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Preface

The discovery of the Higgs particle at the Large Hadron Collider (LHC), presented on
July 4th, 2012, is a milestone in the history of particle physics. The Higgs particle
was the last particle predicted by the Standard Model (SM) of particle physics to be
discovered. The Higgs particle then completes a theoretical puzzle that can be traced

back to at least the formulation of the theory of beta decay (E. Fermi, 1934).

The Higgs particle is a keystone in the SM and its discovery is very singular in
the following sense. Without it, as far as one can calculate, the Higgsless-SM would
contradict the basic rule of Quantum Mechanics that the sum of probabilities adds to
one. That is why a central part of the LHC programme was to look for the Higgs
particle, or some other more exotic mechanism, that would cure the Higgsless-SM. In
this respect, it is very important to measure the Higgs couplings with as much precision
as possible, specially if no Beyond the SM (BSM) particle is found, since any deviations
from the SM prediction would point to the presence of BSM physics not far from the

current energy scale.

So far, the measurement of the Higgs mass and its interaction properties with the other
particles is teaching us a big amount of physics. The mass value serves as a discriminator
for BSMs and determines wether or not the SM electroweak vacuum develops instabilities
at high field values. The Higgs couplings to different SM particles, measured by ATLAS
and CMS, are so far compatible with the SM expectations within a ~ 20% accuracy.
However, as already emphasised, a precise determination of the Higgs couplings is very

important.

The discovery of the Higgs marks the beginning of a new era in Particle Physics.
The field of Particle Physics is facing a situation never encountered before. We have
a theoretical framework that is consistent up to very high energies (an hence without
any need of modifications of the theory). There are a number of conundrums that
certainly require the extension of the SM to include Beyond the SM (BSM) physics, for
instance: the strong indirect evidence of large halos of dark matter surrounding galaxies;

the strong CP problem; the value of the Higgs mass appears to be finely tuned in any

1



Chapter 1. Preface

conceived BSM theory whose lowest mass scale is much bigger than the electroweak scale
(Higgs mass hierarchy problem); the striking hierarchy of the SM Yukawa couplings; the
matter-antimatter asymmetry, among other theoretical puzzles. Apart from the Higgs
hierarchy problem, any of the aforementioned conundrums can be solved at scales much
higher than the SM or with very weakly coupled physics. In this respect, if the Higgs
mass hierarchy problem and its associated fine-tuning is a good guide, BSM physics is
expected at an energy scale reachable by the LHC. However, so far there is no pressure
from any collider experiment to accommodate data not being properly fitted by the SM

expectations. Time will tell if this is the calm preceding an upcoming storm.

In any case, in order to push forward the boundaries of the field, two very important

lines of research consist in

- inspecting any possible sign within the SM theory that may indicate or suggest
new physics beyond the SM (BSM),

- the investigation of possible way outs to the constraints that experimental data

places on possible BSM.

In fact, the work presented in this thesis can be classified into the two aforementioned
broad paths of research. The lines of research followed in the present thesis are mostly
motivated by the Higgs discovery. Therefore, a big effort is devoted to the investigation
of the implications of the Higgs discovery.

The present thesis is organized in three parts. In the first part we study various aspects
related with the stability of the electroweak (EW) vacuum. The topic is introduced in
Chapter 2. Then, in Chapter 3 we show that the Higgs mass value is very intriguing
from the point of view of the stability of the EW vacuum. If the Higgs mass would
had been few GeV’s heavier, then the EW vacuum would be absolutely stable. On the
other hand, if the Higgs mass would had been lighter by approximately ten GeV’s, then
the EW vacuum would be too short lived as compared with the age of the universe.
We review the results published in Ref. [1] that consist in a NNLO analysis of the EW
vacuum stability. In Chapter 4 we discuss a mechanism to stabilise the EW vacuum.
This is based on the publication of Ref. [2]. We also discuss various examples of BSM

physics that can naturally accommodate such mechanism.

It is very interesting to find concrete theoretical predictions linking particle physics
and cosmology. Also, cosmological observables, like imprints of the period of inflation in
the Cosmic Microwave Background, can provide experimental information of the highest
accessible energy scales that are otherwise not accessible by collider experiments. In
Ref. [15] the authors proposed to use the SM Higgs as an inflaton by introducing a
large coupling between the Higgs and the Ricci scalar, §£ = —¢|H|?R. In my opinion,
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even-though the proposal is attractive, there are a number of unsettling features. First,
the set-up is not radiatively stable. In fact, from the top-bottom point of view, one
has to impose a shift symmetry at trans-planckian field values that is broken in a very
special way. It is unclear that this can be done without imposing a functional tuning
(i.e. tuning an infinite number of parameters) on the model. Then, there is a field
range of values where the Higgs stops ”"Higgsing” because it is inflating. This causes
problems with perturbative unitary. Lastly, my personal bias, is that I do not see a
fundamental reason for paying this prize for the sake of being minimalistic. It seems
that nature has cared more on symmetry principles than in being specially minimalistic.
In any case, the proposal is an interesting possibility and in Ref. [4] we proposed an
embedding of the original theory of Ref. [15]. In the bigger theory we can address some
of the aforementioned problems of the original proposal of the Higgs as an inflaton. For
example, in the bigger theory, one can compute the coupling of the Higgs to the Ricci
scalar. As we commented, this thesis is about the implications of the Higgs discovery.
However, due to the lack of space for a proper treatment we will not discuss any further

the cosmological implications.

In the second part of this thesis we study possible BSM-induced deviations in the SM
Higgs sector. A convenient way to do so is by means of the SM effective field theory
(EFT). The topic is introduced in Chapter 5. Subsequently, in Chapter 6 we present
a global analysis of the SM EFT. We focus on those observables (with emphasis on
Higgs physics) that could present big deviations from the SM expectations and would
not be in contradiction with any previous experiment done so far. In the following
Chapters 7-9 we study quantum effects in the SM EFT (the anomalous dimension matrix
of dimension-six SM operators). This is very interesting for a number of reasons that
we review. For instance, physical observables that are unrelated at tree-level, are in fact
correlated through perturbative quantum corrections. In Chapter 7 we study, among
other things, the interplay between the S-parameter, the triple gauge vertices and the
decays h — v + v/Z. In Chapter 8 we study the most relevant quantum effects for
dimension-six Higgs operators and we match the results in the SM EFT with various
BSMs. In Chapter 9 we present a study of the interplay between EW observables,
measured precisely at the Large Electron-Positron Collider (LEP), and Higgs physics.
The second part is based on the publications of Refs. [5-7].

One of the results found in the second part of the thesis is that the anomalous di-
mension matrix of the dimension-six SM operators has a very peculiar structure. It has
a lot of vanishing entries. This is surprising because those vanishing entries are allowed
by all symmetries in the theory and therefore are not expected to vanish. In the third
part of the thesis we present an argument, based on the use of Supersymmetry as a

spurious symmetry, that provides a rationale for the structure observed by brute force

3
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calculation in the first place. However, the argument clarifies that the structure seen
in the SM is generic (not due to the SM internal symmetries or accidental symmetries)

and has applicability to other EFTs. The results of Part III are based on Ref. [8].

The first run of the LHC ended beautifully with the discovery of the Higgs boson
and initiated an era of measurements in the EWSB sector that remained only indirectly
constrained for several decades. With the next run of the LHC and the high-luminosity
program will start an era of precision that will lead certainly to a better understanding
of what physics breaks the electroweak symmetry and, hopefully, to the first glimpse of
the new physics beyond the Standard Model. We hope that the results we presented in

this thesis will be a powerful contribution to that quest.



1. Particle Physics

It is difficult to over-state how marvelous the theory of particles is. Its structure is based
on two theories: quantum mechanics and special relativity. Basically this means that
if you accept these two theories, on which there is the greatest experimental evidence,
the structure of the theory follows by demanding logical consistency. This fact is very
satisfactory and gives a sense of inevitability of the physical laws. Therefore, with some
exaggeration, the only freedom left for a particle theorist is on the discrete choice of the
number of particles and the adjustable parameters that control the interaction strength

together with possible masses.

The Standard Model (SM) of particle physics plus the theory of General Relativity
(through the Standard Model of Cosmology) can in principle explain observed pheno-
mena ranging from ~ 107'® meters to the largest observable scales ~ 10% meters. Both

theories are defined trough a Lagrangian, which very schematically reads

1

Lsu = F(OH) = V(H)+ lo - i + [yijHibj + hoc] + Lomy , where

L1 = %(814)2 + g(0A)A% 4+ gJ - A+ O(g?) and (1.1)
1

Lor = 5(37)2 + VIN(07)*y + VINT -7+ O(gn) (1.2)

where we have expanded the Hilbert-Einstein action Sgr = (167Gn)~! [ dizy/—gR
around a background metric g = 7 + /gn7y to expose its similarity with the L;—;
Lagrangian (we have defined gy = 87Gn = M;ll ~ 107!® GeV). With the recent
discovery of the Higgs boson H [9, 10] at the Large Hadron Collider (LHC), so far
we have seen nature making use of all the particles she can use to mediate long range

interactions except for the helicity h = £3/2.

A sense of unicity of the physical Laws

Let me review some of the concrete evidence of the inevitability of the physical Laws and

hence of the underlying structure of the SM of particle physics and General Relativity
5



6 Introduction — PARTICLE PHYSICS

of gravitation. Long range interactions are mediated by massless particles of helicity
|h| = {0, %, 1, %, 2}. This can be seen in a number of ways. One of the historic ways is
by considering infrared properties of the S-matrix. The idea is to consider the emission
of a soft particle of momentum ¢ from an (n+ 1)-particle amplitude. At leading order in
q, the amplitude factorizes into a rational factor times the scattering amplitude of the
remaining n particles: My, 1(k1, ko, -+, kn,q) = F x My(k1, k2, , k) +0O(¢") . Then,
for the rational factor to be invariant under Lorentz transformations, conservation Laws
must be satisfied. For instance, for a helicity |h| = 1 soft particle the factor is F' =
> eie(q) - ki/ki-q, where €(q) is the polarisation and e; the coupling constant between
the soft and the ith particle. Under a Lorentz boost de ox ¢ and one finds that charge
must be conserved ;" ; e; = 0, see Ref. [11]. Instead, for helicity |h| = 2 the rational
factor is F' = Z?Zl eieuykf kY/q - k;. Then, under a Lorentz transformation dq€,, =
quy+qy oy, and one discovers that, if no constraints beyond momentum conservation are
imposed, the soft || = 2 massless particle is coupled universally to the remaining species.
This is tantamount to the equivalence principle that leads to General Relativity [12].
Now, if the exercise is done for particles of helicity |h| > 2 one finds that, for the
corresponding factor F' to be Lorentz invariant, one needs to impose constrains on the
momenta beyond momentum conservation and this constrains the angles on which the
particles are emitted after the collision. This is unphysical and therefore helicity |h| > 2

particles cannot mediate long range forces. !

Another complementary way to derive this result that allows to go further in con-
straining the possible consistent interactions is the following [13]. The idea is that
the 3-particle amplitude ? is completely fixed by momentum conservation and Lorentz
symmetry. In particular, by requiring that the amplitude transforms homogeneously,
with weight —2h;, under the little-group scaling of the ith particle of helicity h;. Next
one considers the 4-particle amplitude and requires that it factorizes properly into the
lower 3-particle amplitudes as any of the sums of the external momenta go on-shell
(3" pi)? = 0. This turns out to impose non-trivial constraints on the couplings of the
3-particle amplitudes. And, for instance, one finds that for a collection of interacting
helicity |h| = 1 particles their couplings obey the Jacobi identity (and hence satisfy a
Lie algebra). The same exercise done for a set of helicity |h| = 2 particles implies the
equivalence principle together with the fact tat there is no analog of Yang-Mills for he-
licity |h| = 2 particles (instead of the Jacobi identity constraint one gets a commutative
algebra that can be diagonalized). Then, again the same exercise shows that the helicity

+3/2 state necessarily couples to the |h| = 2 graviton as linearized N=1 supergravity,

1Soft theorems do not terminate here: sub-leading factors as ¢ —0 give further conservation laws.

2For real momenta, the 3-particle amplitude is only non-vanishing as two of the particles go collinear.
However in the following argument all momenta is complexified and we go back to the real line only at
the end of the calculation.



Section 1.1 — THE STANDARD MODEL LAGRANGIAN 7

and that the constraints cannot be fulfilled for a particle of spin s > 2. Hence, Quan-
tum Electrodynamics, Yang-Mills, General Relativity and Supersymmetry do not admit
small consistent deformations. This is also known through field theoretic methods, but

it is particularly nice to see the emergence of the known theories in such a sharp way.

After this short digression on some of the generic structure underlying particle physics,
in the rest of the Chapter we present a brief discussion of the SM of particle physics.
The presentation does not show the big amount of fun subtleties that surround the
SM, most of them present in any QFT, but serves to set the notation and the physical
motivations for the upcoming Chapters, which are the main topic of this thesis. The
discussion consists in actually defining Lgps in Eq. (1.1), an explanation of its most
prominent phenomenological consequences together with its experimental verifications,

and a discussion of the theoretical and experimental problems that it faces.

1.1 The Standard Model Lagrangian

The SM is a relativistic Quantum Effective Field Theory (EFT). As such, it can be
defined by specifying the gauge group

U(l)y ® SU(2), ® SU(3). , (1.3)

the field content and its representations under the gauge group

Fields Names spin U(l)y SU(2)r SU@3)c SL(2,C)

a R 2 3 (3:0)
ut, quarks i 2 1 3 0,3)
dt, i -3 1 3 (0,3)
iL. leptons % _% 2 ! (%, 0
R 3 —1 1 1 (0, 3)
H Higgs 0 3 2 1 (0,0)

TABLE 1.1: The field content of the Standard Model. The index i = 1, 2, 3 is called
the generation indez.

and, as any physical theory, the energy scales E that it is supposed to describe,

E€[0,A], (1.4)
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where A 2 1 TeV. Given these three pieces of information, we write down the most

generic local Lagrangian compatible with the symmetries
L& = Lsm + Lasu (1.5)

where Loy = Laauge + Lrc + LHiggs are operators of dimension d < 4 and Lpgs is

comprised of higher dimensional operators d > 4. They are defined as follows.

Pure gauge sector:

1 o = 1 9 —~
auge = __R y (Buu o B;U/) — W (”rauu o IV@;U/)
Léaug 4" o 4 4 9247r
1 A Ap Qs =4
_ = vV_p—= W) , 1.
4GW (G 47rG (1.6)

where o = gjz /(4m) and the field strengths are defined as usual A}, = 9,47 — 0, A}, —
gjeabcAfLAf,. The gauge fields B, W and G correspond to the gauge groups U(1)y,
SU(2)r and SU(3)., respectively; the tensor-constants €/ satisfy the Jacobi identity
for the non-abelian groups SU(2);, and SU(3). while they are zero for the U(1)y. In
the path integral quantization we need to add a gauge fixing function and ghosts fields.
The six terms in Eq. (1.6) introduce a coupling constant ¢, g, gs and an angle 6y, 6o,
0. The first three have the following approximate values {¢’, g, gs} = {0.4, 0.6, 1.2}, at

the electroweak scale ~ 100 GeV. See Sec. 1.1.2 for a discussion on the 6; parameters.

Fermion-Gauge sector: The fermion content and its interaction with the gauge bosons
is given by
Lrg=Viy'D,V | (1.7)

where we have grouped the fermions into the vector W7 = ( ¢¢ ul, d% 1% ek ). The
covariant derivative is defined as D, = 9, — ig'Y' B, — gWiTh — gSGfté. The matrices
TF and té depend on the fermion’s representation: they are given by the three Pauli
matrices 0®/2 and by the eight Gell-Mann matrices A4 /2 for the 2 of SU(2);, and a
3 SU(3)¢; while they are 0 for the singlet representation. We have denoted by Y the

U(1)y charge Qp1 of each fermion, for instance QU(l)yliL = —%liL.
Higgs sector:
LHiggs = |DuH|2 + mZ‘HP - /\|H|4
7Lyiejeg%H — (jiyzdjdizﬂ — Q’Lyguﬁﬂ + h.c. , (1.8)

where D, H = (0, — ig'/2B, — gWo®/2)H, H = iooH* and yifj are 3 X 3 complex

Yukawa matrices, discussed in Sec. 1.1.2.
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Higher dimensional operators. Their name is due to the fact that we need to intro-

duce a dimensionful coupling ¢;/A™ to match the right dimensions of the Lagrangian:

Ci ;ij iTo vyt C;' virsa (7
Losu =) 1m0; = _yTeaﬁew(zLT CUVHPHP + he. + {5 D" Wi, (1))
S e Cul) (alse O + he. + O(ATY) (1)

where €., €qpe and C = iy2yy are SU(2)r, SU(3). and Lorentz antisymmetric tensor
invariants and we are only showing some terms of the series to make a couple of points

in the following discussion.

This part of the Lagrangian reflects the known unknown physics, in the following
sense. It parametrizes possible new physics at a high energy scale A. The effects of

unknown higher energy physics decouple as
(B/A)", (1.10)

where F is the energy of the process under consideration, A is the characteristic energy
scale of the unknown higher energy physics that decouples, and n a positive number.
The effect of the unknown higher energy phenomena can be parametrized in a power
expansion of F/A. In certain particular cases one can explicitly show the power-law
decoupling. For instance, in weakly coupled models A o« M/e, where M is the mass
of the heavy particle and e its coupling to the low energy physics. The decoupling of
high energy degrees of freedom is ubiquitous in physics and it takes a precise form in
quantum effective field theory (QEFT). Indeed, in QEFT one can compute corrections to
the energy scaling of the different operators in the Lagrangian, and they can be resumed
using the Renormalization Group Equations (RGE). The combination of the RGE and
the EFT rationale makes QEFT very powerful by allowing to focus on the energy scales
of interest. Now, energies (or momentum) in a quantum process can come from either a
field or a derivative in the Lagrangian. Therefore, the energy expansion translates into

an expansion in powers of

(6/A)", (/A" , (1.11)

in the Lagrangian. This explains why, if we are interested in certain energy resolution, we
can neglect higher order interactions of the sum ), ¢;O;/A™ that produces corrections

beyond our experimental reach or interest.

Coming back to the SM EFT, the measurement of higher dimension operators is
crucial because it points to a new energy scale. Presumably new physics, possibly
in the form of new degrees of freedom, appear at that energy scale. Two important

concrete remarks regarding Eq. (1.9) are that the dimension-five Weinberg operator

9
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05108

L L
-246 -100 100 246

FIGURE 1.1: Plot of the SM potential V(¢p.) for the realistic values of X = 1/8 and
v =246 GeV, for the range of values indicated in the figure.

~ l;l;H H gives a contribution to the neutrino masses of order y,v*/A [14], see Sec. 1.1.2.
All operators of the dimension-four SM Lagrangian are invariant under {q, u, d} —
i@ {q, u, d}. The charge under this symmetry is called baryon number and it is
violated by the dimension-six operator ~ qudl/A? of Eq. (1.9). This operator has not
been directly measured but its coupling strength is tightly constrained by proton decay.
Just for completion on the discussion of Eq. (1.9), let us mention that in the limit
A — oo, the W bosons couple equally to the different lepton families. However, the
operator ~ 32Wl_ilj of Eq. (1.9) might lead to a breaking of the universal W-leptons

interaction. See Sec. 1.1.3 for a further discussion on accidental symmetries.

Due to historical reasons, is is customary to call the Standard Model to the Lagrangian
Ly of Eq. (1.5). The reason is that fixing a finite number of couplings is sufficient for
the theory to be predictive. Instead, the Lagrangian LET/T of Eq. (1.5) is predictive for
a finite number of couplings at a fixed order in the (E/A)™ expansion, which is perfectly
fine for a physical theory. The point of view taken in the present discussion is to write
the generic local Lagrangian containing all the degrees of freedom observed in nature,
as dictated by symmetries. Neutrino masses and perturbative quantum gravity require
the inclusion of higher order interactions. Thus there is no reason for being minimalistic
in the number of particles and there is no beauty or simplicity principle in the field
equations themselves. For instance, notice the complexity of the equations of motions

derived from Lgf}T. Instead, the simplicity is on the symmetry principle governing the

Lagrangian Eg J\}ZT'

1.1.1 Electroweak Symmetry Breaking
The Standard Model tree-level Higgs effective potential in the Lagrangian Eq. (1.8) is

given by
V(H) = -m?H? + \H|*, (1.12)

10



Section 1.1 — THE STANDARD MODEL LAGRANGIAN 11

Since the SM couplings are small at the electroweak scale ~ 100 GeV the tree-level
potential suffices for a qualitative discussion (the couplings satisfy «;/(47) < 1, where
a; = {\, (y)?, 9%, g%, g?}/(47)). See Fig. 1.1 for a plot of the potential in Eq. (1.12).
The vacuum of the theory is the state that minimizes the Hamiltonian density expecta-

tion. For the Higgs sector it is given by

subject to (0|h|0) = ¢., where HT = (G, h + iGy). Thus, from Eq. (1.12), the minimum
of the energy density is given by
(0[r]0) = v, (1.14)

and we say that the Higgs acquires a vacuum expectation value. In the (h) = v back-
ground, the particles of the SM have the masses summarized in Tab. 1.2. The value of
v is measured through the muon decay to be v = 246 GeV. The masses of the quarks
span five orders of magnitude m;/m, a~ 10°, while the masses of the neutrinos are much
smaller than the electroweak scale m, ~ 10~ eV =~ 107!2v. There is no explanation for

these hierarchies within the SM, see Sec. 1.1.2 for a further discussion.

The name electroweak symmetry breaking originates from the fact that the vacuum
state |0) of the SM is not invariant under SU(2); ® U(1)y because T - (0|HT|0) =
T%-(0,v/v/2)T # 0, where T is any of the SU(2)r, or U(1)y generators. However (T2 +
Qyv)|0) = QgEep|0) = 0 is a symmetry of the vacuum and we say that SU(2), ® U(1)y

is broken to U(1)ggp electromagnetism.

Gauge bosons Leptons
m% m2Z m%/V m% Me mu mr ’I?’LZV
SM 0 #vz % 0 Yev/V2 oy /V2 yv/V2 vE/A
Value 0 (91)2  (80)2 0 5x107* 0.1 1.7 3x10710
Quarks Higgs
My mq me Mg my mp mlzz
SM wv/V2  yav/V2  yev/V2 yw/V2 g /N2 g /V2 2\0?
Value 2x1073 4x 1073 1 0.1 173 4 (125)2

TABLE 1.2: Tree-level masses of the SM particles in terms of the parameters of the

Lagrangian in Eq. (1.5) and their experimental values in GeV. The experimental un-

certainty on the mass values is below the quoted significant digits. Regarding the neu-

trino masses, we have quoted their average value as inferred from the cosmic microwave
background, assuming the SM.

11



12 Introduction — PARTICLE PHYSICS

The Higgs mechanism

The Higgs boson plays a central role in the SM, and in the present thesis. Let us
then review what makes the SM Higgs a Higgs boson as compared to other scalars. To
make the argument transparent, let us focus on a Higgsless cousin of the SM electroweak
interactions by turning the ¢’ coupling to zero; also for the sake of clarity, we omit the SM
fermions in the following discussion. The Lagrangian describes a collection of spin s = 1
massive gauge bosons, invariant under a global SU(2) transformation W, — UW,U f

where W’s are in the adjoint

1
L= - WLW miy Tr W, W+ + O(A™)
1 1
~ 5(aW)2 - 5mWW2 — gW2 W + W+ O(A™Y) (1.15)

where Wy, = 0,W/ —0,Wj — ge“chﬁW;’, Wy, = oW /2 and O; are higher dimension
operators made of W, fields. The theory of Eq. (1.15) is sick in the sense that the
cut-off A cannot be arbitrarily large, for if we take A > myy /g perturbative unitarity
is lost. There is a number of equivalent ways to see this. Firstly, at high energies the
longitudinal gauge bosons’s polarization is given by €} (p) = p"/mw + O(mw /E) and
therefore the probability amplitudes grow unboundedly with the energy, up to order
O(A~1) corrections. Therefore the validity of Eq. (1.15) is for energies E < myy /g ~ A,
which can be made more precise by actually computing amplitudes involving external
longitudinal bosons. This is closely related to the fact that —%WWW‘“’ + m3, W, WH
is not renormalizable, and the way to see this is by making the high energy behaviour
of the theory manifest at the level of the Lagrangian. This is achieved by making the
field redefinition W, — UW, U + (i/g)Ud,U' = (i/g)U(D,U)" on Eq. (1.15), where
U(x) = e9Tm"/mw T being the SU(2) generators,

1 » m? —
L= — Wul" +g—‘;fTr (D, U)IDMU + O(A™)

()] [ (e)
g v/V2 g v/\V2

where D), = 0, — i0®/2W} and v = 2my /g. In Eq. (1.16) we have introduced a new

+0(A™Y, (1.16)

1
— Wi W +

field 7(z), but the Lagrangian is equivalent to the original one of Eq. (1.15), by setting
m = 0 (called the unitarity gauge) they take the same form. In the second equality we
have written Eq. (1.16) in a form that makes it clear that global SU(2) is completely
broken in the vacuum: T%(U(0,v/v/2)T) =T - (0,v)T # 0.

The advantage of introducing the 7(z) fields is that the high energy behaviour of the

theory is now manifest, at high energies the gauge boson’s longitudinal component is

12



Section 1.1 — THE STANDARD MODEL LAGRANGIAN 13

well-described by the 7(z) fields. This is easily seen by taking the simultaneous limits
mw — 0 and g — 0 while keeping myy /g fixed. Under this limit (called decoupling
limit) the gauge bosons decouple from the 7 fields and Eq. (1.16) reduces to

m%/V T o

up to terms of order O(A~!). Corrections to Eq. (1.17) are perturbative in powers
of my/E and g%, where E is the energy of the gauge bosons. The most important
lesson that we learn from this analysis is that the theory of Eq. (1.17) becomes non-
perturbative at energies around myy /g. At such energies or below we expect new physics
beyond the description of Eq. (1.17). More accurately, we can define the strong coupling
scale as the loss of perturbative unitarity (in the s-wave scattering it occurs for energies

E ~ 4mmy /g), or as the scale where the loop expansion breaks down
B~ dn™ (1.18)
g

Again, in the decoupling limit this pathological behaviour is identified as due to the (old
sense) non-renormalizability of the theory of pions of Eq. (1.17) or, equivalently, the

longitudinal gauge bosons of Eq. (1.15).

Now, the Higgs mechanism is perhaps the simplest way to UV-complete the La-
grangian of Eq. (1.16) into a theory that makes sense at energies much higher than
47rmTW. The mechanism consists in linearizing the field U(z) = ¢97"™"/™w by introduc-

ing a new field h

U—ﬁHzU( 0 ) (1.19)
- (w+h)/v2 )’ '

and promoting equation Eq. (1.16) into

1 v C;
L= —ZWHVW“ + (DHH)TD”H + Z Woi ) (1'20)
=5

which is the SM electroweak-higgs sector introduced in Eqgs. (1.6) and (1.8). ® Thus,
the role of the Higgs in the SM is very particular. Any deviation from the SM higgs
predictions requires new physics. With the addition of the Higgs particle h the theory
can be used to describe both the low energy physics of massive gauge bosons, Eq. (1.15),
and the high energy limit where masses can be ignored and the spin 1 particles interact

a la Yang-Mills, as described at the begining of this Chapter.

Notice that there is not a perturbative unitarity problem (and no need for a Higgs

mechanism) with a theory of a photon and a Z-boson that presents the U(1) @ U(1) —

3In all the previous formulas one can restore ¢’ # 0 straightforwardly.

13



14 Introduction — PARTICLE PHYSICS

U(1) breaking pattern as opposed to, for instance, the U(1)y ® SU(2)r, — U(1)gep
breaking of the SM. The easiest way to see this is from Eq. (1.17), which becomes
simply a kinetic term for 7(z) for U(x) = €97(®)/™; alternatively, start from a Higgs
mechanism and decouple the Higgs particle or notice that all amplitudes that lead to
violations of unitarity involve triple gauge vertices. A theory of photons and Z’s does not
need a UV completion. A famous consequence of this is that the Electroweak Precision
Tests (EWPT) observables do depend on the logarithm of the Higgs mass, preventing us
from taking the limit mj, — oo; and, those terms are proportional to g since we should

be able to decouple the Higgs in the g — 0 limit.

1.1.2 Yukawas

As introduced previously in Egs. (1.7), (1.8) and (1.9), the fermion content of the SM
is described by

Lre = quildgl + ubilpuly + diilpdy + [ ilpl + ehilpel, (1.21)
‘ A , o A i .
Lyae = —@yldiH — GhyluipH — lyGerH — S (G H)(HYi0P),  (1.22)

where g7, = (ur, dr), I, = (v, epr), I = Cff and in the following discussion we ne-
glect O(A~2) operators. The Yukawa matrices y%*¢ are generic 3 x 3 complex matrices
and can be written as Lfyj;R}, where yj; is diagonal and Ry, Ly are unitary. Re-
garding y”, it is a symmetric complex 3 x 3 matrix and can be written as UnyU,T ,
where yY, is diagonal. Then, upon the unitary transformation {qr, ug, dr, lr, er} —
{Lqqr, Ruur, Radg, Lelp, Reer} and setting (H) = (0,v)T /v/2, Eq. (1.22) reads

v

- _ _ _ Yy v
Lyue = — (dLydDdR Fap Vg ybhur + eryher + VLUPMNS%U};MNSVE’) NG
= —dp, - diag(mg, mw, mp) - dg — QLVCT’KM - diag(my, me, my) - uR (1.23)

_ . _ . T
—er, - diag(me, my, m7) - er — vpUppns - diag(my, , Moy, My, ) - Up st

where Vct KM= L:;Lu and Upynys = LZU,, while the kinetic and gauge-fermion interac-

tions of Eq. (1.21) remain the same.

It is customary to define the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix

LjiLu = Vct - To diagonalize the mass matrices of the quarks in Eq. (1.23), we rotate

14



Section 1.1 — THE STANDARD MODEL LAGRANGIAN 15

uZL independently from di

t
U‘L*)VCK]\/IU‘L v

drybhdp 4+ ap V5 L )i SN (ci ddp + uLybu )—
(LyDR LVoxkmYDUR \/5 LYDOAR LYDUR \/5

g _ . uLg)VCT’KMU‘L g
WAy + he.  ——

_q ) + 1
EU L‘/;]WP‘ 'Y'udi -+ h.C. y

7 ilp ) —1u
qr, qr, \/i
where ch = %(Wf FiW34'). The Voga matrix can be parametrized with three rotation

matrices and a phase
Verm = Ra(f23) - Ry(613) - diag(1,¢°,1) - R, (612), (1.24)

where R, (f23) is the matrix of a 63 degree rotation in the y-z plane, and analogously
for R, and R,. The interaction %ﬂiL(VCKM)UVVlfv“d% + h.c. is of high phenomeno-
logical interest. It induces processes that mix the SM quark families (flavour changing
processes) as well as Charge and Parity violation (CPV). Under a Charge and Parity
(CP) transformation the above interaction transforms as
I (Vera )i Wiy d, + hec. N I (Verm) WA d, + hec.,

V2 I V2 VAT

and since Vog s is not real, CP is not preserved in physical processes involving this
interaction. * These processes are small but measurable in the SM. Extensions of the
SM easily contradict the amount of flavour and CPV measured in the SM. The CKM
matrix has a striking, hierarchical and regular pattern. The numerical values of the

mixing angles of the CKM matrix are

Vil Vas| |Vl 97 .23 .0035 1 e €
Verm| = Vel [Ves| [Vl | =] 23 97 041 | =01)x | € 1 & |,
Vial Vis| Vi .0087 .040 1.0 e 1

where € = 0.2 and the experimental uncertainties are below the quoted significant digits.

See, for instance, Ref. [16] for a review of the status of the CKM picture and BSM flavour.

Regarding the leptons, the 3 x 3 Pontecorvo-Maki-Nakagawa-Sakata matrix Upyrns

is commonly parametrized as a sequence of rotations and diagonal phases

Upnns = Ru(023) - Ry(013) - diag(1,e 7, 1) - R.(612)diag(e’, e, 1). (1.25)

“The imaginary part of Voxas is only physical if it can not be removed by performing redefinitions
of the complex fermion’s spinor fields. This is indeed the case and it is easy to check that Voxas can be
parametrized by three real parameters and one complex phase.

15



16 Introduction — PARTICLE PHYSICS

Eq. (1.25) contains three mixing angles 63, 013, 612 and three phases ¢, «, f. Phe-
nomenological aspects of neutrino mixing and mass measurements are not further dis-

cussed in this thesis, see Ref. [17] for a review and Ref. [18] for the experimental status.

Finally, we comment on the ; parameters of Eq. (1.6). Under a chiral transformation
P — ei%wzp on the fields ¥ = {qz,, ug, dg, I, €r} apart from the corresponding trans-
formation of Eq. (1.23), the theta parameters shift because of the non-trivial Jacobian
of the path integral measure: 605 = —ny (2¢qL + Qap + d>gR), 802 = —nys (3¢q, + ¢1,.),
06y = —ny (1/6¢qL +4/3¢uy +1/3¢g, +1/2¢1, + gbgR), where ny = 3 is the number of
families. Physical observables do not depend on field redefinitions. We can then define
a combination of parameters that is invariant under the phase redefinitions of the chiral

fermions

Ogcp = 05+ arg det y* + arg det y* (1.26)

- 8 2
Opw = 09+201+ 3918 det y* + 3318 det y? + 2arg det y°. (1.27)

Thus we see that in the SM neither 65 WWW“” nor 64 BWE‘“’ are physical by themselves.
Below the EWSB scale 0y is identified with 6ggp, i.e. the f-angle of the photon. Being
shift invariant, the parameters of Egs. (1.26) and (1.27) have a chance of being physical.
The terms ALUEWV are total derivatives and only make a contribution when evaluated
on certain field configurations, e.g. QCD instantons. Experimentally éQCD < 10719,

which is ridiculously small. This is a big puzzle named strong CP problem.

1.1.3 Accidental and spurious symmetries

In the preceding subsections we have introduced the SM Lagrangian and commented
on all the free parameters of the model. We have now all the information to compute
physical processes to measure the parameters and compare the SM predictions with
experiment. However, it turns out to be very informative to first recognise various
accidental symmetries of the SM. This will point out which are the most critical tests
of the SM.

Flavor. In the absence of Yukawa couplings, i.e. y/ — 0, and as A — oo the SM has a

global U(3)% symmetry

Ggl%al ) = U(3)QL ® U(B)UR ® U(?’)dR ® U(?’)ZL ® U(g)eR ) (1'28)

16



Section 1.1 — THE STANDARD MODEL LAGRANGIAN 17

that acts on flavour space. This symmetry is explicitly broken by the Yukawas down to

a U(1)° subgroup

Giiohat| ;o = U)p @ UM @ U(1), @ U(L), @ ULy, (1.29)

that includes the global part of the U(1)y gauge group. °

Up to date, all experimental measurements of flavour violation and CP violation in
flavour changing processes can be explained by the CKM matrix. New physics can
not therefore introduce CP and flavour much beyond Vog . It is therefore reasonable
to promote the quark Yukawas to spurious fields charged under SU (3)‘22 = SU(3)q, ®
SU3)up ® SU(3) 4y, as

y'~(3,8,1), y'~(31,3), (1.30)

and require that all perturbations to the dimension-4 Lagrangian are invariant under
the S U(3)%. If new physics, or the higher dimensional operators, are invariant under
S U(3)% then all the flavour and CP violation of the SM (beyond FF terms) comes from

Vo - Regarding fermions, similar promotions can be done
ye ~ (37 3)7 (131)

under SU(3);, ® SU(3)e,. The assumption of Egs. (1.30) and (1.31) goes under the
name of Minimal Flavor Violation (MFV) and it is largely taken in this thesis since we
do not deal with the problem of explaining the physical origin of Vo and my, called
the flavour problem. See Sec. 6.1 of the present thesis, and Ref. [19] and references

therein.

Custodial symmetry. In the limit ¢/, 4/ — 0, the Higgs sector of the SM, Eq. (1.8),
has an enhanced SU(2)? symmetry,

LHiggs , = |D,H|?> =V (H) = (D,X)(D"Y) + m*tr[T8] — Mr[2T%]? ) (1.32)

where ¥ = %(ﬁ ,H) and it transforms under the global symmetry group SU(2); ®
SU(2)r as H ~ (21,,2r). The SU(2)r, is gauged since g # 0. The Higgs takes a vev

because the vacuum of the theory is at

ioy_ 210
(XT%) = <0 1>, (1.33)

°Tt is interesting to note that, apart from U(1)y, the following U(1)’s are (non-simultaneously)
non-anomalous: U(1)p—r, U1)r,~1,, UN)re—1,, Ul)Lo—L,-

17



18 Introduction — PARTICLE PHYSICS

and the global symmetry group SU(2);, ® SU(2)g is broken down to the SU(2)r4r by

the vacuum, called the custodial symmetry. ©

Now, consider the quadratic terms in the gauge bosons of the effective Lagrangian
1
<M#f:H+M”W”+§H%W%W, (1.34)

where we have suppressed the Lorentz indices. The two-point functions I, receive
contributions from SM loops, from higher dimensional operators (upon the Higgs taking
a vev) and possibly from new BSM degrees of freedom coupled to the gauge bosons
Iy = (JoJp). Next, consider the parameter T' = [II33(0) — IIL_(0)]/mw. The T-
parameter is in the traceless and symmetric representation of (31, ® 3r,), so it transforms
in the 5 irrep. Now, if SU(2)p4+p is a symmetry of the vacuum, then the spurious
symmetry of the parameter T forbids it from having a vev. The recognition of this
spurious symmetry that protects the parameter T' is very important because it turns
out that the relation between the W and Z bosons mass is a prediction of the SM and

experiments show that

mw (671
T _1:@(f» 1.35
my cos Oy 47 ( )

is fulfilled to a very good degree. In Eq. (1.35) we have defined cos 0y = ¢%/(g9° + ¢'%)
and we have set again a finite ¢’ # 0. The SU(2)14r custodial symmetry custodies
this relation and the T-parameter encapsulates the leading violations of the SU(2)r+r
custodial symmetry for all BSM theories that couple universally to the SM. The SM
parameters ¢’ and y/ can be promoted to spurions such that the SM is formally invariant
under SU(2)r+r. Imposing this symmetry on the higher dimensional operators and
BSMs relaxes the experimental constrains from the measurement of Eq. (1.35). See

Sec. 6.1 for further discussion.

1.2 Shadows over the SM

There are various theoretical hints within the SM and GR that point to the presence of

new physics. These are the shadows of new physics:

a) The three gauge couplings of the SM approximately coincide at an energy scale
around ~ 10'® GeV. This feature of the coupling’s running might be signalling that,
around that scale, the SM gauge groups are embedded into a bigger group with
a single gauge coupling, Grand Unified Theories (GUT). In the supersymmetric
version of the SM the gauge couplings unify very precisely, see Fig. 1.2.

SIn fact, in the limit y* = y¢ # 0 there is the enhanced custodial symmetry where (ur,dr) are a 2
of SU(2)g.
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Section 1.2 — SHADOWS OVER THE SM 19

b) The massive nature of the neutrinos is explained via the dimension-five higher
dimensional operator of Eq. (1.9). If y, is taken of order O(1), in order to explain
the neutrino mass values m, < eV, then the cut-off scale of the Weinberg operator

is around the GUT scale.

c) Gravity is very weak at the electroweak scale because it couples to the SM degrees
of freedom via the coupling \/gvE = E/Mp;. However, gravitational interactions
becomes non-perturbative at energies E ~ Mp; ~ 10'8 GeV, called the (reduced)

Planck mass, not far from the GUT scale.

It is impressive that these three hints point to similar energies. However, these are energy
scales much higher than the electroweak scale and it is inconceivable an experiment here

on Earth that would directly probe such humongous scales.
In fact, there are various circumstantial evidences that support the picture that there

is no new physics directly coupled to the SM until vastly higher scales:

a) The accuracy of the SM predictions are an unprecedented success in science, and
none of the predictions is contradicted by any experiment. Flavor and CP tests of
the SM suggest that BSM flavour is either not generic or appears at much higher

scales.

b) None of the SM couplings hits a Landau pole before the Planck scale. Furthermore,
the Higgs quartic coupling is negative at high energies but small enough in absolute

value to ensure the stability of the electroweak scale under quantum tunnelling.

c) All possible gauge and gravitational anomalies cancel.

Q;

—

40 -

20

P Log,[E]
my Mgyt Mg
FIGURE 1.2: Plot of the variation of the SM gauge couplings with the energy, where we
2 2 2
have defined a; = {39—, 2 9=}, In lighter colors we show the analogous plot in the
minimal supersymmetric version of the SM.
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20 Introduction — PARTICLE PHYSICS

In other words, it is theoretically and experimentally consistent to set A = Mp;. Closely
related to the theoretical hints, there are theoretical or experimental puzzles (it is not a
sharp dichotomy). These are unsettling features of the SM that one wants to explain and
gain experimental insight on them. For instance, we would like a deeper understanding
of the origin of: the hierarchy of the fermion masses, the origin of the gauge groups,
the Higgs potential, why are there three families, why electric charge is quantised, why
focp < O(1), dark matter, the period of inflation preceding the Big Bang, etc. How-
ever, any of these theoretical conundrums mentioned so far can in principle be explained

by new physics at energies far from the EW scale or with very weakly coupled physics.

Luckily, this is not the whole story. There is a theoretical puzzle that seems to require
new physics coupled to the SM with O(1) strength and close to the electroweak scale:
the EW hierarchy problem and its associated fine-tuning problem. The EW hierarchy
problem consist in giving a satisfactory answer to why v < Mp;?, where satisfactory
typically means that the proposed theory has couplings and ratios of energy scales of
order ~ O(1), as dictated by symmetries, but otherwise generic. At this point the
problem looks of the same nature as to why m,/m; < 1¢; however, this similarity is
not exact due to the closely related fine-tuning problem of the EW scale. In short, the
problem can be stated as follows. In any calculable ultra-violet (UV) completion of the
SM conceived so far the Higgs mass value turns out to be around the same energy scale

of the UV completion scale,
mi = gé0° £ ghey A2/ (167°%) (1.36)

where A is the UV completion physical scale (e.g. the heaviest mass of the new UV de-
grees of freedom). 7 Then, given that the SM contribution is dominated by ggas ~ O(1)
couplings, the parameters of the UV completed theory must be of the order ), g% SMi ™
O(16m2v2/A?) to ensure a Higgs mass as light as mj ~ v. Hence, if A > v, then
> gfg s s finely-tuned and we say that the theory does not look natural. The need for
new physics not far from the EW scale to avoid fine-tuning is not a theorem. However, it
is supported by the effective field theory analysis that, in the SM, the Higgs mass term is
not forbidden by any symmetry as the mass parameter is taken to zero and therefore can
receive additive contributions, as in Eq. (1.36). The fine-tuning problem can be taken
as a motivation for physics beyond the SM not far from the EW scale. The argument
is that, if the full BSM theory is natural then A ~ 4wv. However, there are instances
in physics that disfavour the naturalness ”principle” /strategy as a guide. For instance,
the cosmological constant problem seems to be totally at odds with the standard QEFT
analysis of naturalness: (T},,) ~ —(107% eV)*g,, < —(Mp;)*g,,. Indeed a prototypical

"We have included a (47r)72 factor to recall the Higgs mass calculation in perturbation theory and
truncated at one-loop.
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FIGURE 1.3: The measurment of the signal strength u = o/osay by the experiments
ATLAS [22] (left) and CMS [23] (right).

particle physics solution would be to have SUSY softly broken with Mgopr < 1072 eV.
Thus we see that, even-though it is not guaranteed, it is plausible that the LHC will
be able to provide a definite answer on the EW hierarchy problem. See for instance

Ref. [20, 21] for further discussion on the fine-tuning problem.

