
PhD Dissertation

Singular Integral Operators on Sobolev Spaces on Domains
and

Quasiconformal Mappings

Mart́ı Prats Soler
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Plus Ultra - Versió diàdica

Allà dellà de l’espai
he vist somriure una fulla
ben amunt del lledoner
com grumet en veient terra,
com al pregon de l’afrau
una ef́ımera lluerna.

– Cub de Whitney – jo li he dit–,
de la mar margada gemma,
de les fites del sender
series tu la darrera?

– No só la darrera, no,
no só més que una llanterna
de la porta del jard́ı
que creies tu la frontera.
És sols lo començament
lo que prenies per terme.

Lo domini és infinit,
pertot acaba i comença,
i ençà, enllà, amunt i avall,
la immensitat és oberta,
i a on tu veus l’hiperplà
eixams de cubs formiguegen.

Dels camins de l’infinit
són los cubs la polsinera
que puja i baixa a sos peus
quan Peter Jones s’hi passeja.

Jacint Verdaguer (quasi)
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Introduction

The present dissertation studies some problems of geometric function theory, which is an area with
great impact in mathematical analysis, relating complex analysis, harmonic analysis, geometric
measure theory and partial differential equations. In particular it focuses on the relation between
Calderón-Zygmund convolution operators and Sobolev spaces on domains.

The Sobolev space W s,ppRdq (or simply W s,p) of smoothness s P N and order of integrability
1 ¤ p ¤ 8 is the Banach space of Lp functions with distributional derivatives up to order s in Lp

as well. This notion can be extended to 0   s   8 via the so-called Bessel-potential spaces (see
Section 1.3). An operator T defined for f P L1

locpRdq and x P Rdzsupppfq as

Tfpxq �
»
Rdztxu

Kpx� yqfpyqdy,

is called an admissible convolution Calderón-Zygmund operator of order s P N if it is bounded on
the Sobolev space W s,ppRdq for every 1   p   8 and its kernel K PW s,1

loc pRdzt0uq satisfies the size
and smoothness conditions

|∇jKpxq| ¤ CK
|x|d�j for every 0 ¤ j ¤ s and x � 0

(see Section 1.6 for more details).

Figure 0.1: Critical, supercritical and sub-
critical indices and corresponding embed-
dings for R3. Here, d

p2
� d

p�2
� s2.

In the complex plane, for instance, the Beurling
transform, defined as the principal value

Bfpzq :� � 1

π
lim
εÑ0

»
|w�z|¡ε

fpwq
pz � wq2 dmpwq,

is an admissible convolution Calderón-Zygmund oper-
ator of any order with kernel Kpzq � � 1

π z2 .
Along this dissertation some properties of this kind

of operators restricted to domains will be unravelled.
Let Ω � Rd be a domain (open and connected) and
T an admissible convolution Calderón-Zygmund op-
erator. We are interested in conditions that allow
us to infer that the restricted operator defined as
TΩpfq � χΩ T pχΩ fq is bounded on a certain Sobolev
space W s,ppΩq. In that spaces, the case sp � d is
called critical (see Figure 0.1), since the supercritical
case sp ¡ d usually implies continuity of the functions
involved, and the subcritical case sp   d implies only
some degree of integrability, while the functions are in
VMO when sp � d and the domain is regular enough
(see Proposition 1.11).
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Topics covered in this dissertation

Chapter 1: Background
The first chapter provides the reader with the tools which are common to the whole dissertation.

It begins with some examples that will help to illustrate the nature of the problems faced in the
thesis. The subsequent sections summarize the notation to be used and some well-known facts,
including sections devoted to uniform domains, approximating polynomials and Calderón-Zygmund
operators.

Chapter 2: T(P) theorems
In this chapter there are some results for the supercritical case, reducing the boundedness of

an operator TΩ on W s,ppΩq to its behavior on test functions, namely polynomials of degree strictly
smaller than the considered smoothness. This is in accordance with the pioneering results found
in [CMO13]:

Theorem ([CMO13]). Let Ω � Rd be a bounded C1,ε domain (i.e. a Lipschitz domain with
parameterizations of the boundary in C1,ε) for a given ε ¡ 0, let 1   p   8 and 0   s ¤ 1
such that sp ¡ d and let T be an admissible Calderón-Zygmund operator of order 1 with kernel

Kpxq � ωpxq
|x|d

where ω P C1pSd�1q is homogeneous of degree 0 with zero integral in the unit sphere

Sd�1 and even. Then the truncated operator TΩ is bounded on the Sobolev space W s,ppΩq if and
only if T pχΩq PW s,ppΩq.

This theorem is often called T p1q-theorem because the only condition to be checked in order to
show that an operator is bounded on W s,ppΩq is that TΩp1q P W s,ppΩq. The reader will find two
main results in that spirit in this chapter. First he or she will find a T pP q-theorem, which deals
with Wn,ppΩq with n P N and p ¡ d:

Theorem. Let Ω � Rd be a bounded uniform domain, T an admissible convolution Calderón-
Zygmund operator of order n P N, d   p   8 and let Pn�1 stand for the polynomials of degree
smaller than n. Then

}TΩP }Wn,ppΩq   8 for every P P Pn�1 ðñ TΩ is bounded on Wn,ppΩq.
This theorem improves the previously known results in the sense that the class of operators

considered is wider, the smoothness can be greater than 1 and, moreover, the restrictions on the
regularity of the domain are reduced to just asking the domain to be uniform. However, the case
0   s   1 is not covered. The second result of the chapter, Theorem 2.8, solves this gap:

Theorem. Let Ω � Rd be a bounded uniform domain, T an admissible convolution Calderón-
Zygmund operator of order 1, 1   p   8 and 0   s   1 with s ¡ d

p . Then

}TΩ1}W s,ppΩq   8 ðñ TΩ is bounded on W s,ppΩq.
Moreover, in Theorem 2.8 the assumptions on the regularity of the kernel are relaxed and it

will be extended to the class of Triebel-Lizorkin spaces F sp,q (see Chapter 2).
The novelty in the approach exposed in this chapter is not only on the aforementioned improve-

ments, but also on the techniques used to reach that results, which rely strongly on the properties
of uniform domains and their hyperbolic metric. Furthermore, in both cases a Key Lemma is
obtained that provides information even if the condition sp ¡ d is not satisfied.

To prove the second result, some lemmas are used which are proven in Sections 2.3 and 2.4,
results which are intuitive according to the literature, but which cannot be found in the pre-
cise shape needed. This includes the definition of an equivalent norm in terms of differences for
fractional Triebel-Lizorkin spaces in the spirit of [Ste61] (see Corollary 2.12), an extension theo-
rem for Triebel-Lizorkin spaces on uniform domains following the steps of the celebrated paper
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Figure 0.2: Indices for which the T pP q-theorem
is valid in Wσ,ppΩq for uniform domains in R3.

[Jon81] by Peter Jones (see Lemma 2.16), and
some equivalent norms for F sp,qpΩq introduced by
Eero Saksman and the author of the present dis-
sertation (see Corollary 2.22).

Note that we are far from covering all the su-
percritical cases (see Figure 0.2). This fact is
discussed at the end of the dissertation.

The T pP q-theorem reminds the results by
Rodolfo H. Torres in [Tor91], where the
characterization of some generalized Calderón-
Zygmund operators which are bounded on the
homogeneous Triebel-Lizorkin spaces in Rd is
given in terms of their behavior over polynomials.
It is also in place to remark that in [Väh09] Antti
V. Vähäkangas obtained some T p1q-theorem for
weakly singular integral operators on domains.
Roughly speaking, he showed the image of the
characteristic function being in a certain BMO-
type space to be equivalent to the boundedness
of TΩ : LppΩq Ñ 9Wm,ppΩq where m is the degree
of the singularity of T’s kernel.

Chapter 3: Characteristic functions of planar domains
According to the results above, estimating }TΩ1}Wn,ppΩq is crucial to determine if TΩ is bounded

on Wn,ppΩq or not. This chapter deals with the question of what conditions on the boundary of
the domain imply that this norm is finite. The techniques used rely heavily on complex analysis,
so all the results of this chapter are for planar domains.

The first results pointing in this direction were obtained in [CMO13]. Using a result in [MOV09]
it is proven that if ε ¡ s and Ω is a C1,ε domain then BχΩ P W s,ppΩq. Thus, assuming the
conditions in the T p1q-theorem for Ω, s and p to hold, one always has the Beurling transform
bounded on W s,ppΩq.

Following the thread, Victor Cruz and Xavier Tolsa in [CT12] showed that for 0   s ¤ 1 and
1   p   8 with sp ¡ 1, if the parameterizations of the domain are Lipschitz and the outward

unit normal vector N is in the Besov space B
s�1{p
p,p pBΩq, then BχΩ P W s,ppΩq. The Besov spaces

of functions are properly defined in 1.2 and 1.3; momentarily the reader unfamiliar with this
concept may stick to the right track by noting the fact that Bσp,p with σ R N can be defined by

means of real interpolation between the Sobolev spaces of integer order W tσu,p and W rσs,p. Their
appearance in this context is rather natural since the traces of functions in W s,ppΩq are precisely in

B
s�1{p
p,p pBΩq if certain regularity conditions are satisfied. The condition N P Bs�1{p

p,p pBΩq implies the

parameterizations of the boundary of Ω to be in B
s�1�1{p
p,p and, for sp ¡ 2, the parameterizations

are in C1,s�2{p as well by the Sobolev Embedding Theorem. In that situation, the T p1q result in
[CMO13] implies the boundedness of the Beurling transform in W s,ppΩq (see Figure 0.3). Moreover,
for s � 1, this condition is necessary for Lipschitz domains with small Lipschitz constant such that
BχΩ PW 1,ppΩq as shown in [Tol13].

This chapter deals with the case of Sobolev spaces with smoothness n P N. It is shown that

for p ¡ 1, if N P Bn�1{p
p,p pBΩq and the domain has parameterizations in Cn�1,1pRq, then BχΩ P

Wn,ppΩq, in the same spirit of [CT12]. The T pP q-theorem above will be used to deduce that the
Beurling transform is bounded on Wn,ppΩq when, in addition, p ¡ 2. Note that in this case again

B
n�1� 1

p
p,p pRq � Cn�1,1pRq.
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Theorem. Let p ¡ 2, let n P N and let Ω be a bounded Lipschitz domain with N P Bn�1{p
p,p pBΩq.

If f PWn,ppΩq, then
}BpχΩfq}Wn,ppΩq ¤ C}N}

B
n�1{p
p,p pBΩq

}f}Wn,ppΩq,

where C depends on p, n, diampΩq and the Lipschitz character of the domain.

The proof will be slightly more tricky than the case of smoothness smaller or equal to 1,
since the boundary of the domain must be approximated by polynomials instead of straight lines:
the derivative of the Beurling transform of the characteristic function of a half-plane is zero (see
[CT12]), but the derivative of the Beurling transform of the characteristic function of a domain
bounded by a polynomial of degree greater than one is not zero anymore. Moreover, some extra
effort will be done in order to get a quantitative result to be used in the subsequent chapter,
involving not only the truncated Beurling transform, but its iterates and other related operators.

Figure 0.3: The normal vector being in B
s�1{p
p,p pBΩq implies that BΩ1 P Wn,ppΩq (green and red

regions) and, when p ¡ 2 and sp ¡ 2 (green region), the T pP q-theorem applies. This is precisely

the case where the parameterizations of the boundary belong to B
s�1� 1

p
p,p � Cs,1�

2
p . In the figure

it is shown the case s � n P N, but 1
p   s   1 follows the same pattern.

Chapter 4: An application to quasiconformal mappings
Let µ P L8 be compactly supported in C with k :� }µ}L8   1 and consider K :� 1�k

1�k . A
function f is a K-quasiregular solution to the Beltrami equation

B̄f � µ Bf
with Beltrami coefficient µ if f PW 1,2

loc , that is, if f and ∇f are square integrable functions in any
compact subset of C, and B̄fpzq � µpzqBfpzq for almost every z P C. Such a function f is said
to be a K-quasiconformal mapping if it is a homeomorphism of the complex plane. If, moreover,
fpzq � z �O �

1
z

�
as z Ñ8, then f is the principal solution to the Beltrami equation.

Given a compactly supported Beltrami coefficient µ, the existence and uniqueness of the prin-
cipal solution is granted by the measurable Riemann mapping Theorem (see [AIM09, Theorem
5.1.2], for instance). The principal solution can be given by means of the Beurling transform. If

h :� pI � µBq�1µ,

then the principal solution of the Beltrami equation satisfies that B̄f � h and Bf � Bh� 1.
A natural question is to what spaces h belongs. The key point in finding out answers to that

question is inverting the operator pI � µBq in some space. Astala showed in [Ast94] that h P Lp
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for 1 � k   p   1 � 1{k (in fact, since h is also compactly supported, one can say the same for
every p ¤ 1� k even though pI �µBq may not be invertible in Lp for that values of p, as shown by
Astala, Iwaniec and Saksman in [AIS01]). Clop et al. in [CFM�09] and Cruz, Mateu and Orobitg
in [CMO13] proved that if µ belongs to the space W s,ppCq with sp ¡ 2 then also h P W s,ppCq.
One also finds some results in the same spirit for the critical case sp � 2 and the undercritical case
sp   2 in [CFM�09] and [CFR10], but here the space to which h belongs is slightly worse than
the space to which µ belongs, that is, either some integrability or some smoothness is lost.

When it comes to dealing with a Lipschitz domain Ω with supppµq � Ω, Mateu, Orobitg and
Verdera showed in [MOV09] that, if the parameterizations of the boundary of Ω are in C1,ε with
0   ε   1, then for every 0   s   ε one has that

µ P C0,εpΩq ùñ h P C0,spΩq. (0.1)

Furthermore, the principal solution to the Beltrami equation is bilipschitz in that case. The authors
allow the domain to have a finite number of holes with tangent boundaries. In [CF12], Giovanna
Citti and Fausto Ferrari proved that, if one does not allow this degenerate situation, then (0.1)
holds for s � ε. In [CMO13] the authors study also the Sobolev spaces to conclude that for the
same kind of domains (i.e., with boundary in C1,ε), when 0   s   ε   1 and 1   p   8 with
sp ¡ 2 one has that

µ PW s,ppΩq ùñ h PW s,ppΩq. (0.2)

A key point is proving the boundedness of the Beurling transform in W s,ppΩq, something that they
do in the same paper as mentioned in the presentation of the previous chapter. The other key
point is the invertibility of I � µB in W s,ppΩq, which is shown using Fredholm theory.

Back to the ideas of the presentation of Chapter 3 above, a domain such that its outward unit

normal vector N P Bs0�1{p0
p0,p0 pBΩq with 0   s0   1 and s0p0 ¡ 1 satisfies that the parameterizations

of its boundary are in B
s0�1�1{p0
p0,p0 . The aforementioned result by Cruz and Tolsa in [CT12] implies

that BχΩ PW s0,p0pΩq. In addition, when s0p0 ¡ 2, the parameterizations are also in C1,s0�2{p0 by
the Sobolev Embedding Theorem. This fact, combined with the T p1q-theorem in [CMO13], implies
the boundedness of the Beurling transform in W s0,p0pΩq. However, (0.2) only allows to infer that
for every 2{p   s   s0 � 2{p0 we have that (0.2) holds (see Figure 0.4). Apparently, there is room
to improve.

Figure 0.4: Combining the results of [CT12] and [CMO13], if the normal vector is in B
s0�1{p0
p0,p0 pBΩq

then (0.2) holds for the indices s, p in the yellow region of the second graphic (where 2{p   s  
s0 � 2{p0), although the Beurling transform is bounded on W s0,p0pΩq. Note that if s0p0   4 then
p ¡ p0, that is, not only smoothness, but also some integrability range is lost.
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The natural guess is that if N P Bs0�1{p0
p0,p0 pBΩq then (0.2) holds for s � s0. In this chapter we

prove that indeed this is the case for natural values of s0.

Theorem. Let n P N, let Ω be a bounded Lipschitz domain with outward unit normal vector N in

B
n�1{p
p,p pBΩq for some 2   p   8 and let µ P Wn,ppΩq with }µ}L8   1 and supppµq � Ω. Then,

the principal solution f to the Beltrami equation is in the Sobolev space Wn�1,ppΩq.
Note that this theorem only deals with the natural values of s0, but the restriction s   s0�2{p0

is eliminated. For n � 1 the author expects this to be a sharp result in view of [Tol13].

Figure 0.5: The gap presented in the previous diagram is not there anymore, so neither smoothness
nor integrability is lost. The argument presented is only valid for natural values for the smoothness
index by now.

Chapter 5: Carleson measures on Lipschitz domains
The T pP q-theorems provide useful tools to check if an operator is bounded on Wn,ppΩq as long

as p ¡ d. This chapter presents a completely new approach to find a sufficient Carleson condition
valid even if p ¤ d in the spirit of the celebrated article [ARS02] by N. Arcozzi, R. Rochberg and
E. Sawyer. This condition uses polynomials of degree smaller than n as test functions again.

In Section 5.2 the vertical shadows Shvpxq and �Shvpxq are defined for every point x in a
Lipschitz domain Ω close enough to BΩ. These shadows can be understood as Carleson boxes of
the domain (see Figure 1.2). A positive and finite Borel measure µ is an s, p-Carleson measure if
for every a P Ω and close enough to the boundary,»

�Shvpaq

distpx, BΩqpd�spqp1�p1qpµpShvpxq X Shvpaqqqp
1 dx

distpx, BΩqd ¤ CµpShvpaqq.

N. Arcozzi, R. Rochberg and E. Sawyer proved in [ARS02] that in the case when Ω coincides
with the unit disk D � C, the measure µ is 1, p-Carleson if and only if the trace inequality»

D
|f |p dµ ¤ C|fp0q|p � C

»
D
|f 1|p dm

holds for any holomorphic function f on D. It turns out that the notion of 1, p-Carleson measure is
also essential for the characterization of the boundedness of Calderón-Zygmund operators of order
n in Wn,ppΩq when 1   p ¤ d as the next theorem shows.

Theorem. Let T be an admissible convolution Calderón-Zygmund operator of order n, and con-
sider a bounded Lipschitz domain Ω and 1   p ¤ d. If the measure |∇nTΩP pxq|pdx is a 1, p-
Carleson measure for every polynomial P of degree at most n � 1, then TΩ is a bounded operator
on Wn,ppΩq.
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In connection with Chapter 2, an equivalent formulation for the fractional case d
p � d

2   s   1
is presented. In that case, the gradient notation is explained in Definition 2.9.

Theorem. Let 1   p   8 and 0   s   1 with s ¡ d
p � d

2 , let T be an admissible convolution
Calderón-Zygmund operator of order 1, and consider a bounded Lipschitz domain Ω. If the measure
µpxq � |∇s2TΩ1pxq|pdx is an s, p-Carleson measure, then TΩ is a bounded operator on W s,ppΩq.

The Carleson condition of this theorem is in fact necessary for n � 1 (see Figure 0.6):

Theorem. Let T be an admissible convolution Calderón-Zygmund operator of order 1, and con-
sider a Lipschitz domain Ω and 1   p   8. Then

TΩ is a bounded operator on W 1,ppΩq ðñ |∇TχΩpxq|pdx is a p-Carleson measure for Ω.

Figure 0.6: Indices for which the Carleson condition is sufficient for TΩ to be bounded on W s,ppΩq
for Lipschitz domains in R3. In blue the case s � 1, where the Carleson condition is necessary and
sufficient.

Final remarks
The results presented in this dissertation are fruit of the PhD studies of the author started in

February 2012 under the direction of Xavier Tolsa.
The contents of Chapter 2 are a combination of a joint article with Xavier Tolsa, adapted

in the present text to the framework of uniform domains as suggested by the referee during the
publication process (see [PT15]), and a joint work with Eero Saksman (see [PS15]). Chapter 3
contains the material of [Pra15b] together with some original proofs (Section 3.6) which are not
included in this preprint for the sake of brevity. The results of Chapter 4 can be found in the
preprint [Pra15a]. Finally, Chapter 5 contains also material from [PT15], although Section 5.4
cannot be found in any other paper by now.

The chronological order should be Chapter 3, Section 2.1, Chapter 5, Chapter 4 and the re-
maining sections of Chapter 2.





Chapter 1

Background

We introduce the principles that the other chapters have in common. First of all, in Section 1.1,
we provide some basic examples to help the reader to understand the nature of the problems we
are facing. Next we set up the notation of the dissertation in Section 1.2 and then we list some
well-known facts in Section 1.3. In Section 1.4 we introduce uniform domains. They will appear
only in Chapter 2 and, after that chapter, we will restrict our study to Lipschitz domains, which
are also uniform. However, we introduce here concepts as “admissible chain” or “shadow”, which
will be extremely useful in the subsequent chapters. The reader should be aware that, in the last
chapter, we will make some modifications on these concepts to introduce the Carleson measures.
Section 1.5 is about Meyers’ approximating polynomials on cubes, which are used in all the chapters
to discretize Sobolev functions on domains. Finally, Section 1.6 is devoted to defining admissible
Calderón Zygmund operators and proving that, up to a certain order, the weak derivatives of these
operators restricted to a domain make sense in our setting.

1.1 Some examples: the Beurling transform as a model

Given a compactly supported smooth function φ P C8
c pCq, we define its Cauchy transform as

Cφpzq :� 1

π

»
C

φpwq
z � w

dmpwq for all z P C,

where m stands for the two-dimensional Lebesgue measure. In other words, the Cauchy transform
of φ is the convolution of φ with the kernel 1

z . The Beurling transform of φ will be defined as the
convolution with 1

z2 , but this kernel is no longer locally integrable. Thus, we must define it via the
so-called Cauchy Principal Value, that is,

Bφpzq :� � 1

π
p.v.

»
C

φpzq
pz � wq2 dmpwq � � 1

π
lim
εÑ0

»
|w�z|¡ε

φpzq
pz � wq2 dmpwq for all z P C. (1.1)

Given any φ P C8pCq, then we write Bφpzq � 1
2 pBxφ� i Byφqpzq and B̄φpzq � 1

2 pBxφ� i Byφqpzq.
It is well known that for every φ P C8

c pCq we have that

B̄Cφpzq � φpzq and BCφpzq � Bφpzq (1.2)

(see, for example, [AIM09, Chapter 4]).
For α � pα1, α2q P Z2 with α1, α2 ¥ 0 and φ P C8

c pCq, we write Dαφ � Bα1 B̄α2φ. For any open
set U � C and every distribution f P D1pUq the distributional derivative Dαf is the distribution

9
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defined by
xDαf, φy :� p�1q|α|xf,Dαφy for every φ P C8

c pUq.
Given numbers n P N, 1 ¤ p ¤ 8 an open set U � C and a locally integrable function f defined

in U , we say that f is in the Sobolev space Wn,ppUq of smoothness n and order of integrability p
if f has distributional derivatives Dαf P Lp for every |α| ¤ n. We write |∇nf | � °

|α|�n |Dαf |.
Along this section we will use the norm

}f}Wn,ppUq � }f}LppUq � }∇nf}LppUq.

The Beurling transform is an isometry in L2pCq and it is bounded on LppCq for 1   p   8
(see, [AIM09, Chapter 4]), that is, for every f P LppCq we have that

}Bf}LppCq ¤ Cp}f}LppCq.

Furthermore, the Beurling transform commutes with derivatives, that is B � B � B �B, and B � B̄ �
B̄ � B, so B is bounded on the Sobolev space Wn,ppCq as long as 1   p   8 and n P N. However,
this does not apply to Wn,ppUq for general open sets U .

Given a domain (open and connected) Ω, we write BΩf � χΩBpχΩfq. Among other results, in
the present dissertation we will see that if a domain Ω is regular enough then BΩ is bounded on
Wn,ppΩq.

Let us see some examples. From (1.2) we can deduce the following property for the Beurling
transform: for 1   p   8 and f PW 1,ppCq we have that

BpB̄fq � BCpB̄fq � BB̄Cpfq � Bf. (1.3)

Using this result, we can undertake the study of the behavior of the Beurling transform of a
polynomial restricted to the unit disk.

Example 1.1. Consider the unit disk D � tz P C : |z|   1u. Then, for every polynomial P of
degree n� 1, its transform BDP � χDBpχDP q agrees with a polynomial of degree smaller or equal
than n� 1 in D so ∇nBDP pzq � 0 for z P D.

Thus, the sufficient conditions of Theorems 2.1 and 5.1 are satisfied. Those theorems can be
used to prove the boundedness of BD in Wn,ppDq for any n P N and p ¡ 1 in one stroke.

Proof. We will follow the ideas of [AIM09, page 96]. Consider a given any multiindex λ � pλ1, λ2q,
and let Pλpzq � zλ � zλ1 z̄λ2 .

If λ1 � 0, then we define fλpzq � z̄λ2�1χDpzq � z�λ2�1χDcpzq. This function is continuous and
is in some Sobolev space W 1,ppCq. Thus, by (1.3) we have that

pλ2 � 1qBpχDPλqpzq � BpB̄fλqpzq � Bfλpzq � �pλ2 � 1q 1

zλ2�2
χDcpzq,

so
BDPλ � 0.

Analogously, if 0   λ1   λ2 � 1 we define fλpzq � zλ�p0,1qχDpzq � zλ1�λ2�1χDcpzq, which is
also continuous and is in some Sobolev space W 1,ppCq because λ1 � λ2 � 1   0. Again by (1.3) we
have that

pλ2 � 1qBpχDPλqpzq � BpB̄fλqpzq � Bfλpzq � λ1z
λ�p�1,1qχDpzq � pλ2 � λ1 � 1q 1

zλ2�λ1�2
χDcpzq,

so

BDPλ � λ1

λ2 � 1
Pλ�p�1,1qχD.
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In case, λ1 � λ2 � 1 we take fλpzq � pzλ�p0,1q � 1qχDpzq. We have that

pλ2 � 1qBpχDPλqpzq � BpB̄fλqpzq � Bfλpzq � λ1z
λ�p�1,1qχDpzq,

so again

BDPλ � λ1

λ2 � 1
Pλ�p�1,1qχD � Pλ�p�1,1qχD.

Finally, when λ1 ¡ λ2 � 1 we choose fλpzq � pzλ�p0,1q � zλ1�λ2�1qχDpzq and we get that

pλ2 � 1qBpχDPλqpzq � BpB̄fλqpzq � Bfλpzq �
�
λ1z

λ�p�1,1q � pλ1 � λ2 � 1qzλ1�λ2�2
	
χDpzq,

so we have that

BDPλ �
�

λ1

λ2 � 1
Pλ�p�1,1q �

λ1 � λ2 � 1

λ2 � 1
Ppλ1�λ2�2,0q



χD.

Example 1.2. The Beurling transform of the characteristic function of a square Q (see Figure
1.1) is not in Wn,ppQq neither for any n � 1 and p ¥ 2 nor for n ¥ 2 and p ¡ 1. Nevertheless, if
1 ¤ p   2, then BχQ PW 1,ppQq.

Figure 1.1: Plot of Re pχQBχQpx� iyqq. There is a logarithmic singularity at every vertex of Q.

Proof. Consider the square Q0 � tz P C : |Re pzq| � |Impzq|   1u which has vertices t1, i,�1,�iu.
In that case, by [AIM09, (4.122)] one can see that

BpχQ0
qpzq � 1

π
log

pz � 1qpz � 1q
pz � iqpz � iq ,

where log stands for the well-defined branch of the logarithm with argument in p0, 2πq (if z P Q0

then Re
�
z2�1
z2�1

	
  0). Since

BBpχQ0qpzq �
1

π

4z

z4 � 1
, (1.4)
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we have that |BBpχQ0qpzq| � 1
|z�1| when z P Q0 is close enough to 1 and it follows that BpχQ0q R

W 1,ppQ0q for p ¥ 2 and, since BpχQ0
q is analytic, BpχQ0

q P W 1,ppQ0q for 1 ¤ p   2. By the
same token, for n ¥ 2 one has |BnBpχQ0

qpzq| � |z� 1|�n and therefore BpχQ0
q RWn,ppQ0q for any

p ¡ 1.

Example 1.3. The Beurling transform restricted to the square BQ0
is not bounded on Wn,ppQ0q

neither for n � 1 and p ¥ 2 nor for n ¥ 2 and p ¡ 1.
However, it is bounded on W 1,ppQq for every 1   p   2.

Proof. Of course (1.2) implies that BQ0
is not bounded on Wn,ppQ0q when n ¥ 2 and p ¡ 1 or

when n � 1 and p ¥ 2.
Nevertheless, when n � 1 and 1   p   2, we have seen that BpχQ0q PW 1,ppQ0q. This condition

does not suffice to grant the boundedness of B in W 1,ppQ0q for p   2. By Theorem 5.1 we need to
check that the measure

µpzq � |∇BχQ0
pzq|p

is a p-Carleson measure, as we sketch below (see Definition 5.16 for the details). Of course since the
measure is bounded away from the four vertices, by symmetry, it is enough to check this condition

for |z � 1|   1
2 or, equivalently, for µpzq �

�
1
|z|

	p
in Ω � tz P C : Impzq ¡ |Re pzq|u.

Figure 1.2: The vertical shadow ShvpP�1,2,5q.

Consider the cubes

Pi,j,k �
 
z P C : p|j| � 1q2i   Re pzq   |j|2i and p|j| � kq2i   Impzq   p|j| � k � 1q2i( (1.5)

for i P Z, j P Zzt0u, and k P t4, 5, 6, 7, 8u if j is even, k P t4, 5, 6, 7u if j is odd (see Figure 1.2).
This collection of cubes is a Whitney covering of Ω, that is, a collection of disjoint cubes with
side-length proportional to their distance to BΩ and such that the union of their closures is Ω.

For a cube Pi,j,k in this collection, we define its vertical shadow as the region of Ω situated
beneath it, that is,

ShvpPi,j,kq �
 
z P C : p|j| � 1q2i   Re pzq   |j|2i and Impzq   p|j| � k � 1q2i(

(see Figure 1.2).
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Then we say that the measure is p-Carleson if¸
Q�ShvpP q

µpShvpQqqp
1

`pQq p�2
p�1 ¤ CµpShvpP qq,

where 1
p � 1

p1 � 1. For every Whitney cube P � Pi0,j0,k0
, since µ is almost constant in cubes we

have that

µpP q �
»
P

dµ �
»
P

1

|z|dmpzq �
`pP q2

distpP, 0qp .

Note that the Lebesgue measure of the shadow mpShvpP qq is comparable to the Lebesgue
measure of the cube itself. Assume that |j0| ¡ 1, that is, assume that P is far from the imaginary
axis. Then, all the cubes contained in its shadow are essentially at the same distance of the origin,
so

µpShvpP qq �
¸

Q�ShvpP q

`pQq2
distpQ, 0qp �

mpShvpP qq
distpP, 0qp � `pP q2

distpP, 0qp .

If, instead, P intersects the imaginary axis (equivalently, if |j0| � 1), then we classify the cubes
in its shadow by their size:

µpShvpP qq �
i0̧

i��8

¸
Q�ShvpP q

`pQq�2i

`pQq2
distpQ, 0qp .

For Q � Pi,j,k let us define the index jpQq :� |j| � k. Then jpQq � distpQ,0q
`pQq by (1.5), and

µpShvpP qq �
i0̧

i��8

¸
Q�ShvpP q

`pQq�2i

2ip2�pq

jpQqp �
i0̧

i��8

2p2�pqi
¸

Q�ShvpP q

`pQq�2i

1

jpQqp .

Observe that for a fixed i and n P N, the number of cubes Q with `pQq � 2i and jpQq � n is
bounded by 3. Thus, since p   2, we get

µpShvpP qq �
i0̧

i��8

2p2�pqi
8̧

n�1

1

np
� 2p2�pqi0 � `pP q2�p.

Summing up, every Whitney cube P satisfies that

µpP q � µpShvpP qq � `pP q2
distpP, 0qp �

`pP q2�p
jpP qp .

Thus, since p�2
p�1 � 2� p1 and jpP q ¡ 1 for all cubes P , we have that

¸
Q�ShvpP q

µpShvpQqqp
1

`pQq p�2
p�1 �

¸
Q�ShvpP q

`pQqp2�pqp1
jpQqpp1 `pQq2�p1  

¸
Q�ShvpP q

`pQqp2�pqp1�2�p1

jpQqp

so, using that p2� pqp1 � 2� p1 � 2� p, we have that¸
Q�ShvpP q

µpShvpQqqp
1

`pQq p�2
p�1 À

¸
Q�ShvpP q

`pQq2�p
jpQqp � µpShvpP qq.
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1.2 Notation

On inequalities: When comparing two quantities x1 and x2 that depend on some parameters
p1, . . . , pj we will write

x1 ¤ Cpi1 ,...,pij x2

if the constant Cpi1 ,...,pij depends on pi1 , . . . , pij . We will also write x1 Àpi1 ,...,pij x2 for short, or

simply x1 À x2 if the dependence is clear from the context or if the constants are universal. We
may omit some of these variables for the sake of simplicity. The notation x1 �pi1 ,...,pij x2 will

mean that x1 Àpi1 ,...,pij x2 and x2 Àpi1 ,...,pij x1.

On polynomials: We write PnpRdq for the vector space of real polynomials of degree smaller
or equal than n with d real variables. If it is clear from the context we will just write Pn.

On sets: Given two sets A and B, their symmetric difference is A∆B :� pAYBqzpAXBq and
their long distance is

DpA,Bq :� diampAq � diampBq � distpA,Bq. (1.6)

Given x P Rd and r ¡ 0, we write Bpx, rq or Brpxq for the open ball centered at x with radius
r and Qpx, rq for the open cube centered at x with sides parallel to the axis and side-length 2r.
Given any cube Q, we write `pQq for its side-length, and rQ will stand for the cube with the same
center but enlarged by a factor r. We will use the same notation for balls and one dimensional
cubes, that is, intervals.

At some point we need to use segments in Rd: given x, y P Rd, we call the segment with
endpoints x and y

rx, ys :� tp1� tqx� ty : t P r0, 1su.
We may use the “open” segment sx, yr:� rx, ysztx, yu.

On finite diferences: Given a function f : Ω � Rd Ñ C and two values x, h P Rd such that
rx, x� hs � Ω, we call

∆1
hfpxq � ∆hfpxq � fpx� hq � fpxq.

Moreover, for any natural number i ¥ 2 we define the iterated difference

∆i
hfpxq � ∆i�1

h fpx� hq �∆i�1
h fpxq �

i̧

j�0

p�1qi�j
�
i

j



fpx� jhq

whenever the segment rx, x� ihs � Ω.

On domains: We call domain an open and connected subset of Rd.

Definition 1.4. Given n ¥ 1, we say that Ω � C is a pδ,Rq�Cn�1,1 domain if given any z P BΩ,
there exists a function Az P Cn�1,1pRq supported in r�4R, 4Rs such that���Apjqz ���

L8
¤ δ

Rj�1
for every 0 ¤ j ¤ n,

and, possibly after a translation that sends z to the origin and a rotation that brings the tangent
at z to the real line, we have that

ΩXQp0, Rq � tx� i y : y ¡ Azpxqu.
In case n � 1 the assumption of the tangent is removed (we say that Ω is a pδ,Rq-Lipschitz
domain). This concept can be extended naturally to every Rd with dimension d ¡ 2. In the present
dissertation, we will find only Lipschitz domains in Rd with d ¡ 2 in Chapter 5.

We call window such a cube.
If n � 1 and Ω � tx� i y : y ¡ A0pxqu, we say that Ω is a δ-special Lipschitz domain.
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On Whitney coverings: Next we present a construction that will be used in all the chapters.

Definition 1.5. Given a domain Ω, we say that a collection of open dyadic cubes W is a Whitney
covering of Ω if they are disjoint, the union of the cubes and their boundaries is Ω, there exists a
constant CW such that

CW`pQq ¤ distpQ, BΩq ¤ 4CW`pQq,
two neighbor cubes Q and R (i.e., Q X R � H) satisfy `pQq ¤ 2`pRq, and the family t50QuQPW
has finite superposition. Moreover, we will assume that

S � 5Q ùñ `pSq ¥ 1

2
`pQq. (1.7)

The existence of such a covering is granted for any open set different from Rd and in particular
for any domain as long as CW is big enough (see [Ste70, Chapter 1] for instance).

On measure theory: We denote the d-dimensional Lebesgue measure in Rd by md, or simply
m when the dimension is clear from the context. At some point we use m also to denote a natural
number. When dealing with line integrals in the complex plane, we will write dz for the form
dx � i dy and analogously dz̄ � dx � i dy, where z � x � i y. Thus, when integrating a function
with respect to the Lebesgue measure of a complex variable z we will always use dmpzq to avoid
confusion, or simply dm.

For any measurable set A and any measurable function f , we call fA � ffl
A
f dm to the mean

of f in A.

On indices: In this text N0 stands for the natural numbers including 0. Otherwise we will
write N. We will make wide use of the multiindex notation for exponents and derivatives. For
α P Zd its modulus is |α| � °d

i�1 |αi| and its factorial is α! � ±d
i�1 αi!. Given two multiindices

α, γ P Zd we write α ¤ γ if αi ¤ γi for every i. We say α   γ if, in addition, α � γ. Furthermore,
we write �

α

γ



:�

d¹
i�1

�
αi
γi



�

#±d
i�1

αi!
γi!pαi�γiq!

if α P Nd0 and ~0 ¤ γ ¤ α,

0 otherwise.

For x P Rd and α P Zd we write xα :� ±
xαii . Given any φ P C8

c (infintitely many times

differentiable with compact support in Rd) and α P Nd0 we write Dαφ � B|α|±
B
αi
xi

φ.

At some point we will use also use roman letter for multiindices, and then, to avoid confusion,
we will use the vector notation ~i,~j, . . .

On complex notation For z � x � i y P C we write Re pzq :� x and Impzq :� y. Note that
the symbol i will be used also widely as a index for summations without risk of confusion. The
multiindex notation will change slightly: for z P C and α P Z2 we write zα :� zα1 z̄α2 .

We also adopt the traditional Wirtinger notation for derivatives, that is, given any φ P C8
c pCq,

then

Bφpzq :� Bφ
Bz pzq �

1

2
pBxφ� i Byφqpzq,

and

B̄φpzq :� Bφ
Bz̄ pzq �

1

2
pBxφ� i Byφqpzq.

Thus, given any φ P C8
c pCq and α P N2

0, we write Dαφ � Bα1 B̄α2φ.

On Sobolev spaces: For any open set U , every distribution f P D1pUq and α P Nd0, the
distributional derivative Dα

Uf is the distribution defined by

xDα
Uf, φy :� p�1q|α|xf,Dαφy for every φ P C8

c pUq.
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Abusing notation we will write Dα instead of Dα
U if it is clear from the context. If the distribution

is regular, that is, if it coincides with an L1
loc function acting on DpUq, then we say that Dα

Uf is a
weak derivative of f in U . We write |∇nf | � °

|α|�n |Dαf |.
Given numbers n P N, 1 ¤ p ¤ 8 an open set U � Rd and an L1

locpUq function f , we say
that f is in the Sobolev space Wn,ppUq of smoothness n and order of integrability p if f has weak
derivatives Dα

Uf P Lp for every α P Nd0 with |α| ¤ n. We will use the norm

}f}Wn,ppΩq :� }f}LppΩq �
¸
|α|¤n

}Dαf}LppΩq.

When Ω is a Lipschitz domain, this norm is equivalent to considering only the higher order deriva-
tives. Namely,

}f}Wn,ppΩq � }f}LppΩq � }∇nf}LppΩq � }f}LppΩq �
ḑ

j�1

��Bnj f��LppΩq (1.8)

(see [Tri78, Theorem 4.2.4]). When Ω is an extension domain for Wn,p, that is, when there exists
a bounded operator Λ : Wn,ppΩq ÑWn,ppRdq such that pΛfq|Ω � f |Ω for f PWn,ppΩq, then

}f}Wn,ppΩq � inf
F :F |Ω�f

}F }Wn,ppRdq.

From [Jon81], we know that uniform domains (and in particular, Lipschitz domains) are Sobolev
extension domains for any indices n P N and 1 ¤ p ¤ 8. One can find deeper results in that sense
in [Shv10] and [KRZ15].

On Besov and Triebel-Lizorkin spaces: Next we present a generalization of Sobolev spaces.

Definition 1.6. Let ΦpRdq be the collection of all the families Ψ � tψju8j�0 � C8
c pRdq such that"

suppψ0 � Dp0, 2q,
suppψj � Dp0, 2j�1qzDp0, 2j�1q if j ¥ 1,

for all multiindex α P Nd there exists a constant cα such that

}Dαψj}8 ¤ cα
2j|α|

for every j ¥ 0

and
8̧

j�0

ψjpxq � 1 for every x P Rd.

Definition 1.7. Given any Schwartz function ψ P SpRdq, its Fourier transform is

Fψpζq �
»
Rd
e�2πix�ζψpxqdmpxq.

This notion extends to the tempered distributions SpRdq1 by duality (see [Gra08, Definition 2.3.7]).

Definition 1.8. Let s P R, 1 ¤ p ¤ 8, 1 ¤ q ¤ 8 and Ψ P ΦpRdq. For any tempered distribution
f P S 1pRdq we define its non-homogeneous Besov norm

}f}ΨBsp,q �
���!2sj

����ψj pf	q���
Lp

)���
lq
,
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and we call Bsp,q � S 1 to the set of tempered distributions such that this norm is finite.

Let s P R, 1 ¤ p   8, 1 ¤ q ¤ 8 and Ψ P ΦpRdq. For any tempered distribution f P S 1pRdq we
define its non-homogeneous Triebel-Lizorkin norm

}f}ΨF sp,q �
������!2sj

�
ψj pf	q)���

lq

���
Lp
,

and we call F sp,q � S 1 to the set of tempered distributions such that this norm is finite.

These norms are equivalent for different choices of Ψ. Usually one works with radial ψj and
such that ψj�1pxq � ψjpx{2q for j ¥ 1. Of course we will omit Ψ in our notation since it plays no
role (see [Tri83, Section 2.3]).

Remark 1.9. For q � 2 and 1   p   8 the spaces F sp,2 coincide with the so-called Bessel-potential
spaces W s,p. In addition, if s P N they coincide with the usual Sobolev spaces, and they coincide
with Lp for s � 0 (see [Tri83, Section 2.5.6]). In the present text, we call Sobolev space to any
W s,p with s ¡ 0 and 1   p   8, even if s is not a natural number. Note that complex interpolation
between Sobolev spaces is a Sobolev space (see [Tri78, Section 2.4.2, Theorem 1]).

On conjugate indices: Given 1 ¤ p ¤ 8 we write p1 for its Hölder conjugate, that is
1
p � 1

p1 � 1.

1.3 Known facts

On inequalities: For the sake of completeness, we recall the reader Minkowski’s integral inequality
(see [Ste70, Appendix A1]) which we will use every now and then. It states that for 1 ¤ p   8,
given a function F : X � Y Ñ C, where X and Y are σ-finite measure spaces, we have that�»

Y

�»
X

|F px, yq| dx

p

dy


 1
p

¤
»
X

�»
Y

|F px, yq|p dy

 1
p

dx. (1.9)

We will use also the Young inequality. It states that for measurable functions f and g, we have
that

}f � g}Lq ¤ }f}Lr}g}Lp (1.10)

for 1 ¤ p, q, r ¤ 8 with 1
q � 1

p � 1
r � 1 (see [Ste70, Appendix A2]).

On the Leibniz rule: The Leibniz formula (see [Eva98, Section 5.2.3]) says that given a
domain Ω � Rd, a function f PWn,ppΩq and φ P C8

c pΩq, we have that φ � f PWn,ppΩq with

Dαpφ � fq �
¸
γ¤α

�
α

γ



DγφDα�γf (1.11)

for every multiindex α P Nd0 such that |α| � n.

On Green’s formula: The Green Theorem can be written in terms of complex derivatives
(see [AIM09, Theorem 2.9.1]). Let Ω be a bounded Lipschitz domain. If f, g P W 1,1pΩq X CpΩq,
then »

Ω

�Bf � B̄g� dm � i

2

�»
BΩ

fpzq dz̄ �
»
BΩ

gpzq dz


. (1.12)

On the Residue Theorem: We say that a function f : C Ñ C is meromorphic on an open
set U � C if f is holomorphic on U but a discrete set of points tajuj . The singularity of f in



18 CHAPTER 1. BACKGROUND

aj is called a pole of order mj ¥ 1 when limzÑaj fpzqpz � ajqm � 0 if and only if m ¥ mj � 1.
The well-known Residue Theorem (see [Con78, Chapter V, Theorem 2.2 and Proposition 2.4], for
instance), states that given a meromorphic function f in a connected open set U with poles in
tajuMj�1 and no more singularities, and given a closed rectifiable curve γ homologous to 0 in U
which does not pass through any aj , then the line integral

1

2πi

»
γ

fpzq dz �
M̧

j�1

npγ, ajq 1

pmj � 1q!g
pmj�1qpajq, (1.13)

where npγ, ajq stands for the winding number of γ around aj (see [Con78, Chapter IV, Definition
4.2]) and mj is the order of the pole of f in aj .

On the Rolle Theorem: We state here also a Complex Rolle Theorem for holomorphic
functions [EJ92, Theorem 2.1] that will be a cornerstone of Section 3.5.

Theorem 1.10. [see [EJ92]] Let f be a holomorphic function defined on an open convex set U � C.
Let a, b P U such that fpaq � fpbq � 0 and a � b. Then there exists z in the segment sa, br such
that Re pBfpzqq � 0.

On the Sobolev Embedding Theorem: We state a reduced version of the Sobolev Em-
bedding Theorem for Lipschitz domains (see [AF03, Theorem 4.12, Part II]). For each Lipschitz
domain Ω � Rd and every p ¡ d, there is a continuous embedding of the Sobolev space W 1,ppΩq
into the Hölder space C0,1� d

p pΩq. That is, writing

}f}C0,spΩq � }f}L8pΩq � sup
x,yPΩ
x�y

|fpxq � fpyq|
|x� y|s for 0   s ¤ 1,

we have that for every f PW 1,ppΩq,

}f}L8pΩq ¤ }f}
C

0,1� d
p pΩq

¤ CΩ}f}W 1,ppΩq. (1.14)

If Ω is not Lipschitz but it is an extension domain, then the previous estimate remains true.

On embeddings and equivalent norms for Bsp,q and F sp,q: Next we recall some results on
the function spaces that we will use. For a complete treatment we refer the reader to [Tri83].

Proposition 1.11 (See [RS96, Section 2.2]). The following properties hold:

1. Let 1 ¤ q0, q1 ¤ 8 and 1 ¤ p ¤ 8, s P R and ε ¡ 0. Then

Bs�εp,q0 � Bsp,q1 .

2. Let 1 ¤ p0   p   p1 ¤ 8, �8   s1   s   s0   8, 1 ¤ u ¤ p ¤ v ¤ 8 and 1 ¤ q   8.
Then,

Bs0p0,u � F sp,q � Bs1p1,v if s0 � d

p0
� s� d

p
� s1 � d

p1
.

3. In particular, given 1 ¤ p   8, d
p   s   8 and 1 ¤ q ¤ 8. Then,

F sp,q � B
s� d

p
8,8 and Bsp,q � B

s� d
p

8,8. (1.15)
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Remark 1.12. When s� d
p R Z, the space B

s� d
p

8,8 coincides with the Hölder space Cs�
d
p , so this is

a generalization of the Sobolev embedding Theorem to the whole double-scale of Besov and Triebel-

Lizorkin spaces. Thus, if Ω is an extension domain for F sp,q and sp ¡ d, then F sp,qpΩq � Cs�
d
p if

s� d
p R Z and F sp,qpΩq � Cs�

d
p�ε if s� d

p P Z.

