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Resum

Els valors dels pixels de les imatges sén el resultat d’una combinacié d’informacions
visuals provinents de multiples fonts. Recuperar la informacié dels multiples factors
que han produit una imatge sembla un problema molt dificil. Tanmateix, els éssers
humans desenvolupem ’habilitat d’interpretar les imatges i podem reconeixer i aillar
propietats fisiques de I'escena.

Les imatges que descriuen una sola caracteristica fisica d’una escena s’anomenen
imatges intrinseques. Aquestes imatges simplificarien la majoria de processos de la
visié per computador, que sovint es veuen afectats pels diversos efectes que normal-
ment trobem en les imatges naturals (ombres, especularitats, interreflexions, etc.)
En aquesta tesi analitzem el problema de l'estimacié d’imatges intrinseques des de
diferents punts de vista, com per exemple la formulaci6 teorica del problema, les cues
visuals que ens ajuden a estimar certes propietats intrinseques de les imatges o els
mecanismes d’avaluacié del problema.

Primer introduim breument 1’origen del problema de la descomposicié d’imatges
intrinseques i també parlem del context del problema i d’alguns temes que hi estan
relacionats. Llavors, presentem una revisié exhaustiva de la bibliografia d’imatges
intrinseques en el camp de la visié per computador, proporcionant una descripcio
detallada i organitzada de les técniques per a 'estimacié d’imatges intrinseques que
han aparegut fins ara. En aquesta revisié analitzem com algunes assumpcions ha-
bituals sobre les escenes han afectat la formulacié del problema. També estudiem
com algunes cues d’informacio, basades en regularitats sobre les escenes i les imatges,
s’han utilitzat per estimar imatges intrinseques. D’altra banda, també examinem els
mecanismes d’avaluacié d’imatges intrinseques existents, estudiant les bases de dades
i les metriques actuals. A més a més, analitzem ’evolucié d’aquest camp de recerca i
n’identifiquem les tendéncies actuals.

Sovint, en el camp de la visié per computador, la informacié del color ha estat
ignorada. Tanmateix, tal i com es pot veure en la nostra revisiéo del problema, el
color és molt 1til en 'estimacié d’imatges intrinseques. En aquest treball presentem
un metode de descomposicié d’imatges intrinseques que utilitza dos atributs de color
diferents que es combinen en un marc probabilistic. El primer esta basat en la de-
scripcié semantica del color que fan servir els humans i proporciona una descripcio
dispersa de reflectancies en una imatge. L’altre es basa en un analisi de les distribu-
cions de color, que connecta els maxims locals dins de I’histograma de color de la
imatge. Aquest atribut proporciona una descripcié consistent de superficies que com-
parteixen la mateixa reflectancia i aporta estabilitat als noms de colors en regions de

iii
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la imatge afectades per ombres i també en regions proximes a especularitats.

D’altra banda, la majoria dels meétodes de descomposicié d’imatges intrinseques
fins ara han assumit que les escenes estan il-luminades per una “llum blanca” i han
ignorat completament els efectes dels sensors de la camera en les imatges. Tots dos
factors, pero, afecten els valors de les imatges resultants durant el procés d’adquisicio.
En aquest treball analitzem la formulacié teorica del problema de descomposicié
d’imatges intrinseques i proposem un nou marc, més general, on es modelitzen els
efectes tant dels sensors de la camera com del color de l'il-luminant. En aquesta nova
formulacié hi introduim un nou component, anomenat reflectancia absoluta, que és
invariant a tots dos efectes. A més a més, demostrem que qualsevol coneixement
sobre el color de l'il-luminant o sobre els sensors de la camera es pot utilitzar per
millorar les reflectancies estimades dels diferents metodes de descomposicié d’imatges
intrinseques. També mostrem que els metodes existents, que normalment ignoren el
color de l'il-luminant i els sensors de la camera, inclouen errors molt grans en les seves
reflectancies estimades.

Finalment, analitzem els mecanismes d’avaluacié d’imatges intrinseques, que han
evolucionat constantment durant aquesta ultima decada. Tot i que s’han presentat
diverses bases de dades, la seva construccié és un problema complicat i totes presen-
ten multiples inconvenients, com el nombre reduit i la poca diversitat d’imatges o la
falta d’informacié sobre determinades propietats intrinseques de les escenes (la pro-
funditat o orientacié dels objectes que apareixen a les imatges, el color i direccié de
l'il-luminant, etc.). En aquesta tesi presentem dues bases de dades per a l’avaluacié
d’imatges intrinseques. Una és una base de dades calibrada que inclou informacié
sobre l'il-luminant de ’escena i els sensors de la camera. Aquesta base de dades
s’ha utilitzat per validar experimentalment el marc teoric per a la descomposicid
d’imatges intrinseques presentat en aquesta tesi. La segona base de dades s’ha con-
struit mitjancant técniques de grafics per computador i conté imatges, tant d’objectes
simples com d’escenes complexes, adquirides amb diferents condicions d’il-luminacio.
En aquest treball demostrem que amb programari de grafics per computador i motors
de representaci6 grafica, és possible construir bases de dades molt grans i realistes per
a l'avaluaci6é d’imatges intrinseques.



Abstract

Image values are the result of a combination of visual information coming from multi-
ple sources. Recovering information from the multiple factors that produced an image
seems a hard and ill-posed problem. However, it is important to observe that humans
develop the ability to interpret images and recognize and isolate specific physical
properties of the scene.

Images describing a single physical characteristic of an scene are called intrinsic
images. These images would benefit most computer vision tasks which are often
affected by the multiple complex effects that are usually found in natural images (e.g.
cast shadows, specularities, interreflections...).

In this thesis we will analyze the problem of intrinsic image estimation from differ-
ent perspectives, including the theoretical formulation of the problem, the visual cues
that can be used to estimate the intrinsic components and the evaluation mechanisms
of the problem.

We first give a brief introduction on the background and the nature of the problem
of intrinsic image estimation and some of its closely related topics. Then, we present
an exhaustive review of the literature of intrinsic images in the field of computer
vision, giving a comprehensive and organized description of the existing techniques
for intrinsic image estimation. In our review we analyze how common simplifying
assumptions about the world have modified the formulation of the problem of intrinsic
image decomposition and also how different information cues based on regularities
about the scenes and images have been used to estimate intrinsic images. We also
examine the evaluation mechanisms that have been used so far in this problem. We
analyze the existing databases and metrics, discuss the evolution of the problem and
identify the recent trends in the field.

Color information has been frequently ignored in the field of computer vision.
However, as it can be seen in our review, color has proved to be extremely useful in
the estimation of intrinsic images. In this work we present a method for intrinsic image
decomposition which estimates the intrinsic reflectance and shading components of a
single input image using observations from two different color attributes combined in
a probabilistic framework. One of them, based on the semantic description of color
used by humans, provides a sparse description of reflectances in an image. The other,
based on an analysis of color distributions in the histogram space which connects local
maxima, gives us a consistent description of surfaces sharing the same reflectance,
providing stability of color-names in shadowed or near highlight regions of the image.

Moreover, most methods for intrinsic image decomposition have usually assumed
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“white light” in the scenes and have completely ignored the effect of camera sensors in
images. However, both factors strongly influence the resulting image values during the
acquisition process. In this work we analyze the theoretical formulation underlying
the decomposition problem and propose a generalized framework where we model
the effects of both the camera sensors and the color of the illuminant. In this novel
formulation we introduce a new reflectance component, called absolute reflectance,
which is invariant to both effects.

Furthermore, we demonstrate that any knowledge of the color of the illuminant or
the camera sensors can be used to improve the reflectance estimates of different exist-
ing methods for intrinsic image decomposition. We also show that existing methods,
which usually ignore the color of the illuminant and the camera sensors, include large
errors in their reflectance estimates.

Finally, we analyze the evaluation mechanisms of intrinsic images, which have
continuously evolved during the last decade. Although multiple datasets have been
presented, building these datasets has proved to be a challenging problem in itself
and current ground truth collections present multiple drawbacks, such as the small
number and diversity of scenes or the lack of ground truth information for specific
intrinsic components (the depth or surface orientation of the objects in the image,
the color and direction of the illuminant, etc.). In this thesis we present two datasets
for intrinsic image evaluation. One is a calibrated dataset which includes ground
truth information about the illuminant of the scene and the camera sensors. This
dataset is used in this work to experimentally validate the theoretical framework
for intrinsic image decomposition proposed in this thesis. The second dataset uses
synthetic data and contains both simple objects and complex scenes under different
illumination conditions. In this work we demonstrate that it is possible to build large
and realistic datasets for intrinsic image evaluation using computer graphics software
and rendering engines.
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Chapter 1

Introduction

Computer vision is the scientific field that focuses on computationally emulating the
processes that happen in the human visual system by acquiring, processing, analyzing
and understanding images. These images usually contain multiple complex effects,
such as cast shadows, specularities or interreflections, which are caused by the geom-
etry of the scene, the position of the light sources and the material of the objects.
Moreover, the color of the illuminants and the response of the camera sensors also
affect the image values resulting from the acquisition process [111]. Isolating and
extracting these effects from images would benefit most computer vision tasks, such
as image segmentation, object recognition, video tracking, scene reconstruction, etc.

For instance, common object recognition problems, such as pedestrian detection
in autonomous vehicles or license plate detection in traffic monitoring are strongly
affected by brusque changes in illumination [8, 83]. Being able to remove these il-
lumination effects (cast shadows, specularities, color of the illuminant, etc.) would
dramatically simplify the problem and increase the accuracy of most of the existing
approaches in the field [114]. Moreover, isolating the information about the illumi-
nation would be extremely useful in order to analyze different physical properties of
the scene, such as the number, color and direction of light sources, or the geometry,
the materials and relative position of the objects.

Images describing a single physical feature of the scene, such as the effects de-
scribed above, are called intrinsic images [23]. In this thesis we will analyze the
problem of intrinsic image estimation from different perspectives, including the theo-
retical formulation of the problem, the visual cues that can be used to estimate the
intrinsic components and the evaluation mechanisms of the problem. To this end, we
first need to introduce some background.

In this chapter, we will briefly discuss how three-dimensional scenes have been
represented in planar surfaces throughout history. Then, we will briefly mention how
the human visual system works. We will sketch the perceptual processes that are
supposed to occur in our brains. We will review some of the layer decomposition
models which aim at explaining the perceptual processes of our brain and which
serve as a theoretical background for computer vision techniques. Finally, we will
summarize the seminal work of Barrow and Tenembaum on intrinsic images [23],
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which is at the basis of this thesis.

1.1 Visual Descriptions of Scenes

An image, or picture, is a two-dimensional visual representation of a three-dimensional
scene. When the scene lies in a three-dimensional space, the image is a projection
of the scene on a plane or on a curved surface. These graphical descriptions, either
in the shape of drawings, paintings or photographs, have played an important role
during all the history, immortalizing both quotidian actions and special events. The
evolution of these arts deserves some attention, since it has usually been parallel to
our understanding of the human visual system [69].

The visual description of scenes on planar surfaces has been recurrent ever since
humans inhabited caves. Evidence of this are the multiple cave paintings dating back
to paleolithic and neolithic periods [127]. These paintings used very rudimentary
techniques that depicted animal silhouettes in hunting scenes. Drawing and painting
have constantly evolved, and the development and enhancement of techniques to
represent visual cues such as depth, volume or transparency have progressively added
a strong sense of realism to these pictures [67].

Until the end of the Middle Ages, basic techniques such as occlusion, scale or
the relative position in the plane were used to describe the third dimension (i.e.
volume and depth) [132, 67]. More complex techniques capable of conveying a sense
of transparency were also developed in order to represent materials such as silk [130].
Examples of these primary techniques can be seen in Figure 1.1.

During the Renaissance new techniques were explored, achieving a more realistic
sensation of volume and depth in paintings [72, 67]. Linear perspective, where the
parallel lines of an object converge into a given vanishing point and the sizes of the
figures are reduced according to distance, constituted a significant step forward to
represent depth. In order to enhance the sensation of volume in objects, emphasis was
also put on illumination (i.e. shading and cast shadows), textures and transparency.
Examples of this are painting techniques such as sfumato, which produces soft shadows
and imperceptible transitions between colors, or chiaroscuro, which creates strong
contrasts between light and dark. Examples of these techniques are shown in Figure
1.2.

Until the 19th century, drawing and painting were mainly intended to faithfully
represent real scenes, and were therefore concerned with providing a strong sense
of realism. The development of photography, however, had a big impact in these
arts and quite soon different abstract art movements, which focused on representing
subjective feelings rather than physical objects, appeared.

The first camera device was built at the beginning of the 19th century, while
color photography appeared in the 20th century, and it was not until the end of this
same century that modern digital photography came out. Although the goal of many
photographers has been to express their subjective perceptions and emotions [125], we
are interested in the ability of camera devices to represent objective features, which
can be measured physically in a scene.

Although many issues influence the final pixel values we observe at each point in
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Figure 1.1: Examples of techniques used to represent depth before the Renaissance
period. (a) A cave painting found in Valltorta, Valencia (Spain), where relative
position has been used to represent depth. (b) Transparent materials were represented
in ancient Egypt in the painting The goddess Hathor welcomes Sethos I. Occlusion
was also used in this painting to represent depth. (c¢) An example of ancient Greek
art where occlusion and relative position are used to convey a sense of depth. (d) A
sample of Byzantine art, the altarpiece Maesta of Duccio, where occlusion, scale and
relative position are used.

the image, some factors are of central interest: the position and nature of the light
sources in the scene, the reflectance properties of the objects and the responses of
camera sensors [111]. The direction of the illuminant and the geometry of the objects
in the scene result in cast shadows and shading variations, while the color and power of
the illuminant affect the colors we perceive in the images. The materials of the objects
are also fundamental during the image acquisition process, since different materials
have different reflection properties. For instance plastic and metallic materials will
result in specularites in the image while wooden materials are diffuse. Finally, if
we take a picture of a single scene using multiple camera devices, the corresponding
images will have different color values. This is due to the response of the sensitivity
functions of the camera sensors, which are different for each camera model. The
acquisition process and the importance of these three factors will be further detailed
in Chapter 4.

After being acquired, digital images go through a quantization process in order
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Figure 1.2: Examples of techniques that came out during the Renaissance period.
Leonardo da Vinci’s painting L’Ultima Cena (a) is a clear example of linear perspec-
tive. Sfumato was used in one of the most famous art pieces, Leonardo da Vinci’s
painting La Gioconda (b). Giovanni Baglione’s painting Amor sacro e amor profano
(¢) provides a great example of chiaroscuro. These techniques convey a vivid sensation
of shape and volume.

to be encoded as standard digital elements which can be read and viewed in any
computer device. This quantization process performs a discretization of the image
values both geometrically and colorimetrically, depending on the desired resolution
(i.e. size of the image) and color description of the image [68]. The acquisition and
quantization processes are both schematically illustrated in Figure 1.3.

So far we have seen that three-dimensional scenes have been represented in planar
surfaces throughout history. In drawing, painting and photography, information of
the scene originating from multiple factors (i.e. geometry, illumination, reflectance of
the objects, etc.) is combined in a single image.

As mentioned above, computer vision aims at emulating the human ability to rec-
ognize objects and actions in images. However, images values are the result of visual
information coming from multiple sources. Isolating the information coming from
each of these sources would benefit most computer vision tasks. In this work, given
an image, we want to recover information from the multiple factors that produced it.
Although it may seem a hard and ill-posed problem, it is important to observe that



1.2. Outline of the Human Visual System 5

a IHumination (energy)
source

(Internal)
image plane

Output
{digitized) Image

Scene element

Figure 1.3: Image acquisition process. The light source, the materials of the objects
and the response of the camera sensors influence the resulting image values. After-
wards, during the quantization process, geometric and colorimetric discretizations are
applied to the image.

whenever we refer to drawings, paintings or photos, human beings develop the ability
to interpret these images and recognize and isolate specific physical properties of the
scene. For example, we can estimate the reflectance of the objects, even when their
appearance is affected by an illuminant which modifies their colors. We are also able
to interpret the shape of an object or the depth in a scene, even when we just see a
simple drawing or sketch.

In computer vision, different visual cues are used to recognize these specific phys-
ical properties. It is assumed that small intensity variations are usually caused by
shading, while sharp luminance differences mostly result from reflectance changes.
Nonetheless, in order to know which visual cues are the most useful for this purpose,
we need to understand how our visual system works.

1.2 OQOutline of the Human Visual System

The human visual system is responsible for detecting and interpreting information
from visible light and its interaction with objects in order to build a representation
of the surrounding environment [147, 92, 115]. The retina in the human eye samples
the world in a process similar to the process of image acquisition in photography. On
the other hand, the visual cortex in our brain is responsible for interpreting the signal
transmitted by the retina.

Our retina has two different types of photoreceptor cells: rods and cones. Cones
can be subdivided into three types, namely S-cones, M-cones, and L-cones, where
the capital letters refer to their peak sensitivities in the short, medium, and long
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wavelength regions of the visible spectrum (i.e. 380 - 750 nm). The output of each
type of cone provides measurements of incoming light intensity over a broad range of
wavelength, but with peak sensitivities at different wavelengths. Having three cone
types with broadly tuned and overlapping wavelength sensitivities provides measure-
ments of the luminance spectrum at each location in the retinal image. Rods, on the
other hand, are much more sensitive to light than cones, and are mainly responsible
for vision in dim light. The sensitivity responses for the different photoreceptor cells
are shown in Figure 1.4. In photography, the camera sensors play the role of the
photoreceptor cells that can be found in the human retina [147, 92, 115].
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Figure 1.4: Response of the different photoreceptor cells in the retina of human beings
with normal color vision. R indicates rods. S;M and L indicate the different types of
cones.

Still in the retina, visual information from the photoreceptors is collected by the
organization of center-surround receptive fields of the ganglion cells, which provides
a way to detect contrast. The optic nerve connects the retina with the visual cortex,
acting as a continuous mapping of retinal points to corresponding cortical points. In
the brain, different areas of the visual cortex are specialized for processing particular
types of information such as movement, depth, etc. [147, 92, 115].

Although the way that cells work in the retina is well-understood, the analysis
which takes place in the visual cortex is not fully understood [155, 115]. Psychologists
have been trying to unveil the perceptual processes happening in the human brain,
studying visual effects such as brightness induction [129] (i.e. a phenomenon by which
the perceived luminance of an area is modulated by the luminance of the surrounding
areas), lightness constancy [113] (i.e. the ability to perceive the same brightness in
objects under different conditions of illumination) and color constancy [46, 54] (i.e.
the ability to have a stable perception of the colors of objects, irrespective of the color
of the illuminant). Examples of these effects can be seen in Figure 1.5.
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Figure 1.5: Examples of brightness induction (a) and color constancy (b). In (a),
although both grey squares have exactly the same color, the square surrounded by
black is perceived brighter than the square surrounded by white, a phenomenon re-
ferred to as brightness induction. In (b), we see the same scene under two different
illumination conditions: A reddish light in the image on the left and a bluish light
in the image on the right (data from [17]). Although these illumination conditions
result in different pixel values, we perceive the same colors in both images. This
phenomenon is referred to as color constancy.

The layer decomposition of images into a set of intrinsic physical components
is one of the models that psychologists have used to describe the way our visual
system perceives and interprets visual information. The problem of intrinsic image
estimation, which is the basis of this thesis, focuses on computationally emulating
this perceptual model. We provide a brief background on this perceptual model in
the next section.

1.3 Background on Human Visual Perception

We have already mentioned that once in the brain, information is processed in different
specialized areas of the visual cortex [155, 115]. Psychologists have been trying to
unveil these processes.

In psychology, perception is defined as the neurophysiological processes by which
an organism becomes aware of and interprets external stimuli [84]. In this section
we focus on the role that intrinsic images play in human visual perception. Our aim
in this thesis is to study how these intrinsic image models can be computationally
implemented to emulate human visual perception.



8 INTRODUCTION

The starting point for the study of intrinsic image models can be considered the
works on simultaneous color contrast of Helmholtz [75] and Hering [76] in the second
half of the 19th century. In their respective works, these authors drew attention to
the importance of layer perception, which has influenced many posterior works. Layer
perception refers to the idea that the visual system decomposes images into multiple
layers (or intrinsic images) in order to distinguish light from material [95].

Following Helmholtz and Hering ideas about color contrast, some authors assumed
that human perception is governed by edge information, and, therefore, that there
must be some process whereby reflectance changes are distinguished from illumination
variations. Sound contributions in this direction are the works of Land and McCann
[104, 103], and Gilchrist and colleagues [64, 65, 66]. These approaches suggested that
this separation process extracts luminance variations from the input image, classi-
fies these luminance derivatives as either being caused by reflectance or illumination
changes, and finally integrates these luminance edges according to their classification,
obtaining a reflectance image and an illumination image.

Land and McCann, in their well-known Retinex theory [104, 103], defined a two-
dimensional Mondrian world (i.e. a world made of color patches) where illumination
gradients cause smooth intensity variations and reflectance variations produce step
intensity changes. The Retinex theory [104] has been the basis of many posterior
works in intrinsic image decomposition, and it will be further discussed in Chapter 2.

Gilchrist et al. observed in [64, 65] that in three-dimensional scenes, sharp in-
tensity changes can arise from either reflectance or illumination variations. Though
the authors do not specify an edge-classification technique, they observed that edge
intersections may play an important role in such classification. Intersections where an
illumination edge crosses a reflectance edge satisfy a ratio-invariance property, which
is illustrated in Figure 1.6.

Metelli, also influenced by Helmholtz and Hering’s ideas, defined the theory of color
scission in his classical work about the perception of transparency [120]. Color scission
explains transparency as a case of perceptual color-splitting or layer decomposition.
Metelli also pointed out that the main cues for the perception of transparency are to
be found in figural and chromatic conditions (see Figure 1.7).

All these authors agreed on the importance of layer decomposition in human per-
ception, which inspired Barrow and Tenembaum in their definition of intrinsic images
[23]. Their seminal work is summarized in the following section (Section 1.4).

Psychologists have broadly studied the human ability to perceive and isolate illu-
mination effects from reflectance, an aptitude called lightness or color constancy. In
their perceptual studies on intrinsic image models, there are three perceptual ’lay-
ers’ (i.e. intrinsic images) which are thought to be critical to vision: reflectance,
illumination and transparency [9, 96].

In order to emulate computationally how human visual perception works, we
need to understand some of the ideas in the works on perception of intrinsic im-
ages. Kingdom, in [96], observes that these perceptual models on intrinsic images
are, in fact, compilations of demonstrations showing the influence of illumination and
transparency on surface lightness and brightness. The author proposes two important
factors to classify these works.

The first factor is related to the cues used by human vision to identify the presence
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Figure 1.6: Representation of the ratio-invariance property at edge intersections de-
scribed in [64]. An illumination edge (the vertical one) dividing regions A and C from
regions B and D crosses a reflectance edge (the horizontal one) separating regions A
and B from regions C and D) and the ratio-invariance property, % = %, holds.

(a) (b) (c)
Figure 1.7: The perception of transparency [120]. The transparency perceived in (a)
disappears when the figural unity is broken (b) or when certain color conditions are
not met (c).

of non-uniform illumination and transparency. Among these cues, we find luminance
relations such as the ratio-invariance at intersecting edges described by Gilchrist in
[66], gradient classification, popularized by Land and McCann in [104], or contrast
in luminance edges [110, 47]. We also find figural relations such as junctions, used in
[66, 9], and straightness properties [110]. Other common cues such as depth, color,
texture and motion are also described (see Kingdom’s review [95]).

The second factor is concerned with the effects of perceived illumination and trans-
parency on lightness and brightness. Different works have shown how depictions of
transparency [9, 110], shading and shadows [10, 11, 109], and figure-ground relation-
ships [12] can profoundly influence brightness perception. Kingdom concludes that
existing perceptual intrinsic image models do not explain how layer decomposition
and luminance values are combined to compute lightness. Nonetheless, these mod-
els have explored the visual cues involved in layer decomposition and the role that
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transparency and non-uniform illumination play on our perception of illumination
(brightness) and reflectance (lightness).

Some attention must be given to the works of Adelson [9, 11]. His works on
intrinsic images are especially interesting in the field of computer vision, since he is
one of the few authors who has linked both perceptual and computational intrinsic
images models.

In [9], Adelson presented illusions that show how three-dimensionality and trans-
parency interpretations can affect brightness judgements. These illusions cannot be
explained with low-level mechanisms such as the mechanisms involved in the Retinex
(see Figure 1.8). The author concluded that any model predicting brightness phe-
nomena should use sophisticated mechanisms that decompose the image into a set
of intrinsic images representing reflectance, illumination and transparency. Adelson’s
observations on the Retinex theory are significant since the Retinex has been the
basis for many works on intrinsic image decomposition in the field of computer vi-
sion. Moreover, while most computational methods for intrinsic image decomposition
have focused on decomposing input images into their reflectance and illumination
components, transparency has been thoroughly ignored.

(a) Original image (b) Shading (¢) Reflectance

Figure 1.8: The influence of 3D interpretation on brightness and lightness perception
(image adapted from [10]). The edges in (a) would be equally classified by local
methods such as the Retinex [104], although the upper one is a result of a variation
in illumination (b), while the lower one is due to a change in reflectance (c).

Adelson and Pentland [11] observed that any mechanism for achieving an intrinsic
image decomposition must make assumptions about regularities in the scenes. The
authors described an algorithm that could interpret simple polyhedral images using a
hierarchical model based on cost functions that enhance the most likely explanation
of the image according to a set of predefined independent rules on shape, lighting
and reflectance. Their idea is illustrated in Figure 1.9, where different combinations
of shape, lighting, and reflectance result in the same image. However, according
to a set of predefined independent rules about the scenes (i.e. prior knowledge),
one explanation of the intrinsic composition of the image is more probable than the
others. For instance, in this example we see that one possible explanation of the
resulting image is given by a flat object illuminated from the viewer’s direction where
all luminance variations occur in the reflectance component (first row). However, the
other explanations (second and third rows), where some of these luminance variations
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are caused by the geometry of the scene (i.e shading changes), seem far more intuitive.
The perceptual model of Adelson and Pentland [11] was presented as a computational
method for intrinsic image decomposition in [141].

SHADING REFLECTANCE LIGHT SOURCE 30 SHAPE
IMAGE IMAGE DIRECTION (Oblique View)

£

INTENSITY
IMAGE

= = =

Figure 1.9: Image adapted from [11]. Different illumination, shape and reflectance
conditions result in the same image. Are some of these combinations more likely than
others?

