Processos d'obtenció, transformació i ús de la fusta en l'assentament neolític antic de la Draga (5320-4800 cal BC)

JOSEP ORIOL LÓPEZ i BULTÓ

Tesi doctoral dirigida pels doctors:
Raquel Piqué i Huerta (Universitat Autònoma de Barcelona)
Ignacio Clemente Conte (Institució Milà i Fontanals - CSIC)
Antoni Palomo Pérez (Universitat Autònoma de Barcelona)

Doctorat en Arqueologia Prehistòrica
Departament de Prehistòria, Universitat Autònoma de Barcelona

Annex 2: Obtenció de les mesures dels pals apuntats experimentals

En aquest annex presentem les diferents captures de pantalla del procés d'anàlisi i mesura de cada un dels pals apuntats experimentals. Els resultats s'estructuren seguint l'ordre dels pals apuntats.

En primera instància presentem els models digitals dels pals apuntats experimentals abans (els models grocs) i després (els models blaus) del seu ús, un cop han estat perfectament alineats, tal i com es pot veure a partir de les característiques morfològiques més allunyades de les puntes.

En segona instància, presentem les seccions extretes d'aquests models. La primera de les imatges és la comparació de les seccions longitudinals tant dels models abans del seu ús com després d'aquest. En els casos que presentem tres seccions en la mateixa imatge, la del mig és l'equivalent al model després de l'ús, mentre que les dels extrems són dels models digitals dels motllos extrets de cada una de les cares abans de l'ús. En els casos on hi ha dues siluetes, aquestes segueixen el mateix ordre que en la primera imatge dels models digitals.

En la penúltima de les imatges presentades ja hi podem veure les siluetes transversals extretes a partir dels models digitals tant dels pals apuntats experimentals com dels motlles d'aquests pals. Presentem la imatge des d'un punt de vista oblic per tal de poder observar millor el volum i la forma d'aquestes siluetes.

Per últim, presentem una captura de pantalla un cop les mides s'han extret de cada un dels models digitals analitzats, a través dels punts de referència que suposen les seccions que hi hem obtingut.

PAL EXPERIMENTAL 01:

Pal experimental 01 // punta:
Alineació dels materials:

Visió dels dos models alineats des de dos punts de vista diferents

Dibuix de les seccions:

Visió 2D i 3D del dibuix de les seccions

Mides:

Mides extretes dels dos models

Pal experimental 01 // bisell:

Alineació dels materials:

Visió dels d smols dels alineats des de d spunts de vista diferents

Dibuix de les secci ns:

Visió 2D i 3D del dibuix de les secci ns

Mides:

PAL EXPERIMENTAL 02:

Pal experimental 02 // punta:

Alineació dels materials:

Visió dels dos models alineats des de dos punts de vista diferents

Dibuix de les secci ns:

Visió 2D i 3D del dibuix de les secci ns

Mides:

Mides extretes dels d s m dels

Pal experimental 02 // bisell:

Alineació dels materials:

Dibuix de les seccions:

Visió 2D i 3D del dibuix de les seccions

Mides:

Mides extretes dels dos models

PAL EXPERIMENTAL 03

Pal experimental 03 // punta:

Alineació dels materials:

Visió dels dos models alineats des de dos punts de vista diferents

Dibuix de les seccions:

Visió 2D i 3D del dibuix de les seccions

Mides:

Mides extretes dels dos models

Pal experimental 03 // bisell:

Alineació dels materials:

Visió dels d smols dels alineats des de d spunts de vista diferents

Dibuix de les secci ns:

Visió 2D i 3D del dibuix de les secci ns

Mides:

Mides extretes dels dos models

PAL EXPERIMENTAL 04

Pal experimental 04 // punta:

Alineació dels materials:

Visió dels dos models alineats des de dos punts de vista diferents

Dibuix de les secci ns:

Visió 2D i 3D del dibuix de les secci ns

Mides:

Mides extretes dels d s m dels

Alineació dels materials:

Visió dels dos models alineats des de dos punts de vista diferents

Dibuix de les seccions:

Visió 2D i 3D del dibuix de les seccions

Mides:

PAL EXPERIMENTAL 05

Pal experimental 05 // punta:

Alineació dels materials:

\qquad

Visió dels dos models alineats des de dos punts de vista diferents

Dibuix de les seccions:

Visió 2D i 3D del dibuix de les seccions

Mides:

Mides extretes dels dos models

Pal experimental 05 // bisell:

Alineació dels materials:

Visió dels d s m dels alineats des de d spunts de vista diferents

Dibuix de les secci ns:

Visió 2D i 3D del dibuix de les secci ns

Mides:

PAL EXPERIMENTAL 06
Pal experimental 06 // punta:
Alineació dels materials:

Visió dels dos models alineats des de dos punts de vista diferents

Dibuix de les secci ns:

Visió 2D i 3D del dibuix de les secci ns

Mides:

Mides extretes dels d s m dels

Pal experimental 06 // bisell:

Alineació dels materials:

Visió dels dos models alineats des de dos punts de vista diferents

Dibuix de les seccions:

Visió 2D i 3D del dibuix de les seccions

Mides:

Mides extretes dels dos models

PAL EXPERIMENTAL 07

Pal experimental 07 // punta:

Alineació dels materials:

Visió dels dos models alineats des de dos punts de vista diferents

Dibuix de les seccions:

Visió 2D i 3D del dibuix de les seccions

Mides:

Mides extretes dels dos models

Pal experimental 07 // bisell:

Alineació dels materials:

Visió dels d smols dels alineats des de d spunts de vista diferents

Dibuix de les secci ns:

Visió 2D i 3D del dibuix de les secci ns

Mides:

PAL EXPERIMENTAL 08

Pal experimental 08 // bisell1:

Alineació dels materials:

Visió dels dos models alineats des de dos punts de vista diferents

Dibuix de les secci ns:

Visió 2D i 3D del dibuix de les secci ns

Mides

Mides extretes dels d sm dels

Pal experimental 08 // bisell2:

Alineació dels materials:

Visió dels dos models alineats des de dos punts de vista diferents

Dibuix de les seccions:

Visió 2D i 3D del dibuix de les seccions

Mides:

PAL EXPERIMENTAL10:

Pal experimental 10 // extrem01:

Alineació dels materials:

Visió dels dos models alineats des de dos punts de vista diferents

Dibuix de les seccions:

Visió 2D i 3D del dibuix de les seccions

Mides:

Mides extretes dels dos models

Pal experimental 10 // extrem02:

Alineació dels materials:

Visió dels d s m dels alineats des de d spunts de vista diferents

Dibuix de les secci ns:

Visió 2D i 3D del dibuix de les secci ns

Mides:

Mides extretes dels dos models

PAL EXPERIMENTAL 11:

Pal experimental 11 // extrem01:

Alineació dels materials:

Visió dels dos models alineats des de dos punts de vista diferents

Dibuix de les secci ns:

Visió 2D i 3D del dibuix de les secci ns

Mides:

\qquad

Pal experimental 11 // extrem02:

Alineació dels materials:

Visió dels dos models alineats des de dos punts de vista diferents

Dibuix de les seccions:

Visió 2D i 3D del dibuix de les seccions

Mides:

Mides extretes dels dos models

PAL EXPERIMENTAL ESTINCLELLS 01:

Pal experimental Estinclells 01 // punta:

Alineació dels materials:

Dibuix de les seccions:

Mides:

Mides extretes dels dos models

Pal experimental Estinclells 01 // bisell:

Alineació dels materials:

Visió dels d smols delineats des de d spunts de vista diferents

Dibuix de les secci ns:

L.

Visió 2D i 3D del dibuix de les secci ns

Mides:

Mides extretes dels dos models

PAL EXPERIMENTAL ESTINCLELLS 02:

Pal experimental Estinclells 02 // punta:

Alineació dels materials:

Visió dels dos models alineats des de dos punts de vista diferents

Dibuix de les secci ns:

Visió 2D i 3D del dibuix de les secci ns

Mides:

Mides extretes dels d smols

Pal experimental Estinclells 02 // bisell:
Alineació dels materials:

Γ^{-}

Visió dels dos models alineats des de dos punts de vista diferents

Dibuix de les seccions:

Visió 2D i 3D del dibuix de les seccions

Mides extretes dels dos models

Annex 3: Presentació dels taxons

Tot seguit presentarem els diferents taxons identificats durant aquest treball entre els materials arqueològics excavats durant les campanyes 2010-2012. En aquest annex es recullen aquelles dades referents a: descripció general, hàbitat natural, usos i aprofitaments més comuns a partir de les fonts etnogràfiques, històriques i arqueològiques, i descripció dels tres plans anatòmics. Els diferents taxons que s'han pogut identificar són els següents ordenats per classe, família, gènere i espècie.

Coníferes:

S'han identificat dos taxons de coníferes, de dues famílies diferents.

Cupressaceae - Juniperus sp (ginebre)

És un arbret o arbust de fins a 9mts d’alçada, de fulla perenne (Franquesa 1999).

Hàbitat:

És una planta que no requereix condicions gaire especials per a créixer: ocupa terrenys de condicions difícils i és bona colonitzadora dels indrets alterats per la intervenció humana. És una espècie àmpliament distribuïda a l’hemisferi boreal a partir de la Mediterrània.

AI NE de la Península és molt abundant a la muntanya mitjana i pot arribar fins a cotes de 2000mts (Franquesa 1999).

$\underline{\text { Usos de la fusta: }}$

La fusta és tova, de densitat mitjana, duradora i d’alta qualitat, però es produeix en quantitats molt petites (López 2002). S'utilitza per fer carbó i llenys, per fusteria i ebenisteria (Folch\& Guillén 1988; Abella 2003).

Altres usos i aprofitaments:

El seu ús per a l’obtenció de beuratges i per aromatitzar la ginebre és de sobres conegut (Franquesa, 1999). També està documentat el seu ús per a la medicina tradicional, com a complement alimentari, per a perfumar, com a tintura,... (PFAF 2014).

Descripció anatòmica (Schweingruber 1990):

Pla transversal: fusta homoxyla, sense canals resinífers, amb una transició molt gradual entre el lleny inicial i el lleny final.

Pla longitudinal tangencial: radis uniseriats molt curts, d'entre 2 i 5 cèl•lules d'alçada.
Pla longitudinal radial: perforacions uniseriades de les traqueides.

Figura 347 - Imatges dels plans d'observació anatòmica: pla transversal (esquerra), pla longitudinal radial (centre), i pla longitudinal tangencial (dreta).