The Higgs

As we have explained, all the collider experiments done so far, at energies £ < 1 TeV,
have vindicated the Standard Model. The last milestone in the high energy frontier
has been the discovery of the Higgs boson [9, 10], see for instance Ref. [24] for a recent
theoretical overview. Since the discovery of the Higgs much more data has been analysed
and there is no sign of anomalies in the Higgs measurements. More concretely, it has
been tested through all its dominant production modes (gluon fusion, vector boson
fusion, W or Z Higgstrahlung, and ¢tH production) in each of the most sensitive Higgs
boson decays at the Large Hadron Collider (LHC): 7, 4-leptons, WW, 77 and bb. A
measure of the agreement with the theoretical expectations is the signal strength u. It is
defined as the observed cross-section times the branching fraction of a process divided by
the SM expectation. In Fig. 1.3 we show the combined signal strengths of the different
detected channels by both ATLAS and CMS. All in all, the results are consistent with
the SM within ~ 1. This is based on an integrated luminosity of ~ 25 fb~! at an
energy of 7 — 8 TeV, which corresponds to a production of about 10° Higgs boson in
the dominant production modes. The number of Higgs analysed so far depends on the

branching fraction of the different decay channels and its corresponding efficiency and
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ATLAS Simulation Preliminary
Vs =14 TeV: [Ldt=300 fb™ ; [Ldt=3000 fo™
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FIGURE 1.4: The ATLAS prospects for the Higgs signal strength measurements with
300 ﬂ)_l and 3000 fb_l [25]. The lower opacity area shows the theoretical uncertainties.

purity in the reconstruction of the events. For instance, for the decay h — v the
number of events produced so far is N = O(10) and it is reduced by a factor ~ 10 in

its reconstruction.

The LHC machine is expected to deliver about 300 fb~! integrated luminosity at an
energy of ' = 13—14 TeV per experiment by the year 2022. There is the possibility that
the LHC will be upgraded into the high-luminosity LHC (HL-LHC) and will produce
about 3000 fb~! of data at E = 14 TeV, per experiment, by the year 2035 [25]. In
Fig. 1.4 we show the projected precision signal strength by the ATLAS experiment.

With the overall experimental evidence together with the theoretical expectations (i.e.
the essential theoretical bias towards a coherent and satisfying theory) it makes sense
to accept that the discovered Higgs boson is indeed the SM Higgs boson. The discovery
of a Higgs particle, with mass of approximately 125 GeV, is the most important result
from the LHC so far. It is an unprecedented discovery since it is the first observation of
fundamental spin zero particle and because of the role of the Higgs in the electroweak
symmetry breaking. The measurement of the Higgs couplings is crucial, and part of the
main LHC goals, because deviations in the SM expectations are a window to new physics
beyond the SM. It is a big issue. We are probing the vacuum structure of the electroweak
interactions and it is extremely important that we make sure that we understand it with
as much detail as possible. Furthermore, if no new physics beyond the SM is discovered
at the TeV scale, the Higgs will remain as one of the few and precious handles for us to
understand the governing principles of nature. In the present thesis we take some steps

along this line of research.
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Electroweak vacuum stability
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2. Introduction

7If it turns out that the pure Standard Model holds up at TeV
energies, it will be fascinating to learn how close we are to the

instability that occurs when my, is too small.”
— E. Witten, Reflections on LHC Physics [20]

On July 2012 the experiments ATLAS [9] and CMS [10] reported the discovery of a
Higgs-like boson. As we have reviewed in Chapter 1, all the measurements done so far
are compatible with a SM Higgs and the favoured Higgs mass value is mp ~ 125 GeV.
More accurately, the best measurements of the mass value come from the visible decays
of the Higgs into photons h — vy and into four leptons h — 4[. These decays are very
clean because the measurements of photons and leptons has much less uncertainties than
those processes that hadronize or that have lower branching fractions. Both ATLAS and
CMS reported this mass measurement separately in Refs. [23, 27] and recently provided
a combination of their measurements in Ref. [28], yielding and average Higgs mass value
of

myp, = 125.09 + 0.21(stat.) = 0.11(syst.) GeV . (2.1)

This is a very interesting value for the Higgs mass from the experimental point of view

because there are several accessible decay channels of the Higgs boson.

Furthermore, from the theoretical point of view this range of masses is very intriguing.
As we show below, the Higgs mass implies that the Higgs quartic coupling A of Eq. (1.12)
is negative at energies ~ 10'° and the effective potential has a region in field space of

lower energy density than the electroweak vacuum.

In the Standard Model (SM) the Higgs mass is given by
mi = 2)\? + Am? (2.2)

where Am? denotes small radiative corrections that are numerically dominated by the
top Yukawa y; and strong gauge o couplings. Eq. (2.2) is the matching condition that

fixes the value of the quartic coupling at the electroweak scale ~ myy. Then, from
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SM couplings

A

\

0.0!=Yb |

102 10* 106 108 10% 102 10“ 10% 10%8 10%
RGE scale u in GeV

FIGURE 2.1: SM RG evolution from my to Mpigner of: the EW gauge couplings g1 =

\/%g/ and g, the strong gauge coupling gs, the top Yukawa coupling y; and of the

Higgs quartic coupling \. All the couplings are defined in the MS with two-loop beta
functions. Boundary conditions taken at E = m; with values as in Chapter 3.

Eq. (2.1) and the measurement of v ~ 246 GeV ! one finds Mgy = A(u = m) ~ 0.13.
The value of the Higgs quartic coupling A depends on the energy scale of the scattering

process as dictated by the renormalization group (RG) equations. It is given by

Ap) = + Y O(ajlog" -, (2.3)
g 1—/3Alog( L) Z =)

where ) = 24\2+12\y2 6y} +. .., see e.g. the Appendix of Ref. [29] for the two-loop full
expression. Eq. (2.3) is a leading-log resummation of the A(u) variation because, using
the one-loop beta function, we are resumming the highest (divergent) logarithm power
of a fixed loop order calculation. The quartic coupling A(u) is negative at high energies.
This is due to the negative contribution of the top-quark in the beta function of the
quartic coupling. However, the running of A(u) is very shallow, see Fig. 2.1. Therefore
very small changes in Agy imply big changes on the energy scale where A(u) = 0. A
priori, the Higgs mass could have been anything from say 115-1000 GeV but it turns
out that for m;, ~ 125 GeV

)\(,LL:MPZ> ~0. (2.4)

This is very interesting for various reasons:

- Firstly, it adds one more item to the list of hints (see Sec. 1.2) that point to a

special very high energy scale. However, it is fair to say that this hint is less strong

'The parameter v can be measured precisely from the Fermi constant Gr in the process y — evev,.
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than the loss of of perturbative unitarity in gravity and the unification or see-saw
energy scales. The energy scale where A = 0 is not a point of enhanced symmetry *
and due to the A(u) shape and the scalar nature of the Higgs * very small new
physics thresholds can drastically change the picture of Eq. (2.4). Nevertheless,
one might be willing to take Eq. (2.4) as mild evidence that the scale of new
physics directly coupled to the SM is very high (e.g. supersymmetry typically
requires A = g2 > 0).

- Secondly, the effective potential can develop a second minimum at a scale higher
than Ay, where A\(A7) = 0.

To study the structure of the electroweak vacuum the quantity that matters is not the
quartic coupling but the effective potential V,y;. Since are interested in the behaviour
of Vs for ¢ > v we can neglect the Higgs mass term. Then, the RG improved effective

potential 4 can be written as

Ae
Vers = fi(@ o*, (2.5)

where ¢ = (07|h|0), for an external source 6L = ¢ - J. With very good precision (of
order O(m?/$?)) we can study the stability of the electroweak vacuum by analysing the
sign of Acs¢(¢). At tree level A\cfr = A and the one-loop RG improved effective potential
is given by Acrr = A = ¢), given in Eq. (2.3). In Fig. 2.2 we show a schematic plot
of the instability that appears when A(¢.) < 0. Notice that, to extrapolate the SM
potential up to arbitrary high energy scales in order to study its stability, one needs
three pieces of information: the effective potential, the beta functions and the boundary
conditions at the EW scale. To be consistent in the precision of the calculation, if the
effective potential is computed at n-loops then the beta functions and the matching
conditions have to be computed at (n+1)-loops and n-loops, respectively. This resumms
up to n-times next to leading order logarithms (N”LO) of the perturbative calculation

of V;ff.

The presence of instabilities at high scale are in general problematic because the
electroweak vacuum state |v) (that corresponds to (v|¢|v) ~ 246 GeV) is no longer a
stable minimum at the quantum level. There is a non-zero probability for the electroweak
false-vacuum state to decay to the deeper true minimum state |0). The process happens
through the nucleation of a bubble of the deeper vacuum, which subsequently expands
provided its radius is large enough [33, 34]. Instabilities of this sort are worrisome

because we know that the vacuum state |v), upon which the visible matter of the universe

2Notice however that the 8y = 0 point is remarkably close.

3 It can couple with any other invariant L2 = |H|?> x O(z).

4The renormalization group improvement of the effective potential was done in Ref. [30], see also
Refs. [31, 32].
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28 Part I - ELECTROWEAK VACUUM STABILITY

rests, is very long lived; at least up to lifetimes much higher than the age of the universe
since the Big Bang, Ty = 10 Gyr. If the instability of the SM happens to correspond
to a very short lifetime (as compared to T/) it is interpreted as an inconsistency of the
theory rather than as meaning that we have been very lucky until now. The inconsistency
of the theory due to the instability may be cured in a number of ways. For instance,
the SM can be deformed by adding bosons coupled to the Higgs. Bosons contribute
positively to the running of the quartic coupling and help in ensuring that A(¢) > 0 for
scales Mp; > ¢ > 246 GeV. ° Or, the SM may be embedded into a BSM with completely
different degrees of freedom than the SM. In that hypothetical BSM no longer makes
sense to talk about the Higgs potential.

Vacuum decay

In a theory with several local minima, there is the possibility of quantum tunnelling
between a local minimum and a point in field space where the value of the potential
is lower. The calculation of vacuum tunnelling in field theory is a generalisation of
quantum barrier penetration in elementary quantum mechanics to infinite degrees of
freedom [33, 34]. One can find excellent reviews of the theory of vacuum decay in Ref.
[35-39].

In the SM quantum field tunnelling is relevant in cosmology. An infinitely old universe
must be in a true vacuum, no matter how slowly the false vacuum decays. However,

the universe is not infinitely old; its is about Ty ~ 10'° years old. Then, the relevant

)/ 0/ T~
e -246 0 246

1073}

-2-10" ' :
~10'8 0 108

Energy in GeV

FIGURE 2.2: Schematic realistic representation of the SM Higgs potential. The region
¢ € [—500,500] GeV has been zoomed in.

SInstabilities around or above Mp; are ignored since we expect sizeable quantum gravity effects that
we do not want to tackle in a first analysis. The point is that if big instabilities appear at ¢ < Mp;
quantum gravity effects do not have the strength to cure them.
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parameter is that cosmic time for which the product of the decay rate per unit time and
per unit volume of the false vacuum I'/V times the volume of the past light-cone ° is of

order unity.

For large field values, Eq. (2.5) is a good approximation of the Standard Model (SM)

effective potential and it turns out that the approximation

T/V ~ max{¢* exp(—Sg); Aess(¢) <0}, (2.6)

2 . . . .
where Sp ~ %, generally matches the numerical calculation with precision of a few
e

percent [37, 40].

Let us discuss the theoretical uncertainty in Eq. (2.6) for the SM. We do a rough
estimate. The uncertainty is dominated by Sg. The quartic coupling at the maximum of
Eq. (2.6) is typically |Aers| = (0.0140.001), see Chapter 3. This implies By ~ 2600+100.
An uncertainty of £100 in By implies a huge uncertainty in I'/V. However, we are not
so much interested in the precise value of I'/V but rather on whether or not I'/V times
the past light cone is much smaller than one. The point is that, since tiny changes in
Aeff imply big changes in I'/V', we will always be able to determine if the vacuum is long
lived except for a narrow range of values of Acyy. Furthermore, small changes in Acsy
can be translated, through the matching condition Aeff(mmiggs), into an even smaller
change in the Higgs mass. For the SM, we can do the following estimate of the width
in A\.rs where we can not conclude about whether or not the vacuum is long lived in
comparison with the age of the universe. From Eq. (2.6), taking ¢ ~ 10'* GeV 7 and a
light-cone volume of V,, = ¢99[100 GeV]™*, we see that I'/V x V,, &~ 1076 and ~ 100 for
—Aeff(@) = 0.052 and ~ 0.054, respectively. This can be traced back to an uncertainty
of ~ 1 GeV in a Higgs mass of ~ 120 GeV. Therefore, if the value of the Higgs mass
is not close (by ~ 1 GeV) to the boundary where the I'/V x V,, ~ 1, the theoretical
uncertainty in I'/V is small enough; in fact, we find that this is the case for the SM.

In the upcoming Chapter 3 we present a detailed study of the stability of the elec-
troweak vacuum. Then, in Chapter 4 we review a a simple and robust mechanism to

stabilise the electroweak vacuum.

5The past light-cone volume can be estimated by multiplying the size of the observable universe by
the age of the universe times the speed of light. This is about 6409/1)4, where v =~ 100GeV.
"This is a typical field value where V. ;;(¢) < 0, see next Chapter.
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3. Stability of the SM

As already emphasised, the Higgs mass value measured by ATLAS and CMS is rather
intriguing. Its measured value corresponds to a lifetime of the electroweak vacuum that
lies just in between having absolute stability up to the Planck scale Mp; and being
unstable, with a lifetime smaller than the age of the universe. In order to conclude
about whether or not the SM can be extrapolated up to the Planck scale without any
consistency problem a precise calculation is needed. The study of the stability of the SM
vacuum has a long history (see also Ref. [39, 41] and references therein). The state-of-
the-art analyses of the SM vacuum stability before the Higgs discovery were done at the
next-to-leading order (NLO) level [40, 42-49]. This is based on two-loop renormalization-
group (RG) equations, one-loop threshold corrections at the electroweak (EW) scale
(possibly improved with two-loop terms in the case of pure QCD corrections), and one-
loop improved effective potential (see Ref. [3] for a numerically updated analysis). The

NNLO calculation was first presented in Ref. [1] and further refined in Ref. [50].

The present Chapter is based on Ref. [1]. We explain the NNLO analysis of the
stability of the electroweak vacuum. It is based on the two-loop effective potential, the
three-loop beta functions and the matching conditions at two-loops. Subsequently in
Sec. 3.5 we summarise the results and discuss the sensitivity of the the study to beyond

the SM physics at Planck scale.

3.1 The two-loop threshold correction to A(u)

As pointed out in Ref. [3], the most important missing NNLO piece for the vacuum
stability analysis were the threshold corrections to A at the weak scale. This is simple
to understand from the shape of the function A(u), see Fig. 2.1; a small change in the
boundary at the EW scale implies a big change in the scale p where A(u) = 0.

The most important threshold corrections at the EW scale are corrections due to

QCD and top Yukawa interactions, because such couplings are sizeable at low energy,

31



32 Part I - ELECTROWEAK VACUUM STABILITY

Fig. 2.1. In this Section we review the calculation of such terms and the associated
theoretical uncertainty. As explained below, we will obtain these leading terms in the
matching condition, proportional to y¢ and y}g? (where y; and g, are the Yukawa of
the top quark and the strong coupling) from the calculation of the Higgs mass via the

effective potential.
We write the SM potential for the Higgs doublet H in the usual way:

— _m2H|2 4 _ G*
V= |H|* + X\H|*, H= <(U+h+iG0)/\/§> : (3.1)

Up to negligible width effects (I';, = 4 MeV), the pole Higgs mass my, is the solution of

the pole equation at the EW minimum
MP = —m? + 3 \0? + My (M7) (3.2)

where m?, X and v are MS renormalized quantities and II;,(p?) is the Higgs self-energy

(1PI two-point) function, with external four-momentum p. We rewrite this equation as
Mg = [—m2 -+ 3)\’[)2 + Hhh((])] + [Hhh(Mg) — Hhh(o)} = [M}%]V + AHhh<Mg) .

This step is convenient because the last term (which is computationally challenging) only
gives corrections suppressed by the small Higgs quartic coupling, in view of the smallness
of M }% = 2)\v? at tree level. The first piece can be expressed in term of derivatives of the
effective potential, V,;r. Writing the effective potential as a sum of the tree-level part

Vo plus radiative corrections AV

A

1% ——m—2h2+—h4+AV (3.3)
eff — 9 4 ’ :

one finds 22y
21 _ eff
[Mh}v - (6h)2

(3.4)

h=v
where v is the h vev at the minimum of the effective potential, determined by the

minimization condition

OVeyy
oh

(3.5)

= [—m2h + A3+ ‘MV] :
h=v oh h=v

2

As usual, it is convenient to consider m~ as a free parameter fixed in terms of v by the

above equation, arriving at

1 0A 2A
OAV 0 V} (3.6)
h=v

2 _ 2 -
Maly = [QM hon "t (an)
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Defining the operator D2, as !

10 0?2
p:_| 19, 9 .
m { h8h+(8h)2]hv’ (3.7)

and noting that 2\v? = D2 Vj, we can simply write [M Iﬂv = D?nvef f, obtaining the

following expression for the Higgs mass:

Mj = Dy Veyy + Al (M) - (3.8)

Eq. (3.8) gives the Higgs mass squared as the sum of two terms. The first is the Higgs
mass obtained from the potential; this is not the complete pole Higgs mass and must
be corrected for nonzero external momentum effects, which are taken care of by the last
term, All,,(M2). It is a straightforward exercise to verify that this expression for the
pole mass is independent of the renormalization scale p. In particular, one can prove

that

d
dln,u [mz]v = _27 [mlzl]\/ ?

J (3.9)
dlnMAHhh(m%) =2y [m,zl — AHhh(m%)] ,

where y is the Higgs anomalous dimension, describing its wave-function renormalization,

vy=dlnh/dlnp.

Using Eq. (3.8) and the one-loop result for V. s¢ one obtains the one-loop Higgs mass

correction. The explicit one-loop result for the pole mass is
M7P =2 * + 6 M}, (3.10)

with

1

m)

SIM7P =

5 {3y§ (4m? — M2)Bo(myg, my, My,) + 6220230, — 6 + 7V/3)

(

o

7 (39" = 8Xg + 167%) Bo(muw, muy, M)
(3.11)
v

— —(3G* = 8)\G? + 160?)By(mz, mz, My) + 2m3y [¢> — 2\ (4w — 1)]

[\

8
+my [G* = 2\(lz — 1)] }

where G2 = g?+¢'2. All parameters on the right-hand side (including v) are MS running

parameters (with the exception of M2, which appears through the external momentum

!'Notice that the term in D2, linear in field-derivatives automatically takes into account the cancel-
lation of h-tadpoles (or alternatively, the minimization condition to get the right v).
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34 Part I - ELECTROWEAK VACUUM STABILITY

dependence of the Higgs self-energy). Since we computed Eq. (3.4) in the Landau gauge,
v in Eq. (3.11) represents the gauge and scale-dependent vacuum expectation value of
the Higgs field as computed in the Landau gauge. Similarly the AHhh(m%) contribution
in that equation is computed in the Landau gauge. In Eq. (3.11)

mZ +ami — x(1 — z)m?2 — ic

112

1
1
By(mg, mp,me) = / In (1-2) dx , (3.12)
0
and £, = In(m2/p?), with m, the running mass for particle = (e.g. m; = yv/v/2). One
can explicitly check, using the RGEs for these parameters, that this expression for M }%

is indeed scale-independent at one-loop order.

Neglecting gauge couplings and setting M? = 2\v? in the one-loop terms, one obtains

the approximate expression

)

2520

(4r)?

SIM7P ~ (A2 +36) — 3yit] . (3.13)

To compute Eq. (3.8) at the two-loop level one can use the two-loop effective potential
[51, 52] to calculate [Mfﬂv and the general results for two-loop scalar self-energies in
Ref. [53] (supplemented by the results on two-loop momentum integrals of Ref. [54])
to calculate Allp, (M. }%) If we only keep the leading two-loop corrections to M}% pro-
portional to v, yig?, dropping all sub-leading terms that depend on the EW gauge
couplings or A, our task is simplified dramatically. First, in the two-loop effective poten-
tial we only have to consider the diagrams depicted in Fig. 3.1. Their contribution can
be extracted from the expressions for V3 and Vpy in the Appendix of Ref. [1]. Second,
in the two-loop term AH%)(M}%) we can substitute the tree-level value M? = 2\v?, so
that

ATL) (M) = L) (2X0%) — T13)(0). (3.14)
It is then clear that the two-loop contributions coming from that term are proportional
to A and are therefore subdominant; we will neglect Aﬂgfh) (M?) completely. In ref. [1]
the AH,(fh)(M ,%) contribution to the Higgs mass is computed.

FIGURE 3.1: Two-loop vacuum diagrams that give the dominant contribution (depend-
ing only on gs and y;) to the SM two-loop effective potential.
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Chapter 3 — STABILITY OF THE SM 35

To find the expression for the Higgs mass at two-loop precision, we must also take
into account that M,% has to be evaluated with one-loop precision in the argument of
the one-loop term AHEZlh) (M,%) Putting together all these pieces, keeping only the y9

and y/g? terms, we arrive at the following two-loop correction to Eq. (3.10):

2 Z/tQU2 2 2762 4 2 7’
0o M = (4t 16g2y; (307 + ¢¢) — 3y, <9€t — 30 +2+ 3)] . (3.15)

The expression for M}, as a function of A can be inverted to obtain \(u) as a function
of the pole Higgs mass M},. To express A(p) in terms of physical quantities (G, and the
pole masses Mz, My, and M;) the relations between physical and MS parameters are
needed. At the level of accuracy we are working, only the relation between the y; (1)

and m; and the one between v(n) and G, are required. They are given by:

8 1 1
2 2 2 2
= 2V2G, M? |1+ = ——¢2(3Ly — 4) + ——=V2G,M*(—9Ly + 11 1
VB0 = 2VEGM? |14 L g (3L — )+ (o VIGMA-9Lr + 11)] (310
2 1 1 2 2 1 2
V() = —=—— + ——5 |3ME(2Ly — 1) + M, (5 — 6Lw) + - M%(5 — 6L7)
V26, U ? (3.17)
3MZME, 1 5 3M3 M} '
2T W (Ly — L) — =M} — — Wb (Ly, — L
4(M§—MV2V)( z = Lw) =3 M, M@V—Mg( w =L
where Lx = In(M2/p?), with masses in capital letters denoting pole masses.
We find: .
A — THh + /\(1) + )\(2) , 3.18
(1) 3 (1) (1) (3.18)
with
2 2
AP (1) = A0 teat. (1) + Mo seaa, (8) - - (3.19)

where the ellipsis stands for the sub-leading terms that we are neglecting. The known

one-loop term is

1 1 (6(Lyg — Lw)MP
2 { (st = Lw) b8 (2Mjy + M3) — 2(—3 + 6Ly) M M?

AW (n) = =
2 H (47)2 M? — M3,
+ M (19 —15Ly + 6Ly — 3\/§7r) +12(M? — 4MZ)M?2 Bo(My, My, My,)
+2 (M — AM} M, + 12Myy) Bo(Mw, My, My,)
+ (M — AMZM3 + 12M3) Bo(Mz, Mz, My,)

2 5 o 6MZMF,
+ My |2(8Lw — T)My, + 8Lz — )Mz — W(Lz = Lw)| ¢
7z — My

(3.20)
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FIGURE 3.2: Scale dependence of Eq. (3.8) with one-loop corrections (blue) and with
two-loop corrections (red). Both curves are fized to the value of mp =125 at pu = my.

and the leading two loop QCD and Yukawa terms are

2) GriM} )
)\QCD,lead.(:u’) = (471')4 64gs (M) (_4 - 6LT + 3LT) ,
(3.21)
8v2G3 MP
Mtead. (1) = T‘)‘j (30 + 72 + 36Ly — 45L3) .

The above expression for A(u) has the correct dependence on the renormalization scale

i, so that both sides of Eq. (3.18) evolve with x in the same way to the order we work.

In Fig. 3.2 we show the residual scale dependence of M}, in Eq. (3.8) in the MS
scheme. We compare the mass calculated using the one-loop and two-loop threshold
corrections. As naively expected, the higher loop curve is less sensitive to the choice of
renormalizaiton scale. This dependence on the scale will be used later to estimate the

theoretical uncertainty in our calculation.

3.2 As and three-loop beta functions.

To study the shape and instability of the effective potential we have to consider Eq. (2.5):

Aerr(h
‘/Bff% ff( )h4,

0 (3.22)

As we already said, since we want to resum up to next-to-next-to-leading-logarithms of
the full loop expansion of Vr¢, we have to compute Acs¢(h) at two-loop order and run

its couplings with the three-loop order beta functions.
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Complete three-loop beta functions for all the SM gauge couplings have been presented
in Ref. [55], while the leading three-loop terms in the RG evolution of A, the top Yukawa

coupling (y;) and the Higgs anomalous dimension have been computed in Ref. [56]. 2

The explicit two-loop result for A.s¢(h) can be easily obtained from the two-loop
potential, see e.g. the Appendix of Ref. [1]. We report here the simplified expression
obtained when, in the two-loop term, we take into account only the contributions from

the strong and the top Yukawa couplings * [42]:

1
(k) = T {Mm + e 2 Nt (0= C)
p (3.23)
L alg 2(a 2 3 o 2 m
+ Wyt [898(3rt —8ry +9) — SVt 3r; — 16m¢ + 23 + 3 .

Here all couplings are evaluated at the scale determined by the field value (u = h), the
index p runs over particle species, N, counts degrees of freedom (with a minus sign for
fermions), the field-dependent mass squared of species p is mg(h) = ,uf, + kph? and C,
is a constant. The values of {N,, C,, ug, kp} are given in Tab. 3.1. Within the SM they

are:
t W Z h X
N, -12 6 3 1 3
Cp 3/2 5/6 5/6 3/2 3/2
:“1% 0 0 0 —m? —m?
7 S Vel VE S 2 A
TABLE 3.1:  The values of {Ny, Cyp, p2, kp} within the SM.
The factor b
o) = [ A ding, (3.24)

where v = dInh/dIn p is the Higgs field anomalous dimension, takes into account the

wave-function renormalization. We have also defined r, = In[x,e?"(M)].

2 After the analysis presented in this Chapter was published in Ref. [1], more refined three-loop beta
functions for the quartic and Yukawa couplings became available [57, 58].

3At high scales, the EW gauge couplings ¢’ and g become comparable in size to y; and gs (see
Fig. 2.1), but their contribution to Aeg(h) turns out to be numerically small so that Eq. (3.23) is a very
good approximation.
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3.3 Inputs at the electroweak scale

As far as the SM gauge couplings are concerned, we can directly use results in the

literature for the couplings in the MS scheme. In particular, from a global fit of EW

precision data, performed with the additional input M} ~ 125 GeV, the following MS

values of the electromagnetic coupling and the weak angle renormalized at M, are

obtained Ref. [59]:

o = 127.937 £ 0.015 |

From these we derive

oy t(myz) = ag; sin® Gy = 29.587 + 0.008

ayl(myz) = ag; cos? O = 98.35 £ 0.013 .

For the strong coupling we adopt
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FIGURE 3.3: Ewolution of the Higgs coupling A(u) and its beta function as a function
of the renormalization scale, compared to the evolution of the effective coupling Aegs(h),
defined in Eq. (3.23), as a function of the field value. Left: curves plotted for the best-
fit value of my. Right: curves plotted for the lower value of my that corresponds to
A Mpy) =0.
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such that, including 3 loop RG running up to M; and matching to the theory with 6

flavors, we get

ay(mz) — 0.1184 my
— 1.1645 + 0.0031 — 0.00046 _173.15). (3.29
gs(me) * ( 0.0007 ) (cev ) 329)

We determine the MS top-quark Yukawa coupling (1) starting from the top-quark
pole mass (M;) determined from experiments: M; = (173.1 £ 0.7) GeV. This implies

the following value for the top Yukawa coupling:

Mt Mh
M) = 0.93587 + 0.00557 —173.15 ) — 0.00003 125
ye(My) + ( oV > ( oV )

€
as(Myz) —0.1184
0.0007

—0.00041 ( > £ 0.002004y, .

Next, applying the threshold corrections discussed in Sec. 3.1, we determine the fol-
lowing value for the Higgs self coupling in the MS scheme renormalized at the pole top

mass:

Mh Mt
M) =0.12 .002 — — 125 ) —0. 4 —173.15 | +0.001404,.
A(My;) = 0.12577 + 0.00205 (GeV 5> 0.0000 <GeV 73 5) 0.001404p,
(3.30)
The residual theoretical uncertainty, that is equivalent to an error of £0.7 GeV in My,
has been estimated varying the low-energy matching scale for A between My and 2M;.

As can be seen in Fig. 3.2, this is a conservative estimate of the theoretical uncertainty.
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lo bandin:
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FIGURE 3.4: The instability scale at which the SM potential becomes megative as a

function of the Higgs mass. The blue and the red bands correspond to the experimental

uncertainty in my and as(M,), respectively. The theoretical error is not shown and
corresponds to a +1 GeV uncertainty in mp.
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3.4 Results: is the SM electroweak vacuum stable?

We have now at hand all the pieces needed for the analysis of the EW vacuum stability.
In Fig. 3.3 we show the results of the numerical computation of the running of A and
Aeff- We see that for central values of My, and taking the experimental value M), ~ 125
GeV, the potential develops an instability around ~ 10 GeV. *

Putting all the NNLO ingredients together, we can determine a lower bound for the
Higgs mass by requiring that the EW vacuum is absolutely stable up to Mp;, see Fig. 3.4.

We obtain the following value:

M, —173.1 —0.1184
Mh>129.4+1.4< ¢ [GeV] = 173 >_0.5 (as(mz) 0.118

0.7 0.0007 >il-0th [GeV]. (3.31)

The dominant uncertainties in this evaluation of the minimum M}, value ensuring abso-

lute vacuum stability within the SM are summarized in Tab. 3.2.

The dominant uncertainty is experimental and comes mostly from the measurement
of M;. Although experiments at the LHC are expected to improve the determination
of My, the error on the top mass will remain as the largest source of uncertainty. The
LHC will be able to measure the Higgs mass with an accuracy of about 100-200 MeV,
which is far better than the theoretical error with which we are able to determine the

condition of absolute stability.

Estimate of the error Impact on Mj,
My experimental uncertainty in M, +1.4 GeV
Qg experimental uncertainty in ag +0.5 GeV

Experiment Total combined in quadrature +1.5 GeV

A scale variation in A +0.7 GeV
i O(Aqcp) correction to M, +0.6 GeV
im QCD threshold at 4 loops +0.3 GeV
RGE EW at 3 loops + QCD at 4 loops +0.2 GeV
Theory Total combined in quadrature +1.0 GeV

TABLE 3.2: Dominant sources of experimental and theoretical errors in the computa-
tion of the SM stability bound on the Higgs mass, Eq. (5.31).

“The value of the instability scale, defined as the field value where the effective potential becomes
negative, is not a physical quantity, as it is a gauge dependent quantity. However, whether there is or
there is not an instability scale is a physical question, that can be studied with the effective potential.
Nevertheless, the instability scale is a useful quantity to use. For instance, if computed in the Landau
gauge it is closely related a physical quantity: the mass scale value where new physics that is integrated
in can stabilise the EW vacuum.
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The total theoretical error quoted in Tab. 3.2, is 3 times lower than the uncertainty
in the NLO calculation. However, the uncertainty in the threshold corrections to A\ at
the EW scale still dominates the theoretical error. Another sizable theoretical uncer-
tainty comes from the fact that the pole top mass determined at hadron colliders suffers
from O(Agep) non-perturbative uncertainties [61]. ° As far as the RG equations are
concerned, the error of 0.2 GeV is a conservative estimate, based on the parametric size
of the missing terms. The smallness of this error, compared to the uncertainty due to
threshold corrections, can be understood by the smallness of all the couplings at high
scales: four-loop terms in the RG equations do not compete with finite three-loop cor-
rections close to the EW scale, where the strong and the top-quark Yukawa couplings

are large.

In this Chapter we have presented the most relevant numerical contributions of the
NNLO analysis of the EW vacuum stability [1]. This was completed by the full NNLO
precision calculation in Ref. [67] where the theoretical uncertainty on the Higgs mass

stability bound was further reduced to 0.3 GeV:

as(mz) —0.1184
0.0007

My, > 129.4 4 2 (M, [GeV] — 173.34) — 0.5 < ) + 0.3t [GeV] . [67]
(3.32)

Ref. [67] included the full three-loop running of the quartic coupling and the full two-

loop calculation of the threshold corrections for both the top Yukawa and the Higgs

quartic coupling.

3.5 Summary

We end this Section by showing a plot, Fig. 3.5, that presents the main result. The
plot shows that, from the point of view of the stability of the EW vacuum, the Higgs
mass is not generic. If we take two random values around the EW scale for the top
quark and Higgs mass then, most probably, we will end up with a stable vacuum, or
completely unstable, or even not having perturbativity up to Mp;. However, with the
preferred experimental values for the top quark and Higgs mass, the SM vacuum is in
a metastable situation. This is a perfectly acceptable possibility, however from Fig. 3.5,

it is clearly not the most generic point. This fact has motivated various speculations

5The pole mass is defined as the pole of the particle’s propagator. It is well defined in perturbation
theory for both observable particles, such as the electron, and for quarks [62, 63]. However, the pole
mass of the quarks can not be used with arbitrary accuracy because it is affected by non-perturbative
QCD effects. In fact, the exact quark propagator does not have a pole because the quarks are confined.
Therefore, the pole mass of the top can not be defined outside of perturbation theory. See Refs. [64, 65],
and Ref. [66] and references therein.
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FIGURE 3.5: Regions of absolute stability, meta-stability and instability of the SM
vacuum in the my—My, plane. Right: Zoom in the region of the preferred experimental
range of My and my; (the gray areas denote the allowed region at 1, 2, and 30 ). The
three boundaries lines correspond to as(myz) = 0.1184 4+ 0.0007, and the grading of
the colors indicates the size of the theoretical error. The dotted contour-lines show the
instability scale A in GeV assuming as(mz) = 0.1184. From Ref. [1].

like circumstantial evidence for high scale SUSY [68-72] or an IR fixed point of some

asymptotically safe gravity [73], among other conjectures.

The answer to the question that gives title to this sub-section should be clear. As-
suming there is no new physics up to energy scales of ~ Mp;, the SM potential presents
a vacuum at large field values that is deeper than the EW vacuum. Therefore, the EW
vacuum is unstable. However, the probability of tunnelling out of the EW vacuum is
very small, so that its lifetime is much bigger than the age of the universe. Hence, even
though the EW vacuum is unstable, the SM can be extrapolated up to Mp; without any
consistency problem. In the pure SM, and without input from cosmology, instability
arguments can not be invoked to argue in favour of beyond the SM physics below the

instability scale.

Sensitivity to Planck scale physics

So far we have assumed the validity of the SM up to the Planck scale. However, it is fair
to question the effect of unavoidable gravitational contributions on the stability of the
EW vacuum. There are two types of gravitational effects. There are those calculable
effects within the EFT of the SM and General Relativity. These include tree level

corrections to the bounce action [74]

25673

A ravity = T A N\ ) .
Seravity = qE RN T2 (3.33)

and log-divergent loops of gravitons. R is the radius of the bounce solution or, to a

good approximation, the value of ¢ that maximises |A(¢)| for A < 0, see Eq. (2.6)

42



Chapter 3 — STABILITY OF THE SM 43

and Ref. [36, 40]. The log-divergent contributions of graviton loops are negligible with
respect to the tree-level contribution of Eq. (3.33) to the bounce. In the calculations
of this chapter we have neglected Eq. (3.33). We can do an estimate of the relevance
of Eq. (3.33) in a similar way as we did at the end of Chapter 2. For instance, taking
R x Mp; ~ 10 and |A\(R™!)| 2 0.015 (corresponding to M}, ~ 125 GeV) we find that the
bounce action is dominated by the gravitational contribution with a big uncertainty on
the bounce action. The contribution of Eq. (3.33) can dominate the bounce action for
Rx Mp; <1, which it is indeed the case for values of the Higgs and top mass not far from
the central experimental values. However, the effect of gravitational contributions on
the bounce rapidly decreases for Higgs mass values below ~ 123-125. Its dominance for
R x Mp; < 11is due to the fact that the running of A is very shallow and |\(Mp;)| < 1. A

reflection of the this is the narrow strip of metastability for the SM values, see Fig. 3.5.

Secondly there are incalculable gravitational effects due to the presence of quadratic
divergences in the theory of SM+GR. These effects are the most sensitive to the un-
known Planck scale physics. A convenient way to parametrize them is through higher
dimensional operators. For instance, we can include
c |H[°

= — 3.34

AV

to the SM Higgs potential. Clearly the stability of the SM is very sensitive to Planck scale
physics in the following sense. We can always destabilise the potential by including the
operators like that of Eq. (3.34) with negative sign in the potential. It makes sense then,
to take the opposite attitude and ask, for which values of positive ¢ > 0 in Eq. (3.34)
can the instability of the SM be lifted. This was done in Ref. [75] which found that for
¢ = 0O(1) > 0 the SM boundary between absolute stability and instability in Fig. 3.5 is
mostly unaffected. However, due to the fact that Rx Mpy is not very suppressed, Ref. [75]
found that the impact of this operator on the energy density of the true minimum of

Very is huge. This has a direct impact on the lifetime of the vacuum.

Finally, note that the green region of stability in Fig. 3.5 depends on the possible
completion of the SM. For a recent emphasis on this issue see Ref. [76]. It is no surprise
that one can add new physics to destabilize the EW vacuum. It is also expected that
new physics can render the SM point in the left plot of Fig. 3.5 a generic looking point
from the stability of the EW vacuum perspective. As an analogy, consider the gauge
coupling unification in the (MS)SM. Obviously, one can add new physics to destroy the
unification of the gauge couplings. But the point is to take the unification of the gauge
couplings as a low energy hint of what physics might take place at the unification scale.

In this respect, it seems that most interesting question is: at what energy scales new
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physics can stabilize the EW vacuum? For instance, if new physics are added at the

Planck scale, that is a too high scale to stabilize the EW vacuum.

It would be interesting to study more thoroughly the gravitational corrections to the
bounce action as well as that of higher dimensional operators. As we have argued, these
can have an important effect on the lifetime of the EW vacuum for the central values
of the SM masses. However, these effects decouple very fast as we move the Higgs mass
by a couple of GeV from its critical value ~ 125 GeV that gives A(Mp;) =~ 0. In this
respect, the fact that the gravitational contributions can be important (R x Mp; is
not very supressed) give further support to the point that motivated this Chapter: the
precise SM Higgs mass value is very singular from the point of view of the stability of

the EW vacuum.
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4. Stabilisation by a scalar
threshold effect

In Chapter 3, we have seen with great detail that the Higgs mass mj, ~ 125 GeV is very
interesting from the point of view of the stability of the EW vacuum. For such values

the SM effective potential develops an instability at field values ¢ ~ 10! GeV.

This is of course not necessarily a problem, because the Standard Model is likely to
be embedded in a more fundamental theory which may change the shape of the Higgs
potential at high high field values. Moreover the lifetime of the EW vacuum is much
bigger than the age of the universe. Nevertheless, the actual fate of the EW vacuum
depends on the cosmological history. For instance a period of de Sitter inflation in the

very early universe may trigger the decay of the electroweak vacuum. '

The point is
that the expanding metric induces fluctuations, proportional to the Hubble rate, to the
Higgs field. However, a sizeable Higgs mass during that epoch, as for instance induced
by the Ricci curvature, exponentially penalises the fluctuations of the Higgs field and
hence the possible vacuum decay. Another source of potential cosmological problems
for the Higgs potential instability is the period of reheating. The energy transfer from
the inflaton to the SM can be efficient in proving the regions of field space that led to
vacuum decay. These issues highly depend on the details of cosmology, however, to avoid
potential cosmological constraints it may be preferable to cure any Higgs instability at

large field values.

There are, of course, many ways to modify the Higgs potential and raise the instability
scale. In this Section, we review a simple and economical mechanism introduced in
Ref. [2]. This mechanism requires the existence of a new heavy scalar singlet that
acquires a large vacuum expectation value (vev) and has a quartic interaction with
the ordinary Higgs doublet. The crucial point is that the matching condition of the

Higgs quartic coupling, at the scale where the singlet is integrated out, corresponds to a

'See Ref. [77] for a detailed study of the interplay between the cosmological history and the Higgs
vacuum instability.
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positive shift, as we evolve from low to high energies. Although the stability condition
is also modified by the presence of the singlet, a careful analysis shows that, under
some conditions that we will specify later, the threshold correction helps to stabilise
the potential. The effect occurs at tree-level and thus can be sizable and, is in general,
dominant over loop contributions. Moreover, the effect does not decouple, in the sense
that the size of the shift does not depend on the singlet mass, which could take any value
lower than the instability scale (but larger than the EW scale). After reviewing the idea
of the instability cure by a tree-level threshold effect, we present various examples of

beyond the SM physics where the mechanism can be operative.

4.1 Stabilising the Higgs potential with a scalar singlet

To explore the impact of an additional singlet scalar on the stability of the Higgs po-

tential, we consider a tree-level scalar potential of the form

Vo= An (HTH . v2/2>2 T g (STS - w2/2>2 4 2\ps (HTH - v2/2) (STS . w2/2) .

(4.1)
Here H is the Higgs doublet, S is a complex scalar field, and V{ is the most general
renormalizable potential that respects a global Abelian symmetry under which only S is
charged. Although we will consider here a single complex scalar, most of our conclusions
remain valid also in the case of multi-Higgs doublets or real singlet fields (with a Z parity

replacing the Abelian symmetry).

For Ay, Ag > 0 and )\%{S < AgAg, the minimum of Vj is at
<HTH> = v2/2 , (STS> = w2/2 . (4.2)

A nonzero vev of S, which is crucial for the mechanism to work, spontaneously breaks the
global symmetry (or the Zs parity, for a real singlet) giving rise to a potentially dangerous
Goldstone boson. Gauging the symmetry of S or explicitly breaking it by (possibly small)
terms in V{y can be used to evade these problems, but does not conceptually modify our
results. For simplicity, we restrict our considerations to the potential in Eq. (4.1), but

generalizations are straightforward.

The presence of the new scalar field S modifies the analysis of the stability conditions
of the Higgs potential. One effect is the contribution of the singlet to the renormalization
group evolution of the Higgs quartic coupling (for recent analyses, see Ref. [78-82] and

references therein). The relevant renormalization RG equations above the scale Mg =
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V2Agw are, at one-loop

d\g 2 3 2

(4ﬂ)2dlnu - (12%2 _ 347~ 992) Am — 6y + 5 [2g4 (g% + g2)2} F 2402 + 4N
dX 1

(47)? dlfi — Aps [2 (12y§ 347 - 992) + 43y +2)g) + 8>\Hg} ,
dX

(47)2 dlnsu = 8A%4+20)\%, (4.3)

If the singlet mass Mg is below the SM instability scale 2 A; and (Ays/47)? In(A;/Ms)
is large enough, the positive contribution to the RG equation for Ay can prevent it from

becoming negative.