1.4 Intrinsic Images in Computer Vision

The problem of intrinsic image decomposition in computer vision was first defined
by Barrow and Tenembaum in [23]. The authors introduced the recovery process of
“intrinsic images” from one or multiple intensity images (although color images are
more commonly used nowadays). Intrinsic images were defined as images containing a
single intrinsic characteristic of a scene. The primary intrinsic characteristics that the
authors proposed to be recovered included material reflectance, distance or surface
orientation, and incident illumination (i.e. shading). They also named others such as
transparency, specularity or luminosity.

The main problem in recovering intrinsic scene characteristics from an intensity
image is that the information in the image is confounded, since each intensity value
combines all the intrinsic characteristics of the corresponding scene point. Although
the information in the input image may seem insufficient, it is undeniable that humans
possess the ability to estimate physical characteristics of a scene throughout a wide
range of viewing conditions, even if the scene is unfamiliar.

Barrow and Tenembaum examined the computational nature of the recovery pro-
cess to determine whether such a design is really feasible. The authors first defined
a simple world or experimental domain, making simplifying assumptions about the
scene, the illumination, the viewpoint, the sensors, and the image-encoding process.
In this simplified domain, images consisted of regions of smoothly varying intensity
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bounded by step discontinuities. The nature of these edges was studied and a catalog
for edge classification was proposed.

INTENSITY IMAGE

ILLUMENATION

REFLECTANCE

DRIENTATION

DISTANCE

Figure 1.10: Computational model for the recovery of intrinsic image presented in
the work of Barrow and Tenembaum [23]. In this model, an input intensity image
(first layer) is decomposed into multiple intrinsic images (subsequent layers) using
intra-image continuity (circles), inter-image constraints (vertical lines) and further
local processes (X marks) in each layer to inhibit continuity constraints.

Figure 1.10 shows a schematic of the computational model for the recovery of
intrinsic images defined by Barrow and Tenembaum in [23]. Given an input intensity
image, represented in the first layer of the model (Figure 1.10, top), intensity edges are
identified and interpreted according to the proposed catalog for edge classification.
According to these interpretations, edges are defined (dashed curved lines) in the
multiple intrinsic images.

A first set of processes (circles) modifies the values locally in each layer in order
to enforce intra-image continuity and limit constraints. Then, the consistency of the
multiple intrinsic image values is enforced in a second set of processes (vertical lines)
by using inter-image photometric constraints. Finally, a third set of processes (X
marks) is applied to each layer to insert and delete edge elements in order to locally
inhibit continuity constraints. These processes interact continuously to improve the
initial edge interpretation until accurate intrinsic scene characteristics are recovered.

For instance, imagine that we want to decompose a color image into its shading
and reflectance intrinsic components. We can use the Retinex assumption which
states that small luminance edges are the result of shading variations, while sharp
luminance edges are usually caused by reflectance changes. Thus, in that case, we
define a threshold and use it to classify the luminance derivatives of the input image
(this classification corresponds to the curved dashed lines in the model). Once we
have classified these edges as being caused by either shading or reflectance variations,
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we use assumptions about the regularities of the scenes, such as the smooth variation
of shading, to locally modify the values of our intrinsic images and enforce intra-
image continuity (circles) in the shading component. Now, given that we decompose
the image into two different intrinsic images, let us assume that the product of these
images must be equal to the input image. Using this information we know that when
we modify one intrinsic component we must modify the other accordingly in order
to enforce inter-image photometric constraints (vertical lines). Finally, we also use
information about the chromatic derivatives of the input image in order to locally
inhibit (X-marks) continuity constraints that were enforced by our previous shading
smoothness assumption. Since intensity variations are canceled in the chromatic
image, we can now decide wether some of the edges that we classified as being caused
by reflectance changes are, in fact, sharp shading variations caused by a cast shadow.
This information modifies the nature of the edges that we classified at the beginning.

Barrow and Tenenbaum discussed how this model can be extended to work in
more complex domains and also studied the consequences of relaxing the different
assumptions of their initial oversimplified world. They observed that phenomena such
as specularities and transparencies, present in many real scenes, could be helpful in the
recovery process for completely describing the scene since they represent additional
intrinsic characteristics. It was also mentioned that the described framework could
be extended to accommodate additional sources of information about the scene such
as input color images.

The work of Barrow and Tenembaum [23] was strongly influenced by the previous
works of Horn [80, 81, 82] and Marr [117]. Horn studied the physical basis of image
intensity variations [82], and designed techniques for determining surface lightness
[80] and shape from shading [81] in simplified domains. Barrow and Tenembaum [23]
studied the constraints and assumptions underlying Horn’s recovery techniques with
the idea that they could be integrated in a more general method which could be used
in more complex scenes. Marr described a layered organization for a general vision
system in [117]. In his work, the first layer consists of a symbolic representation of
the edges and shading in an intensity image, which is used at the next layer to derive
the three-dimensional structure of the image. This structure is analogous to Barrow
and Tenembaum orientation and distance intrinsic images. However, Marr focused
on understanding the nature of individual cues, perfecting the symbolic representa-
tion of the edges before undertaking any higher level processing, while Barrow and
Tenembaum focused on understanding the integration of multiple cues, attempting
to immediately assign three-dimensional interpretations to intensity edges.

Following the work of Barrow and Tenembaum, different authors focused on de-
composing images into their shading and reflectance components by making simpli-
fying assumptions of the world and classifying image derivatives (we review these
methods in Chapter 2). Recovering these two characteristics from a single image
amounts to estimate a reflectance image and a shading image such that

I(z,y) = Ishad(z,y) - Igesi(,y), (1.1)

where Igpqq represents the amount of reflection arriving to the (z,y) point of the
image from a specific point of the object surface and Ig.s; describes how the light is
reflected by the corresponding point of the object. This problem is clearly ill-posed
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since it is underconstrained: the unknowns outnumber the equations.

One of the drawbacks of this formulation is that it does not model the effect
of either the illuminant of the scene or the camera sensors. As we have previously
mentioned, both factors influence the pixel values of the images after the acquisition
process. As a result, these factors strongly affect the reflectance estimates of any
method for intrinsic image decomposition. However, they are usually ignored. Here
we briefly introduce the related topics of color constancy and camera sensor calibration
in Subsections 1.4.1 and 1.4.2 respectively. In Chapter 4 we propose a new generalized
framework for intrinsic image decomposition where the effects of the illuminant of the
scene and the camera sensors have been included in the formulation of the problem.
We also show how color constancy and sensor calibration models can be used to
improve the estimates of existing intrinsic image decomposition approaches.

In a completely different direction, another problem that early authors in intrinsic
image decomposition faced was the lack of standard evaluation mechanisms which
prevented them to quantitatively compare their methods against other approaches.
In Subsection 1.4.3 we briefly introduce the problem of intrinsic image evaluation. In
Chapter 2 we review the current evaluation mechanisms and, in Chapter 5, we present
two new datasets for intrinsic image evaluation.

1.4.1 Color Constancy

Human beings have the ability to isolate and correct the effects of the color of the
illuminant [54] on the different reflectances in the scene. This ability is called color
constancy, and the way it works is still unclear, even if several neural mechanisms
contributing to color constancy have been singled out [101]. Figure 1.5(b) provides a
simple example of color constancy.

Observe that acquiring two images of a single scene (with the same camera device)
using two different illuminants results in two images with different color values. In
the field of computer vision, filtering out the effects of the light source from images
is fundamental for any color-based technique. Several computational color constancy
approaches exist [52, 149, 63, 79]. The goal of these methods is to produce a cor-
rected image where the effects of the color of the illuminant have been removed, or in
other words, estimate how the image would look under a canonical “white” light (i.e.
illuminant representing midday sunlight). In order to achieve this objective, many
approaches estimate the color of the illuminant and then perform a color transfor-
mation on the input image, resulting in a canonical image. Notice that in order to
perform such a color correction on the whole image, these methods assume that there
is a single light source and its color is distributed homogeneously across the scene.
However, this assumption does not hold when there are multiple light sources in the
scene or interreflections are found in the images.

Finally, research in the field of color constancy has also devoted attention to the
effects of the imaging sensors for the final recovery of the canonical illuminants [152].

As mentioned above, in Chapter 4 we further discuss the influence of the illuminant
in the problem of intrinsic image decomposition and show how color constancy can be
used to achieve a better intrinsic reflectance estimate which is invariant to the color
of the illuminant.
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1.4.2 Sensor Calibration

Camera sensors are responsible for capturing light and converting it into pixel val-
ues. This process is achieved by color-separation mechanisms, which depend on the
response of the sensitivity functions of the sensors. For this reason, if we simultane-
ously took a picture of the same scene with two different cameras from the same point
of view and using the same settings, the pixel values of the resulting images would
not be the same.

As it happened with the color of the illuminant, camera sensors also affect the pixel
values that we observe in images. Two images acquired with different camera models
under the same illumination conditions will have different color values. Therefore,
filtering out the effects of these camera sensors from images is also fundamental for any
color-based technique in computer vision. There exist several computational models
of camera calibration that estimate the sensitivity functions of the camera [16, 124].
Once these sensitivity functions have been estimated, it is possible to perform a color
transformation on the input image in order to obtain a corrected image where the
effects of the camera sensors have been removed, or in other words, estimate how the
image would look under a set of standard sensors. These sensor transformations are
often modeled with 3-by-3 matrices [85].

In Chapter 4 we further discuss the influence of the camera sensors in the problem
of intrinsic image decomposition. We show how any knowledge about the camera
model used to capture the image can be used to achieve a better intrinsic reflectance
estimate which is invariant to the camera sensors.

1.4.3 Intrinsic Image Evaluation

As mentioned above, one of the difficulties that the first computational methods on
intrinsic image estimation faced was the lack of standard ground truth datasets and
metrics for intrinsic image evaluation. In fact, most early methods only showed a few
qualitative examples.

The appearance of the MIT dataset [71] allowed many posterior methods to be
quantitatively evaluated and compared against other methods. However, building
such a dataset proved to be challenging, and the small number and variety of ground
truth data it contains have forced some recent methods to evaluate their results with
other datasets which have not been specifically built for the purpose of intrinsic image
evaluation [38, 159].

Given the actual complexity of building datasets for intrinsic image evaluation
using natural scenes, different alternatives such as crowdsourced datasets [28] and
synthetic image datasets [24], have been proposed. In Chapter 2 we present a thorough
review of the different datasets and metrics used so far in the field. In Chapter 5 we
present two new datasets for intrinsic image evaluation.

1.5 Scope of the thesis

The main goal of this thesis is to analyze the influence of color features in the problem
of intrinsic image estimation and to propose multiple improvements in different areas
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of the problem. We describe a new method for intrinsic image estimation, define a
new theoretical model which generalizes previous formulations of the problem and
release two different ground truth collections for intrinsic image evaluation.

In Chapter 2 we first provide a thorough review of the existing methods for intrinsic
image decomposition, as well as the different datasets and metrics that have been
used so far in the field. We analyze how the simplifying assumptions about the scenes
have modified the formulation of the problem and also how different information cues
based on regularities about the scenes have been used to estimate intrinsic images.
We finally discuss the evolution of the problem and anticipate future developments
in the field.

Although color information has been frequently ignored in computer vision [62], it
has proven to be extremely useful in the decomposition of intrinsic images. In Chap-
ter 3 we present a computational method for intrinsic image decomposition which,
given a single input image, estimates its intrinsic reflectance and shading components
using information from different color cues. The first cue is based on the semantic
description of color used by humans (i.e. based on color names) and provides a more
robust description of the reflectances than standard color spaces. The second cue
is based on an analysis of color distributions in the histogram space and provides a
consistent description of surfaces sharing the same reflectance, overcoming local prob-
lems that the color name descriptor may find in shadowed or near highlight regions
of the image. A probabilistic framework is used to combine information from both
color descriptors.

In most methods for intrinsic image decomposition, including ours, authors have
assumed white light in the scenes and have completely ignored the effect of camera
sensors in images. However, as explained above, both the illuminant of the scene
and the camera sensors strongly influence the resulting pixel values during the image
acquisition process. In Chapter 4 we analyze the theoretical formulation underlying
the decomposition problem and propose a generalized framework where we model the
effects of both camera sensors and illuminant color. Our framework extends previous
formulations. Moreover, we show how removing these photometric effects from input
images improves the results of different methods for intrinsic image decomposition.

In order to validate our framework we have built a callibrated dataset which in-
cludes ground truth information about the illuminant of the scene and the camera
sensors. This new dataset is presented in Chapter 4. The evaluation of intrinsic
images has continuously evolved during the last decade. Although different datasets
have been released, building these datasets has proved to be a challenging task. Cur-
rent ground truth collections present some drawbacks, such as the small number and
diversity of scenes or the lack of ground truth information for specific intrinsic com-
ponents (i.e. the depth or surface orientation of the objects in the image, the color
and direction of the illuminant, etc.). In Chapter 5 we also present another new
dataset for intrinsic image evaluation. This dataset uses synthetic data and contains
both simple objects and complex scenes under different illumination settings. We
show that it is possible to easily create large and realistic datasets for intrinsic image
evaluation using computer graphics software and rendering engines.

Finally, in Chapter 6 we list our contributions and discuss future work about how
the lines of research presented in this thesis could be further developed.



Chapter 2

Review on Computational Intrinsic
Images

Intrinsic images were first introduced by Barrow and Tenembaum in [23]. The authors
defined an intrinsic image of a given scene as an image depicting a single physical
characteristic of the scene such as reflectance, illumination, orientation, distance to
the observer, transparency, specularity, luminosity, etc. Figure 2.1 illustrates how the
authors imagined some of these components (top row) and their actual representations
(bottom row). Intrinsic image decomposition is a hard and ill-posed problem, because
the number of unknowns is greater than the number of equations. This means that
multiple combinations of different intrinsic components may result in the same input
image. However, human beings have the ability to interpret images, and recognize
and isolate specific physical properties of the scene. For example, we can determine
the actual color of the objects in a scene, even if their appearance is modified by an
illuminant. We are also able to interpret the shape of an object or the depth in a
scene. The goal of intrinsic image decomposition approaches is to computationally
emulate the human ability to isolate the different factors that form an image. This
chapter provides a detailed and organized overview on these methods for intrinsic
image estimation.

Intrinsic images describe specific features that provide a better understanding of
scenes and facilitate subsequent processing. Intrinsic images have been widely used in
many subfields of computer vision, such as shape from shading [45], color constancy
[63], highlight removal [13] or color photo editing [108, 25]. However, the so-called
intrinsic image decomposition methods initially focused on providing reflectance and
shading image estimates of a scene.

In order to perform such a decomposition, early methods focused on making sim-
plifying assumptions about the scenes and classifying image derivatives based on the
Retinex theory [104, 103]. Reformulating the intrinsic image decomposition as an
energy function optimization problem allowed the inclusion of multiple and diverse
information cues into the equation, which resulted in better reflectance and shading
estimates. Recently, the development of technology has enabled methods in intrinsic
image decomposition to include extra input information, which simplifies the estima-

17
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Figure 2.1: Intrinsic components as illustrated by Barrow and Tenembaum in [23] are
shown in the top row, while actual representations of these intrinsic components can
be found in the bottom row. Representations for depth and orientation in [23] are
based on the 2.5D sketch of Marr [117].

tion process. A good example of this is the appearance of RGB-D cameras such as
Kinect [39]. Such cameras allowed the consideration of coarse information about the
depth of the scene.

Nevertheless, the mechanisms for intrinsic image evaluation have not evolved ac-
cordingly. The appearance of the MIT dataset [71], which provided ground truth data
for reflectance and shading components as well as specularities, was an important step
towards the objective evaluation and comparison of intrinsic image decomposition
methods. However, recent methods make it necessary to build larger datasets which
include ground truth data for multiple intrinsic characteristics of the scene.

Although a lot of progress has been made in the field of intrinsic images during the
last decade, to the best of our knowledge no exhaustive review of the field is available
in the literature. The objective of this chapter is to present a comprehensive and
organized review of the techniques for intrinsic image estimation. Methods on intrinsic
image decomposition can be reviewed in many different ways. In this work, we use
different principles to review the field. The first one, in Section 2.1, is based on the
different assumptions that the methods for intrinsic image decomposition have made
about the world in order to simplify the problem of intrinsic image decomposition.
This principle gives us insight into the theoretical modeling underlying the problem.
In Section 2.2, we introduce different visual cues based on regularities in the scenes and
images which have been used in different intrinsic image estimation methods. Some of
these visual cues have been fundamental in the field and have influenced most works on
intrinsic image decomposition. The other principle, in Section 2.3, focuses on practical
aspects of the problem such as the number and sort of input images that each method
uses, the number and sort of intrinsic components being estimated, the nature of the
information cues used to constrain the solution (introduced in Section 2.2) and the
techniques used to solve the problem. Although assumptions are used in all these
sections, they refer to different kinds of constraints. While the assumptions described
in Section 2.1 refer to general regularities about the physics of the scenes and have an
influence on the formulation of the problem, the assumptions presented in Sections
2.2 and 2.3 are focused on regularities that affect the image formation process. In
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Section 2.4, we also review the evaluation mechanisms that have been used so far in
the field of intrinsic image decomposition, analyzing the existing datasets and metrics.
Finally, we report the conclusions of this survey and analyze recent trends in the field
and potential developments in Section 2.5.

2.1 Problem formulation and simplifying assump-
tions about the scenes

As mentioned above, the decomposition of an image into its intrinsic components
is an ill-posed problem with more unknowns than equations. In order to simplify
the problem, all approaches make simplifying assumptions about the complexity of
the world. In this section we describe the most common assumptions and how they
constraint the theoretical formulation of the problem.

Assuming Lambertian surfaces in a scene is one of the most widely used hypothesis
in intrinsic image decomposition. The luminance of Lambertian surfaces is isotropic,
which means that there are no specularities*. Under this assumption, many meth-
ods have been built to decompose the input image into its shading and reflectance
components,

I(z,y) = Ishad(x,y) - Irepi(x,y), (2.1)

where Ispqq is the shading image and represents the amount of reflection of the light
arriving arriving at the point (x,y) of the image from a specific point of the object
surface considering the shape of the objects in the scene and the position of the light
source, and I gy is the reflectance image, which describes how the light is reflected by
the corresponding point of the object considering the material reflectance properties.

The form of the intrinsic components also depends on the assumptions we make
about the world. Igcy; has been usually represented as a 3-channel matrix, where each
channel represents one of the dimensions of the RGB color space. When the world
is assumed to be achromatic and the input image lacks color information, Irey; is a
grey-scale image and is represented as a single channel matrix [141, 27, 157, 145, 20].
By contrast, Ispqq has been usually represented as a 1-channel matrix. When it
is the case, the shading models the local intensity of the reflectance at each pixel
or, in other words, scenes are assumed to be illuminated by a white light (i.e. an
achromatic light source that affects the intensity of the reflectances in the scene but
not their chromaticity). However, a few methods have assumed more complex worlds
and use 3-channel matrices to describe the shading images, allowing to model color
illuminants and/or interreflections in the scene [32, 102, 19, 21]. The shading image,
Ishad, has also been generalized as a function, M (), of the shape of the objects in the
scene, Igpape, and the model of illumination, L, in different works [20, 19, 105, 102,
144, 21, 38, 154], leading to the following formulation of the problem

I(x,y) = Ishad(x,y) - Igesi(x,y) = M (Ishape(x,y), L) - Irepi(x,y). (2.2)

*Specular reflections of the scene, which often result in saturated values in the images.
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When the Lambertian assumption is relaxed, methods must cope with potential
specularities in the input images [143, 42, 105, 21]. Some of these works [105, 21]
have included the highlights in the shading image, while the others [143, 42] have
specifically modeled these effects and have included them in the formulation of the
problem,

I(%y) = IS'had(x»y) . IRefl('ray) + ISPec(xay)? (23)

where Igpe. denotes the specular reflection of the objects in the scene and acts as an
additive term.

Although both the color of the illuminant and the camera sensors influence the
pixel values we observe in the input images, none of the previous formulations model
their effects. In Chapter 4 we present a new framework for intrinsic image decompo-
sition which models the effects of the illuminant of the scene and the camera sensors.
Our framework generalizes the formulations described in this section.

2.1.1 Discussion

Adding new terms to the basic formulation of the problem (Equation 2.1) without
including extra equations may not seem a good idea because we are underconstraining
the problem. However, these terms are closely related and allow us to use prior
knowledge about the world in order to constrain the number of possible solutions and
determine the most likely ones. A good example of this idea is illustrated in Figure
1.9, where different combinations of shape, lighting, and reflectance result in the same
image. However, according to a set of predefined independent rules about the world
(i.e. prior knowledge), there is one explanation of the intrinsic composition of the
image which is more probable than the others. Table 2.1 summarizes how the existing
methods have used the simplifying assumptions reviewed in this section.

2.2  Visual cues based on scene and image regulari-
ties

In this section we review different visual cues that have been used in intrinsic image
estimation. These cues are based on physical regularities about the images and the
underlying scenes and so far have proved to be extremely useful in order to bound the
space of plausible solutions to the problem of intrinsic image decomposition. Typical
regularities are that the curvature of most objects in a scene usually changes smoothly,
or that the reflectances in a scene are usually sparse and can therefore be represented
in reflectance images with a reduced set of color values.

2.2.1 Shading Smoothness

The first attempt to divide the lightness of an image into its reflectance and shading
components (Equation 2.1) is found in the Retinex theory [104, 103], which was
released before the intrinsic image problem was formally defined in 1978. The Retinex
aimed to emulate some retinal-cortical processes in the human visual system in a 2D
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Lambertian | Single Uniform | White
Work Surfaces Illuminant Light
Funt’92 [57] v v v
Sinha’93 [141] v v vE
Bell'01 [27] 7 v ¥
Weiss’01 [157] v v
Finalyson’04 [49] v v
Matsushita’04 [119] v v
Olmos’04 [122] v v v
Tan’04 [143] v
Tappen’05 [146] v v v
Tappen’06 [145] v v vE
Bousseau’09 [32] v v
Jiang’10 [90] v v v
JShen’11 [136] v v v
LShen’11 [138] v v v
Gehler’11 [60] v v v
Barron’12a [20] v v
Barron’12b [19] v
Garces’12 [59] v v v
Lee’12 [105] vt v
Serra’12 [133] v v v
Laffont’12 [102] v
Tang’12 [144] v v v
Zhao'12 [137, 161] v v v
Barron’13 [21] V't
Chen’13 [38] v v
Vineet'13 [154] v
Chang’14 [37] v v
Jeon’14 [89] v v v
Ye'l4 [159] v
Kong’14 [99] v
Bell'14 28] v v v

Table 2.1: Classification of the methods based on the simplifying assumptions they
make about the scenes. T Specularities are included in the shading image. * Grayscale
images are used.
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Mondrian world® of Lambertian surfaces. These processes are thought to be at the
basis of the human ability to perceive color robustly and independently of the color
of the illuminant (color constancy).

The authors showed in their experiments that adjacent luminances do not differ
abruptly unless there is a boundary between two areas with distinct reflectances.
Therefore, luminance edges in images are an important source of information: brusque
changes indicate reflectance variations while smooth variations are due to shading.
Using these ratios of luminance at adjacent points, the Retinex algorithm can both
detect edges and eliminate the effect of nonuniform illumination or shading.

However, the assumptions of the Retinex do not always hold when decomposing
natural images, which are more complex than 2D Mondrian worlds. The 3D geometry
of a scene can produce sharp shading edges when occluding objects cause cast shadows,
and the materials of the objects, which are generally non-Lambertian, often result in
specularities.

Although sharp shading edges can be found in natural images, shading variations
are still smooth in most of the images. As a consequence, the Retinex-like classification
of image derivatives into those caused by reflectance changes and those caused by
shading variations has been successfully and recurrently used in many successive works
(57, 141, 27, 157, 119, 49, 122, 143, 146, 145]. Moreover, many of the works that do
not classify image derivatives [138, 60, 133, 59, 161, 89] also include different cues
based on the assumption that shading varies smoothly as proposed in the Retinex
theory.

In [57], Funt et al. observed that chromaticity edges could be useful to detect
luminance variations caused by sharp shading edges, since shading variations are
theoretically cancelled in chromaticity images. This property has been used in most
posterior works also including shading smoothness cues.

Other existing cues are also based on this shading smoothness regularity. In [19],
Barron and Malik defined a cue on the smooth variation of mean curvature in the
shape of the objects. In fact, shading smoothness is a direct consequence of curvature
smoothness. Following this idea, Lee et al., in [105], proposed that non-neighboring
pixels with the same surface normal direction should have similar shading descriptions.

2.2.2 Texture Structure

Regularities on texture have been used as well to estimate intrinsic images. Textures
can be caused by both reflectance and geometric patterns. In [106], Leung and Malik
defined a vocabulary of surface patches with associated geometric and photometric
properties called 3D textons. These 3D textons have been used in some intrinsic image
decomposition works to define a visual cue based on texture structure [137, 105]. In
these works, pixels sharing similar local texture structures were grouped together as
having the same reflectance values.

TA world made of color patches
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2.2.3 Color Sparsity

The number and distribution of color in scenes is another important regularity which
has been exploited in the problem of intrinsic image estimation. Multiple factors affect
the color values we observe in images. Some color distortions are produced by the
geometry of the objects in the scene and the nature of the light sources (highlights,
shadows, interreflections, etc.). Other factors influence the color values during the
image acquisition process (camera sensors, non-linear tranformations, etc.). All these
issues, the ones that happen in the scene itself and the ones that occur during the
image acquisition process, cause that pixels which represent the same reflectance are
finally described with different color values in images.

Omer and Werman, in [123], analyzed the distribution of image reflectances in
color histograms and showed that the reflectances of natural scenes are usually sparse.
Therefore, these reflectances can be efficiently described by a sparse and reduced set
of color values in the reflectance intrinsic images. The authors introduced a method
which clusters image pixels based on the analysis of reflectance distributions in color
histograms. In a similar fashion, in [151], Vazquez et al. presented a method which
analyzes the local maxima of a color distribution in a color histogram space in order
to cluster image pixels. These methods provide a compact description of reflectances
which is robust to color distortions.

Color sparsity is also a central concept in human perception. Although humans
can distinguish millions of different colors [91], it has been studied that human beings
from around the world use a very discrete set of semantic terms to describe perceived
colors [31].

