111 0 167 50.45 182 63.96 66 111 0
EX41 118 5.36 112 0 112 0 112 0 198 76.79 220 96.43 74 112 0
EX42 93 6.90 88 1.15 87 0 87 0 129 48.28 151 73.56 58 87 0
EX43 95 6.74 89 0 89 0 89 0 155 74.16 143 60.67 63 89 0
EX44 126 4.13 126 4.13 126 4.13 121 0 242 100 247 104.13 85 121 0
EX51 89 2.30 87 0 87 0 87 0 130 49.43 124 42.53 86 87 0
EX52 69 0 69 0 69 0 69 0 98 42.03 101 46.38 68 69 0
EX53 76 2.70 74 0 74 0 74 0 109 47.30 103 39.19 73 74 0
EX54 99 3.13 96 0 96 0 96 0 168 75.00 168 75.00 95 96 0
EX61 120 1.69 118 0 118 0 118 0 153 29.66 162 37.29 56 118 0
EX62 100 2.04 98 0 98 0 98 0 123 25.51 135 37.76 45 98 0
EX63 104 0.97 104 0.97 103 0 103 0 128 24.27 143 38.83 46 103 0
EX64 120 0 120 0 120 0 120 0 189 57.50 190 58.33 60 120 0
EX71 119 7.21 115 3.60 111 0 111 0 129 16.22 143 28.83 40 111 0
EX72 90 13.92 79 0 79 0 79 0 92 16.46 109 37.97 28 79 0
EX73 91 9.64 86 3.61 83 0 83 0 93 12.05 109 31.33 30 83 0
EX74 136 7.94 127 0.79 126 0 126 0 156 23.81 173 37.30 47 126 0
EX81 161 0 161 0 161 0 161 0 196 21.74 217 34.78 56 161 0
EX82 151 0 151 0 151 0 151 0 172 13.91 180 19.21 46 151 0
EX83 153 0 153 0 153 0 153 0 172 12.42 182 18.95 46 153 0
EX84 163 0 163 0 163 0 163 0 251 53.99 246 50.92 66 163 0
EX91 120 3.45 118 1.72 116 0 116 0 178 53.45 163 40.52 115 116 0
EX92 104 1.96 104 1.96 102 0 102 0 123 20.59 128 25.49 101 102 0
EX93 110 4.76 106 0.95 105 0 105 0 119 13.33 132 25.71 104 105 0
EX94 125 4.17 122 1.67 122 1.67 120 0 181 50.83 190 58.33 120 120 0
EX101 153 4.79 147 0.68 147 0.68 147 0.68 188 28.77 193 32.19 57 146* 0
EX102 139 2.96 136 0.74 135 0 135 0 154 14.07 164 21.48 51 135 0
EX103 143 3.62 141 2.17 139 0.72 138 0 158 14.49 180 30.43 52 139 0.72
EX104 171 8.92 159 1.27 158 0.64 159 1.27 246 56.69 249 58.60 64 157* 0
*–new solutions.

system do not change [86]. However, whenever unexpected events or disturbances occur such
as delays in machine processing, disruptions on the transport network or status changes due to
machine breakdown or arrival of new jobs, the system deviates from the original schedule. As a
result, a change in the currently implemented schedule is required. Off-line scheduling, considered
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Fig. 7.6. Gantt chart of the new best known solution for EX104 instance.

an open-loop control strategy, may not be robust enough to handle these changes. The proposed
approach supports a closed-loop solution that implements an integrated scheduling and control
scheme [59, 178] through a hybrid off-line/on-line (scheduling/rescheduling) procedure. Here,
the scheduling problem is solved iteratively as different instances of off-line scheduling, taken into
account the current shop floor status. This procedure requires an interface with the control system.

1. Given the TCPN model and an initial marking of the system, solve the scheduling problem
using the ALS algorithm without CPU time constraints or with the CPU time required before
the start of activities.

2. Deliver the SSMV schedule to the shop floor.

3. In an event of disturbance or disruption, get the current state of the system and send it as an
initial marking to the ALS algorithm.

4. Execute the ALS algorithm with CPU time limit to generate a new schedule.

5. Repeat Steps 2-4.

7.7 Conclusion
We have presented a TCPN-based approach to solve the SSMV problem. The scheduling technique
implements a hybrid heuristic search algorithm based on TCPN modeling by combining the A∗

search with sBFBnB and backtracking. Two vehicle assignment methods were considered and
their impact was analyzed on the overall performance of the FMS. The proposed algorithm have
been shown to outperform conventional heuristic search algorithms in terms of providing a quick
first solution and improving ones at different time intervals. The consideration of the vehicle-
controlled method in the modeling approach makes it more efficient for vehicle assignments over
heuristic dispatching rules for the analyzed systems. The proposed approach is different from the
existing ones in that it can be adapted to both off-line and on-line scheduling problems without
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Table 7.4. Performance comparison for the first instance set with t/p > 0.25 based on the Cmax−exit
criterion.

Instance
SALS MEMA ALS

Cbest Dev% Cbest Dev% Cfirst CPUfirst Cbest Dev% CPUbest

EX11 114 0 114 0 162 0.18 114 0 14.6
EX12 90 0 90 0 132 0.19 90 0 223.5
EX13 98 0 98 0 144 0.2 98 0 40.6
EX14 140 0 140 0 203 0.17 140 0 3.5
EX21 116 0 116 0 169 0.25 116 0 167.6
EX22 82 0 82 0 145 0.25 82 0 53.4
EX23 89 0 89 0 132 0.25 89 0 656.5
EX24 134 0 134 0 185 0.23 134 0 407.6
EX31 121 0 121 0 191 0.25 121 0 122.1
EX32 89 0 89 0 163 0.23 89 0 130.2
EX33 96 0 96 0 127 0.30 96 0 101.8
EX34 148 0 148 0 196 0.27 148 0 352.7
EX41 138 1.47 138 1.47 168 0.25 136* 0 316.6
EX42 100 0 100 0 133 0.28 100 0 89.3
EX43 102 0 102 0 156 0.25 102 0 525.8
EX44 163 0 163 0 198 0.25 163 0 226.5
EX51 110 0 110 0 146 0.17 110 0 8.8
EX52 81 0 81 0 116 0.19 81 0 116.8
EX53 89 0 89 0 109 0.19 89 0 154.3
EX54 134 0 134 0 194 0.16 134 0 120.3
EX61 129 0 129 0 170 0.31 130 0.78 314.7
EX62 102 0 102 0 141 0.31 102 0 74.4
EX63 105 0 105 0 142 0.31 105 0 2661.4
EX64 153 1.32 151 0 230 0.25 151 0 471.9
EX71 135 1.50 134 0.75 192 0.34 133* 0 1187.6
EX72 86 0 86 0 137 0.39 87 1.16 4776.2
EX73 93 0 93 0 146 0.36 95 2.15 601.1
EX74 161 0 161 0 211 0.36 161 0 6314.1
EX81 167 0 167 0 255 0.31 167 0 6138.7
EX82 155 0 155 0 171 0.31 155 0 6.4
EX83 155 0 155 0 169 0.34 155 0 25.8
EX84 178 0 178 0 268 0.28 178 0 798.8
EX91 129 1.57 127 0 178 0.25 127 0 63.6
EX92 106 0 106 0 151 0.27 106 0 916.9
EX93 107 0 107 0 155 0.25 107 0 99.3
EX94 149 0 149 0 190 0.22 149 0 44.7
EX101 153 0 153 0 226 0.34 153 0 384.2
EX102 139 0 139 0 220 0.34 139 0 4722.2
EX103 141 1.44 139 0 179 0.39 139 0 6996.6
EX104 183 0 183 0 270 0.38 183 0 2890.6

*–new solutions, bold Cbest –convergence, bold CPUbest –over 1h.

losing optimality guarantee provided that certain conditions are met. Besides the computational
time reduction, the modeling aspect has also proved to be useful in describing the dynamics and
interdependencies between the machining and AGV systems as a single and compact model. The
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benefit of the proposed framework is that it can be used to solve most scheduling problems without
requiring a change in the algorithm.

The algorithm has been tested on a number of test problems with different job sets and layouts.
The experimental results demonstrate the importance of obtaining high quality solutions at reduced
computation times as opposed to waiting until the termination of the search algorithm. This can
be of benefit to industrial practitioners aiming to provide solutions to real-time problems at the
slightest possible time. The ALS algorithm competes favorably with the evolutionary algorithms
without the need to tune parameters or carry out random searches at different times.