If we set j P Z instead of j P N in Definition 1.6, then we get the homogeneous spaces of
tempered distributions (modulo polynomials) 9Bsp,q. In particular, by [Tri92, Theorem 2.3.3] we
have that for s ¡ 0

}f}Bsp,q � }f} 9Bsp,q
� }f}Lp for any f P S 1, (1.16)

and the same can be said for Triebel-Lizorkin spaces.
In the particular case of homogeneous Besov spaces with 1 ¤ p, q ¤ 8 and s ¡ 0, one can give

an equivalent definition in terms of differences of order M ¥ rss � 1:

}f} 9Bsp,q
�

�» 8

0

sup|h|¤t
��∆M

h f
��q
Lp

tsq
dt

t

� 1
q

�
�»

Rd

��∆M
h f

��q
Lp

|h|sq
dmphq
|h|d

� 1
q

. (1.17)

Consider the boundary of a Lipschitz domain Ω � C. When it comes to the Besov space
Bsp,qpBΩq we can just define it using the arc parameter of the curve, z : I Ñ BΩ with |z1ptq| � 1
for all t. Note that if the domain is bounded, then I is a finite interval with length equal to
the length of the boundary of Ω and we need to extend z periodically to R in order to have a
sensible definition. We also use an auxiliary bump function ϕΩ : R Ñ R such that ϕΩ|2I � 1 and
ϕΩ|p4Iqc � 0. Then, if 1 ¤ p, q   8, we define naturally the homogeneous Besov norm on the
boundary of Ω as

}f}Bsp,qpBΩq :� }pf � zqϕΩ}Bsp,qpRq. (1.18)

Consider the boundary of a Lipschitz domain Ω � C. When it comes to the Besov space
Bsp,qpBΩq we can just define it using the arc parameter of the curve, z : I Ñ BΩ with |z1ptq| � 1
for all t. Note that if the domain is bounded, then I is a finite interval with length equal to
the length of the boundary of Ω and we need to extend z periodically to R in order to have a
sensible definition. We also use an auxiliary bump function ϕΩ : R Ñ R such that ϕΩ|2I � 1 and
ϕΩ|p4Iqc � 0. Then, if 1 ¤ p, q   8, we define naturally the homogeneous Besov norm on the
boundary of Ω as

}f}Bsp,qpBΩq :� }pf � zqϕΩ}Bsp,qpRq. (1.19)

1.4 On uniform domains

There is a considerable amount of literature on uniform domains and their properties, we refer the
reader e.g. to [GO79] and [Väi88].

Definition 1.13. Let Ω be a domain and W a Whitney decomposition of Ω and Q,S PW. Given
M cubes Q1, . . . , QM P W with Q1 � Q and QM � S, the M -tuple pQ1, . . . , QM qMj�1 P WM

is a chain connecting Q and S if the cubes Qj and Qj�1 are neighbors for j   M . We write
rQ,Ss � pQ1, . . . , QM qMj�1 for short.

Let ε P R. We say that the chain rQ,Ss is ε-admissible if

• the length of the chain is bounded by

`prQ,Ssq :�
M̧

j�1

`pQjq ¤ 1

ε
DpQ,Sq (1.20)

(see (1.6)),
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Figure 1.3: A Whitney decomposition of a uniform domain with and an ε-admissible chain. The
end-point cubes are colored in red and the central one in blue.

• and there exists j0  M such that the cubes in the chain satisfy

`pQjq ¥ εDpQ1, Qjq for all j ¤ j0 and `pQjq ¥ εDpQj , QM q for all j ¥ j0. (1.21)

The j0-th cube, which we call central, satisfies that `pQj0q Ád εDpQ,Sq by (1.20) and the triangle
inequality. We will write QS � Qj0 . Note that this is an abuse of notation because the central cube
of rQ,Ss may vary for different ε-admissible chains joining Q and S.

We write (abusing notation again) rQ,Ss also for the set tQjuMj�1. Thus, we will write P P
rQ,Ss if P appears in a coordinate of the M -tuple rQ,Ss. For any P P rQ,Ss we call NrQ,SspP q
to the following cube in the chain, that is, for j   M we have that NrQ,SspQjq � Qj�1. We will
write N pP q for short if the chain to which we are referring is clear from the context.

Every now and then we will mention subchains. That is, for 1 ¤ j1 ¤ j2 ¤ M , the subchain
rQj1 , Qj2srQ,Ss � rQ,Ss is defined as pQj1 , Qj1�1, . . . , Qj2q. We will write rQj1 , Qj2s if there is no
risk of confusion.

Next we make some observations on the two subchains rQ,QSs and rQS , Ss.
Remark 1.14. Consider a domain Ω with covering W and two cubes Q,S P W with an ε-
admissible chain rQ,Ss. From Definition 1.13 it follows that

DpQ,Sq �ε,d `prQ,Ssq �ε,d `pQSq �ε,d DpQ,QSq �ε,d DpQS , Sq. (1.22)
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If P P rQ,QSs, by (1.20) we have that

DpQ,P q �d,ε `pP q. (1.23)

On the other hand, by the triangular inequality, (1.19) and (1.20) we have that

DpP, Sq Àd `prP, Ssq ¤ `prQ,Ssq ¤ DpQ,Sq
ε

Àd DpQ,P q �DpP, Sq
ε

Àd
1
ε `pP q �DpP, Sq

ε
,

that is,
DpP, Sq �ε,d DpQ,Sq. (1.24)

Definition 1.15. We say that a domain Ω � Rd is a uniform domain if there exists a Whitney
covering W of Ω and ε P R such that for any pair of cubes Q,S PW, there exists an ε-admissible
chain rQ,Ss (see Figure 1.3). Sometimes will write ε-uniform domain to fix the constant ε.

Using (1.23) it is quite easy to see that a domain satisfying this definition satisfies to the one
given by Peter Jones in [Jon81] (with δ � 8 and changing the parameter ε if necessary). It is
somewhat more involved to prove the converse implication, but it can be done using the ideas of
Remark 1.14. Of course, the definition above is also equivalent to the one given by Gehring and
Osgood in [GO79]. In any case it is not transcendent for the present dissertation to prove this fact,
which is left for the reader as an exercise.

Now we can define the shadows:

Definition 1.16. Let Ω be an ε-uniform domain with Whitney covering W. Given a cube P PW
centered at xP and a real number ρ, the ρ-shadow of P is the collection of cubes

SHρpP q � tQ PW : Q � BpxP , ρ `pP qqu,
and its “realization” is the set

ShρpP q �
¤

QPSHρpP q

Q

(see Figure 1.4).
By the previous remark and the properties of the Whitney covering, we can define ρε ¡ 1 such

that the following properties hold:

• For every P PW, we have the estimate |diampBΩX ShρεpP qq| � `pP q.
• For every ε-admissible chain rQ,Ss, and every P P rQ,QSs we have that Q P SHρεpP q.
• Moreover, every cube P belonging to an ε-admissible chain rQ,Ss belongs to the shadow

SHρεpQSq.
Note that the first property comes straight from the properties of the Whitney covering, while

the second is a consequence of (1.22) and the third holds because of the fact that if P P rQ,Ss
then DpP,QSq Àd `prQ,Ssq � DpQ,Sq � `pQSq by (1.21).

Remark 1.17. Given an ε-uniform domain Ω we will write Sh for Shρε . We will write also SH
for SHρε .

For Q PW and s ¡ 0, we have that¸
L:QPSHpLq

`pLq�s À `pQq�s (1.25)

and, moreover, if Q P SHpP q, then¸
LPrQ,P s

`pLqs À `pP qs and
¸

LPrQ,P s

`pLq�s À `pQq�s. (1.26)
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Figure 1.4: A Whitney decomposition of a Lipschitz domain with the shadows of three different
cubes (see Definition 1.16).

Proof. Considering the definition of shadow we can deduce that there is a bounded number of
cubes with given side-length in the left-hand side of (1.24) and, therefore, the sum is a geometric
sum. Again by the definition of shadow we know that the smaller cube in that sum has side-length
comparable to `pQq.

To prove (1.25), first note that `pQP q � DpQ,P q � `pP q by (1.21) and Definition 1.16. For
every L P rQ,P s, although it may occur that L R SHpP q, we still have that by the triangle
inequality DpL,P q À `prQ,P sq � DpQ,P q and, thus, by the definition of shadow we have that
DpL,P q À `pP q, i.e.

DpL,P q � `pP q. (1.27)

When L P rQ,QP s, (1.22) reads as
`pLq � DpQ,Lq,

and when L P rQP , P s by (1.22) and (1.26), we have that

`pLq � DpL,P q � `pP q.
In particular, the number of cubes in rQP , P s is uniformly bounded. Summing up, for L P rQ,P s
we have that `pQq À `pLq À `pP q and all the cubes of a given side-length r contained in rQ,P s
are situated at a distance from Q bounded by Cr. so the number of those cubes is uniformly
bounded. Therefore, the left-hand side of both inequalities of (1.25) are geometric sums, bounded
by a constant times the bigger term. The constant depends on s, but also on the uniformity
constant of the domain.

We recall the definition of the non-centered Hardy-Littlewood maximal operator. Given f P
L1
locpRdq and x P Rd, we define Mfpxq as the supremum of the mean of f in cubes containing x,

that is,

Mfpxq � sup
QQx

1

|Q|
»
Q

fpyq dy.

It is a well known fact that this operator is bounded on Lp for 1   p   8. The following lemma
will be used repeatedly along the proofs contained in the present text.

Lemma 1.18. Let Ω be a bounded uniform domain with an admissible Whitney covering W.
Assume that g P L1pΩq and r ¡ 0. For every η ¡ 0, Q PW and x P Rd, the following inequalities
hold:
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1) The non-local inequality for the maximal operator»
|y�x|¡r

gpyq dy
|y � x|d�η Àd

Mgpxq
rη

and
¸

S:DpQ,Sq¡r

³
S
gpyq dy

DpQ,Sqd�η Àd
infyPQMgpyq

rη
. (1.28)

2) The local inequality for the maximal operator»
|y�x| r

gpyq dy
|y � x|d�η Àd r

ηMgpxq and
¸

S:DpQ,Sq r

³
S
gpyq dy

DpQ,Sqd�η Àd inf
yPQ

Mgpyq rη.

(1.29)

3) In particular we have»
|y�x|¡r

dy

|y � x|d�η Àd
1

rη
,

¸
SPW

`pSqd
DpQ,Sqd�η Àd

1

`pQqη (1.30)

and, by Definition 1.16, ¸
SPSHρpQq

»
S

gpxq dx Àd,ρ inf
yPQ

Mgpyq `pQqd.

Proof. The left-hand side of both inequalities in (1.27) can just bounded by

C

»
gpyq dx

p|x� y| � rqd�η

(in the second one, this bound holds for every x P Q), and this can be bounded separating the
integral region in dyadic annuli. The sum in (1.28) can be bounded by an analogous reasoning and
(1.29) follows when considering g � 1.

1.5 Approximating polynomials

Before introducing the approximating polynomials, we need a rather trivial observation, which is
proven here for the sake of completeness.

Remark 1.19. For every polynomial P P Pn, every cube Q and every r ¡ 1, we have that

}P }L1pQq � `pQqd}P }L8pQq,

and for r ¡ 1, also

}P }L8prQq À rn}P }L8pQq,
with constants depending only on d and n.

Proof. Without loss of generality we can assume that the cube Q is centered at 0. Given a
polynomial P pxq � °

|γ|¤n aγx
γ of degree n, using the linear map φ that sends the unit cube

Q0 �
�� 1

2 ,
1
2

�d
to Q as a change of coordinates, we have that

}P }L1pQq � |Q|}P � φ}L1pQ0q
.
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It is well known that all norms in a finite dimensional vector space are equivalent (see [Sch02,
Theorem 4.2], for instance). In particular the L1pQ0q norm, the sum of coefficients and the L8pQ0q
norm are equivalent in Pn, so we have that

1

`pQqd }P }L1pQq �
¸
|γ|¤n

`pQq|γ| |aγ | � }P }L8pQq.

By the same token,

}P }L8prQq �
¸
|γ|¤n

pr`pQqq|γ| |aγ | À rn}P }L8pQq.

Recall that the Poincaré inequality tells us that, given a cube Q and a function f P W 1,ppQq
with 0 mean in the cube, we have the estimate

}f}LppQq À `pQq}∇f}LppQq
with universal constants once we fix d and 1 ¤ p ¤ 8 (this well-known result can be shown
combining the proof of [Eva98, Theorem 5.8.1/1], the version of Rellich-Kondrachov Theorem in
[AIM09, Theorem A.7.1] and a change of variables for the dilatation constant, for instance).

If we want to iterate that inequality, we also need the gradient of f to have 0 mean on Q. That
leads us to define the next approximating polynomials.

Definition 1.20. Consider a domain Ω and a cube Q � Ω. Given f P L1pQq with weak derivatives
up to order n, we define Pn

Qpfq P Pn as the unique polynomial (restricted to Ω) of degree smaller
or equal than n such that  

Q

DβPn
Qf dm �

 
Q

Dβf dm (1.31)

for every multiindex β P Nd with |β| ¤ n.

These polynomials can be understood as a particular case of the projection L : Wn�1,ppQq Ñ
Pn introduced by Norman G. Meyers in [Mey78].

Lemma 1.21. Given a cube Q and f P Wn�1,1p3Qq, the polynomial Pn�1
3Q f P Pn�1 exists and is

unique. Furthermore, this polynomial has the next properties:

1. Let xQ be the center of Q. If we consider the Taylor expansion of Pn�1
3Q f at xQ,

Pn�1
3Q fpyq �

¸
γPNd
|γ| n

mQ,γpy � xQqγ , (1.32)

then the coefficients mQ,γ are bounded by

|mQ,γ | Àn
n�1̧

j�|γ|

��∇jf��
L1p3Qq

`pQqj�|γ|�d Àn }f}Wn�1,8p3Qqp1� `pQqn�1q. (1.33)

2. Let us assume that, in addition, the function f is in the Sobolev space Wn,pp3Qq for a certain 1 ¤
p ¤ 8. Given 0 ¤ j ¤ n, if we have a smooth function ϕ P C8p3Qq satisfying

��∇iϕ��
L8p3Qq

À
1

`pQqi for 0 ¤ i ¤ j, then we have the Poincaré inequality���∇j ��f �Pn�1
3Q f

	
ϕ
	���
Lpp3Qq

¤ C`pQqn�j}∇nf}Lpp3Qq. (1.34)
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3. Given a domain with a Whitney covering W, two Whitney cubes Q,S P W, a chain rS,Qs as
in Definition 1.13, and f PWn,ppΩq, we have that���f �Pn�1

3Q f
���
L1pSq

À
¸

PPrS,Qs

`pSqdDpP, Sqn�1

`pP qd�1
}∇nf}L1p3P q. (1.35)

Proof. Note that (1.30) is a triangular system of equations on the coefficients of the polynomial.
Indeed, for γ fixed, if the polynomial exists and has Taylor expansion (1.31), then

DγPn�1
3Q fpyq �

¸
β¥γ

mQ,β
β!

pβ � γq! py � xQqβ�γ .

When we take means on the cube 3Q, 
3Q

Dγf dm �
 

3Q

DγPn�1
3Q f dm

�
¸
β¥γ

mQ,β
β!

pβ � γq!
�

3

2
`pQq


|β�γ|  
Qp0,1q

yβ�γdy

�
¸
β¥γ

Cβ,γmQ,β`pQq|β�γ|,

which is a triangular system of equations on the coefficients mQ,β .
Solving for mQ,γ , since Cγ,γ � 0 we obtain the explicit expression

mQ,γ � 1

Cγ,γ

 
3Q

Dγf dm�
¸
β¡γ

Cβ,γmQ,β`pQq|β�γ|. (1.36)

For |γ| � n� 1 this gives the value of mQ,γ in terms of Dγf ,

mQ,γ � 1

Cγ,γ

 
3Q

Dγf dm.

Using induction on n� |γ| we get the existence and uniqueness of Pn�1
3Q f . Taking absolute values

we obtain (1.32).
The equality (1.30) allows us to iterate the Poincaré inequality���f �Pn�1

3Q f
���
Lpp3Qq

¤ C`pQq
���∇�

f �Pn�1
3Q f

	���
Lpp3Qq

¤ � � � ¤ Cn`pQqn}∇nf}Lpp3Qq.

Therefore, by the Leibniz rule (1.11) we have that���∇j ��f �Pn�1
3Q f

	
ϕ
	���
Lpp3Qq

À
j̧

i�0

��∇iϕ��
L8p3Qq

���∇j�i �f �Pn�1
3Q f

	���
Lpp3Qq

À
j̧

i�0

`pQqi
`pQqi

���∇j �f �Pn�1
3Q f

	���
Lpp3Qq

À `pQqn�j}∇nf}Lpp3Qq,

proving (1.33).
To prove (1.34), we consider the chain rQ,Ss to write���f �Pn�1

3Q f
���
L1pSq

¤ ��f �Pn�1
3S f

��
L1pSq

�
¸

PPrS,Qq

���Pn�1
3P f �Pn�1

3N pP qf
���
L1pSq

, (1.37)
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where we write N pP q instead of NrS,QspP q from Definition 1.13. Applying Remark 1.19 to the

polynomial Pn�1
3P f �Pn�1

3N pP qf , the cubes S and P and with r � DpP,Sq
`pP q , it follows that���Pn�1

3P f �Pn�1
3N pP qf

���
L1pSq

�
���Pn�1

3P f �Pn�1
3N pP qf

���
L8pSq

`pSqd

À
���Pn�1

3P f �Pn�1
3N pP qf

���
L8p3PX3N pP qq

`pSqdDpP, Sqn�1

`pP qn�1

�
���Pn�1

3P f �Pn�1
3N pP qf

���
L1p3PX3N pP qq

`pSqdDpP, Sqn�1

`pP qn�1`pP qd .

Using this estimate in (1.36), and then (1.33) with ϕ � 1, we get���f �Pn�1
3Q f

���
L1pSq

À
¸

PPrS,Qq

���Pn�1
3P f � f

��
L1p3P q

�
���f �Pn�1

3N pP qf
���
L1p3N pP qq



`pSqdDpP, Sqn�1

`pP qd�n�1

À
¸

PPrS,Qs

��f �Pn�1
3P f

��
L1p3P q

`pSqdDpP, Sqn�1

`pP qd�n�1

À
¸

PPrS,Qs

}∇nf}L1p3P q

`pSqdDpP, Sqn�1

`pP qd�1
.

1.6 Calderón-Zygmund operators

Definition 1.22. We say that a measurable function K P L1
locpRdzt0uq is a convolution Calderón-

Zygmund kernel if it satisfies the size condition

|Kpxq| ¤ CK
|x|d for x � 0, (1.38)

and the Hörmander condition

sup
y�0

»
|x|¥2|y|

|Kpx� yq �Kpxq| dx � CK , (1.39)

and that kernel can be extended to a convolution with a tempered distribution WK in Rd in the
sense that for all Schwartz functions f, g P S with supppfq X supppgq � H, one has

xWK � f, gy �
»
Rdzt0u

Kpxq pf� � gq pxq dx, (1.40)

where f�pxq � fp�xq.
Remark 1.23. We are using the notion of distributional convolution. Given Schwartz functions f
and g, the convolution coincides with multiplication at the Fourier side, that is, f � gpxq � p pf � pgqq.
Given a tempered distribution W , a function f P S and x P Rd, the tempered distribution W � f is
defined as

xW � f, gy :� xpxW � pfqq, gy � xxW, pf � qgy � xW, f� � gy for every g P S.
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Note that f� � gpxq �
³
fp�yqgpx� yq dy, so in case supppfq X supppgq � H then f� � g � 0 in a

neighborhood of 0 and, therefore, the integral in (1.39) is absolutely convergent by (1.37).
In any case, the distribution W � f is regular (i.e., it can be expressed as an L1

loc function) and
it coincides with the C8 function W � fpxq � xW, τxf�y, where τxf�pyq � f�py � xq (see [SW71,
Chapter I, Theorem 3.13]).

There are some cancellation conditions that one can impose to a kernel satisfying the size
condition (1.37) to grant that it can be extended to a convolution with a tempered distribution.
For instance, if K satisfies (1.37) and WK is a principal value operator in the sense that

xWK , ϕy � lim
jÑ8

»
|x|¥δj

Kpxqϕpxq dx for all ϕ P S,

for a certain sequence δj × 0, then WK satisfies (1.39) (see [Gra08, Section 4.3.2]).

Definition 1.24. We say that an operator T : S Ñ S 1 is a convolution Calderón-Zygmund
operator with kernel K if

1. K is an admissible convolution Calderón-Zygmund kernel which can be extended to a convo-
lution with a tempered distribution WK ,

2. T satisfies that Tf �WK � f for all f P S and

3. T extends to an operator bounded on L2.

Remark 1.25. Using the Calderón-Zygmund decomposition one can see that T is also bounded on
Lp for 1   p   8 (see [Gra08, proof of Theorem 4.3.3]).

The Fourier transform of an admissible convolution Calderón-Zygmund operator T is a Fourier
multiplier for L2, and this implies that yWK P L8 (see [SW71, Chapter I, Theorem 3.18]).

It is a well-known fact that the Schwartz class is dense in Lp for 1 ¤ p   8. Thus, if f P Lp
and x R supppfq, then

Tfpxq �
»
Kpx� yqfpyqdy. (1.41)

Definition 1.26. We say that an operator T : S Ñ S 1 is an admissible convolution Calderón-
Zygmund operator of order n P N with kernel K PWn,1

loc pRdzt0uq if T satisfies Definition 1.24 and,
moreover, the kernel K satisfies the higher order smoothness condition

|∇nKpxq| ¤ CK
|x|d�n for all x � 0. (1.42)

Example 1.27. The Beurling transform (1.1) is an admissible Calderón-Zygmund operator of
order 8.

Let T be an admissible convolution Calderón-Zygmund operator of order n, let Ω � Rd be a
domain and let 1   p   8. Given a function f P Wn,ppΩq, we want to study in what situations
its transform TΩf � χΩ T pχΩ fq is in some Sobolev space, so we need to check that its weak
derivatives exist up to order n. Indeed that is the case.

Lemma 1.28. Given f PWn,ppΩq, the weak derivatives of TΩf in Ω exist up to order n.

Before proving this, we consider the functions defined in all Rd.
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Remark 1.29. Since T is a bounded linear operator in L2pRdq that commutes with translations,
for Schwartz functions the derivative commutes with T (see [Gra08, Lemma 2.5.3]). Using that
S is dense in Wn,ppRdq (see [Tri83, Sections 2.3.3 and 2.5.6], for instance), we conclude that for
every f PWn,ppRdq and α P Nd with |α| � n

DαT pfq � TDαpfq (1.43)

and, thus, the operator T is bounded on Wn,ppRdq.
Definition 1.30. Let K P Wn,1

loc pRdzt0uq be the kernel of T and consider a function f P Lp, a
multiindex α P Nd with |α| ¤ n and x R supppfq. We define

T pαqfpxq :�
»
DαKpx� yqfpyq dy.

Lemma 1.31. Let f P Lp. Then Tf has weak derivatives up to order n in Rdzsuppf . Moreover,
for every multiindex α P Nd with |α| ¤ n and x R suppf

DαTfpxq � T pαqfpxq.
Proof. Take a compactly supported smooth function φ P C8

c pRdzsuppfq. We can use Fubini’s
Theorem and get

xT pαqf, φy �
»

suppφ

»
suppf

DαKpx� yqfpyq dy φpxq dx

�
»

suppf

»
suppφ

DαKpx� yqφpxq dx fpyq dy.

Using the definition of distributional derivative, Tonelli’s Theorem again and (1.40) we get

xT pαqf, φy � p�1q|α|
»

suppf

»
suppφ

Kpx� yqDαφpxq dx fpyq dy

� p�1q|α|
»

suppφ

»
suppf

Kpx� yqfpyq dy Dαφpxq dx � p�1q|α|xTf,Dαφy.

Proof of Lemma 1.28. Take a classical Whitney covering of Ω, W, and for every Q P W, define
a bump function ϕQ P C8

c such that χ2Q ¤ ϕQ ¤ χ3Q. On the other hand, let tψQuQPW be a
partition of the unity associated to t 3

2Q : Q P Wu. Consider a multiindex α with |α| � n. Then

take fQ1 � ϕQ � f , and fQ2 � pf � fQ1 qχΩ. One can define

gpyq :�
¸
QPW

ψQpyq
�
TDαfQ1 pyq � T pαqfQ2 pyq

	
.

This function is defined almost everywhere in Ω and is the weak derivative DαTΩf .
Indeed, given a test function φ P C8

c pΩq, then, since φ is compactly supported in Ω, its support
intersects a finite number of Whitney double cubes and, thus, the following additions are finite:

xg, φy � x
¸
QPW

ψQ � TDαfQ1 � ψQ � T pαqfQ2 , φy

�
¸
QPW

xTDαfQ1 , φQy �
¸
QPW

xT pαqfQ2 , φQy, (1.44)
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where φQ � ψQ � φ. In the local part we can use (1.42), so

xTDαfQ1 , φQy � p�1q|α|xTfQ1 , DαφQy.

When it comes to the non-local part, bearing in mind that fQ2 has support away form 2Q and
φQ P C8

c p2Qq, we can use the Lemma 1.31 and we get

xT pαqfQ2 , φQy � p�1q|α|xTfQ2 , DαφQy.

Back to (1.43) we have

xg, φy �
¸
QPW

p�1q|α|xTfQ1 , DαφQy �
¸
QPW

p�1q|α|xTfQ2 , DαφQy �
¸
QPW

p�1q|α|xTΩf,D
αφQy

� p�1q|α|xTΩf,D
αφy,

that is, g � DαTΩf in the weak sense.





Chapter 2

T(P) theorems

Let Ω � Rd be a domain and T a convolution Calderón-Zygmund operator. We are interested in
conditions that allow us to infer that the restricted operator TΩ � χΩTχΩ is bounded on a certain
Sobolev space W s,ppΩq.

Figure 2.1: Indices studied regarding the T pP q-
theorems in this chapter.

In this chapter we find some results for the su-
percritical case in terms of test functions, namely
polynomials of degree strictly smaller than the
considered smoothness s. This is in accordance
with the pioneering results found in [CMO13],
which deal with operators with even kernel sat-
isfying some smoothness assumptions, and with
spaces W s,ppΩq where 0   s ¤ 1, sp ¡ d
and Ω is a Lipschitz domain with parameteri-
zations in C1,σ. In that situation, the authors
prove that TΩ is bounded on W s,ppΩq if and only
if TΩ1 P W s,ppΩq and an analogous result for
Bsp,ppΩq with s   1.

The reader will find two results in that spirit
in this chapter. The first, Theorem 2.1, deals
with W s,ppΩq with s P N and p ¡ d (see the
green segments in Figure 2.1), and the second,
Theorem 2.8, deals with the supercritical case for
0   s   1 (see the triangle in Figure 2.1). These
results improve the previously known results in
the sense that the class of operators considered
is wider, the range of indices s, p is larger and, moreover, the restrictions on the regularity of the
domain are reduced to just asking the domain to be uniform. Moreover, in the case 0   s   1, the
result is valid for a greater family of Triebel-Lizorkin spaces.

The novelty in the approach exposed in this chapter is not only on the aforementioned improve-
ments, but on the technique used to reach that results, which relies strongly on the properties of
uniform domains and their hyperbolic metric. Furthermore, in both cases we make use of a Key
Lemma that provides information even if the condition sp ¡ d is not satisfied. In Chapter 6 we
will see how this lemmas can be used to provide other conditions in the critical and subcritical
cases.

Sections 2.1 and 2.2 are devoted to Theorems 2.1 and 2.8 respectively. The rest of the chapter

31
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serves to provide the tools that the author needs for Theorem 2.8 which he could not find in the
literature.

2.1 Classic Sobolev spaces on uniform domains

Theorem 2.1. Let Ω � Rd be a bounded ε-uniform domain, T an admissible convolution Calderón-
Zygmund operator of order n P N and d   p   8. Then the following statements are equivalent:

a) The truncated operator TΩ is bounded on Wn,ppΩq.
b) For every polynomial P of degree at most n� 1, we have that TΩpP q PWn,ppΩq.

Moreover, if x0 P Ω, writing Pλpxq :� px� x0qλ �
±d
j�1pxj � x0,jqλj for λ P Nd we have that

}TΩ}Wn,ppΩqÑWn,ppΩq ÀdiampΩq,ε,n,p,d CK � }T }LpÑLp �
¸
|λ| n

}∇npTΩPλq}LppΩq. (2.1)

To prove this theorem we need the following lemma, which says that it is equivalent to bound
the transform of a function and its approximation by polynomials on Whitney cubes.

Key Lemma 2.2. Let Ω � Rd be an ε-uniform domain with Whitney covering W (see Definition
1.15), T an admissible convolution Calderón-Zygmund operator of order n P N and 1   p   8.
Then the following statements are equivalent:

i) For every f PWn,ppΩq one has

}TΩf}Wn,ppΩq ¤ C}f}Wn,ppΩq,

where C depends only on ε, n, p, d and T .

ii) For every f PWn,ppΩq one has¸
QPW

���∇nTΩ

�
Pn�1

3Q f
	���p
LppQq

¤ C}f}pWn,ppΩq,

where C depends only on ε, n, p, d and T .

Proof. Let Ω be an ε-uniform domain. Given a multiindex α with |α| � n, we will bound the
difference ¸

QPW

���DαTΩ

�
f �Pn�1

3Q f
	���p
LppQq

À pCK � }T }LpÑLpqp }∇nf}pLppΩq, (2.2)

with constants depending on ε, n, p and d.
For each cube Q P W we define a bump function ϕQ P C8

c such that χ 3
2Q

¤ ϕQ ¤ χ2Q and��∇jϕQ��8 � `pQq�j for every j ¤ n. Then we can break (2.2) into local and non-local parts as
follows:¸
QPW

���DαTΩ

�
f �Pn�1

3Q f
	���p
LppQq

À
¸
QPW

���DαT
�
ϕQ

�
f �Pn�1

3Q f
		���p

LppQq
(2.3)

�
¸
QPW

���DαT
�
pχΩ � ϕQq

�
f �Pn�1

3Q f
		���p

LppQq
� 1 � 2 .
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First of all we will show that the local term in (2.3) satisfies

1 �
¸
QPW

���DαT
�
ϕQ

�
f �Pn�1

3Q f
		���p

LppQq
À }T }pLpÑLp}∇nf}pLppΩq. (2.4)

To do so, note that ϕQ

�
f �Pn�1

3Q f
	
PWn,ppRdq and, by (1.42) and the boundedness of T in Lp,���DαT

�
ϕQ

�
f �Pn�1

3Q f
		���p

LppQq
À }T }pLpÑLp

���Dα
�
ϕQ

�
f �Pn�1

3Q f
		���p

LppRdq

� }T }pLpÑLp

���Dα
�
ϕQ

�
f �Pn�1

3Q f
		���p

Lpp2Qq
.

Using the Poincaré inequality (1.33), we get���DαT
�
ϕQ

�
f �Pn�1

3Q f
		���p

LppQq
À }∇nf}pLpp3Qq.

Summing over all Q we get (2.4).
For the non-local part in (2.3),

2 �
¸
QPW

���DαT
�
pχΩ � ϕQq

�
f �Pn�1

3Q f
		���p

LppQq
,

we will argue by duality. We can write

2
1
p � sup

}g}Lp1¤1

¸
QPW

»
Q

���DαT
�
pχΩ � ϕQq

�
f �Pn�1

3Q f
	�
pxq

��� gpxq dx. (2.5)

Note that given x P Q PW, by Lemma 1.31 one has

DαT
�
pχΩ � ϕQq

�
f �Pn�1

3Q f
	�
pxq �

»
Ω

DαKpx� yq p1� ϕQpyqq
�
fpyq �Pn�1

3Q fpyq
	
dy.

Taking absolute values and using the smoothness condition (1.41), we can bound���DαT
�
pχΩ � ϕQq

�
f �Pn�1

3Q f
	�
pxq

��� ¤ CK

»
Ωz 3

2Q

|fpyq �Pn�1
3Q fpyq|

|x� y|n�d dy

À CK
¸
SPW

���f �Pn�1
3Q f

���
L1pSq

DpQ,Sqn�d

and, by (2.5), we have that

2
1
p À CK sup

}g}Lp1¤1

¸
QPW

»
Q

¸
SPW

���f �Pn�1
3Q f

���
L1pSq

DpQ,Sqn�d gpxq dx. (2.6)

By Definition 1.15, for every pair of Whitney cubes Q and S there exists an admissible chain
rS,Qs and, by (1.34), we have that���f �Pn�1

3Q f
���
L1pSq

À
¸

PPrS,Qs

`pSqdDpP, Sqn�1

`pP qd�1
}∇nf}L1p3P q. (2.7)
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Thus, plugging (2.7) into (2.6), we get

2
1
p À CK sup

}g}p1¤1

¸
QPW

»
Q

gpxq dx
¸
SPW

¸
PPrS,Qs

`pSqdDpP, Sqn�1}∇nf}L1p3P q

`pP qd�1DpQ,Sqn�d . (2.8)

By (2.3), (2.4), (2.8) and Lemma 2.3 below, we have that (2.2) holds.

Lemma 2.3. Consider a uniform domain Ω with Whitney covering W, two functions f P LppΩq
and g P Lp1pΩq and ρ ¥ 1. Then

Aρpf, gq :�
¸

Q,SPW

¸
PPrS,Qs

`pSqdDpP, Sqρ�1}f}L1p50P q}g}L1p50Qq

`pP qd�1DpQ,Sqρ�d À }f}LppΩq}g}Lp1 pΩq.

Proof. Using that P P rS,Qs implies DpP, Sq À DpQ,Sq (see Remark 1.14), we get

Aρpf, gq À
¸

Q,SPW

¸
PPrS,SQs

`pSqd}f}L1p50P q}g}L1p50Qq

`pP qd�1DpQ,Sqd�1
�

¸
Q,SPW

¸
PPrSQ,Qs

`pSqd}f}L1p50P q}g}L1p50Qq

`pP qd�1DpQ,Sqd�1

� Ap1qpf, gq �Ap2qpf, gq.

We consider first the term Ap1qpf, gq where the sum is taken with respect to cubes P P rS, SQs
and, thus, by (1.23) the long distance DpQ,Sq � DpP,Qq. Moreover, we have S P SHpP q by
Definition 1.16. Thus, rearranging the sum,

Ap1qpf, gq À
¸
PPW

}f}L1p50P q

`pP qd�1

¸
QPW

}g}L1p50Qq

DpQ,P qd�1

¸
SPSHpP q

`pSqd.

By Definition 1.16 again ¸
SPSHpP q

`pSqd � `pP qd

and, by (1.27) and the finite overlapping of the cubes t50QuQPW , we get

¸
QPW

}g}L1p50Qq

DpQ,P qd�1
À infxP50P Mgpxq

`pP q .

Next we perform a similar argument with Ap2qpf, gq. Note that when P P rSQ, Qs, we have
DpQ,Sq � DpP, Sq and Q P SHpP q, leading to

Ap2qpf, gq À
¸
PPW

}f}L1p50P q

`pP qd�1

¸
QPSHpP q

}g}L1p50Qq

¸
SPW

`pSqd
DpP, Sqd�1

.

By (1.28) we get ¸
QPSHpP q

}g}L1p50Qq À inf
xP50P

Mgpxq `pP qd

and, by (1.29), ¸
SPW

`pSqd
DpP, Sqd�1

� 1

`pP q .
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Thus,

Aρpf, gq À
¸
PPW

}f}L1p50P q

`pP qd�1

inf50P Mg

`pP q `pP qd À
¸
PPW

}f �Mg}L1p50P q.

By Hölder inequality and the boundedness of the Hardy-Littlewood maximal operator in Lp
1

,

Aρpf, gq À
� ¸
PPW

}f}pLpp50P q

�1{p�¸
P

}Mg}p1
Lp1 p50P q

�1{p1

À }f}LppΩq}g}Lp1 pΩq.

Proof of Theorem 2.1. The implication aq ñ bq is trivial.
To see the converse, we assume by hypothesis that¸

|λ| n

}TΩpPλq}Wn,ppΩq ¤ C. (2.9)

Let f PWn,ppΩq. By the Key Lemma 2.2, we have to prove that¸
QPW

}∇nTΩ

�
Pn�1

3Q f
	
}pLppQq À }f}pWn,ppΩq.

We can write the polynomials

Pn�1
3Q fpxq �

¸
|γ| n

mQ,γpx� xQqγ ,

where xQ stands for the center of each cube Q. Taking the Taylor expansion in x0 for each
monomial, one has

Pn�1
3Q fpxq �

¸
|γ| n

mQ,γ

¸
~0¤λ¤γ

�
γ

λ



px� x0qλpx0 � xQqγ�λ.

Thus,

∇nTΩ

�
Pn�1

3Q f
	
pyq �

¸
|γ| n

mQ,γ

¸
~0¤λ¤γ

�
γ

λ



px0 � xQqγ�λ∇npTΩPλqpyq. (2.10)

Recall the estimate (1.32) in Lemma 1.21, which implies that

|mQ,γ | ¤ C
n�1̧

j�|γ|

��∇jf��
L8p3Qq

`pQqj�|γ| À
n�1̧

j�|γ|

��∇jf��
L8pΩq

diamΩj�|γ|. (2.11)

Raising (2.10) to the power p, integrating in Q and using (2.11) we get���∇nTΩ

�
Pn�1

3Q f
	���p
LppQq

À
¸
j n

��∇jf��p
L8pΩq

¸
|λ| j

diamΩpj�|λ|qp}∇npTΩPλq}pLppQq.

By the Sobolev Embedding Theorem, we know that
��∇jf��

L8pΩq
¤ C

��∇jf��
W 1,ppΩq

as long as

p ¡ d. If we add with respect to Q PW and we use (2.9) we get¸
QPW

���∇nTΩ

�
Pn�1

3Q f
	���p
LppQq

À
¸
j n

��∇jf��p
W 1,ppΩq

¸
|λ| j

}∇npTΩPλq}pLppΩq À }f}pWn,ppΩq.

Note that the constants depend on the diameter of Ω, ε, n, p and d (the extension norm in [Jon81]
and, as a consequence, the Sobolev embedding constant depend on all this parameters). This
estimate, together with (2.2), implies (2.1).
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2.2 Fractional Sobolev spaces on uniform domains

In this section we study the counterpart of the T pP q-theorem to the Sobolev spaces with fractional
smoothness 0   s   1, obtaining a T p1q-theorem (Theorem 2.8). The methods we use are valid for
any Triebel-Lizorkin space F sp,q as long as the operator T is bounded on F sp,q. This boundedness
is granted in some situations by the Calderón-Zygmund decomposition and interpolation, but in
some cases it is not that easy. On the other hand, the smoothness hypothesis (1.41) assumed when
n P N can be relaxed. For these reasons we adapt the definition of admissible Calderón-Zygmund
operator to this setting.

Definition 2.4. Let 1   p, q   8. We say that an operator T : S Ñ S 1 is a p, q-admissible
convolution Calderón-Zygmund operator of order s P p0, 1q (or simply admissible when q � 2) with
kernel K if T satisfies Definition 1.24, T also extends to a bounded operator in F 0

p,q and K satisfies
the smoothness condition

|Kpx� yq �Kpxq| ¤ CK |y|s
|x|d�s for every 0   2|y| ¤ |x|. (2.12)

Remark 2.5. Note that the smoothness condition (2.12) implies the Hörmander condition (1.38).
Moreover, being of order s implies being of order σ for every σ   s.

The Fourier transform of a p, q-admissible convolution Calderón-Zygmund operator T is a
Fourier multiplier for F 0

p,q, and for Lr with 1   r   8 as well by Remark 1.25. We refer the
reader to [Tri83, Section 2.6] for a rigorous definition of multiplier and for the results on Fourier
multipliers that we sum up next as well.

Being a Fourier multiplier for F 0
p,q implies being a Fourier multiplier also for F sp,q for every s,

for F 0
p,p and for F 0

p1,q1 , and the property is stable under interpolation (i.e., the set of indices
�

1
p ,

1
q

	
such that a T is bounded on F 0

p,q is a convex set, see Figure 2.2).
Therefore, the fact of T being bounded on F 0

p,q in Definition 2.4 is a consequence of being a

Calderón-Zygmund operator when 0   1
2p   1

q   1
2p � 1

2   1 (see Figure 2.2).

Example 2.6. The Beurling transform (1.1) is an admissible convolution Calderón-Zygmund
operator of any order and, therefore, it is a p, q-admissible convolution Calderón-Zygmund operator
for all indices p and q satisfying 0   1

2p   1
q   1

2p � 1
2   1.

Definition 2.7. Let U � Rd be a open set, 1   p   8, 1   q   8 and 0   s   8. Then for
every measurable function f : U Ñ C we define

}f}F sp,qpUq :� inf
gPF sp,qpRdq: g|U�f

}g}F sp,qpRdq.

Theorem 2.8. Let Ω be a bounded uniform domain, T a p, q-admissible convolution Calderón-
Zygmund operator of order 0   s   1, 1   p   8, 1   q   8 with s ¡ d

p . Then

}TΩ1}F sp,qpΩq   8 ðñ TΩ is bounded on F sp,qpΩq.

Furthermore,

}TΩ}F sp,qpΩqÑF sp,qpΩq
À CK � }T }F sp,qÑF sp,q

� }T }LpÑLp � }T }LqÑLq � }TΩ1}F sp,qpΩq,

with constants independent of T .
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Figure 2.2: Indices 1
rp , 1
rq such that a p, q-admissible operator is bounded on F srp,rq.
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(b) The complementary situation.

Similarly to Section 2.1, we will use a lemma which says that it is equivalent to bound the
transform of a function and its approximation by constants on Whitney cubes. In the fractional
case 0   s   1, however, it is not clear what the ∇s-gradient is.

Definition 2.9. Given a uniform domain Ω with Whitney covering W and f P LppΩq for certain
values 0   s   1 and 1   q   8, the s-th (dyadic) fractional gradient of index q of f in a point
x P Q PW is

∇sqfpxq :�
�»

ShpQq

|fpxq � fpyq|q
|x� y|sq�d dy

� 1
q

.

In Sections 2.3 and 2.4 we will prove the following remarkable characterizations in terms of
differences.

Theorem 2.10 (see Corollary 2.12, Corollary 2.17 and Lemma 2.18). Let 1 ¤ p   8, 1 ¤ q ¤ 8
and 0   s   1 with s ¡ d

p � d
q . Then

F sp,qpRdq �
$&%f P Lmaxtp,qu : }f}Lp �

�»
Rd

�»
Rd

|fpxq � fpyq|q
|x� y|sq�d dy


 p
q

dx

� 1
p

  8
,.- , (2.13)

(with the usual modification for q � 8), in the sense of equivalent norms.

Let Ω be a bounded uniform domain with an admissible Whitney coveringW. Given 1   p   8,
1   q   8 and 0   s   1 with s ¡ d

p � d
q , we have that

}f}F sp,qpΩq � }f}LppΩq �
�»

Ω

�»
Ω

|fpxq � fpyq|q
|x� y|sq�d dy


 p
q

dx

� 1
p

� }f}LppΩq �
��∇sqf��LppΩq. (2.14)
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Key Lemma 2.11. Let Ω be a uniform domain with Whitney coveringW, let T be a p, q-admissible
convolution Calderón-Zygmund operator of order 0   s   1, 1   p   8 and 1   q   8 with
s ¡ d

p � d
q . The following statements are equivalent:

i) For every f P F sp,qpΩq one has

}TΩf}F sp,qpΩq ¤ C}f}F sp,qpΩq,

with C independent from f .

ii) For every f P F sp,qpΩq one has¸
QPW

|fQ|p
��∇sqTχΩ

��p
LppQq

¤ C}f}pF sp,qpΩq,

with C independent from f .

Moreover,¸
QPW

��∇sqTΩpf � fQq
��p
LppQq

À
�
CK � }T }F sp,qÑF sp,q

� }T }LpÑLp � }T }LqÑLq

	p
}f}pF sp,qpΩq. (2.15)

Proof. Let Ω be an ε-uniform domain. The core of the proof is showing that (2.15) holds. Once
this is settled, since we have that¸

QPW

��∇sqTΩf
��p
LppQq

Àp
¸
QPW

��∇sqTΩpf � fQq
��p
LppQq

�
¸
QPW

|fQ|p
��∇sqTΩ1

��p
LppQq

,

and ¸
QPW

|fQ|p
��∇sqTΩ1

��p
LppQq

Àp
¸
QPW

��∇sqTΩpfQ � fq��p
LppQq

�
¸
QPW

��∇sqTΩf
��p
LppQq

,

inequality (2.15) proves that¸
QPW

��∇sqTΩf
��p
LppQq

À }f}pF sp,qpΩq ðñ
¸
QPW

|fQ|p
��∇sqTΩ1

��p
LppQq

À }f}pF sp,qpΩq.

On the other hand, by assumption T is bounded on Lp and we have that }TΩf}LppΩq À }f}LppΩq.
Since }TΩf}pF sp,qpΩq � }TΩf}pLppΩq �

°
QPW

³
Q
|∇sqTΩfpxq|p dx by (2.14), the lemma follows.

Again we use duality. That is, to prove (2.15) it suffices to prove that given a positive function
g P Lp1pLq1pΩqq with }g}Lp1 pLq1 pΩqq � 1, we have that

¸
Q

»
Q

»
ShpQq

|TΩ pf � fQq pxq � TΩ pf � fQq pyq|
|x� y|s� d

q

gpx, yq dy dx À }f}F sp,qpΩq.

Given a cube Q P W, we can define a bump function ϕQ such that χ6Q ¤ ϕQ ¤ χ7Q and
}∇ϕQ}L8 ¤ C`pQq�1. Given a cube S � 5Q we define ϕQS :� ϕQ. Otherwise, take ϕQS :� ϕS .
Note that in both situations, by (1.7) we have that suppϕQS � 23S. Then, we can express the
difference between TΩpf � fQq evaluated at x P Q and in y P S as

TΩpf � fQqpxq � TΩpf � fQqpyq � TΩ rpf � fQqϕQs pxq � TΩ rpf � fQqϕQSs pyq (2.16)

� TΩ rpf � fQq p1� ϕQqs pxq � TΩ rpf � fQq p1� ϕQSqs pyq.
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Note that the first two terms in the right-hand side of (2.16) are ‘local’ terms in the sense that
the functions to which we apply the operator TΩ are supported in a small neighborhood of the
point of evaluation (and are globally F sp,q, as we will check later on) and the other two terms are
‘non-local’. What we will prove is that the local part

11 :�
¸
Q

»
Q

¸
SPSHpQq

»
S

|TΩ rpf � fQqϕQs pxq � TΩ rpf � fQqϕQSs pyq|
|x� y|s� d

q

gpx, yq dy dx,

and the non-local part

22 :�
¸
Q

»
Q

¸
SPSHpQq

»
S

|TΩ rpf � fQq p1� ϕQqs pxq � TΩ rpf � fQq p1� ϕQSqs pyq|
|x� y|s� d

q

gpx, yq dy dx,

are both bounded as

11 � 22 ¤ C}f}F sp,qpΩq. (2.17)

We begin by the local part, that is, we want to prove that 11 À }f}F sp,qpΩq. Note that for x P Q
and y P S P SHpQq, if y P 3Q then ϕQS � ϕQ and, otherwise |x� y| � `pQq. Thus,

11 ¤
¸
Q

»
Q

»
3Q

|T rpf � fQqϕQs pxq � T rpf � fQqϕQs pyq|
|x� y|s� d

q

gpx, yq dy dx (2.18)

�
¸
Q

»
Q

»
ShpQq

|T rpf � fQqϕQs pxq|
`pQqs� d

q

gpx, yq dy dx

�
¸
Q

»
Q

¸
SPSHpQq

»
S

|T rpf � fQqϕQSs pyq|
`pQqs� d

q

gpx, yq dy dx �: 1.11.1 � 1.21.2 � 1.31.3 .

Of course, by Hölder’s inequality we have that

1.11.1
p ¤

¸
Q

»
Q

�»
3Q

|T rpf � fQqϕQs pxq � T rpf � fQqϕQs pyq|q
|x� y|sq�d dy


 p
q

dx}g}p
Lp1 pLq1 pΩqq

.