Taxaceae - Taxus baccata (teix):

Arbre robust, que no arriba a fer-se gaire alt (màxim 20 mts), però sí gros en diàmetre. Té fulla perenne. La seva estructura pot estar formada per múltiples troncs. L'escorça és llisa i vermellosa (Franquesa 1999).

Hàbitat:

Viu a les terres temperades d'Europa, Àsia i al nord d'Àfrica. Al nostre país es fa en racons ombrívols dels barrancs i al peu de cingles orientals al nord. Habita els boscos caducifolis, de coníferes o mixtes (Franquesa 1999).

Usos de la fusta:

La fusta, rogenca, és dura, pesada, elàstica i resistent, i s'usa en ebenisteria, escultura, i en la fabricació de múltiples artefactes (Franquesa 1999). També destaca per la seva utilització per a fabricar mànecs i arcs (PFAF 2014).

Altres usos i aprofitaments:

Planta amb una toxicitat molt alta en totes les parts, a excepció dels fruits. Tot i la seva alta toxicitat, s'ha documentat el seu ús com a farratge per al bestiar (López 2002). D'altres usos que s’han documentat són com a planta aromàtica i medicinal (PFAF 2014).

Descripció anatòmica (Schweingruber 1990):
Pla transversal: transició gradual entre el lleny inicial i el lleny final, sense canals resinífers ni parènquima.

Pla longitudinal tangencial: radis estrets, d'entre 5 i 12 cèl•lules d'alçada.
Pla longitudinal radial: reforços espiralats en les traqueides

Figura 348 - Imatges dels plans d'observació anatòmica: pla transversal (esquerra), pla longitudinal radial amb detall dels reforços espiralats(centre), i pla longitudinal tangencial (dreta).

Dicotiledònies:

S'han identificat onze taxons diferents i onze famílies de dicotiledònies diferents. En el cas de la família de les lleguminoses no s'ha pogut arribar a identificar nivell d'espècie, i en el cas de la família de les salicàcies, se n'han identificat dues espècies diferents.

Buxaceae - Buxus sempervirens (boix):

El boix és un arbust o petit arbre de fulla perenne que fa de 2 a 5 mts d'alçada, excepcionalment fins a 8 o 10mts. El tronc és prim i ramificat i està cobert per una fina escorça de color marró (Franquesa 1999).

Hàbitat:

La seva àrea de distribució s’estén per tot Europa (a excepció de l’extrem nord). Actualment acostuma a viure en sols calcaris, en els llocs més aviat secs de la muntanya mitjana (Masclans 1988; Folch \& Guillén 1988). Creix en rouredes i fagedes en els vessants secs desforestats (Franquesa 1999).

Usos de la fusta:

Tradicionalment l'ús del boix està ben documentat com a matèria primera per a l'elaboració de eines així com el seu aprofitament com a combustible també. Tot i que no produeix grans quantitats de fusta, aquesta és estimada per la seva duresa i alta densitat, utilitzada per a torneria i per a la confecció de tota mena d’objectes (Folch \& Guillén 1988). Es una fusta molt densa i per tant pesant (PFAF 2014).

Altres usos i aprofitaments:

Totes les parts d’aquesta planta són tòxics, especialment les fulles i l'escorça. Tot i això se’n documenta el seu aprofitament medicinal de forma esporàdica (PFAF 2014).

Descripció anatòmica (Schweingruber 1990):

Pla transversal: fusta amb porositat difosa, els vasos són petits i es troben de forma aïllada.

Pla longitudinal tangencial: radis generalment biseriats, o triseriats, d'entre 6 i 12 cèl•lules d'alçada.

Pla longitudinal radial: perforacions intravasculars escaleriformes, i cèl•lules dels radis heterogènies (les centrals són petites i arrodonides, mentre que les de l'extrem són més grans i allargades).

Figura 349 - Imatges dels plans d'observació anatòmica: pla transversal (esquerra), pla longitudinal radial (centre), i pla longitudinal tangencial (dreta).

Cornaceae - Cornus sanguinea (sanguinyol):

El sanguinyol és un arbust o un arbre petit caducifoli, de fins a 4mts d'alçada i d'escorça d'un color gris verdós (Franquesa 1999).

Hàbitat:

És una espècie típic del bosc caducifoli, que viu a la major part d’Europa, excepte a l’extrem nord. Al nostre país és comú als boscos humits i a l’estatge montà, però també el podem trobar als boscos subalpins; se'l pot trobar des del nivell de mar fins a 1800mts (Franquesa 1999).

Usos de la fusta:

Les seves petites branques, que destaquen per la seva flexibilitat, s'han utilitzat en cistelleria (PFAF 2014). La fusta en sí és blanca, Ilisa, resistent i dura i antigament s'utilitzava en fusteria (Franquesa, 1999). La seva fusta també és bona com a combustible i per a produir carbó (PFAF 2014).

Altres usos i aprofitaments:

D'altres usos que es coneixen de la planta en èpoques més recents, és l'aprofitament dels olis que s'extreuen del seu fruit per a produir llum i sabó (PFAF 2014).

Descripció anatòmica (Schweingruber 1990):
Pla transversal: porositat difosa, els vasos es troben generalment aïllats i tenen una mida uniforme en tot l'anell. Parènquima apotraqueal.

Pla longitudinal tangencial: radis d'entre 3 a 5 cèl•lules d'amplada, sovint uniseriats i estranyament arriba als 7. Com a molt arriba fins a les 50 cèl•lules de llargada.

Pla longitudinal radial: radis multiseriats són heterogenis amb algunes filades de radis verticals. Els radis uniseriats són tots verticals. Vasos amb reforços escaleriformes de més de 20 barres d'alçada.

Figura 350 - Imatges dels plans d’observació anatòmica: pla transversal (esquerra), pla longitudinal radial (centre), i pla longitudinal tangencial (dreta).

Corylaceae - Corylus avellana (Avellaner):

Generalment el trobem en forma arbustiva (fins a 6 mts), tot i que pot arribar a constituir un arbret de fins a 12 mts . És un arbust caducifoli, ramificat des de la base, i d’escorça llisa, d’un gris bru brillant (Franquesa 1999).

Hàbitat:

És una espècie d'àmplia distribució eurosiberiana; al sud viu a l'estatge montà, fins a 1600 m i indica microclimes humits. Al nostre país apareix típicament als fons de les valls humides, als torrents de l'extrem oriental dels Pirineus, Garrotxa i Montseny (Franquesa 1999).

Usos de la fusta:

La seva fusta és forta i elàstica i pot ser fàcilment corbada, però és poc duradora. Tradicionalment se n'ha explotat els nombrosos rebrots que treu en ser tallat de soca per obtenir branques rectes i llargues (Franquesa, 1999), aspecte que el converteix en un taxó molt apreciat en la cistelleria (Romo, 1997). En aquest sentit és una fusta més apreciada per la seva morfologia que no pas per les seves qualitats físiques. També és un bon combustible, amb brases duradores (López 2002).

Altres usos i aprofitaments:

El principal aprofitament de l'arbre és el seu fruit, l'avellana. Aquest fruit és amplament consumit tant de forma crua com cuinada, i és apreciat per les seves qualitats nutricionals. De l'avellana també se n'aprofita de forma generalitzada els olis i la llet que se'n pot extreure (PFAF 2014).

Per altra banda també està documentada la utilització de les seves fulles i escorça com a tints, amb finalitats medicinals, i com a farratge (López 2002).

Descripció anatòmica (Schweingruber 1990):
Pla transversal: fusta difusa o semiporosa, el límit dels anells que forma es veu sovint alterat a causa de les columnes de radis agregats.

Pla longitudinal tangencial: radis generalment uniseriats, a excepció dels radis agregats que poden ser bi o triseriats. Generalment tenen una alçada d'entre 10 a 25 cèl•lules, tot i que poden arribar fins a 40.

Pla longitudinal radial: radis homogenis, perforacions escaleriformes, i reforçaments espiralats molt fins al voltant dels vasos.

Figura 351 - Imatges dels plans d'observació anatòmica: pla transversal (esquerra), pla longitudinal radial (centre), i pla longitudinal tangencial (dreta).

Ericaceae - Arbutus unedo (Arboç)

Normalment té forma d'arbust, però fàcilment pot arribar a créixer com un petit arbre (3-4mts) i excepcionalment fins als 10mts. El tronc i les branques tenen una escorça vermellosa (Franquesa 1999).

Hàbitat:

Aquesta espècie és típicament mediterrània, tot i que també penetra per totes les terres europees d'influència atlàntica. Viu principalment al sotabosc dels alzinars aclarits o constituint màquies, en sols silicis, és una espècie de les terres baixes del litoral mediterrani (Franquesa 1999). La baixa presència, en forma de fusta tant carbonitzada com orgànica, i l'absència en els registres palinològics i carpològics apunten, en tot cas, a una presència quasi residual en el context de la Draga.

Usos de la fusta:

Pel que fa a la seva fusta és dura i de densitat alta, cosa que la fa àmpliament utilitzada en ebenisteria, torneria, escultura,... Aquesta fusta, està també ben documentada com a combustible o per l’obtenció de carbó. (Franquesa 1999; Romo 1997).

Altres usos i aprofitaments:

Tradicionalment s'ha relacionat el seu ús amb el consum del seu fruit, tant per a menjar cru com preparat (Folch \& Guillen 1988; Masclans 1988; Romo 1997; PFAF 2014). Els tanins que s'obtenen tant de les fulles, com de l'escorça o fruits, s'ha fet servir per a adobar pells (Franquesa 1999).

Descripció anatòmica (Schweingruber 1990):

Pla transversal: té porositat difusa, els vasos són de dimensions petites i es presenten agrupats en files radials de 2/3, o aïllats. Podem trobar-hi parènquima apotraqueal difós.

Pla longitudinal tangencial: radis generalment biseriats heterogenis. Vasos amb reforçaments espiralats.

Pla longitudinal radial: radis heterogenis, vasos amb reforçaments espiralats.

Figura 352 - Imatges dels plans d’observació anatòmica: pla transversal (esquerra) i pla longitudinal tangencial (dreta).

Fagaceae - Quercus sp caducifoli (Roure)

Generalment és un arbre de gran port, amb un tronc molt alt (de fins a 30 metres), ample, robust i molt ramificat amb branques de grans mides.

Hàbitat:

Les diverses espècies de roures viuen per tota Europa i arriben fins a l'Àsia Menor, ocupant les zones baixes en el centre i nord, i les muntanyes en les àrees meridionals.