The timeliness of the improving solution produced by the ALS algorithm is sensitive to the
problem size. The frequency of returning improving solutions for large-sized problems is influenced
by the variables involved in the enabling and firing transitions, and the expansion width used. Also,
it is difficult to ascertain whether or not the search algorithm has reached the optimal solution when
no new solutions are returned for a large amount of time. Even though the optimal solution has
been found, the algorithm must explore the remaining markings with f -cost values between mUB
and sUB in order to verify the convergence of the last solution obtained. The computation and
convergence times can be further improved by parallelizing the search on a number of processors
or workstations. Its application to SS problems with conflict-free routing of AGVs and limited buffer
capacity will be investigated in a future work.
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8.1 Introduction
For the successful application of an integrated schedule in some production facilities, the specific
paths to be taken by the AGVs for P/D requests must be explicitly defined in the routing problem
of the FMS model. The SSMV problem description used by most works in the literature assumes a
direct and conflict-free path between the source and the destination machines, ignoring the possi-
bility of collisions, transportation delays, and congestion on the guide-path layout. This assumption
may be less realistic in FMS with multiple AGVs where the transportation times depend not only on
the capacity of the nodes and path segments on the guide-path network, but also on the movement
of other AGVs within the same network. Hence, the SSMV schedule becomes infeasible if the traffic
conditions resulting from the physical constraints are not taken into account. The travel time of
AGVs include the actual travel time of the selected path and the delays encountered along the path
due to the traffic conditions [179]. As a result, controlling the movement of the vehicles on the
guide path becomes critical to the overall performance of the system.

Notwithstanding, the SSMV assumptions are suitable for situations where: multiple lane guide
paths exist between nodes that allows for simultaneous travel of more than one AGV in the same
direction, employing adequate separations; buffering areas are available for traveling AGVs in
which all nodes have facilities for holding blocked vehicles; layouts are designed to avoid collisions
and deadlocks [180]; or in flexible manufacturing cells [8].

8.2 Problem Description
The guide-path layout is modeled as a graph consisting of a set of nodes and edges (or arcs). The
nodes represent the P/D stations (machines, L/U) and intersection points, while the edges are the
directed path segments connecting the nodes and indicating the travel directions. The guide path
can be either unidirectional or bidirectional or mixed. The vehicle routing problem involves the
selection of the path to be taken by the AGV from its current node to its assigned destination node
(given by the P/D assignment), and the control of the AGV movement as it travels along the path.
The path selection depends primarily on the layout and it specifies the sequence of nodes to be
visited by the AGV to reach its destination. The routing objective is to minimize the travel time of
each P/D request. Two types of routing strategies have been considered: static, and dynamic [180].
Here, we focus only on static routing which assumes that the AGVs always follow a fixed shortest
path route between any two P/D stations.

While moving through the selected path, an AGV may block or collide with another in a multi-
AGV system, which can propagate delays to other parts of the system. Blocking occurs when a
loaded AGV encounters an idle AGV on its traveling route. Also, collision may occur if two vehicles
attempt to occupy the same path segment. The possible conflicts that may arise in the system
include: head-on collision, two AGVs traveling in opposite directions on a segment; head-to-tail
collision, two AGVs moving in the same direction at different speeds; and collision at junction, two
AGVs moving toward the same node from different directions [31]. A control strategy is needed to
coordinate the movement of AGVs to ensure a conflict-free route.

For collision avoidance, we adopt the zone control technique [181, 182] that divides the guide-
path layout into several disjoint zones with restrictions on the movement of vehicles. Here, a zone
is associated with each edge on the layout. The zone control constraints are: 1. Only one vehicle
can travel on an edge at a time, and 2. Each node can only be occupied by one vehicle. The Gantt
chart in Fig. 7.6 and those in [172] will lead to collisions given these constraints. In addition to
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Fig. 8.1. A mixed guide-path layout showing the node numbers and zone specification.

the above constraints, the following assumptions are made:

• Each node has a unit-capacity including the L/U station node.

• The traveling time on each edge is known and it is the same for both loaded and empty AGVs.

• No buffering area exists for idle vehicles.

• The loading and unloading times of vehicles are included in the travel times.

Incorporating the conflict-free routing of AGVs makes the scheduling problem even more
difficult to solve. The SSMV-CFR problem includes the SSMV, the specification of the conflict-free
route path for each P/D request, and the determination of arrival and departure times of AGVs
at each node in the conflict-free route path with the objective of minimizing the makespan of the
overall schedule. Figure 8.1 shows the layout of the problem considered (layout 1 in Fig. 7.1) with
the node numbers and zone specification. The travel time on each edge is 2 time units.

8.3 Related Work
Due to the scheduling complexity, the SSMV-CFR problem has received little attention in the
literature. The only work that has attempted to solve this problem from the PN domain dates
back to 1994. Sun et al. [138] propose a Limited-Expansion A∗ algorithm for the SSMV-CFR
of a prototype AGV-served FMS that includes the conflict-free routing of 2 AGVs on a simple
unidirectional guide-path layout of 5 nodes. They use the zone control approach and a push-AGV
strategy to avoid collisions and blocking respectively.

The other two works based on mathematical modeling [163, 183] employ a decomposition
framework different from the conventional ones used in solving the SSMV problem due to the
increase in the number of decision variables. Nishi et al. [163] propose a bilevel decomposition
algorithm that solves the machine scheduling and AGV task assignment as a master problem at
the upper level using Lagrangian relaxation technique. At the lower level, a distributed routing
algorithm finds the conflict-free routing of the upper level solution. Saidi-Mehrabad et al. [183]
use a similar approach with a 2-stage ant colony algorithm with the objective of minimizing the
makespan. To the best of our knowledge, this is the first study that applies a TCPN-based approach
to solve the SSMV-CFR problem.
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Fig. 8.2. The TCPN model of the MCSS for job set 1 and layout 1.

8.4 SSMV-CFR TCPN model
Using the zone control technique, we develop a new TCPN given in Fig. 8.2 by expanding the
VCSS model to include the description of the guide-path network and the movement of the AGVs
between zones. The meaning of the new and modified places and colors is given in Table 8.1.
Places P2 and P5 are duplicated for clarity. The arc expression T6P5 is equivalent to T1P5 in
Fig. 7.3, while T2P5 and T3P5 remain the same. Each node in the guide path is modeled as a
resource in place P8, and a zone is described with two nodes denoting the entry and exit points
(arc expression P8T4). The initial marking m0 has 5 jobs at the L/U station (P1) and 2 AGVs
stationed at nodes 0 (L/U) and 10 respectively.

In the TCPN, an AGV can be in one of the four states specified with color ctl ∈ {0, 1, 2, 3}
indicating idle, pickup, delivery, and push-move. Unlike the net in Fig. 7.3, transition T1 describes
only the pickup operation of jobs, for assigned AGVs at transition T2 that have traveled through
the designated zones with transitions T4 and T5 to the pickup station (guard src = pos).

An AGV moves from one source node to the other using transition T5. Before it can travel on a
selected path segment, the AGV needs to acquire the control right of the zone (transition T4) based
on the status of the neighboring nodes. To reserve the path, the AGV checks to make sure that the
next adjacent node dtn on the route path given in the routing table (P6) is free i.e. sts = 0. If the
guard conditions are met, the AGV leaves the current node (the firing of T4) and starts moving
to the next node (place P9). Otherwise, it waits until the next node is free or may decide to move
to another adjacent node provided an alternative path exists. During this operation, the current
node is freed (arc expression T4P8) to inform the other AGVs of its availability. Once the move is
completed (by firing transition T5), the destination node dtn status st is set to occupied (1).



8.4. SSMV-CFR TCPN model 77

Table 8.1. The interpretation of the new and modified places and colors in the VCSS-CFR model.

Places Color set Colors Descriptions

P2 AGV = product
INT ∗ INT ∗ INT ∗
INT ∗ INT ∗ INT ∗
INT timed

〈agv, pos, dtnn, ctl, j,
op, org〉

Vehicle agv at current node pos traveling to
destination node dtnn to pickup or deliver
ctl = 1, 2 a job j with operation op from P/D
location org or a vehicle at idle or push-move
state ctl = 0, 3

P6 BMON 〈org, dtnn, src, dtn〉 The routing table of the guide-path layout
from a source P/D station org to a destination
P/D station dtnn given the zone node points
src and dtn to traverse.