By (2.13) we get

1.11.1
p À

¸
Q

}T rpf � fQqϕQs}pF sp,qpRdq.

Now, the operator T is bounded on F sp,q by assumption (see Definition 2.4 and Remark 2.5). Thus,

1.11.1
p À }T }pF sp,qÑF sp,q

¸
Q

}pf � fQqϕQ}pF sp,qpRdq.

Consider the characterization of the F sp,q-norm given in (2.13). Since ϕQ ¤ χ7Q, the first term°
Q }pf � fQqϕQ}pLppRdq is bounded by a constant times }f}Lp by the finite overlapping of the

Whitney cubes and the Jensen inequality, and the second is

¸
Q

»
Rd

�»
Rd

|pfpxq � fQqϕQpxq � pfpyq � fQqϕQpyq|q
|x� y|sq�d dy


 p
q

dx,
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where the integrand vanishes if both x, y R 8Q. Therefore, we can write

1.11.1
p À }f}Lp �

¸
Q

»
8Q

�»
8Q

|pfpxq � fQqϕQpxq � pfpyq � fQqϕQpyq|q
|x� y|sq�d dy


 p
q

dx

�
¸
Q

»
Rdz8Q

�»
7Q

|pfpyq � fQqϕQpyq|q
|x� y|sq�d dy


 p
q

dx (2.19)

�
¸
Q

»
7Q

�»
Rdz8Q

|pfpxq � fQqϕQpxq|q
|x� y|sq�d dy

� p
q

dx �: }f}Lp � 1.1.11.1.1 � 1.1.21.1.2 � 1.1.31.1.3 ,

where the constant depends linearly on the operator norm }T }pF sp,qÑF sp,q
.

Adding and subtracting pfpxq � fQqϕQpyq in the numerator of the integral in 1.1.11.1.1 we get
that

1.1.11.1.1 À
¸
Q

»
8Q

�»
8Q

|fpxq � fQ|q |ϕQpxq � ϕQpyq|q
|x� y|sq�d dy


 p
q

dx

�
¸
Q

»
8Q

�»
8Q

|fpxq � fpyq|q
|x� y|sq�d dy


 p
q

dx.

The second term is bounded by a constant times }f}pF sp,qpΩq, so

1.1.11.1.1 À
¸
Q

»
8Q

�»
8Q

}∇ϕQ}qL8 |x� y|q
|x� y|sq�d dy


 p
q

|fpxq � fQ|p dx� }f}pF sp,qpΩq.

Using }∇ϕQ}L8 À 1
`pQq and the local inequality for the maximal operator (1.28) we get that

1.1.11.1.1 À
¸
Q

»
8Q

`pQqp1�sqp |fpxq � fQ|p
`pQqp dx� }f}pF sp,qpΩq (2.20)

À
¸
Q

»
8Q

�³
Q
|fpxq � fpξq| dξ
`pQqs�d

�p
dx� }f}pF sp,qpΩq.

By Jensen’s inequality 1
`pQqd

³
Q
|fpxq � fpξq| dξ À

�³
Q

1
`pQqd

|fpxq � fpξq|q dξ
	 1
q

and, therefore,

1.1.11.1.1 À }f}pF sp,qpΩq. (2.21)

Now we undertake the task of bounding 1.1.21.1.2 in (2.19). Writing xQ for the center of a given
cube Q, we have that

1.1.21.1.2 À
¸
Q

»
Rdz8Q

dx

|x� xQ|sp�
dp
q

�»
7Q

|fpyq � fQ|q dy

 p
q

.

Since s ¡ d
p � d

q we have that sp� dp
q ¡ d. Thus, by (1.29)

1.1.21.1.2 À
¸
Q

1

`pQqsp� dp
q �d

�»
7Q

|fpyq � fQ|q dy

 p
q

¤
¸
Q

�³
7Q

�³
Q
|fpyq � fpξq| dξ

	q
dy
	 p
q

`pQqsp� dp
q �d�dp

.
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By Minkowski’s inequality (1.9) we have that

1.1.21.1.2 À
¸
Q

�³
Q

�³
7Q
|fpyq � fpξq|q dy

	 1
q

dξ


p
`pQqsp� dp

q �dpp�1q
,

and by Hölder’s inequality, using that p� 1 � p
p1 we get that

1.1.21.1.2 À
¸
Q

³
Q

�³
7Q
|fpyq � fpξq|q dy

	 p
q

dξ`pQq dpp1

`pQqsp� dp
q �

dp

p1

À
¸
Q

»
Q

�»
7Q

|fpyq � fpξq|q dy
|y � ξ|sq�d


 p
q

dξ

and

1.1.21.1.2 À }f}pF sp,qpΩq. (2.22)

Dealing with the last term in (2.19) is somewhat easier. Note that by (1.29) we have that

1.1.31.1.3 ¤
¸
Q

»
7Q

|fpxq � fQ|p
�»

Rdz8Q

1

|x� y|sq�d dy
� p
q

dx ¤
¸
Q

»
7Q

|fpxq � fQ|p
`pQqsp dx

and, since this quantity is bounded by the right-hand side of (2.20), it follows that

1.1.31.1.3 À }f}pF sp,qpΩq. (2.23)

Summing up, by (2.19), (2.21), (2.22) and (2.23) we get

1.11.1 À }T }F sp,qÑF sp,q
}f}F sp,qpΩq. (2.24)

Back to (2.18), it remains to bound 1.21.2 and 1.31.3 . Recall that

1.21.2 �
¸
Q

»
Q

|T rpf � fQqϕQs pxq|
`pQqs� d

q

»
ShpQq

gpx, yq dy dx.

Writing Gpxq � }gpx, �q}Lq1 pΩq and using Hölder’s inequality we get

»
ShpQq

gpx, yq dy ¤
�»

ShpQq

gpx, yqq1 dy
� 1
q1

|ShpQq| 1q Àρε,d Gpxq`pQq
d
q ,

and using again Hölder’s inequality it follows that

1.21.2 À
�¸
Q

»
Q

|T rpf � fQqϕQs pxq|p
`pQqsp dx

� 1
p

}G}Lp1 pΩq.

Of course, }G}Lp1 pΩq ¤ 1. Now, by Definition 1.24 we can use the boundedness of T in Lp to find
that

1.21.2 À }T }LpÑLp

�¸
Q

}pf � fQqϕQ}pLppRdq
`pQqsp

� 1
p

À
�¸
Q

}f � fQ}pLpp7Qq
`pQqsp

� 1
p

,
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and we can argue again as in (2.20) to prove that

1.21.2 À }T }LpÑLp}f}F sp,qpΩq. (2.25)

Finally, for the last term in (2.18), that is, for

1.31.3 �
¸
Q

»
Q

¸
SPSHpQq

»
S

|T rpf � fQqϕQSs pyq|
`pQqs� d

q

gpx, yq dy dx,

by Hölder’s inequality we have that

1.31.3 ¤
¸
Q

»
Q

�� ¸
SPSHpQq

»
S

|T rpf � fQqϕQSs pyq|q
`pQqsq�d dy

�1
q

Gpxq dx.

The boundedness of T in Lq leads to

1.31.3 ¤ }T }LqÑLq

¸
Q

�� ¸
SPSHpQq

»
supppϕQSq

|pfpyq � fQqϕQSpyq|q
`pQqsq�d dy

�1
q

`pQqd inf
Q
MG.

Given a cube Q, the finite overlapping of the family t50SuSPW (see Definition 1.5) implies the
finite overlapping of the supports of the family tϕQSu (recall that supppϕQSq � 23S), so there is
a certain ratio ρ2 such that naming Sh2pQq :� Shρ2

pQq we have that

1.31.3 À
¸
Q

�»
Sh2pQq

|fpyq � fQ|q
`pQqsq�d�dq dy

� 1
q

inf
Q
MG

¤
¸
Q

�»
Sh2pQq

�»
Q

|fpyq � fpξq|
`pQqs� d

q�d�d
dξ

�q
dy

� 1
q

inf
Q
MG.

Finally, using Minkowski’s inequality (1.9) and Hölder’s inequality we get that

1.31.3 À
¸
Q

»
Q

�»
Sh2pQq

|fpyq � fpξq|q
`pQqsq�d dy

� 1
q

MGpξq dξ À
�¸
Q

»
Q

�»
Ω

|fpyq � fpξq|q
|x� y|sq�d dy


 p
q

dξ

� 1
p

,

that is,

1.31.3 À }T }LqÑLq}f}F sp,qpΩq. (2.26)

Now, by (2.18), (2.24), (2.25) and (2.26) we have that

11 À
�
}T }F sp,qÑF sp,q

� }T }LpÑLp � }T }LqÑLq

	
}f}F sp,qpΩq, (2.27)

and we have finished with the local part.
Now we bound the non-local part in (2.17). Consider x P Q P W. By (1.40), since x is not in

the support of pf � fQq p1� ϕQq, we have that

TΩ rpf � fQq p1� ϕQqs pxq �
»

Ω

Kpx� zq pfpzq � fQq p1� ϕQpzqq dmpzq,
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and by the same token for y P S P SHpQq

TΩ rpf � fQq p1� ϕQSqs pyq �
»

Ω

Kpy � zq pfpzq � fQq p1� ϕQSpzqq dmpzq.

To shorten the notation, we will write

λQSpz1, z2q � Kpz1 � z2q pfpz2q � fQq p1� ϕQSpz2qq ,
for z1 � z2. Then we have that���TΩ rpf � fQq p1� ϕQqs pxq � TΩ rpf � fQq p1� ϕQSqs pyq

��� � ����»
Ω

pλQQpx, zq � λQSpy, zqq dmpzq
���� ,

that is,

22 �
¸
Q

»
Q

¸
SPSHpQq

»
S

��³
Ω
pλQQpx, zq � λQSpy, zqq dz

��
|x� y|s� d

q

gpx, yq dy dx.

For ρ3 big enough, Sh3pQq :� Shρ3
pQq � �

SPSHpQq ShpSq (call SH3pQq :� SHρ3
pQq), we can

decompose

22 ¤
¸
Q

»
Q

¸
S�ShpQqz2Q

»
S

³
Sh3pQq

|λQQpx, zq � λQSpy, zq| dz
|x� y|s� d

q

gpx, yq dy dx (2.28)

�
¸
Q

»
Q

¸
S�ShpQqz2Q

»
S

³
ΩzSh3pQq

|λQQpx, zq � λQSpy, zq| dz
|x� y|s� d

q

gpx, yq dy dx

�
¸
Q

»
Q

»
5Q

³
Ω
|λQQpx, zq � λQQpy, zq| dz

|x� y|s� d
q

gpx, yq dy dx �: AA � BB � CC .

In the first term in the right-hand side of (2.28) the variable z is ‘close’ to either x or y, so
smoothness does not help. Thus, we will take absolute values, giving rise to two terms separating
λQQ and λQS . That is, we use that

AA ¤
¸
Q

»
Q

¸
S�ShpQqz2Q

»
S

³
Sh3pQq

p|λQQpx, zq| � |λQSpy, zq|q dz
|x� y|s� d

q

gpx, yq dy dx.

Using the size condition (1.37),

|λQQpx, zq| ¤ CK
|fpzq � fQ|
|x� z|d |1� ϕQpzq|

and

|λQSpy, zq| ¤ CK
|fpzq � fQ|
|y � z|d |1� ϕQSpzq|.

Summing up,

AA ÀCK
¸
Q

»
Q

»
ShpQqz2Q

»
Sh3pQq

|fpzq � fQ| |1� ϕQpzq| dz
|x� y|s� d

q |x� z|d
gpx, yq dy dx (2.29)

�
¸
Q

»
Q

»
ShpQqz2Q

»
Sh3pQq

|fpzq � fQ| |1� ϕQSpzq| dz
|x� y|s� d

q |y � z|d
gpx, yq dy dx �: 2.12.1 � 2.22.2 ,



44 CHAPTER 2. T(P) THEOREMS

with constants depending linearly on the Calderón-Zygmund constant CK .
We begin by the shorter part, that is

2.12.1 �
¸
Q

»
Q

»
ShpQqz2Q

»
Sh3pQq

|fpzq � fQ| |1� ϕQpzq| dz
|x� y|s� d

q |x� z|d
gpx, yq dy dx.

Using the fact that 1� ϕQpzq � 0 when z is close to the cube Q, we can say that

2.12.1 À
¸
Q

1

`pQqs� d
q�d

»
Sh3pQqz6Q

|fpzq � fQ|
»
Q

»
ShpQqz2Q

gpx, yq dy dx dz.

Now, by the Hölder inequality we have that»
ShpQqz2Q

gpx, yq dy Àρε,d Gpxq`pQq
d
q ,

where Gpxq � }gpx, �q}Lq1 . Thus,

2.12.1 À
¸
Q

»
Sh3pQq

|fpzq � fQ|
`pQqs�d

»
Q

Gpxq dx dz À
¸
Q

»
Q

»
Sh3pQq

|fpzq � fpξq|
`pQqs�d MGpξq dz dξ.

Finally, by Jensen’s inequality and the boundedness of the maximal operator in Lp
1

we have that

¸
Q

»
Q

»
Sh3pQq

|fpzq � fpξq|
`pQqs�d MGpξq dz dξ À

¸
Q

»
Q

�»
Sh3pQq

|fpzq � fpξq|q
`pQqsq�d dz

� 1
q

MGpξq dξ (2.30)

À
�»

Ω

�»
Ω

|fpzq � fpξq|q
|z � ξ|sq�d dz


 p
q

dξ

� 1
p

}MG}Lp1 ,

that is,
2.12.1 À }f}F sp,qpΩq. (2.31)

The second term in (2.29) is the most delicate one. Given cubes Q, S and P and points y P S
and z P P with 1� ϕQSpzq � 0, we have that |z � y| � DpS, P q. Therefore, we can write

2.22.2 �
¸
Q

»
Q

»
ShpQqz2Q

»
Sh3pQq

|fpzq � fQ| |1� ϕQSpzq| dz
|x� y|s� d

q |y � z|d
gpx, yq dy dx

À
¸
Q

»
Q

¸
SPSHpQq

»
S

¸
PPSH3pQq

»
P

|fpzq � fQ| dz
`pQqs� d

q DpS, P qd
gpx, yq dy dx.

Next, we change the focus on the sum. Consider an admissible chain connecting two given
cubes S and P both in SH3pQq. Then DpS, P q � `pSP q. Of course, using (1.21) and the fact that
S and P are in SH3pQq we get

DpQ,SP q À DpQ,Sq �DpS, SP q � DpQ,Sq �DpS, P q À 2DpQ,Sq �DpQ,P q À `pQq
and, therefore, the cube SP is contained in some SHρ4pQq for a certain constant ρ4 depending on
d and ε. For short, we write L :� SP P SH4pQq and Sh4pQq :� Shρ4pQq. Then

2.22.2 À
¸
Q

»
Q

¸
LPSH4pQq

¸
SPSHpLq

»
S

¸
PPSHpLq

»
P

|fpzq � fQ| dz
`pQqs� d

q `pLqd
gpx, yq dy dx

�
¸
Q

1

`pQqs� d
q

»
Q

¸
LPSH4pQq

»
ShpLq

|fpzq � fQ| dz 1

`pLqd
»
ShpLq

gpx, yq dy dx. (2.32)
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If we write gxpyq � gpx, yq, we have that for any cube L the integral»
ShpLq

gpx, yq dy ¤ `pLqd inf
L
Mgx.

Arguing as before, for ρ5 big enough we have that if L P SH4pQq, then ShpLq � Shρ5
pQq �:

Sh5pQq and therefore»
ShpLq

|fpzq � fQ| dz �
»
ShpLq

|fpzq � fQ|χSh5pQqpzq dz À
»
L

M rpf � fQqχSh5pQqspξq dξ.

Back to (2.32) we have that

2.22.2 À
¸
Q

1

`pQqs� d
q

»
Q

¸
LPSH4pQq

»
L

M rpf � fQqχSh5pQqspξqMgxpξq dξ dx

�
¸
Q

1

`pQqs� d
q

»
Q

»
Sh4pQq

M rpf � fQqχSh5pQqspξqMgxpξq dξ dx

and, by Hölder’s inequality and the boundedness of the maximal operator in Lq and Lq
1

, we have
that

2.22.2 À
¸
Q

1

`pQqs� d
q

»
Q

�»
Sh4pQq

M rpf � fQqχSh5pQqspξqq dξ
� 1
q
�»

Sh4pQq

Mgxpξqq
1

dξ

� 1
q1

dx

Àq
¸
Q

1

`pQqs� d
q

»
Q

�»
Sh5pQq

|fpξq � fQ|q dξ
� 1
q �»

Ω

gpx, ξqq1 dξ

 1
q1

dx.

Again, we write Gpxq � }gpx, �q}Lq1 and by Minkowski’s integral inequality (1.9) we get that

2.22.2 À
¸
Q

1

`pQqs� d
q�d

�»
Sh5pQq

�»
Q

|fpξq � fpζq| dζ

q

dξ

� 1
q »

Q

Gpxq dx

À
¸
Q

1

`pQqs� d
q

»
Q

�»
Sh5pQq

|fpξq � fpζq|q dξ
� 1
q

MGpζq dζ.

Thus,

2.22.2 À
�»

Ω

�»
Ω

|fpξq � fpζq|q
|ξ � ζ|sq�d dξ


 p
q

dζ

� 1
p

}MG}Lp1 À }f}F sp,qpΩq. (2.33)

Back to (2.28), it remains to bound BB and CC . For the first one,

BB �
¸
Q

»
Q

¸
S�ShpQqz2Q

»
S

³
ΩzSh3pQq

|λQQpx, zq � λQSpy, zq| dz
|x� y|s� d

q

gpx, yq dy dx,

just note that if x P Q, y P S P SHpQq and z R Sh3pQq we have that ϕQQpzq � ϕQSpzq � 0 and,
if ρ3 is big enough, |x� z| ¡ 2|x� y|. Thus, we can use the smoothness condition (2.12), that is,

|λQQpx, zq � λQSpy, zq| ¤ |Kpx� zq �Kpy � zq| |fpzq � fQ| ¤ CK
|fpzq�fQ||x�y|

s

|x�z|d�s
.
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In the last term in (2.28),

CC �
¸
Q

»
Q

»
5Q

³
Ω
|λQQpx, zq � λQQpy, zq| dz

|x� y|s� d
q

gpx, yq dy dx,

we are integrating in the region where x P Q, y P 5Q and z R 6Q because otherwise 1 � ϕQpzq
would vanish. Also |x� z| ¡ Cd|x�y| and |x� z| � |y� z|. Thus, we have again that |λQQpx, zq�
λQQpy, zq| ¤ |Kpx� zq �Kpy � zq| |fpzq � fQ| À CK

|fpzq�fQ||x�y|
s

|x�z|d�s
by (2.12) and (1.37) (one may

use the last one when 2|x� y| ¥ |x� z| ¡ Cd|x� y|, that is |x� y| � |x� z| � |y � z|).
Summing up,

BB � CC ÀCK
¸
Q

»
Q

»
ShpQq

»
Ωz6Q

|fpzq � fQ||x� y|s dz
|x� y|s� d

q |x� z|d�s
gpx, yq dy dx �: 2.32.3 . (2.34)

with constants depending linearly on the Calderón-Zygmund constant CK . Reordering,

2.32.3 �
¸
Q

»
Q

»
Ωz6Q

|fpzq � fQ| dz
|x� z|d�s

»
ShpQq

gpx, yq dy
|x� y| dq

dx.

The last integral above is easy to bound by the same techniques as before: Given x P Q PW, since
d
q   d, by (1.28), Hölder’s Inequality and the boundedness of the maximal operator in Lq

1

we have
that »

ShpQq

gpx, yq dy
|x� y| dq

À `pQqd� d
q inf
Q
Mgx ¤ `pQq� d

q

»
Q

Mgx ¤ }Mgx}Lq1 Àq Gpxq.

Thus,

2.32.3 À
¸
Q

»
Q

¸
P

»
P

|fpzq � fQ| dz
DpP,Qqd�s Gpxq dx.

For every pair of cubes P,Q PW, there exists an admissible chain rP,Qs and, writing rP, PQq for
the subchain rP, PQsztPQu and rPQ, Qq for rPQ, QsztQu, we get

2.32.3 À
¸
Q

»
Q

¸
P

»
P

|fpzq � fP | dz
DpP,Qqd�s Gpxq dx (2.35)

�
¸
Q

»
Q

¸
P

¸
LPrP,PQq

|fL � fN pLq|`pP qd
DpP,Qqd�s Gpxq dx

�
¸
Q

»
Q

¸
P

¸
LPrPQ,Qq

|fL � fN pLq|`pP qd
DpP,Qqd�s Gpxq dx �: 2.3.12.3.1 � 2.3.22.3.2 � 2.3.32.3.3 .

The first term in (2.35) can be bounded by reordering and using (1.27). Indeed, we have that

2.3.12.3.1 ¤
¸
P

»
P

»
P

|fpzq � fpξq| dξ dz
`pP qd

¸
Q

»
Q

Gpxq dx
DpP,Qqd�s À

¸
P

»
P

»
P

|fpzq � fpξq| dξMGpzq dz
`pP qd�s ,

and, by (2.30) we have that

2.3.12.3.1 À }f}F sp,qpΩq. (2.36)
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For the second term in (2.35) note that given cubes L P rP, PQs we have that DpP,Qq � DpL,Qq
by (1.23) and P P ShpLq by Definition 1.16. Therefore, by (1.27) we have that

2.3.22.3.2 À
¸
L

1

`pLq2d
»
L

»
5L

|fpξq � fpζq| dζ dξ
¸
Q

1

DpL,Qqd�s
»
Q

Gpxq dx
¸

PPSHpLq

`pP qd

À
¸
L

1

`pLq2d
»
L

»
5L

|fpξq � fpζq|MGpζq
`pLqs dζ dξ`pLqd �

¸
L

»
L

»
5L

|fpξq � fpζq|MGpζq
`pLqd�s dζ dξ,

and, again by (2.30), we have that

2.3.22.3.2 À }f}F sp,qpΩq. (2.37)

Finally, the last term of (2.35) can be bounded analogously: Given cubes L P rPQ, Qs we have
that DpQ,P q � DpL,P q by (1.23), and

2.3.32.3.3 À
¸
L

1

`pLq2d
»
L

»
5L

|fpξq � fpζq| dζ dξ
¸

QPSHpLq

»
Q

Gpxq dx
¸
P

`pP qd
DpP,Lqd�s

À
¸
L

»
L

»
5L

|fpξq � fpζq|MGpζq dζ dξ `pLq
d�s

`pLq2d �
¸
L

»
L

»
5L

|fpξq � fpζq|MGpζq
`pLqd�s dζ dξ,

and

2.3.32.3.3 À }f}F sp,qpΩq. (2.38)

Now, putting together (2.28), (2.29), (2.34) and (2.35) we have that

22 ÀCK 2.12.1 � 2.22.2 � 2.3.12.3.1 � 2.3.22.3.2 � 2.3.32.3.3 ,

and by (2.31), (2.33), (2.36), (2.37) and (2.38) we have that

22 À CK}f}F sp,qpΩq, (2.39)

with constants depending on ε, s, p, q and d. Estimates (2.27) and (2.39) prove (2.15).

Proof of Theorem 2.8. Let Ω be a bounded ε-uniform domain. Note that since s ¡ d
p ¡ d

p � d
q ,

we can use the Key Lemma 2.11, that is, we have that TΩ is bounded if and only if for every
f P F sp,qpΩq we have that ¸

QPW
|fQ|p

��∇sqTχΩ

��p
LppQq

¤ C}f}pF sp,qpΩq, (2.40)

with C independent from f . Since sp ¡ d, by Definition 2.7 and Proposition 1.11 we have the
continuous embedding F sp,qpΩq � L8. Therefore, given a cube Q we have that |fQ| ¤ }f}L8pΩq ¤
}f}F sp,qpΩq and (2.40) holds as long as TχΩ P F sp,qpΩq.

More precisely, putting together (2.15) and (2.40), we get

}TΩf}F sp,qpΩq À
�
CK � }T }F sp,qÑF sp,q

� }T }LpÑLp � }T }LqÑLq � }TΩ1}F sp,qpΩq
	
}f}F sp,qpΩq,

with C depending only on ε, s, p, q and d.
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2.3 Characterization of F s
p,q via differences

In this section we prove part of Theorem 2.10. Namely, the estimate (2.13) is a consequence of
Corollary 2.12 below, and the first estimate in (2.14) is proven in Corollary 2.17. The second
estimate in (2.14) is left for Lemma 2.18 in Section 2.4.

For a function f P L1
loc, M P N, 0   u ¤ 8, t ¡ 0 and x P Rd, we write

dMt,ufpxq :�
�
t�d

»
|h|¤t

|∆M
h fpxq|u dh

� 1
u

,

with the usual modification for u � 8. In [Tri06, Theorem 1.116] we find the following result.

Theorem (See [Tri06].). Given 1 ¤ r ¤ 8, 0   u ¤ r, 1 ¤ p   8, 1 ¤ q ¤ 8 and 0   s   M
with d

mintp,qu � d
r   s, we have that

F sp,qpRdq �

$'&'%f P Lmaxtp,ru : }f}Lp �
��»

Rd

�» 1

0

dMt,ufpxqq
tsq�1

dt

� p
q

dx

�1
p

  8

,/./-
(with the usual modification for q � 8), in the sense of equivalent quasinorms.

As an immediate consequence of this result, we get the following corollary.

Corollary 2.12. Let 1 ¤ p   8, 1 ¤ q   8 and 0   s   1 ¤M with s ¡ d
p � d

q . Then

F sp,qpRdq �
$&%f P Lmaxtp,qu s.t. }f}Asp,qpRdq :� }f}Lp �

�»
Rd

�»
Rd

|∆M
h fpxq|q
|h|sq�d dh


 p
q

dx

� 1
p

  8
,.-

(with the usual modification for q � 8), in the sense of equivalent norms.

Proof. Let f P Lmaxtp,qu. Choosing q � u � r all the conditions in the theorem above are satisfied.
Therefore,

}f}F sp,qpRdq � }f}Lp �
��»

Rd

�» 1

0

dMt,qfpxqq
tsq�1

dt

� p
q

dx

�1
p

. (2.41)

Since dMt,qfpxq �
�
t�d

³
|h|¤t

|∆M
h fpxq|q dh

	 1
q

for x P Rd, we can change the order of integration to

get that »
Rd

�» 1

0

dMt,qfpxqq
tsq�1

dt

� p
q

dx �
»
Rd

�»
|h|¤1

»
1¡t¡|h|

dt

tsq�1�d
|∆M

h fpxq|q dh
� p
q

dx

�
»
Rd

�»
|h|¤1

|∆M
h fpxq|q
sq � d

�
1

|h|sq�d � 1



dh

� p
q

dx.

This shows that }f}F sp,qpRdq À }f}Asp,qpRdq and also that

»
Rd

�»
|h|  1

2

|∆M
h fpxq|q
|h|sq�d dh

� p
q

dx À
»
Rd

�» 1

0

dMt,qfpxqq
tsq�1

dt

� p
q

dx À }f}pF sp,qpRdq (2.42)
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by (2.41). It remains to see that
³
Rd

�³
|h|¡ 1

2

|∆M
h fpxq|

q

|h|sq�d
dh

	 p
q

dx À }f}pF sp,qpRdq. Using appropriate

changes of variables and the triangle inequality, it is enough to check that

I :�
»
Rd

�»
Rd

|fpx� hq|q
p1� |h|qsq�d dh


 p
q

dx À }f}pF sp,qpRdq. (2.43)

Let us assume first that p ¥ q. Then, since the measure p1 � |h|q�psq�dq dh is finite, we may
apply Jensen’s inequality to the inner integral, and then Fubini to obtain

I À
»
Rd

»
Rd

|fpx� hq|p
p1� |h|qsp�d dh dx À }f}pLp ,

and (2.43) follows.

If, instead, p   q, cover Rd with disjoint cubes Q~j � Q0 � ~̀j for ~j P Zd. Fix the side-length `

of these cubes so that their diameter is 1{3. By the subadditivity of x ÞÑ |x| pq , we have that

I À
¸
~k

»
Q~k

¸
~j

�»
Q~j

|fpyq|q
p1� |x� y|qsq�d dy

� p
q

dx �
¸
~j

�»
Q~j

|fpyq|q dy
� p
q ¸
~k

1

p1� |~j � ~k|qsp� dp
q

.

Since s� d
q ¡ d

p , the last sum is finite and does not depend on ~j. By (2.42) we have that

I À
¸
~j

�»
Q~j

|fpyq|q dy
� p
q

À
¸
~j

»
Q~j

�»
Q~j

|fpyq � fpxq|q dy
� p
q

dx�
¸
~j

»
Q~j

�»
Q~j

|fpxq|q dy
� p
q

dx

À }f}pF sp,qpRdq.

In the last step we have used that
°
~j

³
Q~j

�³
Q~j
|fpxq|q dy

	 p
q

dx � }f}pLp because all the cubes have

side-length comparable to 1.

Definition 2.13. Consider 1 ¤ p   8, 1 ¤ q ¤ 8 and 0   s   1 with s ¡ d
p � d

q . Let U be an

open set in Rd. We say that a measurable function f P Asp,qpUq if

• The function f P LppUq.

• The seminorm

}f} 9Asp,qpUq
:�

�»
U

�»
U

|fpxq � fpyq|q
|x� y|sq�d dy


 p
q

dx

� 1
p

(2.44)

is finite.

We define the norm

}f}Asp,qpUq :� }f}LppUq � }f} 9Asp,qpUq
.

Remark 2.14. The condition s ¡ d
p � d

q ensures that the C8
c -functions are in the class Asp,qpRdq.
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Proof. Indeed, given a bump function ϕ P C8
c pDq,

}ϕ}Asp,qpRdq ¥
�»

p2Dqc

�»
D

|ϕpxq � ϕpyq|q
|x� y|sq�d dy


 p
q

dx

� 1
p

�
�»

p2Dqc

�»
D
|ϕpyq|q dy


 p
q 1

|x|sp� dp
q

dx

� 1
p

which is finite if and only if d
p   s� d

q . The converse implication is an exercise.

In some situations, the classical Besov spaces Bsp,ppUq � Asp,ppUq and the fractional Sobolev
spaces W s,ppUq � Asp,2pUq. For instance, when Ω is a Lipschitz domain then Asp,2pΩq � W s,ppΩq
(see [Str67]). We will see that this is a property of all the uniform domains.

Consider a given ε-uniform domain Ω. In [Jon81] Peter Jones defines an extension operator
Λ0 : W 1,ppΩq Ñ W 1,ppRdq for 1   p   8, that is, a bounded operator such that Λ0f |Ω � f |Ω for
every f P W 1,ppΩq. This extension operator is used to prove that the intrinsic characterization of
W 1,ppΩq and the infimum norms coincide, that is,

inf
g:g|Ω�f

}g}W 1,ppRdq � }f}LppΩq � }∇f}LppΩq.

Next we will see that the same operator is an extension operator for Asp,qpΩq for 0   s   1

with s ¡ d
p � d

q . To define it we need a Whitney covering W1 of Ω (see Definition 1.5), a Whitney
covering W2 of Ωc and we define W3 to be the collection of cubes in W2 with side-lengths small
enough, so that for any Q P W3 there is a S P W1 with DpQ,Sq ¤ C`pQq and `pQq � `pSq (see
[Jon81, Lemma 2.4]). We define the symmetrized cube Q� as one of the cubes satisfying these
properties. Note that the number of possible choices for Q� is uniformly bounded and, if Ω is an
unbounded uniform domain, then

W2 �W3. (2.45)

Lemma 2.15 (see [Jon81]). For cubes Q1, Q2 PW3 and S PW1 we have that

• The symmetrized cubes have finite overlapping: there exists a constant C depending on the
parameters ε and d such that #tQ PW3 : Q� � Su ¤ C.

• The long distance is invariant in the following sense:

DpQ�
1 , Q

�
2 q � DpQ1, Q2q and DpQ�

1 , Sq � DpQ1, Sq (2.46)

• In particular, if Q1X2Q2 � H (Q1 and Q2 are neighbors by (1.7)), then DpQ�
1 , Q

�
2 q � `pQ1q.

We define the family of bump functions tψQuQPW2
to be a partition of the unity associated to 

11
10Q

(
QPW2

, that is, their sum is
°
ψQ � 1, they satisfy the pointwise inequalities 0 ¤ ψQ ¤ χ 11

10Q

and }∇ψQ}8 À 1
`pQq . We can define the operator

Λ0fpxq �
¸

QPW3

ψQpxqfQ� for any f P L1
locpΩq

(recall that fU stands for the mean of a function f in a set U).

Lemma 2.16. Let Ω be a uniform domain, let 1   p, q   8 and 0   s   1 with s ¡ d
p � d

q .

Then, Λ0 : Asp,qpΩq Ñ Asp,qpRdq is an extension operator. Furthermore, Λ0f P Lmaxtp,qu for every
f P Asp,qpΩq.
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Proof. We have to check that

}Λ0f}Asp,qpRdq � }Λ0f}Lp �
�»

Rd

�»
Rd

|Λ0fpxq � Λ0fpyq|q
|x� y|sq�d dy


 p
q

dx

� 1
p

À }f}Asp,qpΩq.

First, note that }Λ0f}Lp ¤ }f}LppΩq � }Λ0f}LppΩcq. By Jensen’s inequality, we have that

}Λ0f}pLppΩcq Àp
¸

QPW3

|fQ� |p}ψQ}pLp ¤
¸

QPW3

1

`pQqd }f}
p
LppQ�q

�
11

10
`pQq


d
.

By the finite overlapping of the symmetrized cubes,

}Λ0f}pLppΩcq À }f}pLppΩq.

The same can be said about Lq when q ¡ p. In that case, moreover, one can cover Ω with balls
tBjujPJ with radius one such that |Bj XΩ| � 1. Then, using the subadditivity of x ÞÑ |x| pq we get

}f}pLqpΩq ¤
�¸

j

»
BjXΩ

|fpyq|q dy
� p
q

(2.47)

Àq
¸
j

�� 
BjXΩ

�»
BjXΩ

|fpyq � fpxq|q dy
� p
q

dx�
 
BjXΩ

�»
BjXΩ

|fpxq|q dy
� p
q

dx

�
À

»
Ω

�»
Ω

|fpxq � fpyq|q
|x� y|sq�d dy


 p
q

dx� }f}pLppΩq � }f}pAsp,qpΩq,

by Definition 2.13.
It remains to check that

}Λ0f} 9Asp,qpRdq
�

�»
Rd

�»
Rd

|Λ0fpxq � Λ0fpyq|q
|x� y|sq�d dy


 p
q

dx

� 1
p

À }f}Asp,qpΩq.

More precisely, we will prove that

a � b � c À }f}pAsp,qpΩq,

where

a :�
»

Ω

�»
Ωc

|fpxq � Λ0fpyq|q
|x� y|sq�d dy


 p
q

dx, b :�
»

Ωc

�»
Ω

|Λ0fpxq � fpyq|q
|x� y|sq�d dy


 p
q

dx and

c :�
»

Ωc

�»
Ωc

|Λ0fpxq � Λ0fpyq|q
|x� y|sq�d dy


 p
q

dx.

Let us begin with

a �
»

Ω

�»
Ωc

|fpxq �°
SPW3

ψSpyqfS� |q
|x� y|sq�d dy


 p
q

dx.
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Call W4 :� tS P W3 : all the neighbors of S are in W3u. Given y P 11
10S, where S P W4, we have

that
°
PPW3

ψP pyq � 1 and, otherwise 0 ¤ 1�°
PPW3

ψP pyq ¤ 1. Thus

a À
¸

QPW1

»
Q

� ¸
SPW3

|fpxq � fS� |q
DpQ,Sqsq�d

»
11
10S

ψSpyq dy
� p
q

dx

�
¸

QPW1

»
Q

�� ¸
SPW2zW4

»
S

���1�°
PPW3

ψP pyq
�
fpxq��q

DpQ,Sqsq�d dy

�
p
q

dx �: a1 � a2 .

In a1 by the choice of the symmetrized cube we have that
³

11
10S

ψSpyq dy � `pS�qd. Jensen’s

inequality implies that |fpxq � fS� |q ¤ 1
`pS�qd

³
S�
|fpxq � fpξq|q dξ. By (2.46) and the finite over-

lapping of the symmetrized cubes, we get that

a1 À
¸

QPW1

»
Q

� ¸
SPW3

»
S�

|fpxq � fpξq|q
DpQ,S�qsq�d dξ

� p
q

dx À }f}p9Asp,qpΩq.

To bound a2 just note that for Q P W1 and S P W2zW4, we have that S is far from the

boundary, say `pSq ¥ `0, where `0 depends only on diampΩq and ε and, if Ω is unbounded, then

`0 � 8 and a2 � 0 by (2.45). Thus, we have that

a2 À
¸

QPW1

»
Q

�� ¸
SPW2zW4

»
11
10S

|fpxq|q
DpQ,Sqsq�d dy

�
p
q

dx À
�� ¸
SPW2zW4

`pSqd
DpΩ, Sqsq�d

�
p
q

}f}pLp .

Recall that Whitney cubes have side-length equivalent to their distance to BΩ. Moreover, the
number of cubes of a given side-length bigger than `0 is uniformly bounded when Ω is bounded,

so
°
SPW2zW4

`pSqd

`pSqsq�d
is a geometric sum. Therefore,

a2 À
�� ¸
SPW2zW4

1

`pSqsq

�
p
q

}f}pLp ¤ Cε,diampΩq`
�sp
0 }f}pLp .

Next, note that, using the same decomposition as above, we have that

b �
»

Ωc

�»
Ω

|°QPW3
ψQpxqfQ� � fpyq|q
|x� y|sq�d dy


 p
q

dx

À
¸

QPW3

»
11
10Q

ψQpxqp dx
� ¸
SPW1

»
S

��fQ� � fpyq��q
DpQ,Sqsq�d dy

� p
q

�
¸

PPW2zW4

»
P

�
1�

¸
QPW3

ψQpxq
�p

dx

� ¸
SPW1

»
S

|fpyq|q
DpP, Sqsq�d dy

� p
q

�: b1 � b2 .

We have that

b1 À
¸

QPW3

`pQqd
�� ¸
SPW1

»
S

�
1

`pQqd

³
Q� |fpξq � fpyq| dξ

	q
DpQ�, Sqsq�d dy

�
p
q
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and, thus, by Minkowsky’s integral inequality, we have that

b1 À
¸

QPW3

`pQqd
`pQqdp

��»
Q�

� ¸
SPW1

»
S

|fpξq � fpyq|q
|ξ � y|sq�d dy

� 1
q

dξ

�p .
By Hölder’s inequality and the finite overlapping of symmetrized cubes, we get that

b1 À
¸

QPW3

1

`pQqdpp�1q

»
Q�

�»
Ω

|fpξq � fpyq|q
|ξ � y|sq�d dy


 p
q

dξ`pQq dpp1 À
»

Ω

�»
Ω

|fpξq � fpyq|q
|ξ � y|sq�d dy


 p
q

dξ,

that is,

b1 À }f}p9Asp,qpΩq.

To bound b2 , note that as before, if Ω is unbounded then b2 � 0 and, otherwise, we have that

b2 �
¸

QPW2zW4

`pQqd
� ¸
SPW1

»
S

|fpyq|q
DpQ,Ωqsq�d dy

� p
q

À }f}pLqpΩq
¸

QPW2zW4

`pQqd
distpQ,Ωqsp� dp

q

.

Now, since s ¡ d
p � d

q we have that sp� dp
q ¡ d. Therefore,

¸
QPW2zW4

`pQqd
distpQ,Ωqsp� dp

q

�
¸

QPW2zW4

1

`pQqsp� dp
q �d

¤ Cε,diampΩq`
d�sp� dp

q

0 .

On the other hand, if Ω is bounded and q ¤ p then }f}LqpΩq À }f}LppΩq by the Hölder inequality

and, if p   q then }f}LqpΩq À }f}Asp,qpΩq by (2.47).

Let us focus on c . We have that

c �
»

Ωc

�»
Ωc

|°PPW3
ψP pxqfP� �°

SPW3
ψSpyqfS� |q

|x� y|sq�d dy


 p
q

dx.

Given x P 11
10Q where Q P W4 and y P Ωc X Bpx, `010 q, then neither x nor y are in the support of

any bump function of a cube in W2zW3, so
°
PPW3

ψP pyq � 1 and
°
PPW3

ψP pxq � 1. Therefore¸
PPW3

ψP pxqfP� �
¸
SPW3

ψSpyqfS� �
¸

PX2Q�H

¸
SPW3

ψP pxqψSpyq pfP� � fS�q .

If, moreover, y P B �
x, 1

10`pQq
�
, since the points are ‘close’ to each other, we will use the Hölder

regularity of the bump functions, so we write¸
PPW3

ψP pxqfP� �
¸
SPW3

ψSpyqfS� �
¸

PPW3

pψP pxq � ψP pyqq fP� .

This decomposition is still valid if Q P W2zW4 and y P B �
x, 1

10`pQq
�
, that is, y P B �

x, `010

�
, but

we will treat this case apart since we lose the cancellation of the sums of bump functions but we
gain a uniform lower bound on the side-lengths of the cubes involved. Finally, we will group the
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remaining cases, when x P Ωc and y R Bpx, `010 q in an error term. Considering all these facts we get

c À
¸

QPW4

»
Q

�»
ΩczBpx, 1

10 `pQqq
¸

PX2Q�H

¸
SPW3

|ψP pxqψSpyq| |fP� � fS� |q
DpP�, S�qsq�d dy

� p
q

dx

�
¸

QPW4

»
Q

�»
Bpx, 1

10 `pQqq
|°SX2Q�H pψSpxq � ψSpyqq fS� |q

|x� y|sq�d dy

� p
q

dx

�
¸

QPW2zW4

»
Q

�»
Bpx, `010 q

|°SPW3:SX2Q�H pψSpxq � ψSpyqq fS� |q
|x� y|sq�d dy

� p
q

dx

�
»

Ωc

�»
ΩczBpx, `010 q

|Λ0fpxq � Λ0fpyq|q
|x� y|sq�d dy

� p
q

dx

�: c1 � c2 � c3 � c4 ,

where the last two terms are zero in case Ω is unbounded.

Using the same arguments as in a1 and b1 we have that

c1 À }f}p9Asp,qpΩq.

Also combining the arguments used to bound a2 and b2 we get that if Ω is bounded, then

c4 À
�
}f}LppΩq � }f}LqpΩq

	p
,

and it vanishes otherwise.
The novelty comes from the fact that we are integrating in Ωc both terms in c , so the

variables in the integrals c2 and c3 can get as close as one can imagine. Here we need to use

the smoothness of the bump functions, but also the smoothness of f itself. The trick for c2 is

to use that tψQu is a partition of the unity with ψQ supported in 11
10Q, that is,

°
SPW3

ψSpxq �°
SX2Q�H ψSpxq � 1 if x P 11

10Q with Q PW4. Thus,

c2 �
¸

QPW4

»
Q

�»
Bpx, 1

10 `pQqq
|°SX2Q�H pψSpxq � ψSpyqq

�
fS� � fQ�

� |q
|x� y|sq�d dy

� p
q

dx,

and using the fact that }∇ψQ}8 À 1
`pQq and (1.28), we have that

c2 Àq
¸

QPW4

»
Q

� ¸
SX2Q�H

��fS� � fQ�

��q »
Bpx, 1

10 `pQqq
|x� y|q
`pQqq

1

|x� y|sq�d dy
� p
q

dx

Às
¸

QPW4

`pQqd
�°

SX2Q�H

��fS� � fQ�

��q
`pQqsq

� p
q

�
¸

QPW4

`pQqd
� ¸
SX2Q�H

��fS� � fQ�

��q
DpQ�, S�qsq

� p
q

,

which can be bounded as c1 .
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Finally, we bound the error term c3 , assuming Ω to be a bounded domain. Here we cannot

use the cancellation of the partition of the unity anymore. Instead, we will use the Lp norm of f ,
the Hölder regularity of the bump functions and the fact that all the cubes considered are roughly
of the same size:

c3 �
¸

QPW2zW4

»
Q

�»
Bpx, `010 q

|°SX2Q�H pψSpxq � ψSpyqq fS� |q
|x� y|sq�d dy

� p
q

dx

À
¸

QPW2

`0¤`pQq¤2`0

»
Q

¸
SPW3

SX2Q�H

|fS� |p
�»

Bpx, `010 q
1

`q0

1

|x� y|ps�1qq�d
dy

� p
q

dx

Àε,`0,q,p
¸
SPW3

`0
2 ¤`pSq¤`0

}f}pLppS�q À }f}pLppΩq.

Corollary 2.17. Let Ω be a uniform domain with an admissible Whitney covering W. Given
1   p   8, 1   q   8 and 0   s   1 with s ¡ d

p � d
q , we have that Asp,qpΩq � F sp,qpΩq, and

}f}F sp,qpΩq � }f}Asp,qpΩq for all f P F sp,qpΩq.

Proof. By Corollary 2.12, given f P F sp,qpΩq we have that

}f}Asp,qpΩq ¤ inf
gPLmaxtp,qu:g|Ω�f

}g}Asp,qpRdq � inf
g:g|Ω�f

}g}F sp,qpRdq � }f}F sp,qpΩq.

By the Lemma 2.16 we have the converse: for every f P Asp,qpΩq we have that

}f}F sp,qpΩq � inf
g:g|Ω�f

}g}F sp,qpRdq ¤ }Λ0f}F sp,qpRdq � }Λ0f}Asp,qpRdq ¤ C}f}Asp,qpΩq.

2.4 Equivalent norms with reduction of the integration do-
main.

Next we present an equivalent norm for F sp,qpΩq in terms of differences but reducing the domain
of integration of the inner variable to the shadow of the outer variable in the seminorm }�} 9Asp,qpΩq

defined in (2.44).

Lemma 2.18. Let Ω be a uniform domain with an admissible Whitney covering W, let 1   p, q  
8 and 0   s   1 with s ¡ d

p � d
q . Then, f P F sp,qpΩq if and only if

}f} rAsp,qpΩq � }f}LppΩq �
�� ¸
QPW

»
Q

�»
ShpQq

|fpxq � fpyq|q
|x� y|sq�d dy

� p
q

dx

�1
p

  8. (2.48)

This quantity defines a norm which is equivalent to }f}pF sp,qpΩq and, moreover, we have that f P
Lmaxtp,qupΩq.
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Proof. Let Ω be an ε-uniform domain. Recall that in (2.44) we defined

}f} 9Asp,qpΩq
�

�»
Ω

�»
Ω

|fpxq � fpyq|q
|x� y|sq�d dy


 p
q

dx

� 1
p

.

Trivially

}f}p9Asp,qpΩq Á
¸
QPW

»
Q

�»
ShpQq

|fpxq � fpyq|q
|x� y|sq�d dy

� p
q

dx.

