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aquella llum al final del túnel que tot doctorant busca amb força. No puc oblidar aquells inicis

de tesi compartint despatx amb el Brais o les aventures amb el Marc, el Ciro i l’Oriol amb els

que comparteixo una gran amistat i afecte. Tampoc puc oblidar al Ramon, amic, company de

recerca i exsoci. Més tard van arribar molts altres grans companys, dels quals no vull deixar

de mencionar al Pol, al Mateo, a l’Adria, a l’Edgar, a l’Eduard i a l’Antonio. També vull
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Resum

La pose de la càmera respecte a una escena del món real determina la projecció perspectiva de

l’escena sobre el pla imatge. L’anàlisi de les deformacions entre parelles d’imatges degudes a

la perspectiva i la pose de la càmera han portat a molts investigadors en Visió per Computador

a tractar amb problemes com, la capacitat per detectar i buscar coincidències de les mateixes

caracterı́stiques locals a diferents imatges o recuperar per cada imatge la pose original de la

càmera. La diferencia entre els dos problemes recau en la localitat de la informació que es

mostra a la imatge, mentre en el cas de les caracterı́stiques es busca la invariància local, per

al cas de la pose de la càmera es busquen fonts d’informació més global, com ara conjunts de

caracterı́stiques locals.

La detecció de caracterı́stiques locals és una peça clau per un ampli rang d’aplicacions de

Visió per Computador donat que permet buscar coincidències i localitzar regions especı́fiques

de la imatge. A la primera part d’aquest treball la invariància de les caracterı́stiques és abor-

dada proposant algoritmes per millorar la robustesa a les pertorbacions de la imatge, canvis

de perspectiva i capacitat de discriminació des de dos punts de vista: (i) detecció precisa de

cantonades i taques a les imatges evitant redundàncies mitjançant el seu moviment a través

de diferents escales, i (ii) aprenentatge de descriptors robustos. Concretament, proposem tres

detectors invariants a escala on un d’ells detecta cantonades i taques simultàniament amb

un increment de la cárrega computacional insignificant. També proposem un detector in-

variant afı́ de taques. Sobre descriptors, proposem aprendre’ls mitjançant xarxes neurals de

convolució i grans conjunts de regions d’imatges anotades sota diferents condicions.

Malgrat que és un tema investigat durant dècades, l’estimació de la pose de la càmera

encara és un repte. L’objectiu dels algorismes de Perspective-n-Point (PnP) és estimar la

localització i orientació d’una càmera calibrada a partir de n correspondències 3D-a-2D

conegudes entre un model 3D prèviament conegut d’una escena real i caracterı́stiques 2D

obtingudes d’una única imatge. A la segona part d’aquesta tesi l’estimació de la pose de

la càmera és adreçada amb nous mètodes de PnP, els quals redueixen dràsticament el cost

computacional permetent aplicacions en temps real independentment del nombre de corre-

spondències. A més, proporcionem un mecanisme integrat de rebuig de correspondències

incorrectes amb una càrrega computacional insignificant i un nou mètode per incrementar la

precisió que modela l’error de reprojecció de cada correspondència.

Finalment per escenaris complexos i grans, amb potser centenars de milers de carac-

terı́stiques, és difı́cil i computacionalment car trobar correspondències correctes. En aquest

cas, proposem un mètode robust i precı́s per estimar la pose de la càmera. El nostre mètode
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s’aprofita de classificadors d’alt nivell, que estimen la pose de la càmera de manera poc

precisa, per tal de restringir les correspondències a ser utilitzades pels nostres precisos algo-

rismes de PnP.



Abstract

Camera pose with respect to a real world scene determines the perspective projection of

the scene on the image plane. The analysis of the deformations between pairs of images

due to perspective and camera pose have led many Computer Vision researchers to deal with

problems such as, the ability to detect and match the same local features in different images or

recovering for each image its original camera pose. The difference between both problems lie

in the locality of the image information, while for local features we look for local invariance,

for camera pose we look for more global information sources, like sets of local features.

Local feature detection is a cornerstone of a wide range of Computer Vision applications

since it allows to match and localize specific image regions. In the first part of this work lo-

cal invariance of features is tackled proposing algorithms to improve the robustness to image

perturbations, perspective changes and discriminative power from two points of view: (i) ac-

curate detection of non-redundant corner and blob image structures based on their movement

along different scales, and (ii) learning robust descriptors. Concretely, we propose three scale

invariant detectors, detecting one of them corners and blobs simultaneously with a negligible

computational overhead. We also propose one blob affine invariant detector. In terms of de-

scriptors, we propose to learn them using Convolutional Neural Networks and large datasets

of annotated image regions under different image conditions.

Despite being a topic researched for decades camera pose estimation is still an open chal-

lenge. The goal of the Perspective-n-Point (PnP) problem is to estimate the location and

orientation of a calibrated camera from n known 3D-to-2D point correspondences between

a previously known 3D model of a real scene and 2D features obtained from a single im-

age. In the second part of this thesis camera pose estimation is addressed with novel PnP

approaches, which reduces drastically the computational cost allowing real-time applications

independently of the number of correspondences. In addition, we provide an integrated out-

lier rejection mechanism with a negligible computational overhead and a novel method to

increase the accuracy by modelling the reprojection error of each correspondence.

Finally in the case of complex and huge scenarios, with maybe hundreds of thousands

of features, is difficult and computationally expensive to be able to find correct 3D-to-2D

correspondences. In this case, a robust and accurate top-down approach for camera pose esti-

mation is proposed. Our approach takes advantage of high-level classifiers, which estimates

a rough camera pose, in order to constrain the 3D-to-2D correspondences to be used by our

accurate and robust to outliers PnP method.
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Chapter 1

Introduction

In the human eyes the images are formed on the retina and then our brain perceives a per-

spective projection of the real world. This perspective projection is mathematically explained

by the pinhole camera model, which also explains the image formation process in most of

the lens-based cameras. Since perspective depends on the camera location and orientation

with respect to the scene, a small change in the location or orientation of the camera prompts

a change in the perspective projection. This fact allows, from a single perspective image

point of view recover the camera pose and having into account multiple images, comparing

their perspective variations, to recover 3D information about a real world scene or object. In

fact, the separation between the eyes prompts small differences between the perspective seen

by each eye, allowing to our brain, apparently without effort, understand the world in three

dimensions instead of only two dimensions. At the same time, our brain is able to estimate

easily its location and orientation with respect to the real world even with only one eye. This

work is centred in this second case, where using only single perspective images the camera

pose parameters are accurately recovered with respect to known real world scenes.

Camera pose estimation in term of location and orientation from single images has been

deeply studied by the Computer Vision community for decades. Most of the proposed meth-

ods are based in low-level algorithms, which analyse the perspective from a local point of

view. Probably the most relevant low-level algorithms are those devoted to locate and de-

scribe the same local image regions along different views of a given scene or object. These

local image regions, which are usually called features, not just look for invariance to changes

in the perspective, but also light conditions, noise or blurring providing robust features to the

matching algorithms. The matching task provides correspondences between images and real

world scenes being the fundamental information source in order to recover the camera pose.

For this reason in this work, in addition, we also studied the local behaviour of the image

regions and their description.

In this chapter we introduce the main research areas and the problems addressed in each

one from a low-level to high-level point of view. At the end of the chapter we present an

overview of this manuscript.

1



2 INTRODUCTION

1.1 Invariant Interest Point Detection

In the literature, there are several approaches in order to deal with the detection of interest

image regions, which are usually called interest point detectors. The aim of interest points is

the detection of local image regions, which can reliably be found in other images containing

the same regions under perspective changes or other viewing conditions as blurring or illu-

mination. Some approaches look for underlying local image structures such as, corners or

blobs, assuming that these structures are discriminative enough while others look for highly

discriminant image regions independently of the underlying structure.

All these local image regions are determined by a specific location, scale and shape. The

intrinsic geometry of the image regions allow to categorize the interest point detectors in two

main groups:

- Scale invariant detectors, which try to determine the most representative scales of

each interest point in each image, trying to obtain the same interest points indepen-

dently of the distance between the camera and the scene. These detectors deal with

perspective variations assuming isotropic scale variations by means of an exhaustive

analysis called multi-scale image analysis [17].

- Affine invariant detectors, which try to estimate the most representative underlying

shape and scale of each interest point in each image, trying to obtain the same interest

points independently of the camera viewpoint and distance with respect to the scene.

These detectors try to deal with any perspective variation assuming image regions be-

longs to a planar region in the scene and considering that an affine transformation is

a good approximation of the true perspective projection. These detectors, with ex-

ceptions [88], assumes that perspective variations will be always roughly detectable

by scale invariant detectors, therefore they can be considered a post-processing step

applied on scale invariant interest points [82, 91]. Hence, affine invariant detectors in-

crease the precision in the location of image regions although with an increment in the

computational cost.

Interest point detectors are widely used because they provide a sparse representation of

the images, allowing to discard huge image regions. However, most of the detectors tend

to over-detect image regions increasing the redundancy, reducing the sparsity, reducing the

distinctiveness of each region and making difficult subsequent tasks as the matching process

to identify each region along the images. Moreover, interest point detectors are usually de-

signed to detect very specific kinds of image regions. Therefore, to detect complementary

image regions several detectors must be applied. In Figure 1.1 an example of over-detection

provided by two state-of-the-art scale invariant detectors is shown.

Contributions: Our contributions in this field are four invariant detectors avoiding over-

detection. Improving the sparsity, the distinctiveness and simplifying the matching task be-

tween regions. We propose three novel scale invariant detectors. Concretely, one corner de-

tector, one blob detector and one detector that simultaneously detects blob and corner struc-

tures with a negligible overhead with respect to compute only blobs or corners. We also

propose a novel affine invariant detector of blob structures, based in our blob scale invariant
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Figure 1.1: Example of over-detected image regions using scale invariant detectors. Left:

Using a state-of-the-art blob detector [90]. Rigth: Using a state-of-the-art corner detector [91].

detector, that simultaneously computes the location and affinity of each region in contrast

with the most standard method [91], which estimates location and affine shape in separated

steps.

1.2 Interest Point Description

Once the invariant interest points are detected their underlying image regions have to be

matched with the image regions found in other images. This matching can be performed by

directly describing the regions from their pixel intensities or colours, obtaining descriptors of

high dimensionality and highly sensitive to the viewing conditions such as perspective, noise

or illumination. The most known descriptor that reduces drastically these issues is the SIFT

descriptor [84].

At this moment, descriptors can be categorized in two groups. The main group, descrip-

tors like SIFT and most of the descriptors in the literature that are hand-crafted. These de-

scriptors follow a predefined methodology without having into account the specific discrim-

inatory power contained in each image region. In addition, robustness to viewing conditions

is provided by the predefined methodology, making researchers responsible of this task.

The other group of descriptors is relatively recent, it is formed by descriptors based on

machine learning techniques allowing to learn how to compute the most robust and discrim-

inative descriptors. Given a set of interest points obtained from several images representing

all of them the same image region, these descriptors are able to learn to capture invariance

to the viewing conditions represented in the set while at the same time, maximize the dis-

criminatory power of each region. Figure 1.2 shows several examples of detected regions

representing the same feature under different viewing conditions.

The second group of descriptors show better performance than the first one. Since they

are based on learning, they are able to learn to deal with very difficult issues such as, location

errors of the interest points, huge in-plane perspective variations or even those perspective

variations produced by image regions that are not planar in the real 3D scene and can even be

partially affected by self-occlusions.
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Figure 1.2: Example of image regions under different viewing conditions such us illumina-

tion, blurring or perspective changes. Each column represent an specific image region. These

samples belong to the Multi-view Stereo dataset (MVS) [9].

Contributions: Our contribution in this area is a new machine learning based descrip-

tor that is able to improve the discriminative power and robustness to viewing conditions

of the state-of-the-art descriptors. Our descriptor is based on Convolutional Neural Net-

works (CNNs), a recent technique that for image classification has outperformed existing

approaches by a large margin [66].

1.3 Robust Monocular Camera Pose Estimation

The monocular camera pose estimation problem consists on accurately determine the camera

extrinsic parameters, location and orientation, from a single perspective image with respect

to the 3D coordinates of a real world scene. In order to increase the accuracy most of the

solvers require a calibrated camera allowing to take advantage of the internal geometry of the

camera.

The fundamental information source used during the camera pose estimation are the 3D-

to-2D correspondences between the 3D scene and the 2D image. These 3D-to-2D correspon-

dences are typically computed by means of a matching task between a set of image features,

obtained by means of the detection and description of interest points, and a set of previously

known 3D scene features, which will be considered from now on the 3D scene model.

Depending on the number of 3D-to-2D correspondences the camera pose estimation prob-

lem can be also called the Perspective-n-Point (PnP) problem, where n represents the num-

ber of correspondences. Initial approaches solved the problem very efficiently for very small

numbers of correspondences, e.g. P3P and P4P solvers, however they have the drawback of

being very sensitive to noise. This problem was attenuated by exploiting data redundancy,

which was achieved by solvers without a predefined number of correspondences, which are

simply called PnP solvers.
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Figure 1.3: Examples of the challenges we propose to solve. Top: Example of inlier/outlier

correspondences, green lines denote inlier correspondences and black lines denote outlier cor-

respondences. Bottom: Feature uncertainties on a real image region. Green dots for each

feature denote the noise computed by reprojecting features detected in other images and black

ellipses denote the noise model for each feature.

The last decade has witnessed a wide body of literature in which the primary goal has been

to build efficient and accurate solutions scalable to a large number of correspondences. How-

ever, the fundamental problem of mismatched correspondences (see Figure 1.3 Top) has not

been directly handled by PnP solvers. These outlier correspondences are typically rejected in

a preliminary stage using P3P solvers in combination with RANSAC-based schemes, reduc-

ing significantly the efficiency of the final solver. Moreover, usually the efficiency decrease

linearly with respect to the number of correspondences. Therefore, a large number of corre-

spondences also reduce significantly the efficiency of the solver.

In addition, although PnP solutions assume that correspondences may be corrupted by

noise and show robustness against large amounts of it, none of them considers the particular

structure of the noise associated to each correspondence (see Figure 1.3 Bottom), assuming

that all the correspondences are affected by the same model of noise.

Contributions: Our contributions in this field are three real-time PnP solvers. We first

reformulate the Efficient PnP solver [97] in order to increase its accuracy and efficiency

providing almost constant computational cost for any number of correspondences, even thou-

sands. We also propose an outlier rejection mechanism that is fully integrated in our pose
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estimation pipeline with a negligible computational overhead. Finally, in order to further im-

prove the accuracy of the estimated pose we model the particular structure of the noise for

each correspondence and we reformulate the PnP problem as a maximum likelihood estima-

tion.

1.4 Monocular Camera Pose Estimation in Complex Sce-
narios

In order to build valid 3D-to-2D correspondences, camera pose estimation algorithms need

correctly matched features between 2D images and 3D models. When those 3D models

contains hundreds of thousands of features is difficult and computationally expensive to be

able to find correct 3D-to-2D correspondences.

In the literature this problem is handled by analysing the global appearance of the images.

A global descriptor is computed for each input image and using machine learning approaches

these methods estimate which image within a given training set is the closest one to each input

image. An example of the results of these methods can be seen in Figure 1.4. The limitation

of these approaches is that the camera pose they can estimate tends to be inaccurate, and

highly depends on the spatial resolution at which the training images have been acquired.

This limitations can be seen in Figure 1.4.

Contributions: Our contribution in this field is a new algorithm that combine the best of

both worlds. We use a global descriptor in order to look for similar images in the training set

providing an initial set of rough estimations of the camera pose. The initial estimations in its

turn reduce the number of potential 3D-to-2D correspondences, and make standard camera

pose estimation approaches applicable. In this stage, we take advantage of our very fast and

robust to outliers PnP solver. The combinations of both ingredients result in a powerful pose

estimation algorithm capable of dealing with very large models.

Query image (a) (b) (c)

Figure 1.4: Example of the closest images in the training set to a given query image. Images

(a), (b) and (c) denotes the three closest images in the training set.



1.5. Thesis Overview 7

1.5 Thesis Overview

This thesis is conceptually grouped into 4 chapters enclosing our contributions organized

from low to high level. Each chapter has an introduction section in order to provide a high

level overview of its state of the art, several sections explaining our contribution, one section

showing our results in front of the state-of-the-art methods and a final summary. Finally,

there is a last chapter pointing out the most important contributions of this thesis and some

concluding remarks.

Chapter 2: Scale & Affine Invariant Detection of Non-Redundant Interest Points. In

this chapter we introduce our four interest point detectors and their properties. We first give

an introduction reviewing the state-of-the-art detectors and a short introduction to differential

geometry applied to images. The following sections refer to our scale invariant detectors

allowing to detect simultaneously corners and blobs avoiding redundancies and our affine

invariant detector. Finally we summarize the results.

Chapter 3: Learning of Discriminative Local Image Descriptors. This chapter fo-

cusses on our work on learning of discriminative and robust descriptors. We first review the

related work in terms of hand-crafted and machine learning based descriptors. Afterwards,

we introduce Artifical Neural Networks and Convolutional Neural Networks which are the

basis for our machine learning based descriptor, which is introduced in the next section. Fi-

nally, we explain and validate our method through experiments.

Chapter 4: Robust Monocular Camera Pose Estimation. In this chapter we introduce

our three PnP methods to estimate the camera pose. We first review the main PnP methods in

the state of the art and we introduce our fast and accurate PnP method. In subsequent sections

we introduce our methods based on the previous one to deal with outlier correspondences

and feature uncertainties. Each one of those sections validates the proposed methods through

experiments on synthetic data and real images.

Chapter 5: Monocular Camera Pose Estimation in Complex Scenarios. This chapter

focusses on our early work to be able to estimate as fast as possible the camera pose with

high accuracy in complex 3D scenarios with even hundreds of thousand of features. We first

review the related work and we explain the method used to build 3D models. Afterwards, we

introduce our two steps methodology to estimate the camera pose. Finally, we validate our

method on two real scenarios.

Chapter 6: Conclusions and Future Work. In the last chapter we give a high-level

discussion of our contributions. We also sketch several directions for future research.
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Chapter 2

Scale & Affine Invariant Detection of
Non-Redundant Interest Points

Scale and affine invariant detectors are well suited for local feature extraction. State-of-the-art

detectors usually tend to over-represent the local image structures associating several interest

points for each local image structure. Therefore interest points are not completely distinguish-

able, losing the ability to clearly describe the uniqueness of each local image structure. In

order to solve this issue we propose non-redundant detectors of blobs and corners, which try

to describe each blob or corner image structure with a single interest point. In our approach,

scale invariant interest points are located by means of the idea of blob/corner movement and

blob/corner evolution (creation, annihilation and merging) along different scales by using an ac-

curate description of the image provided by the Gaussian curvature, providing a global bottom-

up estimation of the image structure. The Gaussian curvature allows to classify image regions

in terms of their curvature as blobs, corners or edges.

Another issue with state-of-the-art detectors is that they are usually able to detect one single

type of image structure, typically corners or blobs. Our approach allows to detect simultane-

ously both, corners and blobs, with negligible overhead.

In addition, we propose to refine the shape and location of scale invariant blobs by fitting

an anisotropic Gaussian function, which minimizes the error with respect to the underlying

image and simultaneously estimates both the shape and location, by means of a non-linear least

squares approach.

A comparative evaluation of scale and affine invariant detectors is presented, showing a com-

parable performance to the state-of-the-art detectors in terms of repeatability and matching

scores, while in terms of precision and recall our detectors outperform or obtain similar scores.

In addition we demonstrate that our detectors do not over-represent blob and corner structures

providing a non-redundant detection that improves distinctiveness and reduces the computa-

tional cost of future matching tasks. In order to verify the accuracy and computational cost

reduction we have evaluated our detector in image registration tasks.

9
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2.1 Introduction

This chapter is dedicated to detect scale and affine invariant interest points. Interest point

detectors have been shown to be well suited for local feature extraction and they are the cor-

nerstone of a wide range of Computer Vision applications as object recognition [84, 135],

image registration [91], 3D reconstruction [1] or visual tracking [151]. The aim of interest

points is the detection of local image structures, which can reliably be found in other im-

ages containing the same structures. Each one of these local image structures is typically

determined by an image region in a concrete location with a specific scale and shape.

The intrinsic geometry of the local image structures allows to classify interest point de-

tectors into two main groups. Scale invariant detectors, which describe each local image

structure as a pixel location and a scale parameter, assume that local image structures can be

determined by an isotropic image region. On the other hand, affine invariant detectors take

into account that the shape of local image structures can be anisotropic. Usually, affine invari-

ance is a post-processing step, which is applied on an initial set of interest points detected by

a scale invariant detector [82, 91, 54, 70]. Therefore, the initial set of scale invariant interest

points is crucial.

Besides of geometrical invariance, there are other important properties that interest points

should satisfy. In [44, 112, 33] a set of properties that interest points should satisfy to be

considered as optimal are proposed. From our point of view, besides geometrical invariance

there are four main properties:

- Robustness to image variations: in order to be able to detect specific local image

structures with accuracy even in presence of perturbations, such us noise, blurring or

illumination changes.

- Completeness: to be able to detect at the same time a complete set of complemen-

tary types of local image structures such us, corners, edges or blobs. Usually, several

detectors must be applied to fulfill this property.

- Distinctiveness: every interest region should clearly stand out in its neighbourhood

being as distinctive as possible, avoiding redundant regions.

- Uniqueness: interest points should determine every local image structure with accu-

racy and uniqueness. Conferring an easy interpretation to each local image structure,

which improves the distinctiveness between interest points.

Another interesting property, but this time for interest point detectors is that they should

have as few control parameters as possible and they should have a clear semantic [33]. Fi-

nally, depending on the application there are properties more relevant than others. For ex-

ample, distinctiveness property can be very useful for visual tracking [87] whereas for object

recognition its lack can be also considered a feature [135]. However, [135] is a specific case

and cannot be generalized.

The success of all these properties depends on the approach and the operators used in or-

der to obtain the interest points. This chapter proposes an automatic scale selection approach
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for interest points, taking advantage of their evolution over scale, and a set of accurate differ-

ential geometry operators to satisfy the explained properties in our scale and affine invariant

interest points.

2.1.1 Overview

This chapter is organized as follows. In the next two sections scale and affine invariant

detectors are reviewed. After that, in Section 2.4 a short introduction to differential geometry

on images is done, relating the first and second order terms of the Taylor expansion with

the curvature analysis. In Section 2.5 we present our scale invariant detectors of blobs and

corners, which are based on Gaussian curvature. Moreover, in Section 2.5 we show how

our scale invariant detectors inherit and enhance the ideas proposed by Lindeberg in [79] in

order to extract with robustness the trajectories followed by blob and corner structures over

scale. In Section 2.6 we present our shape adaptation algorithm based on Gaussian curvature

and a non-linear least squares approach to fit Gaussian functions. Finally, in Section 2.7 an

experimental evaluation is done. A comparative evaluation of our detectors with the state

of the art is done under different imaging conditions in terms of geometrical invariance and

distinctiveness in four experimental setups: repeatability and matching, precision and recall,

over-representation and homography estimation.

2.2 Scale Invariance

The aim of interest points is the detection of local image structures, which can reliably be

found in other images containing the same structures. Therefore, interest points not only

have to locate the local image structures but also determine their characteristic scales. Thus,

they are defined by three parameters, two for pixel coordinates and one for scale. These three

parameters are estimated by using an exhaustive analysis, where scale parameter is split into

a discrete set. This kind of analysis is commonly referred to as scale-space or multi-scale

image analysis [17], where a multi-scale image representation is built in order to apply an

automatic scale selection technique.

2.2.1 Multi-Scale Representation

The multi-scale image representation and its properties for interest point detection has been

deeply studied in literature [17, 143, 63, 79]. This representation arises from the fact that rel-

evant image structures are meaningful entities only over a restricted range of scales. Pixels in

an image conform a discrete representation, similarly scale parameter can be also dicretized.

Thus, the multi-scale representation is defined as a discrete set of scaled images. These scaled

images must prevent the creation of spurious image structures when the scale is diminished,

in this sense the work of Koenderink in [63] shows the set of scale-space levels must be gov-

erned by diffusion equation and each scale-space level represented by an smoothed version

of the original image using Gaussian kernels.
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...

...
...

Figure 2.1: Different multi-scale representations. Succesive smothing (left), pyramid combin-

ing smoothing and sampling (center) and hybrid approach where sampling is performed after

several smoothed scales (right). In all these representations the smooth is computed convolving

by a Gaussian kernel with standard deviation σ.

Understanding an image as a two dimensional signal I(x, y) where x and y are the pixel

coordinates, each level in the multi-scale representation L is built as,

L(x, y, σ) = G(σ) ∗ I(x, y) (2.1)

where ∗ denotes convolution and G(σ) a Gaussian kernel with standard deviation σ,

G(σ) =
1

2πσ2
exp

u2+v2

2σ2 (2.2)

where u and v represent kernel coordinates with respect to the kernel center.

In order to reduce the computational cost of building the multi-scale representation a

pyramid based approach was proposed in [17], where the resolution of each scale-space level

L(·, ·, σ) is reduced after the smoothing. The drawbacks of pyramid representation are mainly

two: it can produce aliasing and it increases the cost of relate the pixels coordinates along the

scales. Lowe in [84] proposes a pyramid representation able to deal with these drawbacks by

not reducing the resolution in all the scale-space levels. In Figure 2.2.1 all the enumerated

multi-scale representations are shown.

These multi-scale representations require to pre-select the smoothing and sampling pa-

rameters. Lindeberg in [80] shows that the ratio between successive scales must be constant,

allowing to maintain a uniform change of information between successive scale-space levels.

Concretely, for the representation based on successive smoothing without sampling where

the scales are parametrized by σ, equation (2.1), a set of n scales is defined as,

σk = rkσ0, 1 ≤ k ≤ n (2.3)

where σ0 represents the scale of the initial scale-space level and r is the ratio between

successive scales. For example a commonly used ratio providing a good trade off between

interest points localization accuracy and computational cost is 1.4 [80, 84, 91]. Lower ratios
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allow to increase the localization accuracy at the expense of scale-space levels, which grows

quickly.

Gaussian multi-scale representation is useful to detect specific kinds of low-level local im-

age structures such as corners, edges, blobs or even spirals [6]. Those structures are typically

found by building specific operators, which combine first and second order partial deriva-

tives of smoothed images along the multi-scale representation. Those partial derivatives for a

specific scale-space level can be computed taking into account the convolution properties,

δ

δxαyβ

L(x, y, σ) =
δ

δxαyβ

(G(σ) ∗ I(x, y)) = δ

δxαyβ

G(σ) ∗ I(x, y) (2.4)

where α and β denotes the order of the partial derivatives. This equation shows that

partial derivatives can be computed directly on the Gaussian kernel.

Image structures in a given image are meaningful entities only over a restricted range of

scales. That means operators used to detect those structures along the scales must provide a

mechanism to locate their characteristic or relevant scales. In addition, those characteristics

scales must be also detected independently of the image scale. To be able to compare different

images and locate the same characteristic scales the aim is to obtain constant partial derivative

responses between an image I and its scaled version I′, with a known scaling factor s such

that I(x, y) = I′(sx, sy). In order to get this property the Gaussian partial derivatives must be

normalized with respect to the scale factor [80]. Concretely, for the multi-scale representation

based on smoothing without sampling, where the amplitude of partial derivatives increases

according as the scale increases, the normalization parameter σγ allows to validate that

σα+β
k

δ

δxαyβ

L′(x′, y′, σk) = σα+β
l

δ

δxαyβ

L(x, y, σl)

σα+β
k

δ

δxαyβ

G(σk) ∗ I′(x′, y′) = σα+β
l

δ

δxαyβ

G(σl) ∗ I(x, y) (2.5)

where k and l denotes two different scales. From a more informal point of view, the nor-

malization parameter σγ achieves that the integral of the positive part of the γ-order Gaussian

partial derivatives becomes constant.

Gaussian multi-scale representations have been also related with the biological vision

system. Neurophysiological studies show that receptive field profiles in the mammalian retina

and the first stages in the visual cortex can be modelled by superposing Gaussian derivatives

[144, 81]. In these respects, the scale-space framework can be seen as a theoretically well-

founded paradigm for early vision.

2.2.2 Operators to Detect Image Structures

Scale invariant interest point detectors are more or less optimal depending on the operators

used in order to build the multi-scale representation. These operators applied along the scales



14 SCALE & AFFINE INVARIANT INTEREST POINTS

should be responsible of the success of the properties explained in the previous section: ro-

bustness, completeness, distinctiveness and uniqueness. Basically, in order to find local image

structures, there are two main kinds of operators:

Geometry-based operators. These operators are specifically designed to search for spe-

cific kinds of low-level local image structures, being the most studied corners and blobs.

Since these operators typically combine several first and second order Gaussian partial deriva-

tives to be computed, they can be directly integrated inside the multi-scale representation.