P8 NOD = product
INT ∗ INT timed

〈src, st〉 Status st (free=0 or occupied=1) of node src

P9 TRP = product
INT ∗ INT ∗ INT ∗
INT ∗ INT ∗ INT ∗
INT ∗ INT timed

〈agv, pos, dtnn, ctl, j,
op, org, dtn〉

A traveling vehicle agv for P/D (ctl = 1, 2)
leaving node pos to the next adjacent node
dtn of the zone to traverse

P10 BF = product INT ∗
INT

〈x, y〉 Monitors the total number of P/D requests x
in the input buffers and y in the output buffers
of machines and L/U

With the active assignment policy of the VCSS, AGVs are expected to pick up request immedi-
ately after delivery. An AGV starts traveling for the next assignment provided there are P/D requests
to be served. In this situation, blocking is expected to minimally occur in layouts without buffering
areas for idle AGVs. To avoid blocking, we adopt the push-AGV control strategy in [138]. This
strategy (modeled as transition T7) allows a traveling AGV to issue a push request to an idle AGV
on its path, instructing the idle AGV to leave the occupied node and move to the next adjacent
one. Frequent push requests can be issued if vehicles’ states do not change instantaneously after a
delivery service. This may result in the complete blockage of the system (deadlock). To avoid this
problem, a push request is only issued if there is no workload in the system (place P10 and guard
x+ y = 0) i.e. the I/O buffers of machines and loading station are empty.

In spite of its advantages, a zone-controlled AGV system is still vulnerable to deadlocks [181].
This can prevent the scheduling algorithm from producing a feasible schedule in the static routing
strategy where no alternative paths are provided. Deadlock can occur if an AGV tries to move to a
node currently occupied by another AGV whose fixed routes are in either direction. For example,
the two bidirectional path segments in Fig. 8.1 connecting nodes 1 and 6, and 4 and 9, are sources
of deadlocks for vehicles traveling in opposite directions. To minimize deadlock and make the
TCPN valid for static routing, zones Z2 and Z18 are merged into one zone. The same modification
applies to zones Z6 and Z8. Overall, the routing module of the model can be adapted to any
number of AGVs by modifying the tokens in place P2 as well as any layout type by replacing the
tokens representing the routing table in place P6.
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Table 8.2. Computational results for the SSMV-CFR problem instances with 2, 3, and 4 vehicles.

Instance

Number of vehicles

2 3 4

C1 CPU1 Cb CPUb BKS-SSMV C1 CPU1 Cb CPUb C1 CPU1 Cb CPUb

EX11 114 37.8 97 4410.2 96 99 1.7 90 50.0 98 60.6 80 181.1
EX21 130 1.5 106 2270.6 100 107 54.4 94 226.8 110 68.8 90 1414.2
EX31 152 4.6 108 384.9 99 121 69.0 98 132.2 116 79.3 98 3801.0
EX41 144 1.6 117 1399.0 112 112 75.4 100 1212.0 100 92.2 94 1588.5
EX51 116 35.1 89 696.6 87 85 1.5 74 3042.5 84 56.1 68 557.8
EX61 143 3.6 122 296.2 118 121 71.0 116 1805.6 142 127.3 116 1149.1
EX71 146 2.0 120 1474.7 111 134 14.4 104 2935.3 108 48.3 104 379.9
EX81 171 62.8 169 62.8 161 163 30.7 163 30.7 173 76.6 163 792.5
EX91 150 1.9 119 1096.5 116 119 69.1 112 277.3 112 83.3 108 1223.2
EX101 172 2.4 156 4695.6 146 156 96.6 146 1618.4 159 17.7 148 416.9
C1 –first solution, Cb –best solution, CPU1 –CPU time of first solution, CPUb –CPU time of best solution.

8.5 Deadlock-free Heuristic Search Algorithm
There are two approaches to handling deadlocks in PN-based scheduling [78]: conservative ap-
proach, and optimistic approach. The first approach integrates deadlock control policies to make
the PN live (deadlock-free) before scheduling. The downside is that it is system specific and does
not guarantee optimality since restrictions are imposed on the system evolution. On the other
hand, the optimistic approach performs scheduling on deadlock-prone PNs. In contrast, it does
not rely on control policies but on the effectiveness of the search algorithms to find optimal or
near optimal schedule that is deadlock-free. This approach removes the overhead to guarantee the
liveness of the PN [41] before scheduling is performed. As such, deadlock control policies are not a
requirement to schedule a deadlock-prone FMS. Provided the system is accurately described by the
TCPN model (resource sharing, precedence relations, technological constraints, etc.), the defined
goal marking guarantees that a deadlock-free schedule is obtained. The generated schedule from
the firing sequence ensures that deadlock is avoided in the operation of the FMS if the schedule is
followed. For deadlock-free scheduling, we use the optimistic approach given in [78] where dead-
locks are allowed occur and are detected during the timed state space generation, and measures
are put in place to prevent its future generation.

8.6 Experimental Results
No standard benchmark examples exist for the SSMV-CFR problem. As a result, we evaluated the
performance of the ALS deadlock-free algorithm on the TCPN model given in Fig. 8.2 with the
objective of finding an optimal or near-optimal deadlock and conflict-free integrated schedule.
Here, we analyze the impact of parameters such as, the number of jobs with different operation
sets and the number of AGVs, on the overall schedule. The 10 job sets in the SSMV problem are
tested on layout 1. Each job set is experimented with an increasing number of vehicles (2, 3, and 4
AGVs). The 4 AGVs V 1, V 2, V 3, V 4 are initially located on nodes 0, 10, 8 and 4 respectively. Due
to the complexity of the SSMV-CFR problem, each experiment is given up to 2h to run.

The computational results are given in Table 8.2. The solutions obtained for the 2-vehicle
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(a) Gantt chart of the SSMV-CFR solution for EX51 instance.
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(b) Detailed routing of the 4 vehicles on the guide path for
EX51 instance.

Fig. 8.3. The integrated schedule of the EX51 instance including the conflict-free routing of 4 vehicles.

experiments compare well with the SSMV’s taken into account the capacity constraints and the
control of vehicles on the guide path. The schedules showed an improvement from 2 to 3 vehicles.
From 3 to 4 vehicles however, not all instances gave a sign of improvement except for the EX11,
EX21, EX41, EX51, and EX91 instances. The other solutions stay the same or perform worse as in
EX101. This is likely due to the congestion occurring at different times on the guide path leading
to delays in serving P/D requests, as the number of AGVs is increased. To illustrate this effect,
we show in Fig. 8.3, the Gantt chart and the detailed path routing of the AGVs for EX51 instance
using 4 AGVs. On the other hand, the experimented instances showed a significant improvement
in performance between 2 and 4 vehicles excluding EX61, EX81, and EX101. As observed in the
table, the process plans of jobs including the number of jobs are a determinant factor on the system
performance.
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The results are not conclusive since none of the solutions converged. Some of the experiments
ran out of memory before reaching the CPU limit. Nevertheless, the results can give an insight as
to how increasing the number of vehicles could affect the overall performance. Also, it can help
in making decisions on the number of vehicles required for a particular layout and job set at the
tactical level. To guarantee convergence and a possible return of improved solutions, the memory
and CPU limit can be increased for a 64-bit version of the algorithm.
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9.1 Case Study
We consider a case study of a real FMC of an eyeglass production system [113, 147]. The system
consists of three CNC machines M1, M2, and M3, an automated dual-gripper crane R(G1, G2),
and a conveyor. The layout of the cell is shown in Fig. 9.1. There are three types of eyeglasses E1,
E2, and E3 in which each eyeglass is composed of two lenses (left and right). Each lens must be
processed separately since the machine processing time of some operations depends on the lens
type. Hence, the total number of part types to be processed is six: J1 and J2 for E1, J3 and J4 for
E2, and J5 and J6 for E3.

Parts undergo two machining operations in the same sequence as in a flow shop. The first
operation is performed on M1, and the second on either M2 or M3. Machine M1 is used to
verify whether the lenses have the correct dimension specification, whereas machines M2 and
M3 perform the same function and are used to bevel the lenses. All the part types have the same
processing time of 4 s in the first operation but the beveling operation varies depending on the
part type: 120 s for E2, 540 s for E3, and 215 s and 220 s for J1 and J2 of E1 respectively. Each
machine can process at most one operation at a time.

Parts arrive in buckets of a pair of lens (B1(E1), B2(E2), and B3(E3)) on the conveyor to
the load/unload (L/U) area. Each bucket contains an eyeglass type, and the L/U area is the
working area of the crane operations on the conveyor. The crane is used to transfer the parts (in
a horizontal movement) between the conveyor and the machine and back to the L/U area after
the part processing is completed. However, the L/U area is constrained to three buckets. This is
due to the restricted working area of the crane’s gripper to load and unload parts. A slot is freed
only when the two parts in a bucket are fully processed and moved out from the working area.
The crane can load and unload parts at four pickup/delivery (P/D) points: 1. 0 - conveyor loading

Fig. 9.1. The layout of the flexible manufacturing cell.
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Fig. 9.2. The TCPN model of the FMC developed using TIMSPAT syntax library.

position, 2. 1 - M1, 3. 2 - M2/M3, and 4. 3 - conveyor unloading position. The movement time
of the crane from one position to the other, and the loading and unloading of parts takes 4 s each.
Both arms of the crane can be used to load and unload parts. The operation of the dual-gripper
crane works more like a multi-load AGV that performs empty and loaded trips [87].