Next, we will use the seminorm in the duality form

}f} 9Asp,qpΩq
� sup

}g}
Lp

1
pLq

1
pΩqq

¤1

»
Ω

»
Ω

|fpxq � fpyq|
|x� y|s� d

q

gpx, yq dy dx. (2.49)

Let g ¡ 0 be an L1
loc function with }g}Lp1 pLq1 pΩqq ¤ 1. Since the shadow of every cube Q contains

2Q, we just use Hölder’s inequality to find that

¸
QPW

»
Q

»
2Q

|fpxq � fpyq|
|x� y|s� d

q

gpx, yq dy dx ¤
� ¸
QPW

»
Q

�»
2Q

|fpxq � fpyq|q
|x� y|sq�d dy


 p
q

dx

� 1
p

. (2.50)

Therefore, we only need to prove the estimate

¸
Q,S

»
Q

»
Sz2Q

|fpxq � fpyq|
|x� y|s� d

q

gpx, yq dy dx À
�� ¸
QPW

»
Q

�»
ShpQq

|fpxq � fpyq|q
|x� y|sq�d dy

� p
q

dx

�1
p

. (2.51)

If x P Q, y P Sz2Q, then |x� y| � DpQ,Sq, so we can write¸
Q,S

»
Q

»
Sz2Q

|fpxq � fpyq|
|x� y|s� d

q

gpx, yq dy dx À
¸
Q,S

»
Q

»
S

|fpxq � fpyq|
DpQ,Sqs� d

q

gpx, yq dy dx. (2.52)

Since Ω is a uniform domain, for every pair of cubes Q and S in this sum, there exists an admissible
chain rQ,Ss joining them. Thus, writing fQ �

ffl
Q
f dm for the mean of f in Q, the right-hand side

of (2.52) can be split as follows:¸
Q,S

»
Q

»
S

|fpxq � fpyq|
DpQ,Sqs� d

q

gpx, yq dy dx ¤
¸
Q,S

»
Q

»
S

|fpxq � fQ|
DpQ,Sqs� d

q

gpx, yq dy dx

�
¸
Q,S

»
Q

»
S

|fQ � fQS |
DpQ,Sqs� d

q

gpx, yq dy dx

�
¸
Q,S

»
Q

»
S

|fQS � fpyq|
DpQ,Sqs� d

q

gpx, yq dy dx

�: 1 � 2 � 3 (2.53)

The first term can be immediately bounded by the Cauchy-Schwarz inequality. Namely, writing
Gpxq � }gpx, �q}Lq1 pΩq, by (1.29) we have that

1 ¤
¸
QPW

»
Q

|fpxq � fQ|
� ¸
SPW

»
S

gpx, yqq1 dy
� 1
q1
� ¸
SPW

`pSqd
DpQ,Sqsq�d

� 1
q

dx

¤
¸
QPW

³
Q
|fpxq � fQ|Gpxq dx

`pQqs .



2.4. EQUIVALENT NORMS WITH REDUCTION OF THE INTEGRATION DOMAIN. 57

By Jensen’s inequality, |fpxq� fQ| ¤
�

1
`pQqd

³
Q
|fpxq � fpyq|q dy

	 1
q

and thus, since `pQq Ád |x� y|
for x, y P Q, we have that

1 À
� ¸
QPW

»
Q

�»
Q

|fpxq � fpyq|q
|x� y|sq�d dy


 p
q

dx

� 1
p

}G}Lp1 . (2.54)

Since }G}Lp1 � }g}Lp1 pLq1 q ¤ 1, this finishes this part.

For the second one, for all cubes Q and S we consider the subchain rQ,QSq � rQ,Ss. Then

2 ¤
¸
Q,S

»
Q

»
S

gpx, yq
DpQ,Sqs� d

q

dy dx
¸

PPrQ,QSq

|fP � fN pP q|.

Recall that all the cubes P P rQ,QSs contain Q in their shadow and the properties of the Whitney
covering grant that N pP q � 5P . Moreover, by (1.23) we have that DpQ,Sq � DpP, Sq. Thus,

2 Àd
¸
P

 
P

 
5P

|fpξq � fpζq| dζ dξ
¸

QPSHpP q

»
Q

¸
SPW

»
S

gpx, yq
DpP, Sqs� d

q

dy dx

and, using Hölder’s inequality, and by (1.29), we have that

2 À
¸
P

 
P

 
5P

|fpξq � fpζq| dζ dξ
¸

QPSHpP q

»
Q

�»
Ω

gpx, yqq1 dy

 1
q1

� ¸
SPW

`pSqd
DpP, Sqsq�d

� 1
q

dx

Àd,s,q
¸
P

 
P

 
5P

|fpξq � fpζq| dζ dξ
¸

QPSHpP q

»
Q

Gpxq dx 1

`pP qs .

By (1.28) we have that
³
ShpP q

Gpxq dx Àd,ε infyPP MGpyq`pP qd, so

2 À
¸
P

»
P

»
5P

|fpξq � fpζq| dζMGpξq dξ `pP q
d�s

`pP q2d

Àd,p
¸
P

»
P

�»
5P

|fpξq � fpζq|q dζ

 1
q

`pP q dq1MGpξq dξ 1

`pP qd�s .

Note that for ξ, ζ P 5P , we have that |ξ � ζ| Àd `pP q. Thus, using Hölder’s inequality again and
the fact that }MG}Lp1 Àp }G}Lp1 ¤ 1, we bound the second term by

2 À
¸
P

»
P

�»
5P

|fpξq � fpζq|q
|ξ � ζ|sq�d dζ


 1
q

MGpξq dξ À
�¸
P

»
P

�»
5P

|fpξq � fpζq|q
|ξ � ζ|sq�d dζ


 p
q

dξ

� 1
p

.

(2.55)

Now we face the boundedness of

3 �
¸
Q,S

»
Q

»
S

|fQS � fpyq|
DpQ,Sqs� d

q

gpx, yq dy dx.
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Given two cubes Q and S, we have that for every admissible chain rQ,Ss the cubes Q,S P SHpQSq
by Definition 1.15 and DpQ,Sq � `pQSq by (1.21). Thus, we can reorder the sum, writing

3 À
¸
R

¸
QPSHpRq

¸
SPSHpRq

»
Q

»
S

|fR � fpyq|
`pRqs� d

q

gpx, yq dy dx (2.56)

¤
¸
R

»
R

¸
QPSHpRq

¸
SPSHpRq

»
Q

»
S

|fpξq � fpyq|
`pRqs�p1� 1

q qd gpx, yq dy dx dξ.

Using Hölder’s inequality, Lemma 1.18 and the fact that for S P SHpRq one has `pRq � DpS,Rq,
we get that

3 À
¸
R

»
R

1

`pRqs�p1� 1
q qd

¸
QPSHpRq

»
Q

¸
SPSHpRq

�»
S

|fpξq � fpyq|q dy

 1
q
�»

S

gpx, yqq1 dy

 1
q1

dx dξ

¤
¸
R

»
R

1

`pRqs�p1� 1
q qd

�»
ShpRq

|fpξq � fpyq|q dy
� 1
q ¸
QPSHpRq

»
Q

Gpxq dx dξ

À
¸
R

»
R

�»
ShpRq

|fpξq � fpyq|q
`pRqsq�d dy

� 1
q

1

`pRqdMGpξq`pRqd dξ

and, using the Hölder inequality again and the boundedness of the maximal operator in Lp
1

, we
get

3 À
��¸

R

»
R

�»
ShpRq

|fpξq � fpyq|q
|ξ � y|sq�d dy

� p
q

dξ

�1
p

}MG}Lp1

À
��¸

R

»
R

�»
ShpRq

|fpξq � fpyq|q
|ξ � y|sq�d dy

� p
q

dξ

�1
p

. (2.57)

Thus, by (2.53), (2.54), (2.55) and (2.57), we have that

¸
Q,S

»
Q

»
S

|fpxq � fpyq|
DpQ,Sqs� d

q

gpx, yq dy dx À
��¸

R

»
R

�»
ShpRq

|fpξq � fpyq|q
|ξ � y|sq�d dy

� p
q

dξ

�1
p

.

This fact, together with (2.52) proves (2.51) and thus, using (2.49) and (2.50), we get that

}f}Asp,qpΩq Àε,s,p,q,d }f} rAsp,qpΩq.

Finally, by (2.47) we have that f P Lmaxtp,qupΩq.
Remark 2.19. Note that we have proven that the homogeneous seminorms are equivalent, that is,

¸
QPW

»
Q

�»
ShpQq

|fpxq � fpyq|q
|x� y|sq�d dy

� p
q

dx � }f}p9Asp,qpΩq,

which improves (2.48).
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In some situations we can refine Lemma 2.18.

Lemma 2.20. Let Ω be a uniform domain with an admissible Whitney covering W, let 1   q ¤
p   8 and max

!
d
p � d

q , 0
)
  s   1. Then, f P F sp,qpΩq if and only if

}f}LppΩq �
� ¸
QPW

»
Q

�»
5Q

|fpxq � fpyq|q
|x� y|sq�d dy


 p
q

dx

� 1
p

  8.

Furthermore, this quantity defines a norm which is equivalent to }f}F sp,qpΩq.
Proof. Arguing as before by duality, we consider a function g ¡ 0 with }g}Lp1 pLq1 pΩqq ¤ 1. Com-

bining (2.54) and (2.55) we know that

¸
Q,S

»
Q

»
S

|fpxq � fQS |
DpQ,Sqs� d

q

gpx, yq dy dx À
� ¸
QPW

»
Q

�»
5Q

|fpxq � fpyq|q
|x� y|sq�d dy


 p
q

dx

� 1
p

and, thus, we have

¸
Q,S

»
Q

»
S

|fpxq � fpyq|
DpQ,Sqs� d

q

gpx, yq dy dx �
� ¸
QPW

»
Q

�»
5Q

|fpxq � fpyq|q
|x� y|sq�d dy


 p
q

dx

� 1
p

� 3 . (2.58)

where

3 :�
¸
Q,S

»
Q

»
S

|fQS � fpyq|
DpQ,Sqs� d

q

gpx, yq dy dx À
¸
R

¸
Q,SPSHpRq

»
Q

»
S

|fR � fpyq|
`pRqs� d

q

gpx, yq dy dx

by (2.56).
Using Hölder’s inequality and Lemma 1.18 we get that

3 À
¸
R

1

`pRqs� d
q

�� ¸
SPSHpRq

»
S

|fR � fpyq|q dy
�1
q ¸
QPSHpRq

»
Q

Gpxq dx

À
¸
R

�� ¸
SPSHpRq

»
S

|fR � fpyq|q dy
�1
q ³

R
MGpξq dξ
`pRqs� d

q

and, using the Hölder inequality again, we get

3 À

���¸
R

�� ¸
SPSHpRq

»
S

|fR � fpyq|q dy
�
p
q

`pRqd
`pRqsp� dp

q

��
1
p

}MG}Lp1 .

By the boundedness of the maximal operator in Lp
1

we have that }MG}Lp1 À 1. Now, given
R,S P W there exists an admissible chain rS,Rs, and we can decompose the previous expression
as

3
p À

¸
R

�� ¸
SPSHpRq

������
¸

PPrS,Rq

�
fP � fN pP q

� `pP q sq
`pP q sq

������
q

`pSqd
�
p
q

`pRqd�sp�d pq (2.59)

�
¸
R

�� ¸
SPSHpRq

»
S

|fS � fpyq|q dy
�
p
q

`pRqd�sp�d pq �: 3.1 � 3.2 ,
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where we wrote rS,Rq � rS,RsztRu.
Using Hölder’s inequality

3.1 À
¸
R

��� ¸
SPSHpRq

¸
PPrS,Rq

|fP � fN pP q|q
`pP qs

�� ¸
PPrS,Rq

`pP q sq
1

q

�
q

q1

`pSqd
��
p
q

`pRqd�sp�d pq .

But for S P SHpRq by Remark 1.17 we have that
°
PPrS,Rq `pP q

sq1

q À `pRq sq
1

q . Moreover, by

(1.26) there exists a ratio ρ7 such that for P P rS,Rs we have that S P SH7pP q :� SHρ7pP q and
P P SH7pRq. We also know that

°
SPSH7pP q `pSqd À `pP qd, so writing UP for the union of the

neighbors of P , we get

3.1 À
¸
R

�� ¸
PPSH7pRq

�ffl
UP

|fpξq � fP | dξ
	q
`pP qd

`pP qs

�
p
q

`pRqd� sp
q �sp�

dp
q .

Recall that p ¥ q and, therefore, by Hölder’s inequality and (1.24) we have that

3.1 À
¸
R

¸
PPSH7pRq

�ffl
UP

|fpξq � fP | dξ
	p
`pP qd

`pP q spq

�� ¸
PPSH7pRq

`pP qd
�p1�

q
p q pq

`pRqd� sp

q1
� dp
q

À
¸
P

�ffl
UP

|fpξq � fP | dξ
	p
`pP qd

`pP q spq
¸

R:PPSH7pRq

`pRq� sp

q1 �
¸
P

�ffl
UP

|fpξq � fP | dξ
	p
`pP qd

`pP qsp

Using Jensen’s inequality we get

3.1 À
¸
P

»
UP

|fpξq � fP |p
`pP qsp dξ, (2.60)

and Jensen’s inequality again leads to

3.1 À
¸
P

»
UP

�³
P
|fpξq � fpζq|q dζ

`pP qd

 p
q 1

`pP qsp dξ À
¸
P

»
P

�³
5P
|fpξq � fpζq|q dζ
|ξ � ζ|sq�d


 p
q

dξ. (2.61)

To bound 3.2 we follow the same scheme. Since p ¥ q we have that

3.2 �
¸
R

�� ¸
SPSHpRq

»
S

|fS � fpyq|q dy `pSq
dp1� q

p q
`pSqdp1� q

p q

�
p
q

`pRqd�sp�d pq

¤
¸
R

�� ¸
SPSHpRq

�³
S
|fS � fpyq|q dy� pq
`pSqdp pq�1q

�
q
p �
p
q
�� ¸
SPSHpRq

`pSqd
�p1�

q
p q pq

`pRqd�sp�d pq ,

and, since
°
SPSHpRq `pSqd � `pRqd, reordering and using (1.24) we get that

3.2 À
¸
S

�³
S
|fS � fpyq|q dy� pq
`pSqdp pq�1q

¸
R:SPSHpRq

`pRq�sp À
¸
S

�³
S
|fS � fpyq|q dy

`pSqd

 p
q `pSqd
`pSqsp .
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Thus, by Jensen’s inequality,

3.2 À
¸
S

³
S
|fS � fpyq|p dy

`pSqd
`pSqd
`pSqsp

and, arguing as in (2.60), we get that

3.2 À
¸
S

»
S

�³
S
|fpyq � fpζq|q dζ
|y � ζ|sq�d


 p
q

dy. (2.62)

Thus, by (2.58), (2.59), (2.61) and (2.62), we have that

¸
Q,S

»
Q

»
S

|fpxq � fpyq|
DpQ,Sqs� d

q

gpx, yq dy dx À
�¸

S

»
S

�»
5S

|fpξq � fpyq|q
|ξ � y|sq�d dy


 p
q

dξ

� 1
p

.

This fact, together with (2.49), (2.50) and (2.52) finishes the proof of Lemma 2.20.

Remark 2.21. An analogous result to Lemma 2.20 for Besov spaces Bsp,p can be found in [Dyd06,
Proposition 5] where it is stated in the case of Lipschitz domains.

Corollary 2.22. Let Ω be a uniform domain. Let δpxq :� distpx, BΩq for every x P C.
Given 1   p   q   8 and 0   s   1 with s ¡ d

p � d
q , we have that Asp,qpΩq � F sp,qpΩq and,

moreover, for ρ1 ¡ 1 big enough, we have that

}f}F sp,qpΩq � }f}LppΩq �
��»

Ω

�»
Bρ1δpxqpxqXΩ

|fpxq � fpyq|q
|x� y|sq�d dy

� p
q

dx

�1
p

for all f P F sp,qpΩq.

Given 1   q ¤ p   8 and 0   s   1, we have that Asp,qpΩq � F sp,qpΩq and, moreover, for
0   ρ0   1 we have that

}f}F sp,qpΩq � }f}LppΩq �
��»

Ω

�»
Bρ0δpxqpxq

|fpxq � fpyq|q
|x� y|sq�d dy

� p
q

dx

�1
p

for all f P F sp,qpΩq.

Proof. This comes straight forward from Corollary 2.17, Lemma 2.18 and Lemma 2.20, taking
smaller cubes in the Whitney covering if necessary when ρ0    1.

Remark 2.23. In particular, for every 1   p   8 and 0   s   1 we have that Asp,ppΩq � Bsp,ppΩq,
with

}f}Bsp,ppΩq � }f}LppΩq �
�»

Ω

»
Bρ0δpxqpxq

|fpxq � fpyq|p
|x� y|sp�d dy dx

� 1
p

for all f P Bsp,ppΩq.

If in addition s ¡ d
p � d

2 , then Asp,2pΩq �W s,ppΩq. If p ¥ 2 we have that

}f}W s,ppΩq � }f}LppΩq �
��»

Ω

�»
Bρ0δpxqpxq

|fpxq � fpyq|2
|x� y|2s�d dy

� p
2

dx

�1
p

for all f PW s,ppΩq,

and, if 1   p   2, we have that

}f}W s,ppΩq � }f}LppΩq �
��»

Ω

�»
Bρ1δpxqpxqXΩ

|fpxq � fpyq|2
|x� y|2s�d dy

� p
2

dx

�1
p

for all f PW s,ppΩq.





Chapter 3

Characteristic functions of planar
domains

In this chapter we prove that for p ¡ 2 the Beurling transform is bounded on Wn,ppΩq when the

boundary of the domain is regular enough. In particular, we will see that if N P Bn�1{p
p,p pBΩq,

then BχΩ P Wn,ppΩq, in the same spirit of [CT12]. Recall that this result is sharp for n � 1 and
Lipschitz constant small enough by [Tol13].

Theorem 3.1. Let p ¡ 2, let n P N and let Ω be a bounded Lipschitz domain with N P Bn�1{p
p,p pBΩq.

Then, for every f PWn,ppΩq we have that

}BpχΩfq}Wn,ppΩq ¤ C}N}
B
n�1{p
p,p pBΩq

}f}Wn,ppΩq,

where C depends on p, n, diampΩq and the Lipschitz character of the domain.

The proof will be slightly more tricky since we will need to approximate the boundary of
the domain by polynomials instead of straight lines: the derivative of the Beurling transform of
the characteristic function of a half-plane is zero (see [CT12]), but the derivative of the Beurling
transform of the characteristic function of a domain bounded by a polynomial of degree greater
than one is not zero anymore. Using the T pP q-Theorem 2.1 this will suffice to see the boundedness
of the Beurling transform in Wn,ppΩq.

Section 3.1 is devoted to present a family of convolution operators in the plane which include
the Beurling transform as a particular case. The purpose of the notation that we will introduce at
this point, which is not standard, is to simplify the proofs of Chapter 4. In Section 3.2 one finds the
definition of some generalized β-coefficients related to Jones and David-Semmes’ celebrated betas
and an equivalent norm for the Besov spaces introduced in Section 1.2 in terms of the generalized
β-coefficients is presented using a result by Dorronsoro in [Dor85].

From that point, the proof of a quantitative version of Theorem 3.1 begins (see Theorem 3.28).
The first step is to study the case of unbounded domains whose boundary can be expressed as
the graph of a Lipschitz function. Section 3.3 contains the outline of the proof, reducing it to two
lemmas. The first one studies the relation with the β-coefficients and is proven in Section 3.4. The
second one, proven in Section 3.5, is about the case where the domain is bounded by the graph
of a polynomial, and here one finds the exponential behavior of the bounds for the iterates of the
Beurling transform, which entangles the more subtle details of the proof. Section 3.6 stops the
flow for a while to relate the beta coefficients with the normal vector. Finally, in Sections 3.7 and
3.8 one finds the quantitative version (in the precise shape that we need in Chapter 4) of Theorem
3.1 for bounded Lipschitz domains using a localization principle and the T pP q-theorem.

63
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3.1 A family of convolution operators in the plane

Definition 3.2. Consider a function K : Czt0u Ñ C. For any f P L1
loc we define

TKfpzq � lim
εÑ0

»
CzBεpzq

Kpz � wqfpwq dmpwq

as long as the limit exists, for instance, when K is bounded away from 0, f P L1 and y R supppfq
or when f � χU for an open set U with y P U ,

³
Bεp0qzBε1 p0q

K dm � 0 for every ε ¡ ε1 ¡ 0 and K

is integrable at infinity. We say that K is the kernel of TK .

For any multiindex γ P Z2, we will consider Kγpzq � zγ � zγ1 z̄γ2 and then we will put shortly
T γf :� TK

γ

f , that is,

T γfpzq � lim
εÑ0

»
CzBεpzq

pz � wqγfpwq dmpwq (3.1)

as long as the limit exists.

For any operator T and any domain Ω, we can consider TΩf � χΩ T pχΩ fq.

Example 3.3. As the reader may have observed, the Beurling and the Cauchy transforms are in
that family of operators. Namely, when Kpzq � z�2, that is, for γ � p�2, 0q, then �1

π T
γ is the

Beurling transform. The operator 1
πT

p�1,0q coincides with the Cauchy transform.

Consider the iterates of the Beurling transform Bm for m ¡ 0. For every f P Lp and z P C we
have

Bmfpzq � p�1qmm
π

lim
εÑ0

»
|z�τ |¡ε

pz � τqm�1

pz � τqm�1
fpτq dmpτq � p�1qmm

π
T p�m�1,m�1qfpzq. (3.2)

That is, for γ � pγ1, γ2q with γ1 � γ2 � �2 and γ1 ¤ �2, the operator T γ is an iteration of the
Beurling transform modulo constant (see [AIM09, Section 4.2]), and it maps LppUq to itself for
every open set U . If γ2 ¤ �2, then T γ is an iterate of the conjugate Beurling transform and it is
bounded on Lp as well. In both cases T γ is an admissible convolution Calderón-Zygmund operator
of order 8 (see Definition 1.26).

3.2 Besov norm and beta coefficients

In [Dor85], Dorronsoro introduces a characterization of Besov spaces in terms of the mean oscilla-
tion of the functions on cubes, and he uses approximating polynomials to do so. If the polynomials
are of degree one, that is straight lines, this definition can be written in terms of a certain sum of
David-Semmes betas (see [CT12] for instance). Following the ideas of Dorronsoro in our case we
will use higher degree polynomials to approximate the Besov function that we want to consider,
giving rise to some generalized betas. The following proposition comes from [Dor85], where it is
not explicitly proven. We give a short proof of it for the sake of completeness.

Proposition 3.4. Given a locally integrable function f : Rd Ñ R and a cube Q � Rd, there exists
a unique polynomial Rn

Qf P Pn which we will call approximating polynomial of f on Q, such that
given any multiindex γ with |γ| ¤ n one has that»

Q

pRn
Qf � fqxγ � 0. (3.3)
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Remark 3.5. In case of existence, the approximating polynomial verifies

sup
xPQ

|Rn
Qfpxq| ¤ Cn,d

1

|Q|
»
Q

|f | dm.

Proof. By Remark 1.19, for any P P Pn we have that

}P }2L8pQq �
��P 2

��
L8pQq

� 1

|Q|
��P 2

��
L1pQq

� 1

|Q| }P }
2
L2pQq.

Using the linearity of the integral in (3.3), one has

1

|Q|
»
Q

|Rn
Qf |2 dm � 1

|Q|
»
Q

Rn
Qf � f dm.

Combining both facts one gets��Rn
Qf

��2

L8pQq
À 1

|Q|
��Rn

Qf
��
L8pQq

}f}L1pQq.

Proof of Proposition 3.4. By the Hilbert Projection Theorem, L2pQq � Pn ` pPnqK. Thus, if
f P L2pQq, we can write f |Q � Rn

Qf � pf |Q �Rn
Qfq satisfying (3.3).

For general f P L1, we can define a sequence of functions tfjujPN � L2pQq such that |fj | ¤ |f |
and fj

a.e.ÝÝÑ f . By Remark 3.5 we have that the approximating polynomials Rn
Qfj are uniformly

bounded on Q by

sup
xPQ

|Rn
Qfjpxq| À

1

|Q|
»
Q

|fj | dm ¤ 1

|Q|
»
Q

|f | dm.

Therefore there exists a convergent subsequence of tRn
Qfjuj in L1 (and in any other norm). We

call Rn
Qf the limit of one such partial. By the Dominated Convergence Theorem we get (3.3).

To see uniqueness, we observe that if we find two polynomials P1 and P2 satisfying (3.3), then»
Q

pP1 � P2qP � 0

for any P P Pn. In particular, if we take P � P1 � P2 we get that }P1 � P2}L2pQq � 0.

Remark 3.6. Given P P Pn, a cube Q and 1 ¤ p ¤ 8 we have that��f �Rn
Qf

��
LppQq

¤ Cd,n}f � P }LppQq, (3.4)

and given any cubes Q � Q1,��f �Rn
Qf

��
LppQq

¤ Cd,n
��f �Rn

Q1f
��
LppQ1q

. (3.5)

Proof. By means of the triangle inequality and (3.3), we have that for any P P Pn��f �Rn
Qf

��
LppQq

¤ }f � P }LppQq �
��P �Rn

Qf
��
LppQq

� }f � P }LppQq �
��Rn

QpP � fq��
LppQq

.

Therefore, we use twice Hölder’s Inequality and Remark 3.5 to get��f �Rn
Qf

��
LppQq

¤ }f � P }LppQq � |Q|1{p��Rn
QpP � fq��

L8pQq

Àn,d }f � P }LppQq �
|Q|1{p
|Q| }P � f}L1pQq ¤ 2}f � P }LppQq.

The inequality (3.5) is just a consequence of (3.4) replacing P by Rn
Q1f .
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Remark 3.7. In the one dimensional case, if f is continuous and I is an interval one can easily
see that f �Rn

I f has n�1 zeroes at least. Indeed, if it did not happen, one could find a polynomial
P P Pn with a simple zero at every point where f �Rn

I f changes its sign, and no more. Therefore,
pf�Rn

I fq �P would have constant sign and, thus, the integral in (3.3) would not vanish (see Figure
3.1).

Figure 3.1: If f �R2
If had only 2 zeroes, there would exist P P P2 with

³pf �R2
IfqP dm ¡ 0.

Now we can define the generalized betas.

Definition 3.8. Let f : Rd Ñ R be a locally integrable function and Q � Rd a cube. Then we
define

βpnqpf,Qq �
1

|Q|
»

3Q

|fpxq �Rn
3Qfpxq|

`pQq dmpxq.

Remark 3.9. Taking into account (3.4), we can conclude that

βpnqpf,Qq � inf
PPPn

1

|Q|
»

3Q

|fpxq � P pxq|
`pQq dmpxq.

This can be seen as a generalization of David and Semmes β1 coefficient since βp1q and β1 are
comparable as long as some Lipschitz condition is assumed on f .

In [CT12] the authors point out that the seminorm of the homogeneous Besov space 9Bsp,q for
0   s   1 can be defined in terms of the approximating polynomials of degree 1 above. The same
can be said for s ¥ 1. Indeed, [Dor85, Theorem 1] says that for f P Bsp,q and n ¥ rss we have the
equivalent seminorm

}f} 9Bsp,q
�

���» 8

0

�³
Rd

�
supQQx:|Q|�td

ffl
Q
|fpyq �Rn

Qfpyq| dy
	p

dx
	 q
p

tsq
dt

t

��
1
q

(see (1.17)). Note that, given x P Rd and t P R, every cube Q Q x with `pQq � t satisfies that Q �
Qpx, tq. Therefore, by (3.5) we have that supQQx:|Q|�td

ffl
Q
|fpyq�Rn

Qfpyq| dy Àd,n tβpnqpf,Qpx, tqq,
and tβpnqpf,Qpx, tqq Àd,n supQQx:|Q|�p6tqd

ffl
Q
|fpyq �Rn

Qfpyq| dy. Thus,

}f} 9Bsp,q
�

�» 8

0

���βpnqpf,Qp�, tqq��Lp
ts�1

�q
dt

t

�1{q

.
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In the particular case when p � q, which is in fact the one we are interested on, via Fubini’s
Theorem and (3.5) one can conclude that for the canonical dyadic grid D, for instance, we have
that

}f}p9Bsp,p �
8̧

j��8

» 2j�1

2j

»
Rd

�
βpnqpf,Qpx, tqq

ts�1


p
dx
dt

t

�
8̧

j��8

¸
QPD:`pQq�2j

�
βpnqpf,Qq
`pQqs�1


p
|Q| �

¸
QPD

�
βpnqpf,Qq
`pQqs�1


p
|Q|. (3.6)

3.3 The case of unbounded domains Ω � C
Definition 3.10. Given δ ¡ 0 and R ¡ 0, we say that Ω � tx � i y P C : y ¡ Apxqu is a
pδ,R, n, pq-admissible domain with defining function A if

• The defining function A P Bn�1�1{p
p,p X Cn�1,1.

• We have Ap0q � 0 and, if n ¥ 2, A1p0q � 0.

• We have Lipschitz bounds on the function and its derivatives
��Apjq��

L8
  δ

Rj�1 for 1 ¤ j ¤ n.

We associate a Whitney covering W with appropriate constants to Ω. The constants will be
fixed along this section, depending on n and δ.

In this Section we will prove the next result for the operators T γ defined in (3.1).

Theorem 3.11. Consider δ,R, ε ¡ 0, p ¡ 1 and a natural number n ¥ 1. There exists a radius
ρε   R such that for every pδ,R, n, pq-admissible domain Ω and every multiindex γ P Z2 with
γ1 � γ2 � �n� 2 and γ1 � γ2 ¤ 0, we have that T γχΩ P LppΩXBp0, ρεqq. In particular, if A is the
defining function of Ω, we have that

}T γχΩ}pLppΩXBp0,ρεqq ¤ C
�
}A}p9Bn�1{p�1

p,p

� ρ2�np
ε p1� εq|γ|p

	
,

where C depends on p, n and the Lipschitz character of Ω.

Figure 3.2: Disposition in Theorem 3.11.
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Definition 3.12. Consider a given pδ,R, n, pq-admissible domain with defining function A. Then,
for every interval I we have an approximating polynomial Rn

3I :� Rn
3IA, and

βpnqpIq :� βpnqpA, Iq �
1

`pIq
»

3I

|Apxq �Rn
3Ipxq|

`pIq dx.

We call
ΩnI :� tx� i y : y ¡ Rn

3Ipxqu.
Let π : CÑ R be the vertical projection (to the real axis) and Q a cube in C. If πpQq � I we will
write ΩnQ :� ΩnI .

Remark 3.13. Note that π sends dyadic cubes of C to dyadic intervals of R and, in particular,
any dyadic interval has a finite number of pre-images in the Whitney covering W of Ω uniformly
bounded by a constant depending on δ and the Whitney constants of W.

Proof of Theorem 3.11. By (3.6) we have that¸
IPD

�
βpnqpIq
`pIqn�1{p


p
`pIq � }A}p9Bn�1{p�1

p,p

,

so it is enough to prove that

}T γχΩ}pLppΩXBp0,ρεqq ¤ C

� ¸
IPDε

�
βpnqpIq
`pIqn�1{p


p
`pIq � ρ2�np

ε p1� εq|γ|p
�
, (3.7)

where Dε stands for tI P D : `pIq ¤ 2ρε and Dpt0u, Iq ¤ 3ρεqu.
We begin the proof by some basic observations. Let j1, j2 P Z such that j2 � j1 � 1. Then, the

line integral »
BD
wj1wj2 dw � i

» 2π

0

eiθpj1�j2�1qdθ � 0 (3.8)

so, as long as j2 ¡ 0, given 0   ε   1 Green’s formula (1.12) says that»
DzBp0,εq

wj1wj2�1 dmpwq � i

2j2

»
BDYBBp0,εq

wj1wj2 dw � 0. (3.9)

Consider a given γ P Z2 with γ1 � γ2 � �n � 2 and assume that γ2 ¥ 0 (the case γ1 ¥ 0 can
be proven mutatis mutandis). Consider a Whitney cube Q and z P Bp0, ρεq X Q. Then by (3.9)
we have that

|T γχΩpzq| �
�����
»
|z�w|¡`pQq

pw � zqγχΩpwq dmpwq
����� (3.10)

¤
�����
»
|z�w|¡`pQq

pw � zqγχΩnQ
pwq dmpwq

������
»
|z�w|¡`pQq

|χΩnQ
pwq � χΩpwq|
|w � z|n�2

dmpwq.

If we have taken appropriate Whitney constants, then we also have that `pQq   distpQ, BΩnQq (see
Remark 3.5) and, thus, by (3.9) again, we have that»

|z�w|¡`pQq

pw � zqγχΩnQ
pwq dmpwq � T γχΩnQ

pzq. (3.11)

We will see in Section 3.5 that the following claim holds.
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Claim 3.14. There exists a radius ρε (depending on δ, R, n and ε) such that for every z P Bp0, ρεq
with z P Q PW, we have that

|T γχΩnQ
pzq| Àn p1� εq|γ|

ρnε
. (3.12)

The last term in (3.10) will bring the beta coefficients into play. Recall that we defined the
symmetric difference of two sets A1 and A2 as A1∆A2 :� pA1 YA2qzpA1 XA2q. For our choice of
the Whitney constants we have that 2Q � ΩnQ X Ω so»

|z�w|¡`pQq

|χΩnQ
pwq � χΩpwq|
|w � z|n�2

dmpwq �
»

ΩnQ∆Ω

1

|w � z|n�2
dmpwq. (3.13)

Next we split the domain of integration in vertical strips. Namely, if we call Sj � tw P C :
|Re pw � zq| ¤ 2j`pQqu for j ¥ 0 and S�1 � H, we have that»

ΩnQ∆Ω

1

|w � z|n�2
dmpwq �

¸
j¥0: 2j`pQq¤ρε

»
pΩnQ∆ΩqXSjzSj�1

dmpwq
|w � z|n�2

�
»
|w�z|¡ρε{2

dmpwq
|w � z|n�2

À
¸

j¥0: 2j`pQq¤ρε

��pΩnQ∆Ωq X Sj
�� 1

p2j�1`pQqqn�2
� 1

ρnε
. (3.14)

We will see in Section 3.4 the following:

Claim 3.15. We have that��pΩnQ∆Ωq X Sj
�� Àn ¸

IPD
πpQq�I�2j�1πpQq

βpnqpIq
`pIqn�1

p2j`pQqqn�1. (3.15)

Summing up, plugging (3.11) and (3.12) in the first term of the right-hand side of (3.10) and
plugging (3.13), (3.14) and (3.15) in the other term, we get

|T γχΩpzq| Àn
¸
j¥0

2j`pQq¤ρε

¸
IPD

πpQq�I�2j�1πpQq

βpnqpIq
`pIqn�1

p2j`pQqqn�1 1

p2j`pQqqn�2
� p1� εq|γ|

ρnε
.

Note that the intervals I in the previous sum are in Dε � tI P D : `pIq ¤ 2ρε and Dpt0u, Iq ¤ 3ρεqu.
Reordering and computing,

|T γχΩpzq| Àn
¸
IPDε
πpQq�I

βpnqpIq
`pIqn�1

¸
jPN0

I�2j�1πpQq

1

2j`pQq �
p1� εq|γ|

ρnε
À

¸
IPDε
πpQq�I

βpnqpIq
`pIqn � p1� εq|γ|

ρnε
.

Raising to power p, integrating in Q and adding we get that for ρε small enough

}T γχΩ}pLppΩXBp0,ρεqq Àn
¸
QPW

QXBp0,ρεq�H

|Q|

���� ¸
IPDε
πpQq�I

βpnqpIq
`pIqn � p1� εq|γ|

ρnε

���
p

Àp
¸
QPW

QXBp0,ρεq�H

|Q|

���� ¸
IPDε
πpQq�I

βpnqpIq
`pIqn

���
p

� ρ2�np
ε p1� εq|γ|p. (3.16)
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Regarding the double sum, we use Hölder Inequality to find that

¸
QPW

QXBp0,ρεq�H

|Q|

���� ¸
IPDε
πpQq�I

βpnqpIq
`pIqn

���
p

¤
¸
QPW

|Q|
¸
IPDε
πpQq�I

�
βpnqpIq
`pIqn� 1

2p

�p���� ¸
IPDε
πpQq�I

1

`pIq p
1

2p

���
p

p1

Àp
¸
QPW

`pQq2
¸
IPDε
πpQq�I

�
βpnqpIq
`pIqn� 1

2p

�p
`pQq�1

2 (3.17)

¤
¸
IPDε

�
βpnqpIq
`pIqn� 1

2p

�p ¸
QPW
πpQq�I

`pQq 3
2 ÀW

¸
IPDε

�
βpnqpIq
`pIqn� 1

p

�p
`pIq,

where the constant in the last inequality depends on the maximum number of Whitney cubes that
can be projected to a given interval, depending only on δ and n.

Thus, by (3.16) and (3.17) we have proven (3.7) when γ2 ¥ 0. The case γ2 ¤ 0 can be proven
analogously.

3.4 Beta-coefficients step in

Figure 3.3: Disposition in the proof of Claim 3.15.

Proof of Claim 3.15. Consider N ¥ 0. Recall that we have a point z P Q PW, and a vertical strip
SN � tw P C : |Re pw� zq| ¤ 2N `pQqu. Let J0 � πpQq and let JN be the dyadic interval of length
2N `pQq containing J0. Then it is enough to see that

��pΩnQ∆Ωq X SN
�� Àn ¸

IPD
J0�I�JN

βpnqpIq
`pJN qn�1

`pIqn�1
`pJN q2. (3.18)
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First note that

��pΩnQ∆Ωq X SN
�� � » Re pzq�`pJN q

Re pzq�`pJN q

|A�Rn
3J0
| dm1 (3.19)

¤
»

3JN

|A�Rn
3JN | dm1 �

»
3JN

|Rn
3JN �Rn

3J0
| dm1 � 11 � 22 .

Trivially,

11 � βpnqpJN q`pJN q2. (3.20)

To deal with the second term, we consider the chain of dyadic intervals

J0 � � � � � Jk � Jk�1 � � � � � JN ,

with 0   k   N and `pJkq � 2k`pJ0q. We use the Triangle Inequality in the chain of intervals:

22 ¤
N�1̧

k�0

»
3JN

|Rn
3Jk�1

�Rn
3Jk

| dm1 �
N�1̧

k�0

���Rn
3Jk�1

�Rn
3Jk

���
L1p3JN q

. (3.21)

Fix 0 ¤ k   N . By Remark 1.19 we have that���Rn
3Jk�1

�Rn
3Jk

���
L1p3JN q

Àn
���Rn

3Jk�1
�Rn

3Jk

���
L1p3Jkq

`pJN qn�1

`pJkqn�1
,

with constants depending only on n. Thus, by Remark 3.6���Rn
3Jk�1

�Rn
3Jk

���
L1p3JN q

Àn
����Rn

3Jk�1
�A

���
L1p3Jkq

� ��A�Rn
3Jk

��
L1p3Jkq



`pJN qn�1

`pJkqn�1

Àn
�
βpnqpJk�1q � βpnqpJkq

� `pJN qn�1

`pJkqn�1
`pJkq2. (3.22)

Thus, combining (3.19), (3.20), (3.21) and (3.22) we get (3.18).

3.5 Domains which are bounded by the graph of a polyno-
mial

We will consider only very “flat” polynomials. Let us see what we can say about their coefficients.

Lemma 3.16. Let n ¥ 2, A P Cn�1,1pRq with Ap0q � 0, A1p0q � 0,
��Apjq��

L8
  δ

Rj�1 for j ¤ n
and consider two intervals J and I with 3J � I � r�R,Rs. Then we have the following bounds
for the derivatives of the approximating polynomial P � Rn

JA in the interval I:���P pjq
���
L8pIq

¤ 3n�jδ

Rj�1
for j ¤ n.

Furthermore, if ρ ¡ 0 and 3J � r�ρ, ρs, then

}P }L8p�ρ,ρq ¤
3nδρ2

R
and

��P 1
��
L8p�ρ,ρq

¤ 3n�1δρ

R
. (3.23)
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Proof. By Remark 3.7 we know that there are at least n � 1 common points τ0
0 , � � � , τ0

n P 3J for
A and P , that is, Apτ0

j q � P pτ0
j q for every j. By the Mean Value Theorem, there are n common

points τ1
0 , � � � , τ1

n�1 P 3J for their derivatives. By induction we find points τk0 � � � τkn�k P 3J where

the k-th derivatives coincide for 0 ¤ k ¤ n�1, that is, Apkqpτkj q � P pkqpτkj q for every 0 ¤ j ¤ n�k.

Note that the polynomial derivative P pnq, which is in fact a constant, coincides with the differ-
ential quotient of P pn�1q evaluated at any pair of points. In particular given x P R, for the points
τn�1
0 and τn�1

1 we have that���P pnqpxq
��� � ����P pn�1qpτn�1

0 q � P pn�1qpτn�1
1 q

τn�1
0 � τn�1

1

���� � ����Apn�1qpτn�1
0 q �Apn�1qpτn�1

1 q
τn�1
0 � τn�1

1

���� ¤ δ

Rn�1
.

Now we argue by induction again. Assume that
��P pj�1q

��
L8pIq

¤ 3n�j�1δ{Rj for a certain

j ¤ n � 1. Consider x P I and, by the Mean Value Theorem, there exists a point ξ such that
|P pjqpxq � P pjqpτ j0 q| � |P pj�1qpξq||x� τ j0 |. Thus, since P pjqpτ j0 q � Apjqpτ j0 q we have that

|P pjqpxq| ¤ |P pj�1qpξq||x� τ j0 | � |Apjqpτ j0 q| ¤
3n�j�1δ

Rj
2R� δ

Rj�1
� 3n�jδ

Rj�1
.

We have not used yet the fact that A1p0q � Ap0q � 0. Let us fix ρ ¤ R and assume that
3J � r�ρ, ρs. Then for every x P r�ρ, ρs, we can write A1pxq � A1pxq �A1p0q so

|A1pxq| ¤ ��A2��
L8pIq

|x| ¤ δ

R
ρ, (3.24)

and we can also write P 1pxq � P 1pxq � P 1pτ1
0 q �A1pτ1

0 q �A1p0q, so

|P 1pxq| ¤ ��P 2
��
L8pIq

|x� τ1
0 | �

��A2��
L8pIq

|τ1
0 | ¤

3n�2δ

R
2ρ� δ

R
ρ ¤ 3n�1δρ

R
.

By the same token, and using the estimate (3.24) on A1, we get

|P pxq| ¤ ��P 1
��
L8pr�ρ,ρsq

|x� τ0
0 | �

��A1��
L8pr�ρ,ρsq

|τ0
0 | ¤

3n�1δρ

R
2ρ� δρ

R
ρ ¤ 3nδρ2

R
.

Now we can prove Claim 3.14. Recall that we want to find a radius ρint   R depending on ε
such that every point z contained in a Whitney cube Q � Bp0, ρint2 q satisfies (3.12), that is,

|T γχΩnQ
pzq| Àn p1� εq|γ|

ρnint
,

where γ P tp�j1, j2q : j1, j2 P N0 and j1 � j2 � n � 2u (recall that we assumed that γ2 ¥ 0).
According to the previous lemma, when n ¥ 2 we are dealing with a domain ΩnQ whose boundary

is the graph of a polynomial P pxq � °n
j�0 ajx

j such that

|a0| � |P p0q| ¤ 3nδρ2
int

R
,

|a1| � |P 1p0q| ¤ 3n�1δρint
R

and

|aj | � |P pjqp0q|
j!

¤ 3n�jδ

j!Rj�1
for 2 ¤ j   n. (3.25)
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We call ΩP :� tx� i y : y ¡ P pxqu to such a domain. Note that (3.23) implies that for ρint small
enough the polynomial P is “flat”, namely |P pxq|   ρint

4 for |x|   ρint.
One can think of the “exterior” radius ρext below as a geometric version of ε, namely ρext �

pε{16q2. Further, we can assume that ρext   R.

Proposition 3.17. Consider two real numbers δ,R ¡ 0 and n ¥ 2. For ρext small enough, there
exists 0   ρint   ρext depending also on n, δ and R such that for all j1, j2 P N0 with j1�j2 � n�2,
all P P Pn satisfying (3.25), all z P Qp0, ρintq X ΩP and 0   ε   distpz, BΩP q we have�����

»
ΩP zBpz,εq

pz � wqj2
pz � wqj1 dmpwq

����� ¤ Cn
ρnint

�
1� 16ρ

1{2
ext

	j2
, (3.26)

with Cn depending only on n.
If n � 1 instead, then for all j1, j2 P N0 with j1 � j2 � 3 and all P P P1 we have that»

ΩP zBpz,εq

pz � wqj2
pz � wqj1 dmpwq � 0. (3.27)

z

P
ΩP

Qext

I

Qint

ρint

ρext

ε

Figure 3.4: Disposition in Proposition 3.17.

Proof. First consider n � 1. In that case, ΩP is a half plane. By rotation and dilation, we

can assume ΩP � R2
� :� tw � x � i y : y ¡ 0u. Note that pz�wqj2

pz�wqj1�1 is infinitely many times

differentiable with respect to w in any ring centered in z. Then we can apply Green’s formula
(1.12) and use the decay at infinity of the integrand and (3.8) to see that for ε ¡ 0 small enough»

R2
�zBpz,εq

pz � wqj1�3

pz � wqj1 dmpwq � cj1

»
R

pz � wqj1�3

pz � wqj1�1
dw � cj1

»
R

pz � wqj1�3

pz � wqj1�1
dw

� cj1

»
R2
�zBpz,εq

pz � wqj1�4

pz � wqj1�1
dmpwq.

When j1 � 3 the last constant is zero. By induction, all these integrals equal zero.
Now we assume that n ¥ 2. Consider a given ρext ¡ 0. We define the interval I :� r�ρext, ρexts,

the exterior window Qext :� Qp0, ρextq, and the interior window Qint :� Qp0, ρintq. Note that
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(3.25) implies that for ρext small enough, the set tx� i P pxq : x P Iu � Qext, that is, the boundary
BΩP , intersects the vertical sides of the window Qext but does not intersect the horizontal ones.
The same can be said for the sides of Qint (see Figure 3.4).

Fix z P Qint and ε   distpz, BΩq. Splitting the domain of integration in two regions we get»
ΩP zBpz,εq

pz � wqj2
pz � wqj1 dmpwq �

»
ΩP zQext

pz � wqj2
pz � wqj1 dmpwq �

»
ΩPXQextzBpz,εq

pz � wqj2
pz � wqj1 dmpwq.

(3.28)
We bound the non-local part trivially by taking absolute values and using polar coordinates.
Choosing ρint   ρext{2, we have that»

ΩP zQext

1

|z � w|j1�j2 dmpwq ¤
» 8

ρext
2

1

rj1�j2

» 1

0

dm1 2πr dr � 2π

j1 � j2 � 2

2j1�j2�2

pρextqj1�j2�2
, (3.29)

where dm1 stands for the Lebesgue length measure. Note that j1 � j2 � 2 � n.
To bound the local part, we can apply Green’s Theorem again and we get

2pj1 � 1q
i

»
ΩPXQextzBpz,εq

pz � wqj2
pz � wqj1 dmpwq � �

»
|z�w|�ε

pz � wqj2
pz � wqj1�1

dw

�
»

ΩPXBQext

pz � wqj2
pz � wqj1�1

dw

�
»
BΩPXQext

pz � wqj2
pz � wqj1�1

dw. (3.30)

The first term in the right-hand side of (3.30) is zero arguing as in (3.8). For the second term
we note that z P Qint, and every w in the integration domain is in BQext, so |z �w| ¡ ρext � ρint.
Thus, »

ΩPXBQext

1

|z � w|j1�j2�1
dw ¤ 1

|ρext � ρint|j1�j2�1
6ρext. (3.31)

Summing up, by (3.28), (3.29), (3.30) and (3.31), since ρint   ρext
2 , we get that�����

»
ΩP zBpz,εq

pz � wqj2
pz � wqj1 dmpwq

����� ¤
����»
BΩPXQext

pz � wqj2
pz � wqj1�1

dw

����� Cn
ρnext

, (3.32)

with Cn depending only on n.
It remains to bound the first term in the right-hand side of (3.32). We begin by using the

change of coordinates w � x� i P pxq to get a real variable integral:»
BΩPXQext

pz � wqj2
pz � wqj1�1

dw �
»
I

pz̄ � px� i P pxqqqj2
pz � px� i P pxqqqj1�1

p1� i P 1pxqq dx. (3.33)

Note that the denominator on the right-hand side never vanishes because z R BΩP . Now we take
a closer look to the fraction in order to take as much advantage of cancellation as we can, namely

pz̄ � px� i P pxqqqj2
pz � px� i P pxqqqj1�1

�

�
pz̄ � z � 2i P pxqq � pz � px� i P pxqqq

	j2
pz � px� i P pxqqqj1�1

�
j2̧

j�0

�
j2
j



pz̄ � z � 2i P pxqqjpz � px� i P pxqqqj2�j�j1�1

�
j2̧

j�0

�
j2
j


 p�2i Impzq � 2i P pxqqj
pz � px� i P pxqqqn�1�j

. (3.34)
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Next, we complexify the right-hand side of (3.34) so that we have a holomorphic function in a
certain neighborhood of I to be able to change the integration path. To do this change we need a
key observation. If τ P Qext, then |τ |   ?