Using a sparse set of colors as a cue has been recurrent in the definition of energy
functions for intrinsic image estimation [32, 138, 60, 133, 59, 19, 28]. This idea is
simply to enforce neighboring pixels with a similar chromaticity to share the same
reflectance value. Assuming that the reflectances in a scene can be described with a
sparse set of colors allows us to reduce the number of possible solutions, but it can be
a problem when representing scenes containing many different reflectances or smooth
reflectance changes.

2.2.4 Discussion

Assumptions about regularities in scenes and images reduce the space of potential
solutions of the intrinsic image decomposition problem. The inclusion of new intrin-
sic components into the formulation of the problem usually implies the use of new
assumptions. The color sparsity cue, for example, was only considered when methods
started using input color images. The visual cues described in this section will be
used as a classification factor in the next section.

The actual use of RGB-D images and video, has also enforced the definition of new
cues based on shape and temporal regularities. Some of these cues will be mentioned
in the following section.
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Scene and Image Regularities
Shading Color Texture
‘Work Smoothness | Sparsity | Structure
Funt’92 [57]
Sinha'93 [141]
Bell’01 [27]
Weiss’01 [157]
Finalyson’04 [49]
Matsushita’04 [119]
Olmos’04 [122]
Tan’04 [143]
Tappen’05 [146]
Tappen’06 [145]
Bousseau’09 [32]
Jiang’10 [90]
JShen’11 [136]
LShen’11 [138]
Gehler’11 [60]
Barron’12a [20]
Barron’12b [19]
Garces’12 [59]
Lee’12 [105]
Serra’12 [133]
Laffont’12 [102]
Tang’12 [144]
Zhao'12 [137, 161]
Barron’13 [21]
Chen’13 [38]
Vineet’13 [154]
Chang’14 [37]
Jeon’14 [89]
Ye'14 [159]
Kong’14 [99] v
Bell'14 [28] v
Table 2.2: Classification of the methods according to their assumptions about the
most common regularities in the scenes.
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2.3 Intrinsic image decomposition techniques

In this section we propose a 2-layer classification of methods for intrinsic image de-
composition based on the estimation techniques they use, as well as the information
cues they use and their input and output information. Estimation techniques pro-
vide the first criterion of the classification. At this level, the methods are divided
between these approaches which focus on labeling image derivatives and the others,
which mostly formulate the estimation of intrinsic components as an energy function
optimization problem. Information cues used to constrain the problem, as well as
the input information the approaches require, are used in the second level of this
classification. Some of these cues have been described in the previous section. Input
information mainly refers to the number (single vs. multiple) and sort (grayscale,
color, RGB-D, etc.) of images that each method requires, but also considers other
sources of input information such as user assistance. Although some approaches fulfill
more than one criterion and could be included in more than one category, we classify
them according to their most relevant characteristics.

2.3.1 Classification of image derivatives

Several methods have attempted to extend the Retinex theory, introduced in Section
2.2, to analyze images representing a more realistic world. For example, Sinha and
Adelson, proposed in [141] the classification of image edges in a 3D achromatic world
of painted polyhedra without object occlusions and cast shadows. In this theoretical
work, intensity junctions (i.e. intensity edge intersections) were locally analyzed
and classified as being caused by either shading or reflectance variations. A post-
processing step to verify the consistency of the 3D structure of polyhedra and the
illumination source direction was also proposed.

Other methods have used information from different sources in order to achieve a
better classification of image derivatives.

Multiple images

In an attempt to simplify the problem of derivative classification, Weiss, in [157],
used multiple images as an input. These images shared the same reflectance under
different illumination conditions. In such framework, shading edges were different
throughout the images while reflectance variations were preserved. Derivative filters
were applied to the different frames, and a median of these filtered image outputs was
used to avoid luminance edges caused by shading variations and recover an intrinsic
reflectance image. An extension of this method was proposed by Matsushita et al. in
[118, 119], where a threshold was used to remove edges caused by texture patterns
from the illumination images. In this work, the authors also proposed to build an
illumination eigenspace which allowed real-time estimation of shading images in fixed
scenarios, such as these provided by traffic cameras.
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Chromaticity edges

In a different direction but still using the same fundamental principle of classifying
image derivatives, some other works have exploited color information. Funt et al., in
[57], adapted the Retinex theory to classify chromaticity derivatives instead of lumi-
nance edges. They claimed that in chromaticity images shading variations are can-
celed, while reflectance differences are preserved. Chromaticity edges have been used
in other works. For example, Olmos and Kingdom assumed in [122] that co-aligned
chromatic and luminance variations usually describe changes in surface reflectance
in natural scenes, whereas other luminance variations mainly arise from shading and
shadows. Finlayson et al. also combined chromatic and luminance derivatives in
[49] to detect and remove shadow edges and recover shadow-free images, which could
be further decomposed into their shading and reflectance components. Chromaticity
edges also played a fundamental role in [143], where Tan and Ikeuchi first generated a
specular-free image by shifting the intensity and chromaticity of pixels while retaining
their hue. Then, reflectance derivatives were removed from this specular-free image,
and the resulting shading image was used to decompose the reflection components of
the input image into its diffuse and specular reflections. The diffuse component was
used to calculate the reflectance image.

2.3.2 Learning-based approaches

Instead of just classifying image derivatives using a simple threshold, some authors
have proposed approaches based on learning. For instance, Tappen et al. [146] trained
a classifier using the AdaBoost algorithm [56] to recognize gray-scale intensity pat-
terns. They combined this classifier with information about chromatic edges in or-
der to label image derivatives. Global spatial coherence for the edge labeling was
achieved in a last stage using a Markov random field solved using the Generalized
Belief Propagation algorithm [160]. The same authors, in [145], used a training set
composed of images of real surfaces to build estimators that predicted local shading
and reflectance derivatives from image patches. Then, they learned a weighting func-
tion that weighted the different local estimates in order to produce the best possible
global estimate. Bell and Freeman, in [27], used a training set of synthetic images
containing both shading and reflectance variations and learned a classifier for steer-
able pyramid coefficients [140]. These coefficients represented the outputs of first and
second derivative filters which had been applied to the luminance of the input image.
A final propagation stage provided global coherence to the method. Recently, Tang
et al., in [144], combined deep belief networks [78] with the Lambertian reflectance
assumption in order to learn priors on the albedo from images and use this knowledge
to estimate the albedo and surface normals of similar images.

2.3.3 Energy functions optimization

Most of the works which have not focused on classifying image derivatives have formu-
lated the decomposition problem as the optimization problem of an energy function.
In these works, the authors first define a function encoding all the assumptions about
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the problem and then select an optimization technique able to converge to a global
minimum of the given energy function. So far, these optimization approaches have
proved to achieve satisfactory results, as detailed below.

In order to reduce the space of solutions, information from multiple sources has
been used in these optimization approaches.

Sparsity color cue

The use of a global sparsity color cue [123, 151], whose basic idea is that the re-
flectances of natural images can be described by a sparse and reduced set of color
values, has been recurrent in the definition of energy functions for intrinsic image
estimation. Shen and Yeo defined in [138] an energy function that combined the
global reflectance sparsity constraint with a local Retinex cue on chromaticity edges,
which enforced neighboring pixel with similar chromaticities to share the same re-
flectance values. The energy function was optimized using least-squares minimization
[94]. Gehler et al. defined, in [60], a probabilistic model where this global sparsity
prior on reflectance was combined with a color Retinex cue which extracted poten-
tial reflectance edges, and an intensity Retinex cue which enforced shading smooth-
ness between neighboring image pixels. To optimize the energy function, which was
expressed as a latent variable random field, the authors used a coordinate descent
algorithm [112]. Garces et al., in [59], divided the image into clusters of similar chro-
maticity using this global sparsity cue and used a linear system to enforce shading
smoothness on the boundaries between clusters. The authors used a Quasi-Minimal
Residual method [18] to solve the system. Bell et al., in [28], combined different priors
from previous works, including Retinex cues on intensity and chromaticity edges and
the global sparsity cue in a conditional random field and solved the inference problem
using the method presented in [100].

Although most energy optimization methods presented in this section are dis-
criminative (z.e. they model the dependence of unobserved variables from observa-
tions), Chang et al., in [37], presented a Bayesian generative model based on the work
of Gehler et al.. This work overcomes many similar discriminative methods with-
out including any Retinex-like term in their problem formulation. The authors used
Markov Chain Monte Carlo techniques [73] to solve their probabilistic non-parametric
approach.

Texture cues

Still using energy functions, some authors have also considered texture cues for solv-
ing the decomposition problem. For instance, Shen et al. [137] searched for pixels in
the image which shared similar local texture structures [106] in the chromaticity im-
age and grouped these pixels together as having the same reflectance. These texture
constraints were combined with local color Retinex constraints. To optimize the en-
ergy function, the authors expressed it in a graph structure and used tree-reweighted
message passing [98]. This work was extended in [161], where Zhao et al. reformu-
lated the problem as the minimization of a quadratic function and used the standard
conjugate gradient algorithm [77] to solve it. In a different fashion, Jiang et al.,
in [90], separated images into frequency and orientation components using steerable
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filters [140] and constructed shading and reflectance images from weighted combina-
tions of these components. These weights were determined by correlations between
corresponding variations in local luminance (i.e. mean of intensities), local amplitude
(i.e. variance of intensities), color and texture, assuming that positive correlations
between luminance and color or texture usually indicate reflectance changes, while
correlated changes in mean luminance and luminance amplitude are probably due to
illumination variations.

User-assistance

In the work of Bousseau et al. [32], the users used sparse strokes to mark parts of the
image that shared the same reflectance and parts where illumination did not vary.
Users were also expected to provide at least one fixed illumination value to solve the
global scale ambiguity. The authors built a constrained least-square system and used
a multigrid solver [34] to optimize an energy function over local windows whose only
variable was the shading. This energy function combined the constraints provided by
the users with a global sparsity color cue [123]. The reflectance image was directly
recovered dividing the original image by the estimated shading image. User strokes
were used again in [136], where Shen et al. proposed an automatic optimization algo-
rithm based on the assumption that neighboring image pixels with similar intensity
values share similar reflectance values. Information about user strokes was used to
constrain the minimization of the energy function, but the optimization technique the
authors used to minimize the energy function was not specified.

Shape cues

Recently, some energy optimization approaches have included additional outputs in
the formulation of the problem. In [20], Barron and Malik defined a probabilistic
framework where shading, reflectance, shape and an illumination model were jointly
estimated from a single gray-scale image and its corresponding mask. They designed
an energy function which contained multiple priors on reflectance and shape. The
priors on reflectance were based on the global sparsity color cue and the local Retinex
cue about reflectance edges. The priors on shape included a cue on flatness enforce-
ment to address the bas-relief ambiguity [26], another one on occluding contours,
which assumed input masked scenes representing single objects with known orienta-
tion at boundaries, and finally one cue on the smooth variation of mean curvature.
When the illumination was unknown, it was estimated from a discrete set of spherical
harmonic illuminants. This method was extended in [19] to color input images and
was called SIRFS (shape, illumination and reflectance from shading). The priors on
shape were kept while the priors on reflectance were adapted to color images and a
new cue on color-constancy, which enhances reflectances that are close to white or
that lie within the gamut of previously seen colors, was added. The illumination was
included as a prior, and they used a multivariate Gaussian model which had been fit
to their training set of spherical harmonic illuminations. The authors used a L-BFGS
technique [36] to minimize their energy function.
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RGB-D images

The emergence of new devices such as Kinect cameras, which provide RGB-D images
(i.e. color images that include a depth map), has allowed multiple intrinsic decom-
position methods to use this shape information as an input. Lee et al., in [105],
used multiple RGB-D images to estimate reflectance and shading intrinsic compo-
nents. The authors defined an energy function based on different sets of constraints
and minimized it using a sparse linear solver [74]. They used reflectance constraints
based on the Retinex-like cue on chromaticity edges and the non-local texture con-
straints defined in [137]. They also proposed shading constraints based on shading
smoothness not only between neighboring pixels, but also between pixels that share
the same surface normal direction. Temporal constraints were proposed as well to
reduce the effects of noise, using the average color among the corresponding points in
the different frames, and to determine intensity outliers in temporally distant frames
and avoid specularities. Barron and Malik, in [21], used a single RGB-D image to
solve a probabilistic framework based on their previous work [19]. The authors used
the depth input as an observation and removed their prior on occluding contours,
allowing the model to work for unmasked scenes. Chen and Koltun [38] proposed
a linear least squares formulation [94] of the problem where they estimated the re-
flectance component and further decomposed the shading component into a direct
irradiance component, an indirect irradiance component (i.e. interreflections), and a
color component (i.e. color of the illuminant). They defined an energy function based
on chromaticity edges and their observations on irradiance. The authors stated that
direct irradiance varies slowly as a function of position and surface orientation while
indirect irradiance can have higher frequencies, and employed regularizers that model
these characteristics. Jeon et al., in [89], first decomposed an input RGB-D image
into a texture layer, containing the texture patterns in the image, and a base layer,
where these texture patterns had been removed. Then, this base layer was further
decomposed into its reflectance and shading components, assuming Retinex-based
constraints and other local and global shading constraints based on surface normals.
The authors used a conjugate gradient method [77] to minimize the energy function.
In a different direction, Vineet et al., in [154], jointly estimated intrinsic image com-
ponents and semantic properties about objects and material attributes of the scene
using a high order conditional random field. Their model used the method defined
in [19] and the high-order potentials they proposed were based on the correlations
between the reflectance, objects, and attribute labels assigned to the pixels. In order
to optimize their energy function, the authors used approximate dual decomposition
[148].

Photo collections

The appearance of photo collections on the internet has also been used for intrinsic
image decomposition. Some methods have used this extra information to simplify the
optimization process of the energy function. In [102], Laffont et al. used multiple
input images of the same scene from internet photo collections in order to infer ob-
ject geometry using patch-based multi-view stereo [58] and object reflectance based
on Weiss” method [157]. The authors used a blockwise Gauss-Seidel solver [87] to
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optimize their sparse linear system. Further applications of their method, such as
relighting of scenes and color transfer, were also presented in this work.

Video

Video has been used as well for intrinsic image decomposition [105, 159, 99]. Although
the different frames of a video can be seen as the multiple images used in previous
methods [102, 157], there is an important difference. Methods using video as an
input do not assume a rigid scene structure as it happens with photo collections [102].
Methods based on video do not assume either that the camera and the objects in the
scene are fixed and the light changes, as in [157]. In a video the different objects in the
scene can be moved independently. Lee et al., in [105], only used the video information
to include temporal constraints in their energy function, which reduced the effects of
different artifacts such as noise or specularities. Ye et al., in [159], defined a Maximum
a Posteriori problem. The authors first decomposed the first frame of the video into
its shading and reflectance components. Then, reflectance values were propagated
on successive frames until a confidence threshold on the number of unassigned pixels
stopped this propagation. Local decomposition was performed on the unassigned
pixels at the stopping frame and the new values were propagated backward in time.
Finally, a smoothness constraint was applied on the shading of the few remaining
unassigned pixels. Kong et al., in [99], also took advantage of video frames to jointly
estimate optical flow and intrinsic albedo and shading components. Optical flow
information was used to enhance temporal constancy for reflectance and temporal
smoothness for shading. The authors used a coarse-to-fine pyramid-based approach
based on the Classic+NL flow estimation method in [142] to minimize their energy
function.

2.3.4 Discussion

In this section we have provided a classification of the methods based on their esti-
mation technique (first layer of the classification) and their input information (second
layer of the classification). The assumptions about the regularities in the scenes ex-
plained in the previous section have also been used in this classification. We have
observed that methods on intrinsic image decomposition have evolved in parallel with
the development of both technology and optimization techniques. Initially, most
methods, based on the Retinex theory [103], focused on classifying image derivatives.
However, most current methods pose the decomposition problem as an optimization
problem. On the one hand, the appearance of powerful optimization techniques which
are able to minimize complex energy functions has allowed recent models to jointly
estimate multiple intrinsic components other than reflectance and shading. On the
other hand, the appearance of RGB-D cameras or big internet image collections has
provided extra input information which has proved to be very useful. In the next
section we will see how this evolution of the methods has surpassed the existing eval-
uation mechanisms.

The information presented in this section has been synthesized in Tables 2.3 and
2.2. Output information about the intrinsic components that each method estimates



‘sogetr Surpeys 10[0)) | 'soSewl 00urIIOPaI aRIS-£o1r) , "MOT ] [ed13d() (g) "jueuoduos omIxaT, (1) "S[Pqe[ 2ImqLIyye pue 199(qQ
(9) "UOIRULIOJUT 9OURIPRIIL J09IIPUT Pue 30011 (G) ‘uolpeurunyt jo PPo () "s1oepe ostou pojefos] (g) ‘jueuodurod renoadg
(z) ‘uorjeuwiojut mopeys poje[os] (1) :sindino w3 uore[duiod Jo oxes oY) 10J o[qe]} SIY} Ul POPI[OUL WO OS[R AR SPOYIOUL
o jo sindjno oy, syndul 1Y) se [[om se anbruyde) uorsodwossp Iy} U0 paseq SPOoYIdW 9y} JO UOIFRDIYISSe[) €' 9[qR],

N [82] F1.10d
[66] 1.3u03]
[6ST] FIOA
[68] F1.U0O[
[2€] F1.8uey)
[7G1] €1.900UIA
[8¢] eT.ueyD
[12] ¢1.u01TRg
[191 ‘L£1] z1.00UZ
[771] g1.8umy,
[201] ZT.Au0geT
[ee1] g1.e110G
[501] 1.9
(6] 1.50010)
[61] qg1.uoLTRg
[0g] g1 uOLIRY
[09] TT.01Y0D
[8€T] TT.UoUST
[9¢1] TT.UOYSe
[06] OT.Suerr
_Nm_ 60, eassnoOg
[s71] 90 uedder,
[9%1] co.ueddey,
[e71] $0.uRL
[zz1] F0.50W1O
[61T] $0.eIYSISIRIN
% [67] $0.uosAreurq
» [L6T] TO.SSTOA
2] 10.11°61
[T71] €6.equIS
N N N 28] 26.ung
sy | odeys | peyg 3 gy | 1o ASwoug [ sser) o8py | ssy wsn | wy gy | pde | 1010) SIOM 7
sndinQ onbruyoaf, syndufy

—
lan)

x
/ / /

>SS S

SIS TS SIS SIS S
SIS IS SIS SIS S

>
~>
SIS 1SS S

~
SIS SIS S

~
~>

>SS S

=
>
SISIS IS IS OIS IS IS IS O RTS IS IS IS S S TS IS S S SIS S
SIS IS SIS S SIS S

i/ /

2.3. Intrinsic image decomposition techniques
—
el
~—

SIS SIS IS TS SIS S
>




32 REVIEW ON COMPUTATIONAL INTRINSIC IMAGES

has also been included in the Table 2.3 for the sake of completion.

2.4 Intrinsic Image Evaluation

Being able to objectively evaluate and compare the performances of different existing
methods on a given problem is essential in any engineering field. However, early
works on intrinsic image decomposition could not provide quantitative results, since
no ground truth dataset existed and no metric was specifically defined to evaluate the
accuracy of intrinsic images. In this section we describe the different datasets and
metrics that have been used so far to evaluate intrinsic images.

2.4.1 Qualitative examples

The quantitative evaluation of methods for intrinsic image decomposition has so far
proved difficult. Although some datasets exist, many authors still provide qualita-
tive results to assess the performance of their methods, specially when they want to
demonstrate the benefits of their approaches in a specific type of images. Therefore,
we find it interesting to briefly mention in this section some of the images and datasets
that have been used for qualitatively testing multiple intrinsic image decomposition
methods.

Weiss, in [157], presented a method which takes a set of images of a single scene
under different lighting conditions as its input. The author provided qualitative results
for webcam images and images from the Yale Face database B [61], which contains
thousands of facial images of 28 subjects taken under different poses and illumination
conditions and has also been used in [144]. In a similar fashion, Matsushita et al., in
[118, 119], used real sequences of road traffic images.

Some authors have provided qualitative results for complex images representing
diverse natural scenes [122, 146, 32]. In [90], Jiang et al. presented results for a
subset of images from their own dataset, the Birmingham Object Lighting Database,
which contains stereoscopic image pairs of objects, surfaces, faces and outdoor scenes
photographed with high resolution under well specified lighting conditions. Other
methods dealing with specific effects, such as cast-shadows [49], specularities [143] or
textures [137], used their own test images for visual evaluation (see some examples in
Figure 2.2).

Internet photo collections, such as Flickr, have also been an important source
of images for visually testing intrinsic image methods [137, 32, 59, 102]. Shen et
al., in [137], used images containing textures, while Laffont et al., in [102], looked
for multiple pictures of different famous landmarks. Bousseau et al. [32] provided
qualitative examples on many different and diverse scenes, some of which were used
in further works [138, 59, 133].

The appearance of new methods which use RGB-D images as inputs and estimate
other intrinsic scene components in addition to shading and reflectance, forced recent
methods to use more complex datasets for testing. The NYU Depth dataset [139]
contains video sequences of 464 different indoor scenes recorded by both the RGB and
depth cameras from the Kinect, and 1449 densely labeled pairs of aligned RGB and
depth images. Although it was not specifically designed for intrinsic image evaluation,



2.4. Intrinsic Image Evaluation 33

(b) (c)

Figure 2.2: Input images for different methods. (a) Image containing cast shadows
[49]. (b) Image with specularities [143]. (c) Highly textured images [137].

it provides useful intrinsic information for the decomposition problem, such as depth
maps, and has been used for qualitative evaluation in different works [21, 154, 38, 89].

2.4.2 Datasets

In order to evaluate intrinsic image estimates, we need ground truth data for the
different intrinsic components. Obtaining these ground truth data is a challenging
problem, since isolating intrinsic components of natural scenes is not easy. In this
section we discuss the different datasets that have been used to test the existing
methods.

Early ideas

The first idea of a ground truth image for intrinsic image evaluation is found in [27],
where Bell and Freeman showed two images of a white wall: one of the wall with
a graffiti, and another after the wall was repainted white (Figure 2.3). Assuming
that no reflectance variations occur in this second image, it can be thought of as an
intrinsic shading image of the scene.

Tappen et al., in [145], provided the first quantitative evaluation and the first
ground truth dataset for the intrinsic image decomposition problem. The dataset
consists of 46 images of wrinkled papers which have been colored with a green Crayola
marker. The authors used the green channel of the images, where these markings are
not visible, as ground truth shading. The reflectance images were obtained by means
of a simple point-wise division. An example of the Crayola dataset is shown in figure
2.4. The main problem of this dataset is that all its images are very similar, making
it difficult to determine if a method which performs well with this dataset will also
achieve good results with any other sort of images.

The MIT dataset

The release of the MIT dataset for intrinsic image evaluation [71] was an important
step towards the comparison of the different existing algorithms. The authors built
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(b)
Figure 2.3: Graffiti image from [27]. (a) Graffiti painted on a wall. (b) Graffiti covered

with white paint.
Q{:i:
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(b) (c)

Figure 2.4: Sample image from the Crayola database [145]. (a) Original image: wrin-
kled paper colored with a Crayola marker. (b) Shading image: the Crayola marker is
invisible in the Green channel of the image. (c¢) Reflectance image: result of dividing
the original image by the shading image.

—

—

a dataset containing images of 16 toy-like objects (although 4 extra objects can be
found in their website). The objects in the dataset are shown in Figure 2.5. For each
object the following data are supplied: the original image, a diffuse image obtained
using a polarizing filter, a binary mask of the object, a shading image which results
from painting the object white, a reflectance image, and a specular image which is the
result of subtracting the diffuse image from the original. The authors also provided
the original images under multiple illumination settings. These images are necessary
for methods which require multiple input images such as [157, 119].

Building such a dataset was challenging. In order to avoid complex and undesired
effects such as interreflections, highlights and transparencies, the shapes of the ob-
jects are essentially convex, and their materials are mostly diffuse (the few remaining
specularities were removed with a polarizing filter). Moreover, the method used for
capturing the shading images of an object consisted in carefully removing the object,
painting it white and replacing it at the exact same place. This method is costly in
time and hardly applicable to natural scenes, which explains the reduced number and
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Figure 2.5: Images in the MIT dataset [71]. (a) The 16 original objects that composed
the dataset. (b) The 4 extra objects that can be found on the authors’ website.

the small variety of objects found in the MIT dataset.

Nonetheless, the MIT dataset [71] was the first satisfactory proposal of a ground
truth dataset for intrinsic image evaluation. Since its release, most authors working
on estimating reflectance and shading images have used this dataset to test their
methods and compare them with other approaches. Some methods have been tested
on the 16-object version of the dataset (MIT-16) [60, 133, 161], while others have
used the extended 20-objects version (MIT-20) [90, 136, 133, 20, 28]. Shen and Yeo,
in [138], only provided results for 13 objects of the MIT dataset.

Barron and Malik presented an extension of the MIT dataset in [20]. In this ex-
tended dataset, photometric stereo was used to estimate the depth and the spherical
harmonic illumination of each of the objects in the original MIT dataset [71]. The
authors further extended the dataset in [19] by applying to the objects different il-
lumination models from the sIBL Archive ¥. An example of the extended dataset is
shown in Figure 2.6.

Synthetic datasets

Building synthetic datasets considerably simplifies the process of acquiring ground
truth data for different intrinsic scene components such as reflectance, shading, shape
or the color and position of the illuminant. Although rendering engines use approxi-
mate reflection models, they are able to reproduce complex scenes which are difficult
to differentiate from actual real scenes.

Bousseau et al., in [32], provided the first synthetically rendered scene for intrinsic
image evaluation (see Figure 2.7). This image was also used in posterior works [136,
138].

The MPI-Sintel dataset [35] is a new optical flow dataset where 35 sequences
displaying different environments, characters/objects, and actions were extracted from
a 3D animated short film. It was not specifically designed for the purpose of intrinsic

Thttp://www.hdrlabs.com/sibl/archive.html
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Figure 2.6: Barron and Malik extended the MIT dataset [71]. Example of extensions

provided for the sun object. (a) Estimating shape and illuminant information [20].
(b) Adding complex illumination models [19].

image evaluation, but it provides multiple useful groundtruth information which has
already been used for quantitative evaluation in some works [38, 159]. Figure 2.8
shows an example of the ground truth information that can be found in this dataset.