Corner detection methods can be classified in two main approaches [94]: contour-based and

intensity-based. The contour-based approach is based on an initial contour detection (usually

by means of the Canny detector) and a posterior search of curvature maxima points along

contours, e.g. [95, 94]. In contrast, the intensity-based approach directly computes a measure

on the grayscale image, e.g. [141, 80, 150]. On the other hand, methods for blob detection

follow the intensity-based approach by computing measures directly on the grayscale image,

e.g. [80, 91, 84, 92].

Unfortunately sometimes is not enough with a single operator to detect interest points.

Some geometry-based operators have shown to be better for spatial location and other ones

for scale selection. For example in the Harris-Laplace [91] or the Hessian-Laplace [90] de-

tectors spatial selection is done using the Harris and the determinant of Hessian operators

respectively. Once extreme responses for each scale are selected the characteristic scales are

evaluated using the Laplace operator, which has proof its ability to carry out this task [80, 84].

Appearance-based operators. These operators are specifically designed in order to

search for distinctive image regions. Therefore it is not mandatory to relate image regions

with specific kinds of low-level local image structures such as corners, edges or blobs. In-

terest point detectors based on these operators look for image regions with a distinctive pixel

distribution in front of their neighbourhood, commonly by means of saliency measures over

histograms [53, 29, 70]. This kind of measures can be also computed on a multi-scale rep-

resentation, however its properties to relate responses over scale are lost since saliency mea-

sures cannot be directly related with specific kinds of low-level image structures.

An interesting approach combining geometry and appearance based operators is proposed

in [26]. In this approach, while the geometry-based operator is used to decide the candidate

image regions, the appearance-based operator is used to evaluate the stability of all the can-

didates along several scales. Thus, the appearance-based operator is not used to evaluate the

distinctiveness but rather the stability. This detector tries to locate stable descriptors for future

matching tasks.

2.2.3 Evolution and Automatic Scale Selection of Image Structures

In a multi-scale representation scheme according as the scale increases the fine structures

vanish and high level structures show up. Therefore, scale invariance must be achieved by

searching for, across several possible scales, extreme responses provided by operators com-

bining scale normalized Gaussian partial derivatives. This fact was deeply studied by Linde-

berg in [78, 79, 80] providing a general framework for automatic scale selection. Lindeberg

shows how a local extremum over scale at a concrete scale also appears after a uniform rescal-
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Figure 2.2: Automatic scale selection looking for local extreme responses. The response of

the pixel X is compared with its 26 neighbors in 3 × 3 regions at the current and adjacent

scales [84] (left). Example of evolution along the scales of a concrete blob structure created

in a corner structure (red line) on a synthetic image using our approach (right). Green dots

denotes extreme responses along the scales.

ing at an equivalent scale. He shows that extreme responses are characterized by the first and

second order normalized derivatives with respect to the scale and space simultaneously. Lowe

in [84] proposes the most commonly used automatic scale selection approach, which basi-

cally looks for extreme responses of spatial partial derivatives and approximates the scale

second order partial derivatives by comparing spatial responses in a 3D neighbourhood (usu-

ally 3x3x3). This neighbourhood combines the spatial responses of a concrete scale with the

spatial responses in the upper and lower scales (see Figure 2.2(left)).

An important property of geometry-based operators, which is not shared with appearance-

based operators, is that they allow us to analyse the evolution of specific local image structures

from their creation to their annihilation along the scales. This property provides the ability

to select the location and scale maximizing the distinctiveness and uniqueness of each local

image structure, in Figure 2.2(right) an example of evolution of a blob structure can be seen.

However, most state-of-the-art detectors based on these operators do not try to take advantage

of this property, at least totally. In fact standard automatic scale selection approaches, such

us [84], can be considered as very local approximations of the evolution between consecutive

scales.

From the analysis of the evolution of each local image structure emerge two issues. First,

interest points should be extracted from the evolution of each local image structure and,

second, local image structures at each scale should be represented by only one interest point.

There are two main drawbacks to represent each local image structure by only one in-

terest point at each scale. The first one is the well-known problem of kernel discretization

[77] and the second one is related with the ability of operators to represent each kind of im-
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age structure. In general, state-of-the-art geometry-based operators look for low-level image

structures by estimating second order partial derivatives, whether it is through Laplacian, as

in [80], or through Hessian approaches, as in [90].

These second order approaches can be understood as approximations of the Mean curva-

ture and the Gaussian curvature operators [25], which combine first order and second order

partial derivatives. Both curvatures have shown their success in several corner detectors,

being used as one dimensional operators on image contours [95, 94] or being used as two

dimensional operators on grayscale images [141, 4, 23]. The Gaussian curvature operator

allows us to understand images as surfaces with three types of regions, corresponding each

one with specific low-level image structures. Concretely, blob structures are related with el-

liptic regions, contour structures or flat regions are related with parabolic regions, and finally,

corner and saddle structures are related with hyperbolic regions (see Figure 2.5 for some

examples).

In order to compute the evolution of each local image structure it is needed to link its

extreme responses, provided by an scale normalized operator, along the scales belonging to

the multi-scale representation. The first method to link the evolution of the kernel responses

was proposed by Witkin in [143] for one dimensional signals. However, on two dimensional

signals like images, linking the extreme responses belonging to an specific image structure

along the scales is a complex task [79].

The evolution of local image structures was deeply studied by Lindeberg in [79] in the

case of blob structures. Lindeberg proposed 4 events: blob annihilation, blob merging, blob

split and blob creation. Lindeberg proposed a watershed-based blob detector, where the

flooding stops when the intensity value of pixels fall bellow a certain value obtained from

the saddle region between two blob structures. Finally, Lindeberg’s method concludes with a

matching mechanism between blobs at consecutive scales based on spatial coincidence. This

approach tries to carry out an impossible task on complex images. It attempts to obtain a pre-

cise and detailed evolution of all the blobs on the image facing the problem with non-robust

algorithms. In fact, the flooding stop criterium makes blob regions highly unstable, as short

variations in the stopping value can produce large variations in the blob region. Moreover the

matching algorithm presents difficulties when there are more than one matching candidates

and matching is non-trivial when there are more than two candidates [79]. Therefore, Linde-

berg’s approach can hardly extract stable blobs and stable trajectories unless its robustness is

improved.

In the case of the evolution of corner structures, Fidrich and Thirion in [31] propose an

algorithm to extract the evolution of each corner structure by using iso-contours, obtaining

one iso-contour for each scale space level. They propose to use a ’Marching Lines’ algorithm

in order to relate curvature extrema and inflection points of the planar curves represented by

the iso-contours. From the set of related curvature extrema and inflection points they analyse

the corner stability on medical images measuring the lifetime and maximum response of each

corner. However this method is only valid for corner detection because it only measures the

curvature in the contours of the objects.

Commonly used state-of-the-art detectors do not estimate the image structures evolution.

For this reason the automatic scale selection method tend to assign several characteristic

scales, and hence several interest points to each image structure carrying out an over-detection
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Figure 2.3: Examples of over-detection where interest points are represented by red circles. In

the first row, over-detection on a synthetic image containing a corner structure is shown. Left

image shows over-detection on a specific scale and right image along different scales. In the

bottom image, over-detection using a standard blob detector, Hessian-Laplace [90] detector, on

a real image is presented.

(Figure 2.3). This over-detection, based on redundant interest points, increases the computa-

tional complexity (which is superlinear in the number of interest points) of future matching

tasks [10, 136]. In addition, the redundancy works against the distinctiveness and uniqueness

properties.

Specifically, Brown et al. in [10] partially address this problem by proposing a post

processing step, which filters the interest points in order to restrict their number (fixing the

final number) so that they are spatially well distributed, using an adaptive non-maximal sup-
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pression strategy. Their strategy uses an adaptive radius of the non-maximal suppression in

order to avoid nearby corner detections (using a multi-scale Harris detector). However, their

method does not take into account whether nearby corners are the same and only takes into

account their strength.

In contrast, we propose detectors which analyse the evolution of blobs and corners with

robustness, selecting the best interest point for each local image structure. Our approach is

a robust bottom-up algorithm to analyse the image structures by using the accurate Gaussian

curvature operator in combination with a gradient ascent scheme. In addition, our approach

allows to analyse the evolution of both, blobs and corners, at the same time.

2.3 Affine Invariance

Affine invariant detectors not only looks for the spatial location and characteristic scale of in-

terest points, they also estimate the underlying affine shape of local image structures. Multi-

scale image analysis has shown to be successful in terms of detection of scale invariant inter-

est points. This approach can also be used for affine invariant detection but, since the number

of parameters is increased to five (spatial location, two scales and orientation), the complex-

ity grows exponentially and the approach is no longer feasible. For this reason several affine

invariant detectors have been proposed using a scale invariant detector as starting point.

The best known approach to detect affine invariances is the shape adaptation algorithm

proposed by Mikolajczyk and Schmid in [91], which is generic for geometry-based oper-

ators. For appearance-based operators there are several approaches such as [54] or [70].

Nevertheless, none of them is generic since they depend on very specific scale invariant de-

tectors. Another family of affine detectors is based on the watershed algorithm, showing

very interesting results in terms of geometrical invariance and distinctiveness. Being their

best example the Maximally Stable Extremal Regions (MSER) detector [88], which analyses

the shape variations at different pixel intensity levels to locate stable and connected image

regions.

A different approach is proposed by Morel and Yu in [96], they propose a novel frame-

work for interest point detection based on the simulation of specific affine deformations on

images in order to compute scale invariant interest points on each simulated image. Specif-

ically, they propose to compute the SIFT detector [84] for each set of simulated images in

order to extract a huge number of scale invariant interest points. Assuming that these interest

points codify all the feasible deformations of the image, the affine invariance problem is con-

verted into a matching problem. Thus, the computational cost of these algorithm is large in

comparison with other detectors as [91, 88], although it has shown its good performance for

object detection and image registration [96].

2.3.1 Affine Invariance from Geometry-based Operators

Mikolajczyk and Schmid in [91] propose a shape adaptation algorithm based on a previous

work of Lindeberg and Gårding [82]. This algorithm estimates affine transformations in
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Figure 2.4: Comparison between the surfaces provided by the Gaussian curvature operator

(left image) and the determinant of the second moment matrix (right image). Operators are

evaluated on a synthetic image containing a corner structure. Being the red lines the level

curves of the surfaces, the + simbol indicates the positive region of the surface and the - symbol

indicates the negative region.

two steps, which are iteratively applied, the first one estimates the spatial location while the

second one the affine deformation.

The very first step of these detectors consists in extracting a set of scale invariant interest

points using a geometry-based scale invariant detector. Afterwards, the affine shape for each

scale invariant interest point is vaguely estimated from the eigens of the second moment

matrix, which can be considered as a rough approximation to the Hessian matrix. The most

significant difference lies in that the Hessian matrix is either positive or negative definite

while the second moment matrix is semi-definite positive. This can be seen in Figure 2.4,

which compares the responses of the second moment matrix and Gaussian curvature, which

as we explain in Section 2.4.6 is quite similar to the Hessian matrix response. In [67] is

shown that substituting the second moment matrix by the Hessian matrix in the affine shape

estimation algorithm the obtained results are similar.

Once the affine shape of an interest point is estimated, its spatial location is re-estimated

applying again the previously used scale invariant detector on the transformed image domain

(where the affine shape is undone). These two steps are iteratively computed until the eigen-

values of the second moment matrix show isotropy.

The second moment matrix is defined as,

μ =

(
μ11 μ12

μ21 μ22

)
= G(σ) ∗

(
L2
x LxLy

LxLy L2
y

)
(2.6)

where G(σ) denotes an averaging operator, usually a Gaussian kernel, with an integration

scale parameter σ. Lx and Ly denote the compact representation of equation (2.4) for the

first-order partial derivative in x and y.

The second moment matrix, also referred to as structure tensor, summarizes the distri-

bution of the grayscale gradients for a given point in terms of two principal directions and

two non-negative magnitudes. Which can be considered an approximation of the directions
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and the absolute values of the principal curvatures referred to the underlying shape. In [91],

Mikolajczyk and Schmid assume that these principal directions and the ratio between the two

rough principal curvatures can be used as a change of basis in order to apply affine transfor-

mations up to the underlying shape becomes isotropic. That means, the ratio is linearly used

in order to estimate the size of an image region with the same curvature (contrast) in the two

principal directions.

Both principal curvatures, from their definition [25], explain the shape in their princi-

pal directions by means of their sign and scalar values, however the second moment matrix

loses partially this information since it is a semi-definite positive matrix. The product of

the principal curvatures provides an important differential geometry invariant referred to as

Gaussian curvature. Hence, depending on the sign and the value of the Gaussian curvature,

the shape and the shape strength of each image region is estimated. Thereby, Gaussian curva-

ture provides a fundamental information about the shape, which is not provided by the second

moment matrix (see Figure 2.4).

From the shape information provided by Gaussian curvature, we propose a novel method

to estimate affine invariance fitting known parametric functions on local surfaces. Specif-

ically, in the case of blob structures we propose to fit Gaussian functions by means of a

non-linear least squares approach. This approach allows us to take into account the pixel dis-

tribution on each image region in contrast with the second moment matrix, which only uses a

very rough approximation of the absolute value of the principal curvatures. A very important

property of our approach is that it allows us to simultaneously estimate the location and the

shape of each blob structure. This avoids having to separate the algorithm into two steps, one

of them exhaustive.

2.4 Curvature Analysis on Grayscale Images

The image behaviour in a local neighbourhood of a point can be approximated by the Taylor

expansion, so the local neighbourhood can be simplified as an expansion of functions. The

Taylor expansion of a local neighbourhood of a point x0 is,

I(x0 + h) = I(x0) +∇I(x0)h+

+
1

2!
hT∇2I(x0)h+R(h) (2.7)

where R(h) is a residual.

Differential geometry, in general, allows to extract properties and features of points by

means of first and second order terms of the Taylor expansion. While first order terms contain

information about gradient distribution in a local neighbourhood, second order terms contain

information about the local shape.
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Figure 2.5: Gaussian curvature K for three different kinds of surfaces where N is the surface

normal and k1 and k2 are the two principal curvatures: Saddle surface with K < 0 (k1 < 0
and k2 > 0), blob surface with K > 0 (k1 < 0 and k2 < 0) and edge surface with K = 0
(k1 = 0 and k2 < 0). Being the red lines the projections of the two main directions on the

surface.
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2.4.1 Principal Curvatures

A point p on an image I can be expressed in a parametric form as p = (x, y, I(x, y)) where

x and y are the image coordinates. Assuming that images can be understood as differentiable

functions [64], by blurring I with a kernel G, involve that images are 3D surfaces which are

treated locally as an specific type of patch (local surface) called Monge patch [64].

For each point p there is a tangent plane defined by a normal vector N. Moreover, for

each point p there are an infinite number of 1D curves passing through it, understanding

each 1D curve as the intersection between a plane and the surface. From each 1D curve on

a cutting plane and the point p a tangent vector on the plane can be computed, being its

perpendicular vector on the plane the curvature vector [25]. The projection of this curvature

vector on the normal vector N to p is an scalar called normal curvature. From the infinite

number of normal curvatures to p there exist two relevant 1D curves denoting the curve with

largest absolute normal curvature and its perpendicular curve. The normal curvatures of these

two 1D curves are the principal curvatures k1 and k2 for the point p on the surface. In Figure

2.5 are shown some surfaces with their principal curvatures and the 1D curves related with

them.

In order to compute k1 and k2 for a local image region is not necessary to compute all

the feasible normal curvatures, both can be computed from the first and second fundamental

forms. These fundamental forms are estimated computing the first and second order partial

derivatives in the Taylor expansion showed in equation (2.7). Those partial derivatives are

computed as in [64] using a straightforward method, convolving an image I with a differen-

tiable kernel G.

The principal curvatures k1 and k2 determine two important differential invariants, the

Gaussian curvature K and the Mean curvature M .

2.4.2 First Fundamental Form

Given a point p, the first order terms of the Taylor expansion conform its so-called Jacobian

matrix,

J =

(
∂p
∂x
∂p
∂y

)
=

(
1 0 Lx

0 1 Ly

)
(2.8)

where first-order partial derivatives Lx and Ly are estimated applying Gaussian derivative

kernels on the image as in equation (2.4).

The first fundamental form FI for the point p on an image I is defined as,

FI = J ∗ JT =

(
1 + I2x IxIy
IyIx 1 + I2y

)
(2.9)
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2.4.3 Second Fundamental Form

The normal vector N to the point p on an image I is defined as,

N =

∂p
∂x × ∂p

∂y∣∣∣∂p∂x × ∂p
∂y

∣∣∣ =
1√

1 + L2
x + L2

y

⎛
⎝−Lx

−Ly

1

⎞
⎠ (2.10)

The second order terms of the Taylor expansion conform the Hessian matrix H, which is

similar to the second fundamental form FII . The general equation of FII , shown below, is

derived in [25] from the normal curvatures and it is calculated using the second order partial

derivatives and the normal vector N for each point p. Specifically, the second fundamental

form FII for images is defined as,

FII =

(
∂2p
∂x2 N

∂2p
∂x∂yN

∂2p
∂x∂yN

∂2p
∂2yN

)
=

=

((
0 0 Lxx

) ·N (
0 0 Lxy

) ·N(
0 0 Lxy

) ·N (
0 0 Lyy

) ·N
)

=

=
1√

1 + L2
x + L2

y

(
Lxx Lxy

Lyx Lyy

)
=

1√
det(FI)

H (2.11)

where second-order partial derivatives Lxx, Lxy and Lyy are estimated applying Gaus-

sian kernels on the image I as in equation (2.4) and det(FI) is the determinant of the first

fundamental form.

2.4.4 Principal Curvatures Estimation

The relations between FI and FII can be seen through the Weingarten equations [25], which

provide the partial derivatives Nu and Nv of the normal vector N of p with respect to all

the normal vectors in the neighborhood of p. Weingarten equations relate the factors of

FI =

(
E F
F G

)
and FII =

(
e f
f g

)
in order to estimate Nu and Nv on the subspace

defined by the tangent plane to N,

∇N =
(
Nu Nv

)
=

1

EG− F 2

(
fF − eG eF − fE
gF − fG fF − gE

)
(2.12)

The eigenvalues of ∇N are −k1 and −k2 for a local image region, centered on p. By

convention the principal curvatures are the opposite to the eigenvalues of ∇N [25], therefore

the principal curvatures are k1 and k2 .
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2.4.5 Gaussian and Mean Curvature

Gaussian curvature K and Mean curvature M are two differential invariants computed from

the two principal curvatures k1 and k2. Concretely the Gaussian curvature is defined as

K = k1k2 and can be written in terms of ∇N as,

K = k1k2 = det(∇N) =
eg − f2

EG− F 2
=

LxxLyy − L2
xy

(1 + L2
x + L2

y)
2

(2.13)

similarly the mean curvature M can be also written in terms of ∇N as,

M =
1

2
(k1 + k2) =

1

2
trace(∇N) =

1

2

eG+ gE − 2fF

EG− F 2
=

=
Lxx(1 + L2

y) + Lyy(1 + L2
x)− 2LxyLxLy

2(1 + L2
x + L2

y)
3/2

(2.14)

The sign of K and M for a given point p determine the shape of the surface in its neigh-

bourhood [64]. Although Mean curvature represents an important shape measure, it is in

itself not particularly useful. It is important combined with Gaussian curvature in order to

perform a more detailed shape classification as is shown in Table 2.1.

K < 0 K = 0 K > 0
M > 0 saddle contour dark blob

M = 0 or plane —

M < 0 corner contour bright blob

Table 2.1: Curvature shape classification. Combining Gaussian curvature K and Mean curva-

ture M the local shape of an image region is described.

In terms of K, the shape of a given point p is classified in 3 kinds of local surfaces

topologies. When K > 0 the surface is locally concave or convex (i.e. blob regions) and the

point is called elliptic, while for K < 0 the surface is saddle shaped (i.e. corner and saddle

regions) and the point is called hyperbolic. Finally, the points with K = 0 (i.e. contours or

plane regions) are called parabolic. In Figure 2.5 is shown that K is defined positive if its

principal curvatures have the same sign, negative if they have different sign and zero if any

principal curvature is zero. Finally, the scalar K, apart from giving information about the

kind of region, offers also information about the shape strength, which can be understood as

saliency.

An special case we think must be mentioned is the behaviour of the Gaussian curvature in

a corner structure. In Figure 2.6 is shown the evolution of K from negative values to positive

ones, that means the three surface topologies are closely related in this kind of structure. This

behaviour was deeply studied in [23, 141, 41], in fact [27] proposes a method to detect the

parabolic point located between the elliptical and the hyperbolic extreme since its location is

more stable. An interesting study about the stability of hyperbolic points was done in [41]

showing that depending on the corner angle the hyperbolic extreme can be inside or outside of
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Elliptic point
K > 0

Parabolic point
K = 0

Hyperbolic point
K < 0

Figure 2.6: Evolution of the Gaussian curvature K in a corner structure. Corner structures can

be considered as image regions that can be represented as elliptical, parabolic or hyperbolic

regions at the same time.

the corner while the elliptical one is always inside. [4] proposes to estimate the determinant of

the Hessian to approximate the Gaussian curvature and detect maxima responses as corners.

However, corner detection using this approach in a multi-scale representation is very unstable

since the spatial location suffer huge variations along the scales (see Figures 2.8 (top-right)

and 2.7 (top-right)). In fact, the Hessian-Laplace detector is considered a multi-scale blob

detector [90] instead of a corner detector.

A different kind of corner detectors, which are probably the most known, are based on

the computation of the second moment matrix [45, 101, 120, 91] , being the most known the

Harris detector [45], which is computed as det(μ)− κ trace2(μ) where κ = 0.04 in our ex-

periments. These detectors detect corners inside the corner structures by roughly looking for

elliptical points (see Figures 2.8 (bottom-right) and 2.7 (bottom-right)). Recall that elliptical

points denotes blob structures, for this reason the multi-scale version of the Harris detector,

the Harris-Laplace detector [91], is also partially considered as a blob detector [136].

2.4.6 Relations with Other Common Operators

The denominator in equation (2.13) is always positive, therefore the sign of K coincides with

the sign of the numerator, which is the determinant of the Hessian matrix H. Assuming that
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K det(H)

M 1
2 trace(H)

det(μ) Harris

Figure 2.7: Relations between the responses of several operators on a corner structure. Green,

red and blue lines denote negative, zero and positive responses. Green and blue dots denote the

extreme responses.
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K det(H)

M 1
2 trace(H)

det(μ) Harris

Figure 2.8: Relations between the responses of several operators on a blob structure. Green,

red and blue lines denote negative, zero and positive responses. Green and blue dots denote the

extreme responses.
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Figure 2.9: Operator responses along the pixels belonging to the diagonal from the top-left

corner to the bottom-rigth corner of the image showing the synthetic corner in Figure 2.7.

Vertical dashed lines denote the corner location. Responses of M , trace(H), det(μ) and

Harris have been scaled.
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Figure 2.10: Operator responses along the pixels belonging to the diagonal from the top-left

corner to the bottom-rigth corner of the image showing the synthetic square in Figure 2.8.

Vertical dashed lines denote the spatial location of corners and blob center. Responses of M ,

trace(H), det(μ) and Harris have been scaled.
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a point p is critical (Lx and Ly vanishes), its Gaussian curvature is the determinant of H. In

the other cases, when Lx and Ly do not vanish, it can be shown that the value of K is close

to det(H) whenever the partial derivatives are estimated using normalized kernels[80]. In

Figures 2.8 (top) and 2.7 (top) are shown the similarities in the surfaces generated by both,

K and det(H). Moreover in Figure 2.10 is shown that in critical points the responses of

both are the same, in all the other cases the responses are slightly different. It is worth to

remark that for corner detection, as can be seen in the Figures 2.9 and 2.10, the local extrema

in det(H) suffer small perturbations with respect to K. In fact, since first-order derivatives

in numerator of equation (2.13) are not taken into account the surface region around the real

corner is flatten and then, sometimes det(H) responses cause the creation of spurious local

extrema close to the real one.

Similarly, in equation (2.14) when Lx and Ly vanishes the Mean curvature is equivalent

to the Laplace operator 1
2 trace(H) (Figure 2.10). As in the previous comparison, the local

extreme can suffer small variations in presence of corners. Laplacian operator produces ex-

treme responses for saddles, corners, blobs and even contours, although for blob structures its

absolute value is higher than the responses for the other structures (recall that for bright blobs

responses are < 0 and for dark blobs are > 0). In Figures 2.9 and 2.10 can be seen slightly

maxima around the corner regions and a prominent minimum in the blob region. Similarly,

in Figures 2.7 and 2.8 around the edges slightly maxima responses are obtained. The most

known detector based on Laplacian filter is [80] and its speed up version proposed by Lowe

in [84]. In bibliography this detector is commonly used for scale selection jointly with other

operators that create strong positive maxima like the Harris operator in the Harris-Laplace

detector [91]).

Finally, in Figures 2.7, 2.8, 2.9 and 2.10 can be seen that the determinant of the second

moment matrix is a very rough approximation of the Gaussian curvature and determinant

of the Hessian. In fact, in Figures can be seen that both operators, Gaussian curvature and

determinant of the Hessian, allows to detect with relative accuracy corner structures even in

the huge scale required to detect the blob structure in Figure 2.8.

2.5 Scale Invariant Detection of Non-redundant Interest
Points

In this section we present three novel scale invariant detectors that are designed thinking in

two main goals: First, simplify subsequent tasks, such as matching, improving their perfor-

mance and reducing their computational complexity by increasing the discriminatory power

of the detected points. This can be achieved avoiding redundancy, which increases the dis-

tinctiveness and uniqueness. Second, avoid to apply several detectors, reducing the compu-

tational complexity to obtain complementary interest points, such as corner and blobs. This

goal can be achieved obtaining an accurate description of the image surface that is common

to complementary interest points.

These aims are achieved in the proposed scale invariant detectors taking advantage of the

Gaussian curvature properties shown in the previous section. The proposed detectors are able
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to detect corners, blobs or both at the same time by means of the evolution along the scales

of elliptic and hyperbolic extreme responses.

The evolution of local image structures, through the scale-space levels, is a valuable in-

formation allowing to analyse each structure independently, allowing to estimate the most

distinctive location and scale for each one. For this purpose, we propose a robust bottom-up

method to link elliptic and hyperbolic extreme responses between scale-space levels using

a gradient ascent or descent approach depending on the region typology. Afterwards, we

propose an automatic scale selection algorithm, which evaluates the responses along each

trajectory independently.

(a) Example of 3 scale-space levels
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(b) Trajectories along the stacked scale-space levels

Figure 2.11: From scale-space levels to blob trajectories. (a) shows 3 hypothetical consecutive

scale-space levels computed using Gaussian curvature on a 1D image (for clarity). (b) shows

the trajectories obtained along the stacked scale-space levels shown in (a). Blob and corner tra-

jectories P are represented by the green and yellow regions respectively. Being each trajectory

denoted as set of relations ri,j between candidate interest points ζki .
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2.5.1 Proposed Non-redundant Detector for Simultaneous Detection of
Corner and Blob Structures

In this section our novel detectors of corners and blobs avoiding redundant detections are

proposed. Our approach is based on a bottom-up gradient ascent algorithm for blob detection

and a gradient descent algorithm for corner detection using Gaussian curvature as operator to

build the multi-scale representation.

Redundancy is avoided from the evolution of the image structures over scale, as Lin-

deberg in [77] we consider exist 4 events along the evolution: structure creation, structure

annihilation, structure merging and structure split. However, we consider only 3 events are

required in order to detect the characteristic scale for each interest point: creation, annihila-

tion and merging events. The creation event occurs when a new structure appear in a concrete

scale-space level and it is not present in the previous level. Similarly, the annihilation occurs

when an structure vanishes. Both events represent the starting and finishing scales where the

structures are meaningful. The merging event happens when two or more existing structures

join in a single one. In Figure 2.2(right) these three events are shown, we can see four blob

creation events, three merging events and one annihilation. The split event consist in the

division of one structure in two or more structures. In our approach each split event results

in the creation of a new evolution chain. However, if a complete description of the image

is required as in [77] we can estimate the split events by using the same strategy but from a

top-down point of view.

The initial step of our detectors is the construction of a multi-scale representation L by

using the Gaussian curvature K as operator at n different scales σk using equation (2.3). Once

L is constructed, for each scale-space level L(x, y, σk) the candidate interest points ζki are

extracted by detecting the local extreme responses in the 8-neighbourhood of each pixel (local

maxima for blobs and local minima for corners). The relations ri,j between candidates ζki at

consecutive scale-space levels are extracted in order to determine the trajectory of each blob

or corner structure Pl. The final set of interest points X is found looking for local extreme

responses of K for each Pl. Figure 2.11 intuitively shows the behavior of the algorithm

in a 1D signal where local maxima denote blob structures and local minima denote corner

structures. Figures 2.12 and 2.13 show the output for a synthetic and a real image. Concretely,

the algorithm to extract the interest points is:

1. For each candidate ζki

(a) ρk+1 ← Project ζki to level k + 1.