$\underline{\text { Usos de la fusta: }}$

A causa de les seves grans dimensions, gran duresa, densitat, i la resistència a la immersió sota l'aigua, la fusta de roure és molt apreciada per a la construcció i per a la construcció naval. De la mateixa manera, també és un material àmpliament aprofitat per a l'elaboració de tot tipus d'artefactes. La fusta de roure és també un bon combustible i carbó.

Altres usos i aprofitaments:

Tradicionalment se n'ha consumit el fruit (glans), sempre i quan s'hagin tractat, ja que són indigeribles pels humans (PFAF 2014). També està documentat el consum alimentari de les seves llavors i de la goma que es pot extreure de la seva escorça, així com la utilització medicinal també de l'escorça (PFAF 2014).

Descripció anatòmica (Schweingruber 1990):

El gènere Quercus té unes característiques anatòmiques molt específiques (tipus de disposició de les cèl•lules parenquimàtiques en el tall transversal, i els radis uniseriats i multiseriats molt amples). La distinció entre les seves espècies en base a la seva anatomia només pot arribar a distingir les espècies caducifòlies (roures) de les perennifòlies (alzines): en les espècies caducifòlies hi trobem els vasos agrupats formant els anells estacionals, donant una disposició porosa, mentre que en els perennifolis la disposició dels vasos és difosa o semiporosa.

Pla transversal: fusta porosa, els vasos del lleny inicial són de grans dimensions, decreixen de manera brusca i prenen una disposició flamejada al lleny final. Els vasos grans presenten tilosi. Parènquima apotraqueal, disposat en el lleny final en fileres tangencials uniseriades.

Pla longitudinal tangencial: radis uniseriats i multiseriats i perforacions simples. Els radis multiseriats poden tenir més d'1mm d'amplada i fins a 5 cms de llargada.

Pla longitudinal radial: vasos amb perforacions simples, i radis homogenis.

Figura 353 - Imatges dels plans d’observació anatòmica: pla transversal (esquerra), pla longitudinal radial (centre), i pla longitudinal tangencial (dreta).

Lauraceae - Laurus nobilis (Llorer):

El llorer és un arbre que no sol superar els 20mts d'alçada. El tronc és recte, d'escorça llisa i negrosa, i les branques primes i ascendents (Franquesa 1999).

Hàbitat:

S'estén per tota la costa mediterrània i el Caucas, on prospera als barrancs humits i ben abrigats. (Franquesa 1999).

Usos de la fusta:

El llorer és un arbre que tolera bé la poda, és per això que juntament amb les característiques de les seves branques, s'utilitza molt per a la construcció de tanques, testos,... (Franquesa 1999).

Altres usos i aprofitaments:

Està àmpliament documentat el seu ús simbòlic i tradicional, així com l'ús culinari de les seves fulles. A nivell alimentari, s'utilitzen tant els seus fruits com els olis que es poden extreure de les seves fulles (PFAF 2014). Les seves fulles, fruits i olis també són molt apreciats en la medicina tradicional (PFAF 2014).

Descripció anatòmica (Schweingruber 1990):

Pla transversal: fusta de porositat difosa, amb els vasos aïllats o agrupats en petits grups radials (2-3 vasos). Parènquima paratraqueal.

Pla longitudinal tangencial: radis d'entre 1 a 4 cèl•lules d'amplada (habitualment 2-3), amb una alçada que va de 8 a 15-20 cèl•lules. Puntuacions intravasculars el•líptiques.

Pla longitudinal radial: radis heterogenis, perforacions dels vasos generalment simples (excepcionalment escaleriformes).

Figura 354 - Imatges dels plans d’observació anatòmica: pla transversal (esquerra), pla longitudinal radial (centre), i pla longitudinal tangencial (dreta).

Leguminoseae:

Família que compren un total de 650 gèneres i 18000 espècies diferents. Aquelles espècies autòctones del NE de la Península són difícilment diferenciables entre sí a nivell anatòmic.

Descripció:

Presenta una gran varietat de formes i mides, podent ser des de arbres, arbusts o herbes, fins a plantes enfiladisses o lianes. Però més enllà de les zones tropicals, acostuma a prendre la forma d'herba o arbust.

Hàbitat:

La gran quantitat d'espècies que formen aquesta família les podem trobar arreu del món, en casi tots els climes.

$\underline{\text { Usos i aprofitaments: }}$

Moltes d'aquestes espècies actualment tenen una gran importància econòmica com a aliment humà (pèsol, Ilentia, fava, cigró, mongeta,...), com a farratge animal (alfals, garrofer,...).

Descripció anatòmica:

Pla transversal: fusta porosa amb bandes de parènquima molt visibles amb orientació obliqua o tangencial.

Pla longitudinal tangencial: generalment radis multiseriats, a vegades entre tri i quatriseriats, tot i que pot variar molt segons l'espècie.

Pla longitudinal radial: cèl•lules dels radis heterogènies, amb reforços espiralats als vasos.

Figura 355 - Imatges dels plans d’observació anatòmica: pla transversal (esquerra), pla longitudinal radial (centre), i detall dels reforços espiralats en el pla longitudinal transversal (dreta).

Ranunculaceae - Clematis sp (vidalba):

La podem trobar en forma arbustiva, herbàcia o de liana enfiladissa. A la nostra regió apareix amb forma de liana.

Hàbitat:

Generalment són plantes que viuen bé en terrenys calcaris sota climes temprats dels dos hemisferis. AI NE de la Península la podem trobar als boscos humits i termòfils d'alzinars i rouredes mediterrànies (Franquesa 1999).

Usos de la fusta:

Planta que genera molt poca llenya, centrada en la base. Tot i que aquestes tiges poc llenyoses i flexibles s'han utilitzat per a la cistelleria, corderia, etc.

Altres usos i aprofitaments:

Les seves propietats tòxiques de les seves fulles, arrels i tiges han afavorit la seva utilització en la medicina tradicional, i en menor mesura en la cuina (PFAF 2012).

Descripció anatòmica:

Pla transversal: fusta porosa, en el lleny inicial els vasos generalment apareixen en forma solitària i tenen grans mides, mentre que en el lleny final els vasos són petits i s’agrupen.

Pla longitudinal tangencial: radis molt amples, entre 5 i 15 cèl•Iules fins a 20. Radis molt alts, sovint superant els 100 mms .

Pla longitudinal radial: generalment perforacions intravasculars simples (poden aparèixer reforços espiralats en els vasos més petits), radis heterogenis.

Figura 356 - Imatges dels plans d’observació anatòmica: pla transversal (esquerra), i pla longitudinal tangencial (dreta). El pla longitudinal radial no s'ha pogut obtenir per qüestions de conservació de la mostra.

Rosaceae/Maloideae:

Les maloideas són una subfamília dintre del grup de les Rosaceae que inclou algunes espècies d'arbres rellevants. A nivell anatòmic, les diferències dintre d'aquest grup són molt petites, arribant en alguns casos a ser completament impossible la seva diferenciació (Hather 2000). Així, les nostres identificacions no han pogut arribar a determinar-ne l'espècie.

Es tracta d'arbusts o petits arbres que no superen els $8-10 \mathrm{~m}$ d'alçada

Hàbitat:

Se'ls associa amb boscos caducifolis més o menys degradats, en zones marginals o clarianes.

Usos de la fusta:

Pel que fa a la seva fusta en la majoria dels casos és una fusta dura i força valorada en la fusteria tradicional. També està ben considerada com a llenya o carbó (López 2002).

Altres usos i aprofitaments:

Generalment l'aprofitament d'aquestes espècies s'associa al consum dels seus fruits, ja que destaquen en la majoria de les espècies.

Descripció anatòmica (Schweingruber 1990):

Pla transversal: porositat difosa o semi-porosa. Els vasos són petits i força nombrosos i es distribueixen de forma aillada.

Pla longitudinal tangencial: radis bi o triseriats, d'entre 5 i 15 cèl•lules d'alçada. Els radis uniseriats són molt estranys.

Pla longitudinal radial: radis generalment homogenis, amb perforacions simples dels vasos (reforços espiralats molt fins o inexistents), i amb puntejadures intravasculars oposades en files horitzontals.

Figura 357 - Imatges dels plans d’observació anatòmica: pla transversal (esquerra), pla longitudinal radial (centre), i pla longitudinal tangencial (dreta).

Rosaceae/Rosoideae - Rubus sp. (esbarzer):

Les espècies del gènere Rubus no només són molt difícils de diferenciar anatòmicament entre elles, sinó que fins i tot és complicat de diferenciar-les "en viu", és per això que la identificació no ha pogut arribar a fer-se a nivell d'espècie.

L’esbarzer és una planta de tiges fortes, anguloses, Ilargues i arquejades. Forma manyocs molt embrollats.

Hàbitat:

És molt comú a la major part d'Europa. Al nostre país se'l pot trobar en totes les regions, mentre siguin ben il-luminats illeugerament humits; és molt freqüent als boscos de ribera aclarits, als marges dels boscos,... (Franquesa 1999)

Usos i aprofitaments:

De forma casi única se n'utilitza el seu fruit (mora), de moltes formes diferents en l'àmbit alimentari: fruita fresca, conserves, licors,... La seva fusta és molt escassa i sense cap propietat a destacar.

Descripció anatòmica (Schweingruber 1990:

Pla transversal: fusta amb porositat difosa, els vasos es troben de forma solitària o en petits grups. Té parènquima apotraqueal.

Pla longitudinal tangencial: radis uniseriats i multiseriats d'entre 4 a 12 cèl•Iules d'amplada.
Pla longitudinal radial: cèl•lules heterogènies o verticals i perforacions simples dels vasos.

Figura 358 - Imatges dels plans d’observació anatòmica: pla transversal (esquerra) i pla longitudinal tangencial (dreta). El pla longitudinal radial no s'ha pogut obtenir per qüestions de conservació de la mostra.

Salicaceae - Populus sp. (àlber-pollancre):

Són arbres de creixement molt ràpid quan tenen suficientment aigua disponible. El seu tronc és llarg (fins a 20mts) i molt recte.

Hàbitat:

És un arbre propi de la regió eurosiberiana, i més estrany a la mediterrània, tot i que el podem trobar en els terrenys humits. Acostumen a créixer en llocs al costat de corrents d'aigua o amb la capa freàtica alta (Franquesa 1999).

Usos de la fusta:

Fusta lleugera, tova, suau i flexible, i apreciada per la seva forma. Està ben documentat el seu ús com a combustible i carbó pel seu alt valor calorífic (Franquesa 1999; PFAF 2014).