Crowdsourced datasets

Bell et al., in [28], built a large dataset for intrinsic image decomposition using internet
real-world photos of indoor scenes and crowdsourced annotations about the relative
reflectance of pairs of pixels in each image. Their dataset contains over 5000 images
with an average of 100 human judgements per image, and a set of about 400 densely
annotated images (around 900 human annotations per image). The authors argued
that humans are not good at making absolute judgements. Accordingly, they asked
the observers which of the two points had a darker surface color and allowed three
possible answers (“the first”, “the second” and “both”). Subjects were also asked
about the confidence of their answers, and this information was used to define weights
for each judgement. Noisy images were removed, as well as greyscale photographs and
images with exaggerated camera effects. The skills of the subjects who performed the
annotations were also tested using “sentinel” objects for which the real answer was
known, allowing the authors to discard the answers of annotators who misunderstood
the task or did not do it correctly.

The main advantage of this dataset is that it contains a large number of natural
images, making it possible to evaluate the methods for a big range of different scenes.
However, this dataset does not include ground truth intrinsic images such as they
were defined in [23], but just a set of sparse annotations about the reflectance of the
images based on imperfect human judgement.
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Figure 2.7: Synthetic image of a doll in [32]. (a) Original image. (b) Shading image.
(c) Reflectance image.

(c) (d)

Figure 2.8: Example of MPI-Sintel dataset groundtruth [35]. (a) Original image. (b)
Normal map. (c¢) Shading image. (d) Reflectance image.

2.4.3 Metrics

Even when ground truth information is available, methods on intrinsic image decom-
position need a standardized way to measure how close their intrinsic image estimates
are with respect to the ground truth data. Therefore, it is necessary to define simi-
larity measures in order to quantitatively evaluate and compare the different intrinsic
image approaches.

The first quantitative evaluation of intrinsic images can be found in [145], where
Tappen et al. used the mean squared error (MSE) between the estimated and the
ground-truth shading images,

1 .
MSE(Iy, I3) = margmlnaﬂh —aly|3, (2.4)
1

where I; and I, are the images to be compared, « provides intensity-invariance to the
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metric and |I;] is the number of pixels in the image I; and is used as a normalization
value (the size of both images is assumed to be the same). This error measure has also
been used in further works [90, 133, 38, 20, 19, 21]. The main problem of MSE for
the evaluation of edge classification approaches is that it is a global metric (i.e. takes
into account the whole image). In this same direction, Grosse et al. also suggested
in [71] that the MSE metric is too strict and that misclassifying a single edge in a
little part of the image can lead to big MSE scores. For instance, in Figure 2.9 we
have represented a plausible scenario where we are given an image containing a single
color and an intensity gradient caused by illumination. We use a Retinex-like method
which wrongly classifies an intensity edge as a reflectance change in the center of the
image. Although the method has just misclassified a line of pixels, the MSE metric
considers that at least half of the pixels in the computed image are wrong, because it
computes the error in the whole image.

(a) (b) () (d) ()

Figure 2.9: Example to illustrate the behaviour of different error metrics, given an
original image (a), its ground truth reflectance (b) and shading (c¢) and the computed
estimates for reflectance (d) and shading (e) using a Retinex-like method which mis-
classifies an image derivative.

Grosse et al., in [71], proposed a new metric for intrinsic image evaluation called
the local mean square error (LMSE). This error measure is defined as the average of
the MSE calculated on overlapping image patches,

> argmin, [ 1Y — al3||3

2 11713 ’

LMSE(I}, I) = (2.5)

where w represents an image window.

The problem of the misclassified edge resulting in a big MSE score illustrated in
Figure 2.9 is avoided with the LMSE metric, since only the windows including a part
of the misclassified edge accumulate some error, which is later averaged by the total
number of windows. Notice that any other window which does not include the wrong
reflectance edge will perfectly match its GT counterpart, since both windows only
differ by an intensity scalar value and the MSE metric is scale-invariant.

The LMSE metric has been widely used for method evaluation in the intrinsic
image literature [90, 136, 138, 60, 20, 19, 133, 59, 102, 21, 38]. However, its suitability
for intrinsic image evaluation has also been discussed by some authors [90, 60, 133].

In [90], Jiang et al. argued that the LMSE is biased towards the mean values of
the compared images and proposed the absolute local mean square error (aLMSE),
where the mean values of both images in the patch are subtracted to supply the LMSE
with insensitivity to variations in mean intensity,
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The authors also proposed a correlation-based metric to measure similarity. This
metric can either be applied globally to the images,
E[(11 — p1) (L2 — p2)]

Corr(Iy, I) = g , (2.7)

(2.6)

or calculated in local windows of the image and averaged,

V) — py)]
LCorr(Iy, I5) = |W| Z : (2.8)
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where |W| is the number of windows. Correlation and the aLMSE metric are also
used in other works [136, 133]. Serra et al., in [133], suggested that the LMSE
metric benefits Retinex-like approaches but may prejudice other energy optimization
methods which do not classify image derivatives.

Gehler et al., in [60], claimed that the LMSE is not robust to outliers, and proposed
to use the average rank of the algorithm to evaluate the methods. This measure
consists in ranking the results of the different methods for each of the images in the
dataset, and then averaging the rankings of each method.

In a different direction, Chen and Koltun, in [38], defined the structural dissimilar-
ity index (DSSIM), which is a variant of the perceptually based structural similarity
index (SSIM) proposed in [156],

(2uipz + Co) (2012 + Cy)

SSIM(I3, Ir) = ,
o) = e G (0T + o3 + o)

(2.9)

where p; is the mean intensity of image I; and J? is its variance. The term oy
indicates the covariance between images I; and I;, and the scalar values C, and Cj
provide stability to the system. If these values were set to 0, the SSIM would produce
unstable results when either p? + p3 or o7 + o2 were very close to zero. The main
idea underlying this metric is that human beings are good at isolating features that
provide structural information of the scene. Given two images, the SSIM combines
different comparisons about their luminance, contrast and structure.

The Mean SSIM is defined as an averaged sum of SSIM applied to local windows
on the images,

MSSIM(I;, I,) = |W| > SSIM(IY, 1Y), (2.10)
weWw

and the DSSIM is defined to transform this similarity measure into a dissimilarity
measure, in the same line as for the MSE or the LMSE,

1 — MSSIM(14, I»)
5 .
However, it has already been questioned whether the SSIM is better at reproducing

human perception than the MSE. In fact, Dosselmann and Yang [43] demonstrated
that SSIM is closely related to the MSE.

DSSIM(I3, I) = (2.11)
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Another metric based on human perceptual judgement, the weighted human dis-
agreement rate (WHDR), was introduced recently in [28]. Bell et al. defined the
WHDR as

171 -
WHDR;(J, R) = T wi (Ji# us(R) (2.12)
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where R is the output reflectance and w; and J; are the confidence weights and given
judgements, respectively, obtained from human observations. Human judgements J;
can be equal to 1 when the darkest point has a lighter surface reflectance, equal to 2
when the darkest point has a darker surface reflectance, or equal to E when both points
have equal reflectance intensities. J; s is the judgement predicted by the algorithm
being evaluated. In order to transform algorithm reflectances into judgements, the
authors threshold differences between the points used in the human judgement in R:

1 Buis g4y

N Rii
TsR)={ 2 Moy (2.13)
E : otherwise

where R;; is the reflectance sampled at point j for judgement i.

The main drawback of this measure is that it only evaluates an image using a
sparse set of pairs of pixels for which human judgements exist. However, it is not
clear if this sparse set of pixels is representative of the performance of the algorithm
on the whole image. Moreover, the WHDR only evaluates relative information about
the reflectance of these pairs of pixels, but does not evaluate the global coherence of
the image. This means that we could always find a reflectance estimate where the
reflectance values are not coherent with the actual scene, but the selected reflectance
ratios coincide with those of the human judgements.

In order to evaluate and compare intrinsic components other than shading and
reflectance, other similarity measures have been used. For instance, Barron and Malik,
in [20, 19], evaluated the estimated shape output of their method with the mean
absolute error (MAE),

1 .
MAE(Il,I2) = margmlnaﬂh — (IQ + Oé)Hl, (214)

where a provides shift-invariance. The MAE metric is a global metric very similar
to the MSE metric. Therefore, the advantages and disadvantages of both essentially
coincide.

2.4.4 Discussion

The evaluation of intrinsic images has proved challenging so far. In the field of intrinsic
images, we need standard similarity measures which overcome the problems of the ex-
isting metrics. Moreover, large datasets containing complex scenes and ground truth
data for multiple intrinsic images are necessary. In this direction, a crowdsourced
dataset [28] has been proposed recently.



2.5. Conclusion and Perspectives 41

Additionally, in Chapter 5 we present two new datasets. One of them includes
ground truth information about the illuminant of the scene and the camera sensors.
These two factors influence the image values during the acquisition process, but have
usually been ignored in the field of intrinsic image decomposition. The other dataset
[24] uses synthetic data in order to build a dataset containing complex scenes under
multiple illumination conditions.

Table 2.4 summarizes how the existing methods in intrinsic image decomposition
have used the evaluation mechanisms described in this section. Finally, Table 2.5
summarizes different aspects of the existing datasets such as the nature of their data
or the type of ground truth information they provide.

2.5 Conclusion and Perspectives

Intrinsic image methods have originally focused on the decomposition of a single image
into its reflectance and shading components, putting emphasis on the assumptions
they make about regularities of the scenes and the image formation process in order
to constrain the problem. Recently, the improvement of optimization methods and the
development of technology have made intrinsic image decomposition evolve towards
the inclusion of extra input information and the joint estimation of other intrinsic
features of the scene. Therefore, in the last few years, the gap between the original
intrinsic image decomposition problem and other problems in computer vision which
also use intrinsic information such as color constancy [63], shape from shading [45],
highlight removal [13], etc. has been notably reduced.

The emergence of new methods that include extra input information and jointly
estimate diverse intrinsic components makes it necessary to build larger datasets in-
cluding ground truth data of many different intrinsic components of a scene. However,
as we have seen in Section 2.4, it is a tough problem given the actual complexity of
building datasets for intrinsic image evaluation consisting of natural scenes. Crowd-
sourced datasets could be an alternative for building huge datasets of natural images.
Actually, the only dataset of this kind [28] only checks a sparse set of pixels of the
computed reflectance images using human perception. It is still unclear if such a
dataset can be adjusted to accurately evaluate multiple intrinsic factors. In a differ-
ent direction, synthetic image datasets [35] provide realistic representations of the real
world and have been successfully used in other problems [116, 150]. In the computer
graphics software used to render synthetic images, ground truth information can be
easily isolated and modified, allowing the creation of multiple different images from
a single scene. Accordingly, synthetic datasets may play a key role in the future of
intrinsic image evaluation.

Another difficulty in the field of intrinsic images is the definition of an accurate
similarity measure. Although many different metrics exist in the literature of intrinsic
image decomposition, as we have seen in Section 2.4, all of them present multiple
disadvantages. The most used similarity measure so far has been the LMSE metric
[71], but it has also been hardly questioned [90, 60, 133]. Recent similarity measures
[38, 28] are based on human perception. However, one of these metrics has been also
questioned [43] for its inaccurate representation of human perception, and the other
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one uses a big amount of human observations, which makes it impractical. Finding a
standard similarity measure to evaluate intrinsic images is one of the most important
needs in this field.

The future of intrinsic image decomposition includes the joint estimation of multi-
ple intrinsic components (such as the shape, the color and direction of the illuminant
[21] or the response of the camera sensors [134]) and other useful information (like se-
mantic segmentation [154], optical flow [99] or scene structure from multi-view stereo
[102]). Although adding new terms to the basic formulation of the problem may seem
to add complexity to the problem, these terms are in fact highly dependent on each
other. These dependencies and the different assumptions we make on each intrinsic
component help us constrain the space of possible solutions. Furthermore, the use
of advanced inference techniques such as high-order markov random fields [154] and
deep learning methods [144] have proved to be useful in order to successfully estimate
multiple intrinsic components.
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Quantitative
‘Work Results Datasets | Metrics

Funt’92 [57]

Sinha’93 [141]

Bell'01 [27] 1)

Weiss’01 [157] (2)

Finalyson’04 [49]
Matsushita’04 [119]
Olmos’04 [122]
Tan'04 [143]
Tappen’05 [146]
Tappen’06 [145] v (3) (a)
Bousseau’09 [32] (10)

Jiang’10 [90] v (4,6) (b,c,d,e)
JShen’11 [136] v (6) (a,b,c)
LShen’11 [138] v (5)* (b)
Gehler’11 [60] v (5) (b,f)
Barron’12a [20] v (7) (a,b,h)
Barron’12b [19] v (7) (a,b,h)
Garces’12 [59] (6,10)

Lee'12 [105]

Serra’12 [133] v (5,6) (a,b,c,d)
Laffont’12 [102] v (10) (b)
Tang’12 [144] (2)

Zhao'12 [137, 161] (10)

Barron’13 [21] v (7,8) (a,b,h)

Chen’13 [38] v (8,9) (a,b,g)
Vineet’13 [154] (8)

Chang’14 [37] v (5,6) (a,b)

Jeon’14 [89] (8)

Ye'14 [159] 7 9) ®)

Kong’14 [99] v (b)

Bell'14 [28] v 611 | (bih)

Table 2.4: Classification of the methods based on the evaluation tools that the authors
have used. Databases: (1) Psychophysics [55].(2) Yale Face [61]. (3) Crayola [145].
(4) BOLD [90]. (5) MIT - 16 objects [71]. (6) MIT - 20 objects [71]. (7) extended
MIT [20]. (8) NYU Depth [139]. (9) MPI-Sintel [35]. (10) images from Flickr. (11)
Intrinsic Images in the Wild [28]. Metrics: (a) MSE (Eq. 2.4). (b) LMSE (Eq. 2.5).
(c) aLMSE (Eq. 2.6). (d) Corr (Eq. 2.7). (e) LCorr (Eq. 2.8). (f) Average Rank.
(g) DSSIM (Eq. 2.11). (h) MAE (Eq. 2.14). (i) WHDR (Eq. 2.12). * Only results
for 13 objects are provided.
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Acquisition Ground Truth
7 Dataset Data 4 Objects | Shad. & Refl. 4 Specularities 4 Depth 4 Illuminant 4 Sensors
Crayola [145] Laboratory 46 v
MIT [71] Laboratory 20 v v
extended MIT [20] | Synthetic 20 v v v v
MPI-Sintel [35] Synthetic 35% v v
Bell et al. [28] Natural 5000 v

Table 2.5: Comparison of the existing datasets for intrinsic image evaluation. * Sequences with different numbers of frames (50

on average).




Chapter 3

Shades and Names of Color for
Intrinsic Image Estimation

In this chapter we propose a method for intrinsic image estimation that aims to
overcome the shortcomings of pure edge-based methods by introducing strong surface
descriptors such as a color-name descriptor, which introduces high-level considerations
resembling top-down intervention. We also use a second surface descriptor, termed
color-shade, which allows us to include physical considerations derived from a model
of image formation that captures gradual color surface variations. Both color cues are
combined by means of a Markov Random Field. Figure 3.1 shows how our method
performs with a natural image which has been previously used in other works [32, 138].

Reflectance

Original image Shading

Figure 3.1: Shading and reflectance images recovered with our method.

We focus on the decomposition of an image into its reflectance and shading com-
ponents. As we have previously seen in Chapter 1, recovering these two characteristics
from a single image I amounts to estimate a reflectance image, Ir.s;, and a shading

45
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image, Isnhad, such that

I(x,y) = Ishad(®,y) - Irefi(2,Y). (3.1)

As it has already explained in the previous chapters, this problem is clearly ill-posed
because the number of unknowns is higher than the number of equations.

This chapter is organized as follows. The motivation underlying the proposed
method of intrinsic image decomposition is introduced in Section 3.1. Section 3.2
describes the color cues used to recover reflectance and shading images as explained
in Sections 3.3 and 3.4. Finally, concluding remarks are given in Section 3.6.

3.1 Motivation

From the analysis, in Chapter 2, of previous approaches on intrinsic image decompo-
sition we draw the following conclusions:

e The exclusive use of edges to recover surface reflectance is not sufficient since a
small missclassified edge could provoke an error over a wide area. Therefore, we
argue that surface attributes such as color and texture could be essential cues
to improve edge-based proposals.

e Results from methods that include user interaction suggest that top-down in-
tervention yields a clear advantage for dealing with the ill-posed nature of re-
flectance recovery. Hence, we argue for the need of high-level attributes to
describe image content.

e Moreover, few efforts have been made to exploit the information derived from
the assumption that image formation obeys a specific physical model. Intrinsic
image algorithms could benefit from these models since they account for changes
in image appearance due to the geometry and illumination of the scene.

In view of these considerations, we propose the introduction of color surface at-
tributes based on color names instead of an edge-based analysis. These attributes
provide high-level information resembling top-down intervention in the reflectance re-
covery. Afterwards, we add a second descriptor, termed color-shade, that allows us
to take into account physical considerations on color surface variations due to the ge-
ometry and lighting of a scene. This descriptor, which assumes Shafer’s dichromatic
reflection model for image formation [135], is introduced to address the lack of stabil-
ity of the color-name descriptor in the presence of strong variations in the geometry or
illumination of a scene. Color-name and color-shade descriptions are finally combined
by means of a Markov Random Field.

3.2 Our approach

In this section we first introduce the color-name and color-shade descriptors. We then
outline the conditional inference approach that we adopt to combine these color cues.
This conditional inference will be further detailed in Section 3.3.
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3.2.1 Color-name descriptor

Color-name descriptors associate the linguistic terms humans use for describing ob-
jects to colors in an image. Basic color names were first defined by Berlin and Kay
[31]. They were deduced from a large anthropological study based on speakers of 20
different languages and specific documentation from 78 other languages. The authors
concluded that the universal basic color terms defined in most evolved cultures® are
11. Subsequent psychophysical experiments have generated data that allow these
basic names to be accurately specified [29] and computationally implemented [30].
Accordingly, color-naming models provide perceptually-based quantizations of the
RGB color space, which present a higher discrimination power with respect to usual
chromaticities, as proven for classification tasks [70].

We use the color-naming model proposed by Benavente et al. [30], where a color
name category is modeled as a fuzzy set with a membership function that, given a
color sample, assigns a value between 0 and 1 to represent the color-name membership.
The model uses the set of names proposed by Berlin and Kay [31], namely N = {
black, white, red, green, yellow, blue, brown, purple, orange, pink, grey}. Since the
model forces the sum of all memberships to be 1 for any pixel, the membership
values can be considered as probabilities. The color-name descriptor of a pixel pj,
denoted ND(p;), is a 11-dimensional real-valued vector whose components are the
probabilities of labeling the given pixel with each one of the color names in N'. More
explicitly,

ND(p;); = Prob(Nj|p;),Vj =1,..., 11, (3.2)

where N is the j-th color name in the set of basic color names V. Figure 3.2(a) shows
the volumes of the RGB space where each of the 11 color names have probability 1.

The color-name descriptor has two interesting properties. First, it is relatively
invariant to small photometric changes since wide areas of a single reflectance surface
assume the same label and small changes in shading only cause gradual changes in the
descriptor. Next, it provides a sparse representation of color since very few coordinates
of the 11-dimensional vectors are non-zero at the same time (usually up to three).
Since this descriptor yields the labels of a conditional inference labeling problem
(see Section 3.3), we only allow three coordinates to be non-zero and we further
discretize the probability vector by quantizing the coordinates to {0,0.25,0.5,0.75,1}
while keeping the constraint that they sum to 1. This means that a color can be
described with a maximum of three names (for instance, greyish blue-green), which
is a perceptually consistent constraint since in the model very few colors are in the
boundary of four color names [30]. With such restrictions a total of 671 labels are
theoretically possible (see Appendix A). However, the majority of these labels are
never found in practice because in the color space no color border is shared by more
than 3 or 4 colors. Therefore, many labels defining unfeasible combinations of colors,
such as bluish yellow-purple for example, are never used. In the end, only 250 different
labels are actually used. Thus, just considering labels with up to three positive
coordinates is enough to accurately describe the whole RGB space. In the next
sections we prove that this set of labels is a reliable sparse representation of color to

*The authors state that “there appears to be a positive correlation between general cultural
complexity (and/or level of technological development) and complexity of color vocabulary.”
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recover reflectance. In Figure 3.2(b) we show an example of the color-name labels
assigned to an image.

Figure 3.2: Color-name descriptor. (a) Plotted volumes represent those values in the
RGB color space with probability equal to 1 of being one of the 11 universal colors
according to [30]. The space between the volumes corresponds to vectors for which at
least two coordinates are positive. (b) Image labeled with the color-name descriptor.

3.2.2 Color-shade descriptor

The color-shade descriptor is based on the method of Vazquez et al. [151], where
the authors propose to describe scene reflectances using a ridge analysis of the color
distributions (RAD). Vazquez et al. define a ridge as a set of points connecting the
local maxima of a color distribution in the RGB histogram space. In Figure 3.3(b),
we show a 3D representation of the color distribution of the image in 3.3(a). The
corresponding ridges (connected maxima) detected by the RAD method on the 4D
color histogram distribution are shown in Figure 3.3(c), where we can see four ridges
corresponding to the blue, red, orange and white parts of the image. By looking
at the ridges, we can see how smooth variations of shade are represented for each
color. For example, the white ridge spans colors from the lightest white to the darker
gray present in the shadowed part of the object. In the ideal case, the RAD method
provides a single ridge for each reflectance surface of the image.

The physical model underlying the RAD method is the dichromatic reflection
model described by Shafer in [135]. In this model, all the color variations of a surface,
including shading effects and highlights, span a 2D plane in the RGB space which is
defined by two vectors: one in the direction of the surface’s albedo, and the other
in the direction of the illuminant. Hence, the dichromatic model, and, therefore, the
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RAD method, provide a compact representation of all the variation that a single-color
surface can present due to illumination changes and the geometry of the scene.

Given an image, the RAD method returns a set of ridges R = {Ry, ..., R,,}. From
this set of ridges, we define the color-shade descriptor of an image pixel p; as

SD(pi) = argming g (dist(pi, R;)), (3.3)

where dist(p;, R;) represents the Euclidean distance between the RGB value p; and
the nearest point of the ridge R;.

Thus, ridges provide useful information for enhancing the color-name representa-
tion and allow us to deal with the variations of color names in the presence of strong
illumination effects, i.e. shading and highlights. For example, two pixels belonging to
the same reflectance object but with very different RGB values, e.g. one in a shadowed
part of the object, the other in a brighter part, are connected by their nearest ridge.
Following this approach, one can consistently name pixels within a single reflectance
area allowing for shading changes.

Figure 3.3: Color-shade descriptor. An image from the MIT dataset (a), its color
distribution (b), and the ridges detected by the RAD method (c).

3.2.3 Method outline

Our algorithm is based on the assumption that the reflectance of a single material can
be described by a unique color name provided by the descriptor introduced in Section
3.2.1. Spatial coherence for this descriptor is then achieved by propagating evidence
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through a MRF. The color-name descriptor provides an accurate color edge local-
ization, where relevant color edges are perfectly located by changes in color names,
as well as a meaningful surface interpretation based on standard prior knowledge
compiled from psychophysical data.

However, when strong shading variations occur, irrelevant edges can appear within
a surface with uniform reflectance, causing an undesirable over-segmentation. To deal
with this problem, we break the homogeneity of our MRF in order to incorporate the
physical information that the color-shade descriptor provides. This step stems from
the assumption that changes in shading within an area of uniform reflectance yield to
connected distributions of points in the RGB histogram and prevents efficiently the
excessive segmentation of color names in shaded and near highlight areas.

In a final stage, once information from names and shades has been propagated,
we modify the reflectance description provided by the MRF to match the intensities
of the recovered reflectance to those of the original image. A scheme of the method
is given in Figure 3.4.

Name Descriptor y,
(ND) X
MRF ——| Gilobal Reflectance Shading
Image : Coherence |~ Estimate  ~ Estimate
Shade Descriptor

(SD) /R,...R)}

Figure 3.4: Block diagram of our method for intrinsic image estimation.

3.3 Reflectance recovery using MRF inference

In this section we present how our method uses MRF inference to estimate an intrinsic
reflectance image combining the two color cues presented in the previous section.

Let G = (V, &) be the graph that represents the input color image, where the set
of vertices V correspond to random variables z; associated to the set of pixels of the
image (one node for each pixel), and £ is the set of undirected edges representing
relationships between pairs of adjacent pixels (using a 4-neighborhood system). The
set of maximal cliques Cl is formed by the edges of the graph {z;,z;}, where i and j
are adjacent pixels, and the cliques of the form {z;,y;}, for each pixel i € V, where
y; stands for the observation at pixel i.

Both random variables x; and observations y; are reflectance values as expressed
by the color-name descriptor outlined in the previous section. Accordingly, the set of
labels L is a set of 11-dimensional vectors.

The energy function of our MRF is

BE(x)=pY D(@iy)+(1—p) Y, Vi), (3.4)
i€V {i,j}€€

where D(x;,y;) is the singleton potential defined on each pixel, x;, and V' (z;,z;) is
the pairwise potential defined on a pair of neighboring pixels. The contribution of
both terms in the global energy is weighted using a parameter p € [0, 1].
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The a-expansion graph cut algorithm [14] presented in [33] is used to find the
labeling X that minimizes the energy term expressed by Equation 3.4.

3.3.1 Singleton potential: color name

The singleton potential D(x;,y;) measures to which extent the labeling x fits the
observed data {y;}icy. In practice, this potential can be interpreted as the cost of
assigning z; a label different from the label of observation ;.

For computing the singleton potential, we chose the L; distance in the Euclidean
space of 11-dimensional probability vectors:

D(in,yi) = ||$z — yiHl,Vi e V. (35)

We also tried to use other distances, but they did not lead to significant improvements.

3.3.2 Pairwise potential: color shade

In classic MRFs, the pairwise potentials V(x;,x;) measure the smoothness of the
labeling x and can be interpreted as the cost of assigning different labels to neighboring
pixels. Our fist idea is to define these potentials using the Euclidean distance,

V(xi,xj) = sz — $J||1,V(Z,]) cé. (36)

However, in the pairwise potential of our MRF, we also include information from
the color-shade descriptor by weighting the value of the distance between each pair
of neighboring pixels. The main idea underlying this formulation is that pairs of
pixels belonging to the same ridge should belong to the same surface and therefore
should share similar labels: the cost of holding different names should be higher for
neighboring pairs of pixels whose observed RGB values belong to the same ridge.
Following this idea, we define the pairwise potential as

Vi(xi, ) = wijllz: — x4, (3.7)

where (x;, z;) are the labels of a pair of neighboring pixels and w;; weights the classical
smoothness term according to the relative position of the RGB values p; and pj of
pixels i, j and the ridges of the color-shade descriptor as explained below.