(b) Apply a gradient ascent/descent algorithm to ρk+1 in L(x, y, σk+1) in order to

maximize/minimize K and obtain the relation ri,j between two candidate points,

ri,j ←
(
ζki , ζ

k+1
j

)
(c) Add ri,j to the existing set of relations,

R ← {R, ri,j}
End

2. By concatenation of relations in R, each trajectory Pl is built.

Pl ← {ζki , ζk+1
j , ζk+2

m ...} ← {ri,j , rj,m...}
3. Interest points X are selected as the local maxima/minima of the K along each trajec-

tory Pl.
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Figure 2.12: Output of our scale invariant blob and corner detector on a synthetic image. The

estimated blob and corner trajectories are shown in blue and yellow, respectively. In red are

shown the selected interest points.

Therefore, our detector of blobs only looks for local maxima candidates, our corner de-

tector only looks for local minima candidates and our full detector looks for both.

The set of trajectories P contains the creation, merging and annihilation of each blob

and corner structure. In order to take into account the split event, the algorithm is used in a

top-down manner, projecting the candidates ζki to an inferior level k − 1.

An important property of the proposed detectors is related with thresholding. These de-

tectors do not need to use any threshold in contrast with other detectors, which use thresholds

to discard not good enough points and select the most reliable points (e.g. [80, 91, 84]).

2.5.2 Computational Complexity

Scale invariant detectors based on a muti-scale representation consume most of the com-

putational cost in the scale-space construction. This cost is related with the convolution of

operators at different scales. In order to compare our detectors with the state-of-the-art, we

have selected two of the most known blob and corners multi-scale detectors, the Hessian-

Laplace [90] and the Harris-Laplace [91] detectors. The Hessian-Laplace detector needs to

compute the determinant and trace of the Hessian matrix while the Harris-Laplace needs to

compute the laplacian operator and the determinant and trace of the second moment matrix.

Our detectors require to compute the Hessian matrix and the Jacobian matrix. In Table 2.2

the detectors complexity is compared.

In our detectors the gradient ascent/descent algorithm can be considered a source of com-

plexity comparing with state-of-the-art detectors, however in our experiments we have seen

its complexity is marginal (it is less than 1% of the total cost). From our point of view, the

computational cost should not be a problem for real time execution since all the convolutions

can be simultaneously done using parallel computing.
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Detector Operation on image Operations on patch

(scale invar.) (candidate points) (point selection)

Ours #s K(I) #m ∇K
Hessian-Laplace #s det(H(I)) #3m (dxx + dyy)
Harris-Laplace #s( det(μ(I))− α trace(μ(I)) #3m (dxx + dyy)

Table 2.2: Comparison in terms of computational complexity and cost between our scale in-

variant detectors and the Hessian-Laplace and Harris-Laplace detectors. K(I) denotes the

Gaussian curvature, H(I) the Hessian matrix and μ(I) the second moment matrix computed

for each image point. For each candidate point, ∇K is the gradient ascent/descent applied on

the upper scale-space level and #3 (dxx+dyy) is a convolution by the Laplacian operator in 3

adjacent scale-space levels. #s denotes the number of scales and #m the number of candidate

interest points.

2.6 Affine Invariant Blob Detection Fitting Gaussian Func-
tions

In this section we exhibit our shape adaptation algorithm based on the idea of modelling blobs

by fitting an anisotropic Gaussian function, in front of the Mikolajczyk and Schmid method

[91] based on the second moment matrix. Our algorithm allows simultaneously modelling

the spatial location and shape of each blob structure, in contrast with the Mikolajczyk and

Schmid algorithm, which is performed in two steps: shape estimation and point re-detection

reapplying a scale invariant detector. In order to achieve this simultaneity we propose an

optimization method solved applying a weighted non-linear least squares approach.

A Gaussian function has been selected as model because all the values of the domain

have a positive image. Thus, the limit when domain values are moving away from the (0, 0)
tends to 0, and so the error between the Gaussian function and the image region is controlled.

However, parametric functions that do not accomplish this property cannot be estimated ac-

curately. For example, in parabolic functions the error is infinite for far away points.

2.6.1 Weighted Non-linear Least Squares Algorithm in order to Fit Gaus-
sian Functions on Images

Gaussian functions are not linear and do not have a polynomial representation, for this reason

a non-linear least squares algorithm is necessary to fit them [24]. Furthermore, to improve

the robustness, the Levenberg-Marquardt method [86, 73] and a weighted version of the al-

gorithm have been used.

Given a Gaussian function G of two variables (x, y) depending on 7 parameters λ = (β,

μx, μy , α, σx, σy , ρ),

G(x, y) = β + α exp
− 1

2

(
x− μx y − μy

)⎛⎝ σ2
x ρσxσy

ρσyσx σ2
y

⎞
⎠
−1⎛

⎝x− μx

y − μy

⎞
⎠

(2.15)



34 SCALE & AFFINE INVARIANT INTEREST POINTS

Figure 2.13: Output of our scale invariant blob detector (top image) and output of the proposed

shape adaptation algorithm (bottom image). Trajectories appear on the top image in blue and

interest points appear in red in both images. Comparing both images is noticeable that some

scale invariant blobs do not converge to an affine blob.



2.6. Affine Invariant Blob Detection Fitting Gaussian Functions 35

The goal is to find the parameters λ, which best fit the Gaussian function with the given

candidate image region, in the least squares sense. Taking m pixel intensity values of the im-

age I(x, y) and picking an initial guesswork for the parameters, their residuals ri are defined

as,

ri = I(xi, yi)−G(xi, yi) , i = 1, 2, ...,m. (2.16)

The minimum square error S =
∑m

i=1 r
2
i occurs when the gradient is zero. Thus, since

the Gaussian model contains 7 parameters there are 7 gradient equations. In order to obtain

a linearised estimation for the changes Δλ = (Δβ, Δμx, Δμy , Δα, Δσx, Δσy , Δρ) it is

necessary to reduce residuals ri to 0 by solving,

⎛
⎜⎜⎜⎝

r1
r2
...

rm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 ∂f1

∂μx

∂f1
∂μy

∂f1
∂α

∂f1
∂σx

∂f1
∂σy

∂f1
∂ρ

1 ∂f2
∂μx

∂f2
∂μy

∂f2
∂α

∂f2
∂σx

∂f2
∂σy

∂f2
∂ρ

...
...

...
...

...
...

1 ∂fm
∂μx

∂fm
∂μy

∂fm
∂α

∂fm
∂σx

∂fm
∂σy

∂fm
∂ρ

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δβ
Δμx

Δμy

Δα
Δσx

Δσy

Δρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.17)

where the gradient matrix is the Jacobian J of the Gaussian function. This equation can be

written as r = J Δλ. Solving the previous equation, JT is applied to both sides, obtaining,

JT r = (JTJ)Δλ (2.18)

However, not all the observations I(xi, yi) are equally relevant, because not all the m
pixels belong always to the same local structure. Thus, assuming that far pixels are less

relevant because they can belong to other local structures, a weighted sum of square errors

S =
∑m

i=1 Wiir
2
i should be minimized,

JTWr = (JTWJ)Δλ (2.19)

being W assigned according to a Gaussian function parametrized by λ.

To increase the robustness of Δλ estimation, the Marquardt parameter [86] is added to

the equation,

JTWr = (JTWJ+ γ diag(JTWJ))Δλ (2.20)

where γ is the Marquardt parameter and diag(JTWJ) allows to control its scale.

The Levenberg-Marquardt method [86, 73] can be seen as a combination between the

Gauss-Newton algorithm and the steepest descent. Increasing the value of γ has the effect

of changing both, the direction (rotating towards the direction of steepest descent) and the

norm (making it smaller) of Δλ. So, γ is increased when squared error S increases (making

the steepest descent direction stronger) and γ is decreased when squared error S decreases
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(making the Gauss-Newton direction stronger). γ is decreased when error decreases because

Gauss-Newton method is generally more effective when the squared error S is near to zero.

The Levenberg-Marquardt method consists on the iteration of the equation (2.20), modifying

γ until the squared error difference between two iterations is lower than a constant τ . Thereby,

the equation weights W are updated on each iteration controlling robustly the addition of new

pixels into the model.

Equation (2.20) can be solved for Δλ using standard matrix techniques. Δλ is then

applied to the parameters and new residuals r are calculated. By iteratively applying this

procedure a solution is obtained. As convergence criterium to decide when the solution is

obtained we propose,

∣∣∣∣Sk − Sk+1

Sk

∣∣∣∣ < τ (2.21)

where τ is a threshold, concretely we use τ = 0.01. Sk is the residual for the iteration k.

Note that the procedure convergence is often greatly improved by picking initial values

close to the best-fit value. Thereby, depending on the goodness of the initial parameters,

obtained from a scale invariant blob detector, the convergence will be quicker, slower or even

not achieved. Figure 2.13 shows some examples of non-convergence of initial scale invariant

blobs to affine blobs, for example the big blob detected on the crosswalk do not converge

since the underlying image region is not a clear blob-like structure. In our experiments we

discard affine blobs when their center is not found inside the image. However, other measures

can be used to quickly discard these kind of regions such as, the intersection with the initial

scale invariant blob, huge spatial location changes and/or scale changes. These measures

reinforce that the final blob fits on the initially detected local image structure. For example,

in [91] to ensure that the shape adaptation process converges fast on the correct image region

the spatial location is constrained.

2.6.2 Proposed Shape Adaptation Algorithm

Our shape adaptation algorithm is based on two main ideas. The first one consists in the es-

timation of the spatial location and shape of blob structures simultaneously using a weighted

non-linear least squares approach. The second one is related with the evaluation of the pre-

vious estimation, proposing evaluate least squares solutions by means of Gaussian curvature

K. Recall that K is maximized when the image region defined by the least squares solution

contains a blob structure (see Section 2.4).

It is easy to understand that Gaussian functions can be useful approximating bright blobs

because of their similar shapes. That means dark blobs cannot directly be approximated,

they must be firstly converted into bright blobs by inverting their image regions. In order to

differentiate between these two kinds of blob the mean curvature M plays an essential role,

classifying blobs as bright when M < 0 and dark when M > 0 (see Table 2.1).

The proposed algorithm requires an initial scale invariant blob Xi with Ki > 0, initial

spatial location pi and scale σi. The outline of the algorithm for a given Xi blob is:
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(a) K = 0.0330 (b) K = 0.0418

(c) K = 0.0406 (d) Final K = 0.0418

Figure 2.14: Example of execution of our shape adaptation algorithm. (a) shows the initial

isotropic blob in blue (K = 0.0252) and the solution (red ellipse) found in the first iteration

of our method. (b) and (c) show the two next iterations of the algorithm. The green rectangles

are the image regions used in the modeling process. In (d) the final result is shown, where the

green ellipse represents the solution that maximizes the Gaussian curvature (K = 0.0418).

1. Initialization of the covariance matrix for Xi, which defines the shape for pi as

Ci =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
i

=

(
σi 0
0 σi

)
i

(2.22)

2. Do

(a) Extraction of the underlying image region Il associated to the parameters (p, σx, σy, ρ)
l
i,

where Il size and orientation is determined by the eigenvectors of Cl
i multiplied

by a constant θ (we use θ = 3).

(b) Estimate the new parameters (p, σu, σv, ρ)
l+1
i on Il using the weighted non-linear

least squares method shown in the previous section.
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(c) Calculate Kl+1 for Il+1 defined by (p, σx, σy, ρ)
l+1
i .

While Kl+1 > Kl

3. Finally, the affine invariant blob X ′
i is defined by (p, σx, σy, ρ)

l
i maximizing Kl.

In Figure 2.14 a step by step example of this algorithm is shown. Showing how the

Gaussian function is fitted in each iteration in order to maximize K. Figures 2.13 and 2.20

show the final results of the adaptation process for a given set of scale invariant blobs.

2.6.3 Computational Complexity

Our shape adaptation algorithm obtains the affine invariance by estimating the parameters

of equation (2.15) iteratively, until the Gaussian curvature is maximized. Thereby, since

the parameters λ for each iteration are estimated by another iterative algorithm, the main

computational cost of our approach is due to this nested loop. The number of iterations related

to each loop depends on the initialization (better initial parameters imply less iterations).

Typically, the number of iterations #n1 and #n2 are less than 6 and 4 respectively. On the

other hand, for the algorithm proposed by Mikolajczyk and Schmid, #n usually is less than

10 [91].

In Table 2.3 a complexity comparison of our proposed shape adaptation algorithm with

the shape adaptation algorithm used in the Hessian-Affine detector is done and it shows that

the main part of the complexity of the Mikolajczyk and Schmid method is due to the re-

detection step to refine the location and scale.

Detector Shape + Location

Ours Affine #n1 #n2 Sol.Eq.Syst.
Hessian-Affine #n μ(x) · (#s det(H(xneighbors)) + #3m (dxx + dyy))

Table 2.3: Comparison in terms of computational complexity and cost between our affine

detector and the Hessian-Affine detector. μ(x) is the second moment matrix computed for

a point x and H(xneighbors) is the Hessian matrix computed in an image region near to x.

#3 (dxx+ dyy) is a convolution by a Laplacian operator in 3 adjacent scale-space levels. #n
denotes the number of iterations per point, #s denotes the number of scales for the re-detection

step and #m is the number of scale-invariant interest points detected in the re-detection step.

2.7 Experimental Evaluation

In this section we validate the advantages and disadvantages of the proposed scale and affine

invariant detectors in four experimental setups. First, we evaluate the repeatability and match-

ing scores using the evaluation framework provided by Mikolajczyk et al. [90]. Secondly,

we evaluate the precision and recall scores. Thirdly, a novel measure of over-detection is

presented in order to evaluate the redundancy and sparsity of interest points. Finally, from

interest points and the RANSAC algorithm [32] a set of homographies are estimated in order
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to evaluate the behavior of interest points in a real task. All these experimental setups have

been evaluated, by using the images and homographies between image pairs from Mikola-

jaczyk’s evaluation sequences1, under scale, rotation, viewpoint, image blur, compression

and illumination variations. Specifically, there are 8 image sequences composed of 6 images

sorted according to the amount of variation.

Scale invariant evaluation : To evaluate our scale invariant detectors we analyse the

behaviour of our full detector, where corners and blobs are not treated as different structures,

and the behaviour of our corner detector and blob detector individually. We compared our

detectors with three of the most known scale invariant detectors in the state of the art: the

Derivative of Gaussian (DoG) detector proposed by Lowe in [84], the Hessian-Laplace de-

tector [90]2 and the Harris-Laplace detector [91]2. The first two detectors are blob detectors

and the third one is a corner detector, all of them based on multi-scale representations.

Affine invariant evaluation : The evaluation of our affine invariant blob detector has

been done with three affine invariant detectors: the Hessian-Affine detector [90]2, the MSER

detector [88]2 and the gradient histogram based detector proposed in [70]3. All of them have

shown good performance in terms of repeatability and matching in [90] and [70].

2.7.1 Repeatability and Matching

Repeatability score measures the constancy of interest points under homographies [90]. Re-

peatability for a given pair of images is the ratio between the number of point-to-point cor-

respondences and the smaller number of points detected in one of the images inside their

common part. Those point-to-point correspondences are computed measuring the overlap

error between interest points coming from different images. For example, if we denote two

interest points by μa and μb, and their corresponding image regions by Sμa
and Sμb

, their

overlapping error can be defined as,

1− Sμa
∩ S(H�μbH)

Sμa
∪ S(H�μbH)

(2.23)

where H is the known planar homography relating both regions and hence H�μbH the

projection operator from one image to the other one. ∩ and ∪ denote the intersection and

union of the image regions. In this experimental evaluation, as in [90], two interest points

are deemed as a correspondence when their supporting image regions have an overlap error

< 40%.

Matching score measures the matching ability of interest points under homographies [90].

Matching score is the ratio between the number of correct matches and the smaller number of

detected regions in one of the matched images. The best matching for each interest point is

found as its nearest neighbour in the SIFT [84] feature space, and its correctness is evaluated

by using the repeatability measure as ground truth.

1Evaluation sequences can be obtained from http://www.robots.ox.ac.uk/˜vgg/research/
affine/

2obtained from http://www.robots.ox.ac.uk/˜vgg/research/affine/
3obtained from http://740-2.cs.nthu.edu.tw/˜htchen/hipd/
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Figure 2.15: Comparison of scale invariant detectors in terms of repeatability, matching and

precision/recall from evaluation sequences with viewpoint changes and blurring.
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Figure 2.16: Comparison of scale invariant detectors in terms of repeatability, matching and

precision/recall from evaluation sequences with zoom+rotation, JPEG compression and illumi-

nation changes.
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Figure 2.17: Comparison of affine invariant detectors in terms of repeatability, matching and

precision/recall from evaluation sequences with viewpoint changes and blurring.
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Figure 2.18: Comparison of affine invariant detectors in terms of repeatability, matching and

precision/recall from evaluation sequences with zoom+rotation, JPEG compression and illumi-

nation changes.
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Scale invariant evaluation : Figure 2.15 and Figure 2.16, in terms of repeatability and

matching scores, show that there is not any scale invariant detector that clearly outperforms

the others, however Hessian-Laplace detector tends to be the one providing better results.

Concretely our three scale invariant detectors obtain similar results being the best one the

scale invariant blob detector while the full detector, detecting blobs and corners, is the second

one.

Affine invariant evaluation : In terms of repeatability and matching scores Figures 2.17

and 2.18 show that there is not an affine invariant detector outperforming all the other ones in

all the sequences, as pointed out in [90]. Specifically our affine detector obtains, in terms of

repeatability and matching scores, similar results to the best detector in viewpoint, blurring

and zoom+rotation sequences. In the JPEG compression sequence performance is good for

lower compression rates, but for higher compression rates it declines. Finally, in the light

sequence our detector obtains good performance but it does not achieve as good performance

as the other detectors.

Scale invariant versus affine invariant detectors : The main difference between scale

and affine invariant detectors is their behaviour in sequences with viewpoint changes. In

Figure 2.15 is shown how all the scale invariant detectors provides repeatability and matching

scores close to zero for high viewpoint changes. On the other hand in Figure 2.17 is shown

how the repeatability and matching scores improves for high viewpoint changes. In all the

other sequences the repeatability and matching scores are similar in both, scale and affine

detectors.

2.7.2 Precision and Recall

The precision measure allows to evaluate the distinctiveness of descriptors associated to inter-

est points. Showing how the correct matches decline as the total number of matches (correct

+ false positive matches) is increased. Thus, precision score is defined as,

Precision =
#correct matchesthr
#total matchesthr

(2.24)

where thr denotes a threshold on the matching measure.

In contrast, the recall measure is the number of correct matches (thresholded as in the

precision measure) with respect to the absolute number of correspondences (overlapping error

< 40%). Thus, recall score is defined as,

Recall =
#correct matchesthr

#total correspondences
(2.25)

Precision/recall curve evaluates the performance of detectors looking for high precision

scores with high recall scores. Thus, when precision and recall are high, a high percentage

of correspondences are identified as correct matches containing few matching errors (false

positives).
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The third and fourth rows in Figures 2.15, 2.16, 2.17 and 2.18 show the behaviour of all

the evaluated detectors, in terms of precision and recall. The third row denotes the behaviour

under slight variations between images while the fourth row denotes the behaviour under

heavy variations.

Scale invariant evaluation : Our three scale invariant detectors for slight variations

clearly outperforms all the other detectors in all the sequences. The only one sequence where

the other detectors provide comparable results is the JPEG compression sequence. In the case

of heavy variations our detectors also outperform the other ones in 5 sequences, and provides

similar results in 2 sequences. Finally, for heavy variations in one of the viewpoint change

sequences all the scale invariant detector fails.

Affine invariant evaluation : In case of slight variations, our affine invariant detec-

tor clearly outperforms the other detectors in viewpoint sequences, while in zoom+rotation

sequences our detector outperforms or obtains a similar performance to the best detector.

Specifically, with slight variations between images, we can see that our detector provides the

best recall score with a precision of 80% in 4 sequences and the second best in the other 4 se-

quences. On the other hand, for heavier variations the performance is similar, in 3 sequences

is the best and in other 3 sequences is the second best.

Comparing detectors one by one with our affine blob detector in terms of precision and

recall scores, Figures 2.17 and 2.18 show that Hessian-Affine detector is clearly outperformed

by our detector. This fact is remarkable because both, Hessian-Affine detector and our affine

detector, are based on geometry operators and try to detect the same kind of structures. The

MSER detector is outperformed in almost all the sequences as well, this fact is very important

from our point of view because MSER has proved its performance to locate very stable gray-

level regions [90]. Finally, the detector based on gradient histograms shows to be a powerful

detector, obtaining better results than our detector in 3 sequences, drawing in 2 and worse

results in 3.

Concretely for viewpoint, scale, rotation or blurring variations the overall behaviour of

our affine detector is better than the overall behaviour of other affine detectors. In spite of this,

our affine detector obtains similar scores in terms of repeatability and matching. However,

for the illumination variations, where our repeatability and matching scores are worse, the

precision and recall scores are on the average respect to the other detectors. Thereby, we can

assume that our affine detector finds image regions with higher distinctiveness, showing that

precision declines more slowly than the other detectors for similar recall scores.

Scale invariant versus affine invariant detectors : The main remarkable difference be-

tween scale and affine invariant detectors is shown in viewpoint change sequences with heavy

variations, in those sequences the precision and recall scores are significantly improved. For

the other sequences with heavy variations scale and affine detectors provide similar scores.

However in the case of slight variations the precision and recall scores tend to be worst for

affine detectors, we think that this is because of shape adaptation processes are more sensitive

to noise than multi-scale approaches [84].
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Figure 2.19: Example of interest points detected using our blob and corner detector (top) and

Hessian-Laplace detector (bottom) on an image of the graffiti sequence. Our detector locates

2582 interest points (≈ 50% corners) and the Hessian-Laplace detector 2477 interest points. In

pictures interest point locations are depicted as red crosses and treir scales as red circles.
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2.7.3 Over-representation

The over-representation measures whether each local image structure is represented by more

than one interest points. We propose the self-repeatability measure, which provides a mea-

sure of the redundancy and sparsity of the detected points. This measure is computed as the

repeatability measure (2.23), but now between interest points detected on the same image,

preventing one interest point can be related with itself. We consider that local image struc-

tures are over-represented when the overlapping error of near interest points is lower than

30%.

Scale invariant evaluation : In Figure 2.19 the results of our full scale invariant detector,

including corners and blobs, and the results of Hessian-Laplace detector are depicted. In

these images is easy to verify that Hessian-Laplace over-represent local image structures

while our detector tends to avoid representing image structures with more than one interest

point. However, the self-repeatability measure of both detectors on this image is similar, ours

21% and Hessian-Laplace 30%. This is due to many corners are detected close to blobs and

the self-repeatability considers them as redundant. In Table 2.4 the self-repeatability for all

the image sequences and detectors is provided, showing that our corner and blob detectors

clearly avoid over-represent image structures providing non-redundant interest points. In the

case of our full detector, as in the Figure 2.19, the self-repeatability is significantly increased

because of corner and blob structures are highly related as we explain in Section 2.4.5.

viewpoint Image blur zoom+rotation JPEG light overall

graffiti wall bikes trees boat bark house cars

Our Full 20.88 23.71 8.46 24.62 31.29 14.90 31.40 23.81 22.38

Our Blob 8.02 10.54 2.34 11.61 17.07 3.45 15.39 9.90 9.79

Our Corner 8.31 9.65 2.11 10.02 16.73 3.65 15.12 11.21 9.60
Hess-Lap 28.63 20.47 37.18 38.23 30.27 24.13 32.09 36.87 30.98

Harr-Lap 26.44 23.19 26.32 30.65 29.43 23.97 32.04 31.43 27.93

DoG 35.83 26.53 24.05 35.28 36.93 26.94 32.40 40.32 32.28

Table 2.4: Ratio of image regions over-represented by the scale invariant detectors for each

evaluation sequence. The minimum ratio for each sequence is shown in bold. Self-repeatability

has been computed with an overlapping error < 30%.

Affine invariant evaluation : In Table 2.5 the self-repeatability measure for the affine

invariant detectors is shown. Our affine blob detector and the MSER detector provide the

lowest over-representation rates. The overall evaluation show that our blob detector provides

the best results being 45% lower than the MSER rate. Thus, our detector allows to improve

the spatial distribution of the interest points and increasing their distinctiveness.

Figure 2.20 shows how our shape adaptation algorithm fits blobs on real images. More-

over, Figure also shows that our detector perceptually converges better on real blob structures

than the Hessian-Affine detector, avoiding to detect several interest points in order to repre-

sent the same local image structure.

Scale invariant versus affine invariant detectors : In both evaluations our non-redundant

interest point detectors provide the lowest rates in terms of self-repeatability. In the case of
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viewpoint Image blur zoom+rotation JPEG light overall

graffiti wall bikes trees boat bark house cars

Our Affine 7.86 4.47 1.88 5.72 8.48 4.02 7.71 5.86 5.75
MSER 13.34 3.44 34.84 11.91 3.55 3.72 3.55 9.60 10.49

Hes-Aff 50.60 41.12 53.63 52.01 48.03 49.06 49.75 48.42 49.08

Gradient 17.05 17.91 15.00 17.39 20.46 16.83 22.67 19.44 18.34

Table 2.5: Ratio of image regions over-represented by the affine invariant detectors for each

evaluation sequence. The minimum ratio for each sequence is shown in bold. Self-repeatability

has been computed with an overlapping error < 30%.

(a) (b) (c)

Figure 2.20: Example of accuracy on a real image. In (a) and (b) affine invariant blobs found

by our shape adaptation algorithm converge to the real blob: (a) initialized by our proposed

scale invariant blob detector and (b) initialized by the Hessian-Laplace detector. In (c), blobs

found by the Hessian-Affine detector are shown, which do not converge to real blobs. Red

circles are the initially scale invariant detected blobs and black ellipses are the shape-adapted

blobs.

scale invariant detectors, in the overall evaluation our rate is up to three times lower than the

other detectors. For the affine invariant blob detectors our method provides 2 times lower rate

than MSER detector. Specifically, our affine blob detector, which is initialized with the inter-

est points detected by our scale invariant blob detector, reduces the overall self-repeatability

from 9.79 to 5.75. This reduction is because of convergence is not achieved, as we explain

at the end of Section 2.6.1, or because of more than one affine blob exactly represent the

same image region, then only one of them is maintained as interest point, suppressing the

others. In contrast, although Hessian-Affine detector uses Hessian-Laplace as initial detec-

tor the self-repeatability between both cannot be compared. The parameters used inside the

Hessian-Affine detector are not explicitly explained so we have used standard parametriza-

tions1.

2.7.4 Homography Estimation

In order to evaluate the accuracy and computational cost of the matching process in a real

task, we have registered the 8 image sequences provided by the dataset. Evaluation has

been done by comparing the ground truth homographies H , which are also provided by the

1parameters were obtained from http://www.robots.ox.ac.uk/˜vgg/research/affine/
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Figure 2.21: Comparison of scale invariant detectors in terms of εH̃i
from evaluation se-

quences. εH̃i
for each detector and sequence has been computed as the median(εH̃i

) of 10

Ransac-based homography estimations.

dataset, with the set of estimated homographies H̃ . H̃ are estimated by applying 10 times the

Ransac-based image registration algorithm provided by Hartley and Zisserman in [46] (using

a distance threshold t = 0.001). In order to increase the robustness of the registration we only

consider matches in which the nearest neighbor is less than 0.8 times the distance (computed

in an euclidean sense in the SIFT feature space) to the best matching, similarly to Lowe in

[84].

Image registration is evaluated by means of the error, denoted by εH̃ , between each pair

of homographies H and H̃ . εH̃ is measured for each image pair and for each detector i as,

εH̃i
=

1

n

√√√√ n∑
j

(
xj − H̃i(x′

j)
)2

, xj = Hi(x
′
j) (2.26)

where xj are the pixel coordinates belonging to the first image, which correspond with

x′
j in the second image. Finally, from the set of 10 homographies estimated using Ransac for

each image pair and detector we have selected only one H̃i. Being H̃i selected in function of

the median error ( median(εH̃i
)).

Scale invariant evaluation : Figure 2.21 shows a comparison in terms of median(εH̃i
)

after 10 Ransac-based homography estimations for each image pair and scale invariant detec-

tor. All the evaluated scale invariant detectors provide similar errors, however our detectors

tend to be between the ones providing the lowest εH̃i
. In the wall and the bark sequences our

full and blob detectors allow to find a solution in all the variations while Hessian-Laplace,

Harris-Laplace and our corner detectors do not find a solution for large variations.
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Figure 2.22: Comparison of scale invariant detectors in terms of εH̃i
from evaluation se-

quences. εH̃i
for each detector and sequence has been computed as the median(εH̃i

) of 10

Ransac-based homography estimations.