4.2 The threshold effect

Besides the loop contribution in the RG equations discussed above, there is a threshold
tree-level effect through which the new singlet can affect the stability bound. Let us
consider the limit in which Mg is much larger than the Higgs mass (w? > v?). At
the scale Mg we can integrate out the field S using its equation of motion (neglecting

derivatives):
2 2
tg_ W _ AHS HH_-Y 4.4
S'S 5 s ( 5 ) (4.4)

Replacing Eq. (4.4) in Vj, we obtain the effective potential below the scale Mg:
2\ 2 )\2
v;ﬁ:A<HTH> . A=Ay - S (4.5)

This shows that the matching condition at the scale y = Mg of the Higgs quartic
coupling gives a tree-level shift, I\ = )‘12515 /As, as we go from Ay just above Mg to A

just below Mg.

To better understand the origin of the shift in the matching condition, let us consider
the mass matrix of the fields h and s, corresponding to the real parts of the doublet H
(in unitary gauge) and the singlet S, such that HTH = h?/2 and S'S = s?/2. At the

minimum, the mass matrix is

M2 — 9 Agv? Aggvw (4.6)
Agsvw  Agw? . '

2Stabilizing the potential with degrees of freedom heavier than A; requires sizable couplings, see
Refs. [83, 84].
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In the limit Agw? > Agv?, the heaviest eigenstate, which is nearly singlet, can be

integrated out, leaving behind a “see-saw”-like correction to the lightest eigenvalue

2 v?
m2 = 202 [AH—;ZS'JFO(W)] : (4.7)
while M2 = 2Asw? + 2(7\%,4/As)v? + O(vt/w?). The light state is almost purely h, as
the singlet admixture is suppressed by a small mixing angle of order v/w. However,
the Higgs mass correction due to the heavy state persists even in the decoupling limit
(w — 00). The negative sign in the shift of the Higgs mass in Eq. (4.7) can be readily
understood as coming from the repulsion of mass eigenvalues after turning on the mixing

equal to 2Aggvw.

Naively, as the tree-level shift §\ corresponds to a larger Higgs quartic coupling above
Mg, the chances of keeping it positive seem improved. However, the tree-level condi-
tions for stability change from A > 0 in the effective theory below Mg to Ay > dA in
the full theory above Mg. Thus, it appears that the threshold correction dA does not
help stability at all. To understand what happens, one has to reexamine the stability

conditions more carefully.

First of all, recall that the tree-level potential V) in Eq. (4.1) is a good approximation
to the full potential if we evaluate couplings and masses (collectively denoted by \;
below) at a renormalization scale of the order of the field values of interest. Once
we express the scalar potential as Vo[Ai(i = ¢), ], potentially large logarithms of the
form Inm;(y)/p (where m;(p) ~ ¢ is a typical field-dependent mass) are kept small
as compared to the tree-level potential. Roughly speaking, this means that Vy with a
fixed p. will be reliable as long as one examines ¢ ~ pu. and restricts field excursions
60 lip — pel < pree® NN

A1 a coupling affecting the radiative corrections, e.g. the top Yukawa coupling squared.

where Ay denotes a coupling in the tree-level potential and

The inequality comes from demanding that the one-loop correction is smaller than the
tree-level potential. By adjusting p ~ ¢ one can evaluate reliably the potential at all
field values, but the previous estimate tells us when we can use Vy[A; (), ], which has

a simpler field dependence.

With the parametrization chosen in Eq. (4.1), the EW vacuum corresponds to Vj = 0.
Thus the stability condition is Vy > 0 anywhere in field space, away from the EW

vacuum. The first and most obvious stability requirement that we should impose is

A(p) >0, As(p) >0, (4.8)

at any renormalization scale u, or else the potential develops unwanted minima lower

than the EW vacuum or is unbounded from below at large field values. Next, in order
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FIGURE 4.1: Running of the Higgs quartic coupling in the SM and in the model with

a scalar singlet, here assumed to have the mass Mg = 108 GeV. Left: if Ags > 0,

thanks to the tree level shift at the singlet mass, the coupling never enters into the

instability region, even assuming that singlet contributions to the RG equations are

negligible. Right: if Ags < 0 the instability can be shifted away or avoided only by
singlet contributions to the RG equations.

to discuss the conditions on the coupling constant Agg, it is convenient to separate the
cases in which Apg is either positive or negative. This separation is meaningful because
Ams renormalizes multiplicatively (as it is the only coupling that connects H and S),

see Eq. (4.3), and therefore the RG flow cannot flip its sign.

4.2.1 Case \gs >0

In this case, Vg can become negative only when |S| < w/v/2 (neglecting corrections
proportional to v). In this situation, the most dangerous field configuration is well

approximated by setting S = 0 in Eq. (4.1), such that

A\HS WE:
Vo(H,0) ~ Apr|H|* — mMam? + ﬁ : (4.9)

The extra stability condition, Vp > 0 at the minimum of Eq. (4.9), is then

Nirs () < Aa(p)As(p) - (4.10)

Note that this can be rewritten as Ag > 0\ = )\%{S /As and ensures that the light scalar

state does not become tachyonic, see Eq. (4.7). If this condition were violated at some
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scale ., it would lead to an instability for field configurations with

M WED) AgA
S| < ==, u- <|H|<py, ui—“’s<1i 1 “) L (a1)

2/’ BYSY N

Mok

which could be trusted provided p_ < ps < p4. Note that, if p. > p4, this would
not mean that there is an instability to worry about, as it would be located outside
the range of validity of the tree-level approximation Vj(\;(u«), ). Thus, as long as
condition of Eq. (4.10) is satisfied for renormalization scales within a relatively narrow
range of energies around Mg (which fixes the mass scale of p4 ), there is no instability
even if this condition were eventually violated at higher scales. Only if parameters
happen to lie near a critical point in which at least one of conditions (4.8) or (4.10) is
barely satisfied, radiative corrections can become important and invalidate the stability
analysis performed with the tree-level potential. In this case one should resort to the

one-loop approximation of the potential; otherwise, our analysis is reliable.

We can now better appreciate how the threshold contribution in Eq. (4.5) can cure
the instability of the SM Higgs potential (provided that Mg < Aj). The correction J\
has the correct sign to shift the Higgs quartic coupling upwards (Ag = A+0X), although
the stability condition is also shifted upwards by the same amount, becoming A > .
However, for positive Agg, the condition Ay > dA has to be satisfied only at scales
of order Mg, while for larger scales it rapidly reduces to the conventional constraint
Ag > 0. Moreover, one-loop RG effects (although typically less important than the
tree-level matching condition) also help to maintain stability. First, Ag and Agg will
stay positive once they are positive at Mg. Second, S, = dA\g/dInp receives extra
positive contributions proportional to )‘%{s and to /\%I (coupling which is numerically
larger after the threshold shift). These two RG effects can reduce (or even overcome)

the destabilising effect from top loops.

To illustrate the situation, we show in Fig. 4.1, left panel, how the Higgs quartic
coupling runs with the renormalization scale. We consider Mg = 108 GeV <« A?M =
2 x 10° GeV. ? For simplicity we take the couplings of the singlet to be smaller than the
SM top and gauge couplings, in order to better isolate the tree-level threshold effect. The
same panel also shows the full stability condition, computed numerically by demanding
that V(H,0) > 0: we see that at renormalization scales just above Mg the stability
condition of Eq. (4.10) matters, but at larger field values it rapidly becomes irrelevant

and only Ay > 0 remains.

3Strictly speaking, this is the scale at which A = 0, and corresponds to the instability scale of the
tree-level RG-improved potential. The A; that we calculate later on is higher and corresponds to the
instability of the one-loop RG-improved potential. For simplicity, in Fig. 4.2 we simply plot A(u).
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To study the efficiency of the stabilisation mechanism, we performed a numerical study
using the full one-loop effective potential with SM couplings running at two-loops. We
limited the evolution of the unknown singlet couplings to the one-loop level, given that
the effect we are considering is at tree level. In order to track accurately the large
field behaviour of the one-loop potential one can simply include in the running quartic
couplings the finite one-loop contributions not captured by RG evolution and impose the
stability conditions on these corrected couplings (the shift in the instability scale can be
up to one order of magnitude; see Refs. [3, 42] for further details). The scale at which
these one-loop improved running couplings violate the stability condition corresponds
then to the field scale at which the potential falls below the EW vacuum. The results
are illustrated in Fig. 4.2 which shows the new instability scale A; as a function of the
threshold shift 6\ for several singlet scalar masses, Mg = 10%,10°,108,10'° GeV below
the SM instability scale, A?M ~ 4 x 1019 GeV (for my, = 125 GeV, m; = 173.2 GeV and
as(myz) = 0.1183). For each value of Mg, there is a band of values for A; due to the
freedom in choosing Ag, once Ay and 0\ = A%, ¢4/Ag are fixed. The lower boundary of
each band corresponds to Ag < 1. This case nearly isolates the impact of the tree-level
shift on the instability scale (as the running of Ay above the singlet threshold is SM-
like). The upper boundary of each band corresponds to the largest value of Ag that we
allow by requiring Ag(u) < 47 up to the Planck scale. Large values of Ag correspond to
large Agg (for a fixed ), making the RG effect on Ay stronger. We conclude that the

tree-level shift in A can have an extremely significant impact in raising the instability

m, = 125 GeV
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Tree—level Higgs quartic coupling threshold correction 6A(Ms)

FIGURE 4.2: For mj, = 125 GeV and Aggs > 0, bands of the modified instability scale

A versus the threshold correction O\ to the Higgs quartic coupling due to a scalar singlet

with mass Mg = 10%,10,108,10'° GeV (from left to right). For a fived Mg value the

lowest boundary of the band corresponds to small Ag, Ags and the highest boundary to
/\S (Mpl) = 4.
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scale even for very moderate values of the couplings Ag and Agg, and it can easily make

the EW vacuum absolutely stable.

4.2.2 Case \gs <0

In this case Vy can become negative only for |S| > w/v/2. In this condition, we can
neglect the mass parameters v and w in Eq. (4.1) and approximate the potential by

keeping only the quartic terms
Vo ~ Ag|H[* 4+ As|S|* + 2 s |H|?|S|* . (4.12)
The stability condition (Vp > 0) is now

— Ams(p) < VAr(p)As(p) - (4.13)

If this condition is violated at some scale p, an instability would develop with

Mg |H | 9 —AHS AHAS
< = 14 /1 - 2828
]S|>2m, c- < ‘S’<c+ i pyn

(4.14)

As this determines a direction in field space along which the fields H and S slide
towards an unbounded instability, condition of Eq. (4.13) has to be satisfied at all
renormalization scales larger than Mg. Thus the stability condition for negative Agg is

much more constraining than in the case of positive Agrg.

In the case Agg < 0, as the stability condition Ay > dA must be satisfied at all
scales, the tree-level threshold effect is not sufficient to improve the stability. Then one
should resort to RG effects to improve the potential stability, as illustrated in Fig. 4.1,
right panel. By using the RG equations of Eq. (4.3), we can derive the evolution of the

effective Higgs quartic coupling combination A = Ay — )\%{S /As above Mg as

d\
dln p

8

_ ASM
= B3 e

[(Ams — 6A)* +3A 6A] (4.15)

where B§M is the SM beta function for the Higgs quartic coupling and A = )\%{S/AS > 0.
We see that the additional term in the beta function of A is always positive so that RG

effects tend to increase the instability scale also in the case Agg < 0.

The numerical analysis of the A\gyg < 0 case confirms this expectation. As an illustra-
tion, Fig. 4.3 shows the instability scale versus the shift §\ for the same choice of SM
parameters as in Fig. 4.2 and for the particular case Mg = 10% GeV with three different
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FIGURE 4.3: For myp = 125 GeV and Aggs < 0, the modified instability scale Aj versus
the threshold correction 6\ to the Higgs quartic coupling due to a scalar singlet with
mass Mg = 108 GeV and A\g(Mg) = 0.01,0.1,0.2, as indicated.

values of A\g as indicated. The end-point of the curves marks the location beyond which
(i.e. for larger 0)\) the potential becomes completely stable. These end-points occur
because A first decreases as a function of the renormalization scale but, after reaching
a minimum, starts increasing at large scales. In comparison with the case Agg > 0
(Fig. 4.2) we see that larger values of the shift J\ are now required to have a significant

impact on the instability scale.

The stabilisation mechanism for Agg < 0 we have just described is fragile with respect
to possible new contributions to the RGEs that can appear if the singlet couples to other
sectors of the theory. In contrast, the stabilisation mechanism for Agg > 0 is more
robust, being based on a tree-level shift. The mechanism is also very effective (because
the tree level correction can be easily large) and economical (because it requires only a
heavy scalar singlet). The proposed mechanism can be realised in several situations of
physical interest [2]. We now discuss two examples were the singlet is required to solve
another problem; it gives mass to the right handed See-saw neutrinos but at the same
time stabilises the vacuum by the threshold effect. In Re. [2] one more example is given

where the singlet is used to unitarize Higgs inflation.
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54 Part I - ELECTROWEAK VACUUM STABILITY

4.3 See-saw

The see-saw is the simplest mechanism to understand the smallness of neutrino masses.
It assumes the existence of heavy right-handed neutrino states N (family index sup-
pressed) with

Ly =iNy"9,N +y,LNH + @NQ + h.c. . (4.16)

After EW symmetry breaking, nonzero neutrino masses are generated

2,2
_ Yy

y , 4.17
m, = 4 (3.17)

which are naturally small provided My > v.

The impact of the see-saw mechanism on the stability of the Higgs potential has been
discussed in the past [3, 85, 86]. The right-handed neutrino Yukawa couplings can play a
x role on 3y similar to that of the top Yukawa coupling. As they scale like y2 ~ m, My,
they become sizable for large My and are dangerous for stability only if My ~ 10'3

GeV. For lower My the new Yukawas will have a negligible effect on stability.

We do not know what originates the large right-handed Majorana mass, but the
simplest idea is to assume that the right-handed neutrinos are coupled to scalar fields

carrying two units of lepton number and having a large vev,
K 2
5 SN*+h.c. (4.18)

The vev of S, which sets the scale of the Majorana mass, My = x(S), does not nec-
essarily lead to a Goldstone boson because in unified models B — L is usually a gauge
symmetry. In this well-motivated realization of the see-saw the scalar field S' could nat-
urally reestablish stability of the electroweak vacuum. In this setting the role of the
singlet scalar is therefore double. Upon taking a large vev and decoupling, it leaves be-
hind two effects: a Weinberg dimension-5 operator that gives neutrinos a nonzero mass,
and a threshold effect on the Higgs Yukawa coupling that solves the stability problem

of the Higgs potential, as long as the mass of S is smaller than Aj.

A lower bound on the lightest right-handed neutrino mass M is derived by assuming
that the cosmic baryon asymmetry is explained by thermal leptogenesis.* In this case,

one obtains the bounds [87, 88]:

o M; > 2 x 10° GeV, if the initial right-handed neutrino density vanishes at high

temperature.

4If neutrinos are nearly degenerate in mass, thermal leptogenesis could operate at much smaller
values of M7 and the following lower bounds do not apply.
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FI1GURE 4.4: The SM instability scale Ay increasing as a function of the Higgs mass.
The central line corresponds to my = 173.2 GeV and as(myz) = 0.1184 and the side-
bands to 1 sigma deviations as indicated (with the larger deviation for the top mass
uncertainty). The horizontal lines mark several values of interest for Ay. The three
lines are relevant for the see-saw and correspond to lower limits on the mass My of the
lightest right-handed neutrino N1 coming from thermal leptogenesis. The bound depends
on the initial density pn,: My > 2 x 107 GeV for py, ~ 0; My > 5 x 10% GeV for
thermal py, and My > 2 x 10° GeV for py, dominating the universe.

e M; > 5 x 10% GeV, if the initial right-handed neutrino density is thermal at high

temperature.

o M; > 2 x 107 GeV, if the initial right-handed neutrino density dominates the

universe at high temperature.

Assuming that the mass of S is equal or smaller than its vev, we can infer the range of
Higgs masses for which the scalar setting the see-saw scale could cure any instability of
the potential. From Fig. 4.4, which gives the SM instability scale as a function of my,
as calculated in Chapter 3, we can easily read off such Higgs masses.” At 90% CL in
my and ag, we find that the see-saw singlet can potentially eliminate the instability of
the EW vacuum, as long as mj, > 120 GeV (leptogenesis with vanishing initial right-
handed neutrino density), m;, > 119 GeV (leptogenesis with thermal initial right-handed
neutrino density), or my, > 115 GeV (leptogenesis with dominant initial right-handed
neutrino density). These limits are compatible with the Higgs mass of 125 GeV measured
by ATLAS and CMS. The instability scale is raised according to the mechanism discussed
in the previous Section as long as My < 10'3 GeV, since the RG effects of 3, couplings

can be neglected.

5Besides the 1-sigma error bands shown, associated with the experimental uncertainties in m; and
as, a (conservative) estimate of the higher order radiative corrections not included in the calculation
results in a theoretical uncertainty on my of £1 GeV, see Tab. 3.2.
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56 Part I - ELECTROWEAK VACUUM STABILITY

We conclude that this simple scenario could comfortably account for the cosmolog-
ical baryon asymmetry through leptogenesis, for the smallness of neutrino masses and
cure the Higgs potential instability. The only drawback of this (beautifully simple but
depressing) scenario is that it makes plainly explicit the hierarchy problem: a large sin-
glet vev also gives a tree-level contribution to the Higgs mass term in the Lagrangian
which requires a large fine-tuning. (This is in contrast with the scenario without the
singlet, in which Higgs mass corrections appear at one-loop and are dangerous only when
My > 107 GeV [89, 90]).

4.4 Invisible axion

The scalar field S can also be identified with the invisible axion.

DFSZ axion models [91, 92] use the SM fermion content and a two-Higgs doublet
structure H, and H; augmented by a complex scalar S, neutral under SM gauge inter-
actions, with a coupling A\ygS?H,Hy + h.c., analogous to the one in Eq. (4.1). This
interaction is crucial for the axion mechanism, because it transmits the breaking of the
global symmetry triggered by the vev of S to the Higgs sector. One or both of the
Higgs doublets can remain light, at the electroweak scale. The presence of an instability
is subject to the details of the two-Higgs potential [93], but this does not change the
essential point. Independently of the model implementation, the field .S containing the
invisible axion a = v/2Im S with large decay constant f, ~ (S) is a perfect candidate to

play the role of the field .S in our Higgs stabilisation mechanism.

KSVZ axion models [94, 95] use a single Higgs doublet and a complex scalar S coupled
to new heavy vector-like fermions W. The Dirac mass term M UV is forbidden by

imposing the symmetry
Uy, — -0, Urp — Ug, S — —8S. (4.19)
Then the mass of the heavy fermions comes only from the vev of S:
Ay SOV + V(H,S). (4.20)
The resulting model has a spontaneously broken U(1) global symmetry
T — Py, § e 2eg (4.21)

which gives rise to a light axion a = v/2Im S with large decay constant f, =~ (S). The
scalar potential of the theory is precisely of the form in Eq. (4.1), although the coupling
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Axs plays no role in axion phenomenology because both |S|? and |H|? are separately

invariant under the global symmetry.

The decay constant of the axion is allowed to lie in the range
109 GeV < f, < 102 GeV . (4.22)

The lower bound comes from non-observation of axion emission from stars and super-

nova. The upper bound comes from requiring that the axion dark matter density

fa 7/6 a, 2

does not exceed the observed value Qpy =~ 0.23 under the assumption that the axion
vev a, in the early universe was of the order of f, [96-98]. The resulting range of singlet
mass Mg, which we can roughly take to be the same as the range for f, in Eq. (4.22),
overlaps with the range that can stabilise the SM Higgs potential from my = 119 GeV
(for Ms =~ 10 GeV) to my, = 124 GeV (for Mg ~ 102 GeV), as can be inferred from
Fig. 4.4.

4.5 Summary

We have presented a stabilisation mechanism of the electroweak vacuum that relies on
a threshold correction to the Higgs quartic coupling, whose size is independent of the
singlet mass. The necessary ingredients are a singlet self-quartic coupling (Ag), a mixed
quartic coupling with the Higgs (Agg) and a non-zero vev for the singlet. The mechanism
can be operative even for a very heavy singlet, as long as its mass is smaller than the
instability scale. Occurring at tree level, the effect is sizeable and robust. The analysis
of the effect involves some subtleties because, at the singlet threshold, both the Higgs
quartic coupling and the stability conditions are shifted by the same amount. We have
shown that, when Apgg is positive, the stability conditions become weaker as the field
value is increased above the singlet mass. In this situation, the tree-level contribution
is very effective in stabilising the potential. On the other hand, for negative Apg, the
shifts in the Higgs quartic coupling and in the stability condition essentially cancel out,
and one has to rely on RG effects. These can help the stabilisation, but larger singlet
couplings are needed to obtain the desired effect. The minimal modification of the SM
that we have considered, with the addition of one singlet scalar, has motivations that
are independent of the stability of the EW vacuum. The new singlet can set the scale of
the right-handed neutrino mass in the sea-saw mechanism; or it could play the role of

the invisible axion. In both cases, we were able to define the range of Higgs masses for
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which the corresponding singlet could also be used to stabilise the SM Higgs potential.
We find that the stabilisation mechanism can be operative in both models for the Higgs

mass value measured by ATLAS and CMS.
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5. Introduction

Quantum Effective Field Theories (EFTs) play a central role in the understanding of
physical systems in theoretical physics. Its most prominent applications range from
physics of the very early universe to particle physics and condensed matter. The com-
bination of the EFT approach together with the Renormalization Group (RG) permits

to focus on the relevant energy scales of the aforementioned physical systems.

Regarding particle physics we are at a very special situation that we have not faced
before. The discovery of the Higgs boson at the LHC [9, 10] completes a theoretical
puzzle, namely the electroweak interactions. Now we have a theory, the Standard Model
(SM), that makes sense up to exponentially higher energies, see Part I. Apart form the
fact that in any proposed generalisation of the SM the Higgs mass tends to be of the same
order as the physical energy scale of the SM completion, all the other SM conundrums
like charge quantisation, unification, flavour or the strong CP problem can be solved at

exponentially higher energies or with very weakly coupled physics, see Sec. 1.2.

The null results of the Large Hadron Collider (LHC) in Beyond the SM (BSM) searches
together with the fact that the Higgs properties show good agreement with the SM ex-
pectations (see Chapter 1) suggest that there is a certain energy gap between the Higgs
mass an the new physics scale. In this situation, EFTs provide a practical way to or-
ganise the impact of possible new physics. In this respect one can take two extreme
point of views in the use of the EFT. On one extreme one can simply take into account
all the higher dimensional operators with order O(1) Wilson coefficients, treat them on
equal footing and inspect its consequences. This might not be very informative due to
the plethora of higher dimensional operators, even at the dimension-six level. On the
other extreme, one can take a singular model and integrate it out, and again inspect its
phenomenological consequences. Between these two extremes, there are simple assump-
tions that can be taken about the BSM theory that allows to weight the importance of

the different higher dimension operators and in this way one can study and learn about
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the consequences of different classes of models altogether. ! As we have stressed in the
Preface and in Chapter 1, it is very important that, in the upcoming years, we make
sure that we understand and measure as much as we can the properties of the Higgs
boson. The EFT analysis sheds light to this enterprise as it allows to systematically
study possible deviations from the SM expectations by organising the energy scales and

possible symmetries or dynamics of the ultraviolet physics.

In Part II of the thesis we embark on the SM EFT study of possible new physics.
In Chapter 6 we perform a complete study of the impact of the (dominant) dimension-
six operators in the most important Higgs couplings. In particular, we calculate the
corrections to single Higgs couplings, relevant for the main Higgs decays and production
mechanisms. We will show that, for one family, there are 8 CP-even operators that can
only affect Higgs physics and no other SM processes (at tree-level). This corresponds
to the number of independent dimension-six operators that can be constructed with
|H|?, and implies that Higgs couplings to fermions, photons, gluons, and Z~ (for which
large corrections are still possible) are characterised by independent Wilson coefficients.
The rest of operators that could in principle affect Higgs physics at tree-level also enter
in other SM processes and therefore can be constrained by independent (non-Higgs)

experiments; we will present the main experimental constraints on these operators.

In the following Chapters 7-9 we go one step further and study several relevant effects
that arise due to the operator mixing of the dimenison-six operators through quantum
effects. This is very interesting for a number of reasons. In particular we are specially

interested in looking for instances of

- possible big deviation from the SM are expected if the RG running of the Wilson

coefficients is there (e.g. big contributions to b — sv),

- explicit breaking of assumed symmetries of the BSM degrees of freedom due to the

SM running of the dimension-six operators (e.g. contributions to the T-parameter),

- poorly measured or unknown Wilson’s coefficients that radiatively generate opera-
tors that are precisely measured (e.g. h — vZ v.s. neutron electric dipole moment

or electroweak precision test observables),

- SM processes that are suppressed (they are loop-level interactions or involve small

SM couplings) and receive big contributions from higher dimensional operators

In order to illustrate this point let us mention some examples of assumptions or parametrizations
than can be imposed: accidental or global symmetries (e.g. custodial, flavour, R-parity); generic as-
sumptions about the dynamics (operators generator at loop-level v.s. operators generated at tree level);
or more refined assumptions about the dynamics and power counting such as in the SILH parametriza-
tion [99]; one can also asume generic SM<+»BSM couplings as (e.g. portals or universally coupled new
physics), etc. We will encounter several examples in the next Chapters.
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(e.g. possible contributions of tree-level generated operators to loop-level processes

like dipoles and certain triple gauge vertices).

In fact, by inspecting RG mixing effects we are further exploiting a key feature of the
higher dimensional operators: they connect different kinds of physics that are otherwise

not directly connected in the A — oo limit.

We start the study of the RG mixing effects in Chapter 7, where we look for possible
connections between the h — ~ + v/Z decay and the S-parameter. In addition, in
Chapter 7 we compute the contributions of the SM dipoles to the decay h — v+ ~v/Z
and present a digression on the choice of the operator basis. We remark that certain
bases facilitate particular physical interpretations, a common fact in physics whenever

coordinates are taken.

Then, in Chapter 8 we continue the exploration of the most relevant quantum effects
to the relevant Higgs couplings. We apply these results to find the leading-log cor-
rections to the predictions for Higgs-couplings in various BSM scenarios: the Minimal
Supersymmetric Standard Model (MSSM), universal theories (such as composite-Higgs
models) and models with a non-standard top. We find that the deviations can be as big
as 10-20%.

Lastly, in Chapter 9 we focus on universal theories and study the RG mixing and
interplay of various Higgs and Electroweak observables. The main result of that Chapter
is the anomalous dimension matrix of the 10 bosonic operators (i.e. operators made out
of boson fields) related to EW and Higgs observables. Then, we use the RG equations to
set bounds on the value of some Wilson coefficients that are otherwise less constrained
by direct measurements. We also comment on future prospects, present the anomalous
dimension matrix for a set of operators with gluon fields and discuss the available bounds

on them.
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6. SM Effective Field Theory

6.1 Dimension-six operator basis

Let us consider a BSM sector characterised by a new mass-scale A much larger than
the electroweak scale My . ' We will assume, among other requirements to be specified
later, that this sector preserves lepton and baryon number. By integrating out this
sector and performing an expansion of SM fields and their derivatives D,, over A, we

obtain an effective Lagrangian made of local operators:

Lo = jg\gc <lz" , gHAH , gfﬁfjﬂ , gig") ~Ly+ Lo+ (6.1)
where L, denotes the term in the expansion made of operators of dimension d. By g.
we denote a generic coupling, while gy and gy, ., are respectively accounting for the
couplings of the Higgs-doublet H and SM fermions f7, g to the BSM sector, and g and
F,,, represent respectively the SM gauge couplings and field-strengths.? The Lagrangian
in Eq. (6.1) is based on dimensional analysis and the dependence on the couplings is
easily obtained when the Planck constant # is put back in place. All couplings introduced
in Eq. (6.1) can be useful as bookkeeping parameters. In particular, a term in the
Lagrangian that contains n fields, will carry some coupling to the power n — 2 (in this

counting, A, the Higgs quartic-coupling, is formally of order ¢2).

The dominant effects of the BSM sector are encoded in Lg. There are different bases
used in the literature for the set of independent d = 6 operators in Lg. Although physics
is independent of the choice of basis, it is clear that some bases are better suited than
others in order to extract the relevant information e.g. for Higgs physics. A convenient
feature to ask of a good basis is that it captures in few operators the impact of different

new-physics scenarios, at least for the most interesting cases. For example, in universal

n fact A ~ 300 GeV is sufficient in certain cases because it correspond to an expansion parameter
of M3, /A? =~ 0.1.

2With this we are assuming that the SM gauge symmetry is also realized at energies above A and
therefore the couplings of the gauge bosons to the BSM sector are the SM gauge couplings. We can
relax this assumption by replacing g by an arbitrary coupling.
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theories, defined as those BSM scenarios whose corrections can be encoded in operators
made only of SM bosons, the bases used in Refs. [99, 100] are appropriate since the
physics effects can be captured by just 14 CP-even d = 6 operators. Therefore, 14 is
the number of independent parameters of the new physics effects and this number must
be the same in all bases. However, the list of operators required to describe this same
physics can contain many more than 14 operators in other bases, as for example in
that of Ref. [101]. It follows that if we use such alternative bases to study universal
theories there will be correlations among operator coefficients, making the analysis more

cumbersome.

Another important consideration for the choice of basis is to separate operators whose
coefficients are expected to have different sizes (again, at least in the main theories of
interest). For example, it is convenient to keep separated the operators that can be
induced at tree-level from integrating weakly-coupled states from those that can only be
generated at the one-loop level. This helps in determining the most relevant operators
when dealing with a large class of BSM scenarios such as supersymmetric, composite
Higgs or little Higgs models among others. As shown in Chapter 7, this criterium is
also useful when considering one-loop operator mixing, since one finds that tree-level
induced operators often do not contribute to the RGE flow of one-loop induced ones,
independently, of course, of the UV origin of the operators. In this particular sense, the
basis of Ref. [5] is better suited than that of Ref. [100]. It is obvious that to meet all
the criteria given above we do not need to sacrifice generality, as long as one keeps a

complete basis of operators, as we do.

The operators of our basis will be broadly classified in three classes [5, 99]. The first
two classes will consist of operators that could in principle be generated at tree-level
when integrating out heavy states with spin < 1 in renormalizable weakly-interacting
theories. As we show in Appendix A, these operators can be written as products of
scalar, fermion or vector currents of dimension less than 3. * Among these current-
current operators we call operators of the first class those that involve extra powers of
Higgs fields or SM fermions. They will be proportional to some power of the couplings
gu or gg, , respectively. The importance of the operators of the first class is that
they can be the most sizeable ones when the theory is close to the strong-coupling
limit, gm,gf,  ~ 4m. Operators of the second class are instead those that involve
extra (covariant) derivatives or gauge-field strengths and, according to Eq. (6.1), are
generically suppressed by 1/A? times a certain power of gauge couplings. Finally, in the

third class, we will have operators that cannot be generated from a tree-level exchange of

3This, together with the fact that field-redefinitions through equations of motion do not mix the two
types of operators, makes the classification well defined and unambiguous.
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heavy fields and can only be induced, in renormalizable weakly-coupled theories, at the

one-loop level. In this case, we expect these operators to be suppressed by ¢2/(1672A?).

We then classify the d = 6 operators as
Le=Y g2 %0, % o, 6.2
6_ZQ*A2 11+ZA2 12+ZA2 13 9 ()
i iz i

where, for notational convenience, we introduce the one-loop suppressed coefficients

92

qu ) (6'3)

Rig =

for the third class of operators. In weakly-coupled theories, ¢; ~ fi(g/gx, 9t/ gs; ---)s
where fi(g/gx, 9m/gsx, ...) are functions that depend on ratios of couplings. We refer to
the operators O;, and O;, as ”current-current” or "tree-level” operators, while we call

O;, "one-loop” operators.*

Let us start defining our basis by considering first operators made of SM bosons only

[99]. In the first class of operators, O;,, we have
1 1 g
O = S@|HPY . Or= (HID,H)? . O, = |HPIDHP | Op=NHP. (6.4)

Here we have defined HTBMH = H'D,H—(D,H)'H, with D, H = 8, H—igo*W;H/2—
ig’B,H/2 (H is taken to have hypercharge Yy = 1/2). For Og, which involves six Higgs
fields, an extra factor g2 could be present. Nevertheless, we have substituted this by
A, the Higgs self-coupling defined as V = —m?|H|? + A|H|*. This is motivated by the
fact that the lightness of the Higgs suggests that there is a symmetry protecting the
Higgs self-coupling to be of order A ~ m?/(20?) ~ 0.13. Examples are supersymmetry

or global symmetries as in composite Higgs models.

In the second class of operators, O;,, we have
ig < ig' A
Ow = E(HTO—“D“H)D”W,?V , Op= 7(HTD“H)8”BW,

1 1 1
Oow = —5(D"Wi)? . Osp=—5(0"Bw)* . O =—5(D'G},)*. (6.5)

pv

Since the last three operators involve two field strengths, we expect cay ~ g2/g2, cop ~

g'?/g%, and coc ~ g%/ 2.

“For a classification of operators similar in spirit to ours, see Ref. [102].

67



68 Part II — EFT OF THE PHYSICS AT THE EW SCALE

In the third class of operators, O;,, we have the CP-even operators

Opp = g*|H*BwB" |, Ocq = g2|HI*G,, G (6.6)

Onw = ig(D*H)\c*(DH)W, . Opyp =ig (D'H)(D"H)By,, (6.7)
]‘ av (& 1 14

Osw = grgearc Wi "Wy, W Osa = 5395 fapcGl GG, (68)

and the CP-odd operators

Oup =92 HPBuWB" | Ouz= g2 |HPGA,GM (6.9)
Oy = ig(D"H)lo" (D )Wy, . Oy =ig (D" H)!(D"H) By, (6.10)

1 —~ 1 -
Ouip = 579€are Wit " Wi, W Os = s fapc Gl GL,GEr" - (6.11)

where FH/ = ehv P?Fos/2. There are two more CP-even operators involving two Higgs

fields and gauge bosons, Owp = g’gHTa“HijZ,BW and Oy = gQ|H|2W§l,W“”a (and

SM CP-even operators made of bosons

O = 5(0"[H]?)?
o 2
Or =3 (HTD,LH)

Og = A\ H|S
. <>
Ow =4 HTaaDMH> D"WE,

. <~
Op =% | H'D'*H ) 0"B,,

Oop = —5(0"Bu)?
Ooc = —%(D”Gﬁu)Q
Opp = ¢”|H|* By, B"
Oca = g2|H|*Ga, G4
Onw =ig(D*H)lo"(D"H)WS,
Oup = ig' (D"H)!(D"H)By,

i b
Osw = S geae WAV WL Ween
1
Osc = 319sfapcGa? GE,GOrr

TABLE 6.1: The operators are grouped in 8 different groups (separated with a solid

line) corresponding to the 3 classes of operators defined in Eq. (6.2). Dashed lines

separate operators of different structure within a given class. There are, in addition,
the 6 CP-odd operators given in Eqgs. (6.9)-(6.11).
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the equivalent CP-odd ones), but these can be eliminated using the identities °

1 1
Og :OHB“‘EOBB"‘EOWB , (6.12)

1 1
Ow = Ogw + ZOWW + ZOWB . (6.13)

The operators Oz and Osg (and the corresponding CP-odd ones) have three field-
strengths and then their corresponding coefficients should scale as c3yr ~ ¢2/g? and

c3a ~ g2/ g? respectively.

Let us now examine d = 6 operators involving SM fermions, considering a single

family to begin with. Operators of the first class involving the up-type quark are

Oy, = wulHPQrHug,

g
% = (iH'D,H)(@ry"ug),
<> _
0% = (iH'D,H)(Qrv"QL),
x4 _
0" = (iH'0"D,H)(Qrr"0" Q1) (6.14)

where H = iooH*, and in operators o< Qrup we include a Yukawa coupling v, (m., =
yuv/V/2) as an order parameter of the chirality-flip. We also understand, here and in
the following, that when needed the Hermitian conjugate of a given operator is included

in the analysis. In the first class we have, in addition, the four-fermion operators:

Of, = (Qu"Qu)@wy"Q1) .  Of" = QT QL)(Quy" T QL) .
%R = (QLV“QL)(QR’YHUR) s 0281)%1; = (QL’)/“TAQL)(QR’)/HTAUR) ,
rr = (urY'ur)(ury"ug), (6.15)
where T4 are the SU(3).. generators. Other four-fermion operators are linear combina-

tions of the ones appearing in Eq. (6.15); see for example Refs. [101, 103]. Finally, the

one-loop (dipole) operators involving the up-type quark are

OqlJ)B = yuQLUuVUR ﬁg/Bw/ )
Obw = yuQro™uro®HgWy, ,
Obe = yuQro™ T ur HgGy, - (6.16)

Similar operators to those given above can be written for the down-type quarks and
leptons. For one family of fermions these are given in Tab. 6.2. Among them, there is a

new type of operators, involving two different types of fermions, which, as we will see,

5For CP-odd operators the identities are 4045 +055+0y 5 =0and 40,5 + Oy + Oy 5 = 0.
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can have an important impact on Higgs physics at the one-loop level. These are

~, o
0%t = ylya(iH' D, H)(upy"dR) (6.17)
and
Oyuyd = yuyd(QzuR)ET‘S(QSLdR) ) O:l(/i)yd = yuyd(QzTAuR)ers(QiTAdR) s
Oyuy. = yuye(QrLuR)ers(I_/sLeR) ) O;uye = yuye(QzaeR)ers(I_/iu?{) )
Oyeya = Yeyl(Lrer)(drQr), (6.18)

where € = ioy and « labels color (only shown when contracted outside parentheses).
These operators are in principle of the first type. Nevertheless in the four-fermion
operators of Eq. (6.18) we have incorporated a product of Yukawa couplings since they
involve two chirality-flips, while in Eq. (6.17) we have also included Yukawa couplings as
it is the case in theories with a flavour symmetry, as discussed below. These operators

are then only suppressed by 1/A? as second-class operators.

There is some redundancy in the operators given above, as it is clear that some of
them can be eliminated by field redefinitions (see Appendix A) or using the equations

of motion (EoM). For example, the operator O, can be eliminated by field redefinitions:
1
O < ¢ [2 (Oy, + Oy, + Oy, +h.c.) — Oy + 20| . (6.19)

Also, we could eliminate all 5 operators of Eq. (6.5) by using the EoM for the gauge
fields:

vIrsa . Taa g ;0
D'Wy, = igH'-DyH +g%  frsvufe,
f

OB, = idYyH'D.H+d Y/ 7, Y7
w ig Yy wH+g Z L fovfL + YR fRufrR|
7

DG, = g qT%uq, (6.20)
q

where YLf r are the fermion hypercharges and Yy the Higgs hypercharge. In particular,

we could trade Op and Oy with other operators:

/2 1 1
05 © cnly —50r+5 Y (Ylol +vioh) | . (6.21)
* f

2 3 1 1
ewOw Cw% —501{ + 206 + 3 (Oy, + Oy, + Oy, +h.c.) + 1 Z Og&)f 7
) 7
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where, in the last expression, we have eliminated O, using Eq. (6.19).

For one family of fermions the set of operators that we use is collected in Tabs. 6.1
and 6.2. We keep all operators of Eqgs. (6.4)-(6.11), since they are the relevant ones for
a well-motivated class of BSM scenarios such as universal theories, with the exception
of O,, that we eliminate of our basis using Eq. (6.19). In Tabs. 6.1 and 6.2 there are
58 operators; adding the 6 bosonic CP-odd ones in Egs. (6.9)-(6.11) leads to a total of
64 operators. We still have 5 redundant operators that once eliminated leave a total
of 59 independent operators, in agreement with Ref. [101]. We leave free the choice of
which 5 operators to eliminate: e.g., the operators of Eq. (6.5) could be eliminated by
using Eq. (6.20) or, alternatively, we could trade 5 operators that contain fermions by
the operators in Eq. (6.5). We will use later this freedom in different ways depending on

the physics process studied. Other redundant operators are discussed in Appendix A.

Extending the basis to 3 families increases considerably the number of operators. We
can reduce it by imposing flavor symmetries, which are also needed to avoid tight con-
straints on flavor-violating processes. For example, we can require the BSM sector to be
invariant under the flavor symmetry U(3)g, ®U(3)d, ®U(3)u, ®U(3) 1, ®U(3)ep, under
which the corresponding 3 families transform as triplets, and the Yukawas become 3 x 3
matrices transforming as yq € (3,3,0,0,0), y, € (3,0,3,0,0) and y. € (0,0,0,3,3)
under the non-Abelian part of the flavor group. One can also assume that the Yukawas
are the only source of CP violation. This assumption goes under the name of Minimal
Flavor Violation (MFV) [19]. In this case the list of operators given in Table 2 can
be easily generalized to include 3 families. For example, for operators involving two

fermions, we have

(Ler"Le) = [3+Olwel/9?)| (L' Lh) |
velrer =y |1+ Oyly/g?)| Lieh., (6.22)
(4,7 are family indices) and similarly for other fermion species. For 4-fermion operators,

we have several possibilities to form singlets under the flavor group. For the leptons we

find four independent operators:

O, = (LA'L(Iywl))
o) (Liy"o" L) (L) yu0° L))
LR = (LL'YMLL) eR'YueR) )
Orr = ( RY CR) eR’YueR) (6.23)

where we are neglecting terms of O(y?2/g?), while the independent set of 4-quark opera-

tors can be found in the Appendix of Ref. [104]. The MFV assumption that the Yukawas
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WMBH 0 Y3 10T 7% = MG
e P H U2 g0 T % =4 QQ

VOB H UpyLawmo1OP = 7F0
MO H 0 9P, 0TPPhi = Mo
e b AP o TP = 890

:ﬁ@m@.m @3«&&:1.0@@3@ = Uﬂs@
MBI ¥n,110T0" =
g BH 1 0TH" = TG0

(10¥p) (HaT7) A% = "0
Amsq\uvﬁkm@d;m& a.:m = m?\wg
(o) eso(an 1) = i

(Upy L50)* (Uny, LI0)PAM = "0

(plp) = (dniy)Pari = Mg
E@%m@xm@&agﬁ = 0

(TR T) (Tl TT) = 110
(Uo"L¥a) (U L) = Y

(Mo 2) (T A1) =T

AQQab1FQMVAm1m@b+E@V = Zmﬂ@
GﬁiquSEc =10
(¥o,L42)(H" Sms =40

mwmﬁm_m_ﬁ ="

(Ya"L¥2)(dp tip) = U

(p"kip) (Tl 17) = ¥l

(¥p"Laip) (UpLip) = T
Amﬁv\rﬁi\hﬁ@vn@@v\rﬁi\hﬂ@v wﬁwvg
(Up"kdp) (1t 1) = 410

(Uplp)(H" Sme =90
m@mq@w_m_ﬁ = "0

(Ya"L¥2)(dn,Ldn) = i
(Upy ") (Hny, paliin) = HEO

(Up"Ldp)(UnLH VLE@
(Un"Ldn) (T, T7) @

(F2"L2) (1L 1D) =

A@\.N@bi\h@@v A\N@cbi\h@®v

A\NNU«PH*#\Q@VA\N@@PHI\PQNUV = wwg
OO T0u10) = Tho

o) gy — g

AMNSv\rHi\CmN@Xﬂ@«PHi\Cﬂ@V = smNNwwg
(Un"dn) (1L 10) = 47

(10024 1O)H" A 001 HY) = 4 (6O
Aq®1>q®xmxmﬁm® = 50

(dn ) (g Sms 4
m:mq@N_m_ﬁ = "0

In the first column

TABLE 6.2: 44 operators made of one-family of SM fermions.

there are operators made only of the down-type quark and leptons; the third column lists
operators made only of leptons. The operators are grouped in 8 different rows (separated
with a solid line) corresponding to the 3 classes of operators defined in Eq. (6.2). Dashed

there are operators made of the up-type quark and other fermions; in the second column

lines separate operators of different structure within a given class.