2ρext and by (3.25) writing rδ � 3nδ we have that

|P 1pτq| ¤ |a1| � 2|a2||τ | � � � � ¤ rδ�ρint
R

� 2

R
2ρext � 3

R2
p2ρextq2 � � � �



  1{2 (3.35)

if ρext is small enough. Thus, we have that Re p1 � i P 1pτqq ¡ 1
2 in Qext and, by the Complex

Rolle Theorem 1.10, we can conclude that τ ÞÑ τ � i P pτq is injective in Qext. In particular,
z�pτ � i P pτqq has one zero at most in Qext, and this zero is not real because z R BΩP . Therefore,
since the real line divides Qext in two congruent open rectangles, there is one of them whose closure
has a neighborhood containing no zeros of this function. We call this open rectangle R. Now, for

any j ¥ 0 we have that τ ÞÑ pP pτq�Impzqqj

pz�pτ�i P pτqqqn�1�j p1� i P 1pτqq is holomorphic in R, so we can change

the path of integration and get»
I

2jpP pxq � Impzqqj
pz � px� i P pxqqqn�1�j

p1� i P 1pxqq dx � �
»
BRzI

2jpP pτq � Impzqqj
pz � pτ � i P pτqqqn�1�j

p1� i P 1pτqq dτ.
(3.36)

On the other hand, if |τ |   ?
2ρext, then we have that

|P pτq| ¤ |a0| � |a1||τ | � |a2||τ |2 � |a3||τ |3 � � � � (3.37)

¤ rδ�ρ2
int

R
� ρint

R
2ρext � 1

R
p2ρextq2 � 1

R2
p2ρextq3 � � � �



¤ ρ

3{2
ext

for ρext small enough. Then, taking absolute values inside the last integral in (3.36) and using
(3.35) and (3.37) we get»

BRzI

2j |P pτq � Impzq|j
|z � pτ � i P pτqq|n�1�j

|1� i P 1pτq| |dτ | ¤ 3

2

»
BRzI

2jpρ3{2
ext � ρintqj

|z � pτ � i P pτqq|n�1�j
|dτ |. (3.38)

Finally, we have that for any τ P BRzI � BQext,
|z � pτ � i P pτqq| ¥ |τ | � |z| � |P pτq| ¥ ρext �

?
2ρint � ρ

3
2
ext ¥

ρext
2

� 2ρint

for ρext small enough. Using this fact we rewrite (3.38) as»
BRzI

2j |P pτq � Impzq|j
|z � pτ � i P pτqq|n�1�j

|1� i P 1pτq| |dτ | ¤ 3

2

2jpρ3{2
ext � ρintqj

pρext{2� 2ρintqn�1�j

»
BRzI

|dτ |. (3.39)

Putting together (3.33), (3.34), (3.36) and (3.39) we can write����»
BΩPXQext

pz � wqj2
pz � wqj1�1

dw

���� ¤ 3

2 pρext{2� 2ρintqn�1

j2̧

j�0

�
2 � ρ

3{2
ext � ρint

ρext{2� 2ρint

�j �
j2
j



4ρext

� 6ρext
pρext{2� 2ρintqn�1

�
1� 2 � ρ

3{2
ext � ρint

ρext{2� 2ρint

�j2
,

and, choosing ρint � mintρext{8, ρ3{2
extu,����»

BΩPXQext

pz � wqj2
pz � wqj1�1

dw

���� ¤ Cn
ρnext

�
1� 16ρ

1{2
ext

	j2
, (3.40)

where the constant Cn depends only on n.
Now, (3.32) together with (3.40) prove (3.26).
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Remark 3.18. Note that we have assumed γ2 ¥ 0 in the proof Theorem 3.11. When proving the
case γ2 ¤ 0, we would have to prove Proposition 3.17 with γ P tpj1,�j2q : j1, j2 P N0 and j2� j1 �
n � 2u. The proof is analogous to the one shown above with slight modifications, and it is left to
the reader to complete the details.

3.6 The geometric condition

In this rather technical section we give equivalent expressions of the sufficient geometric condition
for a pδ,Rq � Cn�1,1 domain Ω to satisfy that BχΩ PWn,ppΩq (see Theorem 3.27).

Consider a window Q (see Definition 1.4) of Ω, and its associated parameterization A. In
particular, we assume that there is a rigid transformation F which sends the center of Q to the
origin and, in case n ¡ 1 we also assume that the tangent to the curve BΩ at 0 is sent to the real
axis so that

F pQX BΩq � tpx,Apxqq : x P IRu,
where IR � t�R

2   x   R
2 u. In case n � 1, this assumption is too restrictive since the existence of

a tangent to BΩ in the center of Q is not granted and, therefore, }A}L8pIRq can reach δR{2 even

if we take smaller radius R. Thus, we must use instead IR � t� R
2δ   x   R

2δ u. We will use an

auxiliary bump function ϕR such that ϕR � 1 in IR
3 , ϕR � 0 in IcR and���ϕpjqR ���

L8
¤ C{Rj for every j ¤ n.

Thus, we have that F
�Q

3 X BΩ
�

is parameterized by rA � ϕRA (with obvious modifications for
n � 1).

Theorem 3.19. Let Ω be a bounded pδ,Rq�Cn�1,1 domain and let tQkuMk�1 be a collection of R-

windows such that
!

1
maxt20,20δuQk

)M
k�1

cover the boundary of Ω. Let tAkuk be the parameterizations

of the boundary associated to each window. Consider N : BΩ Ñ R2 to be the unitary outward
normal vector. Then, for any 1   p   8

M̧

k�1

¸
IPD:I�

IR
6

βpnqpAk, Iqp
`pIqn p�2

À
M̧

k�1

}ϕRAk}p9Bn�1�1{p
p,p

À }N}p
B
n�1{p
p,p pBΩq

. (3.41)

with constants depending on n, p, δ, the length of the boundary H1pBΩq and M . Moreover,

}N}p
B
n�1{p
p,p pBΩq

�R,H1pBΩq

M̧

k�1

}ϕRAk}p9Bn�1�1{p
p,p

� 1. (3.42)

The proof of this lemma for n � 1 can be found in [CT12, Section 3].
We proceed to prove the general case using the same tools. The expert reader may skip this

part. Note that M can be chosen to be M � H1pBΩq
R .

Proof. We only need to prove the case n ¥ 2. By (3.6) the first estimate in (3.41) is immediate,
while the second one is a consequence of Proposition 3.21 below and (3.42) is a consequence of all
this facts and Corollary 3.22.

Lemma 3.20. Let n P N with n ¥ 2 and s � n � 1 � tsu with 0 ¤ tsu   1. With the notation
introduced above, for 1 ¤ k ¤M we have that

}ϕRAk}p9Bs�1
p,p

À
»
IR

»
IR

|Apnqk pxq �A
pnq
k pyq|p

|x� y|tsup�1
dy dx� 1.



3.6. THE GEOMETRIC CONDITION 77

Proof. Let us write fix a window Qk, and take rAk � ϕRAk. First of all, note that, since A
pn�1q
k is

Lipschitz, for almost every x P IR

rApnqk pxq �
ņ

j�0

�
n

j



A
pjq
k pxqϕpn�jqR pxq.

Thus, using the lifting property for homogeneous Besov spaces (see [Tri83, Theorem 5.2.3/1]),
since s � n� 1� tsu and 0 ¤ tsu   1, we have that��� rAk���p

9Bs�1
p,p

�
��� rApnqk

���p
9B
tsu
p,p

À
ņ

j�0

���Apjqk ϕ
pn�jq
R

���p
9B
tsu
p,p

�
ņ

j�0

»
R�R

���Apjqk pyqϕpn�jqpyq �A
pjq
k pxqϕpn�jqpxq

���p
|y � x|tsup�1

dy dx.

But ϕR � 0 in IcR, so we can reduce the integration domain and, using the symmetry between x
and y, it is enough to consider the case x P IR, that is,

��� rAk���p
9Bs�1
p,p

À
ņ

j�0

»
IR

»
R

���∆h

�
A
pjq
k ϕpn�jq

	
pxq

���p
|h|tsup

dh

|h|dx

and, since

|∆hpfgqpxq| ¤ |gpxq||∆hfpxq| � |fpx� hq||∆hgpxq|, (3.43)

we get

��� rAk���p
9Bs�1
p,p

À
ņ

j�0

»
IR

»
R
|Apn�jqk pxq| |∆hϕ

pjqpxq|p
|h|tsup

dh

|h|dx�
»
IR

»
R
|ϕpn�jqpx� hq| |∆hA

pjq
k pxq|p

|h|tsup
dh

|h|dx

À
ņ

j�0

1

Rpn�j�1qp

»
IR

»
R

|∆hϕ
pjqpxq|p

|h|tsup
dh

|h|dx�
1

Rpn�jqp

»
IR

»
IR

|Apjqk pxq �A
pjq
k pyq|p

|x� y|tsup�1
dy dx

À
ņ

j�0

�
I.j � II.j



.

We take a closer look to the summands I.j and we separate the integral by the size of h,

I.j � 1

Rpn�j�1qp

�»
IR

»
|h| 3R

|∆hϕ
pjqpxq|p

|h|tsup�1
dhdx�

»
IR

»
|h|¡3R

|∆hϕ
pjqpxq|p

|h|tsup�1
dhdx

�
.

Now we apply the Mean Value Theorem to the local part and we bound by the supremum in the
non-local one to get

I.j ¤ 1

Rpn�j�1qp

����ϕpj�1q
���p
L8

»
|h| 3R

|h|pp1�tsuq�1dh

»
IR

dx�
»
IR

»
|h|¡3R

|ϕpjqpxq � 0|p
|h|tsup�1

dhdx

�

À 1

Rpn�j�1qp

����ϕpj�1q
���p
L8
Rp�tsupR�

���ϕpjq���p
L8
R

1

Rtsup



À R�jp�tsup�1�pn�j�1qp � R1�sp,
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that is, I.j are just error terms for 0 ¤ j ¤ n.

When j   n, using the Lipschitz character of Ω, we have that

II.j :� 1

Rpn�jqp

»
IR

»
IR

|Apjqk pxq �A
pjq
k pyq|p

|x� y|tsup�1
dy dx ¤ 1

Rpn�jqp

»
IR

»
IR

δp

Rjp
|x� y|p

|x� y|tsup�1
dy dx

À 1

Rnp
Rpp1�tsuq

»
IR

dx � R1�sp,

that is, II.j are also error terms for 0 ¤ j   n. Summing up,

��� rAk���p
9Bs�1
p,p

À II.n �R1�sp,

and the lemma follows.

Recall that we defined the arc parameter of the curve, z : R Ñ BΩ with |z1ptq| � 1 and
zpt�H1pBΩqq � zptq for every t and the auxiliary bump function ϕΩ : RÑ R such that ϕΩ|2I � 1
and ϕΩ|p4Iqc � 0 where I � p�H1pBΩq{2,H1pBΩq{2q. Then, since }N}pLppBΩq � H1pBΩq, using

(1.18), (1.16) and the lifting property, we get

}N}pBsp,ppBΩq � }pN � zqϕΩ}pLp � }pN � zqϕΩ}p9Bsp,p � H
1pBΩq �

���rpN � zqϕΩspn�1q
���p

9B
tsu
p,p

and, by the Leibniz rule, Proposition 1.11 and (3.43), the reader can check with some effort that

}N}pBsp,ppBΩq �H1pBΩq 1�
n�1̧

j�0

���pN � zqpjqϕpn�1�jq
Ω

���p
9B
tsu
p,p

�H1pBΩq 1�
���pN � zqpn�1qϕΩ

���p
9B
tsu
p,p

� 1�
»
R

»
R

|∆h

�pN � zqpn�1qϕΩ

� ptq|p
|h|tsup dt

dh

|h| .

Moreover, using (3.43) again, Fubini and the periodicity of z, we get

}N}pBsp,ppBΩq À 1�
»
R
|pN � zqpn�1qptq|p

»
R

|∆hϕΩptq|p
|h|tsup

dh

|h| dt�
»
R

»
4I�t

|∆hpN � zqpn�1qptq|p
|h|tsup

dh

|h| dt

À 1�
»
I

»
2I

|∆hpN � zqpn�1qptq|p
|h|tsup

dh

|h| dt�
���pN � zqpn�1q

���p
LppIq

À }N}pBsp,ppBΩq. (3.44)

Proposition 3.21. With the notation introduced above,

M̧

k�1

}ϕRAk}p9Bs�1
p,p

À }N}pBsp,ppBΩq.

Proof. Let us write fix a window Qk. By Lemma 3.20, it only remains to bound

II.n �
»
IR

»
IR

|Apnqk pxq �A
pnq
k pyq|p

|x� y|tsup�1
dy dx.

To do so, we need to relate ∆hA
pnq
k pxq and ∆hN

pn�1q
k pxq, where Nk is the unit vector in px,Akpxqq

normal to the graph of Ak defined as

Nkpxq � pNk,1pxq, Nk,2pxqq � gkpxqpA1kpxq,�1q,
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with

gkpxq � 1a
1�A1kpxq2

and, thus,

g1kpxq � � A2kpxqA1kpxqa
1�A1kpxq2

3 � �A2kpxqA1kpxqgkpxq3,

� � � .
First we note the trivial pointwise bounds of the derivatives of gk. The first two bounds are obvious
and the rest of them can be deduced by induction,

|gkpxq| �
����� 1a

1�A1kpxq2

����� ¤ 1,

|g1kpxq| �
��A2kpxqA1kpxqgkpxq3�� ¤ δ2

R
,

� � � ,
|gpjqk pxq| ¤ Cδ

Rj
for all j   n.

Analogously, we have similar bounds for the multiplicative inverse of gk, rgk � 1
gk

,

|rgkpxq| ¤a
1� δ2,��rg1kpxq�� � |gkpxqA1kpxqA2kpxq| ¤

δ2

R
,

� � � ,���rgpjqk pxq
��� ¤ Cδ

Rj
for every j   n.

Thus, for the k-th window normal vector

|N pjq
k,2pxq| �

���gpjqk pxq
��� ¤ Cδ

Rj
for all j   n and

|N pjq
k,1pxq| �

�����
j̧

i�0

�
j

i



A
pi�1q
k pxqgpj�iqk pxq

����� Àδ,j
j̧

i�0

1

Ri
1

Rj�i
� 1

Rj
for all j   n.

Summing up, we have that���Apj�1q
k

���
L8
,
���gpjqk ���

L8
,
���rgpjqk ���

L8
,
���N pjq

k

���
L8

Àδ,n 1

Rj
for j   n. (3.45)

Therefore, using the Mean Value Theorem one gets

|∆hA
pjq
k pxq|, |∆hg

pj�1q
k pxq|, |∆hrgpj�1q

k pxq|, |∆hN
pj�1q
k pxq| À |h|

Rj
for j   n. (3.46)

Now we want to control |∆hA
pnq
k pxq| by an expression in terms of the differences of the deriva-

tives of the normal vector, with x, x� h P IR. We have that

N
pn�1q
k,1 pxq �

n�1̧

i�0

�
n� 1

i



A
pi�1q
k pxqgpn�1�iq

k pxq.
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Thus, solving for A
pnq
k pxq we get

A
pnq
k pxq � N

pn�1q
k,1 pxq �°n�2

i�0

�
n�1
i

�
A
pi�1q
k pxqgpn�1�iq

k pxq
gkpxq ,

and taking differences

|∆hA
pnq
k pxq| À

���∆h

�
N
pn�1q
k,1 rgk	 pxq���� n�2̧

i�0

���∆h

�
A
pi�1q
k g

pn�1�iq
k rgk	 pxq��� . (3.47)

On one hand, using (3.45) and (3.46) we have that���∆h

�
N
pn�1q
k,1 rgk	 pxq��� ¤ }rgk}L8 ���∆hN

pn�1q
k,1 pxq

���� ���N pn�1q
k,1

���
L8

|∆hrgkpxq|
À

���∆hN
pn�1q
k,1 pxq

���� 1

Rn�1

|h|
R
.

On the other hand, if we consider 0   i ¤ n� 2, we obtain analogously���∆h

�
A
pi�1q
k g

pn�1�iq
k rgk	 pxq��� À 1

Rn�1�i

���∆hA
pi�1q
k pxq

���� 1

Ri

���∆hg
pn�1�iq
k pxq

���� 1

Rn�1
|∆hrgkpxq|

À 1

Rn�1�i

|h|
Ri�1

� 1

Ri
|h|

Rpn�iq
� 1

Rn�1

|h|
R
.

When i � 0, instead, using that N
pn�1q
k,2 pxq � �gpn�1q

k pxq, we obtain that���∆h

�
A1kg

pn�1q
k rgk	 pxq��� À 1

Rn�1

��∆hA
1
kpxq

��� ���∆hg
pn�1q
k pxq

���� 1

Rn�1
|∆hrgkpxq|

À 1

Rn�1

|h|
R
�
���∆hN

pn�1q
k,2 pxq

���� 1

Rn�1

|h|
R
.

Back to (3.47), we have deduced that

|∆hA
pnq
k pxq| À

���∆hN
pn�1q
k pxq

���� |h|
Rn

.

Applying this result, we obtain that

II.n À
»
IR

»
IR

���N pn�1q
k pxq �N

pn�1q
k pyq

���p
|x� y|tsup�1

dy dx� 1

Rnp

» R
�R

|h|p
|h|tsup�1

dh

»
IR

dx

À
»
IR

»
IR

���N pn�1q
k pxq �N

pn�1q
k pyq

���p
|x� y|tsup�1

dy dx�R1�sp. (3.48)

Finally, note that t � τkpxq �
³x
0
rgk is the arc parameter of the curve, since

dx

dt
� 1rgkpxq � 1a

1�A1kpxq2
.

Thus, we have that rNkptq :� Nkpτ�1
k ptqq is the normal vector parameterized by the arc: according

to our definitions, for t P τkpIRq we have that rNkptq � N �zpt�z�1pzkqq where z�1pzkq is assumed
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to be chosen in I. That is, rNk is a translation of N : BΩ Ñ S1 parametrized by the arc z : 2I Ñ BΩ
for values close to z�1pzkq. Of course, we have that Nkpxq � rNkpτkpxqq. Therefore,

N 1
kpxq � rN 1

kpτkpxqqτ 1kpxq � rN 1
kpτkpxqqrgkpxq

and, by induction, for j ¤ n� 1 we get

N
pjq
k pxq �

j̧

i�1

rN piq
k pτkpxqq

¸
αPNi

|α|�j�i

Cα

i¹
l�1

rgpαlqk pxq. (3.49)

Solving this equation for rN pjq
k and using (3.45), for j ¤ n� 1 we have that��� rN pjq

k

���
L8pτkpIRqq

¤ 1

Rj
. (3.50)

In consequence, taking t � τkpxq and rh � τkpyq � τkpxq, and applying (3.49), we get

|N pn�1q
k pyq �N

pn�1q
k pxq| ¤ |∆rh rN pn�1q

k ptq|}rgk}n�1
L8

�
n�2̧

j�1

|∆rh rN pjq
k ptq|

¸
αPNj

|α|�n�1�j

Cα

j¹
i�1

���rgpαiqk

���
L8

�
n�1̧

j�1

��� rN pjq
k

���
L8

¸
αPNj

|α|�n�1�j

Cα

j̧

i�1

¹
l�i

���rgpαiqk pxq � rgpαiqk pyq
��� ���rgpαlqk

���
L8
.

Using (3.45), (3.46) and (3.50) we get

|∆rh rN pn�1q
k ptq|}rgk}n�1

L8 À |∆rh rN pn�1q
k ptq|,

for all j ¤ n� 2 and |α| � n� 1� j we get

|∆rh rN pjq
k ptq|

j¹
i�1

���rgpαiqk

���
L8

À |rh|��� rN pj�1q
k

���
L8

j¹
i�1

1

Rαi
À |rh|
Rj�1�|α|

� |rh|
Rn

and, for all j ¤ n� 1, |α| � n� 1� j, we get��� rN pjq
k

���
L8

j̧

i�1

¹
l�i

|rgpαiqk pxq � rgpαiqk pyq|
���rgpαlqk

���
L8

À 1

Rj
|x� y|
Rαi�1

1

R|α|�αi
� |rh|
Rn

.

Thus,

|N pn�1q
k pxq �N

pn�1q
k pyq| À |∆rh rN pn�1q

k ptq| � |rh|
Rn

.

Therefore, using the bilipschitz change of variables t � τkpxq and rh � τkpyq � τkpxq in (3.48), we
have that

II.n À
»
IR

»
IR

���N pn�1q
k pxq �N

pn�1q
k pyq

���p
|x� y|tsup�1

dy dx�R1�sp

À
»
τkpIRq

»
t�τkpIRq

�
|∆rh rN pn�1q

k ptq|p
|rh|tsup�1

� |rh|p
Rnp|rh|tsup�1

�
drh dt�R1�sp. (3.51)
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Taking sums on 1 ¤ k ¤M and using Lemma 3.20, (3.48) and (3.51) we get

M̧

k�1

}ϕRAk}p9Bs�1
p,p

À
M̧

k�1

�»
τkpIRq

»
t�τkpIRq

|∆rh rN pn�1q
k ptq|p

|rh|tsup�1
drh dt�R1�sp

�
�R1�sp.

Recall that rNkptq is a translation of the vector N parameterized by the arc. Namely, rN pn�1q
k ptq �

pN � zqpn�1qpt� z�1pzkqq and

M̧

k�1

}ϕRAk}p9Bs�1
p,p

À
M̧

k�1

»
τkpIRq

»
t�τkpIRq

|∆rhpN � zqpn�1qpt� z�1pzkqq|p
|rh|tsup�1

drh dt�MR1�sp,

and changing variables,

M̧

k�1

}ϕRAk}p9Bs�1
p,p

À 1�
»
I

»
2I

|∆hpN � zqpn�1qptq|p
|h|tsup

dh

|h| dt À }N}pBsp,ppBΩq.

Corollary 3.22. We have that

}N}pBsp,ppBΩq À
Ņ

k�1

}ϕRAk}p9Bs�1
p,p

� 1.

Sketch of the proof. Use (3.44), the overlapping of the windows 1
20Qk (with the obvious modifica-

tion for n � 1) and then argue as before for the small values of h. For the remaining part, use the
Lp norm of ∇pn�1qpN � zq and Proposition 1.11.

By the same reasoning, one can also prove the following corollary.

Corollary 3.23. Let Q1,Q2 be two windows of the same size of a Lipschitz domain and consider
parameterizations A1 : I1 Ñ R, A2 : I2 Ñ R such that there exist rigid transformations F1 : Q1 Ñ
C and F2 : Q2 Ñ C such that

F�1
1 ptpx,A1pxqq : x P I1uq � F�1

2 ptpx,A2pxqq : x P I2uq .

Assume further that `pI1q � `pI2q � R and take ϕ1, ϕ2 to be bump functions such that χ 1
3 Ij

¤
ϕj ¤ χIj . For s   n� 1 we have that

}ϕ1A1}p9Bsp,p � 1 � }ϕ2A2}p9Bsp,p � 1.

3.7 A localization principle: bounded smooth domains

We are going to follow a standard localization argument, so we will give a sketch, leaving some
details for the reader.

Let us start with some remarks. First we make some general observations on admissible do-
mains. In these first two remarks we assume n ¥ 2 since the case n � 1 is simpler (there is no
need for rotations).
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Remark 3.24. If Ω is a pδ,R, n, pq-admissible domain with defining function A, then for every
τ P BΩ one can perform a translation of the domain that sends τ to the origin and a rotation in the
same spirit of Definition 1.4, so that BΩ coincides with the graph of a new function rA P Cn�1,1pRq
in a certain ball Bp0, rRq with fixed radius rR (depending on δ and R) with rAp0q � 0, rA1p0q � 0,��� rA1���

L8
¤ rδ and suppp rAq � r�2 rR, 2 rRs. By Corollary 3.23, we have that

��� rA���
9Bsp,p

À }A}Bsp,p � 1 for

s   n � 1. Therefore rA determines a prδ, rR,n, pq-admissible domain rΩ with compactly supported
defining function (see Figure 3.5).

Consider γ P Z2 with γ1�γ2 � �n�2 and γ1 �γ2 ¤ 0. Note that χΩpzq � χrΩpzq for z P Bp0, rRq.
For every z P ΩXB

�
0,
rR
2

	
we use the decomposition T γχΩpzq � T γχrΩpzq � T γpχΩ � χrΩqpzq:

|T γχΩpzq| ¤ |T γχrΩpzq| �
»
|w|¡ rR{2

|χΩpwq � χrΩpwq|
|w � z|n�2

dmpwq À |T γχrΩpzq| �
1rRn . (3.52)

Figure 3.5: Disposition in Remark 3.24 before the rotation and the translation.

Next we take a look at admissible domains with compact support.

Remark 3.25. Let Ω be a pδ,R, n, pq-admissible domain with defining function A supported in
I � r�2R, 2Rs. For a given ε ¡ 0 small enough, take ρ to be the radius ρε from Theorem 3.11

associated to the parameters rδ, rR,n, p of the previous remark. We assume ρ   rR{2.
Since A is supported in I, we can cover the area close to the graph G � tx � i Apxq : x P Iu

by a finite number of balls of radius ρ (see Figure 3.6). In each ball we can apply (3.52) for the

corresponding domain rΩ. Thus, given γ P Z2 with γ1 � γ2 � �n � 2 and γ1 � γ2 ¤ 0, writing
UρG �

�
zPG B

�
z, ρ2

�
and using Theorem 3.11 we have that

}T γχΩ}pLppΩXUρGq ¤ C
�
}A}p

B
n�1�1{p
p,p pBΩq

� p1� εq|γ|p
	
,

with C depending on n, p, δ, R and ε (but not on |γ|).

Finally, for z R UρG we can use the same argument of (3.52) replacing the domain rΩ by the
half plane R2

�. Namely,

|T γχΩpzq| ¤
���T γχR2

�
pzq

���� »
Ω∆R2

�

1

|w � z|n�2
dmpwq.

In that case, the first term is zero just by (3.27). Since A is compactly supported in r�2R, 2Rs
and it is Lipschitz with constant δ, the domain of integration of the second term is contained in
Qp0, 2p1� δqRq. Thus, when z P ΩzQp0, 4p1� δqRq then |T γχΩpzq| is bounded by a constant times
R2

|z|n�2 . When z P Ω X Qp0, 4p1 � δqRqzUρG then |T γχΩpzq| is bounded by C
ρn . Summing up, we
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Figure 3.6: Decomposition of a pδ,R, n, pq-admissible domain Ω with defining function A supported
in I � r�2R, 2Rs considered in Remark 3.25.

have a global bound

}T γχΩ}pLppΩq ¤ C

�
}A}p

B
n�1�1{p
p,p

� p1� εq|γ|p � R2

ρnp



À }A}p

B
n�1�1{p
p,p

� p1� εq|γ|p,

with constants depending on n, p, δ, R and ε.

Now we turn to the case of bounded domains. First we note how differentiation works for
T γχΩ.

Remark 3.26. Consider a bounded pδ,Rq � Cpn�1,1q domain Ω and let us fix γ P Z2 with either
γ1 ¥ 0 or γ2 ¥ 0, and α P N2

0 with modulus |α| � n. Then for z P Ω we have

DαT γΩ1pzq �

$'''&'''%
CnχΩpzq if γ � pn� 1,�1q and α � pn, 0q

or γ � p�1, n� 1q and α � p0, nq,
0 if α1 ¡ γ1 ¥ 0 or α2 ¡ γ2 ¥ 0 except in the previous case,

Cγ,αT
γ�α
Ω 1pzq otherwise,

where Dα stands for the weak derivative in Ω. The constants satisfy |Cγ,α| À p|γ| � nqn.

Proof. Let us assume that γ2 ¥ 0. If γ1 ¥ 0 as well, differentiating a polynomial under the integral
sign makes the proof trivial, so we assume γ1 ¤ �1. Recall that we write wγ � wγ1wγ2 . For every
z P Ω choose εz :� distpz, BΩq{2. By (3.9), Green’s formula and (3.8) we get that

T γχΩpzq �
»

ΩzBpz,εzq

pz � wqγ dmpwq � i

2pγ2 � 1q
»
BΩ

pz � wqγ�p0,1q dw, (3.53)

and we can differentiate under the integral sign.
If γ2 ¥ α2, then we have

DαT γχΩpzq � i

2pγ2 � 1q p�1qα1
pγ2 � 1q!

pγ2 � α2 � 1q!
p�γ1 � α1 � 1q!
p�γ1 � 1q!

»
BΩ

pz � wqγ�α�p0,1q dw.
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Since γ2 � α2 ¥ 0 and γ1 � α1   0, we can apply (3.53) to γ � α instead of γ and, thus,

DαT γχΩpzq � p�1qα1
pγ2q!

pγ2 � α2q!
p�γ1 � α1 � 1q!
p�γ1 � 1q! T γ�αχΩpzq.

If γ2 � 1 � α2 we must pay special attention. In that case differentiating under the integral
sign in (3.53) we get

DαT γχΩpzq � i

2
p�1qα1

pγ2q!
pγ2 � α2 � 1q!

p�γ1 � α1 � 1q!
p�γ1 � 1q!

»
BΩ

pz � wqγ�α�p0,1q dw

� Cγ,α

»
BΩ

1

pz � wq�γ1�α1
dw,

where |Cγ,α| À p|γ| � nqn. If, moreover, γ1 � α1 ¤ �2, we can use (3.8) to write

DαT γχΩpzq � Cγ,α

»
BΩYBBp0,εzq

1

pz � wq�γ1�α1
dw � Cγ,α

»
ΩzBBp0,εzq

0 dmpwq � 0. (3.54)

Otherwise, that is, if γ2 � 1 � α2 and γ1 � α1 � �1, then α � p0, nq and γ � p�1, n � 1q. This
implies that

DαT γχΩpzq � Cn

»
BΩ

1

pz � wq dw � CnχΩpzq, (3.55)

with |Cn| À pn� 1q!. Let us remark the fact that γ � p�1, 0q together with α � p0, 1q is the case
of the B̄-derivative of the Cauchy transform, which is the identity.

Finally, if γ2   α2 � 1, then differentiating (3.54) or (3.55) we get

DαT γχΩpzq � 0.

One can argue analogously if γ1 ¥ 0.

By the preceding remarks, Theorem 3.19 and other standard arguments, one gets the following
theorem.

Theorem 3.27. Let Ω be a bounded pδ,Rq-Cn�1,1 domain with parameterizations in B
n�1�1{p
p,p .

Then, for any γ P Z2ztp�1,�1qu with γ1 � γ2 � �2, we have that T γχΩ P Wn,ppΩq and, in
particular, for any ε ¡ 0, we have that

}∇nT γχΩ}pLppΩq À Cε|γ|np
�
}N}p

B
n�1{p
p,p pBΩq

� p1� εq|γ|p
	
,

where Cε depends on p, n, δ, R, the length of the boundary H1pBΩq and ε but not on |γ|.

3.8 Bounded smooth domains, supercritical case

Using Theorems 3.27 and 2.1, we will prove the following theorem.

Theorem 3.28. Consider p ¡ 2, n ¥ 1 and let Ω be a bounded Lipschitz domain with param-

eterizations in B
n�1�1{p
p,p . Then, for every ε ¡ 0 there exists a constant Cε such that for every

multiindex γ P Z2ztp�1,�1qu with γ1 � γ2 ¥ �2, one has

}T γΩ}Wn,ppΩqÑWn�γ1�γ2�2,ppΩq ¤ Cε|γ|n�γ1�γ2�2
�
}N}

B
n�1{p
p,p pBΩq

� p1� εq|γ|
	
� diampΩqγ1�γ2�2.

(3.56)
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In particular, for every m P N we have that the iteration of the Beurling transform pBmqΩ is
bounded on Wn,ppΩq, with norm

}pBmqΩ}Wn,ppΩqÑWn,ppΩq ¤ Cεm
n�1

�
}N}

B
n�1{p
p,p pBΩq

� p1� εqm
	
. (3.57)

Proof. Note that by (1.15), we have that B
n�1�1{p
p,p � B

n�1�2{p
8,8 and, since 1 � 2{p ¡ 0, we also

have that B
n�1�2{p
8,8 � Cn,1�2{p (see Remark 1.12) so Ω is in fact a pδ,Rq-Cn�1,1-domain, where

δ and R depend on the size of the local parameterizations of the boundary and on }N}
B
n�1{p
p,p pBΩq

,

and we can use Theorem 3.27.
First we study the case γ1 � γ2 � 2 � 0. Consider a given γ P Z2ztp�1,�1qu with γ1�γ2 � �2.

Recall that for m � 0, Bm � p�1qmm
π T p�m�1,m�1q by (3.2). The proof of the Lp boundedness of

these operators with norm smaller than Cpm
2 can be found in [AIM09, Corollary 4.5.1]. Thus,

}T γ}LpÑLp �
π

m
}Bm}LpÑLp À m � |γ|

2
. (3.58)

On the other hand, a short computation shows that the constant CK in (1.41) for these kernels is

CKγ � sup
z�0

|∇nKγpzq||z|j�2 À |γ|n, (3.59)

with constant depending on n.
Following the notation of Theorem 2.1, given a multiindex λ P N2

0, we write Pλpzq � zλ1 z̄λ2 ,
that is, Pλpzq � zλ. In order to use this theorem, it only remains to check the bounds for
}DαT γΩPλ}LppΩq for all multiindices α, λ P N2

0 with |α| � n and |λ|   n. Using the binomial

expansion wλ � °
ν¤λp�1q|ν|�λν�pz � wqνzλ�ν , we can write

T γΩPλpzq � lim
εÑ0

»
CzBεpzq

pz � wqγwλ dmpwq �
¸

~0¤ν¤λ

p�1q|ν|
�
λ

ν



zλ�νT γ�νχΩpzq.

Differentiating (and assuming that 0 P Ω) we find that

|∇nT γΩPλpzq| À 2n
¸

~0¤ν¤λ

ņ

j�0

p1� diampΩqqn|∇jT γ�νχΩpzq|

and, thus, by the equivalence of norms in the Sobolev space (1.8), we have that

}∇nT γΩPλ}pLppΩq ÀΩ

¸
~0¤ν¤λ

����∇n�|ν|T γ�νχΩ

���p
LppΩq

� ��T γ�νχΩ

��p
LppΩq



,

with constants depending on n, p and the diameter and the Sobolev embedding constant of Ω. By
Remark 3.26, Theorem 3.27 and (3.58), we have that

}∇nT γΩPλ}pLppΩq À
¸

γ¤ν¤γ�λ

|ν|np
�
}N}p

B
n�1{p
p,p pBΩq

� p1� εq|ν|p
	
�

¸
γ¤ν¤γ�λ

}T νχΩ}pLppΩq. (3.60)

The Young Inequality (1.10) says that for all functions f P Lp and g P L1, }f � g}Lp ¤ }f}Lp}g}L1 .
Thus, for γ   ν ¤ γ � λ we have that

}T νΩf}Lp ¤ diampΩqν1�ν2�2}f}Lp , (3.61)
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and taking f � χΩ, }T νχΩ}pLp À 1 � diampΩqpn�1qp�2. For ν � γ, the same holds by the bound-
edness of the iterates of the Beurling transform with a slightly worse constant. Namely,

}T γΩf}Lp ¤ Cp|γ|}f}Lp . (3.62)

Since p ¡ 2, putting (2.1), (3.58), (3.59), (3.60), (3.61) and (3.62) together, we get

}∇nT γΩ}Wn,ppΩqÑLppΩq À CK � }T γ}LpÑLp �
¸
|λ| n

}∇npTΩPλq}LppΩq

À |γ|n � |γ| � |γ|n
�
}N}

B
n�1{p
p,p pBΩq

� p1� εq|γ|
	

À |γ|n
�
}N}

B
n�1{p
p,p pBΩq

� p1� εq|γ|
	
, (3.63)

with constants depending on n, p, δ, the diameter of Ω, its Sobolev embedding constant and ε, but
not on γ. This proves (3.56) when γ1 � γ2 � �2 and (3.57) for every m ¡ 0.

It remains to study the operators of homogeneity greater than �2. In that case we will see that
we can differentiate under the integral sign to recover the previous situation. Fix γ P Z2 such that
γ1 � γ2 � 2 ¡ 0. By (3.61) we have that }T γΩf}Lp ¤ diampΩqγ1�γ2�2}f}Lp . Thus, to prove (3.56),
it suffices to see that for f PWn,ppΩq we have��∇n�γ1�γ2�2T γΩf

��
LppΩq

¤ Cε|γ|pn�γ1�γ2�2qp
�
}N}p

B
n�1{p
p,p pBΩq

� p1� εq|γ|p
	
}f}Wn,ppΩq.

By (3.63) it is enough to check that for any ν P N2
0 with |ν| � γ1 � γ2 � 2, we have

DνT γΩfpzq �

$'''&'''%
CnχΩfpzq if γ � p|ν| � 1,�1q and ν � p|ν|, 0q

or γ � p�1, |ν| � 1q and ν � p0, |ν|q,
0 if ν1 ¡ γ1 ¥ 0 or ν2 ¡ γ2 ¥ 0 except in the previous case,

Cν,γT
γ�ν
Ω fpzq otherwise,

(3.64)

with |Cn|, |Cν,γ | À p|ν| � |γ|q|ν|.
To prove this statement, take α ¤ ν � p1, 0q, and note that the partial derivative is

BT γ�αΩ fpzq � BxT γ�αΩ fpzq � iByT γ�αΩ fpzq
2

� lim
hÑ0

T γ�αΩ pf � fpzqqpz � hq � T γ�αΩ pf � fpzqqpzq
2h

� lim
hÑ0

T γ�αΩ pf � fpzqqpz � i hq � T γ�αΩ pf � fpzqqpzq
2ih

� BT γ�αΩ χΩpzqfpzq
�: II � IIII � IIIIII ,

where h is assumed to be real. Now, the principal value is not needed because γ1 � α1 � γ2 � α2 ¡
�2, so

II � lim
hÑ0

»
Ω

ppz � h� wqγ�α � pz � wqγ�αq rfpwq � fpzqs
2h

dmpwq.

Moreover, since f P C0,σ for a certain σ ¡ 0 by the Sobolev Embedding Theorem, we get

lim
hÑ0

»
Bpz,2|h|q

p|z � h� w|γ�α � |z � w|γ�αq |fpwq � fpzq|
2h

dmpwq � 0.
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On the other hand, using the Taylor expansion of order two of pz�w��qγ�α around 0, there exists
ε � εph,w, zq with |ε|   h such that

II � lim
hÑ0

»
ΩzBpz,2|h|q

�Bxpz � w � �qγ�αp0q
2

� B2
xpz � w � �qγ�αpεqh

2



pfpwq � fpzqq dmpwq.

Arguing analogously for IIII , we get that

II � IIII � lim
hÑ0

»
ΩzBpz,2|h|q

pγ1 � α1qpz � wqγ�α�p1�0qfpwq dmpwq

� lim
hÑ0

»
ΩzBpz,2|h|q

pγ1 � α1qpz � wqγ�α�p1�0q dmpwqfpzq

(when taking limits, the Taylor remainder vanishes by the Hölder continuity of f). If γ1 � α1 � 0
then this part is null and IIIIII will be also null unless γ2 � α2 � �1 by Remark 3.26. Otherwise,

the last term coincides with IIIIII and they cancel out. By induction, we get (3.64).



Chapter 4

An application to quasiconformal
mappings

Let µ P L8 supported in a certain ball B � C with k :� }µ}L8   1 and consider K :� 1�k
1�k . We

say that f is a K-quasiregular solution to the Beltrami equation

B̄f � µ Bf (4.1)

with Beltrami coefficient µ if f PW 1,2
loc , that is, if f and ∇f are square integrable functions in any

compact subset of C, and B̄fpzq � µpzqBfpzq for almost every z P C. Such a function f is said
to be a K-quasiconformal mapping if it is a homeomorphism of the complex plane. If, moreover,
fpzq � z �Op 1

z q as z Ñ8, then we say that f is the principal solution to (4.1).

Given a compactly supported Beltrami coefficient µ, the existence and uniqueness of the prin-
cipal solution is granted by the measurable Riemann mapping Theorem (see [AIM09, Theorem
5.1.2], for instance). The principal solution can be given by means of the Cauchy and the Beurling
transforms. If we call

h :� pI � µBq�1µ,

then

fpzq � Chpzq � z

is the principal solution of (4.1) because B̄f � h and Bf � Bh� 1.

In this chapter we use the results of the previous one to improve the known results on the
relation between the smoothness of a quasiconformal mapping and its Beltrami coefficient.

Theorem 4.1. Let n P N, let Ω be a bounded Lipschitz domain with outward unit normal vector

N in B
n�1{p
p,p pBΩq for some 2   p   8 and let µ P Wn,ppΩq with }µ}L8   1 and supppµq � Ω.

Then, the principal solution f to (4.1) is in the Sobolev space Wn�1,ppΩq.

Section 4.1 is devoted to collecting some results that we will use in this chapter. Then in Section
4.2 we perform the main argument to present the outline of the proof of Theorem 4.1, reducing it
to two lemmas, one on the compactness of a commutator which is proven in Section 4.3 and one on
the compactness of χΩB pχΩcBm pχΩ�qq which is studied in Section 4.5. Finally, Subsection 4.4 is
devoted to establishing a generalization of some results in [MOV09] to be used in the last section.

89
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4.1 Some tools

Let us sum up some properties of the Cauchy transform which will be useful in this section (see
[AIM09, Theorems 4.3.10, 4.3.12 and 4.3.14]). We write IΩg :� χΩ g for every g P L1

loc.

Theorem 4.2. Let 1   p   8. Then

• For every f P Lp, we have that BCf � Bf and B̄Cf � f .

• For every function f P L1 with compact support, if p ¡ 2 or
ffl
f dm � 0, then we have that

}Cf}Lp Àp diampsupppfqq}f}Lp . (4.2)

• Let Ω be a bounded open subset of C. Then, we have that

IΩ � C : LppCq ÑW 1,ppΩq (4.3)

is bounded.

We will use some results from [RS96, Section 4.6.4].

Theorem 4.3. Let n P N and d
n   p   8. If Ω is a Lipschitz domain, then for every pair

f, g PWn,ppΩq we have that

}f g}Wn,ppΩq ¤ Cd,n,p,Ω}f}Wn,ppΩq}g}Wn,ppΩq.

Moreover, if the boundary of Ω has parameterizations in C1 and p ¡ d, then for m P N we have
that

}fm}Wn,ppΩq ¤ Cd,n,p,Ωm
n }f}m�nL8pΩq}f}nWn,ppΩq.

Proof. We have that Wn,ppRdq is a multiplicative algebra (see [RS96, Section 4.6.4]), that is, if
f, g PWn,ppRdq, then

}f g}Wn,p ¤ Cn,p}f}Wn,p}g}Wn,p .

Since Ω is an extension domain (see [Eva98, Section 5.4]), we have a bounded operator E :
Wn,ppΩq Ñ Wn,ppCq such that Ef |Ω � f |Ω for every f P Wn,ppΩq. The first property is a
consequence of this fact.

To prove the second property, assume that f P C8pΩq. By (1.8) we only need to prove that

}Bnk pfmq}LppΩq ¤ Cd,n,p,Ωm
n
�
}f}m�nL8pΩq}f}nWn,ppΩq

	
for 1 ¤ k ¤ d. By the Leibniz’ rule, it is an

exercise to check that

Bnk pfmq � fm�n
¸
~jPNn0

ji¥ji�1 for 1¤i n

|~j|�n

c~j,m

n¹
i�1

Bjik f, (4.4)

with c~j,m ¡ 0 and
°
~j c~j,m � mn. Consider ~j � pn, 0, � � � , 0q. Then, by (1.14), that is, the Sobolev

embedding Theorem, we get����� n¹
i�1

Bjik f
�����
LppΩq

� ��Bnk f fn�1
��
LppΩq

¤ }Bnk f}LppΩq}f}n�1
L8pΩq ÀΩ,p }f}nWn,ppΩq. (4.5)
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Otherwise, the indices ji   n for 1 ¤ i ¤ n and, since p ¡ d, we use (1.14) again to state that����� n¹
i�1

Bjik f
�����
LppΩq

¤
n¹
i�1

���Bjik f���
L8pΩq

|Ω| 1p ÀΩ,p

n¹
i�1

���Bjik f���
W 1,ppΩq

¤ }f}nWn,ppΩq. (4.6)

By (4.4), (4.5), (4.6) and the triangle inequality, this implies that

}Bnk pfmq}LppΩq ¤
��fm�n��

L8pΩq

¸
~jPNn0

ji¥ji�1 for 1¤i n

|~j|�n

c~j,m

����� n¹
i�1

Bjik f
�����
LppΩq

À mn}f}m�nL8pΩq}f}nWn,ppΩq.

By an approximation procedure this property applies to every f PWn,ppΩq.

Finally, let us recall some results on compact operators and Fredholm theory (see [Sch02,
Chapters 4 and 5], for instance). In the following definitions and results, X,Y, Z are Banach
spaces, and all the operators are assumed to be bounded and linear.

Definition 4.4. An operator K : X Ñ Y is called compact if every bounded sequence txkuk � X
has a subsequence txkjuj such that tKpxkj quj converges in Y .

Proposition 4.5. If A : X Ñ Y , B : Z Ñ X are operators and K : Y Ñ Z is compact, then
K �A and B �K are compact.

Theorem 4.6. If L : X Ñ Y and there is a sequence of compact operators Kj : X Ñ Y such that

}L�Kj} jÑ8ÝÝÝÑ 0, then L is compact.

Definition 4.7. An operator A : X Ñ Y is said to be a Fredholm operator if it has closed
range and the dimensions of the kernels NpAq and NpA1q are finite. The Fredholm index of A is
ipAq :� dimNpAq � dimNpA1q.
Theorem 4.8. Let A : X Ñ Y , A1, A2 : Y Ñ X, let K1, B1 : X Ñ X and K2, B2 : Y Ñ Y with
Bj invertible and Kj compact and such that A1 �A � B1 �K1 and A �A2 � B2 �K2. Then A is
Fredholm.

Theorem 4.9. The index is continuous with respect to the operator norm.

4.2 A Fredholm theory argument

Consider m P N. Recall that pBmqΩg � χΩBmpχΩgq for g P L1
loc (see Definition 3.2) and IΩg �

χΩ g. Note that IΩ is the identity in Wn,ppΩq. Let us define Pm :� IΩ � µBΩ � pµBΩq2 �
� � � � pµBΩqm�1. Since Wn,ppΩq is a multiplicative algebra (by Theorem 4.3), we have that Pm is
bounded on Wn,ppΩq. It follows that

Pm � pIΩ � µBΩq � pIΩ � µBΩq � Pm � IΩ � pµBΩqm, (4.7)

and

IΩ � pµBΩqm � pIΩ � µmpBmqΩq � µmppBmqΩ � pBΩqmq � pµmpBΩqm � pµBΩqmq
� Ap1qm � µmAp2qm �Ap3qm . (4.8)
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Note the difference between pBΩqmg � χΩBp. . . χΩBpχΩBpχΩgqqq and pBmqΩg � χΩBmpχΩgq.
Next we will see that for m large enough, the operator IΩ � pµBΩqm is the sum of an invertible
operator and a compact one.