Let 7(pi) be the orthogonal projection of the pixel value p; on its associated ridge
SD(p;) and let 0;; be the angle formed by the lines (pip;) and (7(p;)7(p;)). Given
a pair of pixel values (p;, pj) and the set of ridges of the image, we distinguish three
cases of relative position between these pixels (Figure 3.5 illustrates these cases).

Case A: w;; = o if the two pixels lie on two different ridges, i.e. SD(p;) # SD(p;j);

Case B: w;; = {3 if the two pixels lie on the same ridges, i.e. SD(p;) = SD(pj), but
the direction they determine is not parallel to the ridge, i.e. 0;; > thr, where
thr is a parameter fixed once for all;

Case C: w;; =~ if the two pixels lie on the same ridges, i.e. SD(p;) = SD(p;), and
the direction they determine is parallel to the ridge, i.e. 0;; < thr.
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Figure 3.5: Schema of the three different scenarios we considered in the description
of the pairwise potential.

This weight assignation is summarized below,

o :SD(p:) # SD(py).
8 :SD(ps) = SD(py).

The choice of the parameters «, 5, and v must be consistent with the idea that
the cost of holding different names should be higher for pairs of pixels whose observed
RGB values belong to the same ridge. In particular, this cost should dramatically
increase if, in addition, they form a segment whose direction is collinear to the ridge’s
direction because this corresponds to the paradigmatic case of two pixels belonging to
the same reflectance object but with different shadings. Accordingly, («, 3, ) should
verify the inequalities < f < v and a < . In Figure 3.6 we illustrate how the
different cases affect the MRF in the model.

3.3.3 MRF output

The output of the MRF consists of an array of probability vectors. However, what
we expect to recover are reflectance values (i.e. RGB triplets). Accordingly, we need
a way to set a link between RGB and probability values.

Since we first discretize the probability vectors, many RGB values are mapped to
a single vector by the color-name descriptor. This provides a partition [, .. S, of
the RGB cube, where S, is the convex set of RGB values associated to label v. The
inverse mapping is defined by associating each probability vector (i.e. label v € L)
with the center of mass of the convex region it defines in the RGB space.

3.4 Adding global scene coherence

Up to this point we have used local and semi-local color information to recover re-
flectance estimates. Our MRF outputs a representative RGB value for each area of
uniform reflectance. However, the output image lacks global consistency. In particu-
lar, the intensity of one region in our estimated reflectance image may not be coherent
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Figure 3.6: Schema of our Markov random field. (a) Each pixel x; has two obser-
vations, one from the color-name descriptor (N D) and another from the color-shade
descriptor (SD). The continuity between two pixels is enforced in the pair-wise po-
tential. The width of the lines represents the weight we assign to each of the edges in
order to penalize label discontinuities. These weights are locally modified according
to the different cases defined by the color-shade observations: (b) the pixels belong to
different ridges (Case A). We assign a small weight to this edge, since no continuity
is expected between these two pixels in the reflectance image. (¢) The pixels belong
to the same ridge but the line they form is not parallel to the ridge (Case B). We
assign a medium weight to this edge. We want to penalize different neighboring labels
moderately as a consequence of the unclear conclusion we draw from the color-shade
descriptor, allowing certain flexibility for label changes in this scenario. (d) The pixels
belong to the same ridge and the line they form is parallel to the ridge (Case C). We
assign a big weight to this edge, since we do not want these pixels to have different
labels in the reflectance estimate. Notice that the weights always verify a < g <~y
and o < 7.
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with the intensity of its neighbouring regions, causing unwanted intensity edges in the
resulting shading image. We address this global coherence problem by modifying the
intensity of the the RGB descriptors of each uniform reflectance area according to
the intensity of the original image. To solve this inference problem we use a belief
propagation algorithm.

Let I = U,y Ui be the partition of an image into its areas of uniform reflectance

provided by the MRF. Let L; and Ll-o "9 be the intensities of the RGB triplet of the
area U; and of the same area in the original image, respectively. Ideally, to reflect the
real shading, the ratio of intensities should verify, for each pair of areas in contact U;
and Uj,

L, L’
—r T
= o (3.8)

J

However, the connectivity between uniform reflectance areas is complex and usually
there is no transformation able to make all the intensity ratios similar to those of the
original image in general. In practice, we minimize the differences using the mean
squared error (MSE). In this minimization problem, we want regions sharing a long
boundary to have a higher weight. The length of the boundary between two regions
(denoted I;; for regions i and j) is defined to be the amount of pixels in both regions
which have a neighboring pixel (assuming 4-neighborhood) belonging to the other
region.

Thus, our purpose is to find a set of scalars {\;|i € &} which modify our estimated
reflectance intensities in order to enhance the global coherence of our recovered shad-
ing scene (explicitly, L; is substituted by X\;L;). Mathematically, we can define a
function W depending on such scalars as

ori ori
W(Abie) = Y LglNEL]™ = X\ LL™) s (3.9)
(i,7)EU?i<j

and find the set of values that minimize it:

) = arg{'{r;iir}lW({/\i})- (3.10)

This can be done by applying the MSE and imposing a lower bound to the solution
(otherwise we could obtain the trivial solution A\; = 0,Vi € U). Figure 3.7 shows
an example of how global coherence strongly improves the accuracy of the method,
resulting in better intrinsic estimates.

3.5 Experiments

In this section we evaluate the performance of our approach. First, we recall the error
metrics for intrinsic image evaluation that have been proposed in previous works.
Afterwards, we test our method on the MIT dataset [71], which has become the
standard set to test intrinsic image algorithms. We quantitatively and qualitatively
compare our results to the ones obtained by several previous approaches.
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Figure 3.7: (a) Original Image. Different reflectance and shading estimates are shown:
(b) Only local information of the color-name descriptor is used. (c¢) Output of the
MRF where semi-local information of the ridge observations has been combined with
local information of the color-name descriptor. (d) Adding global scene coherence to
the output of the MRF.

As we have seen in Chapter 2, several error metrics have been proposed in previous
works to evaluate intrinsic image algorithms. One of the most used metrics in previous
works is the local MSE (LMSE), which was proposed by Grosse et al. [71] as an
appropriate measure for edge-based methods. The authors claimed that, for such
methods, the MSE is too restrictive because images with just a small misclassified edge
can have a large MSE. However, Jiang et al. [90] argued that the LMSE sometimes
has a low value in images that are not qualitatively good. To overcome this problem
they defined a new metric based on the LMSE, the absolute LMSE (aLMSE), and also
proposed to evaluate intrinsic images using the correlation measure, which computes
the similarity, i.e. statistical dependency, between two images independently of their
mean values.

Whereas correlation and the MSE are global error measures, the others are vari-
ations of the global measures and are computed as an average of local error on small
image windows. In this work we have observed that the LMSE is biased towards
edge-based methods. Hence, in the next section, although we evaluate our method
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with four error metrics, we will focus our analysis on the results for global measures,
such as the MSE and correlation.

We have estimated the intrinsic images of the MIT-20 dataset, composed of 20
images whose reflectance and shading ground truth are available. For each image, the
error has been obtained by averaging the results on the reflectance and shading esti-
mates. We compared our results to state-of-the-art approaches’. Previous methods
have been evaluated either on the original MIT-16 dataset, composed of 16 scenes, or
on the extended MIT-20 dataset, which inludes 4 extra scenes. In each case, we com-
pare our results with those from the methods whose results, or the code to generate
them, are available.

The results on the MIT-16 dataset have been compared to grey and color Retinex
algorithms (obtained from [71]), the methods by Tappen et al. (Tap-05 [146] and
Tap-06 [145]), the methods by Shen and Yao [138] (Shen-SR and Shen-SRC), and
Weiss’ algorithm [157]. For the comparison on the MIT-20 dataset we test grey and
color Retinex algorithms, the methods by Jiang et al. [90] (Jiang-A, Jiang-H and
Jiang-HA), and Weiss’ algorithm. The error metrics used to evaluate the results are
the global measures MSE and correlation, and the local measures LMSE and aLMSE.

In our method, we set u = 1/3 to weigh the two components of the energy function
of our MRF and the dependence relations among parameters «, (3, and v defined in
Section 3.3.2 as follows: «v/a = 100 and /8 = 2. To initialize the network, we apply
a logarithm to the input image before obtaining its color-shade descriptor.

Tables 3.1 and 3.2 show the results obtained by the evaluated methods on the
MIT-16 and MIT-20 datasets, respectively. As can be seen in the tables, our method
obtains the best results on the global measures (i.e. correlation and the MSE) on
both the MIT-16 and the MIT-20 datasets when compared to single-image methods.
In both cases, we overcame the results of the other methods, obtaining even better
results than Weiss’ algorithm, which uses image sequences and, therefore, has more
information than single-image based methods. Notice that for the three error metrics,
the lower is the better, while for the correlation the opposite holds. Observe that
grayscale reflectances (computed as the mean of the RGB channels of the reflectance
images) have been used in our evaluation in order to provide results which can be
compared with the other published results.

As expected, local measures (the LMSE and the aLMSE) penalize our results and
the performance of our methods considerably decreases when evaluated with these
measures. However, as stated above, we consider that the evaluation of intrinsic
image algorithms in terms of correlation or the MSE is more accurate since these
measures are more meaningful in terms of similarity to the ground truth.

In Table 3.3, we present some qualitative results of our method on three objects
of the MIT dataset. For comparative purposes, the objects shown are the ones used
in [71]. These objects belong to each of the three subgroups of objects that the
dataset contains, namely painted objects, printed papers, and animals. We compare
our results to the ones from Color Retinex and Weiss algorithm, which are the best
methods in the evaluation done in [71], and the results of the SRC method of Shen
and Yao [138], which was the state-of-the-art*.

fat the time of publication of [133] (2012)
fat the time of publication of [133] (2012)
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Global measures Local measures
’ Method Corr. \ MSE LMSE \ aLMSE
Grey Retinex [71] | 0.6494 | 0.1205 0.0329 | 0.3373
Tappen05 [146] — — 0.0570 —
Tappen06 [145] — — 0.0390 —

Col. Retinex [71] | 0.7146 | 0.1108 0.0286 | 0.2541
Shen-SR [138] 0.7259 | 0.1223 0.0242 | 0.2454
Shen-SRC [138] 0.7733 | 0.0906 || 0.0149 | 0.2147

Ours [133] 0.7862 | 0.0834 || 0.0340 | 0.2958
Weiss [157] 0.7709 | 0.0900 0.0210 | 0.1953

Table 3.1: Results on the MIT-16 dataset (16 objects) with different error metrics.
Shen-SRC results are computed on a subset of 13 objects ("deer’, ’squirrel” and ’di-
nosaur’ results were not available).

Global measures Local measures
y Method Corr. | MSE [ LMSE | aLMSE
Grey Retinex [71] | 0.6292 | 0.1169 0.0296 | 0.3789
Col. Retinex [71] | 0.7171 | 0.1072 || 0.0257 | 0.2895
Jiang-A [90] 0.6262 — 0.0388 | 0.4036
Jiang-H [90] 0.6179 — 0.0409 | 0.3655
Jiang-HA [90] 0.6631 — 0.0460 | 0.3655
Ours [133] 0.7556 | 0.0836 || 0.0305 | 0.3457
Weiss [157] 0.7619 | 0.0890 || 0.0191 | 0.2230

Table 3.2: Results on the MIT-20 dataset (20 objects) with different error metrics.

As can be seen in the table, our method is the only one that completely avoids
the cast shadow on the reflectance image of the raccoon. Although the final colors
of surfaces in the reflectance are not well recovered in the turtle’s reflectance image,
our method forces a single reflectance value within the areas where the material color
is uniform and all the shading effects due to the textured surface of the shell are
correctly included in the shading image. Such a result is a consequence of the color-
shade descriptor, which enhances the stability of color names through illuminations
variations. Finally, on the tea bag most of the errors are found on the shading
estimate, which includes some reflectance information. However, the reflectance image
is quite well recovered.

For the sake of completion we include our results for all the images in the MIT-16
and MIT-20 datasets. Quantitative results for different metrics can be seen in Tables
3.4 and 3.5, while qualitative results are presented in Tables 3.6, 3.7, 3.8 and 3.9.

We also provide the individual error values for each image on the MIT dataset with
the four measures we have introduced in this section. For each image, we provide its
error on the shading and the reflectance images, as well as the global averaged error.
Boldface values in the tables correspond to the mean error values presented in Tables
3.1 and 3.2.



58 SHADES AND NAMES OF COLOR FOR INTRINSIC IMAGE ESTIMATION

IMAGE ‘ ‘ I I
W WE 2y G
T
GT
LRV L
COLOR '
RETINEX 0.7533 0.7873 0.3325
.. W UE oo
SRC 0.8625 0.8454 0.4558
OURS . | I g I I ! i I
0.9687 0.8835 0.7020
WEISS ! ! ‘a I i I ! I I
0.5701 0.9697 0.7453

Table 3.3: Shading and reflectance images recovered by previous algorithms and our
approach from images of the MIT database. Values below each decomposition are the
corresponding correlation measures.
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MSE Correlation
’ Image Shading Reflectance  Global || Shading Reflectance Global
box 0,1749 0,2534 0,2142 0,8188 0,5567 0,6878
cupl 0,0044 0,0321 0,0183 0,9934 0,8675 0,9305
cup2 0,0683 0,1001 0,0842 0,8644 0,6934 0,7789
deer 0,0983 0,1099 0,1041 0,7313 0,8271 0,7792
dinosaur 0,0823 0,0411 0,0617 0,8145 0,9512 0,8829
frogl 0,1781 0,2051 0,1916 0,7094 0,7005 0,7050
frog2 0,1326 0,1480 0,1403 0,7217 0,2263 0,4740
panther 0,0055 0,0130 0,0092 0,9860 0,8267 0,9064
paperl 0,0028 0,0034 0,0031 0,9922 0,8868 0,9395
paper2 0,0064 0,1122 0,0593 0,9848 0,2639 0,6243
raccoon 0,0047 0,0043 0,0045 0,9931 0,9443 0,9687
squirrel 0,1674 0,1876 0,1775 0,6346 0,8061 0,7204
sun 0,0250 0,0148 0,0199 0,9153 0,9594 0,9374
teabagl 0,0864 0,0745 0,0804 0,4646 0,8574 0,6610
teabag?2 0,0440 0,0491 0,0465 0,8222 0,9448 0,8835
turtle 0,1966 0,0412 0,1189 0,7238 0,6802 0,7020
apple 0,1587 0,1600 0,1593 0,8469 0,6785 0,7627
pear 0,0865 0,1158 0,1011 0,8213 0,0315 0,4264
phone 0,0575 0,0195 0,0385 0,8566 0,9742 0,9154
potato 0,0409 0,0379 0,0394 0,8781 -0,0204 0,4288
Mean 16 obj. | 0,0799 0,0869 0,0834 || 0,8231 0,7495 0,7863
Mean 20 obj. | 0,0811 0,0862 0,0836 0,8287 0,6828 0,7557

Table 3.4: MSE and correlation results on the MIT-16 and MIT-20 datasets.

Finally, Figure 3.1 shows how our method works with a natural image which has
been previously used by other authors [32, 138].

3.6 Discussion and conclusion

In this chapter we have described a method for intrinsic image estimation based on
two color cues. The first cue is based on the semantic description that human beings
use to describe color values. A MRF has been used to combine this sparse description
of color with a color-shade attribute based on an analysis of the color distribution
of the image in the histogram space. This attribute enhances the stability of color
names against strong changes in the illumination due to shadows and highlights. We
have shown that a color-name descriptor based on psychophysical data provides a
good basis for describing object reflectance.

Our results show how using color information in the problem of intrinsic image
decomposition results in better estimates of the intrinsic reflectances of images. In
agreement with other methods, we have assumed that the scenes are illuminated with
a single “white light”, and the effects of the camera sensors used to acquire the input
images have been ignored. In Chapter 4 we will discuss the influence of these effects
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LMSE aLMSE
’ Image Shading Reflectance  Global || Shading Reflectance Global
box 0,0314 0,0714 0,0514 0,3764 0,1693 0,2728
cupl 0,0019 0,0159 0,0089 0,1179 0,4285 0,2732
cup2 0,0492 0,0326 0,0409 0,4420 0,5026 0,4723
deer 0,0559 0,0467 0,0513 0,5306 0,3658 0,4482
dinosaur 0,0402 0,0201 0,0302 0,3055 0,1165 0,2110
frogl 0,0439 0,0815 0,0627 0,2854 0,5330 0,4092
frog2 0,0479 0,0390 0,0434 0,2364 0,5910 0,4137
panther 0,0029 0,0035 0,0032 0,0509 0,0829 0,0669
paperl 0,0021 0,0022 0,0021 0,0721 0,1238 0,0980
paper2 0,0038 0,0203 0,0121 0,1584 0,1609 0,1597
raccoon 0,0035 0,0035 0,0035 0,0383 0,1170 0,0776
squirrel 0,0804 0,0848 0,0826 0,6089 0,4593 0,5341
sun 0,0088 0,0035 0,0062 0,1539 0,0575 0,1057
teabagl 0,0650 0,0523 0,0587 0,6490 0,2138 0,4314
teabag2 0,0329 0,0355 0,0342 0,3013 0,1772 0,2393
turtle 0,0773 0,0278 0,0525 0,2084 0,8307 0,5196
apple 0,0202 0,0199 0,0200 0,3582 0,9178 0,6380
pear 0,0144 0,0171 0,0157 0,5782 0,7957 0,6869
phone 0,0096 0,0080 0,0088 0,1560 0,0714 0,1137
potato 0,0239 0,0202 0,0221 0,4882 0,9979 0,7430
Mean 16 obj. | 0,0342 0,0338 0,0340 || 0,2835 0,3081 0,2958
Mean 20 obj. | 0,0308 0,0303 0,0305 || 0,3058 0,3856 0,3457

Table 3.5: LMSE and aLMSE results on the MIT-16 and MIT-20 datasets.

in the problem of intrinsic image decomposition, how they affect existing methods
and how they can be included in the formulation of the problem.
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Table 3.6: Qualitative results for the “animal” images in the MIT dataset.
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Table 3.7: Qualitative results for the “printed paper” images in the MIT dataset.
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Table 3.8: Qualitative results for the “painted object” images in the MIT dataset.
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Table 3.9: Qualitative results for the 4 extra images in the MIT-20 dataset.
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Chapter 4

A General Framework Based on the
Photometry of Intrinsic Images

In this chapter we examine the inaccuracy of existing intrinsic image formulations to
properly account for the effects of illuminant color and sensor characteristics in the
estimation of intrinsic images and present a generic framework which incorporates
insights from color constancy research to the intrinsic image decomposition prob-
lem. The proposed mathematical formulation includes information about the color
of the illuminant and the effects of the camera sensors, both of which contribute
to the observed reflectance of the objects in a scene during the acquisition process.
By modeling these effects, we get a “truly intrinsic” reflectance image (we call it
absolute reflectance), which is invariant to changes of illuminant or camera sensors.
This framework allows us to represent a wide range of intrinsic image decompositions
depending on the specific assumptions on the geometric properties of the scene con-
figuration and the spectral properties of the light source and the acquisition system,
thus unifying previous formulations in a single general framework.

4.1 Motivation

Intrinsic image decomposition methods initially focused on providing reflectance and
shading image estimates of a scene [27, 157, 57]. Moreover, other subfields in computer
vision estimate different intrinsic characteristics. For example, shape from shading
methods [45] estimate the shape (i.e. orientation, depth...) of the objects given a
shading image, color constancy methods [79, 63] estimate the illuminant of the scene,
and highlight removal techniques [13] estimate image specularities.

As we have mentioned in Chapter 1, intrinsic characterization of scenes is funda-
mental in multiple computer vision applications. The complex ways in which light
interacts with shapes and materials continue to confound solutions in areas that range
from 3D shape reconstruction to object recognition and to material identification. In
this chapter we argue that in order to increase accuracy in such applications multiple
intrinsic properties have to be studied in conjunction so that the appropriate intrinsic
image for each property can be estimated.

65
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We have already seen in chapter 2 that early methods of intrinsic image estimation
either worked with grayscale images [104, 27, 157] or assumed scenes with Lambertian
surfaces (i.e. surfaces reflecting the same amount of light in all directions) and a
single white light source [146, 57], thus simplifying the decomposition into intrinsic
components to the product of its intrinsic images of shading and reflectance. This
simplified formulation has been commonly used ever since (e.g. [90, 161, 136, 138, 60,
133, 37]). In [25], Beigpour and van de Weijer relaxed the Lambertian assumption and
added a specularity term to the formulation. Specularity detection is a hard problem
in itself and several specularity removal techniques can be found in the literature
(see [13] for a survey). Lately, in [19, 22], Barron and Malik relaxed the white light
assumption while keeping the Lambertian surfaces and single light source constraints.
In their work, the shading image was modeled as a function of the shape of the objects
in the scene, which can be described in many ways (depth maps, normal maps, etc.),
and the color and geometry of the light source of the scene.

All these formulations are consistent with the physically based dichromatic re-
flection model [135], which describes how light is reflected in a scene under some
simplifying assumptions. However, the color value at each image pixel cannot be de-
termined using only the reflection model. During the image acquisition process, three
factors influence the color value that we finally measure at each pixel: the reflectance
of the objects in a scene, the illuminant of the scene, and the spectral response of
the camera sensors. While reflectance is an intrinsic property of objects, the illumi-
nant and the camera sensors modify the way we see this reflectance in the images.
That is why we must study and describe separately these three factors by isolating
the effects of both illuminant and camera sensors. So far, however, existing methods
on intrinsic image decomposition provide reflectance intrinsic images which contain
mixed information about the color of the illuminant (which is assumed white in many
approaches), object reflectance values and camera sensor effects. To the best of our
knowledge camera sensors have not been studied before in the area of intrinsic image
decomposition.

We draw insights from the rich literature in color constancy (hitherto somewhat
disconnected from intrinsic image research), which also aims to a stable representation
of object color across different images. From the start, the aim of color constancy [53]
has been to estimate the color of a scene under a canonical light source, which is similar
to the problem of reflectance estimation. Multiple works [103, 51, 52, 149, 79, 63] have
provided different methods to estimate the scene illuminant from a single image, which
in turn allows to remove its effects and obtain a canonical color image. Research in
color constancy has also devoted some attention to the effects of the imaging sensors
for the final recovery of the canonical illuminants [152]. The narrow band property of
the spectral sensitivity of the sensors simplifies the characterization of changes in the
illuminant [48]. Therefore, the subsequent estimation of the color of the illuminant
is also simplified. In this work we build upon the connection between the fields of
color constancy and intrinsic image decomposition by extending the intrinsic model
to include the effects of the color of the light source and the biases introduced by the
sensors. Both factors have direct effects on the computation of the reflectance.

Moreover, camera sensors also affect the image values in the acquisition process.
Usually cameras have three sensors (i.e. RGB sensors) which filter incoming light
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at different wavelengths and transform it into electrical signals by means of a set
of predefined sensitivity functions. Each camera model has different sensors with
different sensitivity functions. Therefore, the pixel values we observe in the images
are also dependent on the camera sensors. Usually, the sensitivity functions are not
specified. However, some camera calibration models estimate the sensitivity functions
of the camera [16, 124, 153, 93, 41], allowing the removal of sensor effects from images.

In the formulation we propose, it is possible to study the effects of the camera
sensors and the color of the illuminant and isolate them from the reflectance image.
As a result, we obtain a new reflectance image which is invariant to changes of the
camera sensors and the color of the illuminant. This reflectance image, which we
call absolute reflectance, is a truly intrinsic image. The invariance of our absolute
reflectance image provides many practical advantages in different scenarios. Our
method is practically applicable because such sensor information is publicly available
for many sensors and the color of the light can be estimated with any state of the art
color constancy method. As we demonstrate in Section 4.4.1, even partial knowledge
of sensor characteristics leads to significant improvement in the estimated intrinsic
images.

4.2 Reflectance and color fundamentals

In this section we introduce some theoretical aspects about the image acquisition
process. We observe the role of the color of the illuminant and the camera sensors in
the acquisition process and also analyze how these effects have been modeled in the
field of computer vision.

4.2.1 Color image formation: physics

When the light source can be assimilated to a point source, the spectral radiance
outgoing from an infinitesimal patch at location x on an object obj along the direction
v, can be physically expressed as

Lobj($70r7>\):/9 fr(@, vp, 05, N) Li (X) cos(6;) dw; . (4.1)

In this expression [86], L;()) is the incident radiance (i.e. irradiance), cos(;) captures
the geometry of the scene by expressing the reduction in the amount of light impinging
the surface at x due to the angle ; between the surface normal (i.e. normal to the
patch) and the incident direction v;, and f,.(z,v,,v;, A) is the bidirectional reflectance
distribution function (brdf) of the object that specifies how much of the incident light
coming from direction v; is reflected into the viewing direction v, per unit wavelength
A at z. Finally, Q. denotes the hemisphere given by the normal to the patch. Figure
4.1 illustrates the variables used in Equation 4.1. The brdf captures how light and
material interact to shape the appearance of an object. In particular, the spectral
power of the light outgoing from an object depends on both the spectrum of the light
source and the reflectance of the object.

Several reflection models have been proposed in the field of computer vision and
computer graphics [121] which assume different simplifications of the physics of light.
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Figure 4.1: Hlustration of the multiple variables that model the spectral radiance.

Here we use Shafer’s Dichromatic Reflection Model (DRM) [135] because it offers a
good trade-off between realism and practicability.