Altres usos i aprofitaments:
Les seves fulles i part interior de l'escorça es pot utilitzar tant a nivell alimentari, com medicinal, encara que de forma no gaire generalitzada (PFAF 2012).

Descripció anatòmica (Schweingruber 1990):

Pla transversal: la porositat és difusa, amb els vasos generalment agrupats en petits grups radials (de 2 a 3 vasos).

Pla longitudinal tangencial: radis exclusivament uniseriats i homogenis.
Pla longitudinal radial: radis homogenis, perforacions simples i grans puntejadures intravasculars.

Figura 359 - Imatges dels plans d’observació anatòmica: pla transversal (esquerra), i pla longitudinal tangencial (dreta).

Salicaceae - Salix sp (salze):

Comprèn un nombre important d'espècies que poden tenir formes i mides diverses, des de arbres o arbusts a mates. Al NE de la Península acostuma a créixer en forma d'arbre de fins a 20mts d'alçada, podent aparèixer també alguna de les formes arbustives.

Hàbitat:

És un gènere originari de l’hemisferi Nord on generalment creix en climes freds o temprats. A casa nostra creix fins a 600mts d'alçada en zones humides (rierols, aiguamolls, pantans,...), tot i que fins i tot pot suportar condicions extremes d'inundació (Franques, 1999; PFAF 2014).

Usos de la fusta:

Fusta resistent, elàstica, i tova que es pot treballar fàcilment (Franquesa 1999). S'ha utilitzat per a la construcció i torneria. També està documentat el seu aprofitament per a obtenir carbó (PFAF 2014).

Les branques joves (vímets) són molt utilitzades en cistelleria (Franquesa 1999). És una planta que accepta molt bé la poda, pel que la seva manipulació per tal de poder-ne extreure els vímets està àmpliament documentada (Franquesa 1999; PFAF 2014)

Altres usos i aprofitaments:

Aquesta espècie és principalment coneguda per ser l'origen de l'àcid salicílic (precursor de l'aspirina). El tractament de la seva escorça s'ha utilitzat tradicionalment medicinalment per alleujar dolors, febres,... (PFAF 2014). Les seves fulles també es poden consumir en forma d'infusió com a calmant (PFAF 2014).

Descripció anatòmica (Schweingruber, 1990):
Pla transversal: fusta semiporosa o difosa, la distribució dels vasos és solitària o en petits grups radials.

Pla longitudinal tangencial: radis exclusivament uniseriats, amb una alçada mitjana d'entre 10 i 15 cèl•lules.

Pla longitudinal radial: radis heterogenis, amb perforacions intravasculars simples, i puntejadures grans i simples.

Figura 360 - Imatges dels plans d'observació anatòmica: pla transversal (esquerra), pla longitudinal radial (centre), i pla longitudinal tangencial (dreta).

Vitaceae - Vitis vinífera (vinya):

És un arbust llenyós que en la forma silvestre pot arribar a tenir grans dimensions, però que sota l'acció humana i la poda, queda reduït a un petit arbust. Té un tronc retorçat amb una escorça gruixuda (López 2002).

Hàbitat:

Actualment és una planta àmpliament conreada però en la seva forma silvestre pot aparèixer als boscos de ribera de tota la regió mediterrània. Pot créixer des de la línia de costa fins als Pirineus a 1200mts d’alçada (Franquesa 1999).

Usos de la fusta:

La fusta del individus més vells pot arribar a ser considerada per la seva durabilitat (PFAF 2014). Més enllà d'aquest aspecte, no és una fusta tradicionalment gaire valorada. Tot i això, sovint les restes de la seva poda han estat utilitzats com a combustible (Gale \& Cutler 2000).

Altres usos i aprofitaments:

Es tracta d'una planta que també és aprofitada quasi en exclusivitat per al consum del seu fruit (raïm), àmpliament documentat en tots els períodes històrics i prehistòrics. El raïm ofereix moltes possibilitats de consum: es pot consumir cru o sec (panses), així com extreure'n el suc i olis (PFAF 2014). Tot i el consum tant conegut del seu fruit també se'n pot consumir com a aliment les seves fulles, la saba, la llavor, etc (PFAF 2014).

També està documentat el consum del fruit, fulles, saba i llavor, per certes aplicacions medicinals (PFAF 2014).

Descripció anatòmica (Schweingruber 1990):
Pla transversal: fusta porosa; els vasos de la fusta primerenca són molt grans i generalment es troben aïllats, mentre que els de la fusta final són petits i sovint els trobem agrupats en petits grups. Parènquima apotraqueal. Els radis ocupen una bona part de la superfície.

Pla longitudinal tangencial: radis multiseriats (de 5 a 20 cèl•Iules d'ample).
Pla longitudinal radial: cèl•lules homogènies i heterogènies, amb puntuacions intravasculars escaleriformes, i perforació dels vasos simples (Hather 2000).

Figura 361 - Imatges dels plans d’observació anatòmica: pla transversal (esquerra), detall dels vasos en el pla longitudinal tangencial (centre), i pla longitudinal tangencial (dreta).

Annex 4: Plantes de distribució de pals verticals i fustes horitzontals

La Draga, Sector D. Distribució dels pals verticals.

Planta 4

Pals verticals FORMA

- corbada
- corbada amb branques
corbada
- branques regulanitzades
- recte
- recte amb branques
- recte branques regularitzades

La Draga, Sector D. Distribució dels Pals Verticals

Planta 5

Planta 6
Pals diametre > $99 \mathbf{m m}$ DIAMETRE

- 102,00000-130,00000
- 130,00001 - 160,00000
- 160,00001 - 191,00000

- Seccions $<>1$

Planta 8

$$
\begin{array}{lll}
\text { moments de } & * \text { en el lw } \\
\text { TALLA } & * & \text { final lw } \\
* & \text { inici ew } & * \\
\text { nivern } \\
\text { final ew } & * & \text { nd }
\end{array}
$$

Planta 9
PVs no Quercus sp
TAXO

- Cornus
- Corylus
- Laurus
- nd
$00000^{\prime} 01$ と－ $10000^{\prime} 911 \longrightarrow$ 00000＇9LL－L0000＇9L $00000^{\prime} 9 \mathrm{~L}$－ $10000^{\prime} 9 t=$ $00000^{\prime} 9 \mathrm{~b}-00000^{\prime} \mathrm{L}$ ヨyノヨWฤla SHJ

La Draga，Sector D．Distribució de les fustes horitzontals．

Planta 11

Planta 12
Ilargada $>149 \mathrm{~cm} \quad 34,00000-60,00000=80,00001-80,00000=80,00001-112,00000 \quad 112,00001-210,00000$

Planta 13

Distribució per DIAMETRE 75,00001-125,00000
$\longrightarrow 7,00000-75,00000 \longrightarrow 125,00001-210,00000$

La Draga, Sector D. Distribució de les fustes horitzontals.

Planta 14a
Esberlats 1 DIAMETRE
-25,00000-60,00000
$=60,00001$ - 98,00000
$\longrightarrow 98,00001-152,00000$

Planta 14b

Esberlats 2

DIAMETRE
— 7,00000-73,00000
$\longrightarrow 73,00001-125,00000$
$=$ 125,00001-210,00000

Planta 14c
Esberlats 3
DIAMETRE
-20,00000-62,00000

- 62.00001-113.00000

Planta 14d

Esberlats 4
DIAMETRE

- $26.00000 \cdot 62.00000$

62,00001 - 106,00000

La Draga, Sector D. Distribució de les fustes horitzontals.

Planta 15
\longrightarrow Fustes carbonitzades

Planta 16
Diametre > 99 mm DIAMETRE

- 100,00000-122,00000
- 122,00001-154,00000
$\longrightarrow 154,00001$ - 210,00000

La Draga, Sector D. Distribució de les fustes horitzontals i pals verticals.

Planta 17 - pals verticals amb fustes horitzontals

Índex de figures

Núm Fig. Descripció Pàg

Figura 1 Esquema del procés de producció de béns 19
Figura 2 Relació entre les categories d'elements de fusta estudiats i els processos de 20 treball
Figura 3 Esquema del procés de producció de béns, i els diferents béns que sorgeixen 21 en cada esglaó del procés.
Figura $4 \quad 22$
Figura 5 Zones excavades al jaciment de la Draga entre 1991-2013, ampliant-ne el 23 sectors B i D.
Figura 6 Esquema de les seccions estratigràfiques dels sectors A (esquerra), B, Ci D en 24 relació a l'alçada del nivell freàtic (Bosch et al. 2000).
Figura $7 \quad$ Quadrícula d'excavació dels sectors B i D.25

Figura $8 \quad$ Planta i estratigrafia del sector D de la Draga (Palomo et al. 2014). 26
Figura 9 Representació de les datacions de carboni 14 calibrades de la Draga de 28 mostres de vida curta (Palomo et al. 2014).
Figura 10 Llistat de "pals cavadors" i "pals apuntats" de les campanyes 1995-2005 que 40 han estat descartats de l'anàlisi digital.
Figura 11 Llistat de "pals cavadors" i "pals apuntats" de les campanyes 1995-2005 40 inclosos en l'anàlisi traceològica digital.
Figura 12 Llistat de pals apuntats de les campanyes 2010-2012 analitzats en aquest treball.
Figura 13 Llistat de les altres eines recuperades entre 2010 i 2012.
Figura 14 Fitxa de registre al camp per a fustes horitzontals, restes de talla i eines 47
Figura 15 Fitxa de registre al camp per a pals verticals. 50
Figura 16 Tipus de seccions dels pals verticals de la Draga (d’esquerra a dreta): secció 58 sencera , mitja secció, terç de secció i secció trapezoïdal.
Figura 17 Classificació de les fustes horitzontals de la Draga: secció amb esberlat radial (esquerra), secció amb esberlat tangencial i nucli (centre), secció amb esberlat tangencial sense nucli (dreta)
Figura 18 Esquema de les diferents seccions potencials obtingudes amb la combinació del nombre d'esberlats i la situació i orientació d'aquests. Les seccions estan connectades en base a la secció a partir de la qual pot haver estat obtinguda, i a partir de les que en poden sorgir.
Figura 19 Exemples dels diferents tipus puntes documentats en els pals verticals: fractura directa (superior-esquerra), tall horitzontal (superior-dreta), esberlat (mig-esquerra), bisell simple (mig-dreta), bisell doble (inferior-esquerra) i punta cònica (inferior-dreta).
Figura 20 Exemples dels diferents tipus de formes de fustes horitzontals i pals verticals: recte (núm. 520), ondulat (núm. 481), angle d'aproximadament 45º (núm.228), angle d’aproximadament 90ㅇ (núm.474), i forca (núm.309).
Figura 21 Utilització de pals cavadors en una representació dels aborígens australians (esquerra), d'indígenes americans (centre) i en una fotografia d'aborígens de Nova Guinea (dreta).
Figura 22 Pals apuntats registrats i analitzats al jaciment de la Draga 74
Figura 23 Estructura anatòmica d’una conífera (esquerra) i d’una dicotiledònia (dreta) 76 (Schweingruber 1978).
Figura 24 Ordenació dels tres plans d’observació de l'anatomia de la fusta. 78
Figura $25 \quad$ Plantilla per a mesurar els diàmetres mínims (Heiss \& Thanheisser 2008). 81