First we will study the compactness of A
p3q
m � µmpBΩqm�pµBΩqm. To start, writing rµ,BΩsp�q

for the commutator µBΩp�q � BΩpµ�q we have the telescopic sum

Ap3qm �
m�1̧

j�1

µm�jrµ,BΩs
�
µj�1pBΩqm�1

�� pµBΩqpµm�1pBΩqm�1 � pµBΩqm�1q

�
m�1̧

j�1

µm�jrµ,BΩs
�
µj�1pBΩqm�1

�� pµBΩqAp3qm�1.

Arguing by induction we can see that A
p3q
m can be expressed as a sum of operators bounded on

Wn,ppΩq which have rµ,BΩs as a factor. It is well-known that the compactness of a factor implies
the compactness of the operator (see Proposition 4.5). Thus, the following lemma, which we prove

in Section 4.3 implies the compactness of A
p3q
m .

Lemma 4.10. The commutator rµ,BΩs is compact in Wn,ppΩq.
Consider now A

p2q
m � pBmqΩ � pBΩqm. We define the operator Rmg :� χΩB

�
χΩcBm�1pχΩ gq

�
whenever it makes sense. This operator can be understood as a (regularizing) double reflection
with respect to the boundary of Ω. For every g PWn,ppΩq we have that

Ap2qm g � χΩ

�
B
�pχΩ � χΩcqBm�1pχΩ gq

�� B �χΩ

�pBΩqm�1g
���

� χΩB
�
χΩcBm�1pχΩgq

�� χΩB
�
χΩ

�
Bm�1pχΩ�q � pBΩp�qqm�1

�
g
� � Rmg � BΩ �Ap2qm�1g.

Note that by definition

Rm �
�
Ap2qm � BΩ �Ap2qm�1

	
(4.9)

is bounded on Wn,ppΩq. In Section 4.5 we will prove the compactness of Rm, which, by induction,

will prove the compactness of A
p2q
m .

Lemma 4.11. For every m, the operator Rm is compact in Wn,ppΩq.
Now, the following claim is the remaining ingredient for the proof of Theorem 4.1.

Claim 4.12. For m large enough, A
p1q
m is invertible.

Proof. Since p ¡ 2 we can use Theorem 4.3 to conclude that for every g PWn,ppΩq
}µmpBmqΩg}Wn,ppΩq À }µm}Wn,ppΩq}pBmqΩg}Wn,ppΩq

À mn}µ}m�nL8 }µ}nWn,ppΩq}pBmqΩ}Wn,ppΩqÑWn,ppΩq}g}Wn,ppΩq.

By Theorem 3.28, for any ε ¡ 0 there are constants depending on the Lipschitz character of Ω
(and other parameters) but not on m, such that

}pBmqΩ}pWn,ppΩqÑWn,ppΩq À mpn�1qp
�
p1� εqmp � }N}p

B
n�1{p
p,p pBΩq

	
.

In particular, if we choose 1 � ε   1
}µ}8

, we get that for m large enough, the operator norm

}µmpBmqΩ}Wn,ppΩqÑWn,ppΩq   1 and, thus, A
p1q
m in (4.8) is invertible.
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Proof of Theorem 4.1. Putting together Lemmas 4.10 and 4.11, Claim 4.12, and (4.8), we get that
IΩ � pµBΩqm can be expressed as the sum of an invertible operator and a compact one for m big
enough and, by (4.7), we can deduce that IΩ � µBΩ is a Fredholm operator (see Theorem 4.8).
The same argument works with any other operator IΩ� tµBΩ for 0   t   1{}µ}8. It is well known
that the Fredholm index is continuous with respect to the operator norm on Fredholm operators
(see Theorem 4.9), so the index of IΩ � µBΩ must be the same index of IΩ, that is, 0.

It only remains to see that this operator is injective to prove that it is invertible. Since µ is
continuous, we know from [Iwa92, Section 1] that the operator I � µB is injective in Lp. Thus, if
g P Wn,ppΩq, and pIΩ � µBΩqg � 0, we define Gpzq � gpzq if z P Ω and Gpzq � 0 otherwise, and
then we have that

pI � µBqG � pI � µχΩBqpχΩGq � pIΩ � µBΩqg � 0.

By the injectivity of the former, we get that G � 0 and, thus, g � 0 as a function of Wn,ppΩq.
Now, remember that the principal solution of (4.1) is fpzq � Chpzq � z where

h � pI � µBq�1µ,

that is, h� µBphq � µ, so suppphq � supppµq � Ω and, thus, for almost every z P Ω we have that
χΩpzqhpzq � µpzqBΩphqpzq � hpzq � µpzqBphqpzq � µpzq, so

h|Ω � pIΩ � µBΩq�1µ,

proving that h P Wn,ppΩq. By Theorem 4.2 we have that Ch P LppCq. Since the derivatives of
the principal solution, B̄f � h and Bf � Bh � 1 � BΩh � χΩcBh � 1, are in Wn,ppΩq, we have
f PWn�1,ppΩq.

4.3 Compactness of the commutator

Proof of Lemma 4.10. We want to see that for any µ P Wn,ppΩq X L8, the commutator rµ,BΩs
is compact. The idea is to show that it has a regularizing kernel. In particular, we will prove
that assuming some extra condition on the regularity of µ, then the commutator maps Wn,ppΩq
to Wn�1,ppΩq. This will imply the compactness of the commutator as a self-map of Wn,ppΩq and,
by a classical argument on approximation of operators, this will be extended to any given µ.

First we will see that we can assume µ to be C8
c pCq without loss of generality by an approxi-

mation procedure. Indeed, since Ω is an extension domain, for every µ P Wn,ppΩq, there is a
function Eµ with }Eµ}Wn,ppCq ¤ C}µ}Wn,ppΩq such that Eµ|Ω � µχΩ. Now, Eµ can be approxi-

mated by a sequence of functions tµjujPN � C8
c pCq in Wn,ppCq and one can define the operator

rµj ,BΩs : Wn,ppΩq Ñ Wn,ppΩq. Since Wn,ppΩq is a multiplicative algebra, one can check that
trµj ,BΩsujPN is a sequence of operators converging to rµ,BΩs in the operator norm. Thus, it is
enough to prove that the operators rµj ,BΩs are compact in Wn,ppΩq for all j by Theorem 4.6.

Let µ be a C8
c pCq function. We will prove that the commutator rµ,BΩs is a smoothing operator,

mapping Wn,ppΩq into Wn�1,ppΩq. Consider f PWn,ppΩq, a Whitney coveringW with appropriate

constants and, for everyQ PW, choose a bump function χ 3
2Q

¤ ϕQ ¤ χ2Q with
��∇jϕQ��L8 À Cj

`pQqj .

Recall that in Section 1.5 we defined Pn�1
3Q f to be the approximating polynomial of f around 3Q.
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Then, we break the norm in three terms,��∇n�1rµ,BΩsf
��p
LppΩq

Àp
¸
QPW

���∇n�1rµ,BΩs
��
f �Pn�1

3Q f
	
ϕQ

	���p
LppQq

(4.10)

�
¸
QPW

���∇n�1rµ,BΩs
��
f �Pn�1

3Q f
	
pχΩ � ϕQq

	���p
LppQq

�
¸
QPW

���∇n�1rµ,BΩs
�
Pn�1

3Q f
	���p
LppQq

�: 1 � 2 � 3 .

First we study 1 . In this case, we can use the following classical trick for compactly supported

functions. Given a ball B � C, ϕ P C8
c pBq and g P Lp, then Cg P W 1,pp2Bq by (4.3). Therefore,

we can use Leibniz’ rule (1.11) for the first order derivatives of ϕ � Cg, and by Theorem 4.2 we get

ϕ � Bpgq � Bpϕ � gq � ϕ � BCg � Bpϕ � B̄Cgq � �Bϕ � Cg � Bpϕ � Cgq � B̄Bpϕ � Cgq � BpB̄ϕ � Cgq
� BpB̄ϕ � Cgq � Bϕ � Cg. (4.11)

Thus, for a fixed cube Q, since we assumed that µ P C8
c pCq, we have that

rµ,Bs
��
f �Pn�1

3Q f
	
ϕQ

	
� B

�
B̄µ � C

��
f �Pn�1

3Q f
	
ϕQ

		
� Bµ � C

��
f �Pn�1

3Q f
	
ϕQ

	
.

Therefore, using the boundedness of the Beurling transform and the fact that it commutes with
derivatives, we have that

1 �
¸
Q

���∇n�1rµ,Bs
��
f �Pn�1

3Q f
	
ϕQ

	���p
LppQq

Àp
¸
Q

���∇n�1
�
B̄µ � C

��
f �Pn�1

3Q f
	
ϕQ

		���p
Lp
�
¸
Q

���∇n�1
�
Bµ � C

��
f �Pn�1

3Q f
	
ϕQ

		���p
Lp

¤
¸
Q

n�1̧

j�0

}µ}pWn�2,8

���∇jC ��f �Pn�1
3Q f

	
ϕQ

	���p
Lp

and, using the identities BC � B, B̄C � Id (when j ¡ 0 in the previous sum) together with (4.2)
from Theorem 4.2 (when j � 0) we can estimate

1 Àp }µ}pWn�2,8

¸
Q

�
n�1̧

j�1

���∇j�1
��
f �Pn�1

3Q f
	
ϕQ

	���p
Lpp2Qq

� `pQqp
���f �Pn�1

3Q f
���p
Lpp2Qq

�

and, by the Poincaré inequality (1.33) we get

1 Àn,p }µ}pWn�2,8

¸
Q

n�1̧

j�0

`pQqpn�1�jqp}∇nf}pLpp2Qq Àn,Ω }µ}pWn�2,8}∇nf}pLppΩq.

Second, we bound using duality

2 �
¸
QPW

���∇n�1rµ,BΩs
��
f �Pn�1

3Q f
	
pχΩ � ϕQq

	���p
LppQq

�
�� sup
gPLp1 :}g}

Lp
1¤1

¸
QPW

»
Q

���∇n�1rµ,BΩs
��
f �Pn�1

3Q f
	
pχΩ � ϕQq

	
pzq gpzq

��� dmpzq
�p .
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Let Q be a Whitney cube, let z P Q and let α P N2 with |α| � n� 1. Then, if we call

Kµpz, wq � µpzq � µpwq
pz � wq2 ,

then, since z is not in the support of
�
f �Pn�1

3Q f
	
pχΩ � ϕQq, we have that

Dαrµ,BΩs
��
f �Pn�1

3Q f
	
pχΩ � ϕQq

	
pzq �

»
Ω

Dα
zKµpz, wq

�
fpwq �Pn�1

3Q fpwq
	
p1� ϕQpwqq dm.

Note that

Dα
zKµpz, wq � pµpzq � µpwqqDα

z

1

pz � wq2 �
¸
γ α

�
α

γ



Dα�γµpzqDγ

z

1

pz � wq2 ,

so using |µpzq � µpwq| ¤ }∇µ}L8 |z � w| we get

|Dα
zKµpz, wq| ¤ Cn,diampΩq}µ}Wn�1,8

1

|z � w|n�2
.

Note the similitude between this estimate and the size condition (1.41) (take smoothness n, di-
mension 2 and Calderón-Zygmund constant Cn,diampΩq}µ}Wn�1,8). Using (1.34) and Lemma 2.3
we get

2
1
p À }µ}Wn�1,8 sup

}g}
Lp

1¤1

¸
Q,S

³
S

���fpwq �Pn�1
3Q fpwq

��� dmpwq
DpQ,Sqn�2

»
Q

|gpzq| dmpzq

À }µ}Wn�1,8 sup
}g}

Lp
1¤1

¸
Q,S

¸
PPrQ,Ss

}g}L1pQq}∇nf}L1p3P qDpP, Sqn�1`pSq2
`pP qDpQ,Sqn�2

Àn,Ω }µ}Wn�1,8}∇nf}LppΩq.

Next we use a T p1q argument reducing 3 to the boundedness of rµ,BΩsp1q. Consider the

monomials PQ,γpzq :� pz � zQqγ � pz � zQqγ1pz � zQqγ2 for γ P N2
0 where zQ stands for the center

of Q (see complex notation in Section 1.2). The Taylor expansion (1.31) of Pn�1
3Q f around zQ can

be written as Pn�1
3Q fpzq � °

|γ| nmQ,γPQ,γpzq. Thus, we have that

�πrµ,BΩsPn�1
3Q fpzq �

�
µ, T

p�2,0q
Ω

�
Pn�1

3Q fpzq �
¸
|γ| n

mQ,γ

�
µ, T

p�2,0q
Ω

�
PQ,γpzq,

and using the binomial expansion pw � zQqγ �
°
λ¤γp�1qλ�γλ�pz � wqλpz � zQqγ�λ we have

�πrµ,BΩsPn�1
3Q fpzq �

¸
|γ| n

mQ,γ

¸
~0¤λ¤γ

p�1qλ
�
γ

λ


�
µ, T

p�2,0q�λ
Ω

�
p1qpzqPQ,γ�λpzq, (4.12)

that is,

3 �
¸
QPW

���∇n�1rµ,BΩs
�
Pn�1

3Q f
	���p
LppQq

À
¸
|γ| n

¸
~0¤λ¤γ

¸
QPW

|mQ,γ |p
���∇n�1

��
µ, T

p�2,0q�λ
Ω

�
p1q � PQ,γ�λ

	���p
LppQq

.
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But every coefficient |mQ,γ | is bounded by C}f}Wn�1,8pQq by (1.32) and all the derivatives of PQ,γ
are uniformly bounded on Ω. Therefore, we have that

3 À }f}pWn�1,8pΩq

¸
QPW

¸
0¤|λ| n

����µ, T p�2,0q�λ
Ω

�
1
���p
Wn�1,ppQq

.

Using the Sobolev Embedding Theorem, we get

3 À }f}pWn,ppΩq

�� ¸
0 |λ| n

����µ, T p�2,0q�λ
Ω

�
1
���p
Wn�1,ppΩq

�
¸
QPW

����µ, T p�2,0q
Ω

�
1
���p
Wn�1,ppQq

�.
Note that if λ ¡ ~0, then the operator T

p�2,0q�λ
Ω has homogeneity �2�λ1�λ2 ¡ �2 and, therefore,

by Theorem 3.28, T
p�2,0q�λ
Ω : Wn,ppΩq Ñ Wn�1,ppΩq is bounded and, since p ¡ 2 and Wn�1,ppΩq

is a multiplicative algebra, we have that���µT p�2,0q�λ
Ω 1

���p
Wn�1,ppΩq

�
���T p�2,0q�λ

Ω µ
���p
Wn�1,ppΩq

Àn,p,Ω }µ}pWn�1,ppΩq.

Therefore,

3 À
�
}µ}pWn�1,ppΩq � }rµ,BΩsp1q}pWn�1,ppΩq

	
}f}pWn,ppΩq,

so we have reduced the proof of Lemma 4.10 to the following claim.

Claim 4.13. Let 2   p   8, n P N. Given a bounded Lipschitz domain Ω with parameterizations

in B
n�1�1{p
p,p and a function µ P C8

c pCq, then rµ,BΩsp1q PWn�1,ppΩq.
We know that rµ,BΩsp1q � µBΩp1q�BΩpµq PWn,ppΩq. We want to prove that ∇n�1rµ,BΩs1 P

Lp. To do so, we split the norm in the same spirit of (4.10), but chopping µ instead of f :��∇n�1rµ,BΩsp1q
��p
LppΩq

Àp
¸
QPW

���∇n�1
��
µ�Pn�2

3Q µ
	
ϕQ,BΩ

�
p1q

���p
LppQq

�
¸
QPW

���∇n�1
��
µ�Pn�2

3Q µ
	
pχΩ � ϕQq,BΩ

�
p1q

���p
LppQq

�
¸
QPW

���∇n�1
�
Pn�2

3Q µ,BΩ

�
p1q

���p
LppQq

�: 4 � 5 � 6 .

First we consider 4 . Since
�
µ�Pn�2

3Q µ
	
ϕQ P C8

c , by (4.11) we have that

¸
Q

���∇n�1
��
µ�Pn�2

3Q µ
	
ϕQ,B

�
χΩ

���p
LppCq

Àp
¸
Q

���∇n�1
�
B
��
µ�Pn�2

3Q µ
	
ϕQ

	
� CχΩ

	���p
Lpp2Qq

�
¸
Q

���∇n�1
�
B̄
��
µ�Pn�2

3Q µ
	
ϕQ

	
� CχΩ

	���p
Lpp2Qq

and, using Leibniz’ rule (1.11), Hölder’s inequality, and the finite overlapping of double Whitney
cubes,

4 Àp
n�1̧

j�0

�
sup
QPW

���∇j�1
��
µ�Pn�2

3Q µ
	
ϕQ

	���p
L8p2Qq



� ��∇n�1�jCχΩ

��p
LppΩq

. (4.13)
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To estimate 4 it remains to see that supQPW

���∇j�1
��
µ�Pn�2

3Q µ
	
ϕQ

	���p
L8p2Qq

  8. But

this is an immediate consequence of the Poincaré inequality (1.33), which shows that���∇j�1
��
µ�Pn�2

3Q µ
	
ϕQ

	���
L8p2Qq

À `pQqn�2�j
��∇n�3µ

��
L8p2Qq

. (4.14)

Thus, the bounds (4.13) and (4.14) yield

4 ¤ Cp,n,diamΩ

��∇n�3µ
��p
L8pΩq

}CχΩ}pWn�1,ppΩq,

which is finite by Theorem 3.28.

Next we face 5 . Note that for a given Whitney cube Q, if z P Q, then χΩpzq � ϕQpzq � 0, so

5 �
¸
QPW

���∇n�1B
��
µ�Pn�2

3Q µ
	
pχΩ � ϕQq

	���p
LppQq

.

Moreover, for z P Q PW, we have

Bn�1B
��
µ�Pn�2

3Q µ
	
pχΩ � ϕQq

	
pzq � cn

»
Ωz 3

2Q

�
µpwq �Pn�2

3Q µpwq
	
p1� ϕQpwqq

pz � wq3�n dmpwq.

Since B̄B
��
µ�Pn�2

3Q µ
	
pχΩ � ϕQq

	
pzq � 0, only Bn�1 is non zero in the pn� 1q-th gradient, so

���∇n�1B
��
µ�Pn�2

3Q µ
	
pχΩ � ϕQq

	
pzq

��� À ¸
SPW

1

DpQ,Sq3�n
���µ�Pn�2

3Q µ
���
L1pSq

.

For every pair of Whitney cubes Q,S, consider an admissible chain rS,Qs. By (1.34) we have that���µ�Pn�2
3Q µ

���
L1pSq

À
¸

PPrS,Qs

`pSq2DpP, Sqn�2

`pP q
��∇n�3µ

��
L1p3P q

.

Combining all these facts with the expression of the norm by duality and Lemma 2.3, we get

5
1
p À sup

gPLp1 pΩq:}g}p1¤1

¸
Q

»
Q

g dm
¸
SPW

1

DpQ,Sq3�n
¸

PPrS,Qs

`pSq2DpP, Sqn�2

`pP q
��∇n�3µ

��
L1p3P q

À diampΩq2 sup
gPLp1 pΩq:}g}p1¤1

¸
Q

¸
S

¸
PPrS,Qs

`pSq2��∇n�3µ
��
L1p3P q

}g}L1pQq

`pP qDpQ,Sq3 À ��∇n�3µ
��
LppΩq

.

Finally we focus on

6 �
¸
QPW

���∇n�1
�
Pn�2

3Q µ,BΩ

�
p1q

���p
LppQq

.

Consider first a monomial PQ,γpzq � pz� zQqγ for a multiindex γ P N2. Then, as we did in (4.12),
we use the binomial expression PQ,γpwq �

°
λ¤γp�1q|λ|�γλ�pz � wqλpz � zQqγ�λ to deduce that

�πBΩPQ,γpzq � T
p�2,0q
Ω PQ,γpzq �

¸
~0¤λ¤γ

p�1q|λ|
�
γ

λ



T
p�2,0q�λ
Ω p1qpzqpz � zQqγ�λ.
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Note that the term for λ � ~0 in the right-hand side of this expression is T
p�2,0q
Ω p1qpzqPQ,γpzq, so

it cancels out in the commutator:

� πrPQ,γ ,BΩsp1qpzq �
¸

~0 λ¤γ

p�1q|λ|
�
γ

λ



T
p�2,0q�λ
Ω p1qpzqPQ,γ�λpzq. (4.15)

Now, writting Pn�2
3Q µpzq � °

|γ|¤n�2mQ,γPQ,γpzq we have that

6 �
¸
QPW

���∇n�1rPn�2
3Q µ,BΩsp1q

���p
LppQq

¤
¸
QPW

¸
γ¤n�2

|mQ,γ |p
��∇n�1rPQ,γ ,BΩsp1q

��p
LppQq

,

so using (1.32) and (4.15) together with Leibniz’ rule (1.11), we get

6 À }µ}pWn�2,8

¸
QPW

¸
γ¤n�2

¸
~0 λ¤γ

n�1̧

j�0

���∇jT p�2,0q�λ
Ω p1q

���p
LppQq

��∇n�1�jPQ,γ�λ
��p
L8pQq

¤ Cn,p,Ω}µ}pWn�2,8

¸
~0 λ:|λ|¤n�2

���T p�2,0q�λ
Ω p1q

���p
Wn�1,ppΩq

. (4.16)

In the last sum we have that T
p�2,0q�λ
Ω p1q P Wn�1,ppΩq for all λ ¡ ~0 by Theorem 3.28 because

the operators T p�2,0q�λ have homogeneity bigger than �2. Thus, the right-hand side of (4.16) is
finite.

4.4 Some technical details

Given ~m � pm1,m2,m3q P N3, let us define the line integral

K~mpz, ξq :�
»
BΩ

pw � ξqm3

pz � wqm1 pw � ξqm2
dw (4.17)

for all z, ξ P Ω, where the path integral is oriented counterclockwise.
Given a j times differentiable function f , we will write

P jz pfqpξq �
¸
|~i|¤j

D
~ifpzq
~i!

pξ � zq~i

for its j-th degree Taylor polynomial centered in the point z.
Mateu, Orobitg and Verdera study the kernel Kp2,m�1,mqpz, ξq for m P N in [MOV09, Lemma

6] assuming the boundary of the domain Ω to be in C1,ε for ε   1. They prove the size inequality

|Kp2,m�1,mqpz, ξq| À
1

|z � ξ|2�ε
and a smoothness inequality in the same spirit. In [CMO13], when dealing with the compactness
of the operator Rmf � χΩB

�
χΩcBm�1pχΩfq

�
on W s,ppΩq for 0   s   1, this is used to prove that

the Beltrami coefficient µ PW s,ppΩq implies the principal solution of B̄f � µBf being in W s�1,ppΩq
only for s   ε. This bounds are not enough for us in this form and, moreover, we will consider
m1 ¡ 2 (this comes from differenciating the kernel of Rm, something that we have to do in order
to study the classical Sobolev spaces). Nevertheless, their argument can be adapted to the case of

the boundary being in the space B
n�1�1{p
p,p � Cn,1�2{p to get Proposition 4.15 below, which will be

used to prove Lemma 4.11. The proof follows the same pattern but it is more sophisticated and
some combinatorial lemma will be handy.

We will use some auxiliary functions.
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Definition 4.14. Let us define

Hm3,ξpwq :� 1

2πi

»
BΩ

pτ � ξqm3

τ � w
dτ for every w, ξ R BΩ,

and

hm3
pzq :�

»
BΩ

pτ � zqm3

τ � z
dτ � 2πiHm3,zpzq for every z P Ω. (4.18)

Proposition 4.15. Let Ω be a Lipschitz domain, and let ~m � pm1,m2,m3q P N3 with m1 ¥ 3,
m2,m3 ¥ 1 and m2 ¤ m1 �m3 � 2. Then, the weak derivatives of order m3 of hm3 are

Bj B̄m3�jhm3
� cm3,jBjχΩ, for 0 ¤ j ¤ m3. (4.19)

Moreover, for every pair z, ξ P Ω with z � ξ, we have that

K~mpz, ξq � c~mBm1�2BχΩpzq pξ � zqm3�1

pξ � zqm2
�

¸
j¤m2�1

c~m,jR
m3
m1�m3�3,jpz, ξq

pξ � zqm2�m1�1�j
, (4.20)

where

Rm3

M,jpz, ξq :� Bjhm3
pξq � PM�j

z pBjhm3
qpξq (4.21)

is the Taylor error term of order M � j for the function Bjhm3 .

We begin by noting some remarkable properties of these functions.

Remark 4.16. Given ξ R BΩ and w P BΩ, if we write H�
m3,ξ

pwq for the interior non-tangential

limit of Hm3,ξpζq when ζ Ñ w and H�
m3,ξ

pwq for the exterior one, we have the Plemelj formula

pw � ξqm3 � H�
m3,ξ

pwq �H�
m3,ξ

pwq (4.22)

(see [Ver01, p. 143] for instance).

Remark 4.17. Given ~j � pj1, j2q with j2 ¤ m3, taking partial derivatives in (4.18) we get

D
~jhm3pzq � Bj1 B̄j2hm3pzq �

m3!j1!

pm3 � j2q! p�1qj2
»
BΩ

pτ � zqm3�j2

pτ � zq1�j1 dτ for every z P Ω

and, in particular, hm3 is infinitely many times differentiable in Ω. Therefore, by Green’s formula
(1.12) and the cancellation of the integrand (3.8), for j ¡ 0 we have

Dpj,m3�jqhm3
pzq � cm3,j

»
BΩ

pτ � zqj
pτ � zq1�j dτ � cm3,j

»
ΩzBpz,εq

pw � zqj�1

pw � zqj�1
dmpwq � cm3,jBjχΩpzq

for ε   distpz, BΩq and, in case j � 0, by the Residue Theorem (1.13)

B̄m3hm3
pzq � cm3

»
BΩ

1

τ � z
dτ � cm3

2πiχΩpzq,

proving (4.19).
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Remark 4.18. We can also relate the derivatives of both hm3pzq and Hm3,ξpzq for any pair z, ξ P Ω.
By Definition 4.14 and the previous remark, we have that

2πiHm3,ξpzq �
m3̧

l�0

»
BΩ

�
m3

l


 pτ � zqm3�lpz � ξql
τ � z

dτ

�
m3̧

l�0

m3!

pm3 � lq!l! B̄
lhm3

pzq pm3 � lq!
m3!

p�1qlpξ � zqlp�1ql,

that is,

2πiBjHm3,ξpzq �
m3̧

l�0

1

l!
Dpj,lqhm3

pzqpξ � zql. (4.23)

Proof of Proposition 4.15. Consider z, ξ P Ω. Then
Hm3,ξ

pwq

pz�wqm1 pw�ξqm2
decays at 8 as 1

|w|m1�m2�1

and it is holomorphic in Ωc and, thus, by Green’s Theorem we have that

K~mpz, ξq �
»
BΩ

pw � ξqm3

pz � wqm1 pw � ξqm2
dw �

»
BΩ

pw � ξqm3 �H�
m3,ξ

pwq
pz � wqm1 pw � ξqm2

dw,

and using (4.22),

K~mpz, ξq � p�1qm1

»
BΩ

H�
m3,ξ

pwq
pw � zqm1 pw � ξqm2

dw.

Note that Hm3,ξpwq is holomorphic in Ω, implying that the integrand above is meromorphic in
Ω with poles in z and ξ. Moreover, H�

m3,ξ
P L2pBΩq by the boundedness of the Cauchy transform

in L2pΓq on a Lipschitz graph Γ (see [Ver01], for instance). Thus, combining then Dominated
Convergence Theorem and the Residue Theorem, we get

p�1qm1K~mpz, ξq � 2πi

"
1

pm1 � 1q!B
m1�1

�
Hm3,ξp�q
p� � ξqm2

�
pzq � 1

pm2 � 1q!B
m2�1

�
Hm3,ξp�q
p� � zqm1

�
pξq

*
.

Therefore,

p�1qm1

2πi
K~mpz, ξq � 1

pm1 � 1q!
¸

j1,j2¥0
j1�j2�m1�1

pm1 � 1q!
j1!j2!

Bj2Hm3,ξpzq
pz � ξqm2�j1

p�1qj1 pm2 � j1 � 1q!
pm2 � 1q!

� 1

pm2 � 1q!
¸

j1,j2¥0
j1�j2�m2�1

pm2 � 1q!
j1!j2!

Bj2Hm3,ξpξq
pξ � zqm1�j1

p�1qj1 pm1 � j1 � 1q!
pm1 � 1q! .

Simplifying and using (4.23) on the first sum of the right-hand side and (4.18) on the second
one, we get

p�1qm1�m2K~mpz, ξq �
¸

j1,j2¥0
j1�j2�m1�1

�
m2 � j1 � 1

m2 � 1



1

j2!

1

pξ � zqm2�j1

m3̧

l�0

1

l!
Dpj2,lqhm3

pzqpξ � zql

�
¸

j1,j2¥0
j1�j2�m2�1

�
m1 � j1 � 1

m1 � 1



1

j2!

Bj2hm3
pξq

pξ � zqm1�j1
p�1qj2�1. (4.24)
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The key idea for the rest of the proof is that the first term in the right-hand side of (4.24) contains
the Taylor expansion of the functions in the second one.

Let m2 � 1 ¤ M ¤ m1 � m3 � 2 (we will consider M � m1 � m3 � 3). Using the Taylor
approximating polynomial (4.21) of each Bj2hm3

and multiplying by pξ � zqm1�m2�1 we get

�K~mpz, ξqpz � ξqm1�m2�1 �
m1�1¸
j�0

�
m2 �m1 � 2� j

m2 � 1



1

j!

m3̧

l�0

1

l!
Dpj,lqhm3pzqpξ � zqpj,lq

�
m2�1¸
j�0

�
m1 �m2 � 2� j

m1 � 1


 p�1qj
j!

pξ � zqjRm3

M,jpz, ξq

�
m2�1¸
j�0

�
m1 �m2 � 2� j

m1 � 1


 p�1qj
j!

¸
|~i|¤M�j

D
~iBjhm3

pzq
~i

pξ � zq~i�pj,0q.

To simplify notation, let us define the error

EM :� �K~mpz, ξqpz � ξqm1�m2�1 �
m2�1¸
j�0

�
m1 �m2 � 2� j

m1 � 1


 p�1qj
j!

pξ � zqjRm3

M,jpz, ξq. (4.25)

Then,

EM �
¸
α¥~0

α¤pm1�1,m3q

�
m1 �m2 � 2� α1

m2 � 1



Dαhm3

pzq
α!

pξ � zqα

�
¸
α¥~0
|α|¤M

¸
0¤j¤mintm2�1,α1u

�
m1 �m2 � 2� j

m1 � 1


 p�1qj
j!

Dαhm3
pzq

pα1 � jq!α2!
pξ � zqα.

Note that if α2 ¡ m3, we have that Dαhm3
pzq � 0 (apply (4.19) with j � 0). The same happens

for the case α � pα1,m3q with α1 ¡ 0. On the other hand, if α1 ¡ m1�1, then
�
m1�m2�2�α1

m2�1

� � 0.

By the same token, if j ¡ m2 � 1,
�
m1�m2�2�j

m1�1

� � 0. Thus, we can write

EM �
¸

|α|¤m1�m3�2

Dαhm3pzq
α!

pξ � zqα

�
��

m1 �m2 � 2� α1

m2 � 1



� χ|α|¤M

¸
j¤α1

p�1qj
�
m1 �m2 � 2� j

m1 � 1


�
α1

j


�
.

Note that we have added many null terms in the previous expression, but now the proof of the
proposition is reduced to Claim 4.19 below which implies that

EM �
¸

M |α|¤m1�m3�2

�
m1 �m2 � 2� α1

m2 � 1



Dαhm3

pzq
α!

pξ � zqα.

Taking M � m1 �m3 � 3 in this expression, only the terms with |α| � m1 �m3 � 2 remain and,
arguing as before, if α1 ¡ m1 � 1 then

�
m1�m2�2�α1

m2�1

� � 0 and

if α2 ¥ m3 then Dαhm3pzq � 0 (4.26)
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(|α| ¡ m3 because we assume that m1 ¥ 3). Summing up, by (4.19) we have that

Em1�m3�3 � Dpm1�1,m3�1qhm3
pzq

pm1 � 1q!pm3 � 1q! pξ � zqpm1�1,m3�1q � c~mBm1�2BχΩpzqpξ � zqpm1�1,m3�1q.

By (4.25) this implies (4.20).

Claim 4.19. For any natural numbers m1, m2 and α1 we have that�
m1 �m2 � 2� α1

m2 � 1



�

α1̧

j�0

p�1qj
�
α1

j


�
m2 �m1 � 2� j

m1 � 1



.

Proof. We have the trivial identity�
m1 �m2 � 2� α1

m2 � 1



�

�
m1 �m2 � 2� α1

m1 � 1� α1



�

0̧

i�0

p�1qi
�

0

i


�
m1 �m2 � 2� α1 � i

m1 � 1� α1



.

Let κ1, κ2, κ3 P Z with κ1 ¥ 0. We have that

κ1̧

i�0

p�1qi
�
κ1

i


�
κ3 � i

κ2



�

κ1̧

i�0

p�1qi
��
κ1

i


�
κ3 � 1� i

κ2 � 1



�
�
κ1

i


�
κ3 � i

κ2 � 1


�

�
κ1�1¸
j�0

p�1qj
��
κ1

j


�
κ3 � 1� j

κ2 � 1



�
�

κ1

j � 1


�
κ3 � 1� j

κ2 � 1


�

�
κ1�1¸
j�0

p�1qj
�
κ1 � 1

j


�
κ3 � 1� j

κ2 � 1



.

Arguing by induction we get that

0̧

i�0

p�1qi
�

0

i


�
m1 �m2 � 2� α1 � i

m1 � 1� α1



� � � � �

α1̧

j�0

p�1qj
�
α1

j


�
m2 �m1 � 2� j

m1 � 1



.

Remark 4.20. In Proposition 4.15, if we assume that m1 � 2, then for every pair z, ξ P Ω with
z � ξ we have that

K~mpz, ξq � c~mBχΩpzq pξ � zqm3�1

pξ � zqm2
� c~mχΩpzq pξ � zqm3

pξ � zqm2�1
�

¸
j¤m2�1

c~m,jR
m3
m3�1,jpz, ξq

pξ � zqm2�1�j
. (4.27)

The proof is exactly the same, but (4.26) is only valid for α2 ¡ m3, leading to

Em3�1 � Dp1,m3�1qhm3
pzq

pm3 � 1q! pξ � zqp1,m3�1q � m2D
p0,m3qhm3

pzq
m3!

pξ � zqp0,m3q,

leading to (4.27) by (4.19).

The thoughtful reader may wonder why we do not use M � m1 � m3 � 2 in (4.25) to get
an analogous result to [MOV09, (27)], namely Em1�m3�2 � 0. This formula is still valid in our
context (with ~m � p2,m� 1,mq), and taking ~m � pn� 2,m� 1,mq we could get a generalization
with no extra terms, only Taylor remainders up to degree M . In the present dissertation, however,
we deal with the situation hm P Wm�n,ppΩq with p ¡ 2 and, therefore, we will only use Taylor
polynomials up to degree m� n� 1 to use the Hölder estimates for Taylor remainders of Lemma
4.22, which is a consequence of the following lemma.
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Lemma 4.21. Let z, ξ be two points in an extension domain Ω � Rd (open and connected), M ¥ 1
a natural number, 0   s ¤ 1, p ¡ d{s and f P WM�s,ppΩq. Then, writing σ � σd,s,p � s� d

p , the
Taylor error term satisfies the estimate��fpξq � PMz fpξq�� ¤ C}f}WM�s,ppΩq|z � ξ|M�σ.

Proof. Let us assume that 0 P Ω. Using the extension E : WM�s,ppΩq ÑWM�s,p
0 pBp0, 2 diampΩqq

and the Sobolev Embedding Theorem, it suffices to prove the estimate for f P CM,σpRdq. We will
prove only the case d � 1 leaving to the reader the generalization. In that case, we define

Ftpuq :� fptq � PMu fptq
pt� uqM

for any u � t P R. We want to see that |Ftpuq| ¤ C}f}CM,σ |u � t|σ for t � u. Note that the
M -differentiability of f implies that limτÑt Ftpτq � 0. Thus, decomposing PMu fptq � PM�1

u fptq�
1
M !f

pMqpuqpt� uqM , we have that

Ftpuq � lim
τÑt

Ftpuq � Ftpτq � lim
τÑt

�
fptq � PM�1

u fptq�� �
fptq � PM�1

τ fptq�
pt� uqM

� lim
τÑt

�
fptq � PM�1

τ fptq�� 1

pt� uqM � 1

pt� τqM



� lim
τÑt

1

M !

�
�f pMqpuq � f pMqpτq

	
� I � II � III . (4.28)

The first term in (4.28) is

I �
�
fptq � PM�1

u fptq�
pt� uqM

and, using the mean value form of the remainder term of the Taylor polynomial, there exists a
point c1 P pu, tq such that

I � f pMqpc1q
M !

.

The second term in (4.28) is

II � lim
τÑt

�
fptq � PM�1

τ fptq�� pt� τqM � pt� uqM
pt� uqM pt� τqM



� lim
τÑt

�
fptq � PM�1

τ fptq� pu� τq
�

M̧

j�1

1

pt� uqjpt� τqM�1�j

�

� lim
τÑt

u� τ

t� u

�
M̧

j�1

fptq � PM�1
τ fptq

pt� uqj�1pt� τqM�1�j

�
� �

M̧

j�1

lim
τÑt

fptq � PM�1
τ fptq

pt� uqj�1pt� τqM�1�j
.

Applying the Taylor Theorem, only the term j � 1 has a non-null limit in the last sum, with

II � �f
pMqptq
M !

,

so

|Ftpuq| ¤
����f pMqpc1q

M !
� f pMqptq

M !

����� 1

M !
lim
τÑt

���f pMqpuq � f pMqpτq
��� ¤ 2

M !
}f}CM,σ |u� t|σ.
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Recall that in (4.21) we defined the Taylor error terms

Rm3

M,jpz, ξq :� Bjhm3
pξq � PM�j

z pBjhm3
qpξq

for M, j,m3 P N and z, ξ P Ω. Next we give bounds on the size and the smoothness of this terms.

Lemma 4.22. Consider a real number p ¡ 2 and naturals n,m P N and let Ω � C be a Lipschitz

domain with parameterizations of the boundary in B
n�1�1{p
p,p . Writing σp :� 1 � 2

p , for j ¤ m we
have that

|Rm�1
m�n,jpz, ξq| ¤ CΩ,n,m|z � ξ|m�n�j�σp (4.29)

and, if z1, z2, ξ P Ω with |z1 � ξ| ¡ 3
2 |z1 � z2|, then

|Rmm�n�1,jpz1, ξq �Rmm�n�1,jpz2, ξq| ¤ CΩ,n,m|z1 � z2|σp |z1 � ξ|m�n�j�1. (4.30)

Proof. Recall that BkχΩ P Wn,ppΩq for every k by Theorem 3.28. Thus, by (4.19) we have that
∇m�1hm�1 P Wn,ppΩq and, since hm�1 is continuous and bounded in Ω as well (see (4.18)), we
have that Bjhm�1 PWn�m�1�j,ppΩq for 0 ¤ j ¤ m� n. By Lemma 4.21, it follows that

|Rm�1
m�n,jpz, ξq| ¤ C

��Bjhm�1

��
Wm�n�j�1,ppΩq

|z � ξ|m�n�j�σp .

The second inequality is obtained by the same procedure as [MOV09, Lemma 7]. We quote it
here for the sake of completeness. Assume that z1, z2, ξ P Ω with |z1 � ξ| ¡ 3

2 |z1 � z2|. Then

Rmm�n�1,jpz1, ξq �Rmm�n�1,jpz2, ξq � Pm�n�1�j
z1 Bjhmpξq � Pm�n�1�j

z2 Bjhmpξq.

But for a natural number M and a function f P CM,σppΩq one has that

PMz1 fpξq � PMz2 fpξq �
¸

|~i|¤M

D
~ifpz1q
~i!

pξ � z1q~i �
¸

|~j|¤M

D
~jfpz2q
~j!

pξ � z2q~j .

Since pξ � z2q~j �
°
~i¤~j

�~j
~i

�pz1 � z2q~j�~ipξ � z1q~i, one can write

PMz1 fpξq � PMz2 fpξq �
¸

|~i|¤M

D
~ifpz1q
~i!

pξ � z1q~i �
¸

|~j|¤M

D
~jfpz2q
~j!

¸
~i¤~j

�~j
~i



pz1 � z2q~j�~ipξ � z1q~i

�
¸

|~i|¤M

pξ � z1q~i
~i!

�����D~ifpz1q �
¸

|~j|¤M
~i¤~j

D
~jfpz2q
p~j �~iq pz1 � z2q~j�~i

����
�

¸
|~i|¤M

pξ � z1q~i
~i!

�
D
~ifpz1q � PM�|~i|

z2 D
~ifpz1q

	
.

Therefore, arguing as before,

|PMz1 fpξq � PMz2 fpξq| À
¸
i¤M

|ξ � z1|i}f}CM,σp pΩq|z1 � z2|M�i�σp

À |ξ � z1|M |z1 � z2|σp}f}CM,σp pΩq.
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4.5 Compactness of the double reflection Rm

Proof of Lemma 4.11. Recall that we want to prove that Rm : f ÞÑ χΩB
�
χΩcBm�1pχΩfq

�
is a

compact operator in Wn,ppΩq.
Since Rmf is analytic in Ω, it is enough to see that Tm :� BnRm : Wn,ppΩq Ñ LppΩq is a

compact operator.
Indeed, we have that Rm is bounded on Wn,ppΩq by (4.9) and, thus, since the inclusion

Wn,ppΩq ãÑ Wn�1,ppΩq is compact for any extension domain (see [Tri83, 4.3.2/Remark 1]),
we have that Rm : Wn,ppΩq Ñ Wn�1,ppΩq is compact. That is, given a bounded sequence
tfjuj � Wn,ppΩq, there exists a subsequence tfjkuk and a function g P Wn�1,ppΩq such that
Rmfjk Ñ g in Wn�1,ppΩq. If Tm : Wn,ppΩq Ñ LppΩq was a compact operator, then there would
be a subsubsequence tfjki ui and a function gn such that Tmfjki Ñ gn in LppΩq. It is immediate
to see that gn is the weak derivative Bng in Ω. Therefore, if Tm is compact then Rm is compact as
well.

We will prove that Tm is compact using an approximation argument. Let f P Wn,ppΩq. For
every cube Q, let fQ be the mean of f in Q. Consider a partition of the unity tψQuQPW such that
suppψQ � 11

10Q and |∇jψQ| À `pQq�j for every Whitney cube Q.
For every i P N we can define a finite partition of the unity tψiQuQPW such that

• If `pQq ¡ 2�i then ψiQ � ψQ.

• If `pQq � 2�i then suppψiQ � ShpQq (see Definition 1.16) and |∇jψiQ| À `pQq�j .

• If `pQq   2�i then ψiQ � 0.

Then, writing fQ � ffl
Q
f dm for the mean of f in Q and pTmpf � fQqqQ � ffl

Q
Tmpf � fQq dm, we

can define

T imfpzq �
¸

QPW:`pQq¡2�i

TmpfqpzqψQpzq �
¸

QPW:`pQq�2�i

pTmpf � fQqqQ ψiQpzq.

We will prove the following two claims.

Claim 4.23. For every i P N, the operator T im : Wn,ppΩq Ñ LppΩq is compact.

Claim 4.24. The norm of the error operator E i :� Tm � T im : Wn,ppΩq Ñ LppΩq tends to zero as
i tends to infinity.

Then the compactness of Tm is a well-known consequence of the previous two claims (see
Theorem 4.6). By all the exposed above, this proves Lemma 4.11.

Proof of Claim 4.23. We will prove that the operator T im : Wn,ppΩq Ñ W 1,ppΩq is bounded. As
before, since Ω is an extension domain, the embedding W 1,ppΩq ãÑ LppΩq is compact. Therefore
we will deduce the compactness of T im : Wn,ppΩq Ñ LppΩq. Note that the specific value of the
operator norm

��T im��Wn,ppΩqÑW 1,ppΩq
is not important for our argument, since we only care about

compactness.
Consider a fixed i P N and f P Wn,ppΩq. For every z P Ω and every first order derivative D,

since Tmf is analytic in Ω, we can use the Leibniz rule (1.11) to get

DT imf �
¸

Q:`pQq¡2�i

DTmpfqψQ �
¸

Q:`pQq¡2�i

TmpfqDψQ �
¸

Q:`pQq�2�i

pTmpf � fQqqQDψiQ.
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By Jensen’s inequality |Tmpf � fQq|Q ¤ }Tmpf � fQq}LppQq`pQq�2{p, so

|∇T imfpzq| ¤
¸

Q:`pQq¡2�i

χ 11
10Q

pzq|∇Tmfpzq| �
¸

Q:`pQq¡2�i

|∇ψQpzq||Tmfpzq|

�
¸

Q:`pQq�2�i

|∇ψiQpzq|}Tmpf � fQq}LppQqp2�iq�2{p. (4.31)

Using the finite overlapping of the double Whitney cubes and the fact that |∇ψiQpzq| À 2i for every
Whitney cube Q, writing Ωi for

�
Q:`pQq¡2�i supppψQq we can conclude that

��∇T imf��pLppΩq Ài,p }∇Tmf}pLppΩiq � }Tmf}pLppΩiq �
¸

Q:`pQq�2�i

�
}Tmf}pLppQq � |fQ|p}Tm1}pLppQq

	
.

By the Sobolev Embedding Theorem

|fQ| ¤ }f}L8pΩq ÀΩ,p }f}W 1,ppΩq. (4.32)

Thus, since Tm : Wn,ppΩq Ñ LppΩq is bounded, we have that��∇T imf��LppΩq Àp,i,Ω }∇Tmf}LppΩiq � }f}Wn,ppΩq. (4.33)

To see that }∇Tmf}LppΩiq Ài }f}Wn,ppΩq, note that ∇Tmf � ∇BnB
�
χΩcBm�1pχΩfq

�
. We have

that Bm�1 : LppΩq Ñ LppΩcq is bounded trivially, and for z P Ωi and g P Lp supported in Ωc we
have that

|∇BnBgpzq| À
»
|z�w|¡2�i

1

|z � w|n�3
gpwq dmpwq.

This is the convolution of g with an L1 kernel, so Young’s inequality (1.10) tells us that

}∇BnBg}LppΩiq ¤ Ci}g}Lp ,

proving that

}∇Tmf}LppΩiq Ài
��Bm�1pχΩfq

��
LppΩcq

À }f}LppΩq À }f}Wn,ppΩq. (4.34)

Combining (4.33) and (4.34), we have seen that
��∇T imf��LppΩq À }f}Wn,ppΩq. The reader can use

Jensen’s inequality as in (4.31) to check that
��T imf��LppΩq À }f}Wn,ppΩq as well. This, proves that

the operator T im : Wn,ppΩq Ñ W 1,ppΩq is bounded and, therefore, composing with the compact
inclusion, the operator T im : Wn,ppΩq Ñ LppΩq is compact.

Proof of Claim 4.24. We want to see that the error operator

E i � Tm � T im
satisfies that

��E i��
Wn,ppΩqÑLppΩq

tends to zero as i tends to infinity.

Consider the set Ωi �
�
Q:`pQq¡2�i supppψQq. We define the modified error operator E i0 acting

in f PWn,ppΩq as

E i0fpzq :� χΩzΩi�1
pzq

¸
Q:`pQq�2�i

¸
S:`pSq¤2�i

S�ShpQq

���Tmpf � fSqpzq � pTmpf � fQqqQ
���χ2Spzq
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for every z P Ω. The first step will be proving that��E if��
LppΩq

À ��E i0f��LppΩq � Ci}f}W 1,ppΩq, (4.35)

with Ci
iÑ8ÝÝÝÑ 0.