In Shafer’s DRM, light reflection is modeled as two separate reflection processes,
each having a characteristic spectral power distribution whose magnitude varies with
the direction of illumination and viewing. In the DRM, the amount of light reflected
per unit wavelength in direction v, by a small surface patch at a point x of an object
obj is defined as

Lobj(xavra/\) = /Q (mb(xvvmvi)cb(A) +ms(xavravi)cs()‘))dwia (42)
where ¢, and ¢, are functions describing the spectral distributions of the body re-
flectance and the surface reflectance of the object, respectively, and m; and myg,
called diffuse and specular magnitudes, are geometric factors that weigh the amount
of light coming from the body and the surface of the object, respectively, and only
depend on the geometry of the scene. Equation 4.1 and the DRM in Equation 4.2 are
equivalent when the brdf function, f,, is defined in the following way:

f’r(xav’raviy A) = hb(xavravi)gb(xv >‘) + hs(xaUTvvi)7 (43)

where the scalar hy(x,v,,v;) describes the variations in body reflection due to the
geometry of the scene, gp(z, A) describes the reflection of the body at x, which is
supposed to be isotropic (i.e. independent of v, and v;), and the scalar hg(z, v, v;)
describes the variations in surface reflection depending on the geometry of the scene.
When we substitute the right-hand side of Equation 4.3 in Equation 4.1, we obtain

Lopj(z,vr, A) =/ (he(z, vpy v3) g (2, N) Li(X) cos(6;) + hs(x, vy, v;) Li(X) cos(6;))dw; .

Qg
(4.4)
We now want to see that Equations 4.2 and 4.4 are equivalent. The diffuse and
specular magnitudes are functions that only depend on the geometry of the scene.
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Therefore, we can write
my(z, v, v;) = hp(z, v, v;) cos(6;) (4.5)

and
ms(x,vp,v;) = hs(x, v, v;) cos(6;). (4.6)

The spectral power distribution of the body of the object depends on that of the
incident light, L;(\), as well as the reflectance function of the body of the object,
gu(x, \), which is independent of 2 when uniformly colored objects are assumed as in
the DRM, thus

c(A) = go (M) Li(A). (4.7)

Finally, the spectral power distribution of the surface reflectance of the object is that
of the incident light,
cs(N) = L;(N). (4.8)

To sum up, at the physical level the spectral composition of the light reflected from
objects in a scene depends on the intrinsic reflectance of the object and of the spectrum
of the light. Moreover, this interdependency can be modeled mathematically, which
will prove to be useful for the formulation of the intrinsic decomposition below.

4.2.2 Color image formation: sensors

As explained above, the light reflected from an object depends on both its material
reflectance and the color of the light. Additionally, in the acquisition process, the
resulting image values are also affected by a third factor, namely the camera sensors.

Cameras use a finite set of sensor responses to describe the continuous light spec-
trum. Camera sensors vary widely with the characteristics of the camera, and different
cameras usually produce different measurements. The values measured by the sensors
of a camera are obtained by spectral integration [97],

b= [ Lo on NSO O (49)
A

where Sk (M), k = 1,2, 3, are functions describing the absorption curves of the camera
sensors and Loy (z, vy, A) is the reflected light from object, obj, in a scene. A denotes
the integration domain, which corresponds to the visible spectrum. The dependence
of p. on x is further omitted for the sake of simplicity.

For most computer vision problems, it is important to transform the measurements
pr made with a given camera to measurements made with standard sensors Si(\)*,

pi:/Lobj(x,vr,)\)SZ(/\)d/\. (4.10)
A

There exist several computational models of camera calibration that estimate the
sensitivity functions of the camera [16, 124, 153, 93, 41]. Given an estimate of the
sensitivity functions of a camera, and standard sensitivity functions, a transformation

*s superscript stands for “standard”.
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matrix Sg., converts theoretical responses for standard sensors into those of the
actual camera. Sensor transformations are often described by 3-by-3 matrices [85]. If
p’ denotes the vector whose standard coordinates are pj, and p denotes the response
of the camera whose coordinates are py, we have

p= Ssen - Ps- (411)

Notice, however, that the term Sge, is usually an approximation of the sensor trans-
formation. In this work we adopt the widely used standard RGB (sRGB) sensitivity
curves [7] as the standard sensor.

Moreover, as we will see in the next section, a valuable property for a set of camera
sensors is to be narrow band. We say that a set of camera sensors is narrow band
when the overlap among the spectral responses of these sensors is small, meaning
that the response for each of the sensors scarcely influences the responses of the other
sensors. Narrow band responses are uncorrelated, which proves to be critical for most
computer vision applications, among which color constancy [50].

4.2.3 Joint illumination/sensor modeling for intrinsic images

As we have seen in the previous section, both the spectral distribution of the light
source and the sensor properties affect camera measurements. Defining color con-
stancy algorithms able to provide image representations invariant to these dependen-
cies has been a long-standing goal in the computer vision community. Originally, the
term color constancy refers to the human ability to maintain a stable color represen-
tation of a scene irrespective of its illuminant.

A classical approach in computational color constancy is to estimate the color of
the illuminant of a scene using a single image and then subtract the illuminant to
build a stable image under a canonical illuminant (see [79, 63] for a survey). The
canonical representation of the color of an image is given by

p;’:/Lzbj(x,vr,)\)Sk()\)d)\, (4.12)
A

where L7, ; (z,v,, A\)T is the light reflected by the object under the canonical illuminant.

In this work we use the CIE standard illuminant D65 as the canonical illuminant [131].

Let us now describe illuminant and sensor transformations in a practical way.
In the color constancy literature, 3-by-3 matrices have been commonly used to de-
scribe illuminant transformations [53]. We denote by L¢r4 the color conversion that
transforms pixel values under the canonical illuminant to values under the actual
illuminant. Therefore, we have

p =Lcrig - p°. (4.13)

Notice that in the last equation the term Lcp,, is usually an approximation of the
illuminant transformation. Several methods have been proposed to find the appropri-
ate transformation matrix Lerig [63] and most of them rely on the sharpness of the

e superscript stands for “canonical”.
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sensors and approximate the illuminant using a diagonal model [158, 48]. Spectral
sharpening methods [50] provide sensor transformations, 7, that convert a given set
of sensor sensitivity functions into a new set of functions which are less overlapped,

T-p~Lcrig-T-p° (4.14)

In general, spectral sharpening improves the performance of color constancy algo-
rithms that are based on an independent adjustment of the sensor response channels
[50, 152].

Our objective is to describe the intrinsic components by discarding both the effects
of the color of the light and the dependence on a particular set of camera sensors.
The values

pie = /A L5 (2, 00, NSP(N) dA (4.15)

represent the appearance of the objects under a canonical illuminant and standard
camera sensors. Hence, from previous statements, we derive that the relationship
between p*¢ and p is

S

pP= LCLig : SSen P - (416)

In this equation, Leorig and Sgep, isolate lighting and sensor effects, respectively. As
we have already mentioned before, these terms are usually just good approximations
of the illuminant and sensor transformations respectively. However, the errors of such
approximations are ignored in this work for the sake of simplicity.

4.3 A general model for intrinsic image estimation

Thus far, in the literature the photometric issues described above have been disre-
garded. Moreover, some assumptions have been consistently made to simplify the
problem. Under the assumptions that surfaces are Lambertian and that there is a
single white light in the scene, the intrinsic image decomposition problem is reduced
to the estimation of shading and reflectance images [27, 157, 146, 57] according to

I(x,y) = Ishad(x,y) - Igesi(,y), (4.17)

where Igpqq represents the amount of reflection arriving to the point (z,y) of the
image from a specific point of the object surface considering the shape of the objects
in the scene and the position of the light source, and Ig.s; describes how the light is
reflected by the corresponding point of the object considering the material reflectance
properties. Since the model is assumed to be defined for any image point, for the sake
of simplicity the notation (x,y) is further omitted.

The Lambertian assumption was relaxed in [25], where the authors added a spec-
ularity term to the model

I = Ispaa © Hgesr + Ispec, (4.18)

where Igpe. denotes the specular reflection of the objects in the scene.

fHere ’0’ denotes the Hadamard product.
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Barron and Malik [19] modeled the shading image as a function, M, of the shape
of the scene, Igpqpe, and the color and direction of the illuminant, L = [LCLig, LGLig],
which led to the decomposition

I = Ishad © Irefi = M (Ishape, L) 0 Igeyi. (4.19)

Although Barron’s attempt to model the illumination of the scene in their ap-
proach of intrinsic image estimation, the effects of camera sensors and illumination
have not been jointly considered. As explained above, image values are affected by
both factors and, therefore, the reflectances recovered by previous methods depend on
the illuminant and the sensor used to acquire the image. We refer to such recovered
reflectances as relative reflectances.

To overcome the dependence problems that relative reflectance images have, in
this chapter we propose a general framework for intrinsic image decomposition which
takes into account both illuminant and camera sensor effects, thus allowing us to
recover the reflectance images as if they were acquired with standard sRGB sensors
under the canonical illuminant. We define such images as absolute reflectance images,
and denote them If, ..

As introduced in Equation 4.16 the physical properties of the scene at a pixel
(reflection model, geometry, etc.) encoded in p*© can be isolated from the effects of
the camera sensors and the illuminant of the scene, described respectively in Sge,
and Lepr,g. According to the DRM (Equations 4.2 and 4.9), we can decompose these
values, p%¢, into their diffuse and specular components as

p&C = pSS:}CLad © p?éfzfl + pg;ec7 (420)
where pg; ., and pj;égfl describe the magnitude and composition of the body (i.e.
diffuse) reflection, and pg’;e . represents the magnitude of the surface (i.e. specular)
reflection. Hence, from Equations 4.16 and 4.20 the general formulation at a pixel, p,
is

P = LoLig - Ssen - (Pshad © Phesi + Pspec)- (4.21)
Equation 4.21 can be extended from a pixel level to a whole image level, leading to

our proposal for a general framework for intrinsic image estimation which deals with
absolute reflectances:

I =Lcrig - Ssen * (Ishad © Tge g + Lspee)- (4.22)

Our proposed framework, illustrated in Figure 4.2, models the effects of the light
source and the camera sensors and includes a novel reflectance term which is invariant
to these effects.

4.3.1 Model particularities and relation to previous models

Depending on the knowledge we have about the scene and the acquisition conditions,
or the assumptions we make on them, our model leads to different simplifications of
the general formula proposed in Equation 4.22. Furthermore, existing formulations
(Equations 4.17-4.19) in the intrinsic image decomposition field can be derived from
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Figure 4.2: Overview of the proposed model. Modeling the effects of the illumination
and the sensors in the acquired images allows intrinsic image methods to obtain
absolute reflectance images If, ;.

our model as specific cases. Let us describe some of these assumptions and discuss
how they influence the general formulation of our model. In our formulation of the
problem the effects of the color of the light source and the response of the camera
sensors are modeled using 3-by-3 matrices. The resulting reflectance image, or abso-
lute reflectance, is invariant to changes in the illuminant of the scene or the camera
Sensors.

When surfaces in a scene are Lambertian, specularities can be discarded from the
general formulation (i.e. Ispe. = 0) and Equation 4.22 becomes:

I= LCLig . SSen . (IShad o I?%efl)~ (423)

When there is a single canonical light source, the illuminant transformation hap-
pens to be a diagonal matrix with a single scalar value x for the three channels.
This transformation modifies the general intensity of the image. Therefore, Lopg is
substituted by the scalar value k:

I=kK- SSen(IShad o I]%efl + ISpec)- (424)

When camera sensors are narrow band, Lgori, can be described by a diagonal
matrix. This illuminant transformation matrix can be represented as an image,
Lcrig = IcLig, where each channel in I¢p;4 contains one value of the diagonal matrix
Lcrig- Under this notation, the Hadamard product can be used in order to multiply
this term with the shading and the absolute reflectance components in the intrinsic
image decomposition:

I = SSen . (ICLig o IShad o I}a%@fl + ICLig o [Spec)- (425)

As explained in Section 4.2.3, when the sensitivity curves of the camera sensors are
overlapped, spectral sharpening methods can be applied to make them more narrow
band. This allows us to write Leorig = Iorig as in the previous case. Including the
transform 7 defined in Equation 4.14, the formulation above stands as:

=T [Icrig o Isnaa© (T - Ssen  Ihept) + Icnig o (T - Ssen - Ispec)].  (4.26)
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When the camera sensors are the canonical SRGB sensors, Sg., is the identity
matrix, and Equation 4.22 results in

I =Lcrig - (Ishad © Ifepi + Ispec)- (4.27)

Notice that even when we only have partial information about light and sensors,
we are still able to estimate the illuminant transformation matrix (by applying color
constancy methods) and the camera sensor behaviour (sometimes available on public
websites), which makes our method widely applicable.

However, when the conditions described above are not fulfilled, as it is usually
the case with natural images, we cannot accurately estimate the absolute intrinsic
reflectance 1§, - In such case, the absolute reflectance can only be approximated
by a relative reflectance image, Ik 15 which includes part of the illumination and
sensor effects. For instance, when we have no knowledge about the camera sensors
and canonical SRGB sensors are assumed (for example, when estimating Sge,, is not
possible), the estimated reflectance is I, ;) = Sgen - [ py-

Existing models for intrinsic image decomposition can also be derived from this
generalized model by considering their specific assumptions. Several approaches
[146, 145, 133] assume Lambertian objects (Ispec = 0), white light (Lori, = k)
and unknown camera sensors (Sge, = Id), which yields

I=k- (IShad o I;?efl)’ (428)

where I, ;) = Leorig - Ssen - (Ij“%efl + Ispec). We assume that the methods that do not
consider the specular component will include highlights in the reflectance image. This
last equation is equivalent to Equation 4.17 up to a scale factor. Other approaches
[25] deal with the specular image term while keeping the white light assumption
(Lerig = k) and having no knowledge of the camera sensors (Sge, = Id). This leads
to

I=k- (IShad o Ilr%efl + Igpec), (429)

where Igepr = LewLig - Ssen - T This, in fact, is Equation 4.18 up to a scale
factor. Finally, Barron et al.[19] (Equation 4.19) relaxed the white light assumption.
If narrow band sensors are assumed (Lorig = Iorig) our model becomes:

I = Ishada © IcLig © Te s (4.30)

where Thep = iCLig ~Sgen - (I%efl + Ispec), and INJCLig represents the information of
the light source not modeled by Icris when the sensors are not narrow-band.

In Table 4.1, we show how the proposed model can be simplified by usual assump-
tions such as images acquired under the canonical light, scenes with only Lambertian
surfaces, or cameras with narrow-band sensors. Afterwards, in Table 4.2, we show how
the formulations of the decomposition in intrinsic components used in previous meth-
ods are particular cases of our extended formulation. These particular formulation
depend on the specific assumptions of each method.
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7 Previous works Assumptions 7 Specific formulation Estimated reflectance
Tappen et al. [145]
Shen et al. [137]
Jiang et al. [90] Lambertian

Shen et al. [1306]
Shen-Yeo [138]
Gehler et al. [60]
Serra et al.[133]

Canonical light
Standard sensors

I=k- ANMEQQONMN@\V

mm\ = H;QN\E . m.mxwﬁ . A me% + NMﬁmnA*vv

Beigpour et al. [25]

Canonical light
Standard sensors

N =K - ANMEQ& ] Nmm\ IT NME@QV

r P . . . a
Ref — H;Qh@m mwm\: Ref

Barron-Malik [19]

Lambertian
Narrow-band sensors

I'=1Ighad©IcrLigo Iy

Nm.wm\ = HMMWm “Ssen - A‘Q:wmx + Nm_ﬁmnv

(*) We assume that the methods that do not consider the specular component will include highlights in the reflectance image.

(**) The matriz HZ\QS,Q represents the information of the light source which is not modeled by Icriy when the sensors are not narrow-band.

Table 4.2: Summary of how previous methods for intrinsic image decomposition are related to our general model.
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4.4 Validation Experiments

In the previous sections we have proposed a new model for intrinsic image decompo-
sition that revisits the simplistic image product formulation. Our approach includes
constraints derived from the consideration of the color of the light source and the bias
introduced by the acquisition process. In this section we present a set of experiments
to validate the proposed framework. Our experiments simulate multiple scenarios
which differ by the degree of knowledge of the scene. These scenarios involve different
assumptions on the sensors, the light source, or the illuminant model:

e The camera sensors may be either known (in which case we use the correspond-
ing sensor responsivity functions), or unknown (i.e. standard sRGB sensors are
assumed).

e The illuminant of the scene may be either known (in which case we use the
corresponding spectral power distribution), or unknown (i.e. a canonical D65
illuminant is assumed).

e The model of illumination can either be diagonal (i.e. sharp sensors are as-
sumed) or a full 3-by-3 model.

Taking these considerations into account, we define four scenarios (summarized in
Table 4.3) which describe the most common situations found in real applications:

Scenario 1 (SC1): It corresponds to the ideal case. Both camera sensors and scene
light source are known, and L¢yig is approximated by a full illuminant model.

Scenario 2 (SC2): Tt is identical to SC1 except that a diagonal illumination model is
assumed, just as most color constancy methods do.

Scenario 3 (SC3): Here the camera sensors are unknown (i.e. standard sensors are
assumed) but the scene illuminant is known or can be estimated with a diagonal
model.

Scenario 4 (SC4): Here no knowledge of either the camera sensors (i.e. standard
sensors are assumed) or of the lighting conditions (i.e. a canonical illuminant
is assumed) is available.

We use the angular error to calculate the differences between the estimated re-
flectance values in each scenario and the ground truth reflectance values. The angular
error between two RGB values, p; and pj, is defined as the angle between the vectors
determined by these values,

_ Pi - Pj
A.(p;,p;) = cos ! <J> 4.31
(p:. p;) Tl o5 (4.3)

This error metric has been previously used in the literature to test the accuracy of
color constancy methods [79, 63].
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Camera Scene Iluminant
Scenario | Sensors | Illuminant Model
SC1 Known Known Full
SC2 Known Known Diagonal
SC3 Unknown Known Diagonal
SC4 Unknown | Unknown -

Table 4.3: Description of the scenarios used in the experiments.

4.4.1 Experiment 1: Synthetic data

For this experiment we use a dataset of 1995 reflectances compiled from several sources
in Barnard et al. dataset [17]. These reflectances include the 24 Macbeth color-checker
patches, 1269 Munsell chips, 120 Dupont paint chips, 170 natural objects, the 350
surfaces in Krinov dataset, and 57 additional reflectances. These data allow us to
synthesize the scenes for the experiment. To simulate the light source of the scenes,
we have used the spectral power distributions of 10 illuminants: 5 Planckian and 5
non-Planckian (see Appendix B). These illuminants have been chosen from the same
dataset (Barnard et al. [17]). To simulate the imaging process we have used 7 sets
of commercial cameras sensors (Canon EOS1D, Sigma Foveon D10, Kodak DCS420,
Leica M8, Nikon D70, Olympus E400, Sony DXC930, and TVI MSC-1024RGB12).

We have performed the experiments on 10 scenes, each one synthesized with 140
different reflectances randomly chosen from Barnard’s dataset. Each scene has been
integrated with each of the 10 illuminants and subsequently with each of the 7 sets of
camera sensors, providing the pixel values p for the 700 resulting scenes. Our ground-
truth (i.e. absolute reflectances) are the same 10 scenes integrated with the canonical
D65 illuminant spectrum and standard sRGB sensitivity curves. The ground-truth
values are denoted by p*°.

In order to estimate the transformation matrices Sge, and Lcrig, we also synthe-
size relative reflectance values by integrating each reflectance with the spectrum of the
canonical illuminant D65 and each of the 7 sets of camera sensors, resulting in a set
of p© values. We approximate the camera sensor transformation matrix, Sge,, from
p>° and p° using a 3-by-3 matrix estimated by least squares minimization. The illu-
minant transformation matrix Lo, can be estimated from p and p© values following
the same procedure.

Figure 4.3 illustrates the results of this experiment. We observe that when some
knowledge about the camera sensors and the illuminant of the scene is available (SC1),
the error is considerably reduced with respect to the worst case scenario, where we
do not have any further information of the scene and a D65 illuminant and sRGB
sensors are assumed (SC4). On average, the error in scenario 4 is reduced by 93%
when knowledge about the illuminant and the camera sensors is available (SC1). For
the most extreme case, the Nikon D70 camera, the error is reduced by 97.5%. Most
computer vision techniques have so far ignored the effects of the illuminant of the
scene and the camera sensors, including these errors into their results.

When we approximate the effect of the illuminant using a diagonal model (SC2),



4.4. Validation Experiments 79

the errors increase by 48% on average with respect to scenario 1. Nonetheless, the
errors in scenario 2 are always smaller than 5 degrees. These results are coherent
with previous results showing that diagonal models are sufficient to correctly describe
illuminant transformations [48].

When we only have partial information about the scene and we estimate the
illuminant of the scene but assume sRGB sensors (SC3), for most cameras the errors
also decrease notably with respect to the worst case scenario (SC4). On average,
the errors in scenario 3 are reduced by 42% with respect to the errors in scenario 4.
However, there are three cameras (Sigma Foveon D10, Kodak DCS420 and Nikon D70)
for which the errors decrease by less than 10%. These error differences within cameras
for scenario 3 are probably due to the response of the camera sensors. Cameras with
sensor sensitivity functions similar to SRGB curves get much larger error reductions
than other cameras, since SRGB sensors are assumed in scenario 3.

The numerical results of this experiment can be seen in Table 4.4. The results are
presented separately for Planckian and non-Planckian illuminants in order to study
possible differences in the behavior of our framework which result from the type of
illumination in the scene. We observe that, in general, errors are slightly larger when
non-Planckian illuminants are used. However, the behavior of our framework with
Planckian and non-Planckian illuminants is exactly the same.

The conclusion we draw from this experiment is that any knowledge about the
illuminant of the scene and the camera sensors, even if it is only partial knowledge,
is critical for many computer vision tasks involving color images. Specifically, in
intrinsic image decomposition it means that the more information we have about the
camera sensors and the scene illuminant, the better our reflectance estimate will be.
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Figure 4.3: Mean angular error for different commercial cameras in multiple scenarios.
The most information we have about the scene, the best our reflectance estimate will
be. Scenario 4 always assumes canonical illumination and standard sensors, like most
existing intrinsic image models. Scenarios 1 and 2 represent our model when there is
some knowledge about scene illumination and camera sensors.
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Planckian Non-Planckian
Camera SC1 | SC2 | SC3 | SCy SC1 | SC2 | SC3 | SC4
Canon EOS1D 1.19 | 1.55 | 4.47 | 1293 || 1.26 | 2.27 | 4.51 | 22.27
Sigma Foveon D10 | 1.02 | 2.74 | 15.45 | 16.41 || 1.10 | 4.78 | 16.34 | 17.96
Kodak DCS420 2.45 | 3.68 | 14.35 | 14.99 || 2.53 | 4.80 | 15.43 | 15.61
Leica M8 2.14 | 248 | 8.55 | 12.50 || 2.23 | 3.11 | 8.97 | 18.19
Nikon D70 0.95 | 1.36 | 36.28 | 37.67 || 1.05 | 2.12 | 36.50 | 38.89
Olympus E400 1.69 | 2.29 | 7.59 | 12.47 || 1.93 | 3.21 | 8.04 | 18.86
Sony DXC930 0.79 | 1.04 | 2.67 | 15.33 || 0.80 | 1.09 | 2.48 | 26.84
TVI 1.76 | 1.93 | 545 | 16.16 || 1.563 | 1.88 | 4.87 | 22.67

Table 4.4: Numerical results (angular error in degrees) of the experiments showed in
Figure 4.3.

4.4.2 Experiment 2: Natural images

In our second experiment, we use a set of images from Flickr [3]. We choose images
from six well-known scenes (Figure 4.4), taken with four popular DSLR camera mod-
els, namely the Canon EOS 5D Mark II, the Nikon D50, the Nikon D7000 and the
Sony NEX-5.

Figure 4.4: Tmage categories: From left to right, the Golden Gate bridge (San Fran-
cisco), the Statue of Liberty (New York City), the Kinkakuji temple (Kyoto), the
church of Sagrada Familia (Barcelona), the Uluru Rock (Australian desert) and St.
Basil’s cathedral (Moscow).

The images selected for this experiment fulfill the basic assumptions of our model:
scenes with a single light source and known camera sensors. The amount of pictures
that we choose for each camera model and image category depends on the number of
available pictures which satisfy these requirements, but on average we have 4 pictures
per camera model and scene. The total number of images used in our experiment
is 107. We first remove the gamma correction, which we assume to be 2.2, from all
the pictures. Then, for each picture, we select two or three regions which describe a
single material under similar illumination conditions (i.e. overshadowed and saturated
areas of the picture are avoided). The mean value of these regions is used as a color
descriptor for this picture.

For each of the pictures we apply two color constancy methods (Shades of Grey
[52] and Grey-Edge [149]) and remove the effects of the sensors for each of them (i.e.
express the image values under sSRGB sensors) by using the transformation matrices
obtained from DxOMark website [2].
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Figure 4.5 shows some qualitative results where the improvement after applying a
color constancy algorithm and removing the effect of the camera sensors is clear. In
Figure 4.6 we present quantitative results using a color constancy algorithm to esti-
mate the illuminant of the scenes. The color descriptors for each image are compared
with the color descriptors of the other images representing the same scene category
using the chromatic angular error. We also average the obtained error between pair
of pictures and observe that this error decreases accordingly to the available infor-
mation about the illuminant and the camera sensors. When the effects of both the
illuminant and the camera sensors are removed, there is an average decrease in the
error of 22.59%. These results are coherent with those we obtain in our previous ex-
periment with synthetic data. Although the error reduction is more significant when
we use synthetic data, in both experiments the results show that the error decreases
accordingly to the amount of available information about the illuminant of the scene
and the camera sensors. The only exception is found in the results for the Nikon
D7000 camera, where the error in scenario 3 (illuminant known, sensors unknown) is
bigger than the error in scenario 4 (illuminant and sensors unknown). However, when
both the illuminant and camera sensors are known (SC2) the error for this camera
also decreases. Furthermore, all the images on the second experiment have been ac-
quired under different daylight illumination conditions (i.e. Planckian illuminants).
On the other hand, the diversity of the illuminants used in the first experiment is
much bigger, since they are defined in a bigger space, including both Planckian and
non-Planckian illuminants. As a result, the decrease of the errors in the experiment
with synthetic data is more pronounced than it is in the experiment with natural
images.

We have seen how the illuminant of the scene and the camera sensors affect the
resulting image values, but our aim is to show how isolating these effects can benefit
the performance of many intrinsic image decomposition methods. Figure 4.7 shows
how our model can be applied in practice to the problem of intrinsic image estimation.
Given pairs of images describing the same scene under different illumination conditions
and taken with different camera models, the reflectance estimates for Serra et al.
method [133] are much closer when the effects of the illuminant and the camera
sensors are removed. For the first example (Sagrada Familia), the angular error of
the estimated reflectance decreases by 63.4%, while the error for the second example
(Uluru Rock) decreases by 82.3%.

4.4.3 Experiment 3: Laboratory-acquired images

In this subsection we include experiments on synthetically rendered and real lab-
acquired images that complement the results exposed in the previous experiments.

