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Preface

The discovery of the Higgs particle at the Large Hadron Collider (LHC), presented on

July 4th, 2012, is a milestone in the history of particle physics. The Higgs particle

was the last particle predicted by the Standard Model (SM) of particle physics to be

discovered. The Higgs particle then completes a theoretical puzzle that can be traced

back to at least the formulation of the theory of beta decay (E. Fermi, 1934).

The Higgs particle is a keystone in the SM and its discovery is very singular in

the following sense. Without it, as far as one can calculate, the Higgsless-SM would

contradict the basic rule of Quantum Mechanics that the sum of probabilities adds to

one. That is why a central part of the LHC programme was to look for the Higgs

particle, or some other more exotic mechanism, that would cure the Higgsless-SM. In

this respect, it is very important to measure the Higgs couplings with as much precision

as possible, specially if no Beyond the SM (BSM) particle is found, since any deviations

from the SM prediction would point to the presence of BSM physics not far from the

current energy scale.

So far, the measurement of the Higgs mass and its interaction properties with the other

particles is teaching us a big amount of physics. The mass value serves as a discriminator

for BSMs and determines wether or not the SM electroweak vacuum develops instabilities

at high field values. The Higgs couplings to different SM particles, measured by ATLAS

and CMS, are so far compatible with the SM expectations within a ∼ 20% accuracy.

However, as already emphasised, a precise determination of the Higgs couplings is very

important.

The discovery of the Higgs marks the beginning of a new era in Particle Physics.

The field of Particle Physics is facing a situation never encountered before. We have

a theoretical framework that is consistent up to very high energies (an hence without

any need of modifications of the theory). There are a number of conundrums that

certainly require the extension of the SM to include Beyond the SM (BSM) physics, for

instance: the strong indirect evidence of large halos of dark matter surrounding galaxies;

the strong CP problem; the value of the Higgs mass appears to be finely tuned in any
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Chapter 1. Preface

conceived BSM theory whose lowest mass scale is much bigger than the electroweak scale

(Higgs mass hierarchy problem); the striking hierarchy of the SM Yukawa couplings; the

matter-antimatter asymmetry, among other theoretical puzzles. Apart from the Higgs

hierarchy problem, any of the aforementioned conundrums can be solved at scales much

higher than the SM or with very weakly coupled physics. In this respect, if the Higgs

mass hierarchy problem and its associated fine-tuning is a good guide, BSM physics is

expected at an energy scale reachable by the LHC. However, so far there is no pressure

from any collider experiment to accommodate data not being properly fitted by the SM

expectations. Time will tell if this is the calm preceding an upcoming storm.

In any case, in order to push forward the boundaries of the field, two very important

lines of research consist in

- inspecting any possible sign within the SM theory that may indicate or suggest

new physics beyond the SM (BSM),

- the investigation of possible way outs to the constraints that experimental data

places on possible BSM.

In fact, the work presented in this thesis can be classified into the two aforementioned

broad paths of research. The lines of research followed in the present thesis are mostly

motivated by the Higgs discovery. Therefore, a big effort is devoted to the investigation

of the implications of the Higgs discovery.

The present thesis is organized in three parts. In the first part we study various aspects

related with the stability of the electroweak (EW) vacuum. The topic is introduced in

Chapter 2. Then, in Chapter 3 we show that the Higgs mass value is very intriguing

from the point of view of the stability of the EW vacuum. If the Higgs mass would

had been few GeV’s heavier, then the EW vacuum would be absolutely stable. On the

other hand, if the Higgs mass would had been lighter by approximately ten GeV’s, then

the EW vacuum would be too short lived as compared with the age of the universe.

We review the results published in Ref. [1] that consist in a NNLO analysis of the EW

vacuum stability. In Chapter 4 we discuss a mechanism to stabilise the EW vacuum.

This is based on the publication of Ref. [2]. We also discuss various examples of BSM

physics that can naturally accommodate such mechanism.

It is very interesting to find concrete theoretical predictions linking particle physics

and cosmology. Also, cosmological observables, like imprints of the period of inflation in

the Cosmic Microwave Background, can provide experimental information of the highest

accessible energy scales that are otherwise not accessible by collider experiments. In

Ref. [15] the authors proposed to use the SM Higgs as an inflaton by introducing a

large coupling between the Higgs and the Ricci scalar, δL = −ξ|H|2R. In my opinion,
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even-though the proposal is attractive, there are a number of unsettling features. First,

the set-up is not radiatively stable. In fact, from the top-bottom point of view, one

has to impose a shift symmetry at trans-planckian field values that is broken in a very

special way. It is unclear that this can be done without imposing a functional tuning

(i.e. tuning an infinite number of parameters) on the model. Then, there is a field

range of values where the Higgs stops ”Higgsing” because it is inflating. This causes

problems with perturbative unitary. Lastly, my personal bias, is that I do not see a

fundamental reason for paying this prize for the sake of being minimalistic. It seems

that nature has cared more on symmetry principles than in being specially minimalistic.

In any case, the proposal is an interesting possibility and in Ref. [4] we proposed an

embedding of the original theory of Ref. [15]. In the bigger theory we can address some

of the aforementioned problems of the original proposal of the Higgs as an inflaton. For

example, in the bigger theory, one can compute the coupling of the Higgs to the Ricci

scalar. As we commented, this thesis is about the implications of the Higgs discovery.

However, due to the lack of space for a proper treatment we will not discuss any further

the cosmological implications.

In the second part of this thesis we study possible BSM-induced deviations in the SM

Higgs sector. A convenient way to do so is by means of the SM effective field theory

(EFT). The topic is introduced in Chapter 5. Subsequently, in Chapter 6 we present

a global analysis of the SM EFT. We focus on those observables (with emphasis on

Higgs physics) that could present big deviations from the SM expectations and would

not be in contradiction with any previous experiment done so far. In the following

Chapters 7-9 we study quantum effects in the SM EFT (the anomalous dimension matrix

of dimension-six SM operators). This is very interesting for a number of reasons that

we review. For instance, physical observables that are unrelated at tree-level, are in fact

correlated through perturbative quantum corrections. In Chapter 7 we study, among

other things, the interplay between the S-parameter, the triple gauge vertices and the

decays h → γ + γ/Z. In Chapter 8 we study the most relevant quantum effects for

dimension-six Higgs operators and we match the results in the SM EFT with various

BSMs. In Chapter 9 we present a study of the interplay between EW observables,

measured precisely at the Large Electron-Positron Collider (LEP), and Higgs physics.

The second part is based on the publications of Refs. [5–7].

One of the results found in the second part of the thesis is that the anomalous di-

mension matrix of the dimension-six SM operators has a very peculiar structure. It has

a lot of vanishing entries. This is surprising because those vanishing entries are allowed

by all symmetries in the theory and therefore are not expected to vanish. In the third

part of the thesis we present an argument, based on the use of Supersymmetry as a

spurious symmetry, that provides a rationale for the structure observed by brute force
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calculation in the first place. However, the argument clarifies that the structure seen

in the SM is generic (not due to the SM internal symmetries or accidental symmetries)

and has applicability to other EFTs. The results of Part III are based on Ref. [8].

The first run of the LHC ended beautifully with the discovery of the Higgs boson

and initiated an era of measurements in the EWSB sector that remained only indirectly

constrained for several decades. With the next run of the LHC and the high-luminosity

program will start an era of precision that will lead certainly to a better understanding

of what physics breaks the electroweak symmetry and, hopefully, to the first glimpse of

the new physics beyond the Standard Model. We hope that the results we presented in

this thesis will be a powerful contribution to that quest.
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1. Particle Physics

It is difficult to over-state how marvelous the theory of particles is. Its structure is based

on two theories: quantum mechanics and special relativity. Basically this means that

if you accept these two theories, on which there is the greatest experimental evidence,

the structure of the theory follows by demanding logical consistency. This fact is very

satisfactory and gives a sense of inevitability of the physical laws. Therefore, with some

exaggeration, the only freedom left for a particle theorist is on the discrete choice of the

number of particles and the adjustable parameters that control the interaction strength

together with possible masses.

The Standard Model (SM) of particle physics plus the theory of General Relativity

(through the Standard Model of Cosmology) can in principle explain observed pheno-

mena ranging from ∼ 10−18 meters to the largest observable scales ∼ 1025 meters. Both

theories are defined trough a Lagrangian, which very schematically reads

LSM =
1

2
(∂H)2 − V (H) + ψ†iσ · ∂ψi + [yijHψiψj + h.c.] + Ls=1 , where

Ls=1 =
1

2
(∂A)2 + g(∂A)A2 + gJ ·A+O(g2) and (1.1)

LGR =
1

2
(∂γ)2 +

√
gN (∂γ)2γ +

√
gNT · γ +O(gN ) , (1.2)

where we have expanded the Hilbert-Einstein action SGR = (16πGN )−1
∫
d4x
√−gR

around a background metric g = η +
√
gNγ to expose its similarity with the Ls=1

Lagrangian (we have defined gN = 8πGN = M−1
Pl ≈ 10−18 GeV). With the recent

discovery of the Higgs boson H [9, 10] at the Large Hadron Collider (LHC), so far

we have seen nature making use of all the particles she can use to mediate long range

interactions except for the helicity h = ±3/2.

A sense of unicity of the physical Laws

Let me review some of the concrete evidence of the inevitability of the physical Laws and

hence of the underlying structure of the SM of particle physics and General Relativity

5



6 Introduction – Particle Physics

of gravitation. Long range interactions are mediated by massless particles of helicity

|h| = {0, 1
2 , 1,

3
2 , 2}. This can be seen in a number of ways. One of the historic ways is

by considering infrared properties of the S-matrix. The idea is to consider the emission

of a soft particle of momentum q from an (n+1)-particle amplitude. At leading order in

q, the amplitude factorizes into a rational factor times the scattering amplitude of the

remaining n particles: Mn+1(k1, k2, · · · , kn, q) = F×Mn(k1, k2, · · · , kn)+O(q0) . Then,

for the rational factor to be invariant under Lorentz transformations, conservation Laws

must be satisfied. For instance, for a helicity |h| = 1 soft particle the factor is F =
∑n

i=1 eiε(q) ·ki/ki ·q, where ε(q) is the polarisation and ei the coupling constant between

the soft and the ith particle. Under a Lorentz boost δε ∝ q and one finds that charge

must be conserved
∑n

i=1 ei = 0, see Ref. [11]. Instead, for helicity |h| = 2 the rational

factor is F =
∑n

i=1 eiεµνk
µ
i k

ν
i /q · ki. Then, under a Lorentz transformation δαεµν =

qµαν+qναµ and one discovers that, if no constraints beyond momentum conservation are

imposed, the soft |h| = 2 massless particle is coupled universally to the remaining species.

This is tantamount to the equivalence principle that leads to General Relativity [12].

Now, if the exercise is done for particles of helicity |h| > 2 one finds that, for the

corresponding factor F to be Lorentz invariant, one needs to impose constrains on the

momenta beyond momentum conservation and this constrains the angles on which the

particles are emitted after the collision. This is unphysical and therefore helicity |h| > 2

particles cannot mediate long range forces. 1

Another complementary way to derive this result that allows to go further in con-

straining the possible consistent interactions is the following [13]. The idea is that

the 3-particle amplitude 2 is completely fixed by momentum conservation and Lorentz

symmetry. In particular, by requiring that the amplitude transforms homogeneously,

with weight −2hi, under the little-group scaling of the ith particle of helicity hi. Next

one considers the 4-particle amplitude and requires that it factorizes properly into the

lower 3-particle amplitudes as any of the sums of the external momenta go on-shell

(
∑
pi)

2 = 0. This turns out to impose non-trivial constraints on the couplings of the

3-particle amplitudes. And, for instance, one finds that for a collection of interacting

helicity |h| = 1 particles their couplings obey the Jacobi identity (and hence satisfy a

Lie algebra). The same exercise done for a set of helicity |h| = 2 particles implies the

equivalence principle together with the fact tat there is no analog of Yang-Mills for he-

licity |h| = 2 particles (instead of the Jacobi identity constraint one gets a commutative

algebra that can be diagonalized). Then, again the same exercise shows that the helicity

±3/2 state necessarily couples to the |h| = 2 graviton as linearized N=1 supergravity,

1Soft theorems do not terminate here: sub-leading factors as q →0 give further conservation laws.
2For real momenta, the 3-particle amplitude is only non-vanishing as two of the particles go collinear.

However in the following argument all momenta is complexified and we go back to the real line only at
the end of the calculation.
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Section 1.1 – The Standard Model Lagrangian 7

and that the constraints cannot be fulfilled for a particle of spin s > 2. Hence, Quan-

tum Electrodynamics, Yang-Mills, General Relativity and Supersymmetry do not admit

small consistent deformations. This is also known through field theoretic methods, but

it is particularly nice to see the emergence of the known theories in such a sharp way.

After this short digression on some of the generic structure underlying particle physics,

in the rest of the Chapter we present a brief discussion of the SM of particle physics.

The presentation does not show the big amount of fun subtleties that surround the

SM, most of them present in any QFT, but serves to set the notation and the physical

motivations for the upcoming Chapters, which are the main topic of this thesis. The

discussion consists in actually defining LSM in Eq. (1.1), an explanation of its most

prominent phenomenological consequences together with its experimental verifications,

and a discussion of the theoretical and experimental problems that it faces.

1.1 The Standard Model Lagrangian

The SM is a relativistic Quantum Effective Field Theory (EFT). As such, it can be

defined by specifying the gauge group

U(1)Y ⊗ SU(2)L ⊗ SU(3)c , (1.3)

the field content and its representations under the gauge group

Fields Names spin U(1)Y SU(2)L SU(3)C SL(2,C)

qiL
1
2

1
6 2 3 (1

2 , 0)

uiR quarks 1
2

2
3 1 3 (0, 1

2)

diR
1
2 −1

3 1 3 (0, 1
2)

liL
1
2 −1

2 2 1 (1
2 , 0)

leptons
eiR

1
2 −1 1 1 (0, 1

2)

H Higgs 0 1
2 2 1 (0, 0)

Table 1.1: The field content of the Standard Model. The index i = 1, 2, 3 is called
the generation index.

and, as any physical theory, the energy scales E that it is supposed to describe,

E ∈ [0,Λ] , (1.4)

7



8 Introduction – Particle Physics

where Λ & 1 TeV. Given these three pieces of information, we write down the most

generic local Lagrangian compatible with the symmetries

LEFTSM = LSM + LBSM , (1.5)

where LSM = LGauge + LFG + LHiggs are operators of dimension d ≤ 4 and LBSM is

comprised of higher dimensional operators d > 4. They are defined as follows.

Pure gauge sector:

LGauge = −1

4
Bµν

(
Bµν − θ1

α1

4π
B̃µν

)
− 1

4
W a
µν

(
W aµν − θ2

α2

4π
W̃ aµν

)

− 1

4
GAµν

(
GAµν − θs

αs
4π
G̃Aµν

)
, (1.6)

where αj = g2
j /(4π) and the field strengths are defined as usual Aaµν = ∂µA

a
ν − ∂νAaµ −

gjε
abcAbµA

c
ν . The gauge fields B, W and G correspond to the gauge groups U(1)Y ,

SU(2)L and SU(3)c, respectively; the tensor-constants εijk satisfy the Jacobi identity

for the non-abelian groups SU(2)L and SU(3)c while they are zero for the U(1)Y . In

the path integral quantization we need to add a gauge fixing function and ghosts fields.

The six terms in Eq. (1.6) introduce a coupling constant g′, g, gs and an angle θ1, θ2,

θs. The first three have the following approximate values {g′, g, gs} = {0.4, 0.6, 1.2}, at

the electroweak scale ∼ 100 GeV. See Sec. 1.1.2 for a discussion on the θi parameters.

Fermion-Gauge sector: The fermion content and its interaction with the gauge bosons

is given by

LFG = Ψ̄iγµDµΨ , (1.7)

where we have grouped the fermions into the vector ΨT = ( qiL uiR diR liL eiR ). The

covariant derivative is defined as Dµ = ∂µ − ig′Y Bµ − gW a
µT

a
R − gsGAµ tAR. The matrices

T aR and tAR depend on the fermion’s representation: they are given by the three Pauli

matrices σa/2 and by the eight Gell-Mann matrices λA/2 for the 2 of SU(2)L and a

3 SU(3)C ; while they are 0 for the singlet representation. We have denoted by Y the

U(1)Y charge QU(1) of each fermion, for instance QU(1)Y l
i
L = −1

2 l
i
L.

Higgs sector:

LHiggs = |DµH|2 +m2|H|2 − λ|H|4

− l̄iLy
e
ije

j
RH − q̄iLydijd

j
RH − q̄iLyuiju

j
RH̃ + h.c. , (1.8)

where DµH = (∂µ − ig′/2Bµ − gW a
µσ

a/2)H, H̃ = iσ2H
∗ and yfij are 3 × 3 complex

Yukawa matrices, discussed in Sec. 1.1.2.

8



Section 1.1 – The Standard Model Lagrangian 9

Higher dimensional operators. Their name is due to the fact that we need to intro-

duce a dimensionful coupling ci/Λ
ni to match the right dimensions of the Lagrangian:

LBSM ≡
∑

i

ci
Λni
Oi = −y

∗ij
ν

Λ
εαβεγρ(l

iTα
L CliγL )HβHρ + h.c.+

c′ij
Λ2
DνW a

µν(l̄iγ
µlj)

+
cijkm
Λ2

εabc(d
i
aCu

j
b)(q

k
cβε

αβClmα ) + h.c.+O(Λ−2) , (1.9)

where εαβ, εabc and C = iγ2γ0 are SU(2)L, SU(3)c and Lorentz antisymmetric tensor

invariants and we are only showing some terms of the series to make a couple of points

in the following discussion.

This part of the Lagrangian reflects the known unknown physics, in the following

sense. It parametrizes possible new physics at a high energy scale Λ. The effects of

unknown higher energy physics decouple as

(E/Λ)n , (1.10)

where E is the energy of the process under consideration, Λ is the characteristic energy

scale of the unknown higher energy physics that decouples, and n a positive number.

The effect of the unknown higher energy phenomena can be parametrized in a power

expansion of E/Λ. In certain particular cases one can explicitly show the power-law

decoupling. For instance, in weakly coupled models Λ ∝ M/e, where M is the mass

of the heavy particle and e its coupling to the low energy physics. The decoupling of

high energy degrees of freedom is ubiquitous in physics and it takes a precise form in

quantum effective field theory (QEFT). Indeed, in QEFT one can compute corrections to

the energy scaling of the different operators in the Lagrangian, and they can be resumed

using the Renormalization Group Equations (RGE). The combination of the RGE and

the EFT rationale makes QEFT very powerful by allowing to focus on the energy scales

of interest. Now, energies (or momentum) in a quantum process can come from either a

field or a derivative in the Lagrangian. Therefore, the energy expansion translates into

an expansion in powers of

(φ/Λ)n , (∂/Λ)n , (1.11)

in the Lagrangian. This explains why, if we are interested in certain energy resolution, we

can neglect higher order interactions of the sum
∑

i ciOi/Λni that produces corrections

beyond our experimental reach or interest.

Coming back to the SM EFT, the measurement of higher dimension operators is

crucial because it points to a new energy scale. Presumably new physics, possibly

in the form of new degrees of freedom, appear at that energy scale. Two important

concrete remarks regarding Eq. (1.9) are that the dimension-five Weinberg operator

9



10 Introduction – Particle Physics

-246 -100 100 246
ϕc

0.5·108

1.1·108

V(ϕc )

Figure 1.1: Plot of the SM potential V (φc) for the realistic values of λ = 1/8 and
v = 246 GeV, for the range of values indicated in the figure.

∼ liljHH gives a contribution to the neutrino masses of order yνv
2/Λ [14], see Sec. 1.1.2.

All operators of the dimension-four SM Lagrangian are invariant under {q, u, d} →
eiαQB{q, u, d}. The charge under this symmetry is called baryon number and it is

violated by the dimension-six operator ∼ qudl/Λ2 of Eq. (1.9). This operator has not

been directly measured but its coupling strength is tightly constrained by proton decay.

Just for completion on the discussion of Eq. (1.9), let us mention that in the limit

Λ → ∞, the W bosons couple equally to the different lepton families. However, the

operator ∼ ∂2Wl̄ilj of Eq. (1.9) might lead to a breaking of the universal W -leptons

interaction. See Sec. 1.1.3 for a further discussion on accidental symmetries.

Due to historical reasons, is is customary to call the Standard Model to the Lagrangian

LSM of Eq. (1.5). The reason is that fixing a finite number of couplings is sufficient for

the theory to be predictive. Instead, the Lagrangian LEFTSM of Eq. (1.5) is predictive for

a finite number of couplings at a fixed order in the (E/Λ)n expansion, which is perfectly

fine for a physical theory. The point of view taken in the present discussion is to write

the generic local Lagrangian containing all the degrees of freedom observed in nature,

as dictated by symmetries. Neutrino masses and perturbative quantum gravity require

the inclusion of higher order interactions. Thus there is no reason for being minimalistic

in the number of particles and there is no beauty or simplicity principle in the field

equations themselves. For instance, notice the complexity of the equations of motions

derived from LEFTSM . Instead, the simplicity is on the symmetry principle governing the

Lagrangian LEFTSM .

1.1.1 Electroweak Symmetry Breaking

The Standard Model tree-level Higgs effective potential in the Lagrangian Eq. (1.8) is

given by

V (H) = −m2|H|2 + λ|H|4 , (1.12)

10



Section 1.1 – The Standard Model Lagrangian 11

Since the SM couplings are small at the electroweak scale ∼ 100 GeV the tree-level

potential suffices for a qualitative discussion (the couplings satisfy αi/(4π) � 1, where

αi = {λ, (yf )2, g′2, g2, g2
s}/(4π)). See Fig. 1.1 for a plot of the potential in Eq. (1.12).

The vacuum of the theory is the state that minimizes the Hamiltonian density expecta-

tion. For the Higgs sector it is given by

〈0|H|0〉 = V (φc)|min , (1.13)

subject to 〈0|h|0〉 = φc, whereHT = (G+, h+ iG0). Thus, from Eq. (1.12), the minimum

of the energy density is given by

〈0|h|0〉 = v , (1.14)

and we say that the Higgs acquires a vacuum expectation value. In the 〈h〉 = v back-

ground, the particles of the SM have the masses summarized in Tab. 1.2. The value of

v is measured through the muon decay to be v = 246 GeV. The masses of the quarks

span five orders of magnitude mt/mu ≈ 105, while the masses of the neutrinos are much

smaller than the electroweak scale mν ≈ 10−1 eV ≈ 10−12v. There is no explanation for

these hierarchies within the SM, see Sec. 1.1.2 for a further discussion.

The name electroweak symmetry breaking originates from the fact that the vacuum

state |0〉 of the SM is not invariant under SU(2)L ⊗ U(1)Y because T i · 〈0|HT |0〉 =

T i · (0, v/
√

2)T 6= 0, where T i is any of the SU(2)L or U(1)Y generators. However (T 3 +

QY )|0〉 = QQED|0〉 = 0 is a symmetry of the vacuum and we say that SU(2)L ⊗ U(1)Y

is broken to U(1)QED electromagnetism.

Gauge bosons Leptons

m2
γ m2

Z m2
W m2

G me mµ mτ mi
ν

SM 0 g2+g′2

4 v2 g2

4 0 yev/
√

2 yµv/
√

2 yτv/
√

2 v2/Λ

Value 0 (91)2 (80)2 0 5× 10−4 0.1 1.7 3× 10−10

Quarks Higgs

mu md mc ms mt mb m2
h

SM yuv/
√

2 ydv/
√

2 ycv/
√

2 ysv/
√

2 ytv/
√

2 ybv/
√

2 2λv2

Value 2× 10−3 4× 10−3 1 0.1 173 4 (125)2

Table 1.2: Tree-level masses of the SM particles in terms of the parameters of the
Lagrangian in Eq. (1.5) and their experimental values in GeV. The experimental un-
certainty on the mass values is below the quoted significant digits. Regarding the neu-
trino masses, we have quoted their average value as inferred from the cosmic microwave

background, assuming the SM.

11



12 Introduction – Particle Physics

The Higgs mechanism

The Higgs boson plays a central role in the SM, and in the present thesis. Let us

then review what makes the SM Higgs a Higgs boson as compared to other scalars. To

make the argument transparent, let us focus on a Higgsless cousin of the SM electroweak

interactions by turning the g′ coupling to zero; also for the sake of clarity, we omit the SM

fermions in the following discussion. The Lagrangian describes a collection of spin s = 1

massive gauge bosons, invariant under a global SU(2) transformation Wµ → UWµU
†

where W ’s are in the adjoint

L = −1

4
W a
µνW

aµν +m2
WTr WµW

µ +O(Λ−1)

∼ 1

2
(∂W )2 − 1

2
mWW

2 − gW 2∂W + g2W 4 +O(Λ−1) (1.15)

where W a
µν = ∂µW

a
ν − ∂νW a

µ − gεabcW b
µW

c
ν , Wµ = σaW a

µ/2 and Oi are higher dimension

operators made of Wµ fields. The theory of Eq. (1.15) is sick in the sense that the

cut-off Λ cannot be arbitrarily large, for if we take Λ � mW /g perturbative unitarity

is lost. There is a number of equivalent ways to see this. Firstly, at high energies the

longitudinal gauge bosons’s polarization is given by εµL(p) = pµ/mW + O(mW /E) and

therefore the probability amplitudes grow unboundedly with the energy, up to order

O(Λ−1) corrections. Therefore the validity of Eq. (1.15) is for energies E . mW /g ∼ Λ,

which can be made more precise by actually computing amplitudes involving external

longitudinal bosons. This is closely related to the fact that −1
4WµνW

µν + m2
WWµW

µ

is not renormalizable, and the way to see this is by making the high energy behaviour

of the theory manifest at the level of the Lagrangian. This is achieved by making the

field redefinition Wµ → UWµU
† + (i/g)U∂µU

† = (i/g)U(DµU)† on Eq. (1.15), where

U(x) = eigT
aπa/mW , T a being the SU(2) generators,

L = −1

4
WµνW

µν +
m2
W

g2
Tr (DµU)†DµU +O(Λ−1)

= −1

4
WµνW

µν +

[
DµU

(
0

v/
√

2

)]† [
DµU

(
0

v/
√

2

)]
+O(Λ−1) , (1.16)

where Dµ = ∂µ − iσa/2W a
µ and v = 2mW /g. In Eq. (1.16) we have introduced a new

field π(x), but the Lagrangian is equivalent to the original one of Eq. (1.15), by setting

π = 0 (called the unitarity gauge) they take the same form. In the second equality we

have written Eq. (1.16) in a form that makes it clear that global SU(2) is completely

broken in the vacuum: T a〈U(0, v/
√

2)T 〉 = T a · (0, v)T 6= 0.

The advantage of introducing the π(x) fields is that the high energy behaviour of the

theory is now manifest, at high energies the gauge boson’s longitudinal component is

12



Section 1.1 – The Standard Model Lagrangian 13

well-described by the π(x) fields. This is easily seen by taking the simultaneous limits

mW → 0 and g → 0 while keeping mW /g fixed. Under this limit (called decoupling

limit) the gauge bosons decouple from the π fields and Eq. (1.16) reduces to

L =
m2
W

g2
Tr ∂µU

†∂µU , (1.17)

up to terms of order O(Λ−1). Corrections to Eq. (1.17) are perturbative in powers

of mW /E and g2, where E is the energy of the gauge bosons. The most important

lesson that we learn from this analysis is that the theory of Eq. (1.17) becomes non-

perturbative at energies around mW /g. At such energies or below we expect new physics

beyond the description of Eq. (1.17). More accurately, we can define the strong coupling

scale as the loss of perturbative unitarity (in the s-wave scattering it occurs for energies

E ∼ 4πmW /g), or as the scale where the loop expansion breaks down

E ∼ 4π
mW

g
. (1.18)

Again, in the decoupling limit this pathological behaviour is identified as due to the (old

sense) non-renormalizability of the theory of pions of Eq. (1.17) or, equivalently, the

longitudinal gauge bosons of Eq. (1.15).

Now, the Higgs mechanism is perhaps the simplest way to UV-complete the La-

grangian of Eq. (1.16) into a theory that makes sense at energies much higher than

4πmWg . The mechanism consists in linearizing the field U(x) = eigT
aπa/mW by introduc-

ing a new field h

U −→ H ≡ U
(

0

(v + h)/
√

2

)
, (1.19)

and promoting equation Eq. (1.16) into

L = −1

4
WµνW

µν + (DµH)†DµH +
∑

i=5

ci
Λi−4

Oi , (1.20)

which is the SM electroweak-higgs sector introduced in Eqs. (1.6) and (1.8). 3 Thus,

the role of the Higgs in the SM is very particular. Any deviation from the SM higgs

predictions requires new physics. With the addition of the Higgs particle h the theory

can be used to describe both the low energy physics of massive gauge bosons, Eq. (1.15),

and the high energy limit where masses can be ignored and the spin 1 particles interact

à la Yang-Mills, as described at the begining of this Chapter.

Notice that there is not a perturbative unitarity problem (and no need for a Higgs

mechanism) with a theory of a photon and a Z-boson that presents the U(1)⊗ U(1)→
3In all the previous formulas one can restore g′ 6= 0 straightforwardly.

13



14 Introduction – Particle Physics

U(1) breaking pattern as opposed to, for instance, the U(1)Y ⊗ SU(2)L → U(1)QED

breaking of the SM. The easiest way to see this is from Eq. (1.17), which becomes

simply a kinetic term for π(x) for U(x) = eigπ(x)/m; alternatively, start from a Higgs

mechanism and decouple the Higgs particle or notice that all amplitudes that lead to

violations of unitarity involve triple gauge vertices. A theory of photons and Z’s does not

need a UV completion. A famous consequence of this is that the Electroweak Precision

Tests (EWPT) observables do depend on the logarithm of the Higgs mass, preventing us

from taking the limit mh →∞; and, those terms are proportional to g since we should

be able to decouple the Higgs in the g → 0 limit.

1.1.2 Yukawas

As introduced previously in Eqs. (1.7), (1.8) and (1.9), the fermion content of the SM

is described by

LFG = q̄iLi /Dq
i
L + ūiRi /Du

i
R + d̄iRi /Dd

i
R + l̄iLi /Dl

i
L + ēiRi /De

i
R (1.21)

LY uk = −q̄iLydijdjRH − q̄iLyuiju
j
RH̃ − l̄iLyeije

j
RH −

yijν
Λ

(l̄iLH̃)(H†iσ2lcjL ) , (1.22)

where qL = (uL, dL), lL = (νL, eL), lcL ≡ Cl̄TL and in the following discussion we ne-

glect O(Λ−2) operators. The Yukawa matrices yd,u,e are generic 3× 3 complex matrices

and can be written as Lfy
f
DR
†
f , where yfD is diagonal and Rf , Lf are unitary. Re-

garding yν , it is a symmetric complex 3 × 3 matrix and can be written as Uνy
ν
DU

T
ν ,

where yνD is diagonal. Then, upon the unitary transformation {qL, uR, dR, lL, eR} −→
{LdqL, RuuR, RddR, LelL, ReeR} and setting 〈H〉 = (0, v)T /

√
2, Eq. (1.22) reads

LY uk = −
(
d̄Ly

d
DdR + ūLV

†
CKMy

u
DuR + ēLy

e
DeR + ν̄LUPMNS

yνDv

Λ
UTPMNSν

C
L

) v√
2

= −d̄L · diag(md,mu,mb) · dR − ūLV †CKM · diag(mu,mc,mt) · uR (1.23)

−ēL · diag(me,mµ,mτ ) · eR − ν̄LUPMNS · diag(mν1 ,mν2 ,mν3) · UTPMNSν
c
L

where V †CKM = L†dLu and UPMNS = L†eUν while the kinetic and gauge-fermion interac-

tions of Eq. (1.21) remain the same.

It is customary to define the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix

L†dLu = V †CKM . To diagonalize the mass matrices of the quarks in Eq. (1.23), we rotate

14



Section 1.1 – The Standard Model Lagrangian 15

uiL independently from diL

(
d̄Ly

d
DdR + ūLV

†
CKMy

u
DuR

) v√
2

uL→V †CKMuL
−−−−−−−−→

(
d̄Ly

d
DdR + ūLy

u
DuR

) v√
2

q̄iLi /Dq
i
L ⊃

g√
2
ūiLW

+
µ γ

µdiL + h.c.
uL→V †CKMuL
−−−−−−−−→ g√

2
ūiLVijW

+
µ γ

µdjL + h.c. ,

where W±µ = 1√
2
(Wµ

1 ∓iWµ
2 ). The VCKM matrix can be parametrized with three rotation

matrices and a phase

VCKM = Rx(θ23) ·Ry(θ13) · diag(1, eiδ, 1) ·Rz(θ12) , (1.24)

where Rx(θ23) is the matrix of a θ23 degree rotation in the y-z plane, and analogously

for Ry and Rz. The interaction g√
2
ūiL(VCKM )ijW

+
µ γ

µdjL + h.c. is of high phenomeno-

logical interest. It induces processes that mix the SM quark families (flavour changing

processes) as well as Charge and Parity violation (CPV). Under a Charge and Parity

(CP) transformation the above interaction transforms as

g√
2
ūiL(VCKM )ijW

+
µ γ

µdjL + h.c.
CP
−−−→ g√

2
ūiL(VCKM )∗ijW

+
µ γ

µdjL + h.c. ,

and since VCKM is not real, CP is not preserved in physical processes involving this

interaction. 4 These processes are small but measurable in the SM. Extensions of the

SM easily contradict the amount of flavour and CPV measured in the SM. The CKM

matrix has a striking, hierarchical and regular pattern. The numerical values of the

mixing angles of the CKM matrix are

|VCKM | =




|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|


 =




.97 .23 .0035

.23 .97 .041

.0087 .040 1.0


 = O(1)×




1 ε ε3

ε 1 ε2

ε3 ε2 1


 ,

where ε = 0.2 and the experimental uncertainties are below the quoted significant digits.

See, for instance, Ref. [16] for a review of the status of the CKM picture and BSM flavour.

Regarding the leptons, the 3 × 3 Pontecorvo-Maki-Nakagawa-Sakata matrix UPMNS

is commonly parametrized as a sequence of rotations and diagonal phases

UPMNS = Rx(θ23) ·Ry(θ13) · diag(1, e−iδ, 1) ·Rz(θ12)diag(eiα, eiβ, 1) . (1.25)

4The imaginary part of VCKM is only physical if it can not be removed by performing redefinitions
of the complex fermion’s spinor fields. This is indeed the case and it is easy to check that VCKM can be
parametrized by three real parameters and one complex phase.

15



16 Introduction – Particle Physics

Eq. (1.25) contains three mixing angles θ23, θ13, θ12 and three phases φ, α, β. Phe-

nomenological aspects of neutrino mixing and mass measurements are not further dis-

cussed in this thesis, see Ref. [17] for a review and Ref. [18] for the experimental status.

Finally, we comment on the θi parameters of Eq. (1.6). Under a chiral transformation

ψ → ei
φψ
2 ψ on the fields ψ = {qL, ūR, d̄R, lL, ēR} apart from the corresponding trans-

formation of Eq. (1.23), the theta parameters shift because of the non-trivial Jacobian

of the path integral measure: δθs = −nf
(
2φqL + φūR + φd̄R

)
, δθ2 = −nf (3φqL + φlL),

δθ1 = −nf
(
1/6φqL + 4/3φūR + 1/3φd̄R + 1/2φlL + φēR

)
, where nf = 3 is the number of

families. Physical observables do not depend on field redefinitions. We can then define

a combination of parameters that is invariant under the phase redefinitions of the chiral

fermions

θ̄QCD = θs + arg det yu + arg det yd (1.26)

θ̄EW = θ2 + 2θ1 +
8

3
arg det yu +

2

3
arg det yd + 2arg det ye . (1.27)

Thus we see that in the SM neither θ2WµνW̃
µν nor θ1BµνB̃

µν are physical by themselves.

Below the EWSB scale θEW is identified with θQED, i.e. the θ-angle of the photon. Being

shift invariant, the parameters of Eqs. (1.26) and (1.27) have a chance of being physical.

The terms AiµνÃ
iµν are total derivatives and only make a contribution when evaluated

on certain field configurations, e.g. QCD instantons. Experimentally θ̄QCD ≤ 10−10,

which is ridiculously small. This is a big puzzle named strong CP problem.

1.1.3 Accidental and spurious symmetries

In the preceding subsections we have introduced the SM Lagrangian and commented

on all the free parameters of the model. We have now all the information to compute

physical processes to measure the parameters and compare the SM predictions with

experiment. However, it turns out to be very informative to first recognise various

accidental symmetries of the SM. This will point out which are the most critical tests

of the SM.

Flavor. In the absence of Yukawa couplings, i.e. yf → 0, and as Λ→∞ the SM has a

global U(3)5 symmetry

GSMglobal

∣∣∣
yf=0

= U(3)qL ⊗ U(3)uR ⊗ U(3)dR ⊗ U(3)lL ⊗ U(3)eR , (1.28)

16



Section 1.1 – The Standard Model Lagrangian 17

that acts on flavour space. This symmetry is explicitly broken by the Yukawas down to

a U(1)5 subgroup

GSMglobal

∣∣∣
yf 6=0

= U(1)B ⊗ U(1)e ⊗ U(1)τ ⊗ U(1)µ ⊗ U(1)Y , (1.29)

that includes the global part of the U(1)Y gauge group. 5

Up to date, all experimental measurements of flavour violation and CP violation in

flavour changing processes can be explained by the CKM matrix. New physics can

not therefore introduce CP and flavour much beyond VCKM . It is therefore reasonable

to promote the quark Yukawas to spurious fields charged under SU(3)3
Q = SU(3)qL ⊗

SU(3)uR ⊗ SU(3)dR as

yu ∼ (3, 3̄, 1) , yd ∼ (3, 1, 3̄) , (1.30)

and require that all perturbations to the dimension-4 Lagrangian are invariant under

the SU(3)3
Q. If new physics, or the higher dimensional operators, are invariant under

SU(3)3
Q then all the flavour and CP violation of the SM (beyond FF̃ terms) comes from

VCKM . Regarding fermions, similar promotions can be done

ye ∼ (3, 3̄) , (1.31)

under SU(3)lL ⊗ SU(3)eR . The assumption of Eqs. (1.30) and (1.31) goes under the

name of Minimal Flavor Violation (MFV) and it is largely taken in this thesis since we

do not deal with the problem of explaining the physical origin of VCKM and mf , called

the flavour problem. See Sec. 6.1 of the present thesis, and Ref. [19] and references

therein.

Custodial symmetry. In the limit g′, yf → 0, the Higgs sector of the SM, Eq. (1.8),

has an enhanced SU(2)2 symmetry,

LHiggs
∣∣∣
g′,yf ,v=0

= |DµH|2 − V (H) = (DµΣ)(DµΣ) +m2tr[Σ†Σ]− λtr[Σ†Σ]2 , (1.32)

where Σ = 1√
2
(H̃,H) and it transforms under the global symmetry group SU(2)L ⊗

SU(2)R as H ∼ (2L,2R). The SU(2)L is gauged since g 6= 0. The Higgs takes a vev

because the vacuum of the theory is at

〈Σ†Σ〉 = v2

(
1 0

0 1

)
, (1.33)

5It is interesting to note that, apart from U(1)Y , the following U(1)’s are (non-simultaneously)
non-anomalous: U(1)B−L, U(1)Lµ−Lτ , U(1)Le−Lµ , U(1)Le−Lτ .
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18 Introduction – Particle Physics

and the global symmetry group SU(2)L ⊗ SU(2)R is broken down to the SU(2)L+R by

the vacuum, called the custodial symmetry. 6

Now, consider the quadratic terms in the gauge bosons of the effective Lagrangian

δLeff = Π+−W+W− +
1

2
Π33W

3W 3 , (1.34)

where we have suppressed the Lorentz indices. The two-point functions Πab receive

contributions from SM loops, from higher dimensional operators (upon the Higgs taking

a vev) and possibly from new BSM degrees of freedom coupled to the gauge bosons

Πab = 〈JaJb〉. Next, consider the parameter T = [Π33(0) − Π+−(0)]/mW . The T -

parameter is in the traceless and symmetric representation of (3L⊗3L), so it transforms

in the 5 irrep. Now, if SU(2)L+R is a symmetry of the vacuum, then the spurious

symmetry of the parameter T forbids it from having a vev. The recognition of this

spurious symmetry that protects the parameter T is very important because it turns

out that the relation between the W and Z bosons mass is a prediction of the SM and

experiments show that

T =
mW

mZ cos θW
− 1 = O

(αi
4π

)
, (1.35)

is fulfilled to a very good degree. In Eq. (1.35) we have defined cos θW = g2/(g2 + g′2)

and we have set again a finite g′ 6= 0. The SU(2)L+R custodial symmetry custodies

this relation and the T -parameter encapsulates the leading violations of the SU(2)L+R

custodial symmetry for all BSM theories that couple universally to the SM. The SM

parameters g′ and yf can be promoted to spurions such that the SM is formally invariant

under SU(2)L+R. Imposing this symmetry on the higher dimensional operators and

BSMs relaxes the experimental constrains from the measurement of Eq. (1.35). See

Sec. 6.1 for further discussion.

1.2 Shadows over the SM

There are various theoretical hints within the SM and GR that point to the presence of

new physics. These are the shadows of new physics:

a) The three gauge couplings of the SM approximately coincide at an energy scale

around∼ 1016 GeV. This feature of the coupling’s running might be signalling that,

around that scale, the SM gauge groups are embedded into a bigger group with

a single gauge coupling, Grand Unified Theories (GUT). In the supersymmetric

version of the SM the gauge couplings unify very precisely, see Fig. 1.2.

6In fact, in the limit yu = yd 6= 0 there is the enhanced custodial symmetry where (uR, dR) are a 2
of SU(2)R.
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Section 1.2 – Shadows over the SM 19

b) The massive nature of the neutrinos is explained via the dimension-five higher

dimensional operator of Eq. (1.9). If yν is taken of order O(1), in order to explain

the neutrino mass values mν . eV, then the cut-off scale of the Weinberg operator

is around the GUT scale.

c) Gravity is very weak at the electroweak scale because it couples to the SM degrees

of freedom via the coupling
√
gNE = E/MPl. However, gravitational interactions

becomes non-perturbative at energies E ≈ MPl ≈ 1018 GeV, called the (reduced)

Planck mass, not far from the GUT scale.

It is impressive that these three hints point to similar energies. However, these are energy

scales much higher than the electroweak scale and it is inconceivable an experiment here

on Earth that would directly probe such humongous scales.

In fact, there are various circumstantial evidences that support the picture that there

is no new physics directly coupled to the SM until vastly higher scales:

a) The accuracy of the SM predictions are an unprecedented success in science, and

none of the predictions is contradicted by any experiment. Flavor and CP tests of

the SM suggest that BSM flavour is either not generic or appears at much higher

scales.

b) None of the SM couplings hits a Landau pole before the Planck scale. Furthermore,

the Higgs quartic coupling is negative at high energies but small enough in absolute

value to ensure the stability of the electroweak scale under quantum tunnelling.

c) All possible gauge and gravitational anomalies cancel.

mt MGUT MPl
Log10[E]

20

40

60

αi
-1

α�
-�

α�
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-�

Figure 1.2: Plot of the variation of the SM gauge couplings with the energy, where we

have defined αi = { 5
3
g′2

4π ,
g2

4π ,
g2
s

4π}. In lighter colors we show the analogous plot in the
minimal supersymmetric version of the SM.
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20 Introduction – Particle Physics

In other words, it is theoretically and experimentally consistent to set Λ ≈MPl. Closely

related to the theoretical hints, there are theoretical or experimental puzzles (it is not a

sharp dichotomy). These are unsettling features of the SM that one wants to explain and

gain experimental insight on them. For instance, we would like a deeper understanding

of the origin of: the hierarchy of the fermion masses, the origin of the gauge groups,

the Higgs potential, why are there three families, why electric charge is quantised, why

θ̄QCD � O(1), dark matter, the period of inflation preceding the Big Bang, etc. How-

ever, any of these theoretical conundrums mentioned so far can in principle be explained

by new physics at energies far from the EW scale or with very weakly coupled physics.

Luckily, this is not the whole story. There is a theoretical puzzle that seems to require

new physics coupled to the SM with O(1) strength and close to the electroweak scale:

the EW hierarchy problem and its associated fine-tuning problem. The EW hierarchy

problem consist in giving a satisfactory answer to why v � MPl?, where satisfactory

typically means that the proposed theory has couplings and ratios of energy scales of

order ∼ O(1), as dictated by symmetries, but otherwise generic. At this point the

problem looks of the same nature as to why mν/mt � 1? ; however, this similarity is

not exact due to the closely related fine-tuning problem of the EW scale. In short, the

problem can be stated as follows. In any calculable ultra-violet (UV) completion of the

SM conceived so far the Higgs mass value turns out to be around the same energy scale

of the UV completion scale,

m2
h = g2

SMv
2 ± g2

BSMΛ2/(16π2) , (1.36)

where Λ is the UV completion physical scale (e.g. the heaviest mass of the new UV de-

grees of freedom). 7 Then, given that the SM contribution is dominated by gSM ∼ O(1)

couplings, the parameters of the UV completed theory must be of the order
∑

i g
2
BSM,i ∼

O(16π2v2/Λ2) to ensure a Higgs mass as light as mh ≈ v. Hence, if Λ � v, then
∑

i g
i
BSM is finely-tuned and we say that the theory does not look natural. The need for

new physics not far from the EW scale to avoid fine-tuning is not a theorem. However, it

is supported by the effective field theory analysis that, in the SM, the Higgs mass term is

not forbidden by any symmetry as the mass parameter is taken to zero and therefore can

receive additive contributions, as in Eq. (1.36). The fine-tuning problem can be taken

as a motivation for physics beyond the SM not far from the EW scale. The argument

is that, if the full BSM theory is natural then Λ ∼ 4πv. However, there are instances

in physics that disfavour the naturalness ”principle”/strategy as a guide. For instance,

the cosmological constant problem seems to be totally at odds with the standard QEFT

analysis of naturalness: 〈Tµν〉 ∼ −(10−3 eV)4gµν � −(MPl)
4gµν . Indeed a prototypical

7We have included a (4π)−2 factor to recall the Higgs mass calculation in perturbation theory and
truncated at one-loop.

20



Section 1.2 – Shadows over the SM 21

SMσ/σBest fit 
0 0.5 1 1.5 2

 0.29± = 1.00 µ       
 ZZ tagged→H 

 0.21± = 0.83 µ       
 WW tagged→H 

 0.24± = 1.13 µ       
 taggedγγ →H 

 0.27± = 0.91 µ       
 taggedττ →H 

 0.49± = 0.93 µ       
 bb tagged→H 

 0.13± = 1.00 µ       
Combined CMS

Preliminary

 (7 TeV)-1 (8 TeV) +  5.1 fb-119.7 fb

 = 125 GeVH m

Figure 1.3: The measurment of the signal strength µ = σ/σSM by the experiments
ATLAS [22] (left) and CMS [23] (right).

particle physics solution would be to have SUSY softly broken with MSOFT . 10−3 eV.

Thus we see that, even-though it is not guaranteed, it is plausible that the LHC will

be able to provide a definite answer on the EW hierarchy problem. See for instance

Ref. [20, 21] for further discussion on the fine-tuning problem.