72



Chapter 6 — SM EFFECTIVE FIELD THEORY: STATUS AND LEGACY 73

are the only source of CP violation implies that the Wilson coefficients are real. For the
top quark, having a Yukawa coupling of order one, departures from flavor-universality

could be important.

It is useful, in order to understand what operators mix under the RGE, to derive the
transformation of the coefficients (or equivalently, of the operators) under the global
custodial SU(2)r ® SU(2)r symmetry and the parity Prpr that interchanges L <» R. A
detailed analysis is given in Appendix C. In Tab. 6.3 we present the quantum numbers

of the coefficients of the tree-level operators involving the Higgs.

We emphasize again that the above classification is useful even when one is not working
under the minimally-coupled assumption of Ref. [99]. When studying the RGEs of
these operators, we will find that, at leading order, current-current operators do not
affect the RG running of one-loop suppressed operators (irrespective of their UV origin).
Furthermore, the above classification can also be useful to parametrize the effects of
strongly-coupled models. In particular, if the Higgs is part of the composite meson
states, taking g ~ 4w gives the correct power counting for strongly-coupled theories
with no small parameters. One finds in this case that operators of the first class are
the most relevant, while operators of the second and third classes have the same 1/A?
suppression. Also the basis is well suited for characterizing holographic descriptions of
strongly-coupled models [99]. In this case gy ~ 47/v N, where N plays the role of the
number of colors of the strong-interaction, and then operators of the first and second

classes are less suppressed than operators of the third class.

Spurion SU(2)L, ® SU2)r Prr

0] < 4 ys 2R
g 3p+1
cr (3R ® 3R)s
Ci,Cg 1 +
cg +cw 1 +
cp — Cw 1 —
0] =6 Cy; 1
c{% 3r
C{ 3R
c(LS)f 1
cyd 1

TABLE 6.3: Quantum numbers under the custodial SU(2)r, ® SU(2)r and left-right

parity Ppr of the SM couplings and coefficients of the tree-level operators involving

Higgs fields. We only show the Ppgr-parities of the coefficients with a well-defined
transformation, see Apendiz C.
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6.2 Higgs physics

Let us now describe the effects of the d = 6 operators on Higgs physics. We will only
present the modifications of the Higgs couplings important for single Higgs production
and decay, working under the assumption of MFV, allowing however for CP-violating

bosonic operators. We split the relevant part of the Lagrangian in two parts,
=L+ (6.24)

In £§LO) we keep the SM couplings and the effects of the current-current operators of
Tabs. 6.1 and 6.2, while L’;Ll) has the effects of the loop operators. We can remove the
momentum dependence from the Higgs couplings in Eg]) by using the EoM, so that
we end up with Higgs couplings at zero momentum. After doing that, we have, in the

canonical basis for the Higgs field h,

E;SO) = gnrh(fofr+he) + gawvv RV*Vy + gnzpg B Zufin fo
+9nzfnfn B ZufRV" FR A+ Ghwpsp, PWu LA L (6.25)

where a sum over fermions is understood and V = W, Z. The couplings read ©

(5GF

2
ghww = Qg%w{l—(cH—gz > t+o=—+2—| ,
*

2Gr |~ My
2
g § 0GF
9hzz = giszl%/IZ |:1_ (CH—QECZ> 5 T—|—2GF:| )
%
GwiLf, = 2f CWf—i- 59
1 g 2 20
= ——F T3 t 0 —dg*F
InZfi s Socosty 2 1Lz~ Qpep tan® bw) £+ 7 0gy
tan? Oy ¢°
InZinfn = T 9y cos Oy g2 Qre&+ - 59 : (6.26)

Here the SM couplings must be expressed as a function of the input parameters a =
e?/(4r), the Fermi constant G and the physical mj,, Mz and fermion masses. In these
equations, Ay is the weak mixing angle, T3 = 4+1/2 stands for the weak isospin values of
up and down components of SU(2), fermion doublets, Q@ is the fermion electric charge.

We have defined
gav?
€ A2 b

(6.27)

SA coupling of Wf to the right-handed current fry"fR is generated from the operator O%! in
Eq. (6.17), but we do not include it as it is expected to be suppressed by two Yukawa couplings (due to
the MFV assumption) and hence to be small.
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with v ~ 246 GeV, and
cz = cw +tan® Oy cp . (6.28)

In the couplings of Eq. (6.26), we have introduced

56?; =2 [C(ngl - "’(Lg)l} & (6.29)
5]\]\4{,‘: - 2(1 — 2iin2 o) [COSZ Ow T — 2 sin? Oy S + sin® HwéGGlf , (6.30)
and
ol = Jsele
%0 = Foosay TEL - e
oo = _mcﬁﬁ (6.31)

Finally, we have made use of the precision electroweak parameters [105, 106]

M2
S=(cw+ep)—2, T=cr. (6.32)

A2
As we have stressed in the previous Section, not all the operators appearing in the Higgs
couplings of Eq. (6.26) are independent. Once one has decided which are the redundant
operators that are not in the basis, one should simply put equal to zero the corresponding

operator coefficients.

The second term in the Lagrangian Eq. (6.24) necessarily contains field derivatives.

It reads

£ = gonww WHWod'h +he) + gonzz 2" Zuwd'h + Ghyz hZ" Zu  (6.33)
+ ghaa hA™ Ay + gonaz Z'Auw”h + graz hAY Zu, + gnae RGHY G, |

where we have defined V,,, = 9,V,, — 0, V), for V = W=, Z, A. The couplings are given
by

2

g-v
gonww = — WHHW s
2, )
9onzz = — 533 (kaw + Kpp tan® Oy) |
ghAA = eiv KBB = g;LZZ = _JhaAz
A2 tan? Oy 2tan Oy
g*v
gonAz = — 533 tan 0w (kew — KHB) ,
2
g,v
gnGG = “y5 RGG- (6.34)
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The contributions from the CP-violating bosonic operators can be easily obtained from
Eq. (6.33) by replacing one of the field strengths F},, in the operators by Fj,. Only
the contributions from the dipole operators (third box of Tab. 6.2) have been neglected

since they are assumed to be proportional to Yukawa couplings.

In the list of modified Higgs couplings (6.26), the tree-level operator Og does not play
any role. The simplest modified coupling containing this operator would be the triple

Higgs vertex

5£( V=g (1= (s + 367[{ §+ oA °Cr h*, (6.35)
2GF

where gfb% is the SM value for the h? coupling. Experimental access to this coupling is

not yet possible.

From the couplings in Egs. (6.25) and (6.33) it is easy to derive the modifications of
the main Higgs partial-widths due to d = 6 operators [99, 107, 108].” The coefficients
(L)f c{,c];z can also modify the cross-section of hff production, giving contributions
that grow with the energy. A particularly interesting case is pp — qth (¢ being a light
quark) that is dominated by the subprocess Wrb — th. At large energies this grows
with the energy as

2 49302)

The extraction of new physics through this process has been studied in Ref. [109].

6.3 Experimental constraints on the Wilson coefficients

As we saw in the previous Section, many d = 6 operators can directly affect the Higgs
couplings. Some of them only affect Higgs physics (at tree-level). Their corresponding

coefficients are

{cu,c6,¢ys, BB, KGGH RWW s K g5 K Ryt - (6.37)

The reason for this is clear in the case of ¢z and cg as these operators contain exclusively
Higgs fields; and in the case of ¢y, , kpp and kg because, when the Higgs is substituted
by its vacuum expectation value (VEV), these operators simply lead to an innocuous

renormalisation of SM parameters. The coefficient Ay corresponds to the direction in

"For loop-suppressed partial-widths, such as h — 77, we remind the reader that d = 6 operators
can have an effect either directly or through modifications of the SM couplings that change the SM loop
contribution to that particular decay [99].
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parameter space given by

kHB = —kHW = 4kpp = cw = —cp = dRww , (6.38)

and the reason why this direction is only constrained by Higgs physics is subtle in our

basis. The easiest way to see it is to go from our basis, that contains the subset
B1 ={Ow,08,0nw,Ous,0ps} , (6.39)
to the basis containing the subset Bz defined in Ref. [5]:

Bs = {Ow, OB, Oww,Owng,Opg} . (6.40)

One can go from one to another using (7.7). Now, in the basis containing Oy it is
clear that its coefficient cannot be bounded by any non-Higgs SM processes, for exactly
the same reasons as kpp. We can now use Eq. (7.7) to get the expression of Oy in

terms of the operators in B,
Oww 24(OW —OB) _4(OHW_OHB)+OBB, (6.41)

which leads to the direction given in Eq. (6.38). Similarly, for the CP-odd operators,

Ry corresponds to the direction:

HH‘B:— HW:4/€BEE4/% - (6.42)
Although the coefficients cyr, cg and ¢, have no severe constraints from Higgs physics yet
[111], the coefficients kpp and the difference kg — kg are subject to strong constraints
from h — v and h — Z~ respectively (as these decays are one-loop suppressed in the

SM). These give at 95%CL [111]

M M
—0.0013 < TI;VHBB <0.0018, —0.016 < TZV(K:HW — rkgp) $0.009.  (6.43)

Notice that kgw — kgp is odd under Pri [Eq. (C.4)] and could be suppressed with
respect to the sum kgw + kgp if the BSM sector respects this parity. Similarly, the

coefficient kg enters in the production GG — h and gets the bound [111]:

M,

8In Ref. [110] these were called blind directions, combinations of operators which a certain group of
experiments cannot bound. In the case of Aww that group is non-Higgs experiments.
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The coefficients of the CP-odd operators enter quadratically in I'(h — ) and I'(h —

Z7), and therefore their effects are suppressed with respect to CP-even ones.

Apart from the ”"Higgs-only” coefficients of Eq. (6.37), the rest of the coefficients of
d = 6 operators that enter in the Lagrangian of Eq. (6.25) and Eq. (6.33), relevant for
single Higgs physics, can in principle be constrained by (non-Higgs) SM processes. In
the following we present the main experimental constraints on these Wilson coefficients.
We also discuss limits on other Wilson coefficients that, although do not affect Higgs
physics at tree-level, could do it at the one-loop level. The details of this study with
a full dedicated quantitative analysis is done in Ref. [108]. In what follows we assume

MFV (unless explicitly stated) and CP-invariance.

6.3.1 Universal theories

We start considering universal theories, leaving the generalization for later. The new

physics effects of these theories are captured by the operators listed in Tab. 6.1. Devi-

ations in the W* and Z° propagators can be parametrized by four quantities, S, T, W

and Y [106]. The contributions from d = 6 operators to S and 7" have been written in
Eq. (6.32); the corresponding equations for W and Y read
M3 M3

W:CQWTI;V s Y:CQBTIS/. (645)

LEP1, LEP2 (ete~ — [T]7) and TeVatron allow to constrain independently each of

these four quantities, all of them at the per-mille level [106].” We saw in (6.32) that

S depends only on the combination cy 4+ cg. The gauge-boson part of the orthogonal

combination, Oy — Op, contains at least three gauge bosons

and thus it is a blind direction for LEP1 experiments. To constrain this direction, we

have to consider the effect of cyp on triple gauge-boson vertices, which can be cast in

the form
5Ly = igcosty |6gf ZH (W™YWh —WHYW.) + 6k ZHW, W, (6.47)
Az HUTT —PTA+ S MR — T+ )‘7 HYUTI— PR+
+ M—‘%VZ W, PW, | + igsinby ok, AW, W, —|—M—3VA W, PW ol

9LHC data is also useful to constrain W, Y and caq, which affect quark cross-sections at high energies
[104].
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where again we have defined V,,, = 9,V,, — 9, V), for V = W=*,Z, A. The contributions

from d = 6 operators to these couplings are given by

M2
ogi = & (ew +rmw)
2
Sky = 7/\?/ (kHwW + KHB)
okz = 697 —tan® Ok, ,
M2
)\Z = )\7 = Tgvlﬂlg)w, (6.48)

where we do not include a contribution from coy since it is constrained to be small,
as we have seen before. The third relation, as well as the identity Az = \,, are a
consequence of limiting the analysis to d = 6 operators [100]. The best current limits
on triple gauge-boson vertices still come from ete™ — WTW ™ at LEP2 [112], although
LHC results are almost as good and will be better in the near future [113-115]. Leaving
aside the contributions from k3, that we expect to be small in most theories in which
the SM gauge bosons are elementary above A, we can use the two-parameter fit from
LEP2 [112] which at 95%CL reads

—0.046 < dg¥ < 0.050,
—0.11 < 0K, <0.084. (6.49)

These are a factor ~ 10 weaker than the constraints on the coefficients S, T, W and
Y from LEP1 (for this reason we can neglect their contributions to ete™ — WHW ™).
As expected, the two constraints in Eq. (6.49) are orthogonal in parameter space to the
direction Ry of Eq. (6.38), as can be seen using Eq. (6.48). For this reason, to obtain
independent bounds on the 4 parameters cyy, c¢g, kgp and kg, we need the constraint
Eq. (6.43) combined with Eq. (6.49) and the bound on S. These bounds are at the
percent level. In the particular case of k; < ¢;, as expected in weakly-coupled theories,
we obtain the bound

M2
— 0. —cw S 0. . .
0.046 S —Few < 0.050 6.50

As we said, LHC tests of triple gauge-boson vertices are becoming comparable to those
from LEP2, and it is foreseen that LHC will surpass LEP2 in these type of measurements
[113-115]. It follows that an important implication of our study is that the LHC will
have a direct impact on the improvement of the limits on cyw + kgw, kgw + kg and
k3w . We will see in the next Subsection that this conclusion is also valid in non-universal

theories.
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6.3.2 Non-universal theories

Let us now discuss BSM models without the universal assumption, considering then all
operators of the basis. We will follow a different strategy than in the previous Subsection.
Let us first look at electroweak leptonic physics for which the experimental constraints
are expected to be the strongest ones. Since we assume MFV, dipole operators (third
box of Tab. 6.2) give corrections to SM processes proportional to lepton masses and
can then be neglected. We use the redundancy in our set of operators to eliminate, by
using Eq. (7.42), the 5 operators Oap 2w 2a, O(Lg)l and O} . Taking o, My and Gp as
input parameters, the relevant operators for the leptonic data are the 4 operators Op,
Ow, Op, O% and the four-lepton operators of Eq. (6.23). LEP1 data and Tevatron
afford 4 well-measured experimental quantities: The charged-leptonic width I'(Z —
I717), the leptonic left-right asymmetry A} r» the Z-width into neutrinos I'(Z — vv) =
riotal _ pyisible and M. These allow us to place bounds on the 4 quantities {cr, ey +
¢B, %, 0Gr/Gr} [where 0GFr/GF is given in Eq. (6.29)] at almost the same level as
for universal theories. We again need the LEP2 constraint of Eq. (6.49) from ete™ —
W*TW~ to bound the difference cy — cp [see Eq. (6.46)]. The only remaining operators
are four-lepton interactions but they can also be highly constrained from ete™ — [T1~
at LEP2.

Having these constraints in mind, we can now move to the quark sector. Higgs-fermion
operators, as those in Eq. (7.4), give contributions to the gauge-boson couplings to quarks
that make them depart from the leptonic ones by the amounts dgj;, 6g% and g% given
in Eq. (6.31). Experiments put severe bounds on these deviations. For example, we
have limits at the per-mille level on deviations from lepton-quark universality from S-
decays and semileptonic K-decays [116]. This implies that the coefficient cf’)qg can be
constrained at this level.'Y For ch,cﬁ and C% the main constraints come from LEP1
measurements at the Z-pole. These can put bounds on deviations of the Z couplings to

dL,R q u,d
quarks, dg,"", and on ¢} and cp".

As we saw, operators made of top quarks can depart from the MFV assumption due

to the large top Yukawa coupling. If this is the case, we can still bound (c§* + cf) )¢

from the measurement of the Zbrb; coupling at LEP1 which also gives a per-mille
bound. Interestingly, a Prr symmetry can be imposed in the BSM sector such that

25 = —C(L?’) % [see Eq. (C.10)], allowing for large deviations on ¢ — c(Lg) % Recent

cp =
LHC measurements of the Wtb coupling [118] put some bounds on C(L3) % but they are
not very strong. Also cﬁz has practically no bound due to the large uncertainty in the

determination of the Ztgtr coupling [119, 120]. Bounds on the Wilson coefficient d}g,

10The operator (’)(LgL) = (Qrvuo*Qr)(Lry*o“Ly1) also gives contributions to 3-decays and K-decays,
but this can be independently constrained by recent LHC data [117].
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see Eq. (6.17), arise from b — sy and read —0.001 < c8M3,/A% < 0.006 [121]. These
bounds will be improved in the future by the LHC.

Four-fermion operators involving quarks, as those in the first box of Tab. 6.2, can
also be constrained by recent LHC data [104], while the coefficients of the operators of
the second box of Tab. 6.2 have no severe experimental constraints due to their Yukawa
suppression. However, they can affect Higgs physics through operator mixing, as we will
see in the next Section. Finally, bounds on dipole operators can be found, for example,
in Ref. [107].

We conclude that, concerning the strength of experimental constraints, we can dis-

tinguish the following sets of d = 6 operators:

1. First, we have those which can only affect Higgs physics. We have 843 operators of
this type (CP-even plus CP-odd respectively) for one family, with real coefficients
given in Eq. (6.37) ''. As shown in Sec. 6.2, they can independently modify
the Higgs decay-width to fermions, photons, gluons and Z+, apart from a global

rescaling of all Higgs amplitudes due to cp.

2. A second set of operators are those whose coefficients are severely restricted by elec-
troweak precision data, as explained above. Eliminating, by the EoM of Eq. (7.42),
a5, Oy, Oy and O} ,(’)(LS) l, these are ¢y +cp and er that affect the W/Z prop-

agator, and c%, ¢7, c}%’d, C(L?')q that affect V ff vertices.

3. In a third set, we have the operator coefficients that can affect the ZWW /AW W
vertices and are, at present, constrained at the few per-cent level. These are the
combinations kgp + kgw and ¢y + kpw (and also cgpy if we include Az in the

analysis).

We finally would like to mention that our result is in contradiction with Ref. [122]
that obtained a smaller number of parameters to characterize Higgs physics and triple
gauge-boson vertices. The origin of this discrepancy is due to the following. In our basis
it is clear that physics at LEP1 is not sensitive to the blind direction cy = —cp, since
only the combination ¢y 4+ cp enters in the S parameter. This blind direction, however,
becomes more complicated when one goes to other bases, such as that of Ref. [101], in
which Oy and Op are eliminated [by using Eq. (7.42)] in favor of operators made of SM
fermions. In such bases there is the risk of overestimating the number of independent

experimental constraints on the Wilson coefficients.

YIf we relax the MFV assumption that the ¢, , are real, in addition to the 3 operators Re(cy,)(Oy, +

we should also consider the 3 CP-odd operators Im(cy, )(Oy, — o}

o} b)-

vs)
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6.4 Summary

As the measurements of the Higgs properties improve, it will be important to understand
their implications for BSM models. In this Chapter we have adopted the framework of
effective Lagrangians as a tool to study the effects of d = 6 operators in Higgs physics.
As a first step, we have discussed the choice of operator basis. Our basis has been
defined following Ref. [6, 99] that distinguished two classes of operators: tree-level (or
current-current) operators, and one-loop operators. This choice can be important when
calculating one-loop operator mixing, since most of the tree-level operators do not mix
with one-loop operators under RG evolution, see the next Chapters 7-10. Another
important property of our basis is that it contains a subset of 5 CP-even operators made
of Higgs and gauge field-strengths, that in our case are Ow,g Ogw, B and Opp, (leaving
aside Ogg). We have found that it is important to keep these 5 operators to make the
connection with experiments more transparent [these subset could also be written with
Owp,ww by using the identities of Egs. (7.6) and (7.7)]. Bases, such as Ref. [101]
and Ref. [122], that eliminate two of these operators in favor of operators made of SM
fermions, as it can be done by using the EoM, have dangerous blind directions for LEP1

experiments, which make the contact with experiments more difficult.

We have calculated the modifications that the operators of the effective Lagrangian
induce in the Higgs couplings relevant for the main decays and production mechanisms.
It has been shown that these operators can be divided in two subsets. There are 11
operators (for one family) with coefficients given in Eq. (6.37), that can only affect Higgs
physics and no other SM processes at tree-level. The number 11 can be deduced from
counting the number of independent operators one can write as |H |20y with Oy a d = 4
operator formed with SM fields. The second subset, formed by the rest of operators,
enter in other SM processes and therefore can be constrained by non-Higgs experiments.
Among the latter, considering only the CP-even ones, we have found that the least
constrained correspond to the two combinations of Wilson coefficients appearing in the
measurements of the ZWW/yWW coupling, Eq. (6.48), that LEP2 has only constrained
at the few per-cent level. LHC will probe these vertices with better accuracy, so that it

will be able to improve these constraints or reveal some BSM deviation.
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7. SM Quantum EFT:
h —~+4+~/Z v.s. S-parameter

Rather than embarking in messy calculations of the one-loop anomalous dimension ma-
trix involving all the SM dimension-six operators, we would like to discuss a simpler cal-
culation that illustrates a number of points. The purpose of this Chapter is to compute
the renormalization group equations (RGEs) at the one-loop level of the dimension-six
operators responsible for h — v 4+ v/Z. Our main interest is to look for log-enhanced
contributions coming from operator mixing. Particularly interesting are those contribu-
tions that could arise from mixings with operators induced at tree-level by the theory at
high-energies. These can potentially give corrections to the hyvy and hyZ couplings of
order ~ g4v?log(A/my)/(1672A?) where gy is the coupling of the Higgs to the heavy
sector and v is the Fermi scale. These contributions would be the leading ones to the

decay h — v + 7/Z since this is loop-supressed in the SM.

Ref. [123] argued that this type of contributions could in fact be present for a general
class of models as, for example, those in Ref. [99], although the result was based on a
calculation that included only a partial list of operators and not the complete basis set.
We show however that such corrections are not present. The right choice of operator
basis helps in simplifying the calculation of the anomalous dimension matrix as well as
its physical interpretation. We work in a basis where the dimension-six operators are
classified according to the expected size of their Wilson coefficients. We mainly consider
two groups: those operators that can be written as scalar or vector current-current
operators (and could therefore arise at the tree-level by the interchange of heavy fields),
and the rest, expected to be induced at the one-loop level. By working in this basis, we
show that none of the current-current operators affects the running of any loop operator.
This in turn implies the absence of a log-enhancement effect. This is already known to
happen in other situations. For example, the magnetic moment operator responsible for
b — sy does not receive log-contributions from certain current-current quark operators

at the one-loop level [124].
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We also show how to reconcile our conclusion with the results of Ref. [123] by com-
pleting the calculation done in the basis used in that analysis. Furthermore, we use the
results of Ref. [123] to calculate the complete leading-log corrections to the operators
responsible for h — vy and h — vZ. We find that only one-loop operators contribute to
these decays, and therefore these effects are not expected to be very large. Finally, we

also extend the calculation to include mixing with fermion dipole-moment operators.

Dimension-six operator basis relevant for h — v+ ~v/Z

We start considering only operators made of SM bosons. Let us summarise briefly
the basis introduced in Chapter. 6 for the ease of reading the present Chapter. The
operators made of bosons can be induced from integrating out heavy states in universal
theories, those whose fields only couple to the bosonic sector of the SM (a generalisation
including SM fermions will be given later). We can broadly organise the dimension-six
operators in three classes of operators. The first two classes consist of operators that can
in principle be generated at tree-level when integrating out heavy states, with spin< 1,
of a weakly-coupled renormalizable BSM theory. The operators of the first class are
those that involve extra powers of Higgs fields, and are expected to be suppressed by
9%{ /A%, The operators of the second class involve extra (covariant) derivatives or gauge-
field strengths and are generically suppressed by 1/A%. Finally, in the third class we
consider operators that, in weakly-coupled renormalizable theories, can only be induced

at the loop level. They are summarised in Tab. 6.1. We repeat them here in Tab. 7.1.

e
Op = §(@"HP?  Or=3(HD,H? O =AH|"

. <> ., <>
Ow = Y (H'e"D*H)D'W?,  Op = ‘¢ (H'DFH)9"B,,

Oaw = *%(D“Wﬁy)Q Oop = —5(0"Byw)? O = *%(DMG;?V}Q

Opp = ¢"*|H|*B,, B" Oca = g2|H|*G1, G4
Onw = ig(D"H)lo®(DH)W},  Oyp =ig/ (D'"H)'(D"H)B,,

1 b 1 A B nC
Osw = g19€abc Wy "W, WePH Osc = 519sfapc G "G G-

TABLE 7.1: The operators are grouped in 3 different groups, separated with a solid line.
In addition, there are the 6 CP-odd operators given in Eqs. (6.9)-(6.11).

84



Chapter 7 — SM QuantuM EFT: h — v+ v/Z v.S. S-PARAMETER 85

7.1 Non-renormalization of h — ~v + v/Z

from JJ-operators

The operator basis introduced in the previous Section is particularly well-suited to de-
scribe new-physics contributions to A — 7y, which come only from two operators: the
CP-even Opp and the CP-odd Oy 5. On the other hand, h — vZ comes (on-shell) from
OB, O, Ogw and their CP-odd counterparts. The relevant Lagrangian terms for

such decays are

2

e v Ty
0yy = 353 [HW W2 Fu B + oo W Fy } ’
eG v 7y
5£’YZ == w |:H»YZ h2FMVZN + K/,y'Z“ hQFMVZu ] ) (71)

where ¢ = g¢'/G and G2 = ¢% + ¢’>. The photon field, A, = cyB, + sti’, has
field-strength F},,, while Z, = cwW3 — sy B, has field-strength Z,,, where we use

Sw =sinb, = ¢'/G and ¢y, = cos b, = g/G. We have

1

Kyy = KBB , Kyz = Z(KHB — KHW) — 255KBB »
1 2
Kyy = KRR » Ky = Z(HHE—HHw)—QSwK,BE. (7.2)

The Wilson coefficients of these dimension-six operators are generated at the scale A,
at which the heavy new physics is integrated out, and they should be renormalized
down to the Higgs mass, at which they are measured in Higgs decays. Let us focus
for simplicity on k., as similar considerations will be applicable to k.7, 2z, K.z At

one-loop leading-log order one has, running from A to the Higgs mass my,;:

A
Foyy (M) = Ky (A) = 75y log my (7.3)

Here, vy, = dk/dlog pt, with g the energy scale, is the one-loop anomalous dimension
for K,,. In principle, 7., can depend on the Wilson coefficients of any dimension-six
operator in Eq. (6.2). A particularly interesting case would be if the RGEs were to mix
the tree-level operators into the RG evolution of one-loop suppressed operators, such as
Opp. In that case we would expect vy, ~ g%/(16m%) from mixings with the operators
of Eq. (6.4), or vy, ~ ¢g?/(167%) from mixings with (6.5). Such loop effect could give a
sizeable contribution to £~ (my), logarithmically enhanced by a factor log A/my,. The

initial value £,~(A), expected to be one-loop suppressed, would then be subleading.

Remarkably, and this is our main result, there is no mixing from tree-level operators
(6.4)-(6.5) to one-loop suppressed operators (6.6)-(6.11), at least at the one-loop level.

This can be easily shown for the renormalization of k.. The argument goes as follows.
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86 Part II — EFT OF THE PHYSICS AT THE EW SCALE

Let us first consider the effects of the first-class operators, Eq. (6.4). Since these op-
erators have four or more H, their contribution to the renormalization of k., can only
arise from a loop of the electrically-charged G* with at least one photon attached to the

loop. However,

e (g has too many Higgs legs to contribute.

e Oy is simply 9,(h* + G3 + 2GTG7)o*(h? + G2 + 2GTG7)/8 and this momentum
structure implies that a G* loop can only give a contribution oc BMhQ, which is not

the Higgs momentum structure of Eq. (7.1).
e Op does not contain a vertex h2GTG~.

e O, can be traded with O, which clearly can only give one-loop contributions to

operators oc |[H|?H, so it only contributes to the RGE of itself and Og.

We conclude that there is no contribution from these operators to the RGE of x,,. To
generalise the proof that no operator in (6.4) contributes to the one-loop anomalous-
dimension of any operator in (6.6)-(6.8) !, we have calculated explicitly the one-loop
operator-mixing. We find that the only operators involving two Higgs and gauge bosons
that can be affected by (6.4) are the tree-level operators (6.5). The result is given in
Sec. 4.

For the operators of Eq. (6.5), proving the absence of one-loop contributions to the
anomalous dimension of (6.6)-(6.8) is even simpler. By means of field redefinitions, as
those given in the Appendix A, or, equivalently, by using the equations of motion 2, we
can trade the operators (6.5) with operators of Eq. (6.4), four-fermion operators and

operators of the type

Ol = (i H'DH)(frr" fr),

Of = (HDLH)Ji"f1),
of® = (iHlo"D,H)(fir"o"f1). (7.4)

Now, four-fermion operators contain too many fermion legs to contribute to operators
made only of SM bosons. Concerning the operators of Eq. (7.4), after closing the fermion
legs in a loop, it is clear that they can only give contributions to operators with the Higgs

<~ <~
structure HTDHH or HTaaDuH, corresponding to the tree-level operators (6.5). This

'Obviously, their contribution to the CP-odd operators (6.9)-(6.11) is zero as the SM gauge-boson
couplings conserve CP.

< _ > _
2’1_“hat is, 2D"Wg, = igH'0"D,H + gfro®y.fr and 8" Bu, = ig H'D,H/2 + ¢'Y{ fryufr +
g'Yéc frRYufR, where YLf’ r are the fermion hypercharges and a sum over fermions is understood.

86



Chapter 7 — SM QuantuM EFT: h — v+ v/Z v.S. S-PARAMETER 87

completes the proof that no current-current operator contributes to the running of any

one-loop suppressed operator.

The calculation above could have also been done in other operator bases. To keep
the calculation simple, it is crucial to work in bases that do not mix current-current
operators with one-loop suppressed ones. This is guaranteed if we change basis by
means of SM-field redefinitions, as shown in Appendix A. We can make use of these
field-redefinitions to work in bases that contain only 3 operators made of bosons, the
rest consisting of operators involving fermions, such as those in Eq. (6.19), Eq. (7.4) or
4-fermion operators. There are different options in choosing these 3 operators; what is
physically relevant are the 3 (shift-invariant) combinations of coefficients in Eq. (D.22).
This freedom can be used to select the set of 3 operators most convenient to prove,
in the simplest way, that their contribution to the running of x,, and kz, is zero at
the one-loop level. For example, we could have chosen Oyp instead of Op: since Osp
only affects the propagator of the neutral state B*, one can easily see that it cannot

contribute to the Ay or hyZ coupling.

7.2 The importance of the choice of basis

The relevance of the possible contributions from tree-level operators to the one-loop
RGE of k,, and £,z has been highlighted recently in Ref. [123]. In fact, that analysis
claims that such important effect could actually occur, in contradiction with the results
presented in the previous Section. In this Section we show how this contradiction is

resolved.

The analysis in Ref. [123], GJMT in what follows, focuses on a subset of dimension-six

operators, chosen to be Ogp and the two operators
Owsp = g9/ (H'c"H)WS,B" | Oww = ¢*|H*W, W™ (7.5)

which are not included in the basis we have used. The relation to our basis follows from

the two operator identities:

1 1
Op =0up+ ZOWB + ZOBB ; (7.6)

1 1
Ow = Ogw + EOWW + EOWB , (7.7)

which allow us to remove Oww and Ow g in favor of O and Oys. The two operators
Opw and Ogp were also mentioned in Ref. [123], although their effect was not included

in the analysis. To understand the issues involved it will be sufficient to limit the
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operator basis to five operators, with the two bases used being

B, {OBB70B7OW7OHW;OHB} , (thiS WOI‘k) (7.8)
By = {O0BB,Oww,Ows,Onw,Orp}, (GIMT) [123]. (7.9)

In relating both bases we will use primed Wilson coefficients for the GJMT basis
c
Lo=) 450, (7.10)
i

and the dictionary to translate between B; and B is:

/ /
kaw = cpw —4eww ,
/ / /
kup = cyp+4cww —cws)
/ / /
KBB = CptCww —CwB
/
cw = 4CWW s
/ /
CB = 4<CWB — wa) . (711)

From these relations we can directly write the expressions for x., and k,z going from
(7.2) to the GIMT basis:

/ / /
Kyy = CBBtTCww — CwB »

vz = 200Chw — 250Cpp — (Chy — 55)Cyp + Z(CSLIB — Crw) - (7.12)

Let us first note that the operator identities (7.6) and (7.7) show that two operators
of the GJMT basis, Oww and O g, are a mixture of tree-level operators and one-loop
suppressed ones of basis B;. This has the following drawback. Let us suppose that the
operator Oy is generated, for example, by integrating out a heavy SU(2)-triplet gauge
boson (see e.g. Ref. [125]). This operator can be written in the GJIMT basis by using
the identity (7.7), but then the coefficients of the operators Oww, Owp and Ogw
generated in this way will all be correlated. In this particular example, we will have
Cww = Swp = Cgw/4. This is telling us that when using the GJMT basis to study
the physical impact of this scenario we must include the effects of all operators, and not
only a partial list of them, as done in Ref. [123]. Otherwise, one can miss contributions
of the same size that could lead to cancellations. The same argument goes through

for scenarios generating the tree-level operator Op. In general, the correlation of the
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coefficients in the GJMT basis is explicitly shown in the reversed dictionary:

, 1
‘ww = ZCW )

; 1

Cwp = Z(CB +ew)

, 1

Cpp — ZCB + KBB

gw = ow+EKEw ,

yp = cp+rnp . (7.13)

Obviously, physics does not depend on what basis is used, which is a matter of choice,
as long as the full calculation is done in both bases. Reducing, however, the calculations
to a few operators in a given basis can be dangerous as this can leave out important
effects. This is especially true in bases whose operators are a mixture of operators with

Wilson coeflicients of different sizes. For this reason the basis Bj is preferable to Bs.

To explicitly show how this correlation between Wilson coefficients can lead to cancel-
lations in the final result, let us consider a particularly simple example: the calculation
of the radiative corrections to the operators Oww, Ogg and O g proportional to .
This is partly given in the analysis of Ref. [123], apparently showing a one-loop mixing
from tree-level operators to one-loop suppressed ones. As obtained in Ref. [123], the

A-dependent piece of the anomalous-dimension matrix for ¢z, ¢y, ¢y g 1s given by

. n (= 00 .

! = 4 7.14

dlog 1 Cww 1672 0 12X 0 cww | T ( )
wa 0 0 4X Cwa

From (7.12), one obtains the RGE

_dRiyy 4N
T = dlogp 1672

(3Kyy + 2y B) + ..., (7.15)

showing explicitly that the coefficient ¢};, 5, which can be of tree-level size in the GJMT
basis [see (7.13)], affects the running of the one-loop suppressed k... This apparent
contradiction with our previous result is, as expected, resolved by adding the effect of

the operators Ogw and O p in the renormalization of k... We obtain the (A-dependent)

contributions
Wop _ B Sy
dlog it 16m2 A8 dlog 1672 "W dlog 1672 \CHB T CHW ) >

(7.16)
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which change the RGE (7.15) into

2\
Ty = @(6“77 +4cwp — up — uw) - (7.17)

These additional contributions eliminate the possibly sizeable tree-level correction from
¢ - Indeed, using (7.13), we explicitly see that the contributions proportional to cy

and cp cancel out, giving

2
T T 16n2 (6“77 ~RHB — K“HW) ’ (7.18)

leaving behind just corrections from omne-loop suppressed operators. This is not an
accident: this cancellation was expected from our discussion in the previous Section.
Beyond the A-dependent terms we have examined, the same cancellation will necessarily

occur for the rest of the potentially sizeable contributions to 7., identified in Ref. [123].

7.3 Renormalization group equation for k., and k.5

In this Section we use the results of Ref. [123], combined with our results in Sec. 7.1, to
obtain v,,. Let us write the RGEs for the Wilson coefficients in basis B in a compact

way as
/ 5

1672 b 1
leg,u Z ’L,j j (7 9)

]:

The b’ is a 5 x5 anomalous-dimension matrix of which the 3 x 3 submatrix corresponding
to i,j = 1 — 3 (that is, cgg, cyyw ) Was calculated in Ref. [123], while the rest is

unknown. From k., = Z?:l Gic; where ¢; = (1,1,—1,0,0), we have

5
1670y = Y Gilf ¢ (7.20)
i,j=1

Using Eq. (7.13), we can translate this anomalous dimension to our basis. We get
5
167y, = > GV, pprps + b gwkaw + b ypros) (7.21)

=1

1
+ *CBZQ (iws + b pp + 4V yp) + *CWZQ tww + Uws + 40 gw) -
i=1

From our discussion in Sec. 7.1, we know that the tree-level coefficients cg and ¢y do
not appear in this RGE. This means that the two last terms of Eq. (7.21) must be zero,

allowing us to extract the sum of the unknown coefficients b’ i mp and b gw in terms of
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coefficients calculated in Ref. [123]:

5 5 5 5
1 1
Z Cibinp = 1 ZQ( iws + Y BB) Zgib;,HW =1 Z GV ww + biwn) -
i=1 i=1 i=1 =1
(7.22)

Notice that (4 = (5 = 0 is crucial to allow us to restrict the sums in the right-hand-side
to terms that were already calculated in Ref. [123]. Plugging the terms (7.22) back in
(7.21), one gets

5

1 1

1677y, = Z Gi [bé,BB’fBB - Z(bg,WB + b ww ) kEWw — Z(bg,BB + b we)kHB
i=1

(7.23)

Using the coefficients b 11y, b; 1y g and b} g from Ref. [123], one arrives at

3 3
167‘(’2")/,W = [Gyf — 5(392 + g’z) + 12)\:| KBB + {292 — 2/\:| (kapw + KuB) - (7.24)

This expression gives the one-loop leading-log correction to £~ (my). For the resumma-
tion of the log terms we would need the full anomalous-dimension matrix. Nevertheless,

this is not needed for A ~ TeV since the log-terms are not very large.

The size of the contributions of Eq. (7.24) to k,(my) is expected to be of two-loop
order in minimally-coupled theories. Therefore, we have to keep in mind that the tree-
level operators of Eq. (6.4), possibly entering in the RGE of £, at the two-loop level,
could give corrections of the same order. For strongly-coupled theories in which gg ~ 4w,
we could have k; ~ O(1), and the corrections from Eq. (7.24) to h — 4 could be of one-
loop size. Of course, in principle, the initial values x;(A) will give, as Eq. (7.2) shows,
the dominant contribution to h — ~v,7Z and not Eq. (7.24). Nevertheless, it could
well be the case that |[kpp(A)| < 1 and |kgp(A) — kpw(A)| < 1 due to symmetries of
the new-physics sector. For example, if the Higgs is a pseudo-Goldstone boson arising
from a new strong-sector, kpp(A) is protected by a shift symmetry and can only be
generated by loops involving SM couplings, while kgp(A) = kpw(A) ~ g%/(167%)
if the strong sector has an accidental custodial O(4) symmetry 3 [99]. In this case
Eq. (7.24) could give the main correction to the SM decay h — ~7 and could be as large
as AFW/F,SY}\Y/[ ~ g*v?/A?1log(A/my) if gy ~ 4m. Notice also that there can be finite
one-loop corrections to K (my) from the operators (6.4) and (6.5) which can dominate

over those in Eq. (7.24). These were calculated in Ref. [99].

3We have O(4) ~ SU(2)L. x SU(2)r x PLr under which Prr interchange L +> R. Under this Prr
we have cpyw <> cyp. To make the transformation properties under this symmetry more manifest, it is
better to work with Ow g, which is even under Pygr, instead of Opp.
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A similar analysis can be performed for .5, with the simplification that the operator

identities corresponding to Eqs. (7.6) and (7.7) are, for the dual field strengths:

1 1
1 1
OHW + EOWW + ZOWE =0, (7.26)

due to the Bianchi identity. The above equations do not mix tree and loop generated
operators; hence, from the calculation of Ref. [123] with the set {Og5, Oy 47, Oy 5} one
55 O Opwt of
our basis. One arrives at the expected result: 7,5 = dr,5/dlog it is given by the same

can obtain the 7,5 in terms of the coeficients of the operators {O

expression as 7, but with the corresponding CP-odd coefficients instead of the CP-even

ones.

7.4 RGEs for K,z and K.z and a new basis

If we try to obtain the RGE for k7 in the same way as for x.-, we face the complication
that k7 depends not only on g, ¢y and ¢y, but also on ¢y 5 and ¢y, and
these coefficients were not included in the calculation presented in Ref. [123]. In other
words, one would need to calculate the anomalous-dimension matrix elements b;j for
i = {HW,HB} and j = {WW,WB, BB}, or, in our basis, to complete the 3 x 3

anomalous-dimension matrix for kgg, KgW, KIB-

We can circumvent this difficulty by realizing that the operators Oww, Opp and Owp
do not enter in the (one-loop) RGEs for ¢y, and ¢j;p5, so that the matrix elements
required to get 7,z are in fact zero. In order to see this, notice that both Oyy and

Opp include the trilinear pieces (with two Higgses and one gauge boson):

Onw = 2ig(0"H) o (0"H)W2 +--- |
Oup = 2ig'(0"H) (0"H)D,B, +--- (7.27)

" 9 9.9
cvyr cyvll] 00000 A=
, ,0

FIGURE 7.1: The only two diagrams that could give a contribution (at one loop)
from Oww, Opp and Owp (with coefficient generically denoted as cyy: in the
figure) to the renormalization of Ogw and Ogp (or to Ow and Op).
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while Oww, Opp and Ow g have two Higgses and at least two gauge bosons. Therefore,
in order to generate (at one loop) trilinears like those in (7.27), the only possibility is
that one of the two gauge boson legs is attached to the other gauge boson leg or to one
of the Higgs legs (see Fig. 7.1). In the first case (Fig. 7.1, left diagram) it is clear that
the resulting Higgs structure for the operator generated is either |H|? or H f¢?H and not
that in (7.27) (in fact, the diagram is zero). In the second case (Fig. 7.1, right diagram)
the only structures that result are either O*H19"(HB,,,) or O*H 00" (H Wy,), which

give zero after integrating by parts.

We can therefore extract -,z following the same procedure used for 7., in the previous

Section, and we obtain

7 1
1672y, 2 = Kz |6y; + 12X — 592 - 59/2 + (kaw + KuB) [2g2 —3e? — 2\ cos(26,)]
(7.28)
and a similar expression for V7 with the corresponding CP-odd operator coefficients

instead of the CP-even ones.