In Figures 4.8 and 4.9, we show the effects of considering the photometric prop-
erties through the proposed model prior to applying usual methods for estimating
reflectance intrinsic images.

In Figure 4.8 we show results on a synthetic specular object which has been ren-
dered simulating different illuminants and different camera sensors (column (a)). The
scenes in Figure 4.9 (original images in column (a) in both figures) have been ac-
quired in a laboratory with a common sensor and under different illuminants (placing
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(f) 0.91°

(g) 9.96° (h) 3.05° (i) 2.40°
Figure 4.5: Results on 3 pairs of natural images. At each row, in the first column we
see a pair of original images. In the second column the Grey-Edge algorithm [149] has
been applied. In the last column, we see the images of the second column after their
camera sensor effects have been removed. The chromatic angular errors are expressed
in degrees.
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Figure 4.6: Mean angular error among pairs of images from our set of natural images
corresponding to the scenarios 2, 3 and 4 previously defined. The Shades of Grey al-
gorithm [52] has been used to estimate the illuminant, but similar results are obtained
when using other color constancy methods, such as Grey-Edge [149].

different color filters in front of our light source).

For each image acquired in the laboratory we captured an extra picture containing
a Macbeth color-checker. This enabled us to approximate the transformation matrix
for the illuminant, Lcr,g, and the transformation matrix for the camera sensors, Ssen,
by means of a least squares algorithm. The matrices Sge, and Lerig were used to
transform input images into more stable images, which were closer to an image of the
scene acquired under the canonical illuminant and with standard sensors.

For all three objects we show the reflectance images estimated by Serra et al. [133]
and Barron et al. [20] in columns (b) and (c), respectively. Subsequently, in columns
(d) and (e) we show the estimated reflectances computed by the same methods after
the effects of both the color of the illuminant and the camera sensors have been
removed from input images.

In all scenes we calculate the mean angular error, averaged over all the pixels
of the object, between the different pairs of estimated reflectance images. Notice
that the error decreases for both methods when we remove the effects of the color
of the illuminant and the camera sensors from input images, showing that the use of
photometric information increases the stability of the recovered reflectance.

Finally, in Figure 4.10 we show a Lambertian object with multiple color values on
its surface. We have acquired images of this object under different illumination con-
ditions (column (a)). In order to measure the convenience of estimating an absolute
reflectance image instead of a relative reflectance image, we first project on the chro-
matic plane the relative and absolute images that we get for each illuminant. Then,
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(e) 13.62° () 8.50°

() 18.69° (h) 3.31°

Figure 4.7: Example of the influence of the color of the illuminant and the camera
sensors on intrinsic images. (a) and (e) are images of a given landmark, taken with
different cameras under different illumination conditions. (b) and (f) are the images
in (a) and (e) respectively, after removing the effects of the illuminant and the camera
sensors. (c),(d),(g) and (h) are the estimated intrinsic images of (a),(b),(e) and (f),
respectively. Chromatic angular error values are given in degrees.
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12.7° 21.6° 4.4° 2.2°
(a) (b) (c) (d) (e)
Figure 4.8: Results showing the average chromatic difference for a synthetic object
rendered under different lighting and sensor conditions. The first and second rows
share the same camera sensors but not lighting conditions. The second and third
rows share the scene illuminant but not the camera sensors. Ideally all 3 images
should have the same intrinsic reflectance image. Numbers under each column are
the average difference between images as measured by angular differences in sRGB
space. (a) Original Image. (b) Reflectance estimates of the method of Serra et al.
[133]. (c) Reflectance estimates of the method of Barron et al. [19]. (d) and (e)
Removing the effects of the color of the illuminant and the camera sensors from input
images minimizes the differences between the three reflectance estimates for [133] and
[19], respectively.
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6.2° : 5.9°
(a) (b) g (d)

Figure 4.9: Results showing the average chromatic difference for two objects acquired
in the laboratory under different lighting conditions. Ideally, for each object, all
3 images should have the same intrinsic reflectance image. Numbers under each
column are the average chromatic difference between images as measured by angular
differences in sRGB space. (a) Original Image. (b) Reflectance estimates of the
method of Serra et al. [133]. (c¢) Reflectance estimates of the method of Barron et al.
[19]. (d) and (e) Reflectance estimates for [133] and [19], respectively, after removing
the effects of the color of the illuminant and the camera sensors.
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Figure 4.10: Variability of relative and absolute reflectance of an object under two
different illuminants. (a) Original image. (b) Theoretical relative reflectance. (c)
Theoretical absolute reflectance.

we measure the difference between the two relative reflectances and the difference
between the two absolute reflectances using the mean angular error. In column (b)
we show the relative reflectances of the object under the two illuminants projected
on the chromatic plane, while the corresponding absolute reflectances, projected on
the same plane, are shown in column (c). Since the angular difference between the
ground truth reflectance components of both images decreases considerably when the
effects of the color of the illuminant and the camera sensors are removed from input
images, we conclude that the absolute reflectance (column (c)) is far more an “intrin-
sic” characteristic than the relative reflectance (column (b)) that has been commonly
used so far in the literature.

4.5 Discussion and conclusion

The main contribution of this chapter is a new theoretical framework for intrinsic
image decomposition which includes the photometric effects of the illuminant of the
scene and the camera sensors. This model generalizes the previous formulations of
the problem. Another sound contribution of this work is the definition of absolute
reflectances, which are invariant to the color of the light source and the response of
the camera sensors.

As a direct consequence of our framework we can model camera effects. When
the camera sensors are sufficiently narrow band, the illuminant transformation model
is described by means of a diagonal matrix. When sensor responses are not narrow
band but known, spectral sharpening [50] can be applied. Otherwise, a full (i.e. non-
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diagonal) linear model is used. Furthermore, we can model scene illumination. This
is an important step towards the normalization of color through different acquisitions
with the same device. We believe that for widely used sensors such as the Kinect,
such corrections could even be incorporated in the standard libraries for a wide use by
developers in any application that relies on accurate matching of surface appearances
across different images.

Absolute reflectances could prove very useful to many applications. Imagine a
set of cameras placed outdoors with known camera sensors (e.g. transit cameras
placed along a highway). Illumination effects will be very diverse depending on the
location of each camera and the time of the day and the year when the images were
taken. However, if we estimate the color of the illuminant using color constancy, then
we could infer an absolute reflectance image which would be very useful for further
computer vision tasks. Imagine we have multiple camera devices in a lab. We do not
know anything about their sensors, but we have control over the scene illumination
and know its spectral distribution. If we place an object with some known reflectance
values in the scene, we can estimate a sensor transformation for each camera. This
way, we can estimate absolute reflectance images for any camera. Finally, imagine we
have a camera with unknown sensors and we have no knowledge about the illuminant
either. However, we know or can approximate some reflectance values which appear in
the scene. This could lead to data-driven approaches for the inference of illuminant
and sensor type. Furthermore, one could envision absolute reflectance descriptors,
which would provide a characterization of object materials invariant to specific device
characteristics.



Chapter 5

New Datasets for Intrinsic Image
Evaluation

As we have previously seen in Chapter 2, building a dataset for intrinsic image estima-
tion is challenging. The MIT dataset [71], for instance, presents some drawbacks that
prevent any extension in terms of number of scenes or generalization to real scenes.
Such a real ground truth collection is indeed very laborious: the same scene has to be
captured twice, once with the original object and once after spraying the object with
white paint to obtain the shading ground truth; polarizing filters are used to sep-
arate specular from Lambertian reflectance; and interreflections need to be avoided
because they would lead to false ground truth images [71]. As a result, the MIT
dataset presents some weaknesses: only single object scenes are present, all of them
are captured under a white illuminant, more complex and realistic lighting conditions
(i.e. multiple illuminants) are not considered, and interreflections are absent.

In [19], the MIT dataset was extended by synthetically relighting the images to
obtain a multi-illuminant dataset. However, this has not solved the main drawback
of the original dataset, namely the absence of complex realistic scenes with multiple
objects. Therefore, evaluation of intrinsic image methods needs new and more general
datasets which also provide accurate ground truth information for multiple intrinsic
characteristics of the scene also estimated by current methods (e.g. direction and
color of the illuminant, shape, etc.).

In this chapter we present two new datasets for intrinsic image evaluation which
aim to overcome some of the drawbacks of existing datasets. The first dataset in-
cludes ground truth information about the illuminant of the scene and the camera
sensors. We will use this dataset to validate the general formulation for intrinsic
image decomposition presented in the previous chapter. We will also show the influ-
ence of both the illuminant of the scene and the camera sensors in the problem of
intrinsic image decomposition, remarking the need to model these factors in future
methods for intrinsic image decomposition. The second dataset has been built using
computer graphics. We will shows how computer graphics can help us to easily build
large ground truth collections which include realistic scenes with complex illumination
effects.

89
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5.1 A Calibrated Dataset for Intrinsic Image Esti-
mation

In Chapter 4, we showed how the illuminant of a scene and the camera sensors affect
the final color values in an image of the scene. We also proposed a novel framework
for intrinsic image decomposition which models both factors and generalizes previous
formulations.

In this section we present a calibrated dataset for intrinsic image evaluation which
includes ground truth information about the illuminant of the scene and the sensors of
the camera used in the acquisition process. Moreover, this dataset has been designed
to be general enough to serve as an evaluation tool for most of the existing methods,
as well as for future methods which fit in our general framework.

Our dataset contains 20 objects with diverse shapes, materials and textures (see
Figure 5.1). These objects have been selected to provide a high variability of re-
flectances and thus encode different levels of complexity for decomposition methods.
This dataset is available online* to further motivate authors to model the effects of
the color of the illuminant and the camera sensors in their approaches.

Il20Bie
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Figure 5.1: Objects in our Dataset.

5.1.1 Methods and Materials

We used the procedure adopted to build the MIT dataset [71] to acquire the images
and recover accurate ground truth data. The lab in which we acquired the images of
the dataset consists of a room of about 2m height by 3m width by 3m depth. The walls
and the ceiling of the lab were covered with black felt to minimize interreflections, and
the table in the center of the room was sprayed with black matte paint. Moreover,
to avoid displacements of the objects during the ground truth acquisition process, we
fixed the objects to a black platform located in the center of the table. We used the
sphere fixation method described in [71], which allowed us to remove and replace the
platform (and the object) in the exact same position.

*http://www.cic.uab.cat/Datasets/photometric_intrinsic_image_dataset
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In order to provide different illumination conditions in the dataset, three 2800K
(i.e. orangish) bulb lights were placed at different positions in the lab. The differ-
ent directions of the bulb lights already provide three illumination conditions. Two
additional lighting conditions were set for each object by using two color filters (one
blue, another yellow) which were placed in front of one of the bulbs. In total, we
acquired each object under 5 illumination conditions consisting of different illumi-
nant directions and colors. The lamps were fixed and remained untouched during
the whole process and the color filters could be easily placed and removed using an
independent system of hooks hanging from the ceiling. The colors of the light sources
have been recovered using a ColorChecker Digital SG of 140 patches from X-Rite
Photo [6], where the exact theoretical spectrum for each of its color patches is known.
Moreover, the 3-by-3 illuminant transformation matrices, have been recovered using
a least squares algorithm on images of the ColorChecker taken under the different
illumination settings.

Finally, two cameras, namely a Nikon D5200 and a Sigma Foveon D10, were used.
The sensor responses of the Sigma camera have been obtained from [124], while the
ground truth information for the sensor effects of the Nikon camera have been ob-
tained from the DxOMark photography website [2]. Both cameras present significant
differences in their sensor responses. In addition, when acquiring images under the
dim illumination of the lab, the Sigma camera provides challenging noisy images.
Both cameras were fixed during the whole acquisition process and the positions of the
objects, light sources and cameras were completely determined from the beginning.
Figure 5.2 illustrates the distribution of the cameras and the light sources in our lab-
oratory. The color filters that we used to modify the color of the illuminant are also
represented in this figure as colored regions placed next to the light bulbs.

5.1.2 Acquisition Process

The procedure to acquire ground truth data for a given object was as follows: we
first fixed the object to the platform and took three images with each camera (two
cameras) for each illumination setting (five different settings). The images taken
with the same camera under the same illumination conditions were used to recover
a median image (where the value for each pixel (z,y) in the median image results
from the median value of the pixels (z,y) in the three images). This median image
decreases the amount of noise in our data, specially in the images captured with the
Sigma camera. We then applied the illuminant and sensor transformation matrices to
these images in order to remove the effects of the illuminant and the camera sensors.
The transformed median images were denoted I*, where i stands for the i*" lighting
condition.

Then, we removed the platform with the object, painted the object white and
replaced the platform using the fixation method mentioned above to avoid displace-
ments. We captured the object again with both cameras for each lighting condition.
We then applied the illuminant and sensor transformation matrices to these images.
The transformed images were denoted I?, .. and their intensity images were used as
shading ground truth.

Finally, in order to recover accurate absolute reflectance values, I7 ), and mini-
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Figure 5.2: Schema of our laboratory. We illustrate the position of the two cameras,
the three light bulbs and the object (in the center of the room). The color filters that
we used to change the color of the illuminant are also represented, as colored regions,
close to the light bulbs.

mize the errors produced when dividing low values found in highly shadowed regions
of the images, we used the equation

ZiELdir I

- (5.1)
ZiELdir Ishad

a
refl —

where Ldir denotes the set of illumination conditions. In practice, we only used the
first three illumination conditions (i.e. different light source directions and no color
filter). Observe that we used multiple images of the same object taken under different
light directions, as well as their white-painted counterparts. A similar process was
also used in the MIT dataset [71] to recover the intrinsic reflectance images. However,
in the MIT dataset white light was assumed and the effects of the camera sensors were
ignored. As a consequence, the values of their reflectance images are influenced by
both factors.

The ground truth data provided for a given object can be seen in Figure 5.3. The
first row presents the absolute reflectance of the object and its binary mask. The next
five rows represent different illumination conditions. In each row the original image
is presented in the first column, while its respective shading component can be seen
in the second column, and the third column provides a spherical representation of the
illuminant of the scene, showing both its direction and color.
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Figure 5.3: Example of the ground truth data we can provide for a single object and
camera.
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5.1.3 Experiments

In Chapter 4, we presented different experiments which demonstrated the influence
that the color of the illuminant and the camera sensors have in the image values, and
indicated that both factors affect the problem of intrinsic image decomposition. In
this section we aim to provide quantitative results about the influence of the color of
the illuminant and the camera sensors in the problem of intrinsic image estimation.
To validate the proposed model in Chapter 4 we use different methods for intrinsic
image decomposition, namely Jiang et al. [90], Gehler et al. [60], Serra et al. [133]
and Barron and Malik [19]. We test these methods using the images in our dataset
in three different scenarios, corresponding to some of the scenarios previously defined
in Chapter 4:

Scenario 1 (SC1): It corresponds to the ideal case. We know both camera sensors
and scene light source. A full illumination model is assumed.

Scenario 3b (SC3b): Here the camera sensors are unknown (i.e. standard sensors are
assumed), but the scene illuminant is known. Observe that this scenario differs
from scenario 3 because here the illuminant is estimated with a full model
instead of a diagonal model.

Scenario 4 (SC4): Here no knowledge of either the camera sensors (standard sensors
are assumed) or the lighting conditions (a canonical illuminant is assumed) is
available.

The local mean square error (LMSE) [71], is used to quantitatively evaluate the
reflectance estimates for the different methods with respect to the ground truth ab-
solute reflectance image. The LMSE has been questioned by some authors [90, 133].
However, it is still the most commonly used metric for intrinsic image evaluation.

The quantitative results of the evaluated methods, expressed in LMSE scores
considering the three RGB channels of the color image, are presented in Table 5.1.
These results show that the quality of the reflectance estimates is closely related to the
amount of information available about the scene and the acquisition process. When
information about the illuminant of the scene or the camera sensors is available, the
performance of the methods improves (i.e. the errors are reduced) in all cases.

When we compare the performance of the methods when no information about
the illuminant or the camera sensors is available (SC4) to the results they achieve
when the effects of both factors are known or can be estimated (SC1), we see that,
on average, the mean LMSE scores of the methods decrease by 56.38% and 40.12%
for the cameras Nikon D5200 and Sigma Foveon D10, respectively. In particular,
the mean LMSE error for the method of Gehler et al. decreases by 70.66% when
tested with the Nikon D5200 images. Even for the method of Barron and Malik [19],
which uses priors on scene illumination and jointly estimates the direction and color
of the illuminant of the scene, we observe an impressive reduction of the LMSE when
the effects of both the illuminant and the camera sensors are removed (67.48% and
50.59% for images acquired with the Nikon D5200 camera and the Sigma Foveon D10
camera, respectively). These results show the importance of modeling the effects of
both the illuminant of the scene and the camera sensors in methods for intrinsic image
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estimation. From these results, we can derive that existing methods which assume
white light and sRGB sensors carry big errors in their intrinsic reflectance estimates.

However, some of the methods are more influenced by the effect of the color of
the illuminant and the camera sensors than others. Observe, for example, that our
method [134] clearly outperforms all the other methods when there is no available
information about the illuminant of the scene or the camera sensors (SC4). Moreover,

other methods achieve better results than our method when both factors are known
(SC1).

Furthermore, notice that the mean LMSE errors for all methods are slightly higher
for the images acquired with the Sigma Foveon D10 camera. This may be a result of
the remaining noise in the images of the dataset. Although we reduced the noise of
the images for both cameras, as we have explained in the previous section, some noise
still remains, specially in the images acquired with the Sigma Foveon D10 camera.
However, this noise does not affect dramatically the global performance of the different
methods for intrinsic image decomposition. This is probably due to the fact that most
methods for intrinsic image decomposition enhance the smoothness of the shading
images and the sparsity of reflectance values.

Nikon D5200 Sigma Foveon D10
SC1 SC3b SC4 SC1 SC3b SC4
Jiang et al 0.059 0.077 0.131 0.086 0.095 0.154

Serra et al. 0.047  0.054 0.070 | 0.066 0.065 0.077
Gehler et al. 0.033 0.050 0.112 | 0.057 0.065 0.115
Barron & Matik | 0.043  0.047  0.133 | 0.069 0.072  0.140

Table 5.1: LMSE results of reflectance image estimates in different scenarios.

In Figure 5.4, we show one object of our dataset acquired with two different
cameras and under two different illumination conditions (first column). In the second
column we see the reflectance estimates provided by the method of Gehler et al.
[60] when there is no available information about the light source or the camera and
white light and sRGB sensors are assumed (SC4). In the last column, we show the
reflectance estimates for the same method when photometric information is available
(SC1). As expected, when the effects of the illuminant of the scene and the camera
sensors are removed, the estimated reflectances are perceived as being more similar.

In this section we have provided ground truth data for intrinsic image evaluation
which includes information about the illuminant of the scenes and the camera sensors.
We have shown that any available knowledge about the color of the light source or
the camera model can be used by existing methods in intrinsic image decomposition
to provide considerably better reflectance estimates. We conclude that the general
framework introduced in Chapter 4, which models the effects of both the color of the
illuminant and the camera sensors, should be used in further approaches in intrinsic
image decomposition.
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Figure 5.4: Removing the effect of the illuminant and the camera sensors increases
the similarity between the different estimated images. In the upper row we see an
object from the dataset acquired with the Nikon D5200 camera and under a reddish
illuminant, while in the lower row we see the same object acquired with the Sigma
Foveon D10 camera under a bluish illuminant. In the first column we see the original
input images. In the second column we observe the reflectance estimates according to
Gehler’s method [60] when we assume white light and sRGB sensors. Finally, in the
third column we see the reflectance estimates of the same method when information

about the camera model and the illuminant of the scene is available and the effects
of both factors have been removed.
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5.2 Synthetic Intrinsic Image Dataset

In this section we present a synthetic dataset for intrinsic image evaluation which
includes not only scenes displaying a single object illuminated by white light, but also
scenes including multiple objects and multiple non-white illuminants with complex
settings leading to interreflections. The objective of this new ground truth collection
is to overcome the shortcomings of the existing datasets for intrinsic image evaluation
and show an easy way to build ground truths for reflectance, shading, and illumination
from synthetic data which allows the collection of a larger and more complex set
of scenes. This dataset is available online’ to further motivate research into more
complex reflectance models.

Recently, advances in digital 3D modeling software have enabled users to rely on
these rendering methods for graphical use, from digital animations and visual effects in
movies to computer aided industrial design. Rendering is the process of generating a
2D image from a description of a 3D scene and is often done using computer programs
by calculating the projection of the model of the 3D scene over the virtual image
plane. Rendering programs are moving toward achieving more realistic results and
better accuracy using physics-based models in optics. There are various softwares
available which embed known illumination and reflectance models [126].

In this work, we have used Blender [1] to model the 3D scenes and YafaRay [5]
to render 2D images from these scenes. Both of these applications are free and open
source.

5.2.1 Motivation

In Chapter 4, we have seen that algorithms for intrinsic image decomposition can be
distinguished by their assumptions on the underlying reflectance models. We will use
Shafer’s reflection model [135], described in Chapter 4, to demonstrate the differences
between existing datasets and our dataset. In the MIT dataset [71] the illuminant
is considered to be white. This assumption is shared by most of the methods for
intrinsic image estimation [20, 60, 133]. Recently, Barron and Malik [19] relaxed this
assumption: they allowed the illuminant color to vary but only considered direct
illumination (ignoring interreflections). They constructed a dataset by synthetically
relighting the objects of the MIT dataset [19].

However, obtaining a precise ground truth for complex real scenes, such as land-
scapes, would be impracticable using the procedure described in [71]. Recently, the
use of synthetic data to train and test complex computer vision tasks has attracted
growing attention due to the increased accuracy of rendering engines to represent
the world. In addition synthetic data allows for easy access to the ground truth.
Marin et al. [116] and Vazquez et al. [150] showed that a pedestrian detector trained
from virtual scenarios can obtain competitive results on real-world data. Liebelt and
Schmid [107] used synthetic data to improve multi-view object class detection. Fi-
nally, Rodriguez et al. [128] generated synthetic license plates to train recognition
system.

Thttp://www.cic.uab.cat/Datasets/synthetic_intrinsic_image_dataset
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In this work, we create a synthetic dataset by using rendering techniques from the
field of computer graphics. This allows us to remove the restriction other datasets put
on the illumination of the scene. In our dataset, the illuminant color and strength can
change from location to location. This allows us to consider more complex reflection
phenomena such as self-reflection and interreflection. To the best of our knowledge
this is the first dataset of intrinsic images which considers these more complex re-
flections. Later in this section we analyze rendering accuracy for such reflection
phenomena.

Note that Shafer’s reflection model assumes that the materials have Lambertian
reflectances. Even though specular materials can be accurately rendered, we exclude
them from this dataset because most existing algorithms of intrinsic image decompo-
sition are not able to handle non-Lambertian materials.

5.2.2 Global Lighting for Scene Rendering

In order to obtain more photo-realistic lighting for 3D scene rendering, a group of
rendering algorithms has been developed which is referred to as global illumination.
These methods, in addition to taking into account the light which reaches the object
surface directly from a light source, called direct lighting, also calculate the energy
which is reflected by other surfaces in the scene from the same light source. The latter
is also known as indirect lighting. This indirect lighting is what causes the reflections,
shadows, ambient lighting, and interreflections.

There are many popular algorithms for rendering global illumination (e.g. radios-
ity, raytracing, and image-based lighting). Among them, one of the most popular
methods is a two pass method called photon mapping, which was developed by Hen-
rik Wann Jensen [88]. To achieve physically sound results and photo-realism in our
dataset we make use of the photon mapping method embedded in YafaRay. Figure
5.5 shows the importance of indirect lighting in order to render more realistic images.
For this purpose we compare the final renderings of our dataset (a) to the renderings
which only consider direct lighting (images on the left). The diffuse interreflections
found in the final renderings (b) contribute to provide a stronger sense of realism to
these images.

5.2.3 Analysis of Color Rendering Accuracy

Synthetic datasets should accurately model the physical reality of the real world in
order to be useful to train and evaluate computer vision algorithms. In this section we
analyze the accuracy of color rendering based on the diagonal model, as it is typically
done in the field of computer graphics.

Full multispectral data is computationally very expensive. For this reason, ren-
dering engines approximate Equation 4.9 with

Pe= [ fr(N)Sk (A dA [ L(A)Sk (A)dA, (5-2)
[0

where the integrals are over all wavelengths A of the visible spectrum A. In vector
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(a) direct lighting (b) photon mapping

Figure 5.5: Comparing different rendering methods: direct lighting (a) and photon
mapping (b).

notation we could write this as
f’ = fr o L, (53)

where we use bold symbols to denote vectors (i.e. p = [pi,...,Pn], where n is the
number of sensors k considered), o is the Hadamard product, and

fo= [ fr (N)Sk (A) dA (5.4)
/
and
L= /L()\)Sk (N\) dA. (5.5)
A

In real scenes the light which is coming from objects is not only composed of
reflection caused by direct lighting of the illuminant, but part of the light is reflected
from other objects in the scene. Considering both direct lighting and interreflection
from another surface we can write:

p=floL+f2of!oL, (5.6)

where the superscript is used to distinguish the material reflectance of different ob-
jects. The accuracy of the approximations in Equation 5.3 and Equation 5.6 depends
on the shape and the number of sensors k considered. Typically rendering machines
apply three sensors, however it is known that rendering accuracy increases when con-
sidering more sensors [44, 40]. These additional sensors preserve additional spectral
information, which results in better representations of complex lighting effects such
as interreflections.

To test the accuracy of the approximate values py we perform a statistical analysis.
We use the 1269 Munsell color patches [4] and we compute both p; and py (using
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Equations 4.9 and 5.2, respectively). For sensors Sj we use Gaussian shaped sensors
which are equally spaced over the visible spectrum. We compare the reconstruction
error
&) &)
lp(x)ll2
for the cases of three, six and nine sensors. We consider both reflections with a
single bounce (Equation 5.3) and with two bounces (Equation 5.6). We use the
standard D65 daylight illuminant. Dark patches were discarded because they cause
the reconstruction error to be unstable.

(5.7)

One bounce Two bounces
sensors | mean (%) | s.d. (%) | max (%) || mean (%) | s.d. (%) | max (%)
3 0.58 0.44 2.88 1.38 1.62 23.84
6 0.19 0.14 1.25 0.55 0.55 9.06
9 0.12 0.08 0.86 0.34 0.29 3.77

Table 5.2: Reconstruction error for single and two bounce reflection for 3, 6, and 9
Sensors.