The Higgs

As we have explained, all the collider experiments done so far, at energies E . 1 TeV,

have vindicated the Standard Model. The last milestone in the high energy frontier

has been the discovery of the Higgs boson [9, 10], see for instance Ref. [24] for a recent

theoretical overview. Since the discovery of the Higgs much more data has been analysed

and there is no sign of anomalies in the Higgs measurements. More concretely, it has

been tested through all its dominant production modes (gluon fusion, vector boson

fusion, W or Z Higgstrahlung, and tt̄H production) in each of the most sensitive Higgs

boson decays at the Large Hadron Collider (LHC): γγ, 4-leptons, WW , ττ and bb̄. A

measure of the agreement with the theoretical expectations is the signal strength µ. It is

defined as the observed cross-section times the branching fraction of a process divided by

the SM expectation. In Fig. 1.3 we show the combined signal strengths of the different

detected channels by both ATLAS and CMS. All in all, the results are consistent with

the SM within ∼ 1σ. This is based on an integrated luminosity of ≈ 25 fb−1 at an

energy of 7 − 8 TeV, which corresponds to a production of about 106 Higgs boson in

the dominant production modes. The number of Higgs analysed so far depends on the

branching fraction of the different decay channels and its corresponding efficiency and
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Figure 1.4: The ATLAS prospects for the Higgs signal strength measurements with
300 fb−1 and 3000 fb−1 [25]. The lower opacity area shows the theoretical uncertainties.

purity in the reconstruction of the events. For instance, for the decay h → γγ the

number of events produced so far is N = O(103) and it is reduced by a factor ≈ 10 in

its reconstruction.

The LHC machine is expected to deliver about 300 fb−1 integrated luminosity at an

energy of E = 13−14 TeV per experiment by the year 2022. There is the possibility that

the LHC will be upgraded into the high-luminosity LHC (HL-LHC) and will produce

about 3000 fb−1 of data at E = 14 TeV, per experiment, by the year 2035 [25]. In

Fig. 1.4 we show the projected precision signal strength by the ATLAS experiment.

With the overall experimental evidence together with the theoretical expectations (i.e.

the essential theoretical bias towards a coherent and satisfying theory) it makes sense

to accept that the discovered Higgs boson is indeed the SM Higgs boson. The discovery

of a Higgs particle, with mass of approximately 125 GeV, is the most important result

from the LHC so far. It is an unprecedented discovery since it is the first observation of

fundamental spin zero particle and because of the role of the Higgs in the electroweak

symmetry breaking. The measurement of the Higgs couplings is crucial, and part of the

main LHC goals, because deviations in the SM expectations are a window to new physics

beyond the SM. It is a big issue. We are probing the vacuum structure of the electroweak

interactions and it is extremely important that we make sure that we understand it with

as much detail as possible. Furthermore, if no new physics beyond the SM is discovered

at the TeV scale, the Higgs will remain as one of the few and precious handles for us to

understand the governing principles of nature. In the present thesis we take some steps

along this line of research.
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Electroweak vacuum stability
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2. Introduction

”If it turns out that the pure Standard Model holds up at TeV

energies, it will be fascinating to learn how close we are to the

instability that occurs when mh is too small.”

— E. Witten, Reflections on LHC Physics [26]

On July 2012 the experiments ATLAS [9] and CMS [10] reported the discovery of a

Higgs-like boson. As we have reviewed in Chapter 1, all the measurements done so far

are compatible with a SM Higgs and the favoured Higgs mass value is mh ≈ 125 GeV.

More accurately, the best measurements of the mass value come from the visible decays

of the Higgs into photons h → γγ and into four leptons h → 4l. These decays are very

clean because the measurements of photons and leptons has much less uncertainties than

those processes that hadronize or that have lower branching fractions. Both ATLAS and

CMS reported this mass measurement separately in Refs. [23, 27] and recently provided

a combination of their measurements in Ref. [28], yielding and average Higgs mass value

of

mh = 125.09± 0.21(stat.)± 0.11(syst.) GeV . (2.1)

This is a very interesting value for the Higgs mass from the experimental point of view

because there are several accessible decay channels of the Higgs boson.

Furthermore, from the theoretical point of view this range of masses is very intriguing.

As we show below, the Higgs mass implies that the Higgs quartic coupling λ of Eq. (1.12)

is negative at energies ≈ 1010 and the effective potential has a region in field space of

lower energy density than the electroweak vacuum.

In the Standard Model (SM) the Higgs mass is given by

m2
h = 2λv2 + ∆m2 , (2.2)

where ∆m2 denotes small radiative corrections that are numerically dominated by the

top Yukawa yt and strong gauge αs couplings. Eq. (2.2) is the matching condition that

fixes the value of the quartic coupling at the electroweak scale ∼ mW . Then, from
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Figure 2.1: SM RG evolution from mt to MPlanck of: the EW gauge couplings g1 =√
5/3g′ and g, the strong gauge coupling gs, the top Yukawa coupling yt and of the

Higgs quartic coupling λ. All the couplings are defined in the MS with two-loop beta
functions. Boundary conditions taken at E = mt with values as in Chapter 3.

Eq. (2.1) and the measurement of v ≈ 246 GeV 1 one finds λEW = λ(µ = mW ) ≈ 0.13.

The value of the Higgs quartic coupling λ depends on the energy scale of the scattering

process as dictated by the renormalization group (RG) equations. It is given by

λ(µ) =
λEW

1− βλ log
(

µ
mW

) +
∑

n=1

O
(
αni logn−1

)
, (2.3)

where βλ = 24λ2+12λy2
t−6y4

t+. . . , see e.g. the Appendix of Ref. [29] for the two-loop full

expression. Eq. (2.3) is a leading-log resummation of the λ(µ) variation because, using

the one-loop beta function, we are resumming the highest (divergent) logarithm power

of a fixed loop order calculation. The quartic coupling λ(µ) is negative at high energies.

This is due to the negative contribution of the top-quark in the beta function of the

quartic coupling. However, the running of λ(µ) is very shallow, see Fig. 2.1. Therefore

very small changes in λEW imply big changes on the energy scale where λ(µ) = 0. A

priori, the Higgs mass could have been anything from say 115-1000 GeV but it turns

out that for mh ≈ 125 GeV

λ
(
µ = MPl

)
≈ 0 . (2.4)

This is very interesting for various reasons:

- Firstly, it adds one more item to the list of hints (see Sec. 1.2) that point to a

special very high energy scale. However, it is fair to say that this hint is less strong

1The parameter v can be measured precisely from the Fermi constant GF in the process µ→ eνeνµ.
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Chapter 2 – Introduction 27

than the loss of of perturbative unitarity in gravity and the unification or see-saw

energy scales. The energy scale where λ = 0 is not a point of enhanced symmetry 2

and due to the λ(µ) shape and the scalar nature of the Higgs 3 very small new

physics thresholds can drastically change the picture of Eq. (2.4). Nevertheless,

one might be willing to take Eq. (2.4) as mild evidence that the scale of new

physics directly coupled to the SM is very high (e.g. supersymmetry typically

requires λ = g2
i > 0).

- Secondly, the effective potential can develop a second minimum at a scale higher

than ΛI , where λ(ΛI) = 0.

To study the structure of the electroweak vacuum the quantity that matters is not the

quartic coupling but the effective potential Veff . Since are interested in the behaviour

of Veff for φ� v we can neglect the Higgs mass term. Then, the RG improved effective

potential 4 can be written as

Veff =
λeff (φ)

4
φ4 , (2.5)

where φ = 〈0J |h|0J〉, for an external source δL = φ · J . With very good precision (of

order O(m2/φ2)) we can study the stability of the electroweak vacuum by analysing the

sign of λeff (φ). At tree level λeff = λ and the one-loop RG improved effective potential

is given by λeff = λ(µ = φ), given in Eq. (2.3). In Fig. 2.2 we show a schematic plot

of the instability that appears when λ(φ∗) . 0. Notice that, to extrapolate the SM

potential up to arbitrary high energy scales in order to study its stability, one needs

three pieces of information: the effective potential, the beta functions and the boundary

conditions at the EW scale. To be consistent in the precision of the calculation, if the

effective potential is computed at n-loops then the beta functions and the matching

conditions have to be computed at (n+1)-loops and n-loops, respectively. This resumms

up to n-times next to leading order logarithms (NnLO) of the perturbative calculation

of Veff .

The presence of instabilities at high scale are in general problematic because the

electroweak vacuum state |v〉 (that corresponds to 〈v|φ|v〉 ≈ 246 GeV) is no longer a

stable minimum at the quantum level. There is a non-zero probability for the electroweak

false-vacuum state to decay to the deeper true minimum state |0〉. The process happens

through the nucleation of a bubble of the deeper vacuum, which subsequently expands

provided its radius is large enough [33, 34]. Instabilities of this sort are worrisome

because we know that the vacuum state |v〉, upon which the visible matter of the universe

2Notice however that the βλ = 0 point is remarkably close.
3 It can couple with any other invariant LBSM = |H|2 ×O(x).
4The renormalization group improvement of the effective potential was done in Ref. [30], see also

Refs. [31, 32].
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28 Part I – Electroweak vacuum stability

rests, is very long lived; at least up to lifetimes much higher than the age of the universe

since the Big Bang, TU = 10 Gyr. If the instability of the SM happens to correspond

to a very short lifetime (as compared to TU ) it is interpreted as an inconsistency of the

theory rather than as meaning that we have been very lucky until now. The inconsistency

of the theory due to the instability may be cured in a number of ways. For instance,

the SM can be deformed by adding bosons coupled to the Higgs. Bosons contribute

positively to the running of the quartic coupling and help in ensuring that λ(φ) > 0 for

scales MPl > φ > 246 GeV. 5 Or, the SM may be embedded into a BSM with completely

different degrees of freedom than the SM. In that hypothetical BSM no longer makes

sense to talk about the Higgs potential.

Vacuum decay

In a theory with several local minima, there is the possibility of quantum tunnelling

between a local minimum and a point in field space where the value of the potential

is lower. The calculation of vacuum tunnelling in field theory is a generalisation of

quantum barrier penetration in elementary quantum mechanics to infinite degrees of

freedom [33, 34]. One can find excellent reviews of the theory of vacuum decay in Ref.

[35–39].

In the SM quantum field tunnelling is relevant in cosmology. An infinitely old universe

must be in a true vacuum, no matter how slowly the false vacuum decays. However,

the universe is not infinitely old; its is about TU ∼ 1010 years old. Then, the relevant
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-2 ·1073
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V
ef
f(
ϕ
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0

Figure 2.2: Schematic realistic representation of the SM Higgs potential. The region
φ ∈ [−500, 500] GeV has been zoomed in.

5Instabilities around or above MPl are ignored since we expect sizeable quantum gravity effects that
we do not want to tackle in a first analysis. The point is that if big instabilities appear at φ � MPl

quantum gravity effects do not have the strength to cure them.

28



Chapter 2 – Introduction 29

parameter is that cosmic time for which the product of the decay rate per unit time and

per unit volume of the false vacuum Γ/V times the volume of the past light-cone 6 is of

order unity.

For large field values, Eq. (2.5) is a good approximation of the Standard Model (SM)

effective potential and it turns out that the approximation

Γ/V ≈ max{φ4 exp(−SE); λeff (φ) < 0} , (2.6)

where SE ≈ 8π2

3λeff
, generally matches the numerical calculation with precision of a few

percent [37, 40].

Let us discuss the theoretical uncertainty in Eq. (2.6) for the SM. We do a rough

estimate. The uncertainty is dominated by SE . The quartic coupling at the maximum of

Eq. (2.6) is typically |λeff | ≈ (0.01±0.001), see Chapter 3. This implies B0 ≈ 2600±100.

An uncertainty of ±100 in B0 implies a huge uncertainty in Γ/V . However, we are not

so much interested in the precise value of Γ/V but rather on whether or not Γ/V times

the past light cone is much smaller than one. The point is that, since tiny changes in

λeff imply big changes in Γ/V , we will always be able to determine if the vacuum is long

lived except for a narrow range of values of λeff . Furthermore, small changes in λeff

can be translated, through the matching condition λeff (mHiggs), into an even smaller

change in the Higgs mass. For the SM, we can do the following estimate of the width

in λeff where we can not conclude about whether or not the vacuum is long lived in

comparison with the age of the universe. From Eq. (2.6), taking φ ∼ 1011 GeV 7 and a

light-cone volume of Vu = e409[100 GeV]−4, we see that Γ/V ×Vu ≈ 10−6 and ≈ 100 for

−λeff (φ) ≈ 0.052 and ≈ 0.054, respectively. This can be traced back to an uncertainty

of ∼ 1 GeV in a Higgs mass of ∼ 120 GeV. Therefore, if the value of the Higgs mass

is not close (by ∼ 1 GeV) to the boundary where the Γ/V × Vu ≈ 1, the theoretical

uncertainty in Γ/V is small enough; in fact, we find that this is the case for the SM.

In the upcoming Chapter 3 we present a detailed study of the stability of the elec-

troweak vacuum. Then, in Chapter 4 we review a a simple and robust mechanism to

stabilise the electroweak vacuum.

6The past light-cone volume can be estimated by multiplying the size of the observable universe by
the age of the universe times the speed of light. This is about e409/v4, where v ≈ 100GeV.

7This is a typical field value where Veff (φ) < 0, see next Chapter.
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3. Stability of the SM

As already emphasised, the Higgs mass value measured by ATLAS and CMS is rather

intriguing. Its measured value corresponds to a lifetime of the electroweak vacuum that

lies just in between having absolute stability up to the Planck scale MPl and being

unstable, with a lifetime smaller than the age of the universe. In order to conclude

about whether or not the SM can be extrapolated up to the Planck scale without any

consistency problem a precise calculation is needed. The study of the stability of the SM

vacuum has a long history (see also Ref. [39, 41] and references therein). The state-of-

the-art analyses of the SM vacuum stability before the Higgs discovery were done at the

next-to-leading order (NLO) level [40, 42–49]. This is based on two-loop renormalization-

group (RG) equations, one-loop threshold corrections at the electroweak (EW) scale

(possibly improved with two-loop terms in the case of pure QCD corrections), and one-

loop improved effective potential (see Ref. [3] for a numerically updated analysis). The

NNLO calculation was first presented in Ref. [1] and further refined in Ref. [50].

The present Chapter is based on Ref. [1]. We explain the NNLO analysis of the

stability of the electroweak vacuum. It is based on the two-loop effective potential, the

three-loop beta functions and the matching conditions at two-loops. Subsequently in

Sec. 3.5 we summarise the results and discuss the sensitivity of the the study to beyond

the SM physics at Planck scale.

3.1 The two-loop threshold correction to λ(µ)

As pointed out in Ref. [3], the most important missing NNLO piece for the vacuum

stability analysis were the threshold corrections to λ at the weak scale. This is simple

to understand from the shape of the function λ(µ), see Fig. 2.1; a small change in the

boundary at the EW scale implies a big change in the scale µ where λ(µ) = 0.

The most important threshold corrections at the EW scale are corrections due to

QCD and top Yukawa interactions, because such couplings are sizeable at low energy,
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Fig. 2.1. In this Section we review the calculation of such terms and the associated

theoretical uncertainty. As explained below, we will obtain these leading terms in the

matching condition, proportional to y6
t and y4

t g
2
s (where yt and gs are the Yukawa of

the top quark and the strong coupling) from the calculation of the Higgs mass via the

effective potential.

We write the SM potential for the Higgs doublet H in the usual way:

V = −m2|H|2 + λ|H|4 , H =

(
G+

(v + h+ iG0)/
√

2

)
. (3.1)

Up to negligible width effects (Γh ≈ 4 MeV), the pole Higgs mass mh is the solution of

the pole equation at the EW minimum

M2
h = −m2 + 3λv2 + Πhh(M2

h) , (3.2)

where m2, λ and v are MS renormalized quantities and Πhh(p2) is the Higgs self-energy

(1PI two-point) function, with external four-momentum p. We rewrite this equation as

M2
h =

[
−m2 + 3λv2 + Πhh(0)

]
+
[
Πhh(M2

h)−Πhh(0)
]

=
[
M2
h

]
V

+ ∆Πhh(M2
h) .

This step is convenient because the last term (which is computationally challenging) only

gives corrections suppressed by the small Higgs quartic coupling, in view of the smallness

of M2
h = 2λv2 at tree level. The first piece can be expressed in term of derivatives of the

effective potential, Veff . Writing the effective potential as a sum of the tree-level part

V0 plus radiative corrections ∆V

Veff = −m
2

2
h2 +

λ

4
h4 + ∆V, (3.3)

one finds
[
M2
h

]
V

=
∂2Veff
(∂h)2

∣∣∣∣
h=v

, (3.4)

where v is the h vev at the minimum of the effective potential, determined by the

minimization condition

∂Veff
∂h

∣∣∣∣
h=v

=

[
−m2h+ λh3 +

∂∆V

∂h

]

h=v

. (3.5)

As usual, it is convenient to consider m2 as a free parameter fixed in terms of v by the

above equation, arriving at

[
M2
h

]
V

=

[
2λv2 − 1

h

∂∆V

∂h
+
∂2∆V

(∂h)2

]

h=v

. (3.6)
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Defining the operator D2
m as 1

D2
m =

[
−1

h

∂

∂h
+

∂2

(∂h)2

]

h=v

, (3.7)

and noting that 2λv2 = D2
mV0, we can simply write

[
M2
h

]
V

= D2
mVeff , obtaining the

following expression for the Higgs mass:

M2
h = D2

mVeff + ∆Πhh(M2
h) . (3.8)

Eq. (3.8) gives the Higgs mass squared as the sum of two terms. The first is the Higgs

mass obtained from the potential; this is not the complete pole Higgs mass and must

be corrected for nonzero external momentum effects, which are taken care of by the last

term, ∆Πhh(M2
h). It is a straightforward exercise to verify that this expression for the

pole mass is independent of the renormalization scale µ. In particular, one can prove

that

d

d lnµ

[
m2
h

]
V

= −2γ
[
m2
h

]
V
,

d

d lnµ
∆Πhh(m2

h) = 2γ
[
m2
h −∆Πhh(m2

h)
]
,

(3.9)

where γ is the Higgs anomalous dimension, describing its wave-function renormalization,

γ ≡ d lnh/d lnµ.

Using Eq. (3.8) and the one-loop result for Veff one obtains the one-loop Higgs mass

correction. The explicit one-loop result for the pole mass is

M2
h = 2λv2 + δ1M

2
h , (3.10)

with

δ1M
2
h =

1

(4π)2

{
3y2
t (4m

2
t −M2

h)B0(mt,mt,Mh) + 6λ2v2(3`h − 6 + π
√

3)

− v2

4
(3g4 − 8λg2 + 16λ2)B0(mW ,mW ,Mh)

− v2

8
(3G4 − 8λG2 + 16λ2)B0(mZ ,mZ ,Mh) + 2m2

W

[
g2 − 2λ(`W − 1)

]

+m2
Z

[
G2 − 2λ(`Z − 1)

]}
,

(3.11)

where G2 = g2+g′ 2. All parameters on the right-hand side (including v) are MS running

parameters (with the exception of M2
h , which appears through the external momentum

1Notice that the term in D2
m linear in field-derivatives automatically takes into account the cancel-

lation of h-tadpoles (or alternatively, the minimization condition to get the right v).

33



34 Part I – Electroweak vacuum stability

dependence of the Higgs self-energy). Since we computed Eq. (3.4) in the Landau gauge,

v in Eq. (3.11) represents the gauge and scale-dependent vacuum expectation value of

the Higgs field as computed in the Landau gauge. Similarly the ∆Πhh(m2
h) contribution

in that equation is computed in the Landau gauge. In Eq. (3.11)

B0(ma,mb,mc) ≡ −
∫ 1

0
ln

(1− x)m2
a + xm2

b − x(1− x)m2
c − iε

µ2
dx , (3.12)

and `x ≡ ln(m2
x/µ

2), with mx the running mass for particle x (e.g. mt ≡ ytv/
√

2). One

can explicitly check, using the RGEs for these parameters, that this expression for M2
h

is indeed scale-independent at one-loop order.

Neglecting gauge couplings and setting M2
h = 2λv2 in the one-loop terms, one obtains

the approximate expression

δ1M
2
h '

2y2
t v

2

(4π)2

[
λ(2 + 3`t)− 3y2

t `t
]
. (3.13)

To compute Eq. (3.8) at the two-loop level one can use the two-loop effective potential

[51, 52] to calculate
[
M2
h

]
V

and the general results for two-loop scalar self-energies in

Ref. [53] (supplemented by the results on two-loop momentum integrals of Ref. [54])

to calculate ∆Πhh(M2
h). If we only keep the leading two-loop corrections to M2

h pro-

portional to y6
t , y

4
t g

2
s , dropping all sub-leading terms that depend on the EW gauge

couplings or λ, our task is simplified dramatically. First, in the two-loop effective poten-

tial we only have to consider the diagrams depicted in Fig. 3.1. Their contribution can

be extracted from the expressions for VY and VFV in the Appendix of Ref. [1]. Second,

in the two-loop term ∆Π
(2)
hh (M2

h) we can substitute the tree-level value M2
h = 2λv2, so

that

∆Π
(2)
hh (M2

h) ' Π
(2)
hh (2λv2)−Π

(2)
hh (0). (3.14)

It is then clear that the two-loop contributions coming from that term are proportional

to λ and are therefore subdominant; we will neglect ∆Π
(2)
hh (M2

h) completely. In ref. [1]

the ∆Π
(2)
hh (M2

h) contribution to the Higgs mass is computed.

t tg t th, G0 t bG±

Figure 3.1: Two-loop vacuum diagrams that give the dominant contribution (depend-
ing only on gs and yt) to the SM two-loop effective potential.
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To find the expression for the Higgs mass at two-loop precision, we must also take

into account that M2
h has to be evaluated with one-loop precision in the argument of

the one-loop term ∆Π
(1)
hh (M2

h). Putting together all these pieces, keeping only the y6
t

and y4
t g

2
s terms, we arrive at the following two-loop correction to Eq. (3.10):

δ2M
2
h =

y2
t v

2

(4π)4

[
16g2

sy
2
t (3`

2
t + `t)− 3y4

t

(
9`2t − 3`t + 2 +

π2

3

)]
. (3.15)

The expression for Mh as a function of λ can be inverted to obtain λ(µ) as a function

of the pole Higgs mass Mh. To express λ(µ) in terms of physical quantities (Gµ and the

pole masses MZ , MW , and Mt) the relations between physical and MS parameters are

needed. At the level of accuracy we are working, only the relation between the yt(µ)

and mt and the one between v(µ) and Gµ are required. They are given by:

y2
t (µ) = 2

√
2GµM

2
t

[
1 +

8

3

1

(4π)2
g2
s(3LT − 4) +

1

(4π)2

√
2GµM

2
t (−9LT + 11)

]
, (3.16)

v2(µ) =
1√
2Gµ

+
1

(4π)2

[
3M2

t (2LT − 1) +M2
W (5− 6LW ) +

1

2
M2
Z(5− 6LZ)

+
3M2

ZM
2
W

4(M2
Z −M2

W )
(LZ − LW )− 1

2
M2
h −

3M2
WM

2
h

M2
W −M2

h

(LW − LH)

]
,

(3.17)

where LX = ln(M2
x/µ

2), with masses in capital letters denoting pole masses.

We find:

λ(µ) =
GµM

2
h√

2
+ λ(1)(µ) + λ(2)(µ) , (3.18)

with

λ(2)(µ) = λ
(2)
QCD,lead.(µ) + λ

(2)
Yuk,lead.(µ) + . . . , (3.19)

where the ellipsis stands for the sub-leading terms that we are neglecting. The known

one-loop term is

λ(1)(µ) =
1

2
G2
µ

1

(4π)2

{
6(LH − LW )M6

h

M2
h −M2

W

− 8
(
2M4

W +M4
Z

)
− 2(−3 + 6LT )M2

hM
2
t

+M4
h

(
19− 15LH + 6LW − 3

√
3π
)

+ 12(M2
h − 4M2

t )M2
t B0(Mt,Mt,Mh)

+ 2
(
M4
h − 4M2

hM
2
W + 12M4

W

)
B0(MW ,MW ,Mh)

+
(
M4
h − 4M2

hM
2
Z + 12M4

Z

)
B0(MZ ,MZ ,Mh)

+M2
h

[
2(8LW − 7)M2

W + (8LZ − 7)M2
Z −

6M2
ZM

2
W

M2
Z −M2

W

(LZ − LW )

]}
,

(3.20)

35



36 Part I – Electroweak vacuum stability

1.0 1.2 1.4 1.6 1.8 2.0
122

123

124

125

126

Μ�Mt

H
ig

gs
m

as
s

in
G

eV

Figure 3.2: Scale dependence of Eq. (3.8) with one-loop corrections (blue) and with
two-loop corrections (red). Both curves are fixed to the value of mh=125 at µ = mt.

and the leading two loop QCD and Yukawa terms are

λ
(2)
QCD,lead.(µ) =

G2
µM

4
t

(4π)4
64g2

s(µ)
(
−4− 6LT + 3L2

T

)
,

λ
(2)
Yuk,lead.(µ) =

8
√

2G3
µM

6
t

(4π)4

(
30 + π2 + 36LT − 45L2

T

)
.

(3.21)

The above expression for λ(µ) has the correct dependence on the renormalization scale

µ, so that both sides of Eq. (3.18) evolve with µ in the same way to the order we work.

In Fig. 3.2 we show the residual scale dependence of Mh in Eq. (3.8) in the MS

scheme. We compare the mass calculated using the one-loop and two-loop threshold

corrections. As naively expected, the higher loop curve is less sensitive to the choice of

renormalizaiton scale. This dependence on the scale will be used later to estimate the

theoretical uncertainty in our calculation.

3.2 λeff and three-loop beta functions.

To study the shape and instability of the effective potential we have to consider Eq. (2.5):

Veff ≈
λeff (h)

4
h4, (3.22)

As we already said, since we want to resum up to next-to-next-to-leading-logarithms of

the full loop expansion of Veff , we have to compute λeff (h) at two-loop order and run

its couplings with the three-loop order beta functions.
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Complete three-loop beta functions for all the SM gauge couplings have been presented

in Ref. [55], while the leading three-loop terms in the RG evolution of λ, the top Yukawa

coupling (yt) and the Higgs anomalous dimension have been computed in Ref. [56]. 2

The explicit two-loop result for λeff (h) can be easily obtained from the two-loop

potential, see e.g. the Appendix of Ref. [1]. We report here the simplified expression

obtained when, in the two-loop term, we take into account only the contributions from

the strong and the top Yukawa couplings 3 [42]:

λeff(h) = e4Γ(h)

{
λ(h) +

1

(4π)2

∑

p

Npκ
2
p (rp − Cp)

+
1

(4π)4
y4
t

[
8g2
s(3r

2
t − 8rt + 9)− 3

2
y2
t

(
3r2
t − 16rt + 23 +

π2

3

)]}
.

(3.23)

Here all couplings are evaluated at the scale determined by the field value (µ = h), the

index p runs over particle species, Np counts degrees of freedom (with a minus sign for

fermions), the field-dependent mass squared of species p is m2
p(h) = µ2

p + κph
2 and Cp

is a constant. The values of {Np, Cp, µ
2
p, κp} are given in Tab. 3.1. Within the SM they

are:

t W Z h χ

Np −12 6 3 1 3

Cp 3/2 5/6 5/6 3/2 3/2

µ2
p 0 0 0 −m2 −m2

κp y2
t /2 g2/4 (g2 + g′2)/4 3λ λ

Table 3.1: The values of {Np, Cp, µ2
p, κp} within the SM.

The factor

Γ(h) ≡
∫ h

mt

γ(µ) d lnµ , (3.24)

where γ ≡ d lnh/d lnµ is the Higgs field anomalous dimension, takes into account the

wave-function renormalization. We have also defined rp ≡ ln[κpe
2Γ(h)].

2After the analysis presented in this Chapter was published in Ref. [1], more refined three-loop beta
functions for the quartic and Yukawa couplings became available [57, 58].

3At high scales, the EW gauge couplings g′ and g become comparable in size to yt and gs (see
Fig. 2.1), but their contribution to λeff(h) turns out to be numerically small so that Eq. (3.23) is a very
good approximation.
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38 Part I – Electroweak vacuum stability

3.3 Inputs at the electroweak scale

As far as the SM gauge couplings are concerned, we can directly use results in the

literature for the couplings in the MS scheme. In particular, from a global fit of EW

precision data, performed with the additional input Mh ≈ 125 GeV, the following MS

values of the electromagnetic coupling and the weak angle renormalized at MZ are

obtained Ref. [59]:

α−1
em = 127.937± 0.015 , sin2 θW = 0.23126± 0.00005 . (3.25)

From these we derive

α−1
2 (mZ) = α−1

em sin2 θW = 29.587± 0.008 , (3.26)

α−1
Y (mZ) = α−1

em cos2 θW = 98.35± 0.013 . (3.27)

For the strong coupling we adopt

αs(mZ) = 0.1184± 0.0007 [60] (3.28)
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Figure 3.3: Evolution of the Higgs coupling λ(µ) and its beta function as a function
of the renormalization scale, compared to the evolution of the effective coupling λeff(h),
defined in Eq. (3.23), as a function of the field value. Left: curves plotted for the best-
fit value of mt. Right: curves plotted for the lower value of mt that corresponds to

λ(MPl) = 0.
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such that, including 3 loop RG running up to Mt and matching to the theory with 6

flavors, we get

gs(mt) = 1.1645 + 0.0031

(
αs(mZ)− 0.1184

0.0007

)
− 0.00046

( mt

GeV
− 173.15

)
. (3.29)

We determine the MS top-quark Yukawa coupling (yt) starting from the top-quark

pole mass (Mt) determined from experiments: Mt = (173.1 ± 0.7) GeV. This implies

the following value for the top Yukawa coupling:

yt(Mt) = 0.93587 + 0.00557

(
Mt

GeV
− 173.15

)
− 0.00003

(
Mh

GeV
− 125

)

− 0.00041

(
αs(MZ)− 0.1184

0.0007

)
± 0.00200th .

Next, applying the threshold corrections discussed in Sec. 3.1, we determine the fol-

lowing value for the Higgs self coupling in the MS scheme renormalized at the pole top

mass:

λ(Mt) = 0.12577 + 0.00205

(
Mh

GeV
− 125

)
− 0.00004

(
Mt

GeV
− 173.15

)
± 0.00140th.

(3.30)

The residual theoretical uncertainty, that is equivalent to an error of ±0.7 GeV in Mh,

has been estimated varying the low-energy matching scale for λ between MZ and 2Mt.

As can be seen in Fig. 3.2, this is a conservative estimate of the theoretical uncertainty.
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Figure 3.4: The instability scale at which the SM potential becomes negative as a
function of the Higgs mass. The blue and the red bands correspond to the experimental
uncertainty in mt and αs(Mz), respectively. The theoretical error is not shown and

corresponds to a ±1 GeV uncertainty in mh.
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3.4 Results: is the SM electroweak vacuum stable?

We have now at hand all the pieces needed for the analysis of the EW vacuum stability.

In Fig. 3.3 we show the results of the numerical computation of the running of λ and

λeff . We see that for central values of Mt, and taking the experimental value Mh ≈ 125

GeV, the potential develops an instability around ∼ 1011 GeV. 4

Putting all the NNLO ingredients together, we can determine a lower bound for the

Higgs mass by requiring that the EW vacuum is absolutely stable up to MPl, see Fig. 3.4.

We obtain the following value:

Mh > 129.4+1.4

(
Mt [GeV]− 173.1

0.7

)
−0.5

(
αs(mZ)− 0.1184

0.0007

)
±1.0th [GeV] . (3.31)

The dominant uncertainties in this evaluation of the minimum Mh value ensuring abso-

lute vacuum stability within the SM are summarized in Tab. 3.2.

The dominant uncertainty is experimental and comes mostly from the measurement

of Mt. Although experiments at the LHC are expected to improve the determination

of Mt, the error on the top mass will remain as the largest source of uncertainty. The

LHC will be able to measure the Higgs mass with an accuracy of about 100–200 MeV,

which is far better than the theoretical error with which we are able to determine the

condition of absolute stability.

Estimate of the error Impact on Mh

Mt experimental uncertainty in Mt ±1.4 GeV

αs experimental uncertainty in αs ±0.5 GeV

Experiment Total combined in quadrature ±1.5 GeV

λ scale variation in λ ±0.7 GeV

yt O(ΛQCD) correction to Mt ±0.6 GeV

yt QCD threshold at 4 loops ±0.3 GeV

RGE EW at 3 loops + QCD at 4 loops ±0.2 GeV

Theory Total combined in quadrature ±1.0 GeV

Table 3.2: Dominant sources of experimental and theoretical errors in the computa-
tion of the SM stability bound on the Higgs mass, Eq. (3.31).

4The value of the instability scale, defined as the field value where the effective potential becomes
negative, is not a physical quantity, as it is a gauge dependent quantity. However, whether there is or
there is not an instability scale is a physical question, that can be studied with the effective potential.
Nevertheless, the instability scale is a useful quantity to use. For instance, if computed in the Landau
gauge it is closely related a physical quantity: the mass scale value where new physics that is integrated
in can stabilise the EW vacuum.
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The total theoretical error quoted in Tab. 3.2, is 3 times lower than the uncertainty

in the NLO calculation. However, the uncertainty in the threshold corrections to λ at

the EW scale still dominates the theoretical error. Another sizable theoretical uncer-

tainty comes from the fact that the pole top mass determined at hadron colliders suffers

from O(ΛQCD) non-perturbative uncertainties [61]. 5 As far as the RG equations are

concerned, the error of 0.2 GeV is a conservative estimate, based on the parametric size

of the missing terms. The smallness of this error, compared to the uncertainty due to

threshold corrections, can be understood by the smallness of all the couplings at high

scales: four-loop terms in the RG equations do not compete with finite three-loop cor-

rections close to the EW scale, where the strong and the top-quark Yukawa couplings

are large.

In this Chapter we have presented the most relevant numerical contributions of the

NNLO analysis of the EW vacuum stability [1]. This was completed by the full NNLO

precision calculation in Ref. [67] where the theoretical uncertainty on the Higgs mass

stability bound was further reduced to 0.3 GeV:

Mh > 129.4 + 2 (Mt [GeV]− 173.34)− 0.5

(
αs(mZ)− 0.1184

0.0007

)
± 0.3th [GeV] . [67]

(3.32)

Ref. [67] included the full three-loop running of the quartic coupling and the full two-

loop calculation of the threshold corrections for both the top Yukawa and the Higgs

quartic coupling.

3.5 Summary

We end this Section by showing a plot, Fig. 3.5, that presents the main result. The

plot shows that, from the point of view of the stability of the EW vacuum, the Higgs

mass is not generic. If we take two random values around the EW scale for the top

quark and Higgs mass then, most probably, we will end up with a stable vacuum, or

completely unstable, or even not having perturbativity up to MPl. However, with the

preferred experimental values for the top quark and Higgs mass, the SM vacuum is in

a metastable situation. This is a perfectly acceptable possibility, however from Fig. 3.5,

it is clearly not the most generic point. This fact has motivated various speculations

5The pole mass is defined as the pole of the particle’s propagator. It is well defined in perturbation
theory for both observable particles, such as the electron, and for quarks [62, 63]. However, the pole
mass of the quarks can not be used with arbitrary accuracy because it is affected by non-perturbative
QCD effects. In fact, the exact quark propagator does not have a pole because the quarks are confined.
Therefore, the pole mass of the top can not be defined outside of perturbation theory. See Refs. [64, 65],
and Ref. [66] and references therein.
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Figure 3.5: Regions of absolute stability, meta-stability and instability of the SM
vacuum in the mt–Mh plane. Right: Zoom in the region of the preferred experimental
range of Mh and mt (the gray areas denote the allowed region at 1, 2, and 3σ). The
three boundaries lines correspond to αs(mZ) = 0.1184 ± 0.0007, and the grading of
the colors indicates the size of the theoretical error. The dotted contour-lines show the

instability scale Λ in GeV assuming αs(mZ) = 0.1184. From Ref. [1].

like circumstantial evidence for high scale SUSY [68–72] or an IR fixed point of some

asymptotically safe gravity [73], among other conjectures.

The answer to the question that gives title to this sub-section should be clear. As-

suming there is no new physics up to energy scales of ∼MPl, the SM potential presents

a vacuum at large field values that is deeper than the EW vacuum. Therefore, the EW

vacuum is unstable. However, the probability of tunnelling out of the EW vacuum is

very small, so that its lifetime is much bigger than the age of the universe. Hence, even

though the EW vacuum is unstable, the SM can be extrapolated up to MPl without any

consistency problem. In the pure SM, and without input from cosmology, instability

arguments can not be invoked to argue in favour of beyond the SM physics below the

instability scale.

Sensitivity to Planck scale physics

So far we have assumed the validity of the SM up to the Planck scale. However, it is fair

to question the effect of unavoidable gravitational contributions on the stability of the

EW vacuum. There are two types of gravitational effects. There are those calculable

effects within the EFT of the SM and General Relativity. These include tree level

corrections to the bounce action [74]

∆Sgravity =
256π3

45(RMPlλ)2
, (3.33)

and log-divergent loops of gravitons. R is the radius of the bounce solution or, to a

good approximation, the value of φ that maximises |λ(φ)| for λ < 0, see Eq. (2.6)
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and Ref. [36, 40]. The log-divergent contributions of graviton loops are negligible with

respect to the tree-level contribution of Eq. (3.33) to the bounce. In the calculations

of this chapter we have neglected Eq. (3.33). We can do an estimate of the relevance

of Eq. (3.33) in a similar way as we did at the end of Chapter 2. For instance, taking

R×MPl ≈ 10 and |λ(R−1)| ≈ 0.015 (corresponding to Mh ≈ 125 GeV) we find that the

bounce action is dominated by the gravitational contribution with a big uncertainty on

the bounce action. The contribution of Eq. (3.33) can dominate the bounce action for

R×MPl ≤ 1, which it is indeed the case for values of the Higgs and top mass not far from

the central experimental values. However, the effect of gravitational contributions on

the bounce rapidly decreases for Higgs mass values below ≈ 123-125. Its dominance for

R×MPl ≤ 1 is due to the fact that the running of λ is very shallow and |λ(MPl)| � 1. A

reflection of the this is the narrow strip of metastability for the SM values, see Fig. 3.5.

Secondly there are incalculable gravitational effects due to the presence of quadratic

divergences in the theory of SM+GR. These effects are the most sensitive to the un-

known Planck scale physics. A convenient way to parametrize them is through higher

dimensional operators. For instance, we can include

∆V =
c

M2
Pl

|H|6
3

(3.34)

to the SM Higgs potential. Clearly the stability of the SM is very sensitive to Planck scale

physics in the following sense. We can always destabilise the potential by including the

operators like that of Eq. (3.34) with negative sign in the potential. It makes sense then,

to take the opposite attitude and ask, for which values of positive c > 0 in Eq. (3.34)

can the instability of the SM be lifted. This was done in Ref. [75] which found that for

c = O(1) > 0 the SM boundary between absolute stability and instability in Fig. 3.5 is

mostly unaffected. However, due to the fact that R×MPl is not very suppressed, Ref. [75]

found that the impact of this operator on the energy density of the true minimum of

Veff is huge. This has a direct impact on the lifetime of the vacuum.

Finally, note that the green region of stability in Fig. 3.5 depends on the possible

completion of the SM. For a recent emphasis on this issue see Ref. [76]. It is no surprise

that one can add new physics to destabilize the EW vacuum. It is also expected that

new physics can render the SM point in the left plot of Fig. 3.5 a generic looking point

from the stability of the EW vacuum perspective. As an analogy, consider the gauge

coupling unification in the (MS)SM. Obviously, one can add new physics to destroy the

unification of the gauge couplings. But the point is to take the unification of the gauge

couplings as a low energy hint of what physics might take place at the unification scale.

In this respect, it seems that most interesting question is: at what energy scales new
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physics can stabilize the EW vacuum? For instance, if new physics are added at the

Planck scale, that is a too high scale to stabilize the EW vacuum.

It would be interesting to study more thoroughly the gravitational corrections to the

bounce action as well as that of higher dimensional operators. As we have argued, these

can have an important effect on the lifetime of the EW vacuum for the central values

of the SM masses. However, these effects decouple very fast as we move the Higgs mass

by a couple of GeV from its critical value ≈ 125 GeV that gives λ(MPl) ≈ 0. In this

respect, the fact that the gravitational contributions can be important (R × MPl is

not very supressed) give further support to the point that motivated this Chapter: the

precise SM Higgs mass value is very singular from the point of view of the stability of

the EW vacuum.
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4. Stabilisation by a scalar

threshold effect

In Chapter 3, we have seen with great detail that the Higgs mass mh ≈ 125 GeV is very

interesting from the point of view of the stability of the EW vacuum. For such values

the SM effective potential develops an instability at field values φ ≈ 1011 GeV.

This is of course not necessarily a problem, because the Standard Model is likely to

be embedded in a more fundamental theory which may change the shape of the Higgs

potential at high high field values. Moreover the lifetime of the EW vacuum is much

bigger than the age of the universe. Nevertheless, the actual fate of the EW vacuum

depends on the cosmological history. For instance a period of de Sitter inflation in the

very early universe may trigger the decay of the electroweak vacuum. 1 The point is

that the expanding metric induces fluctuations, proportional to the Hubble rate, to the

Higgs field. However, a sizeable Higgs mass during that epoch, as for instance induced

by the Ricci curvature, exponentially penalises the fluctuations of the Higgs field and

hence the possible vacuum decay. Another source of potential cosmological problems

for the Higgs potential instability is the period of reheating. The energy transfer from

the inflaton to the SM can be efficient in proving the regions of field space that led to

vacuum decay. These issues highly depend on the details of cosmology, however, to avoid

potential cosmological constraints it may be preferable to cure any Higgs instability at

large field values.

There are, of course, many ways to modify the Higgs potential and raise the instability

scale. In this Section, we review a simple and economical mechanism introduced in

Ref. [2]. This mechanism requires the existence of a new heavy scalar singlet that

acquires a large vacuum expectation value (vev) and has a quartic interaction with

the ordinary Higgs doublet. The crucial point is that the matching condition of the

Higgs quartic coupling, at the scale where the singlet is integrated out, corresponds to a

1See Ref. [77] for a detailed study of the interplay between the cosmological history and the Higgs
vacuum instability.
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positive shift, as we evolve from low to high energies. Although the stability condition

is also modified by the presence of the singlet, a careful analysis shows that, under

some conditions that we will specify later, the threshold correction helps to stabilise

the potential. The effect occurs at tree-level and thus can be sizable and, is in general,

dominant over loop contributions. Moreover, the effect does not decouple, in the sense

that the size of the shift does not depend on the singlet mass, which could take any value

lower than the instability scale (but larger than the EW scale). After reviewing the idea

of the instability cure by a tree-level threshold effect, we present various examples of

beyond the SM physics where the mechanism can be operative.

4.1 Stabilising the Higgs potential with a scalar singlet

To explore the impact of an additional singlet scalar on the stability of the Higgs po-

tential, we consider a tree-level scalar potential of the form

V0 = λH

(
H†H − v2/2

)2
+ λS

(
S†S − w2/2

)2
+ 2λHS

(
H†H − v2/2

)(
S†S − w2/2

)
.

(4.1)

Here H is the Higgs doublet, S is a complex scalar field, and V0 is the most general

renormalizable potential that respects a global Abelian symmetry under which only S is

charged. Although we will consider here a single complex scalar, most of our conclusions

remain valid also in the case of multi-Higgs doublets or real singlet fields (with a Z2 parity

replacing the Abelian symmetry).

For λH , λS > 0 and λ2
HS < λHλS , the minimum of V0 is at

〈H†H〉 = v2/2 , 〈S†S〉 = w2/2 . (4.2)

A nonzero vev of S, which is crucial for the mechanism to work, spontaneously breaks the

global symmetry (or the Z2 parity, for a real singlet) giving rise to a potentially dangerous

Goldstone boson. Gauging the symmetry of S or explicitly breaking it by (possibly small)

terms in V0 can be used to evade these problems, but does not conceptually modify our

results. For simplicity, we restrict our considerations to the potential in Eq. (4.1), but

generalizations are straightforward.

The presence of the new scalar field S modifies the analysis of the stability conditions

of the Higgs potential. One effect is the contribution of the singlet to the renormalization

group evolution of the Higgs quartic coupling (for recent analyses, see Ref. [78–82] and

references therein). The relevant renormalization RG equations above the scale MS =
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√
2λSw are, at one-loop

(4π)2 dλH
d lnµ

=
(

12y2
t − 3g′2 − 9g2

)
λH − 6y4

t +
3

8

[
2g4 + (g′2 + g2)2

]
+ 24λ2

H + 4λ2
HS ,

(4π)2dλHS
d lnµ

= λHS

[
1

2

(
12y2

t − 3g′2 − 9g2
)

+ 4 (3λH + 2λS) + 8λHS

]
,

(4π)2 dλS
d lnµ

= 8λ2
HS + 20λ2

S , (4.3)

If the singlet mass MS is below the SM instability scale 2 ΛI and (λHS/4π)2 ln(ΛI/MS)

is large enough, the positive contribution to the RG equation for λH can prevent it from

becoming negative.

4.2 The threshold effect

Besides the loop contribution in the RG equations discussed above, there is a threshold

tree-level effect through which the new singlet can affect the stability bound. Let us

consider the limit in which MS is much larger than the Higgs mass (w2 � v2). At

the scale MS we can integrate out the field S using its equation of motion (neglecting

derivatives):

S†S =
w2

2
− λHS

λS

(
H†H − v2

2

)
. (4.4)

Replacing Eq. (4.4) in V0, we obtain the effective potential below the scale MS :

Veff = λ

(
H†H − v2

2

)2

, λ = λH −
λ2
HS

λS
. (4.5)

This shows that the matching condition at the scale µ = MS of the Higgs quartic

coupling gives a tree-level shift, δλ ≡ λ2
HS/λS , as we go from λH just above MS to λ

just below MS .

To better understand the origin of the shift in the matching condition, let us consider

the mass matrix of the fields h and s, corresponding to the real parts of the doublet H

(in unitary gauge) and the singlet S, such that H†H = h2/2 and S†S = s2/2. At the

minimum, the mass matrix is

M2 = 2

(
λHv

2 λHSvw

λHSvw λSw
2

)
. (4.6)

2Stabilizing the potential with degrees of freedom heavier than ΛI requires sizable couplings, see
Refs. [83, 84].
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In the limit λSw
2 � λHv

2, the heaviest eigenstate, which is nearly singlet, can be

integrated out, leaving behind a “see-saw”-like correction to the lightest eigenvalue

m2
h = 2v2

[
λH −

λ2
HS

λS
+O

(
v2

w2

)]
, (4.7)

while M2
S = 2λSw

2 + 2(λ2
HS/λS)v2 + O(v4/w2). The light state is almost purely h, as

the singlet admixture is suppressed by a small mixing angle of order v/w. However,

the Higgs mass correction due to the heavy state persists even in the decoupling limit

(w → ∞). The negative sign in the shift of the Higgs mass in Eq. (4.7) can be readily

understood as coming from the repulsion of mass eigenvalues after turning on the mixing

equal to 2λHSvw.

Naively, as the tree-level shift δλ corresponds to a larger Higgs quartic coupling above

MS , the chances of keeping it positive seem improved. However, the tree-level condi-

tions for stability change from λ > 0 in the effective theory below MS to λH > δλ in

the full theory above MS . Thus, it appears that the threshold correction δλ does not

help stability at all. To understand what happens, one has to reexamine the stability

conditions more carefully.