Figura 26 Canvi de densitat d'anells de creixement en el pla transversal d'un roure
(Quercus sp. Caducifoli) arqueològic de la Draga: en la part inferior de la imatge la densitat d'anells és baixa, i aquesta augmenta de forma sobtada.
Figura 27 Presència de teixit callós en el tall transversal d'un roure (Quercus sp . Caducifoli) arqueològic de la Draga.
Figura 28 Tall transversal d'un element de fusta alterat pel creixement d'una branca en un roure (Quercus sp. Caducifoli) arqueològic de la Draga.
Figura 29 Tall transversal de roure (Quercus sp. Caducifoli) arqueològic de la Draga, alterat amb una ferida que, amb els temps, ha estat assimilada pel lleny.
Figura 30 Presència de tilosi en els vasos de dues mostres de roure (Quercus sp. Caducifoli) arqueològic de la Draga.
Figura 31 Monocotiledònia creixent de forma transversal (esquerra) i longitudinal (dreta) en el tall transversal de dues mostres de roure (Quercus sp. Caducifoli) arqueològic de la Draga.
Figura 32 Galeries produïdes per entomofauna amb reacció del lleny a l'agressió amb modificació de l'anatomia i lignificació posterior (esquerra), i sense reacció de la fusta, posteriorment omplerta amb sediment del jaciment (dreta), en el pla transversal duna mostra de roure (Quercus sp. Caducifoli) arqueològic de la Draga.
Figura 33 Dos exemples de hifes o fongs en el pla transversal de dues mostres de roure (Quercus sp. Caducifoli) arqueològic de la Draga.
Figura 34 Situació original de la pala en el tronc de roure seguint l’orientació dels trets anatòmics.
Figura 35 Marques d'esberlat en el mànec del coordenat núm 246291
Figura 36 Fotografia de l'eina coordenada número 246291
Figura 37 Fotografia de l'eina coordenada número 2662
Figura 38 Fotografia i croquis de l'eina coordenada número 267592
Figura 39 Situació original de l'arc en el tronc de teix seguint l'orientació dels trets 93 anatòmics.
Figura 40 Esquema de la situació de l'extrem corbat en el tronc original: 1) en el moment d'elaboració, 2) en el moment d'excavar
Figura 41 Fotografia (Equip Draga) i dibuix (X. Carlús) de l'eina coordenada número 2688
Figura 42 Fotografia de l'eina coordenada número 2913
Figura 43 Situació original del coordenat 3247 en el tronc seguint l'orientació dels trets anatòmics
Figura 44 Fotografia i croquis de l'eina coordenada número 3247
Figura 45 Fotografia de l'eina coordenada número 4459.98
Figura 46 Situació original del coordenat 4476 en el tronc seguint l'orientació dels trets 98 anatòmics
Figura 47 Fotografia i croquis de l'eina coordenada número 4476
99
Figura 48 Situació original del coordenat 4488 en el tronc seguint l'orientació dels trets 100
Figura 49 Fotografia de l’eina coordenada número $4488 \quad 100$
Figura 50 Localització de les 9 eines estudiades en el sector D. 101
Figura 51 Matèries primeres de les eines de les campanyes 2010-2012 101
Figura 52 Matèries primeres de les eines de les campanyes 1995-2012 (1995-2005 102 dades provinents de Bosch et al. 2006a), ressaltat en verd clar les categories on s'han incorporat les noves dades de les campanyes 2010-2012, i en verd fosc els camps concrets on s'han incorporat aquestes dades.

Figura 53 Suports identificats i núm. D’esberlats necessaris per a cada eina analitzada.

Figura 54 Procés experimental de tallar un tronc amb una aixa (A. Palomo).

Figura 57 Polit experimental amb una pedra sorrenca (López 2008a). 106
Figura 58 Traces observades durant l'experimentació tecnològica. Superior: facetes 108 d'esberlat. Mig: facetes de desbastat. Inferior-esquerra: estries tecnològiques. Inferior-dreta: polit tecnològic.
$\begin{array}{lll}\text { Figura } 59 & \begin{array}{ll}\text { Experimentació funcional de remoure sediment de duresa mitjana } \\ \text { (Esquerra), forma de pic del Pal Experimental 03, un cop emmanegat (dreta). }\end{array} & 109 \\ \text { Figura 60 } & \text { Extrems utilitzats durant l'experimentació } & 109\end{array}$
Figura 61 Traces funcionals observades durant l'experimentació funcional. Superior- 111 esquerra: escantell/osca. Superior-dreta: aixafament. Mig-esquerra: estries. Mig-dreta: erosió. Inferior: polits (esquerra: brillant, dreta: mat).
Figura 62 Experimentació funcional de cavar una sitja en sediment dur en el Camp d’Experimentació Protohistòrica de Verdú (Prats et al. 2013).
Figura 63 Extrems utilitzats durant l'experimentació 112
Figura 64 Extrems utilitzats durant l'experimentació 113
Figura 65 Quadre-resum dels esberlats observats en cada pal apuntat i el seu taxí, i les 144 seves característiques mètriques.
Figura 66 Esquema publicat per Sands (1997) de la formació de signatures, en aquest cas produïdes per una destral.
Figura 67 Nombre de facetes localitzades i individualitzades en cada un dels extrems dels Pals experimentals.
Figura 68 Resultats de l'adscripció de facetes del Pal Experimental 01 als grups de facetes
Figura 69 Grup de signatures núm. 149
Figura 70 Grup de signatures núm. 2150
Figura 71 Grup de signatures núm. 3150
Figura 72 Resultats de l'adscripció de facetes del Pal Experimental 02 als grups de 151 facetes
Figura 73 Grup de signatures núm. $4 \quad 153$
Figura 74 Resultats de l'adscripció de facetes del Pal Experimental 03 als grups de 154 facetes
Figura 75 Grup de signatures núm. $5 \quad 155$
Figura 76 Grup de signatures núm. $6 \quad 156$
Figura 77 Resultats de l'adscripció de facetes del Pal Experimental 04 als grups de 156 facetes
Figura 78 Grup de signatures núm. $7 \quad 157$
Figura 79 Grup de signatures núm. $8 \quad 157$
Figura 80 Resultats de l'adscripció de facetes del Pal Experimental 05 als grups de 158 facetes
Figura 81 Grup de signatures núm. $9 \quad 159$
Figura 82 Grup de signatures núm. 10159
Figura 83 Resultats de l'adscripció de facetes del Pal Experimental 06 als grups de 160
facetes
Figura $84 \quad$ Grup de signatures núm. 11 160
Figura 85 Grup de signatures núm. 12 161
Figura 86 Grup de signatures núm. 13 162
Figura 87 Resultats de l'adscripció de facetes del Pal Experimental 07 als grups de 162 facetes
Figura 88 Grup de signatures núm. 14 163
Figura 89 Resultats de l'adscripció de facetes del Pal Experimental 08 als grups de 164 facetes
Figura 90 Grup de signatures núm. 15 164
Figura 91 Quadre-resum dels grups de signatures per cada pal apuntat experimental 165
Figura 92 Grup de signatures Verd 166
Figura 93 Grup de signatures Groc 167
Figura 94 Grup de signatures Vermell 168
Figura 95 Resultats de l'adscripció de facetes del pal arqueològic DG03-JE88-04. 169
Figura 96 Grup de signatures núm. 16 169
Figura 97 Resultats de l'adscripció de facetes del pal arqueològic DG03-JE89-32. 170
Figura 98 Grup de signatures núm. 17 170
Figura 99 Grup de signatures núm. 18 171
Figura 100 Grup de signatures núm. 19 171
Figura 101 Mides extretes dels dos models respecte a la distància amb la punta, i 180diferència absoluta i percentual entre els dos models
Figura 102 Representació gràfica de les mides de l'extrem apuntat del Pal Experimental 18001. Les dades blaves corresponen al motlle mentre que les vermellescorresponen a l'original.
Figura 103 Mides extretes dels dos models respecte a la distància amb la punta, i 181diferència absoluta i percentual entre els dos models
Figura 104 Representació gràfica de les mides de l'extrem apuntat del Pal Experimental02. Les dades blaves corresponen al motlle mentre que les vermellescorresponen a l'original.
Figura 105 Mides extretes dels dos models respecte a la distància amb la punta, i182diferència absoluta i percentual entre els dos model
Figura 106 Representació gràfica de les mides de l'extrem apuntat del Pal Experimental 04. Les dades blaves corresponen al motlle mentre que les vermelles corresponen a l'original.
Figura 107 Mides extretes dels dos models respecte a la distància amb la punta, i diferència absoluta i percentual entre els dos models
Figura 108 Representació gràfica de les mides de l'extrem apuntat del Pal Experimental 05. Les dades blaves corresponen al motlle mentre que les vermelles corresponen a l’original.
Figura 109 Mides extretes dels dos models respecte a la distància amb la punta, i diferència absoluta i percentual entre els dos models
Figura 110 Representació gràfica de les mides de l'extrem apuntat del Pal Experimental 06. Les dades blaves corresponen al motlle mentre que les vermelles corresponen a l'original.
Figura 111 Mides extretes dels dos models respecte a la distància amb la punta, i diferència absoluta i percentual entre els dos models
Figura 112 Representació gràfica de les mides de l'extrem apuntat del Pal Experimental 07. Les dades blaves corresponen al motlle mentre que les vermelles corresponen a l'original.