First column in Table 2.6 shows the mean number of features detected by each scale

invariant detector, showing that our blob and corner detectors with less interest points provide

comparable or even better results than the others with a fraction of their cost. The number

of interest points detected by our full detector is the sum of the interest points found using

our blob and corner detectors and its median cost is computed assuming that interest point

typology is unknown. Even so its εH̃i
are not worse than the errors for our blob and corner

detectors, that means that our corner interest points do not tend to be matched with our blob

interest points and conversely. On the other case, when blobs are only matched with blobs

and corners with corners the computational cost of our full detector decreases up to ≈ 10
seconds, dividing its cost by 3.

mean number of median cost

features x image x image pair (in secs)

Our blob 1489 5,39

Our corner 1283 4,93

Our full 2773 33,28

Hessian-Laplace 2018 18,46

Harris-Laplace 2241 20,12

DoG 3464 57,08

Table 2.6: Comparison of scale invariant detectors in terms of computational cost of the match-

ing process for the registration task assuming interest points were previously extracted. The first

column shows the mean number of features detected on each dataset image. The second column

shows the computational cost required to match interest points and estimate each homography

for each image pair.
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Affine invariant evaluation : As in the scale invariant case, Figure 2.22 shows a com-

parison in terms of median(εH̃i
) for each affine invariant detector. In the Figure can be seen

that our affine blob detector, the MSER and the Hessian-Affine detectors provide quite simi-

lar estimations for H̃ , while the gradient based detector provides the worst results, even not

finding a solution with acceptable error in some cases.

mean number of median cost

features x image x image pair (in secs)

Our affine 1023 2,97

MSER 1270 5,11

Hessian-Affine 1987 17,56

Gradient 793 1,93

Table 2.7: Comparison of affine invariant detectors in terms of computational cost of the match-

ing process for the registration task assuming interest points were previously extracted. The first

column shows the mean number of features detected on each dataset image. The second column

shows the computational cost required to match interest points and estimate each homography

for each image pair.

Table 2.7 shows that with less interest points and computational cost our affine blob detec-

tor allows to compute homographies with similar εH̃i
. Qualitatively, Figure 2.23 shows some

examples of registered image pairs using our affine blob detector under very high variations.

Scale invariant versus affine invariant detectors : Comparing Figures 2.21 and 2.22

can be seen that the main difference between them is related with the error in the viewpoint

change sequences, where affine interest points show its ability to deal with large viewpoint

changes. Surprisingly, while Hessian-Affine tends to reduce its error with respect to Hessian-

Laplace detector in almost all the sequences, our affine blob detector tends to slightly increase

the errors except in the viewpoint change sequences. We think that this behaviour is due to

the reduction, in terms of quantity, of the interest points carried out by our affine detector.

Anyway our affine detector has comparable results to the Hessian-Affine detector.

Tables 2.6 and 2.7 show that the computational cost is superlinear in front of the number

of interest points, so detectors providing less and more discriminative interest points allow to

speed up the homography estimation. Combining these detectors with approximated nearest

neighbours matching methods, such as [99], could speed up the process in exchange for a

small reduction in accuracy.

2.8 Summary

In this chapter we have presented a powerful set of tools allowing to find simultaneously

scale invariant corners and blobs, and also affine invariant blobs. All these detectors are

specifically designed to maximize the geometrical invariance and distinctiveness properties.

Distinctiveness property is satisfied avoiding the over-detection of local image structures and

so, obtaining non-redundant and sparse interest points. On the other hand, in the case of scale
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Figure 2.23: Examples of our affine blob detector for image registration tasks on image pairs

with large variations. Green rectangles represent the initial image registered using the correct

homography H and yellow rectangles using H̃). In the first row there are two examples of

image pairs with high variations in scale and rotation εH̃ = 0.67 and εH̃ = 2.70. In the

second row, the first image pair suffers large variations in the point of view (εH̃ = 4.35) and

the second image pair suffers a large degradation due to compression (εH̃ = 0.55) .

invariant detectors geometrical invariance is satisfied extracting interest points from a multi-

scale representation using Gaussian curvature as operator. In the case of our affine invariant

blob detector geometrical invariance is satisfied by the proposed shape adaptation algorithm,

which simultaneously fits the shape and the spatial location of local image structures.

The experimental evaluation shows for all our detectors a comparable performance to the

state of the art in terms of repeatability and matching scores, while in terms of precision

and recall our detectors outperform or obtain similar scores. In addition, experiments show

our detectors provide sparse interest points, avoiding redundant detections that over-represent

specific image regions. Therefore, our detector improves the spatial distribution of the interest

points and increases their distinctiveness, allowing to decrease the computational cost of

future matching tasks. Finally, we have shown our scale invariant detectors obtain slightly

better accuracy in image registration tasks than other detectors while our affine invariant

detector obtain similar accuracy.



Chapter 3

Learning of Discriminative Local Image
Descriptors

Many computer vision applications still rely on hand-crafted local image descriptors such as

SIFT. However, for image-level tasks such as classification, Deep learning has become the

dominant paradigm in detriment of hand-crafted ones. In this chapter we propose a novel

framework based on learning of discriminant descriptors from local image regions using Con-

volutional Neural Networks (CNNs). In particular we propose training a Siamese network

architecture using pairs of corresponding and non-corresponding image regions. We deal with

the large number of potential pairs with the combination of a stochastic sampling of the training

set and an aggressive mining strategy biased towards regions that are hard to classify.

We thoroughly evaluate multiple architectures, configurations and hyper-parameters over dif-

ferent datasets. Our models are fully convolutional, can be computed densely in an efficient

manner, and are amenable to modern GPUs. By using the L2 distance during both, training

and testing, we develop 128-D descriptors whose euclidean distances reflect region similarity,

and which can be used as a drop-in replacement for any task involving SIFT. We demonstrate

consistent performance gains over the state of the art on various tasks, and generalize well

against scaling and rotation, perspective transformation, non-rigid deformation, and illumina-

tion changes.

3.1 Introduction

The previous chapter is dedicated to find interest local image regions, in this one we study

invariant and discriminative representations for those local image regions in order to improve

their ability to be recognized. Representing local image regions in an invariant and discrimi-

native manner is a major research topic in Computer Vision. The aim of these representations

consist in obtain robust descriptors to image perturbations and changes in the viewing condi-

tions, such as noise, blurring, illumination changes or perspective changes.

53
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(a) Data (b) All pairs (c) “Hard” pairs

Figure 3.1: To train models with Siamese networks, we need pairs of corresponding and non-

corresponding samples. (a) We use t-SNE [137] to display ∼ 100 64 × 64 patches of 12 3D

points from different images (see Figure 3.5 for examples). Corresponding regions are drawn

with the same color. (b) We single out the red-circled patch, belonging to the blue point cloud,

and consider all of its potential pairings. The line length encodes the closeness between this

region and the rest: positive matches in blue, negative in red. Most pairs are easy to discriminate

and ineffectual for training. (c) We mine the samples to obtain the closest negative (shortest red

line) and the most distant positive (longest blue line). This simple strategy allows us to train

discriminative networks over large datasets.

The field reached maturity with SIFT [84], and has since become the cornerstone of a

wide range of applications of Computer Vision as object recognition [84, 135], image reg-

istration [91] or 3D reconstruction [1]. Similarly to SIFT, which is based on spatially dis-

tributed histograms of gradients, most descriptors rely on hand-crafted features [3, 65, 84,

121, 131, 133, 142] trying with more or less success provide simultaneously invariance and

discriminatory power.

There has recently been interest in using machine learning techniques to learn descriptors

from large datasets [113, 122, 134]. In this case, descriptors are learnt from sets of local image

regions, which represent under different viewing conditions specific image regions. The goal

is to automatically capture the similarities and differences between those local image regions

in order to maximize the invariance and discriminative power. These descriptors clearly

outperform the hand-crafted ones [122], since they are able to deal with very difficult issues

such as: spatial location errors, in-plane perspective variations or even those perspective

variations produced by image regions that are not planar in the real 3D scene and can even be

partially affected by self-occlusions.

In this chapter we draw inspiration from the recent success of Deep Convolutional Neural

Networks (CNNs) in large-scale image classification problems [66, 129] to learn discrim-

inative descriptors for local image regions. However, in our case discriminative training

does not rely on labels of individual regions, but rather on pairs of corresponding, or non-

corresponding regions. For this reason we propose a Siamese network architecture [8] that

employs two CNNs with identical parameters to compare pairs of image regions. Each pair of

image regions is propagated forward through the network giving two different CNN outputs,

which are treated as region descriptors. Then we minimize a loss function that enforces the

L2 norm between both descriptors to be small for corresponding regions and large otherwise.
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Figure 3.2: Schematic of a Siamese network, where pairs of input patches are processed by

two copies of the same CNN, sharing all the internal parameters.

In Figure 3.2 a schematic view of the proposed approach is shown.

To train this network we rely on the multi-view stereo dataset (MVS) [9], which contains

over 1.5M grayscale 64 × 64 image regions from different views of 500K 3D points. The

difficulty with such a large dataset is that it becomes impossible to exhaustively explore all

corresponding and non-corresponding pairs, so we must resort to some form of random sam-

pling. Based on the observation that after a certain point of learning most pairs are correctly

classified, and using them no longer improves the learned embedding, we propose a strategy

of aggressive mining of ”hard” positives and negatives. During the learning stage we en-

force the back-propagation of samples with a large loss, i.e. corresponding pairs that match

poorly and non-corresponding pairs that are hard to discriminate (see Figure 3.1 for a graph-

ical interpretation). This fact proves to be most useful for efficiently learning discriminative

descriptors.

Since we use the L2 distance to compare descriptors, rather than some nonlinear, task-

specific metric, as e.g. in [42, 147], we believe that the resulting descriptors can be used as

drop-in replacement for popular representations such as SIFT, in a manner agnostic to the

application. Furthermore, as our descriptors are primarily built from convolutions they are

very efficient to compute and can be easily parallelized, taking advantage of modern GPUs

to greatly speed up their extraction.

3.1.1 Overview

This chapter is organized as follows. In the next section recent CNN-based descriptors

are introduced. Section 3.3 explains the fundamentals required to understand Neural Net-

works and CNNs. In Section 3.4 we present our CNN-based descriptors taking advantage of

Siamese networks and large sets of correspondences. Finally, in the last section we perform

in-depth comparisons against both traditional, hand-crafted descriptors [84, 131, 121] as well
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as learned, state-of-the-art descriptors [122, 134], using Precision/Recall (PR) and its Area

Under the Curve (AUC) as a metric, and demonstrate consistent gains in performance. We

also show that our descriptors generalize very well to applications for which they were not

specifically trained, demonstrating remarkable robustness against scaling, rotation, viewpoint

changes, non-rigid deformations, and varying illumination.

3.2 Related CNN-Based Approaches

Recent developments in the design of local image repesentations are moving away from

carefully-engineered descriptors [3, 84, 131] and towards learning descriptors from large vol-

umes of data. This line of works includes unsupervised techniques based on hashing as well

as supervised approaches using Linear Discriminant Analysis [9, 39, 125], boosting [134],

and convex optimization [122].

In this section we explore solutions based on Convolutional Neural Networks (CNNs),

which currently are the dominant paradigm in tasks involving semantic information, e.g.

image classification [66, 129] or semantic segmentation [83, 12]. Even though it may be

unclear whether CNNs are equally appropriate for applications based on local image regions

where semantic information may be missing, we argue that for our particular problem this is

indeed the case.

Descriptor learning using CNNs was addressed early in [50, 104], but the experimen-

tal results in these works left open questions regarding several practical aspects, such as the

most appropriate network architectures and application-dependent training schemes. We aim

to provide a rigorous analysis of several of these topics. More recently, the use of Siamese

networks for descriptor learning was exploited by concurrent works on joint descriptor and

metric learning [42, 146, 147]. Han et al. [42] use a Deep Convolutional Neural Network in

a Siamese architecture followed by a fully-connected network that learns a comparison func-

tion. Zagoruyko et al. [146] rely on a similar architecture but add a network that only focuses

on the center of the image, which they show increases performance, at a computational cost.

Zbontar & LeCun [147] trained CNNs for narrow-baseline stereo and obtained the top results

on the KITTI benchmark [36]. These approaches rely on larger networks and do not neces-

sarily learn compact, discriminative representations, like ours. In contrast, we show how to

exploit discriminative training strategies to build small but powerful models.

One key distinction between [42, 146] and our work is that we aim at using the CNN

outputs of our Siamese networks in place of traditional descriptors in existing pipelines. Un-

like [42, 146, 147] there is no non-linear ’metric network’ following the Siamese network

application, but rather we simply use the L2 distance to compare patches. In [146] a lim-

ited evaluation of L2-based similarity shows promising results, which however is not entirely

clearly outperforming [122]. Instead we show substantial gains, which can be also attributed

to using the L2 distance during training. Finally, using descriptors that can be compared with

the L2 distance facilitates the use of efficient methods for nearest neighbour computations,

such as KD-trees, which we believe opens up the path to large-scale retrieval applications.

Another deviation of our work from common practice is that we observe that during de-
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scriptor training the majority of non-corresponding region pairs eventually become easy to

discern, which hinders the learning of discriminative models. Mining hard negatives is a

well-known procedure in the context of sliding-window detectors [30], where the number of

negative samples (windows) is virtually unlimited and yet most negatives are easily discrim-

inated once we have already used a certain number of negative samples for training. Similar

techniques have been applied to CNNs for object detection [37, 129]. In this chapter we

demonstrate that aggressive mining of both ”hard” positive and negative samples greatly en-

hances the learning process: as we detail in the Section 3.4, we sample a large number of

matches and use the subset with the largest loss to update the network.

3.3 Introduction to Artificial Neural Networks and CNNs

Artificial Neural Networks (ANNs) were inspired by biological neural networks during the

40s. From that moment ANNs have evolved up to the current concepts of Deep Network

where many layers are added in order to improve the learning of unknown functions described

by input data, or Deep Convolutional Network where convolutional layers are used in order

to reduce the number of parameters. During the last decade thanks to a radical increase in the

available computational power, allowing to train networks with millions of parameters, their

usage has exploded in the computer vision field showing very good performance in tasks as

object or image classification.

An ANN consist in a set of inter-connected layers containing nodes, so called ”neurons”.

In this section we consider ANNs defined by a directed acyclic graph where nodes are con-

nected with all the nodes in the previous and next layers, these ANNs are commonly called

feedforward neural networks. The output ali of the node i in the layer l is related to the outputs

in the layer l − 1 by,

ali = σ

(∑
k

wl
ika

l−1
k + bli

)
(3.1)

where σ denotes a non-linear activation function, bl a bias term and wl
ik a weight for the

connection with the node k of the layer l − 1. This equation can be written in a matrix form

denoting all the nodes in each layer as,

al = σ
((

Wl
)T

al−1 + bl
)

(3.2)

where each column in W encodes all the input weights for a given node, al−1 all the

outputs of the previous layer and bl all the biases for the nodes in layer l. Typically, the

activation function σ was defined by the sigmoid function or hyperbolic tangent, however the

Rectified Linear Unit (ReLU), f(z) = max(0, z), is the most popular activation function for

Deep Networks [68].
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3.3.1 Back-propagation Procedure

During the network training a large number of weights wl
ik and biases bli must be learnt.

The back-propagation procedure [114] allows to iteratively adjust the weights and biases in

the network so as to minimize a cost function C, which is an average over a loss function

L(aL,y) relating the output vector of the last layer aL with the desired output y. Therefore,

the goal of back-propagation is to compute the partial derivatives ∂C
∂w and ∂C

∂b as an averaging

of ∂L
δw and ∂L

∂b over training samples. To compute those partial derivatives back-propagation

provides a procedure to compute the error δli for each node in the network. First of all the

errors δL in the output layer are computed,

δL =
∂C

∂aL
� σ′

((
WL

)T
aL−1 + bL

)
(3.3)

where � denotes the Hadamard product and σ′ the derivative of the activation function.

Afterwards, the errors δl can be computed in terms of the errors in the next layer δl+1,

δl =
((

Wl+1
)T

δl+1
)
� σ′

((
Wl

)T
al−1 + bl

)
(3.4)

Thus, reapplying this equation for all the layers from layer L− 1 to layer 2 all the errors

are estimated and partial derivatives for each node can be computed,

∂C

∂wl
ik

= al−1
k δli (3.5)

∂C

∂bli
= δli (3.6)

3.3.2 Learning Procedure

In summary, back-propagation first of all given a set of training samples apply a forward

pass using the equation (3.2) obtaining an output vector aL for each sample. Afterwards,

the output error L(aL,y) for each sample is computed and used to perform a backward pass

propagating the error through the network using equations (3.3) and (3.4). Finally, all the

partial derivatives are computed using equations (3.5) and (3.6) in order to update the weights

and biases terms using the gradient descent learning rule,

wl
ik → wl

ik − η
∂C

∂wl
ik

(3.7)

bli → bli − η
∂C

∂bli
(3.8)

where η is the learning rate. All this procedure must be iterated until convergence is

achieved.
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A common method to accelerate the gradient descent convergence is the momentum

method [109], this method accumulates the gradient directions looking for directions reduc-

ing persistently the error across iterations,

v → μv − η
∂C

∂θ
(3.9)

θ → θ + v (3.10)

where μ denotes the momentum coefficient, v the accumulated gradients and θ all the

weights and biases.

3.3.3 Minibatch Stochastic Gradient Descent

Exploiting that C is an average over L(aL,y), a fast method to update the weights and biases

in equations (3.7) and (3.8) relies in using stochastic gradient descent approaches to compute

partial derivatives in equations (3.5) and (3.5). These approaches are specially useful for large

datasets. Concretely, the usual approach to optimize networks is the minibatch stochastic

gradient descent method [5], which updates the weights and biases by taking the average

over a small batch of training samples,

wl
ik → wl

ik − η

m

∑
x

∂L(aLx ,yx)

∂wl
ik

(3.11)

bli → bli −
η

m

∑
x

∂L(aLx ,yx)

∂bli
(3.12)

where m is the number if samples in the batch and L(aLx ,yx) denotes the error with

respect to the desired output for the sample x.

3.3.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specialized type of neural network for pro-

cessing data with a known grid-like topology, such us images. CNNs architecture allows

fast training with fewer parameters, in addition from a Computer Vision point of view al-

lows some degree of shift, scale and distortion invariance on the image regions [69]. These

networks combine three architectural ideas:

- Local receptive fields: Convolutional layers instead of using fully connected layers

make connections in small and local regions, i.e. one node in a layer l will be only

connected with a reduced set of nodes in layer l − 1. These regions are called local

receptive fields and they are highly overlapped along neighbouring nodes in layer l.
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Figure 3.3: Example of a Convolutional Neural Network (CNN) for digits recognition. Convo-

lutional and subsampling layers have associated a label, a@b× c, where a denotes the number

of feature maps and b× c the number of nodes for each feature map. The local receptive fields

are shown as small black squares. Figure reproduced from [69].

- Shared weights and biases: Each node in a convolutional layer l has a bias and

weigths relating the node with its underlying local receptive field. Unlike in the ANNs

where all the weights and biases are independent in the convolutional layers those

parameters are shared with all the nodes in the layer. Therefore, assuming two dimen-

sional fields the output ali,j for a node with coordinates (i, j) can be written as,

ali,j = σ

(
bl +

∑
u

∑
v

wl
u,va

l−1
i+u,j+v

)
(3.13)

where σ denotes the activation function, (u, v) the local receptive field coordinates and

wl
u,v and bl the shared weights and bias, respectively. The name of convolutional layers

come from the fact that the operation in this equation is also known as convolution. In

addition, each local receptive field can be related with more than one set of shared

weights and bias, being their outputs named as feature maps.

- Subsampling: Besides of convolutional layers there are also subsampling layers, also

known as pooling layers. These layers are usually placed after convolutional layers

and they are useful to simplify the outputs of convolutional layers, summarizing local

region of outputs to a single output. A common procedure is known as max-pooling

where each local region is summarized by its maximum output. Another common

approach is the L2 pooling where each local region is summarized by the square root

of the sum of the squares of their outputs.

After the convolutional and subsampling layers, fully connected layers can be used losing

the spatial information maintained by the previous layers. Figure 3.3 shows an example

combining these three architectural ideas with fully-connected layers.

Since CNNs are not fully-connected and use subsampling layers their training requires

straightforward modifications to the backpropagation procedure [100]. CNNs tend to have

many layers and parameters, for this reason they require a large amount of samples for the

training. In order to automatically increase the training dataset the most common method

consists on data augmentation, which is based on apply synthetic deformations on the training
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samples, such as adding noise, cropping, or rotating. Data augmentation has shown to help

the networks to reduce overfitting on training samples and generalize better [66].

3.4 Learning Deep Descriptors

Given an intensity image region x ∈ R
d, the descriptor of x is a non-linear mapping D(x)

that is expected to be discriminative, i.e. descriptors for image patches corresponding to the

same point should be similar, and dissimilar otherwise.

In the context of multiple-view geometry, descriptors are typically computed for relevant

points where scale and orientation can be reliably estimated, for invariance. Image regions

around those relevant points then capture local projections of 3D scenes. Let us consider

that each image patch xi has an index pi that uniquely identifies the 3D point which roughly

projects onto the 2D patch, from a specific viewpoint. Therefore, taking the L2 norm as a

similarity metric between descriptors, for an ideal descriptor we would wish that

dD(x1,x2) = ‖D(x1)−D(x2)‖2 =

{
0 if p1 = p2
∞ if p1 �= p2

(3.14)

We propose learning descriptors with a Siamese network [8], where a non-linear mapping

is represented by a CNN that is optimized for pairs of corresponding or non-corresponding

image regions, as shown in Figure 3.2. We propagate the regions through the model to extract

the descriptors and then compute their L2 norm, which is a standard similarity measure for

image descriptors. We then compute the loss function on this distance. Given a pair of regions

x1 and x2 we define a loss function of the form

l(x1,x2, δ) = δlP (dD(x1,x2)) + (1− δ)lN (dD(x1,x2)) (3.15)

where δ is the indicator function, which is 1 if p1 = p2, and 0 otherwise. lP and lN are the

partial loss functions for patches corresponding to the same 3D point and to different points,

respectively. When performing back-propagation [114], the gradients are independently ac-

cumulated for both descriptors, but jointly applied to the weights, as they are shared.

We relax the ideal loss for equation (3.14) by using a margin m for lN (·). In particular,

we consider the hinge embedding criterion [93],

lP (dD(x1,x2)) = dD(x1,x2) (3.16)

lN (dD(x1,x2)) = max(0,m− dD(x1,x2)) (3.17)

3.4.1 CNN-based Descriptors

When designing the structure of the CNN we are limited by the size of the input data: in our

case 64×64 regions, from the MVS dataset [9], while we extract descriptors of the same size

as SIFT [84], i.e. 128 dimensions. Note that larger regions and/or output spaces would allow
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Name Layer 1 Layer 2 Layer 3 Layer 4

CNN3 NN1
32x7x7 64x6x6 128x5x5 128

x2 pool x3 pool x4 pool -

CNN3
32x7x7 64x6x6 128x5x5 -

x2 pool x3 pool x4 pool -

CNN2a NN1
32x5x5 64x5x5 128 -

x3 pool x4 pool - -

CNN2b NN1
32x9x9 64x5x5 128 -

x4 pool x5 pool - -

CNN2
64x5x5 128x5x5 - -

x4 pool x11 pool - -

CNN1 NN1
32x9x9 128 - -

x14 pool - - -

Figure 3.4: Different CNN configurations evaluated to learn descriptors. Each layer is de-

scribed as axbxcxdpool denoting the number of feature maps a, the size of the local receptive

fields bxc and the size of the pooling and normalization region d.

us to consider possibly more informative descriptors, but at the same time they would be also

more susceptible to occlusions and slower to train and compute.

In our approach each convolutional layer comprises four steps: convolution by the shared

weights, apply the non-linear activation function, pooling and normalization. Since sparser

connectivity has been shown to improve performance while lowering parameters and increas-

ing speed [18], except for the first layer, the shared weights are not densely connected to the

previous layers. Instead, they are sparsely connected at random, so that the mean number of

connections each input layer has is constant. Each set of shared weights of the second and

third layer are also connected randomly to 8 feature maps of the previous layer so that the

mean number of connections stays roughly equal to 16 connections per output.

Regarding the non-linear activation function, we use hyperbolic tangent units (Tanh), as

we found it to perform better than Rectified Linear Units (ReLU). We use L2 pooling, which

has been shown to outperform the more standard max-pooling [118]. Normalization is also

important for deep networks [51] and fundamental for descriptors [89]. We use subtractive

normalization, i.e. subtract the weighted average over a 5×5 neighbourhood with a Gaussian

kernel after the first and second layers.

An overview of the architectures we consider is given in Figure 3.4. The network depth is

constrained by the size of the image region (64x64). We consider only up to 3 convolutional

layers. Additionally, we consider adding a single fully-connected layer at the end. We choose

a set of six networks, from 2 up to 4 layers. In Section 3.5 we will show that deeper networks

outperform shallower ones, and architectures with a fully-connected layer at the end do worse

than fully convolutional architectures.
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3.4.2 Stochastic Sampling Strategy and Mining

Our goal is to optimize the network parameters from an arbitrarily large set of training image

regions. Let us consider a dataset with k regions and m ≤ k unique 3D region indices,

each with ci corresponding image regions. Then, the number of matching image regions, P
(positives) and the number of non-matching images regions, N (negatives) is,

P =

m∑
i=1

ci(ci − 1)

2
and N =

m∑
i=1

ci (k − ci) . (3.18)

Since both P and N are intractably large, we resort to stochastic gradient descent, using

random subsets of our training set to estimate the gradient of our loss function. For positives

we can randomly sample a set of sp 3D point indices from the set {p1, . . . , pm}, and for each

chosen 3D index pi we randomly pick two 2D regions with corresponding 3D point indices.

For negatives one simple idea would be to randomly choose sn random pairs with non-

matching indices; but once the network has reached a reasonable level of performance, most

non-corresponding points will already have a distance above C, contributing nothing to the

loss and the gradient. This can result in a very small and noisy estimate of the gradient,

effectively stalling the learning process.

Instead, we iterate over non-corresponding region pairs to search for “hard” negatives,

i.e. pairs that are close in descriptor space and incur a high loss. In this manner it becomes

feasible to train discriminative models faster while also increasing performance.

In particular, at each epoch we generate a set of sn randomly chosen region pairs, and after

forward-propagation through the network and computing their loss we keep only a subset

of the sHn “hardest” negatives, which are back-propagated through the network in order to

update the weights. Additionally, the same procedure can be used over the positive samples,

i.e. we can sample sp corresponding region pairs and prune them down to the sHp “hardest”

positives. Our experimental results clearly show that the combination of aggressive mining

for both positive and negative region pairs allows us to greatly improve the discriminative

capability of our learned descriptors.

3.4.3 Learning

We normalize the dataset by the mean and standard deviation of the training patches. We

then learn the weights with stochastic gradient descent. We use a learning rate that decreases

by an order of magnitude every fixed number of iterations. Additionally, we use standard

momentum in order to accelerate the learning process. We use a subset of the data for val-

idation, and stop training when the metric we use to evaluate the learned models converges.

Due to the exponentially large pool of positives and negatives available for training and the

small number of parameters of our relatively small architectures, no techniques to cope with

overfitting are used. The particulars of the learning procedure are detailed in the following

section.
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Mean St.Dev.

Figure 3.5: Pairs of corresponding samples from the MVS dataset. Top: ‘Liberty’ (LY). Mid-

dle: ‘Notre Dame’ (ND). Bottom: ‘Yosemite’ (YO). Right: we compute the absolute value of

the pixel difference between corresponding regions on each set and show their mean/std (black

corresponds to small values).

Note that extracting descriptors with the learned models does not further require the

Siamese network, and does not incur the computational costs related to mining.

3.5 Experimental Evaluation

For training we use the Multi-view Stereo Correspondence dataset (MVS) [9], which con-

sists of 64×64 grayscale image regions sampled from 3D reconstructions of the Statue of

Liberty (LY), Notre Dame (ND) and Half Dome in Yosemite (YO). Regions are extracted

using the Difference of Gaussians detector [84], and determined as a valid correspondence if

they are within 5 pixels in position, 0.25 octaves in scale and π/8 radians in angle. Fig. 3.5

shows some samples from each set, which contain significant changes in position, rotation
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and illumination conditions, and often exhibit very noticeable perspective changes.

We join the data from LY and YO to form a training set with over a million regions. Out

of these we reserve a subset of 10,000 unique 3D points for validation (∼ 30, 000 regions).

The resulting training set contains 1,133,525 possible positive combinations and 1.117×1012

possible negative combinations. This skew is common in correspondence problems such as

stereo or structure from motion; as stated before, we address it with aggressive mining. We

use this split to evaluate different architectures and configurations, and then train the top-

performing model over the two remaining splits.