First of all, recall that the tree-level potential V0 in Eq. (4.1) is a good approximation

to the full potential if we evaluate couplings and masses (collectively denoted by λi

below) at a renormalization scale of the order of the field values of interest. Once

we express the scalar potential as V0[λi(µ = ϕ), ϕ], potentially large logarithms of the

form lnmi(ϕ)/µ (where mi(ϕ) ∼ ϕ is a typical field-dependent mass) are kept small

as compared to the tree-level potential. Roughly speaking, this means that V0 with a

fixed µc will be reliable as long as one examines ϕ ∼ µc and restricts field excursions

to |ϕ − µc| < µce
8π2λ0/λ2

1 ; where λ0 denotes a coupling in the tree-level potential and

λ1 a coupling affecting the radiative corrections, e.g. the top Yukawa coupling squared.

The inequality comes from demanding that the one-loop correction is smaller than the

tree-level potential. By adjusting µ ∼ ϕ one can evaluate reliably the potential at all

field values, but the previous estimate tells us when we can use V0[λi(µc), ϕ], which has

a simpler field dependence.

With the parametrization chosen in Eq. (4.1), the EW vacuum corresponds to V0 = 0.

Thus the stability condition is V0 > 0 anywhere in field space, away from the EW

vacuum. The first and most obvious stability requirement that we should impose is

λH(µ) > 0 , λS(µ) > 0 , (4.8)

at any renormalization scale µ, or else the potential develops unwanted minima lower

than the EW vacuum or is unbounded from below at large field values. Next, in order
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Figure 4.1: Running of the Higgs quartic coupling in the SM and in the model with
a scalar singlet, here assumed to have the mass MS = 108 GeV. Left: if λHS > 0,
thanks to the tree level shift at the singlet mass, the coupling never enters into the
instability region, even assuming that singlet contributions to the RG equations are
negligible. Right: if λHS < 0 the instability can be shifted away or avoided only by

singlet contributions to the RG equations.

to discuss the conditions on the coupling constant λHS , it is convenient to separate the

cases in which λHS is either positive or negative. This separation is meaningful because

λHS renormalizes multiplicatively (as it is the only coupling that connects H and S),

see Eq. (4.3), and therefore the RG flow cannot flip its sign.

4.2.1 Case λHS > 0

In this case, V0 can become negative only when |S| < w/
√

2 (neglecting corrections

proportional to v). In this situation, the most dangerous field configuration is well

approximated by setting S = 0 in Eq. (4.1), such that

V0(H, 0) ≈ λH |H|4 −
λHS
2λS

M2
S |H|2 +

M4
S

16λS
. (4.9)

The extra stability condition, V0 > 0 at the minimum of Eq. (4.9), is then

λ2
HS(µ) < λH(µ)λS(µ) . (4.10)

Note that this can be rewritten as λH > δλ = λ2
HS/λS and ensures that the light scalar

state does not become tachyonic, see Eq. (4.7). If this condition were violated at some
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50 Part I – Electroweak vacuum stability

scale µ∗, it would lead to an instability for field configurations with

|S| < MS

2
√
λS
, µ− < |H| < µ+, µ2

± =
M2
SλHS

4λHλS

(
1±

√
1− λHλS

λ2
HS

)∣∣∣∣∣
µ∗

, (4.11)

which could be trusted provided µ− < µ∗ < µ+. Note that, if µ∗ � µ±, this would

not mean that there is an instability to worry about, as it would be located outside

the range of validity of the tree-level approximation V0(λi(µ∗), ϕ). Thus, as long as

condition of Eq. (4.10) is satisfied for renormalization scales within a relatively narrow

range of energies around MS (which fixes the mass scale of µ±), there is no instability

even if this condition were eventually violated at higher scales. Only if parameters

happen to lie near a critical point in which at least one of conditions (4.8) or (4.10) is

barely satisfied, radiative corrections can become important and invalidate the stability

analysis performed with the tree-level potential. In this case one should resort to the

one-loop approximation of the potential; otherwise, our analysis is reliable.

We can now better appreciate how the threshold contribution in Eq. (4.5) can cure

the instability of the SM Higgs potential (provided that MS < ΛI). The correction δλ

has the correct sign to shift the Higgs quartic coupling upwards (λH = λ+δλ), although

the stability condition is also shifted upwards by the same amount, becoming λH > δλ.

However, for positive λHS , the condition λH > δλ has to be satisfied only at scales

of order MS , while for larger scales it rapidly reduces to the conventional constraint

λH > 0. Moreover, one-loop RG effects (although typically less important than the

tree-level matching condition) also help to maintain stability. First, λS and λHS will

stay positive once they are positive at MS . Second, βλH ≡ dλH/d lnµ receives extra

positive contributions proportional to λ2
HS and to λ2

H (coupling which is numerically

larger after the threshold shift). These two RG effects can reduce (or even overcome)

the destabilising effect from top loops.

To illustrate the situation, we show in Fig. 4.1, left panel, how the Higgs quartic

coupling runs with the renormalization scale. We consider MS = 108 GeV � ΛSM
I =

2× 109 GeV. 3 For simplicity we take the couplings of the singlet to be smaller than the

SM top and gauge couplings, in order to better isolate the tree-level threshold effect. The

same panel also shows the full stability condition, computed numerically by demanding

that V (H, 0) > 0: we see that at renormalization scales just above MS the stability

condition of Eq. (4.10) matters, but at larger field values it rapidly becomes irrelevant

and only λH > 0 remains.

3Strictly speaking, this is the scale at which λ = 0, and corresponds to the instability scale of the
tree-level RG-improved potential. The ΛI that we calculate later on is higher and corresponds to the
instability of the one-loop RG-improved potential. For simplicity, in Fig. 4.2 we simply plot λ(µ).
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To study the efficiency of the stabilisation mechanism, we performed a numerical study

using the full one-loop effective potential with SM couplings running at two-loops. We

limited the evolution of the unknown singlet couplings to the one-loop level, given that

the effect we are considering is at tree level. In order to track accurately the large

field behaviour of the one-loop potential one can simply include in the running quartic

couplings the finite one-loop contributions not captured by RG evolution and impose the

stability conditions on these corrected couplings (the shift in the instability scale can be

up to one order of magnitude; see Refs. [3, 42] for further details). The scale at which

these one-loop improved running couplings violate the stability condition corresponds

then to the field scale at which the potential falls below the EW vacuum. The results

are illustrated in Fig. 4.2 which shows the new instability scale ΛI as a function of the

threshold shift δλ for several singlet scalar masses, MS = 104, 106, 108, 1010 GeV below

the SM instability scale, ΛSM
I ' 4× 1010 GeV (for mh = 125 GeV, mt = 173.2 GeV and

αs(mZ) = 0.1183). For each value of MS , there is a band of values for ΛI due to the

freedom in choosing λS , once λH and δλ = λ2
HS/λS are fixed. The lower boundary of

each band corresponds to λS � 1. This case nearly isolates the impact of the tree-level

shift on the instability scale (as the running of λH above the singlet threshold is SM-

like). The upper boundary of each band corresponds to the largest value of λS that we

allow by requiring λS(µ) < 4π up to the Planck scale. Large values of λS correspond to

large λHS (for a fixed δ), making the RG effect on λH stronger. We conclude that the

tree-level shift in λ can have an extremely significant impact in raising the instability
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Figure 4.2: For mh = 125 GeV and λHS > 0, bands of the modified instability scale
ΛI versus the threshold correction δλ to the Higgs quartic coupling due to a scalar singlet
with mass MS = 104, 106, 108, 1010 GeV (from left to right). For a fixed MS value the
lowest boundary of the band corresponds to small λS , λHS and the highest boundary to

λS(MPl) = 4π.
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52 Part I – Electroweak vacuum stability

scale even for very moderate values of the couplings λS and λHS , and it can easily make

the EW vacuum absolutely stable.

4.2.2 Case λHS < 0

In this case V0 can become negative only for |S| > w/
√

2. In this condition, we can

neglect the mass parameters v and w in Eq. (4.1) and approximate the potential by

keeping only the quartic terms

V0 ≈ λH |H|4 + λS |S|4 + 2λHS |H|2|S|2 . (4.12)

The stability condition (V0 > 0) is now

− λHS(µ) <
√
λH(µ)λS(µ) . (4.13)

If this condition is violated at some scale µ∗ an instability would develop with

|S| > MS

2
√
λS
, c− <

|H|
|S| < c+ c2

± =
−λHS
λH

(
1±

√
1− λHλS

λ2
HS

)∣∣∣∣∣
µ∗

. (4.14)

As this determines a direction in field space along which the fields H and S slide

towards an unbounded instability, condition of Eq. (4.13) has to be satisfied at all

renormalization scales larger than MS . Thus the stability condition for negative λHS is

much more constraining than in the case of positive λHS .

In the case λHS < 0, as the stability condition λH > δλ must be satisfied at all

scales, the tree-level threshold effect is not sufficient to improve the stability. Then one

should resort to RG effects to improve the potential stability, as illustrated in Fig. 4.1,

right panel. By using the RG equations of Eq. (4.3), we can derive the evolution of the

effective Higgs quartic coupling combination λ ≡ λH − λ2
HS/λS above MS as

dλ

d lnµ
= βSM

λ +
8

(4π)2

[
(λHS − δλ)2 + 3λ δλ

]
, (4.15)

where βSM
λ is the SM beta function for the Higgs quartic coupling and δλ = λ2

HS/λS > 0.

We see that the additional term in the beta function of λ is always positive so that RG

effects tend to increase the instability scale also in the case λHS < 0.

The numerical analysis of the λHS < 0 case confirms this expectation. As an illustra-

tion, Fig. 4.3 shows the instability scale versus the shift δλ for the same choice of SM

parameters as in Fig. 4.2 and for the particular case MS = 108 GeV with three different
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Figure 4.3: For mh = 125 GeV and λHS < 0, the modified instability scale ΛI versus
the threshold correction δλ to the Higgs quartic coupling due to a scalar singlet with

mass MS = 108 GeV and λS(MS) = 0.01, 0.1, 0.2, as indicated.

values of λS as indicated. The end-point of the curves marks the location beyond which

(i.e. for larger δλ) the potential becomes completely stable. These end-points occur

because λ first decreases as a function of the renormalization scale but, after reaching

a minimum, starts increasing at large scales. In comparison with the case λHS > 0

(Fig. 4.2) we see that larger values of the shift δλ are now required to have a significant

impact on the instability scale.

The stabilisation mechanism for λHS < 0 we have just described is fragile with respect

to possible new contributions to the RGEs that can appear if the singlet couples to other

sectors of the theory. In contrast, the stabilisation mechanism for λHS > 0 is more

robust, being based on a tree-level shift. The mechanism is also very effective (because

the tree level correction can be easily large) and economical (because it requires only a

heavy scalar singlet). The proposed mechanism can be realised in several situations of

physical interest [2]. We now discuss two examples were the singlet is required to solve

another problem; it gives mass to the right handed See-saw neutrinos but at the same

time stabilises the vacuum by the threshold effect. In Re. [2] one more example is given

where the singlet is used to unitarize Higgs inflation.
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54 Part I – Electroweak vacuum stability

4.3 See-saw

The see-saw is the simplest mechanism to understand the smallness of neutrino masses.

It assumes the existence of heavy right-handed neutrino states N (family index sup-

pressed) with

LN = iN̄γµ∂µN + yνLNH +
MN

2
N2 + h.c. . (4.16)

After EW symmetry breaking, nonzero neutrino masses are generated

mν =
y2
νv

2

MN
, (4.17)

which are naturally small provided MN � v.

The impact of the see-saw mechanism on the stability of the Higgs potential has been

discussed in the past [3, 85, 86]. The right-handed neutrino Yukawa couplings can play a

x role on βλ similar to that of the top Yukawa coupling. As they scale like y2
ν ∼ mνMN ,

they become sizable for large MN and are dangerous for stability only if MN ≈ 1013

GeV. For lower MN the new Yukawas will have a negligible effect on stability.

We do not know what originates the large right-handed Majorana mass, but the

simplest idea is to assume that the right-handed neutrinos are coupled to scalar fields

carrying two units of lepton number and having a large vev,

κ

2
S N2 + h.c. (4.18)

The vev of S, which sets the scale of the Majorana mass, MN = κ〈S〉, does not nec-

essarily lead to a Goldstone boson because in unified models B − L is usually a gauge

symmetry. In this well-motivated realization of the see-saw the scalar field S could nat-

urally reestablish stability of the electroweak vacuum. In this setting the role of the

singlet scalar is therefore double. Upon taking a large vev and decoupling, it leaves be-

hind two effects: a Weinberg dimension-5 operator that gives neutrinos a nonzero mass,

and a threshold effect on the Higgs Yukawa coupling that solves the stability problem

of the Higgs potential, as long as the mass of S is smaller than ΛI .

A lower bound on the lightest right-handed neutrino mass M1 is derived by assuming

that the cosmic baryon asymmetry is explained by thermal leptogenesis.4 In this case,

one obtains the bounds [87, 88]:

• M1 > 2 × 109 GeV, if the initial right-handed neutrino density vanishes at high

temperature.

4If neutrinos are nearly degenerate in mass, thermal leptogenesis could operate at much smaller
values of M1 and the following lower bounds do not apply.
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Figure 4.4: The SM instability scale ΛI increasing as a function of the Higgs mass.
The central line corresponds to mt = 173.2 GeV and αs(mZ) = 0.1184 and the side-
bands to 1 sigma deviations as indicated (with the larger deviation for the top mass
uncertainty). The horizontal lines mark several values of interest for ΛI . The three
lines are relevant for the see-saw and correspond to lower limits on the mass M1 of the
lightest right-handed neutrino N1 coming from thermal leptogenesis. The bound depends
on the initial density ρN1

: M1 > 2 × 107 GeV for ρN1
∼ 0; M1 > 5 × 108 GeV for

thermal ρN1
and M1 > 2× 109 GeV for ρN1

dominating the universe.

• M1 > 5× 108 GeV, if the initial right-handed neutrino density is thermal at high

temperature.

• M1 > 2 × 107 GeV, if the initial right-handed neutrino density dominates the

universe at high temperature.

Assuming that the mass of S is equal or smaller than its vev, we can infer the range of

Higgs masses for which the scalar setting the see-saw scale could cure any instability of

the potential. From Fig. 4.4, which gives the SM instability scale as a function of mh

as calculated in Chapter 3, we can easily read off such Higgs masses.5 At 90% CL in

mt and αs, we find that the see-saw singlet can potentially eliminate the instability of

the EW vacuum, as long as mh > 120 GeV (leptogenesis with vanishing initial right-

handed neutrino density), mh > 119 GeV (leptogenesis with thermal initial right-handed

neutrino density), or mh > 115 GeV (leptogenesis with dominant initial right-handed

neutrino density). These limits are compatible with the Higgs mass of 125 GeV measured

by ATLAS and CMS. The instability scale is raised according to the mechanism discussed

in the previous Section as long as MN . 1013 GeV, since the RG effects of yν couplings

can be neglected.

5Besides the 1-sigma error bands shown, associated with the experimental uncertainties in mt and
αs, a (conservative) estimate of the higher order radiative corrections not included in the calculation
results in a theoretical uncertainty on mh of ±1 GeV, see Tab. 3.2.
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We conclude that this simple scenario could comfortably account for the cosmolog-

ical baryon asymmetry through leptogenesis, for the smallness of neutrino masses and

cure the Higgs potential instability. The only drawback of this (beautifully simple but

depressing) scenario is that it makes plainly explicit the hierarchy problem: a large sin-

glet vev also gives a tree-level contribution to the Higgs mass term in the Lagrangian

which requires a large fine-tuning. (This is in contrast with the scenario without the

singlet, in which Higgs mass corrections appear at one-loop and are dangerous only when

MN > 107 GeV [89, 90]).

4.4 Invisible axion

The scalar field S can also be identified with the invisible axion.

DFSZ axion models [91, 92] use the SM fermion content and a two-Higgs doublet

structure Hu and Hd augmented by a complex scalar S, neutral under SM gauge inter-

actions, with a coupling λHSS
2HuHd + h.c., analogous to the one in Eq. (4.1). This

interaction is crucial for the axion mechanism, because it transmits the breaking of the

global symmetry triggered by the vev of S to the Higgs sector. One or both of the

Higgs doublets can remain light, at the electroweak scale. The presence of an instability

is subject to the details of the two-Higgs potential [93], but this does not change the

essential point. Independently of the model implementation, the field S containing the

invisible axion a =
√

2ImS with large decay constant fa ≈ 〈S〉 is a perfect candidate to

play the role of the field S in our Higgs stabilisation mechanism.

KSVZ axion models [94, 95] use a single Higgs doublet and a complex scalar S coupled

to new heavy vector-like fermions Ψ. The Dirac mass term M Ψ̄Ψ is forbidden by

imposing the symmetry

ΨL → −ΨL, ΨR → ΨR, S → −S. (4.19)

Then the mass of the heavy fermions comes only from the vev of S:

λΨ SΨ̄Ψ + V (H,S). (4.20)

The resulting model has a spontaneously broken U(1) global symmetry

Ψ→ eiγ5αΨ, S → e−2iαS (4.21)

which gives rise to a light axion a =
√

2ImS with large decay constant fa ≈ 〈S〉. The

scalar potential of the theory is precisely of the form in Eq. (4.1), although the coupling
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λHS plays no role in axion phenomenology because both |S|2 and |H|2 are separately

invariant under the global symmetry.

The decay constant of the axion is allowed to lie in the range

109 GeV < fa < 1012 GeV . (4.22)

The lower bound comes from non-observation of axion emission from stars and super-

novæ. The upper bound comes from requiring that the axion dark matter density

Ωa ≈ 0.15

(
fa

1012 GeV

)7/6(a∗
fa

)2

(4.23)

does not exceed the observed value ΩDM ≈ 0.23 under the assumption that the axion

vev a∗ in the early universe was of the order of fa [96–98]. The resulting range of singlet

mass MS , which we can roughly take to be the same as the range for fa in Eq. (4.22),

overlaps with the range that can stabilise the SM Higgs potential from mh & 119 GeV

(for MS ≈ 109 GeV) to mh & 124 GeV (for MS ≈ 1012 GeV), as can be inferred from

Fig. 4.4.

4.5 Summary

We have presented a stabilisation mechanism of the electroweak vacuum that relies on

a threshold correction to the Higgs quartic coupling, whose size is independent of the

singlet mass. The necessary ingredients are a singlet self-quartic coupling (λS), a mixed

quartic coupling with the Higgs (λHS) and a non-zero vev for the singlet. The mechanism

can be operative even for a very heavy singlet, as long as its mass is smaller than the

instability scale. Occurring at tree level, the effect is sizeable and robust. The analysis

of the effect involves some subtleties because, at the singlet threshold, both the Higgs

quartic coupling and the stability conditions are shifted by the same amount. We have

shown that, when λHS is positive, the stability conditions become weaker as the field

value is increased above the singlet mass. In this situation, the tree-level contribution

is very effective in stabilising the potential. On the other hand, for negative λHS , the

shifts in the Higgs quartic coupling and in the stability condition essentially cancel out,

and one has to rely on RG effects. These can help the stabilisation, but larger singlet

couplings are needed to obtain the desired effect. The minimal modification of the SM

that we have considered, with the addition of one singlet scalar, has motivations that

are independent of the stability of the EW vacuum. The new singlet can set the scale of

the right-handed neutrino mass in the sea-saw mechanism; or it could play the role of

the invisible axion. In both cases, we were able to define the range of Higgs masses for
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which the corresponding singlet could also be used to stabilise the SM Higgs potential.

We find that the stabilisation mechanism can be operative in both models for the Higgs

mass value measured by ATLAS and CMS.
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5. Introduction

Quantum Effective Field Theories (EFTs) play a central role in the understanding of

physical systems in theoretical physics. Its most prominent applications range from

physics of the very early universe to particle physics and condensed matter. The com-

bination of the EFT approach together with the Renormalization Group (RG) permits

to focus on the relevant energy scales of the aforementioned physical systems.

Regarding particle physics we are at a very special situation that we have not faced

before. The discovery of the Higgs boson at the LHC [9, 10] completes a theoretical

puzzle, namely the electroweak interactions. Now we have a theory, the Standard Model

(SM), that makes sense up to exponentially higher energies, see Part I. Apart form the

fact that in any proposed generalisation of the SM the Higgs mass tends to be of the same

order as the physical energy scale of the SM completion, all the other SM conundrums

like charge quantisation, unification, flavour or the strong CP problem can be solved at

exponentially higher energies or with very weakly coupled physics, see Sec. 1.2.

The null results of the Large Hadron Collider (LHC) in Beyond the SM (BSM) searches

together with the fact that the Higgs properties show good agreement with the SM ex-

pectations (see Chapter 1) suggest that there is a certain energy gap between the Higgs

mass an the new physics scale. In this situation, EFTs provide a practical way to or-

ganise the impact of possible new physics. In this respect one can take two extreme

point of views in the use of the EFT. On one extreme one can simply take into account

all the higher dimensional operators with order O(1) Wilson coefficients, treat them on

equal footing and inspect its consequences. This might not be very informative due to

the plethora of higher dimensional operators, even at the dimension-six level. On the

other extreme, one can take a singular model and integrate it out, and again inspect its

phenomenological consequences. Between these two extremes, there are simple assump-

tions that can be taken about the BSM theory that allows to weight the importance of

the different higher dimension operators and in this way one can study and learn about
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the consequences of different classes of models altogether. 1 As we have stressed in the

Preface and in Chapter 1, it is very important that, in the upcoming years, we make

sure that we understand and measure as much as we can the properties of the Higgs

boson. The EFT analysis sheds light to this enterprise as it allows to systematically

study possible deviations from the SM expectations by organising the energy scales and

possible symmetries or dynamics of the ultraviolet physics.

In Part II of the thesis we embark on the SM EFT study of possible new physics.

In Chapter 6 we perform a complete study of the impact of the (dominant) dimension-

six operators in the most important Higgs couplings. In particular, we calculate the

corrections to single Higgs couplings, relevant for the main Higgs decays and production

mechanisms. We will show that, for one family, there are 8 CP-even operators that can

only affect Higgs physics and no other SM processes (at tree-level). This corresponds

to the number of independent dimension-six operators that can be constructed with

|H|2, and implies that Higgs couplings to fermions, photons, gluons, and Zγ (for which

large corrections are still possible) are characterised by independent Wilson coefficients.

The rest of operators that could in principle affect Higgs physics at tree-level also enter

in other SM processes and therefore can be constrained by independent (non-Higgs)

experiments; we will present the main experimental constraints on these operators.

In the following Chapters 7-9 we go one step further and study several relevant effects

that arise due to the operator mixing of the dimenison-six operators through quantum

effects. This is very interesting for a number of reasons. In particular we are specially

interested in looking for instances of

- possible big deviation from the SM are expected if the RG running of the Wilson

coefficients is there (e.g. big contributions to b→ sγ),

- explicit breaking of assumed symmetries of the BSM degrees of freedom due to the

SM running of the dimension-six operators (e.g. contributions to the T-parameter),

- poorly measured or unknown Wilson’s coefficients that radiatively generate opera-

tors that are precisely measured (e.g. h→ γZ v.s. neutron electric dipole moment

or electroweak precision test observables),

- SM processes that are suppressed (they are loop-level interactions or involve small

SM couplings) and receive big contributions from higher dimensional operators

1In order to illustrate this point let us mention some examples of assumptions or parametrizations
than can be imposed: accidental or global symmetries (e.g. custodial, flavour, R-parity); generic as-
sumptions about the dynamics (operators generator at loop-level v.s. operators generated at tree level);
or more refined assumptions about the dynamics and power counting such as in the SILH parametriza-
tion [99]; one can also asume generic SM↔BSM couplings as (e.g. portals or universally coupled new
physics), etc. We will encounter several examples in the next Chapters.
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(e.g. possible contributions of tree-level generated operators to loop-level processes

like dipoles and certain triple gauge vertices).

In fact, by inspecting RG mixing effects we are further exploiting a key feature of the

higher dimensional operators: they connect different kinds of physics that are otherwise

not directly connected in the Λ→∞ limit.

We start the study of the RG mixing effects in Chapter 7, where we look for possible

connections between the h → γ + γ/Z decay and the S-parameter. In addition, in

Chapter 7 we compute the contributions of the SM dipoles to the decay h → γ + γ/Z

and present a digression on the choice of the operator basis. We remark that certain

bases facilitate particular physical interpretations, a common fact in physics whenever

coordinates are taken.

Then, in Chapter 8 we continue the exploration of the most relevant quantum effects

to the relevant Higgs couplings. We apply these results to find the leading-log cor-

rections to the predictions for Higgs-couplings in various BSM scenarios: the Minimal

Supersymmetric Standard Model (MSSM), universal theories (such as composite-Higgs

models) and models with a non-standard top. We find that the deviations can be as big

as 10-20%.

Lastly, in Chapter 9 we focus on universal theories and study the RG mixing and

interplay of various Higgs and Electroweak observables. The main result of that Chapter

is the anomalous dimension matrix of the 10 bosonic operators (i.e. operators made out

of boson fields) related to EW and Higgs observables. Then, we use the RG equations to

set bounds on the value of some Wilson coefficients that are otherwise less constrained

by direct measurements. We also comment on future prospects, present the anomalous

dimension matrix for a set of operators with gluon fields and discuss the available bounds

on them.
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6. SM Effective Field Theory

6.1 Dimension-six operator basis

Let us consider a BSM sector characterised by a new mass-scale Λ much larger than

the electroweak scale MW . 1 We will assume, among other requirements to be specified

later, that this sector preserves lepton and baryon number. By integrating out this

sector and performing an expansion of SM fields and their derivatives Dµ over Λ, we

obtain an effective Lagrangian made of local operators:

Leff =
Λ4

g2∗
L
(
Dµ

Λ
,
gHH

Λ
,
gfL,RfL,R

Λ3/2
,
gFµν
Λ2

)
' L4 + L6 + · · · , (6.1)

where Ld denotes the term in the expansion made of operators of dimension d. By g∗

we denote a generic coupling, while gH and gfL,R are respectively accounting for the

couplings of the Higgs-doublet H and SM fermions fL,R to the BSM sector, and g and

Fµν represent respectively the SM gauge couplings and field-strengths.2 The Lagrangian

in Eq. (6.1) is based on dimensional analysis and the dependence on the couplings is

easily obtained when the Planck constant ~ is put back in place. All couplings introduced

in Eq. (6.1) can be useful as bookkeeping parameters. In particular, a term in the

Lagrangian that contains n fields, will carry some coupling to the power n − 2 (in this

counting, λ, the Higgs quartic-coupling, is formally of order g2
∗).

The dominant effects of the BSM sector are encoded in L6. There are different bases

used in the literature for the set of independent d = 6 operators in L6. Although physics

is independent of the choice of basis, it is clear that some bases are better suited than

others in order to extract the relevant information e.g. for Higgs physics. A convenient

feature to ask of a good basis is that it captures in few operators the impact of different

new-physics scenarios, at least for the most interesting cases. For example, in universal

1In fact Λ ≈ 300 GeV is sufficient in certain cases because it correspond to an expansion parameter
of M2

W /Λ
2 ≈ 0.1.

2With this we are assuming that the SM gauge symmetry is also realized at energies above Λ and
therefore the couplings of the gauge bosons to the BSM sector are the SM gauge couplings. We can
relax this assumption by replacing g by an arbitrary coupling.
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theories, defined as those BSM scenarios whose corrections can be encoded in operators

made only of SM bosons, the bases used in Refs. [99, 100] are appropriate since the

physics effects can be captured by just 14 CP-even d = 6 operators. Therefore, 14 is

the number of independent parameters of the new physics effects and this number must

be the same in all bases. However, the list of operators required to describe this same

physics can contain many more than 14 operators in other bases, as for example in

that of Ref. [101]. It follows that if we use such alternative bases to study universal

theories there will be correlations among operator coefficients, making the analysis more

cumbersome.

Another important consideration for the choice of basis is to separate operators whose

coefficients are expected to have different sizes (again, at least in the main theories of

interest). For example, it is convenient to keep separated the operators that can be

induced at tree-level from integrating weakly-coupled states from those that can only be

generated at the one-loop level. This helps in determining the most relevant operators

when dealing with a large class of BSM scenarios such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in Chapter 7, this criterium is

also useful when considering one-loop operator mixing, since one finds that tree-level

induced operators often do not contribute to the RGE flow of one-loop induced ones,

independently, of course, of the UV origin of the operators. In this particular sense, the

basis of Ref. [5] is better suited than that of Ref. [100]. It is obvious that to meet all

the criteria given above we do not need to sacrifice generality, as long as one keeps a

complete basis of operators, as we do.

The operators of our basis will be broadly classified in three classes [5, 99]. The first

two classes will consist of operators that could in principle be generated at tree-level

when integrating out heavy states with spin ≤ 1 in renormalizable weakly-interacting

theories. As we show in Appendix A, these operators can be written as products of

scalar, fermion or vector currents of dimension less than 3. 3 Among these current-

current operators we call operators of the first class those that involve extra powers of

Higgs fields or SM fermions. They will be proportional to some power of the couplings

gH or gfL,R , respectively. The importance of the operators of the first class is that

they can be the most sizeable ones when the theory is close to the strong-coupling

limit, gH , gfL,R ∼ 4π. Operators of the second class are instead those that involve

extra (covariant) derivatives or gauge-field strengths and, according to Eq. (6.1), are

generically suppressed by 1/Λ2 times a certain power of gauge couplings. Finally, in the

third class, we will have operators that cannot be generated from a tree-level exchange of

3This, together with the fact that field-redefinitions through equations of motion do not mix the two
types of operators, makes the classification well defined and unambiguous.
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heavy fields and can only be induced, in renormalizable weakly-coupled theories, at the

one-loop level. In this case, we expect these operators to be suppressed by g2
∗/(16π2Λ2).

We then classify the d = 6 operators as

L6 =
∑

i1

g2
∗
ci1
Λ2
Oi1 +

∑

i2

ci2
Λ2
Oi2 +

∑

i3

κi3
Λ2
Oi3 , (6.2)

where, for notational convenience, we introduce the one-loop suppressed coefficients

κi3 ≡
g2
∗

16π2
ci3 , (6.3)

for the third class of operators. In weakly-coupled theories, ci ∼ fi(g/g∗, gH/g∗, ...),

where fi(g/g∗, gH/g∗, ...) are functions that depend on ratios of couplings. We refer to

the operators Oi1 and Oi2 as ”current-current” or ”tree-level” operators, while we call

Oi3 ”one-loop” operators.4

Let us start defining our basis by considering first operators made of SM bosons only

[99]. In the first class of operators, Oi1 , we have

OH =
1

2
(∂µ|H|2)2 , OT =

1

2
(H†

↔
DµH)2 , Or = |H|2|DµH|2 , O6 = λ|H|6 . (6.4)

Here we have defined H†
↔
DµH ≡ H†DµH−(DµH)†H, with DµH = ∂µH−igσaW a

µH/2−
ig′BµH/2 (H is taken to have hypercharge YH = 1/2). For O6, which involves six Higgs

fields, an extra factor g2
∗ could be present. Nevertheless, we have substituted this by

λ, the Higgs self-coupling defined as V = −m2|H|2 + λ|H|4. This is motivated by the

fact that the lightness of the Higgs suggests that there is a symmetry protecting the

Higgs self-coupling to be of order λ ∼ m2
h/(2v

2) ∼ 0.13. Examples are supersymmetry

or global symmetries as in composite Higgs models.

In the second class of operators, Oi2 , we have

OW =
ig

2
(H†σa

↔
DµH)DνW a

µν , OB =
ig′

2
(H†

↔
DµH)∂νBµν ,

O2W = −1

2
(DµW a

µν)2 , O2B = −1

2
(∂µBµν)2 , O2G = −1

2
(DµGAµν)2 . (6.5)

Since the last three operators involve two field strengths, we expect c2W ∼ g2/g2
∗, c2B ∼

g′ 2/g2
∗, and c2G ∼ g2

s/g
2
∗.

4For a classification of operators similar in spirit to ours, see Ref. [102].
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In the third class of operators, Oi3 , we have the CP-even operators

OBB = g′2|H|2BµνBµν , OGG = g2
s |H|2GAµνGAµν , (6.6)

OHW = ig(DµH)†σa(DνH)W a
µν , OHB = ig′(DµH)†(DνH)Bµν , (6.7)

O3W =
1

3!
gεabcW

a ν
µ W b

νρW
c ρµ , O3G =

1

3!
gsfABCG

Aν
µ GBνρG

C ρµ , (6.8)

and the CP-odd operators

O
BB̃

= g′2|H|2BµνB̃µν , O
GG̃

= g2
s |H|2GAµνG̃Aµν , (6.9)

O
HW̃

= ig(DµH)†σa(DνH)W̃ a
µν , O

HB̃
= ig′(DµH)†(DνH)B̃µν , (6.10)

O
3W̃

=
1

3!
gεabcW̃

a ν
µ W b

νρW
c ρµ , O

3G̃
=

1

3!
gsfABCG̃

Aν
µ GBνρG

C ρµ , (6.11)

where F̃µν = εµνρσFρσ/2. There are two more CP-even operators involving two Higgs

fields and gauge bosons, OWB = g′gH†σaHW a
µνB

µν and OWW = g2|H|2W a
µνW

µν a (and

SM CP-even operators made of bosons

OH = 1
2(∂µ|H|2)2

OT = 1
2

(
H†
↔
DµH

)2

O6 = λ|H|6

OW = ig
2

(
H†σa

↔
DµH

)
DνW a

µν

OB = ig′

2

(
H†

↔
DµH

)
∂νBµν

O2W = −1
2(DµW a

µν)2

O2B = −1
2(∂µBµν)2

O2G = −1
2(DµGAµν)2

OBB = g′2|H|2BµνBµν

OGG = g2
s |H|2GAµνGAµν

OHW = ig(DµH)†σa(DνH)W a
µν

OHB = ig′(DµH)†(DνH)Bµν

O3W = 1
3!gεabcW

a ν
µ W b

νρW
c ρµ

O3G = 1
3!gsfABCG

Aν
µ GBνρG

C ρµ

Table 6.1: The operators are grouped in 3 different groups (separated with a solid
line) corresponding to the 3 classes of operators defined in Eq. (6.2). Dashed lines
separate operators of different structure within a given class. There are, in addition,

the 6 CP-odd operators given in Eqs. (6.9)-(6.11).

68



Chapter 6 – SM Effective Field Theory: status and legacy 69

the equivalent CP-odd ones), but these can be eliminated using the identities 5

OB = OHB +
1

4
OBB +

1

4
OWB , (6.12)

OW = OHW +
1

4
OWW +

1

4
OWB . (6.13)

The operators O3W and O3G (and the corresponding CP-odd ones) have three field-

strengths and then their corresponding coefficients should scale as c3W ∼ g2/g2
∗ and

c3G ∼ g2
s/g

2
∗ respectively.

Let us now examine d = 6 operators involving SM fermions, considering a single

family to begin with. Operators of the first class involving the up-type quark are

Oyu = yu|H|2Q̄LH̃uR ,
OuR = (iH†

↔
DµH)(ūRγ

µuR) ,

OqL = (iH†
↔
DµH)(Q̄Lγ

µQL) ,

O(3) q
L = (iH†σa

↔
DµH)(Q̄Lγ

µσaQL) , (6.14)

where H̃ = iσ2H
∗, and in operators ∝ Q̄LuR we include a Yukawa coupling yu (mu =

yuv/
√

2) as an order parameter of the chirality-flip. We also understand, here and in

the following, that when needed the Hermitian conjugate of a given operator is included

in the analysis. In the first class we have, in addition, the four-fermion operators:

OqLL = (Q̄Lγ
µQL)(Q̄Lγ

µQL) , O(8) q
LL = (Q̄Lγ

µTAQL)(Q̄Lγ
µTAQL) ,

OuLR = (Q̄Lγ
µQL)(ūRγ

µuR) , O(8)u
LR = (Q̄Lγ

µTAQL)(ūRγ
µTAuR) ,

OuRR = (ūRγ
µuR)(ūRγ

µuR) , (6.15)

where TA are the SU(3)c generators. Other four-fermion operators are linear combina-

tions of the ones appearing in Eq. (6.15); see for example Refs. [101, 103]. Finally, the

one-loop (dipole) operators involving the up-type quark are

OuDB = yuQ̄Lσ
µνuR H̃g

′Bµν ,

OuDW = yuQ̄Lσ
µνuR σ

aH̃gW a
µν ,

OuDG = yuQ̄Lσ
µνTAuR H̃gsG

A
µν . (6.16)

Similar operators to those given above can be written for the down-type quarks and

leptons. For one family of fermions these are given in Tab. 6.2. Among them, there is a

new type of operators, involving two different types of fermions, which, as we will see,

5For CP-odd operators the identities are 4OHB̃ +OBB̃ +OWB̃ = 0 and 4OHW̃ +OWW̃ +OWB̃ = 0.
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can have an important impact on Higgs physics at the one-loop level. These are

OudR = y†uyd(iH̃
† ↔DµH)(ūRγ

µdR) , (6.17)

and

Oyuyd = yuyd(Q̄
r
LuR)εrs(Q̄

s
LdR) , O(8)

yuyd
= yuyd(Q̄

r
LT

AuR)εrs(Q̄
s
LT

AdR) ,

Oyuye = yuye(Q̄
r
LuR)εrs(L̄

s
LeR) , O′yuye = yuye(Q̄

r α
L eR)εrs(L̄

s
Lu

α
R) ,

Oyeyd = yey
†
d(L̄LeR)(d̄RQL) , (6.18)

where ε = iσ2 and α labels color (only shown when contracted outside parentheses).

These operators are in principle of the first type. Nevertheless in the four-fermion

operators of Eq. (6.18) we have incorporated a product of Yukawa couplings since they

involve two chirality-flips, while in Eq. (6.17) we have also included Yukawa couplings as

it is the case in theories with a flavour symmetry, as discussed below. These operators

are then only suppressed by 1/Λ2 as second-class operators.

There is some redundancy in the operators given above, as it is clear that some of

them can be eliminated by field redefinitions (see Appendix A) or using the equations

of motion (EoM). For example, the operator Or can be eliminated by field redefinitions:

crOr ↔ cr

[
1

2
(Oyu +Oyd +Oye + h.c.)−OH + 2O6

]
. (6.19)

Also, we could eliminate all 5 operators of Eq. (6.5) by using the EoM for the gauge

fields:

DνW a
µν = igH†

σa

2

↔
DµH + g

∑

f

f̄L
σa

2
γµfL ,

∂νBµν = ig′YHH†
↔
DµH + g′

∑

f

[
Y f
L f̄LγµfL + Y f

R f̄RγµfR

]
,

DνGAµν = gs
∑

q

q̄ TAγµq , (6.20)

where Y f
L,R are the fermion hypercharges and YH the Higgs hypercharge. In particular,

we could trade OB and OW with other operators:

cBOB ↔ cB
g′ 2

g2∗


−1

2
OT +

1

2

∑

f

(
Y f
LO

f
L + Y f

RO
f
R

)

 , (6.21)

cWOW ↔ cW
g2

g2∗


−3

2
OH + 2O6 +

1

2
(Oyu +Oyd +Oye + h.c.) +

1

4

∑

f

O(3) f
L


 ,
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where, in the last expression, we have eliminated Or using Eq. (6.19).

For one family of fermions the set of operators that we use is collected in Tabs. 6.1

and 6.2. We keep all operators of Eqs. (6.4)-(6.11), since they are the relevant ones for

a well-motivated class of BSM scenarios such as universal theories, with the exception

of Or, that we eliminate of our basis using Eq. (6.19). In Tabs. 6.1 and 6.2 there are

58 operators; adding the 6 bosonic CP-odd ones in Eqs. (6.9)-(6.11) leads to a total of

64 operators. We still have 5 redundant operators that once eliminated leave a total

of 59 independent operators, in agreement with Ref. [101]. We leave free the choice of

which 5 operators to eliminate: e.g., the operators of Eq. (6.5) could be eliminated by

using Eq. (6.20) or, alternatively, we could trade 5 operators that contain fermions by

the operators in Eq. (6.5). We will use later this freedom in different ways depending on

the physics process studied. Other redundant operators are discussed in Appendix A.

Extending the basis to 3 families increases considerably the number of operators. We

can reduce it by imposing flavor symmetries, which are also needed to avoid tight con-

straints on flavor-violating processes. For example, we can require the BSM sector to be

invariant under the flavor symmetry U(3)QL⊗U(3)dR⊗U(3)uR⊗U(3)LL⊗U(3)eR , under

which the corresponding 3 families transform as triplets, and the Yukawas become 3× 3

matrices transforming as yd ∈ (3, 3̄,0,0,0), yu ∈ (3,0, 3̄,0,0) and ye ∈ (0,0,0,3, 3̄)

under the non-Abelian part of the flavor group. One can also assume that the Yukawas

are the only source of CP violation. This assumption goes under the name of Minimal

Flavor Violation (MFV) [19]. In this case the list of operators given in Table 2 can

be easily generalized to include 3 families. For example, for operators involving two

fermions, we have

(L̄Lγ
µLL) →

[
δij +O(yey

†
e/g

2
∗)
]

(L̄iLγ
µLjL) ,

yeL̄LeR → yije

[
1 +O(y†eye/g

2
∗)
]
L̄iLe

j
R , (6.22)

(i, j are family indices) and similarly for other fermion species. For 4-fermion operators,

we have several possibilities to form singlets under the flavor group. For the leptons we

find four independent operators:

OlLL = (L̄iLγ
µLiL)(L̄jLγµL

j
L) ,

O(3) l
LL = (L̄iLγ

µσaLiL)(L̄jLγµσ
aLjL) ,

OeLR = (L̄iLγ
µLiL)(ējRγµe

j
R) ,

OeRR = (ēiRγ
µeiR)(ējRγµe

j
R) , (6.23)

where we are neglecting terms of O(y2
e/g

2
∗), while the independent set of 4-quark opera-

tors can be found in the Appendix of Ref. [104]. The MFV assumption that the Yukawas
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=
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(ū
R
γ
µ
u
R

)(
ū
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(ē
R
γ
µ
e R

)(
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O
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O
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H̃
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µ
ν

O
d D
B

=
y d
Q̄
L
σ
µ
ν
d
R
H
g
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µ
ν

O
e D
B

=
y e
L̄
L
σ
µ
ν
e R
H
g
′ B

µ
ν

O
u D
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=
y u
Q̄
L
σ
µ
ν
u
R
σ
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H̃
g
W

a µ
ν

O
d D
W

=
y d
Q̄
L
σ
µ
ν
d
R
σ
a
H
g
W

a µ
ν

O
e D
W

=
y e
L̄
L
σ
µ
ν
e R
σ
a
H
g
W

a µ
ν

O
u D
G

=
y u
Q̄
L
σ
µ
ν
T
A
u
R
H̃
g s
G
A µ
ν

O
d D
G

=
y d
Q̄
L
σ
µ
ν
T
A
d
R
H
g s
G
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ν

Table 6.2: 44 operators made of one-family of SM fermions. In the first column
there are operators made of the up-type quark and other fermions; in the second column
there are operators made only of the down-type quark and leptons; the third column lists
operators made only of leptons. The operators are grouped in 3 different rows (separated
with a solid line) corresponding to the 3 classes of operators defined in Eq. (6.2). Dashed

lines separate operators of different structure within a given class.
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are the only source of CP violation implies that the Wilson coefficients are real. For the

top quark, having a Yukawa coupling of order one, departures from flavor-universality

could be important.

It is useful, in order to understand what operators mix under the RGE, to derive the

transformation of the coefficients (or equivalently, of the operators) under the global

custodial SU(2)L ⊗ SU(2)R symmetry and the parity PLR that interchanges L↔ R. A

detailed analysis is given in Appendix C. In Tab. 6.3 we present the quantum numbers

of the coefficients of the tree-level operators involving the Higgs.

We emphasize again that the above classification is useful even when one is not working

under the minimally-coupled assumption of Ref. [99]. When studying the RGEs of

these operators, we will find that, at leading order, current-current operators do not

affect the RG running of one-loop suppressed operators (irrespective of their UV origin).

Furthermore, the above classification can also be useful to parametrize the effects of

strongly-coupled models. In particular, if the Higgs is part of the composite meson

states, taking gH ∼ 4π gives the correct power counting for strongly-coupled theories

with no small parameters. One finds in this case that operators of the first class are

the most relevant, while operators of the second and third classes have the same 1/Λ2

suppression. Also the basis is well suited for characterizing holographic descriptions of

strongly-coupled models [99]. In this case gH ∼ 4π/
√
N , where N plays the role of the

number of colors of the strong-interaction, and then operators of the first and second

classes are less suppressed than operators of the third class.

Spurion SU(2)L ⊗ SU(2)R PLR

[O] ≤ 4
yf 2R

g′ 3R + 1

[O] = 6

cT (3R ⊗ 3R)s

cH , c6 1 +

cB + cW 1 +

cB − cW 1 −
cyf 1

cfR 3R

cfL 3R

c
(3) f
L 1

cudR 1

Table 6.3: Quantum numbers under the custodial SU(2)L ⊗ SU(2)R and left-right
parity PLR of the SM couplings and coefficients of the tree-level operators involving
Higgs fields. We only show the PLR-parities of the coefficients with a well-defined

transformation, see Apendix C.
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6.2 Higgs physics

Let us now describe the effects of the d = 6 operators on Higgs physics. We will only

present the modifications of the Higgs couplings important for single Higgs production

and decay, working under the assumption of MFV, allowing however for CP-violating

bosonic operators. We split the relevant part of the Lagrangian in two parts,

Lh = L(0)
h + L(1)

h . (6.24)

In L(0)
h we keep the SM couplings and the effects of the current-current operators of

Tabs. 6.1 and 6.2, while L(1)
h has the effects of the loop operators. We can remove the

momentum dependence from the Higgs couplings in L(0)
h by using the EoM, so that

we end up with Higgs couplings at zero momentum. After doing that, we have, in the

canonical basis for the Higgs field h,

L(0)
h = ghff h(f̄LfR + h.c.) + ghV V hV

µVµ + ghZfLfL hZµf̄Lγ
µfL

+ ghZfRfR hZµf̄Rγ
µfR + ghWfLf

′
L
hWµf̄Lγ

µf ′L , (6.25)

where a sum over fermions is understood and V = W,Z. The couplings read 6

ghff = gSM
hff

[
1−

(cH
2

+ cyf

)
ξ +

δGF
2GF

]
,

ghWW = gSM
hWW

[
1−

(
cH −

g2

g2∗
cW

)
ξ

2
+
δGF
2GF

+ 2
δMW

MW

]
,

ghZZ = gSM
hZZ

[
1−

(
cH −

g2

g2∗
cZ

)
ξ

2
− T +

δGF
2GF

]
,

ghWfLf
′
L

=
1

2
√

2 v

g3

g2∗
cW ξ +

2

v
δgfLW ,

ghZfLfL =
1

2v cos θW

g3

g2∗

(
T 3
LcZ −QfcB tan2 θW

)
ξ +

2

v
δgfLZ ,

ghZfRfR = − tan2 θW
2v cos θW

g3

g2∗
QfcB ξ +

2

v
δgfRZ . (6.26)

Here the SM couplings must be expressed as a function of the input parameters α =

e2/(4π), the Fermi constant GF and the physical mh, MZ and fermion masses. In these

equations, θW is the weak mixing angle, T 3
L = ±1/2 stands for the weak isospin values of

up and down components of SU(2)L fermion doublets, Qf is the fermion electric charge.