Each job has a total of eight operations (six handling and two machining operations): 1. Unload
or pickup from bucket, 2. Transport and delivery or load to M1, 3. Processing in M1, 4. Unload
from M1, 5. Transport and delivery to M2 or M3, 6. Processing in M2 or M3, 7. Unload from M2
or M3, and 8. Transport and delivery to bucket. The scheduling problem is formulated as follows:
Given the FMS layout and the production mix, determine the starting and completion times of each
part on each machine and the movement operations of the crane between machines together with
the assignment according to the makespan minimization objective Cmax.

Figure. 9.2 shows the TCPN model of the manufacturing cell. The TCPN has six places and seven
transitions. The meaning of the places together with the color set and variables, and transitions
is given in Table 9.1 and Table 9.2 respectively. The main file contains the initial marking of the
production mix E1 = 1, E2 = 1 ,and E3 = 1 with zero starting times. For dynamic scheduling
purposes, the starting times can be changed to reflect the current state of the system.

1 1′(1, 1, 2, 1) + 1′(2, 3, 4, 1) + 1′(3, 5, 6, 1); 2 1′(0); 3 ; 4 1′(0, 0, 0, 0, 0, 0, 0); 5 1′(1, 0, 1, 0, 0, 3)

+1′(2, 0, 2, 0, 0, 6) + 1′(3, 0, 2, 0, 0, 6); 6 ;

0 + 0 + 0; 0; ; 0; 0 + 0 + 0; ;

CS WKL;CNT ;BCK;CRN ;MCH;OUT ;

EF #; 1′(0);#; 1′(0, 0, ∗, 0, 0, 0, 0); 3′(∗, 0, ∗, 0, 0, ∗); 3′(∗, ∗, ∗, 9);

A P/D request involves 5 operational sequence: the prior assignment of the crane to the part,
the movement of the crane to the resource location (conveyor or machine) for pickup if its current
position is different from the P/D location, the unloading of the part from the resource, the delivery
of the part to the destination resource, and the loading of the part to the resource. Transitions T2
and T5 execute the first three operations concurrently for conveyor and machine pickup respectively,
while T3 and T6 perform the last two operations for machine and conveyor delivery respectively.
The production flow of a single part in the system gives the sequence of transition firings: T1 →
T2→ T3→ T4→ T5→ T3→ T4→ T5→ T6→ T7.
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Table 9.1. Interpretation of places and colors.

Place Color set (CS) Color(s) Description

P1 WKL = 4, timed; 〈b, j1, j2, op〉 Production mix workload: Left lens j1 and
right lens j2 in bucket b with starting opera-
tion sequence identifier op

P2 CNT = 1, timed; 〈c〉 Counter for the number of unprocessed buck-
ets on the conveyor in the loading area

P3 BCK = 3, timed; 〈j, b, op〉 Buckets on the conveyor: Unprocessed lens
j in bucket b if op=1, otherwise processed if
op=9

P4 CRN = 7, timed; 〈g1, g2, gpos, og1, og2,
bg1, bg2〉

Crane status: Crane at position gpos with grip-
pers g1 and g2 (free = 0, busy > 0), and
operation sequence identifiers og1, og2 and
bucket identifiers bg1, bg2 for each gripper.
og1, og2, bg1, bg2 > 0 if parts (lens) are held
in grippers

P5 MCH = 6, timed; 〈m,ms,mpos, j, b, op〉 Machine status: Machine m at position mpos
with status ms (0 - available, 1 - busy, 2 - wait-
ing for part to be picked up). j, b, op > 0 if
ms > 0

P6 OUT = 3, timed; 〈b, j1, j2, op〉 Processed buckets moved out from the work-
ing area

The TCPN model is quite different from the nets proposed by Narciso et al. [113], Mujica and
Piera [147]. In the previous nets, the movement of the crane is not properly controlled as the source
or destination of a P/D request is not included in the crane’s behavior. The crane can move to either
of the potential P/D positions without a prior assignment for P/D request. Since the studied FMC
is a bufferless system, the TCPN minimizes blocking using P/D assignment together with the status
of the machines as specified in the guards of transitions T2 and T5. However, deadlock occurrence
is still inevitable if the crane grippers are holding parts whose destination machines have parts
that are waiting to be picked up by the crane. The deadlock-free scheduling approach used in this
thesis has been treated in Chapter 5.

Table 9.2. Transitions and their meanings

Transition Description

T1 Conveyor move in of unprocessed buckets in the L/U area
T2 Unloading of parts from bucket for P/D including the empty move of the crane if

applicable
T3 Movement of crane to the destination machine for delivery including the loading of

parts
T4 Processing of parts in machines
T5 Movement of crane to the destination machine for pickup including the unloading of

parts
T6 Final delivery of processed parts to bucket in the conveyor’s L/U area including un-

loading of parts
T7 Conveyor moves out processed buckets
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Table 9.3. Production mix instances for the three eyeglass types.

Instance
Number of eyeglass types

Number of parts
E1 E2 E3

BGS1 1 1 1 6
BGS2 2 2 0 8
BGS3 4 0 0 8
BGS4 4 2 1 14
BGS5 3 3 3 18
BGM1 2 5 3 20
BGM2 7 4 2 26
BGM3 4 7 4 30
BGM4 4 8 5 34
BGM5 7 5 5 34
BGM6 6 10 4 40
BGL1 7 13 2 44
BGL2 10 17 5 64
BGL3 15 20 7 84
BGL4 20 20 20 120

9.2 Performance Evaluation and Benchmarking
This section evaluates the performance of the nine algorithms on the case study. We consider 15 dif-
ferent production mix scenarios, shown in Table 9.3. The instances contain 5 small (BGS1–BGS5),
6 medium (BGM1–BGM6), and 4 large (BGL1–BGL4) workload mixes. The first large instance
BGL1 (30% E1, 60% E2, 10% E3) represents a real mix for the manufacturing cell. The experi-
ments were conducted on a 2.60GHz AMD Opteron processor PC with 4GB RAM.

Each algorithm is classified according to the space-time trade-off criterion given in Chapter 3.
BFIDA∗ and BFIDA∗-SLDD fall under the SE class. They perform a series of breadth-first searches
with a given cost threshold which is used as a bound to control the memory usage of A∗ in order
to avoid keeping the least promising paths in the state space. In addition to the cost threshold
pruning, BFIDA∗-SLDD exploits the repetitive patterns found in the state space graphs of FMS of
similar configurations to further reduce the memory requirements.

The TE class includes the HHS algorithms like BAS, A∗-BT, and DWS. These algorithms use
predefined pruning rules to limit the memory consumption of the search space and find feasible
solutions in a reasonable amount of time. Basically, they limit the frequent backtrackings of the A∗

search to prevent the search space from degenerating into a breadth search. A controlled deepening
search is favored to drive the search towards a suboptimal solution quickly. The STE class consists
of anytime algorithms; ALS, ACAS, and DFBnB.

Each algorithm is benchmarked against the others in its category, and the best performing in
each class is then compared with those of the other classes. Since each class has its own trade off,
CPU time of 3600 s and 4GB RAM limits were set for the TE and STE classes whereas only the
maximum memory limit was set for the SE class. A∗ is not considered for comparison as it was only
able to solve the small instances, even with the CESS.
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Table 9.4. Scheduling results of SE algorithms.

Instance
State space BFIDA∗ BFIDA∗-SLDD DFS-CSS [113]

Itr Depth EM Peak CPU (s) Peak CPU (s) Reduction
(%) Cmax Cbest

CPU
(s)

BGS1 4 54 150,548 114,371 59.8 4,869 59.1 95.74 975 1027 45077
BGS2 5 72 171,140 117,869 71.9 4,932 71.4 95.82 783 911 54207
BGS3 3 72 19,905 18,297 7.9 496 7.9 97.29 978 1111 2978
BGS4 5 126 1,608,257 1,014,911 718.2 21,237 715.8 97.91 1794 ___ ___
BGS5 5 162 4,735,124 3,000,133 2216.9 57,783 2211.7 98.07 2802 ___ ___
BGM1 5 180 5,211,153 3,363,369 2436.2 55,308 2431.2 98.36 2835 ___ ___
BGM2 5 234 11,718,087 6,104,427 5663.3 73,095 5583.1 98.80 3301 ___ ___
BGM3 5 270 29,217,707 ___ ___ 131,865 14463.4 4110 ___ ___
BGM4 5 306 32,719,717 ___ ___ 163,967 16060.0 4794 ___ ___
BGM5 5 306 32,228,078 ___ ___ 186,191 16056.4 5089 ___ ___
BGM6 6 360 52,626,061 ___ ___ 201,008 26330.5 4965 ___ ___
BGL1 5 396 30,251,710 ___ ___ 125,448 15030.2 4489 6790 513540
BGL2 6 576 179,031,180 ___ ___ 406,956 93592.5 7359 ___ ___
BGL3 5 756 274,552,404 ___ ___ 820,818 159148.0 10009 ___ ___
BGL4 4 1080 1,061,683,289 ___ ___ 2,295,016 649915.0 18330 ___ ___