Note that Tm1 � TmχΩ because Tm� � BnχΩB
�
χΩcBm�1pχΩ�q

�
. Let us write

Tmfpzq �
¸

SPW:`pSq¡2�i

TmpfqpzqψSpzq �
¸

SPW:`pSq¤2�i

pfSTmp1qpzq � Tmpf � fSqpzqqψSpzq

for z P Ω. Recall that

T imfpzq �
¸

QPW:`pQq¡2�i

TmpfqpzqψQpzq �
¸

QPW:`pQq�2�i

pTmpf � fQqqQ ψiQpzq.

Thus, for the error operator E i we have the expression

E ifpzq � Tmfpzq � T imfpzq �
¸

S:`pSq¤2�i

fSTmp1qpzqψSpzq

�
�� ¸
S:`pSq¤2�i

Tmpf � fSqpzqψSpzq �
¸

Q:`pQq�2�i

pTmpf � fQqqQ ψiQpzq
�

� E i1fpzq � E i2fpzq. (4.36)

The first part is easy to bound using again (4.32). Indeed, we have that��E i1f��pLppΩq Àp ¸
S:`pSq¤2�i

|fS |p}Tmp1q}pLpp11{10Sq ÀΩ }f}pW 1,ppΩq}Tmp1q}pLppΩzΩi�1q
, (4.37)

where }Tmp1q}pLppΩzΩiq
iÑ8ÝÝÝÑ 0.

To control E i2f in (4.36), note that every z P Ω satisfies¸
S:`pSq¤2�i

ψSpzq �
¸

Q:`pQq�2�i

ψiQpzq ¤ 1, (4.38)

with equality when z R �`pQq¡2�i supppψQq, that is, when z P ΩzΩi. Recall that

E i2fpzq �
¸

S:`pSq¤2�i

Tmpf � fSqpzqψSpzq �
¸

Q:`pQq�2�i

pTmpf � fQqqQ ψiQpzq.

If z P ΩzΩi, we have equality in (4.38), i.e.,
°
S:`pSq¤2�i ψSpzq �

°
Q:`pQq�2�i ψ

i
Qpzq � 1. Thus

E i2fpzq �
¸

S:`pSq¤2�i

Tmpf � fSqpzqψSpzq
¸

Q:`pQq�2�i

ψiQpzq

�
¸

Q:`pQq�2�i

pTmpf � fQqqQ ψiQpzq
¸

S:`pSq¤2�i

ψSpzq

�
¸

Q:`pQq�2�i

¸
S:`pSq¤2�i

�
Tmpf � fSqpzq � pTmpf � fQqqQ

	
ψSpzqψiQpzq. (4.39)
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If, instead, z P Ωi �
�
Q:`pQq¡2�i supppψQq then there is a cube S0 with z P supppψS0q and

`pS0q ¥ 2�i�1. Therefore, any other cube S with ψSpzq � 0 must have side-length `pSq ¥ 2�i

because any neighbor cube of S0 has side-length at least 1
2`pS0q (see Definition 1.5). Therefore,

E i2fpzq �
¸

S:`pSq�2�i

Tmpf � fSqpzqψSpzq �
¸

Q:`pQq�2�i

pTmpf � fQqqQ ψiQpzq

�
¸

Q:`pQq�2�i

�
Tmpf � fQqpzqψQpzq � pTmpf � fQqqQ ψiQpzq

	
.

Adding and subtracting Tmpf � fQqpzqψiQpzq at each term of this sum, we get

E i2fpzq �
¸

Q:`pQq�2�i

Tmpf � fQqpzq
�
ψQpzq � ψiQpzq

�
�

¸
Q:`pQq�2�i

�
Tmpf � fQqpzq � pTmpf � fQqqQ

	
ψiQpzq. (4.40)

Summing up, by (4.39) and (4.40) we have that

E i2fpzq � χΩzΩipzq
¸

Q:`pQq�2�i

¸
S:`pSq¤2�i

�
Tmpf � fSqpzq � pTmpf � fQqqQ

	
ψSpzqψiQpzq

� χΩizΩi�1
pzq

¸
Q:`pQq�2�i

�
Tmpf � fQqpzq � pTmpf � fQqqQ

	
ψiQpzq

� χΩizΩi�1
pzq

¸
Q:`pQq�2�i

Tmpf � fQqpzq
�
ψQpzq � ψiQpzq

�
.

Every cube Q with `pQq � 2�i satisfies that suppψiQ � ShpQq, and, choosing conveniently ψiQ we

can assume that suppψiQ X Ωi � 2Q. Therefore, we get that

|E i2fpzq| À χΩzΩi�1
pzq

¸
Q:`pQq�2�i

¸
S:`pSq¤2�i

S�ShpQq

���Tmpf � fSqpzq � pTmpf � fQqqQ
���χ2Spzq (4.41)

� χΩizΩi�1
pzq

������
¸

Q:`pQq�2�i

Tmpf � fQqpzq
�
ψQpzq � ψiQpzq

������� .
For the last term, just note that for z P ΩizΩi�1, using the first equality in (4.38) we have that

¸
Q:`pQq�2�i

Tmpfqpzq
�
ψiQpzq � ψQpzq

� � Tmpfqpzq
�� ¸
Q:`pQq�2�i

ψiQpzq �
¸

Q:`pQq�2�i

ψQpzq
�� 0.

Thus, ¸
Q:`pQq�2�i

Tmpf � fQqpzq
�
ψiQpzq � ψQpzq

� � ¸
Q:`pQq�2�i

�TmpfQqpzq
�
ψiQpzq � ψQpzq

�
,

which can be bounded as E i1 in (4.37). This fact, together with (4.36), (4.37) and (4.41) settles
(4.35), that is, ��E if��

LppΩq
À ��E i0f��LppΩq � Ci,Ω,n,p}f}W 1,ppΩq,
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with Ci,Ω,n,p
iÑ8ÝÝÝÑ 0.

Next we prove that for the modified error term,

E i0fpzq � χΩzΩi�1
pzq

¸
Q:`pQq�2�i

¸
S:`pSq¤2�i

S�ShpQq

���Tmpf � fSqpzq � pTmpf � fQqqQ
���χ2Spzq,

we have that
��E i0f��LppΩq À Ci}f}W 1,ppΩq with Ci

iÑ8ÝÝÝÑ 0.

Arguing by duality, we have that��E i0f��Lp � sup
gPLp

1

}g}p1�1

»
ΩzΩi�1

¸
Q:`pQq�2�i

S:`pSq¤2�i

S�ShpQq

���Tmpf � fSqpzq � pTmpf � fQqqQ
���χ2Spzq |gpzq| dmpzq. (4.42)

First note for every pair of Whitney cubes Q and S with S � ShpQq and every point z, using an
admissible chain rS,Qq � rS,QsztQu we get that

Tmpf � fSqpzq � pTmpf � fQqqQ � Tmpf � fSqpzq � pTmpf � fSqqS
�

¸
PPrS,Qq

pTmpf � fP qqP �
�
Tmpf � fN pP qq

�
N pP q

,

where N pP q stands for the “next” cube in the chain rS,Qs (see Definition 1.13). Note that the
shadows of cubes of fixed side-length have finite overlapping since |ShpQq| � |Q| and, therefore,
every Whitney cube S appears less than C times in the right-hand side of (4.42). Thus,��E i0f��Lp À sup

g:}g}p1�1

� ¸
S:`pSq¤2�i

»
2S

|Tmpf � fSqpzq � pTmpf � fSqqS | |gpzq| dmpzq (4.43)

�
¸

Q:`pQq�2�i

S:`pSq¤2�i

S�ShpQq

¸
PPrS,Qq

���pTmpf � fP qqP �
�
Tmpf � fN pP qq

�
N pP q

��� »
2S

|gpzq| dmpzq


.

All the cubes P P rS,Qs with S P ShpQq, satisfy that `pP q À DpQ,Sq � `pQq by Definition
1.13. If we assume that `pQq � 2�i this implies that `pP q ¤ C2�i. Moreover, we have that���pTmpf � fP qqP �

�
Tmpf � fN pP qq

�
N pP q

��� ¤ ¸
LX2P�H

 
P

|Tmpf � fP qpzq � pTmpf � fLqqL| dmpzq.

(4.44)

Finally, we observe that P P rS,Qs with S � ShpQq imply that DpP, Sq ¤ C`pP q (see (1.26)).
Thus, for a fixed P with `pP q ¤ C2�i and g P Lp1 , we have that¸

Q:`pQq�2�i

S:S�ShpQq
PPrS,Qs

»
2S

|gpzq| dmpzq À C
¸

S:DpP,Sq¤C`pP q

»
2S

|gpzq| dmpzq À `pP qd inf
P
Mg. (4.45)

Note that in the first step, as we did in (4.43), we have used that every cube S appears less than
C times in the left-hand side. By (4.43), (4.44) and applying (4.45) after reordering, we get that��E i0f��Lp À sup

}g}p1�1

¸
S:`pSq¤C2�i

LX2S�H

»
2S

|pTmpf � fSqpzq � pTmpf � fLqqLq p|gpzq| �Mgpzqq| dmpzq.
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Since }Mg}Lp1 À }g}Lp1 ¤ 1, we have that��E i0f��Lp À sup
}g}p1�1

¸
pS,LqPW0

»
2S

|Tmpf � fSqpzq � pTmpf � fLqqL| |gpzq| dmpzq,

where W0 � tpS,Lq : `pSq ¤ C2�i and 2S X L � Hu.
For every cube Q, let ϕQ be a radial bump function with χ10Q ¤ ϕQ ¤ χ20Q and the usual

bounds in their derivatives. Now we use these bump functions to separate the local and the non-
local parts. In the local part we can neglect the cancellation and use the triangle inequality (and
the fact that

ffl
2S
|g| dm À inf7SMg), but in the non-local part the smoothness of a certain kernel

will be crucial, so we write��E i0f��Lp À sup
}g}p1�1

¸
S:`pSq¤C2�i

»
2S

|Tmrpf � fSqϕSspzq| |gpzq| dmpzq

� sup
}g}p1�1

¸
pS,LqPW0

»
2L

|Tmrpf � fLqϕSspξq|Mgpξq dmpξq

� sup
}g}p1�1

¸
pS,LqPW0

»
2S

���Tmrpf � fSqp1� ϕSqspzq � pTmrpf � fLqp1� ϕSqsqL
���|gpzq|dmpzq

� 7’7’ � 77 � 88 . (4.46)

Note that the inequality |g| ¤ Mg (which is valid almost everywhere for g in L1
loc) imply that

7’7’ ¤ 77 .
First we take a look at 77 . For any pair of neighbor Whitney cubes S and L and z P 2L, using

the definition of weak derivative and Fubini’s Theorem we find that

Tmrpf � fLqϕSspzq � cn

»
Ωc

1

pz � wqn�2

»
20S

pw � ξqm�1

pw � ξqm�1
pfpξq � fLqϕSpξq dmpξq dmpwq

� cn,m

»
Ωc

1

pz � wqn�2

»
20S

pw � ξqm
pw � ξqm�1

B̄rpf � fLqϕSspξq dmpξq dmpwq

� cn,m

»
20S

�»
Ωc

pw � ξqm
pw � ξqm�1pz � wqn�2

dmpwq


B̄rpf � fLqϕSspξq dmpξq.

In the right-hand side above, we have that ξ, z P Ω. Therefore, we can use Green’s Theorem in the
integral on Ωc and then (4.17) to get

Tmrpf � fLqϕSspzq � cn,m

»
20S

�»
BΩ

pw � ξqm�1

pw � ξqm�1pz � wqn�2
dw



B̄rpf � fLqϕSspξq dmpξq

� cn,m

»
20S

K~m0
pz, ξqB̄rpf � fLqϕSspξq dmpξq,

where ~m0 :� p2� n,m� 1,m� 1q.
Using Proposition 4.15 we have that

K~m0
pz, ξq � cm,nBnBχΩpzq pξ � zqm

pξ � zqm�1
�

¸
j¤m

cm,n,jR
m�1
m�n,jpz, ξq

pξ � zqm�n�2�j
.

The first part is BnBχΩpzq times the kernel of the operator T p�m�1,mq. For the second part, we
have that by Lemma 4.22

|Rm�1
m�n,jpz, ξq|

|ξ � z|m�n�2�j
À 1

|ξ � z|2�σp ,
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where σp � 1� 2
p . Thus,

77 � sup
}g}p1�1

¸
pS,LqPW0

»
2L

|Tmrpf � fLqϕSspzq|Mgpzq dmpzq (4.47)

À sup
}g}p1�1

¸
pS,LqPW0

»
2L

���BnBχΩpzqT p�m�1,mq
�B̄rpf � fLqϕSs

� pzq���Mgpzq dmpzq

� sup
}g}p1�1

¸
pS,LqPW0

»
2L

»
20S

��B̄rpf � fLqϕSspξq
��

|ξ � z|2�σp dmpξqMgpzq dmpzq � 7.17.1 � 7.27.2 .

In the first sum we use that in W 1,ppCq we have the identity T p�m�1,mq � B̄ � B̄ � T p�m�1,mq �
cmBm and, therefore, T p�m�1,mqB̄rpf � fLqϕSs � cmBmrpf � fLqϕSs PW 1,p � L8, so

7.17.1 À sup
}g}p1�1

¸
pS,LqPW0

»
2L

|BnBχΩpzq|Mgpzq dmpzq}Bmrpf � fLqϕSs}L8

À sup
}g}p1�1

¸
pS,LqPW0

}BnBχΩ}Lpp2Lq}Mg}Lp1 p2Lq}Bmrpf � fLqϕSs}W 1,ppCq.

By the boundedness of Bm in W 1,ppCq we have that

}Bmrpf � fLqϕSs}W 1,ppCq À }pf � fLqϕS}W 1,pp20Sq.

Moreover, the Poincaré inequality (1.33) allows us to deduce that

}pf � fLqϕS}W 1,pp20Sq À }∇f}Lpp20Sq.

On the other hand, there is a certain i0 such that for `pSq ¤ C2�i and L X 2S � H, we have
that S, 2L � ΩzΩi�i0 , and

}BnBχΩ}Lpp2Lq ¤ }BnBχΩ}LppΩzΩi�i0 q.

Thus, by the Hölder inequality and the boundedness of the maximal operator in Lp
1

we have that

7.17.1 À }BnBχΩ}LppΩzΩi�i0 q sup
}g}p1�1

¸
pS,LqPW0

}Mg}Lp1 p2Lq}∇f}Lpp20Sq

¤ CΩ,i}∇f}LppΩq sup
}g}p1�1

}Mg}Lp1 Àp CΩ,i}∇f}LppΩq, (4.48)

with CΩ,i
iÑ8ÝÝÝÑ 0.

To bound the term 7.27.2 in (4.47), note that given two neighbor cubes S and L and a point
z P 2L, by (1.28) we have that»

20S

��B̄rpf � fLqϕSspξq
��

|ξ � z|2�σp dmpξq ÀM
�B̄rpf � fLqϕSs

� pzq`pSqσp .
Thus,

7.27.2 À sup
}g}p1�1

¸
pS,LqPW0

»
2L

M
�B̄rpf � fLqϕSs

� pzq`pSqσpMgpzq dmpzq

À 2�iσp sup
}g}p1�1

¸
pS,LqPW0

��M �B̄rpf � fLqϕSs
���
LppΩq

}Mg}Lp1 p2Lq
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and, by the boundedness of the maximal operator, (1.33) and the Hölder inequality, we get

7.27.2 À 2�iσp sup
}g}p1�1

¸
pS,LqPW0

��B̄rpf � fLqϕSs
��
Lpp20Sq

}Mg}Lp1 p2Lq À 2�iσp}∇f}LppΩq. (4.49)

By (4.47), (4.48) and (4.49), we have that

77 À CΩ,i}∇f}LppΩq, (4.50)

with CΩ,i
iÑ8ÝÝÝÑ 0.

Back to (4.46) it remains to bound

88 � sup
}g}p1�1

¸
pS,LqPW0

»
2S

|Tmrpf � fSqp1� ϕSqspzq � pTmrpf � fLqp1� ϕSqsqL| |gpzq| dmpzq.

Fix g ¥ 0 such that }g}p1 � 1. Then we will prove that

8g8g ¤ CΩ,i}f}W 1,ppΩq,

with CΩ,i
iÑ8ÝÝÝÑ 0, where

8g8g :�
¸

pS,LqPW0

»
2S

 
L

|Tmrpf � fSqp1� ϕSqspzq � Tmrpf � fLqp1� ϕSqspζq| dmpζqgpzq dmpzq.

First, we add and subtract Tmrpf � fLqp1� ϕSqspzq in each term of the last sum to get

8g8g ¤
¸

pS,LqPW0

»
2S

|TmrpfL � fSqp1� ϕSqspzq|
 
L

dmpζqgpzq dmpzq

�
¸

pS,LqPW0

»
2S

 
L

|Tmrpf � fLqp1� ϕSqspzq � Tmrpf � fLqp1� ϕSqspζq| dmpζqgpzq dmpzq.

For a given z P Ω,»
Ωc

»
Ω

|fpξq � fL|
|z � w|n�2|w � ξ|2 dmpξq dmpwq À }f}L8

»
Ωc

| logpdistpw,Ωqq| � | logpdiampΩqq|
|z � w|n�2

dmpwq,

which is finite since Ω is a Lipschitz domain (hint: compare the last integral above with the length

of the boundary H1pBΩq times the integral
³1

0
| logptq| dt). Thus, we can use Fubini’s Theorem and

then Green’s Theorem to state that

Tmrpf � fLqp1� ϕSqspzq � cn

»
Ωc

1

pz � wqn�2

»
Ω

pw � ξqm�1

pw � ξqm�1
pfpξq � fLqp1� ϕSpξqq dmpξq dmpwq

� cn,m

»
Ω

�»
BΩ

pw � ξqm
pw � ξqm�1pz � wqn�2

dw



rpf � fLqp1� ϕSqspξq dmpξq

� cn,m

»
Ω

K~m1
pz, ξqrpf � fLqp1� ϕSqspξq dmpξq,

where ~m1 :� p2� n,m� 1,mq. Arguing analogously,

TmrpfL � fSqp1� ϕSqspzq � cn,mpfL � fSq
»

Ωz10S

K~m1
pz, ξqrp1� ϕSqspξq dmpξq.
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Thus, we get that

8g8g À
¸

pS,LqPW0

»
2S

|fL � fS |
�����
»

Ωz10S

K~m1
pz, ξqrp1� ϕSqspξq dmpξq

����� gpzq dmpzq
�

¸
pS,LqPW0

»
2S

 
L

����»
Ω

pK~m1
pz, ξq �K~m1

pζ, ξqqrpf � fLqp1� ϕSqspξq dmpξq
���� dmpζqgpzqdmpzq

� 8.18.1 � 8.28.2 . (4.51)

Recall that Proposition 4.15 states that for z P 2S and ξ P Ω,

K~m1
pz, ξq � cm,nBnBχΩpzq pξ � zqm�1

pξ � zqm�1
�

¸
j¤m

cm,n,jR
m
m�n�1,jpz, ξq

pξ � zqm�n�2�j
(4.52)

and, for any z, ξ P Ω, by (4.29) we have that���� Rmm�n�1,jpz, ξq
pz � ξqm�n�2�j

���� ¤ CΩ,n,m
1

|z � ξ|3�σp , (4.53)

where σp � 1 � 2
p . Thus, by (4.30) and the identity 1

aj � 1
bj �

pb�aq
°j�1
i�0 a

ibj�1�i

ajbj , when z, ζ P 5S

and ξ P Ωz20S we have that���� Rmm�n�1,jpz, ξq
pξ � zqm�n�2�j

� Rmm�n�1,jpζ, ξq
pξ � ζqm�n�2�j

���� ¤ ����Rmm�n�1,jpz, ξq
�

1

pξ � zqm�n�2�j
� 1

pξ � ζqm�n�2�j


����
�
����Rmm�n�1,jpz, ξq �Rmm�n�1,jpζ, ξq

pξ � ζqm�n�2�j

���� ÀΩ,n,m
|z � ζ|

|z � ξ|4�σp �
|z � ζ|σp
|z � ξ|3 À |z � ζ|σp

|z � ξ|3 . (4.54)

Then, using that distp2S, suppp1 � ϕSqq ¡ 0, we have that
³
Ω
pξ�zqm�1

pξ�zqm�1 rp1 � ϕSqspξq dmpξq �
cmBmΩ rp1� ϕSqspzq for z P 2S and, by (4.51), (4.52) and (4.53) we get that

8.18.1 À
¸

pS,LqPW0

|fL � fS |
»

2S

|BnBχΩpzqBmΩ rp1� ϕSqspzq| gpzq dmpzq

�
¸

pS,LqPW0

|fL � fS |
»

2S

»
Ωz10S

1

|z � ξ|3�σp dmpξqgpzq dmpzq

� 8.1.18.1.1 � 8.1.28.1.2 . (4.55)

By the same token, using (4.51), (4.52) and (4.54) we get

8.28.2 À
¸

pS,LqPW0

»
2S

 
L

|BnBχΩpzqBmΩ rpf � fLqp1� ϕSqspzq| dmpζqgpzq dmpzq

�
¸

pS,LqPW0

»
2S

 
L

|BnBχΩpζqBmΩ rpf � fLqp1� ϕSqspζq| dmpζqgpzq dmpzq

�
¸

pS,LqPW0

»
2S

 
L

»
Ωz10S

|z � ζ|σp
|z � ξ|3 |fpξq � fL| dmpξq dmpζqgpzq dmpzq

� 8.2.18.2.1 � 8.2.28.2.2 � 8.2.38.2.3 . (4.56)



114 CHAPTER 4. AN APPLICATION TO QUASICONFORMAL MAPPINGS

We begin by the first term in the right-hand side of (4.55), that is,

8.1.18.1.1 �
¸

pS,LqPW0

|fL � fS |
»

2S

|BnBχΩpzqBmΩ rp1� ϕSqspzq| gpzq dmpzq.

By the Poincaré and the Jensen inequalities, we have that

|fL � fS | ¤ 1

`pLq2
»
L

|fpξq � fS | dmpξq À `pLq
`pLq2 }∇f}L1p5Sq À `pSq1� 2

p }∇f}Lpp5Sq. (4.57)

On the other hand, by Lemma 4.25 below we have that BmϕSpzq � 0 for z P 2S. Therefore, using
(4.57) we have that

8.1.18.1.1 À }∇f}LppΩq
¸

S:`pSq¤C2�i

`pSq1� 2
p

»
2S

|BnBχΩpzqBmΩ χΩpzq| gpzq dmpzq (4.58)

À 2�ip1� 2
p q}∇f}LppΩq}g}Lp1 pΩq}BnBχΩ}LppΩq}BmΩ χΩ}L8pΩq ÀΩ 2�ip1�

2
p q}∇f}LppΩq.

Let us recall that the second term in the right-hand side of (4.55) is

8.1.28.1.2 �
¸

pS,LqPW0

|fL � fS |
»

2S

»
Ωz10S

1

|z � ξ|3�σp dmpξqgpzq dmpzq

and, by (4.57),

8.1.28.1.2 À
¸

S:`pSq¤C2�i

`pSq1� 2
p }∇f}Lpp5Sq

1

`pSq1�σp }g}L1p2Sq

À
¸

S:`pSq¤C2�i

`pSqσp� 2
p�

2
p }∇f}Lpp5Sq}g}Lp1 p2Sq.

By Hölder’s inequality,

8.1.28.1.2 À 2�iσp}∇f}LppΩq}g}Lp1 pΩq � 2�iσp}∇f}LppΩq.

Using this fact together with (4.55) and (4.58), we have that

8.18.1 À CΩ,i}∇f}LppΩq, (4.59)

with CΩ,i
iÑ8ÝÝÝÑ 0.

Let us focus now on the first term in the right-hand side of (4.56), that is,

8.2.18.2.1 �
¸

pS,LqPW0

»
2S

|BnBχΩpzq| |BmΩ rpf � fLqp1� ϕSqspzq| gpzq dmpzq (4.60)

À
¸

pS,LqPW0

}g}Lp1 p2Sq}BnBχΩ}Lpp2Sq}BmΩ rpf � fLqp1� ϕSqs}L8p2Sq.

By the Sobolev Embedding Theorem and the boundedness of BmΩ in W 1,ppΩq (granted by Theorem
3.28) we have that

}BmΩ rpf � fLqp1� ϕSqs}L8pΩq ¤ }BmΩ rpf � fLqp1� ϕSqs}W 1,ppΩq À }pf � fLqp1� ϕSq}W 1,ppΩq
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and, using Leibniz’ rule, Poincaré’s inequality and the Sobolev embedding Theorem, we get

}BmΩ rpf � fLqp1� ϕSqs}L8pΩq ¤ }∇f}LppΩq �
1

`pSq}f � fL}Lpp20Sq � }f � fL}LppΩq
ÀΩ }∇f}LppΩq � }∇f}Lpp20Sq � }f}LppΩq � }f}L8 À }f}W 1,ppΩq.

Thus, by Hölder’s inequality we have that

8.2.18.2.1 À }f}W 1,ppΩq}g}Lp1 pΩq}BnBχΩ}LppΩzΩi�i0 q � }f}W 1,ppΩq}BnBχΩ}LppΩzΩi�i0 q. (4.61)

Note that }BnBχΩ}LppΩzΩi�i0 q
iÑ0ÝÝÑ 0.

The second term in (4.56), that is,

8.2.28.2.2 �
¸

pS,LqPW0

1

`pLq2
»
L

|BnBχΩpζqBmΩ rpf � fLqp1� ϕSqspζq| dmpζq
»

2S

gpzq dmpzq,

follows the same pattern. Since S and L in the sum above are neighbors, they have comparable
side-length, and for ζ P L we have that

³
2S
gpzq dmpzq À `pLq2Mgpζq. Therefore,

8.2.28.2.2 À
¸

pS,LqPW0

»
L

|BnBχΩpζqBmΩ rpf � fLqp1� ϕSqspζq|Mgpζq dmpζq

À
¸

S:`pSq¤C2�i

}Mg}Lp1 p5Sq}BnBχΩ}Lpp5Sq}BmΩ rpf � fLqp1� ϕSqs}L8p5Sq.

The last expression coincides with the right-hand side of (4.60) changing g by Mg and 2S by 5S.
Arguing analogously to that case, we get that

8.2.28.2.2 À }f}W 1,ppΩq}Mg}Lp1 pΩq}BnBχΩ}LppΩzΩi�i0 q À }f}W 1,ppΩq}BnBχΩ}LppΩzΩi�i0 q. (4.62)

Finally, we consider

8.2.38.2.3 �
¸

pS,LqPW0

»
2S

 
L

»
Ωz10S

|z � ζ|σp
|z � ξ|3 |fpξq � fL| dmpξq dmpζqgpzq dmpzq.

Note that for z, ζ P 5S we have that |z � ζ| À `pSq. Separating Ωz10S in Whitney cubes we get

8.2.38.2.3 À
¸

pS,LqPW0

»
2S

gpzqdmpzq
¸
PPW

`pSqσp
DpS, P q3 }f � fL}L1pP q.

Using the chain connecting two cubes P and L, by (1.34) we get that

}f � fL}L1pP q À
¸

QPrP,Ls

}∇f}L1p3Qq

`pP q2
`pQq .

Thus,

8.2.38.2.3 À 2�iσp
¸

L,PPW

¸
QPrP,Ls

`pP q2}∇f}L1p3Qq}g}L1p7Lq

`pQqDpL,P q3 .
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By Lemma 2.3 (with ρ � 1), we get

8.2.38.2.3 À 2�iσp}∇f}LppΩq, (4.63)

and Claim 4.24 is proven. Indeed, by (4.56), (4.61), (4.62) and (4.63), we have that

8.28.2 À CΩ,i}∇f}LppΩq.

This fact combined with (4.51) and (4.59) prove that

88 ¤ sup
}g}p1�1

8g8g À CΩ,i}∇f}LppΩq

and, together with (4.35), (4.46) and (4.50), gives��E if��
LppΩq

À CΩ,i}f}W 1,ppΩq,

with CΩ,i
iÑ8ÝÝÝÑ 0.

It remains to prove the following result.

Lemma 4.25. Let ϕ be a radial function in L2 such that ϕ|D � 0. Then, for every m P N,

Bmϕpzq � 0 for z P D.

Proof. Since Bϕ is in L2 and it is radial by linearity, by induction, it is enough to prove that

Bϕpzq � 0 for z P D.

Let ε ¡ 0 and consider a simple radial function s such that }ϕ� s}L2   ε. Let z P D. Recall
that BχDpzq � 0 (see [AIM09, (4.24)]). Since s is a finite combination of characteristic functions
of concentric disks tDiuMi�1 with z P Di for all i, then, Bspzq � 0.

Therefore χDBϕ � χDBpϕ � sq and, thus, we get }χDBϕ}L2 ¤ }Bpϕ� sq}L2   ε. Since ε can
be chosen as small as desired, χDBϕ � 0.



Chapter 5

Carleson measures on Lipschitz
domains

Theorem 2.1 provides us with a useful tool to check if an operator is bounded on Wn,ppΩq as long
as p ¡ d. Our concern for this chapter is to find a sufficient condition valid even if p ¤ d. We want
this condition to be related to some test functions (the polynomials of degree smaller than n seem
the right choice) but somewhat more specific than the condition in the Key Lemma. In particular
we seek for some Carleson condition in the spirit of the celebrated article [ARS02] by N. Arcozzi,
R. Rochberg and E. Sawyer.

In Section 5.2 we define the vertical shadows Shvpxq and �Shvpxq for every point x in a Lipschitz
domain Ω close enough to BΩ (see Definition 5.14 and Figure 5.2). This definition is similar to
the shadow introduced in Section 1.4, but requires a local orientation. Therefore, in this chapter
we will restrict ourselves to the study of Lipschitz domains, although there is hope that some
of the techniques used here can be extrapolated to uniform domains (note that in the proof of
the necessity of the Carleson condition, that is, Theorem 5.3 below, we use Lemma 5.8 which
requires some restrictions in the dimension of the boundary). Those shadows, as before, can be
understood as Carleson boxes of the domain. We say that a positive and finite Borel measure µ is
an s, p-Carleson measure if for every a P Ω and close enough to the boundary,»

�Shvpaq

distpx, BΩqpd�spqp1�p1qpµpShvpxq X Shvpaqqqp
1 dx

distpx, BΩqd ¤ CµpShvpaqq.

In this chapter we study the relation between Carleson measures and Calderón-Zygmund op-
erators. The first result we obtain is the following:

Theorem 5.1. Let T be an admissible convolution Calderón-Zygmund operator of order n, and
consider a bounded Lipschitz domain Ω and 1   p ¤ d. If the measure |∇nTΩP pxq|pdx is a 1, p-
Carleson measure for every polynomial P of degree at most n � 1, then TΩ is a bounded operator
on Wn,ppΩq.

We also have a counterpart for Triebel-Lizorkin spaces with smoothness 0   s   1:

Theorem 5.2. Let 1   p   8, 1   q   8 and 0   s   1 with s ¡ d
p � d

q , let T be a p, q-admissible
convolution Calderón-Zygmund operator of order s, and consider a bounded Lipschitz domain Ω.
If the measure µpxq � |∇sqTΩ1pxq|pdx is an s, p-Carleson measure, then TΩ is a bounded operator
on F sp,qpΩq.

The Carleson condition of Theorem 5.1 above is in fact necessary for n � 1:

117
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Theorem 5.3. Let T be an admissible convolution Calderón-Zygmund operator of order 1, and
consider a bounded Lipschitz domain Ω and 1   p   8. The following statements are equivalent:

1. TΩ is a bounded operator on W 1,ppΩq.
2. The measure |∇TχΩpxq|pdx is a p-Carleson measure for Ω.

Section 5.1 is devoted to modifying the definitions of Shadow and admissible chain introduced in
Section 1.4. In Section 5.2 some results from [ARS02] which will be used in the subsequent sections
are collected. Section 5.3 provides an adaptation of the Key Lemma 2.2 to proper orientations of
the Whitney coverings and the proof of Theorem 5.1, that is, the sufficient condition in terms of
Carleson measures for an operator to be bounded on Wn,ppΩq. After that, a counterpart to both
results for F sp,qpΩq with d

p � d
q   s   1 (including Theorem 5.2 above) is given in Section 5.4. In

Section 5.5 it is shown that when only the first derivatives are considered (that is, for W 1,ppΩq)
this sufficient condition is in fact necessary, proving Theorem 5.3. Finally, Section 5.6 contains a
different approach for the complex plane when the domain is more regular.

5.1 Oriented Whitney coverings

Along this section we consider Ω to be a fixed bounded pδ,Rq-Lipschitz domain.
Recall that we say that Q is an R-window of Ω if it is a cube centered in BΩ, with side-length

R inducing a Lipschitz parameterization of the boundary (see Definition 1.4). We can choose a
number N � Hd�1pBΩq{Rd�1 and a collection of windows tQkuNk�1 such that

BΩ �
N¤
k�1

δ1Qk,

where δ1 ¡ 0 is a value to fix later (in Remark 5.5). Each window Qk is associated to a parame-
terization Ak in the sense that, after a rotation,

ΩX 2Qk � tpy1, ydq P pRd�1 � Rq X 2Qk : yd ¡ Akpy1qu.
Thus, each Qk induces a vertical direction, given by the eventually rotated yd axis. The number
of Whitney cubes in Qk with the same side-length intersecting a given vertical line is bounded by
a constant depending only on the Lipschitz character of Ω.

In the subsequent sections we will make use of a tree structure on the Whitney cubes compatible
with admissible chains in a tubular neighborhood of the boundary. Therefore, we must modify the
notions introduced in Section 1.4. We distinguish the cubes in the central region from those which
are close to the boundary of the domain.

Definition 5.4. We say that Q is central if distpQ, BΩq ¡ δ2R, where 0   δ2   1 is a constant to
fix in Remark 5.5. We denote this subcollection of cubes by W0.

We say that Q is peripheral if it is not central.
Given Whitney cubes Q,S � Qk, we will say that S is above Q if the “vertical” projection of

the open cube Q intersects the vertical projection of S and the center of S has vertical coordinate
greater or equal than the center of Q (the vertical direction is the one induced by the window again).

Consider δ1   δ0   1 to be fixed. We call δ0QkXΩ the canvas of the window Qk, and we divide
the peripheral cubes in collections Wk � tQ PWzW0 : Q � δ0Qk X Ωu.
Remark 5.5. For Whitney constants big enough and for δ0, δ1 and δ2 small enough we have that

1) The union of central cubes is a connected set.
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2) Every peripheral cube is contained in a window canvas. The subcollections Wk are not dis-
joint and, if two peripheral cubes Q and S are not contained in any common Wk, then R À
distpQ,Sq À diampΩq.

3) For each peripheral cube Q PWk there exists a cube S � Qk above Q which is central.

Furthermore,

4) All the central cubes have comparable side-length.

Next we provide a tree-like structure to a particular family of cubes contained in a single
window.

Definition 5.6. We say that a Whitney covering is properly oriented with respect to a window
Qk if the cubes in the Whitney covering have sides parallel to the faces of Qk.

Given Whitney cubes Q,S � Qk, we will say that Q P SHvpSq if S is above Q. When
the Whitney covering is properly oriented, this property is transitive and defines a partial order
relation.

We want to have a somewhat rigid structure to gain some control on the chains we use, so we
need to introduce a chain function.

Definition 5.7. Given two different cubes Q,S P Wk (where W is a properly oriented Whitney
covering with respect to the k-th window), we define rQ,Ss :� rQ,QSs Y rSQ, Ss to the chain such
that

• the cubes in the subchains rQ,QSs � pQ1, . . . , QM1
q and rSQ, Ss � pSM2

, . . . , S1q satisfy that
Qj�1 P SHvpQjq and Sj�1 P SHvpSjq for j ¡ 1 with respect to the “vertical” direction
induced by the window, and

• the only pair of cubes pQj1 , Sj2q which has a vertical segment contained in the boundaries of
both of them is pQM1

, SM2
q, that is, pQS , SQq.

For δ0 small enough, this definition makes sense, that is, the chain rQ,Ss exists and is unique.
We define the collection of central cubes in a given window

Wc
k � tQ PW0 : Q � Qk X Ω and there exists S PWk X SHvpQqu,

and we call the collection of central and peripheral cubes Wcp
k :� Wk YWc

k. Then, r�, �s : Wcp
k �

Wcp
k Ñ �

M pWcp
k qM satisfying the properties above is called (the) chain function.

In the next sections we will make use of the following technical results, specific for Lipschitz
domains, which sharpen the results of Lemma 1.18 for g constant.

Lemma 5.8. Let a ¡ d� 1 and Q PWcp
k a Whitney cube. Then¸

SPSHvpQq

`pSqa � `pQqa

with constants depending only on a and d.

Proof. Selecting the cubes by their side-length, we can write¸
SPSHvpQq

`pSqa �
8̧

j�0

¸
SPSHvpQq

`pSq�2�j`pQq

p2�j`pQqqa � `pQqa
8̧

j�0

2�ja#tS P SHvpQq : `pSq � 2�j`pQqu.
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Since the domain is Lipschitz and the Whitney covering is oriented, the number of cubes with a
given side-length intersecting a vertical line is uniformly bounded. Thus, we get that

#tS P SHvpQq : `pSq � 2�j`pQqu ¤ C2pd�1qj

and therefore ¸
SPSHvpQq

`pSqa À `pQqa
8̧

j�0

2�jpa�pd�1qq.

This is bounded if a ¡ d� 1.

Remark 5.9. By the same token, given an R-window Qk, we get
°
S�Qk `pSqa À Ra (see Remark

5.5, property 3)). Thus, the lemma is also valid for Q central writing¸
SPW

`pSqa � `pQqa

by the last statement of Remark 5.5.

Lemma 5.10. Let b ¡ a ¡ d� 1 and Q a Whitney cube. Then¸
SPW

`pSqa
DpQ,Sqb ¤ C`pQqa�b,

with C depending only on a, b and d.

Proof. Let us assume that Q P Wk. First of all we consider the cubes contained in Qk and we
classify those cubes by their side-length and their long distance to Q:¸

S�Qk

`pSqa
DpQ,Sqb ¤

8̧

i��8

8̧

j�0

¸
S:`pSq�2i`pQq

2j`pQq¤DpS,Qq 2j�1`pQq

p2i`pQqqa
p2j`pQqqb

¤ `pQqa�b
8̧

i��8

8̧

j�0

2ia

2jb
#tS : `pSq � 2i`pQq, DpS,Qq   2j�1`pQqu.

Note that the value of j in the last sum must be greater or equal than i because, otherwise, the
last cardinal would be zero.

Using again the fact that the number of cubes with a given side-length intersecting a vertical
line is uniformly bounded, we can see that

#tS PWk : `pSq � 2i`pQq, DpS,Qq   2j�1`pQqu ¤ C

� p2j�1q`pQq
2i`pQq


d�1

� C2pj�iqpd�1q.

Thus, ¸
S�Qk

`pSqa
DpQ,Sqb À `pQqa�b

8̧

j�0

j̧

i��8

2ipa�1�dq�jpb�1�dq ¤ Ca,b,d`pQqa�b

as soon as b ¡ a ¡ d� 1.
On the other hand, when S � Qk for every window containing Q. Then the long distance

DpQ,Sq is always bounded from below by a constant times R (because Q � δ0Qk), so separating
W in subcollections Wk and using Remark 5.9,¸

S�Qk

`pSqa
DpQ,Sqb À

¸
SPW0

pdiamΩqa
Rb

�
¸
j�k

¸
SPWj

`pSqa
Rb

À Ra�b À `pQqa�b. (5.1)

To prove the lemma for a central cube Q PW0, just apply an argument analogous to (5.1).
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5.2 Carleson measures

Next we recall some useful results from [ARS02]. First we need to introduce some notation.

o

x

y

Figure 5.1: y P ShT pxq.

Definition 5.11. We say that a connected, loopless graph T is a tree, and we will fix a vertex
o P T and call it its root. This choice induces a partial order in T , given by x ¤ y if x P ro, ys
where ro, ys stands for the geodesic path uniting those two vertices of the graph (see Figure 5.1).
We call shadow of x in T to the collection

ShT pxq � ty P T : y ¥ xu.
We say that a function ρ : T Ñ R is a weight if it takes positive values (by a function we mean

a function defined in the vertices of the tree).

Definition 5.12. Given h : T Ñ R, we call the primitive Ih the function

Ihpyq �
¸

xPro,ys

hpxq.

Theorem 5.13. [ARS02, Theorem 3] Let 1   p   8 and let ρ be a weight on T . For a nonnegative
measure µ on T , the following statements are equivalent:

i) There exists a constant C � Cpµq such that

}Ih}Lppµq ¤ C}h}Lppρq
ii) There exists a constant C � Cpµq such that for every r P T one has¸

xPShT prq

µpShT pxqqp
1

ρpxq1�p1 ¤ CµpShT prqq.

For every 1 ¤ p ¤ 8, we say that a non-negative measure µ is a p-Carleson measure for pI, ρ, pq
if there exists a constant C � Cpµq such that the condition i) is satisfied.

To use the techniques on Carleson measures introduced in [ARS02] we need to have some tree
structure coherent with the chain function from Definition 5.7. Note that this structure can be
given in terms of the vertical shadow SHv as long as the Whitney covering is properly oriented.
We also define the (almost) continuous version of the shadow:

Definition 5.14. Given an R-window Q of a Lipschitz domain Ω with a properly oriented Whitney
covering W, for every x P Q, we write x � px1, xdq P Rd�1�R and, if x is contained in a semi-open
Whitney cube Q PW, we define the vertical shadow of x as

Shvpxq :�
"
y P QX Ω : yd   xd and

��x1 � y1
��
8
¤ 1

2
`pQq

*
.
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Note that if x is the center of the upper pd � 1q-dimensional face of Q, the vertical projection of
Shvpxq (which is a pd � 1q-dimensional square) coincides with the vertical projection of Q (see
Figure 5.2). Finally, we define the vertical extension of Shvpxq,

�Shvpxq :�
"
y P QX Ω : yd   xd � 2`pQq and

��x1 � y1
��
8
¤ 1

2
`pQq

*
.

More generally, given a set U � Q we call its shadow

ShvpUq :�  
y P QX Ω : there exists x P U such that yd   xd and x1 � y1

(
.

Note that ShvpQq �
�
PPSHvpQq

P for any Whitney cube Q � Q (see Figure 5.2).

Q
x

Figure 5.2: The shadows Shvpxq and ShvpQq coincide when x is the center of the upper face of
the cube. Furthermore, P � ShvpQq if and only if P P ShT pQq � SHvpQq.

Recall that we have a proper orientation in the Whitney covering. Thus, given a Whitney
cube Q, we call the father of Q, FpQq the neighbor Whitney cube which is immediately on top
of Q with respect to the vertical direction. This parental relation is coherent with the order
relation in Definition 5.6 (P P SHvpQq if P is a descendant of Q). This would provide a tree
structure to the Whitney covering W if there was a common ancestor Q0 for all the cubes. This
does not happen, but we can add a “formal” cube Q0 (root of the tree) and then we can write
SHvpQ0q :� tQ P Wcp

k : Q � Qu. If we call T to the tree with the Whitney cubes as vertices
complemented with Q0 and the structure given by the aforementioned order relation, then for every
Whitney cube Q � Q, we have that SHvpQq � ShT pQq. Since we will only consider functions and
measures supported in the window canvas δ0Q X Ω, we can extend all of them formally in Q0 as
the null function.

Now, some minor modifications in the proof of [ARS02, Proposition 16] allow us to rewrite this
proposition in the following way.

Proposition 5.15. Given 1   p   8, a positive number s P R and an R-window Q of a
Lipschitz domain Ω with a properly oriented Whitney covering W, consider the weights ρpxq �
distpx, BΩqd�sp, ρWpQq � `pQqd�sp. For a positive Borel measure µ supported on δ0Q X Ω, the
following are equivalent:

1. For every a P δ0QX Ω one has»
�Shvpaq

ρpxq1�p1pµpShvpxq X Shvpaqqqp
1 dx

distpx, BΩqd ¤ CµpShvpaqq.
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2. For every Whitney cube P � Q one has¸
QPSHvpP q

µpShvpQqqp
1

ρWpQq1�p
1 ¤ CµpShvpP qq. (5.2)

In virtue of [ARS02, Theorem 1], when d � 2, s � 1 and the domain Ω is the unit disk in the
plane, the first condition is equivalent to µ being a Carleson measure for the analytic Besov space
Bppρq, that is, for every analytic function defined on the unit disc D,

}f}pLppµq À }f}pBppρq :� |fp0q|p �
»
D
p1� |z|2qp|f 1pzq|pρpzq dmpzq

p1� |z|2q2 .

Definition 5.16. We say that a measure satisfying the hypothesis of Proposition 5.15 is an s, p-
Carleson measure for Q (or simply p-Carleson measure if s � 1).

We say that a positive and finite Borel measure µ is an s, p-Carleson (or p-Carleson) measure
for a Lipschitz domain Ω if it is an s, p-Carleson (resp. p-Carleson) measure for every R-window
of the domain.

5.3 Integer smoothness: a sufficient condition for p ¤ d

We will use local versions of the Key Lemmas in Chapter 2 in order to get rid of some technical
difficulties:

Lemma 5.17. Let Ω � Rd be a bounded Lipschitz domain, T an admissible convolution Calderón-
Zygmund operator of order n P N and 1   p   8. Then the following statements are equivalent.

i) For every f PWn,ppΩq one has

}TΩf}Wn,ppΩq ¤ C}f}Wn,ppΩq. (5.3)

ii) For every window Q and every f PWn,ppΩq with f |pδ0Qqc � 0 one has¸
QPWQ

���∇nTΩ

�
Pn�1

3Q f
	���p
LppQq

¤ C}f}pWn,ppΩq,

where the Whitney covering WQ is properly oriented with respect to Q, that is, with the dyadic
grid parallel to the local coordinates (see Definition 5.6).

Proof. To see that i) implies ii) just use the Key Lemma 2.2 with an appropriate dyadic grid.
To see the converse, choose a finite a collection of windows tQkuNk�1 with N � Hd�1pBΩq{Rd�1

such that δ0
4 Qk is a covering of the boundary of Ω, call Q0 to the inner region Ωz� δ0

2 Qk, and
let tψkuNk�0 � C8 be a partition of the unity related to the covering tQ0u Y tδ0QkuNk�1. Consider
a function f P Wn,ppΩq. Note that hypothesis ii) does not give information about the inner
region, but since ψ0 is compactly supported in Ω, ψ0f P Wn,ppRdq and by Remark 1.29 also
T pψ0fq PWn,ppRdq, so

}TΩpψ0fq}Wn,ppΩq � }T pψ0fq}Wn,ppΩq ¤ }T pψ0fq}Wn,ppRdq ¤ C}ψ0f}Wn,ppΩq.

Now, replacing f by ψkf and W by a properly oriented Whitney covering Wk with respect to Qk
in (2.2) we get

}∇nTΩpψkfq}pLppΩq ¤
¸

QPWk

���∇nTΩ

�
ψkf �Pn�1

3Q pψkfq
	���p
LppQq

�
¸

QPWk

���∇nTΩ

�
Pn�1

3Q pψkfq
	���p
LppQq

¤ C}ψkf}pWn,ppΩq.
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Thus, by the triangle inequality we have that

}TΩf}Wn,ppΩq ¤
Ņ

k�0

}TΩpψkfq}Wn,ppΩq ¤ C
Ņ

k�0

}ψkf}Wn,ppΩq.

Choosing ψk as bump functions with the usual estimates on the derivatives
��∇jψk��L8 À R�j , we

get (5.3) using the Leibniz formula:

}TΩf}Wn,ppΩq À
Ņ

k�0

}ψkf}Wn,ppΩq À
Ņ

k�0

�
ņ

j�0

��∇jf��
Lppδ0Qkq

�
À }f}Wn,ppΩq.