We have defined

ξ ≡ g2
∗v

2

Λ2
, (6.27)

6A coupling of W±µ to the right-handed current f̄Rγ
µf ′R is generated from the operator OudR in

Eq. (6.17), but we do not include it as it is expected to be suppressed by two Yukawa couplings (due to
the MFV assumption) and hence to be small.
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with v ' 246 GeV, and

cZ = cW + tan2 θW cB . (6.28)

In the couplings of Eq. (6.26), we have introduced

δGF
GF

= 2
[
c

(3) l
LL − c

(3) l
L

]
ξ , (6.29)

δMW

MW
=

1

2(1− 2 sin2 θW )

[
cos2 θW T − 2 sin2 θW S + sin2 θW

δGF
GF

]
, (6.30)

and

δgfLW =
g√
2
c

(3) f
L ξ ,

δgfLZ =
g

2 cos θW
(2T 3

Lc
(3) f
L − cfL) ξ,

δgfRZ = − g

2 cos θW
cfR ξ . (6.31)

Finally, we have made use of the precision electroweak parameters [105, 106]

S = (cW + cB)
M2
W

Λ2
, T = cT ξ . (6.32)

As we have stressed in the previous Section, not all the operators appearing in the Higgs

couplings of Eq. (6.26) are independent. Once one has decided which are the redundant

operators that are not in the basis, one should simply put equal to zero the corresponding

operator coefficients.

The second term in the Lagrangian Eq. (6.24) necessarily contains field derivatives.

It reads

L(1)
h = g∂hWW (W+µW−µν∂

νh+ h.c.) + g∂hZZ Z
µZµν∂

νh + g′hZZ hZ
µνZµν (6.33)

+ ghAA hA
µνAµν + g∂hAZ Z

µAµν∂
νh + ghAZ hA

µνZµν + ghGG hG
AµνGAµν ,

where we have defined Vµν = ∂µVν − ∂νVµ, for V = W±, Z,A. The couplings are given

by

g∂hWW = − g2v

2Λ2
κHW ,

g∂hZZ = − g2v

2Λ2
(κHW + κHB tan2 θW ) ,

ghAA =
e2v

Λ2
κBB =

g′hZZ
tan2 θW

= − ghAZ
2 tan θW

,

g∂hAZ = − g2v

2Λ2
tan θW (κHW − κHB) ,

ghGG =
g2
sv

Λ2
κGG . (6.34)
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The contributions from the CP-violating bosonic operators can be easily obtained from

Eq. (6.33) by replacing one of the field strengths Fµν in the operators by F̃µν . Only

the contributions from the dipole operators (third box of Tab. 6.2) have been neglected

since they are assumed to be proportional to Yukawa couplings.

In the list of modified Higgs couplings (6.26), the tree-level operator O6 does not play

any role. The simplest modified coupling containing this operator would be the triple

Higgs vertex

δL(0)
h = gSM

hhh

[
1−

(
c6 +

3cH
2

)
ξ +

δGF
2GF

]
h3 , (6.35)

where gSM
hhh is the SM value for the h3 coupling. Experimental access to this coupling is

not yet possible.

From the couplings in Eqs. (6.25) and (6.33) it is easy to derive the modifications of

the main Higgs partial-widths due to d = 6 operators [99, 107, 108].7 The coefficients

c
(3) f
L , cfL, c

f
R can also modify the cross-section of hff̄ production, giving contributions

that grow with the energy. A particularly interesting case is pp → qth (q being a light

quark) that is dominated by the subprocess WLb → th. At large energies this grows

with the energy as

|A(WLb→ th)|2 '
(

4g2
∗c

(3) q3
L

Λ2

)2

s(s+ t) . (6.36)

The extraction of new physics through this process has been studied in Ref. [109].

6.3 Experimental constraints on the Wilson coefficients

As we saw in the previous Section, many d = 6 operators can directly affect the Higgs

couplings. Some of them only affect Higgs physics (at tree-level). Their corresponding

coefficients are

{cH , c6, cyf , κBB, κGG, κ̂WW , κBB̃, κGG̃, κ̂WW̃
} . (6.37)

The reason for this is clear in the case of cH and c6 as these operators contain exclusively

Higgs fields; and in the case of cyf , κBB and κGG because, when the Higgs is substituted

by its vacuum expectation value (VEV), these operators simply lead to an innocuous

renormalisation of SM parameters. The coefficient κ̂WW corresponds to the direction in

7For loop-suppressed partial-widths, such as h → γγ, we remind the reader that d = 6 operators
can have an effect either directly or through modifications of the SM couplings that change the SM loop
contribution to that particular decay [99].
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parameter space given by 8

κHB = −κHW = 4κBB = cW = −cB ≡ 4κ̂WW , (6.38)

and the reason why this direction is only constrained by Higgs physics is subtle in our

basis. The easiest way to see it is to go from our basis, that contains the subset

B1 = {OW ,OB,OHW ,OHB,OBB} , (6.39)

to the basis containing the subset B3 defined in Ref. [5]:

B3 = {OW ,OB,OWW ,OWB,OBB} . (6.40)

One can go from one to another using (7.7). Now, in the basis containing OWW it is

clear that its coefficient cannot be bounded by any non-Higgs SM processes, for exactly

the same reasons as κBB. We can now use Eq. (7.7) to get the expression of OWW in

terms of the operators in B1,

OWW = 4(OW −OB)− 4(OHW −OHB) +OBB , (6.41)

which leads to the direction given in Eq. (6.38). Similarly, for the CP-odd operators,

κ̂
WW̃

corresponds to the direction:

κ
HB̃

= −κ
HW̃

= 4κ
BB̃
≡ 4κ̂

WW̃
. (6.42)

Although the coefficients cH , c6 and cyf have no severe constraints from Higgs physics yet

[111], the coefficients κBB and the difference κHW−κHB are subject to strong constraints

from h → γγ and h → Zγ respectively (as these decays are one-loop suppressed in the

SM). These give at 95%CL [111]

− 0.0013 .
M2
W

Λ2
κBB . 0.0018 , −0.016 .

M2
W

Λ2
(κHW − κHB) . 0.009 . (6.43)

Notice that κHW − κHB is odd under PLR [Eq. (C.4)] and could be suppressed with

respect to the sum κHW + κHB if the BSM sector respects this parity. Similarly, the

coefficient κGG enters in the production GG→ h and gets the bound [111]:

M2
W

Λ2
|κGG| . 0.004 . (6.44)

8In Ref. [110] these were called blind directions, combinations of operators which a certain group of
experiments cannot bound. In the case of κ̂WW that group is non-Higgs experiments.
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The coefficients of the CP-odd operators enter quadratically in Γ(h → γγ) and Γ(h →
Zγ), and therefore their effects are suppressed with respect to CP-even ones.

Apart from the ”Higgs-only” coefficients of Eq. (6.37), the rest of the coefficients of

d = 6 operators that enter in the Lagrangian of Eq. (6.25) and Eq. (6.33), relevant for

single Higgs physics, can in principle be constrained by (non-Higgs) SM processes. In

the following we present the main experimental constraints on these Wilson coefficients.

We also discuss limits on other Wilson coefficients that, although do not affect Higgs

physics at tree-level, could do it at the one-loop level. The details of this study with

a full dedicated quantitative analysis is done in Ref. [108]. In what follows we assume

MFV (unless explicitly stated) and CP-invariance.

6.3.1 Universal theories

We start considering universal theories, leaving the generalization for later. The new

physics effects of these theories are captured by the operators listed in Tab. 6.1. Devi-

ations in the W± and Z0 propagators can be parametrized by four quantities, S, T,W

and Y [106]. The contributions from d = 6 operators to S and T have been written in

Eq. (6.32); the corresponding equations for W and Y read

W = c2W
M2
W

Λ2
, Y = c2B

M2
W

Λ2
. (6.45)

LEP1, LEP2 (e+e− → l+l−) and TeVatron allow to constrain independently each of

these four quantities, all of them at the per-mille level [106].9 We saw in (6.32) that

S depends only on the combination cW + cB. The gauge-boson part of the orthogonal

combination, OW −OB, contains at least three gauge bosons

(OW −OB)
∣∣
〈H〉 = O(V 3) , (6.46)

and thus it is a blind direction for LEP1 experiments. To constrain this direction, we

have to consider the effect of cW,B on triple gauge-boson vertices, which can be cast in

the form

δL3V = ig cos θW

[
δgZ1 Z

µ
(
W− νW+

µν −W+ νW−µν
)

+ δκZ Z
µνW−µ W

+
ν (6.47)

+
λZ
M2
W

ZµνW−ρν W+
ρµ

]
+ ig sin θW

[
δκγ A

µνW−µ W
+
ν +

λγ
M2
W

AµνW−ρν W+
ρµ

]
,

9LHC data is also useful to constrain W , Y and c2G, which affect quark cross-sections at high energies
[104].
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where again we have defined Vµν = ∂µVν − ∂νVµ for V = W±, Z,A. The contributions

from d = 6 operators to these couplings are given by

δgZ1 =
M2
Z

Λ2
(cW + κHW ) ,

δκγ =
M2
W

Λ2
(κHW + κHB) ,

δκZ = δgZ1 − tan2 θW δκγ ,

λZ = λγ =
M2
W

Λ2
κ3W , (6.48)

where we do not include a contribution from c2W since it is constrained to be small,

as we have seen before. The third relation, as well as the identity λZ = λγ , are a

consequence of limiting the analysis to d = 6 operators [100]. The best current limits

on triple gauge-boson vertices still come from e+e− →W+W− at LEP2 [112], although

LHC results are almost as good and will be better in the near future [113–115]. Leaving

aside the contributions from κ3W , that we expect to be small in most theories in which

the SM gauge bosons are elementary above Λ, we can use the two-parameter fit from

LEP2 [112] which at 95%CL reads

− 0.046 6 δgZ1 6 0.050 ,

−0.11 6 δκγ 6 0.084 . (6.49)

These are a factor ∼ 10 weaker than the constraints on the coefficients S, T , W and

Y from LEP1 (for this reason we can neglect their contributions to e+e− → W+W−).

As expected, the two constraints in Eq. (6.49) are orthogonal in parameter space to the

direction κ̂WW of Eq. (6.38), as can be seen using Eq. (6.48). For this reason, to obtain

independent bounds on the 4 parameters cW , cB, κHB and κHW , we need the constraint

Eq. (6.43) combined with Eq. (6.49) and the bound on S. These bounds are at the

percent level. In the particular case of κi � ci, as expected in weakly-coupled theories,

we obtain the bound

− 0.046 .
M2
Z

Λ2
cW . 0.050 . (6.50)

As we said, LHC tests of triple gauge-boson vertices are becoming comparable to those

from LEP2, and it is foreseen that LHC will surpass LEP2 in these type of measurements

[113–115]. It follows that an important implication of our study is that the LHC will

have a direct impact on the improvement of the limits on cW + κHW , κHW + κHB and

κ3W . We will see in the next Subsection that this conclusion is also valid in non-universal

theories.
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6.3.2 Non-universal theories

Let us now discuss BSM models without the universal assumption, considering then all

operators of the basis. We will follow a different strategy than in the previous Subsection.

Let us first look at electroweak leptonic physics for which the experimental constraints

are expected to be the strongest ones. Since we assume MFV, dipole operators (third

box of Tab. 6.2) give corrections to SM processes proportional to lepton masses and

can then be neglected. We use the redundancy in our set of operators to eliminate, by

using Eq. (7.42), the 5 operators O2B,2W,2G, O(3) l
L and OlL. Taking α, MZ and GF as

input parameters, the relevant operators for the leptonic data are the 4 operators OT ,

OW , OB, OeR and the four-lepton operators of Eq. (6.23). LEP1 data and Tevatron

afford 4 well-measured experimental quantities: The charged-leptonic width Γ(Z →
l+l−), the leptonic left-right asymmetry AlLR, the Z-width into neutrinos Γ(Z → νν̄) =

Γtotal
Z − Γvisible

Z and MW . These allow us to place bounds on the 4 quantities {cT , cW +

cB, c
e
R, δGF /GF } [where δGF /GF is given in Eq. (6.29)] at almost the same level as

for universal theories. We again need the LEP2 constraint of Eq. (6.49) from e+e− →
W+W− to bound the difference cW − cB [see Eq. (6.46)]. The only remaining operators

are four-lepton interactions but they can also be highly constrained from e+e− → l+l−

at LEP2.

Having these constraints in mind, we can now move to the quark sector. Higgs-fermion

operators, as those in Eq. (7.4), give contributions to the gauge-boson couplings to quarks

that make them depart from the leptonic ones by the amounts δgqLW , δg
qL
Z and δgqRZ given

in Eq. (6.31). Experiments put severe bounds on these deviations. For example, we

have limits at the per-mille level on deviations from lepton-quark universality from β-

decays and semileptonic K-decays [116]. This implies that the coefficient c
(3) q
L ξ can be

constrained at this level.10 For cqL, c
u
R and cdR the main constraints come from LEP1

measurements at the Z-pole. These can put bounds on deviations of the Z couplings to

quarks, δg
qL,R
Z , and on cqL and cu,dR .

As we saw, operators made of top quarks can depart from the MFV assumption due

to the large top Yukawa coupling. If this is the case, we can still bound (cq3L + c
(3) q3
L )ξ

from the measurement of the ZbLb̄L coupling at LEP1 which also gives a per-mille

bound. Interestingly, a PLR symmetry can be imposed in the BSM sector such that

cq3L = − c(3) q3
L [see Eq. (C.10)], allowing for large deviations on cq3L − c

(3) q3
L . Recent

LHC measurements of the Wtb coupling [118] put some bounds on c
(3) q3
L but they are

not very strong. Also ctR has practically no bound due to the large uncertainty in the

determination of the ZtRt̄R coupling [119, 120]. Bounds on the Wilson coefficient ctbR,

10The operatorO(3) ql
LL = (Q̄Lγµσ

aQL)(L̄Lγ
µσaLL) also gives contributions to β-decays andK-decays,

but this can be independently constrained by recent LHC data [117].
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see Eq. (6.17), arise from b → sγ and read −0.001 . ctbRM
2
W /Λ

2 . 0.006 [121]. These

bounds will be improved in the future by the LHC.

Four-fermion operators involving quarks, as those in the first box of Tab. 6.2, can

also be constrained by recent LHC data [104], while the coefficients of the operators of

the second box of Tab. 6.2 have no severe experimental constraints due to their Yukawa

suppression. However, they can affect Higgs physics through operator mixing, as we will

see in the next Section. Finally, bounds on dipole operators can be found, for example,

in Ref. [107].

We conclude that, concerning the strength of experimental constraints, we can dis-

tinguish the following sets of d = 6 operators:

1. First, we have those which can only affect Higgs physics. We have 8+3 operators of

this type (CP-even plus CP-odd respectively) for one family, with real coefficients

given in Eq. (6.37) 11. As shown in Sec. 6.2, they can independently modify

the Higgs decay-width to fermions, photons, gluons and Zγ, apart from a global

rescaling of all Higgs amplitudes due to cH .

2. A second set of operators are those whose coefficients are severely restricted by elec-

troweak precision data, as explained above. Eliminating, by the EoM of Eq. (7.42),

O2B,O2W ,O2G and OlL,O(3) l
L , these are cW +cB and cT that affect the W/Z prop-

agator, and ceR, c
q
L, c

u,d
R , c

(3) q
L that affect V ff̄ vertices.

3. In a third set, we have the operator coefficients that can affect the ZWW/γWW

vertices and are, at present, constrained at the few per-cent level. These are the

combinations κHB + κHW and cW + κHW (and also c3W if we include λZ in the

analysis).

We finally would like to mention that our result is in contradiction with Ref. [122]

that obtained a smaller number of parameters to characterize Higgs physics and triple

gauge-boson vertices. The origin of this discrepancy is due to the following. In our basis

it is clear that physics at LEP1 is not sensitive to the blind direction cW = −cB, since

only the combination cW + cB enters in the S parameter. This blind direction, however,

becomes more complicated when one goes to other bases, such as that of Ref. [101], in

which OW and OB are eliminated [by using Eq. (7.42)] in favor of operators made of SM

fermions. In such bases there is the risk of overestimating the number of independent

experimental constraints on the Wilson coefficients.

11If we relax the MFV assumption that the cyf are real, in addition to the 3 operators Re(cyf )(Oyf +

O†yf ) we should also consider the 3 CP-odd operators Im(cyf )(Oyf −O
†
yf ).
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6.4 Summary

As the measurements of the Higgs properties improve, it will be important to understand

their implications for BSM models. In this Chapter we have adopted the framework of

effective Lagrangians as a tool to study the effects of d = 6 operators in Higgs physics.

As a first step, we have discussed the choice of operator basis. Our basis has been

defined following Ref. [6, 99] that distinguished two classes of operators: tree-level (or

current-current) operators, and one-loop operators. This choice can be important when

calculating one-loop operator mixing, since most of the tree-level operators do not mix

with one-loop operators under RG evolution, see the next Chapters 7-10. Another

important property of our basis is that it contains a subset of 5 CP-even operators made

of Higgs and gauge field-strengths, that in our case are OW,B OHW,HB and OBB, (leaving

aside OGG). We have found that it is important to keep these 5 operators to make the

connection with experiments more transparent [these subset could also be written with

OWB,WW by using the identities of Eqs. (7.6) and (7.7)]. Bases, such as Ref. [101]

and Ref. [122], that eliminate two of these operators in favor of operators made of SM

fermions, as it can be done by using the EoM, have dangerous blind directions for LEP1

experiments, which make the contact with experiments more difficult.

We have calculated the modifications that the operators of the effective Lagrangian

induce in the Higgs couplings relevant for the main decays and production mechanisms.

It has been shown that these operators can be divided in two subsets. There are 11

operators (for one family) with coefficients given in Eq. (6.37), that can only affect Higgs

physics and no other SM processes at tree-level. The number 11 can be deduced from

counting the number of independent operators one can write as |H|2O4 with O4 a d = 4

operator formed with SM fields. The second subset, formed by the rest of operators,

enter in other SM processes and therefore can be constrained by non-Higgs experiments.

Among the latter, considering only the CP-even ones, we have found that the least

constrained correspond to the two combinations of Wilson coefficients appearing in the

measurements of the ZWW/γWW coupling, Eq. (6.48), that LEP2 has only constrained

at the few per-cent level. LHC will probe these vertices with better accuracy, so that it

will be able to improve these constraints or reveal some BSM deviation.
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7. SM Quantum EFT:

h→ γ + γ/Z v.s. S-parameter

Rather than embarking in messy calculations of the one-loop anomalous dimension ma-

trix involving all the SM dimension-six operators, we would like to discuss a simpler cal-

culation that illustrates a number of points. The purpose of this Chapter is to compute

the renormalization group equations (RGEs) at the one-loop level of the dimension-six

operators responsible for h → γ + γ/Z. Our main interest is to look for log-enhanced

contributions coming from operator mixing. Particularly interesting are those contribu-

tions that could arise from mixings with operators induced at tree-level by the theory at

high-energies. These can potentially give corrections to the hγγ and hγZ couplings of

order ∼ g2
Hv

2 log(Λ/mh)/(16π2Λ2) where gH is the coupling of the Higgs to the heavy

sector and v is the Fermi scale. These contributions would be the leading ones to the

decay h→ γ + γ/Z since this is loop-supressed in the SM.

Ref. [123] argued that this type of contributions could in fact be present for a general

class of models as, for example, those in Ref. [99], although the result was based on a

calculation that included only a partial list of operators and not the complete basis set.

We show however that such corrections are not present. The right choice of operator

basis helps in simplifying the calculation of the anomalous dimension matrix as well as

its physical interpretation. We work in a basis where the dimension-six operators are

classified according to the expected size of their Wilson coefficients. We mainly consider

two groups: those operators that can be written as scalar or vector current-current

operators (and could therefore arise at the tree-level by the interchange of heavy fields),

and the rest, expected to be induced at the one-loop level. By working in this basis, we

show that none of the current-current operators affects the running of any loop operator.

This in turn implies the absence of a log-enhancement effect. This is already known to

happen in other situations. For example, the magnetic moment operator responsible for

b→ sγ does not receive log-contributions from certain current-current quark operators

at the one-loop level [124].
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84 Part II – EFT of the physics at the EW scale

We also show how to reconcile our conclusion with the results of Ref. [123] by com-

pleting the calculation done in the basis used in that analysis. Furthermore, we use the

results of Ref. [123] to calculate the complete leading-log corrections to the operators

responsible for h→ γγ and h→ γZ. We find that only one-loop operators contribute to

these decays, and therefore these effects are not expected to be very large. Finally, we

also extend the calculation to include mixing with fermion dipole-moment operators.

Dimension-six operator basis relevant for h→ γ + γ/Z

We start considering only operators made of SM bosons. Let us summarise briefly

the basis introduced in Chapter. 6 for the ease of reading the present Chapter. The

operators made of bosons can be induced from integrating out heavy states in universal

theories, those whose fields only couple to the bosonic sector of the SM (a generalisation

including SM fermions will be given later). We can broadly organise the dimension-six

operators in three classes of operators. The first two classes consist of operators that can

in principle be generated at tree-level when integrating out heavy states, with spin≤ 1,

of a weakly-coupled renormalizable BSM theory. The operators of the first class are

those that involve extra powers of Higgs fields, and are expected to be suppressed by

g2
H/Λ

2. The operators of the second class involve extra (covariant) derivatives or gauge-

field strengths and are generically suppressed by 1/Λ2. Finally, in the third class we

consider operators that, in weakly-coupled renormalizable theories, can only be induced

at the loop level. They are summarised in Tab. 6.1. We repeat them here in Tab. 7.1.

OH = 1
2(∂µ|H|2)2 OT = 1

2(H†
↔
DµH)2 O6 = λ|H|6

OW = ig
2 (H†σa

↔
DµH)DνW a

µν OB = ig′

2 (H†
↔
DµH)∂νBµν

O2W = −1
2(DµW a

µν)2 O2B = −1
2(∂µBµν)2 O2G = −1

2(DµGAµν)2

OBB = g′2|H|2BµνBµν OGG = g2
s |H|2GAµνGAµν

OHW = ig(DµH)†σa(DνH)W a
µν OHB = ig′(DµH)†(DνH)Bµν

O3W = 1
3!gεabcW

a ν
µ W b

νρW
c ρµ O3G = 1

3!gsfABCG
Aν
µ GBνρG

C ρµ

Table 7.1: The operators are grouped in 3 different groups, separated with a solid line.
In addition, there are the 6 CP-odd operators given in Eqs. (6.9)-(6.11).
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7.1 Non-renormalization of h→ γ + γ/Z

from JJ-operators

The operator basis introduced in the previous Section is particularly well-suited to de-

scribe new-physics contributions to h → γγ, which come only from two operators: the

CP-even OBB and the CP-odd O
BB̃

. On the other hand, h→ γZ comes (on-shell) from

OBB, OHB, OHW and their CP-odd counterparts. The relevant Lagrangian terms for

such decays are

δLγγ =
e2

2Λ2

[
κγγ h

2FµνF
µν + κγγ̃ h

2FµνF̃
µν
]
,

δLγZ =
eG

2Λ2

[
κγZ h

2FµνZ
µν + κ

γZ̃
h2FµνZ̃

µν
]
, (7.1)

where e = gg′/G and G2 = g2 + g′2. The photon field, Aµ = cwBµ + swW
3
µ , has

field-strength Fµν , while Zµ = cwW
3
µ − swBµ has field-strength Zµν , where we use

sw ≡ sin θw = g′/G and cw ≡ cos θw = g/G. We have

κγγ = κBB , κγZ =
1

4
(κHB − κHW )− 2s2

wκBB ,

κγγ̃ = κ
BB̃

, κ
γZ̃

=
1

4
(κ
HB̃
− κ

HW̃
)− 2s2

wκBB̃ . (7.2)

The Wilson coefficients of these dimension-six operators are generated at the scale Λ,

at which the heavy new physics is integrated out, and they should be renormalized

down to the Higgs mass, at which they are measured in Higgs decays. Let us focus

for simplicity on κγγ , as similar considerations will be applicable to κγγ̃ , κγZ , κγZ̃ . At

one-loop leading-log order one has, running from Λ to the Higgs mass mh:

κγγ(mh) = κγγ(Λ)− γγγ log
Λ

mh
. (7.3)

Here, γγγ = dκγγ/d logµ, with µ the energy scale, is the one-loop anomalous dimension

for κγγ . In principle, γγγ can depend on the Wilson coefficients of any dimension-six

operator in Eq. (6.2). A particularly interesting case would be if the RGEs were to mix

the tree-level operators into the RG evolution of one-loop suppressed operators, such as

OBB. In that case we would expect γγγ ∼ g2
H/(16π2) from mixings with the operators

of Eq. (6.4), or γγγ ∼ g2/(16π2) from mixings with (6.5). Such loop effect could give a

sizeable contribution to κγγ(mh), logarithmically enhanced by a factor log Λ/mh. The

initial value κγγ(Λ), expected to be one-loop suppressed, would then be subleading.

Remarkably, and this is our main result, there is no mixing from tree-level operators

(6.4)-(6.5) to one-loop suppressed operators (6.6)-(6.11), at least at the one-loop level.

This can be easily shown for the renormalization of κγγ . The argument goes as follows.
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Let us first consider the effects of the first-class operators, Eq. (6.4). Since these op-

erators have four or more H, their contribution to the renormalization of κγγ can only

arise from a loop of the electrically-charged G± with at least one photon attached to the

loop. However,

• O6 has too many Higgs legs to contribute.

• OH is simply ∂µ(h2 +G2
0 + 2G+G−)∂µ(h2 +G2

0 + 2G+G−)/8 and this momentum

structure implies that a G± loop can only give a contribution ∝ ∂µh2, which is not

the Higgs momentum structure of Eq. (7.1).

• OT does not contain a vertex h2G+G−.

• Or can be traded with Oy, which clearly can only give one-loop contributions to

operators ∝ |H|2H, so it only contributes to the RGE of itself and O6.

We conclude that there is no contribution from these operators to the RGE of κγγ . To

generalise the proof that no operator in (6.4) contributes to the one-loop anomalous-

dimension of any operator in (6.6)-(6.8) 1, we have calculated explicitly the one-loop

operator-mixing. We find that the only operators involving two Higgs and gauge bosons

that can be affected by (6.4) are the tree-level operators (6.5). The result is given in

Sec. 4.

For the operators of Eq. (6.5), proving the absence of one-loop contributions to the

anomalous dimension of (6.6)-(6.8) is even simpler. By means of field redefinitions, as

those given in the Appendix A, or, equivalently, by using the equations of motion 2, we

can trade the operators (6.5) with operators of Eq. (6.4), four-fermion operators and

operators of the type

OfR = (iH†
↔
DµH)(f̄Rγ

µfR),

OfL = (iH†
↔
DµH)(f̄Lγ

µfL),

Of (3)
L = (iH†σa

↔
DµH)(f̄Lγ

µσafL) . (7.4)

Now, four-fermion operators contain too many fermion legs to contribute to operators

made only of SM bosons. Concerning the operators of Eq. (7.4), after closing the fermion

legs in a loop, it is clear that they can only give contributions to operators with the Higgs

structure H†
↔
DµH or H†σa

↔
DµH, corresponding to the tree-level operators (6.5). This

1Obviously, their contribution to the CP-odd operators (6.9)-(6.11) is zero as the SM gauge-boson
couplings conserve CP.

2That is, 2DνW a
µν = igH†σa

↔
DµH + gf̄Lσ

aγµfL and ∂νBµν = ig′H†
↔
DµH/2 + g′Y fL f̄LγµfL +

g′Y fR f̄RγµfR, where Y fL,R are the fermion hypercharges and a sum over fermions is understood.
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completes the proof that no current-current operator contributes to the running of any

one-loop suppressed operator.

The calculation above could have also been done in other operator bases. To keep

the calculation simple, it is crucial to work in bases that do not mix current-current

operators with one-loop suppressed ones. This is guaranteed if we change basis by

means of SM-field redefinitions, as shown in Appendix A. We can make use of these

field-redefinitions to work in bases that contain only 3 operators made of bosons, the

rest consisting of operators involving fermions, such as those in Eq. (6.19), Eq. (7.4) or

4-fermion operators. There are different options in choosing these 3 operators; what is

physically relevant are the 3 (shift-invariant) combinations of coefficients in Eq. (D.22).

This freedom can be used to select the set of 3 operators most convenient to prove,

in the simplest way, that their contribution to the running of κγγ and κZγ is zero at

the one-loop level. For example, we could have chosen O2B instead of OT : since O2B

only affects the propagator of the neutral state Bµ, one can easily see that it cannot

contribute to the hγγ or hγZ coupling.

7.2 The importance of the choice of basis

The relevance of the possible contributions from tree-level operators to the one-loop

RGE of κγγ and κγZ has been highlighted recently in Ref. [123]. In fact, that analysis

claims that such important effect could actually occur, in contradiction with the results

presented in the previous Section. In this Section we show how this contradiction is

resolved.

The analysis in Ref. [123], GJMT in what follows, focuses on a subset of dimension-six

operators, chosen to be OBB and the two operators

OWB = gg′(H†σaH)W a
µνB

µν , OWW = g2|H|2W a
µνW

aµν , (7.5)

which are not included in the basis we have used. The relation to our basis follows from

the two operator identities:

OB = OHB +
1

4
OWB +

1

4
OBB , (7.6)

OW = OHW +
1

4
OWW +

1

4
OWB , (7.7)

which allow us to remove OWW and OWB in favor of OB and OW . The two operators

OHW and OHB were also mentioned in Ref. [123], although their effect was not included

in the analysis. To understand the issues involved it will be sufficient to limit the
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operator basis to five operators, with the two bases used being

B1 = {OBB,OB,OW ,OHW ,OHB} , (this work) (7.8)

B2 = {OBB,OWW ,OWB,OHW ,OHB} , (GJMT) [123]. (7.9)

In relating both bases we will use primed Wilson coefficients for the GJMT basis

L6 =
∑

i

c′i
Λ2
Oi , (7.10)

and the dictionary to translate between B1 and B2 is:

κHW = c′HW − 4c′WW ,

κHB = c′HB + 4(c′WW − c′WB) ,

κBB = c′BB + c′WW − c′WB ,

cW = 4c′WW ,

cB = 4(c′WB − c′WW ) . (7.11)

From these relations we can directly write the expressions for κγγ and κγZ going from

(7.2) to the GJMT basis:

κγγ = c′BB + c′WW − c′WB ,

κγZ = 2c2
wc
′
WW − 2s2

wc
′
BB − (c2

w − s2
w)c′WB +

1

4
(c′HB − c′HW ) . (7.12)

Let us first note that the operator identities (7.6) and (7.7) show that two operators

of the GJMT basis, OWW and OWB, are a mixture of tree-level operators and one-loop

suppressed ones of basis B1. This has the following drawback. Let us suppose that the

operator OW is generated, for example, by integrating out a heavy SU(2)-triplet gauge

boson (see e.g. Ref. [125]). This operator can be written in the GJMT basis by using

the identity (7.7), but then the coefficients of the operators OWW , OWB and OHW
generated in this way will all be correlated. In this particular example, we will have

c′WW = c′WB = c′HW /4. This is telling us that when using the GJMT basis to study

the physical impact of this scenario we must include the effects of all operators, and not

only a partial list of them, as done in Ref. [123]. Otherwise, one can miss contributions

of the same size that could lead to cancellations. The same argument goes through

for scenarios generating the tree-level operator OB. In general, the correlation of the
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coefficients in the GJMT basis is explicitly shown in the reversed dictionary:

c′WW =
1

4
cW ,

c′WB =
1

4
(cB + cW ) ,

c′BB =
1

4
cB + κBB ,

c′HW = cW + κHW ,

c′HB = cB + κHB . (7.13)

Obviously, physics does not depend on what basis is used, which is a matter of choice,

as long as the full calculation is done in both bases. Reducing, however, the calculations

to a few operators in a given basis can be dangerous as this can leave out important

effects. This is especially true in bases whose operators are a mixture of operators with

Wilson coefficients of different sizes. For this reason the basis B1 is preferable to B2.

To explicitly show how this correlation between Wilson coefficients can lead to cancel-

lations in the final result, let us consider a particularly simple example: the calculation

of the radiative corrections to the operators OWW , OBB and OWB proportional to λ.

This is partly given in the analysis of Ref. [123], apparently showing a one-loop mixing

from tree-level operators to one-loop suppressed ones. As obtained in Ref. [123], the

λ-dependent piece of the anomalous-dimension matrix for c′BB, c
′
WW , c

′
WB is given by

d

d logµ




c′BB
c′WW

c′WB


 =

1

16π2




12λ 0 0

0 12λ 0

0 0 4λ







c′BB
c′WW

c′WB


+ ... . (7.14)

From (7.12), one obtains the RGE

γγγ =
dκγγ
d logµ

=
4λ

16π2
(3κγγ + 2c′WB) + ... , (7.15)

showing explicitly that the coefficient c′WB, which can be of tree-level size in the GJMT

basis [see (7.13)], affects the running of the one-loop suppressed κγγ . This apparent

contradiction with our previous result is, as expected, resolved by adding the effect of

the operatorsOHW andOHB in the renormalization of κγγ . We obtain the (λ-dependent)

contributions

dc′BB
d logµ

= − 3λ

16π2
c′HB ,

dc′WW

d logµ
= − 3λ

16π2
c′HW ,

dc′WB

d logµ
= − λ

16π2
(c′HB + c′HW ) ,

(7.16)
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which change the RGE (7.15) into

γγγ =
2λ

16π2
(6κγγ + 4c′WB − c′HB − c′HW ) . (7.17)

These additional contributions eliminate the possibly sizeable tree-level correction from

c′WB. Indeed, using (7.13), we explicitly see that the contributions proportional to cW

and cB cancel out, giving

γγγ =
2λ

16π2

(
6κγγ − κHB − κHW

)
, (7.18)

leaving behind just corrections from one-loop suppressed operators. This is not an

accident: this cancellation was expected from our discussion in the previous Section.

Beyond the λ-dependent terms we have examined, the same cancellation will necessarily

occur for the rest of the potentially sizeable contributions to γγγ identified in Ref. [123].

7.3 Renormalization group equation for κγγ and κγγ̃

In this Section we use the results of Ref. [123], combined with our results in Sec. 7.1, to

obtain γγγ . Let us write the RGEs for the Wilson coefficients in basis B2 in a compact

way as

16π2 dc′i
d logµ

=
5∑

j=1

b′i,jc
′
j . (7.19)

The b′i,j is a 5×5 anomalous-dimension matrix of which the 3×3 submatrix corresponding

to i, j = 1 − 3 (that is, c′BB, c′WW , c′WB) was calculated in Ref. [123], while the rest is

unknown. From κγγ =
∑5

i=1 ζic
′
i where ζi = (1, 1,−1, 0, 0), we have

16π2γγγ =
5∑

i,j=1

ζib
′
i,jc
′
j . (7.20)

Using Eq. (7.13), we can translate this anomalous dimension to our basis. We get

16π2γγγ =
5∑

i=1

ζi(b
′
i,BBκBB + b′i,HWκHW + b′i,HBκHB) (7.21)

+
1

4
cB

5∑

i=1

ζi(b
′
i,WB + b′i,BB + 4b′i,HB) +

1

4
cW

5∑

i=1

ζi(b
′
i,WW + b′i,WB + 4b′i,HW ) .

From our discussion in Sec. 7.1, we know that the tree-level coefficients cB and cW do

not appear in this RGE. This means that the two last terms of Eq. (7.21) must be zero,

allowing us to extract the sum of the unknown coefficients b′i,HB and b′i,HW in terms of
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coefficients calculated in Ref. [123]:

5∑

i=1

ζib
′
i,HB = −1

4

5∑

i=1

ζi(b
′
i,WB + b′i,BB) ,

5∑

i=1

ζib
′
i,HW = −1

4

5∑

i=1

ζi(b
′
i,WW + b′i,WB) .

(7.22)

Notice that ζ4 = ζ5 = 0 is crucial to allow us to restrict the sums in the right-hand-side

to terms that were already calculated in Ref. [123]. Plugging the terms (7.22) back in

(7.21), one gets

16π2γγγ =
5∑

i=1

ζi

[
b′i,BBκBB −

1

4
(b′i,WB + b′i,WW )κHW −

1

4
(b′i,BB + b′i,WB)κHB

]
.

(7.23)

Using the coefficients b′i,WW , b
′
i,WB and b′i,BB from Ref. [123], one arrives at

16π2γγγ =

[
6y2
t −

3

2
(3g2 + g′2) + 12λ

]
κBB +

[
3

2
g2 − 2λ

]
(κHW + κHB) . (7.24)

This expression gives the one-loop leading-log correction to κγγ(mh). For the resumma-

tion of the log terms we would need the full anomalous-dimension matrix. Nevertheless,

this is not needed for Λ ∼ TeV since the log-terms are not very large.

The size of the contributions of Eq. (7.24) to κγγ(mh) is expected to be of two-loop

order in minimally-coupled theories. Therefore, we have to keep in mind that the tree-

level operators of Eq. (6.4), possibly entering in the RGE of κγγ at the two-loop level,

could give corrections of the same order. For strongly-coupled theories in which gH ∼ 4π,

we could have κi ∼ O(1), and the corrections from Eq. (7.24) to h→ γγ could be of one-

loop size. Of course, in principle, the initial values κi(Λ) will give, as Eq. (7.2) shows,

the dominant contribution to h → γγ, γZ and not Eq. (7.24). Nevertheless, it could

well be the case that |κBB(Λ)| � 1 and |κHB(Λ)− κHW (Λ)| � 1 due to symmetries of

the new-physics sector. For example, if the Higgs is a pseudo-Goldstone boson arising

from a new strong-sector, κBB(Λ) is protected by a shift symmetry and can only be

generated by loops involving SM couplings, while κHB(Λ) = κHW (Λ) ∼ g2
H/(16π2)

if the strong sector has an accidental custodial O(4) symmetry 3 [99]. In this case

Eq. (7.24) could give the main correction to the SM decay h→ γγ and could be as large

as ∆Γγγ/Γ
SM
γγ ∼ g2v2/Λ2 log(Λ/mh) if gH ∼ 4π. Notice also that there can be finite

one-loop corrections to κγγ(mh) from the operators (6.4) and (6.5) which can dominate

over those in Eq. (7.24). These were calculated in Ref. [99].

3We have O(4) ' SU(2)L × SU(2)R × PLR under which PLR interchange L ↔ R. Under this PLR

we have cHW ↔ cHB . To make the transformation properties under this symmetry more manifest, it is
better to work with OWB , which is even under PLR, instead of OBB .
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A similar analysis can be performed for κγγ̃ , with the simplification that the operator

identities corresponding to Eqs. (7.6) and (7.7) are, for the dual field strengths:

O
HB̃

+
1

4
O
WB̃

+
1

4
O
BB̃

= 0 , (7.25)

O
HW̃

+
1

4
O
WW̃

+
1

4
O
WB̃

= 0 , (7.26)

due to the Bianchi identity. The above equations do not mix tree and loop generated

operators; hence, from the calculation of Ref. [123] with the set {O
BB̃
,O

WW̃
,O

WB̃
} one

can obtain the γγγ̃ in terms of the coeficients of the operators {O
BB̃
,O

HB̃
,O

HW̃
} of

our basis. One arrives at the expected result: γγγ̃ = dκγγ̃/d logµ is given by the same

expression as γγγ but with the corresponding CP-odd coefficients instead of the CP-even

ones.

7.4 RGEs for κγZ and κγZ̃ and a new basis

If we try to obtain the RGE for κγZ in the same way as for κγγ , we face the complication

that κγZ depends not only on c′BB, c′WW and c′WB, but also on c′HB and c′HW , and

these coefficients were not included in the calculation presented in Ref. [123]. In other

words, one would need to calculate the anomalous-dimension matrix elements b′i,j for

i = {HW,HB} and j = {WW,WB,BB}, or, in our basis, to complete the 3 × 3

anomalous-dimension matrix for κBB, κHW , κHB.

We can circumvent this difficulty by realizing that the operators OWW ,OBB and OWB

do not enter in the (one-loop) RGEs for c′HW and c′HB, so that the matrix elements

required to get γγZ are in fact zero. In order to see this, notice that both OHW and

OHB include the trilinear pieces (with two Higgses and one gauge boson):

OHW = 2ig(∂µH)†σa(∂νH)∂µW
a
ν + · · · ,

OHB = 2ig′(∂µH)†(∂νH)∂µBν + · · · , (7.27)

cV V ′
g

cV V ′
g, g′

Figure 7.1: The only two diagrams that could give a contribution (at one loop)
from OWW , OBB and OWB (with coefficient generically denoted as cV V ′ in the

figure) to the renormalization of OHW and OHB (or to OW and OB).
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while OWW ,OBB and OWB have two Higgses and at least two gauge bosons. Therefore,

in order to generate (at one loop) trilinears like those in (7.27), the only possibility is

that one of the two gauge boson legs is attached to the other gauge boson leg or to one

of the Higgs legs (see Fig. 7.1). In the first case (Fig. 7.1, left diagram) it is clear that

the resulting Higgs structure for the operator generated is either |H|2 or H†σaH and not

that in (7.27) (in fact, the diagram is zero). In the second case (Fig. 7.1, right diagram)

the only structures that result are either ∂µH†∂ν(HBµν) or ∂µH†σa∂ν(HW a
µν), which

give zero after integrating by parts.

We can therefore extract γγZ following the same procedure used for γγγ in the previous

Section, and we obtain

16π2γγZ = κγZ

[
6y2
t + 12λ− 7

2
g2 − 1

2
g′2
]

+ (κHW + κHB)
[
2g2 − 3e2 − 2λ cos(2θw)

]
,

(7.28)

and a similar expression for γ
γZ̃

with the corresponding CP-odd operator coefficients

instead of the CP-even ones.

The arguments we have used to prove that OWW ,OBB and OWB do not enter into

the anomalous dimensions of OHW and OHB can be applied in exactly the same way

to prove that they do not generate radiatively the operators OW and OB which have

exactly the same trilinear structures displayed in Eq. (7.27) for OHW and OHB. This

immediately implies that the 5×5 matrix of anomalous dimensions will be block diagonal

if instead of using the bases in (7.8) and (7.9), we use instead the basis

B3 = {OBB,OWW ,OWB,OW ,OB} . (7.29)

Calling ĉi, κ̂i the operator coefficients in this basis, we have

d

d logµ




κ̂BB

κ̂WW

κ̂WB

ĉW

ĉB




=

(
Γ̂ 03×2

02×3 X̂

)




κ̂BB

κ̂WW

κ̂WB

ĉW

ĉB




. (7.30)

93



94 Part II – EFT of the physics at the EW scale

Taking the anomalous-dimension matrix in the simple form (7.30) as starting point,

it is a trivial exercise to transform it to other bases. In the GJMT basis one gets

d

d logµ




c′BB
c′WW

c′WB

c′HW
c′HB




=

(
Γ̂ Y ′

02×3 X̂

)




c′BB
c′WW

c′WB

c′HW
c′HB




. (7.31)

The 3× 3 upper-left block is therefore given by the expression calculated in Ref. [123]:

Γ̂ =
1

16π2




6y2
t + 12λ− 9

2g
2 + 1

2g
′2 0 3g2

0 6y2
t + 12λ− 5

2g
2 − 3

2g
′2 g′2

2g′2 2g2 6y2
t + 4λ+ 9

2g
2 − 1

2g
′2


 ,

(7.32)

while the 2× 2 lower-right block X̂ has not been fully calculated in the literature. This

lack of knowledge affects also the 3× 2 block Y ′, which depends on the entries of X̂.

In basis B1 one gets instead:

d

d logµ




κBB

κHW

κHB

cW

cB




=

(
Γ 03×2

Y X̂

)




κBB

κHW

κHB

cW

cB




, (7.33)

where now

Γ =
1

16π2




6y2
t + 12λ− 9

2g
2 − 3

2g
′2 3

2g
2 − 2λ 3

2g
2 − 2λ

0 6y2
t + 12λ− 5

2g
2 − 1

2g
′2 g′2

−8g′2 9g2 − 8λ 6y2
t + 4λ+ 9

2g
2 + 1

2g
′2


 ,

(7.34)

while Y is also dependent on the unknown coefficients of X̂.4 We can reexpress Γ in

terms of the physically relevant combinations of coefficients κγγ and κγZ defined in (7.2)

plus the orthogonal combination κort ≡ κHW + κHB. One gets

d

d logµ




κγγ

κγZ

κort


 = Γo




κγγ

κγZ

κort


 , (7.35)

where

Γo =
1

16π2




6y2
t + 12λ− 9

2g
2 − 3

2g
′2 0 3

2g
2 − 2λ

0 6y2
t + 12λ− 7

2g
2 − 1

2g
′2 2g2 − 3e2 − 2λ cos(2θw)

−16e2 −4g2 + 4g′2 6y2
t + 4λ+ 11

2 g
2 + 1

2g
′2


 ,

(7.36)

4Note that the lower-right block X̂ is exactly the same in all the three bases considered.
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from which we explicitly see that κγZ does not renormalize κγγ and vice versa.

We have seen that the expression for the anomalous-dimension matrix takes the sim-

plest block-diagonal form in basis B3. This basis has also the virtue of B1 of keep-

ing separated current-current operators from one-loop suppressed ones. Indeed, using

Eqs. (7.6) and (7.7), we can reach B3 from B1 by trading two one-loop suppressed op-

erators, OHW and OHB, by other two one-loop suppressed ones, OWW and OWB. In

spite of the fact that the anomalous-dimension matrix gets its simplest form in basis

B3, there are other advantages in using basis B1. For example, in B1 only one operator

contributes to h → γγ, while there are three in basis B3. Also B1 is a more suitable

basis to describe the low-energy effective theory expected for a pseudo-Goldstone Higgs

boson [99], as it clearly identifies operators invariant under constant shifts H → H + c.

7.5 Dipole operators

The above analysis can be easily extended to include contributions from operators in-

volving SM fermions. We will limit the discussion here to the up-quark sector, having in

mind possible large contributions from the top. The extension to other SM fermions is

straightforward. We organize again the operators as tree-level and one-loop suppressed

ones. Among the first type we have the operators already given in Eq. (6.19), Eq. (7.4),

apart from four-fermion operators. In Sec. 7.1, however, we already showed that they

cannot contribute to the anomalous dimension of the operators (6.6)-(6.11) at the one-

loop level. Among one-loop suppressed operators made with SM fermions, we have the

dipole operators

ODB = yuQ̄Lσ
µνuR H̃g

′Bµν ,

ODW = yuQ̄Lσ
µνuR σ

aH̃gW a
µν ,

ODG = yuQ̄Lσ
µνT auR H̃gsG

a
µν , (7.37)

where T a are the SU(3)C generators. These operators can, in principle, give contribu-

tions to other one-loop suppressed operators, as those relevant for h→ γγ, γZ. We have

calculated that, indeed, such contributions are nonzero:

16π2γγγ = 8y2
uNcQuRe[κDB + κDW ] ,

16π2γγγ̃ = −8y2
uNcQuIm[κDB + κDW ] ,

16π2γγZ = 4y2
uNc

{(
1

2
− 4Qus

2
w

)
Re[κDB] +

(
1

2
+ 2Quc2w

)
Re[κDW ]

}
,

16π2γ
γZ̃

= −4y2
uNc

{(
1

2
− 4Qus

2
w

)
Im[κDB] +

(
1

2
+ 2Quc2w

)
Im[κDW ]

}
, (7.38)
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where Nc = 3, Qu = 2/3 is the electric charge of the up-quark, c2w = cos(2θw), and

the κi are the one-loop suppressed coefficients of the operators of Eq. (7.37), i.e. δL =

κiOi/Λ2 + h.c.. In the B3 basis, Eq. (7.38) arises from

d

d logµ




κ̂BB

κ̂WW

κ̂WB


 =

4Ncy
2
u

16π2




0 Y u
L + Y u

R

1/2 0

−(Y u
L + Y u

R ) −1/2




(
κ̂DW

κ̂DB

)
, (7.39)

where Y u
L = 1/6 and Y u

R = 2/3 are the up-quark hypercharges. Similar results follow

for the RGE of the Higgs couplings to gluons, κGG and κ
GG̃

16π2γGG = 4y2
uRe[κDG] , 16π2γ

GG̃
= −4y2

uIm[κDG] . (7.40)

7.6 The S parameter

As we have shown above, the Wilson coefficients of the current-current operators (6.4)-

(6.5) do not enter in the one-loop RGEs of the κi, but only in their own RGEs. In

particular, the only operators with two Higgs bosons and gauge bosons affected by cH,T

at one loop are OW and OB and not those relevant for h→ γγ, γZ. Indeed, an explicit

calculation gives

γW =
dcW
d logµ

= − g2
H

16π2

1

3
(cH + cT ) , γB =

dcB
d logµ

= − g2
H

16π2

1

3
(cH + 5cT ) . (7.41)

In the basis B1 of Sec. 6.1, these are the only two Wilson coefficients that enter in the

S-parameter [126]. We have S = 4πv2[cW (mZ) + cB(mZ)]/Λ2 where cW,B(mZ) is the

value of the coefficient at the Z mass. The contributions from Eq. (7.41) to cW,B(mZ)

can be sizeable for gH � 1 [127], although the value of cT is highly constrained from the

T -parameter [99]. The anomalous dimensions γW and γB can also receive corrections

proportional to cW,B, or from one-loop suppressed operators, such as OBB. Nevertheless

these contributions are not expected to be sizeable. The coefficients cW and cB already

contribute at tree-level to S, while the contributions to S from κi are expected to be

small, δγW = O(κi/(16π2)). Notice that basis B1 makes very clear the separation

between the relevant contributions to S that come from tree-level operators and those

to κγγ , which are from one-loop suppressed operators.