Itr - Number of iterations

9.2.1 SE Class

The SE algorithms use the cost threshold CT as a bound to prune markings with f(M) > CT in
each iteration of the breadth-first branch and bound search. The algorithms start with f(M0) as
the initial CT . If no goal marking is found, the search is repeated with a new CT value until a
solution is reached. Successive values of CT relies on the minimum f(M) (fmin) of the unexpanded
markings in the previous iteration. However, it comes with an overhead of marking re-expansion
each time the search is restarted. If the increments are too small to reach f(Mg) in a reasonable
amount of time, it may result in a large number of iterations. To circumvent this problem, [184]
propose to double CT after each iteration for the classical IDA∗. This measure can degenerate to a
breadth-first search. To achieve a good space-number of iteration trade-off, we computed successive
CTs as CT = max(fmin, ubf ∗ fmin), ∀ubf ∈ {1.0, 2.0} where ubf is a multiplier. We experimented
with different values of ubf to determine a good factor for the instances. From the preliminary
results obtained, a ubf value of 1.4 achieves a good trade-off.

Table 9.4 shows the scheduling results of the two SE algorithms on the 15 instances. The two
are practically the same. They expand the same of number of markings (EM) and have an almost
equal CPU time but differ in the number of stored markings as shown in the Peak column. BFIDA∗-
SLDD leverages the regular structures found in FMS to reduce the number of stored markings. The
Depth is the total number of operations or fired transitions required to reach the optimal Mg from
M0, where each operation corresponds to a level in the state space.

As observed on the result table, the ubf of 1.4 significantly reduces the number of search
iterations across all instances. As a result, the computational times were also reduced for the small
and medium instances. For example, the BFIDA∗ search of BGS1 using the standard increment of
ubf = 1 solved the instance in 156 iterations with a CPU time of 3753 s and EM of 9.6 × 106. As
the instance size becomes larger, the standard BFIDA∗ ran out of memory (o.o.m) starting from the
BGM3 instance due to the exponential increase of the state space size. BFIDA∗-SLDD solved all
the instances with a minimal amount of memory space. It used less than 2GB RAM for the largest
instance that would require over 200GB RAM if the entire state space were to be stored in memory.
The CPU times can be considered reasonable up to instance BGL1 considering the fact that it is
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an optimal algorithm. However, it took over 38 h, 64 h, and h to solve BGL2, BGL3, and BGL4
respectively. When compared with the depth-first search (DFS-CSS) algorithm proposed by [113]
where some instances coincide, it is a significant improvement in terms of both CPU time and best
makespan (Cbest) obtained.

9.2.2 TE Class

Each algorithm in the TE class has its own input parameter settings, used as a measure to reduce
the memory and computational time complexity. However, they share a common parameter that
determines a priori the number of markings to be stored. Since increasing the input values do not
guarantee a high solution quality, different values must be experimented to achieve a good solution
quality-time trade-off.

The A∗-BT algorithm requires only one input parameter called threshold, Mmax which is used
to control the maximum number of markings stored in OPEN. It starts exploring the state space in
a best-first order using A∗. Each time Mmax is reached, it creates a new search region or level by
initiating a backtracking to the previous level where the best marking in OPEN is used as a root
node for another A∗ search until a solution is found.

BAS requires two inputs: 1. beam width bw, and 2.cutoff co. The beam width is used to limit
the number of markings expanded at each depth of the state space whereas cutoff limits the size of
OPEN to a certain value to avoid an exponential growth. On the other hand, DWS restricts the state
space to a dynamic search window between a minimum depth, bottom-depth bd and a maximum
depth, top-depth td. For the search window to advance, DWS constrains the number of markings
generated at td to a certain value called max-top maxt. Once maxt is exceeded, the values of bd
and td are increased by one. To avoid exponential growth, DWS also keeps the most promising
markings to be explored at each depth of the search window to a fixed size called max-size maxz.
If a level becomes full (i.e. maxz has been reached), a new marking M is added to the level only if
there is a stored marking Ms with f(Ms) > f(M). As such, three input values (td,maxt,maxz) are
required for DWS to run. The bottom depth starts from zero and [79] propose to set maxt = maxz.

To provide a fair comparison, we experimented the following values for the three algorithms:
Mmax ∈ {10, 50, 100, 200, 500, 1000}, (bw, co) ∈ {(10, 150), (50, 750), (100, 1500), (200, 3000), (500,
7500), (1000, 15000)} and (td,maxz) ∈ {(30, 10), (30, 50), (30, 100), (30, 200), (30, 500), (30, 1000)}.
Since we are not restricting the maximum number of successors to be generated at each marking,
the input values must be large enough to reach a goal marking. For the DWS, the proposed initial
td = 15 did not generate a feasible solution for most of the instances.

Table 9.5 presents the results obtained by the three algorithms for the 15 instances. For each
algorithm, we show the input parameter value that returned the best solution taking into account
the CPU time and compare the relative percentage deviation (RPD) from the best solution (RPDC )
and CPU time (RPDCPU ) between the three algorithms. The A∗-BT algorithm provided the best
solution-time quality trade-off considering the little computation time used to obtain the first
solutions. Unlike the other algorithms, the CPU time is somewhat maintained across all instances
without exceeding 12 s. In terms of solution quality, BAS is superior using the average deviation,
albeit with a higher runtime overhead. Also, BAS proved to be more time-efficient than the others
in 8 of the instances.
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Table 9.5. Scheduling results of TE algorithms.

Instance
A∗-BT BAS DWS

Mmax Cbest CPU RPDC RPDCPUbw Cbest CPU RPDC RPDCPU maxz Cbest CPU RPDC RPDCPU

BGS1 1000 1012 2.7 3.8 41.2 100 980 1.9 0.5 0.0 200 975* 3.9 0.0 106.0
BGS2 100 831 0.2 5.1 0.0 200 791* 5.2 0.0 2026.0 100 799 2.8 1.0 1072.3
BGS3 1000 1015 5.8 3.8 0.0 500 983 7.4 0.5 27.3 500 978* 12.2 0.0 110.0
BGS4 1000 1889 9.0 4.4 0.0 500 1822 25.2 0.7 180.3 1000 1809* 43.9 0.0 388.1
BGS5 100 2989 0.7 4.0 0.0 1000 2873* 68.8 0.0 9826.0 1000 2877 60.7 0.1 8665.2
BGM1 100 3079 0.8 3.8 0.0 500 2966* 39.2 0.0 5012.4 50 2974 4.7 0.3 509.5
BGM2 200 3580 1.9 2.1 0.0 200 3538 21.5 0.9 1032.3 50 3506* 8.1 0.0 326.9
BGM3 1000 5142 11.7 22.1 81.6 50 4212* 6.5 0.0 0.0 50 4270 49.4 1.4 664.0
BGM4 10 5172 0.2 3.1 0.0 10 5018* 1.6 0.0 561.9 50 5086 8.4 1.4 3321.0
BGM5 100 5527 1.6 3.5 0.0 10 5342* 1.6 0.0 1.6 100 5367 15.0 0.5 866.9
BGM6 10 5498 0.3 5.2 0.0 1000 5228* 170.2 0.0 50897.9 200 5396 33.6 3.2 9972.3
BGL1 10 4803* 0.3 2.3 0.0 200 4895 39.2 4.2 11970.7 500 4696 84.8 0.0 25967.5
BGL2 10 7954 0.5 0.5 0.0 10 7917* 3.2 0.0 486.5 10 7921 6.3 0.1 1065.6
BGL3 10 10507* 0.7 0.0 0.0 10 10803 4.3 2.8 499.3 50 11123 27.7 5.9 3760.3
BGL4 10 19215* 1.1 0.0 0.0 10 19306 6.5 0.5 504.7 50 19984 36.2 4.0 3285.4

Av. RPD 4.24 8.19 0.68 5535.12 1.18 4005.39

*-Best solution

9.2.3 STE Class

Like the TE class, the STE algorithms also define some input parameter settings with the exception
of DFBnB. In ACAS, three parameters are needed before exploration: the initial column width
ω, the column width increment α, and the maximum column width ωmax. ACAS is an adaptive
search that focuses on improving the current best solution obtained in a minimal time whenever
possible. It increases ω by α if the solution is not improved after a certain number of iterations.
The width increment is stopped when ω reaches ωmax to avoid unnecessary memory usage if the
solution cannot be improved within the time frame. Once the solution is improved, the column
width ω is reset to its initial value. On the other hand, ALS does not require an input parameter a
priori. However, to return solutions in a good time frame for problems with large branching factor
(number of successors), it is advised to limit the number of markings expanded at each level called
the expansion width eω. We set ω = eω = 5, α = 5, and ωmax = 50 [81].