Figura 113 Mides extretes dels dos models respecte a la distància amb la punta, i

Figura 115 Resultats generals de les mesures amb pals experimentals no usats
Figura 118 Resultats del càlcul de l'erosió en el Pal Experimental 01
193
Figura 120 Resultats del càlcul de l'erosió en el Pal Experimental 03-punta 194
Figura 121 Resultats del càlcul de l'erosió en el Pal Experimental 03-bisell 195
Figura 122 Resultats del càlcul de l'erosió en el Pal Experimental 04 196
Figura 123 Resultats del càlcul de l'erosió en el Pal Experimental 05 197
Figura 124 Resultats del càlcul de l'erosió en el Pal Experimental 06 198
Figura 125 Resultats del càlcul de l'erosió en el Pal Experimental 07 199
Figura 126 Resultats del càlcul de l'erosió en el Pal Experimental 08 200
Figura 127 Resultats del càlcul de l'erosió en el Pal Experimental 10-extrem01 201
Figura 128 Resultats del càlcul de l'erosió en el Pal Experimental 10-extrem02 202
Figura 129 Resultats del càlcul de l'erosió en el Pal Experimental 11- bisell1 203
Figura 130 Resultats del càlcul de l'erosió en el Pal Experimental 11-bisell2 204
Figura 131 Resultats del càlcul de l'erosió en el Pal Experimental Estinclells 01-extremapuntat
Figura 132 Resultats del càlcul de l'erosió en el Pal Experimental Estinclells 01-extrem bisellat
Figura 133 Resultats del càlcul de l'erosió en el Pal Experimental Estinclells 02-extrem apuntat
Figura 134 Resultats del càlcul de l'erosió en el Pal Experimental Estinclells 02-extrem bisellat
Figura 135 Taula resum dels resultats obtinguts209
Figura 136 Representació gràfica dels resultats obtinguts durant el procésd'experimentació funcional. Els resultats estan ordenats en tres grupsdepenent del tipus de sediment treballat (mitjà, tou o dur). Cada grup estàordenat en base al temps de treball de cada un dels extrems apuntats. Enblau es representen els mm perduts, en vermell els mm afectats, i en verd elsmm probablement afectats per l'erosió.
Figura 137 Quadre-resum de les adscripcions de cada un dels extrems observats a laforma observada, ordenats a partir del tipus de sediment sobre el que hanexperimentat.
Figura 138 Llistat d'extrems dels que no se'n pot analitzar la forma. 218
Figura 139 Figura-resum dels resultats de l'anàlisi de l'erosió a partir de la forma. Els pals 227apuntats estan agrupats a partir de les seves característiques morfològiques.Figura 140 Mides (en mms) de les estries localitzades en sediment tou229
Figura 141 Localització de les tres estries analitzades a la punta1 del Pal Experimental 10(esquerra), i al bisell1 del Pal Experimental11 (dreta)
Figura 142 Distribució de les mesures de les estries obtingudes amb sediment tou 231
Figura 143 Mides (en mms) de les estries localitzades en sediment mitjà 232

Figura 144 Localització de les tres estries analitzades en les dues cares del bisell del Pal
Experimental01 (primera fila-esquerra), del bisell del Pal Experimental 02 (primera fila-dreta), del bisell i punta del Pal Experimental 03 (segona fila), del bisell del Pal Experimental 04 (tercera fila-esquerra), del bisell del Pal Experimental 05 (tercera fila-dreta), del bisell del Pal Experimental 06 (quarta fila-esquerra), del bisell del Pal Experimental 7 (quarta fila-centre), i de la punta del Pal Experimental 8 (quarta fila-dreta)
Figura 145 Distribució de les mesures de les estries obtingudes amb sediment mitjà
Figura 146 Mides (en mms) de les estries localitzades en sediment dur
Figura 147 Localització de les estries analitzades al Pal Estinclells01, bisell (esquerra) i 235 punta (dreta)
Figura 148 Localització de les estries analitzades al Pal Estinclells02, punta (esquerra) i bisell (dreta)
Figura 149 Distribució de les mesures de les estries obtingudes amb sediment dur 236
Figura 150 Comparació entre les mesures de llargada de les estries que hem obtingut 237 amb els 3 tipus de sediments i en total
Figura 151 Comparació entre les mesures d'amplada de les estries que hem obtingut amb els tres tipus de sediments i en total
Figura 152 Comparació entre les mesures de profunditat de les estries que hem obtingut amb els tres tipus de sediments i en total
Figura 153 Distribució del total de mesures d'amplada i profunditat. En color verd les mesures de sediment tou, en color vermell les de sediment mitjà, i en blau les de sediment dur
Figura 154 Exemples de les seccions de les estries produïdes per un sediment dur (superior), mitjà (mig) i tou (inferior).
Figura 155 Intervals on es poden trobar estries funcionals en cada un dels pals experimentals. Els resultats s'agrupen segons el tipus de sediment treballat: sediment tou (verd), sediment mitjà (vermell), sediment dur (blau).
Figura 156 Resultats màxims i mitjans obtinguts en el global de cada una de les mostres analitzades: sediment tou, mitjà i dur.
Figura 157 Mides (en mms) de les estries localitzades en els pals arqueològics
Figura 158 Localització de les estries en els pals DG95-FJ92-01/extrem1 (esquerra) i DG01-KA87/88-26/extrem1 (dreta)
Figura 159 Localització de les estries en els pals DG01-KC87-22/extrem1 (esquerra) i DG01-KD89/90-11/extrem1 (dreta)
Figura 160 Localització de les estries en els extrems 1 (esquerra) 2 (dreta) del pal DG03-JE89-32
Figura 161 Localització de les estries en els pals DG03-JE88-04/extrem1 (esquerra) i DG05-KE88-05/extrem1 (dreta)
Figura 162 Superior: Distribució dels valors arqueològics (negre) en comparació amb els valors experimentals (vermell). Inferior: Distribució dels valors arqueològics (negre) en comparació amb els experimentals de sediment tou (verd), de sediment mitjà (vermell) i de sediment dur (blau)
Figura 163 Comparació entre les mesures de llargada de les estries que hem obtingut amb els tres tipus de sediment, el global de valors experimentals, i els arqueològics.
Figura 164 Comparació entre les mesures d'amplada de les estries que hem obtingut amb els 3 tipus de sediment, el global de valors experimentals, i els arqueològics.
Figura 165 Comparació entre les mesures de profunditat de les estries que hem obtingut
arqueològics.Figura 166 Mides (en mms) de les estries localitzades en els pals arqueològics
Figura 167 Comparació entre els intervals on apareixen les estries funcionals en els pals 253arqueològics i els intervals en cada un dels grups experimentals.
Figura 168 Escala de tonalitats d'entre 0.5 i -0.5 mm .
Figura 169 Escala de tonalitats d'entre 0.5 i -0.5 mm , amb un segon filtre entre 0.2 i - 2550.2 mm .
Figura 170 Escala de tonalitats d'entre 1.5 i-1.5mm. 255
Figura 171 Quadre-resum dels diferents models experimentals ordenats per tipus de 265sediment i temps d'ús.
Figura 172 Esquema de l'afectació del polit en els pals apuntats experimentals depenent 267 del sediment i del temps d'ús.
Figura 173 Extrems descartats per a l'anàlisi a causa de la seva formaFigura 174 Comparació de l'anàlisi de superfícies entre un pal apuntat experimental 269(esquerra), i un pal apuntat arqueològic amb una superfície alterada,probablement a causa de la seva foscor (dreta). En els dos casos s'utilitzen elsmateixos filtres (0.5, 0.5-0.2, i 1.5).
Figura 175 Extrems descartats de l'anàlisi per falta de precisió. 270
Figura 176 Quadre / resum de les observacions de l'anàlisi de superfícies dels models digitals253255268269
Figura 177 Resultats totals i percentuals de l'anàlisi taxonòmic dels Pals Verticals276
Figura 178 Comparació de la presència i absència dels taxons en els Pals Verticals aljaciment de la Draga
Figura 179 Taula de contingència de les mesures realitzades als pals verticals recuperatsdel sector D
Figura 180 Representació gràfica dels diàmetres mesurats als pals verticals recuperatsdel sector D
Figura 181 Distribució dels valors en un gràfic de caixes278
Figura 182 Distribucions de les dades amb una (esquerra), dues (centre) i tres (dreta)corbes de normalitatFigura 183 Comparació dels resultats del diàmetre entre els pals verticals extrets durantles campanyes 1991/2005 i 2010/2012.

Figura 184 Distribució gràfica dels percentatges mesurats entre els períodes 1991/2005 i 2010/2012
Figura 185 Distribució en gràfic de caixes dels valors mesurats entre 1991/2005 i 2010/2012.
Figura 186 Resultats de l'anàlisi del suport i del nombre d'esberlats necessaris en cada cas
Figura 187 Resultats de l'anàlisi de les formes dels pals verticals de les campanyes 20102012.

Figura 188 Resultats de l'anàlisi de branques dels pals verticals de les campanyes 20102012.
Figura 189 Resultats de l'anàlisi combinat de forma i branques dels pals verticals. 283
Figura 190 Resultats de l'anàlisi de la forma dels pals verticals de les campanyes 2842010/2012, 1991/2005, i totals, i la seva representació gràfica percentual: encolor blau els percentatges de les campanyes 2010/2012, i en color verd el deles campanyes 1991/2005.
Figura 191 Resultats de l'anàlisi de les branques dels pals verticals de les campanyes2010/2012, 1991/2005, i totals, i la seva representació gràfica percentual: encolor blau els percentatges de les campanyes 2010/2012, i en color verd el deles campanyes 1991/2005.