In the GJMT basis the contribution to S arises from the operator OWB and one has

S = 16πv2c′WB(mZ)/Λ2. In Ref. [123], a partial calculation of the anomalous dimension

of OWB was given. Nevertheless, if the interest is to calculate the running of c′WB in

universal theories in which cW and cB encode the dominant effects [apart from cH,T
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whose effects are given in Eq. (7.41)], one also needs, as Eq. (7.13) shows, to include the

effects of c′HW and c′HB given in Ref. [100, 128]. This is again due to the fact that the

GJMT basis mixes current-current operators with one-loop suppressed ones.

Finally, let us comment on the relation between our basis and one of the most used in

the literature, the one originally given in Ref. [129]. After eliminating redundant opera-

tors, one ends up with 59 independent operators as listed in Ref. [101]. This basis also

keeps separate tree-level operators from one-loop suppressed ones. The set of one-loop

suppressed operators is different from ours though: they use {OWW ,OWB,OWW̃
,O

WB̃
}

instead of our {OHW ,OHB,OHW̃ ,OHB̃}. The change of basis is given in Eqs. (7.6),

(7.7), (7.25) and (7.26). For the tree-level operators they use the minimal set of 3 op-

erators made of SM bosons, in particular OH , OT and O6, while the rest of operators

involves SM fermions: those given in Eq. (6.19), Eq. (7.4) and four-fermion operators.

As explained in Appendix A, we can reach this set of operators from our basis by

performing field redefinitions. The basis of Refs. [101, 129] is, however, not very conve-

nient for parametrizing the effects of universal theories. Although only a few operators

parametrize these theories in our basis (see Sec. 6.1), in the basis of Refs. [101, 129] they

require a much larger set of operators. In particular, the two tree-level operators OW
and OB are written in the basis of Refs. [101, 129] as

cWOW → cW
g2

g2
H


−3

2
OH + 2O6 +

1

2
Oy +

1

4

∑

f

Of (3)
L


 ,

cBOB → cB
g′ 2

g2
H


−1

2
OT +

1

2

∑

f

(
Y f
LO

f
L + Y f

RO
f
R

)

 , (7.42)

where Y f
L and Y f

R are the hypercharges of the left and right handed fermions, respectively.

We can see from (7.42) that the Wilson coefficients in the basis of Refs. [101, 129] are

correlated, so that one should include them all in operator analyses of universal theories.

As far as the anomalous-dimension matrix is concerned, the basis of Refs. [101, 129] keeps

also the same block-diagonal form as the basis of B3, since loop-suppressed operators

{OBB,OWW ,OWB,OBB̃,OWW̃
,O

WB̃
} do not mix with current-current ones.

7.7 Summary

The h→ γγ decay is of special importance because of its clean experimental signature.

In this Chapter we have analysed potential effects of new physics in this decay rate

(together with the closely related one, h → γZ) following the effective Lagrangian

approach, where one enlarges the SM Lagrangian with a set of dimension-six operators.
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The choice of the operator basis has been crucial to make the calculations simple and

transparent. We have shown the convenience of working in bases that classify operators

in two groups. The first is formed by operators which can arise from tree-level exchange

of heavy states under the assumption of minimal coupling. This group contains operators

that can be written as a product of local currents. A second group contains operators

that are generated, from weakly-coupled renormalizable theories, at the loop-level, and

thus have suppressed coefficients, see Tab. 7.1

The operators relevant for h→ γγ, γZ are, as expected, of the second group, specifi-

cally OBB, OHW and OHB and their CP-odd counterparts. We have been interested in

the anomalous dimensions of these operators that can be generically written as

16π2 dκj3
d logµ

=
∑

i1

bj3,i1ci1 +
∑

i2

bj3,i2ci2 +
∑

i3

bj3,i3κi3 , (7.43)

where j3 = BB,HW,HB,BB̃,HW̃ ,HB̃. The main purpose of this Chapter has been to

calculate bj3,i1 and bj3,i2 . Since the corresponding coefficients ci1 and ci2 can be of order

one, the RG evolution can enhance the new-physics effect on κi3 by a factor log(Λ/mh).

Our main result is that such enhancement is not present, because the corresponding

elements of the anomalous-dimension matrix vanish

bj3,i1 = bj3,i2 = 0 . (7.44)

Therefore, tree-level (current-current) operators do not contribute to the RGEs of the

one-loop suppressed operators relevant for the γγ and γZ Higgs decay. The result is

given in Eq. (7.24) (and its CP-odd analog).

We have also obtained the RGEs for κHW and κHB, Eq. (7.33), which affect the

decay h → γZ, by realizing that the operators OBB, OWW , OWB (used in Ref. [123])

do not renormalize (at one-loop) OHW , OHB (nor OW , OB). Exploiting this fact,

we have further clarified the structure of the anomalous-dimension matrix for these

operators, showing that it takes a particularly simple block-diagonal form in the basis

B3 of Eq. (7.29). The tree-level operators OB and OW do not mix with the one-loop

operators OWW , OBB, OWB and vice versa, as Eq. (7.30) shows. Enlarging this basis

with dipole-moment operators for the SM fermions, we have further computed the effect

of such dipoles on h→ γγ, γZ.

To conclude, we have discussed how the appropriate choice of operator basis can shed

light on the physical structure behind the renormalization mixing of operators and reveal

hidden simplicities in the structure of the matrix of anomalous dimensions that describes

such mixing. This is an early hint of a surprising structure of the one-loop anomalous
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dimension matrix. We pursue this hint in Part III of this thesis, were we find that the

block diagonal structure presented in this Chapter is rather generic and applies, to a

large extent, to the full Standard Model.
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8. Anomalous dimensions and

Higgs physics

As explained in Chapter 6, out of the 8 CP-even operators that only affect Higgs physics,

5 of them are ”tree-level” operators and 3 are ”one-loop”. The 5 tree-level operators af-

fect directly the Higgs couplings to fermions, the kinetic term of the Higgs and the Higgs

self-couplings. In this Chapter calculate the anomalous dimensions of these 5 operators,

which allow us to describe the renormalization group (RG) evolution of these Wilson

coefficients from the heavy scale Λ, where they are generated, down to the electroweak-

scale. 1 We apply these results to find the leading-log corrections to the predictions for

Higgs-couplings in several Beyond the Standard Model (BSM) scenarios: the Minimal

Supersymmetric Standard Model (MSSM), universal theories (such as composite-Higgs

models) and models with a non-standard top. We find that the corrections from this

running can be sizable for Λ ∼ few TeV, and will become more relevant as we have

better measurements of the Higgs couplings. We also calculate the anomalous dimen-

sions of the operators contributing to the S and T parameters and to the Zbb̄ couplings.

The stringent experimental constraints on these quantities can then be translated into

indirect bounds on Higgs operators.

8.1 Running effects from Λ to MW

So far, we have implicitly assumed that the Wilson coefficients were evaluated at the

electroweak scale, at which their effects can be eventually measured. However, partic-

ular UV completions predict the values of those coefficients at the scale Λ where the

heavy BSM is integrated out. The RG evolution from Λ down to the electroweak scale,

described by the corresponding anomalous dimensions, can be important in many cases.

1For the other 3 one-loop CP-even operators, as well as for the 3 one-loop CP-odd, the calculation
of the main anomalous dimensions has been given in Refs.[5, 123].
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Our main interest is to calculate the anomalous dimensions of the Wilson coefficients

that can have the largest impact on Higgs physics. As we explained in the previous

Section, these are the coefficients listed in Eq. (6.37). In Ref. [5] we already calculated

the most relevant anomalous dimensions of the κi in Eq. (6.37). We showed that tree-

level Wilson coefficients do not enter, at the one-loop level, in the RGEs of the κi,

a property that allowed us to complete the calculation of Ref. [123] for the anomalous

dimensions relevant for h→ γγ, Zγ. In this Section we extend the analysis by calculating

the anomalous dimensions for the 5 tree-level Wilson coefficients:

{cH , c6, cyt , cyb , cyτ } . (8.1)

We notice that even in the future, with better measurements of the Higgs couplings, and

then better bounds on the Wilson coefficients of (8.1), we still expect these coefficients

to give the main BSM contributions to Higgs physics, since other Wilson coefficients,

such as cW , are expected to receive even stronger constraints from LHC (for a given Λ).

Generically, the anomalous dimensions are functions of other Wilson coefficients:

γci =
dci

d logµ
= γci(cj) , (8.2)

where µ is the renormalization scale. In the RHS of Eq. (8.2) we keep the cj coefficients

that can potentially give the most significant contributions to the RG running. They are

the following. First, those of (8.1) as they have no important experimental constraints

and also are the most relevant in BSM scenarios with g∗ large. We also keep the Wilson

coefficients of operators involving the top quark, departing from the MFV assumption.

These are Oq3L , OtR, O(3) q3
L and OtbR , in addition to the 4-fermion operators, Oq3LL, O(8) q3

LL ,

OtLR, O(8) t
LR , Oytyb , O

(8)
ytyb , Oytyτ and O′ytyτ . We have several motivations to keep them.

First, they have no large constraints from experiments. Second, they can induce large

effects on the anomalous dimensions, since they are proportional to the top Yukawa

coupling. Also their Wilson coefficients can be sizable in many BSM models, such as

composite Higgs or supersymmetric theories, as we will discuss. To summarize, we

consider in the RHS of Eq. (8.2) the following Wilson coefficients:

{cj} = {cH , c6, cyt , cyb , cyτ , cL, cR, c
(3)
L , ctbR, cLL, c

(8)
LL, cLR, c

(8)
LR, cytyb , c

(8)
ytyb

, cytyτ , c
′
ytyτ } ,

(8.3)

where, from now on, we suppress the q3 and t superindices in the coefficients for sim-

plicity.

We would like to mention that, even for those Wilson coefficients subjected to ex-

perimental constraints, as those discussed in the previous Section, the fact that the

constraints apply to the ratios cjM
2
W /Λ

2 means that bounds at the percent-level can
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allow for cj ∼ O(1) if Λ ∼ O(TeV). These coefficients could then also give potentially

non-negligible effects in the γci . An example of this is cW . Nevertheless, one can still

expect that the dominant effects will be given by the coefficients in Eq. (8.3) since, for

a given Λ, they can always be larger than cW .

In addition, we will also extend our calculation of anomalous dimensions to other

Wilson coefficients beyond those in (8.1). These correspond to operators constrained by

the present experimental data, and then their anomalous dimensions can also be useful

to derive indirect bounds on the coefficients of Eq. (8.3). 2

The anomalous dimensions presented below correspond to the basis of Tab. 6.1 and

Tab. 6.2, after using the five redundancies to eliminate the operators {OlL, O(3) l
L , OeRR,

OlLL, O(8) d
RR }. Nevertheless, removing or not these five operators and keeping the redun-

dancy would not change our results (see Appendix B for more details).

8.1.1 Anomalous dimensions of operators relevant for Higgs physics

We present here the anomalous dimensions for the Wilson coefficients in 8.1, the ones

expected to dominate deviations in Higgs physics, including the effects from the Wilson

coefficients in Eq. (8.3). They are given by

16π2γcH =

[
4Ncy

2
t + 24λ− 3

2
(3g2 + 2g′2)

]
cH + 12Ncy

2
t c

(3)
L , (8.4)

16π2γλc6 = 6

[
Ncy

2
t + 18λ− 3

4
(3g2 + g′2)

]
λc6 + 2(40λ− 3g2)λcH

−16Ncλy
2
t c

(3)
L + 8Ncy

2
t (λ− y2

t )cyt , (8.5)

16π2γcyt =

[
(4Nc + 9)y2

t + 24λ− 3

2
(3g2 + g′2)

]
cyt +

(
3y2
t + 2λ− 3

2
g2

)
cH

+(2y2
t + 4λ− 3g2 − g′2)cR − 2(y2

t + 2λ+ 2g′2)cL

+4(−Ncy
2
t + 3λ+ g′2)c

(3)
L + 8(y2

t − λ)
[
cLR + CF c

(8)
LR

]
, (8.6)

16π2γcyb =

[
2(Nc + 1)y2

t + 24λ− 3

2
(3g2 + g′2)

]
cyb +

(
2λ− 3

2
g2

)
cH

+(2Nc − 1)y2
t cyt + 2(2λ+ g′2)cL + 2

[
(3− 2Nc)y

2
t + 6λ+ g′2

]
c

(3)
L

−4
y2
t

g2∗

(
y2
t + 2λ− 3

2
g2

)
ctbR

+2
y2
t

g2∗
(λ− y2

t )
[
(2Nc + 1) cytyb + CF c

(8)
ytyb

]
, (8.7)

2Other anomalous dimensions were calculated in Refs. [100, 128].
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16π2γcyτ =

[
2Ncy

2
t + 24λ− 3

2
(3g2 + g′2)

]
cyτ +

(
2λ− 3

2
g2

)
cH + 2Ncy

2
t [cyt − 2c

(3)
L ]

−2
y2
t

g2∗
Nc(λ− y2

t )
(
2cytyτ + c′ytyτ

)
, (8.8)

where Nc = 3 is the number of colors and CF = (N2
c −1)/(2Nc). Parametrically one has

γci ∼ g2
j cj/16π2 and we only keep g2

j = {y2
t , g

2
s , g

2, g′2, λ}, dropping g2
j = {y2

b , y
2
τ , ...}.

We remark that, to calculate these anomalous dimensions, one has to take into account

that redundant operators removed from our operator basis are nevertheless generated

through renormalization at the one-loop level. For details about how to deal with this

effect, see Appendices A and B. The need to care about such effect also means that the

RGEs depend on the choice of redundant operators (i.e. on the basis).

Let us make a quantitative analysis of the size of these radiative effects. Working at

one-loop leading log order,

ci(Mt) ' ci(Λ)− γci log
Λ

Mt
, (8.9)

which is enough if we take Λ ∼ 2 TeV as UV scale and Mt as electroweak scale, we obtain

the following radiative modifications of the Wilson coefficients, ∆ci ≡ ci(Mt)−ci(2 TeV):

∆cH = −0.17 cH − 0.49 c
(3)
L , (8.10)

∆λc6 = −0.36λc6 − 0.015 cH + 0.082 c
(3)
L + 0.244 cyt ,

∆cyt = −0.30 cyt − 0.035 cH − 0.013 cR + 0.043 cL + 0.13 c
(3)
L − 0.093 cLR − 0.12 c

(8)
LR ,

∆cyb = −0.12 cyb − 0.068 cyt + 0.0060 cH − 0.012 cL + 0.054 c
(3)
L + 0.027 ctbR/g

2
∗

+(0.16 cytyb + 0.027 c(8)
ytyb

)/g2
∗ ,

∆cyτ = −0.096 cyτ − 0.081 cyt + 0.0060 cH + 0.16 c
(3)
L + (0.012cytyτ + 0.061c′ytyτ )/g2

∗.

We see that in a few cases, the numerical impact of operator mixing can be significant,

like the mixing of c
(3)
L into cH ; λc6 and cyt into λc6; and cyt into itself.

8.1.2 Anomalous dimensions of constrained operators

Other interesting anomalous dimensions to calculate correspond to operators that are

at present constrained by experiments. Here we present those of cT , cB, cW , and for the
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top quark, cR, cL, and c
(3)
L :

16π2γcT =
3

2
g′2cH + 4Ncy

2
t (cR − cL) , (8.11)

16π2γcR =

[
2(4 +Nc)y

2
t − 9g2 − 7

3
g′2
]
cR − 4(Nc + 1)

(
y2
t −

2

9
g′2
)
cRR

+2Nc

(
y2
t +

1

9
g′2
)
cLR + 2y2

t

(
1

4
cH − cL

)
, (8.12)

16π2γcL =

[
2(2 +Nc)y

2
t − 9g2 − 7

3
g′2
]
cL + 2

(
y2
t +

1

9
g′2
)[

(2Nc + 1)cLL + CF c
(8)
LL

]

−2Nc

(
y2
t −

2

9
g′2
)
cLR − y2

t

(
1

4
cH + cR + 9c

(3)
L

)
, (8.13)

16π2γ
c
(3)
L

=

[
2(1 +Nc)y

2
t −

16

3
g2 − 3g′2

]
c

(3)
L − 2

(
y2
t −

1

3
g2

)[
cLL + CF c

(8)
LL

]

+y2
t

(
1

4
cH − 3cL

)
, (8.14)

16π2γcW =
1

3
g2
∗
[
16Ncc

(3)
L − cH

]
, (8.15)

16π2γcB =
1

3
g2
∗

[
8

3
Nc (2cR + cL)− cH

]
. (8.16)

From them we can calculate the leading-log corrections to cB +cW , cT and cL+c
(3)
L that

are highly constrained by S, T and the Zbb-coupling, as has been discussed in Sec. 6.3.

In this way, coefficients that are more loosely constrained by direct processes, such as

cH , cL or cR, can get indirect bounds from LEP1 and TeVatron measurements.

Integrating the RGEs of (8.16), at the one-loop leading-log order, between the cutoff

scale Λ = 2 TeV and the electroweak scale, that we take here as Mt, one gets 3

∆T = ∆cT ξ = [−0.003 cH + 0.16 (cL − cR)] ξ , (8.17)

∆S = ∆(cB + cW )
M2
W

Λ2
=
[
0.001 cH − 0.01 cR − 0.004 cL − 0.03 c

(3)
L

]
ξ , (8.18)

∆
δgbLZ

gbLZ
=

∆[cL + c
(3)
L ]

1− (2/3) sin2 θW
ξ ' ∆[cL + c

(3)
L ]ξ (8.19)

=
[
0.01 cR − 0.03 cL + 0.06 c

(3)
L − 0.17 cLL − 0.0064 c

(8)
LL + 0.08 cLR

]
ξ ,

where ∆ci ≡ ci(Mt)− ci(2 TeV) and recall that ξ ≡ g2
∗v

2/Λ2. Notice that even if a PLR

symmetry of the BSM sector enforces cL + c
(3)
L = 0, we can have a nonzero cL + c

(3)
L

from the RG running, since the SM does not respect this parity. The fact that the three

quantities above are constrained at the per-mille level implies that the top coefficients,

3The effects of cH and those of cL,R on T were already calculated in Ref. [127] and Ref. [130]
respectively.

105



106 Part II – EFT of the physics at the EW scale

{cL, cR, . . . } × ξ cannot be of order one. Obviously, we are barring the possibility of

cancellations between the initial value of the Wilson coefficients at the scale Λ and the

radiative effects ∼ γci log(Λ/Mt), that could only be possible by accident.

8.2 RGE impact on the predictions of Wilson coefficients

Here we want to study the impact of the evolution of the Wilson coefficients from the

UV scale Λ down to the electroweak scale at which they affect Higgs physics. This run-

ning can modify the predictions arising from BSM models. We present three examples:

two-Higgs doublet models (2HDM), universal theories, and scenarios with sizeable cL,R,

such as composite-top models.

2HDM and Supersymmetric theories: At tree-level, assuming ordinary R-parity,

the only d = 6 operators that can be induced in supersymmetric models arise from the

exchange of the extra Higgses since these are the only R-even heavy fields. In particular,

the MSSM contains an extra heavy Higgs doublet. It is therefore well motivated to look

for the impact of an extra heavy Higgs doublet in SM Higgs physics.

Denoting the heavy Higgs by H ′, defined to have YH′ = 1/2, its relevant couplings to

the SM fermions and Higgs are given by

L′ = −αuyuQ̄LH̃ ′uR − αdybQ̄LH ′dR − αeye l̄LH ′eR − λ′H ′†H|H|2 + h.c.+ · · · , (8.20)
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Figure 8.1: Relative modification of the Higgs coupling to fermions, δghff/ghff =
−cy

f

ξ, Eq. (6.26), at tree-level (dashed line) and after including RGE effects from Λ
to the electroweak scale (solid lines) as a function of tanβ in an MSSM scenario with
Λ = MH ′ = 600 GeV and unmixed stops heavy enough to reproduce mh = 125 GeV.
Left plot: top coupling. Right plot: bottom (lower solid line) and tau (upper solid line)

couplings.

106



Chapter 8 – Anomalous dimensions and Higgs physics 107

where αu,d,e are constants and we assume that λ′ is a real number. In particular 2HDMs,

these constants are

αu = αd = αe = tanβ , for type-I 2HDM (8.21)

αu = − cotβ , αd = αe = tanβ , for type-II 2HDM (MSSM) (8.22)

where tanβ defines the rotation from the original basis, in which only one Higgs couples

to a given type of fermion, to the mass-eigenstate basis before EWSB. At the order we

work (∼ v2/Λ2), tanβ coincides with that defined in the MSSM. Integrating out the

heavy doublet at tree-level, we obtain the following nonzero coefficients for the third-

family d = 6 operators:

g2
∗cyt = αtλ

′ , g2
∗cyb = αbλ

′ , g2
∗cyτ = ατλ

′ , g2
∗λc6 = λ′2 ,

g2
∗c

(8)
LR = 2Ncg

2
∗cLR = −α2

t y
2
t , cytyb = αtαb , cytyτ = αtατ .

(8.23)

We have used (Q̄LtR)(t̄RQL) = −(Q̄LT
AγµQL)(t̄RT

AγµtR)− (Q̄Lγ
µQL)(t̄RγµtR)/(2Nc)

and now Λ = MH′ . Under the RGE flow of Eqs. (8.6)-(8.8) the operators Oyf mix with

OLR,O(8)
LR, Oyuyd and Oyuyτ . In the type-II 2HDM, we obtain in the one-loop leading-log

approximation and neglecting O(λ, g2, g′2) corrections:

g2
∗cyt(mh) = −λ

′

tβ

[
1− 21y2

t

16π2
log

MH′

mh

]
+

3y4
t

4π2t2β
log

MH′

mh
,

g2
∗cyb(mh) = λ′tβ

[
1− y2

t

2π2
log

MH′

mh

]
+

y2
t

16π2

[
5
λ′

tβ
− 14y2

t

]
log

MH′

mh
,

g2
∗cyτ (mh) = λ′tβ

[
1− 3y2

t

8π2
log

MH′

mh

]
+

3y2
t

8π2

[
λ′

tβ
− 2y2

t

]
log

MH′

mh
, (8.24)

with tβ ≡ tanβ.

To illustrate the impact of these radiative effects, let us consider the MSSM, a model

which predicts λ′ = (1/8)(g2 + g′2) sin 4β at tree-level (see for instance Ref. [131]). We

take the stop mass scale Mt̃ large enough to get mh ' 125 GeV through the well-known

loop corrections to the Higgs quartic coupling, which at one-loop and zero stop mixing

read:

λ(mh) =
1

8
(g2 + g′2) cos2 2β +

3y4
t

16π2
log

M2
t̃

M2
t

, (8.25)

which is precise enough for our illustrative purposes. For consistency we must also

include similar radiative corrections to λ′, which read at one-loop:

λ′(MH′) =
1

8
(g2 + g′2) sin 4β − 3y4

t

8π2tβ
log

M2
t̃

M2
H′

. (8.26)
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Figure 8.2: Lower bound on MH ′ as a function of the upper bound on the relative
deviation δghbb/ghbb, in an MSSM scenario with tanβ = 5 and unmixed stops heavy
enough to reproduce mh = 125 GeV. The dashed line corresponds to a tree-level analysis
(parameters calculated at the scale MH ′ ), while the solid line includes the RG running

from MH ′ down to mh.

This gives the value of λ′ that we can then plug in Eq. (8.24) to obtain the RG-improved

corrections for ghff induced by integrating out the heavy Higgses. The result is shown

as a function of tβ in Fig. 8.1, which compares the tree-level result (dashed lines) and

the one-loop result (solid lines) which takes into account the running from Λ = MH′

down to the electroweak scale mh. One sees that the effect of the running can be

quite significant, easily ∼ 50% or more. The importance of this effect can be further

appreciated in Fig. 8.2, which shows the lower bound one could set on MH′ from an

upper bound on δghbb/ghbb, the deviation of ghbb from its SM value. By comparing the

tree-level bound (dashed line) and the one-loop bound (solid line) one sees that the

bound is shifted significantly by the inclusion of the RG corrections from MH′ to mh.

Finally, notice that cH , which is not generated in the MSSM at tree-level since there

are no heavy R-even singlet states, is not generated by the RGE evolution and therefore

is also zero in the leading-log approximation.

Universal theories and composite Higgs models: Universal theories predict cyu =

cyd = cye . This prediction is modified by the evolution of these coefficients from the scale

Λ, where they are generated, down to the electroweak scale. In particular, for Λ = 2

TeV, we find that the breaking of universality due to the top Yukawa coupling gives

cyt(mh) = cyb(mh)

(
1− 8y2

t

16π2
log

Λ

mh

)
− 3y2

t cH
16π2

log
Λ

mh
' 0.88cyb(mh)− 0.05cH ,

cyb(mh) = cyτ (mh)

(
1− y2

t

16π2
log

Λ

mh

)
' 0.98cyτ (mh) . (8.27)
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This is a sizeable departure from universality for cyt that will have to be taken into

account when fitting these models to data. Also it is worth noticing that in models in

which only cH is generated (models with only heavy singlets) and cyf (Λ) = 0, the value

of cyf is also very small at low-energies, cyf (mh) ' 0. In the minimal composite Higgs

model, we also have the prediction cH = 1 [99]. We find that the RG effects give a

∼ 20% reduction of this prediction for Λ ∼ 2 TeV.

Models with a non-SM top: The top is the only quark whose properties are not yet

measured with high precision, allowing then sizeable deviations from their SM predicted

values. There are also theoretical motivations to expect the top to be the quark with the

largest deviations from the SM predictions, as it is the quark with the largest coupling

to the Higgs. This is specially true in composite Higgs models where one expects the top

to show also certain degree of compositeness. In these examples we can expect sizeable

values for cR, c
(3)
L , cL and cLR that can affect, at the one loop-level, the Higgs coefficients

cH and cyf . As it is clear from Eq. (8.10) the effects of cR on the RGE evolution of cH

and cyf are very small. Nevertheless, those from c
(3)
L and cL are quite sizeable, even in

the limit cL ' −c(3)
L as required in order to avoid large tree-level contributions to Zbb̄.

Unfortunately these coefficients also give large one-loop effects to the T and S parameters

and Zbb, as Eqs. (8.17)-(8.19) show, and this bounds them to be small (unless ξ is small).

Interestingly, the coefficient c
(8)
LR is not constrained by Eqs. (8.17)-(8.19). Therefore it

can give sizeable contributions to the RGE evolution of cyt :

cyt(mh) = cyt(Λ)− 2y2
t

3π2
c

(8)
LR log

Λ

mh
, (8.28)

that is of order ∼ 15%, assuming c
(8)
LR ∼ 1. A nonzero c

(8)
LR could arise from integrating

out a massive gluon coupled to the top.

8.3 Summary

We have calculated the anomalous dimensions of the 5 tree-level operators of the list

Eq. (6.37), which allows us to calculate the running of the coefficients from the high-

energy scale Λ where they are generated down to the electroweak scale. All technical

details of these calculations are discussed in Appendix B. Since the S and T parameters,

and the Zbb̄ coupling are very well constrained, we have also calculated the anomalous

dimension of the operators contributing to these quantities. In this way, we can put

indirect bounds on Higgs operators.
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We have applied our results to BSM models such as the MSSM, universal theories (as

composite Higgs models) and models with non-standard top couplings. In such models

we have evaluated the leading-log corrections to the predictions for the Higgs couplings.

The corrections from the running can be quite large for Λ ∼ few TeV, as Fig. 8.2 shows.

Our calculation of the anomalous dimensions is an aspect of the physics of the d = 6

operators which will become more relevant when we have better measurements of the

Higgs couplings.
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9. Interplay between Higgs and

Electroweak observables

In this Chapter we discuss the anomalous dimension matrix of a set of 13 dimension-six

(dim-6) operators composed only of gauge bosons and Higgs fields and estimate the

impact of these RG mixing effects on experimental measurements. 1 To be completely

general about the possible new physics scenarios one would need to compute the anoma-

lous dimension matrix for all the 59 dimension-six operators (the number of independent

operators for one generation of fermions [101, 129]). A given set of experimental observ-

ables, however, receives contributions only from a subset of these operators. The dim-6

operators we are focussing our attention on is a particularly interesting subset as they

capture most of the possible deformations of the electroweak sector studied at LEP (i.e.,

electroweak precision tests and triple gauge couplings) and of the Higgs sector being

currently studied at the LHC. At the same time, these operators are among the most

important ones generated by universal new physics theories. 2

The Wilson coefficients of the dim-6 operators studied in this Chapter have been

constrained at different levels of precision. In particular, the ones contributing to LEP

electroweak precision observables have been measured at the per mille level, whereas

those parametrizing triple gauge couplings (TGC) and Higgs coupling data have been

measured at most at the percent level. This hierarchy in the size of constraints means

that, despite the one loop factor, the RG contributions of a weakly constrained coupling

to a strongly constrained one can be of the same order as, or even larger than, the

bound on the strongly constrained coefficient. This means that the RG-mixing effects of

such weakly constrained Wilson coefficients can be measured/constrained by precision

measurements of other couplings to which experiments are more sensitive. Indeed, we

find interesting instances of coefficients which receive stronger bounds from the RG

mixing than from the direct tree-level constraint. For example, we show that the Wilson

1Some elements of the anomalous dimension matrix have been previously calculated in the literature,
see the discussion of the preceding Chapters and Refs. [5, 6, 100, 123, 127, 128, 132–136].

2By universal theories we mean theories in which the BSM sector is flavour universal and in addition
any new vector state couples to fermions via the SM SU(2)×U(1) currents, see for instance Ref. [106].
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coefficients parametrizing deviations in some of the anomalous TGC observables and

the correction to the Higgs kinetic term ĉH receive a stronger bound via their RG-

mixing contribution to the electroweak parameters Ŝ, T̂ ,W , Y and Γh→γγ than the

direct constraint.

The dimension-six operator basis

We work in the basis defined in Chapter 6, up to a slight rotation (to be defined below)

that is motivated by the physics we are interested in: EW observables, Higgs couplings

to gauge bosons and QCD observables involving gluons only and the relations among

each other as imposed from the running between the scale of new physics to the weak

scale. These include the four electroweak oblique pseudo-observables Ŝ, T̂ , W and Y ,

the three triple gauge coupling observables gZ1 , κγ and λγ , the Higgs couplings to vector

bosons, the gluon oblique parameter Z [106] and the anomalous triple gluon coupling

parameter ĉ3G. We describe these observables in more detail in Sec. 9.2.2 and Sec. 9.3.

We have not included the Higgs decays to fermions in our list of observables. The only

further dim-6 operators contributing to such observables are the operators Oyu ,Oyd and

Oye , defined in Chapter 6, whose RG effects have been discussed in Chapter 8. These

are weakly constrained operators and new RG-induced constraints can be derived only

if they contribute to the running of more strongly constrained operators. In Chapter 8

OH = 1
2(∂µ|H|2)2 OT = 1

2(H†
↔
DµH)2

O6 = λ|H|6 OW = ig
2 (H†σa

↔
DµH)DνW a

µν

OB = ig′

2 (H†
↔
DµH)∂νBµν O2W = −1

2(DµW a
µν)2

O2B = −1
2(∂µBµν)2 O2G = −1

2(DµGAµν)2

OBB = g′2|H|2BµνBµν OWB = gg′H†σaHW a
µνB

µν

OWW = g2|H|2W a
µνW

aµν OGG = g2
s |H|2GAµνGAµν

O3W = 1
3!gεabcW

a ν
µ W b

νρW
c ρµ O3G = 1

3!gsfABCG
Aν
µ GBνρG

C ρµ

Table 9.1: 14 CP-even operators made of SM bosons. The operators have
been grouped in two different categories corresponding to operators of the form
(SM current)× (SM current) (first group) and operators which are not products of SM

currents (bottom group).
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we have shown that there is no such contribution and therefore we do not include these

operators in our analysis.

The bosonic operators of the basis used in this Chapter is defined in Tab. 9.1. The

only difference with respect to Chapter 6 is the set of operators

{OW ,OB,OWW ,OWB,OBB} (9.1)

that is in one-to-one correspondence with

{OW ,OB,OHW ,OHB,OBB} , (9.2)

of Chapter 6. The advantage of the choice made, Eq. (9.1), is that the anomalous

dimension matrix of the sector {OB,OW } ×{OBB,OWB,OWW } is block diagonal, see

Chapter 7. Eq. (9.1) is also in one-to-one correspondence with the operators used in

Ref. [100]

{OHW ,OHB,OWW ,OWB,OBB} . (9.3)

The four precision parameters Ŝ, T̂ , W and Y , which in our basis are parametrized

by four bosonic dim-6 operators, as we show in Sec. 9.2.2, are sufficient to describe

all possible dim-6 contributions to the e+e− → f+f− observables at LEP1 and LEP2,

only in the limit of universal new physics. As explained in Chapter 6, to be completely

general about possible new physics scenarios it would be necessary to include two more

operators that contribute to the e+e− → f+f− experiment [6, 108]:

OL = (iH†
↔
DµH)(L̄Lγ

µLL) , O1,2
LL = (L̄1

Lσ
aγµL1

L)(L̄2
Lσ

aγµL2
L) , (9.4)

where the former affects the SM coupling of the Z boson to the left-handed leptons,

and the latter affects the measurement of GF (recall that the super-indices denote the

fermion family). There are enough measurements to simultaneously constrain all six

operators at the per mille level [137]. The RG contributions of {OL,O1,2
LL} to the other

operators has been discussed in Chapter 8. In this Chapter we do not study the possible

RG-contributions of the operators of Tab. 9.1 to {OL,O1,2
LL}. Such RG-contributions

could be used to impose some bounds on the weakly constrained operators of Tab. 9.1

since {OL,O1,2
LL} are constrained at the per-mil level. Such an analysis would require

computing many more elements of the full anomalous dimension matrix as well as en-

larging the list of observables under consideration; this analysis would be interesting but

beyond the scope of the present thesis.

Let us stress that the physics of the operators discussed in this Chapter is self-

contained in the following sense. We have identified a set of particularly interesting
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observables and its corresponding independent set of operators. We compute the RG

equations by working out the (off-shell) effective Lagrangian. Then, operators not in-

cluded in the basis are radiatively generated and redefined back to our basis at the end

of the calculation, see Appendinx D for a more detailed discussion.

9.1 One-loop scaling of EW and Higgs operators

In general, quantum effects mix all the operators among themselves when going from

the scale of new physics down to the scale at which the experimental measurements

are performed. However, the 3 operators with gluons, OGG,O2G and O3G, constitute a

separate sector that does not mix with the other 11 bosonic operators at one-loop. 3 So,

even if OGG affects Higgs physics by controlling the dominant production mode of the

Higgs boson at the LHC, it can be treated separately from the 3 other Higgs observables

we are interested in here. Furthermore since the Higgs self-interactions have not been

measured yet, and since O6 does not enter into the anomalous dimensions of any dim-6

operator other than itself, it can also be omitted from our analysis. For the Higgs- and

EW-sector RG study, we can thus restrict the analysis to the following set of 10 dim-6

operators

{OH ,OT ,OB,OW ,O2B,O2W ,OBB,OWW ,OWB,O3W } , (9.5)

and compute the corresponding anomalous dimension matrix. We include all the one-

loop contributions proportional to ci that depend on

{
g′, g, gs, λ, yt

}
, (9.6)

where g′, g and gs are the respective U(1)Y , SU(2)L and SU(3)c gauge couplings, λ is the

Higgs quartic coupling and yt is the Yukawa coupling of the top quark. I.e. we neglect

the contributions proportional to the Yukawas of the light fermions (yb/yt ∼ 0.02, where

yb is the bottom quark Yukawa).

As in the previous Chapter, we regularized the loop integrals using dimensional reg-

ularisation and used MS subtraction scheme. We performed the computation in the

unbroken phase of the SM and in the background field gauge, with the gauge fixing

term

Lg.f. = − 1

2ξA
(D(A)

µ δAaµ)2 , (9.7)

3The only exception is a contribution fromO2B to the RG ofO2G, see Tab. 9.7. This mixing, however,
is phenomenologically not very relevant since the Wilson coefficient of O2B is strongly constrained, as we
show in Sec. 9.2.2. In Sec. 9.3 we present the anomalous dimension of the three operators with gluons.
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where δA = {δB, δW, δG} is the quantum field with respect to which the dim ≥ 4

SM action is path-integrated and D
(A)
µ is the covariant derivative with respect to the

corresponding background field A = {B,W,G}. A difference with respect to the previous

Chapters is that we performed the calculations with arbitrary gauge fixing parameters

ξA. In Tab. 9.2-9.3, we give the one-loop anomalous dimensions of the operators of

Eq. (9.5), in the basis defined in Sec. 9. We recall that

γci = 16π2 dci
d logµ

. (9.8)

As we have found in Chapter 8, upon computing the effective action we find counter-

terms which correspond to dim-6 operators that are not in our basis (the computation

does not know our choice of basis). These radiatively-generated redundant operators

need to be redefined into operators present in our basis. Upon redefinition, these re-

dundant operators contribute to the anomalous dimensions of the operators in our basis

at the same order as other direct contributions coming from one-particle-irreducible

graphs. For details on the radiatively generated operators and how we deal with the

redundant ones, see Appendix D. The matrices of Tabs. 9.2-9.3 already contain these

indirect effects and the physics can be read straightforwardly by inserting those coef-

ficients in tree-level processes. As a consequence of the Nielsen identity, the effective

action evaluated on-shell (or equivalently redefining away redundant operators) is gauge

invariant and indeed we have checked that the results of Tabs. 9.2-9.3 are independent

of the gauge fixing parameters ξA of Eq. (9.7).

Apart from gauge invariance, there is another non-trivial consistency check that we

have performed. The current-current operators in the left box of Tab. 9.1 can be related

to each other and to other current-current operators containing fermions by using the

SM EoM, or equivalently by carrying out field redefinitions. In a hypothetical theory

cH cT

γc
H

− 9
2
g2 − 3g′2 + 24λ+ 12y2

t −9g2 + 9
2
g′2 + 12λ

γc
T

3
2
g′2 9

2
g2 + 12λ+ 12y2

t

γc
B

− 1
3

− 5
3

γc
W

− 1
3

− 1
3

other γc
i

’s 0 or O(yl) 0 or O(yl)

Table 9.2: Anomalous dimension matrix for the Wilson coefficients of the dim-6
bosonic operators, in the basis defined in Sec. 9, See Tab. 9.3 for the rest of anomalous

dimensions.
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without fermions 4, some contributions of the operators in the left box of Tab. 9.1

would vanish using the EoM, i.e. they would form an over-complete set of operators.

This would also imply relationships between independently computed entries in the

anomalous dimension matrix or, in other words, the anomalous dimensions of this over-

complete set are invariant under changes in the field coordinates that respect the SM

gauge symmetries. Our matrix passes this consistency check as we shall discuss in detail

in Appendix D.3.

cB cW c2B c2W

γc
H

− 9
4
g′2(g′2 − 2g2)− 6λg′2 9

4
g2(2g′2 − g2)− 36λg2 − 141

16
g′4 + 3g′2λ 63

8
g4 + 51

16
g2g′2 + 18λg2

γc
T

− 9
4
g′2g2 − 6λg′2 − 9

4
g′2g2 3g′4 + 9

8
g′2g2 + 3λg′2 9

8
g′2g2

γc
B

g ′2

6
+ 6y2

t
g 2

2
59
4
g′2 − g 2

4

γc
W

g ′2

6
17
2
g2 + 6y2

t

(
29
8
− 53g ′2

4g 2

)
g′2 79

8
g2 + 29

4
g′2

γc
2B

− 2
3
g′2 0 94

3
g′2 0

γc
2W

0 − 2
3
g2

(
53
12
− 53g ′2

4g 2

)
g′2 331

12
g2 + 29

4
g′2

γc
BB

0 0 0 0

γcWW
0 0 0 0

γc
WB

0 0 0 0

γc
3W

0 0 0 0

cBB cWW cWB c3W

γc
H

0 0 0 0

γc
T

0 0 0 0

γc
B

0 0 0 0

γc
W

0 0 0 0

γc
2B

0 0 0 0

γc
2W

0 0 0 0

γc
BB

g ′2

2
− 9g 2

2
+ 6y2

t + 12λ 0 3g2 0

γcWW
0 − 3g ′2

2
− 5g 2

2
+ 6y2

t + 12λ g′2 5
2
g2

γc
WB

2g′2 2g2 - g
′2

2
+ 9g 2

2
+ 6y2

t + 4λ − g 2

2

γc
3W

0 0 0 53
3
g2

Table 9.3: Anomalous dimension matrix for the Wilson coefficients of the dim-6
bosonic operators, in the basis defined in Sec. 9, see Tab. 9.2 for the rest of anomalous

dimensions.

4The anomalous dimension matrix of this fermionless theory is related, though not equal, to the
anomalous dimension matrix we have computed, that is why considering this hypothetical theory pro-
vides a non-trivial test of our computation.
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9.2 RG-induced contraints on EW and Higgs observables

In this Section we discuss the possibility to use the RGE’s to derive constraints on the

Wilson coefficients at the weak scale by requiring that none of the RG contributions to

these weak-scale Wilson coefficients exceeds the direct bounds [100]. Since the RGE’s

mix various operators, it becomes possible to put tight constraints on operators loosely

constrained by direct measurements via their RG contributions to more severely con-

strained operators. Then, in Sec. 9.2.2, we apply our method and use EW precision data,

triple gauge couplings measurements and Higgs data to derive RG-induced bounds on

the set of 10 observables we are interested in.

Renormalizing, order by order, the effective action, the logarithmically divergent terms

computed in the previous Section are absorbed in the definition of the renormalized Wil-

son coefficients. Allowing for arbitrary cancellations in the definition of the renormalized

coefficients renders the 1-loop effects small and the indirect bounds which can be ob-

tained in this way are quite weak [138] and not competitive with direct bounds from

Higgs physics and anomalous TGC measurements. We follow a different approach, al-

ready outlined in Ref. [100]. We are interested in obtaining indirect bounds on the UV

value of the Wilson coefficients from low-energy experiments, in this case the 1-loop

effect is enhanced by ∼ log Λ/mH . Moreover, we assume that no tuned cancellations

(or correlations) are present in the definition of the renormalized coefficients and require

each log-divergent term not to exceed the direct bounds. In this way, our indirect bounds

are much stronger than in Ref. [138] and, more importantly, they are useful in order to

obtain insight into the UV physics. In fact, if any of our RG-induced bounds would be

violated by a direct measurement this would imply a particular pattern of cancellation

(or correlation) in the UV dynamics.

9.2.1 How much fine-tuning is needed to accommodate the data?

The electroweak and Higgs observables we are interested in (specified in Sec. 9.2.2)

receive contributions from a particular linear combination of Wilson coefficients, suitably

multiplied by the SM couplings:

(obs)i = κi + ωijcj ≡ κi + ĉi → δ(obs)i = ĉi , (9.9)

where κi is the SM contribution, the ck’s are the Wilson coefficients and ωij is a matrix

containing the SM couplings and ratios of scales (ω ∼ O(m2
W /Λ

2)). We defined ĉi

as the linear combinations of the Wilson coefficients which contribute directly to each

observable (obs)i and we shall refer to them in the following as observable couplings, with
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a slight abuse of language. If the new combinations ĉi are independent, this corresponds

to a change of basis such that to each operator corresponds an observable; we shall call

this the observable basis.

As an example, consider the process h → γZ which receives a contribution from the

SM (in this case at one loop) as well as a direct contribution from a linear combination

of the dim-6 operators. We parametrize this contribution with the observable coupling

ĉγZ , to be defined in Eq. (9.25), which is related to the Wilson coefficients of our basis

as (cθW = cos θW and sθW = sin θW where θW is the mixing angle)

ĉγZ =
m2
W

Λ2

(
2c2
θW
cWW − 2s2

θW
cBB − (c2

θW
− s2

θW
)cWB

)
. (9.10)

The above relation defines the coefficients ωγZ,j for this particular observable.

Now, suppose that this set of observables receives lower and upper bounds from

experimental measurements:

δ(obs)i|mh = ĉi(mh) = ωij(mh)cj(mh) ∈ [εlowi , εupi ] . (9.11)

The observable coupling ĉi(mh) (constrained at low energy) is related, through the

running, to the high-scale value of the Wilson coefficients cj(Λ), which is not directly

known since it is determined by the BSM degrees of freedom that have been integrated

out. The matrix ωij(mh) also runs with the scale (in the example of Eq. (9.10) this

would be the running of g, g′ and v inside mW and θW ), however we are not interested

in such a running because ωij is determined by measurements performed at the EW

scale and because, for the purpose of this work, we are not interested in the UV value of

the SM couplings. This is the reason why we have not taken care of the contributions of

the dim-6 operators on the SM couplings, parametrized by κi in Eq. (9.9), which would

only be necessary if we wanted to relate ωij(mh) to ωij(Λ) at the order we are working.

This discussion leads us to define the scale-dependent observable couplings as

ĉi(µ) ≡ ωij(mh)cj(µ) , (9.12)

obtaining

δ(obs)i|mh = ĉi(mh) = ĉi(Λ)− 1

16π2
γ̂ij ĉj(Λ) log

(
Λ

mh

)
, (9.13)

where

γ̂ij ≡ ωik(mh) γkl ω
−1
lj (mh) (9.14)

and γkl is the matrix computed in the previous Section. Our interest in Eq. (9.13) is

twofold: we want to find instances where a less constrained operator can mix with a
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more constrained one by appearing in its RGE’s and secondly (but closely related), to

learn about the new degrees of freedom at the matching scale. In the following we shall

work at leading-log order, which is fine if the hierarchy between the new physics scale

Λ and the EW scale is not too big.