A popular metric for classification systems is the Receiving Operator Characteristic (ROC),

used e.g. in [9], which can be summarized by its Area Under the Curve (AUC). However,

ROC curves can be misleading when the number of positive and negative samples are very

different [19], and are already nearly saturated for the SIFT baseline. A richer performance

indicator is the Precision/Recall curve (PR). We benchmark our models with PR curves and

their AUC. In particular, we simulate the ‘needle in a haystack’ setting of retrieval by having

a thousandfold more negative than positive pairs: for each of the 10,000 unique points in our

validation set we generate a single positive pair, by randomly sampling two corresponding

regions, and 1,000 non-corresponding regions, chosen from the remaining points.

Results outline: We explored multiple architectures and configurations in the two next

sections. We study the effect of mining for “hard” samples in Sec. 3.5.3. We then evaluate

our top-performing models over the test set in Sec. 3.5.4. To build a test set we follow the

same procedure as for validation, evaluating 10,000 points with 1,000 negatives each, over 10

different folds (see Sec. 3.5.4 for details). We consider four splits: LY+YO (tested on ND),

LY+ND (tested on YO), and YO+ND (tested on LY), plus a final split with training data from

all three sets.

Finally, we apply the models learned over the MVS dataset to different applications. In

Sec. 3.5.6 we study the robustness of our descriptors to patch rotation. In Sec. 3.5.7 we use

our models to match wide-baseline images from a different stereo dataset. In Sec. 3.5.8 we

benchmark our descriptors on a recent dataset with very challenging non-rigid deformations

and drastic changes in illumination. Our models outperform state-of-the-art baselines in every

case, without fine-tuning over new data, and over considerably different application domains.

We will consider all hyperparameters to be the same unless otherwise mentioned, i.e. a

learning rate of 0.01 that decreases every 10, 000 iterations by a factor of 10, and a momentum

of 0.9. Our implementation is based on Torch7 [16].

3.5.1 Depth and Fully Convolutional Architectures

An overview of the six architectures we consider is given in Table 3.4. The network depth is

constrained by the size of the image regions. We consider only up to 3 convolutional layers

(CNN{1-3}). Additionally, we consider adding a single fully-connected layer at the end

(NN1). Fully-connected layers increase the number of parameters by a large factor, which

increases the difficulty of learning and can lead to overfitting.

In this section we show the results of the six architectures in the Figure 3.6. Results show
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Architecture Parameters PR AUC

SIFT — .361

CNN1 NN1 68,352 .032

CNN2 27,776 .379

CNN2a NN1 145,088 .370

CNN2b NN1 48,576 .439

CNN3 NN1 62,784 .289

CNN3 46,272 .558

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PR curve, validation set

SIFT
CNN1_NN1
CNN2
CNN2a_NN1
CNN2b_NN1
CNN3_NN1
CNN3

Figure 3.6: Precision-Recall results for the evaluated architectures. Effect of network depth

(up to 3 CNN layers), and fully convolutional networks vs networks with final fully-connected

layer (NN1). PR AUC on the validation set for the top-performing iteration.

that deeper networks outperform shallower ones, and architectures with a fully-connected

layer at the end do worse than fully convolutional architectures. In the following experiments

we consider only models with 3 convolutional layers.

3.5.2 Hidden Units Mapping, Normalization, and Pooling

It is generally accepted that Rectified Linear Units (ReLU) perform better in classification

tasks [66] than other non-linear functions. They are, however, ill-suited for tasks with con-

tinuous outputs such as regression or the problem at hand, as they can only output positive

values. We consider both the standard Tanh and ReLU. For the ReLU case we still use Tanh

for the last layer. We also consider not using the normalization sublayer for each of the con-

volutional layers. Finally, we consider using max pooling rather than L2 pooling. We show

results for the fully-convolutional CNN3 architecture in Figure 3.7. The best results are ob-

tained with Tanh, normalization and L2 pooling (‘CNN3’ in the table/plot). We will use this

configuration in the following experiments.

3.5.3 Mining

We analyze the effect of both positive and negative mining by training different models in

which a large, initial pool of sp positives and sn negatives are pruned down to a smaller

number of “hard” positive and negative matches, which are used to update the parameters of

the network. We observe that increasing the batch size does not offer benefits in training: see

Table 3.1. We thus keep the batch size fixed to sHn = 128 and sHp = 128, and increase the

ratio of both negative mining rn = sn/s
H
n and positive mining rp = sp/s

H
p . We keep all

other parameters constant. In the following, we use the notation rp/rn, for brevity.
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Architecture PR AUC

SIFT .361

CNN3 .558
CNN3 ReLU .442

CNN3 No Norm .511

CNN3 MaxPool .420
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Figure 3.7: Precision-Recall results for experiments on hidden units, normalization, pooling.

Fully convolutional CNN3 models with Tanh and ReLU, without normalization, and with max

pooling instead of L2 pooling. The best results are obtained with Tanh, normalization, and L2

pooling (i.e. CNN3). PR AUC on the validation set for the top-performing iteration.

Large mining factors have a high computational cost, up to 80% of the total computa-

tional cost, which includes mining (i.e. forward propagation of all sp and sn samples) and

learning (i.e. backpropagating the “hard” positive and negative samples). Note that this is

only applicable to the learning stage—once the model is deployed, we discard the Siamese

network and do not incur the computational costs related to mining. In order to speed up the

learning process we initialize the CNN3 models with positive mining, i.e. 2/2, 4/4, 8/8 and

16/16, with an early iteration of a model trained only with negative mining (1/2).

sp sn rp rn Cost PR AUC

128 128 1 1 — 0.366

256 256 1 1 — 0.374

512 512 1 1 — 0.369

1024 1024 1 1 — 0.325

128 256 1 2 20% 0.558

256 256 2 2 35% 0.596

512 512 4 4 48% 0.703

1024 1024 8 8 67% 0.746
2048 2048 16 16 80% 0.538

Table 3.1: Four top rows: effect of increasing batch size, without mining. Four bottom rows:

with mining. Mining factors indicate the samples considered (sp, sn), the hardest 128 of which

are used for training. Column 5 indicates the fraction of the computational cost spent mining

hard samples. These experiments correspond to the validation set.
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Figure 3.8: Effect of mining on filters. Top: first layer filters, before mining. Middle: same,

after aggressive mining, filters are initialized with the filters in the top row. Bottom: difference

between top and middle row. For visualization purposes all values are normalized such that the

minimum value is displayed in black and the maximum in white for all the values in the group.

Note that mining accentuates the maxima and minima of the filters.

Results are shown in Table 3.1. We see that for this particular problem, aggressive “hard”

mining is fundamental. This is due to the extremely large number of both negatives and pos-

itives in the dataset, in combination with models with a relatively low number of parameters.

We observe a drastic increase in performance up to 8/8 mining factors.

We show a qualitative example of how the mining changes the weights in Figure 3.8.

While in both cases the filters look similar, the performance doubles when aggressive min-

ing is performed (0.366 vs. 0.746 in PR AUC). In this case the first layer filters are being

accentuated by mining, i.e. positive areas are made more positive and negative areas more

negative.

3.5.4 Generalization & Comparison to State of the Art

In this section we consider the three splits for the MVS dataset of [9]. We train the top-

performing model (i.e. CNN3), with different mining ratios (1/2, 2/2, 4/4 and 8/8), on a

combination of two sets, and test it on the remaining set. We select the training iteration that

performs best over the corresponding validation set. The test datasets are very large (up to

633K patches) and we use the same procedure as for validation: we consider 10,000 unique

points, each with 1,000 random non-corresponding matches. We repeat this process over 10

folds, thus considering 100,000 sets of one corresponding patch vs 1,000 non-corresponding

patches. We show results in terms of PR AUC in Table 3.2, and the corresponding PR curves

are pictured in Figure 3.9.

We report consistent improvements over SIFT, a hand-crafted descriptor which never-

theless remains the most popular among its brethren. The performance varies significantly

from split to split; this is due to the nature of the different sets. ‘Yosemite’ contains mostly

frontoparallel translations with illumination changes and no occlusions (Figure 3.5, row 3);
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Train Test SIFT
CNN3 CNN3 CNN3 CNN3

mine-1/2 mine-2/2 mine-4/4 mine-8/8

LY+YO ND 0.349 0.535 0.555 0.630 0.667
LY+ND YO 0.425 0.383 0.390 0.502 0.545
YO+ND LY 0.226 0.460 0.483 0.564 0.608

Table 3.2: PR AUC for the generalized results over the three MVS dataset splits, for different

mining factors.
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Figure 3.9: PR curves for the generalized results over the three MVS dataset splits, for different

mining factors.

SIFT performs well on this type of data. Our learned descriptors outperform SIFT on the

high-recall regime (over 20% of the samples; see Figure 3.9), and is 28% better overall in

terms of PR AUC. The effect is much more dramatic on ‘Notredame’ and ‘Liberty’, which

contain significant patch translation and rotation, as well as viewpoint changes around out-

cropping, non-convex objects, which result in occlusions (Figure 3.5, rows 1-2). Our learned

descriptors outperform SIFT by 91% and 169% over ND and LY, respectively.
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Test
SIFT BGM L-BGM BinBoost-{64,128,256} VGG Ours

(128f) (256b) (64f) (64b) (128b) (256b) (80f) (128f)

ND 0.349 0.487 0.495 0.267 0.451 0.549 0.663 0.667
YO 0.425 0.495 0.517 0.283 0.457 0.533 0.709 0.545

LY 0.226 0.268 0.355 0.202 0.346 0.410 0.558 0.608
All 0.370 0.440 0.508 0.291 0.469 0.550 0.693 0.756

Table 3.3: Generalized results: PR AUC over the three MVS splits, and a new split with data

from all three sets, against SIFT, BinBoost [134], and VGG [122]. We re-train VGG with data

from two sets (rows 1-3) and all sets (row 4).

Additionally, we pit our approach against the state of the art descriptors of [134] and [122].

For [134] we consider 4 binary descriptor variants (BGM, BinBoost-64, BinBoost-128, and

BinBoost-256) and a floating-point variant (L-BGM); for the binary descriptors we use the

Hamming distance, instead of the Euclidean distance. For VGG [122] we re-train their mod-

els over two sets at a time, to provide a fair comparison with ours. We consider only their

top-performing variant, i.e. the largest descriptor. The VGG descriptor considers multiple

compression settings—we show the results for the best model (i.e. floating point, size 80).

The results are summarized in Table 3.3 and shown in Figure 3.10. Due to the binary

nature of the Hamming distance, the curves for the binary descriptors can be seen to have

a sawtooth shape where each tooth corresponds to a 1-bit difference. Our approach outper-

forms the baselines on ‘Notredame’ and ‘Liberty’. On ‘Yosemite’ VGG obtains the best

results, and our approach outperforms the other baselines by a smaller margin. We argue

that this is due to the fact that ND/LY are not representative of YO. We illustrate this in Fig-

ure 3.5 (bottom-right), where we compute the pixel difference over every corresponding pair

of regions in each set, and plot its mean and std. deviation: YO exhibits a much smoother

mean and a smaller variance, which corresponds with our observation that unlike ND/LY,

it contains mostly lighting changes and small displacements. This hurts our approach more

than VGG, which builds on traditional grid-based descriptors [122]. To illustrate this point,

we re-train both our models and VGG [122] over a new split (‘All’) with data from all three

sets, following the methodology of Sec. 3.5. The results in Figure 3.10 (bottom-right) and

in the last row of Table 3.3 show a 9.1% relative improvement over VGG, demonstrating the

strong generalization properties of our models and training strategy (with relevant training

data). This confirms the findings of the deep learning community.

Ours (GPU) Ours (CPU) SIFT VGG [122]

Time (ms) 0.76 4.81 0.14 4.21

Table 3.4: Computational cost for one descriptor (in batch).
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Figure 3.10: Generalized results: PR curves over the three MVS splits, and a new split with

data from all three sets, compared to SIFT, Binboost [134], and VGG [122]. We re-train VGG

with data from two sets (columns 1-3) and all sets (column 4).

Finally, we provide the computational cost in Table 3.4. The CPU descriptors run on a

12-core 3.47GHz Xeon CPU, multi-threaded. Our GPU variant runs on a Titan Black. SIFT

and VGG rely on VLFeat [138], while our approach can still be optimized, particularly for

dense computation.

3.5.5 Qualitative Analysis

Figure 3.11 shows samples of matches retrieved with our CNN3-mined-4/4 network, over the

validation set for the first split. In this experiment the corresponding patches were ranked in

the first position in 76.5% of cases; a remarkable result, considering that every true match had

to be chosen from a pool of 1,000 false correspondences. The right-hand image shows cases

where the ground truth match was not ranked first; notice that most of these image regions

exhibit significant changes of appearance. We include a failure case (highlighted in red),

caused by a combination of large viewpoint and illumination changes; these misdetections

are however very uncommon.
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Figure 3.11: Samples of matches retrieved with our descriptor. Each row depicts the reference

patch (in green) and the top matching candidates, sorted from left to right by decreasing simi-

larity. The ground truth match is highlighted in blue. Left: Examples where the ground truth

match is retrieved in the first position. Right: Examples in which the ground truth match is

ranked at positions 2-6. The last row shows a failure case, highlighted in red, where the correct

match is ranked 632/1000.

3.5.6 Robustness to Rotation

Robustness to rotation is crucial to many applications, as most rotation-invariant detectors

can incur in significant errors when estimating the orientation of an image region. For this

purpose we evaluate the performance of our descriptor under rotation errors, in a synthetic

scenario. To do this we extract interest points with a Difference of Gaussians detector, and

extract their correspondent descriptors. We then increase the rotation of each image region

in a systematic manner, and compute descriptors for new features. We match the descriptors

and calculate the PR AUC, for increasing values of the rotation error.

We evaluate SIFT and the learned, state-of-the-art VGG descriptor [122] in addition to

ours, and show results in Figure 3.12. In particular we use an image of Santiago de Chile and

randomly extract 147 image regions (shown in Figure 3.12-(a)), constrained to the center of

the image to avoid border artefacts. We observe that while all descriptors perform well below

10 degrees of rotation, SIFT’s performance begins to deteriorate by that point. Our descriptor

proves the most robust in this scenario, with a 11.2% relative improvement over VGG, using

the top-performing model in either case.

This robustness against rotation is particularly valuable when computing dense descrip-

tors, where rotating each patch independently would incur in a considerable computational

overhead.
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(a) Feature points.
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(b) PR AUC results under increasing rotation.

SIFT VGG [122] Ours

Area under the curve 0.223 0.507 0.564

(c) Area under the curve of (b).

Figure 3.12: Robustness to Rotation.
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3.5.7 Wide-baseline Matching

In this section we apply our models to the wide-baseline stereo dataset of [126], which con-

sists of two multi-view sets of high-resolution images with ground truth depth maps. This

allows us to further evaluate the generality of our models across different datasets, and to

study how robust the descriptors are against perspective transformations.

We pit our descriptor against SIFT, Daisy [131] and the VGG descriptor [122]. We con-

sider the ‘fountain’ set, which contains much wider baselines in terms of angular variation

and provides a harder challenge. Fig. 3.13 shows the images used; we match ‘3’ (the top-rigth

view) against ‘4’-‘8’. We sample 1000 (non-occluded) points randomly and use the ground

truth depth maps to determine their correspondence over the opposite camera. We match

every point in one camera with every possible correspondence, and compute PR curves. The

difference in viewpoint across increasing baselines creates perpective transformations, which

include scaling, rotation, and partial occlusions. We explore different image region sizes,

from 8×8 up to 64×64. Note that our models were trained with regions of size 64×64, and

we upscale the regions if required; we expect that better performance can be obtained training

filters of a size commensurate to the region. The results are shown in Tables 3.5-3.9; the top

perfomer for every setting is highlighted in bold, and the top performer for a whole baseline

is marked with †. As expected, large regions are more informative across narrow baselines,

whereas small regions perform better across wide baselines. Our descriptors outperform the

baseline in just about every setting, proving that they generalize well across datasets. Note

that both our models and VGG are trained with the MVS dataset [9].

‘3’ ‘4’ ‘5’

‘6’ ‘7’ ‘8’

Figure 3.13: Samples of the wide-baseline stereo dataset of [126].

3.5.8 Deformation and Varying Illumination Dataset

Lastly, we evaluate our descriptors on a recent, publicly available dataset featuring challeng-

ing non-rigid deformations and very severe illumination changes [121]. The dataset consists
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Descriptor Training 8×8 16×16 24×24 32×32 48×48 64×64

Ours LY+YO 0.743 0.912 0.915 0.916 0.918 0.923†

Ours LY+ND 0.627 0.910 0.917 0.916 0.912 0.919

Ours YO+ND 0.754 0.911 0.917 0.921 0.922 0.922

VGG [122] YO 0.597 0.850 0.876 0.889 0.897 0.894

VGG [122] ND 0.598 0.840 0.872 0.877 0.891 0.880

VGG [122] LY 0.586 0.839 0.875 0.874 0.887 0.879

Daisy [131] – 0.796 0.875 0.878 0.873 0.862 0.835

SIFT [84] – 0.677 0.837 0.846 0.841 0.798 0.772

Table 3.5: Stereo matching, ‘3’ vs ‘4’.

Descriptor Training 8×8 16×16 24×24 32×32 48×48 64×64

Ours LY+YO 0.481 0.763 0.762 0.755 0.713 0.690
Ours LY+ND 0.368 0.757 0.780† 0.765 0.703 0.677

Ours YO+ND 0.504 0.759 0.770 0.777 0.716 0.685

VGG [122] YO 0.338 0.633 0.669 0.687 0.672 0.632

VGG [122] ND 0.330 0.617 0.641 0.657 0.628 0.590

VGG [122] LY 0.316 0.604 0.641 0.660 0.630 0.582

Daisy [131] – 0.526 0.719 0.735 0.714 0.660 0.594

SIFT [84] – 0.357 0.551 0.563 0.587 0.540 0.532

Table 3.6: Stereo matching, ‘3’ vs ‘5’.

Descriptor Training 8×8 16×16 24×24 32×32 48×48 64×64

Ours LY+YO 0.283 0.575† 0.564 0.540 0.478 0.456
Ours LY+ND 0.181 0.543 0.561 0.543 0.468 0.424

Ours YO+ND 0.271 0.547 0.561 0.556 0.490 0.439

VGG [122] YO 0.232 0.414 0.466 0.456 0.420 0.400

VGG [122] ND 0.234 0.402 0.441 0.440 0.381 0.372

VGG [122] LY 0.223 0.389 0.424 0.423 0.388 0.365

Daisy [131] – 0.278 0.482 0.510 0.500 0.440 0.363

SIFT [84] – 0.143 0.340 0.328 0.333 0.300 0.308

Table 3.7: Stereo matching, ‘3’ vs ‘6’.

Descriptor Training 8×8 16×16 24×24 32×32 48×48 64×64

Ours LY+YO 0.138 0.337 0.331 0.301 0.240 0.218

Ours LY+ND 0.088 0.319 0.336 0.339 0.253 0.197

Ours YO+ND 0.121 0.341† 0.333 0.340 0.275 0.228
VGG [122] YO 0.109 0.226 0.250 0.239 0.220 0.174

VGG [122] ND 0.115 0.229 0.242 0.228 0.198 0.182

VGG [122] LY 0.107 0.215 0.233 0.220 0.192 0.166

Daisy [131] – 0.131 0.283 0.323 0.315 0.252 0.172

SIFT [84] – 0.066 0.158 0.149 0.152 0.125 0.138

Table 3.8: Stereo matching, ‘3’ vs ‘7’.
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Descriptor Training 8×8 16×16 24×24 32×32 48×48 64×64

Ours LY+YO 0.080 0.188† 0.180 0.156 0.110 0.088
Ours LY+ND 0.058 0.173 0.158 0.153 0.087 0.058

Ours YO+ND 0.078 0.178 0.183 0.159 0.107 0.082

VGG [122] YO 0.062 0.125 0.107 0.086 0.080 0.067

VGG [122] ND 0.062 0.121 0.100 0.075 0.083 0.068

VGG [122] LY 0.062 0.107 0.094 0.076 0.083 0.064

Daisy [131] – 0.049 0.098 0.113 0.104 0.060 0.032

SIFT [84] – 0.028 0.051 0.049 0.045 0.044 0.053

Table 3.9: Stereo matching, ‘3’ vs ‘8’.

Figure 3.14: Samples of the deformation and varying illumination dataset of [121].

of a series of photographs of 12 deformable objects, such as clothes and newspapers, which

are subjected to four different deformation levels and four different illumination levels, i.e.

16 images per object, for a total of 192 grayscale 640×480 images. Feature points, extracted

with Difference-of-Gaussians detectors, are provided for each image. Some examples of the

kind of transformations featured in the dataset are shown in Fig. 3.14.

We pit our descriptor against DaLI, SIFT, Daisy and the VGG descriptor, and show the

results in Table 3.10. We evaluate our model trained on three different splits of the MVS

dataset, and observe that they all obtain a similar performance. We outperform the current

state of the art in the deformation (Def.) and deformation with illumination (Def.+Ill.) set-

tings. This is despite having to upscale the image regions from 41×41 pixels to 64×64 pixels,

the fact that the image regions are cropped to be circular while our descriptor relies on square

regions, and that we trained our descriptors on datasets of rigid, non-deformable objects. In

the case of only illumination changes (Ill.), we obtain a performance very close to the DaLI

descriptor [121], explicitly designed to deal with these kind of transformations. We also

compare favorably to the VGG descriptor [122], which we outperform in every scenario.
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Descriptor Training Def. Ill. Def.+Ill.

Ours LY+YO 76.568 88.434 75.933

Ours LY+ND 75.702 87.521 75.606

Ours YO+ND 76.731 88.898 76.591
VGG [122] YO 74.120 87.342 74.765

VGG [122] ND 72.629 84.690 72.599

VGG [122] LY 72.602 84.848 72.565

DaLI [121] - 70.577 89.895 72.912

Daisy [131] - 67.373 75.402 66.197

SIFT [84] - 55.822 60.760 53.431

Table 3.10: Results on the dataset of [121]. We evaluate over three different settings, cor-

responding to deformation changes only (Def.), illumination changes only (Ill.), and both si-

multaneously (Def.+Ill.). We show the mean accuracy of descriptor matches and highlight the

top-performing descriptor for each of setting, in bold.

3.6 Summary

In this chapter we have presented an interest point descriptor, which provides discriminative

representations of local image regions. In contrast with hand-crafted descriptors, we propose

a data-driven approach which is able to learn descriptors from large datasets of local image

regions. Our descriptor is learnt by using corresponding and non-corresponding pairs of im-

age regions under different viewing conditions, maximizing the invariance and discriminative

power.

We propose learning a deep convolutional network using a Siamese network architecture,

which employs two CNNs with identical parameters fed with pairs of image regions. Each

region is propagated forward through the network, providing two CNN outputs that must be

similar in terms of L2 error for corresponding pairs and dissimilar otherwise. In addition

we propose a novel training scheme, which yields large performance gains in image region

retrieval, based on aggressive mining for both positive and negative region pairs.

We carried out a thoroughly evaluation of multiple architectures, configurations and hyper-

parameters. Afterwards, we demonstrate consistent performance gains over the state of the

art. Our models generalize well across different datasets and applications, including wide-

baseline matching, non-rigid deformations and extreme illumination changes. Moreover, our

descriptors can be used as a drop-in replacement for existing descriptors, such us SIFT.
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Chapter 4

Robust Monocular Camera Pose
Estimation

In this chapter we propose our novel algorithms to deal with the camera pose estimation prob-

lem using monocular images. The main advantages of our initial approach are twofold: first,

it integrates the outlier rejection within the pose estimation pipeline with a negligible compu-

tational overhead; and second, its scalability to arbitrarily large number of correspondences.

Given a set of 3D-to-2D correspondences, we formulate pose estimation problem as a low-rank

homogeneous system where the solution lies on its 1D null space. Outlier correspondences are

those rows of the linear system which perturb the null space and are progressively detected by

projecting them on an iteratively estimated solution of the null space. Since our outlier removal

process is based on an algebraic criterion which does not require computing the full-pose and

reprojecting back all 3D points on the image plane at each step, we achieve speed gains of more

than 100× compared to RANSAC strategies. An extensive experimental evaluation will show

that our solution yields accurate pose estimation results in situations with up to 50% of outliers,

and can process more than 1000 correspondences in less than 5ms.

Afterwards, we propose a real-time and accurate algorithm that is the first one exploiting the

fact that in practice the 2D position of not all 2D features is estimated with the same accu-

racy. Assuming a model of such feature uncertainties is known in advance, we reformulate

the camera pose estimation problem as a maximum likelihood estimation approximated by an

unconstrained Sampson error function, which naturally penalizes the most noisy correspon-

dences. The advantages of this approach are clearly demonstrated in synthetic experiments

where feature uncertainties are exactly known. Pre-estimating the feature uncertainties in real

experiments is, though, not easy. Concretely, we propose to model feature uncertainty as 2D

Gaussian distributions representing the sensitivity of the 2D feature detectors to different cam-

era viewpoints. When using these noise models with our formulation we still obtain promising

pose estimation results that outperform the most recent approaches.

79
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4.1 Introduction

The camera pose estimation problem from monocular images consist in the estimation of the

extrinsic parameters –location and orientation– and sometimes also the intrinsic parameters

of a camera with respect to a 3D scene from a single perspective image with n 3D-to-2D point

correspondences. Since knowing the internal geometry of the cameras permits to increase the

accuracy most of the solvers require a calibrated camera.

Therefore, the fundamental information sources used during the camera pose estimation

process are the intrinsic camera parameters –focal lengths, optical center, skew and radial

distortion– and the 3D-to-2D correspondences between the 3D scene and the 2D image.

These 3D-to-2D correspondences are typically computed by means of a matching task be-

tween a set of image features and a set of previously known 3D scene features, which will be

considered from now on the 3D scene model.

Figure 4.1: PnP problem definition: given an input image and a known textured 3D model,

the problem is to estimate the camera pose w.r.t. the 3D model in terms of [R|t]. Valid 3D-

to-2D correspondences are denoted as black lines from the camera center (origin of the camera

coordinates) trougth interest points on the 2D image up to 3D points on the model.
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In the previous chapters interest point detectors and descriptors have been introduced,

in this chapter these kind of algorithms are used to get the image features to build 3D-to-

2D correspondences. Depending on the number of 3D-to-2D correspondences the camera

pose estimation problem can be also called the Perspective-n-Point (PnP) problem, where

n represents the number of correspondences. This problem can be solved for very small

and concrete numbers of correspondences, e.g. P3P or P4P solvers, or for an undetermined

number of correspondences, in this last case the solvers are simply called PnP solvers. In

Figure 4.1 the PnP problem is graphically defined showing some correct correspondences

between the image and the 3D model.

The PnP is at the core of many Computer Vision tasks with applications in other areas

such as Robotics, Photogrammetry or Augmented Reality. Despite being a topic studied for

more than a century (the first solution dates back to 1841 [40]) the last decade has witnessed

a wide body of literature in which the primary goal has been to build efficient and accurate

solutions.

The Efficient PnP (EPnP) [97] was the first closed-form solution to the problem with

O(n) complexity and little loss of accuracy with respect to the most accurate iterative meth-

ods [85]. The main contribution of EPnP was to introduce a fixed number of virtual control

points to represent whatever number of 3D points. The problem was then reduced to that of

estimating the position of the control points, which was efficiently done using linearization

techniques. Subsequent works dealing with an arbitrary number of correspondences, have

improved the accuracy of the EPnP specially for the minimal cases with n = {3, 4, 5} cor-

respondences. This has been essentially achieved by replacing the linearization approaches

with more sophisticate polynomial solvers [75] along with new reformulations of the PnP as

a least squares problem [47, 149, 148].

However, some issues and challenges remain to be studied or have been partially shelved.

We deal with three of them in this chapter:

- The fundamental problem of mismatched correspondences has not been directly

handled by PnP solvers. They assume that all correspondences are at most corrupted

by noise, but not by mismatches. These outlier correspondences are typically rejected

in a preliminary stage using P3P solvers [62] in combination with RANSAC-based

schemes [32, 46]. Afterwards, PnP problem is solved with the remaining inlier corre-

spondences. This initial rejection stage significantly lessens the efficiency properties

of the whole pose estimation process, especially for large number of outliers.

- The particular structure of the noise associated to each correspondence. Although

all previous PnP solvers assume that correspondences may be at most corrupted by

noise and show robustness against large amounts of it, none of them considers that the

particular structure of the noise associated to each correspondence, could indeed to be

used to further improve the accuracy of the estimated pose. Specifically, existing solu-

tions assume all 2D correspondences to be affected by the same model of noise, a zero

mean Gaussian distribution, and consider all correspondences to equally contribute to

the estimated pose, independently of the precision of their actual location.

- Another recurrent problem is the scalability provided by the PnP solvers. Com-

monly, the efficiency of PnP solvers decreases linearly with respect to the number of
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correspondences. Therefore, a large number of correspondences reduces significantly

the efficiency of the solver. This problem has been recently studied in [149, 148] where

scalable PnP solvers to thousands of correspondences have been proposed.