The arguments we have used to prove that Oww,Opp and Owp do not enter into
the anomalous dimensions of Ogw and Ogp can be applied in exactly the same way
to prove that they do not generate radiatively the operators Oy, and Op which have
exactly the same trilinear structures displayed in Eq. (7.27) for Ogw and Ogp. This
immediately implies that the 5x 5 matrix of anomalous dimensions will be block diagonal

if instead of using the bases in (7.8) and (7.9), we use instead the basis
B3 = {OBBa(QWW7OWBaOWaOB} . (729)

Calling ¢;, &; the operator coeflicients in this basis, we have

RBB kBB
Rww . Rww
dogp | " | T\ 00y X e |
cw cw
éB éB
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Taking the anomalous-dimension matrix in the simple form (7.30) as starting point,

it is a trivial exercise to transform it to other bases. In the GJMT basis one gets

CEBB C,BB
c, . c,
d "/VW d v "/VW (7 31)
c = . c . .
dlogp [ WP Ooxy X we
Caw Caw
B up

The 3 x 3 upper-left block is therefore given by the expression calculated in Ref. [123]:

6y? + 121 — 2¢% + L¢”° 0 3¢2
- 2 2
I'= 62 0 6y7 + 12X — 592 — 3¢/ g ,
2 2
2g' 24> 6y7 + 4\ + %gQ — %g’

(7.32)
while the 2 x 2 lower-right block X has not been fully calculated in the literature. This
lack of knowledge affects also the 3 x 2 block Y, which depends on the entries of X.

In basis B; one gets instead:

KBB KBB
KHW KEW
d b Ose (7.33)
KHB = I RHB ) .
dlog Y X
cw cw
CB CB
where now
6yf+12A7gng%g'2 %g2—2)\ %92—2)\
2 2
=162 0 6y7 + 121 — 39> — 1¢/ g ;
—89’2 9g% — 8\ 6yt2+4)\+392+%g’2

(7.34)
while Y is also dependent on the unknown coefficients of X.* We can reexpress I' in
terms of the physically relevant combinations of coefficients ., and k7 defined in (7.2)

plus the orthogonal combination Kyt = kgw + Kgp. One gets

d Ryy Ky
dlog 11 kyz | =To| kyz ) (7.35)

Rort Kort

where
) 6y? + 121 — 2¢° — 3¢ 0 342 22
°~ 1672 0 6y2 + 120 — Lg% — Lg® 2% —3e2 — 2Xcos(260,) | .
—16¢? —4g? + 4¢" 6y? + 4\ + Hg? + 3g”

(7.36)

“Note that the lower-right block X is exactly the same in all the three bases considered.
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from which we explicitly see that .z does not renormalize k.~ and vice versa.

We have seen that the expression for the anomalous-dimension matrix takes the sim-
plest block-diagonal form in basis Bs. This basis has also the virtue of B; of keep-
ing separated current-current operators from one-loop suppressed ones. Indeed, using
Egs. (7.6) and (7.7), we can reach Bs from Bj by trading two one-loop suppressed op-
erators, Ogw and Ogpg, by other two one-loop suppressed ones, Oww and Owp. In
spite of the fact that the anomalous-dimension matrix gets its simplest form in basis
Bs, there are other advantages in using basis B;. For example, in B; only one operator
contributes to h — 7, while there are three in basis Bs. Also B is a more suitable
basis to describe the low-energy effective theory expected for a pseudo-Goldstone Higgs

boson [99], as it clearly identifies operators invariant under constant shifts H — H + c.

7.5 Dipole operators

The above analysis can be easily extended to include contributions from operators in-
volving SM fermions. We will limit the discussion here to the up-quark sector, having in
mind possible large contributions from the top. The extension to other SM fermions is
straightforward. We organize again the operators as tree-level and one-loop suppressed
ones. Among the first type we have the operators already given in Eq. (6.19), Eq. (7.4),
apart from four-fermion operators. In Sec. 7.1, however, we already showed that they
cannot contribute to the anomalous dimension of the operators (6.6)-(6.11) at the one-
loop level. Among one-loop suppressed operators made with SM fermions, we have the

dipole operators

Opp = yuQLU#VUR ITIQ/B/W >
Opw = y.Qro™ur J“ﬁgWﬁV ,
Opc = yuQro™ T ug HgG, | (7.37)

where T* are the SU(3)¢ generators. These operators can, in principle, give contribu-
tions to other one-loop suppressed operators, as those relevant for h — vv,~vZ. We have

calculated that, indeed, such contributions are nonzero:

1677, = 8ysN.QuRelkps + kpw]
167%v.5 = —8y2N.QuIm[kpp + kpw] ,
1 1
167r2%Z = élyiNC { (2 — 4Qu33]) Relkpp] + <2 + QQu02w> Re[RDW]} ,
1 1
1671.2,)/72 — —4y3NC { <2 — 4Qu8%l)> Im[IiDB] + <2 + 2Quc2w> Im[ﬁDw]} R (738)
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where N, = 3, @, = 2/3 is the electric charge of the up-quark, cg,, = cos(26,,), and
the k; are the one-loop suppressed coefficients of the operators of Eq. (7.37), i.e. 6L =
k;O0;/A% + h.c.. In the B3 basis, Eq. (7.38) arises from

RBB 0 Y+ YR .
Y S _ Ny 1/2 0 oW (7.39)
dlog i ww 1672 kpp ’ '
AWB (Y +YE) —1/2

where Y}' = 1/6 and Y = 2/3 are the up-quark hypercharges. Similar results follow
for the RGE of the Higgs couplings to gluons, kg and k5

167 vce = 4yaRelkpa] ,  16m%y,5 = —4yaIm[kpe] - (7.40)

7.6 The S parameter

As we have shown above, the Wilson coefficients of the current-current operators (6.4)-
(6.5) do not enter in the one-loop RGEs of the k;, but only in their own RGEs. In
particular, the only operators with two Higgs bosons and gauge bosons affected by cy 1
at one loop are Oy and Op and not those relevant for h — vv,~vZ. Indeed, an explicit

calculation gives

dey g5 1 dep g 1
f— _— — —_— == —_ — - . ¢41
w dlog p 1672 3 (crr+er), vm dlog p 1672 3 (crr+er). (T-41)

In the basis B; of Sec. 6.1, these are the only two Wilson coefficients that enter in the
S-parameter [126]. We have S = 4mv?[cw (myz) + cp(mz)]/A? where ey p(mz) is the
value of the coefficient at the Z mass. The contributions from Eq. (7.41) to cw p(mz)
can be sizeable for g > 1 [127], although the value of ¢p is highly constrained from the
T-parameter [99]. The anomalous dimensions vy and yp can also receive corrections
proportional to ¢y, 5, or from one-loop suppressed operators, such as Ogp. Nevertheless
these contributions are not expected to be sizeable. The coefficients ¢y and cp already
contribute at tree-level to S, while the contributions to S from k; are expected to be
small, 6y = O(k;/(1672)). Notice that basis B; makes very clear the separation
between the relevant contributions to S that come from tree-level operators and those

to Ky, which are from one-loop suppressed operators.

In the GJMT basis the contribution to S arises from the operator Oy p and one has
S = 16mv?cly g(mz)/A?. In Ref. [123], a partial calculation of the anomalous dimension
of Owp was given. Nevertheless, if the interest is to calculate the running of ¢}, 5 in

universal theories in which ¢y and cp encode the dominant effects [apart from cp
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whose effects are given in Eq. (7.41)], one also needs, as Eq. (7.13) shows, to include the
effects of ¢y, and ¢y 5 given in Ref. [100, 128]. This is again due to the fact that the

GJMT basis mixes current-current operators with one-loop suppressed ones.

Finally, let us comment on the relation between our basis and one of the most used in
the literature, the one originally given in Ref. [129]. After eliminating redundant opera-
tors, one ends up with 59 independent operators as listed in Ref. [101]. This basis also
keeps separate tree-level operators from one-loop suppressed ones. The set of one-loop
suppressed operators is different from ours though: they use {Oww, Ow s, OWW’ OW E}

instead of our {Ogw,Opp, O Oy5}- The change of basis is given in Egs. (7.6),

HW>
(7.7), (7.25) and (7.26). For the tree-level operators they use the minimal set of 3 op-
erators made of SM bosons, in particular Oy, Op and Og, while the rest of operators
involves SM fermions: those given in Eq. (6.19), Eq. (7.4) and four-fermion operators.
As explained in Appendix A, we can reach this set of operators from our basis by
performing field redefinitions. The basis of Refs. [101, 129] is, however, not very conve-
nient for parametrizing the effects of universal theories. Although only a few operators
parametrize these theories in our basis (see Sec. 6.1), in the basis of Refs. [101, 129] they
require a much larger set of operators. In particular, the two tree-level operators Oy

and Op are written in the basis of Refs. [101, 129] as

2
3 1 1
ewOw  — cwgf2 —§OH+206+§O?J+ZZO£(3) ,
95 7
o g° Loyl viol +vlo/ 7.42
CBB—>CBgQ 2T+QZLL+RRu (7.42)
H
f

where Y]f and Y]{ are the hypercharges of the left and right handed fermions, respectively.
We can see from (7.42) that the Wilson coefficients in the basis of Refs. [101, 129] are
correlated, so that one should include them all in operator analyses of universal theories.
As far as the anomalous-dimension matrix is concerned, the basis of Refs. [101, 129] keeps
also the same block-diagonal form as the basis of Bj, since loop-suppressed operators

{OBB’ OWW7 OWBa 055,0

55 Owivr Ow it do not mix with current-current ones.

7.7 Summary

The h — 7 decay is of special importance because of its clean experimental signature.
In this Chapter we have analysed potential effects of new physics in this decay rate
(together with the closely related one, h — ~Z) following the effective Lagrangian

approach, where one enlarges the SM Lagrangian with a set of dimension-six operators.
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The choice of the operator basis has been crucial to make the calculations simple and
transparent. We have shown the convenience of working in bases that classify operators
in two groups. The first is formed by operators which can arise from tree-level exchange
of heavy states under the assumption of minimal coupling. This group contains operators
that can be written as a product of local currents. A second group contains operators
that are generated, from weakly-coupled renormalizable theories, at the loop-level, and

thus have suppressed coefficients, see Tab. 7.1

The operators relevant for h — v, vZ are, as expected, of the second group, specifi-
cally Opp, Ogw and Ogp and their CP-odd counterparts. We have been interested in

the anomalous dimensions of these operators that can be generically written as

dK;
tor? 00— S, “c@ﬁz% @201,24—2% (7.43)
11

where js = BB, HW, HB, Bg, HW, HB. The main purpose of this Chapter has been to
calculate bj, ;, and bj, ;,. Since the corresponding coefficients ¢;, and ¢;, can be of order
one, the RG evolution can enhance the new-physics effect on k;, by a factor log(A/mp,).
Our main result is that such enhancement is not present, because the corresponding

elements of the anomalous-dimension matrix vanish
bj3,i1 = bj37i2 =0. (7.44)

Therefore, tree-level (current-current) operators do not contribute to the RGEs of the
one-loop suppressed operators relevant for the vy and vZ Higgs decay. The result is
given in Eq. (7.24) (and its CP-odd analog).

We have also obtained the RGEs for kgw and kgp, Eq. (7.33), which affect the
decay h — ~Z, by realizing that the operators Opp, Oww, Owp (used in Ref. [123])
do not renormalize (at one-loop) Ogw, Ogp (nor Ow, Op). Exploiting this fact,
we have further clarified the structure of the anomalous-dimension matrix for these
operators, showing that it takes a particularly simple block-diagonal form in the basis
Bs of Eq. (7.29). The tree-level operators Op and Oy do not mix with the one-loop
operators Oww, Opp, Owp and vice versa, as Eq. (7.30) shows. Enlarging this basis
with dipole-moment operators for the SM fermions, we have further computed the effect

of such dipoles on h — vvy,~vZ.

To conclude, we have discussed how the appropriate choice of operator basis can shed
light on the physical structure behind the renormalization mixing of operators and reveal
hidden simplicities in the structure of the matrix of anomalous dimensions that describes

such mixing. This is an early hint of a surprising structure of the one-loop anomalous
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dimension matrix. We pursue this hint in Part III of this thesis, were we find that the
block diagonal structure presented in this Chapter is rather generic and applies, to a

large extent, to the full Standard Model.
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8. Anomalous dimensions and

Higgs physics

As explained in Chapter 6, out of the 8 CP-even operators that only affect Higgs physics,
5 of them are ”tree-level” operators and 3 are ”one-loop”. The 5 tree-level operators af-
fect directly the Higgs couplings to fermions, the kinetic term of the Higgs and the Higgs
self-couplings. In this Chapter calculate the anomalous dimensions of these 5 operators,
which allow us to describe the renormalization group (RG) evolution of these Wilson
coefficients from the heavy scale A, where they are generated, down to the electroweak-
scale. | We apply these results to find the leading-log corrections to the predictions for
Higgs-couplings in several Beyond the Standard Model (BSM) scenarios: the Minimal
Supersymmetric Standard Model (MSSM), universal theories (such as composite-Higgs
models) and models with a non-standard top. We find that the corrections from this
running can be sizable for A ~ few TeV, and will become more relevant as we have
better measurements of the Higgs couplings. We also calculate the anomalous dimen-
sions of the operators contributing to the S and T parameters and to the Zbb couplings.
The stringent experimental constraints on these quantities can then be translated into

indirect bounds on Higgs operators.

8.1 Running effects from A to My

So far, we have implicitly assumed that the Wilson coefficients were evaluated at the
electroweak scale, at which their effects can be eventually measured. However, partic-
ular UV completions predict the values of those coefficients at the scale A where the
heavy BSM is integrated out. The RG evolution from A down to the electroweak scale,

described by the corresponding anomalous dimensions, can be important in many cases.

'For the other 3 one-loop CP-even operators, as well as for the 3 one-loop CP-odd, the calculation
of the main anomalous dimensions has been given in Refs.[5, 123].
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102 Part II — EFT OF THE PHYSICS AT THE EW SCALE

Our main interest is to calculate the anomalous dimensions of the Wilson coefficients
that can have the largest impact on Higgs physics. As we explained in the previous
Section, these are the coefficients listed in Eq. (6.37). In Ref. [5] we already calculated
the most relevant anomalous dimensions of the x; in Eq. (6.37). We showed that tree-
level Wilson coefficients do not enter, at the one-loop level, in the RGEs of the k;,
a property that allowed us to complete the calculation of Ref. [123] for the anomalous
dimensions relevant for h — v+, Z~. In this Section we extend the analysis by calculating

the anomalous dimensions for the 5 tree-level Wilson coefficients:

{CH>C6aCywcyb>CyT}- (81)

We notice that even in the future, with better measurements of the Higgs couplings, and
then better bounds on the Wilson coefficients of (8.1), we still expect these coefficients
to give the main BSM contributions to Higgs physics, since other Wilson coefficients,

such as ¢y, are expected to receive even stronger constraints from LHC (for a given A).

Generically, the anomalous dimensions are functions of other Wilson coefficients:

N dCZ‘
~ dlogp

Ves = Vci(cj) > (8'2)

where p is the renormalization scale. In the RHS of Eq. (8.2) we keep the ¢; coefficients
that can potentially give the most significant contributions to the RG running. They are
the following. First, those of (8.1) as they have no important experimental constraints
and also are the most relevant in BSM scenarios with g, large. We also keep the Wilson
coefficients of operators involving the top quark, departing from the MFV assumption.
These are OF, OF,, (95-43) * and 0%, in addition to the 4-fermion operators, O%, , (95:82 .
Ol . (’)(Lgl)%t, Oy, O;ﬁ;b, Oy, and Oy, . We have several motivations to keep them.
First, they have no large constraints from experiments. Second, they can induce large
effects on the anomalous dimensions, since they are proportional to the top Yukawa
coupling. Also their Wilson coefficients can be sizable in many BSM models, such as
composite Higgs or supersymmetric theories, as we will discuss. To summarize, we
consider in the RHS of Eq. (8.2) the following Wilson coefficients:
{¢j} = {CH,C6,cyt,cyb,cyT,cL,cR,cf),ctRb,cLL,c(Lsz,CLR,cf}z,cytyb,céf?)/b,cytyﬂc;tyT} ,
(8.3)
where, from now on, we suppress the g3 and ¢ superindices in the coeflicients for sim-

plicity.

We would like to mention that, even for those Wilson coefficients subjected to ex-
perimental constraints, as those discussed in the previous Section, the fact that the

constraints apply to the ratios cha, /A% means that bounds at the percent-level can
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allow for ¢; ~ O(1) if A ~ O(TeV). These coefficients could then also give potentially
non-negligible effects in the v.,. An example of this is cy. Nevertheless, one can still
expect that the dominant effects will be given by the coefficients in Eq. (8.3) since, for

a given A, they can always be larger than cyy.

In addition, we will also extend our calculation of anomalous dimensions to other
Wilson coefficients beyond those in (8.1). These correspond to operators constrained by
the present experimental data, and then their anomalous dimensions can also be useful

to derive indirect bounds on the coefficients of Eq. (8.3). 2

The anomalous dimensions presented below correspond to the basis of Tab. 6.1 and
Tab. 6.2, after using the five redundancies to eliminate the operators {O (’)(L3)l, O%r>
(92 I Og])%d}. Nevertheless, removing or not these five operators and keeping the redun-

dancy would not change our results (see Appendix B for more details).

8.1.1 Anomalous dimensions of operators relevant for Higgs physics

We present here the anomalous dimensions for the Wilson coefficients in 8.1, the ones
expected to dominate deviations in Higgs physics, including the effects from the Wilson

coefficients in Eq. (8.3). They are given by

3
1672, = [4Ncyt2 + 240 — 2 (3¢% + 29’2)} ci + 12Ng2c® | (8.4)
3
16729y, = 6 [Ncyf + 18X\ — 1(392 + 9’2)} Ace + 2(40\ — 3¢%) Aen
—16N A2 + 8NyZ (A — y2)ey, | (8.5)
3 3
167°7e,, = [(4Nc +9)y; + 24X = (3¢ + 9’2)} Cyy + <3y? +2) - 292> cn
+(2y2 +4X —3¢% — ¢ Der — 2(y2 + 27+ 2¢%)cr
FA(=Nag? + 33+ ¢ +8(y2 — ) [cLR + CFcf}%} , (8.6)
3 3
t6rt,, = (20 + 00 + 200 = 265+ e+ (2= 362 e

+(2N, = Dydey, + 200+ g)er +2[(3 = 2Ny} + 6 + 9%

2
Y 2 3 9\ w
—47= 2\ — —
g2 (yt + 2.9 > CR

*

2
Y
#2500 0f) 2N+ 1) ey, + Crelf), | (8.7)

2Other anomalous dimensions were calculated in Refs. [100, 128].
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3 3
167T2fyCyT = 2Ncyt2 + 24\ — 5(392 + 9/2)] Cy, + (2>\ — 292> cy + 2Ncyt2[cyt - 2C(L3)]
yt2 2
/
255 Ne(A = 7)) (2¢yey, + Cpy,) (88)

*

where N, = 3 is the number of colors and Cr = (N2 —1)/(2N,). Parametrically one has
Yei ~ gjzcj/167r2 and we only keep 9]2- = {y2,¢%,¢% ¢, \}, dropping 9]2- = {y2,v3,..}.
We remark that, to calculate these anomalous dimensions, one has to take into account
that redundant operators removed from our operator basis are nevertheless generated
through renormalization at the one-loop level. For details about how to deal with this
effect, see Appendices A and B. The need to care about such effect also means that the

RGEs depend on the choice of redundant operators (i.e. on the basis).

Let us make a quantitative analysis of the size of these radiative effects. Working at

one-loop leading log order,
A
ci(Mt) = CZ(A) — Ye; IOg ﬁ ) (89)
t

which is enough if we take A ~ 2 TeV as UV scale and M; as electroweak scale, we obtain

the following radiative modifications of the Wilson coefficients, Ac; = ¢;(M¢)—c¢;(2 TeV):

Acy = —017cy —0.49¢P (8.10)
Axcg = —0.36Acg — 0.015cy +0.082c4Y +0.244 ¢y, |
Acy, = —0.30¢y, —0.035cy —0.013¢cg +0.043 ¢, +0.13¢8Y — 0,093 cpp —0.12¢%), |
Acy, = —0.12¢,, — 0.068¢,, + 0.0060 cr — 0.012cf, + 0.054 ¢t + 0.027 ¢/8 /g

+(0.16 ¢y,y, +0.027¢) ) /g2,
Ac,, = —0.096¢,, —0.081¢,, +0.0060 cy + 0.16 ¢ + (0.012¢,,, +0.061¢,,, )/

We see that in a few cases, the numerical impact of operator mixing can be significant,

like the mixing of c(L?’) into cp; Acg and ¢y, into Acg; and ¢, into itself.

8.1.2 Anomalous dimensions of constrained operators

Other interesting anomalous dimensions to calculate correspond to operators that are

at present constrained by experiments. Here we present those of ¢p, cg, ¢y, and for the
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top quark, cg, cr,, and cf):

3
167%y, = §gl2cH + 4N y?(cr —c1) , (8.11)
2 _ 2> g2 (o2l 2 2 p
1679, = 204+ NeJy; —99" = 597 | cr —4(Ne+ 1) (47 — 59" ) crr
2 L )2 2 (1
H2Ne (v + 597 Jeor+2y; | gen —cen) (8.12)
7 1
167r2%L = [2(2 + Nc)yt2 —9¢% — 39’2] cr, + 2 <yf + 99'2> [(2]\70 + Vepr + C’Fcfﬂ
2 2 2 2 (1 (3)
—2Ne{yi — 59" JeLr —yi | gen ter+9ep” | (8.13)
2 _ 2 16 o 2| 3) 2 1, (8)
16y, = |20+ NeJyy — 59" =397 | cp” —=2{9i — 397 ) |cee +Cr ¢
1
+u7 <4CH - 30L> : (8.14)
1
16756y, = 50: [16Nccf’) —~ CH} : (8.15)
2, _ 1.8 _
167%y., = 59« 3NC (2cp +cr) —cm| - (8.16)

From them we can calculate the leading-log corrections to cg +cw, cr and cp + C(LS) that
are highly constrained by S, T" and the Zbb-coupling, as has been discussed in Sec. 6.3.
In this way, coefficients that are more loosely constrained by direct processes, such as

¢, ¢ or cg, can get indirect bounds from LEP1 and TeVatron measurements.

Integrating the RGEs of (8.16), at the one-loop leading-log order, between the cutoff

scale A = 2 TeV and the electroweak scale, that we take here as M;, one gets *

AT = Acpé =[-0.003cy +0.16 (cf, — cr)] €, (8.17)
M2
AS = Alep+ew) =5 = |0.00Ler — 0.01cg — 0.004cr — 0.03 cf’)} ¢, (8.18)
5gbL Aler, + 0(3)] 3
Az L ~ A ) 8.19
P2 T (2/3) s oy o = Aler Tl (8.19)

= [0.01¢r—0.03c, +0.06c —0.17cpp — 0.0064 ) +0.08 cLR} £,

where Ac; = ¢;(M;) — ¢;(2 TeV) and recall that ¢ = g2v?/A2%. Notice that even if a Ppp
symmetry of the BSM sector enforces ¢y, + c(LS) = 0, we can have a nonzero cj, + cg’)
from the RG running, since the SM does not respect this parity. The fact that the three

quantities above are constrained at the per-mille level implies that the top coefficients,

3The effects of cg and those of cr,r on T were already calculated in Ref. [127] and Ref. [130]
respectively.
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{¢L,¢R,...} x & cannot be of order one. Obviously, we are barring the possibility of
cancellations between the initial value of the Wilson coefficients at the scale A and the

radiative effects ~ ., log(A/M,), that could only be possible by accident.

8.2 RGE impact on the predictions of Wilson coefficients

Here we want to study the impact of the evolution of the Wilson coefficients from the
UV scale A down to the electroweak scale at which they affect Higgs physics. This run-
ning can modify the predictions arising from BSM models. We present three examples:
two-Higgs doublet models (2HDM), universal theories, and scenarios with sizeable ¢y, g,

such as composite-top models.

2HDM and Supersymmetric theories: At tree-level, assuming ordinary R-parity,
the only d = 6 operators that can be induced in supersymmetric models arise from the
exchange of the extra Higgses since these are the only R-even heavy fields. In particular,
the MSSM contains an extra heavy Higgs doublet. It is therefore well motivated to look
for the impact of an extra heavy Higgs doublet in SM Higgs physics.

Denoting the heavy Higgs by H’, defined to have Yy = 1/2, its relevant couplings to
the SM fermions and Higgs are given by

L = —ouyuQrH' ur — agyQrH'dr — aeyel H'ep — )\’H’TH|H\2 + h.c.+---, (8.20)
0.00
007}
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FIGURE 8.1: Relative modification of the Higgs coupling to fermions, 6gnss/gnrs =

—cy&, Eq. (6.26), at tree-level (dashed line) and after including RGE effects from A

to the electroweak scale (solid lines) as a function of tan 8 in an MSSM scenario with

A = My = 600 GeV and unmized stops heavy enough to reproduce my = 125 GeV.

Left plot: top coupling. Right plot: bottom (lower solid line) and tau (upper solid line)
couplings.
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where o, 4. are constants and we assume that A’ is a real number. In particular 2HDMs,

these constants are

Qy = Qg =, =tanf , for type-I1 2HDM (8.21)
ay =—cotf, ag=a.=tanf, for type-Il 2HDM (MSSM)  (8.22)

where tan 8 defines the rotation from the original basis, in which only one Higgs couples
to a given type of fermion, to the mass-eigenstate basis before EWSB. At the order we
work (~ v?/A?), tan 3 coincides with that defined in the MSSM. Integrating out the
heavy doublet at tree-level, we obtain the following nonzero coefficients for the third-

family d = 6 operators:

2 / 2 ! 2 / 2 2
GiCyr = N, giCy, = N, GiCy, = Qr N, gidcg = N7,

2 (8)

) 5 (8.23)
9xCrp = 2NGLCLR = —OGY; ,  Cyyy = QtQpy ,  Cypy, = Q0L .

We have used (Qrtr)(trQr) = —(QrT QL) ((RT vutr) — (QLY*Qr) (ERutr)/(2Ne)
and now A = Mpy:. Under the RGE flow of Eqgs. (8.6)-(8.8) the operators O,, mix with
Orr, 028])%, Oyuyy and Oy, .. In the type-II 2HDM, we obtain in the one-loop leading-log

approximation and neglecting O(), g%, ¢’ 2) corrections:

N 21y? . My 3y My
2 t H Ye H
= —|1- 1 1
gy () tg [ 1672 8 mp, ] * 47721% °8 mp
2 2 /
2 ’ Y MH’ Yy A 2 MH’
= ANitg|1l— =51 5— — 14y; |1
9y (mn) B[ on2 08 mh] 1672 [ tg yt] ©8 mpy
3y? . My 3y [N My
2 ! t t 2
= ANig|1l—-=51 — | — —2yf|1 8.24
9+Cy, (mh) B |: 871'2 0g mp :| + 87'['2 tﬁ Y | 108 mp ’ ( )

with £g = tan (3.

To illustrate the impact of these radiative effects, let us consider the MSSM, a model
which predicts N = (1/8)(g% + ¢'*) sin4f3 at tree-level (see for instance Ref. [131]). We
take the stop mass scale M; large enough to get my, ~ 125 GeV through the well-known
loop corrections to the Higgs quartic coupling, which at one-loop and zero stop mixing

read:

1
Amn) = 26" + ¢ cos® 26 +

2
Mz

3y
5 log Mz

167

(8.25)

which is precise enough for our illustrative purposes. For consistency we must also

include similar radiative corrections to X', which read at one-loop:

2
3y} i

1 .
82ty ° M2,

N (M) = Lg% + g% s 4 — (8.26)
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FIGURE 8.2:  Lower bound on My as a function of the upper bound on the relative

deviation 0gnpp/gnep, in an MSSM scenario with tan 8 = 5 and unmized stops heavy

enough to reproduce my, = 125 GeV. The dashed line corresponds to a tree-level analysis

(parameters calculated at the scale My ), while the solid line includes the RG running
from Mg down to my,.

This gives the value of X’ that we can then plug in Eq. (8.24) to obtain the RG-improved
corrections for gps; induced by integrating out the heavy Higgses. The result is shown
as a function of tg in Fig. 8.1, which compares the tree-level result (dashed lines) and
the one-loop result (solid lines) which takes into account the running from A = My
down to the electroweak scale myp. One sees that the effect of the running can be
quite significant, easily ~ 50% or more. The importance of this effect can be further
appreciated in Fig. 8.2, which shows the lower bound one could set on My from an
upper bound on 0gxpy/gri, the deviation of gpp, from its SM value. By comparing the
tree-level bound (dashed line) and the one-loop bound (solid line) one sees that the

bound is shifted significantly by the inclusion of the RG corrections from My to my,.

Finally, notice that ¢, which is not generated in the MSSM at tree-level since there
are no heavy R-even singlet states, is not generated by the RGE evolution and therefore

is also zero in the leading-log approximation.

Universal theories and composite Higgs models: Universal theories predict c,, =
Cy, = Cy.. This prediction is modified by the evolution of these coefficients from the scale
A, where they are generated, down to the electroweak scale. In particular, for A = 2

TeV, we find that the breaking of universality due to the top Yukawa coupling gives

87 A 3yPcy A

ey (mp) = ¢y, (mp) (1 - 16;21 mh) - 1é7r2 1ogm—h ~ 0.88¢y, (my) — 0.05¢cq
vi A

ey, (mp) = ¢y (mp) <1 ~ 162 log mh> ~ 0.98¢,, (m4) - (8.27)
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This is a sizeable departure from universality for ¢y, that will have to be taken into
account when fitting these models to data. Also it is worth noticing that in models in
which only cp is generated (models with only heavy singlets) and ¢, +(A) = 0, the value
of ¢y, is also very small at low-energies, ¢, (mp) =~ 0. In the minimal composite Higgs
model, we also have the prediction ¢y = 1 [99]. We find that the RG effects give a
~ 20% reduction of this prediction for A ~ 2 TeV.

Models with a non-SM top: The top is the only quark whose properties are not yet
measured with high precision, allowing then sizeable deviations from their SM predicted
values. There are also theoretical motivations to expect the top to be the quark with the
largest deviations from the SM predictions, as it is the quark with the largest coupling
to the Higgs. This is specially true in composite Higgs models where one expects the top
to show also certain degree of compositeness. In these examples we can expect sizeable
values for cp, CS’), cr, and ¢y, g that can affect, at the one loop-level, the Higgs coeflicients
cy and cy,. As it is clear from Eq. (8.10) the effects of cg on the RGE evolution of cy
(3)

and ¢, are very small. Nevertheless, those from ¢~ and ¢y, are quite sizeable, even in
the limit ¢y, ~ —C(L3) as required in order to avoid large tree-level contributions to Zbb.
Unfortunately these coefficients also give large one-loop effects to the T' and S parameters
and Zbb, as Egs. (8.17)-(8.19) show, and this bounds them to be small (unless ¢ is small).
Interestingly, the coefficient cg)% is not constrained by Eqgs. (8.17)-(8.19). Therefore it
can give sizeable contributions to the RGE evolution of c,,:

2y2 8 A
€y (mn) = ey, (A) = 3 Gefplog = (8.28)

that is of order ~ 15%, assuming 0528})% ~ 1. A nonzero C(;])% could arise from integrating

out a massive gluon coupled to the top.

8.3 Summary

We have calculated the anomalous dimensions of the 5 tree-level operators of the list
Eq. (6.37), which allows us to calculate the running of the coefficients from the high-
energy scale A where they are generated down to the electroweak scale. All technical
details of these calculations are discussed in Appendix B. Since the S and T parameters,
and the Zbb coupling are very well constrained, we have also calculated the anomalous
dimension of the operators contributing to these quantities. In this way, we can put

indirect bounds on Higgs operators.
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We have applied our results to BSM models such as the MSSM, universal theories (as
composite Higgs models) and models with non-standard top couplings. In such models
we have evaluated the leading-log corrections to the predictions for the Higgs couplings.
The corrections from the running can be quite large for A ~ few TeV, as Fig. 8.2 shows.
Our calculation of the anomalous dimensions is an aspect of the physics of the d = 6
operators which will become more relevant when we have better measurements of the

Higgs couplings.

110



9. Interplay between Higgs and

Electroweak observables

In this Chapter we discuss the anomalous dimension matrix of a set of 13 dimension-six
(dim-6) operators composed only of gauge bosons and Higgs fields and estimate the
impact of these RG mixing effects on experimental measurements. ' To be completely
general about the possible new physics scenarios one would need to compute the anoma-
lous dimension matrix for all the 59 dimension-six operators (the number of independent
operators for one generation of fermions [101, 129]). A given set of experimental observ-
ables, however, receives contributions only from a subset of these operators. The dim-6
operators we are focussing our attention on is a particularly interesting subset as they
capture most of the possible deformations of the electroweak sector studied at LEP (i.e.,
electroweak precision tests and triple gauge couplings) and of the Higgs sector being
currently studied at the LHC. At the same time, these operators are among the most

important ones generated by universal new physics theories. 2

The Wilson coefficients of the dim-6 operators studied in this Chapter have been
constrained at different levels of precision. In particular, the ones contributing to LEP
electroweak precision observables have been measured at the per mille level, whereas
those parametrizing triple gauge couplings (TGC) and Higgs coupling data have been
measured at most at the percent level. This hierarchy in the size of constraints means
that, despite the one loop factor, the RG contributions of a weakly constrained coupling
to a strongly constrained one can be of the same order as, or even larger than, the
bound on the strongly constrained coefficient. This means that the RG-mixing effects of
such weakly constrained Wilson coefficients can be measured/constrained by precision
measurements of other couplings to which experiments are more sensitive. Indeed, we
find interesting instances of coefficients which receive stronger bounds from the RG

mixing than from the direct tree-level constraint. For example, we show that the Wilson

!Some elements of the anomalous dimension matrix have been previously calculated in the literature,
see the discussion of the preceding Chapters and Refs. [5, 6, 100, 123, 127, 128, 132-136].

2By universal theories we mean theories in which the BSM sector is flavour universal and in addition
any new vector state couples to fermions via the SM SU(2)xU(1) currents, see for instance Ref. [106].
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coefficients parametrizing deviations in some of the anomalous TGC observables and
the correction to the Higgs kinetic term ¢y receive a stronger bound via their RG-
mixing contribution to the electroweak parameters 5’, T, W, Y and I'_,,, than the

direct constraint.

The dimension-six operator basis

We work in the basis defined in Chapter 6, up to a slight rotation (to be defined below)
that is motivated by the physics we are interested in: EW observables, Higgs couplings
to gauge bosons and QCD observables involving gluons only and the relations among
each other as imposed from the running between the scale of new physics to the weak
scale. These include the four electroweak oblique pseudo-observables S’, ’f, W and Y,
the three triple gauge coupling observables g7, ky and A, the Higgs couplings to vector
bosons, the gluon oblique parameter Z [106] and the anomalous triple gluon coupling

parameter ¢z. We describe these observables in more detail in Sec. 9.2.2 and Sec. 9.3.

We have not included the Higgs decays to fermions in our list of observables. The only
further dim-6 operators contributing to such observables are the operators O, ,O,, and
Oy, , defined in Chapter 6, whose RG effects have been discussed in Chapter 8. These
are weakly constrained operators and new RG-induced constraints can be derived only

if they contribute to the running of more strongly constrained operators. In Chapter 8

On = L(0#|H|?)? Or = L(HTD,H)

Og = N H| O = %(HWSNH)DVW;V
Op = L (HIDFH)Y B,y Ogw = —L(DHW,)2

Oop = —3(9"Bu)? Oy = —3(DFGH,)?

Opp = g*|H|* B, B" Owp = gg'H'o" HW, B
Oww = g*|H|*Wg,Werv Oce = g2 |H G}, G4

1 1 A B
Osw = ﬁgﬁachﬁVWzépWCW Osc = 319sfapcGy, VGVPGCW

TABLE 9.1: 14 CP-even operators made of SM bosons. The operators have

been grouped in two different categories corresponding to operators of the form

(SM current) X (SM current) (first group) and operators which are not products of SM
currents (bottom group).
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we have shown that there is no such contribution and therefore we do not include these

operators in our analysis.

The bosonic operators of the basis used in this Chapter is defined in Tab. 9.1. The

only difference with respect to Chapter 6 is the set of operators

{Ow, 0B, Oww,Owg,Opg} (9.1)

that is in one-to-one correspondence with

{OW70370HW7OH370BB} 5 (92)

of Chapter 6. The advantage of the choice made, Eq. (9.1), is that the anomalous
dimension matrix of the sector {Op, Ow} x{Opp, Ownr, Oww} is block diagonal, see
Chapter 7. Eq. (9.1) is also in one-to-one correspondence with the operators used in

Ref. [100]
{Onw,Oup, Oww,Ows,OBRB} - (9.3)

The four precision parameters S , T, W and Y, which in our basis are parametrized
by four bosonic dim-6 operators, as we show in Sec. 9.2.2, are sufficient to describe
all possible dim-6 contributions to the eTe™ — fT f~ observables at LEP1 and LEP2,
only in the limit of universal new physics. As explained in Chapter 6, to be completely
general about possible new physics scenarios it would be necessary to include two more

operators that contribute to the ete™ — f* f~ experiment [6, 108]:
<> _ — —
Op = (iH'D,H)(LA"Ly) , Opf = (Lo Lp)(Lio™ L), (94)

where the former affects the SM coupling of the Z boson to the left-handed leptons,
and the latter affects the measurement of G (recall that the super-indices denote the
fermion family). There are enough measurements to simultaneously constrain all six
operators at the per mille level [137]. The RG contributions of {Oy, Oii} to the other
operators has been discussed in Chapter 8. In this Chapter we do not study the possible
RG-contributions of the operators of Tab. 9.1 to {Op, Oiz} Such RG-contributions
could be used to impose some bounds on the weakly constrained operators of Tab. 9.1
since {Or, (’)ii} are constrained at the per-mil level. Such an analysis would require
computing many more elements of the full anomalous dimension matrix as well as en-
larging the list of observables under consideration; this analysis would be interesting but

beyond the scope of the present thesis.

Let us stress that the physics of the operators discussed in this Chapter is self-

contained in the following sense. We have identified a set of particularly interesting
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observables and its corresponding independent set of operators. We compute the RG
equations by working out the (off-shell) effective Lagrangian. Then, operators not in-
cluded in the basis are radiatively generated and redefined back to our basis at the end

of the calculation, see Appendinx D for a more detailed discussion.

9.1 One-loop scaling of EW and Higgs operators

In general, quantum effects mix all the operators among themselves when going from
the scale of new physics down to the scale at which the experimental measurements
are performed. However, the 3 operators with gluons, Ogg, O2¢ and Oz, constitute a
separate sector that does not mix with the other 11 bosonic operators at one-loop. ® So,
even if Ogg affects Higgs physics by controlling the dominant production mode of the
Higgs boson at the LHC, it can be treated separately from the 3 other Higgs observables
we are interested in here. Furthermore since the Higgs self-interactions have not been
measured yet, and since Og does not enter into the anomalous dimensions of any dim-6
operator other than itself, it can also be omitted from our analysis. For the Higgs- and
EW-sector RG study, we can thus restrict the analysis to the following set of 10 dim-6
operators

{On,07,08, 0w, 025, 02w, Opg, Oww, Owr, Osw} , (9.5)

and compute the corresponding anomalous dimension matrix. We include all the one-

loop contributions proportional to ¢; that depend on

{9/7 g, Gs, )\7 yt} 9 (96)

where ¢', g and g5 are the respective U(1)y, SU(2)r and SU(3). gauge couplings, A is the
Higgs quartic coupling and ¥, is the Yukawa coupling of the top quark. I.e. we neglect
the contributions proportional to the Yukawas of the light fermions (yp/y: ~ 0.02, where
yp 18 the bottom quark Yukawa).

As in the previous Chapter, we regularized the loop integrals using dimensional reg-
ularisation and used MS subtraction scheme. We performed the computation in the
unbroken phase of the SM and in the background field gauge, with the gauge fixing

term
rofo— _i

% (D,QA>5AW)2 , (9.7)

3The only exception is a contribution from Ozp to the RG of Oa¢, see Tab. 9.7. This mixing, however,
is phenomenologically not very relevant since the Wilson coefficient of Oz p is strongly constrained, as we
show in Sec. 9.2.2. In Sec. 9.3 we present the anomalous dimension of the three operators with gluons.
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where A = {0B,0W,0G} is the quantum field with respect to which the dim > 4
SM action is path-integrated and DLA) is the covariant derivative with respect to the
corresponding background field A = {B, W, G}. A difference with respect to the previous
Chapters is that we performed the calculations with arbitrary gauge fixing parameters
&a. In Tab. 9.2-9.3, we give the one-loop anomalous dimensions of the operators of

Eq. (9.5), in the basis defined in Sec. 9. We recall that

dCZ'
dlogp

Ve, = 1672 (9.8)

As we have found in Chapter 8, upon computing the effective action we find counter-
terms which correspond to dim-6 operators that are not in our basis (the computation
does not know our choice of basis). These radiatively-generated redundant operators
need to be redefined into operators present in our basis. Upon redefinition, these re-
dundant operators contribute to the anomalous dimensions of the operators in our basis
at the same order as other direct contributions coming from one-particle-irreducible
graphs. For details on the radiatively generated operators and how we deal with the
redundant ones, see Appendix D. The matrices of Tabs. 9.2-9.3 already contain these
indirect effects and the physics can be read straightforwardly by inserting those coef-
ficients in tree-level processes. As a consequence of the Nielsen identity, the effective
action evaluated on-shell (or equivalently redefining away redundant operators) is gauge
invariant and indeed we have checked that the results of Tabs. 9.2-9.3 are independent

of the gauge fixing parameters {4 of Eq. (9.7).

Apart from gauge invariance, there is another non-trivial consistency check that we
have performed. The current-current operators in the left box of Tab. 9.1 can be related
to each other and to other current-current operators containing fermions by using the

SM EoM, or equivalently by carrying out field redefinitions. In a hypothetical theory

CH cT
Ye 997 —3g/2 + 24X + 1297 —9g2 + 242 + 12X
Ye 342 997 +12) +12y7
v -3 -3
Ve 3 -3
other ~.’s 0 or O(y;) 0 or O(y;)

TABLE 9.2: Anomalous dimension matrixz for the Wilson coefficients of the dim-6
bosonic operators, in the basis defined in Sec. 9, See Tab. 9.3 for the rest of anomalous
dimenstons.
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without fermions

4

, some contributions of the operators in the left box of Tab. 9.1

would vanish using the EoM, i.e. they would form an over-complete set of operators.

This would also imply relationships between independently computed entries in the

anomalous dimension matrix or, in other words, the anomalous dimensions of this over-

complete set are invariant under changes in the field coordinates that respect the SM

gauge symmetries. Our matrix passes this consistency check as we shall discuss in detail

in Appendix D.3.

cp cw C2B Cow
Ye —%g’Q (g'? — 2¢%) — 6)g? %g2(2g’2 —g%) — 36)g? —%9'4 +3g"22 %94 + %929'2 + 18Ag?
e _29/292 _ 6)\9/2 _291292 3914 + 291292 + 3)\912 %g'ng
. st s %92 -4
" g 4?4007 (%) B+ 37
Ye —39"7 0 g2 0
e 0 0 0 0
ewn 0 0 0 0
e 0 0 0
e 0 0 0 0
CBB cww CWB C3W
e 0 0 0 0
e 0 0 0 0
e 0 0 0 0
Ve 0 0 0 0
e 0 0 0 0
e 0 0 0 0
Ye 2 — 9% 4 6y? + 121 0 32 0
Y 2¢' 29° -4+ % +6y7 + 4 -4
Ye 0 0 0 E

TABLE 9.3: Anomalous dimension matriz for the Wilson coefficients of the dim-6
bosonic operators, in the basis defined in Sec. 9, see Tab. 9.2 for the rest of anomalous
dimensions.