The fundamental assumption we make in order to obtain an indirect constrain on

the ĉj(mh) through the RG is that we require each term in the sum on the r.h.s. of

Eq. (9.13), proportional to some coefficient ĉj , to be contained in the experimental

intervals associated to the observable δ(obs)i|mh :

(1− δi)ĉi(Λ) ∈ [εlowi , εupi ] , (9.15)

− 1

16π2
γ̂i̂ĉ̂(mh) log

(
Λ

mh

)
∈ [εlowi , εupi ] , (9.16)

where we defined δi = γ̂ii/(16π2) log(Λ/mh) and in the last line the index ̂ is not

summed over.5 We have also used the fact that substituting ĉj(Λ) for ĉj(mh) in the

γ̂ij ĉj term of Eq. (9.13) amounts to corrections O
(
(4π)−4 log2(Λ/mh)

)
that are beyond

our precision (the same is true for the evaluation of γij). Notice that this assumption is

not only a requirement of the absence of fine-tuning but also an hypothesis on the UV

physics, since particular relations, due to symmetry or dynamical accidents, between

those combinations could be generically found when considering a BSM theory. From

our bottom-up approach we parametrize also this absence of correlations as an absence

of tuning. From Eq. (9.15) we can put bounds on the matching-scale Wilson coefficients

cj(Λ):

cj(Λ) ∈
[∑

i

(1− δi)−1ω−1
ji ε

low
i ,

∑

i

(1− δi)−1ω−1
ji ε

up
i

]
. (9.17)

Notice that, as expected, these bounds grow quadratically weaker with the increase of

the UV scale Λ since ω−1 ∼ Λ2/m2
W . Using Eq. (9.16), instead, we can put an RG-

induced bound on the observable δ(obs)j |mh using the direct constraints on δ(obs)i|mh ,

Eq. (9.11):

if γ̂ı̂j > 0 : δ(obs)j |mh ∈
16π2

log (Λ/mh)
(γ̂ı̂j)

−1[−εupı̂ ,−εlowı̂ ] ,

if γ̂ı̂j < 0 : δ(obs)j |mh ∈
16π2

log (Λ/mh)
(γ̂ı̂j)

−1[εlowı̂ , εupı̂ ] .

(9.18)

The indirect bounds in Eq. (9.18), grow logarithmically stronger with the increase of the

UV scale Λ. However, since the expected effects from new physics decrease quadratically

with Λ, assuming order one coefficients ci, even if the RG-induced bounds on the observ-

ables become slightly stronger, their power in investigating the UV degrees of freedom

5In the following we shall denote with a hat all repeated indices not summed over.
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becomes much weaker for higher values of Λ, as is clear from Eq. (9.17). It might seem

that these bounds are not significant because of the loop factor in the above equation;

all the εi’s are, however, not of the same order and if |εlow,upi | � |εlow,upj |, the bound

in the above equation can be stronger than the direct bound on δ(obs)j |mh , in spite

of the loop factor. The RG-induced bounds are, thus, significant only when a weakly

constrained coupling appears in the RGE of a strongly coupled one.

Once new physics effects will, hopefully, be observed and the constraints of Eq. (9.11)

will not include the zero value in the allowed interval (0 < εlowi < |δ(obs)i|mh < εupi ),

another interesting information that could be extracted from RG effects is a quantifica-

tion of how much tuned, among themselves, are the electroweak and Higgs observables.

First of all, let us define the fine-tuning in an observable as [139]

∆i ≡ Maxj

∣∣∣∣
∂ log δ(obs)i|mh
∂ log ĉj(Λ)

∣∣∣∣

' Max

{ |ĉi(Λ)|
|δ(obs)i|mh

,
log (Λ/mh)

16π2

Maxj 6=i |γ̂i̂| |δ(obs)̂|mh
|δ(obs)i|mh

}
, (9.19)

where in the second step we separated the diagonal contribution from the off-diagonal

ones and, for the diagonal term, we neglected the loop contribution since ĉi(Λ) enters al-

ready at tree level and this would be its leading contribution to the tuning. In particular,

the fine-tuning ∆i will satisfy,

∆i ≥
log (Λ/mh)

16π2

Maxj 6=i |γ̂i̂| |δ(obs)̂|mh
|δ(obs)i|mh

>
log (Λ/mh)

16π2

Maxj 6=i |γ̂i̂| εlow̂
εupi

, (9.20)

and one might be able to conclude that a certain degree of fine-tuning among the con-

tributions to the RG flow of some operator is necessary.

9.2.2 EW and Higgs observables

Let us now apply the general formulas of the previous Section to the electroweak and

Higgs observables we want to constrain. We have considered the 10 EW and Higgs opera-

tors of (9.5) to parametrize BSM corrections to the SM Lagrangian. Let us now describe

in detail the set of pseudo-observables, briefly mentioned in Sec. 9, that constrain all

these operators and form our basis of observables. These include the four electroweak

oblique parameters Ŝ, T̂ , Y and W ; the three anomalous triple gauge coupling (TGC)

and three observables related to Higgs physics: the decays to γγ, γZ and a universal

rescaling of all the branching ratios [108]. To derive the RG-induced constraints on these

observables we first need to relate them to the operators in (9.5), that is to define the

transformation matrix, ωij , that connect the basis in (9.5) to the observable basis.
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We begin with the electroweak precision observables, which are constrained by mea-

surements at LEP1, LEP2 and Tevatron. The first step of the analysis is to fix the SM

parameters g, g′ and v by the three most precise measurements: the Fermi constant GF

in muon decays, the fine-structure constant αem and the Z-boson mass mZ . With the

input parameters fixed, the SM gives predictions for observables such as Z-pole measure-

ments at LEP 1, the Tevatron measurement of the W -mass and LEP 2 measurements of

the e+e− → f+f− cross-sections. New physics can affect this analysis by either changing

the relationship between the input parameters g, g′ and v to the measurement of GF ,

αem and mZ or by directly contributing to the other measurements. All the deviation in

the above observables induced by the operators we consider, (9.5), can be parametrized

by the Ŝ, T̂ , W and Y parameters [106] through

∆LEWPT = −T̂ m
2
Z

2
ZµZ

µ − Ŝ

4m2
W

gg′v2

2
(W 3

µνB
µν)− W

2m2
W

(∂µW 3
µν)2 − Y

2m2
W

(∂µBµν)2.

(9.21)

The contribution of the Wilson coefficients of the operator set in (9.5) to the above

observables is given by,

T̂ = ĉT (mW ) =
v2

Λ2
cT (mW ) ,

Ŝ = ĉS(mW ) =
m2
W

Λ2
[cW (mW ) + cB(mW ) + 4cWB(mW )] ,

Y = ĉY (mW ) =
m2
W

Λ2
c2B(mW ) ,

W = ĉW (mW ) =
m2
W

Λ2
c2W (mW ) . (9.22)

The above parameters have been measured very precisely and are constrained at the per

mille level. We present the 95 % CL bounds on these parameters, evaluates at the top

mass mt, in Tab. 9.4.

A second set of independent measurements that constrain the operator set in (9.5)

are the TGC that were measured in the e+e− → W+W− process at LEP2. The phe-

nomenological Lagrangian to describe deviations in the TGC observables from their SM

values, is

∆L3V = ig gZ1 cθWZ
µ
(
W+νŴ−µν −W−νŴ+

µν

)
+ ig

(
κzcθW Ẑ

µν + κγsθW Â
µν
)
W+
µ W

−
ν

+
ig

m2
W

(
λZcθW Ẑ

µν + λγsθW Â
µν
)
Ŵ−ρµ Ŵ+

ρν , (9.23)

where V̂µν = ∂µVν − ∂νVµ, the photon field Aµ = cθWBµ + sθWW
3
µ has field-strength

Âµν , while Zµ = cθWW
3
µ − sθWBµ has field-strength Ẑµν and we use sθW ≡ sin θW =
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g′/
√
g2 + g′2, cθW ≡ cos θW = g/

√
g2 + g′2 and e = gsθW . Note that the above La-

grangian has only three independent parameters at the dim-6 level taken to be gZ1 , κγ

and λγ here; the other two can be expressed as : λZ = λγ and κZ = gZ1 − t2θW κγ .

These relations are a consequence of the accidental custodial symmetry that is pre-

served by the dim-6 operators entering in the TGC [140]. The SM contribution is given

by (gZ1 )SM = (κγ)SM = 1 and (λZ)SM = 0. The corrections induced by the dim-6

operators in our basis are given by:

δgZ1 ≡ ĉgZ(mW ) = −m
2
W

Λ2

1

c2
θW

cW (mW ) , δκγ ≡ ĉκγ(mW ) =
m2
W

Λ2
4cWB(mW ) ,

λZ ≡ ĉλγ(mW ) = −m
2
W

Λ2
c3W (mW ) , (9.24)

where δgZ1 = gZ1 − (gZ1 )SM and δκγ = κγ − (κγ)SM . The constraints on these TGC

observables are at the percent level (see Tab. 9.4) and thus at least an order of magnitude

weaker than the constraints on the electroweak parameters in Eq. (9.22). Note that, for

this reason, in Eq. (9.24) we have ignored contributions to the e+e− →W+W− process

from the couplings in Eq. (9.21).

Higgs physics provides the three remaining observables for our basis of observables.

We consider the branching ratios h → γγ/Zγ and the correction to the Higgs kinetic

term,

∆LHiggs ⊃
ĉH
2

(∂µh)2 +
ĉγγe

2

m2
W

vhÂµνÂ
µν +

ĉγZ eg

m2
W cθW

vhÂµνẐ
µν . (9.25)

The above coefficients, in terms of the Wilson coefficients are given by

ĉH(mt) =
v2

Λ2
cH(mt),

ĉγγ(mt) =
m2
W

Λ2
(cBB(mt) + cWW (mt)− cWB(mt)) ,

ĉγZ(mt) =
m2
W

Λ2

(
2c2
θW
cWW (mt)− 2s2

θW
cBB(mt)− (c2

θW
− s2

θW
)cWB(mt)

)
.

(9.26)

We present the constraints on these three observables in Tab. 9.4. The coupling ĉγγ is

constrained at the per mille level although the constraint on the SM diphoton width

has been measured only with O(1) precision. This is because the SM width is already

one-loop suppressed and thus the current O(1) precision of measurement corresponds to

ĉγγ ≈ 10−3. The correction to the Higgs kinetic term ĉH on the other hand is poorly

constrained. This is because ĉH causes a universal shift in all the Higgs couplings and

thus drops out from the branching ratios. Moreover, if only gluon fusion production

channels are considered, the coupling cGG mimics the effect of ĉH . Therefore, to disen-

tangle the effect of cGG and constrain ĉH , Higgs production cross-sections in different
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channels have to be compared; in particular the weakly sensitive vector-boson fusion

(VBF) channels have to be considered.

As we have discussed in the previous chapter, based on their precision of measurement,

the observables can be divided into at least two groups. In the first group, containing

highly constrained operators, we have the four electroweak parameters and the Higgs

diphoton coupling (see Tab. 9.4),

{ĉS , ĉT , ĉW , ĉY , ĉγγ} , (9.27)

which have been measured at the per mille level. In the second group we have the hγZ

coupling, the couplings related to the three TGC observables κγ , g
1
Z , λγ and ĉH ,

{ĉγZ , ĉκγ , ĉgz, ĉλγ , cH} , (9.28)

which are much more weakly constrained. One can, in fact, further split the above set

into cH which is constrained only at the O(1) level and the other couplings that are

constrained at the few percent level.

We are interested in finding instances where the couplings from the second group

in Eq. (9.28) appear in the RGE’s of the first group of couplings in Eq. (9.27). To

Direct Constraint RG-induced Constraint

ĉS(mt) [−1, 2]× 10−3 [141] -

ĉT (mt) [−1, 2]× 10−3 [141] -

ĉY (mt) [−3, 3]× 10−3 [106] -

ĉW (mt) [−2, 2]× 10−3 [106] -

ĉγγ(mt) [−1, 2]× 10−3 [108] -

ĉγZ(mt) [−0.6, 1]× 10−2 [108] [−2, 6]× 10−2

ĉκγ(mt) [−10, 7]× 10−2 [137] [−5, 2]× 10−2

ĉgZ(mt) [−4, 2]× 10−2 [137] [−3, 1]× 10−2

ĉλγ(mt) [−6, 2]× 10−2 [137] [−2, 8]× 10−2

ĉH(mt) [−6, 5]× 10−1 [108] [−2, 0.5]× 10−1

Table 9.4: In this table we present the 95 % CL, direct constraints on the coefficients
in the observable basis (second column). The constraints on Ŝ and T̂ presented here the
ones obtained after marginalizing on the other parameters in the fit of Ref. [141]. In the
analysis we use the Ŝ, T̂ -ellipse from Ref. [141] with U = 0. Simultaneous constraints
on all three of the TGC observables do not exist in the literature, so we have provided
the individual constraints on the three couplings without taking into account correlations
between them [137]. In the third column we show the RG-induced constraint we are able

to obtain under the assumption of no fine-tuning in Eq. (9.29), for Λ = 2 TeV.
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124 Part II – EFT of the physics at the EW scale

check this we rotate the anomalous dimension matrix to the observable basis defined by

Eq. (9.22), Eq. (9.24), and Eq. (9.26). We present the anomalous dimension matrix in

the observable basis in Tab. 9.5. Using this, and fixing Λ = 2 TeV, we write numerically

Eq. (9.13) as

(ĉS , ĉT , ĉY , ĉW , ĉγγ , ĉγZ , ĉκγ , ĉgz, ĉλγ , ĉH)t (mt) ' (9.29)




0.9 0.003 −0.03 −0.08 −0.02 −0.02 −0.04 0.05 −0.01 0.001

0.03 0.8 −0.02 −0.009 0 0 −0.03 0.01 0 −0.003

0.001 0 0.9 0 0 0 −0.001 0.001 0 0

0 0 −0.001 0.8 0 0 0 −0.003 0 0

0 0 0 0 0.9 0 0.006 0 0.02 0

0 0 0 0 0 0.9 0.007 0 0.03 0

0 0 0 0 −0.02 −0.02 0.9 0 −0.01 0

0.0004 −0.0007 −0.0004 0.1 0 0 −0.0004 0.9 0 −0.0007

0 0 0 0 0 0 0 0 0.9 0

−0.02 0.03 0.01 −0.4 0 0 0.02 −0.3 0 0.8







ĉS(Λ)

ĉT (Λ)

ĉY (Λ)

ĉW (Λ)

ĉγγ(Λ)

ĉγZ(Λ)

ĉκγ(Λ)

ĉgz(Λ)

ĉλγ(Λ)

ĉH(Λ)




.

We can now derive the RG-induced constraints by using Eq. (9.18) assuming no fine-

tuning among the different terms in the RGE’s.

The strongest RG-induced constraints come from the direct bounds on the Ŝ, T̂ ,W

and Y parameters, i.e. the first four lines in Eq. (9.29). We require that each observable

coupling individually satisfies the four RG-induced constraints from these electroweak

precision parameters simultaneously. It is very important to take into account the

experimental correlations between Ŝ, T̂ ,W and Y while imposing these bounds[142–

144]. Note that the RG-mixing contributions to ĉW and ĉY , from the couplings in the

weakly constrained group in Eq. (9.28), is either absent or accidentally much smaller

than the ones to ĉS and ĉT (see the RG contributions to ĉW and ĉY in the third and

fourth row of Eq. (9.29)). We, therefore, look at the constraints on the Ŝ−T̂ plane taking

W = Y = 0. We use the Ŝ − T̂ ellipse in Ref. [141], which assumes W = Y = U = 0, to

derive our constraints. We present these RG-induced bounds and compare them with

the direct bounds in Tab. 9.4 and in Fig. 9.1. We find that for each of the couplings in

the second group we can derive a RG-induced constraint stronger than, or of the same

order of, the direct tree-level constraint. We also obtain RG-induced bounds from the

direct constraint on ĉγγ using the fifth line in Eq. (9.29) and Eq. (9.18),

ĉκγ ∈ [−0.2, 0.3] ,

ĉλγ ∈ [−0.05, 0.10] ,
(9.30)
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but at present these bounds are weaker than those from the direct bounds on electroweak

parameters.

Let us briefly comment on alternative choices for our observable basis. 6 For instance,

the Higgs decay observables related to h → W+W−, ZZ decays could have been alter-

natively chosen as part of our observable basis instead of two of the TGC observables

(κγ and gZ) but we have kept the TGC in our basis as they are measured more precisely

than these Higgs decay observables. This situation is likely to continue in the future.

Although, observables like the relative deviation of h → W+W−, ZZ with respect to

the SM would be strongly constrained at the 5 %(3 %) level at the LHC with 300 fb−1

( 3000 fb−1) data [145], the bounds on TGC are also expected to become stronger by

an order of magnitude at the LHC [145] so that the TGC would still be more precisely

measured than these Higgs observables. At linear colliders the decays h→W+W−, ZZ

are expected to be measured at the level of 0.5 % [145] and the TGC observables at the

10−4 level [146]; again the TGC observables would be more constrained.
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Figure 9.1: The blue ellipses represent the 68% (solid), 95% (dashed) and 99%
(dotted) CL bounds on Ŝ and T̂ as obtained in the fit of Ref. [141] with U = 0. The
straight lines represent the RG-induced contribution to the oblique parameters from the
weakly constrained observable couplings of Eq. (9.28), divided in Higgs couplings (a)
and TGC couplings (b), using the first two lines of Eq. (9.29), for Λ = 2 TeV. The
length of the lines corresponds to their present 95% CL direct bounds, see Tab. 9.4; the

line is green (red) for positive (negative) values of the parameters.

6In general, a change of observable basis modifies the anomalous dimension matrix of Tab. 9.5, also
for the observables which are maintained in the basis. Thus, the RG-induced constraints we have derived,
are applicable only to our particular choice of observables, and for an alternative choice the analysis must
be repeated. Note that for our choice of observable basis, h→ γγ does not receive a contribution from
the Ŝ parameter even though there is a dependence on cWB in the anomalous dimension. But cWB is
actually reconstructing the δκγ parameter.
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ĉ

κ
γ

0
4
(g

2
−
g
′2

)
1
1 2
g

2
+
g

′2

2
+

6
y

2 t
+

4
λ

0
2
g

2

γ
ĉ
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Table 9.5: Anomalous dimension matrix in the basis of observables.
We defined tθ

W

= tan θW .
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Finally, let us discuss the future prospects for these RG-induced effects. As the

measurement of the observables we have considered becomes more and more precise, it

may be possible to detect signs of new physics. In this case, since some of the observables

in Tab. 9.4 will be non-zero one would expect a deviation, via RG-mixing, also in other

observables, unrelated at tree level. Note that according to future projections, ĉγγ , the

TGC observables (ĉκγ , ĉgz) and ĉγZ would be measured at the 10−4 level [145, 146] at

linear colliders and thus all these observables would be sensitive to RG-induced mixing

effects of the couplings in Eq. (9.28), if they are above a minimal value. 7 We present

these minimum values in Tab. 9.6. If, instead, a deviation is detected in some observable

but no such RG-induced deviation in other observables is detected at the level hinted

by our analysis, then this would indicate a tuning (or a correlation) among the various

RG contributions to the direct measurement, see Eq. (9.19). Take, for example, the

first row of Tab. 9.6. Suppose we measure the deviation ĉλγ ∼ 1× 10−2, a value larger

than the minimum value presented in Tab. 9.6, while instead h→ γγ would still remain

compatible with zero with the reported sensitivity. From Eq. (9.19) we would then

conclude that a fine-tuning of the order ∆γγ & 5 would be necessary to accommodate

the data, or that some particular correlation in the UV physics is needed to induce such

cancellation.

Prospects |ĉκγ | |ĉγZ | |ĉλγ | |ĉH |

ĉγγ 4× 10−5 [145] 6× 10−3 - 2× 10−3 -

ĉγZ 3× 10−4 [145] 4× 10−2 - 1× 10−2 -

ĉκγ 2× 10−4 [146] - 1× 10−2 1× 10−2 -

ĉgZ 2× 10−4 [146] 0.4 - - 0.25

Table 9.6: In this table we present the minimum value of the couplings in Eq. (9.28)
to which direct measurements of the observables in the first column would be sensitive
via the one loop RG-mixing effects computed in this work. The long term projection for
the measurement precision for the observables in the first column is given in the second

column.
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128 Part II – EFT of the physics at the EW scale

9.3 Scaling of the gluon operators

In this Section we shall extend the results of the previous Sections and present also the

scaling of the bosonic operators that contain gluons, as defined in Tab. 9.1:

{O2G, OGG, O3G}. (9.31)

The anomalous dimension matrix is shown in Tab. 9.7, where the c3G self-renormalization

has been taken from Refs. [132, 133]. This matrix already contains the effect of the

redundant operators that are generated radiatively and, upon eliminating them, modify

the RG of the operators in Tab. 9.1, see Appendix D for details.

In the same spirit of Sec. 9.2, let us now turn to the observables which are sensitive

to these operators and review the present constraints. The Wilson coefficient c2G can

be put in one-to-one relation to the parameter Z introduced in Ref. [106] (analogous to

the W and Y electroweak parameters):

Z =
m2
W

Λ2
c2G. (9.32)

A bound on this parameter has been obtained by an analysis of dijet events at LHC [104]:

− 9× 10−4 . Z . 3× 10−4. (9.33)

c2G cGG c3G c2B c2W

γc
2G

266
9 g2

s 0 0 g′2
(

17
6 (Y 2

u + Y 2
d ) + 12YuYd

)
0

γc
GG

0 − 3
2g
′2 − 9

2g
2 + 12λ+ 6y2

t 0 0 0

γc
3G

0 0 22g2
s 0 0

Table 9.7: Anomalous dimension matrix for the Wilson coefficients of the dim-6
bosonic operators with gluons, in the basis defined in Sec. 9. The contributions to and
from the other coefficients of the operators in Eq. (9.5), not reported here, are zero.

7Future prospects for measurements at the Z-pole predict an enhancement of the precision, with
respect to the present one, of about one order of magnitude for ILC [146] and two orders of magnitude for
TLEP [147], depending on the observable. Moreover, from runs at energy

√
s ∼ 2mW , the measurement

of the W mass is predicted to become more precise by one (ILC) or two (TLEP) orders of magnitude.
This will imply an enhancement of the precision in the oblique parameters Ŝ, T̂ , W and Y . A more
detailed study of these future prospects is beyond the scope of this work, since our aim is only to show
some examples for future applications of the general idea of RG-induced bounds.
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A bound on cGG can be obtained from the analysis of the Higgs production cross section

at LHC. The relevant phenomenological Lagrangian is

Lh ⊃ ĉGG
hv

m2
W

g2
sG

A
µνG

µν A, (9.34)

where we defined

ĉGG ≡
m2
W

Λ2
cGG. (9.35)

The most recent bound, obtained in Ref. [108] after marginalizing over the other devia-

tions from the SM, reads

ĉGG ∈ [−0.8, 0.8]× 10−3. (9.36)

The coefficient c3G, analogous to the SU(2)L counterpart c3W , would contribute to the

anomalous triple gluon couplings. These effects can be measured at LEP, Tevatron and

LHC, for example via top-quark pair production, see for example Ref. [148] where it is

estimated that LHC should be able to put a bound |ĉ3G| ≡ |c3G|m2
W /Λ

2 . 0.1.

As can be seen in Tab. 9.7, no mixing to (or from) these gluon operators is present

among the operators we considered in Tab. 9.1, the only exception being a contribution

from c2B to c2G which, however, is not very interesting since c2B is already very well

directly constrained by the oblique Y parameter. For this reason, we are not able to set

any indirect constraint using these gluon operators.

9.4 Summary

We computed the scaling and mixing of 13 dim-6 deformations of the SM affecting EW

precision observables (4), anomalous EW triple gauge boson couplings (3), QCD ob-

servables (2) and Higgs decays (4). This computation has important phenomenological

implications. Particularly interesting is the RG-mixing induced among 10 of these ob-

servables (the 2 two QCD observables and one Higgs observable, namely Γ(h → gg),

constitute a separate sector that does not mix in a relevant way with the severely con-

strained EW observables.).

These 10 different observables are constrained at very different levels of precision.

For example, whereas the electroweak precision observables and the operator coefficient

related to the h → γγ partial width are constrained at the per mille level, the TGC

and the 2 other Higgs observables are constrained at the percent level at most. As we

run down from the new physics scale to the lower scale of experiments, quantum effects

mix the observables and the most severely constrained ones receive a contribution from

the ones allowed to deviate the most from the SM predictions. These RG-contributions
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could in principle be of the same size or even larger than the direct experimental bounds.

In other words, the difference in the experimental sensitivities can compensate for the

RG-loop factor. Requiring that these RG-contributions do obey individually the direct

bounds, i.e. dismissing any possible tuning/correlation among the various RG-terms, we

can derive some indirect RG-induced bounds on the weakly constrained observables from

the direct measurement of the severely constrained ones. This analysis is particularly

relevant for the TGC and the universal shift of the Higgs couplings, as reported in

Tab. 9.4.

We also looked at the future prospects for these RG-induced effects. If a deviation

from the SM is observed in some of the observables we considered, one would expect

a deviation, due to these RG effects, to appear also in other seemingly unrelated ob-

servables, in the absence of tuning. If, instead, these RG-induced deviations are not

observed, it would mean that some tuning is needed, or it would indicate some correla-

tion among the higher dimensional operators pointing towards a particular structure of

the new physics that has been integrated out. We have presented the projected future

experimental sensitivity to these RG effects in Tab. 9.6.
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10. One-loop non-renormalization

results in EFTs

As we have discussed at length in Part II of this thesis, following the Higgs discovery,

there has been much effort put into the determination of the one-loop anomalous dimen-

sions of the dimension-six operators of the SM EFT [5–7, 123, 135]. This has revealed a

rather intriguing structure in the anomalous-dimension matrix, with plenty of vanishing

entries that are a priori allowed by all symmetries. Some vanishing entries are trivial

since no possible Feynman diagram exist contributing to them. Nevertheless, other zeros

result from intricate cancelations without any apparent reason. Similar cancelations had

been observed before in other EFTs (see for example [124, 149]).

To make manifest the pattern of zeros in the matrix of anomalous dimensions, it is

crucial to work in the proper basis. Refs. [5, 6] pointed out the importance of working

in bases with operators classified as ”current-current” operators and ”loop” operators

(as reviewed in Part II). The first ones, which we call from now on JJ-operators, were

defined to be those operators that can be generated as a product of spin-zero, spin-1/2 or

spin-one currents of renormalizable theories [6, 99, 125], while the rest were called ”loop”

operators. 1 In this basis it was possible to show [5] that some class of loop-operators

were not renormalized by JJ-operators, suggesting a kind of generic non-renormalization

rule. The complete pattern of zeros in the SM EFT was recently provided in Ref. [150]

in the basis of [101], a basis that also maintains the separation between JJ- and loop-

operators. A classification of operators based on holomorphy was suggested to be a key

ingredient to understand the structure of zeros of the anomalous-dimension matrix [150].

In the present Chapter we provide an approach to understand in a simple way the

vanishing entries of anomalous-dimensions. The reason behind many cancelations is the

different Lorentz structure of the operators that makes it impossible to mix them at the

one-loop level. Although it is possible to show this in certain cases by simple inspection

1This classification is well-defined regardless of the specific UV-completion. Field redefinitions (or
use of the equations of motion) do not mix JJ-operators and loop-operators.
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of the one-loop diagrams, we present a more compact and systematic approach based on

the superfield formalism. For this reason we embed the EFT into an effective superfield

theory (ESFT), and classify the operators depending on their embedding into super-

operators. Using the ESFT, we are able to show by a simple spurion analysis (the one

used to prove non-renormalization theorems in supersymmetric theories) the absence,

in certain cases, of mixing between operators of different classes. We then make the im-

portant observation that the superpartner contributions to the one-loop renormalization

under consideration trivially vanish in many cases. This allows us to conclude that some

of the non-renormalization results of the ESFTs apply to the non-supersymmetric EFTs

as well. In other words, we will show that in many cases supersymmetry allows to relate

a non-trivial calculation to a trivial one (that of the superpartner loops). This also pro-

vides a way to understand the few exceptions to the ubiquitous rule that JJ-operators

do not renormalize loop-operators at the one-loop level.

The Chapter is organized as follows. In Sec. 10.1 we start with a simple theory,

the EFT of scalar quantum electrodynamics, to illustrate our approach for obtaining

one-loop non-renormalization results. In later subsections, we enlarge the theory in-

cluding fermions, and present an exceptional type of JJ-operator that renormalizes

loop-operators. In Sec. 10.3 we show how to generalize our approach to derive anal-

ogous results in the SM EFT and we also discuss the holomorphic properties of the

anomalous dimensions. In Sec. 10.4 we show the implications of our approach for the

QCD Chiral Lagrangian. We conclude in Sec. 10.5.

10.1 Non-renormalization results in a U(1) EFT

In order to make the logic as transparent as possible, let us start with the simple case of

a massless scalar coupled to a U(1)-gauge boson with charge Qφ, assuming for simplicity

CP-conservation. The corresponding EFT is defined as an expansion in derivatives and

fields over a heavy new-physics scale Λ: LEFT =
∑

d Ld, where Ld denotes the terms in

the expansion made of local operators of dimension d. The leading terms (d ≤ 6) in the

EFT are given by

L4 = −|Dµφ|2 − λφ|φ|4 −
1

4g2
F 2
µν , L6 =

1

Λ2
[crOr + c6O6 + cFFOFF ] , (10.1)

where the dimension-six operators are

Or = |φ|2|Dµφ|2 , O6 = |φ|6 , OFF = |φ|2FµνFµν . (10.2)
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We can use different bases for the dimension-six operators although, when looking at

operator mixing, it is convenient to work in a basis that separates JJ-operators from

loop-operators, as we defined them in the introduction. Using field redefinitions (or,

equivalently, the equation of motion (EOM) of φ) we can reduce the number of JJ-

operators to only two: for instance, OT = 1
2J

µJµ and O6 = J∗J , where Jµ = φ∗
↔
Dµφ

and J = |φ|2φ. It is convenient, however, to set a one-to-one correspondence between

operators and supersymmetric D-terms, as we will show below. For this reason, we

choose for our basis O6 and Or. 2 The only loop-operator, after requiring CP-invariance,

is OFF .

Many of the one-loop non-renormalization results that we discuss can be understood

from arguments based on the Lorentz structure of the vertices involved. Take for instance

the non-renormalization of OFF by Or. Integrating by parts and using the EOM, we

can eliminate Or in favor of O′r = (φDµφ
∗)2 + h.c.. Now, it is apparent that O′r cannot

renormalize OFF because either φDµφ
∗ or φ∗Dµφ is external in all one-loop diagrams,

and these Lorentz structures cannot be completed to form OFF . Since, in addition, there

are no possible one-loop diagrams involving O6 that contribute to OFF , we can conclude

that in this EFT the loop-operator cannot be renormalized at the one-loop level by the

JJ-operators. As we will see, similar Lorentz-based arguments can be used for other

non-renormalization results. This approach, however, requires a case by case analysis

and it is not always guaranteed that one can find an easy argument to see that the loop

is zero without a calculation. In this chapter we present a more systematic and unified

understanding of such vanishing anomalous dimensions based on a superfield approach

that we explain next.

We first promote the model of Eq. (10.1) to an ESFT and study the renormalization

of the dimension-six operators in this supersymmetric theory. The superfield formalism

makes it transparent to determine which operators do not mix at the one-loop level.

Although in this theory the renormalization of operators involves also loops of super-

partners, we will show in a second step that either the ordinary loop (involving φ and

Aµ) is already trivially zero or it is the superpartner loops which trivially vanish. There-

fore, having ensured that there are no cancellations between loops of ordinary matter

and supermatter, we are able to extend the supersymmetric non-renormalization results

to the non-supersymmetric case. In other words, the advantage of this approach is that

we can turn a loop calculation with the ordinary φ and Aµ into a calculation with su-

perpartners, where the Lorentz structure of the vertex can make it easier to see that the

one-loop contributions are zero.

2In the U(1) case we are considering, Or = 1
2

(OH −OT ) where OH = 1
2
(∂µ|φ|2)2.
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The dimension-six operators of Eq. (10.2) can be embedded in different types of super-

operators. As it will become clear in what follows, it is important for our purposes to em-

bed the dimension-six operators into super-operators with the lowest possible dimension.

This corresponds to an embedding into the highest θ-component of the super-operator

(notice that we can always lower the θ-component by adding derivatives in superspace).

This provides a classification of the dimension-six operators that is extremely useful in

analyzing the one-loop mixings. Let us start with the loop-operator OFF . Promoting φ

to a chiral supermultiplet Φ and the gauge boson Aµ to a vector supermultiplet V , one

finds that OFF can be embedded into the θ2-component (F -term) of the super-operator

Φ†eVΦΦWαWα = −1

2
θ2OFF + · · · , (10.3)

where we have defined VΦ ≡ 2QφV , Wα is the field-strength supermultiplet, and we

follow the notation of [151] (using a mostly-plus metric). Since the super-operator in

Eq. (10.3) is non-chiral, the OFF cannot be generated in a supersymmetry-preserving

theory at any loop order. For the embedding of the JJ-operators, the situation is

different. Some of them can be embedded in a D-term (a θ̄2θ2-component), while for

others this is not possible. In the example discussed here, we have

(
Φ†eVΦΦ

)2
= −4θ2θ̄2Or + · · · , (10.4)

and therefore Or is allowed by supersymmetry to appear in the Kähler potential and

is not-protected from one-loop corrections. Nevertheless O6 must arise from the θ0-

component of the super-operator

(
Φ†eVΦΦ

)3
= O6 + · · · , (10.5)

and then must be zero in a supersymmetry-preserving theory at any loop order.

We can now embed Eq. (10.1) in a ESFT. We use a supersymmetry-breaking (SSB)

spurion superfield η ≡ θ2 (of dimension [η] = −1) to incorporate the couplings of

Eq. (10.1) that break supersymmetry. We have 3

L4 ⊂
∫
d4θ

[
Φ†eVΦΦ + λφηη

†(Φ†eVΦΦ)2
]

+

[∫
d2θWαWα + h.c.

]
,

L6 ⊂ 1

Λ2

∫
d4θ

{
c̃r

(
Φ†eVΦΦ

)2
+ c̃6 ηη

†(Φ†eVΦΦ)3

+
[
c̃FF η

†(Φ†eVΦΦ)WαWα + h.c.
]}

. (10.6)

3Anomaly cancelation requires the inclusion of additional fields that do not play any role in our
discussion. We ignore them in what follows.
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It is very easy to study the one-loop mixing of the dimension-six operators in the above

ESFT using a simple η-spurion analysis. For example, it is clear that there cannot

be renormalization from terms with no SSB spurions, such as c̃r, to terms with SSB

spurions, such as c̃FF . Also, corrections from c̃r to c̃6 are only possible through the

insertion of λφ, that carries a ηη†. Similarly, terms with a SSB spurion η† cannot

renormalize terms with two SSB spurions η†η, unless they are proportional to λφ. This

means that c̃FF can only renormalize c̃6 with the insertion of a λφ. The inverse is

however not guaranteed: terms with more SSB spurions can in principle renormalize

terms with less spurions. For example, c̃FF , that carries a spurion η†, could generate at

the loop level the operator

∫
d4θη†D̄2Õr =

∫
d4θ(D̄2η†)Õr =

∫
d4θÕr , (10.7)

where Õr =
(
Φ†eVΦΦ

)2
and we have defined D2 ≡ DαDα, with DαΦ = e−VΦDα(eVΦΦ)

being the gauge-covariant derivative in superspace. Therefore one has to check it case

by case. For example, c̃6 could in principle renormalize c̃FF , but it is not possible to

write the relevant diagram since it involves a vertex with too many Φ’s. This implies

that c̃FF is only renormalized by itself at the one-loop level.

This simple renormalization structure is the starting point from which, by examining

more closely the loops involved at the field-component level, we will derive the following

non-renormalization results in the non-supersymmetric EFT of Eq. (10.1).

Non-renormalization of OFF by Or: The differences between our original EFT in

Eq. (10.1) and its supersymmetric version, Eq. (10.6), are the presence of the fermion

superpartners for the gauge and scalar: the gaugino, λ, and ”Higgsino”, ψ. We will

show, however, that the contributions from superpartners trivially vanish in the mixing

of JJ- and loop-operators. In

∫
d4θ

(
Φ†eVΦΦ

)2
= −4Or + 2(iφ∗

↔
Dµφ)ψ†σ̄µψ + 2|φ|2(iψ†σ̄µ

↔
Dµψ) + · · · , (10.8)

we have only the 3 terms shown that can potentially contribute to OFF at the one-loop

level. These terms can be considered as part of a supersymmetric JJ-operator generated

from integrating-out a heavy vector superfield that contains a scalar, a vector and a

fermion. Other terms not shown in Eq. (10.8) involve too many fields (see Appendix E)

and therefore are only relevant for an analysis beyond one-loop. The first term of

Eq. (10.8) can potentially give a contribution to OFF from a loop of φ’s, while the

second and third term could from a loop of Higgsinos. It is very easy to see that the

loop of Higgsinos does not contribute to OFF . Indeed, if in the second term of Eq. (10.8)

we close the Higgsinos in a loop, the current Jµ = iφ∗
↔
Dµφ is left as an external factor,
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138 Part III – Structure of the anomalous dimension matrix

and it is then clear that we can only generate the JJ-operator JµJ
µ. Moreover, the

third term of Eq. (10.8) vanishes by using the EOM: σ̄µDµψ = 0 (up to gaugino terms

that are not relevant here). Therefore, Higgsinos do not contribute at the one-loop

level to the renormalization of the loop-operator OFF . We can then extend the non-

renormalization result from the ESFT of Eq. (10.6) to the non-supersymmetric EFT of

Eq. (10.1) and conclude that the loop-operator cannot be renormalized at the one-loop

level by the JJ-operators.

Non-renormalization of Or by OFF : It remains to study the renormalization from

OFF to Or. This can arise in principle from a loop of gauge bosons. In the supersymmet-

ric theory, Eq. (10.6), c̃r does not carry any SSB spurion and therefore its renormalization

by c̃FF cannot be prevented on general grounds, as we explained before. Nevertheless,

we find that operators induced by c̃FF , through a loop of V ’s, must leave an external

factor η†Φ†eVΦΦ from the vertex and then, the only operator that could potentially

contribute to c̃r must have the form 4

1

Λ2

∫
d4θ η†

(
Φ†eVΦΦ

)
D̄2
(

Φ†eVΦΦ
)

+ h.c. . (10.9)

From the EOM for Φ, we have that D̄2Φ† = 0 up to λφ terms that bring too many powers

of Φ, so that the projection of Eq. (10.9) into Or vanishes. Finally, one also has to

ensure that redundant JJ-super-operators, that can give
(
Φ†eVΦΦ

)2
through superfield

redefinitions, are not generated at the one-loop level. In particular, the redundant super-

operator
1

Λ2

∫
d4θ

(
Φ†eVΦΦ

)
DαWα , (10.10)

if generated at the loop level, can give a contribution to c̃r after superfield redefinitions,

or equivalently, after using the EOM of V : DαWα + h.c. = −gQφΦ†eVΦΦ. We do not

find, however, any non-zero contribution from η†(Φ†eVΦΦ)WαWα to the operator in

Eq. (10.10), as such contributions, coming from a V/Φ loop, must be proportional to

η†WαΦ. 5

Having shown that supersymmetry guarantees zero contributions to c̃r from c̃FF , we

must check what are the effects of superpartner loops. From (see Appendix E)

∫
d4θη†(Φ†eVΦΦ)WαWα + h.c. = −OFF (10.11)

+

(
2i|φ|2 λσµ∂µλ† −

1√
2
φ∗λσµνψFµν + h.c.

)
+ . . . ,

4Notice that the presence of η†, arising from the vertex, requires that the super-operator must have
two derivatives D̄ in order to potentially contain Or.

5Of these, the only one that cannot be put to zero by the EOM of Φ is∫
d4θ η†WαΦ[D̄α̇, {Dα, D̄α̇}]eVΦ Φ† but, from the identity [D̄α̇, {Dα, D̄α̇}] ∼ iWα [152], one can see

that this only contributes to c̃FF .
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where σµν = i
2(σµσ̄ν − σν σ̄µ), it is clear that a gaugino/Higgsino loop cannot give

a contribution to Or: the second term of Eq. (10.11), after using the EOM for the

gaugino, σµ∂µλ
† = gφψ†, can only give a contribution proportional to |φ|2φ; while the

contribution from the third term must be proportional to φ∗Fµν . None of them have

the right Lorentz structure to contribute to Or. Therefore, we conclude that the loop-

operator OFF can only renormalize at the one-loop level the JJ-operators that break

supersymmetry, like O6, and not those that can be embedded in a D-term, like Or.

10.1.1 Including fermions

Let us extend the previous EFT to include two charged Weyl fermions, q and u, with

U(1)-charges Qq and Qu, such that Qφ +Qq +Qu = 0. We have now extra terms in the

Lagrangian (respecting CP-invariance): 6

∆L4 = iq†σ̄µDµq + iu†σ̄µDµu+ yu (φqu+ h.c.) ,

∆L6 =
1

Λ2
[cφfOφf + c4fO4f + cyu (Oyu + h.c.) + cD (OD + h.c.)] , (10.12)

where f = q, u. The JJ-operators are

Oyu = |φ|2φqu , Oφf = i(φ∗f †)σ̄µDµ(fφ) , O4f = (f †σ̄µf)(f †σ̄µf) . (10.13)

Instead of Oφf , we could have chosen the more common JJ-operator i(φ∗
↔
Dµφ)(f †σ̄µf)

for our basis. Both are related by

Oφf =
i

2
(φ∗
↔
Dµφ)(f †σ̄µf) +

i

2
|φ|2f †σ̄µ

↔
Dµf , (10.14)

where the last term could be eliminated by the use of the EOM. Our motivation for

keeping Oφf in our basis is that, as we will see later, it is in one-to-one correspondence

with a supersymmetric D-term. The only additional loop-operator for a U(1) model

with fermions is the dipole operator

OD = φ(qσµνu)Fµν . (10.15)

Let us consider the operator mixing in this extended EFT. We will discuss all cases

except those for which no diagram exists at the one-loop level. As we said before, in

principle, many vanishing entries of the anomalous-dimension matrix can be simply un-

derstood from inspection of the Lorentz structure of the different vertices. For example,

6Similar remarks to those made in footnote 3 about anomalies apply to this extended model.
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140 Part III – Structure of the anomalous dimension matrix

it is relatively simple to check that the JJ-operators O4f and Oφf do not renormal-

ize the loop-operators. For this purpose, it is important to recall that we can write

four-fermion operators, such as (q†σ̄µq)(u†σ̄µu), in the equivalent form q†u†qu. From

this, it is obvious that closing a loop of fermions can only give operators containing the

Lorentz structure f †f or qu that cannot be completed to give a dipole operator (nor

its equivalent forms, qσµνσρD
ρq†Fµν or DµφqD

µuH). For the case of Oφf , the absence

of renormalization of the dipole operator, as for example from diagrams like the one in

Fig. 10.1, can be proved just by realizing that we can always keep the Lorentz structure

σ̄µDµ(φf) external to the loop; this Lorentz structure cannot be completed to form a

dipole operator. The contribution of Oφf to OFF is also absent, as can be deduced from

Eq. (10.14): the first term, after closing the fermion loop, gives the wrong Lorentz struc-

ture to generate OFF , while the second term gives an interaction with too many fields

if we use the fermion EOM. Finally, Oyu can only contribute to the Lorentz structure

φqu, not to the dipole one in Eq. (10.15).

We can be more systematic and complete using our ESFT approach. Let us see first

how the operators of Eq. (10.12) can be embedded in super-operators. By embedding q

and u in the chiral supermultiplets Q and U , we find that the dipole loop-operator must

arise from the θ2-term of a non-chiral superfield:

Φ (Q
↔
DαU)Wα = −θ2OD + · · · . (10.16)

Among the JJ-operators of Eq. (10.13), two of them can arise from supersymmetric

D-terms and are then supersymmetry-preserving:

(
Φ†eVΦΦ

)(
Q†eVQQ

)
= θ̄2θ2Oφq + · · · ,

(
Q†eVQQ

)(
Q†eVQQ

)
= −1

2
θ̄2θ2O4q + · · · ,

(10.17)

and similar operators for Q → U , where we again use the short-hand notation VQ =

2QqV . Nevertheless, one of the JJ-operators must come from the θ2-component of a

non-chiral superfield that is not invariant under supersymmetry:

(
Φ†eVΦΦ

)
ΦQU = θ2Oyu + · · · . (10.18)

φ∗

q†

φ

q

u

Aµ

Figure 10.1: A potential contribution from Oφq to OD.
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We can now promote Eq. (10.12) to a ESFT:

∆L4 ⊂
∫
d4θ

(
Q†eVQQ+ U †eVUU

)
+

[∫
d2θ yuΦQU + h.c.

]
,

∆L6 ⊂ 1

Λ2

∫
d4θ
{
c̃φf (Φ†eVΦΦ)(F †eVFF ) + c̃4f (F †eVFF )(F †eVFF )

+

[
η†
(
c̃yu(Φ†eVΦΦ)ΦQU + c̃DΦ (Q

↔
DαU)Wα

)
+ h.c.

]}
, (10.19)

where F = Q,U .

Non-renormalization of loop-operators from JJ-operators: The embedding of

the EFT into the ESFT shows the following rule. Loop-operators (OFF and OD) can-

not be supersymmetrized, while some JJ-operators can be supersymmetrized (Or, O4f

and Oφf ) and others cannot (Oyu and O6). Supersymmetry then guarantees that loop-

operators can at most be generated from the latter ones, Oyu and O6, embedded re-

spectively in η†(Φ†eVΦΦ)ΦQU and ηη†(Φ†eVΦΦ)3. By simple inspection of these latter

vertices, however, we find that neither of these two operators can possibly renormalize

the loop-operators at the one-loop level. Therefore, in the ESFT the loop-operators are

not renormalized at one-loop level by the JJ-operators.

To extend the above results to the non-supersymmetric EFT, we must ensure that

these non-renormalization results do not arise from cancellations between loops involving

”ordinary” fields (Aµ, φ, q and u) and loops involving superpartners (λ, ψ, q̃ and ũ).

This can be proved by showing that either the former or the latter are zero. In certain

cases it is easier to look at the loop of ordinary fields, while in others it is easier to look

at the superpartner loops. For example, we have (see Appendix E)

∫
d4θ

(
Q†eVQQ

)(
Q†eVQQ

)
= −1

2
O4q + 2q†σ̄µq(iq̃†

↔
Dµq̃) + 2(iq†σ̄µ

↔
Dµq)|q̃|2 + · · · ,

(10.20)

from which we see that a renormalization to OD can arise either from the first term (by a

loop of ”quarks” q) or the second and third term by a loop of ”squarks” q̃. It is easier to

see that the loops of squarks are zero: they can only generate operators containing q†σ̄µq

or q†σ̄µ
↔
Dµq, that do not have the structure necessary to contribute to the dipole opera-

tor OD nor to operators related to this one by EOMs, such as qσµνσρD
ρq†Fµν . We could

proceed similarly for the other operators. For the case of Oφf , however, the one-loop

contribution to OD contains scalars and fermions (see Fig. 10.1) and the corresponding

graph with superpartners has a similar structure, and therefore is not simpler. Never-

theless, both can be shown to be zero by realizing that σ̄µDµ(φf) can always be kept

as external to the loop, and that this Lorentz structure cannot be completed to form a

dipole operator. We can conclude that the absence of renormalization of loop-operators

by JJ-operators valid in the ESFT also applies to the EFT.
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142 Part III – Structure of the anomalous dimension matrix

Class of JJ-operators not renormalized by loop-operators: Following the same

approach, we can also check whether loop-operators can generate JJ-operators. Let

us first work within the ESFT. We have shown already that the loop-super-operator

η†(Φ†eVΦΦ)WαWα cannot generate the JJ-super-operator (Φ†eVΦΦ)2. The same argu-

ments apply straightforwardly to (F †eVFF )(Φ†eVΦΦ). For the case of the dipole super-

operator, η†Φ(Q
↔
DαU)Wα, we have a potential contribution to

(
Q†eVQQ

) (
U †eVUU

)

coming from a Φ/V loop. Nevertheless, as the factor η†Q
↔
DαU remains in the exter-

nal legs, it is clear that such contribution can only lead to operators containing η†D2,

which are not JJ-super-operators. Similarly, contributions to
(
Φ†eVΦΦ

) (
Q†eVQQ

)
could

arise from a U/V loop, but one can always arrange it to leave either η†DαΦ or η†DαQ
in the external legs 7, which again does not have the structure of a JJ-super-operator

(the same applies for Q ↔ U). Finally we must check whether redundant JJ-super-

operators, as the one in Eq. (10.10), can be generated by the dipole. Similar arguments

as those below Eq. (10.10) can be used to prove that this is not the case. Notice, how-

ever, that we cannot guarantee the absence of renormalization by loop-super-operators

neither of η†(Φ†eVΦΦ)ΦQU nor of ηη†(Φ†eVΦΦ)3. We then conclude that only the JJ-

super-operators that preserve supersymmetry (with no SSB-spurions) are safe at the

one-loop level from the renormalization by loop-super-operators.