4.1.1 Overview

This chapter is organized as follows. Next section introduces the most relevant state-of-the-

art approaches to solve the PnP problem. In Section 4.3 the EPnP solver [97] is revisited and

reformulated in order to increase its accuracy and efficiency providing almost constant com-

putational cost for any number of correspondences, even thousands. Afterwards, the problem

of mismatched correspondences is addressed in Section 4.4, where we propose our outlier

rejection mechanism that is fully integrated in our pose estimation pipeline requiring a negli-

gible computational overhead. In this section a deep comparative evaluation against state of

the art is performed, showing the robustness to outlier correspondences and scalability abili-

ties of our proposed PnP methods. In Section 4.5 in order to further improve the accuracy of

the estimated pose we model the particular structure of the noise for each correspondence and

we reformulate the PnP problem as a maximum likelihood estimation. In addition we also

propose a strategy to compute a specific uncertainty model per correspondence in real exper-

iments, by modelling the sensitivities of 2D interest point detectors to different viewpoints.

We also show our approach outperforms the most recent techniques in terms of accuracy

while keeping a running time still linear with respect to the number of correspondences.

4.2 Related PnP Approaches

The PnP problem has been primarily addressed for a fixed and small number of correspon-

dences. Several closed-form solutions have been proposed to solve the P3P [40, 21, 43, 62,

34, 74], the P4P [32], and the problem with n = {4, 5} points [132]. Yet, while these minimal

problems can be very efficiently solved, they can produce multiple solutions [32] and they

have the drawback of being very sensitive to noise. This noise is attenuated by exploiting

data redundancy of larger point sets. The most straight-forward algorithm for doing so, is the

O(n) Direct Linear Transformation (DLT) [46]. However, DLT does not make use of the fact

that in the PnP problem the calibration parameters are assumed to be known in advance, and

generally gives poorer results than methods that explicitly consider these parameters. The

most “specialized” PnP approaches for an arbitrary number of points can be roughly split

into iterative and non-iterative methods.

Iterative PnP approaches optimize an objective function involving all correspondences.

Standard objective functions are based on geometric errors (e.g. 2D reprojection) [103]. This

method, though, is computationally expensive as it performs a demanding exploration of the

solution space to avoid local minima solutions. In the Procrustes PnP (PPnP) [35], the error

between the 3D points and their estimated locations is iteratively minimized in a least squares

sense. Yet, since this approach is not combined with a global search strategy, it is prone to fall

into local minima. An alternative to geometric errors, is to optimize algebraic errors, which

are faster to compute [7]. This is explored in [85], that minimizes an algebraic error resulting
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from deviations in the line of sight of the 3D-to-2D correspondences. Again, this iterative

approach is sensitive to local minima.

Most of the limitations undergone by iterative methods (i.e, local minima solutions and/or

high computational cost) may be overcome by non-iterative approaches. Paradoxically, early

solutions were not computationally tractable, as they considered all n points as unknowns

of the problem. Retrieving their locations, after imposing inter-point distances, lead to

O(n5) [110] and O(n8) [2] solutions. More recently, there have been several closed form and

O(n) formulations that can afford arbitrarily large point sets. The first of these techniques

was the EPnP [97, 72], that reduced the PnP to retrieving the position of a fixed number of

control points spanning any number of 3D points, three control points for the planar case and

four for the non-planar case. Thus, in the non-planar case 3x4 parameters must be estimated,

entailing that n � 6 3D-to-2D correspondences are needed to obtain accurate solutions. The

inter-point distance constraints were only considered between these control points, and the

resulting quadratic polynomials were solved with simple linearisation techniques. This refor-

mulation of the problem permitted dealing with hundreds of correspondences in real time.

Subsequent works have improved the accuracy of the EPnP, still in O(n), by replacing

the linearisation with polynomial solvers. For instance, the Robust PnP (RPnP) method [75]

replaces the linearisation scheme of [110] by retrieving the roots of a seventh degree polyno-

mial that results from the least square minimization of multiple P3P problems solved using

[74]. The Direct-Least-Squares (DLS) method [47] formulates a non-linear cost function,

that produces a fourth order polynomial system and is solved using the Macauley matrix

method. The main drawback in DLS is related with its rotation parametrization using the

Cayley representation, which is degenerate at 180 degrees. A new unpublished version of

the DLS that avoids this problem is provided in the author’s webpage1, their solution con-

sists in solving the equation system three times under known rotations. In order to address

the Cayley drawback, [149, 148] propose two direct minimization methods using a quater-

nion parameterization solved by means of a Gröbner basis solver, resulting in the so-called

Accurate and Scalable PnP (ASPnP) [149] and the Optimal PnP (OPnP) [148], two of the

most competitive techniques in the state of the art. In addition, both methods obtain accurate

solutions with an almost constant computational cost, independently of n.

4.3 Real-Time and Scalable PnP Solution

We next describe the main ingredients of our real-time and scalable solver for the PnP prob-

lem. Our proposed method takes advantage of the linear formulation of the EPnP method,

which allows to describe all the 3D points belonging to a known 3D model using their

barycentric coordinates with respect to a set of control points. Therefore, as well as the EPnP

method our goal is to retrieve the position in camera coordinates of those control points.

These coordinates cannot be directly estimated, however it is straightforward to estimate the

subspace where those control points lie in camera coordinates.

Our proposed method, as the EPnP method, is a two stages method. In the initial stage the

subspace containing the 3D control points in camera coordinates is estimated. Afterwards, in

1http://www-users.cs.umn.edu/˜joel/index.php?page=software



84 ROBUST MONOCULAR CAMERA POSE ESTIMATION

the second stage control points and camera pose are determined. In the EPnP method they

are determined by solving four linear equation systems and in our case applying an alignment

based on Procrustes.

We first review the linear formulation of the problem that results from the EPnP algo-

rithm [97], which have linear computational cost with respect to n. Afterwards, we rewrite

the EPnP equations in order to estimate the subspace with almost constant computational

cost, independently of n. Finally, our Procrustes-based alignment is proposed.

4.3.1 Problem Statement

Let us assume we are given a set of 3D-to-2D correspondences between n 3D reference points

pw
i = [xw

i , y
w
i , z

w
i ]

� expressed in a world coordinate system w and their 2D projections

ui = [ui, vi]
�, for i = 1, . . . , n. Let A be the camera internal calibration matrix, also

assumed to be known in advance. Given these assumptions, the goal of the PnP is to estimate

the rotation matrix R and translation vector t that align the camera and world coordinate

frames. As it is standard, this is addressed through the minimization of a cost function based

on the accumulated reprojection errors. For each point i, we have the following perspective

constraint with three equations,

di

[
ui

1

]
= A [R|t]

[
pw
i

1

]
, (4.1)

where di is the depth of the point.

4.3.2 Revisiting the EPnP Linear Formulation

Following the EPnP formulation [97], pw
i can be rewritten in terms of the barycentric coor-

dinates of four control points cwj , j = 1, . . . , 4, chosen so as to define an orthonormal basis

centred at the origin of the world coordinate system. Every reference point, can therefore be

expressed as a weighted sum of the control points,

pw
i =

4∑
j=1

αijc
w
j (4.2)

where αij denotes the barycentric coordinate for a given control point j and a reference

point i. In addition, barycentric coordinates are constrained for each reference point pw
i as,

4∑
j=1

αij = 1. (4.3)

Note that the barycentric coordinates αij are independent on the coordinate system, and

specifically they remain the same when writing the reference points in the camera coordinate
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system c. That is,

pc
i =

4∑
j=1

αijc
c
j . (4.4)

If we replace the term Rpw
i + t by pc

i in equation (4.1), the three equations becomes,

di

[
ui

1

]
= A

4∑
j=1

αijc
c
j

di

⎡
⎣ui

vi
1

⎤
⎦ =

⎡
⎣fu γ u0

0 fv v0
0 0 1

⎤
⎦ 4∑

j=1

αij

⎡
⎣xc

j

ycj
zcj

⎤
⎦ (4.5)

where the unknown parameters are the depths di and the control points ccj instead of

[R|t]. Since, A is an upper triangular matrix where its last row is [0 0 1], equation (4.5)

implies that,

di =

4∑
j=1

αijz
c
j (4.6)

where zcj denotes the third coordinate of each control point. Substituting equation (4.6)

in equation (4.5) the perspective projection constraint for one single correspondence can be

rewritten as the following linear system of two equations,

4∑
j=1

αijfux
c
j +

4∑
j=1

αijγy
c
j + (u0 − ui)z

c
j = 0 (4.7)

4∑
j=1

αijfvy
c
j + (v0 − vi)z

c
j = 0 (4.8)

Concatenating these equations for all n correspondences can be expressed as a linear

system,

Mx = 0 (4.9)

where M is a 2n × 12 matrix and x = [cc1
�, . . . , cc4

�]� is the unique unknown, a 12-

dimensional vector made of the control point coordinates in the camera reference system.

The solution x belongs to the null space of M, that can be expressed as,

x =
N∑
i=0

βivi (4.10)



86 ROBUST MONOCULAR CAMERA POSE ESTIMATION

where vi denotes the singular vectors of MTM corresponding to the N null singular

values. Therefore, the final solution x is determined by the coefficients βi. In [97] is shown

that the null space can be spanned up to 4 singular vectors with lower singular values.

In order to estimate the appropriate values for βi the known distances between the control

points must be preserved, that means an small number of quadratic equations must be solved

using linearisation techniques for the value of N = 1, 2, 3 and 4. Since the N value is not

easy to estimate, [97] proposes to solve the equation system for each feasible value of N
and keep the one that yields the smallest reprojection error. Finally, in order to improve the

accuracy an iterative Gauss-Newton minimization on the inter-point distances is proposed

in [72] to refine the βi values.

4.3.3 Reformulating the EPnP Linear Formulation

In the EPnP method [97], the most expensive computation in terms of computational cost is

related with the computation of the matrix M and its product MTM. We propose reduce

drastically the computational cost by precomputing some parts of the equations (4.7) and

(4.9).

These precomputations can be done because of the properties of the matrix A defining

the intrinsic parameters: the inverse matrix of an invertible upper triangular matrix is upper

triangular, and when the last row is equal to [0 0 1] the row in the inverse matrix remains

equal.

Thus, equation (4.5) can be rewritten by multiplying both sides by A−1,

A−1

[
diui

di

]
=

4∑
j=1

αijc
c
j (4.11)

therefore, equation (4.6) is still valid and by substituing equation (4.6) in equation (4.11)

the perspective projection constraint can be rewritten as the following linear system of two

equations,

4∑
j=1

αijx
c
j −

4∑
j=1

αiju
c
iz

c
j = 0 (4.12)

4∑
j=1

αijy
c
j −

4∑
j=1

αijv
c
i z

c
j = 0 (4.13)

where [uc
i , v

c
i , 1]

� = A−1[ui, vi, 1]
� are the normalized 2D coordinates. The previous

equation system can be rewritten in matrix form as,

[
1 0 −uc

i

0 1 −vci

]
Bix = 0 (4.14)
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where Bi is a sparse 3 × 12 matrix built from the barycentric coordinates αij , and

x = [cc1
�, . . . , cc4

�]� is our unique unknown, a 12-dimensional vector made of the control

point coordinates in the camera reference system. At this point we can exploit the particular

sparsity pattern of Bi to write the equation (4.14) as,

[
αi1 αi2 αi3 αi4

]⊗ [
1 0 −uc

i

0 1 −vci

]
x = 0 (4.15)

where ⊗ denotes the Kronecker product.

Finally, concatenating these equations for all n correspondences can be expressed as a

linear system Mx = 0, where M contains exactly the same coefficients as the matrix M in

equation (4.9).

It is worth to point that in equation (4.15) the products between barycentrics and 1 can

be understood by substitutions in M and the number of real operations is reduced to four

per equation. As we will see in the experimental results in Section 4.4.3 this reformulation

results in significant speed-ups when building the correspondence matrix M.

4.3.4 Estimating Scale and Absolute Pose

So far we have estimated a solution x of the system Mx = 0 up to scale, i.e, any scaled

version γx would also be a solution of that linear system. In addition, x is an estimation of

the position of the control points ccj in camera referencial, but our ultimate goal is to estimate

the R and t that yield to absolute camera pose in the world coordinate system. This is linearly

calculated using the generalization of the Orthogonal Procrustes problem [116], which solves,

in closed-form, the following minimization problem,

argmin
γ,R,t

4∑
j=1

‖Rcwj + t− γccj‖2 (4.16)

subject to R�R = I3

where I3 denotes the 3× 3 identity matrix.

In equation (4.16) a global optimum alignment between ccj and cwj is found, however

this alignment tends to contain errors because of slightly errors in the null space estimation.

Therefore, in a similar manner as [72] extends the original EPnP with a final Gauss-Newton

optimization, we also propose an iterative refinement of x. For this purpose we consider the

estimation of the control points positions from equation (4.16) as,

ĉcj = Rcwj + t (4.17)

and we re-estimate the null-space vector as x̂ = [(ĉc1)
�, . . . , (ĉc4)

�]�. This vector is then

projected on an extended null space of M, which is spanned by the four singular vectors with
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Figure 4.2: Example of the proposed Procrustes-based alignment. Left square contains, a

comparison between the ground-truth x estimated without noise in the correspondences and

the x estimated with noise. The blue control points are expresed in world coordinates. In

the rigth side an example showing the evolution of x iterating our proposed method. First the

control points in world coordinates (blue dashed) are aligned with the noisy x solution using

equation (4.16), afterwards in orange is shown the new x solution computed using equation

(4.18).

lower singular values. Recall we know the final solution must lie inside these subspace [72].

Thus x is recomputed as,

x ← Nβ : argmin
β

‖Nβ − x̂‖2 (4.18)

where N is a 12× 4 matrix representing the 4 singular vectors in the assumed null space

of M and β is a 4-dimensional vector of weights. This minimization is solved in closed form,

and yields updated values x. These new estimates are in turn fed again to equation (4.16) to

recompute γ, R and t until the convergence of both equations. An example of this process

can be seen in Figure 4.2.

Since this optimization is computed just over the four control points, its computational

overhead is negligible.

4.3.5 The Planar Case

Just as with the EPnP [97], the planar case requires a slight modification of the method.

Since in this case only three control points are necessary to span the reference points onto

the plane, the dimensionality of our vector of unknowns x drops to 9, and M becomes a

2n × 9 matrix of correspondences. Besides these changes the rest of the algorithm remains

completely unchanged.
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4.4 Algebraic Outlier Rejection in the PnP Problem

In this section we propose a novel solution to the PnP problem that integrates an outlier-

rejection mechanism and does not need to resort to an independent and separate strategy.

Like in RANSAC [32], our approach also iterates to remove outliers. However, instead of

using a geometric criterion to reject them, where at each step one needs to compute the full

pose and project back all points, we use much direct criterion that results from exploring the

algebraic error of a linear system inherent of our PnP formulation (See Fig. 4.3). In addition,

this process typically converges in less than 5 iterations, even in situations where up to 50%
of the correspondences are outliers. As we will show in the experimental section, this results

in speed-ups of up to 100× compared to the standard P3P+RANSAC+PnP strategies, while

yielding similar or even better accuracies.

We next briefly introduce different outlier rejection schemes proposed in the state of the

art, showing that in the PnP problem outliers have been always discarded by preprocessing

the correspondences. Afterwards, we describe our robust to outliers PnP method, which is

based on our scalable PnP solver proposed in the previous section. We show that based on

the previous linear formulation, we can easily formulate a robust outlier rejection procedure

based on the minimization of the algebraic error of the linear system. Once an initial outlier-

free solution is obtained, the pose can be estimated applying our Procrustes-based alignment

introduced in Section 4.3.4.

4.4.1 Related Outlier Rejection Schemes

Yet, as we have pointed out above, the essential problem of dealing with outliers has not been

directly handled by previous PnP solutions. To the best of our knowledge this task is set

aside, as an independent preliminary step based on RANSAC-like strategies [75, 149, 148],

where a series of P3P problems are solved and their solutions evaluated on all points. When a

large consensus is found it is finally evaluated on a PnP method. The main drawback of this

two stage strategy is that the efficiency of the PnP algorithm is not fully exploited, as most of

the time is spent in the multiple evaluations of the P3P.

There are related geometric problems proposing alternative outlier-rejection schemes that

are intrinsically integrated within the problem that is being solved. For instance, to robustify

PCA [20, 49] use influence functions and [11, 152] use L1-norm. In [61, 55] the L1-norm is

used within the optimization scheme to handle certain amount of outliers in matrix factoriza-

tion for multiview geometry problems.

Another way to handle the outlier rejection problem, is to focus on maximizing the num-

ber of inliers that satisfy the model that is being optimized. Dual problem [102] or the min-

imax formulations [145] are used for this purpose, although they are limited to relatively a

small number of outliers (< 35%). Larger amounts have been recently handled using a trun-

cated L2-norm [28]. However, since this approach has a O(nd) complexity, where d is the

dimensionality of the model, it is constrained to problems with relative small dimensionali-

ties, like estimating planar motions or stereo triangulations.

In this section we draw inspiration in these outlier rejection schemes and integrate them
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Figure 4.3: Our approach to simultaneously estimate pose and reject outliers. Top: Sample

result, where green and black lines indicate the inlier and outlier matches, respectively. The

3D model is overlaid in blue in the input image, using the estimated pose. The overall process

(outlier rejection and pose estimation) is done in less than 5 ms. Bottom-left: Our PnP solution

iteratively computes the null-space of a linear system. Here we plot the matrix of this system,

where rows represent correspondences. The error per match of the estimated null-space is

plotted on the side of each matrix, and is used to detect outliers (black rows). The convergence

of the null-space is plotted at the bottom of each matrix, where dotted lines depict the true null-

space. Bottom-right: The null-space gives an estimate of the 3D model in camera coordinates.

We finally compute the pose using the method proposed in Section 4.3.4.
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within the linear formulation of the PnP solution proposed in the previous section. The

combination of both ingredients let us to progressively discard outliers with a simple step-

like loss function and estimate the null-space of the linear system in just a few iterations, each

executed in O(n) time.

4.4.2 Robust Null-Space Estimation

As discussed in the original EPnP formulation [97] in the noise-free case the rank of the null-

space of M is one, but due to noise this rank can grow up to four. The algorithm proceeds

by separately solving each of the cases and retaining the one that minimizes the reprojection

error of all points. However, as it will be shown in the results section, this strategy is sensitive

to the presence of outliers.

Instead, we propose a robust approach for solving the system Mx = 0 – built as in Sec-

tion 4.3.3 –, which is intended to remove outliers, and also those correspondences with large

amounts of noise. As a result, we can initially safely assume that the rank of the null space

of M will be one (this assumption is relaxed in the final pose refinement stage explained in

Section 4.3.4). Thus, like in the Robust PCA paradigm [11], our robust estimation can be

considered as an approximation of a full rank matrix M because of noise and outliers by a

low rank matrix L. However, in contrast to [11], we known in advance the rank of L and we

write our problem as,

argmin
L,W

‖W(M− L)‖2 (4.19)

subject to rank(L) = rank(M)− 1

where L is a 2n×12 low rank approximation of M, and W = diag(w1, w1, . . . , wn, wn)
is a 2n× 2n diagonal matrix with binary entries indicating if each particular correspondence

is considered an inlier (wi = 1) or an outlier (wi = 0).

Since we are interested in the null space of M, (i.e. the vector x), we rewrite the problem

by multiplying the previous minimization by x. Given that x and the rows in L lie into

complementary subspaces, Lx = 0, the constrained minimization of equation ( 4.19) can be

turned into a non-linear minimization of an algebraic error with unknowns x and W,

argmin
x,W

‖WMx‖2 . (4.20)

In order to optimize equation ( 4.20) we follow the iterative approach detailed in Algo-

rithm 1 in which x and W are sequentially estimated.

Initially, all correspondences are assumed to be inliers, and thus W is initialized to the

identity matrix. We then compute the singular value decomposition of WM, and take x to

be the singular vector associated to the smallest singular value. Let ε = Mx be the residual

vector, and εi = ‖[ε2i−1, ε2i]‖ the algebraic error associated to the i-th correspondence. All
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Algorithm 1 Robust Null Space Estimation

Input: M: 2n×12 corresp. matrix; δmax: max. algebraic error

Output: W, x
Initialize: W = I2n, ξ = Inf

1: loop
2: [U,S,V]=svd(WM);

where V=[v1, . . . ,v12]; S=diag(s1, . . . , s12)
3: x ← vk; where k : sk = min(s1, . . . , s12)
4: ε = Mx
5: εi = ‖[ε2i−1, ε2i]‖
6: εmax = Q25%(ε1, . . . , εn)
7: if εmax > ξ then
8: return W,x
9: else

10: ξ = εmax

11: end if
12: Update wi using Eq. 4.21

13: end loop

of the entries of the matrix W are updated according to a simple step function,

wi =

{
1 if εi ≤ max(εmax, δmax)
0 otherwise

(4.21)

where εmax = Q25%(ε1, . . . , εn) returns the algebraic error of the correspondence that is

at the boundary of the lowest 25% quartile. This function is used as a robust estimator to reject

those correspondences with largest algebraic errors. For this purpose, we also evaluated using

the median operator. Yet, the median has a breakdown point (maximum number of supported

outliers) of 50%, while, as we will show in the results section, the breakdown point of the

Q25% reaches the 60%.

Furthermore, note that if we solely used this criterion, in an outlier-free case we would

be unnecessarily rejecting inlier correspondences. In order to avoid this situation and achieve

faster convergence rates we introduce a minimal algebraic error threshold δmax that needs to

be reached in order to consider a specific correspondence as outlier, similar to the minimum

reprojection error τ used in standard RANSAC to classify matches as outliers. Yet, since

in our algebraic error we have normalized the image coordinates by the focal length (when

multiplying [ui, vi] by A−1) we set this threshold to δmax = 1.4τ/f , where f is the camera

focal length, and τ is the maximum reprojection error (in pixels) permitted to the inliers. The

constant 1.4 accounts for the correlation factor between the f and τ and has been experimen-

tally obtained from a large number of synthetic experiments where we have swept the joint

space of both variables.

This process is repeated until the convergence of the null-space x which usually happens
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Figure 4.4: Example of outlier rejection with 100 inliers (shown on the left-most part of the

graphs) and 100 outliers. The blue line represents the algebraic error of each correspondence,

and the horizontal black line is the threshold max(εmax, δmax) used in Eq. 4.21 to classify each

match as inlier or outlier. δmax is the only threshold we need to provide, and we set it to 0.017,

which approximately represents an image noise of τ = 10 pixels for a focal length f = 800.

in less than 5 iterations. Fig. 4.4 shows an example of the execution of our algorithm with

50% of outliers, which converged after 4 iterations. It is worth mentioning that all entries

of W are reestimated at each iteration, using the updated vector x. By doing this, we are

able to re-accept in our inlier set those correspondences that in initial iterations were wrongly

labeled as outliers.

4.4.3 Experimental Results

We compare the accuracy and scalability of our methods, with and without the outlier re-

jection mechanism, against state of the art on synthetic and real data. Our PnP methods
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are written in MATLAB and the source code is publicly available1 within a toolbox, which

contains all the evaluated PnP methods and the code to replicate the experimental results.

In these experiments we consider the two proposed PnP methods referred to as Efficient

Procrustes PnP (EPPnP) for the scalable one proposed in Section 4.3 without the outlier-

rejection scheme and the Robust Efficient Procrustes PnP (REPPnP) for the outlier rejection

case proposed in Section 4.4.2.

Synthetic Experiments

We assume a virtual calibrated camera with image size of 640×480 pixels, focal length of 800

and principal point in the image center. We randomly generated 3D-to-2D correspondences,

where 3D reference points were distributed into the x, y, z interval [−2, 2]× [−2, 2]× [4, 8].
We also added Gaussian noise to the 2D image coordinates and different percentages of out-

liers, produced by randomizing the 2D position of the projections. Finally, we chose the

ground-truth translation ttrue as the centroid of the 3D reference points and we randomly

generated a ground truth rotation matrix Rtrue. As a metric errors we used the same as

in [75, 148]. The absolute error is measured in degrees between the Rtrue and the estimated

R as erot(deg) = max3k=1{acos(r�k,true ·rk)×180/π} where rk,true and rk are the k-th column

of Rtrue and R. The translation error is computed as etrans(%) = ‖ttrue − t‖/‖t‖ × 100.

All the plots discussed in this section were created by running 500 independent MATLAB

simulations and report the average and median rotation and translation errors.

Number of Correspondences and Noise

In these experiments we compared the accuracy and running time of our PnP methods as-

suming there are no outlier correspondences. However, since we want to show that the outlier

rejection process does not affect the final results, we consider our two PnP methods, EPPnP

and REPPnP.

We have compared our formulations against the most recent PnP approaches: the robust

version of DLS [47], ASPnP [149], OPnP [148], RPnP [75], PPnP [35], EPnP + GN [72],

SDP [117], and the LHM [85].

Figure 4.5 plots the accuracy for increasing number of correspondences, from n = 10 to

200, with constant Gaussian noise of σ = 2 pixels. In addition, Figure 4.6 depicts the errors

for increasing amounts of noise, from σ = 0 to 20, and a constant number of correspondences

n = 30. Both experiments for planar and non-planar configurations, show that the proposed

approach yields accurate solutions, comparable to the best state-of-the-art solutions. Just to

give significance of the difference between the errors in our method and the most accurate

approach (OPnP), in the worst case it is equivalent to a mean deviation of about 0.5 mm in

estimating the position of points randomly distributed within a cube of 40 cm side located

at a 60 cm of the camera. For the planar case, it is interesting to note how our approach

significantly improves the performance of the EPnP, mostly due to the use of the Procrustes

1http://cmtech.upf.edu/system/files/pdf/REPPnP_Toolbox.zip
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(a) Non-planar case
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(b) Planar case

Figure 4.5: Synthetic experiments for (a) non-planar objects and (b) planar objects. Varying

the number of correspondences.
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(a) Non-planar case
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(b) Planar case

Figure 4.6: Synthetic experiments for (a) non-planar objects and (b) planar objects. Varying

the amount of Gaussian noise. The color codes and line styles are the same as those used in

Figure 4.5
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refinement stage.

In addition, as we have discussed before, we want to make clear that our approach is

not intended to work in minimal cases. In fact, similar to EPnP, the performance of our

approach drops for n ≤ 6. Instead, we seek to exploit the consistency of large number of

correspondences. This is indeed a realistic situation, as current interest point detectors are

able to extract hundreds of reliable feature points in standard images. And what is most

important, we can process all this amount of points very efficiently, and as we will show

below, even under the presence of outliers.
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Figure 4.7: Running time. Varying the number of outlier-free correspondences (left) and vary-

ing the % of outliers (right). In the left, the color codes and line styles are the same as those

used in Figure 4.5.

Figure 4.7(left) shows the computation time of all methods in the outlier free case, for an

increasing number of correspondences, from n = 10 to 2000, and with a fixed σ = 2. This

experiment was done on an Intel Core i7 CPU to 2.7Ghz and all methods are implemented in

MATLAB. Note that our EPPnP method is the fastest one with almost constant computational

cost fixed to ≈ 3 ms whatever number of correspondences. Closely followed by ASPnP and

our robust implementation REPPnP, which despite being computed in a situation without

outliers, it tries to discard them executing several iterations. Figure shows that the cost of

those iterations to discard outliers is negligible, increasing slightly the computational time of

our EPPnP method.

Robustness to Outliers

The main contribution in this section is to embed the outlier rejection scheme within the pose

estimation pipeline. The success of our approach holds in part on the fact that the null-space

xini computed initially (i.e., the solution of Mx = 0 before removing any outlier) “only”

deteriorates linearly with the presence of outliers. We show this in Figure 4.8(left) where we
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Figure 4.8: Synthetic experiments for different levels of outliers in terms of relative error of

the null-space of Mx = 0 computed without removing outliers (left); and algebraic error for

the inlier and outliers correspondences projected onto this null space (right). The deviation

levels of the initially estimated null-space let to clearly identify inliers and outliers, based on

their algebraic error.

plot ‖xtrue − xini‖/‖xini‖ × 100 for increasing amounts of outliers. Note that the difference

between the true and the initially estimated null-space is kept within reasonable bounds for

large percentages of outliers. This lets us to easily detect the outlier correspondences, as they

generally have larger algebraic errors than inlier correspondences when projected onto this

initial null-space. We show this in Figure 4.8(right), where we plot the algebraic error Mxini.

This robustness to the presence of outliers, contrasts with the sensitivity undergone by

the geometric error. If we use the same experimental setup, and compute the 2D reprojection

using the state-of-the-art PnP methods described above, we see that the obtained solutions

are so corrupted that inliers and outliers cannot be distinguished from geometric error alone.

Obviously this results in total failures of these methods, if outliers are not initially removed

(Figure 4.9).

In Figure 4.10 we therefore compare the performance of our robust approach, and other

PnP methods when used in a RANSAC strategy, concretely [46], with the following com-

binations of minimal and general approaches: (RANSAC+P3P [62]); (RANSAC + RP4P +

RPnP [75]); (RANSAC + P3P [62] + ASPnP [149]); and (RANSAC + P3P [62] + OPnP [148]).