Figura 192 Resultats de l'anàlisi de la forma i branques combinades dels pals verticals de

Figura 195 Distribució del nombre d'anells i distribució gràfica per intervals de 5 anells.
Figura 196 Distribució de les mesures en un gràfic de caixes.
Figura 197 Resultats de l'anàlisi de talla de l'últim anell de creixement, i la seva 289 distribució gràfica.
Figura 198 Alteracions documentades en els Pals Verticals de la Draga durant les campanyes 2010-2012
Figura 199 Resultats i representació gràfica de l'anàlisi taxonòmic de les fustes horitzontals.
Figura 200 Resultats i representació gràfica (agrupats en 5 mms) de les mesures dels diàmetres de les fustes horitzontals del sector D de la Draga.
Figura 201 Distribució dels resultats obtinguts en un gràfic de caixes.
Figura 202 Distribucions de les dades amb una (esquerra), dues (centre) i tres (dreta) 293 corbes de normalitat.
Figura 203 Resultats i representació gràfica (grups de 10cm) de les llargades de les fustes horitzontals del sector D de la Draga.
Figura 204 Distribució de les llargades obtinguts en un gràfic de caixes
Figura 205 Distribucions de les dades amb una (esquerra), dues (centre) i tres (dreta) 295 corbes de normalitat.
Figura 206 Resultats de l'anàlisi del nombre d'esberlats mínims necessaris per a l'elaboració de les fustes horitzontals.
Figura 207 Les 29 formes identificades ordenades en base al nombre d'esberlats mínims necessaris per a la seva elaboració. El número representa el nombre de casos en que la forma ha estat documentada
Figura 208 Les seccions més cops identificades entre les fustes horitzontals. D’esquerra a dreta : sencer (64 cops), una meitat (30 cops), un quart (15 cops), un vuitè (20 cops), un setzè (64 cops).
Figura 209 Resultats de l'anàlisi de formes de les fustes horitzontals i la seva representació gràfica.
Figura 210 Resultats de l'anàlisi de les branques de les fustes horitzontals de la Draga i la representació gràfica.
Figura 211 Resultats i representació gràfica de la combinació de l'anàlisi de la forma i de branques.
Figura 212 Resultats i representació gràfica (agrupats en 10 mm) del diàmetre original de les fustes horitzontals.
Figura 213 Representació en gràfic de caixes dels diàmetres originals de les fustes horitzontals.
Figura 214 Resultats del comptatge d'anells de creixement de les fustes horitzontals del sector D de la Draga.
Figura 215 Distribució gràfica del comptatge d'anells de creixement de les fustes horitzontals del sector D de la Draga.
Figura 216 Distribució dels valors en un gràfic de caixes. 303
Figura 217 Resultats i distribució gràfica dels resultats d'identificació del moment de 304 talla

Figura 218 Alteracions documentades en les Fustes Horitzontals de la Draga durant les campanyes 2010-2012
Figura 219 Resultats de la identificació taxonòmica de les restes de talla.
Figura 220 Resultats i representació gràfica de l'anàlisi del suport de les restes de talla o 307 residus del sector D de la Draga.
Figura 221 Distribució de les 22 restes de talla en el sector D.
Figura 222 Distribució del nombre d'elements determinats per nivell 308
Figura 223 Distribució segons taxó i Nivell Arqueològic del nombre d’elements 309 determinats
Figura 224 Distribució percentual de cada un dels taxons determinats, segons el Nivell Arqueològic.
Figura 225 Comparativa entre les fustes informes analitzades durant les campanyes 1990-98 i 2010-12
Figura 226 Quadre-resum del diàmetre en mms (agrupats en intervals de 5 mms), del total de restes i per nivell.
Figura 227 Distribució gràfica del total de mesures
Figura 228 Gràfics de distribució de caixes amb el total de valors obtinguts (esquerra), i 313 amb el total amb els valors extrems (dreta).
Figura 229 Distribució gràfica dels valors mesurats al Nivell V 313
Figura 230 Distribució gràfica dels valors mesurats al Nivell VI 314
Figura 231 Distribució gràfica dels valors mesurats al Nivell VII 314
Figura 232 Distribució gràfica dels valors mesurats al Nivell 7001314
Figura 233 Distribució gràfica dels valors mesurats al Nivell 7002315
Figura 234 Distribució gràfica dels valors mesurats al Nivell entramat 315
Figura 235 Gràfics de distribució de caixes de cada un dels nivells arqueològics estudiats 316
Figura 236 Resultats absoluts i per nivell del nombre d'anells de creixement, ordenats 317 per intervals de cinc anells.
Figura 237 Representació gràfica del total d'elements determinats en cada un dels 317 valors.
Figura 238 Gràfics de distribució de caixes amb el total de valors obtinguts amb els 318 valors extrems (dreta).
Figura 239 Gràfics de distribució de caixes de cada un dels nivells arqueològics estudiats 318
Figura 240 Distribució gràfica dels valors comptats al Nivell VI 319
Figura 241 Distribució gràfica dels valors comptats al Nivell VII 319
Figura 242 Distribució gràfica dels valors comptats al Nivell 7001320
Figura 243 Distribució gràfica dels valors comptats al Nivell 7002320
Figura 244 Distribució gràfica dels valors comptats als entremats 321
Figura 245 Resultats absoluts i per nivell de la identificació del moment de talla. 321
Figura 246 Distribució gràfica del nombre d'elements identificats per categoria. 321
Figura 247 Distribució percentual de cada un dels valors, segons nivell arqueològic. 322
Figura 248 Pla transversal d'una arrel de salze (Salix sp) 323
Figura 249 Arrels documentades durant les campanyes 2010-2012 323
Figura 250 Distribució espacial per quadre i per Nivell Arqueològic de les arrels 324 documentades a la Draga
Figura 251 Alteracions documentades en les fustes informes de la Draga durant les 324 campanyes 2010-2012
Figura 252 Distribució de les restes analitzades del Nivell VI. 325
Figura 253 Distribució de les restes analitzades del Nivell VII. 326
Figura 254 Distribució de les restes analitzades del Nivell 7001. 326

Figura 255 Distribució de les restes analitzades del Nivell 7002.
Figura 256 Distribució de les restes analitzades dels entramats.
Figura 257 Quadre-resum de la presència/absència de cada un dels taxons llenyosos
identificats i les categories artefactuals, entre 1995-2012 a la Draga
Figura 258 Jaciments del NE peninsular on es documenta la presència de Acer sp. Durant al Neolític Antic: 1 la Draga (Banyoles), 2 Auvelles (Castelló de la Farfanya), 3 Balma Margineda (Andorra la Vella, Andorra), 4 Bauma del Serrat del Pont (Tortellà), 5 Can Sadurní (Begues), 6 Cova d’en Pau (Serinyà), 7 Cova del Frare (Matadepera), 8 Plansallosa (Tortellà) i 10 Cova del Sardo (Boi).
Figura 259 Jaciments del NE peninsular on es documenta la presència de Arbutus unedo durant al Neolític Antic: 1 la Draga (Banyoles), 5 Can Sadurní (Begues), 9 Can Ravella (Sabadell), 11 Reina Amalia (Barcelona) i 12 Cova 120 (Sales de Llierca).
Figura 260 Jaciments del NE peninsular on es documenta la presència de Buxus sempervirens durant al Neolític Antic: 1 la Draga (Banyoles), 3 Balma Margineda (Andorra la Vella, Andorra), 4 Bauma del Serrat del Pont (Tortellà), 6 Cova d'en Pau (Serinyà), 7 Cova del Frare (Matadepera), 8 Plansallosa (Tortellà), 9 Can Revella (Sabadell), 13 Cova de l'Avellaner (Planes d'Hostalets), 14 Cova del Toll (Moià) i 15 La Dou (Sant Esteve d'en Bas).
Figura 261 Jaciments del NE peninsular on es documenta la presència de Cornus sanguinea durant al Neolític Antic: 1 la Draga (Banyoles) i 12 Cova 120 (Sales de Llierca).
Figura 262 Jaciments del NW peninsular on es documenta la presència de Corylus avellana durant al Neolític Antic: 1 la Draga (Banyoles), 3 Balma Margineda (Andorra la Vella, Andorra), 6 Cova d'en Pau (Serinyà), 8 Plansallosa (Tortellà), 10 Cova del Sardo (Boi), 12 Cova 120 (Sales de Llierca), 13 Cova de l'Avellaner (Planes d'Hostalets), 14 Cova del Toll (Moià), 15 La Dou (Sant Esteve d'en Bas) i 16 Camp del Colomer (Sant Julià de Loira, Andorra).
Figura 263 Jaciments del NE peninsular on es documenta la presència de Juniperus sp . Durant al Neolític Antic: 1 la Draga (Banyoles), 3 Balma Margineda (Andorra la Vella, Andorra), 5 Can Sadurní (Begues), 7 Cova del Frare (Matadepera), 10 Cova del Sardo (Boi) i 17 Barranc d'en Fabra (Amposta).
Figura 264 Jaciments del NE peninsular on es documenta la presència de Laurus nobilis durant al Neolític Antic: 1 la Draga (Banyoles), 12 Cova 120 (Sales de Llierca), 16 Camp del Colomer (Sant Julià de Loira, Andorra) i 17 Barranc d’en Fabra (Amposta).
Figura 265 Jaciments del NE peninsular on es documenta la presència de Pinus sp. Durant al Neolític Antic: 1 la Draga (Banyoles), 2 Auvelles (Castelló de la Farfanya), 3 Balma Margineda (Andorra la Vella, Andorra), 8 Plansallosa (Tortellà), 10 Cova del Sardo (Boi), 12 Cova 120 (Sales de Llierca) i 16 Camp del Colomer (Sant Julià de Loira, Andorra).
Figura 266 Jaciments del NE peninsular on es documenta la presència de Quercus ilex/coccifera durant al Neolític Antic: 1 la Draga (Banyoles), 2 Auvelles (Castelló de la Farfanya), 4 Bauma del Serrat del Pont (Tortellà), 5 Can Sadurní (Begues), 6 Cova d'en Pau (Serinyà), 7 Cova del Frare (Matadepera), 8 Plansallosa (Tortellà), 12 Cova 120 (Sales de Llierca), 13 Cova de I'Avellaner (Planes d'Hostalets), 14 Cova del Toll (Moià), 16 Camp del Colomer (Sant Julià de Loira, Andorra), 17 Barranc d'en Fabra (Amposta), 18 Ca l'Estrada (Canovelles), 19 Camí de Cal Piques (Olèrdola), 20 Torre Romeu (Sabadell), 21 Motlló de la Torre (Amposta), 22 Pujolet de Moja (Olèrdola) i 23 Serra del Mas Bonet (Vilafant).

Figura 267 Jaciments del NE peninsular on es documenta la presència de Quercus sp

Figura 279 Diagrama de dispersió de "no esberlats-diàmetre" (superior-esquerra), "\% afectat-diàmetre" (superior-dreta), "no esberlats-llargada" (inferior-esquerra) i "\% afectat-llargada" (inferior-dreta).