It remains to show that this result extends also to the non-supersymmetric EFT.

From Eq. (E.3) of the Appendix E, we have, after using the gaugino EOM and elimi-

nating the auxiliary fields Fi, that loops from superpartners can only give contributions

proportional to φff , |φ|2f , ff or Fµνf (for f = q, u). None of these terms can lead

to the Lorentz structure of Or, O4f nor Oφf . These are exactly the same JJ-operators

that could not be generated (at one loop) from loop-operators in the ESFT.

10.1.2 An exceptional JJ-operator

Let us finally extend the EFT to include an extra fermion, a ”down-quark” d of charge

Qd, such that Qφ = Qq +Qd. The following extra terms are allowed in the Lagrangian:

∆L4 = id†σ̄µDµd+ yd (φ∗qd+ h.c.) ,

∆L6 =
1

Λ2
[cydOyd + cyuydOyuyd + h.c.] , (10.21)

where we have the additional JJ-operators

Oyd = |φ|2φ∗qd , Oyuyd = quqd , (10.22)

7Using integration by parts and the EOM of V , we can write the dipole super-operator as∫
d4θη†Φ(Q

↔
DαU)Wα = −

∫
d4θη†[(DαΦ)QUWα + 2Φ(DαQ)UWα +O(Φ5

i )] where Φi = Φ, Q, U .
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q

d

q†

d†

yd yu

q

u

Figure 10.2: Contribution to cy
u

y
d

proportional to ydyu.

apart from operators similar to the ones in Eq. (10.12) with f including also the d.

Following the ESFT approach, we embed the d-quark in a chiral supermultiplet D

and the operators of Eq. (10.21) into the super-operators:

Φ†eVΦQD = θ2φ∗qd+ · · · ,
(

Φ†eVΦΦ
)

Φ†eVΦQD = θ2Oyd + · · · ,
(QU)D2 (QD) = −4θ2Oyuyd + · · · . (10.23)

As all of these operators come from a θ2-term of non-chiral super-operators, we learn that

they can only be generated from supersymmetry-breaking. We can promote Eq. (10.21)

into a ESFT in the following way:

∆L4 ⊂
∫
d4θ

[
D†eVDD +

(
η†ydΦ

†eVΦQD + h.c.
)]

,

∆L6 ⊂ 1

Λ2

∫
d4θ η†

[
c̃yd

(
Φ†eVΦΦ

)
Φ†eVΦQD + c̃yuyd (QU)D2 (QD)

]
+ h.c. .(10.24)

Now, and this is very important, when considering only d, q, φ in isolation (without the

u fermion), we can always change the supersymmetric embedding of φ by considering

φ∗ ∈ Φ̄, where Φ̄ is a chiral supermultiplet of charge −1/2. By doing this, we can write

the Yukawa-term for the d in a supersymmetric way,
∫
d2θ ydΦ̄QD, and guarantee that

the renormalization of operators involving only φ, q, d is identical to the one of φ, q, u

explained in the previous Section.

It is then clear that supersymmetry breaking from Yukawas can only arise through the

combination yuyd. This allows to explain why contributions toOyuyd from (q†σ̄µq)(d†σ̄µd)

must be proportional to yuyd, as explicit calculations have shown in the SM context [150].

In the ESFT, the operator (q†σ̄µq)(d†σ̄µd) is embedded in a supersymmetry-preserving

super-operator and therefore can only generate supersymmetry-breaking interactions,

such as Oyuyd , via the SSB couplings yuyd (see Fig. 10.2). The one-loop contributions

from superpartners do not affect this result, as Eq. (10.20) shows that they are trivially

zero.
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144 Part III – Structure of the anomalous dimension matrix

The operators Oyuyd and Oyu,d are the only JJ-operators that are embedded in the

ESFT with the same SSB-spurion dependence as the loop-operators – see Eq. (10.24).

Therefore, they can potentially renormalize OD. Although this was not the case for

Oyu,d due to its Lorentz structure, as we explained above, we have confirmed by ex-

plicit calculation that Oyuyd indeed renormalizes OD. This is then an exception to the

ubiquitous rule that JJ-operators do not renormalize loop-operators.

10.2 A closely related analogy

There is an analogy that helps in clarifying the role that supersymmetry has played

in explaining the non-renormalization result in the non-supersymmetric EFT. In QCD,

tree-level amplitudes with all plus helicity gluons or all plus helicity except one negative

helicity gluon vanish

Atreen

[
g−g+g+ · · · g+

]
= Atreen

[
g+g+ · · · g+

]
= 0 , (10.25)

where all gluons are taken as outgoing. To prove Eq. (10.25) by brute force is hard. The

original derivation was done through a smart choice of the polarisation vectors of the

gluons, see for instance Ref. [153]. However, the easiest way to prove it is to consider

super-QCD and a Ward identity associated to the SUSY generators [154, 155]. Recall

that a symmetric vacuum is annihilated by the symmetry generators Q, then the Ward

identity for an n-point reads

0 = 〈0|
[
Q†,O1(x1)O2(x2) · · · On(xn)

]
|0〉

=
n∑

i

(−1)
∑
i<j |Oi|〈0|O1(x1) · · ·

[
Q†,Oi(xi)

]
· · · On(xn)|0〉 , (10.26)

where Oi are field-operators and we pick a sign every time Q† is commuted with a

fermionic operator. Next, let us take Q† to be the supersymmetry generator. Recall

that it acts on the positive helicity gluon and positive helicity gluino as [Q†, a+
g ] ∼ 0,

[Q†, a+
λ ] ∼ a+

g , respectively. Then, applying the Ward identity to

0 = 〈0|
[
Q†, a+

λ (p1)a+
g (p2)a+

g (p3) · · · a+
g (pn)

]
|0〉

∝ 〈0|a+
g (p1)a+

g (p2) · · · a+
g (pn)|0〉 , (10.27)

and a similar one for O = a−g a
+
λ a

+
g a

+
g · · · a+

g , we find that

AL−loopSQCD,n

[
g−g+g+ · · · g+

]
= AL−loopSQCD,n

[
g+g+ · · · g+

]
= 0 , (10.28)
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at all orders in perturbation theory, without making any actual diagrammatic calcula-

tion or clever choice of variables. Finally, one notices that in the tree-level scattering

amplitude of Eq. (10.25) gluinos are absent. For an amplitude with external gluons only

the gluinos are necessary closed in loops and therefore the SQCD result of Eq. (10.28)

is inherited by tree-level QCD.

Now the analogy is clear: in both the present example and in the non-renormalization

results of the previous Section, we found an exact result in SUSY valid at all loop

orders. Then, in both cases we notice the absence of the superpartners at a fixed order

in perturbation theory and therefore the supersymmetric result is inherited at that same

order by the non-supersymmetric theory. Superpartners were absent at tree-level in the

scattering-amplitudes of the present example while they where absent in the one-loop

effective action of the previous Section.

10.3 Generalization to the Standard Model EFT

We can generalize the analysis of Sec. 10.1 to dimension-six operators in the SM EFT.

We begin by constructing an operator basis that separates JJ-operators from loop-

operators. We then classify them according to their embedding into a supersymmetric

model, depending on whether they can arise from a super-operator with no SSB spurion

(η0), which therefore preserves supersymmetry, or whether they need SSB spurions,

either D̄α̇η†, η†, |D̄α̇η†|2 or ηη† (that selects the θ̄θ2, θ2, θ̄θ and θ̄0θ0 component of

the super-operator, respectively), or their Hermitian-conjugates. The supersymmetric

embedding naturally selects a SM basis that we present in Tab. 10.1. In this basis, the

non-renormalization results between the different classes of operators discussed in the

previous Section will also hold.

The operator basis of Tab. 10.1 is close to the basis defined in Ref. [101]. One significant

difference is our choice of the only-Higgs JJ-operators, that we take to be O± and

O6, and of the Higgs-fermion JJ-operator OHf . As in the U(1) case, this choice is

motivated by the embedding of operators into super-field operators, as we have just

mentioned (see more details below). Concerning the classification of 4-fermion operators,

our O4f operators correspond not only to types (L̄L)(L̄L), (R̄R)(R̄R) and (L̄L)(R̄R)

of Ref. [101], but also to the operator Qledq = (L̄LeR)(d̄RQL) classified as (L̄R)(R̄L) in

[101], since this latter operator can be written as a O4f by Fierz rearrangement. Finally,

our Oyy operators correspond to the four operators of type (L̄R)(L̄R) in [101].

To embed the SM fields in supermultiplets we follow the common practice of working

with left-handed fermion fields so that QL, ucR and dcR are embedded into the chiral
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supermultiplets Q, U and D (generically denoted by F ). With an abuse of notation, we

use H for the SM Higgs doublet as well as for the chiral supermultiplet into which it is

embedded. Finally, gauge bosons are embedded in vector superfields, V a, and we use

the notation VΦ ≡ 2taV a where ta include the generators of the SM gauge-group in the

representation of the chiral-superfield Φ.

Concerning the embedding of operators into super-operators, there are a few differ-

ences with respect to the U(1) model discussed in the previous Section, as we discuss

below. Starting with the JJ-operators, we have a new type of operator not present in

the U(1) case, OudR = (iH†
↔
DµH̃)(d̄Rγ

µuR), where H̃ ≡ iσ2H
∗. This operator cannot be

embedded as the others in a D-term due to H̃†H = 0 and must be embedded as a θ2θ̄

term of a spinor super-operator:

∫
d4θ D̄α̇η†(H†D̄α̇H̃)U †eVDD = OudR + · · · . (10.29)

For the JJ-operators involving only the Higgs field, there is also an important difference

Operators Super-operators Spurion

J
J

-o
p

er
at

or
s

O+ = Dµ(H†iH
†
j )Dµ(HiHj) (H†eVHH)2

η0O4f =
(
f̄γµtaf

) (
f̄γµt

af
)

(F †taeVFF )(F †taeVFF )

OHf = i(H†ta)i(f̄ t
a)jγ

µDµ

(
Hif j

)
(H†taeVHH)(F †taeVFF )

OudR = (iH†
↔
DµH̃)(d̄Rγ

µuR) H†D̄α̇H̃U†eVDD D̄α̇η†

O− = |H†DµH|2 |H†eVHDαH|2 |D̄α̇η†|2

O6 = |H|6 (H†eVHH)3 |η|2

Oy = |H|2Hf̄RfL (H†eVHH)HFF

η†

Oyy =
(
f̄Rt

afL
) (
f̄Rt

afL
)

(FtaF )D2(FtaF )

L
o
op

-o
p

er
at

or
s OD = H†f̄RσµνtafL F aµν H(Fta

↔
DαF )Waα

OFF
+

= H†tatbHF aµν(F b µν − iF̃ b µν) (H†tatbeVHH)WaαWb
α

O3F
+

= fabcF a νµ F b ρν (F c µρ − iF̃ c µρ ) fabcDβWaαWb
βWc

α

Table 10.1: Left: Basis of dimension-six SM operators classified as JJ-operators
and loop-operators. We also distinguish those that can arise from a supersymmet-
ric D-term (η0) from those that break supersymmetry either by an spurion D̄α̇η†, η†,
|D̄α̇η†|2 or |η|2. We denote by F aµν (F̃ aµν) any SM gauge (dual) field-strength. The ta

matrices include the U(1)Y , SU(2)L and SU(3)c generators, depending on the quan-
tum numbers of the fields involved. Fermion operators are written schematically with
f = {QL, uR, dR, LL, eR}. Right: For each operator in the left column, we provide the

super-operator at which it is embedded.
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with respect to the U(1) case. We have now two independent operators, 8 but only one

can arise from a supersymmetric D-term: 9

(H†eVHH)2 = −θ̄2θ2O+ + · · · , (10.30)

where

O+ = [2Or +OH −OT ] = Dµ(H†iH
†
j )D

µ(H iHj) , (10.31)

with Or, OH and OT being the SM analogues of the U(1) operators, obtained simply by

replacing φ by H. The other independent only-Higgs operator must arise from a SSB

term. We find that this can be the θθ̄-component of the superfield

D̄α̇(H†eVHH)Dα(H†eVHH) = −4(σ̄µθ)α̇(σν θ̄)α

(
DµH

†H
)(

H†DνH
)

+ · · · . (10.32)

We can write this operator in a superfield Lagrangian by using the spurion |D̄α̇η†|2:

∫
d4θ D̄α̇η†Dαη D̄α̇(H†eVHH)Dα(H†eVHH) = −16 O− + · · · , (10.33)

where

O− =
1

2
[OH −OT ] = |H†DµH|2 . (10.34)

Concerning loop-operators, we have the new operators O3F = fabcF a νµ F b ρν F c µρ and

O3F̃ = fabcF a νµ F b ρν F̃ c µρ , possible now for the non-Abelian groups SU(2)L and SU(3)c,

which again can only arise from a θ2-term:

fabcDβWaαWb
βWc

α = iθ2O3F+ + · · · , (10.35)

where we have defined O3F± = O3F ∓ iO3F̃ . To contain O3F+ , Eq. (10.35) must then

appear in the ESFT multiplying the SSB-spurion η†, as the rest of loop-operators.

For the loop-operators OFF = H†tatbHF aµνF
b µν and their CP-violating counterparts,

OFF̃ = H†tatbHF aµνF̃
b µν , we can proceed as above and embed them together in the

super-operators

(H†tatbeVHH)WaαWb
α = −1

2
θ2OFF+ + · · · . (10.36)

where OFF± = OFF ∓ iOFF̃ .

8The U(1)-case identity Or = (OH − OT )/2 does not hold in the SM due to the fact that H is a
doublet.

9The operator (H†σaeVHH)2 can be reduced to (H†eVHH)2 by using σaijσ
a
kl = 2δilδkj − δijδkl.
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10.3.1 One-loop operator mixing

It is straightforward to extend the U(1) analysis of Sec. 10.1 to the operators of Tab. 10.1

to show that, with the exception of Oyy, the JJ-operators do not renormalize the loop-

operators. The only important novelties arise from the new type of JJ-operators, OudR
and O−. Concerning OudR , it is very simple to see that this operator cannot renormalize

loop-operators (from a loop of quarks one obtains operators with the Lorentz structure

(iH̃†DµH); while the Higgs-loop gives operators containing d̄RγµuR, and none of them

can be loop-operators). Concerning O−, we only need to worry about the renormaliza-

tion of OFF . This can be studied directly in the ESFT, as superpartner contributions

from JJ-operator to loop-operators can be shown to trivially vanish. In the ESFT,

the operator O− is embedded in a super-operator containing the SSB-spurion |Dαη|2.

This guarantees the absence of renormalization of loop-super-operators as these con-

tain the SSB-spurion η†. Besides this direct contribution, there is an indirect route by

which O− could renormalize OFF : by generating OHF = i(DµH)†ta(DνH)F aµν which,

via integration by parts, can give OFF . The operator OHF can come from the super-

operator ÕHF = D̄α̇η†D̄α̇H†eVHDαHWα that in principle is not protected by a simple

SSB-spurion analysis from being generated by super-operators ∝ |Dαη|2. Nevertheless,

contributions to ÕHF must come from Eq. (10.33) with derivatives acting on the two

Higgs superfields external to the loop, and due to the derivative contractions, this can

only give D̄α̇η†DαηD̄α̇H†DαHDβWβ; by the use of the EOM of V , however, this gives

a JJ-super-operator and not ÕHF .

In the SM case, the exceptional Oyy operators (than can in principle renormalize the

dipole operators) are (following the notation in [6])

Oyuyd = (Q̄rLuR)εrs(Q̄
s
LdR) ,

O(8)
yuyd

= (Q̄rLT
AuR)εrs(Q̄

s
LT

AdR) ,

Oyuye = (Q̄rLuR)εrs(L̄
s
LeR) ,

O′yuye = (Q̄r αL eR)εrs(L̄
s
Lu

α
R) , (10.37)

where r, s are SU(2)L indices and TA are SU(3)c generators. Although in principle all

of these four operators could renormalize the SM dipoles, it is easy to realize that Oyuye
will not: the only possible way of closing a loop (Q̄LuR or L̄LeR) does not reproduce

the dipole Lorentz structure for the external fermion legs. One concludes that only the

three remaining operators in Eq. (10.37) renormalize the SM dipole operators and we

have verified this by explicit calculation. These are the only dimension-six JJ-operator

of the SM that renormalize loop-operators. Some of these exceptions were also pointed

out in [135]. Our analysis completes the list of these exceptions and helps to understand
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the reason behind them. From the analysis of the U(1) case, we can also explain the

presence of yuyd in the renormalization of Oyy from O4f [150].

It is obvious that no operator other than itself renormalizes O3F+ : no adequate one-

loop 1PI diagram can be constructed from other dimension-six operators, since they have

too many fermion and/or scalar fields. Nevertheless O3F+ can in principle renormalize

JJ-operators. Let us consider, for concreteness, the case of O3F+ made of SU(2)L field-

strengths. SM-loop contributions from O3F+ can generate the JJ-operators (DνF
aµν)2

and JaµDνF
aµν (where Jaµ is the weak current), and indeed these contributions have been

found to be nonzero by explicit calculation [7]. By using the EOM, DνF
aµν = gJaµ,

we can reduce these two operators to (Jaµ)2. Surprisingly, one finds that the total

contribution from O3F+ to (Jaµ)2 adds up to zero [7, 150]. We can derive this result

as follows. From inspection of Eq. (E.4), one can see that the superpartners cannot

give any one-loop contribution to these JJ-operators. Therefore the result must be the

same in the SM EFT as in the corresponding ESFT. Looking at the Higgs component of

(Jaµ)2 = (H†σa
↔
DµH)2 + · · · , we see that this operator must arise from the ESFT term

∫
(DαηJ aα + h.c.)2 where J aα = H†σaDαH. This super-operator, however, cannot be

generated from the super-operator in Eq. (10.35), as this operator appears in the ESFT

with a different number of SSB-spurions, η†. This proves that O3F+ cannot generate JJ-

operators with Higgs. Now, if current-current super-operators with H are not generated,

those with QL cannot be generated either, since in the ESFT the SU(2)L vector does

not distinguish between different SU(2)L-doublet chiral superfields. This completes the

proof that O3F+ does not renormalize any JJ-operator in the basis of Tab. 10.1.

Concerning the non-renormalization of JJ-operators by loop-operators, the last new

case left to discuss is that of O− by OFF . The SSB-spurion analysis forbids such

renormalization in the ESFT and the result can be extended to the SM EFT as no

superpartner-loop contributes either (see Eq. (E.2) in the Appendix E).

At energies below the electroweak scale, we can integrate outW , Z, Higgs and top, and

write an EFT with only light quarks and leptons, photon and gluons. This EFT contains

four-fermion operators of type O4f , generated at tree-level, that are JJ-operators, and

other operators of dipole-type that are loop-operators. Following the above approach

we can prove that these four-fermion operators cannot renormalize the dipole-type op-

erators, and this is exactly what is found in explicit calculations [124].

10.3.2 Holomorphy of the anomalous dimensions

It has been recently shown in Ref. [150], based on explicit calculations, that the anoma-

lous dimension matrix respects, to a large extent, holomorphy. Here we would like to
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ũ

q

u

Figure 10.3: Non-holomorphic contribution to Oy.

show how to derive some of these properties using our ESFT approach. In particular,

we will derive that, with the exception of one case, the one-loop anomalous dimensions

of the complex Wilson-coefficients ci = {c3F+ , cFF+ , cD, cy, cyy, c
ud
R } do not depend on

their complex-conjugates c∗j :
∂γci
∂c∗j

= 0 . (10.38)

We start by showing when Eq. (10.38) is satisfied just by simple inspection of the SM

diagrams. For example, it is easy to realize that holomorphy must be respected in con-

tributions from dimension-six operators in which fermions with a given chirality, e.g.,

fα or fαf
′
β, are kept as external legs; indeed, the corresponding Hermitian-conjugate

operator can only contribute to operators with fermions in the opposite chirality. Inter-

estingly, we can extend the same argument to operators with field-strengths if we write

the loop-operators as

O3F+ = −1

4
tr F β

α F λ
β F α

λ , OFF+ =
1

4
H†tatbH(Fa)αβ(Fb)βα , OD = H†fα(Fa)αβtaf ′β ,

(10.39)

where we have defined Fαβ ≡ (F aµνt
aσµν)αβ that transforms as a (1,0) under the Lorentz

group, and write the Hermitian-conjugate of Eq. (10.39) with F α̇β̇, a (0,1) under the

Lorentz group, as for example, O†
3F+ = O3F− = −1

4tr F β̇
α̇ F λ̇

β̇
F α̇
λ̇

. From Eq. (10.39)

it is clear that any diagram with an external Fαβ respects holomorphy, as it can only

generate the operators of Eq. (10.39) and not their Hermitian conjugates. One-loop

contributions from OFF+ in which H†tatbH is kept among the external fields, however,

do not necessarily respect holomorphy. An explicit calculation is needed, and while

contributions to OFF+ vanish by the reasoning given in [123], contributions to Oy are

found not to be holomorphic.

Following our previous supersymmetric approach, it is quite simple to check whether

or not loop contributions are holomorphic. In the ESFT, holomorphy is trivially re-

spected as super-operators with an η†-spurion renormalize among themselves and can-

not induce the Hermitian-conjugate super-operators since those contain an η, and vice

versa. This means that possible breakings of holomorphy, at the field-component level,

150



Chapter 10 – One-loop non-renormalization results in EFTs 151

must be the same in the ordinary SM loop and in its corresponding superpartner loop, as

the total breaking must cancel in their sum. Therefore we can look at either one or the

other type of loop to check holomorphy. In this way, we can always relate holomorphy

to fermion chirality. For example, the breaking of holomorphy in the renormalization of

Oy from O†FF+ [150], mentioned before, can be easily seen to arise from the diagram of

Fig. 10.3. It corresponds to the superpartner one-loop contribution to Oy arising from

the vertex |H|2λ†σ̄µ∂µλ ∼ |H|2Hλ†ψ†H of Eq. (10.11), where we have used the EOM of

λ (and replaced the U(1) φ and ψ by the SM Higgs and Higgsino).

10.4 Implications for the QCD Chiral Lagrangian

We can extend the above analysis also to the QCD Chiral Lagrangian [149]. At O(p2),

we have

L2 =
f2
π

4
〈DµU

†DµU〉 . (10.40)

This is an operator that can be embedded in a D-term as
∫
d4θ 〈U†U〉, where U and its

superpartners are contained in U ≡ eiΦ, with Φ a chiral superfield. At O(p4), the QCD

Chiral Lagrangian is usually parametrized by the Li coefficients [149] in a basis with

operators that are linear combinations of JJ-operators and loop-operators. These are

L4 = −iL9〈FµνR DµUDνU
† + FµνL DµU

†DνU〉+ L10〈U †FµνR UFLµν〉+ · · · . (10.41)

A more convenient basis is

L4 = iLJJ〈DµF
µν
L (U †

↔
DνU) + (U

↔
DνU

†)DµF
µν
R 〉+ Lloop〈U †FµνR UFLµν〉+ · · · , (10.42)

where LJJ = L9/2 and Lloop = L9 + L10. It is easy to see that the first operator of

Eq. (10.42) is a JJ-operator, while the second is a loop-operator. This latter can only

be embedded in a θ2-term of a super-operator (i.e., 〈U†Wα
R U WαL〉), and therefore it

cannot be renormalized by the operator in Eq. (10.40) in the supersymmetric limit. As

contributions from superpartner loops can be easily shown to vanish, we can deduce

that Eq. (10.40) cannot renormalize Lloop at the one-loop level. This is indeed what one

finds from the explicit calculation [149]: γLloop = γL9 + γL10 = 1/4− 1/4 = 0.

10.5 Summary

In EFTs with higher-dimensional operators the one-loop anomalous dimension matrix

has plenty of vanishing entries apparently not forbidden by the symmetries of the theory.
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Figure 2: Blue-shaded entries vanish and are understood by means of ESFT.
Red-shaded area satisfies holomorphicity and is understood as consequence
of Lorentz symmetry.

(X+)3 |H|2X+ O+
D Oyy Oy |H|6 J2

H J2
f JH · Jf

|H|2X+

(X+)3

O+
D

Oyy

Oy

|H|6

J2
H

J2
f

JH · Jf

Table 1: bla bla bla .

11

vanishing 
entries

vanishing entriesholomorphic

Figure 10.4: Anomalous-dimension matrix of the dimension-six SM operators showing
which entries (red-shaded) vanish following the present analysis. We also show the
entries (light blue-shaded) that respect the holomorphic condition Eq. (10.38). Solid

lines separate loop-operators from JJ-operators.

In this chapter we have shown that the reason behind these zeros is the different Lorentz

structure of the operators that does not allow them to mix at the one-loop level. We have

proposed a way to understand the pattern underlying these zeros based on classifying the

dimension-six operators in JJ- and loop-operators and also according to their embedding

in super-operators (see Tab. 10.1 for the SM EFT). We have seen that all loop-operators

break supersymmetry, 10 while we have two classes of JJ-operators, those that can be

supersymetrized and those that cannot. This classification is very useful to obtain non-

renormalization results based in a pure SSB-spurion analysis in superfields, that can

be extended to non-supersymmetric EFTs. In terms of component fields, the crucial

point is that the vanishing of the anomalous-dimensions does not arise from cancellations

between bosons and fermions but from the underlying Lorentz structure of the operators.

We have explained how this approach works in a simple U(1) model with a scalar

and fermions, and have shown how to extend this to SM EFTs and the QCD Chiral

Langrangian. The main results are summarized in Fig. 10.4 that shows which entries of

the anomalous-dimension matrix for the SM EFTs operators we have proved to vanish.

We have also explained how to check if holomorphy is respected by the complex Wilson-

coefficients, a property that is fulfilled in most cases, as Fig. 10.4 shows.

Recently, Ref. [156] presented an alternative way to derive similar results to ours.

Ref. [156] makes use of the spinor helicity formalism and the generalised unitarity cuts

10This is not true in general. For instance, in models with two Higgses of opposite hypercharge, H
and H̄, one can have the supersymmetric loop-operator

∫
d2θHH̄WαWα. Notice that in such a case

supersymmetry also protects that operator from being renormalized in the ESFT.
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to analyse, in a very efficient way, all possible Lorentz vertices that can contribute to

the renormalization of a given operator. This allows Ref. [156] to organise the non-

renormalization results presented in this Chapter in a rather simple way based solely on

the weighs w of the amplitudes generated by the operators 11. In contrast with our ana-

lysis based on the supersymmetric spurion η power and the easy superpartner analysis

presented in this chapter. It would be very interesting to make a connection between

Ref. [156] and the spurious supersymmetric analysis of this Chapter, and to clarify if it

is possible to extend it to multi-loop renormalization.

11The weigh of an amplitude A is defined as w[A] = n[A]−h[A] where n[A] is the number of particles
and h[A] is the sum of the helicites of the particles of the amplitude.
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A. Currents, redundant operators

and field shifts

In this Appendix we first list, in Sec. A.1, the different currents (of dimension ≤ 3)

built from SM fields that enter into the d = 6 current-current operators. We examine

in Sec. A.2 how these operators can be generated from integrating out heavy particles

discussing what type of operators appear depending on the quantum numbers of the

heavy fields. Some of these operators are redundant and can be eliminated from the

Lagrangian by using the field equations of motion or, equivalently, by field redefinitions.

We discuss this point in Sec. A.3, where we give a possible set of field redefinitions that

can be used to get rid of the redundant operators.

A.1 Currents of SM fields

For simplicity we limit our examples of currents to the SM with a single family of

fermions, the generalization to 3 families being straightforward. The scalar currents are:

JH = |H|2 , J
(2)
H = H|H|2 , J�H = D2

µH ,

JaH = H†σaH , JyfH = yf F̄LfR , JAyfH = yf Q̄LT
AfR ,

(A.1)

where TA are the SU(3)c generators and from now on we use the notation FL = {QL, LL}
and fR = {uR, dR, eR} for fields, while F = {q, l} and f = {u, d, e} are used for the

corresponding operator indices. Obviously, one can also have the conjugate currents:

J̃
(2)
H = H̃|H|2, J̃�H = D2

µH̃, etc.

There are also vector currents made of SM bosons, like:

JµH = iH†
↔
DµH , JµWR

= iH̃†
↔
DµH , JaµH = iH†σa

↔
DµH ,

JµB = ∂νB
µν , JaµW = DνW

aµν , JAµG = DνG
Aµν ,

(A.2)
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and made of SM fermions, like:

Jµff ′ = f̄Rγ
µf ′R , JµF = F̄Lγ

µFL , JaµF = F̄Lσ
aγµFL ,

JAµf = f̄RT
AγµfR , JAµQ = Q̄LT

AγµQL ,
(A.3)

as well as the lepto-quark currents:

JαQe = yeQ̄
α
LeR , JαLu = yuL̄Lu

α
R , JαLd = ydL̄Ld

α
R , (A.4)

where we write explicitly the color index α. Finally, we list fermionic currents made of

SM fields. They can be SU(2)L singlets:

JDf = i 6DfR , Jyf f̄R = {y†uH̃†QL , y†dH†QL , y†eH†LL} , (A.5)

doublets:

JDF = i 6DFL , Jyf F̄L = {yuH̃uR , ydHdR , yeHeR} , (A.6)

or triplets:

Ja
H̃F

= {H̃†σaQL, H̃†σaLL} , JaHF = {H†σaQL, H†σaLL} . (A.7)

The previous list of SM currents is not complete but contains all the currents necessary

to build the current-current operators of our basis (defined in the main body of the

paper), as well as many of the redundant operators.

A.2 Current-current operators

The d = 6 current-current operators can in principle be generated from the tree-level

exchange of heavy fields. We can then classify such operators by the quantum numbers

of the exchanged heavy fields. We present such classification below (giving explicit

expressions for those redundant operators that appear here for the first time.). Finding

possible deformations in SM couplings that can be assigned to particular current-current

operators can offer crucial information in identifying the heavy physics responsible for

such effects.

◦ Scalar × scalar

The exchange of a heavy scalar singlet can lead (after integration by parts) to:

− JH�JH = 2OH . (A.8)
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From a heavy scalar SU(2)L-doublet we get:

λJ
(2) †
H J

(2)
H = O6 , J

(2) †
H J�H + h.c. = −2(OH +Or) ,

JyuH J̃
(2)
H = Oyu , J†ydHJyeH = Oydye ,

(JyuH)rεrs(JyeH)s = Oyuye , (JyuH)rεrs(JydH)s = Oyuyd ,

(A.9)

and also:

J†�HJ�H =
∣∣D2

µH
∣∣2 ≡ OK4 ,

JyuH J̃�H = −yuDµ

(
Q̄LuR

)
DµH̃ ≡ −OuyH . (A.10)

If the heavy doublet is also charged under SU(3)c we can get:

(JαQe)
rεrs(J

α
Lu)s = O′yuye , (JAyuH)rεrs(J

A
ydH

)s = O(8)
yuyd

, (A.11)

while, from a heavy scalar SU(2)L-triplet we would obtain:

JaHD
2JaH = −2OT − 4Or . (A.12)

◦ Vector × vector

From the exchange of a heavy singlet vector one can get:

JµHJH µ = −2OT , g′JµBJHµ = 2OB , JµuuJH µ = OuR ,

JµHJF µ = OFL , JµBJB µ = −2O2B , JµuuJuuµ = OuRR ,

JµuuJF µ = OuLR , JµFJF µ = OFLL , y†uydJWR µJ
µ
ud = OudR ,

(A.13)

as well as

g′JµBJuuµ = g′(ūRγµuR)(∂νBµν) ≡ OuBR ,

g′JµBJF µ = g′(F̄LγµFL)(∂νBµν) ≡ OFBL . (A.14)

The exchange of a heavy SU(2)L-triplet vector can produce:

JaµH JaH µ = −2OH + 4Or , gJaW µJ
aµ
H = 2OW , JaµF JaH µ = O(3)F

L ,

JaµW JaW µ = −2O2W , JaLµJ
aµ
L = OlLL , JaQµJ

aµ
Q = 4O(8)q

LL +
2−Nc

Nc
OqLL ,

(A.15)

and

gJaµW JaF µ = g(F̄Lγ
µσaFL)(DνW a

µν) ≡ OFWL , (A.16)
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while a heavy SU(3)c-octet vector could give:

JAuµJ
Aµ
u = (1/3) OuRR , JAQµJ

Aµ
Q = O(8) q

LL , JAQµJ
Aµ
u = O(8)u

LR . (A.17)

◦ Fermion × fermion

Finally, we list operators that can arise from integrating a heavy fermion. If the

fermion is a singlet:

J̄yuūRi /DJDu = yuDµ(Q̄LH̃)γµγνDνuR ≡ OuyR ,

J̄yuūRi /DJyuūR + h.c. =
1

2
|yu|2

[
−Õ(3)q

L + ÕqL −O
(3)q
L +OqL

]
,

(A.18)

where

Õ(3)q
L = i(Q̄Lσ

a
↔
6D QL)(H†σaH) ,

ÕqL = i(Q̄L
↔
6D QL)|H|2 , (A.19)

are redundant operators.

If the fermion integrated-out is a doublet, one can get:

J̄DQi /DJyuQ̄L = yuDµQ̄Lγ
µγνDν(H̃uR) ≡ OuyL ,

J̄yuQ̄Li /DJyuQ̄L + h.c. = |yu|2
[
−OuR + ÕuR

]
,

(A.20)

with the redundant operator:

ÕuR = i(ūR
↔
6D uR)|H|2 . (A.21)

Finally, from integrating out a heavy fermion triplet, we can get:

J̄a
H̃F

i /DJa
H̃F

+ h.c. =
1

2

[
Õ(3)F
L + 3ÕFL +O(3)F

L + 3OFL
]
,

J̄aHF i /DJ
a
HF + h.c. =

1

2

[
−Õ(3)F

L + 3ÕFL +O(3)F
L − 3OFL

]
.

(A.22)

To describe the effect of a heavy fermion that is a color octet, one would need to

generalize the quark currents of Sec. A.1 by inserting SU(3)c generators. However,

the dimension-6 operators that result have been already found in Eqs. (A.18) and

(A.20).
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A.3 Field redefinitions and redundant operators

Many d = 6 current-current operators are redundant: they can be removed from the

Lagrangian by field redefinitions. We will show how field redefinitions can be used for

that purpose, focusing here on current-current operators not of the 4-fermion type.

Let us start first with bosonic operators. Consider the following transformations that

shift fields by some of the bosonic currents listed in Sec. A.1 (with the same quantum

numbers of the shifted fields):

H → H + α1J
(2)
H /Λ2 , H → H

(
1− α2m

2/Λ2
)

+ α2J�H/Λ
2 ,

Bµ → Bµ + [g′αBJH µ + α2BJB µ]/Λ2 , W a
µ →W a

µ + [gαWJ
a
H µ + α2WJ

a
W µ]/Λ2 ,

GAµ → GAµ + α2GJ
A
Gµ/Λ

2 , (A.23)

with αi arbitrary parameters (taken real). These transformations induce shifts in the

d = 6 Wilson coefficients 1 of Eqs. (6.4) and (6.5) plus the redundant operator OK4 =

|D2
µH|2:

cH → cH + 2α1 + (4λα2 − αW g2)/g2
∗ ,

cr → cr + 2α1 + (4λα2 + 2αW g
2)/g2

∗ ,

c6 → c6 − 4α1 ,

cT → cT − αBg′2/g2
∗ ,

cB → cB − 2αB + α2B ,

cW → cW − 2αW + α2W ,

c2W → c2W + 2α2W ,

c2B → c2B + 2α2B ,

c2G → c2G + 2α2G ,

cK4 → cK4 − 2α2 . (A.24)

Notice that only operators of tree-level type are shifted. Using this shift freedom, we

could eliminate 7 out of the 10 operators {OH ,Or,O6,OT ,OB,OW ,O2W ,O2B,OK4,O2G}
by choosing appropriately the αi’s and leave only OH , OT and O6. As we discussed in

Sec. 6.1, however, it is convenient to keep the operators OW and OB in the basis, in

which we could also keep O2W , O2B and O2G. If we do not use 5 of these shifts to remove

OW , OB, O2W , O2B and O2G, they can be used later on to remove 5 other operators

involving fermions. We will discuss such operators next.

1Shifts of order m2/Λ2 induced on the renormalizable dimension-4 SM operators play no role. There
are also shifts in the coefficients of the operators made of fermions that we show below.
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Besides the bosonic redundant operators discussed above, there are redundant opera-

tors that involve Higgs and fermion fields. For instance, we have the following first-class

operators:

ÕFL = (iF̄L
↔
6D FL)|H|2 , Õ(3)F

L = (iF̄Lσ
a
↔
6D FL)(H†σaH) , ÕfR = (if̄R

↔
6D fR)|H|2 ,

(A.25)

as well as the second-class operators

OuyH = yuDµ(Q̄LuR)DµH̃ , OuyR = yuDµ(Q̄LH̃)γµγνDνuR ,

OuyL = yuDµQ̄Lγ
µγνDν(H̃uR) , OuyLR = yu(DµQ̄L)γµγν(DνuR)H̃ , (A.26)

(and similar operators for down-type quarks and leptons). In addition, there are (second-

class) operators involving fermions and gauge bosons:

OFBL = g′(F̄LγµFL)∂νBµν , OfBR = g′(f̄RγµfR)∂νBµν , OFWL = g(F̄Lσ
aγµFL)DνW a

µν ,

OqGL = gs(Q̄LT
AγµQL)DνGAµν , OfGR = gs(f̄RT

AγµfR)DνGAµν . (A.27)

To see that the operators (A.25)-(A.27) can indeed be removed from the Lagrangian,

consider the following field redefinitions that involve fermions:

QL → QL(1 + g2
∗αLJH/Λ

2) + [g2
∗α

(3)
L JaHσ

aQL + iαuyL 6DJyuQ̄L + yuα
u
yLRH̃JDuR

+iαdyL 6DJydQ̄L + ydα
d
yLRHJDdR ]/Λ2 ,

uR → uR(1 + g2
∗α

u
RJH/Λ

2) + iαuyR 6DJyuūR/Λ2 ,

dR → dR(1 + g2
∗α

d
RJH/Λ

2) + iαdyR 6DJydd̄R/Λ
2 ,

Bµ → Bµ + g′[αBFLJFµ + αBfRJffµ]/Λ2 ,

W a
µ → W a

µ + gαWfLJ
a
Lµ/Λ

2 ,

GAµ → GAµ + gs[α
G
FL
JAFµ + αGfRJ

A
fµ]/Λ2 ,

H̃ → H̃ + αHtJ
†
ytH

/Λ2 ,

H → H + αHbJ
†
ybH

/Λ2 , (A.28)

under which the Wilson coefficients shift as follows: For the Higgs-fermion operators of

Eq. (7.4), plus the straightforward generalization to the down-type fermions, and the

up-down mixed operator of Eq. (6.17), we get (for third-generation quarks):

cyt → cyt − α1 − 2
λ

g2∗
αHt − αtR − αL + α

(3)
L ,

cyb → cyb − α1 − 2
λ

g2∗
αHb − αbR − αL − α(3)

L ,

cR → cR +
|yt|2
g2∗

αtyL +
g′2

2g2∗
(2Y t

RαB + αBtR) ,
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cq3L → cq3L −
1

2

|yt|2
g2∗

αtyR +
g′2

2g2∗
(2Y q

LαB + αBQL) ,

c
(3)q3
L → c

(3)q3
L +

1

2

|yt|2
g2∗

αtyR +
g2

2g2∗
(αW + αWQL) ,

ctbR → ctbR −
1

2
(αtyL + αbyL) . (A.29)

The Higgs-fermion redundant operators of Eq. (A.25) can be eliminated by the shifts:

c̃tR → c̃tR + αtR −
|yt|2
g2∗

(αtyL + αtyLR) ,

c̃bR → c̃bR + αbR ,

c̃q3L → c̃q3L + αL −
1

2

|yt|2
g2∗

αtyR ,

c̃
(3)q3
L → c̃

(3)q3
L + α

(3)
L +

1

2

|yt|2
g2∗

αtyR , (A.30)

(where, from here on, we neglect |yb|2 and |yτ |2 contributions) while the redundant

Higgs-fermion operators of Eq. (A.26) can be eliminated by the shifts:

cfyH → cfyH + αHf + α2 ,

cfyR → cfyR + αfyR ,

cfyL → cfyL + αfyL ,

cfyLR → cfyLR + αfyLR . (A.31)

All the redundant gauge-fermion operators of Eq. (A.27) can be removed by the shifts:

cfBR → cfBR + Y f
Rα2B − αBfR ,

cFBL → cFBL + Y F
L α2B − αBFL ,

cFWL → cFWL +
1

2
α2W − αWFL ,

cqGL,GR → cqGL,GR + α2G − αGqL,R . (A.32)

Finally, the coefficients of four-fermion operators will also be shifted but we will not

need such shifts and we do not list them.

Using all the shift freedom to remove these redundant operators we end up (say, for

the third family) with the following Higgs-fermion Wilson coefficients: yfcyf , c
f
R, c

F
L , c

(3)F
L

and ctbR, with f = t, b, τ and F = q, l, in agreement with the operators listed in Tab. 6.2.
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B. Anomalous dimensions of

d = 6 Wilson coefficients

In the analysis of Chapter 8 we were interested in potentially large radiative effects in

the running of the d = 6 Wilson coefficients ci from the scale Λ of new physics to the

electroweak scale. To study such effects we computed the one-loop anomalous dimensions

γci for the Wilson coefficients, which are functions of the coefficients themselves, that is:

γci =
dci

d logµ
= γci(cj) , (B.1)

where µ is the renormalization scale.

When redundant operators are removed from the Lagrangian some care has to be

taken in computing anomalous dimensions of the operators left in the basis. The reason

is that redundant operators can be generated through RG evolution by operator mixing

with non-redundant operators. In other words, the γci ’s of redundant operators are not

zero in general.

Let us explain how this effect can be taken care of in a simple way. Consider a

basis formed by a set of coefficients {ci}, after removing a set of redundant coefficients

{cri }. The procedure to remove the cri is straightforward and has been illustrated in

the previous Appendix. One starts from the shifts induced by field-redefinitions with

arbitrary parameters αk, which have the form

ci → c′i(αj) = ci +
∑

k

sikαk , cri → cr ′i(αj) = cri +
∑

k

srikαk . (B.2)

Then the αk’s are chosen so as to remove the redundant operators,

cr ′i(α
∗
j ) = 0 ⇒ α∗j = −

∑

i

(sr)−1
ji c

r
i . (B.3)
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It is then convenient to define the following combinations

Ci ≡ c′i(α∗j ) = ci −
∑

kl

sik(s
r)−1
kl c

r
l , (B.4)

which are invariant under the arbitrary shifts of Eq. (B.2) and correspond to a more

physical definition of the Wilson coefficients.

The anomalous dimensions of these shift-invariant Ci’s are simply

γCi = γci −
∑

kl

sik(s
r)−1
kl γcrl = γi(ck; c

r
k) , (B.5)

where the last expression just indicates some function of the Wilson coefficients and we

distinguish in its argument between coefficients in the basis and coefficients of redundant

operators. The key property of this function is that it must depend on the Wilson

coefficients only through the shift-invariant combinations. That is, it satisfies

γi(ck; c
r
k) = γi(Ck; 0) . (B.6)

This implies that setting crk = 0 in these γi(ck; c
r
k) functions is now a consistent procedure

to obtain the anomalous dimensions after removing redundant operators. An explicit

example of this is given at the end of this Appendix. We applied this procedure to

calculate the anomalous dimensions used in Sec. 8.1. In the next Subsections we will list

the required shift-invariant Ci combinations and present the γci ’s necessary to complete

the calculation.

B.1 Shift-invariant combinations of Wilson coefficients

In order to simplify the expressions for the shift-invariant combinations Ci of Wilson

coefficients, we present them first in a basis that treats as redundant the operators OB,

OW , O2B, O2W and O2G. We explain afterwards how to express these combinations in

other bases, as those that keep these operators. As we are not interested in calculating
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the anomalous dimensions of 4-fermion operators, below we restrict our Ci’s to non-4-

fermion current-current operators. We find:

CH ≡ cH − cr −
3g2

4g2∗
(2cW − c2W ) ,

CT ≡ cT −
g′2

4g2∗
(2cB − c2B) ,

C6 ≡ c6 + 2cr +
g2

g2∗
(2cW − c2W ) + 4

λ

g2∗
cK4 ,

Cyt = cyt +
1

2
cr + 2

λ

g2∗

(
ctyH + cK4

)
+ c̃tR + c̃q3L − c̃

(3)q3
L +

g2

4g2∗
(2cW − c2W )

+
|yt|2
g2∗

(ctyR + ctyL + ctyLR) ,

Cyb = cyb +
1

2
cr + 2

λ

g2∗

(
cbyH + cK4

)
+ c̃bR + c̃q3L + c̃

(3)q3
L +

g2

4g2∗
(2cW − c2W ) ,

Cyτ = cyτ +
1

2
cr + 2

λ

g2∗

(
cτyH + cK4

)
+ c̃τR + c̃l3L + c̃

(3)l3
L +

g2

4g2∗
(2cW − c2W ) ,

CtR = ctR −
|yt|2
g2∗

ctyL +
g′2

2g2∗
[Y t
R(cB − c2B) + ctBR] ,

CbR = cbR +
g′2

2g2∗
[Y b
R(cB − c2B) + cbBR] ,

CτR = cτR +
g′2

2g2∗
[Y τ
R(cB − c2B) + cτBR] ,

Cq3L = cq3L +
1

2

|yt|2
g2∗

ctyR +
g′2

2g2∗
[Y q
L(cB − c2B) + cq3BL] ,

C l3L = cl3L +
g′2

2g2∗
[Y l
L(cB − c2B) + cl3BL] ,

C
(3) q3
L = c

(3)q3
L − 1

2

|yt|2
g2∗

ctyR +
g2

4g2∗
(cW − c2W + 2cq3WL) ,

C
(3) l3
L = c

(3)l3
L +

g2

4g2∗
(cW − c2W + 2cl3WL) ,

CtbR = ctbR +
1

2
(ctyL + cbyL) . (B.7)

Out of the 59 independent operators for a single family, 20 are of one-loop type and

25 are 4-fermion tree-level operators. The remaining 14 are tree-level operators whose

number corresponds to the 14 physical Ci’s in Eq. (D.22).