The three algorithms differ in two aspects. The first is the number of markings expanded at each
level in an iteration. ACAS and ALS is determined by ω and eω respectively, whereas DFBnB defaults
to 1 for all iterations in the search. The second is the way in which backtracking is performed.
Backtracking is chronological in ACAS, best-first in ALS, and depth-first in DFBnB.

Table 9.6 shows the scheduling results of the STE algorithms for the 15 instances. While the
average deviation across all instances grants the ALS as the best out of the three algorithms,
the varying degrees of solution quality per instance class must be taken into account. From this
perspective and benchmarking the performance as the problem size increases, the DFBnB worked
better for larger instances. It outperformed the others in the medium and large instances obtaining
the best solutions at a much reduced computation time in 7 out of 10 instances. Evidently, this
makes it more practical than others. ACAS and ALSS only performed better in the small instances.
Another reason DFBnB is the best fit for this problem is that the CPU time required to return the first
solution is more or less stable (< 1 s) for all the instances, unlike the other two that experienced
a sharp increase in time for the last three large instances. Also, all the first solutions obtained by
DFBnB are clearly better.
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Table 9.6. Scheduling results of STE algorithms.

Instance

ACAS-TCPN ALS DFBnB

First
solution

Best solution
(CPU=3600)

First
solution

Best solution
(CPU=3600)

First
solution

Best solution
(CPU=3600)

Cf CPUf Cbest CPUbestRPDCCf CPUf Cbest CPUbestRPDCCf CPUf Cbest CPUbestRPDC

BGS1 999 0.09 975 88.4 0.0 999 0.09 975 94.8 0.0 992 0.03 975 3476.1 0.0
BGS2 863 0.13 783 54.2 0.0 863 0.13 783 93.7 0.0 843 0.03 787 309.8 0.5
BGS3 1051 0.14 978 13.8 0.0 1051 0.17 978 19.4 0.0 1038 0.03 978 1881.3 0.0
BGS4 1846 0.23 1794 704.7 0.0 1846 0.25 1794 752.2 0.0 1820 0.06 1810 17.6 0.9
BGS5 2938 0.31 2802 510.0 0.0 2938 0.31 2802 1220.4 0.0 2858 0.08 2858 0.1 2.0
BGM1 2947 0.34 2835 2513.8 0.0 2947 0.34 2835 778.3 0.0 2895 0.08 2895 0.1 2.1
BGM2 3485 1.67 3324 3036.2 0.3 3392 0.59 3316 3045.4 0.1 3332 0.11 3313 223.8 0.0
BGM3 4748 0.73 4127 2332.4 0.0 4217 0.53 4135 1891.4 0.2 4170 0.13 4166 0.2 0.9
BGM4 4901 0.61 4804 2291.0 0.0 4901 0.61 4809 1866.9 0.1 4854 0.14 4850 0.2 1.0
BGM5 5161 2.34 5114 1123.1 0.2 5199 1.09 5119 1302.3 0.3 5120 0.14 5106 235.7 0.0
BGM6 5226 4.77 5000 2345.7 0.2 5114 1.20 4997 67.6 0.2 4996 0.17 4988 4.5 0.0
BGL1 4713 5.32 4544 109.8 0.7 4597 1.30 4519 2240.0 0.2 4520 0.19 4512 4.9 0.0
BGL2 7570 8.60 7430 141.4 0.5 7497 10.76 7424 1851.6 0.5 7400 0.28 7390 55.6 0.0
BGL3 10420 24.01 10099 3572.5 0.2 10334 74.99 10148 399.5 0.7 10094 0.37 10082 57.0 0.0
BGL4 19043 30.67 18645 1989.7 1.2 18919 143.51 18506 1671.3 0.5 18430 0.58 18418 66.3 0.0

Av. RPD 0.23 0.17 0.49

Bold solution - Converged to optimal

STE algorithms are designed to produce feasible solutions quickly, and regularly improve the
incumbent best solution Cbest over time. They are able to guarantee optimality provided that the
memory available and time allocated are large enough to reach the optimal solution. The incumbent
best solution may have been obtained but cannot be considered optimal until all the markings with
f(M) ≤ Cbest have been expanded. As such, the time gap between when the incumbent best
solution was returned and the convergence time varies depending on the number of markings
remaining to be explored. For instance, DFBnB obtained the optimal solution for BGS3 at 1881.3
s but converged at 3213.9 s, while the gap is lower for ACAS and ALS that converged at 1370.3 s
and 1364.7 s respectively for BGS4. On the other hand, both ACAS and ALS obtained the optimal
solutions for BGS5 and BGM1 but did not converge within the CPU time limit.

9.3 Discussion
Each algorithm class has its strengths and weaknesses. The SE algorithms trade space for time.
They are the best option when sufficient time is given for producing an optimal schedule. But it
seems quite impractical for highly demanding and dynamic environments in which solutions must
be returned in a short computation time. However, the STE algorithms offer an extra advantage
in terms of both solution quality and time efficiency such that they can adapt to different memory
and time constraints. One of the weaknesses of the STE class is that an additional running time
does not necessarily lead to a better solution [185].

The SE class cannot be directly compared with TE (or vice-versa) because each stands at two
ends of a continuum. On the other hand, the STE class can be benchmarked against SE in terms of
the percentage of optimality lost (RPD from optimal solution) and the computation time reduction,
and also against TE on the solution quality and computation time comparison of the first solution
returned.

The optimality lost is quite low for the best performing algorithm in the STE class, DFBnB. It
ranges between 0.3% and 2.1% for the non-converged solutions. The CPU time savings is about 99%
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Fig. 9.3. Relative percentage deviation of the first solution returned by the TE and STE classes.

for most of the instances excluding the first three. Figure 9.3 shows the RPD of the first solution
returned by the TE and STE classes. The algorithm that produces the best first solution for each
instance takes a zero RPD. Clearly, the STE class outperforms the TE’s with the exception of the
small instances. The DFBnB performed better in nearly all the instances with the A∗-BT as the least
performing.

For the TE and STE algorithms, it is quite difficult to predict when the first solution will be
returned, as it largely depends on the problem size. Although DFBnB achieved a stable CPU time
for all the instances. Notwithstanding, these results are not conclusive and cannot be used as
a benchmark for all systems. The performance of each algorithm may be different for another
problem set. Each system has its own behavior, and an empirical evaluation may be required to
determine the best-performing algorithm. With these results, it is pretty straightforward to draw a
conclusion on which algorithm can be adapted to an off-line scheduling or on-line when the system
deviates from its original schedule or in the event of a failure or disturbance.

While the overall computation time lies on how each search algorithm explores the reachability
graph, it is worth benchmarking the time consumed on each computational task in the search
exploration. To identify the main source of bottleneck in TIMSPAT, the distribution of the run
time of four algorithms is given in Fig. 9.4. Clearly, the simulator dominates a larger proportion
of the run time irrespective of the search algorithm employed. More time is spent on tasks like
the enabling and firing of transitions for marking generation, and the computation of heuristic
functions. This means that the overall efficiency of the tool relies on the simulator, which confirms
that it is computationally expensive to simulate CPN models due to the difficulty in manipulating
colors. The search part (OPEN and CLOSED) only consumes about 3% of the total time.
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10.1 Summary of Contributions
This thesis has presented a quantitative and computational approach for the modeling and per-
formance evaluation of scheduling problems in FMSs. A TCPN-based scheduling methodology is
proposed whose underlying analysis relies on the reachability graph. However, its application has
been limited to small-sized problems due to the computational complexity of production scheduling
problems in FMSs. In this research work, a number of AI-based heuristic search algorithms have
been proposed to alleviate the memory and time requirements of the reachability graph in order
to increase its computational power and capability to handle challenging scheduling problems.

In spite of its ability to perform the automatic analysis of the modeled system, there is a lack
of tool that supports the performance evaluation of TCPN through timed state space analysis via
heuristic search methods. This motivated the development of a new tool (TIMSPAT) presented in
Chapter 2 to deal with the shortcomings of existing tools on CPNs. Most tools using state space
analysis focus on the model checking of untimed CPNs. Other shortcomings include simulation
limitations, timed state space generation with global clock synchronization, absence of efficient
search algorithms, and reliance on third-party software applications. TIMSPAT provides a syntax
library based on C++ and CPN Tools token multiset, which allows the creation of CPN models in
a textual format. The structure of the CPN files offers a localized enabling and firing of transitions.
Also, heuristic functions that can be adapted to different production scheduling problems were
discussed.