We are ready to prove Theorem 5.1. This proof is very much in the spirit of Theorem 2.1.
Again we fix a point x0 P Ω and we use the polynomials Pλpxq � px � x0qλ for every multiindex
|λ|   n, but now the key point is to use the Poincaré inequality instead of the Sobolev Embedding
Theorem. The hypothesis in Theorem 5.1 is equivalent to dµλpxq � |∇nTΩPλpxq|pdx being a
p-Carleson measure for Ω for every |λ|   n.

Proof of Theorem 5.1. Consider a fixed R-window Q and a properly oriented Whitney covering
W, that is, with dyadic grid parallel to the window faces. Making use of Lemma 5.17, we only
need to show that ¸

QPSHvpQ0q

���∇nTΩ

�
Pn�1

3Q f
	���p
LppQq

¤ C}f}pWn,ppΩq

for every f PWn,ppΩq with f |pδ0Qqc � 0.
Fix such a function f . Using the expression (1.31) and expanding it as in (2.10) at a fixed point

x0 P Ω, we have¸
QPSHvpQ0q

���∇nTΩ

�
Pn�1

3Q f
	���p
LppQq

À
¸
|γ| n

¸
~0¤λ¤γ

Cγ,λ,Ω
¸

QPSHvpQ0q

|mQ,γ |p}∇nTΩPλ}pLppQq.

Moreover, by induction on (1.35), the coefficients are bounded by

|mQ,γ | À
¸

|β| n: β¥γ

`pQq|β�γ|Cβ,γ
���� 

3Q

Dβf dm

���� À ¸
|β| n: β¥γ

Cβ,γ,R

���� 
3Q

Dβf dm

���� ,
so ¸

QPSHvpQ0q

���∇nTΩ

�
Pn�1

3Q f
	���p
LppQq

À
¸
|β| n
~0¤λ¤β

¸
QPSHvpQ0q

���� 
3Q

Dβf dm

����p µλpQq.
Taking into account that f |pδ0Qqc � 0, we have

ffl
3P
Dβf dm � 0 for P close enough to the root

Q0. Thus,  
3Q

Dβf dm �
¸

PPrQ,Q0q

� 
3P

Dβf dm�
 

3FpP q
Dβf dm

�
.

With a slight modification of the proof of Poincaré inequality in [Eva98, Theorem 5.8.1/1], one
can see that

}f � f3Q}Lpp3QX3FpQqq À `pQq}∇f}Lpp3Qq,
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and, by the same token,
��f � f3FpQq

��
Lpp3QX3FpQqq À `pQq}∇f}Lpp3FpQqq. Therefore,

¸
QPSHvpQ0q

���∇nTΩ

�
Pn�1

3Q f
	���p
LppQq

À
¸
|β| n
~0¤λ¤β

¸
QPSHvpQ0q

�� ¸
PPrQ,Q0s

`pP q
 

3P

|∇Dβf | dm
�p µλpQq.

(5.4)

By assumption, µλ is a p-Carleson measure for every |λ|   n, that is, it satisfies both conditions
of Proposition 5.15. By Theorem 5.13, we have that, for every h P lppρWq,

¸
QPSHvpQ0q

�� ¸
PPrQ,Q0s

hpP q
�p µλpQq ¤ C

¸
QPSHvpQ0q

hpQqp`pQqd�p, (5.5)

where ρWpQq � `pQqd�p.
Let us fix β and λ momentarily and take hpP q � `pP q ffl

3P
|∇Dβf | dm in (5.5). Using Jensen’s

inequality and the finite overlapping of the quintuple cubes, we have

¸
QPSHvpQ0q

�� ¸
PPrQ,Q0s

`pP q
 

3P

|∇Dβf | dm
�p µλpQq ¤ C

¸
QPSHvpQ0q

� 
3Q

|∇Dβf | dm

p

`pQqd

À
¸

QPSHvpQ0q

 
3Q

|∇Dβf |p dm`pQqd

À
»

Ω

|∇Dβf |p dm. (5.6)

Plugging (5.6) into (5.4) for each β and λ, we get¸
QPSHvpQ0q

���∇nTΩ

�
Pn�1

3Q f
	���p
LppQq

¤ C}f}pWn,ppΩq.

5.4 Fractional smoothness: a sufficient condition for sp ¤ d

Lemma 2.11 can be rewritten for fractional Triebel-Lizorkin spaces:

Lemma 5.18. Let 1   p   8, 1   q   8 and 0   s   1 with s ¡ d
p � d

q , let Ω � Rd be a bounded
Lipschitz domain, and let T be a p, q-admissible convolution Calderón-Zygmund operator of order
s. Then the following statements are equivalent.

i) For every f P F sp,qpΩq one has

}TΩf}F sp,qpΩq ¤ C}f}F sp,qpΩq.

ii) For every window Q and every f P F sp,qpΩq with f |pδ0Qqc � 0 one has¸
QPWQ

|fQ|p
��∇sqTΩ1

��p
LppQq

¤ C}f}pF sp,qpΩq,
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where the Whitney covering WQ is properly oriented with respect to Q, that is, with the dyadic
grid parallel to the local coordinates (see Definition 5.6), and the gradient ∇sqf is defined as

∇sqfpxq �
�»

Bρ1δpxqpxqXΩ

|fpxq � fpyq|q
|x� y|sq�d dy

� 1
q

,

with ρ1 big enough (see Corollary 2.22).

Proof. It is trivial that i) implies ii) by the Key Lemma 2.11, increasing ρε if necessary.
To see the converse, use the same partition of the unity tψku � C8 as in the proof of Lemma

5.17. Again, for the central region, we have that

}TΩpψ0fq}F sp,qpΩq � }T pψ0fq}F sp,qpΩq ¤ }T pψ0fq}F sp,qpRdq ¤ C}ψ0f}F sp,qpRdq.

By means of (2.13), (2.14) and (2.47), it is immediate to see that }ψ0f}F sp,qpRdq À }ψ0f}F sp,qpΩq.
Let 1 ¤ k ¤ N and consider a properly oriented Whitney covering Wk with respect to Qk. By

(2.15), we have that ¸
QPWk

��∇sqTΩppψkfq � pψkfqQq
��p
LppQq

À }ψkf}pF sp,qpΩq

and, using the hypothesis ii), we get¸
QPWk

��∇sqTΩpψkfq
��p
LppQq

Àp
¸

QPWk

|pψkfqQ|p
��∇sqTΩ1

��p
LppQq

� }ψkf}pF sp,qpΩq À }ψkf}pF sp,qpΩq.

Now we cannot use Leibniz’ rule. Instead, for x P Ω we have that

∇sqpfψkqpxq �
�»

Bρ1δpxqpxqXΩ

|fpxqψkpxq � fpyqψkpyq|q
|x� y|sq�d dy

� 1
q

¤ |fpxq|
�»

Bρ1δpxqpxqXΩ

|ψkpxq � ψkpyq|q
|x� y|sq�d dy

� 1
q

�
�»

Bρ1δpxqpxqXΩ

|ψkpyq| |fpxq � fpyq|q
|x� y|sq�d dy

� 1
q

À R1�s

R
|fpxq| �∇sqpfqpxq

and, by the triangle inequality, the previous statements and (2.14), we get

}TΩf}F sp,qpΩq ¤
Ņ

k�0

}TΩpψkfq}F sp,qpΩq À
Ņ

k�0

}ψkf}F sp,qpΩq

�
Ņ

k�0

�
}ψkf}LppΩq �

��∇sqpψkfq��LppΩq	 À Ņ

k�0

}f}LppΩq �
Ņ

k�0

��∇sqf��LppΩq.

Proof of Theorem 5.2. As before, consider Q and a properly oriented Whitney covering W. By
Lemma 5.18, we only need to show that¸

QPSHvpQ0q

|fQ|p
��∇sqTΩ1

��p
LppQq

¤ C}f}pF sp,qpΩq
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for every f P F sp,qpΩq with f |pδ0Qqc � 0.
Fix one such a function f . Then¸

QPSHvpQ0q

|fQ|p
��∇sqTΩ1

��p
LppQq

�
¸

QPSHvpQ0q

|fQ|pµpQq.

Taking into account that f |pδ0Qqc � 0, we have |fP |p � 0 for P close enough to the root Q0.
Thus, By Jensen’s inequality

|fQ| �
������

¸
PPrQ,Q0q

�
fP � fFpP q

������� À
¸

PPrQ,Q0q

`pP qs
`pP qd

»
P

»
5P

|fpxq � fpyq|
`pP qd�s dy dx

À
¸

PPrQ,Q0q

`pP qs
`pP qd

»
P

�»
5P

|fpxq � fpyq|q
`pP qd�sq dy


 1
q

dx ¤
¸

PPrQ,Q0q

`pP qs�d
»
P

∇sqfpxq dx,

and, adding on Q, we get

¸
QPSHvpQ0q

|fQ|p
��∇sqTΩ1

��p
LppQq

À
¸

QPSHvpQ0q

�� ¸
PPrQ,Q0q

`pP qs�d
»
P

∇sqfpxq dx
�p µpQq.

Since µ is an s, p-Carleson measure, it satisfies both conditions of Proposition 5.15. By Theorem
5.13, we have that, for every function h :W Ñ C,

¸
QPSHvpQ0q

�� ¸
PPrQ,Q0s

hpP q
�p µpQq ¤ C

¸
QPSHvpQ0q

hpQqp`pQqd�sp.

Take hpP q � `pP qs�d ³
P
∇sqfpxq dx. Using Jensen’s inequality once again, we have¸

QPSHvpQ0q

|fQ|p
��∇sqTΩ1

��p
LppQq

À
¸

QPSHvpQ0q

�»
Q

|∇sqfpxq| dx

p

`pQqsp�dp�d�sp

À
¸

QPSHvpQ0q

»
Q

|∇sqfpxq|p dx À
��∇sqf��pLppΩq.

5.5 Smoothness n � 1: a necessary condition

The implication 2. ùñ 1. in Theorem 5.3 is a consequence of Theorem 5.1, so we only need
to prove that 1. ùñ 2.. To do so, we will solve a Neumann problem by means of the Newton
potential: given an integrable function with compact support g P L1

cpRdq, its Newton potential is

Ngpxq �
» |x� y|2�d
p2� dqwd gpyq dy if d ¡ 2, Ngpxq �

»
log |x� y|

2π
gpyq dy if d=2

for a.e. x P Rd, where wd stands for the surface measure of the unit sphere in Rd. Recall that the
gradient of Ng is the pd� 1q-dimensional Riesz transform of g,

∇Ngpxq � Rpd�1qgpxq �
»

x� y

wd|x� y|d gpyq dy.

It is well known that ∆Ngpxq � gpxq for x P Rd (see [Fol95, Theorem 2.21] for instance).
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Remark 5.19. Given g P L1
cpRd�q and d ¡ 2, consider the function

F pxq :� N
�
2
�
R
pd�1q
d g

	
dσ

�
pxq �

»
BRd�

2
�
R
pd�1q
d g

	
pyq

p2� dqwd|x� y|d�2
dσpyq for x P Rd�, (5.7)

where R
pd�1q
d stands for the vertical component of Rpd�1q and dσ is the hypersurface measure in

BRd�. This function is well defined since���Rpd�1q
d g

���
L1pσq

¤
»
BRd�

»
Rd�

zd
|y � z|d |gpzq| dz dσpyq

�
»
Rd�

�»
BRd�

zd
|y � z|d dσpyq

�
|gpzq| dz � }g}1

and, thus, the right-hand side of (5.7) is an absolutely convergent integral for each x P Rd�, with

|F pxq| ¤ 2
d�2

}g}1
|xd|d�2 . By the same token, all the derivatives of F are well defined, F is C8pRd�q,

harmonic and ∇F pxq � Rpd�1q
�
2
�
R
pd�1q
d g

	
dσ

�
pxq. When d � 2 we have to make the usual

modifications.

Lemma 5.20. Consider a ball B1 � Rd centered at the origin and a real number ε ¡ 0. Let
g P L8 supported in

�
Rd� X 1

4B1

� z �Rd�1 � p0, εq� and define

hpxq :� N
�
2
�
R
pd�1q
d g

	
dσ

�
pxq �Ngpxq.

Then h has weak derivatives in Rd� and for every φ P C8
c pRd�q,»

Rd�
∇φ �∇h dm �

»
Rd�
φ g dm. (5.8)

Furthermore, if B1 has radius r1 then for every x P Rd�zB1 we have

|hpxq| À

$'&'%
1

|x|d�2
}g}1 if d ¡ 2,�

|log |x|| � 1� r1
x2| log x2|
|x|2



}g}1 if d � 2,

(5.9)

and

|∇hpxq| À 1

|x|d�1

�
1�

����log
xd
|x|

����
 }g}1. (5.10)

Remark 5.21. Note that h can be understood as a weak solution to the Neumann problem#
�∆hpxq � gpxq if x P Rd�,
Bdhpyq � 0 if y P BRd�.

Proof of Lemma 5.20. Let us define F as in (5.7). Then,

∇F � Rpd�1q
�
2
�
R
pd�1q
d g

	
dσ

�
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and h � F � Ng. Since g P L8, it follows that Ng is C1pRdq (in fact it is harmonic out of the

support of g) and it satisfies that BdNg � R
pd�1q
d g. Moreover, we have that

�
R
pd�1q
d g

	
|BRd� is in

L1 and it is C8, so BjF � N
�
2Bj

�
R
pd�1q
d g

	
dσ

�
P C8 up to the boundary as well. The remaining

partial derivative of F satisfies BdF � R
pd�1q
d

�
2
�
R
pd�1q
d g

	
dσ

�
. Note that the kernel of R

pd�1q
d p2�q,

when acting on functions defined on BRd�, coincides with the Poisson kernel

2xd
wd|x|d

and, therefore, it maps L8 XCpBRd�q functions to continuous functions in Rd�, and it satisfies the

pointwise identity limxdÑ0R
pd�1q
d gpx1, xdq � gpx1q for every g P L8 X CpBRd�q and every x1 P Rd�

(see [Fol95, Theorem 2.44]). In particular, limxdÑ0 BdF px1, xdq � R
pd�1q
d gpx1q.

Consider φ P C8
c pRdq. Using the Green identities, since F is harmonic in Rd�, we have»

Rd�
∇φ �∇F dm�

»
Rd�
∇φ �∇Ng dm �

»
BRd�

φ BdF dσ �
»
BRd�

φR
pd�1q
d g dσ �

»
Rd�
φg dm �

»
Rd�
φg,

proving (5.8).
To prove the pointwise bounds for ∇h, recall that

∇hpxq � Rpd�1q
�
2
�
R
pd�1q
d g

	
dσ

�
pxq �Rpd�1qgpxq.

Given x P Rd�zB1, since supppgq � 1
4B1,

|Rpd�1qgpxq| � c

����»
B1

gpzqpx� zq
|x� z|d dz

���� À }g}1
|x|d�1

. (5.11)

On the other hand, consider z P supppgq � 1
4B1 and x R B1. Then, for y P BRd� X Bp0, |x|{2q

one has |x � y| � |x|, for y P BRd� X Bp0, 2|x|qzBp0, |x|{2q one has |y � z| � |x| and otherwise
|y � x| � |y � z| � |y|. Thus,���Rpd�1q

�
2
�
R
pd�1q
d g

	
dσ

�
pxq

��� � c

�����
»
BRd�

�»
B1

gpzqzd dz
|y � z|d


 px� yqdσpyq
|x� y|d

�����
À

»
BRd�XBp0,|x|{2q

�»
B1

|gpzq|zd dz
|y � z|d



dσpyq
|x|d�1

�
»
BRd�XBp0,2|x|qzBp0,|x|{2q

�»
B1

|gpzq|zd dz
|x|d



dσpyq

|x� y|d�1

�
»
BRd�zBp0,2|x|q

�»
B1

|gpzq|zd dz


dσpyq
|y|2d�1

. (5.12)

The first term can be bounded by C
}g}1
|x|d�1 because

³
BRd�

dσpyq
|y�z|d

� C 1
zd

. The second can be

bounded by C
r1}g}1
|x|d

���log |xd|
|x|

��� using polar coordinates and the last one can be bounded by C
r1}g}1
|x|d

trivially. Thus, ���Rpd�1q
�
2
�
R
pd�1q
d g

	
dσ

�
pxq

��� À }g}1
|x|d�1

� r1}g}1
|x|d

����log
xd
|x|

����� r1}g}1
|x|d ,
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proving (5.10) since r1 ¤ |x|.
To prove the pointwise bounds for h, recall that

hpxq � N
�
2
�
R
pd�1q
d g

	
dσ

�
pxq �Ngpxq.

When d ¡ 2 we use the same method as in (5.11) and (5.12) using Newton’s potential instead of
the vectorial pd� 1q-dimensional Riesz transform to get

|hpxq| À }g}1
|x|d�2

� r1xd}g}1
|x|d � r1}g}1

|x|d�1
.

When d � 2 the Newton potential is logarithmic, but the spirit is the same. In this case,
arguing as before,

|hpxq| À log |x|}g}1 � r1}g}1
|x| � |x| log |x| � x2 log x2

|x|2 .

Proposition 5.22. Let 1   p   8. Given a window Q centered at the origin of a δ-special
Lipschitz domain Ω (see Definition 1.4) with a Whitney covering W and given f PW 1,ppΩq, define
the Whitney averaging function

Afpxq :�
¸
QPW

χQpxq
 

3Q

fpyqdy. (5.13)

If µ is a finite positive Borel measure supported on δ0Q with

µpShvpQqq ¤ C`pQqd�p for every Whitney cube Q � Q, (5.14)

and A : W 1,ppΩq Ñ Lppµq is bounded, then µ is a p-Carleson measure.

Proof. We will argue by duality. Let us assume that the window Q � Qp0, R2 q is of side-length R
and centered at the origin, which belongs to BΩ. Note that the boundedness of A is equivalent to
the boundedness of its dual operator

A� : Lp
1pµq Ñ pW 1,ppΩqq�.

We also assume that µ � 0 in a neighborhood of BΩ. One can prove the general case by means of
truncation and taking limits since the constants of the Carleson condition (5.2) and the the norm
of the averaging operator will not get worse by this procedure.

Fix a cube P . Analogously to [ARS02, Theorem 3], we apply the boundedness of A� to the
test function g � χShvpP q to get

}A�g}p1pW 1,ppΩqq� À }g}p1
Lp1 pµq

� µpShvpP qq.

Thus, it is enough to prove that¸
QPSHvpP q

µpShvpQqqp
1

`pQq p�dp�1 À }A�g}p1pW 1,ppΩqq� � µpShvpP qq. (5.15)

Given any f PW 1,ppΩq, using (5.13) and Fubini’s Theorem,

xA�g, fy �
»
gAf dµ �

»
Ω

f

� ¸
QPW

χ3Q

mp3Qq
»
Q

g dµ

�
dm,
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where we wrote x�, �y for the duality pairing. Consider

rgpxq :�
¸
QPW

χ3Qpxq
mp3Qq

»
Q

g dµ �
¸

QPSHvpP q

χ3Qpxq µpQq
mp3Qq . (5.16)

Then,

xA�g, fy �
»

Ω

f rg dm.
Note that rg is in L8 with norm depending on the distance from the support of µ to BΩ by (5.14),
but the norm of rg in L1 is

}rg}L1 � µpShvpP qq.

Qω

ShωpQq

ÝÑω

Q

ShvpQq

Figure 5.3: We divide Rd� in pre-images of Whitney cubes.

Consider also the change of variables ω : Rd Ñ Rd, ωpx1, xdq � px1, xd � Apx1qq where A is the
Lipschitz function whose graph coincides with BΩ, and to every Whitney cube Q assign the set
Qω � ω�1pQq and its shadow ShωpQq � ω�1pShvpQqq (see Figure 5.3). Then, for every x P Rd
we define

g0pxq :� rgpωpxqq|detpDwpxqq|, (5.17)

where detpDwp�qq stands for the determinant of the Jacobian matrix. Note that still }g0}L1 �
}rg}L1 � µpShvpP qq, and, since ωpRd�q � Ω,

xA�g, fy �
»

Ω

f rg dm �
»
Rd�
f � ω � g0 dm. (5.18)

The key of the proof is using

hpxq :� N
�
2
�
R
pd�1q
d g0

	
dσ

�
pxq �Ng0pxq, (5.19)

which is the W 1,1
loc pRd�q solution of the Neumann problem»

Rd�
∇φ �∇h dm �

»
Rd�
φ g0 dm for every φ P C8

c pRd�q, (5.20)

provided by Lemma 5.20.
We divide the proof in four claims.
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Claim 5.23. If φ P C8
c pRd�q, then

xA�g, φ � ω�1y �
»
Rd�
∇φ �∇h dm.

Proof. Since ω is bilipschitz, the Sobolev W 1,p norms before and after the change of variables ω

are equivalent (see [Zie89, Theorem 2.2.2]). In particular, for φ P C8
c pRd�q, φ �ω�1 PW 1,ppΩq and

we can use (5.18) and (5.20).

Now we look for bounds for }Bdh}Lp1 pShωpP qq. The Hölder inequality together with a density
argument would give us the bound

}A�g}pW 1,ppΩqq� À }∇h}Lp1 � µpShvpP qq,
with constants depending on the window size R, but we shall need a kind of converse.

Claim 5.24. One has

}Bdh}Lp1 pShωpP qq À }A�g}pW 1,ppΩqq� � µpShvpP qq.

Proof. Take a ball B1 containing ω�1p4Qq. The duality between Lp and Lp
1

gives us the bound

}Bdh}Lp1 pShωpP qq À sup
φPC8

c pB1XRd�q
}φ}p¤1

����» φ Bdh dm���� .
To use the full potential of the Fourier transform, consider hs to be the symmetric extension of
h with respect to the hyperplane xd � 0, hspx1, xdq � hpx1, |xd|q. It is immediate that hs has
global weak derivatives Bjhs � pBjhqs for 1 ¤ j ¤ d� 1 and Bdhspx1, xdq � �Bdhpx1,�xdq for every
xd   0. Thus,

}Bdh}Lp1 pShωpP qq À sup
φPC8

c pB1q
}φ}p¤1

����» φ Bdhs dm���� . (5.21)

Given φ P C8
c pB1q, consider the function rφpxq � φpxq � φpx � 2 r1 edq, where ed denotes the

unit vector in the d-th direction and r1 � 1
2diampB1q, and take

Iφpxq �
» xd
�8

rφpx1, tqdt. (5.22)

Then, we have Iφ P C8
c p3B1q with BdIφ � φ in the support of φ and }BdIφ}pp � 2}φ}pp. Thus,»

φ Bdhsdm � xBdIφ, Bdhsy �
»

3B1zB1

BdIφ Bdhsdm, (5.23)

where we use the brackets for the dual pairing of test functions and distributions. Using Hölder’s
inequality and the estimate (5.10) one can see that the error term in (5.23) is bounded by»

3B1zB1

|BdIφ Bdhs|dm ¤ }BdIφ}p}Bdhs}Lp1 p3B1zB1q
¤ C}φ}LpµpShvpP qq. (5.24)

Note that C only depends on r1, which can be expressed as a function of the Lipschitz constant
δ0 and the window side-length R.
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It is well known that the vectorial d-dimensional Riesz transform,

Rpdqfpxq � 1

2wd�1
p.v.

»
Rd

x� y

|x� y|d�1
fpyqdy for every f P S

is, in fact, a Calderón-Zygmund operator and, thus, it can be extended to a bounded operator in

Lp. Writing R
pdq
i for the i-th component of the transform and R

pdq
ij :� R

pdq
i � Rpdqj for the double

Riesz transform in the i-th and j-th directions, one has BiiIφ � R
pdq
ii ∆Iφ � ∆R

pdq
ii Iφ by a simple

Fourier argument (see [Gra08, Section 4.1.4]). Thus, writing fφ � R
pdq
dd Iφ, we have ∆fφ � BddIφ,

so

xBdIφ, Bdhsy � �xBddIφ, hsy � �x∆fφ, hsy. (5.25)

Let fr � ϕrfφ with ϕr a bump function in C8
c pB2rp0qq such that χBrp0q ¤ ϕr ¤ χB2rp0q,

|∇ϕr| À 1{r and |∆ϕr| À 1{r2. We claim that

�x∆fφ, hsy � � lim
rÑ8

x∆fr, hsy � lim
rÑ8

x∇fr,∇hsy, (5.26)

The advantage of fr is that it is compactly supported, while only the Laplacian of fφ is compactly
supported. Recall that ∆fφ � BddIφ P C8

c pRdq so, by the hypoellipticity of the Laplacian operator,
fφ P C8pRdq itself (see [Fol95, Corollary (2.20)]). Thus, the second equality in (5.26) comes from
the definition of distributional derivative. It remains to prove

x∆fr �∆fφ, h
sy rÑ8ÝÝÝÑ 0. (5.27)

Since ∆fφ is compactly supported, taking r big enough we can assume that

∆rpϕr � 1qfφs � p∆ϕrqfφ � 2∇ϕr �∇fφ,

so

|x∆fr �∆fφ, h
sy| À

»
B2rp0qzBrp0q

� |fφ||hs|
r2

� |∇fφ||hs|
r



dm.

If the dimension is d � 2 and |x| large enough, equation (5.9) reads as

|hpxq| À |log |x|| }g0}1.

If d ¡ 2, we can use the same bound, since |hpxq| À 1
|x|d�2 }g0}1. Using Hölder’s inequality in (5.22)

we have that }Iφ}q ¤ C}φ}q for any given 1   q   8. Now, Bjfφ � BjRpdqdd Iφ � R
pdq
dj BdIφ, so using

the boundedness of the d-dimensional Riesz transform in Lq, we get

}fφ}W 1,q � }fφ}Lq � }∇fφ}Lq ¤ Cqp}Iφ}q � }BdIφ}qq ¤ Cq}φ}q. (5.28)

Thus, for r large enough and choosing q   d we get»
B2rp0qzBrp0q

� |fφ||hs|
r2

� |∇fφ||hs|
r



dm À logprq

r

»
B2rp0qzBrp0q

p|fφ| � |∇fφ|q dm}g0}1

À logprq
r

r
d
q1 }fφ}W 1,qpRdq}g0}1 rÑ8ÝÝÝÑ 0,

proving (5.27).
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Back to (5.26), we can use fsr px1, xdq :� frpx1,�xdq by a change of variables to obtain»
∇fr �∇hs dm �

»
Rd�
∇fr �∇h dm�

»
Rd�
∇fsr �∇h dm � xA�g, pfr � fsr q � ω�1y (5.29)

by means of Claim 5.23. Summing up, by (5.23), (5.24), (5.25), (5.26) and (5.29) and letting r
tend to infinity, we get����» φ Bdhs dm���� À ��xA�g, pfφ � fsφq � ω�1y��� }φ}LpµpShvpP qq. (5.30)

Summing up, by (5.21), (5.30) and the estimate (5.28) with q � p, we have got that

}Bdh}Lp1 pShωpP qq À sup
}f}

W1,ppRdq¤1

��xA�g, f � ω�1y��� µpShvpP qq.

On the other hand, by [Zie89, Theorem 2.2.2]
��f � ω�1

��
W 1,ppΩq

� }f}W 1,ppRd�q
for every f , so

we have

}Bdh}Lp1 pShωpP qq À sup
}f}W1,ppΩq¤1

|xA�g, fy| � µpShvpP qq � }A�g}pW 1,ppΩqq� � µpShvpP qq,

that is Claim 5.24.

Next we establish the relation between (5.15) and Claim 5.24.

Claim 5.25. One has¸
QPSHvpP q

µpShvpQqqp
1

`pQq p�dp�1 À }Bdh}p
1

Lp1 pShωpP qq
(5.31)

�
¸

QPSHvpP q

»
Qω

�»
tz:zd¡xdu

zd � xd
|x� z|d rgpωpzqqdz

�p1
dx �: 1 � 2 .

Proof. Note that in (5.19) we have defined h in such a way that

Bdhpxq � R
pd�1q
d

�
2
�
R
pd�1q
d g0

	
dσ

�
pxq �R

pd�1q
d g0pxq

� �1

wd

»
Rd�

�
2xdzd
wd

»
BRd�

dσpyq
|y � z|d|x� y|d �

xd � zd
|x� z|d

�
g0pzqdz.

Given x, z P Rd�, consider the kernel of R
pd�1q
d

�
2
�
R
pd�1q
d p�q

	
dσ

�
�R

pd�1q
d p�q,

Gpx, zq � 2xdzd
wd

»
BRd�

dσpyq
|y � z|d|x� y|d �

xd � zd
|x� z|d ,

so that

Bdhpxq � �1

wd

»
Rd�
Gpx, zqg0pzq dz. (5.32)

We have the trivial bound

Gpx, zq � zd � xd
|x� z|d χtzd¡xdupzq ¥ 0, (5.33)
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but given any Whitney cube Q P SHvpP q, if x P Qω and z P ShωpQq we can improve the estimate.
In this case, »

BRd�XShωpQq

dσpyq
|y � z|d Á

»
BRd�Xω�1pShvpωpzqqq

dσpyq
|y � z|d �

1

zd

and, thus,

Gpx, zq � zd � xd
|x� z|d χtzd¡xdupzq ¥

2xdzd
wd

»
BRd�

dσpyq
|y � z|d|x� y|d

Á `pQqzd
`pQqd

»
BRd�XShωpQq

dσpyq
|y � z|d Á

`pQq
`pQqd . (5.34)

By the Lipschitz character of Ω we know that |detDωpzq| � 1 for every z P Rd�. Thus, by
(5.16) and (5.17), given Q P SHvpP q we have

µpShvpQqq �
¸

SPSHvpQq

µpSq À
»
ShvpQq

rgpwqdw �
»
ShωpQq

g0pzqdz.

For every x P Qω, using (5.34) first and then (5.33) we get

µpShvpQqq À
»
ShωpQq

�
Gpx, zq � zd � xd

|x� z|d χtzd¡xdupzq


`pQqd
`pQq g0pzq dz

À
�»

Rd�
Gpx, zqg0pzq dz �

»
tz:zd¡xdu

zd � xd
|x� z|d rgpωpzqq dz

�
`pQqd�1

and, by (5.32),

µpShvpQqq`pQq1�d À |Bdhpxq| �
»
tz:zd¡xdu

zd � xd
|x� z|d rgpωpzqq dz.

Then, raising to the power p1, averaging with respect to x P Qω, we get that

µpShvpQqqp
1

`pQqp1�dp1 À
 
Qω

|Bdhpxq|p
1

dx�
 
Qω

�»
tz:zd¡xdu

zd � xd
|x� z|d rgpωpzqqdz

�p1
dx.

�
��}Bdh}p1Lp1 pQωq �

»
Qω

�»
tz:zd¡xdu

zd � xd
|x� z|d rgpωpzqqdz

�p1
dx

�`pQq�d
and, since p1 � dp1� p1q � p

p�1 � d
p�1 , summing with respect to Q P SHvpP q we get the estimate

(5.31), that is, Claim 5.25.

Finally, we bound the negative contribution of the pd�1q-dimensional Riesz transform in (5.31),

that is we bound 2 .

Claim 5.26. One has

2 �
¸

QPSHvpP q

»
Qω

�»
tz:zd¡xdu

zd � xd
|x� z|d rgpωpzqqdz

�p1
dx À µpShvpP qq. (5.35)
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Proof. Consider x, z P Rd� with xd   zd and two Whitney cubes Q and S such that x P Qω and
z P ω�1p3Sqzω�1p3Qq. Then

zd � xd
|x� z|d À

distpωpzq, BΩq
DpS,Qqd � `pSq

DpS,Qqd .

On the other hand, when 3S X 3Q � H,»
ω�1p3Qq

|zd � xd|
|x� z|d dz À `pQq � `pSq.

From the definition of rg in (5.16) it follows that rgpωpzqq � °
LPSHvpP q

χ3Lpωpzqq µpLqmp3Lq . Bearing

all these considerations in mind, one gets

2 À
¸

QPSHvpP q

`pQqd
�� ¸
SPSHvpP q

µpSq`pSq
DpS,Qqd

�p
1

.

Consider a fixed ε ¡ 0. One can apply first the Hölder inequality and then (5.14) to get

2 À
¸

QPSHvpP q

`pQqd
�� ¸
SPSHvpP q

µpSq`pSq1�εp1
DpS,Qqd

��� ¸
SPSHvpP q

µpSq`pSq1�εp
DpS,Qqd

�
p1

p

À
¸

QPSHvpP q

`pQqd
�� ¸
SPSHvpP q

µpSq`pSq1�εp1
DpS,Qqd

��� ¸
SPSHvpP q

`pSqd�p�1�εp

DpS,Qqd

�
p1

p

.

By Lemma 5.10, the last sum is bounded by C`pQq�p�1�εp with C depending on ε as long as
d ¡ d� p� 1� εp ¡ d� 1, that is, when p�2

p   ε   p�1
p . Thus,

2 À
¸

QPSHvpP q

¸
SPSHvpP q

µpSq`pSq1�εp1`pQqd�p1�p1{p�εp1
DpS,Qqd

�
¸

SPSHvpP q

µpSq`pSq1�εp1
¸

QPSHvpP q

`pQqd�1�εp1

DpS,Qqd .

Again by Lemma 5.10, the last sum does not exceed C`pSq�1�εp1 with C depending on ε as long
as d ¡ d� 1� εp1 ¡ d� 1, that is when 0   ε   1

p1 � p�1
p . Summing up, we need

max

"
p� 2

p
, 0

*
  ε   p� 1

p
.

Such a choice of ε is possible for every p ¡ 1. Thus,

2 À
¸

SPSHvpP q

µpSq � µpShvpP qq.
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Now we can finish the proof of Proposition 5.22. The first term in the right-hand side of (5.31)
is bounded due to Claim 5.24 by

1 � }Bdh}p
1

Lp1 pShωpP qq
À }A�g}p1pW 1,ppΩqq� � µpShvpP qqp

1

. (5.36)

Being µ a finite measure, µpShvpP qqp1 ¤ µpShvpP qqµpδ0Qqp1�1 and, thus, the bounds (5.35) and
(5.36) combined with (5.31) prove (5.15), leading to¸

QPSHvpP q

µpShvpQqqp
1

`pQq p�dp�1 À µpShvpP qq.

For the sake of clarity, we restate Theorem 5.3 in terms of Carleson measures.

Theorem 5.27. Given an admissible convolution Calderón-Zygmund operator of order 1, a Lips-
chitz domain Ω and 1   p   8, the following statements are equivalent:

1. Given any window Q with a properly oriented Whitney covering, and given any Whitney cube
P � δ0Q, one has

¸
QPSHvpP q

�»
ShvpQq

|∇TΩpχΩq|p dm
�p1

`pQq p�dp�1 ¤ C

»
ShvpP q

|∇TΩpχΩq|p dm.

2. TΩ is a bounded operator on W 1,ppΩq.
Proof. The implication 1 ùñ 2 is Theorem 5.1.

To prove that 2 ùñ 1 we will use the previous proposition. Let us assume that we have
a properly oriented Whitney covering W associated to an R-window Q of a Lipschitz domain Ω,
where we assume that the window Q � Qp0, R2 q is of side-length R and centered at the origin.
Note that since TΩ is bounded on W 1,ppΩq then, by the Key Lemma 2.2,¸

QPW
|f3Q|p

»
Q

|∇TΩpχΩqpxq|p dx À }f}W 1,ppΩq for f PW 1,ppΩq. (5.37)

Consider the Lipschitz function A : Rd�1 Ñ R whose graph coincides with the boundary of Ω
in Q. We say that rΩ is the special Lipschitz domain defined by the graph of A that coincides with
Ω in the window Q. One can consider a Whitney covering �W associated to rΩ such that it coincides
with W in δ0Q. Consider the averaging operator

Afpxq :�
¸
QP�W

χQpxqf3Q for f PW 1,pprΩq.
Writing dµpxq :� |∇T pχΩqpxq|p χδ0Qpxq dx and taking a bump function χδ0Q ¤ ψQ ¤ χQ, we have

that every f PW 1,pprΩq satisfies that

}Af}pLppµq �
¸
QP�W

µpQqfp3Q �
¸
QPW

µpQqpfψQqp3Q À }fψQ}pW 1,ppΩq À }f}p
W 1,pprΩq.

by (5.37) and the Leibniz formula. That is, A : W 1,pprΩq Ñ Lppµq is bounded.
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In order to apply Proposition 5.22, we only need to show that µpShvpQqq ¤ C`pQqd�p for every
Whitney cube Q � Q, which in particular implies that µ is finite. Fix a Whitney cube Q � Q and
consider a bump function ϕQ such that χShvp2Qq ¤ ϕQ ¤ χShvp4Qq with |∇ϕQ| À 1

`pQq .

Then,

µpShvpQqq �
»
ShvpQqXδ0Q

|∇TχΩpxq|pdx

¤
»
ShvpQq

|∇T pχΩ � ϕQqpxq|pdx�
»

Ω

|∇TϕQpxq|pdx. (5.38)

With respect to the first term, notice that given x P ShvpQq, distpx, supppχΩ � ϕQqq ¡ 1
2`pQq so

Lemma 1.31 together with (1.41) allows us to write

|∇T pχΩ � ϕQqpxq| À
»

ΩzShvp2Qq

1

|y � x|d�1
dy À 1

`pQq .

Being Ω a Lipschitz domain, mpShvpQqq � `pQqd, so»
ShvpQq

|∇T pχΩ � ϕQqpxq|pdx À `pQqd�p.

The second term in the right-hand side of (5.38) is bounded by hypothesis by a constant times
}ϕQ}pW 1,ppΩq, and

}ϕQ}pW 1,ppΩq � }ϕQ}pLppΩq � }∇ϕQ}pLppΩq À `pQqd � `pQqd�p À pRp � 1q`pQqd�p,

where R is the side-length of the R-window Q, proving that µ satisfies (5.14).

5.6 On the complex plane

Remark 5.28. The article of Arcozzi, Rochberg and Sawyer [ARS02] has been the cornerstone
in our quest for necessary conditions related to Carleson measures. In fact their article provides
a quick shortcut for the proof of Theorem 5.27 (avoiding Proposition 5.22) for simply connected
domains of class C1 in the complex plane, and we believe it is worth to give a hint of the reasoning.

Sketch of the proof. In the case of the unit disk, we found in the Key Lemma 2.2 that if T is an
admissible convolution Calderón-Zygmund operator of order 1 bounded on W 1,ppDq, then¸

QPW

���� 
3Q

f dm

����p »
Q

|∇TχDpzq|pdmpzq À }f}pW 1,ppDq (5.39)

for all f P W 1,ppDq. If one considers dµpzq � |∇TχDpzq|pdmpzq and ρpzq � p1 � |z|2q2�p, then,
when f is in the Besov space of analytic functions on the unit disk Bppρq, we have that

}f}pBppρq :� |fp0q|p �
»
D
|f 1pzq|pp1� |z|2qpρpzq dmpzq

p1� |z|2q2 � }f}pW 1,ppDq.

Using the mean value property (and (5.14) for the error terms), one can see that if T is bounded,
then for every holomorphic function f the bound in (5.39) is equivalent to»

D
|fpzq|p|∇TχDpzq|pdmpzq À }f}pBppρq,
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i.e., }f}Lppµq À }f}Bppρq. Following the notation in [ARS02], the measure µ is a Carleson measure

for pBppρq, pq, establishing Theorem 5.27 for the unit disk by means of Theorem 1 in that article.
For Ω � C Lipschitz and f analytic in Ω, we also have that, if T : W 1,ppΩq Ñ W 1,ppΩq is

bounded, then »
Ω

|fpzq|p|∇TχΩpzq|pdmpzq À }f}pW 1,ppΩq.

If Ω is simply connected, considering a Riemann mapping F : DÑ Ω, and using it as a change of
variables, one can rewrite the previous inequality as»

D
|f � F pωq|pµpF pωqq|F 1pωq|2dmpωq À |fpF p0qq|p �

»
D
|pf � F q1pωq|p|F 1pωq|2�pdmpωq.

Writing dµ̃pωq � µpF pωqq|F 1pωq|2dmpωq, and ρpωq � |F 1pωqp1� |ω|2q|2�p, one has that given any
g analytic on D,

}g}Lppµ̃q À }g}Bppρq.
So far so good, we have seen that µ̃ is a Carleson measure for pBppρq, pq, but we only can use

[ARS02, Theorem 1] if two conditions on ρ are satisfied. The first condition is that the weight ρ is
“almost constant” in Whitney squares, that is

for x1, x2 P Q PW ùñ ρpx1q � ρpx2q,

and this is a consequence of Koebe distortion theorem, which asserts that for every w P D we have

|F 1pωq|p1� |ω|2q � distpF pωq, BΩq

(see [AIM09, Theorems 2.10.6 and 2.10.8], for instance). The second condition is the Bekollé-
Bonami condition, which is»

Q

p1� |z|2qp�2ρpzqdmpzq
�»

Q

�p1� |z|2qp�2ρpzq�1�p1

dmpzq

p�1

À mpQqp.

If the domain Ω is Lipschitz with small constant depending on p (in particular if it is C1), then
this condition is satisfied (see [Bék86, Theorem 2.1]).





Conclusions

In this dissertation we have found answers to different problems related to the boundedness of
convolution Calderón-Zygmund operators on Sobolev (and Triebel-Lizorkin) spaces on domains.
It is worthy to finish pointing out possible further steps in this research.

Chapters 2 and 5:
Putting together Theorems 2.1 and 2.8, we have obtained the following T pP q-theorem:

Figure 5.4: Indices for which the T pP q-theorem
(in green) and the Carleson theorem (in red) are
valid in W s,ppΩq for uniform domains in R3.

Theorem. Let Ω � Rd be a bounded uniform
domain, T an admissible convolution Calderón-
Zygmund operator of order s P N or 0   s   1,
d   p   8 with s ¡ d

p and let Prss�1 stand for
the polynomials of degree smaller than s. Then

}TΩP }W s,ppΩq   8 for every P P Prss�1

if and only if

TΩ is bounded on W s,ppΩq.
On the other hand, putting together Theo-

rems 5.1 and 5.2 (writing ∇s for ∇s2) we have
shown the following theorem (see Figure 5.4):

Theorem. Let Ω be a bounded Lipschitz do-
main, let 1   p ¤ d and let T be an admissible
convolution Calderón-Zygmund operator of or-
der s P N or 0   s   1 (with s ¡ d

p � d
2 in the

fractional case). If the measure |∇sTΩP pxq|pdx
is a p-Carleson measure for every polynomial P
of degree smaller than s, then TΩ is a bounded
operator on W s,ppΩq.

I expect that, combining the techniques of the integer orders of smoothness and the fractional
ones, the first theorem above can be extended to the green sawtooth region (see Figure 5.5a) and
the second theorem above to the red one, using

∇sqfpxq �
�»

Bρ1δpxqpxqXΩ

|∇n�1fpxq �∇n�1fpyq|q
|x� y|sq�d dy

� 1
q

.

Moreover, I believe that the restriction s ¡ d
p � d

2 is rather unnatural. I expect that using other
expressions for the gradient in terms of means on balls, for instance, this restriction can be avoided
(see Figure 5.5b).

141
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In fact, there is hope that, using higher order differences, a T pP q-theorem can be obtained for
all the supercritical range, and for F sp,qpΩq in general.

Even more challenging is the question of whether Theorem 5.3 has a counterpart for other
orders of smoothness or not, that is, if there is a necessary Carleson condition when s � 1.

(a) Natural extension of our techniques. (b) Other expressions for the gradient.

Figure 5.5: Conjectures on the indices where our results are valid for higher orders of fractional
smoothness, in R3.

Remark 5.29. For 1   p, q   8 and 0   s   1
p , we have that the multiplication by the charac-

teristic function of a half plane is bounded in F sp,qpRdq. This implies that for domains Ω whose
boundary consists of a finite number of polygonal boundaries, the pointwise multiplication with χΩ

is also bounded in this space and, using characterizations by differences, this property can be seen
to be stable under bi-Lipschitz changes of coordinates. Summing up, given a Lipschitz domain Ω
and a function f P F sp,qpRdq, we have that

}χΩ f}F sp,qpRdq À }f}F sp,qpRdq.

Moreover, if T is an operator bounded in F sp,q, using the extension E : F sp,qpΩq Ñ F sp,qpRdq (see
[Ryc99], for instance), for every f P F sp,qpΩq we have that

}TΩf}F sp,qpΩq � }T pχΩ Efq}F sp,qpΩq ¤ }T pχΩ Efq}F sp,q ¤ }T }F sp,qÑF sp,q
}χΩ Ef}F sp,q À }Ef}F sp,q

À }f}F sp,qpΩq.

That is, given a p, q-admissible convolution Calderón-Zygmund operator T and a Lipschitz domain
Ω we have that TΩ is bounded in F sp,qpΩq for any 0   s   1

p .

Chapter 3: Characteristic functions of planar domains
In this chapter we have studied when BχΩ P W s,ppΩq. By the previous remark, when sp   1

and Ω is a Lipschitz domain BχΩ PW s,ppΩq regardless of any other consideration in the smoothness
of the boundary (see Figure 5.6).
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Conjecture 5.30. Let 0   s   8, let 1   p   8 and let Ω be a bounded pδ,Rq-Crss�1,1 domain

with parameterizations in B
s�1�1{p
p,p . Then, we have that BχΩ PW s,ppΩq and, if s ¡ 1

p , then

}∇sBχΩ}pLppΩq À }N}p
B
s�1{p
p,p pBΩq

.

Theorem 3.27, proves the case s P N, and the result in [CT12] proves the case 1
p   s   1. I

expect the cases 1   s   8 with s R N to be proven without much effort using the techniques
of both. The case sp � 1 may also be of some interest. There is no need to say that further
improvements in the T pP q-theorems discussed above could help to deduce if, given a domain Ω,
the truncated Beurling transform BΩ is bounded on W s,ppΩq.

I conclude the discussion on the results of this chapter with two open questions.

Remark 5.31. In [Tol13] it is seen that this result is sharp for s � 1. It remains to see if this is
the case for 1

p   s   1 and for 1   s   8.
At some point in my PhD studies I got interested in finding a counterpart of this theorem in

higher dimensions. The main obstruction is Proposition 3.17, which depends strongly on complex
analysis. It remains to see if this technique can be bypassed using real analysis tools for any operator
in higher dimensions.

Figure 5.6: Indices considered on Conjecture 5.30. For s � 1 the result is sharp (blue segments).
For sp   1 (in yellow), every Lipschitz domain satisfies that BχΩ P W s,ppΩq as a consequence of
Remark 5.29.

Chapter 4: An application to quasiconformal mappings
In relation to quasiconformal mappings, I expect the following conjecture to be true.

Conjecture 5.32. Let n P N, and let 0   tsu ¤ 1 and s � n � 1 � tsu. Let Ω be a bounded

Lipschitz domain with outward unit normal vector N in B
s�1{p
p,p pBΩq for some p   8 with tsu p ¡ 2

and let µ P W s,ppΩq with }µ}L8   1 and supppµq � Ω. Then, the principal solution f to the
Beltrami equation is in the Sobolev space W s�1,ppΩq (see Figure 5.7).

This conjecture for s P N is exactly Theorem 4.1. I expect this result to be proven straight ahead
using the techniques exposed in this chapter when 0   s   1 (Conjecture 5.30 holds by [CT12]).
The main difficulties will be to prove the compactness of rµ,Bs and Rm. For higher fractional
orders of smoothness I expect some complications but the core of the proof should remain the
same. However, to study this case, we will need a quantitative version of Conjecture 5.30 to be
proven for the corresponding indices.
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Figure 5.7: Conjectures on the indices where the application to quasiconformal maps holds.

Again, in case that further improvements in the T pP q-theorems discussed above lead to a wider
range of indices than expected (say to the whole supercritical region), this conjecture could be
extended in the same spirit, probably using higher order differences for the homogeneous Sobolev
seminorms. I do not expect to have such a result for the critical and the subcritical case, where a
decay in the integrability or even in smoothness in µ ÞÑ h seems to be unavoidable when }µ}L8 ¡ 0,
in view of the examples in [CFM�09, pages 205-206].
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