4The anomalous dimension matrix of this fermionless theory is related, though not equal, to the
anomalous dimension matrix we have computed, that is why considering this hypothetical theory pro-
vides a non-trivial test of our computation.
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9.2 RG-induced contraints on EW and Higgs observables

In this Section we discuss the possibility to use the RGE’s to derive constraints on the
Wilson coefficients at the weak scale by requiring that none of the RG contributions to
these weak-scale Wilson coefficients exceeds the direct bounds [100]. Since the RGE’s
mix various operators, it becomes possible to put tight constraints on operators loosely
constrained by direct measurements via their RG contributions to more severely con-
strained operators. Then, in Sec. 9.2.2, we apply our method and use EW precision data,
triple gauge couplings measurements and Higgs data to derive RG-induced bounds on

the set of 10 observables we are interested in.

Renormalizing, order by order, the effective action, the logarithmically divergent terms
computed in the previous Section are absorbed in the definition of the renormalized Wil-
son coefficients. Allowing for arbitrary cancellations in the definition of the renormalized
coefficients renders the 1-loop effects small and the indirect bounds which can be ob-
tained in this way are quite weak [138] and not competitive with direct bounds from
Higgs physics and anomalous TGC measurements. We follow a different approach, al-
ready outlined in Ref. [100]. We are interested in obtaining indirect bounds on the UV
value of the Wilson coefficients from low-energy experiments, in this case the 1-loop
effect is enhanced by ~ log A/mp. Moreover, we assume that no tuned cancellations
(or correlations) are present in the definition of the renormalized coefficients and require
each log-divergent term not to exceed the direct bounds. In this way, our indirect bounds
are much stronger than in Ref. [138] and, more importantly, they are useful in order to
obtain insight into the UV physics. In fact, if any of our RG-induced bounds would be
violated by a direct measurement this would imply a particular pattern of cancellation

(or correlation) in the UV dynamics.

9.2.1 How much fine-tuning is needed to accommodate the data?

The electroweak and Higgs observables we are interested in (specified in Sec. 9.2.2)
receive contributions from a particular linear combination of Wilson coefficients, suitably

multiplied by the SM couplings:
(ObS)Z’ = Kj t Wwiicj = K + G — 5(ObS)7, =¢, (99)

where k; is the SM contribution, the ¢;’s are the Wilson coefficients and w;; is a matrix
containing the SM couplings and ratios of scales (w ~ O(m?,/A?)). We defined ¢
as the linear combinations of the Wilson coefficients which contribute directly to each

observable (obs); and we shall refer to them in the following as observable couplings, with
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a slight abuse of language. If the new combinations ¢; are independent, this corresponds
to a change of basis such that to each operator corresponds an observable; we shall call

this the observable basis.

As an example, consider the process h — vZ which receives a contribution from the
SM (in this case at one loop) as well as a direct contribution from a linear combination
of the dim-6 operators. We parametrize this contribution with the observable coupling
¢yz, to be defined in Eq. (9.25), which is related to the Wilson coefficients of our basis
as (cg,, = cosfy and sg,, = sinfy where 6y is the mixing angle)

miy

Cyz = A2 (2C§WCWW — 233WCBB — (cgw — sgw)cWB) . (9.10)

The above relation defines the coefficients w,z ; for this particular observable.

Now, suppose that this set of observables receives lower and upper bounds from

experimental measurements:
5(0bs)i|mh = él(mh) = wij(mh)cj(mh) S [Eéow,E?p] . (9.11)

The observable coupling ¢;(my,) (constrained at low energy) is related, through the
running, to the high-scale value of the Wilson coefficients c;(A), which is not directly
known since it is determined by the BSM degrees of freedom that have been integrated
out. The matrix w;;j(my) also runs with the scale (in the example of Eq. (9.10) this
would be the running of g, ¢’ and v inside my and 6y ), however we are not interested
in such a running because w;; is determined by measurements performed at the EW
scale and because, for the purpose of this work, we are not interested in the UV value of
the SM couplings. This is the reason why we have not taken care of the contributions of
the dim-6 operators on the SM couplings, parametrized by x; in Eq. (9.9), which would

only be necessary if we wanted to relate w;j(my) to w;;j(A) at the order we are working.

This discussion leads us to define the scale-dependent observable couplings as

&i(p) = wij(mn)e; () (9.12)
obtaining
R R 1 .. A
5(obs)i|mh = Ci(mh) = Cl(A) - 7167‘_2’}/1']'0]'(1\) 10g (mh) y (913)
where
Fij = wik(mp) v wp; ' (m) (9.14)

and vy is the matrix computed in the previous Section. Our interest in Eq. (9.13) is

twofold: we want to find instances where a less constrained operator can mix with a
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more constrained one by appearing in its RGE’s and secondly (but closely related), to
learn about the new degrees of freedom at the matching scale. In the following we shall
work at leading-log order, which is fine if the hierarchy between the new physics scale

A and the EW scale is not too big.

The fundamental assumption we make in order to obtain an indirect constrain on
the ¢;(my,) through the RG is that we require each term in the sum on the r.h.s. of
Eq. (9.13), proportional to some coefficient ¢;, to be contained in the experimental

intervals associated to the observable §(0bs);|m,,:

(1 —6)é(A) € [, €], (9.15)

T ’
1 A
167 2%ch(mh) log <mh> € [eéow’ &', (9.16)

where we defined §; = 4;;/(167%)log(A/my) and in the last line the index 7 is not
summed over.” We have also used the fact that substituting é;(A) for ¢;(my,) in the
4;;¢; term of Eq. (9.13) amounts to corrections O ((4r)~*log®(A/my)) that are beyond
our precision (the same is true for the evaluation of ~;;). Notice that this assumption is
not only a requirement of the absence of fine-tuning but also an hypothesis on the UV
physics, since particular relations, due to symmetry or dynamical accidents, between
those combinations could be generically found when considering a BSM theory. From
our bottom-up approach we parametrize also this absence of correlations as an absence

of tuning. From Eq. (9.15) we can put bounds on the matching-scale Wilson coefficients
cj(A):

ci(A) € D (1—6)  wite Z (1-6) 'wy;'e?| . (9.17)

i

Notice that, as expected these bounds grow quadratically weaker with the increase of
the UV scale A since w™! ~ A%/m%,. Using Eq. (9.16), instead, we can put an RG-
induced bound on the observable §(obs);|,,, using the direct constraints on 6(0bs);|m,, ,
Eq. (9.11):

A 167T2 2 \—1 up low
if %35 >0 6(0bs)jlm, € m(’ﬁj) [—&" —a™],

9.18
e oA 167 2 1r low _up ( )
if %5 <0: 6(0bs)jlm, € m(%) [ €]

The indirect bounds in Eq. (9.18), grow logarithmically stronger with the increase of the
UV scale A. However, since the expected effects from new physics decrease quadratically
with A, assuming order one coefficients ¢;, even if the RG-induced bounds on the observ-

ables become slightly stronger, their power in investigating the UV degrees of freedom

5In the following we shall denote with a hat all repeated indices not summed over.
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120 Part II — EFT OF THE PHYSICS AT THE EW SCALE

becomes much weaker for higher values of A, as is clear from Eq. (9.17). It might seem
that these bounds are not significant because of the loop factor in the above equation;
all the €’s are, however, not of the same order and if [¢”*""F| < |e§0w’“p |, the bound
in the above equation can be stronger than the direct bound on §(obs);|m,, in spite
of the loop factor. The RG-induced bounds are, thus, significant only when a weakly

constrained coupling appears in the RGE of a strongly coupled one.

Once new physics effects will, hopefully, be observed and the constraints of Eq. (9.11)
will not include the zero value in the allowed interval (0 < €l < |§(0bs)i|m, < €;T),
another interesting information that could be extracted from RG effects is a quantifica-
tion of how much tuned, among themselves, are the electroweak and Higgs observables.

First of all, let us define the fine-tuning in an observable as [139]

o ‘ 0log §(obs)i|m,
Ai = Max dlogé;j(A)
(M) log (A/mn) Maxjz; [Yi5] [6(0bs)jlm,,
~ M 1
ax{|a<obs>irmh’ 1672 [3(0b):  (819)

where in the second step we separated the diagonal contribution from the off-diagonal
ones and, for the diagonal term, we neglected the loop contribution since ¢;(A) enters al-
ready at tree level and this would be its leading contribution to the tuning. In particular,

the fine-tuning A; will satisfy,

low
€

log (A/mn) Max;; [55] [6(0bs)jlm, _ log (A/my,) Maxjzi %35
1672 |6(0bS)|m,, 1672 e;? ’

7

A; > (9.20)
and one might be able to conclude that a certain degree of fine-tuning among the con-

tributions to the RG flow of some operator is necessary.

9.2.2 EW and Higgs observables

Let us now apply the general formulas of the previous Section to the electroweak and
Higgs observables we want to constrain. We have considered the 10 EW and Higgs opera-
tors of (9.5) to parametrize BSM corrections to the SM Lagrangian. Let us now describe
in detail the set of pseudo-observables, briefly mentioned in Sec. 9, that constrain all
these operators and form our basis of observables. These include the four electroweak
oblique parameters S, T', Y and W; the three anomalous triple gauge coupling (TGC)
and three observables related to Higgs physics: the decays to 7, vZ and a universal
rescaling of all the branching ratios [108]. To derive the RG-induced constraints on these
observables we first need to relate them to the operators in (9.5), that is to define the

transformation matrix, w;;, that connect the basis in (9.5) to the observable basis.
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We begin with the electroweak precision observables, which are constrained by mea-
surements at LEP1, LEP2 and Tevatron. The first step of the analysis is to fix the SM
parameters g, ¢’ and v by the three most precise measurements: the Fermi constant G g
in muon decays, the fine-structure constant ae,, and the Z-boson mass myz. With the
input parameters fixed, the SM gives predictions for observables such as Z-pole measure-
ments at LEP 1, the Tevatron measurement of the W-mass and LEP 2 measurements of
the eTe™ — fT f~ cross-sections. New physics can affect this analysis by either changing
the relationship between the input parameters g, ¢’ and v to the measurement of G,
Qem and myz or by directly contributing to the other measurements. All the deviation in
the above observables induced by the operators we consider, (9.5), can be parametrized
by the S, 7, W and Y parameters [106] through

- m2 S gg'v? w Y
AL = -T-22,7"— W3 BHy — OMW3 )2 — " B,,)>.
EWPT 2 H 4m12/V 9 ( jug ) 2m12/[/( ul/) ) ( H )
(9.21)

The contribution of the Wilson coefficients of the operator set in (9.5) to the above

observables is given by,

2

T =ér(mw) = %CT(mW) ;
N m2
S =cég(mw) = A‘;V [Cw(mw) + cp(mw) + 4CWB(mW)] ,
2
Y =¢y(mw) = %CZB(mW) :
m2
W = éw(mw) = T‘;VCQW(T)’LW) . (9.22)

The above parameters have been measured very precisely and are constrained at the per
mille level. We present the 95 % CL bounds on these parameters, evaluates at the top

mass my, in Tab. 9.4.

A second set of independent measurements that constrain the operator set in (9.5)
are the TGC that were measured in the ete™ — WTW ™ process at LEP2. The phe-

nomenological Lagrangian to describe deviations in the TGC observables from their SM

values, is
ALsy = igg?icy, Z" (WJWWM_V - W_VWJV) +ig (ﬁZCHWZW + ”739WAW) W,rw,
ig AlZ ALV \ Y37 —PTT
+ — ()\ZCGWZM + Aysg,, Al ) W, PWS;’ (9.23)

W

where VW = 0,V, — 0,V,, the photon field A, = cg,, B, + SQWWS has field-strength

A, while Z,, = C@WWS — 8¢y, By, has field-strength ZAW and we use sg,, = sinfy =
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122 Part II — EFT OF THE PHYSICS AT THE EW SCALE

d /9% + 92, co, = cosby = g/\/g*>+ g% and e = gsg,,. Note that the above La-
grangian has only three independent parameters at the dim-6 level taken to be g7, Koy

and A\, here; the other two can be expressed as : Az = Ay and kz = glz — th’K;W‘
These relations are a consequence of the accidental custodial symmetry that is pre-
served by the dim-6 operators entering in the TGC [140]. The SM contribution is given
by (¢%)sm = (ky)sm = 1 and (Az)sy = 0. The corrections induced by the dim-6

operators in our basis are given by:

Z _ A miy 1 A miy
dg91 = Cgz(mw) = _FCTCW(mW) , 0Ky = Cuy(mw) = FZLCWB(mW) ,
(%
, mg, )
/\Z = C)q(mw) = _FC?)W(mW) N (9.24)

where 6g7 = g7 — (97)sm and §ky = Ky — (Ky)sm. The constraints on these TGC
observables are at the percent level (see Tab. 9.4) and thus at least an order of magnitude
weaker than the constraints on the electroweak parameters in Eq. (9.22). Note that, for
this reason, in Eq. (9.24) we have ignored contributions to the ete™ — WTW ™ process

from the couplings in Eq. (9.21).

Higgs physics provides the three remaining observables for our basis of observables.
We consider the branching ratios h — yy/Z~ and the correction to the Higgs kinetic
term,

ALtriggs D S-(Duh)? + @vh/iwfiﬂ” + 92 hA,, o, (9.25)
mi, My Cony

The above coefficients, in terms of the Wilson coefficients are given by

1)2

ey (my) = ch(mt),
2

é’Y’Y(mt) = % (CBB(mt) + CWW(’ITLt) - CWB(mt)) , (926)
miy

Cyz(me) = — o (263, cww (me) — 255, cpp(ma) = (¢, — 53, )ewn(me)) .

We present the constraints on these three observables in Tab. 9.4. The coupling ¢, is
constrained at the per mille level although the constraint on the SM diphoton width
has been measured only with O(1) precision. This is because the SM width is already
one-loop suppressed and thus the current O(1) precision of measurement corresponds to
Cyy R 1073, The correction to the Higgs kinetic term ég on the other hand is poorly
constrained. This is because ¢ causes a universal shift in all the Higgs couplings and
thus drops out from the branching ratios. Moreover, if only gluon fusion production
channels are considered, the coupling cg mimics the effect of ¢g. Therefore, to disen-

tangle the effect of cge and constrain ¢, Higgs production cross-sections in different
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Chapter 9 — INTERPLAY BETWEEN HIGGS AND ELECTROWEAK OBSERVABLES 123

channels have to be compared; in particular the weakly sensitive vector-boson fusion
(VBF) channels have to be considered.

As we have discussed in the previous chapter, based on their precision of measurement,
the observables can be divided into at least two groups. In the first group, containing
highly constrained operators, we have the four electroweak parameters and the Higgs

diphoton coupling (see Tab. 9.4),

{ésv éT7 éWa éYa é’Y’Y}? (927)

which have been measured at the per mille level. In the second group we have the hyZ

coupling, the couplings related to the three TGC observables k-, g%, Ay and ¢y,

{é'yZa én'y, égm é)\’yacH} ) (928)

which are much more weakly constrained. One can, in fact, further split the above set
into ¢y which is constrained only at the O(1) level and the other couplings that are

constrained at the few percent level.

We are interested in finding instances where the couplings from the second group

in Eq. (9.28) appear in the RGE’s of the first group of couplings in Eq. (9.27). To

Direct Constraint RG-induced Constraint

¢s(my) [—1,2] x 1073 [141] -

ér(my) [—1,2] x 1073 [141] -

éy (my) [—3,3] x 1073 [106] -

Ew (my) [—2,2] x 1073 [106] -

(M) [—1,2] x 1073 [108] -

Eyz(my) [—0.6,1] x 1072 [108] [—2,6] x 1072
oy (mt) [—10,7] x 1072 [137] [—5,2] x 1072
Cqz(my) [—4,2] x 1072 [137] [-3,1] x 1072
exy(my) [—6,2] x 1072 [137] [—2,8] x 1072
ér(my) [—6,5] x 10~ [108] [—2,0.5] x 107!

TABLE 9.4: In this table we present the 95 % CL, direct constraints on the coefficients
in the observable basis (second column). The constraints on S and T presented here the
ones obtained after marginalizing on the other parameters in the fit of Ref. [141]. In the
analysis we use the S, T-ellipse from Ref. [141] with U = 0. Simultaneous constraints
on all three of the TGC observables do not exist in the literature, so we have provided
the individual constraints on the three couplings without taking into account correlations
between them [137]. In the third column we show the RG-induced constraint we are able
to obtain under the assumption of no fine-tuning in Eq. (9.29), for A =2 TeV.
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124 Part II — EFT OF THE PHYSICS AT THE EW SCALE

check this we rotate the anomalous dimension matrix to the observable basis defined by
Eq. (9.22), Eq. (9.24), and Eq. (9.26). We present the anomalous dimension matrix in
the observable basis in Tab. 9.5. Using this, and fixing A = 2 TeV, we write numerically

Eq. (9.13) as

(88, ET, Gy, CW, Cyms €475 Crgs Cgms Exys Car)" (104) = (9.29)

0.9 0.003 —0.03 —-0.08 —-0.02 —-0.02 —-0.04 0.05 —0.01 0.001 és(A)
0.03 0.8 —0.02 —0.009 0 0 —0.03 0.01 0 —0.003 ér(A)
0.001 0 0.9 0 0 0 —0.001 0.001 0 0 ¢y (A)
0 0 —0.001 0.8 0 0 0 —0.003 0 0 ew (A)

0 0 0 0 0.9 0 0.006 0 0.02 0 é4(N)

0 0 0 0 0 0.9  0.007 0 0.03 0 eyz(A)

0 0 0 0 —0.02 —0.02 09 0  —0.01 0 Erry(N)
0.0004 —0.0007 —0.0004 0.1 0 0 —0.0004 0.9 0 —0.0007 Cgz(N)
0 0 0 0 0 0 0 0 0.9 0 éxy(A)
—0.02 0.03 0.01 —0.4 0 0 0.02 —-0.3 0 0.8 éH(A)

We can now derive the RG-induced constraints by using Eq. (9.18) assuming no fine-

tuning among the different terms in the RGE’s.

The strongest RG-induced constraints come from the direct bounds on the S ,T, w
and Y parameters, i.e. the first four lines in Eq. (9.29). We require that each observable
coupling individually satisfies the four RG-induced constraints from these electroweak
precision parameters simultaneously. It is very important to take into account the
experimental correlations between S’, T,W and Y while imposing these bounds[142—
144]. Note that the RG-mixing contributions to ¢ and éy, from the couplings in the
weakly constrained group in Eq. (9.28), is either absent or accidentally much smaller
than the ones to ¢g and ér (see the RG contributions to ¢ and éy in the third and
fourth row of Eq. (9.29)). We, therefore, look at the constraints on the S—T plane taking
W =Y =0. We use the S — T ellipse in Ref. [141], which assumes W =Y = U =0, to
derive our constraints. We present these RG-induced bounds and compare them with
the direct bounds in Tab. 9.4 and in Fig. 9.1. We find that for each of the couplings in
the second group we can derive a RG-induced constraint stronger than, or of the same
order of, the direct tree-level constraint. We also obtain RG-induced bounds from the

direct constraint on ¢, using the fifth line in Eq. (9.29) and Eq. (9.18),

¢ey € -0.2,0.3]
éxy € [—0.05,0.10] ,

(9.30)
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but at present these bounds are weaker than those from the direct bounds on electroweak

parameters.

Let us briefly comment on alternative choices for our observable basis. © For instance,
the Higgs decay observables related to h — WW =, ZZ decays could have been alter-
natively chosen as part of our observable basis instead of two of the TGC observables
(k and gz) but we have kept the TGC in our basis as they are measured more precisely
than these Higgs decay observables. This situation is likely to continue in the future.
Although, observables like the relative deviation of h — WTW =, ZZ with respect to
the SM would be strongly constrained at the 5 %(3 %) level at the LHC with 300 fb~!
( 3000 fb~1) data [145], the bounds on TGC are also expected to become stronger by
an order of magnitude at the LHC [145] so that the TGC would still be more precisely
measured than these Higgs observables. At linear colliders the decays h — WYW~,ZZ
are expected to be measured at the level of 0.5 % [145] and the TGC observables at the

10~* level [146]; again the TGC observables would be more constrained.

1007

FIGURE 9.1:  The blue ellipses represent the 68% (solid), 95% (dashed) and 99%

(dotted) CL bounds on S and T as obtained in the fit of Ref. [141] with U = 0. The

straight lines represent the RG-induced contribution to the oblique parameters from the

weakly constrained observable couplings of Eq. (9.28), divided in Higgs couplings (a)

and TGC couplings (b), using the first two lines of Eq. (9.29), for A = 2 TeV. The

length of the lines corresponds to their present 95% CL direct bounds, see Tab. 9./; the
line is green (red) for positive (negative) values of the parameters.

5In general, a change of observable basis modifies the anomalous dimension matrix of Tab. 9.5, also
for the observables which are maintained in the basis. Thus, the RG-induced constraints we have derived,
are applicable only to our particular choice of observables, and for an alternative choice the analysis must
be repeated. Note that for our choice of observable basis, h — 7 does not receive a contribution from
the S parameter even though there is a dependence on cwp in the anomalous dimension. But cw g is
actually reconstructing the dx, parameter.
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126

P 0 0 0 0
0 9+ 5 — B 5 0 5t
Wit 0 XV + g+ G + & (28— )% 0
(95— P11)5- 0 (Xe— 62) P — (xe— ;6)%s XTI+ g+ 6% — 5%— 0
0 (9s — 929)x¥z + (g5,,6 — $2,6)6 Y%z + (91— 2) g, 06— 0 Ve + 2l + 4,08 — HE—
e 0 T+ HE— 0 0
0 S PE 0 0 0
0 P P% 0 0
0 X Zsyz— X e + ,06 0 b
bz (/6% — 2b6) fo— X7+ m\mw + b5 (e = B mmm\
\,\4@ Nm@ ?2@ N\rm mmv
0 0 0 0 0
0 (208G + ;B61) =2 — (62 — 91901) 7% 2L 2-
2291 0 0 0 0
0 0 0 0 0
0 XL+ b+ b5 (XeT + b —) & XTT+ % + ;06— (XVT + 2,66) 1 — ¢,681
XTI+ g+ 6% — 6~ 0 0 0 0
0 ez + P Am“m - & s 0 0
0 0 N\FM 0 m\mm\
0 e (X + o0) 12T + 5% XTI + 22T + 6% 9T — 4,56~
291 (e8¢ + ¢622) § Am“@i - t;v b3 5 g + o b€
) My A9 o) S

Anomalous dimension matriz in the basis of observables.

TABLE 9.5

We defined tg = tan Oy .
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Finally, let us discuss the future prospects for these RG-induced effects. As the
measurement of the observables we have considered becomes more and more precise, it
may be possible to detect signs of new physics. In this case, since some of the observables
in Tab. 9.4 will be non-zero one would expect a deviation, via RG-mixing, also in other
observables, unrelated at tree level. Note that according to future projections, ¢y, the
TGC observables (65, ¢4-) and &,z would be measured at the 107* level [145, 146] at
linear colliders and thus all these observables would be sensitive to RG-induced mixing
effects of the couplings in Eq. (9.28), if they are above a minimal value.” We present
these minimum values in Tab. 9.6. If, instead, a deviation is detected in some observable
but no such RG-induced deviation in other observables is detected at the level hinted
by our analysis, then this would indicate a tuning (or a correlation) among the various
RG contributions to the direct measurement, see Eq. (9.19). Take, for example, the
first row of Tab. 9.6. Suppose we measure the deviation ¢y, ~ 1 x 1072, a value larger
than the minimum value presented in Tab. 9.6, while instead h — ~v would still remain
compatible with zero with the reported sensitivity. From Eq. (9.19) we would then
conclude that a fine-tuning of the order A,, 2 5 would be necessary to accommodate

the data, or that some particular correlation in the UV physics is needed to induce such

cancellation.
Prospects |Crery | |éyz] |Exy | |ém]
Cryry 4 x 1075 [145] 6 x 1073 - 2x 1073 -
Cyz 3 x 107 [145] 4 x 1072 - 1x1072 -
Criy 2 x 107 [146] - 1x1072 1x1072 -
oz 2 x 1074 [146] 0.4 - - 0.25

TABLE 9.6: In this table we present the minimum value of the couplings in Eq. (9.28)

to which direct measurements of the observables in the first column would be sensitive

via the one loop RG-mixing effects computed in this work. The long term projection for

the measurement precision for the observables in the first column is given in the second
column.
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9.3 Scaling of the gluon operators

In this Section we shall extend the results of the previous Sections and present also the

scaling of the bosonic operators that contain gluons, as defined in Tab. 9.1:

{020, Oca, Osc} (9.31)

The anomalous dimension matrix is shown in Tab. 9.7, where the c3¢ self-renormalization
has been taken from Refs. [132, 133]. This matrix already contains the effect of the
redundant operators that are generated radiatively and, upon eliminating them, modify

the RG of the operators in Tab. 9.1, see Appendix D for details.

In the same spirit of Sec. 9.2, let us now turn to the observables which are sensitive
to these operators and review the present constraints. The Wilson coefficient cog can
be put in one-to-one relation to the parameter Z introduced in Ref. [106] (analogous to

the W and Y electroweak parameters):

m2

Z = A—VQVCQG. (9.32)

A bound on this parameter has been obtained by an analysis of dijet events at LHC [104]:

—9x107t<Zz<3x107h (9.33)
Coc [ele Cc3G C2B Cow
Yo 2642 0 0 ¢? (FOZ+YH)+12v.Y) 0
Yoo 0 —3¢% -39 +12X+6y7 0 0 0
e 0 0 22¢? 0 0

TABLE 9.7:  Anomalous dimension matriz for the Wilson coefficients of the dim-6
bosonic operators with gluons, in the basis defined in Sec. 9. The contributions to and
from the other coefficients of the operators in Eq. (9.5), not reported here, are zero.

"Future prospects for measurements at the Z-pole predict an enhancement of the precision, with
respect to the present one, of about one order of magnitude for ILC [146] and two orders of magnitude for
TLEP [147], depending on the observable. Moreover, from runs at energy /s ~ 2mw , the measurement
of the W mass is predicted to become more precise by one (ILC) or two (TLEP) orders of magnitude.
This will imply an enhancement of the precision in the oblique parameters S , T, W and Y. A more
detailed study of these future prospects is beyond the scope of this work, since our aim is only to show

some examples for future applications of the general idea of RG-induced bounds.
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A bound on cgg can be obtained from the analysis of the Higgs production cross section

at LHC. The relevant phenomenological Lagrangian is

h
Ly D éca%ggGﬁyG“”A, (9.34)
myy
where we defined
. omiy
coG = —33 ¢ (9.35)

The most recent bound, obtained in Ref. [108] after marginalizing over the other devia-
tions from the SM, reads
éag € [—0.8,0.8] x 1073, (9.36)

The coefficient ¢3¢, analogous to the SU(2);, counterpart cspy, would contribute to the
anomalous triple gluon couplings. These effects can be measured at LEP, Tevatron and
LHC, for example via top-quark pair production, see for example Ref. [148] where it is

estimated that LHC should be able to put a bound |é3¢| = |esq|mi, /A% < 0.1

As can be seen in Tab. 9.7, no mixing to (or from) these gluon operators is present
among the operators we considered in Tab. 9.1, the only exception being a contribution
from cop to cog which, however, is not very interesting since cop is already very well
directly constrained by the oblique Y parameter. For this reason, we are not able to set

any indirect constraint using these gluon operators.

9.4 Summary

We computed the scaling and mixing of 13 dim-6 deformations of the SM affecting EW
precision observables (4), anomalous EW triple gauge boson couplings (3), QCD ob-
servables (2) and Higgs decays (4). This computation has important phenomenological
implications. Particularly interesting is the RG-mixing induced among 10 of these ob-
servables (the 2 two QCD observables and one Higgs observable, namely I'(h — gg),
constitute a separate sector that does not mix in a relevant way with the severely con-

strained EW observables.).

These 10 different observables are constrained at very different levels of precision.
For example, whereas the electroweak precision observables and the operator coefficient
related to the h — ~~ partial width are constrained at the per mille level, the TGC
and the 2 other Higgs observables are constrained at the percent level at most. As we
run down from the new physics scale to the lower scale of experiments, quantum effects
mix the observables and the most severely constrained ones receive a contribution from

the ones allowed to deviate the most from the SM predictions. These RG-contributions
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could in principle be of the same size or even larger than the direct experimental bounds.
In other words, the difference in the experimental sensitivities can compensate for the
RG-loop factor. Requiring that these RG-contributions do obey individually the direct
bounds, i.e. dismissing any possible tuning/correlation among the various RG-terms, we
can derive some indirect RG-induced bounds on the weakly constrained observables from
the direct measurement of the severely constrained ones. This analysis is particularly
relevant for the TGC and the universal shift of the Higgs couplings, as reported in
Tab. 9.4.

We also looked at the future prospects for these RG-induced effects. If a deviation
from the SM is observed in some of the observables we considered, one would expect
a deviation, due to these RG effects, to appear also in other seemingly unrelated ob-
servables, in the absence of tuning. If, instead, these RG-induced deviations are not
observed, it would mean that some tuning is needed, or it would indicate some correla-
tion among the higher dimensional operators pointing towards a particular structure of
the new physics that has been integrated out. We have presented the projected future
experimental sensitivity to these RG effects in Tab. 9.6.
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10. One-loop non-renormalization
results in EFTs

As we have discussed at length in Part II of this thesis, following the Higgs discovery,
there has been much effort put into the determination of the one-loop anomalous dimen-
sions of the dimension-six operators of the SM EFT [5-7, 123, 135]. This has revealed a
rather intriguing structure in the anomalous-dimension matrix, with plenty of vanishing
entries that are a priori allowed by all symmetries. Some vanishing entries are trivial
since no possible Feynman diagram exist contributing to them. Nevertheless, other zeros
result from intricate cancelations without any apparent reason. Similar cancelations had

been observed before in other EFTs (see for example [124, 149]).

To make manifest the pattern of zeros in the matrix of anomalous dimensions, it is
crucial to work in the proper basis. Refs. [5, 6] pointed out the importance of working

” operators and ”loop” operators

in bases with operators classified as ”current-curren
(as reviewed in Part II). The first ones, which we call from now on .JJ-operators, were
defined to be those operators that can be generated as a product of spin-zero, spin-1/2 or
spin-one currents of renormalizable theories [6, 99, 125], while the rest were called ”loop”
operators. ! In this basis it was possible to show [5] that some class of loop-operators
were not renormalized by J.J-operators, suggesting a kind of generic non-renormalization
rule. The complete pattern of zeros in the SM EFT was recently provided in Ref. [150]
in the basis of [101], a basis that also maintains the separation between J.J- and loop-

operators. A classification of operators based on holomorphy was suggested to be a key

ingredient to understand the structure of zeros of the anomalous-dimension matrix [150].

In the present Chapter we provide an approach to understand in a simple way the
vanishing entries of anomalous-dimensions. The reason behind many cancelations is the
different Lorentz structure of the operators that makes it impossible to mix them at the

one-loop level. Although it is possible to show this in certain cases by simple inspection

'This classification is well-defined regardless of the specific UV-completion. Field redefinitions (or
use of the equations of motion) do not mix JJ-operators and loop-operators.
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of the one-loop diagrams, we present a more compact and systematic approach based on
the superfield formalism. For this reason we embed the EFT into an effective superfield
theory (ESFT), and classify the operators depending on their embedding into super-
operators. Using the ESFT, we are able to show by a simple spurion analysis (the one
used to prove non-renormalization theorems in supersymmetric theories) the absence,
in certain cases, of mixing between operators of different classes. We then make the im-
portant observation that the superpartner contributions to the one-loop renormalization
under consideration trivially vanish in many cases. This allows us to conclude that some
of the non-renormalization results of the ESFTs apply to the non-supersymmetric EFTs
as well. In other words, we will show that in many cases supersymmetry allows to relate
a non-trivial calculation to a trivial one (that of the superpartner loops). This also pro-
vides a way to understand the few exceptions to the ubiquitous rule that .JJ-operators

do not renormalize loop-operators at the one-loop level.

The Chapter is organized as follows. In Sec. 10.1 we start with a simple theory,
the EFT of scalar quantum electrodynamics, to illustrate our approach for obtaining
one-loop non-renormalization results. In later subsections, we enlarge the theory in-
cluding fermions, and present an exceptional type of JJ-operator that renormalizes
loop-operators. In Sec. 10.3 we show how to generalize our approach to derive anal-
ogous results in the SM EFT and we also discuss the holomorphic properties of the
anomalous dimensions. In Sec. 10.4 we show the implications of our approach for the
QCD Chiral Lagrangian. We conclude in Sec. 10.5.

10.1 Non-renormalization results in a U(1) EFT

In order to make the logic as transparent as possible, let us start with the simple case of
a massless scalar coupled to a U(1)-gauge boson with charge Q4, assuming for simplicity
CP-conservation. The corresponding EFT is defined as an expansion in derivatives and
fields over a heavy new-physics scale A: Lgpr = ), L4, where L; denotes the terms in
the expansion made of local operators of dimension d. The leading terms (d < 6) in the

EFT are given by
2 a1 1
Ly =—|Dugl” = Aglo|" — ngFw ; L = A2 [crOr + 606 + crrOFr] ,  (10.1)

where the dimension-six operators are

O, = ¢|*|Duol*,  Os=18°, Opp=|¢*F,F". (10.2)
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We can use different bases for the dimension-six operators although, when looking at
operator mixing, it is convenient to work in a basis that separates JJ-operators from
loop-operators, as we defined them in the introduction. Using field redefinitions (or,
equivalently, the equation of motion (EOM) of ¢) we can reduce the number of J.J-
operators to only two: for instance, Or = %J“JH and Og = J*J, where J, = d’*Bud)
and J = |¢|?¢. It is convenient, however, to set a one-to-one correspondence between
operators and supersymmetric D-terms, as we will show below. For this reason, we
choose for our basis Og and O,.. > The only loop-operator, after requiring CP-invariance,

is OFF

Many of the one-loop non-renormalization results that we discuss can be understood
from arguments based on the Lorentz structure of the vertices involved. Take for instance
the non-renormalization of Orp by O,. Integrating by parts and using the EOM, we
can eliminate O, in favor of O = (¢D,¢*)? + h.c.. Now, it is apparent that O, cannot
renormalize Opp because either ¢D,¢* or ¢*D,¢ is external in all one-loop diagrams,
and these Lorentz structures cannot be completed to form Opp. Since, in addition, there
are no possible one-loop diagrams involving Og that contribute to Opp, we can conclude
that in this EFT the loop-operator cannot be renormalized at the one-loop level by the
JJ-operators. As we will see, similar Lorentz-based arguments can be used for other
non-renormalization results. This approach, however, requires a case by case analysis
and it is not always guaranteed that one can find an easy argument to see that the loop
is zero without a calculation. In this chapter we present a more systematic and unified
understanding of such vanishing anomalous dimensions based on a superfield approach

that we explain next.

We first promote the model of Eq. (10.1) to an ESFT and study the renormalization
of the dimension-six operators in this supersymmetric theory. The superfield formalism
makes it transparent to determine which operators do not mix at the one-loop level.
Although in this theory the renormalization of operators involves also loops of super-
partners, we will show in a second step that either the ordinary loop (involving ¢ and
A,) is already trivially zero or it is the superpartner loops which trivially vanish. There-
fore, having ensured that there are no cancellations between loops of ordinary matter
and supermatter, we are able to extend the supersymmetric non-renormalization results
to the non-supersymmetric case. In other words, the advantage of this approach is that
we can turn a loop calculation with the ordinary ¢ and A, into a calculation with su-
perpartners, where the Lorentz structure of the vertex can make it easier to see that the

one-loop contributions are zero.

*In the U(1) case we are considering, O, = 1 (O — Or) where O = %(0,|¢|%)*.
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The dimension-six operators of Eq. (10.2) can be embedded in different types of super-
operators. As it will become clear in what follows, it is important for our purposes to em-
bed the dimension-six operators into super-operators with the lowest possible dimension.
This corresponds to an embedding into the highest #-component of the super-operator
(notice that we can always lower the #-component by adding derivatives in superspace).
This provides a classification of the dimension-six operators that is extremely useful in
analyzing the one-loop mixings. Let us start with the loop-operator Opp. Promoting ¢
to a chiral supermultiplet ® and the gauge boson A, to a vector supermultiplet V', one

finds that Opr can be embedded into the #2-component (F-term) of the super-operator

1
dfeV*d WW, = —562(’)FF e (10.3)

where we have defined Vg = 2Q4V, W is the field-strength supermultiplet, and we
follow the notation of [151] (using a mostly-plus metric). Since the super-operator in
Eq. (10.3) is non-chiral, the Opp cannot be generated in a supersymmetry-preserving
theory at any loop order. For the embedding of the .J.J-operators, the situation is
different. Some of them can be embedded in a D-term (a §202-component), while for

others this is not possible. In the example discussed here, we have
2 _
(@TeV%) — 402620, 1 - - | (10.4)

and therefore O, is allowed by supersymmetry to appear in the K&éhler potential and
is not-protected from one-loop corrections. Nevertheless Og must arise from the 6°-

(@Te @@) —06 Tty ( ‘ )

and then must be zero in a supersymmetry-preserving theory at any loop order.

We can now embed Eq. (10.1) in a ESFT. We use a supersymmetry-breaking (SSB)
spurion superfield 7 = 62 (of dimension [§] = —1) to incorporate the couplings of

Eq. (10.1) that break supersymmetry. We have *

Ly C / d*o [@*evq>q>+AwnT(qﬂeV%)?} + [ / 2O W W, + hc.|
1 N 2
L C 2 d49{cr (@Tev‘i’@) + e (DTe'*®)?

+ [5FF (@12 B )WoW, + h.c.} } (10.6)

3Anomaly cancelation requires the inclusion of additional fields that do not play any role in our
discussion. We ignore them in what follows.
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It is very easy to study the one-loop mixing of the dimension-six operators in the above
ESFT using a simple n-spurion analysis. For example, it is clear that there cannot
be renormalization from terms with no SSB spurions, such as ¢., to terms with SSB
spurions, such as ¢pp. Also, corrections from é. to &g are only possible through the
insertion of Ay, that carries a nnt.  Similarly, terms with a SSB spurion 7! cannot
renormalize terms with two SSB spurions 17, unless they are proportional to Ag- This
means that ¢pp can only renormalize ¢g with the insertion of a Ay. The inverse is
however not guaranteed: terms with more SSB spurions can in principle renormalize
terms with less spurions. For example, érp, that carries a spurion n', could generate at

the loop level the operator
/ d*on' D20, = / d*(D*n"H 0, = / d*00, (10.7)

where O, = (qﬂLeV‘]‘> <I>)2 and we have defined D? = D,D%, with D,® = e~V D, ("> ®)
being the gauge-covariant derivative in superspace. Therefore one has to check it case
by case. For example, ¢g could in principle renormalize ¢pp, but it is not possible to
write the relevant diagram since it involves a vertex with too many ®’s. This implies

that ¢pp is only renormalized by itself at the one-loop level.

This simple renormalization structure is the starting point from which, by examining
more closely the loops involved at the field-component level, we will derive the following

non-renormalization results in the non-supersymmetric EFT of Eq. (10.1).

Non-renormalization of Orr by O,: The differences between our original EFT in
Eq. (10.1) and its supersymmetric version, Eq. (10.6), are the presence of the fermion
superpartners for the gauge and scalar: the gaugino, A, and ”Higgsino”, ¢¥. We will
show, however, that the contributions from superpartners trivially vanish in the mixing

of JJ- and loop-operators. In
2 < >
/ @9 (@17 @) = —40, + 2(i6" Do)l o + 262l o" D) + -+, (108)

we have only the 3 terms shown that can potentially contribute to O at the one-loop
level. These terms can be considered as part of a supersymmetric JJ-operator generated
from integrating-out a heavy vector superfield that contains a scalar, a vector and a
fermion. Other terms not shown in Eq. (10.8) involve too many fields (see Appendix E)
and therefore are only relevant for an analysis beyond one-loop. The first term of
Eq. (10.8) can potentially give a contribution to Opp from a loop of ¢’s, while the
second and third term could from a loop of Higgsinos. It is very easy to see that the
loop of Higgsinos does not contribute to Opp. Indeed, if in the second term of Eq. (10.8)

<
we close the Higgsinos in a loop, the current J, = i¢* D¢ is left as an external factor,
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and it is then clear that we can only generate the .JJ-operator J,J#. Moreover, the
third term of Eq. (10.8) vanishes by using the EOM: 6#D,1 = 0 (up to gaugino terms
that are not relevant here). Therefore, Higgsinos do not contribute at the one-loop
level to the renormalization of the loop-operator Opp. We can then extend the non-
renormalization result from the ESFT of Eq. (10.6) to the non-supersymmetric EFT of
Eq. (10.1) and conclude that the loop-operator cannot be renormalized at the one-loop

level by the JJ-operators.

Non-renormalization of O, by Opp: It remains to study the renormalization from
Orrp to O,. This can arise in principle from a loop of gauge bosons. In the supersymmet-
ric theory, Eq. (10.6), & does not carry any SSB spurion and therefore its renormalization
by ¢rr cannot be prevented on general grounds, as we explained before. Nevertheless,
we find that operators induced by ¢pp, through a loop of V’s, must leave an external
factor nT®TeV*® from the vertex and then, the only operator that could potentially

contribute to & must have the form *

1 _
2 / a9t (cheV%) D2 (@T eV<I><1>) +he.. (10.9)
From the EOM for ®, we have that D?®T = 0 up to Mg terms that bring too many powers
of @, so that the projection of Eq. (10.9) into O, vanishes. Finally, one also has to
ensure that redundant JJ-super-operators, that can give (<I>Tev4’<1>)2 through superfield
redefinitions, are not generated at the one-loop level. In particular, the redundant super-

operator

1 (6%
7 / d4 (@Te‘/%) DV, (10.10)

if generated at the loop level, can give a contribution to ¢, after superfield redefinitions,
or equivalently, after using the EOM of V: D, W + h.c. = —gQ¢<I>TeV‘1’<I>. We do not
find, however, any non-zero contribution from nf(®fe"»®)W*W,, to the operator in
Eq. (10.10), as such contributions, coming from a V/® loop, must be proportional to
nIWwed, °

Having shown that supersymmetry guarantees zero contributions to ¢, from ¢pp, we

must check what are the effects of superpartner loops. From (see Appendix E)
/ dont (@12 Q)W W, + he. = —Opp (10.11)

. 1 * 174
+ (21|¢12 AaHINT — ﬁqﬁ AT P F, + h.c.> ...,

4Notice that the presence of 77*, arising from the vertex, requires that the super-operator must have
two derivatives D in order to potentially contain O,.