Table 5.2 shows the results of the experiment. For a single bounce the three
sensor approximation, which is common in graphics, is acceptable and only leads
to a maximum error of 2.88%. However, if we consider interreflections the maxi-
mum error reaches the unacceptable level of 23.84%. Observe that both the mean
and standard deviation of the errors decreases considerably when six or nine sensors
are being used. Based on these results, we have chosen to use a 6 sensors system
to propagate the multispectral color information, resulting in a maximum error of
9.06%. This can be conveniently achieved by running existing rendering softwares
(built for 3 channel propagation) twice for three channels [44, 40]. The resulting 6
channel image is projected back to a RGB image using linear regression. Although
our results show that using 9 sensors would provide more accurate renderings, we
have considered that the computational cost of using more than 6 sensors is too high.
In the only dataset of intrinsic images containing multi-illuminants [19], illuminants
were introduced synthetically by using a 3 channel approximation. Since this dataset
only considers direct lighting, our analysis shows that this is sufficient. However, in
the case of interreflections, synthetically relighting real-world scenes would introduce
significant error.

Next, we address the importance of indirect lighting in scenes. For this purpose we
compare the final renderings of our complex scenes to the renderings which only con-
sider direct illumination (rendering programs allow for this separation). We compare
the total energy in both renderings using the ratio
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where p™ is the final rendering and p' is the single bounce rendering. For the nine
complex scenes we found an average of r = 0.83, showing that a significant amount of
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lighting in the scene is coming from interreflections, thus providing a stronger sense
of realism to our rendered images.

5.2.4 Proposed dataset

Our dataset consists of two sets of images: single objects and complex scenes. Our
aim is to use the first set of images to simulate scenes which are similar to the scenes
of the MIT dataset. The second set is to our knowledge the first set of complex scenes
for intrinsic image estimation which has an accurate ground truth, not only for the
typical reflectance and shading decomposition, but also for the illuminant estimation.
There are 8 objects in the first set. They vary in complexity for their shape and
color distribution. The complex scenes, on the other hand, consist of various complex
objects (e.g. furniture) which result in diffuse interreflections and complex shadows.
Overall, there are 9 scenes in the second set. All the colors of the objects present
in the scenes are taken from the Munsell colors, since we know their multispectral
reflectance values. All the single object and complex scenes in our dataset are rendered
under 4 different illumination conditions (i.e. white light, colored light, and 2 cases
of multiple illuminants with distinct colors). This leads to a total of 32 images in
the single-object set and 36 in the complex-scene set. The illuminants are randomly
chosen from a list of Planckian and non-Planckian lights from the Barnard dataset

oeexn
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Figure 5.6: Single object scenes included in our dataset.

Figures 5.6 and 5.7 show, respectively, the single object and complex scenes in-
cluded in our dataset. Figure 5.8 shows examples of the ground truth we provide
with the dataset. Finally, Figure 5.9 shows two scenes of the dataset under different
illumination conditions.
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Figure 5.7: Complex scenes included in our dataset.

Figure 5.8: Two examples of ground-truth decomposition. For both rows, from left
to right: the rendered scene, reflectance component, and shading-illumination.

5.2.5 Experiments

In order to show that our dataset is suitable to evaluate methods for intrinsic image
decomposition, we compare four different methods for intrinsic image decomposition
which were state-of-the-art [19, 60, 133, 90] at the time of publication. For this
experiment, we have used the methods whose codes were publicly available, keeping
the default parameters. Therefore, we have not trained the models on this specific
dataset.

For each of the subsets of our dataset, namely single objects and complex scenes,
we have analyzed the methods on three illumination conditions: white light (WL),
one non-white illuminant (1L), and two non-white illuminants (2L). The mean results
for each illumination condition have been computed.
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Figure 5.9: Two examples from the dataset under different illumination conditions.
For both columns, from top to bottom: white illuminant, single-colored light, and
two distinct colored illuminants.
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Errors have been evaluated with the local mean squared error (LMSE) and con-
sidering the three RGB channels of the color image [71]. As reflectance images can
be recovered only up to a scale factor, we have multiplied the estimated reflectance
images by an « factor which has been fitted for each local patch to minimize the MSE.

Tables 5.3 and 5.4 summarize the results for the reflectance and shading estimates
of different approaches for intrinsic image decomposition. The error for all methods
varies accordingly to the complexity of the illumination conditions, being lower when
scenes are illuminated by white light and increasing when multiple light sources and
colored illuminants are considered. The shading evaluation is relatively invariant
to illuminant changes because it discards color information. The lower errors on the
complex scenes are caused by large uniform colored objects which result in low LMSE.
The method of Serra et al. [133] obtained the best results. However, visual inspection
of the results revealed that the design of new error measures is a necessity for intrinsic
image evaluation, since visual ranking of the accuracy did often not agree with the
LMSE error based ranking. Observe that the method of Barron and Malik [19] needs
masked input images, since it uses a prior on shape based on contours. Therefore,
we just applied this method to the complex scenes in our dataset for the sake of
completion, defining masks of the same size of the images.

Single Objects
Reflectance Shading
Method WL 1L 2L WL 1L 2L
Barron & Malik [19] | 0.082 | 0.099 | 0.102 || 0.043 | 0.046 | 0.054
Gehler et al. [60] 0.089 | 0.113 | 0.123 || 0.043 | 0.045 | 0.051
Serra et al. [133] 0.063 | 0.069 | 0.076 || 0.021 | 0.022 | 0.025
Jiang et al. [90] 0.160 | 0.161 | 0.161 || 0.040 | 0.043 | 0.050

Table 5.3: LMSE results of three intrinsic image methods on the single object scenes
included in our dataset. Errors for reflectance and shading are given separately for
the sake of clarity. Results for white illumination (WL), one illuminant (1L), and two
illuminants (2L) are averaged.

Complex Scenes
Reflectance Shading
Method WL 1L 2L WL 1L 2L
Barron & Malik [19] | 0.020 | 0.059 | 0.039 || 0.011 | 0.014 | 0.014
Gehler et al. [60] 0.018 | 0.067 | 0.040 || 0.007 | 0.009 | 0.009
Serra et al. [133] 0.027 | 0.041 | 0.033 || 0.006 | 0.006 | 0.007
Jiang et al. [90] 0.069 | 0.070 | 0.070 || 0.013 | 0.013 | 0.013

Table 5.4: LMSE results of three intrinsic image methods on the complex scenes
included in our dataset. Errors for reflectance and shading are given separately for
the sake of clarity. Results for white illumination (WL), one illuminant (1L), and two
illuminants (2L) are averaged.
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5.3 Discussion and Conclusion

In this chapter, we have presented two new datasets for intrinsic image evaluation.

First, we focused on the importance of the effects of both the illuminant of the
scene and the camera sensors during the image acquisition process (described in
Chapter 4). In order to demonstrate how these factors affect the estimates of ex-
isting methods of intrinsic image decomposition, we built a calibrated dataset which
includes ground truth information on the effects of the illuminant and the camera
sensors. This dataset is one sound contribution of this thesis.

In order to validate the general formulation that we introduced in Chapter 4, we
used our real dataset to evaluate different methods of intrinsic image estimation. Our
results indicate the importance of modeling the effects of the color of the illuminant
and the camera sensors in the formulation of intrinsic image decomposition in order
to obtain more accurate reflectance estimates.

Second, we encouraged the collection of large intrinsic synthetic image datasets.
These datasets allow the evaluation of methods of intrinsic image decomposition in
complex scenes and under complex illumination conditions. In order to do that, we
presented a synthetic dataset containing both simple objects, resembling those in
the MIT dataset [71], and complex scenes. All the scenes in the dataset have been
rendered under different illumination conditions, ranging from a single white illumi-
nant to multiple colored light sources. In this dataset, complex illumination effects
such as interreflections have also been modeled. This dataset is another important
contribution of this work.

We validated our dataset with different methods, and showed that the results we
got are consistent with the ones these methods achieved when they were evaluated
with the MIT dataset. Therefore, we claim that it is possible to apply the idea of
knowledge transfer that has been successfully used in other fields such as pedestrian
detection [116, 150] to the problem of intrinsic image estimation.

The use of synthetic data enables the collection of large and diverse datasets for
intrinsic image evaluation, and rendering engines provide straightforward and accurate
ground truth data for multiple scene characteristics.

Finally, we include our datasets to Table 2.5, presented in Chapter 2, in order to
compare our ground truth collections with the other datasets that have been used so
far for intrinsic image evaluation.
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Acquisition Ground Truth
7 Dataset Data 7 Objects | Shad. & Refl. 7 Specularities 7 Depth 7 Iuminant 7 Sensors
Crayola [145] Laboratory 46 v
MIT [71] Laboratory 20 v v
extended MIT [20] Synthetic 20 v v v v
MPI-Sintel [35] Synthetic 35%* v v

Bell et al. [28] Natural 5000 v

Our Synthetic Dataset [24] | Synthetic 17 v v

Our Calibrated Dataset Laboratory 20 v v v

Table 5.5: Comparison of the existing datasets for intrinsic image evaluation. * Sequences with different numbers of frames (50

on average).




Chapter 6

Conclusions and Future Work

In this thesis we have analyzed many aspects of one fundamental problem in the field
of computer vision: the decomposition of a single image into its intrinsic characteris-
tics. We have also presented several novel contributions to this problem. From these
contributions we have drawn multiple conclusions, which have already been exposed
separately in the previous chapters. All these conclusions are reviewed together in this
chapter. We also suggest some possible extensions and applications of the research
lines that have been described in this thesis and discuss the recent trends in the field
of intrinsic images and their potential developments.

6.1 Conclusions

We introduced the problem of intrinsic image estimation in the field of computer
vision in Chapter 1. We also presented the background of the problem, showing the
relationship of intrinsic images with art techniques, the human visual system and
human perception. Additionally, we mentioned topics such as color constancy or
sensor calibration whose photometric effects have a big influence in the problem of
intrinsic image estimation but had never been considered in the field so far.

In Chapter 2 we provided an exhaustive overview on the different existing methods
for intrinsic image estimation, taking into account different information such as the
assumptions that authors make about the world or the visual cues the methods use to
constrain the space of solutions of the decomposition problem. We also presented the
multiple datasets and metrics that have been used so far to evaluate these methods.
This review of the intrinsic image literature in the field of computer vision is one of
the contributions of this thesis.

We observed that emerging methods are using input information from multiple
sources such as video, image collections or RGB-D images. This extra information
simplifies the problem of intrinsic image decomposition. At the same time, deep
learning methods and advanced optimization techniques such as high-order MRFs
are being used in order to jointly estimate multiple intrinsic characteristics of the
scene, unifying different problems such as shape-from-shading, color constancy or
shadow-removal.

107
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The joint estimation of multiple intrinsic characteristics may seem to add com-
plexity to this already underconstrained problem. However, the inclusion of multiple
intrinsic characteristics of the scene into the formulation of the problem allows the
simplification of the decomposition problem, since most of these characteristics are
closely related to each other, and each of them presents some regularities which can
be exploited to bound the space of plausible solutions.

In Chapter 3 we presented a method for intrinsic image decomposition which
combines observations from two color cues in a conditional random field. One of the
cues is based on the semantic terms that human beings use to describe color. We
showed that color-name descriptors, based on psychophysical data, provide a sparse
set of color values to describe the reflectances in the scene. Color sparsity makes color
names more robust for describing object reflectance than any color descriptor based
on standard color spaces, such as RGB values.

The second cue is based on an analysis of color distributions in the histogram
space and provides a consistent description of surfaces sharing the same reflectance.
This attribute captures the continuity of material color through shading variations,
enhancing the stability of color names against strong changes in illumination due to
shadows and highlights.

In our method, a graph cut algorithm is used to minimize the energy function, and
a post-processing step is applied in order to enforce the smoothness of the shading by
locally modifying the intensity of the different reflectance descriptors in the reflectance
intrinsic image. The estimation of intrinsic reflectance images using a combination of
these color cues is a sound contribution of this thesis [133].

In Chapter 4 we described a generic theoretical framework for intrinsic image esti-
mation. The proposed mathematical formulation includes information about the color
of the illuminant and the effects of the camera sensors, both of which contribute to
the observed color of the reflectance of the objects in the scene during the acquisition
process. This model allows us to represent a wide range of intrinsic image decom-
positions depending on the specific assumptions on the geometric properties of the
scene configuration and the spectral properties of the light source and the acquisition
system, thus unifying previous models in a single general framework. By modeling
these effects, we get a “truly intrinsic” reflectance image, called absolute reflectance,
which is invariant to changes of illuminant or camera sensors.

We validated our general intrinsic image framework experimentally with both
synthetic data and natural images, and showed that the effects of both the illuminant
of the scene and the camera sensors are critical for the problem of intrinsic image
decomposition. Moreover, we demonstrated that even partial information about the
illuminant and the camera sensors improves significantly the estimated reflectance
images, thus making our method widely applicable.

The definition and validation of this theoretical framework for intrinsic image
decomposition and the definition of absolute reflectances are important contributions
of this thesis [134].

In Chapter 5 we presented a dataset for intrinsic image evaluation which includes
ground truth data about the illuminant of the scene as well as the camera sensors.
This dataset was also used to validate our theoretical framework, and is in its own
another contribution of this thesis.
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From our experiments we derived that existing methods which assume white light
and sRGB sensors carry big errors in their intrinsic reflectance estimates. We con-
cluded that it is necessary that future methods for intrinsic image estimation model
the effects of both the illuminant of the scene and the camera sensors.

Finally, we presented a synthetic dataset containing both single objects and com-
plex scenes under multiple illumination conditions. We analyzed the accuracy of color
rendering based on the diagonal model and showed that the use of 6 sensors, instead
of 3 (RGB sensors are commonly used), resulted in better rendered images. We also
showed that current methods can be evaluated with such a dataset, and the results
they provide with our dataset are coherent with those achieved with the MIT dataset.

We concluded that computer graphics software and rendering engines allow us to
easily build large synthetic datasets. Moreover, ground truth information for multiple
intrinsic characteristics can be directly computed. Therefore, synthetic ground truth
collections offer a realistic alternative to existing datasets for intrinsic image evalua-
tion. This dataset is another contribution of this thesis [24].

To sum up, in this thesis we have studied the problem of intrinsic images in the
field of computer vision from multiple perspectives. To start with, we have proposed
a method for intrinsic image estimation. We have next defined a theoretical model
for intrinsic image decomposition. We have built two new datasets for intrinsic image
evaluation, acquiring ground truth data from natural images in a lab and render-
ing synthetic scenes using computer graphics software and rendering engines. The
principal novel contributions of this work are listed below.

e This thesis provides an exhaustive review of the intrinsic image literature in the
field of computer vision.

e This thesis uses color cues based on psychophysical data and color distributions
for the estimation of intrinsic reflectance images.

e This thesis defines and validates a theoretical framework for intrinsic image
decomposition which includes information about the color of the illuminant and
the effects of the camera sensors and extends previous existing formulations.

e This thesis also defines a new intrinsic term, called absolute reflectance, which
is invariant to changes of illuminant or camera sensors.

e This thesis presents a new dataset for intrinsic image evaluation which contains
information about the illuminant of the scene and the camera sensors.

e This thesis introduces a synthethic collection of ground truth data for intrin-
sic image evaluation containing both simple objects and complex scene under
different illumination conditions.

6.2 Future Work

This thesis provides multiple novel contributions in the field of intrinsic image esti-
mation. These contributions can be considered as the starting point for new lines of
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research. In this section we will first present some of our ideas to extend and improve
our work, and then will provide a general analysis on the recent trends in intrinsic
image decomposition.

6.2.1 Future Research and Applications

We present here some proposals to extend the lines of research presented in this thesis
as well as some possible applications of our contributions.

We have multiple ideas in order to improve the method for intrinsic image estima-
tion that we presented in Chapter 3. In this work, we discretized the set of possible
labels by allowing combinations of at most 3 different labels taking 4 different non-
zero values and imposing their sum to be 1. Increasing the number of labels does
not seem to make any sense since in the color-name descriptor used in our method
[30] there are just a few values located in junctions of more than 3 different colors.
However, increasing the number of possible non-zero values, could lead to a more
robust representation of the reflectances in the image. Another idea is the definition
a better metric, based on human perception, to measure the distance between two
labels. Although we tested, in this thesis, different confusion matrices based in the
psychophysical data from Benavente et al. work [30], the a-expansion graph cut al-
gorithm that we used to optimize our energy function forced us to define a metric
satisfying the triangle rule. A final idea in this direction is the definition of a new
set of weights in the pair-wise potential, based on observations of the color shade
descriptor, which could lead to better reflectance estimates.

In a different direction, we also propose to extend our method to jointly estimate
illumination and shape properties of the scene, similarly to what Barron and Malik
did in [19]. This could be done by using high-order MRFs and redefining our energy
function accordingly using existing methods on shape-from-shading and color con-
stancy which are also defined in probabilistic frameworks. Using RGB-D images as
an input for our method would also be interesting since our method focuses on esti-
mating the reflectance image, and an approximate depth information input could be
used to impose some restrictions on the shading image, thus improving the inference
on the reflectance component.

Balagué explored some of the ideas mentioned above in [15]. The author analyzed
the influence of the number of possible color-name labels on the results. He increased
the number of possible non-zero values and showed that when the number of possible
labels was bigger, the estimated color values in the reflectance images looked qual-
itatively closer to the colors in the ground truth reflectance images. However, the
quantitative results did not improve significantly and computational time was dra-
matically increased. Balagué also performed a thorough analysis of different confusion
matrices by using an optimization algorithm which was less restrictive. Nonetheless,
the use of different confusion matrices did not result in better intrinsic estimates.
Finally, Balagué also tried to modify the structure of the MRF by defining a new set
of weights in the pair-wise potential. Adding these new weights did not result in any
significant improvement. However, the author suggested that defining a continuous
function to determine these weights, instead of using thresholds, could result in better
intrinsic image estimates. Although Balagué presented in [15] a first analysis on some
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of our ideas, a thorough analysis still needs to be done.

In Chapter 4, we concluded that the effects of the illuminant of the scene and the
camera sensors influenced a lot the performance of existing methods in intrinsic image
estimation. Although some methods have already considered the illuminant of the
scene [19, 21, 38] in their formulation, to the best of our knowledge camera sensors
have been completely ignored so far. These photometric effects should be modeled in
future approaches for intrinsic image decomposition.

In big collections of images, such as Flickr, information about the camera device
used to acquire the image is usually available. We propose to use this information
to build a method that, given an image, estimates the model of the camera that was
used to take the image, in a similar fashion to what we did in Chapter 4, but using
more images and cameras. Such a camera estimator would simplify the problem of
recovering absolute reflectance images and could also be applied to other fields such
as image forensics, which focuses on identifying the source of a digital images without
having any prior information about these images.

Multi-view stereo techniques infer the shape of a scene given multiple pictures of
this scene taken from different points of view. If we were able to remove illuminant
and camera sensor effects from images, this would benefit multi-view stereo tech-
niques, since the big collections of images that exist on the internet could be used to
recover the shape of multiple scenarios. For example, we could use multiple images
of the Sagrada Familia from Flickr, taken with different cameras and under different
illumination conditions, to recover the 3D shape of the sanctuary.

6.2.2 Recent Trends in the Field of Intrinsic Images

After reviewing the literature on intrinsic images in computer vision in Chapter 2,
we observed that the recent trends in the field are focused on the joint estimation of
multiple intrinsic components, including scene characteristics such as the depth and
orientation of the objects or the color and direction of the illuminants in the scene.
This is an important step towards the unification of multiple problems in the field of
computer vision which estimate different intrinsic characteristics of the scene, such as
shape-from-shading, color constancy or specularity removal techniques.

Other problems related to high-level attributes of a scene such as object segmen-
tation, semantic labeling or optical flow, have also been combined with the problem
of intrinsic image estimation achieving great results.

In our opinion, the future of this joint estimation will be basically affected by two
factors. The first one is the use of extra input information which may simplify the
decomposition problem, such as RGB-D images, videos or internet image collections.
This factor is closely related to the development of technology.

The other is the development of powerful computational techniques able to opti-
mize complex energy functions such as those defined with high-order MRF's, fast and
efficiently. Other advanced techniques, such as deep learning methods, have recently
provided promising results in the field of computer vision as well.

The evaluation of the problem must evolve in conjunction with the methods. Since
most current methods estimate multiple intrinsic components, we emphasize the urge
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to build larger datasets which contain accurate ground truth data of these compo-
nents, thus enabling the quantitative evaluation of actual and future approaches.

Since building datasets for intrinsic image evaluation has proved to be a challeng-
ing problem, we propose the use of synthetic data to build future datasets. Nowadays,
extremely realistic scenes can easily be reproduced using computer graphics software
and rendering engines. Moreover, exact information from multiple intrinsic compo-
nents of the scene can be recovered straightforwardly.

Although synthetic datasets have already been used for intrinsic image evaluation,
a lot of work still needs to be done in this direction. The MPI-Sintel dataset [35] was
not specifically created for the purpose of intrinsic image evaluation, and the new
synthetic dataset [24], presented in Chapter 5, has just been a first step towards
the use of synthetic data for intrinsic image evaluation. However, new collections of
synthetic data, containing a larger number of complex scenes and including ground
truth information about multiple intrinsic components, are still necessary.

We also observed the drawbacks of the multiple existing measures for intrinsic
image evaluation. It is important to define new standard metrics which overcome the
problems of previous similarity measures. In our opinion, each intrinsic component
should be evaluated with a different metric. In particular, special attention should be
given to the evaluation of color differences in the reflectance image, since Euclidean
distances in most color spaces are not correlated with human perception.



Appendix A

Discretization of the color-name
descriptor

Given an image, the output of the color-name descriptor consists of 11-dimensional
arrays containing in each position the probability of a given RGB value to belong to
each of the 11 universal color classes defined by Berlin and Kay in their anthropological
work [31]. These vectors satisfy the two following properties:

e Their values are non-negative real numbers.
e Their values sum to 1.

In order to make our algorithm computationally efficient, we need to reduce the
number of possible labels while preserving the two properties mentioned above. Thus,
we discretize the set of possible values, making the non-zero values (three at most) to
lay within the set {0.25, 0.5, 0.75, 1} and imposing their sum to be 1 .

This leads to four kinds of labels: a single value is non-zero, two values are non-zero
(two cases), and three values are non-zero. Each of these kinds of label can be seen
as a permutation with repetition of n elements, where the first element is repeated
a times, the second b rimes, the third c¢ times, etc. Therefore, we can calculate the
number of possible labels of each kind using the following formula:

n'

prbe — o — a4 btc+t .. (A.1)

T oalblel...

These are the four kinds of labels we can find:

e Labels containing a single non-zero value (1): Permutations of eleven ele-
ments, where the first element, 0, is repeated 10 times, and the second element,

1, just appears once.
10,1 11' o

o

e Labels containing two equal non-zero values (0.5, 0.5): Permutations of
eleven elements, where the first element, 0, is repeated 9 times, and the second
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element, 0.5, twice.
92 11!

11 *ﬁ:%

e Labels containing two different non-zero values (0.25, 0.75): Permuta-
tions of eleven elements, where the first element, 0, is repeated 9 times, and the
second (0.25) and third (0.75) elements, once.

11!
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P = gy = 110
e Labels containing three non-zero values (0.5, 0.25, 0.25): Permutations

of eleven elements, where the first element, 0, is repeated 8 times, the second

element, 0.5, once, and the third element, 0.25, twice.
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Although these theoretical computations give 671 possible labels, most of them
are never found in practice. This makes sense because in the color-naming model
we use [30] almost all color borders are shared by 3 colors or less. Therefore, many
labels, such as the one defining a color as having probability 1/2 of being red and 1/2
of being green, never happen. Thus, only considering labels with up to three positive
coordinates is enough to accurately describe the whole RGB space. In the end, only
250 different labels are actually used.
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Illumination Conditions

A Planckian light source represents the radiation emitted by a black body at tem-
perature T'. Its spectral distribution is described by Planck’s law, which is given
by

RONT) = %(exp {%} - 1)717 (B.1)

where the radiation, R, is a function of the wavelength, A, and the temperature, T
and c¢; and ¢y are constants. The sun and incandescent light sources are examples of
Planckian light sources. Common examples of non-Planckian illuminants are light-
emitting diodes (leds) and fluorescent lamps. The Planckian illuminants used in our
experiments were selected to cover a big range of common color temperatures (Figure
B.1(a)), while the non-Planckian light sources were randomly selected from Barnard
et al. dataset [17] (Figure B.1(b)).
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Figure B.1: Spectral power distribution of the 10 illuminants used in the experiment
with synthetic data. (a) Planckian illuminants. (b) Non-Planckian illuminants.



Appendix C

Database images

We present here all the images included in the two datasets that we have already
presented in Chapter 5.

C.1 Calibrated Dataset

We show in this section all the objects in our calibrated dataset for intrinsic image
evaluation described in Chapter 5. Our dataset contains 20 objects. Images of these
objects have been acquired in a laboratory using 2 cameras, the Nikon D5200 and
the Sigma Foveon D10, and 5 illumination conditions (a total of 200 images). All
the objects are shown below. For each object, we see the images acquired with the
Nikon D5200 camera in the first row, and the images acquired with the Sigma Foveon
camera in the second row. Moreover, each column corresponds to one illumination
condition. The first three columns correspond to the illumination conditions where
no color filter have been applied. Thus, only the direction of the light source differs
in these images. The images in the fourth column have been acquired under a bluish
illuminant (i.e. a blue color filter has been placed in front of one of the light bulbs).
The last column corresponds to the illumination condition where a yellowish color
filter has been placed in front of one of the light bulbs.
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C.2 Synthetic Dataset

We show in this section all the objects in our synthetic dataset for intrinsic image
evaluation described in Chapter 5. Our dataset contains 68 images. These images
represent both simple objects and complex scenes. In Figure C.1 we show the 8
scenes with a single object, which have been rendered under four different illumination
conditions (32 images of single objects). In Figure C.1 we show three different points
of view of 3 complex scenes under four different illumination conditions (a total of
36 images representing complex scenes). In both figures, the images in the first
column are illuminated with white light, the images in the second column contain one
colored light, and the images in the third and fourth columns are rendered with two
illuminants with distinct colors.
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Figure C.1: Images of single objects in our synthetic dataset.
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Figure C.2: Images of complex scenes in our synthetic dataset.
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