TIMSPAT provides a platform for describing CPN models as well as simulating the behavior of
the system, and optimizing the performance of scheduling problems with different algorithms. One
of the benefits presented by this tool is its ability to implement different heuristic search methods
using the same syntax library and data structures. As a result, different FMS scheduling scenarios
can be benchmarked to allow for correct conclusions to be drawn. The tool is expected to make
production managers more flexible in their decision making process without being over reliant on
a particular scheduling algorithm.

Chapter 3 presented an extensive literature review on the state-of-the art heuristic search
algorithms of the PN-based scheduling methodology. Two areas are identified that involve works
devising efficient heuristic functions for existing algorithms and the other, combining one or more
search methods to make the search exploration more efficient. In the latter, the search algorithms
are classified into SE, TE, and STE according to the space-time trade-off criterion. The review
reveals the domination of TE algorithms because of the current research trend toward obtaining
suboptimal solutions in short computational times. However, they have failed to explore those
areas that can still be of great benefit in improving the performance of the system. This thesis took
a step forward by expanding the body of knowledge on the SE and STE classes.

In Chapter 4, an STE algorithm called ACAS-TCPN is proposed for time-critical production
scheduling. It overcomes the drawbacks of classical heuristic search algorithms like A∗ and SE
algorithms that often take a long time to find optimal schedules, as well as TE algorithms that
terminate the search when the first solution is found. The proposed algorithm not only returns quick
solutions like the TE’s, but also improve the solutions over time as well as reaching the optimal
solution. Optimality is guaranteed if the available memory and specified time are sufficient to
make the incumbent solution converge. The algorithm uses the condensed state space described in
Chapter 2 as the underlying search graph to avoid a continuous reevaluation of untimed markings
in the timed state space. Several benchmark problems on FMS scheduling were solved, and the
results obtained showed the effectiveness of the algorithm over the existing ones.

Chapter 5 deals with deadlock-free scheduling problem in FMSs and presents a novel STE
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algorithm (ALS). The paper highlighted the two approaches for deadlock-free scheduling using
the PN formalism. The first is to create a deadlock-free model with deadlock resolution or control
policies (DCP) and then, the optimal schedule is searched with the deadlock-free model. The
second is to search the deadlock-prone model. The paper argue in favor of the latter; that the
generation of a feasible and deadlock-free schedule in PN-based scheduling is not dependent on
the incorporation of DCP, but rather on the approach used in solving the deadlock-prone FMS.
DCP are an option and not a requirement as deadlocks are explicitly defined in the PN framework.
However, there is a possibility that most of the markings in the reachability graph are deadlocked.
Taken this into account, the first approach is promising because potential deadlock schedules can
be prevented by the control policies. Also, DCP can be used to reduce the search space.

While the first approach seems promising, it has several drawbacks regarding the scheduling
performance. First, the computation procedure of optimal control policies is NP-hard. As such,
existing policies cannot capture all the possible rules or scenarios that do not restrict the firing of a
feasible transition that can lead to a better scheduling performance. Next, the resolution policies
are conservative and limit the number of alternatives that can be explored, which may prevent
the system from reaching an optimal schedule. Lastly, not all policies work for all systems. Their
scheduling performances are quite different from each other even when applied to the same system.

On the other hand, the second approach is faced with the challenge of dealing with deadlock
situations when most of the nodes are deadlock. However, the handling of this problem is quite
relative. Since the reachability graph is explored in fragments and guided by a heuristic cost
function, not all deadlocks are encountered (or selected) by the search algorithm. Some deadlocks
are pruned before being selected if they have an f -cost greater than the upper bound, while
steps are taken to avoid a repeated occurrence of an encountered deadlock situation, using the
information derived from the transition bindings. The paper demonstrated the effectiveness of
the approach on a comprehensive set of deadlock-prone FMS example. The experimental results
indicate that near-optimal solutions can be obtained in relatively short computation times under
different FMS configurations.

The focus of the research work took a turn in Chapter 6. The paper investigates a possible
release of memory during BFS exploration of the reachability graph, leading to SE algorithms. In
BFS, the state space is partitioned into layers by default, where a layer comprises all the states
with same minimal distance from the initial marking. The idea is to remove layers where no
successors can be found from exploring markings in the most recent and future layers. To identify
such layers, the approach relies on a profile called LDS, which examines the behavior of the graph
on a per-model, per-layer basis. The LDS records, for each layer L(i), the relative distance of other
layers where successors of markings in L(i) can be found. Using the LDS, the paper developed
a new approach called SLDD. The SLDD is based on the notion that the state space graphs of a
system with increasing problem size may contain repetitive patterns (structural equivalences) while
the underlying system configuration is fixed. Since the state explosion is caused by a scalability
problem, the knowledge of the system behavior obtained from explorable smaller problem sizes
through LDS can be used to solve larger sizes. This approach has been used to solve multiple lot
size scheduling problems in FMS and extended to solve problems of similar configurations where
the problem size differ by the number of jobs, resources and operations.

While Chapters 4, 5, and 6 dealt with FMS scheduling problems with robots as the MHS,
Chapter 7 expands the research to simultaneous scheduling of machines and AGVs. Unlike the
fixed robots, AGVs are usually employed when parts have to be physically transported from one
machine location to the other. The AGV scheduling process includes management functions like
assignment or dispatching, and the routing of vehicles on the guide-path layout. The solution
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method proposed offers a new approach and introduces some novel elements into the studies
of simultaneous scheduling in comparison to the other methods used in the literature (mainly
metaheuristics). The paper considers two schemes of the interaction between the machining and
transport system: machine-controlled, and vehicle-controlled task assignment to AGVs. For each of
these schemes, a TCPN model is proposed. The approach moves away from the conventional OR
model by employing an event-driven approach to describe the logical behavior of FMS operations.
Also, one of the main contributions of this study is that the TCPN-based methodology permits an
integrated approach addressing the simultaneous scheduling as a single problem rather than usual
hierarchical approach in which the problem is decomposed in subproblems, and each of them is
solved separately. The results obtained using the ALS algorithm show that TCPN application is
competitive with other state-of-the-art methods.

Chapter 8 extends the simultaneous scheduling work in the previous chapter by incorporating
the detailed AGV routing problem on the guide path. Here, the movement and control of vehicles
are properly managed for conflict-free routing using the zone-control technique. A valid schedule
must then determine the arrival and departure times of vehicles at each path segment. In Chapter 9,
an empirical evaluation of the implemented algorithms in TIMSPAT is performed on a real FMS case
study with several experiments. The strengths and weaknesses of each algorithm were identified,
including the bottleneck of TIMSPAT, the simulator.

As shown in Chapter 7, the proposed methodology could as well be applied to on-line scheduling
where the occurrence of real time or unplanned events like machine breakdown, tool failures, early
or late arrival of jobs etc during the execution of a schedule can affect the performance of the FMS.
In this kind of situations, rescheduling needs to be done and solutions must be provided in the
slightest possible time. The scheduling methodology meets this requirement and fits perfectly into
the objective of on-line scheduling using the STE algorithms. The simulator can be easily integrated
with the shop floor database to collect information on the current state of the system and the TCPN
model can then be reinitialized with the new state to generate a new schedule.

10.2 Future Work
This research work has covered different aspects of TCPN-based scheduling that involves the de-
velopment of tools and algorithms, and applications to a wide range of FMS scheduling problems.
In spite of this, there is still much work to be done. The following have been identified as poten-
tial areas for future research, for improving the tool as well as developing more efficient search
algorithms:

1. CPN-XML Translator from CPN Tools to TIMSPAT Syntax Description

Although, analysis techniques can be performed without the users’ intervention at the back-
end in most cases, the absence of a graphical user interface for model development can easily
put off non-research oriented users. To make the tool more attractive, a plug-in translator
can be provided to convert models developed in GUI-based tools like CPN Tools to the
TIMSPATLib CPN description. However, these models must comply with the standard syntax
rules of TIMSPATLib.

2. Extending the TCPN formalism

Several scheduling problems can be modeled by the TCPN formalism. This has been shown
in several examples illustrated in this thesis. However, there are certain scheduling character-
istics that limit the modeling power of TCPN. In scheduling problems that involve due-dates,
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hard deadlines, time windows etc, the formalism has not provided the primitive to add extra
time functions and/or handle time stamps as variables. The current TCPN standard only
allows the user to efficiently model the logical behavior with a minimal control on time value
manipulation.