50Of these, the only one that cannot be put to zero by the EOM of & is
[d*0n'W®[Dy, {Da, D*}e”®" but, from the identity [De,{Da,D*}] ~ iWa [152], one can see
that this only contributes to ¢rp.
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where oM = %(0“6” — o¥aM), it is clear that a gaugino/Higgsino loop cannot give
a contribution to O,: the second term of Eq. (10.11), after using the EOM for the
gaugino, o“@MAT = g¢opT, can only give a contribution proportional to |¢|2¢; while the
contribution from the third term must be proportional to ¢*F),,. None of them have
the right Lorentz structure to contribute to O,. Therefore, we conclude that the loop-
operator Opp can only renormalize at the one-loop level the JJ-operators that break

supersymmetry, like Og, and not those that can be embedded in a D-term, like O,..

10.1.1 Including fermions

Let us extend the previous EFT to include two charged Weyl fermions, ¢ and u, with
U(1)-charges Q4 and Q,, such that Q4 + Q4 + Q. = 0. We have now extra terms in the

Lagrangian (respecting CP-invariance): °

ALy = iqT(?“Duq + iuﬂ?“Duu + yu (pqu + h.c.) ,

1
ALy = 12 [C¢f0¢f + C4f04f + ¢y, (Oyu + h.c.)+cp (OD + h.c.)] , (10.12)

where f = q,u. The JJ-operators are

Oy, = [¢[bqu, Ogr = i(&"f1)a"Du(fe),  Our = (flauf)(f1a"f). (10.13)

<~
Instead of Oyf, we could have chosen the more common .J.J-operator i(¢*D,¢)(fTa* f)
for our basis. Both are related by
1

Ous = £(6" Dud) (115" ) + 216 f1o# Dy (10.14)

where the last term could be eliminated by the use of the EOM. Our motivation for
keeping Oy in our basis is that, as we will see later, it is in one-to-one correspondence
with a supersymmetric D-term. The only additional loop-operator for a U(1) model

with fermions is the dipole operator

Op = ¢(qa"u)F),, . (10.15)

Let us consider the operator mixing in this extended EFT. We will discuss all cases
except those for which no diagram exists at the one-loop level. As we said before, in
principle, many vanishing entries of the anomalous-dimension matrix can be simply un-

derstood from inspection of the Lorentz structure of the different vertices. For example,

5Similar remarks to those made in footnote 3 about anomalies apply to this extended model.
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it is relatively simple to check that the .JJ-operators Oy and Og¢ do not renormal-
ize the loop-operators. For this purpose, it is important to recall that we can write
four-fermion operators, such as (qTﬁuq)(uTﬁ“u), in the equivalent form ¢'ufqu. From
this, it is obvious that closing a loop of fermions can only give operators containing the
Lorentz structure fff or qu that cannot be completed to give a dipole operator (nor
its equivalent forms, qau,,aprqTF # or DypgDHuH). For the case of Oy, the absence
of renormalization of the dipole operator, as for example from diagrams like the one in
Fig. 10.1, can be proved just by realizing that we can always keep the Lorentz structure
"D, (¢f) external to the loop; this Lorentz structure cannot be completed to form a
dipole operator. The contribution of Oy to Opp is also absent, as can be deduced from
Eq. (10.14): the first term, after closing the fermion loop, gives the wrong Lorentz struc-
ture to generate Opp, while the second term gives an interaction with too many fields
if we use the fermion EOM. Finally, O,, can only contribute to the Lorentz structure

¢qu, not to the dipole one in Eq. (10.15).

We can be more systematic and complete using our ESFT approach. Let us see first
how the operators of Eq. (10.12) can be embedded in super-operators. By embedding ¢
and u in the chiral supermultiplets ) and U, we find that the dipole loop-operator must

arise from the #%-term of a non-chiral superfield:
pg 2
O (QD U)W =—0"Op + - -- . (10.16)

Among the JJ-operators of Eq. (10.13), two of them can arise from supersymmetric

D-terms and are then supersymmetry-preserving:

(qﬂeV%) (QTeV@Q) = 02020y + -+ (QTeV@Q) (QTeVQQ) - —3529204(1 T
(10.17)

and similar operators for Q — U, where we again use the short-hand notation Vg =
2Q,V. Nevertheless, one of the .J.J-operators must come from the §?-component of a

non-chiral superfield that is not invariant under supersymmetry:

(@Te%@) QU = 020, + - . (10.18)

FIGURE 10.1: A potential contribution from Ogq to Op.
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We can now promote Eq. (10.12) to a ESFT:

ALy C / d*o (QTeVQQ+ UTeVUU) + [ / d%0 yuq>QU+h.c.] ,

1 ) _
ALy C d4«9{c¢f(<I>TeV‘I’(I>)(FTeVFF)+C4f(FTeVFF)(FTeVFF)

- [nT (5yu(¢TeV¢q>)<1>QU+5D<1> (QZHDQU) Wa> + h.c.] } (10.19)

where F' = Q,U.

Non-renormalization of loop-operators from JJ-operators: The embedding of
the EFT into the ESFT shows the following rule. Loop-operators (Oppr and Op) can-
not be supersymmetrized, while some J.J-operators can be supersymmetrized (O,, Oy
and Og¢) and others cannot (O,, and Og). Supersymmetry then guarantees that loop-
operators can at most be generated from the latter ones, O,, and Og, embedded re-
spectively in nf(®Te"*®)DQU and 7yl (®Te'*®)3. By simple inspection of these latter
vertices, however, we find that neither of these two operators can possibly renormalize
the loop-operators at the one-loop level. Therefore, in the ESF'T the loop-operators are

not renormalized at one-loop level by the JJ-operators.

To extend the above results to the non-supersymmetric EFT, we must ensure that
these non-renormalization results do not arise from cancellations between loops involving
7ordinary” fields (A,, ¢, ¢ and u) and loops involving superpartners (X, ¢, ¢ and ).
This can be proved by showing that either the former or the latter are zero. In certain
cases it is easier to look at the loop of ordinary fields, while in others it is easier to look

at the superpartner loops. For example, we have (see Appendix E)

/ @' (Q1e"2Q) (@1e'2Q) =~ Oy + 24104(id" Dyd) + 2Aid' o Dyg)al + -+

(10.20)
from which we see that a renormalization to Op can arise either from the first term (by a
loop of ”quarks” ¢) or the second and third term by a loop of ”squarks” G. It is easier to
see that the loops of squarks are zero: they can only generate operators containing ¢'a*q
or qu&“]_H)Mq, that do not have the structure necessary to contribute to the dipole opera-
tor Op nor to operators related to this one by EOMs, such as qJWJPDPqTFW. We could
proceed similarly for the other operators. For the case of Oyf, however, the one-loop
contribution to Op contains scalars and fermions (see Fig. 10.1) and the corresponding
graph with superpartners has a similar structure, and therefore is not simpler. Never-
theless, both can be shown to be zero by realizing that #D,(¢f) can always be kept
as external to the loop, and that this Lorentz structure cannot be completed to form a
dipole operator. We can conclude that the absence of renormalization of loop-operators

by JJ-operators valid in the ESFT also applies to the EFT.
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Class of JJ-operators not renormalized by loop-operators: Following the same
approach, we can also check whether loop-operators can generate J.J-operators. Let
us first work within the ESFT. We have shown already that the loop-super-operator
nt(®TeV*®)WW, cannot generate the J.J-super-operator (®feV*®)2. The same argu-
ments apply straightforwardly to (FteVr F)(®feV*®). For the case of the dipole super-
operator, nTCID(Q%aU)WO‘, we have a potential contribution to (QTeVQQ) (UTeVUU)
coming from a ®/V loop. Nevertheless, as the factor nTanU remains in the exter-
nal legs, it is clear that such contribution can only lead to operators containing 1 D?,
which are not JJ-super-operators. Similarly, contributions to (<I>T6V‘I’<I>) (QTeVQ Q) could
arise from a U/V loop, but one can always arrange it to leave either Do ® or n'D.Q
in the external legs ’, which again does not have the structure of a J.J-super-operator
(the same applies for @ < U). Finally we must check whether redundant J.J-super-
operators, as the one in Eq. (10.10), can be generated by the dipole. Similar arguments
as those below Eq. (10.10) can be used to prove that this is not the case. Notice, how-
ever, that we cannot guarantee the absence of renormalization by loop-super-operators
neither of 1 (®Te"*®)®QU nor of nnf(®TeV*®)3. We then conclude that only the J.J-
super-operators that preserve supersymmetry (with no SSB-spurions) are safe at the

one-loop level from the renormalization by loop-super-operators.

It remains to show that this result extends also to the non-supersymmetric EFT.
From Eq. (E.3) of the Appendix E, we have, after using the gaugino EOM and elimi-
nating the auxiliary fields F;, that loops from superpartners can only give contributions
proportional to ¢f f, |¢|?f, ff or Fuf (for f = g,u). None of these terms can lead
to the Lorentz structure of O,, O4r nor Oyy. These are exactly the same J.J-operators

that could not be generated (at one loop) from loop-operators in the ESFT.

10.1.2 An exceptional JJ-operator

Let us finally extend the EFT to include an extra fermion, a ”down-quark” d of charge

Q4, such that Qg4 = Q4 + Q4. The following extra terms are allowed in the Lagrangian:

ALy = id'"D,d+yq(¢*qd + h.c.) ,

1
ALg = A2 [Cydoyd + ¢yuya Oyuya + h.c], (10.21)

where we have the additional J.J-operators

Oy, = |81°¢"qd,  Oy,y, = quad, (10.22)

"Using integration by parts and the EOM of V, we can write the dipole super-operator as
>
[d*onT®(QDU)W* = — [ d*0n'[(Da®)QUW® + 20(DaQ)UW* + O(®?)] where &; = &, Q,U.
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u

FIGURE 10.2: Contribution to cyy proportional to yqy,.

apart from operators similar to the ones in Eq. (10.12) with f including also the d.

Following the ESFT approach, we embed the d-quark in a chiral supermultiplet D
and the operators of Eq. (10.21) into the super-operators:

ole* QD = 0*¢*qd+--- |
(@Te‘/@@) ofe* QD = 020, + -,
(QU)D*(QD) = —46%0y,y, + . (10.23)

As all of these operators come from a #?-term of non-chiral super-operators, we learn that
they can only be generated from supersymmetry-breaking. We can promote Eq. (10.21)
into a ESFT in the following way:

AL, C / d*o [DTeVDD + (nTydq>TeV‘I’QD + h-C-)} ,
1

ALg C e

/ 1ot [% (@TeV‘P <1>) o' QD + ¢,,,, (QU) D* (QD)] + h.€10.24)
Now, and this is very important, when considering only d, ¢, ¢ in isolation (without the
u fermion), we can always change the supersymmetric embedding of ¢ by considering
¢* € ®, where ® is a chiral supermultiplet of charge —1/2. By doing this, we can write
the Yukawa-term for the d in a supersymmetric way, [ d?0 y,®QD, and guarantee that
the renormalization of operators involving only ¢, q,d is identical to the one of ¢, q,u

explained in the previous Section.

It is then clear that supersymmetry breaking from Yukawas can only arise through the
combination y,y4. This allows to explain why contributions to Oy, from (¢',q)(d'a"d)
must be proportional to y,y4, as explicit calculations have shown in the SM context [150].
In the ESFT, the operator (ch_fuq)(dT&“d) is embedded in a supersymmetry-preserving
super-operator and therefore can only generate supersymmetry-breaking interactions,
such as Oy, ,,, via the SSB couplings y,y4 (see Fig. 10.2). The one-loop contributions
from superpartners do not affect this result, as Eq. (10.20) shows that they are trivially

Zero.
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The operators Oy,, and Oy, , are the only JJ-operators that are embedded in the
ESFT with the same SSB-spurion dependence as the loop-operators — see Eq. (10.24).
Therefore, they can potentially renormalize Op. Although this was not the case for
Oy, 4 due to its Lorentz structure, as we explained above, we have confirmed by ex-
plicit calculation that O,,,, indeed renormalizes Op. This is then an exception to the

ubiquitous rule that JJ-operators do not renormalize loop-operators.

10.2 A closely related analogy

There is an analogy that helps in clarifying the role that supersymmetry has played
in explaining the non-renormalization result in the non-supersymmetric EFT. In QCD,
tree-level amplitudes with all plus helicity gluons or all plus helicity except one negative

helicity gluon vanish
A;&z"ee [g—g-l-g-l- . g+] — Agee [g+g+ . . g+] =0, (1025)

where all gluons are taken as outgoing. To prove Eq. (10.25) by brute force is hard. The
original derivation was done through a smart choice of the polarisation vectors of the
gluons, see for instance Ref. [153]. However, the easiest way to prove it is to consider
super-QCD and a Ward identity associated to the SUSY generators [154, 155]. Recall
that a symmetric vacuum is annihilated by the symmetry generators @, then the Ward

identity for an n-point reads

0 = (0] [QT,Ol(xl)Oz(m)~--C’)n(wn)] 10)

n

= ST O[Oy ) [QF O] - Outan)lO) , (10.26)

i

where O; are field-operators and we pick a sign every time Q' is commuted with a
fermionic operator. Next, let us take Qf to be the supersymmetry generator. Recall
that it acts on the positive helicity gluon and positive helicity gluino as [QT, a;] ~ 0,

[Qf, a;\r] ~ a;r, respectively. Then, applying the Ward identity to

0 = (0| |Q,af(p1)af (p2)af (ps)---aj (pn)]| |0)
o (0laf (p1)ag (p2) - - af (pa)]0), (10.27)

and a similar one for O = a;aja;a; ---af, we find that

AL—loop

. L1
SQCDn [9 ANARE '9+] = ASQC(’)ODp,n [9+9+ o '9+] =0, (10.28)
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at all orders in perturbation theory, without making any actual diagrammatic calcula-
tion or clever choice of variables. Finally, one notices that in the tree-level scattering
amplitude of Eq. (10.25) gluinos are absent. For an amplitude with external gluons only
the gluinos are necessary closed in loops and therefore the SQCD result of Eq. (10.28)
is inherited by tree-level QCD.

Now the analogy is clear: in both the present example and in the non-renormalization
results of the previous Section, we found an exact result in SUSY valid at all loop
orders. Then, in both cases we notice the absence of the superpartners at a fixed order
in perturbation theory and therefore the supersymmetric result is inherited at that same
order by the non-supersymmetric theory. Superpartners were absent at tree-level in the
scattering-amplitudes of the present example while they where absent in the one-loop

effective action of the previous Section.

10.3 Generalization to the Standard Model EFT

We can generalize the analysis of Sec. 10.1 to dimension-six operators in the SM EFT.
We begin by constructing an operator basis that separates JJ-operators from loop-
operators. We then classify them according to their embedding into a supersymmetric
model, depending on whether they can arise from a super-operator with no SSB spurion
(n%), which therefore preserves supersymmetry, or whether they need SSB spurions,
either Dan', nf, [Dan'|? or gy’ (that selects the 862, 62, 66 and °6° component of
the super-operator, respectively), or their Hermitian-conjugates. The supersymmetric
embedding naturally selects a SM basis that we present in Tab. 10.1. In this basis, the
non-renormalization results between the different classes of operators discussed in the

previous Section will also hold.

The operator basis of Tab. 10.1 is close to the basis defined in Ref. [101]. One significant
difference is our choice of the only-Higgs JJ-operators, that we take to be Oi and
Og, and of the Higgs-fermion JJ-operator Ops. As in the U(1) case, this choice is
motivated by the embedding of operators into super-field operators, as we have just
mentioned (see more details below). Concerning the classification of 4-fermion operators,
our Oy operators correspond not only to types (LL)(LL), (RR)(RR) and (LL)(RR)
of Ref. [101], but also to the operator Qjeqy = (Lrer)(drQyr) classified as (LR)(RL) in
[101], since this latter operator can be written as a Q45 by Fierz rearrangement. Finally,

our Oy, operators correspond to the four operators of type (LR)(LR) in [101].

To embed the SM fields in supermultiplets we follow the common practice of working

with left-handed fermion fields so that @, u% and df are embedded into the chiral
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supermultiplets @, U and D (generically denoted by F'). With an abuse of notation, we
use H for the SM Higgs doublet as well as for the chiral supermultiplet into which it is
embedded. Finally, gauge bosons are embedded in vector superfields, V¢, and we use
the notation Vg = 2t*V* where t* include the generators of the SM gauge-group in the

representation of the chiral-superfield ®.

Concerning the embedding of operators into super-operators, there are a few differ-
ences with respect to the U(1) model discussed in the previous Section, as we discuss
below. Starting with the JJ-operators, we have a new type of operator not present in
the U(1) case, 0% = (iHTBMI:I)(JRv“uR), where H = ioy H*. This operator cannot be
embedded as the others in a D-term due to HTH = 0 and must be embedded as a 626

term of a spinor super-operator:
/d49 Dan'(HIDYH)UT"PD = 0% + ... (10.29)

For the JJ-operators involving only the Higgs field, there is also an important difference

Operators Super-operators Spurion
O, = D, (H[H)DH(HHY) (HteVH)?
Oup = (Fyf) (frutf) (FtteeV F)(FiteeV F) 7’
o Ony=i(Ht")i(ft");"D, (H'f7) (HTt*eVH)(FTt*eV'F)
§ 0wl — GH'D, 1) (dry"ur) HiDCHUTVD D!
E“ O_ = |H'D,H|? \HieVD, H|? [Dan']?
T o=1Hp (H'eVH)? Inf?
O, = |H?H frfL (H'eVHYHFF
Oyy = (thafL) (thafL) (FtaF)DQ(FtQF)
_ < nT
£ Op=H'fro"t"fL Fy, H(Ft*D,F)wee
g Opp = HItWHES, (FP R — iFomv) (HtatbeV H)YWe oW}
§ Osp = fa0eFavFe(Fen — jfon) DWW

TABLE 10.1: Left: Basis of dimension-six SM operators classified as JJ-operators
and loop-operators. We also distinguish those that can arise from a supersymmet-
ric D-term (n°) from those that break supersymmetry either by an spurion Dan', nt,
|Dan'|? or [n|?. We denote by Fg, (Fﬁy) any SM gauge (dual) field-strength. The t*
matrices include the U(1)y, SU(2)r and SU(3). generators, depending on the quan-
tum numbers of the fields involved. Fermion operators are written schematically with
f=1{Qr,ur,dr,Lr,er}. Right: For each operator in the left column, we provide the
super-operator at which it is embedded.
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with respect to the U(1) case. We have now two independent operators, ® but only one

. . g
can arise from a supersymmetric D-term: 0

(H' " H)? = 6200, + .-, (10.30)

where
04 =20, + Oy — Or] = D, (H[H])D"(H'H) (10.31)

with O,, O and Or being the SM analogues of the U(1) operators, obtained simply by
replacing ¢ by H. The other independent only-Higgs operator must arise from a SSB
term. We find that this can be the #f-component of the superfield

DO (H eVt HYD o (H eV H) = —4(6"0)%(5" ), <D“HTH> (HTD,,H) oL (10.32)
We can write this operator in a superfield Lagrangian by using the spurion |Dgn|?:
/d49 Dan' D DY(HTeVH HYDy(HTeVHH) = =16 O_ +---,  (10.33)

where

1
O =3[0~ 0r] = |\H'D,H|? . (10.34)

Concerning loop-operators, we have the new operators Ozp = f‘lchﬁ”’ o Fy" and
Oy = fabCFl‘j”F,pr,f“, possible now for the non-Abelian groups SU(2);, and SU(3).,

which again can only arise from a §%-term:
fabcDBWaaWch _ 920
gWao = W 0O3p, + -, (10.35)

where we have defined O3r, = O3r Fi0,. To contain O3, , Eq. (10.35) must then
appear in the ESFT multiplying the SSB-spurion 7', as the rest of loop-operators.

For the loop-operators Opp = HIt*t’HF o b1 and their CP-violating counterparts,
Opp = HTt“thF;fVFbW, we can proceed as above and embed them together in the
super-operators

trapb V a oAb 1 2
(H't*" e H)W Wa:—§9 OFp, +---. (10.36)

where OFF:t = OFF F iOFF'

8The U(1)-case identity O, = (Og — Or)/2 does not hold in the SM due to the fact that H is a
doublet.
9The operator (HTUaeVH)2 can be reduced to (HTeVH)2 by using ;0% = 20i10x; — 0i; 0k
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10.3.1 One-loop operator mixing

It is straightforward to extend the U(1) analysis of Sec. 10.1 to the operators of Tab. 10.1
to show that, with the exception of O, the J.J-operators do not renormalize the loop-
operators. The only important novelties arise from the new type of J.J-operators, (’)’Ifzd
and O_. Concerning O%!, it is very simple to see that this operator cannot renormalize
loop-operators (from a loop of quarks one obtains operators with the Lorentz structure
(iﬁ TDMH ); while the Higgs-loop gives operators containing cinyuu R, and none of them
can be loop-operators). Concerning O_, we only need to worry about the renormaliza-
tion of Opp. This can be studied directly in the ESFT, as superpartner contributions
from JJ-operator to loop-operators can be shown to trivially vanish. In the ESFT,
the operator O_ is embedded in a super-operator containing the SSB-spurion |D,n|%.
This guarantees the absence of renormalization of loop-super-operators as these con-
tain the SSB-spurion n!. Besides this direct contribution, there is an indirect route by
which O_ could renormalize Opp: by generating Opp = i(D“H)Tt“(D”H)FﬁV which,
via integration by parts, can give Opp. The operator O can come from the super-
operator Oyr = Dan'DYH'eYE D, H W® that in principle is not protected by a simple
SSB-spurion analysis from being generated by super-operators oc |Dan|?. Nevertheless,
contributions to Oy p must come from Eq. (10.33) with derivatives acting on the two
Higgs superfields external to the loop, and due to the derivative contractions, this can
only give ﬁdnTDanﬁdHTDaHDﬁwﬁ; by the use of the EOM of V', however, this gives

a J.J-super-operator and not Our.

In the SM case, the exceptional O, operators (than can in principle renormalize the

dipole operators) are (following the notation in [6])

Oyuya = (QEUR)Grs(QSLdR%

OF), = (QuTup)ers(Q1Tdr),

Oyy. = (Qrur)ers(Lier),

Opye = (Q1%er)ers(Liug), (10.37)

where 7,5 are SU(2)y, indices and T4 are SU(3). generators. Although in principle all
of these four operators could renormalize the SM dipoles, it is easy to realize that Oy,
will not: the only possible way of closing a loop (Qrug or Lrer) does not reproduce
the dipole Lorentz structure for the external fermion legs. One concludes that only the
three remaining operators in Eq. (10.37) renormalize the SM dipole operators and we
have verified this by explicit calculation. These are the only dimension-six J.J-operator
of the SM that renormalize loop-operators. Some of these exceptions were also pointed

out in [135]. Our analysis completes the list of these exceptions and helps to understand
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the reason behind them. From the analysis of the U(1) case, we can also explain the

presence of y,y4 in the renormalization of Oy, from Oy [150].

It is obvious that no operator other than itself renormalizes O3f, : no adequate one-
loop 1PI diagram can be constructed from other dimension-six operators, since they have
too many fermion and/or scalar fields. Nevertheless O3p, can in principle renormalize
JJ-operators. Let us consider, for concreteness, the case of O3r, made of SU(2), field-
strengths. SM-loop contributions from Osp, can generate the JJ-operators (D, F'** )2
and Jj D, F'*#” (where J}} is the weak current), and indeed these contributions have been
found to be nonzero by explicit calculation [7]. By using the EOM, D, F** = gJ%"
we can reduce these two operators to (Jﬁ)Q. Surprisingly, one finds that the total
contribution from Osp, to (J/‘j)2 adds up to zero [7, 150]. We can derive this result
as follows. From inspection of Eq. (E.4), one can see that the superpartners cannot
give any one-loop contribution to these JJ-operators. Therefore the result must be the
same in the SM EFT as in the corresponding ESFT. Looking at the Higgs component of
(J3)? = (HTU“E_))#H)2 + -+, we see that this operator must arise from the ESFT term
[(DnT& + h.c.)? where J¢ = H'0*D,H. This super-operator, however, cannot be
generated from the super-operator in Eq. (10.35), as this operator appears in the ESFT
with a different number of SSB-spurions, 1T. This proves that Ozp . cannot generate .J.J-
operators with Higgs. Now, if current-current super-operators with H are not generated,
those with Q1 cannot be generated either, since in the ESFT the SU(2)y vector does
not distinguish between different SU(2)r-doublet chiral superfields. This completes the

proof that O3p, does not renormalize any J.J-operator in the basis of Tab. 10.1.

Concerning the non-renormalization of JJ-operators by loop-operators, the last new
case left to discuss is that of O_ by Opp. The SSB-spurion analysis forbids such
renormalization in the ESFT and the result can be extended to the SM EFT as no
superpartner-loop contributes either (see Eq. (E.2) in the Appendix E).

At energies below the electroweak scale, we can integrate out W, Z, Higgs and top, and
write an EFT with only light quarks and leptons, photon and gluons. This EFT contains
four-fermion operators of type O,y, generated at tree-level, that are J.J-operators, and
other operators of dipole-type that are loop-operators. Following the above approach
we can prove that these four-fermion operators cannot renormalize the dipole-type op-

erators, and this is exactly what is found in explicit calculations [124].

10.3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [150], based on explicit calculations, that the anoma-

lous dimension matrix respects, to a large extent, holomorphy. Here we would like to
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S H

FIGURE 10.3: Non-holomorphic contribution to O,.

show how to derive some of these properties using our ESFT approach. In particular,
we will derive that, with the exception of one case, the one-loop anomalous dimensions
of the complex Wilson-coefficients ¢; = {03F+,cFF+,cD,cy,cyy,c’§d} do not depend on

their complex-conjugates c;:

Me;
o

J

(10.38)

We start by showing when Eq. (10.38) is satisfied just by simple inspection of the SM
diagrams. For example, it is easy to realize that holomorphy must be respected in con-
tributions from dimension-six operators in which fermions with a given chirality, e.g.,
fa or fo fé, are kept as external legs; indeed, the corresponding Hermitian-conjugate
operator can only contribute to operators with fermions in the opposite chirality. Inter-
estingly, we can extend the same argument to operators with field-strengths if we write

the loop-operators as

Osp, = —itr FLFSFS, Opp, = %HTt“th(]:a)ag(}"b)ﬁa, Op = H' fo(F") Pt fh,

(10.39)
where we have defined 7% = (F gl,taa“”)o‘ﬁ that transforms as a (1, 0) under the Lorentz
group, and write the Hermitian-conjugate of Eq. (10.39) with FaB g (0,1) under the
Lorentz group, as for example, O£F+ = Ozp- = —itr deFB’.\fj\d. From Eq. (10.39)
it is clear that any diagram with an external F,s respects holomorphy, as it can only
generate the operators of Eq. (10.39) and not their Hermitian conjugates. One-loop
contributions from Opp, in which H Tt%"H is kept among the external fields, however,
do not necessarily respect holomorphy. An explicit calculation is needed, and while
contributions to O, vanish by the reasoning given in [123], contributions to O, are

found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether
or not loop contributions are holomorphic. In the ESFT, holomorphy is trivially re-
spected as super-operators with an nf-spurion renormalize among themselves and can-
not induce the Hermitian-conjugate super-operators since those contain an 7, and vice

versa. This means that possible breakings of holomorphy, at the field-component level,
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must be the same in the ordinary SM loop and in its corresponding superpartner loop, as
the total breaking must cancel in their sum. Therefore we can look at either one or the
other type of loop to check holomorphy. In this way, we can always relate holomorphy
to fermion chirality. For example, the breaking of holomorphy in the renormalization of
O, from O} 7 [150], mentioned before, can be easily seen to arise from the diagram of
Fig. 10.3. It corresponds to the superpartner one-loop contribution to O, arising from
the vertex |H[>ATgHO,\ ~ |H|2H)\Tw}{ of Eq. (10.11), where we have used the EOM of
A (and replaced the U(1) ¢ and ¢ by the SM Higgs and Higgsino).

10.4 Implications for the QCD Chiral Lagrangian

We can extend the above analysis also to the QCD Chiral Lagrangian [149]. At O(p?),

we have )
L

This is an operator that can be embedded in a D-term as [ d*6 UTU), where U and its

L (D, UTDU) . (10.40)

superpartners are contained in U = ¢'®, with ® a chiral superfield. At O(p*), the QCD
Chiral Lagrangian is usually parametrized by the L; coefficients [149] in a basis with

operators that are linear combinations of JJ-operators and loop-operators. These are
Ly = —iLy(FR' D, UD, U + FI*D,U'D,U) + Lio(U F'UFp) + -+ . (10.41)
A more convenient basis is
174 = = 174 174
Ly =il (D, Ft(UTD,U) + (UD,UND,FEY + Lipop(UTFE' U Fp) + -+, (10.42)

where Lj; = Lg/2 and Ljoep = Lg + Lig. It is easy to see that the first operator of
Eq. (10.42) is a JJ-operator, while the second is a loop-operator. This latter can only
be embedded in a #%term of a super-operator (i.e., UTWEUW,r)), and therefore it
cannot be renormalized by the operator in Eq. (10.40) in the supersymmetric limit. As
contributions from superpartner loops can be easily shown to vanish, we can deduce
that Eq. (10.40) cannot renormalize Ljy,p, at the one-loop level. This is indeed what one

finds from the explicit calculation [149]: yr,,,, = VLo + YLy = 1/4 —1/4 = 0.

10.5 Summary

In EFTs with higher-dimensional operators the one-loop anomalous dimension matrix

has plenty of vanishing entries apparently not forbidden by the symmetries of the theory.
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Osp, Orp, Op Oy O, O Os Op O- Oy Oy
Ospy

Orr, 4 vanishing entries
Op O/Oz;,

O, D .
vy ’5/
0,

ud
OR

- vanishing
Ouf entries

FIGURE 10.4: Anomalous-dimension matrix of the dimension-siz SM operators showing

which entries (red-shaded) vanish following the present analysis. We also show the

entries (light blue-shaded) that respect the holomorphic condition Eq. (10.38). Solid
lines separate loop-operators from JJ-operators.

In this chapter we have shown that the reason behind these zeros is the different Lorentz
structure of the operators that does not allow them to mix at the one-loop level. We have
proposed a way to understand the pattern underlying these zeros based on classifying the
dimension-six operators in JJ- and loop-operators and also according to their embedding
in super-operators (see Tab. 10.1 for the SM EFT). We have seen that all loop-operators
break supersymmetry, '© while we have two classes of J.J-operators, those that can be
supersymetrized and those that cannot. This classification is very useful to obtain non-
renormalization results based in a pure SSB-spurion analysis in superfields, that can
be extended to non-supersymmetric EFTs. In terms of component fields, the crucial
point is that the vanishing of the anomalous-dimensions does not arise from cancellations

between bosons and fermions but from the underlying Lorentz structure of the operators.

We have explained how this approach works in a simple U(1) model with a scalar
and fermions, and have shown how to extend this to SM EFTs and the QCD Chiral
Langrangian. The main results are summarized in Fig. 10.4 that shows which entries of
the anomalous-dimension matrix for the SM EFTs operators we have proved to vanish.
We have also explained how to check if holomorphy is respected by the complex Wilson-

coefficients, a property that is fulfilled in most cases, as Fig. 10.4 shows.

Recently, Ref. [156] presented an alternative way to derive similar results to ours.

Ref. [156] makes use of the spinor helicity formalism and the generalised unitarity cuts

'%This is not true in general. For instance, in models with two Higgses of opposite hypercharge, H
and H, one can have the supersymmetric loop-operator fdQGHHWO‘Wa. Notice that in such a case
supersymmetry also protects that operator from being renormalized in the ESFT.
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to analyse, in a very efficient way, all possible Lorentz vertices that can contribute to
the renormalization of a given operator. This allows Ref. [156] to organise the non-
renormalization results presented in this Chapter in a rather simple way based solely on
the weighs w of the amplitudes generated by the operators ''. In contrast with our ana-
lysis based on the supersymmetric spurion n power and the easy superpartner analysis
presented in this chapter. It would be very interesting to make a connection between
Ref. [156] and the spurious supersymmetric analysis of this Chapter, and to clarify if it

is possible to extend it to multi-loop renormalization.

" The weigh of an amplitude A is defined as w[A] = n[A] — h[A] where n[A] is the number of particles
and h[A] is the sum of the helicites of the particles of the amplitude.

153






A. Currents, redundant operators
and field shifts

In this Appendix we first list, in Sec. A.1, the different currents (of dimension < 3)
built from SM fields that enter into the d = 6 current-current operators. We examine
in Sec. A.2 how these operators can be generated from integrating out heavy particles
discussing what type of operators appear depending on the quantum numbers of the
heavy fields. Some of these operators are redundant and can be eliminated from the
Lagrangian by using the field equations of motion or, equivalently, by field redefinitions.
We discuss this point in Sec. A.3, where we give a possible set of field redefinitions that

can be used to get rid of the redundant operators.

A.1 Currents of SM fields

For simplicity we limit our examples of currents to the SM with a single family of

fermions, the generalization to 3 families being straightforward. The scalar currents are:

Ju=H?*, JY=HH?, Jog=DH,

’ ) . B L (A.1)
T =HVoH , Jym=ysFrfr, Jyg=y:QT"fr

where T4 are the SU(3). generators and from now on we use the notation Fr, = {Qr, L}
and fr = {upr,dr,er} for fields, while F = {q,l} and f = {u,d,e} are used for the
corresponding operator indices. Obviously, one can also have the conjugate currents:
jl(?) = H|H|?, Jog = DiI:I, ete.

There are also vector currents made of SM bosons, like:

<> ~, <>
Jt=iHIDMH | J = iHIDFH | Ji = iHo“DrH

H (A.2)
Jh=8,Bw | JaF—D,Waem  JAK— D,GAm

155



156 Appendix A — CURRENTS, REDUNDANT OPERATORS AND FIELD SHIFTS

and made of SM fermions, like:

Jhp = RV R s Jh = Fy"Fy, Jet = Froy Fy, (A.3)
A r A A :
Tt = frRT " fr, Jo" = QLT Qu,
as well as the lepto-quark currents:
Jge = yeQ%QR ) Jgu = yuI/Lu?% ) Jgd - ydiLd% ) (A4-)

where we write explicitly the color index «. Finally, we list fermionic currents made of
SM fields. They can be SU(2), singlets:

Iog =iDfr . Jy5 = WH' QL whH'Q ,ylHTLL} (A.5)
doublets:
(bpzﬂﬁi,L%E:ﬂ%ﬁmth@h%H@}, (A.6)
or triplets:
J% . ={H'0"Q, H'o"L} , Jip={H'0"Qr,H'0"LL} . (A7)

The previous list of SM currents is not complete but contains all the currents necessary
to build the current-current operators of our basis (defined in the main body of the

paper), as well as many of the redundant operators.

A.2 Current-current operators

The d = 6 current-current operators can in principle be generated from the tree-level
exchange of heavy fields. We can then classify such operators by the quantum numbers
of the exchanged heavy fields. We present such classification below (giving explicit
expressions for those redundant operators that appear here for the first time.). Finding
possible deformations in SM couplings that can be assigned to particular current-current
operators can offer crucial information in identifying the heavy physics responsible for

such effects.

o Scalar x scalar

The exchange of a heavy scalar singlet can lead (after integration by parts) to:

— JyOJy =20y . (A.8)
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From a heavy scalar SU(2)r-doublet we get:

AT~ o TP Jom +he. = =20y + O,)
Jyquf(f) = Oy, JgLHJyeH = Oyaye (A.9)
(Jyutt) €rs(Jyerr)® = Oyuye » (Jyur) €rs(Jy,1)* = Oyayy

and also:

2
by o = |D2H|? = Ok
Tyt Jon = —yuDy (Qrug) DMH = —O0Yy . (A.10)

If the heavy doublet is also charged under SU(3). we can get:

(T8 ers(JE) =0l (i i) ers(Jh ) = OB, (A.11)

while, from a heavy scalar SU(2)-triplet we would obtain:
JED?JY = =207 — 40, . (A.12)
o Vector x vector
From the exchange of a heavy singlet vector one can get:

JI'L}JHM = —QOT y g'JgJHu = 203 N JquuJHu = O}% s
J[l}JFﬁL = Of 3 Jg']B,u = _2023 ’ Jquujuuu = O%R ) (Al?))

TP =OLp s JpJru=00r , yyaIwpuliy = OF' |

as well as

9T Iuun = 9 (ary"ur)(9” Bu) = Ol
9T Ip = g (FLy"Fr) (0" Bu) = 0 (A.14)

The exchange of a heavy SU(2)-triplet vector can produce:

TETY = =205 + 40, , gl Ju =20y, JEIy, =0
a a a a a a 2— Nc
Tt T = =20mw . T = Oy, TG, T =401 + =201,
(A.15)
and
9T I, = g(FLy'o" FL)(D'WE,) = Ofyp, (A.16)
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while a heavy SU(3).-octet vector could give:

” A 8 8)u
Tl T = (1/3) O T3, 70" = O I3 T =05 . (A7)

upu U

Fermion x fermion

Finally, we list operators that can arise from integrating a heavy fermion. If the

fermion is a singlet:

jyuﬁRinDu = yuDM(QLﬁ)VM'YVDuUR = OZR s

7o Lo »”B4, 54 (3)q q (A-18)
JyuﬂR/LwauﬂR + h‘C' = i‘yu| _OL + OL - OL + OL] y
where
A3 A am t _a
0" = Qo P Qr)(H'e"H) ,
~ _ A4
01 = QP Qu)HI, (A.19)
are redundant operators.
If the fermion integrated-out is a doublet, one can get:
jDQUDJyuQL = yuDuQL'YM'YVDu(ﬁUR) = OZL 5 (A 20)
TP Ty0, + e = Iyl [~Ok + O] .
with the redundant operator:
~ . <> 9
O% = l(ﬁR@ UR)|H‘ . (A.21)
Finally, from integrating out a heavy fermion triplet, we can get:
_ 11~ ~
JL iJ% +he == [O(L?’)F +30F + 0oPF +30ﬂ :
HF HF 2 (A.22)
T8 i D + . = — [—6(3)F +30F + OPF 3(’)F]
HF HF e T 2 L L L L .

To describe the effect of a heavy fermion that is a color octet, one would need to
generalize the quark currents of Sec. A.1 by inserting SU(3). generators. However,

the dimension-6 operators that result have been already found in Egs. (A.18) and
(A.20).
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A.3 Field redefinitions and redundant operators

Many d = 6 current-current operators are redundant: they can be removed from the
Lagrangian by field redefinitions. We will show how field redefinitions can be used for

that purpose, focusing here on current-current operators not of the 4-fermion type.

Let us start first with bosonic operators. Consider the following transformations that
shift fields by some of the bosonic currents listed in Sec. A.1 (with the same quantum

numbers of the shifted fields):

o B ard 2N, = 1 (1 - ap/A) + aadon /A2
BN — BH + [Q/OZBJHM + QQBJBM]/AQ , WS — W;Z’ + {gan]?I“ + angf,lV'u]/A2 s
Gi = Gt + avc g /A (A.23)

with «; arbitrary parameters (taken real). These transformations induce shifts in the
d = 6 Wilson coefficients ' of Eqs. (6.4) and (6.5) plus the redundant operator Ok4 =
‘DZH |2:

e — cg + 201 + (4hag — awg?)/g?
Cr = Cr + 200 + (4Xas + 20 9%) /g2
cg — cg — 4aq

cr — er —apg?/g?

cg — ¢ — 2ap + 2B ,

cw — cw — 2aw + aow

Cow — Caw + 200w ,

coB — C2B + 200p ,

coq — €2 + 2000

CK4 — CK4 — 2009 . (A.24)

Notice that only operators of tree-level type are shifted. Using this shift freedom, we
could eliminate 7 out of the 10 operators {Og, O,, Og, O, Op, Ow, Oaw, O2p, Ok, O2c}
by choosing appropriately the «;’s and leave only O, Or and Og. As we discussed in
Sec. 6.1, however, it is convenient to keep the operators Oy and Opg in the basis, in
which we could also keep O9y7, O2p and Oy. If we do not use 5 of these shifts to remove
Ow, Op, Oaw, Osp and Os, they can be used later on to remove 5 other operators

involving fermions. We will discuss such operators next.

!Shifts of order m?/A? induced on the renormalizable dimension-4 SM operators play no role. There
are also shifts in the coefficients of the operators made of fermions that we show below.
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Besides the bosonic redundant operators discussed above, there are redundant opera-
tors that involve Higgs and fermion fields. For instance, we have the following first-class

operators:

~ _ <> ~ _ < ~ _
OF = (iF, D FL)H?, OPF = (iF 0P FL)(H0"H), O} = (ifal fr)|H|?,
(A.25)

as well as the second-class operators

Oy = yuDu(Qrur) D' H Olp = yuDu(QLH)Y"y Dyur |

0%, = yuDu QA" Dy(Hug) . Oty = yu(DuQu)v"v" (Dyug)H , (A.26)

(and similar operators for down-type quarks and leptons). In addition, there are (second-

class) operators involving fermions and gauge bosons:

OgL = g/(FLquFL)aVBuV , OéR = g/(fR7ufR)aVBuV s OI};/L = g(FLo—a’Y#FL)DVW;}y ,

Og![, = QS(QLTAVMQL>DVG;?V7 OéR = gs(fRTA'YMfR)DVGﬁV . (A~27)

To see that the operators (A.25)-(A.27) can indeed be removed from the Lagrangian,

consider the following field redefinitions that involve fermions:

Qr — Q1+ gPardu/A?) + (g2l JEo QL +ial, DI, 6, + yuciprH Jpuy
iy DJy,0, + YayrrH Ipag) /A |

ur — ugr(l+ gfoféJH/A2) + iaZRlDJyuaR/AQ ,
dp = dr(l+ glahJu/N?) +idhr P, 0, /A%,
B, — By "‘QI[Q%JFM + O‘?R‘]ffu]/AQ ;
Wi — Wi+ gaf JE, /A
Gy = G+ gslof, Jp + af, JR1/A%
H — E[+OZHtJyTtH/A2 ,
H — H+oamJ) /A*, (A.28)

under which the Wilson coefficients shift as follows: For the Higgs-fermion operators of
Eq. (7.4), plus the straightforward generalization to the down-type fermions, and the
up-down mixed operator of Eq. (6.17), we get (for third-generation quarks):

t 3)
Cy, — cyt—a1—2g—2aHt—aR—aL+aL )

*

b (3)
— cyb—al—Q?aHb—aR—aL—ozL ,

*

Cyy

g
2¢2

|yt|2 t
CR — CRr-+ 92 ayL+

*

(2Y}tza3 + ai) ,

160



Appendix A — CURRENTS, REDUNDANT OPERATORS AND FIELD SHIFTS 161

q3 q3 1 ’ytP t 9/2 2v4 B
L 7 cgp —5972%3*'@( Lo +ag,)
2 2
3 3 Ly g
) = 2' ;2| Ay + 242 (aw +ag,)
1
A §(aZL + ozZL) . (A.29)

The Higgs-fermion redundant operators of Eq. (A.25) can be eliminated by the shifts:

2
i — Fptoakh-— ‘ZZQ‘(@ZL + O‘ZLR) )

*

~b b
CR — CR"'O‘Rv

~q3 ~q3 1 ’yt‘Z t
cL — +aL—f—2 QyR
2 g5
1 2
TN +2|Z~/t2’azR, (A.30)
i

(where, from here on, we neglect |yp|? and |y.|?> contributions) while the redundant

Higgs-fermion operators of Eq. (A.26) can be eliminated by the shifts:

Cym C£H~I-04Hf+0z2,

ciR — C£R+Q§R’

ngjL — ch—i-agL,

chR — chR—i-a?’;LR. (A.31)

All the redundant gauge-fermion operators of Eq. (A.27) can be removed by the shifts:

f ! i B
Cgr — CBR+YRa2B—afR ,
F F F B

cpr, — cprtYpap—ap ,
1
F F w
CWIL — CWL+§CY2W—04FL s
q q G

Finally, the coefficients of four-fermion operators will also be shifted but we will not

need such shifts and we do not list them.