Note that our approach tend to yield slightly better results than other approches, we suspect

it comes from the fact of using a different criterion to choose the inliers correspondences

– equation (4.21)–. As mentioned above, the breakdown point of our approach is between

50% and 60% of outliers for the non-planar case and ≈ 5% smaller for the planar case.

Note that RANSAC based strategies have higher breakdown points, however as seen in Fig-

ure 4.7(right) this is at the expense of a significant increase in the computation time, which is
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(a) Non-planar case
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(b) Planar case

Figure 4.9: Synthetic experiments for different levels of outliers for (a) non-planar and (b)

planar objects. Varying the % of outlier correspondences. The real inliers are fixed to 100 with

σ = 2. Note that even for small percentage of outliers the obtained solutions are completely

wrong.
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(b) Planar case

Figure 4.10: Synthetic experiments, varying the % of outlier correspondences. The real inliers

are fixed to 100 with σ = 5. The symbol ∗ represents the last value before the breakdown

point.
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Figure 4.11: Real image examples. Top: Inlier and outlier correspondences found by our

method between a model (left) and a test image (rigth). Bottom: Examples of fitting using our

method. Green and black dots represent the inliers and outliers respectively.

more than 100x larger than the time required by our approach1.

Finally, we would like to comment that we are aware that exist more efficient versions of

RANSAC [111]. For instance PROSAC [15] exploits priors on the confidence of the detector

. Note, however, that we could also incorporate this kind of knowledge in our approach, e.g.

by weighting each correspondence based on its confidence. However, for the clarity of the

experiments we did not further explore these situations.

Real Images

We also tested our approach in real image sequences corrupted by large amounts of outliers.

Interest points, descriptors and initial correspondences are obtained using SIFT [84], which

yields around 200−400 correspondences per image. Figure 4.11(top) shows one sample input

image and its set of 248 correspondences, from which 96 are outliers. Our REPPnP can detect

these outliers and compute the pose in less than 4ms, 25× faster than any other RANSAC-

based method. The results of other detections are plotted on the bottom of Figure 4.11. In

Figure 4.12 an example for a planar object is shown, showing in the left the estimated camera

pose with respect to the 3D object model. Note that an additional benefit of our approach,

is that the outlier removal process is completely transparent to the user, simplifying thus its

1The stopping criterion for the RANSAC is based on the number of iterations that guarantee, with a probability

0.99 that at least one minimal solution is outlier free (See. [46], page 119).
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Figure 4.12: Example with a planar object. Estimated camera pose with respect to the 3D

object model (left) for the book shown in the image (right). Green and black dots represent the

inliers and outliers respectively and blue rectangle the object model projected on the image.

practical utilization.

4.5 Leveraging Feature Uncertainty in the PnP Problem

In this section we propose a solution to the PnP problem which, to the best of our knowl-

edge, is the first one that inherently incorporates into its formulation feature uncertainties.

Although all previous PnP solutions assume that correspondences may be corrupted by noise

and show robustness against large amounts of it, none of these works considers that the par-

ticular structure of the uncertainty associated to each correspondence could indeed to be used

to further improve the accuracy of the estimated pose (see Figure 4.13). Specifically, existing

solutions assume all 2D correspondences to be affected by the same model of noise, a zero

mean Gaussian distribution, and consider all correspondences to equally contribute to the

estimated pose, independently of the precision of their actual location.

In order to incorporate into our formulation the feature uncertainties we propose to it-

eratively minimize an unconstrained Sampson error function [46], which approximates the

Maximum Likelihood solution. Furthermore, we also propose a strategy to compute a spe-

cific uncertainty model per correspondence in real experiments, by modeling the sensitivities

of 2D interest point detectors to different viewpoints. As we will show in both synthetic and

real experiments, our approach outperforms the most recent techniques in terms of accuracy

while keeping a running time still linear with respect to the number of correspondences.

We next introduce different methods to deal with uncertainties. Afterwards, we reformu-

late our scalable PnP solution (EPPnP) proposed in Section 4.3 in order to integrate feature

uncertainties and estimate the camera pose based on an approximated Maximum Likelihood

procedure. Finally, we describe a methodology to model viewpoint-independent 2D feature

uncertainties using anisotropic Gaussian distributions.
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Figure 4.13: PnP problem with noisy correspondences. We assume a set of 2D feature points

is given, with a particular noise model for each feature point, which is represented by one 2D

ellipse. We also assume the correspondences (black lines) and 3D points (blue points) with

respect to a 3D model are known. Our approach estimates a solution of the PnP problem that

minimizes the Mahalanobis distances Δui shown in the left (red arrow). In the left the green

rectangle and blue dots are the true projection of the 3D model.
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4.5.1 Related Methods to Deal with Uncertainty

Traditionally, the PnP problem has been applied to small subsets of correspondences yielding

closed form solutions to the P3P [40, 21, 62, 34], P4P [32], and P5P [132] problems. Yet,

these solutions to the minimal case are prone to be sensitive to noise, being therefore typically

used within RANSAC schemes. Noise robustness can be achieved by considering larger sizes

of the correspondence set.

Yet, as we have pointed out above, the noise problem has not been directly handled by

previous PnP solutions, which simply attenuate its effect by exploiting data redundancy. In

contrast, other problems in geometric computer vision, such as Simultaneous Pose and Cor-

respondence [98, 119, 115], Fundamental matrix computation [13, 60] , ellipse fitting [13, 71,

59, 58], do take into account specific models of uncertainty per observed point. In most these

approaches, the uncertainty is modeled by a covariance matrix, and Maximum Likelihood

strategies are proposed to minimize the Mahalanobis distances between the noisy and the

true locations of the point observations. As discussed in [14], estimating the global minima

for this kind of problems is impractical. A feasible alternative is to minimize approximated

Sampson error functions, for instance by means of iterative approaches such as the Funda-

mental Numerical Scheme (FNS) [13], the Heterocedastic Errors-in-Variables (HEIV) [71]

or projective Gauss Newton [60]. These minimization approaches can be considered as a

solution refinement and they need to be fed with an initial solution. Other methods as the

Renormalization [57] or the recent Hyper-Renormalization [59] do not need an initial so-

lution, and find a solution by solving a set of estimating equations which need not to be

derivatives of some cost function.

All these previous approaches, though, are focused on theoretical derivations which are

only evaluated over synthetic data where the uncertainty models per point are assumed to be

known in advance. The problem of estimating these input models in real data is completely

obviated. In this section we will propose a strategy for this in the case of estimating the pose

of planar objects.

4.5.2 Integration of Feature Uncertainties in Our Linear Formulation

Let us assume that ui = [ui, vi]
� in equation (4.1) represents an observed 2D feature lo-

cation obtained using an interest point detector. This observed value can be regarded as a

perturbation from its true 2D projection ui by a random variable Δui. We write this as,

ui = ui +Δui (4.22)

We assume that Δui is small, independent and unbiased allowing to model the uncertainty

in statistical terms, with expectation

E[Δui] = 0 (4.23)

and covariance
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E[ΔuiΔu�
i ] = σ2Cui

(4.24)

where Cui is the known 2× 2 uncertainty covariance matrix and σ is an unknown global

constant specifying the global uncertainty in the image. Splitting the uncertainty term into

two components is motivated because the optimal solution can be obtained ignoring σ [58],

making the known uncertainties to be independent of the object size in the image.

From these assumptions, the likelihood of each observed 2D feature location ui from its

true 2D projection ui can be expressed as,

P (ui) = k · exp(−1

2
(ui − ui)

�C−1
ui

(ui − ui))

= k · exp(−1

2
Δu�

i C
−1
ui

Δui) (4.25)

where k is a normalization constant.

Thus, the Maximum Likelihood solution for the PnP problem is equivalent to minimizing

the Mahalanobis distance in equation ( 4.25) for all n correspondences,

argmin
Δui,x

n∑
i=1

‖Δui‖2C−1
ui

(4.26)

subject to Mui
x = 0

where Muix = 0 enforce the 3D-to-2D projective constraints in terms of the noise-free

correspondences. Assuming the uncertainty Δui = [Δui Δvi]
� to be small, a first order

perturbation analysis allows to approximate the projective constraint as,

Mui
x = Mui

x−Δui∇uMui
x−Δvi∇vMui

x = 0 (4.27)

where ∇uMui and ∇vMui are the partial derivatives of Mui in equation (4.15) with

respect to u and v,

∇uMui =
[
αi1 αi2 αi3 αi4

]⊗ [
0 0 −1
0 0 0

]
(4.28)

∇vMui
=

[
αi1 αi2 αi3 αi4

]⊗ [
0 0 0
0 0 −1

]

Using Lagrange multipliers we can further eliminate the constraints in equation ( 4.26),

and write the problem as an unconstrained minimization of the Sampson error function J(x),
namely
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argmin
x

J(x) = argmin
x

n∑
i=1

x�M�
ui
Mui

x

x�CMix
. (4.29)

CMi is the following 12× 12 covariance matrix

CMi
= (∇uMui

+∇vMui
)�Cui

(∇uMui
+∇vMui

) , (4.30)

which can be interpreted as the uncertainty Cui propagated to the M-space [58].

In order to minimize equation (4.29) we take the derivative of J(x) with respect to x,

∂J

∂x
= 2

n∑
i=1

M�
ui
Mui

x�CMix
x− 2

n∑
i=1

x�M�
ui
Mui

xCMi

(x�CMix)
2

x = Nx− Lx (4.31)

where N and L are 12× 12 matrices which also depend on x.

Setting the previous equation to zero we obtain Nx − Lx = 0. As we mentioned in

Section 4.5.1, there are several techniques to compute x from this equation, e.g [13, 71, 60].

We chose the Fundamental Numerical Scheme (FNS) approach [13], which solves iteratively

the following eigenvalue problem,

(N− L)x = λx (4.32)

where the eigenvector with smaller eigenvalue is used to update the solution x. Note that

at each iteration, the matrices N and L need to be updated with the new x estimate up to the

convergence. For the first iteration, x is initialized solving the equation system Mx = 0 as

is done in Section 4.3.

Finally, once x is estimated, the PnP problem is solved using the proposed method in

Section 4.3.4, which is based on solving the Orthogonal Procrustes problem in equation (4.16)

and iteratively refining its solution using the equation (4.18).

4.5.3 Dealing with Feature Uncertainties on Real Images

Estimating 2D feature uncertainties Cui
in real images is still an open problem. Most of

previous approaches dealing with geometric estimation under noise, just address the problem

in synthetic situations where 2D uncertainties are perfectly modeled using Gaussian distri-

butions. In this section, we propose an approach to model stochastically the behaviour of an

interest point detector under real camera pose changes.

Our approach starts by detecting features on a given reference view Vr of the object

of interest. Then, we synthesize m novel views {I1, . . . , Im} of the object, which sample

poses around Vr. Each view Ij is generated by projecting the 3D object model onto the

image plane assuming a known projection matrix PIj = A[RIj |tIj ] (without changing the

distance between the 3D object center and the camera to avoid changes in the global scale of
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Figure 4.14: Feature uncertainties on real images. Top: Example of a grid of reference views

where uncertainties must be estimated. Bottom-Left: Example of feature point clouds (in

green) and their Gaussian models (black ellipses) for V1. Bottom-Right: Results of feature

matching and uncertainties alignment against a test image.

the uncertainty σ). We then extract 2D features for each Ij , and reproject them back to Vr,

creating feature point clouds (see Figure 4.14 Bottom-Left).

Note that to compute these point clouds onto the reference view we have not performed

any feature matching process,i.e., there might be points within one cluster that do not belong

to the same feature. In order to resolve this issue and perform a correct clustering of features

we make use of the repeatability measure proposed in [90], which measures to what extend

do the area associated to each feature overlap. This area could correspond, for instance, to

the scale ellipse defined by the SIFT detector [84]. Specifically, if we denote by μa and μb

the two feature points, and Sμa
and Sμb

their corresponding image areas, we compute the
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following intersection over union measure,

IoU =
Sμa

∩ S(H�μbH)

Sμa
∪ S(H�μbH)

(4.33)

where H is the known planar homography relating both regions, and ∩ and ∪ represent the

intersection and union of the regions. Then, the two feature points are deemed to correspond

if 1− IoU < 0.4, following the same criterion as in [90].

Once features are grouped we model each cluster i using a Gaussian distribution, with

associated covariance matrix Cui
. Note that this covariance tends to be anisotropic, which

means that it is not rotationally invariant with respect to the roll angle. To achieve this invari-

ance we use the angles of the main gradients of the feature regions, similarly as is done by

the SIFT detector [84]. Figure 4.14(Bottom-Left and Bottom-Right) show how each Cui
is

rotated respect to the main feature gradients.

In practice, we found that Cui
describes with accuracy the uncertainties when the camera

pose of Ij is near to the camera pose of the reference Vr. This accuracy drops when camera

pose moves away. This is motivated because each Cui
is computed for Vr, remind that un-

certainties are not on the 3D model. In order to handle this, we defined a set of l reference

images {V1, ...,Vl} under different camera poses and each one with its own uncertainty

models. We experimentally found that taking a grid of reference images all around the 3D

object every 20◦ in yaw and pitch angles (see Figure 4.14(Top)), we obtained precise uncer-

tainty models. Before running the proposed PnP method we had to choose an initial reference

image to start with. For this, we used our scalable PnP method referred to as EPPnP.

In summary, the algorithm for real images can be split into the following three main steps:

1. Estimate an initial camera pose without considering feature uncertainties using EPPnP.

Let [R|t]EPPnP be this initial pose.

2. Pick the nearest reference view Vk taking into account that roll angle is not used to

compute the grid of reference images. Find Vk such that

argmax
k

(
c�k
‖ck‖ · cEPPnP

‖cEPPnP ‖
)

(4.34)

where ck/‖ck‖ and cEPPnP /‖cEPPnP ‖ are the normalized camera centers in world

coordinates, being ck = −R�
k tk and cEPPnP = −R�

EPPnP tEPPnP .

3. Solve equation (4.32) using the covariances Cui of the reference image Vk, and

[R|t]EPPnP for initializing the iterative process. The final pose [R|t]CEPPnP is ob-

tained using Procrustes, equation (4.16), and its refinement.

4.5.4 Experimental Results

In this section we compare the accuracy and scalability of our novel PnP method against the

EPPnP method introduced in Section 4.3 and the state of the art on synthetic and real data.
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(a) Non-planar case
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(b) Planar case

Figure 4.15: Synthetic experiments for (a) non-planar objects and (b) planar objects. Varying

the number of correspondences.
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(a) Non-planar case
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(b) Planar case

Figure 4.16: Synthetic experiments for (a) non-planar objects and (b) planar objects. Varying

the amount of uncertainty.
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Our novel PnP method is written in MATLAB and the source code is publicly available1

within a toolbox, which contains all the evaluated PnP methods and the code to replicate the

experimental results.

Synthetic Experiments

In these experiments we compared the accuracy and running time of our proposed method

assuming each uncertainty has a known Gaussian distribution. In experiments we refer to

our method as Covariant Efficient Procrustes PnP (CEPPnP) method and we have compared

it against the most recent PnP approaches: the robust version of DLS [47], ASPnP [149],

OPnP [148], RPnP [75], PPnP [35], EPnP + GN [72], SDP [117], LHM [85] and the EPPnP

described in SectionSection 4.3.

We assume a virtual calibrated camera with image size of 640× 480 pixels, focal length

of 800 and principal point in the image center. We randomly generated 3D-to-2D correspon-

dences, where 3D reference points were distributed into the interval [−2, 2]× [−2, 2]× [4, 8].
We also added Gaussian noise to the 2D image coordinates. Finally, we chose the ground-

truth translation ttrue as the centroid of the 3D reference points and we randomly generated a

ground truth rotation matrix Rtrue. As a metric errors we used the same as in Section 4.4.3 or

in [75, 148]. The absolute error is measured in degrees between the Rtrue and the estimated

R as erot(deg) = max3k=1{acos(r�k,true · rk) × 180/π} where rk,true and rk are the k-th col-

umn of Rtrue and R. The translation error is computed as etrans(%) = ‖ttrue − t‖/‖t‖ × 100.

All the plots discussed in this section were created by running 500 independent MATLAB

simulations and report the average and median rotation and translation errors.

In order to evaluate the accuracy we propose two different experiments. The first one hav-

ing into account an increasing number of correspondences and in the second one having into

account an increasing level of noise. For the first experiment we evaluate the accuracy from

n = 10 to 200 3D-to-2D correspondences. We determine 10 different known isotropic Gaus-

sian distributions, with standard deviations σ = [1, ..., 10], being each one used to corrupt

10% of the correspondences.

Figure 4.15 shows the results in terms of accuracy for the first experiment in the case of

planar and non-planar configurations. Keeping in mind that some correspondences are cor-

rupted by huge noise, σ up to 10, Figure shows that all the methods provide relatively accurate

results. However, Figure 4.15 also shows that our CEPPnP method clearly outperforms in all

the cases all the other methods.

In the second experiment, depicted in Figure 4.16, for a constant number of correspon-

dences, n = 100, the amounts of noise are increased. For each correspondence a uniform

random σ is computed between 0 and the maximum image noise value, from 1 to 30. There-

fore, the noise corrupting each correspondence follows a different known Gaussian distribu-

tion. In the Figure is shown that solutions estimated using CEPPnP method are clearly less

sensitive to noise yielding very accurate solutions.

Finally, in Figure 4.17 we show the computation time of all methods, for an increas-

1http://cmtech.upf.edu/system/files/pdf/CEPPnP_Toolbox.zip



112 ROBUST MONOCULAR CAMERA POSE ESTIMATION

10 100 200 300 400 500 600 700 800 900 1000

5

10

100

1000

Number of Points

C
os

t (
m

s)

 

 

10 100 200 300 400 500 600 700 800 900 1000

5

10

100

1.000

Number of Points

C
os

t (
m

s)

 

 

Figure 4.17: Computation time for the non-planar case (left) and the planar case (right) in

synthetic experiments varying the number of correspondences. The color codes and line styles

are the same as those used in Figure 4.15.

ing number of correspondences, from n = 10 to 1000 with known distributions with σ =
[1, ..., 10]. This experiment was done on an Intel Core i7 CPU to 2.7Ghz and all methods

are implemented in MATLAB. Note that our CEPPnP method, although does not inherit the

constant running time of the EPPnP method, is quite fast and has a linear running time with

respect to the number of correspondences.

Real Images

We also tested our approach in real images. Interest points are obtained using SIFT [84]

and correspondences are estimated using the repeteability measure [90], which yield around

200 − 400 correspondences per image. The ground truth used to assess our approach is

obtained by randomly generating 3,200 views using homographies with known camera poses.

The camera pose for each view is generated with respect to an orthogonal reference view of

a planar surface (similar to V1 in Fig. 4.14 Top) by changing the camera orientations in pitch,

yaw and roll angles. As the camera pose of test views moves away from the reference image,

we estimate the error with respect to the maximum absolute value of the pitch and yaw angles,

from ±10◦ to ±40◦. The roll angle is not restricted since it does not affect directly to the

perspective.

We compare CEPPnP against the methods showing the best results in the synthetic ex-

periments of the planar case, namely DLS [47], ASPnP [149], OPnP [148] and our EPPnP

method.

Figure 4.18 shows that the pose results (in rotation) we obtain using CEPPnP are remark-

ably more consistent than all other approaches when using the feature uncertainties modelled
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by reference images close from the input image, while the accuracy progressively fall when

input image is far. Specifically, our method using the modelled uncertainties clearly outper-

form state-of-the-art methods when absolute values of pitch and yaw are lower than ±30◦,

showing that our uncertainties non-degenerate up to significant projective deformations. This

justifies the need of the three-step process we have described in Section 4.5.3. From the re-

sults shown in the Figure 4.18 we observe that reference images should be distributed for

modelling the uncertainties around the object at every 20◦ in pitch and yaw angles to clearly

take advantage of the method on real images. In terms of translation error, all approaches

yield almost the same accuracy. This is most probably due to the fact that we have only gen-

erated testing images by constraining the camera to be on the surface of an hemisphere on

top of the object.

Finally, in Figure 4.19 the camera pose solutions provided by the EPPnP, the OPnP and

the proposed CEPPnP methods are shown. In the Figure, the top-left image is the closest

one in terms of camera pose with respect to the picture used to compute the 3D model. In

the images we observe that the results provided by CEPPnP are quite similar to the others,

this is because of although CEPPnP clearly outperform numerically the other methods the

improvements in accuracy are difficult to be perceived. However, for extreme camera poses

with few correspondences our method provides more accurate solutions as can be seen in the

bottom-rigth image in Figure 4.19.

±10◦ ±20◦ ±30◦ ±40◦

0

0.05

0.1

0.15

0.2

0.25

EPPnP CEPPnP DLS OPnP ASPnP

R
ot

at
io

n 
E

rr
or

 (
de

gr
ee

s)

0

0.05

0.1

0.15

0.2

0.25

EPPnP CEPPnP DLS OPnP ASPnP

R
ot

at
io

n 
E

rr
or

 (
de

gr
ee

s)

0

0.05

0.1

0.15

0.2

0.25

EPPnP CEPPnP DLS OPnP ASPnP

R
ot

at
io

n 
E

rr
or

 (
de

gr
ee

s)

0

0.05

0.1

0.15

0.2

0.25

EPPnP CEPPnP DLS OPnP ASPnP

R
ot

at
io

n 
E

rr
or

 (
de

gr
ee

s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

EPPnP CEPPnP DLS OPnP ASPnP

T
ra

ns
la

tio
n 

E
rr

or
 (

%
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

EPPnP CEPPnP DLS OPnP ASPnP

T
ra

ns
la

tio
n 

E
rr

or
 (

%
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

EPPnP CEPPnP DLS OPnP ASPnP

T
ra

ns
la

tio
n 

E
rr

or
 (

%
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

EPPnP CEPPnP DLS OPnP ASPnP

T
ra

ns
la

tio
n 

E
rr

or
 (

%
)

Figure 4.18: Experiments with real images of a planar object. Each column depicts the errors

(median and quartiles) as the camera pose move away from the reference view, in rotation

(first row) and translation (second row) terms. In red we remark the angular distance we have

selected to generate the grid of reference images.
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Figure 4.19: Experiments with real images of a planar object. In these images the results

provided by the EPPnP (red rectangle), the OPnP (yellow rectangle) and the CEPPnP (blue

rectangle) are shown.
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4.6 Summary

In this chapter we have dealt with the Perspective-n-Point problem, proposing three novel

solutions for three challenging problems. Concretely, we have dealt with the scalability, the

robustness to outliers and the uncertainty analysis to provide fast and accurate solutions to

the PnP problem.

First of all we have reformulated the EPnP method and we have proposed the EPPnP

method, which is very fast and scalable to thousands of correspondences with comparable

accuracy to the state-of-the-art methods. Afterwards, we have introduced our novel REPPnP

method which is, to the best of our knowledge, the very first PnP method addressing the hard

problem with outlier correspondences, avoiding RANSAC-based preprocessing steps. The

outlier rejection scheme is integrated within the pose estimation pipeline with a negligible

overhead, resulting in an approach completely scalable and with almost constant computa-

tional cost for an arbitrary large number of correspondences. Experimental results show that

our method compared with RANSAC-based state-of-the-art methods provides speed-ups of

up to 100× yielding similar or even better accuracies.

In addition, we have proposed a real-time and very accurate solution to the PnP problem

that incorporates into its formulation the fact that in practice the 2D position of not all 2D

features is estimated with the same accuracy. Our method approximates the Maximum Like-

lihood solution by minimizing an unconstrained Sampson error function. Furthermore we

have proposed an effective strategy to model feature uncertainties on real images analysing

the sensitivity of feature detectors under viewpoints changes. Finally, experimental results

show that our approach outperforms the accuracy of state-of-the-art methods in both, syn-

thetic and real experiments.
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Chapter 5

Monocular Camera Pose Estimation in
Complex Scenarios

In this chapter we propose a robust and efficient method to estimate the pose of a camera with

respect to complex 3D textured models of the environment that can potentially contain more

than 100, 000 3D model points. To tackle this problem we follow a top down approach where

we combine high-level deep network classifiers with low level geometric approaches to come

up with a solution that is fast, robust and accurate. Given an input image, we initially use a pre-

trained deep network to compute a rough estimation of the camera pose. This initial estimate

constrains the number of 3D model points that can be seen from the camera viewpoint. We then

establish 3D-to-2D correspondences between these potentially visible points of the model and

the 2D detected image features. Accurate pose estimation is finally obtained from the 3D-to-2D

correspondences using our PnP method proposed in the previous chapter that rejects outliers

without the need to use a RANSAC strategy, and which is up to 100 times faster than other

methods that use it. Two real experiments dealing with very large and complex 3D models

demonstrate the effectiveness of the approach.

5.1 Introduction

Robust camera localization is a fundamental problem in a wide range of robotics applications,

going from precise object manipulation to autonomous vehicle navigation. Despite being a

topic researched for decades it is still an open challenge. There exist approaches based on

infrared cameras and high-frequency systems such as Vicon1, which have shown excellent

results for localization and navigation of robots. However, these systems are limited to indoor

environments where lighting conditions are controlled.

Another alternative to robustly localize the robot is to equip it with multiple sensors, such

1www.vicon.com
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Figure 5.1: Problem definition: Given an input image (a) and a known textured 3D model of

the environment (b), the problem is to estimate the pose of the camera that captured the image

with respect to the model (c). The main challenge addressed in this chapter is to perform the

correspondence of points efficiently and reliably for complex 3D that contain a large number

of points. In this example, the model of the Sagrada Familia has over 100,000 points.

as lasers or stereo cameras, and then fusing the data from each of them. Although these

systems increase the reliability of the robot for self-localization, they have a negative impact

on the computational cost and payload. This is specially critical in some robotic tasks where

small and low-cost robots (e.g. aerial robots) are frequently used.

In contrast to these multi-sensor approaches, in this chapter we propose an efficient and

robust system based uniquely on a monocular camera and a known pre-computed 3D textured

model of the environment, as shown in Figure 5.1. Indeed, the proposed method is able to

efficiently estimate the full pose (rotation and translation) of the camera within the 3D map,

given solely one single input image. No temporal information is used about the previous

poses that can constrain the region of the 3D model where the camera is pointing to. While

this makes our problem significantly more complex, it makes the resulting pose estimation

robust to issues such as drifting, occlusions of the model during short periods of time, or

sudden camera motions.

More precisely, let us assume our 3D model is made of n 3D points, each associated

to a visual descriptor representing its appearance. Figure 5.2 shows the overall scheme of

the proposed method. In our case these visual descriptors correspond to SIFT features [84]
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Figure 5.2: Overall scheme of the proposed method for accurate camera pose estimation using

highly complex models.

obtained from a set of training images previously used, in an off-line step, to build the model

(Figure 5.2(g)). At runtime, the descriptors of the 3D model are compared against the m
descriptors extracted from the input image (Figure 5.2(d)) in order to determine a first set of

3D-to-2D correspondences candidates, to then estimate the pose (Figure 5.1(c)). However,

solving this correspondence problem has an O(n ·m) complexity, which is extremely costly

if we consider that n can be very large (e.g. 100,000 points).

In order to alleviate the computational load, we propose including a preliminary step

based on a deep-learning network that yields an approximate initial pose, without the need to

explicitly compute correspondences. This method provides the k most similar images (among

the training images used to build the 3D model) to the input image (Figure 5.2(e)). Then, the

descriptors of these images are used to obtain the 3D-to-2D correspondences by matching

(Figure 5.2(f)). Therefore, the correspondence is done with a small part of the model but

not with the complete model. And most importantly, this initial pre-selection of most similar

images is done in a matter of milliseconds. Since these correspondences may still contain

false matches, we get rid of them by using REPPnP, our novel RANSAC-less algorithm for

rejecting outliers described in Chapter 4. The experiments have shown that the proposed

method not only reduces the computation cost but that it also achieves high accuracy rates in

highly complex models.

5.1.1 Overview

The rest of the chapter describes each component of the proposed method. In the next section

we split methods for camera pose estimation in two categories, geometric approaches as the

ones shown in Chapter 4 and appearance-based methods based on the computation of global

descriptors. Afterwards, Section 5.3 explains the methodology we use to build 3D models.

Section 5.4 describes the proposed method, where the initial pose estimation is computed

using Convolutional Neural Networks (CNNs) and the subsequent pose refinement is done

using our REPPnP. In Section 5.5 the method is extensively evaluated over two different

models. Finally, Section 5.6 summarizes the main contributions.



120 MONOCULAR CAMERA POSE ESTIMATION IN COMPLEX SCENARIOS

5.2 Related Methods for Camera Pose Estimation

Methods for 3D pose estimation from monocular images can be roughly split into two main

categories: Geometric approaches that rely on local image features (e.g. interest points) and

use geometric relations to compute the camera pose parameters; and Appearance-based meth-
ods that compute global descriptors of the image, and then use machine learning approaches

in order to estimate which image within the training set is the closest one to a given input

image.