To allow this functionality, the time stamps or values must be introduced as colors in the
model, making it untimed. This defeat the modeling purpose of TCPN, and since the simu-
lation of a TCPN is different from an untimed CPN, problems of this nature can hardly be
modeled in TCPN. Even though these features can be added at the programming level, they
cannot be directly expressed by the user. The TCPN formalism must be extended to support
these features. To achieve this, an extra effort is needed as an extension would require a
different simulator. This is an area that needs to be looked at in expanding the outreach of
the TCPN formalism.

3. Analytical proof of the SLDD concept

We have proved experimentally using an algorithmic approach that the LDS of N0 can be
scaled to a larger size using the structural equivalences determined from smaller instances
of the problem. However, there are some open research questions that needs to be answered
to make it applicable to other systems: 1. How good is the estimated N0? It is quite difficult
to determine whether the LDS of the estimated N0 obtained is complete or incomplete. The
LDS is said to be complete if it is globally stable i.e. it is an exact LDS that can be scaled to
any N , whereas it is incomplete if the stability is achieved only for some N . 2. Can N0 be
determined analytically? including a proof on its global stability?

4. Combining time sweep-line with SLDD

In the time sweep-line method, time (be it the global clock or firing time) is used as a
monotonic progress measure that is most likely to increase for every event occurrence. In
existing works, time is usually carried over into the state space (a property inherent to
the markings) during duplicate detection. Since the time value used is part of the full state
descriptor, duplicates of markings can always be found at the same sweep-line layer. However,
the problem of regress edges arises when the duplicate detection procedure is reduced to
only untimed markings in the condensed state space (Chapter 3). Here, the time information
is separated from the untimed marking. As a result, the time progress measure only takes
into account the timed state space. To solve this problem, two options exist. The first is to
provide a compound progress measure with two values; one for the timed state space, and
the other for the untimed. Using this option, there would not be any need to check for regress
edges since the compound measure will ensure that duplicates are kept at the same sweep
layer. The drawback of this solution is that the number of markings to be stored at each layer
would become larger. The second option is to keep the time sweep-line state space as it is
with the time progress measure and apply the SLDD to detect regress edges.

5. Parallel and distributed TIMSPAT

It has been shown in Chapter 9 that about 98% of the computational time is spent on
simulating the TCPN models, which is quite inefficient for the implemented search algorithms.
The availability of multi-core computers, distributed computing, graphics processing units
(GPUs) etc, can help in speeding up computation thereby improving the overall efficiency of
the tool. The simulator could be more efficient as the workload of transition enabling and
firing will be shared by several processors or computers. This directly impacts the search
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algorithms. The first solution of large-sized problems can be returned very quickly and the
convergence time of anytime algorithms will be reduced. One of the interesting points of
this approach is the increasing need to solve large scale optimization problems, which can be
easily applied to plant-wide scheduling problems.

Other areas that can be considered as part of the future work includes:

6. Instead of the reactive approach of scheduling/rescheduling, a simulation-optimization ap-
proach can be used to deal with uncertainties using stochastic CPNs to model variations in
processing times and other disturbances such as machine breakdown.

7. The use of interval TCPN [109] to model and optimize dynamic scheduling problems with
variable processing times.

8. The TCPN-based scheduling can be extended to other combinatorial optimization problems
like project, crew, and aircraft scheduling problems.

9. The modeling approach allows the definition of new objective functions that can deal with
scheduling policies oriented to lean manufacturing in which non-added-value operations
would be minimized or a rapid manufacturing in which the total completion time would be
minimized. This presents an opportunity to explore multiobjective optimization using the
developed methodology.

10. The incorporation of metaheuristics like genetic algorithms into TIMSPAT.

11. A web portal is currently being developed for the tool to allow users simulate their models
on-line as well as providing a service-oriented platform. For a possible technology trans-
fer, appropriate interfaces will be needed for communication with manufacturing execution
systems.
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A.1 AMS Layout and CPN Model

Machine 1
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Raw Material 
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Machine 4

Assembly Cell

Fig. A.1. The layout of the AMS example [2].

colset J = int;
colset R = product J * J;
 
var j, m, r, x, y : J;
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Fig. A.2. The CPN model of the AMS.
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Table A.1. The interpretation of the places and transitions in the AMS CPN model.

Place Description Transition Description

P1 Available parts for types F and G (F=1,
G=2)

T1 Loading of raw materials into machines
m1,m2

P2 Control of raw material flow into the
system

T2 Unloading of parts from machines
m1,m2 by robots

P3 Status of machines m1,m2 (0 = free, 1
= busy)

T3 Loading parts into buffers b1, b2 by
robots

P4 Available robots (0 = free, 1 = busy) T4 Unloading of parts from buffers into ma-
chines m3,m4

P5 Available buffers with finite capacity T5 Unloading of parts from machines
m3,m4 by robots

P6 Status of machines m3,m4 (0 = free, 1
= busy)

T6 Loading of part F into the assembly cell
by robot r1

P7 Assembly cell availability T7 Assembly of parts
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B.1 Job sets

Job Set 1 Job Set 2

Job 1: M1(8); M2(16); M4(12) Job 1: M1(10); M4(18)
Job 2: M1(20); M3(10); M2(18) Job 2: M2(10); M4(18)
Job 3: M3(12); M4(8); M1(15) Job 3: M1(10); M3(20);
Job 4: M4(14); M2(18) Job 4: M2(10); M3(15); M4(12)
Job 5: M3(10); M1(15) Job 5: M1(10); M2(15); M4(12)

Job 6: M1(10); M2(15); M3(12)

Job Set 3 Job Set 4

Job 1: M1(16); M3(15) Job 1: M4(11); M1(10); M2(7)
Job 2: M2(18); M4(15) Job 2: M3(12); M2(10); M4(8)
Job 3: M1(20); M2(10) Job 3: M2(7); M3(10); M1(9); M3(8)
Job 4: M3(15); M4(10) Job 4: M2(7); M4(8); M1(12); M2(6)
Job 5: M1(8); M2(10); M3(15); M4(17) Job 5: M1(9); M2(7); M4(8); M2(10); M3(8)
Job 6: M2(10); M3(15); M4(8); M1(15)

Job Set 5 Job Set 6

Job 1: M1(6); M2(12); M4(9) Job 1: M1(9); M2(11); M4(7)
Job 2: M1(18); M3(6); M2(15) Job 2: M1(19); M2(20); M4(13)
Job 3: M3(9); M4(3); M1(12) Job 3: M2(14); M3(20); M4(9)
Job 4: M4(6); M2(15) Job 4: M2(14); M3(20); M4(9)
Job 5: M3(3); M1(9) Job 5: M1(11); M3(16); M4(8)

Job 6: M1(10); M3(12); M4(10)

Job Set 7 Job Set 8

Job 1: M1(6); M4(6) Job 1: M2(12); M3(21); M4(11)
Job 2: M2(11); M4(9) Job 2: M2(12); M3(21); M4(11)
Job 3: M2(9); M4(7) Job 3: M2(12); M3(21); M4(11)
Job 4: M3(16); M4(7) Job 4: M2(12); M3(21); M4(11)
Job 5: M1(9); M3(18) Job 5: M1(10); M2(14); M3(18); M4(9)
Job 6: M2(13); M3(19); M4(6) Job 6: M1(10); M2(14); M3(18); M4(9)
Job 7: M1(10); M2(9); M3(13)
Job 8: M1(11); M2(9); M4(8)

Job Set 9 Job Set 10

Job 1: M3(9); M1(12); M2(9); M4(6) Job 1: M1(11); M3(19); M2(16); M4(13)
Job 2: M3(16); M2(11); M4(9) Job 2: M2(21); M3(16); M4(14)
Job 3: M1(21); M2(18); M4(7) Job 3: M3(8); M2(10); M1(14); M4(9)
Job 4: M2(20); M3(22); M4(11) Job 4: M2(13); M3(20); M4(10)
Job 5: M3(14); M1(16); M2(13); M4(9) Job 5: M1(9); M3(16); M4(18)

Job 6: M2(19); M1(21); M3(11); M4(15)

B.2 Travel time data
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Layout 1 L/U Ml M2 M3 M4 Layout 2 L/U Ml M2 M3 M4

L/U 0 6 8 10 12 L/U 0 4 6 8 6
Ml 12 0 6 8 10 Ml 6 0 2 4 2
M2 10 6 0 6 8 M2 8 12 0 2 4
M3 8 8 6 0 6 M3 6 10 12 0 2
M4 6 10 8 6 0 M4 4 8 10 12 0

Layout 3 L/U Ml M2 M3 M4 Layout 4 L/U Ml M2 M3 M4

L/U 0 2 4 10 12 L/U 0 4 8 10 14
Ml 12 0 2 8 10 Ml 18 0 4 6 10
M2 10 12 0 6 8 M2 20 14 0 8 6
M3 4 6 8 0 2 M3 12 8 6 0 6
M4 2 4 6 12 0 M4 14 14 12 6 0
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