Using all the shift freedom to remove these redundant operators we end up (say, for
the third family) with the following Higgs-fermion Wilson coefficients: yscy,, cJ};, cf, c(LS)F

and ctRb, with f =+¢,b,7 and F = ¢, [, in agreement with the operators listed in Tab. 6.2.

161






B. Anomalous dimensions of

d = 6 Wilson coefficients

In the analysis of Chapter 8 we were interested in potentially large radiative effects in
the running of the d = 6 Wilson coefficients ¢; from the scale A of new physics to the
electroweak scale. To study such effects we computed the one-loop anomalous dimensions

ve,; for the Wilson coefficients, which are functions of the coefficients themselves, that is:

= Ye:(¢5) 5 (B.1)
where p is the renormalization scale.

When redundant operators are removed from the Lagrangian some care has to be
taken in computing anomalous dimensions of the operators left in the basis. The reason
is that redundant operators can be generated through RG evolution by operator mixing
with non-redundant operators. In other words, the ~.,’s of redundant operators are not

zero in general.

Let us explain how this effect can be taken care of in a simple way. Consider a
basis formed by a set of coefficients {¢;}, after removing a set of redundant coefficients
{cI'}. The procedure to remove the ¢ is straightforward and has been illustrated in
the previous Appendix. One starts from the shifts induced by field-redefinitions with

arbitrary parameters «g, which have the form
ci — (o) = ¢+ Z sk, — i(aj) = ¢ + Z SO - (B.2)
k k

Then the ay’s are chosen so as to remove the redundant operators,

@) =0 = aof=-) (s . (B.3)

i

C
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It is then convenient to define the following combinations

C;

ci(aj) = ¢ — Z sik(s" )l (B.4)
Kl

which are invariant under the arbitrary shifts of Eq. (B.2) and correspond to a more

physical definition of the Wilson coefficients.

The anomalous dimensions of these shift-invariant C;’s are simply

-1
Vo, =%e, — > sik(8") i ver = vilewi i) (B.5)
kl
where the last expression just indicates some function of the Wilson coefficients and we
distinguish in its argument between coefficients in the basis and coefficients of redundant
operators. The key property of this function is that it must depend on the Wilson

coefficients only through the shift-invariant combinations. That is, it satisfies

viler; ¢) = 7i(Cr; 0) - (B.6)

This implies that setting ¢, = 0 in these ;(cy; ¢f,) functions is now a consistent procedure
to obtain the anomalous dimensions after removing redundant operators. An explicit
example of this is given at the end of this Appendix. We applied this procedure to
calculate the anomalous dimensions used in Sec. 8.1. In the next Subsections we will list
the required shift-invariant C; combinations and present the v.,’s necessary to complete

the calculation.

B.1 Shift-invariant combinations of Wilson coefficients

In order to simplify the expressions for the shift-invariant combinations C; of Wilson
coefficients, we present them first in a basis that treats as redundant the operators Op,
Ow, Osp, Qo and Oyg. We explain afterwards how to express these combinations in

other bases, as those that keep these operators. As we are not interested in calculating
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the anomalous dimensions of 4-fermion operators, below we restrict our C;’s to non-4-

fermion current-current operators. We find:

Ch
Cr

Cs

o

3 2
cH — ¢ — Tz%(%w —cw) ,
12
cr — 97(263 — 2B) ,
492

g9’ A
ce + 2¢r + ?(QCW —cow) + 49—20;(4 ,

* *

1 A & L ?
Cy, + 507’ +2— (C;H + CK4) + &+ e — cf’)% + 49 5 (2ew — cow)
9 P

\%’2
2 (CZR + CZL + CZLR) )
*

9

~(3)q
’ 1 (2ew — caw)
g2

1 A - -
ey, + 56+ 2? (CZH + cK4> Ny N L

1 A - . ~(3)1:
Cy, + =Cr + 2? (cpm + cia) + ¢+ clL?’ + cf)b +
*

5 (2ew — caw)

¢ |?Jt|2 t 9,2 t t
CR— 5 Cyr + 202 [Yr(cs — caB) + cRl
9% 9%

492

12

ch+ %[YE(CB — c28) + cpgl
29;
12

Cp+ TQQ[YE(CB —c2B) + CpRl

t

g*

22 Y/ (cB — caB) +¢5;]

&4+ IV (en —ean) + 3
1 2 ;
3
cr, —§TCyR+47‘gz(CW_CQW+26WL) ’

(ew — cow + QC%L) ,

1
C%‘f‘ §(CZL+CZL) . (B?)

Out of the 59 independent operators for a single family, 20 are of one-loop type and

25 are 4-fermion tree-level operators. The remaining 14 are tree-level operators whose

number corresponds to the 14 physical C;’s in Eq. (D.22).

Let us now discuss how these C;’s would be modified in other bases. For example, if

we keep Op and Oy in the basis instead of the leptonic operators (’)2 and O(L3)l, then

(3)

one should remove CZL and C} ! from the list of Cy’s. This is accomplished by making

165
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the replacements

. 1y 292
CB CB — 77¢BL — 7 €L >
YLl Yng’2
2
cw —  Cow — QC%VL — 45—20(5’)1 , (B.8)

in all the C;’s (obtaining in particular Ct = C’és)l = 0) and then add to the list the

following two new C;’s:

1 297
Cp = cp—p+ —cpr+ ——5ch,
YLl Y]fg’Q
92 (3)1
Cw = cw —cow + 2ClVVL + 49%CL . (B.Q)

The replacement in Eq. (B.8) introduces a dependence on Ve, » Vel Vel and 7 @)
CL L

in the calculation of the anomalous dimensions of the C;’s, but the only non-redundant

coefficients that appear in those anomalous dimensions depend on leptonic Yukawa cou-

plings that we neglect.

In a similar way, Osp, O and O can be kept in the basis instead of three 4-
fermion operators of the first family, e.g. O%p, OZLL and Og])%d. In this basis cop, cow
and cag have to be replaced by linear combinations of CER,clL ;, and Cg})%d in the Cj’s
above. However, this replacement has no impact on the anomalous dimensions of the
C;’s if we only keep the coefficients of Eq. (8.3) and neglect small Yukawas. Indeed, it
is simple to realize that Eq. (8.3) can only renormalize cap w2 Or chp, clL ;, and cgfl)%d
through lepton or down Yukawas, which are terms we neglect in our RGEs. Therefore,
whether we keep Oapow2¢ or 4-fermion operators, the RGEs given in Chapter 8 are

unaffected.

B.2 Anomalous dimensions before removing redundant op-

erators

To calculate the anomalous dimensions v¢,’s, following Eq. (B.5), we need to calculate
the anomalous dimensions of the Wilson coefficients entering in the C;’s, including those

that are redundant.

We have calculated these anomalous dimensions to linear order in the ¢;’s of Eq. (8.3),
the only exception being ¢, which we keep for illustrative purposes here. Parametrically

one has 7. ~ gjzcj/167r2 and we only keep g]2- = {yg,gg,g2,9’2,)\}, dropping g]2- =
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}. The anomalous dimensions, calculated in Landau gauge, are

{yg,yz, e f-
1 (3) 37 2 2
Yey = R{Ncyt [Cyt +CL ]+>\(7CH_CT)+§ |:g (CH‘i’QCr)"‘g CT’] }
—dypen, (B.10)
1 3 12
Yer = 1gn2 ANeyi(cr —cr) + 29 (en —er)| —dyner (B.11)
1 2 3 2
Mes = 33 54\%cg — ANy} Cy, + 120%(3cp + 2¢,) — 3 {29 +(*+4d ) } Cr
—6"}/h)\06 y (B.12)
7y 1
% = o3 {4)\ |:CR —cr + 30( ) 4 cht] — g [CR +4cp — 4cL) 3cyt]
—3g CR — 8g§cyt + 2th [4CLR + 4C'Fcf})% +cp—cp + cg) + 2¢y, + CH] }
_(3777/ + IYQL + ’)/tR)Cyt ) (B13)
0 1
= o {2A[cL +3e + 6c,] + 7126 = 0] + (6 " 493)
Y
+%[392 - 2yt 4)\]CR +4 [CL + C(LS)]
(B.14)

4
Y
_;; [(2NC + )Cytyb + CFCétLb] } - ('YQL + Vor T 3'Yh)cyb )

1 2
167'('2 |: (8>\ g ) Cyf + 2NC g* ()\ yt )(2cyty7' + Cyty ):|
=YLy + e 3y, (B.15)

1
{ 2 [N CLR — Q(NC + I)CRR + 2cr —cp, + Z(CH — CT):|

’YyT Cyr _
Yr

701{ = 87T2

3

—Z(3¢% + 9/2)CR} —2(Yn + Vtr)CR (B.16)
1 1 1

Yer = 72{?/1? [ — Necrr — zer+ 1 — 3¢ — (e — &) + (2N, + e
8 2 8
3
—Cf 0(8)} —1(392 + Q’Q)CL} —2(yn + 70, )er (B.17)

-1 1 3
T = s {yf [cL + — ey —e) + enp + Cr c(fﬂ + 007+ g
(3)

=2(vn + Q. )er,

(B.18)

1 3
Yo = 13 3 [(592 + 9% — 29264 }
_4,‘)/th )

{Ncyt2 [cyt - 20(5))} + AcH + 5¢) +
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1 93 8
g e T T [CLR +Cr C(Lz)z} = (W + QL +Ver)eyH (B.19)
1 g2 3
;’Yytcyl?, = 872 |:CL - 302)] — (v + QL + ’YtR)CyR ) (B.20)
1 gz
g e = TgmCR T (Yn + @ +Ytr)CyL (B.21)
ly c — gz [CR —cr + 30(3)} — (7h + Q. + Ve )C LR (B.22)
n YtCyLR 1671'2 L L R/™Y ’
1 = Nt Doy + Cre® ] = (v + 10, +00) (B.23)
yb’bech 1672 Yt c YtYb F Cyqyy, Yh T VQL T Yor)CyH > .
yi
Yexa = palNeCyr = 2ncK4 (B.24)
vi | 1 i
Yen = gg2 3w ToRT §(CH + 207‘):| —2(Y +Veg)Cr (B.25)
yi [ @ 1
Yo, = 33,72 3cy, —cr +3c;” + 5(01{ + 2cr)} —2(vn + 9. )CL (B.26)
vi | (3 1 (3)
T = 353 _—Cyt +ep+cp’ — FCH |~ 2(yn + 9. )¢, (B.27)
92 T (3) 1
Yew = 48;2 _16NCCL — (eg + CT)] — <27h + yw + gﬁg> cw, (B.28)
5 ¢
2 I8N
Yepg = 457?2 E “(2¢g +cr) — (eg + 5CT)] — 27peB, (B.29)
g2 [1
Yepr = 12;—2 {3 [4(N¢ + 1)cgrr + Necpr] + CR} — 279 CBR, (B.30)
g 1 (8)
Yepr, = Ton? g [(QNC—{—l)CLL—}—CFCLL—}—NCCLR} + 2¢y, _2’7QLCBL7 (B.?)l)
gz ® , @ 1
Yewr = 12;2 [CLL +Cre;; +c; ] - <27QL +yw + gﬁg> CWL, (B.32)
where Cp = (N2 = 1)/(2N), By = g and
_ 1 2, 302 12 . 1 15 _ th
’Yh—W[Ncyt+4(3g +g ):|7 7QL—:[67['2|:2yt s Vtr = 1672
1 3, 1 g?
- _ -3 _ = e B.33
W=l T 1529 T ez g (B-33)

are the wave-function renormalization terms. The corresponding wave-function terms for
leptons and bgr (Vr,,7Vry and ,) are proportional to small Yukawa couplings squared
that we are neglecting. Notice that in the above results we have included some depen-

dence on Wilson coefficients beyond those of Eq. (8.3) and ¢,. In particular, we have
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fr AN fr
h . fr AN
s h AN e CR\ N
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On= -l o1 *
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Ir Ir

FiGURrE B.1: Diagrams that generate at one-loop the redundant operator (5{%

h < fr
ho. fr N
Of,
h_____\ + o0 4 //’/
7 h fr
h // nyyf fL ///yf
h’ fr

FIGURE B.2: Contributions to the process hhh — fr,fr at order 1/A? | including
the one-loop corrections shown in Fig. B.1.

kept the contributions from wave function renormalization (which are trivial to take into
account) in all cases, and we also kept the contributions from ¢z in 4., and v., that
were already calculated in Ref. [5]. These anomalous dimensions have been calculated

through the (divergent pieces of the) one-loop effective action.

Using Egs. (B.10)-(B.32) we can calculate the anomalous dimensions 7¢,’s for the
shift-invariant Wilson coefficients. These are given in Sec. 8.1. We have cross-checked
those RGEs by calculating them in an alternative way. We have looked at the one-loop
radiative corrections to some particular physical processes and required the correspond-
ing amplitudes to be independent of the renormalization scale. In order to find agreement
between both methods, it is crucial to include in the amplitude for the physical process
non-1PI contributions. In the effective action approach, such diagrams are in one-to-one

correspondence with the redundant operators being eliminated.

As an illustrative example of the previous point, consider the contribution of the
redundant operator (’j{{ to the renormalization of Oy,. One-loop radiative corrections
do generate (’N)f; in the one-loop effective action, as shown in Fig. B.1, even if we remove
(’j}; from the (tree-level) Lagrangian. The physical combination Cy, [see Eq. (D.22)]
depends on E{% and, therefore, the anomalous dimension VCy, also depends on fyaé . The
same result for e, can be obtained by looking at the physical process hhh — frfr.

The 1/A? diagrammatic contributions to this process are shown in Fig. B.2. Besides
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the tree-level contribution through ¢,, shown on the left, there are one-loop corrections,
among which we just show the ones related to the redundant operator (’N)}; Having
removed the redundant (’j}; from the basis, there is no tree-level contribution from Eé to
hhh — frfr and the divergences from the one-loop blob shown in Fig. B.2 have to be
absorbed by ¢, (1) to obtain an amplitude that is independent of the renormalization

scale (.

Finally, the reader can check, using the previous anomalous dimensions which include
the dependence on the redundant coefficient ¢,, that the anomalous dimensions of the
shift invariant combinations cy — ¢, ¢6 + 2¢,, ¢y, + ¢/2, ¢y, + ¢-/2, plus all the other
Wilson coefficients, are functions of these same combinations, so that one can take ¢, = 0

in a consistent way.
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C. Custodial symmetry of L _g

The d = 6 operators of the basis of Sec. 6.1 can be made invariant under the custodial
SU(2)r ® SU(2)r by promoting their coefficients to (non-propagating) spurion fields
transforming under this symmetry. In this Appendix we present these transformation

rules.

The bosonic sector of the SM Lagrangian can be made custodial invariant by promot-

ing the gauge coupling ¢’ to transform as a triplet under SU(2)g:
g.04a = gl Rog R, (C.1)

whose nonzero VEVs, given by (g/) = ¢'da3, define how the custodial symmetry is
explicitly broken by this coupling. For the Higgs field, that transforms as a (21,2g), it

is convenient to use the matrix field

2:\}5@,}1) : (C.2)

that transforms under the custodial group as ¥ — LYR!, and therefore its covariant
derivative is given by D, = 9,% — igW}juaaE/2 +ig'*B,X0%/2.

To make the Yukawa sector of the SM invariant under the custodial symmetry, we

can promote the Yukawa couplings to transform as a doublet under SU(2)g:
Y, — RY,, (C.3)

where (Y,,) = (yu,0)7, and similarly for the other Yukawas. The Yukawa term is then
written as v2Q1 XY, ug, where the SM fermions transform as singlets under S U(2)r. To
define the proper hypercharge assignment for the SM fermions, we have to enlarge the
global group to SU(2) ® SU(2)g ® U(1)x and define the hypercharge as Y = Ty + X.
This means that the U(1)y is not only contained in SU(2)g but also in U(1)x and

therefore ¢’ also has a singlet component under the custodial group.
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Using the above definitions we can write the Lagrangian Lg as an invariant under
SU(2), ® SU(2)g. This requires to promote a few of the coefficients to spurion fields
transforming non-trivially. The result is shown in Tab. C.1. Only ¢ and ¢z g trans-
form non-trivially, being then, together with ¢’ and the Yukawa couplings, the only
sources of custodial breaking. This information is useful to deduce what combinations
of coefficients and couplings can contribute at the one-loop level to a given anomalous
dimension. For example, contributions to 7., can only come from terms that transform
as 5p: (ghgpcH) = ¢'*crda30p3 and <YJaaYuc%7R) = —y2cp p6»36%3, as the explicit
calculation shows. In the same way it can be understood why ., depends on yfc(L?’) but

not on yZcr, being cy a singlet under the custodial symmetry.

Useful information can also be derived from the transformations under the parity Prr

that interchanges L <> R. In the bosonic sector, we have

Y & xf
gla
a
?Bu > WL#
g < g
CH <> CH
Cw <+ CB
KHW > KHB, (C4)

while ¢y and kg do not have a well-defined transformation property inside the operator
basis. For this reason it could be convenient to work with the operator Oy g instead of

Opp [both related by Eq. (7.7)] that is even under Prr, and therefore Ky p <> Ky .

For operators involving SM fermions, we have several possibilities for the transforma-
tion properties under Pr g, see Ref. [157]. The two simplest ones are to consider (for the
up-type quark)

I) Qr = ;YuuR and Qp (C.5)

u

that transform respectively as (1,2g)1 /6 and (21, 1)1 /6 under SU(2),®@SU (2)r®U(1)x,
or, alternatively,
1
) 9 = y—QL ®Y] and ug (C.6)

transforming as (2, 2r)2/3 and (1,1)y/3 respectively. For the first case, Eq. (C.5), we

can write the operators Or and C’)f’) in the following way:

—i 21D, S Qror” d i tr[Slo,D,S g C
ZCRtr[Ua u ]QRUa'Y Qr an Uss tl“[ Oal/y, ]QLJa7 Qr , ( 7)
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such that under Prr we can define Oy, <+ Qr and
I) cp < c(L) : (C.8)
For the second case, Eq. (C.6), we can write the operators O, and (9( ) a
z'thr[JaET]_H)uE]tr[QzeTaav“eQ:LF] and icf)tr[ZTaaBME]tr[QLaayﬂQL] , (C.9)
and define Qj, < leeT under Prp that gives the transformation rule

1) cf, ¢ —ci¥ | (C.10)

(3)

In this latter case, invariance under Pp g implies c+c;” = 0, and therefore no corrections

to the Zbrby, coupling.

Operator Spurion SU(2)r ® SU(2)r vev
12t [oost D, Ste[o? St DS cab (BR®3r)s =5r+1  cpd®3eh3
Lew (9utr[315])” cr 1 cn
( ZTE ) Ce 1 Ce
—%cBg’atr[a“ZTBuZ]&,B“” cRB 1 cRB
%cwgtr[ZTaaBHZ]D,,Wlf” cw 1 cw
cytr[ETE] V2Q.XY,up Cy 1 Cy
—icaRtr[a“ETBME]fRﬂy”fR ch 3r cpd®3
fic“Ltr[a“ETBHE]fL’y“fL cq 3r cr6%3
ic(L3)tr[ETaaB/,Z]f_Laa'y“fL C(L3) 1 c(L?’)
—4ictr[XY,Y, D, S upy dr cud 1 cud
R ST L sy o e
—iﬁHBg’atr[U“DuETDVE]BW KHB 1 KHB
mHWgtr[D”ZTUaD,,Z]W;‘” KHW 1 KHW
kpBV2Q LYY, 0" upB,, KDB 1 KDB
ﬁDW\/QQLU”EYuUWuRWﬁV KDW 1 KDW
ﬁDGﬁQLEYuTAU””URGﬁV KDG 1 KDG

TABLE C.1: Transformation of the spurion Wilson coefficients of the d = 6 operators
under the custodial symmetry and their corresponding VEV. We are dropping fermion
indices in the coefficients.
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D. Dealing with redundant

operators

In this appendix we explain in detail the anomalous dimension matrix presented in the
main body of the paper, Tabs. 9.2-9.3 and 9.7. As remarked in Sec. 9, a common effect
encountered in the computation of the scaling of the dim-6 operators is the appearance
of counter-terms that correspond to operators not included in our basis, i.e. operators
that are redundant for the description of physical processes. In particular, the set of 13

operators we were interested in Chapter 9,

{On,07,08,Ow, Oz, Oaw, O, Oww, Ows, Osw, O2c, Oca, Osa} (D.1)

not only mix among themselves under the RG flow but also generate redundant oper-
ators that are not included in our basis (defined in Sec. 9). In this appendix we first
give a pedagogic example of radiatively generated redundant operators, Sec. 7?. Then,
we present the set of redundant operators generated by those in Eq. (D.1), together
with their anomalous dimensions, Sec. D.1. In Sec. D.2 we explain how the redundant
operators are redefined back into our basis and what is their effect on the anomalous

dimensions of the operator set in Eq. (D.1) [6].

D.1 Anomalous dimension matrix

The relevant redundant operators that are radiatively generated by those in Eq. (D.1)

are:
O, = |DH*|H[ Oka=|D?H|*
_ _ s _
0¥ — (Lo L) (Lro®y Ly),  OWY = i(H0*D,H)L o9y# L] |
(D.2)
— _ <
071, = (Liy* L) (Ley* L), 0% = i(H'D,H)(ektel),

ng)zuldl = (apy"TuR)(dry*TAdR), O%p = (ery"er)(erY"eR),
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176 Appendix D — DEALING WITH REDUNDANT OPERATORS

Oisr, = 3Ff WD* + D*P) Fi . Ofyp =33 PD* + D°D) f.

OI}/I?/L = gDVWﬁV(FiaayﬂFz) , OWL — gwa ZFi‘O.a,.YuDVFz’ ,

OF = ¢’ DB, (Fir"Fi), OF = ¢'B,iFiy"DVFi | D3
O};iR = ¢'D"Bu(fin* fi) (’),f‘ =g Bm,sz'y“D”fR,

O = g, D'G4(QLTANQL),  OF) = g,G1i(Qy T4 DV Q)

(
Olin = g: D" Gl (TeT 91 qk), Oy = g.Gi(THT " DV ql),

By relevant we mean those radiatively generated redundant operators that modify the
Wilson coefficients of the operators in Eq. (D.1) when the former operators are redefined

into operators in our basis, defined in Sec. 9.

Below we present in three different tables the anomalous dimension matrix of the
operators in Eq. (D.1) as well as the relevant redundant operators generated by them,
Eq. (D.3), at the order stated in Eq. (9.6). We work with arbitrary £ in the background
field gauge (see Eq. (9.7)) and use dimensional regularization. All the contributions given
in Tabs. D.1, D.2 and D.3 below arise from one-particle-irreducible Feynman diagrams,

i.e. it is the one-loop renormalization of the Effective Action.

In Tab. D.1 we display the contributions of Of, O, and Or to the running of the
Wilson coefficients of the operators in Eq. (D.1). We have defined

Yo, = 16w2di§“ By = dl‘iggu (D.4)
cH Cr cr
Ye 28X+ 12y7 — 3 (59° + ¢7) 3 (2% +97) —4x 8A —6g” — 34"
Ve 39" —39" 12X + 12¢7 + 24°
7 - : -3
e S S, o
Ve ax — 3¢° 20\ + 12y7 — 3 (g + ¢%) —4X + 3g2 — 6g"

TABLE D.1: Anomalous dimension matriz. Further contributions of Og, O, and Or to

other operators in Eq. (D.1) and Eq. (D.3) are either zero or proportional to the Yukawa

coupling of any fermion lighter than the top. The dashed line separates the anomalous
dimension of the operators in our basis from that of the redundant operators.
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and
1 ) 1 43 4
7H=—Ncy?+1(3[3—£w]g2+[3—§B]9’), vwz—gﬁg=<6—3NG>92,
1 4 1 1 20
= ——f, =(11—-=Ng ) ¢ =—"B,=(-=—"Ng|g?
G gsﬂgs ( 5 G>gs, VB g,ﬁg <6 9 G>g ;

(D.5)

in the background field gauge. Ng = 3 is the number of generations. The contributions
not shown are either zero or proportional to the Yukawa coupling y; of any fermion
lighter than the top. Notice that in Tab. D.1 we have gone beyond the strictly necessary
computations to obtain the anomalous dimension matrix and also included the contribu-
tions of the operator O,, that is redundant with respect to our basis; their contributions

are used for a crosscheck in Sec. D.3.

In Tab. D.2 we show the contributions of Opp, Oww, Owp and O3 to the running
of the operators in Eq. (D.1). The cgy self-renormalization has been extracted from
the result of Ref. [132]. Their contribution to the running of the redundant operators in

Eq. (D.3) that we have not written are either zero or proportional to y;.

CBB cww cwB c3w
Ve 69"t 18¢* 6g"2g> 0
Ye 0 0 0 0
Ve 0 0 0 0
Ve 0 0 0 2g°
Ye 0 0 0 0
Ye 0 0 0 4g°
Ye o &= +6y7 122 0 39° 0
e 0 —30 — 32 4 6y? +12) 9 39°
e 29 2¢° &+ 5+ 697 + 42 —5
Ve 0 0 0 2492 — 2y
Ye 69’ 18¢* 6g'%g> 0
Ve 0 0 0 g°

TABLE D.2: Anomalous dimension matriz. Further contributions of Ogp, Oww, Own
and Osw to other operators in Eq. (D.1) and Eq. (D.3) are either zero or proportional
to the Yukawa coupling of fermions lighter than the top. The dashed line separates the
anomalous dimension of the operators in our basis from that of the redundant operators.
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178 Appendix D — DEALING WITH REDUNDANT OPERATORS

Lastly, in Tab. D.3 we show the contributions of Og, Ow, Osp and Qs to the running
of any of the operators in Eq. (D.1) and Eq. (D.3). We have indicated by O (y;) those
contributions that at most are expected to be proportional to the Yukawa coupling of
a fermion lighter than the top. As can be noted from Tab. D.3, the contribution of
Oow to the running of Oy, O, Ow, O, O(L3)Fi, (’)f;}L and C’)ngi is ¢-dependent.
This should not come as a surprise, even if we work in the background field gauge,
where the counter-terms are gauge invariant. The reason is that at this point of the
computation we still have redundant operators generated by the RG flow. By definition,
in an over-complete basis that contains redundant operators only certain combinations

of the Wilson coefficients enter in the physical observables. Hence, it is only after

these physical combinations of the Wilson coefficients are taken, that the computation

c c c c
o g (g9 +49) g9 (3g +4g) — 6Ag —g (g9 +49) —g(9g(3+2¢)+4g)+3Xg
o —gg —6Ag —99 g9 +3Xg ‘99
R -+ 6y - - -
o : ‘g + 6y - -9 ( +3¢)
4 -9 0 —2v 0
o 0 —g 0 g(--3¢)-2v
v 0 0 0 0
v 0 0 0 0
~ 0 0 0 0
v 0 0 0 0

v 9(29 —g)+6Xg g (6g —g)+30Ag g (g —29)—3xg g(g—29(3—¢))—15Xg

v -9 —3g - ‘g

~ 0 g 0 g€

v 0 0 0 0

v 0 0 0 0

~ 0 0 —Yg -9

v 0 0 ~Yyg 0

el O (y) O (y) —--Yyg —9— &g
v O (y) O (y) —Yyg —Yg
v O (y) O (y) - Yyg 0

¥ O (v) O () - Yy -9

v O (y) O (y) -Yg —Yg
v O (v) O () —Yyg 0

v 0 0 —9g(gY) g(g(1+¢&)—4(gY))
el 0 0 —6(gY) -9

¥ 0 0 —6(gY) 0

TABLE D.3: Contributions of the operators Og, Ow,Osp and Oy to the anomalous

dimension matriz of the operators in Eq. (D.1) and Eq. (D.3). By y; we denote the

Yukawa coupling of any fermion. The dashed line separates the anomalous dimension
of the operators in our basis from that of the redundant operators.
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is guaranteed to be and should be gauge invariant. For instance, in Sec. D.2 we show
that upon redefining the redundant operators in terms of operators in our basis the £
dependence of the anomalous dimension vanishes. This subtlety is well known and, for
instance, it also appears in the context of Non-Relativistic QCD, where the running
of the Wilson coefficients is gauge independent only when the redundancy of different
operators is taken into account [158]. This has also been recently stressed again in
Ref. [135].

Tab. D.4 reports the contributions of Osi, Oaa, Os3a, Oap and Ogyy to the anomalous
dimension of the (redundant) operators in Eq. (D.1) and Eq. (D.3), as needed to derive
the anomalous dimension matrix of the dim-6 bosonic operators with gluons of our basis
(see Tab. 9.7).

C2G [Cele [&:]e 2B Cow

Ye  392(59 —9¢a) — 2va 0 692 0 0
Ve 0 —392 — 997 + 12X + 6y? 0 0 0
Ve 0 0 3692 — 2v¢g 0 0
Ve —12¢2(9"?Y,Yy) 0 0 12(g"?V, Yy)? 0
Ye 39:(9c — 1) 0 0 ~12g3(¢"?YuYa) 0
Ye —2g2 0 0 Tab. D.3 Tab. D.3
Ye 392 0 0 Tab. D.3 0
e —93(3¢c + %) 0 3¢2 —5(9'Yua)? 0
Ye —g2(%¢c + 31) 0 392 —2g'Yg)? -29
e —3g2 0 0 Tab. D.3 Tab. D.3
Ye -¥42v, 0 0 Tab. D.3 Tab. D.3
. g2y, 0 Tab. D.3 0
Ye —-392 0 —(9'Yu,a)? 0
Ve —-392 0 —(9'Yq)? -39°
Ye —2g2 0 Tab. D.3 Tab. D.3
e —4g2v, 0 Tab. D.3 Tab. D.3
- —402Y, 4 0 Tab. D.3 0

TABLE D.4: Contributions of the operators Osq,Oca, Osa, O and Osyw to the

anomalous dimension of the operators in Eq. (D.1) and Eq. (D.3). The dashed line
separates the anomalous dimension of the operators in our basis from that of the redun-

dant operators.
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D.2 Removal of the radiatively-generated redundant op-

erators

We now turn in to discuss how to deal with each operator in Eq. (D.3) and their effect

on the operators of Eq. (D.1).

The easiest way to deal with the redundant operator (’)g’R =4 Ewi fevrDY £ [101]
is by means of the identity'

VAP = g g P = ghP i s (D.6)
one finds
~ — g, - ~
9B fry"iD" fr = ZfRi (%%@ + ﬁ%%) frg' B*
+ g Frypvue fRDP B . (D.7)

Then, using the fermion’s EoM

/
9 . ~ 1 = =
S tui (e D+ Dvyen) fag B = 59'ypiFrow frHg BY + he. (D-8)

1 - 1
= EglyfFLUWfRHQIBW +h.c. = ZO{)B’

which is a dipole operator, where o*¥ = %[fy”,'y” ]; using again Eq. (D.6) in the second
term of the right hand side of Eq. (D.7)

ig' [V fRDPB" = 29 fryofrD,B"" =205, . (D.9)

Therefore, Egs. (D.7)-(D.9) and analogous manipulations, are equivalent to the following

shifts (¢; — ¢; + d¢;) in the following Wilson coefficients:

Sckyr =268, ock; =24, (5021% = 2ch, 5ch = 2CIGQL, Sckp=2c35.
(D.10)
The Wilson coefficient of the dipole operators are also shifted, see Eq. (D.8), however,
we can not conclude that the dipoles are renormalized by the set of bosonic operators
we considered because we did not compute direct contributions (those coming from

one-particle-irreducible diagrams).

'We use the conventions of Peskin & Schroeder textbook [159)].
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fi
Then, for the operator 0{53 > consider the field redefinition 0 f; = —c{T@fDZ fi, that

removes O{é?) p from the Lagrangian while generates the operator

fi i
ChiapYfs -~ = _ _ “K3RYfi P ,
_WDMFI'LD# (firH)+h.c. = —W[DquLV“’YUDV (firH) (D.11)
1_
— -Fir X" firH +h.cl],
2

where X, = ¢'Yr, By + gWi, 7% + gsGﬁyTa, being 7@ and T4 the SU(2)y and SU(3).
generators in the fundamental representation, respectively. Then, by inserting the
fermion’s EoM in the first operator in the right hand side of Eq. (D.11) one gets op-
erators of the type Lyux \H\Q and the operator yfi(’){g = yfii(HTEMH)f}éV“fﬁ; we do
not care about the latter (proportional to yy,) since our basis choice of Sec. 9 was to
remove the operator (’)};" corresponding to a light fermion. Performing an analogous
analysis for O}Igg ; we reach the same conclusion: neither of the two operator’s scaling
affects the anomalous dimension of the set of bosonic operators in Eq. (D.1). As in the
case of Oy, L.BL.BR’ the same comment applies here: even-though the Wilson coefficient
of the dipoles is shifted by the above manipulations, we do not conclude that they are

renormalized by the bosonic operators.

Now, the remaining operators are redefined into our basis by performing field redefi-

nitions. Consider the 37 independent field redefinitions

A5G = aaa(DVGi) + 95 Y | 0lgeQ . T47uQ% + 95 Y 0ot vT Yudk,

1 i,q
+ ) _. )
A2(5W5 = igaw (H'o® DM H) + aow (D"Wji,) + g Z apwFiro®y,Fy,
iF
A26B, = iglap(H DPH d"B "N YrahpFiuFL+ 9 Y Yok frvuf
= ig ap( )+ a28(8"Bu) +9' Y YrappFiru L+ 9 Y Yiahs frvufh,
i,F if

NH = oy HIH[? + 0z ((D*H) =y e L, =y dnQf, — vilio*(i5Q2})").
(D.12)

with F = {L,Q}, f ={e,d,u}, ¢ ={d,u} and i = 1,2,3. These generate the following

shifts for the Wilson coefficients of the dimension 6 operators:

cg — cg+2(a1 + 2Xag) — ag? cr — ¢+ 2(a1 + 2)az) + ag?

cr — cp —apg” CK4 = CK4 — 202
2 F; F; 1 i
cBp — CB+ aop — 2ap Cwr — Cwr T 30w — Qpy
2 F; F; Y, i
cw —  Ccw + cow — Z2aw Cgr, — Cgrt F(CMQB—QFB)
fi fi i
cop — Cop + 2a9p CBr — CBR-FYf(OzQB—Oz;cB)
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Cow — Cow + 2002w C(L?%F - fg + g Ay
Coq —  Cog + 200G C?L — C}BL + (Yrg')*a
ce — Ccg—4ay CQR - CQR + (Yfgl)QO‘j‘B
c;f — cgf — a1+ 2Xas cﬁ{j — Zf] + (YFYfg’Q)(afB +abp)
C;]fyf - Czi/J}yf +2as Cg;?))Fi - Cf)Fi + %(QW + )
Chit = R + 9PV Yalolp + alp) e = ¢ +Yrg*(ap + 30kp)
c{%" — c{{ + Y9 (ap + %a;B)
cGrLr— ChLrT 026 — alq for ¢ =Q,u,d
cah' o R+ g2 alg + ).

(D.13)
for OESL)Fi

. This means that the shift in C?L can be recast as a shift in cngi, which

Notice that using Fierz identities we can always trade the operator (’)?L
Fi _ »@)F

O =911

becomes:

(3)F;

3
) (3)F;

— (D.14)

2 .
We use the freedom given by the field redefinitions to set to zero the following 37 coeffi-

: . (3)L1 e (3)L1 F;, F; i Qs d;  (8)uld! .
cients: ¢,,ck4,¢;;  ,Cpp,CL CR,cWL,cBL,CéR,CGL,cGR,cGR, cpr - This fixes all

the shift parameters «; and gives shift invariant combinations, under Eq. (D.13), of the

Wilson coeflicients of the operators in our basis:

3)L
("

cg —cg — ¢+ 6(c —5(3)L1),

LL
cr = er+ —(cp — =5
Y'e(R 2Y RR)’

gy

L
cW—>cW—2cWL—4/1+ Cri

2

2
2
Y’élRJr

161)
YRR’

CB — CB —

?CEBIR Yeg/Q( 16'%1

D.15
Ly éé(s)Ll ( )
g2 LL
2
YngIQ c%R?
_(3)L
-,

Cow — Cow — 4CWL — 8¢

2. 4
Y, BR Y

/61
¢BR ~

C2B — C2B —

ce — c6 + 2¢, + 4ANcgq — 8(C(L3)L1

1 Butd!
g2 CrRrR >

1dy ’ul

d1
C2G — C2G — Cop — 2CGR — Coip — 2CGR —

where

~(3)L1
CLL

Y, 1
— BB 4 gy <c +2df} — (g + 25, + 77 ch)> (D.16)
e e
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and Eq. (D.10) has already been taken into account. This completes the removal of the

operators in Eq. (D.3) in terms of the bosonic operators.

As we have just shown, upon eliminating the redundant operators the Wilson co-
efficients of the operators of Eq. (D.1) are shifted in such a way that the anomalous

dimensions are redefined as

Ve = Yew ~ Ver + OV 01 —F@11) 5

1 1
Yer = Yer + ?6(75;1 - 27}/:376;11{) )
Yew T Vew 20k — Ay F ?(’ch’m ~ 2 em)
. 1 2 2 g ]
Yes Yes Z’YCEBIR Z’Yc’g}% fg,z(’hg Z%;lR) )
8 .
Yeaw 7 Veaw ~ AV kYL — e
2 4 2
B AL AL A el
Yes > Vee T 2Ver T+ AN Vegs — 8(70(3)% - :76(3)L1) )
L LL
1
Yesa ™ Veso — ’YCZ}R - ’VC’Gd}% - ’chlR — ’70/61;}1% - E’chl);ldl , (D.17)

where

1
g’QYe%gR)
(D.18)

The anomalous dimensions of the remaining bosonic operators, that are not of the form

~ Yy
Y =Y e 1m0V (v A2y, —
°LL °LL °LL CBL c

— e 2 /e
Ty (Yeprer + Ve, +

(SM current)x (SM current), are not redefined. In this way we can go to our original
basis taking into account that some operators are generated radiatively even if we set
their Wilson coefficient to zero at the matching scale. In the main body of the paper,
Tabs.9.2-9.3 and 9.7, we gave the physical anomalous dimensions obtained using the
right hand side of Eq. (D.17). As announced in Sec. D.1, the { dependence cancels out
in the physical combinations of 7,,’s, which can be easily checked using Eq. (D.17).

D.3 Field Reparametrization-Invariance Crosscheck

There is a useful consistency check that can be done to the results presented in Tabs. D.1

and D.3. Consider the set of 9 operators

B: {OK4706aOHaOT70T7OBaOW7O2BaO2W} . (Dlg)
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By means of field redefinitions, these operators are related among themselves and to
other operators that contain fermions, see Eq. (D.12). Therefore, in a hypothetical the-
ory with no fermions, but otherwise equivalent to the SM, the operator set of Eq. (D.19)
would be over-complete, i.e. there would be operators which could be removed using
field redefinitions. Let us take this scenario as a working assumption for the rest of
this Appendix. More concretely, consider the subset of field redefinitions of Eq. (D.12),

parametrized by

{on, as, ap, azp, aw, aow} (D.20)

and the shifts they produce on the operators of Eq. (D.19) given in Eq. (D.13). Using
this shift freedom we can choose to remove all the operators in B except Og, Oy and
Or. However, notice that the over-completeness? of B can be exploited to our advantage;
physical observables are independent of the coordinates choice as long as such a choice is
compatible with the assumed symmetries. Hence, physical observables can not depend
on the arbitrary parameters a; of Eq. (D.20) that we used to parametrize the field
redefinitions. The following combinations of Wilson coefficients are invariant under such

shifts:

3
Cyqg = cyg—c — ZgQ(QCW —cow) ,
1
CT = Cr — ZQIQ(QCB — CQB) s (D.Ql)

Cs c6 + 2¢r + g% (2ew — caw) + 4Acka -

Physical observables depend on shift invariant combinations of couplings, which we
denote by a capital C;. Also, a key property is that the anomalous dimension of a
shift invariant combination of couplings is a function of shift invariant combinations of
couplings only [5]

Ve, = f(C) - (D.22)

This is precisely the cross-check that can be done to the results computed in Tabs. D.1

and D.3. And indeed it is easy to check that:

1
You = (24N — 4¢% — 3¢?) O + = (24X + 99" — 17¢%) Cr,
2 (D.23)

1 5
Yor = 5 (72X + 59" +27¢%) Cr + gg’2CH ,

as it should, given the fact that Og does not renormalize O,, Oy, Or. As it is clear
from the discussion above, to compute Eq. (D.23) one has to insert the Higgs and gauge

bosons anomalous dimensions and the gauge beta functions without the contributions

2 Again, we stress that the set of operators in Eq. (D.19) is over-complete only in the absence of the
SM fermions.
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of the fermions:

nf nf 1 nf 43 2 nf 1 nf gl2
Vi =mly=0, T = —gﬁg =59 5= —?69, =% (D.24)

in the background field gauge and the superscript nf stands for no fermions, to distin-
guish them from their SM counterparts. Notice also that in Eq. (D.23) the £ dependence

exactly cancels, as it should, rendering the result independent of the gauge fixing term
of Eq. (9.7).
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E. Components of

supersymmetric operators

In this Appendix we show the expansion in component fields of some of the super-
operators discussed in Part III. We work in the Wess-Zumino gauge. In particular, for

the U(1) case, we show the supersymmetry-preserving super-operator
a0 (#1e%®) (Q1e"2Q) = [P Dol — 671Dyl — 50,laP0" o]
q|"| Dy wdl” = 50u101°0"¢
b2 tou 1 top Nk T 1 ot o)
+§\¢| (¢'é"Duq) + 3 (Y'a*q)(ig* D, p) + h.c.| + 3 ¢q*(ip'e" D,q) + h.c.
L5 T=p Y T=H b2 t=uT)
5 (0" Dus —vlory ) (i4°Dud - a'o"q ) + 51aP(v'6" D)
— (@l 6F, + (a")aF, — 6F3q Fy + he.] + 6Py + || Fy
~V29(Qu + Q) [|0PaNT — |aPesT + he] +9(Qu + QISPIAPD,  (E1)

where boundary terms have been dropped out after integration by parts rearrangements.
The fields are embedded in the super-multiplets as ® ~ {¢,9, Fy}, Q ~ {q,q, Fy} and
V ~{X A, D}. The D and F,, auxiliary fields are irrelevant in the discussion of the
renormalization of loop-operators by JJ-operators because they are necessarily involved

in vertices with too many scalar and/or fermion fields.

The loop-super-operators for the U(1) case are given by
1
/ oy (@ OV W, = —SOpr, +[¢7) <D2 n maﬂaw)

—\2¢*Acf”“wa —V2¢*YAD + A\¢*Fy, (E.2)
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/ d*on' @(anU)Wa = -Op+ { — V2i¢G(uc" O\ + 20 F, D + 2v2¢F,\q
+V2uFAq + V2F,qY\ + Dghu
ST VB ) — ()b (E3)

For the non-Abelian case, there is also the loop-super-operator

1 1
/ d*0 nTtr[DPWOWW,] = 1Osp+ Hitr 5F,WAUW(mM) + )\a”au)\TD] . (BE.4)
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