Let us now discuss how these Ci’s would be modified in other bases. For example, if

we keep OB and OW in the basis instead of the leptonic operators OlL and O(3) l
L , then

one should remove C lL and C
(3)l
L from the list of Ci’s. This is accomplished by making
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the replacements

cB → c2B −
1

Y l
L

clBL −
2g2
∗

Y l
Lg
′2 c

l
L ,

cW → c2W − 2clWL − 4
g2
∗
g2
c

(3) l
L , (B.8)

in all the Ci’s (obtaining in particular C lL = C
(3) l
L = 0) and then add to the list the

following two new Ci’s:

CB = cB − c2B +
1

Y l
L

clBL +
2g2
∗

Y l
Lg
′2 c

l
L ,

CW = cW − c2W + 2clWL + 4
g2
∗
g2
c

(3) l
L . (B.9)

The replacement in Eq. (B.8) introduces a dependence on γclBL
, γclcL

, γclWL
and γ

c
(3)l
L

in the calculation of the anomalous dimensions of the Ci’s, but the only non-redundant

coefficients that appear in those anomalous dimensions depend on leptonic Yukawa cou-

plings that we neglect.

In a similar way, O2B, O2W and O2G can be kept in the basis instead of three 4-

fermion operators of the first family, e.g. OeRR, OlLL and O(8)d
RR . In this basis c2B, c2W

and c2G have to be replaced by linear combinations of ceRR, c
l
LL and c

(8)d
RR in the Ci’s

above. However, this replacement has no impact on the anomalous dimensions of the

Ci’s if we only keep the coefficients of Eq. (8.3) and neglect small Yukawas. Indeed, it

is simple to realize that Eq. (8.3) can only renormalize c2B,2W,2G or ceRR, c
l
LL and c

(8)d
RR

through lepton or down Yukawas, which are terms we neglect in our RGEs. Therefore,

whether we keep O2B,2W,2G or 4-fermion operators, the RGEs given in Chapter 8 are

unaffected.

B.2 Anomalous dimensions before removing redundant op-

erators

To calculate the anomalous dimensions γCi ’s, following Eq. (B.5), we need to calculate

the anomalous dimensions of the Wilson coefficients entering in the Ci’s, including those

that are redundant.

We have calculated these anomalous dimensions to linear order in the cj ’s of Eq. (8.3),

the only exception being cr, which we keep for illustrative purposes here. Parametrically

one has γci ∼ g2
j cj/16π2 and we only keep g2

j = {y2
t , g

2
s , g

2, g′2, λ}, dropping g2
j =

166



Appendix B – Anomalous dimensions of d = 6 Wilson coefficients 167

{y2
b , y

2
τ , ...}. The anomalous dimensions, calculated in Landau gauge, are:

γcH =
1

4π2

{
Ncy

2
t [cyt + c

(3)
L ] + λ(7cH − cr) +

3

8

[
g2(cH + 2cr) + g′2cr

]}

−4γhcH , (B.10)

γcT =
1

16π2

[
4Ncy

2
t (cR − cL) +

3

2
g′2(cH − cr)

]
− 4γhcT , (B.11)

γλc6 =
1

8π2

{
54λ2c6 − 4Ncy

4
t cyt + 12λ2(3cH + 2cr)−

3

8

[
2g4 + (g2 + g′2)2

]
cr

}

−6γhλc6 , (B.12)

γytcyt
yt

=
1

16π2

{
4λ
[
cR − cL + 3c

(3)
L + 6cyt

]
− g′2

[
cR + 4cL − 4c

(3)
L +

2

3
cyt

]

−3g2cR − 8g2
scyt + 2y2

t

[
4cLR + 4CF c

(8)
LR + cR − cL + c

(3)
L + 2cyt + cH

]}

−(3γh + γQL + γtR)cyt , (B.13)

γybcyb
yb

=
1

8π2

{
2λ[cL + 3c

(3)
L + 6cyb ] + y2

t [2c
(3)
L − cyt ] +

(
1

6
g′2 − 4g2

s

)
cyb

+
y2
t

g2∗
[3g2 − 2y2

t − 4λ]ctbR + g′2[cL + c
(3)
L ]

−y
4
t

g2∗

[
(2Nc + 1) cytyb + CF c

(8)
ytyb

]}
− (γQL + γbR + 3γh)cyb , (B.14)

γyτ cyτ
yτ

=
1

16π2

[
3
(
8λ− g′2

)
cyτ + 2Nc

y2
t

g2∗
(λ− y2

t )(2cytyτ + c′ytyτ )

]

−(γLL + γτR + 3γh)cyτ , (B.15)

γcR =
1

8π2

{
y2
t

[
NccLR − 2(Nc + 1)cRR + 2cR − cL +

1

4
(cH − cr)

]

−3

4
(3g2 + g′2)cR

}
− 2(γh + γtR)cR , (B.16)

γcL =
1

8π2

{
y2
t

[
−NccLR −

1

2
cR + cL − 3c

(3)
L −

1

8
(cH − cr) + (2Nc + 1)cLL

−CF c(8)
LL

]
−3

4
(3g2 + g′2)cL

}
− 2(γh + γQL)cL , (B.17)

γ
c
(3)
L

=
−1

8π2

{
y2
t

[
cL + c

(3)
L −

1

8
(cH − cr) + cLL + CF c

(8)
LL

]
+

3

4
(g2 + g′2)c

(3)
L

}

−2(γh + γQL)c
(3)
L (B.18)

γcr =
1

4π2

{
Ncy

2
t

[
cyt − 2c

(3)
L

]
+ λ(cH + 5cr) +

3

8

[
(5g2 + g′2)cr − 2g2cH

]}

−4γhcr ,
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1

yt
γytcyH = − g2

∗
4π2

[
cLR + CF c

(8)
LR

]
− (γh + γQL + γtR)cyH , (B.19)

1

yt
γytcyR =

g2
∗

8π2

[
cL − 3c

(3)
L

]
− (γh + γQL + γtR)cyR , (B.20)

1

yt
γytcyL = − g2

∗
8π2

cR − (γh + γQL + γtR)cyL , (B.21)

1

yt
γytcyLR =

g2
∗

16π2

[
cR − cL + 3c

(3)
L

]
− (γh + γQL + γtR)cyLR , (B.22)

1

yb
γybcbyH

=
1

16π2
y2
t

[
(2Nc + 1) cytyb + CF c

(8)
ytyb

]
− (γh + γQL + γbR)cbyH , (B.23)

γcK4 =
y2
t

4π2
NccyH − 2γhcK4 , (B.24)

γc̃R =
y2
t

16π2

[
3cyt + cR +

1

2
(cH + 2cr)

]
− 2(γh + γtR)c̃R , (B.25)

γc̃L =
y2
t

32π2

[
3cyt − cL + 3c

(3)
L +

1

2
(cH + 2cr)

]
− 2(γh + γQL)c̃L , (B.26)

γ
c̃
(3)
L

=
y2
t

32π2

[
−cyt + cL + c

(3)
L −

1

2
cH

]
− 2(γh + γQL)c̃

(3)
L , (B.27)

γcW =
g2
∗

48π2

[
16Ncc

(3)
L − (cH + cT )

]
−
(

2γh + γW +
1

g
βg

)
cW , (B.28)

γcB =
g2
∗

48π2

[
8Nc

3
(2cR + cL)− (cH + 5cT )

]
− 2γhcB, (B.29)

γcBR =
g2
∗

12π2

{
1

3
[4(Nc + 1)cRR +NccLR] + cR

}
− 2γtRcBR, (B.30)

γcBL =
g2
∗

12π2

{
1

3

[
(2Nc + 1)cLL + CF c

(8)
LL +NccLR

]
+ 2cL

}
− 2γQLcBL, (B.31)

γcWL =
g2
∗

12π2

[
cLL + CF c

(8)
LL + c

(3)
L

]
−
(

2γQL + γW +
1

g
βg

)
cWL, (B.32)

where CF = (N2
c − 1)/(2Nc), βg = dg

d log µ and

γh =
1

16π2

[
−Ncy

2
t +

3

4
(3g2 + g′2)

]
, γQL =

1

16π2

[
−1

2
y2
t

]
, γtR = − y2

t

16π2
,

γW = −1

g
βg −

3

16π2
g2 =

1

16π2

g2

6
, (B.33)

are the wave-function renormalization terms. The corresponding wave-function terms for

leptons and bR (γLL , γτR and γbR) are proportional to small Yukawa couplings squared

that we are neglecting. Notice that in the above results we have included some depen-

dence on Wilson coefficients beyond those of Eq. (8.3) and cr. In particular, we have
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h

h

fR

fR

=Õf
R = cH

h

h

fR

fR

+

cR

+

fR

fRh

h

yfcf

fR

fRh

h
+ · · ·

Figure B.1: Diagrams that generate at one-loop the redundant operator ÕfR.

h

h

h

fL

fR

yfcyf

+ · · · +

h

h

h

fR

fL

yf

fR

Õf
R

Figure B.2: Contributions to the process hhh→ f̄LfR at order 1/Λ2 , including
the one-loop corrections shown in Fig. B.1.

kept the contributions from wave function renormalization (which are trivial to take into

account) in all cases, and we also kept the contributions from cT in γcW and γcB that

were already calculated in Ref. [5]. These anomalous dimensions have been calculated

through the (divergent pieces of the) one-loop effective action.

Using Eqs. (B.10)-(B.32) we can calculate the anomalous dimensions γCi ’s for the

shift-invariant Wilson coefficients. These are given in Sec. 8.1. We have cross-checked

those RGEs by calculating them in an alternative way. We have looked at the one-loop

radiative corrections to some particular physical processes and required the correspond-

ing amplitudes to be independent of the renormalization scale. In order to find agreement

between both methods, it is crucial to include in the amplitude for the physical process

non-1PI contributions. In the effective action approach, such diagrams are in one-to-one

correspondence with the redundant operators being eliminated.

As an illustrative example of the previous point, consider the contribution of the

redundant operator ÕfR to the renormalization of Oyf . One-loop radiative corrections

do generate ÕfR in the one-loop effective action, as shown in Fig. B.1, even if we remove

ÕfR from the (tree-level) Lagrangian. The physical combination Cyf [see Eq. (D.22)]

depends on c̃fR and, therefore, the anomalous dimension γCyf also depends on γ
c̃fR

. The

same result for γCyf can be obtained by looking at the physical process hhh → f̄LfR.

The 1/Λ2 diagrammatic contributions to this process are shown in Fig. B.2. Besides
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170 Appendix B – Anomalous dimensions of d = 6 Wilson coefficients

the tree-level contribution through cyf shown on the left, there are one-loop corrections,

among which we just show the ones related to the redundant operator ÕfR. Having

removed the redundant ÕfR from the basis, there is no tree-level contribution from c̃fR to

hhh → f̄LfR and the divergences from the one-loop blob shown in Fig. B.2 have to be

absorbed by cyf (µ) to obtain an amplitude that is independent of the renormalization

scale µ.

Finally, the reader can check, using the previous anomalous dimensions which include

the dependence on the redundant coefficient cr, that the anomalous dimensions of the

shift invariant combinations cH − cr, c6 + 2cr, cyt + cr/2, cyb + cr/2, plus all the other

Wilson coefficients, are functions of these same combinations, so that one can take cr = 0

in a consistent way.
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C. Custodial symmetry of Ld=6

The d = 6 operators of the basis of Sec. 6.1 can be made invariant under the custodial

SU(2)L ⊗ SU(2)R by promoting their coefficients to (non-propagating) spurion fields

transforming under this symmetry. In this Appendix we present these transformation

rules.

The bosonic sector of the SM Lagrangian can be made custodial invariant by promot-

ing the gauge coupling g′ to transform as a triplet under SU(2)R:

g′aσa → g′aRσaR
† , (C.1)

whose nonzero VEVs, given by 〈g′a〉 = g′δa,3, define how the custodial symmetry is

explicitly broken by this coupling. For the Higgs field, that transforms as a (2L,2R), it

is convenient to use the matrix field

Σ =
1√
2

(
H̃ , H

)
, (C.2)

that transforms under the custodial group as Σ → LΣR†, and therefore its covariant

derivative is given by DµΣ = ∂µΣ− igW a
Lµσ

aΣ/2 + ig′ aBµΣσa/2.

To make the Yukawa sector of the SM invariant under the custodial symmetry, we

can promote the Yukawa couplings to transform as a doublet under SU(2)R:

Yu → RYu , (C.3)

where 〈Yu〉 = (yu, 0)T , and similarly for the other Yukawas. The Yukawa term is then

written as
√

2Q̄LΣYuuR, where the SM fermions transform as singlets under SU(2)R. To

define the proper hypercharge assignment for the SM fermions, we have to enlarge the

global group to SU(2)L ⊗ SU(2)R ⊗U(1)X and define the hypercharge as Y = T 3
R +X.

This means that the U(1)Y is not only contained in SU(2)R but also in U(1)X and

therefore g′ also has a singlet component under the custodial group.
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172 Appendix C – Transformation properties of the d = 6 operators

Using the above definitions we can write the Lagrangian L6 as an invariant under

SU(2)L ⊗ SU(2)R. This requires to promote a few of the coefficients to spurion fields

transforming non-trivially. The result is shown in Tab. C.1. Only cT and cL,R trans-

form non-trivially, being then, together with g′ and the Yukawa couplings, the only

sources of custodial breaking. This information is useful to deduce what combinations

of coefficients and couplings can contribute at the one-loop level to a given anomalous

dimension. For example, contributions to γcT can only come from terms that transform

as 5R: 〈g′ag′bcH〉 = g′ 2cHδa,3δb,3 and 〈Y †uσaYucbL,R〉 = −y2
ucL,Rδ

a,3δb,3, as the explicit

calculation shows. In the same way it can be understood why γcH depends on y2
t c

(3)
L but

not on y2
t cL, being cH a singlet under the custodial symmetry.

Useful information can also be derived from the transformations under the parity PLR

that interchanges L↔ R. In the bosonic sector, we have

Σ ↔ Σ†

g′ a

g′
Bµ ↔ W a

Lµ

g′ ↔ g

cH ↔ cH

cW ↔ cB

κHW ↔ κHB , (C.4)

while cT and κBB do not have a well-defined transformation property inside the operator

basis. For this reason it could be convenient to work with the operator OWB instead of

OBB [both related by Eq. (7.7)] that is even under PLR, and therefore κWB ↔ κWB.

For operators involving SM fermions, we have several possibilities for the transforma-

tion properties under PLR, see Ref. [157]. The two simplest ones are to consider (for the

up-type quark)

I) QR ≡
1

yu
YuuR and QL (C.5)

that transform respectively as (1,2R)1/6 and (2L,1)1/6 under SU(2)L⊗SU(2)R⊗U(1)X ,

or, alternatively,

II) QL ≡
1

yu
QL ⊗ Y †u and uR (C.6)

transforming as (2L,2R)2/3 and (1,1)2/3 respectively. For the first case, Eq. (C.5), we

can write the operators OR and O(3)
L in the following way:

− icRtr[σaΣ
†↔DµΣ]Q̄Rσaγ

µQR and ic
(3)
L tr[Σ†σa

↔
DµΣ]Q̄Lσaγ

µQL , (C.7)
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such that under PLR we can define QL ↔ QR and

I) cR ↔ c
(3)
L . (C.8)

For the second case, Eq. (C.6), we can write the operators OL and O(3)
L as

icLtr[σaΣ
†↔DµΣ]tr[Q̄TLεTσaγµεQTL] and ic

(3)
L tr[Σ†σa

↔
DµΣ]tr[Q̄LσaγµQL] , (C.9)

and define QL ↔ εQTLεT under PLR that gives the transformation rule

II) cL ↔ −c(3)
L . (C.10)

In this latter case, invariance under PLR implies cL+c
(3)
L = 0, and therefore no corrections

to the ZbLb̄L coupling.

Operator Spurion SU(2)L ⊗ SU(2)R vev

1
2c
a,b
T tr[σaΣ†

↔
DµΣ]tr[σbΣ†

↔
DµΣ] ca,bT (3R ⊗ 3R)s = 5R + 1 cT δ

a,3δb,3

1
2cH

(
∂µtr[Σ†Σ]

)2
cH 1 cH

c6
(
tr[Σ†Σ]

)3
c6 1 c6

− i
2cBg

′atr[σaΣ†
↔
DµΣ]∂νB

µν cB 1 cB

i
2cW gtr[Σ†σa

↔
DµΣ]DνW

µν
a cW 1 cW

cy
u

tr[Σ†Σ]
√

2Q̄LΣYuuR cy
u

1 cy
u

−icaRtr[σaΣ†
↔
DµΣ]f̄Rγ

µfR caR 3R cRδ
a,3

−icaLtr[σaΣ†
↔
DµΣ]f̄Lγ

µfL caL 3R cLδ
a,3

ic
(3)
L tr[Σ†σa

↔
DµΣ]f̄Lσaγ

µfL c
(3)
L 1 c

(3)
L

−4icudR tr[ΣYdY
†
uDµΣ†]ūRγµdR cudR 1 cudR

κBBg
′ag′atr[Σ†Σ]BµνB

µν κBB 1 κBB

−iκHBg′atr[σaDµΣ†DνΣ]Bµν κHB 1 κHB

iκHW gtr[DµΣ†σaDνΣ]Wµν
a κHW 1 κHW

κDB
√

2Q̄LΣYuσ
µνuRBµν κDB 1 κDB

κDW
√

2Q̄Lσ
aΣYuσ

µνuRW
a
µν κDW 1 κDW

κDG
√

2Q̄LΣYuT
AσµνuRG

A
µν κDG 1 κDG

Table C.1: Transformation of the spurion Wilson coefficients of the d = 6 operators
under the custodial symmetry and their corresponding VEV. We are dropping fermion

indices in the coefficients.
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D. Dealing with redundant

operators

In this appendix we explain in detail the anomalous dimension matrix presented in the

main body of the paper, Tabs. 9.2-9.3 and 9.7. As remarked in Sec. 9, a common effect

encountered in the computation of the scaling of the dim-6 operators is the appearance

of counter-terms that correspond to operators not included in our basis, i.e. operators

that are redundant for the description of physical processes. In particular, the set of 13

operators we were interested in Chapter 9,

{OH ,OT ,OB,OW ,O2B,O2W ,OBB,OWW ,OWB,O3W ,O2G,OGG,O3G} , (D.1)

not only mix among themselves under the RG flow but also generate redundant oper-

ators that are not included in our basis (defined in Sec. 9). In this appendix we first

give a pedagogic example of radiatively generated redundant operators, Sec. ??. Then,

we present the set of redundant operators generated by those in Eq. (D.1), together

with their anomalous dimensions, Sec. D.1. In Sec. D.2 we explain how the redundant

operators are redefined back into our basis and what is their effect on the anomalous

dimensions of the operator set in Eq. (D.1) [6].

D.1 Anomalous dimension matrix

The relevant redundant operators that are radiatively generated by those in Eq. (D.1)

are:

Or = |DµH|2 |H|2 , OK4 =
∣∣D2H

∣∣2 ,

O(3)L1

LL = (L̄Lσ
aγµLL)(L̄Lσ

aγµLL) , O(3)L1

L = i(H†σa
↔
DµH)L̄1

Lσ
aγµL1

L ,

OL1
LL = (L̄Lγ

µLL)(L̄Lγ
µLL) , Oe1R = i(H†

↔
DµH)(ē1

Rγ
µe1
R) ,

O(8)u1d1

RR = (ūRγ
µTAuR)(d̄Rγ

µTAdR) , Oe1RR = (ēRγ
µeR)(ēRγ

µeR) ,

(D.2)
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OFiK3L = 1
2 F̄

i
L

(
6DD2 +D2 6D

)
F iL , O

fi
K3R = 1

2 f̄
i
R

(
6DD2 +D2 6D

)
f iR ,

OFiWL = gDνW a
µν(F̄ iLσ

aγµF iL) , O′FiWL = gW̃ a
µνiF̄

i
Lσ

aγµDνF iL ,

OFiBL = g′DνBµν(F̄ iLγ
µF iL) , O′FiBL = g′B̃µνiF̄ iLγ

µDνF iL ,

OfiBR = g′DνBµν(f̄ iRγ
µf iR) , O′fiBR = g′B̃µνif̄ iRγ

µDνf iR ,

OQiGL = gsD
νGAµν(Q̄iLT

AγµQiL) , O′QiGL = gsG̃
A
µνi(Q̄

i
LT

AγµDνQiL) ,

OqiGR = gsD
νGAµν(q̄iRT

AγµqiR) , O′qiGR = gsG̃
A
µνi(q̄

i
RT

AγµDνqiR) ,

(D.3)

By relevant we mean those radiatively generated redundant operators that modify the

Wilson coefficients of the operators in Eq. (D.1) when the former operators are redefined

into operators in our basis, defined in Sec. 9.

Below we present in three different tables the anomalous dimension matrix of the

operators in Eq. (D.1) as well as the relevant redundant operators generated by them,

Eq. (D.3), at the order stated in Eq. (9.6). We work with arbitrary ξ in the background

field gauge (see Eq. (9.7)) and use dimensional regularization. All the contributions given

in Tabs. D.1, D.2 and D.3 below arise from one-particle-irreducible Feynman diagrams,

i.e. it is the one-loop renormalization of the Effective Action.

In Tab. D.1 we display the contributions of OH , Or and OT to the running of the

Wilson coefficients of the operators in Eq. (D.1). We have defined

γci = 16π2 dci
d logµ

, βg =
dg

d logµ
(D.4)

cH cr cT

γc
H

28λ+ 12y2
t − 3

(
5
2
g2 + g′2

)
3
2

(
2g2 + g′2

)
− 4λ 8λ− 6g2 − 3

2
g′2

γc
T

3
2
g′2 − 3

2
g′2 12λ+ 12y2

t + 9
2
g2

γc
B

− 1
3

1
3

− 5
3

γc
W

− 1
3

1
3

− 1
3

γc
r

4λ− 3g2 20λ+ 12y2
t − 3

2

(
g2 + g′2

)
−4λ+ 3g2 − 6g′2

Table D.1: Anomalous dimension matrix. Further contributions of OH , Or and OT to
other operators in Eq. (D.1) and Eq. (D.3) are either zero or proportional to the Yukawa
coupling of any fermion lighter than the top. The dashed line separates the anomalous

dimension of the operators in our basis from that of the redundant operators.
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and

γH = −Ncy
2
t +

1

4

(
3[3− ξW ]g2 + [3− ξB]g′2

)
, γW = −1

g
βg =

(
43

6
− 4

3
NG

)
g2 ,

γG = − 1

gs
βgs =

(
11− 4

3
NG

)
g2
s , γB = − 1

g′
βg′ =

(
−1

6
− 20

9
NG

)
g′2 ,

(D.5)

in the background field gauge. NG = 3 is the number of generations. The contributions

not shown are either zero or proportional to the Yukawa coupling yl of any fermion

lighter than the top. Notice that in Tab. D.1 we have gone beyond the strictly necessary

computations to obtain the anomalous dimension matrix and also included the contribu-

tions of the operator Or, that is redundant with respect to our basis; their contributions

are used for a crosscheck in Sec. D.3.

In Tab. D.2 we show the contributions of OBB,OWW ,OWB and O3W to the running

of the operators in Eq. (D.1). The c3W self-renormalization has been extracted from

the result of Ref. [132]. Their contribution to the running of the redundant operators in

Eq. (D.3) that we have not written are either zero or proportional to yl.

cBB cWW cWB c3W

γc
H

6g′4 18g4 6g′2g2 0

γc
T

0 0 0 0

γc
B

0 0 0 0

γc
W

0 0 0 2g2

γc
2B

0 0 0 0

γc
2W

0 0 0 4g2

γc
BB

g ′2

2
− 9g 2

2
+ 6y2

t + 12λ 0 3g2 0

γc
WW

0 − 3g ′2

2
− 5g 2

2
+ 6y2

t + 12λ g′2 5
2
g2

γc
WB

2g′2 2g2 - g
′2

2
+ 9g 2

2
+ 6y2

t + 4λ − g 2

2

γc
3W

0 0 0 24g2 − 2γW

γc
r

6g′4 18g4 6g′2g2 0

γcQ,L

WL

0 0 0 g2

Table D.2: Anomalous dimension matrix. Further contributions of OBB ,OWW ,OWB

and O3W to other operators in Eq. (D.1) and Eq. (D.3) are either zero or proportional
to the Yukawa coupling of fermions lighter than the top. The dashed line separates the
anomalous dimension of the operators in our basis from that of the redundant operators.
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Lastly, in Tab. D.3 we show the contributions ofOB,OW ,O2B andO2W to the running

of any of the operators in Eq. (D.1) and Eq. (D.3). We have indicated by O (yl) those

contributions that at most are expected to be proportional to the Yukawa coupling of

a fermion lighter than the top. As can be noted from Tab. D.3, the contribution of

O2W to the running of OH , Or, OW , O2W , O
(3)Fi
L , OFiWL and O(3)Fi

LL is ξ-dependent.

This should not come as a surprise, even if we work in the background field gauge,

where the counter-terms are gauge invariant. The reason is that at this point of the

computation we still have redundant operators generated by the RG flow. By definition,

in an over-complete basis that contains redundant operators only certain combinations

of the Wilson coefficients enter in the physical observables. Hence, it is only after

these physical combinations of the Wilson coefficients are taken, that the computation

c
B

c
W

c
2B

c
2W

γ
cH

3

4

g ′2 (g ′2 + 4g 2) 3

4

g 2 (3g 2 + 4g ′2)− 6λg 2 − 3

8

g ′2 (g ′2 + 4g 2) − 3

8

g 2 (g 2(3 + 2ξ
W

) + 4g ′2) + 3λg 2

γ
cT

− 9

4

g ′2g 2 − 6λg ′2 − 9

4

g ′2g 2 9

8

g ′2g 2 + 3λg ′2 9

8

g ′2g 2

γ
cB

g′2

6

+ 6y 2

t

g2

2

− g′2

12

− g2

4

γ
cW

g′2

6

11

2

g 2 + 6y 2

t

− g′2

12

−g 2

(
1

4

+ 3ξ
W

)
γ

c2B

− 2

3

g ′2 0 −2γ
B

0

γ
c2W

0 − 2

3

g 2 0 g 2

(
59

3

− 3ξ
W

)
− 2γ

W

γ
cBB

0 0 0 0

γ
cWW

0 0 0 0

γ
cWB

0 0 0 0

γ
c3W

0 0 0 0

γ
cr

3

2

g ′2 (2g ′2 − g 2) + 6λg ′2 3

2

g 2 (6g 2 − g ′2) + 30λg 2 3

4

g ′2 (g 2 − 2g ′2)− 3λg ′2 3

4

g 2 (g ′2 − 2g 2(3− ξ
W

))− 15λg 2

γ
cK4

−g ′2 −3g 2 g′2

2

3

2

g 2

γ
c
(3)Q,L

L

0 3

4

g 4 0 3

4

g 4ξ
W

γ
c
Q,L

L

0 0 0 0

γ
c
u,d,e

R

0 0 0 0

γ
c
Q,L

K3L

0 0 −Y 2

F

g ′2 − 3

4

g 2

γ
c
u,d,e

K3R

0 0 −Y 2

f

g ′2 0

γ
c
Q,L

WL

O (y
i

) O (y
i

) − 5

12

Y 2

F

g ′2 − 21

16

g 2 − 3

2

ξ
W

g 2

γ
c
Q,L

BL

O (y
i

) O (y
i

) − 5

6

Y 3

F

g ′2 −Y
F

5

8

g 2

γ
c
u,d,e

BR

O (y
i

) O (y
i

) − 5

6

Y 3

f

g ′2 0

γ
c
′Q,L

WL

O (y
i

) O (y
i

) − 1

2

Y 2

F

g ′2 − 3

8

g 2

γ
c
′Q,L

BL

O (y
i

) O (y
i

) −Y 3

F

g ′2 − 3

4

Y
F

g 2

γ
c
′u,d,e

BR

O (y
i

) O (y
i

) −Y 3

f

g ′2 0

γ
c
(3)F

LL

0 0 − 3

2

g 2(g ′Y
F

)2 3

8

g 2(g 2(1 + ξ
W

)− 4(g ′Y
F

)2)

γ
cF

LL

0 0 −6(g ′Y
F

)4 − 9

8

g 4

γ
c
f

RR

0 0 −6(g ′Y
f

)4 0

Table D.3: Contributions of the operators OB ,OW ,O2B and O2W to the anomalous
dimension matrix of the operators in Eq. (D.1) and Eq. (D.3). By yi we denote the
Yukawa coupling of any fermion. The dashed line separates the anomalous dimension

of the operators in our basis from that of the redundant operators.
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is guaranteed to be and should be gauge invariant. For instance, in Sec. D.2 we show

that upon redefining the redundant operators in terms of operators in our basis the ξ

dependence of the anomalous dimension vanishes. This subtlety is well known and, for

instance, it also appears in the context of Non-Relativistic QCD, where the running

of the Wilson coefficients is gauge independent only when the redundancy of different

operators is taken into account [158]. This has also been recently stressed again in

Ref. [135].

Tab. D.4 reports the contributions of O2G,OGG,O3G,O2B and O2W to the anomalous

dimension of the (redundant) operators in Eq. (D.1) and Eq. (D.3), as needed to derive

the anomalous dimension matrix of the dim-6 bosonic operators with gluons of our basis

(see Tab. 9.7).

c2G cGG c3G c2B c2W

γc
2G

1
2
g2
s(59− 9ξG)− 2γG 0 6g2

s 0 0

γc
GG

0 − 3
2
g′2 − 9

2
g2 + 12λ+ 6y2

t 0 0 0

γc
3G

0 0 36g2
s − 2γG 0 0

γcud

RR

−12g2
s(g′2YuYd) 0 0 −12(g′2YuYd)2 0

γc(8)ud

RR

1
2
g4
s(9ξG − 1) 0 0 −12g2

s(g′2YuYd) 0

γcQ

K3L

− 4
3
g2
s 0 0 Tab. D.3 Tab. D.3

γcu,d

K3R

− 4
3
g2
s 0 0 Tab. D.3 0

γcu,d

GR

−g2
s( 9

2
ξG + 37

9
) 0 3g2

s − 5
6

(g′Yu,d)2 0

γcQ

GL

−g2
s( 9

2
ξG + 37

9
) 0 3g2

s − 5
6

(g′YQ)2 − 5
8
g2

γcQ

WL

− 5
9
g2
s 0 0 Tab. D.3 Tab. D.3

γcQ

BL

− 10
9
g2
sYQ 0 0 Tab. D.3 Tab. D.3

γcu,d

BR

− 10
9
g2
sYu,d 0 0 Tab. D.3 0

γc′u,d

GR

− 4
3
g2
s 0 0 −(g′Yu,d)2 0

γc′Q

GL

− 4
3
g2
s 0 0 −(g′YQ)2 − 3

4
g2

γc′Q

WL

− 2
3
g2
s 0 0 Tab. D.3 Tab. D.3

γc′Q

BL

− 4
3
g2
sYQ 0 0 Tab. D.3 Tab. D.3

γc′u,d

BR

− 4
3
g2
sYu,d 0 0 Tab. D.3 0

Table D.4: Contributions of the operators O2G,OGG,O3G,O2B and O2W to the
anomalous dimension of the operators in Eq. (D.1) and Eq. (D.3). The dashed line
separates the anomalous dimension of the operators in our basis from that of the redun-

dant operators.
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D.2 Removal of the radiatively-generated redundant op-

erators

We now turn in to discuss how to deal with each operator in Eq. (D.3) and their effect

on the operators of Eq. (D.1).

The easiest way to deal with the redundant operator O′fiBR = g′B̃µνif̄ iRγ
µDνf iR [101]

is by means of the identity1

γµγνγρ = gµνγρ + gνργµ − gµργν + iεµνρσγσγ
5 ; (D.6)

one finds

g′B̃µν f̄RγµiDνfR =
g′

4
f̄Ri

(
γµγν 6D +

←−6D γµγν

)
fRg

′B̃µν

+ ig′f̄RγργµγνfRDρB̃µν . (D.7)

Then, using the fermion’s EoM

g′

4
f̄Ri

(
γµγν 6D +

←−6D γµγν

)
fRg

′B̃µν =
1

4
g′yf iF̄LσµνfRHg

′B̃µν + h.c. (D.8)

=
1

4
g′yf F̄LσµνfRHg

′Bµν + h.c. ≡ 1

4
OfDB ,

which is a dipole operator, where σµν ≡ i
2 [γµ, γν ]; using again Eq. (D.6) in the second

term of the right hand side of Eq. (D.7)

ig′f̄RγργµγνfRDρB̃µν = 2g′f̄RγσfRDρB
σρ = 2OfBR . (D.9)

Therefore, Eqs. (D.7)-(D.9) and analogous manipulations, are equivalent to the following

shifts (ci → ci + δci) in the following Wilson coefficients:

δcFWL = 2c′FWL , δcFBL = 2c′FBL , δcfBR = 2c′fBR, δcQGL = 2c′QGL, δcqGR = 2c′qGR .

(D.10)

The Wilson coefficient of the dipole operators are also shifted, see Eq. (D.8), however,

we can not conclude that the dipoles are renormalized by the set of bosonic operators

we considered because we did not compute direct contributions (those coming from

one-particle-irreducible diagrams).

1We use the conventions of Peskin & Schroeder textbook [159].
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Then, for the operator OfiK3R, consider the field redefinition δfi = − c
fi
K3R
2Λ2 D

2fi, that

removes OfiK3R from the Lagrangian while generates the operator

−c
fi
K3Ryfi
2Λ2

DµF̄iLD
µ (fiRH) + h.c. = −c

fi
K3Ryfi
2Λ2

[DµF̄iLγ
µγνDν (fiRH)

− 1

2
F̄iLXµνσ

µνfiRH + h.c.] ,

(D.11)

where Xµν = g′YFiBµν + gW a
µντ

a + gsG
A
µνT

a, being τa and TA the SU(2)L and SU(3)c

generators in the fundamental representation, respectively. Then, by inserting the

fermion’s EoM in the first operator in the right hand side of Eq. (D.11) one gets op-

erators of the type LYuk |H|2 and the operator yfiOfiR ≡ yfii(H
† ↔DµH)f̄ iRγ

µf iR; we do

not care about the latter (proportional to yfi) since our basis choice of Sec. 9 was to

remove the operator OfiR corresponding to a light fermion. Performing an analogous

analysis for OFiK3L we reach the same conclusion: neither of the two operator’s scaling

affects the anomalous dimension of the set of bosonic operators in Eq. (D.1). As in the

case of O′WL,BL,BR, the same comment applies here: even-though the Wilson coefficient

of the dipoles is shifted by the above manipulations, we do not conclude that they are

renormalized by the bosonic operators.

Now, the remaining operators are redefined into our basis by performing field redefi-

nitions. Consider the 37 independent field redefinitions

Λ2δGAµ = α2G(DνGAµν) + gS
∑

i

αiQGQ̄
i
LT

AγµQ
i
L + gS

∑

i,q

αiqGq̄
i
RT

Aγµq
i
R, ,

Λ2δW a
µ = igαW (H†σa

↔
DµH) + α2W (DνW a

µν) + g
∑

i,F

αiFW F̄
i
Lσ

aγµF
i
L,

Λ2δBµ = ig′αB(H†
↔
DµH) + α2B(∂νBµν) + g′

∑

i,F

YFα
i
FBF̄

i
LγµF

i
L + g′

∑

i,f

Yfα
i
fB f̄

i
Rγµf

i
R,

Λ2δH = α1H|H|2 + α2

(
(D2H)− yije ēiRLjL − y

ij
d d̄

i
RQ

j
L − yiju iσ2(ūiRQ

j
L)∗
)
,

(D.12)

with F = {L,Q}, f = {e, d, u}, q = {d, u} and i = 1, 2, 3. These generate the following

shifts for the Wilson coefficients of the dimension 6 operators:

cH → cH + 2(α1 + 2λα2)− αW g2 cr → cr + 2(α1 + 2λα2) + αW g
2

cT → cT − αBg′2 cK4 → cK4 − 2α2

cB → cB + α2B − 2αB cFiWL → cFiWL + 1
2α2W − αiFW

cW → cW + α2W − 2αW cFiBL → cFiBL + YF (α2B − αiFB)

c2B → c2B + 2α2B cf iBR → cf iBR + Yf (α2B − αifB)
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c2W → c2W + 2α2W c
(3)Fi
LL → c

(3)Fi
LL + g2

2 α
i
FW

c2G → c2G + 2α2G cFiLL → cFiLL + (YF g
′)2αiFB

c6 → c6 − 4α1 cf iRR → cf iRR + (Yfg
′)2αifB

ciyf → ciyf − α1 + 2λα2 c
Fifj
LR → c

Fifj
LR + (YFYfg

′2)(αifB + αiFB)

cijyfyf → cijyfyf + 2α2 c
(3)Fi
L → c

(3)Fi
L + g2

2 (αW + αiFW )

cu
idj

RR → cu
idj

RR + g′2YuYd(αiuB + αjdB) cFiL → cFiL + YF g
′2(αB + 1

2α
i
FB)

cf iR → cf iR + Yfg
′2(αB + 1

2α
i
fB)

cqiGL,R → cqiGL,R + α2G − αiqG for q = Q, u, d

c
(8)uidj

RR → c
(8)uidj

RR + g2
s(α

i
uG + αjdG).

(D.13)

Notice that using Fierz identities we can always trade the operator OFiLL for O(3)Fi
LL :

OFiLL = O(3)Fi
LL . This means that the shift in cFiLL can be recast as a shift in c

(3)Fi
LL , which

becomes:

c
(3)Fi
LL → c

(3)Fi
LL +

g2

2
αiFW +

(
cFiLL + (YF g

′)2αiFB

)
. (D.14)

We use the freedom given by the field redefinitions to set to zero the following 37 coeffi-

cients: cr, cK4, c
(3)L1

LL , ce1RR, c
(3)L1

L , ce1R , c
Fi
WL, c

Fi
BL, c

fi
BR, c

Qi
GL, c

ui
GR, c

di
GR, c

(8)u1d1

RR . This fixes all

the shift parameters αi and gives shift invariant combinations, under Eq. (D.13), of the

Wilson coefficients of the operators in our basis:

cH → cH − cr + 6(c
(3)L1

L − c̃(3)L1

LL ) ,

cT → cT +
1

Ye
(ce1R −

1

2Ye
ce1RR) ,

cW → cW − 2cL1
WL − 4c′L1

WL +
4

g2
(c

(3)L1

L − 2c̃
(3)L1

LL ) ,

cB → cB −
1

Ye
ce1BR −

2

Ye
c′e1BR +

2

Yeg′2
(ce1R −

1

Ye
ce1RR) ,

c2W → c2W − 4cL1
WL − 8c′L1

WL −
8

g2
c̃

(3)L1

LL ,

c2B → c2B −
2

Ye
ce1BR −

4

Ye
c′e1BR −

2

Y 2
e g
′2 c

e1
RR ,

c6 → c6 + 2cr + 4λcK4 − 8(c
(3)L1

L − c̃(3)L1

LL ) ,

c2G → c2G − cd1
GR − 2c′d1

GR − cu1
GR − 2c′u1

GR −
1

g2
s

c
(8)u1d1

RR ,

(D.15)

where

c̃
(3)L1

LL = c
(3)L1

LL + cF1
LL + g′2YL

(
cL1
BL + 2c′L1

BL −
YL
Ye

(ce1BR + 2c′e1BR +
1

g′2Ye
ce1RR)

)
(D.16)
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and Eq. (D.10) has already been taken into account. This completes the removal of the

operators in Eq. (D.3) in terms of the bosonic operators.

As we have just shown, upon eliminating the redundant operators the Wilson co-

efficients of the operators of Eq. (D.1) are shifted in such a way that the anomalous

dimensions are redefined as

γcH → γcH − γcr + 6(γ
c
(3)L1
L

− γ̃
c
(3)L1
LL

) ,

γcT → γcT +
1

Ye
(γce1R

− 1

2Ye
γce1RR

) ,

γcW → γcW − 2γ
c
L1
WL

− 4γ
c
′L1
WL

+
4

g2
(γ
c
(3)L1
L

− 2γ̃
c
(3)L1
LL

) ,

γcB → γcB −
1

Ye
γce1BR

− 2

Ye
γ
c
′e1
BR

+
2

Yeg′2
(γe1R −

1

Ye
γce1RR

) ,

γc2W → γc2W − 4γ
c
L1
WL

− 8γ
c
′L1
WL

− 8

g2
γ̃
c
(3)L1
LL

,

γc2B → γc2B −
2

Ye
γce1BR

− 4

Ye
γ
c
′e1
BR
− 2

Y 2
e g
′2γce1RR ,

γc6 → γc6 + 2γcr + 4λγcK4 − 8(γ
c
(3)L1
L

− γ̃
c
(3)L1
LL

) ,

γc2G → γc2G − γcd1GR − γc′d1GR − γc
u1
GR
− γ

c
′u1
GR
− 1

g2
s

γ
c
(8)u1d1

RR

, (D.17)

where

γ̃
c
(3)L1
LL

= γ
c
(3)L1
LL

+ γ
c
F1
LL

+ g′2YL

(
γ
c
L1
BL

+ 2γ
c
′L1
BL

− YL
Ye

(γcBRe1 + 2γ
c
′e1
BR

+
1

g′2Ye
γce1RR

)

)
.

(D.18)

The anomalous dimensions of the remaining bosonic operators, that are not of the form

(SM current)×(SM current), are not redefined. In this way we can go to our original

basis taking into account that some operators are generated radiatively even if we set

their Wilson coefficient to zero at the matching scale. In the main body of the paper,

Tabs.9.2-9.3 and 9.7, we gave the physical anomalous dimensions obtained using the

right hand side of Eq. (D.17). As announced in Sec. D.1, the ξ dependence cancels out

in the physical combinations of γci ’s, which can be easily checked using Eq. (D.17).

D.3 Field Reparametrization-Invariance Crosscheck

There is a useful consistency check that can be done to the results presented in Tabs. D.1

and D.3. Consider the set of 9 operators

B = {OK4,O6,OH ,Or,OT ,OB,OW ,O2B,O2W } . (D.19)
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By means of field redefinitions, these operators are related among themselves and to

other operators that contain fermions, see Eq. (D.12). Therefore, in a hypothetical the-

ory with no fermions, but otherwise equivalent to the SM, the operator set of Eq. (D.19)

would be over-complete, i.e. there would be operators which could be removed using

field redefinitions. Let us take this scenario as a working assumption for the rest of

this Appendix. More concretely, consider the subset of field redefinitions of Eq. (D.12),

parametrized by

{α1, α2, αB, α2B, αW , α2W } (D.20)

and the shifts they produce on the operators of Eq. (D.19) given in Eq. (D.13). Using

this shift freedom we can choose to remove all the operators in B except O6, OH and

OT . However, notice that the over-completeness2 of B can be exploited to our advantage;

physical observables are independent of the coordinates choice as long as such a choice is

compatible with the assumed symmetries. Hence, physical observables can not depend

on the arbitrary parameters αi of Eq. (D.20) that we used to parametrize the field

redefinitions. The following combinations of Wilson coefficients are invariant under such

shifts:

CH ≡ cH − cr −
3

4
g2(2cW − c2W ) ,

CT ≡ cT −
1

4
g′2(2cB − c2B) , (D.21)

C6 ≡ c6 + 2cr + g2(2cW − c2W ) + 4λcK4 .

Physical observables depend on shift invariant combinations of couplings, which we

denote by a capital Ci. Also, a key property is that the anomalous dimension of a

shift invariant combination of couplings is a function of shift invariant combinations of

couplings only [5]

γCi = f(Cj) . (D.22)

This is precisely the cross-check that can be done to the results computed in Tabs. D.1

and D.3. And indeed it is easy to check that:

γCH =
(
24λ− 4g2 − 3g′2

)
CH +

1

2

(
24λ+ 9g′2 − 17g2

)
CT ,

γCT =
1

6

(
72λ+ 5g′2 + 27g2

)
CT +

5

3
g′2CH ,

(D.23)

as it should, given the fact that O6 does not renormalize Or, OH , OT . As it is clear

from the discussion above, to compute Eq. (D.23) one has to insert the Higgs and gauge

bosons anomalous dimensions and the gauge beta functions without the contributions

2Again, we stress that the set of operators in Eq. (D.19) is over-complete only in the absence of the
SM fermions.
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of the fermions:

γnfH = γH |yf=0 , γnfW = −1

g
βnfg =

43

6
g2 , γnfB = − 1

g′
βnfg′ = −g

′2

6
, (D.24)

in the background field gauge and the superscript nf stands for no fermions, to distin-

guish them from their SM counterparts. Notice also that in Eq. (D.23) the ξ dependence

exactly cancels, as it should, rendering the result independent of the gauge fixing term

of Eq. (9.7).
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E. Components of

supersymmetric operators

In this Appendix we show the expansion in component fields of some of the super-

operators discussed in Part III. We work in the Wess-Zumino gauge. In particular, for

the U(1) case, we show the supersymmetry-preserving super-operator

∫
d4θ

(
Φ†eVΦΦ

)(
Q†eVQQ

)
= −|q̃|2|Dµφ|2 − |φ|2|Dµq̃|2 −

1

2
∂µ|q̃|2∂µ|φ|2

+
i

2
|φ|2(q†σ̄µ

↔
Dµq) +

1

2

[
(ψ†σ̄µq)(iq̃∗

↔
Dµφ) + h.c.

]
+

1

2

[
φq̃∗(iψ†σ̄µ

↔
Dµq) + h.c.

]

−1

2

(
iφ∗
↔
Dµφ− ψ†σ̄µψ

)(
iq̃∗
↔
Dµq̃ − q†σ̄µq

)
+
i

2
|q̃|2(ψ†σ̄µ

↔
Dµψ)

−
[
(ψ†q†)φFq + (ψ†q†)q̃Fφ − φF ∗φ q̃∗Fq + h.c.

]
+ |φ|2|Fq|2 + |q̃|2|Fφ|2

−
√

2g(Qφ +Qq)
[
|φ|2q̃λ†q† − |q̃|2φλ†ψ† + h.c.

]
+ g(Qφ +Qq)|φ|2|q̃|2D , (E.1)

where boundary terms have been dropped out after integration by parts rearrangements.

The fields are embedded in the super-multiplets as Φ ∼ {φ, ψ, Fφ}, Q ∼ {q̃, q, Fq} and

V ∼ {λ,Aµ, D}. The D and Fq,φ auxiliary fields are irrelevant in the discussion of the

renormalization of loop-operators by JJ-operators because they are necessarily involved

in vertices with too many scalar and/or fermion fields.

The loop-super-operators for the U(1) case are given by

∫
d4θ η†(Φ†eVΦΦ)WαWα = −1

2
OFF+ + |φ2|

(
D2 + 2iλσµ∂µλ

†
)

− 1√
2
φ∗λσµνψFµν −

√
2φ∗ψλD + λλφ∗Fφ , (E.2)
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∫
d4θ η†Φ(Q

↔
DαU)Wα = −OD +

{
−
√

2iφq̃(uσµ∂µλ
†) + 2ũφFqD + 2

√
2φFuλq

+
√

2ũFφλq +
√

2Fuq̃ψλ+Dq̃ψu

−1

2
q̃ψσµνuF

µν +
√

2(ψq)(λu)− (u↔ q)
}
. (E.3)

For the non-Abelian case, there is also the loop-super-operator

∫
d4θ η†tr[DβWαWβWα] =

1

4
O3F+ + i tr

[
1

2
Fµνλσ

µν(σγ∂γλ
†) + λσµ∂µλ

†D
]
. (E.4)
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