Figura 280 Representació gràfica del nombre d'esberlats per taxó (esquerra), i
comparació entre els registres de boix amb els altres taxons tots junts (dreta).
Figura 281 Representació gràfica del \% de superfície afectada pels esberlats per taxó (esquerra), i comparació entre els registres de boix amb els altres taxons tots junts (dreta).
Figura 282 Assignació en grups de les signatures dels pals apuntats arqueològics.
Figura 283 Situació original de la pala en el tronc de roure seguint l'orientació dels trets anatòmics.
Figura 284 Marques de desbastat a la superfície del mànec de la pala.
Figura 285 Cara dorsal de la pala.
Figura 286 Esquerra - situació original del coordenat 3247 en el tronc seguint l'orientació dels trets anatòmics. Dreta - detall de l'extrem cònic.
Figura 287 Esquerra - situació original del coordenat 4476 en el tronc seguint l'orientació dels trets anatòmics. Dreta - vista general.
Figura 288 Situació original del coordenat 4488 en el tronc seguint l'orientació dels trets anatòmics
Figura 289 Situació original de l'arc en el tronc de teix seguint l’orientació dels trets anatòmics.
Figura 290 Quadre-resum dels percentatges de la superfície de cada coordenat afectada per cada un del passos que poden aparèixer durant el procés d'elaboració o transformació
Figura 291 Mitjanes del nombre total d’esberlats i de superfície afectada dels pals apuntats de les campanyes 1991-2005, 2010-2012 i el total de totes les campanyes.
Figura 292 Longitud i diàmetre dels pals apuntats de les campanyes 1991-2005, 20102012 i el total de pals apuntats analitzats.
Figura 293 Diagrama de dispersió de "no esberlats-diàmetre" (superior-esquerra), "\% afectat-diàmetre" (superior-dreta), "no esberlats-llargada" (inferior-esquerra) i "\% afectat-llargada" (inferior-dreta). En color negre les dades de 1991-2005, i en vermell les de 2010-2012.
Figura 294 Representació gràfica del nombre d'esberlats (gràfics superiors) i \% de superfície afectada (gràfics inferiors) per taxó (esquerra) i comparant els registres de boix amb els altres taxons (dreta), en la totalitat de pals apuntats estudiats entre 1991-2012.
Figura 295 Les pales de la Draga. Coordenat 2462 (superior), i D/04 JH-92/17 (inferior) (Bosch et al., 2006a).
Figura 296 Mides de les dues pales documentades a la Draga. Mides en mil•límetres.
Figura 297 Mesures màximes en mil-límetres dels arcs de la Draga
Figura 298 Els tres arcs de la Draga: coordenat 2688 (superior), D/02 KA-89/11 (mig) i D/05 KE-90/7 (inferior) (Dibuix Xavier Carlús) (Piqué et al. 2015)
Figura 299 Resultats de l'anàlisi del nombre d'esberlats mínims necessaris per a 380 l'elaboració de les fustes horitzontals.
Figura 300 Histograma amb corba normal, de freqüències segons el nombre d'esberlats.
Figura 301 Resultats de l'anàlisi de les branques de les fustes horitzontals de la Draga i la representació gràfica.
Figura 302 Resultats de l'anàlisi del suport i del nombre d'esberlats necessaris en cada cas
Figura 303 Resultats de l'anàlisi de branques dels pals verticals de les campanyes 20102012.

Figura 304 Morfologia de les puntes dels pals verticals.

Figura 305 Freqüència de presències de cada un dels tipus d'extrems amb corba de normalitat: la primera columna correspon als extrems amb fractura directa, la segona al tall horitzontal, la tercera als esberlats, la quarta als bisells simples, la cinquena als bisells dobles i la sisena a les puntes còniques.
Figura 306 Distribució dels valors dels diàmetres entre els extrems dels pals verticals amb fractura directa (FD), tall horitzontal (TH), esberlat (E), bisell simple (BS), bisell doble (BD) o punta cònica (C).
Figura 307 Comparació entre els processos de preparació del suport, entre els pals verticals de les campanyes 1991-2005 i 2010-2012
Figura 308 Representació gràfica percentual de I'anàlisi de la forma de les puntes dels pals verticals: en color blau els percentatges de les campanyes 2010/2012, i en color vermell el de les campanyes 1991/2005.
Figura 309 Distribució dels valors dels diàmetres entre els extrems del total de pals verticals amb fractura directa (FD), tall horitzontal (TH), esberlat (E), bisell simple (BS), bisell doble (BD) o punta cònica (C).
Figura 310 Nombre de restes de talla identificades segons no mínim d’esberlats (esquerra) i representació gràfica de la distribució del nombre d’esberlats amb corba normal (dreta).
Figura 311 Quadre-resum del procés d'elaboració de pals verticals i fustes horitzontals.
Figura 312 Quadre-resum de les diferents traces funcionals observades en els pals apuntats de les campanyes 1995-2005
Figura 313 Dispersió i mitjanes de les dades de llargada i gruix dels pals apuntats fracturats, usats i desbastats.
Figura 314 Nombre d'extrems identificats per cada una de les tipologies generals observades.
Figura 315 Nombre d'extrems on s'observa cada una de les traces funcionals estudiades.
Figura 316 Distribució de les mesures de llargada i diàmetre dels pals apuntats segons els tipus de traces observats en la seva superfície.
Figura 317 Taula-resum de les formes observades i les traces localitzades en cada pal apuntat excavat entre les campanyes 2010 i 2012.
Figura 318 Nombre d'extrems identificats per cada una de les tipologies generals observades.
Figura 319 Comparació entre les formes dels extrem dels pals apuntats de les campanyes 1995-2005 i 2010-2012.
Figura 320 Comparació entre les traces funcionals identificades en els extrems dels pals apuntats de les campanyes 1995-2005 i 2010-2012.
Figura 321 Situació i detall de les dues estructures identificades in situ en el jaciment.
Figura 322 Perfil Nord (superior) i Sud (inferior) del sector D de la Draga (Chinchilla et al. 2013). La línia verda ressalta la presència de travertins, la vermella la pujada del nivell geològic i la blava la presència del nivell 7001.
Figura 323 Localització de les tres àrees amb disposició diferenciada: la concentració encerclada en vermell és la que es situa entre les línies de quadres IJ i JC, l'encerclada en blau és la situada entre les quadrícules JD/JE/JF-79/80/81, i l'encerclada en verd és la que es situa entre les línies de quadres JE fins JH (I. Bogdanovic).
Figura 324 Distribució de les fustes horitzontals amb una llargada superior als 149 cms (I. Bogdanovic).
Figura 325 Distribució de les fustes horitzontals que presentin marques d'esberlat (I. Bogdanovic).
Figura 326 Distribucions segons el nombre mínim d'esberlats: 1 esberlat (superior, esquerra), 2 esberlats (superior, dreta), 3 esberlats (inferior, esquerra) i 4
esberlats (inferior, dreta) (I. Bogdanovic).

Figura 327 Distribució dels taulons (I. Bogdanovic).

Figura 328 Distribució d’angles (verd) i forques (vermell), en forma de fustes horitzontal (línies) i pals verticals (punts) (I. Bogdanovic), amb la superposició de les tres àrees identificades a partir de l'orientació de les fustes horitzontals.
Figura 329 Distribució de les llargades en mil-límetres de les fustes horitzontals amb forma d’angle i forca.
Figura 330 Distribució de les fustes horitzontals no determinades com a roure (I. Bogdanovic).
Figura 331 Distribució de les fustes carbonitzades (I. Bogdanovic). Bogdanovic). En el sector B hi ha dibuixada la línia de correspondència dendrocronològica identificada per Gassmann (Gassmann 2000), i en el D les diferents possibles estructures identificades.
Figura 345 Planta de distribució del total de fustes horitzontals i de pals verticals (I. Bogdanovic).
Figura 346 Distribució de les diferents estructures, concentracions,... de fustes horitzontals i pals verticals identificades en el sector D de la Draga
Figura 347 Imatges dels plans d'observació anatòmica: pla transversal (esquerra), pla
longitudinal radial (centre), i pla longitudinal tangencial (dreta). Cupressaceae - Juniperus sp (ginebre)

Figura 348 Imatges dels plans d’observació anatòmica: pla transversal (esquerra), pla longitudinal radial amb detall dels reforços espiralats(centre), i pla longitudinal tangencial (dreta). Taxaceae - Taxus baccata (teix)
Figura 349 Imatges dels plans d'observació anatòmica: pla transversal (esquerra), pla longitudinal radial (centre), i pla longitudinal tangencial (dreta). Buxaceae Buxus sempervirens (boix)
Figura 350 Imatges dels plans d'observació anatòmica: pla transversal (esquerra), pla longitudinal radial (centre), i pla longitudinal tangencial (dreta). Cornaceae Cornus sanguinea (sanguinyol):
Figura 351 Imatges dels plans d'observació anatòmica: pla transversal (esquerra), pla longitudinal radial (centre), i pla longitudinal tangencial (dreta). Corylaceae Corylus avellana (Avellaner):
Figura 352 Imatges dels plans d’observació anatòmica: pla transversal (esquerra) i pla longitudinal tangencial (dreta). Ericaceae - Arbutus unedo (Arboç)
Figura 353 Imatges dels plans d’observació anatòmica: pla transversal (esquerra), pla longitudinal radial (centre), i pla longitudinal tangencial (dreta). Fagaceae Quercus sp caducifoli (Roure)
Figura 354 Imatges dels plans d’observació anatòmica: pla transversal (esquerra), pla longitudinal radial (centre), i pla longitudinal tangencial (dreta). Lauraceae Laurus nobilis (Llorer)
Figura 355 Imatges dels plans d’observació anatòmica: pla transversal (esquerra), pla longitudinal radial (centre), i detall dels reforços espiralats en el pla longitudinal transversal (dreta). Leguminoseae
Figura 356 Imatges dels plans d’observació anatòmica: pla transversal (esquerra), i pla longitudinal tangencial (dreta). El pla longitudinal radial no s'ha pogut obtenir per qüestions de conservació de la mostra. Ranunculaceae - Clematis sp (vidalba)
Figura 357 Imatges dels plans d'observació anatòmica: pla transversal (esquerra), pla longitudinal radial (centre), i pla longitudinal tangencial (dreta). Rosaceae/Maloideae
Figura 358 Imatges dels plans d'observació anatòmica: pla transversal (esquerra) i pla longitudinal tangencial (dreta). El pla longitudinal radial no s'ha pogut obtenir per qüestions de conservació de la mostra. Rosaceae/Rosoideae - Rubus sp. (esbarzer)
Figura 359 Imatges dels plans d’observació anatòmica: pla transversal (esquerra), i pla longitudinal tangencial (dreta). Salicaceae - Populus sp. (àlber-pollancre)
Figura 360 Imatges dels plans d'observació anatòmica: pla transversal (esquerra), pla longitudinal radial (centre), i pla longitudinal tangencial (dreta). Salicaceae Salix sp (salze)
Figura 361 Imatges dels plans d’observació anatòmica: pla transversal (esquerra), detall dels vasos en el pla longitudinal tangencial (centre), i pla longitudinal tangencial (dreta). Vitaceae - Vitis vinífera (vinya)