Geometric approaches use local interest points and descriptors to estimate 3D-to-2D cor-

respondences between one input image and one or several reference images registered to a

3D model. PnP solvers such as the ones shown in Chapter 4 are then used to enforce geo-

metric constraints and solve for the pose parameters. On top of that, robust RANSAC-based

strategies [15, 98] can be used both to speed up the matching process and to filter outlier

correspondences. Yet, while these methods provide very accurate results, they require both

the reference and input images to be of high quality, such that local features can be reliably

and repetitively extracted. Additionally, if the number of points is very large, the outlier re-

jection scheme can become extremely slow. Recently, [128] has shown that priors about the

orientation of the camera relative to the ground plane can speed up this process. We do not

consider these kind of priors for our method, though.

On the other hand, approaches relying on global descriptions of the image are less sen-

sitive to a precise localization of individual features. These methods typically use a set of

training images acquired from different viewpoints to statistically model the spatial relation-

ship of the local features, either using one single detector for all poses [48, 76, 127] or a

combination of various pose-specific detectors [105, 106, 130, 139, 140]. Another alternative

is to bind image features with poses during training and have them vote in the camera pose

space [38]. The limitation of these approaches is that the estimated camera pose parameters

tend to be inaccurate, and highly depends on the spatial resolution at which the training im-

ages have been acquired. The highest granularity of the training set, the more precise can

be the estimated camera pose, although the resulting detector is more prone to give false

positives.

In this chapter we combine the best of both worlds. On the one hand, we will use a global

descriptor based on a deep Convolutional Neural Network (CNN) to get a first estimation

of the pose. Deep networks have recently shown impressive results in image classification

tasks [66]. This initial estimate will reduce the number of potential 3D-to-2D correspon-

dences, and make geometric approaches applicable. On the geometric side, we will make

use of our recent PnP method proposed in the previous chapter, which is scalable to large

number of correspondences and inherently incorporates an outlier rejection scheme without

the need to run a preprocessing RANSAC-based step. The combinations of both ingredients

will result in a powerful and accurate camera pose estimation strategy capable of dealing with

very large models.
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5.3 Building the 3D Model

Our approach assumes a 3D textured model of the scene to be available. To build these models

we used Bundler [123], a structure-from-motion (SfM) system for unordered image collec-

tions. Given a set of N images of the scene we seek to model, this package initially extracts

SIFT interest points and descriptors of all images, and then simultaneously estimates the N
camera poses and 3D structure using bundle adjustment. This is usually a time consuming

process that can take a few hours.

For each located 3D point of the model, Bundler provides its SIFT descriptor, its 3D

position, its RGB color and the number of images where the point appears. Also, for each

image Bundler provides the intrinsic and extrinsic camera parameters, i.e. the calibration

matrix, the rotation matrix, R, and the translation vector, t. This data will be used as “ground

truth” when evaluating the precision of the algorithm.

Figure 5.3: Courtyard 3D model built and two sample images.

In this chapter, we used two 3D models: The Sagrada Familia dataset (from [107]), com-

posed of 478 images of this church in Barcelona. The resulting 3D model contains 100, 532
3D points. Figure 5.1(b) shows the model, and plots the retrieved camera pose for each one

of the N training set images. The Courtyard of the mathematics school dataset is composed

of 265 images, which resulted in a 3D model with 30, 196 points. The model and two sample

images are shown in Figure 5.3. Note that while the amount of points in the first model is

larger, its images present less difference in terms of visual appearance.
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5.4 Merging Appearance and Geometric Methods

We next describe how appearance and geometric methods are combined in a top-down coarse-

to-fine approach, to tackle the problem of pose estimation from very large models. Let us first

formulate our problem:

Assume we are given a 3D model with n points {p1, . . . ,pn} and N training images

{T1, . . . , TN} which have been used to compute the 3D model. Each of these images has an

associated pose {Ri, ti}. Each point pi has an associated SIFT descriptor and a visibility list

vi with the indexes of the training images from where it is seen. Given an input image I , our

goal is to accurately compute the pose from where it was acquired.

One straightforward solution would be to extract m 2D features {u1, . . . ,um} from

the input image I and compute 3D-to-2D correspondences {pi ↔ ui} by just comparing

SIFT descriptors. This set of correspondences could then be filtered using a RANSAC+PnP

scheme to get rid of outliers and accurately estimate the pose. Nonetheless, since we are

considering cases where n >> m those correspondences are prone to contain a very large

percentage of outliers, which might dramatically slow down the process.

In this work we propose a two stage strategy that combines the so-called appearance and

geometric methods. The former will compute the subset of the training images which is more

similar to our input image. This will constrain the set of candidate poses. The latter will use

this subset of poses to limit the number of 3D points of the model that are potentially visible,

and refine the pose using a geometric approach. These two steps are next discussed.

5.4.1 Coarse Pose Estimation

Given our input image I and training images {T1, . . . , TN} we seek to design a fast and

robust strategy to get the k training images which are more similar to I . For obtaining this

subset we could represent the images using any global image descriptor, e.g, bag of words,

GIST, and simply compare such descriptors.

In this chapter, though, we have used the recent generic image-level features obtained

from a deep network for image representation. In particular, we use the 4,096-dimensional

second to last layer of a Convolutional Neural Network (CNN) as our high-level image repre-

sentation. The full network has 5 convolutional layers followed by 3 fully connected layers,

and obtained the best performance in the ImageNet Large Scale Visual Recognition Chal-

lenge 2012 (ILSVRC-2012). The network is trained on a subset of ImageNet [22] to classify

1,000 different classes. We use the publicly available implementation and pre-trained model

provided by [52]. The features obtained with this procedure have been shown to generalize

well and outperform traditional hand-crafted features, thus they are already being used in a

wide diversity of tasks [124].

Comparing the resulting vectors of this representation we obtain, for each input image I , a

subset of the k most “similar” training images {T1, . . . , Tk}. These images may or may not be

clustered in a similar region of the space. Indeed, the value of k is chosen sufficiently large to

ensure that the subset of “similar” images contains at least one image which is actually close
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to I , i.e, the set of poses associated to these images represents just a very rough estimation of

the ground truth pose. We next explore them and refine the pose using a geometric approach.

5.4.2 Fine Pose Estimation

The k closest training images provide a coarse estimate of the camera pose. To increase

the accuracy we adapted the REPPnP method proposed in Chapter 4, which simultaneously

allows to discard outlier correspondences while estimates the camera pose.

Standard PnP approaches assume the 3D-to-2D correspondences to be free of outliers.

Therefore, when dealing with real images these methods need an outlier rejection preprocess-

ing step (e.g. RANSAC + P3P), which may significantly reduce the overall computational

efficiency, as we show in Chapter 4.

Given c 3D-to-2D correspondences {pi ↔ ui} and the camera internal calibration matrix

A, PnP methods build upon the perspective constraint for each 2D feature point i,

di

[
ui

1

]
= A [R|t]

[
pi

1

]
, (5.1)

where di is the depth of the feature point.

REPPnP reformulates the previous equations as a low-rank homogeneous set of equations

Mx = 0, where M is a 2c × 12 matrix representing the perspective constraints for all c
correspondences. In Chapter 4 is shown that the solutions x can be estimated assuming

that the rank of the null-space of M is equal to 1. Once x is estimated, the camera pose

[R|t] is solved using a generalization of the Orthogonal Procrustes problem (see equation

(4.16) ), combined with a projected gradients optimization. In REPPnP, the outlier rejection

is done by iterating the estimation of x. At each iteration, those equations in M that after

being projected onto x provide the lowest algebraic errors are chosen. This procedure shows

convergence with up to 50% of outliers and requiring up to two orders of magnitude less

computational time than standard RANSAC + P3P + PnP algorithms.

In order to adapt REPPnP to the case of this chapter with large scenarios, we propose

building the M matrix as k different parts, each coming from one of the k similar images

retrieved in the previous stage. In cases where the outlier rate is above 50% a standard

RANSAC + P3P approach is used before applying REPPnP to refine the camera pose, there-

fore sometimes the computational cost is increased since both methods must be executed. In

fact, according as k is increased the probability of getting more than 50% of outliers also

increases, mainly because the k images tend to represent disjoint parts of the model. Thus,

in order to speed up the proposed method we could detect these disjoint image sets and apply

REPPnP in each one, however we do not consider crucial this issue to validate our coarse-to-

fine approach and we leave this work for the future.
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k Time (s) # 3D points # Correspondences erot etrans

Sagrada Familia model

All 45.6694 100532 470 0.0124 0.0231

6 12.3344 24855 424 0.0178 0.0305

8 14.1634 29046 436 0.0176 0.0306

12 16.9470 35422 447 0.0177 0.0303

16 20.2644 43005 452 0.0178 0.0306

Courtyard model

All 50.2912 30196 379 0.0279 0.0449

3 15.5296 6189 296 0.0255 0.0441

6 21.2358 10038 322 0.0267 0.0476

8 24.3889 12134 328 0.0212 0.0343

12 28.9528 15152 334 0.0206 0.0360

16 33.5211 18145 337 0.0303 0.0538

Table 5.1: Performance of the proposed approach in the two models for different values of the

parameter k. We also consider the case when all the model points are considered.

Concretely, we propose to solve,

[
M�

1 M
�
2 ... M

�
k

]�
x = 0 (5.2)

where Mj for j = [1, 2, ..., k] represent the homogeneous equations obtained as in Chap-

ter 4 by matching the 2D points ui with the 3D points pj
i which are visible (according to

v, . . . ,vk) in each of the k nearest images.

With the proposed method, taking k = 6, we decrease the number of 3D points to be

matched to one quarter of the total in the Sagrada Familia scenario and to one third in the

Courtyard scenario, increasing the number of inlier correspondences. Table 5.1 shows the

performance of our approach for both models and different values of k.

5.5 Experimental Results

In this section, the efficiency and accuracy of the proposed method will be evaluated using

the two models presented in Section 5.3. Previously, we will show how our image retrieval

algorithm performs on the test datasets.

For the experiments, both datasets have been evenly split into two disjoint sets. One of

them is used as training set for the construction of the model, and the other one as testing

set for the evaluation of the method. In the case of the Sagrada Familia dataset we use 239
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Figure 5.4: Comparison of the L2 distances between distance deep network features and the

known angular distance between the test images and training images. Each row is sorted ac-

cording to the angular distance. We can see a strong correlation between images that are close

to each other and their descriptors obtained from the deep network.

randomly selected images as training set and 239 images as evaluation set. On the other hand,

in the Courtyard dataset we use 132 images as training set and 133 as evaluation set. The

Sagrada Familia dataset was captured in two different days (one sunny day and one cloudy

day), so the images contained in the dataset represent two full turns around the church. In the

case of the Courtyard the dataset represents one single turn.

5.5.1 Image Retrieval for Coarse Pose Estimation

In order to evaluate the quality of the image retrieval using the deep network descriptors,

we have plotted in Figure 5.4 the Euclidean distance between the descriptors for each pair of

test/train images in the Sagrada Familia dataset. For each test image (row) the training images

are ordered by angular distance of the rotation matrix. The accumulation of bluish regions

on the left hand side of the graph indicates that the distance between descriptors increases as

we move away from the original viewpoint, and thus confirms a high confidence in the image
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Figure 5.5: Example of one input image of the Sagrada Familia (top) and one input image of

the Courtyard (bottom) in the validation sets. Next to the input images similar images in the

training set selected by our image retrieval algorithm (k = 4 and k = 5) and a plot showing

the distance to the training images.

retrieval process we use.

As illustrative examples, in Figure 5.5 we show one sample query for each dataset. We

plot both the input image and the closest images in the training set according to the distances

between the deep network descriptors. In both cases nearly all selected images present similar

poses to the test image. We want to remark that the plots representing the distances clearly

show the performance of the method, in the top plot the pick around the training sample 80

is due to the images taken from a similar camera pose but in a sunny day.
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Figure 5.6: Analysis of computation time. Left: Computation time of the approaches with

different values of k. The case All is equivalent to not doing any appearance based pre-

computation over the 3D model.

5.5.2 Efficiency Assessment

In order to have a clear picture of the cost of our method, we have measured the computa-

tional time for each of the different stages: SIFT feature extraction on the input image, image

retrieval through our deep learning approach, descriptor matching and outlier removal along

with pose estimation done by our fine pose estimation method. To compare the computation

time of the approach against a typical baseline, we have replaced our fine camera pose esti-

mation in our pipeline, by RANSAC + P3P combined with OPnP [148], one of the fastest

and most accurate approaches in the state of the art as we show in the experimental section in

Chapter 4.

Average times over the complete test set are given in Figure 5.6. As can be observed, the

coarse filtering of model images reduces significantly the computation time of the geometrical

estimation of the camera pose. It can also be seen in the figure that the most time consuming

step of the whole pipeline is by far the SIFT descriptor matching. This step is performed

using the MATLAB implementation of the VLFeat open source library [138].

It is, therefore, critical to obtain a good set of neighbouring images: the better it is, the

less model descriptors will be required in the geometrical estimation step. In our experiments,

this coarse to fine approach led to 75% reduction of the computational time, but it could be

even more significant on larger models. This is made possible by the robustness of the deep

learning approach. It can be seen that the other stages of the pipeline are negligible.

Finally, in Table 5.2 we show the average time required to compute the deep network

descriptors and the bag of visual words from a new image (top), and the REPPnP and

RANSAC+P3P+OPnP (bottom). While a deep network descriptor can be extracted directly
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Model Bag of Words CNN Features Gain (%)
Sag. Familia 1.63 0.0208 98.72

Courtyard 5.48 0.0207 99.62

k RANSAC+OPnP REPPnP Gain (%)
6 0.0376 0.0050 86.70

8 0.0421 0.0057 86.46

Table 5.2: Time values in seconds for the different methods evaluated. The upper part of

the table compares the two methods evaluated for the coarse estimation of the pose (Bag of

words vs. Deep network features). The lower part reports the computation time of the methods

used for fine pose estimation (RANSAC + OPnP vs. REPPnP). These results are obtained by

computing the mean computation time for all the evalaution images.

from an input image in a matter of milliseconds, the bag of visual words requires first com-

puting SIFT descriptors of that image (on the order of seconds, depending on the size of

the image), and then finding the corresponding visual word for each descriptor with a pre-

computed dictionary. Regarding the geometrical estimation part, by using REPPnP we are

able to reduce the time required by a factor of 7.5. We want to remark that in this experiment

we are comparing the cases where the outlier rate is below the 50%, in the other cases the time

required for our fine camera pose estimation method is similar as for RANSAC+P3P+OPnP.

5.5.3 Accuracy

The accuracy is computed as the rotation and the translation errors in the calculated pose. The

rotation error is estimated using quaternions as erot = ‖quat(R)−quat(Rtrue)‖/‖quat(Rtrue)‖,

and the translation error as etrans = ‖t − ttrue‖/‖ttrue‖. The estimated pose is {R, t}, and

{Rtrue, ttrue}, corresponds to the groundtruth given by the Bundler algorithm, as mentioned

in Section 5.3. As observed in Table 5.1, the errors found using the coarse to fine approach

are comparable to the ones obtained with the complete model. The rotation and translation

errors using only the deep network descriptors is ≈ 10 times bigger than with the coarse to

fine approach.

Figure 5.7 shows a qualitative comparison of the reprojection of the interest point loca-

tions obtained using SIFT on four input images using the R and t provided by REPPnP and

RANSAC+OPnP, along with the groundtruth reprojection (given by Bundler). In Table 5.3

the rotation and translation errors for these four images are shown. In all experiments, we

obtain similar results when comparing with RANSAC+OPnP. We want to remark that when

there are more than 50% of outliers, REPPnP is combined with RANSAC+P3P.
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(a) (b)

(c) (d)

Figure 5.7: Examples of pose estimation results for the Sagrada Familia (top) and Courtyard

(bottom) models. For each image we show the reprojected 3D coordinates of the SIFT points

using the groundtruth R and t (from Bundler) and the ones estimated by both REPPnP and

RANSAC+OPnP with k = 6.
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Rotation errors
REPPnP RANSAC+OPnP

(a) 0.0068 0.0007

(b) 0.0042 0.0812

(c) 0.0033 0.0024

(d) 0.0012 0.0079

Translation errors
REPPnP RANSAC+OPnP

(a) 0.0306 0.0383

(b) 0.0109 0.1497

(c) 0.0091 0.0091

(d) 0.0109 0.0267

Table 5.3: Rotation and translation errors for the images shown in Figure 5.7 using REPPnP

and RANSAC+OPnP with k = 6.

5.6 Summary

In this chapter we have proposed a new method to estimate the camera pose on large scale 3D

models combining a purely appearance based technique with a geometrical approach. The

proposed coarse-to-fine approach allows to our method reduce significantly the time required

to estimate the camera pose. By using first global image appearance we reduce the number

of matches to test but at the same time by applying a PnP solver over the candidate images

the error in our camera pose estimation becomes nearly negligible.

In this work we have shown how it is possible to leverage deep learning techniques to

improve appearance based approaches for the robotic community. It is remarkable that we

are able to perform accurate pose estimation over hundreds of thousands of points in a few

seconds per image, especially considering that we are using a MATLAB implementation.



Chapter 6

Conclusions and Future Work

In this thesis we have dealt with the effect of perspective in three main tasks, proposing

robust algorithms under different viewing conditions from a low-level to high-level point of

view. From a high-level point of view we propose algorithms to recover in real-time accurate

camera pose parameters from a single perspective image. These algorithms rely on low-

level tasks, which analyse the perspective from a local point of view. Concretely we tackle

two low-level tasks, interest point detection and interest point description, enhancing their

invariance under different viewing conditions.

In this chapter we summarize the main contributions of each chapter with a discussion

of the proposed key features, starting from the low-level tasks. In addition, for each chapter

we present open research lines for future work. Finally, we discuss how all the algorithms

proposed can be combined.

6.1 Interest Point Detection

This thesis starts dealing with multi-scale interest point detection. We have shown that state-

of-the-art detectors tend to over-represent local image structures associating several interest

points for each one. This fact promotes not completely distinguishable interest points, losing

the ability to clearly describe the uniqueness of each local image structure. In addition, we

have shown that common operators used to build multi-scale representations are approxima-

tions of a more generic framework, which analyses the image curvatures from a differential

geometry point of view.

We have focussed on improving the geometrical invariance, discriminative power and

uniqueness of the detected interest points. To this end we have proposed sparse detectors of

blobs and corners, which try to describe each image structure with a single interest point. The

cornerstones of our detectors are two, an accurate multi-scale representation obtained using

Gaussian curvature as operator and our novel bottom-up algorithm to analyse the movement

and evolution of local image structures over scale. Similarly to [79], for each local image
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structure we have proposed to estimate the spatial location and scale where it was created,

annihilated and merged with other image structures.

We have proposed two scale invariant detectors using this approach, in one side our blob

detector based on finding elliptic image regions and in the other side our corner detector

based on finding hyperbolic image regions. Since both detectors are extracted from the same

multi-scale representation with a minimal difference in the evolution algorithm, we have also

considered a full detector, which is able to detect blobs and corners simultaneously with

negligible computational overhead.

We have also proposed an affine invariant detector of blobs, which captures the intrinsic

geometry of the blob structures. The shape and location of each scale invariant blob is refined

by fitting an anisotropic Gaussian function, which minimizes the error with respect to the

underlying image and simultaneously estimates both the shape and location, by means of a

non-linear least squares approach.

The experimental evaluation shows for all our detectors a comparable performance to

the state-of-the-art detectors in terms of repeatability and matching scores. Even having into

account that in the experimentals for our full detector comparisons are performed assuming

the typology of the interest points is unknown. In terms of precision and recall our scale

invariant detectors tend to clearly outperform the state-of-the-art detectors while our affine

invariant detector obtain better scores in 3 of 8 sequences, similar to the best scores in 3

sequences and worse results in 2 sequences. For image registration we have shown our scale

invariant detectors obtain slightly better accuracy than the other detectors while our affine

invariant detector obtains similar accuracy.

In addition, experiments show our detectors provide sparse interest points, which clearly

avoid redundant detections that over-represent specific image regions. Therefore, our de-

tectors improve the spatial distribution of interest points and increases their distinctiveness,

allowing to decrease the computational cost of future matching tasks.

Comparing scale and affine invariant detectors we have concluded that affine detectors

only outperform scale detectors in image pairs with heavy viewpoint changes. Thus, in gen-

eral their usefulness is focused in image sequences with extreme viewpoint changes. This

point confirms the appreciation of Lowe in [84].

Future Work : Our full detector of corners and blobs can over-represent some corner-like

local image structures since both detectors are computed independently on the same multi-

scale representation, Figure 2.6 show that corner structures can be considered as elliptical

or hyperbolic regions. Our detector does not take into account that one corner can be de-

scribed simultaneously as an hyperbolic and an elliptic region. This issue has been tackled

in bibliography, [27] proposes to detect the parabolic point located between the elliptic and

the hyperbolic one, however this strategy seems to be unstable on real images because is not

easy to know when a blob detection represents a corner and even knowing that, it is hard to

know its corresponding corner detection.
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6.2 Interest Point Description

Once the interest points are detected they are described, typically as a vector, to be matched

with other points. We have shown that our machine learning based descriptors provide consis-

tent performance gains over the state of the art, particularly our approach clearly outperforms

hand-crafted descriptors such us SIFT, which have difficulties to deal with severe viewing

conditions such as small spatial location errors, in-plane perspective variations or even those

perspective variations produced by image regions that are not planar in the real 3D scene and

can even be partially affected by self-occlusions.

Similarly to the situation for image-level tasks such as classification, where deep learning

has become the dominant paradigm in detriment of hand-crafted ones. At local image region

level, we have proposed a novel framework to learn a deep Convolutional Neural Network

(CNN) using a Siamese network architecture, which employs two CNNs with identical pa-

rameters fed with corresponding and non-corresponding pairs of image regions. Each region

is propagated forward through the network, providing two CNN outputs that must be similar

in terms of L2 error for corresponding pairs and dissimilar otherwise. In addition we have

proposed a novel training scheme, which yields large performance gains in image region re-

trieval, based on aggressive mining for both positive and negative region pairs. Since in our

datasets there are a huge number of corresponding pairs positive mining is needed, biasing

the training towards corresponding pairs that are hard to classify.

We have carried out a thoroughly evaluation of multiple network architectures, config-

urations and hyper-parameters. We have shown that the convolutional network with best

performance is fully-convolutional containing three convolutional layers, positive and nega-

tive aggressive mining, hyperbolic tangent as activation function, L2 pooling and subtractive

normalization. During the training and testing we have evaluated our descriptors using L2

distance in order to reflect region similarity, therefore our descriptor can be used as a drop-in

replacement for any task involving SIFT.

Results on several datasets show that the descriptors we learn yield remarkable perfor-

mance improvements compared to state of the art, and a great ability to deal with severe

viewing conditions such us scaling and rotation, perspective transformation, non-rigid defor-

mation and illumination changes. It is remarkable that some of these viewing conditions have

been evaluated on very specific datasets, without a specific training of our descriptor. Con-

cretely, our descriptor, which is trained on datasets without non-rigid deformations, outper-

forms DaLI [121], which is a very specific and powerful descriptor for non-rigid deformations

and illumination changes.

Future Work : We identify multiple directions for future research. Our descriptors are

learnt using grayscale regions with a restricted size (64 × 64 pixels), we think is interesting

to study the descriptor performance using color cues and deeper networks assuming bigger

image regions. On the other hand, in our experimentals all the image regions are extracted

using DoG detector, therefore our descriptor could learn in some way specific models for

specific detectors. we should analyse the generalization ability under different detectors. In

addition, if we find strong relations between both, we could also try to learn a regressor in

order to refine the spatial location of interest points.
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6.3 Robust Monocular Camera Pose Estimation

In camera pose estimation from monocular images some issues and challenges remain to

be studied or have been partially shelved. Concretely, we have dealt with three of those

challenges –the scalability to thousands of correspondences, the robustness to outlier cor-

respondences and the noisy estimations induced by feature uncertainty– to provide fast and

accurate solutions to the so called Perspective-n-Point (PnP) problem.

First of all we have proposed our fast and scalable PnP method. Our approach is based

on reformulating the EPnP [97] method, converting its linear cost in an approach completely

scalable and with almost constant computational cost for an arbitrary large number of corre-

spondences (e.g. 1000 correspondences are processed in 3ms in our experiments). We have

also improved the accuracy of EPnP by iteratively computing the camera pose having into

account that the true solution must lie in a known subspace. We have achieved comparable

accuracy to the best state-of-the-art methods.

Afterwards, we have introduced our PnP method which is, to the best of our knowledge,

the very first PnP method addressing the hard problem with outlier correspondences, avoid-

ing RANSAC-based preprocessing steps. In our approach the outlier rejection scheme is

integrated within the pose estimation pipeline of our previous method with a negligible over-

head. We formulate our method as a low-rank homogeneous system where the solution lies

on its 1D null space, therefore outlier correspondences can be determined as those equations

in our linear system which perturb the null space. Experimental results show that our method

compared with RANSAC-based state-of-the-art methods provides speed-ups of up to 100×
yielding similar or even better accuracies.

Finally, we have proposed a real-time and very accurate solution to the PnP problem

that incorporates into its formulation the fact that in practice the 2D position of not all 2D

features is estimated with the same accuracy. Our method approximates the Maximum Likeli-

hood solution by minimizing an unconstrained Sampson error function. Furthermore we have

proposed an effective strategy to model feature uncertainties on real images analysing the

sensitivity of feature detectors under viewpoint changes. We have shown that our approach

outperforms the accuracy of state-of-the-art methods in both, synthetic and real experiments.

Future Work : There are multiple directions for the future works. Now, our robust to

outliers method has a breakdown point between 50% and 60%, to make robust our method

to larger percentage of outliers we consider two alternatives. We plan to integrate additional

priors (e.g. detector confidence levels) to compute the null-space of our proposed equation

system. We also plan to include a RANSAC-based approach to get the best subset of equa-

tions. In addition, we plan to apply our outlier rejection method to other low rank problems

where we can safely assume that the null space rank is one, a clear example is homography

estimation.

Another direction consists in making robust our approaches to the camera intrinsic pa-

rameters, allowing to take advantage of our methods when these parameters are unknown.

Interesting approaches based in the EPnP formulation are shown in [108, 56]. We plan to

reformulate our methods to add the focal length inside the set of unknowns.
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We also plan to transfer the 2D feature uncertainties to the 3D model, in order to make

unnecessary to have a set of reference images with different 2D uncertainties. Moreover we

plan to propagate the feature uncertainties towards the camera pose in order to compute its

uncertainty using a 6 dimensional covariance matrix and then obtain a reliability measure of

the solution. Finally, we also plan to extend the features used to compute the camera pose,

at this moment we are only using interest points, however in recent publications line features

are gaining relevance since allows to deal with texture-less objects.

6.4 Monocular Camera Pose Estimation in Complex Sce-
narios

We have proposed an early work in order to accurately estimate the camera pose dealing

with complex and large 3D scenarios combining a purely appearance based technique with

a geometrical approach. The proposed coarse-to-fine approach allows to our method reduce

significantly the time required to estimate accurate camera poses in comparison with the time

required if accurate methods, such us PnP, are directly applied. By first using global image

appearance we select a set of candidate images in the training set and we reduce the number

of feasible matches to be evaluated by our PnP solver, then the error in our camera pose

solution becomes nearly negligible.

In this work we have shown how it is possible to leverage deep learning techniques to

improve appearance-based approaches for the robotic community. It is remarkable that we

are able to perform accurate pose estimation over hundreds of thousands of points in a few

seconds per image, especially considering that we are using a MATLAB implementation.

Future Work : Since this is an early work, there are several directions for future research.

First of all, as we mention in Section 5.4, according as the number of candidate images in the

training set is increased the probability of getting more than 50% of outliers also increases,

mainly because those candidate images tend to represent disjoint parts of the model. Thus,

we plan speed up the proposed method detecting these disjoint image sets in order to apply

REPPnP in each one.

Another very interesting work consist in take advantage of the rough camera pose, esti-

mated using the appearance-based method, to spatially constrain the searching of 3D-to-2D

correspondences in specific regions of the query image. Therefore, the feature matching cost,

which at this time it is by far the largest of our approach, will be drastically reduced since

each 3D feature on the model will be only matched with 2D features in an expected region

on the query image.

Finally, in this work we have only compared for the coarse camera pose estimation the

proposed CNN approach with one bag of visual words approach. In the future, we plan to

compare several image classification methods in terms of computational time and accuracy.
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6.5 Future Work Combining Proposed Algorithms

In this thesis we have dealt with three main areas of konwledge, interest points detection,

interest points description and camera pose estimation. We have proposed novel algorithms

in each one of those areas, however we have not taken advantage of all of them together.

For example, we think it is interesting to evaluate the performance of our interest point de-

scriptor on our interest point detector, since our detectors improve the distinctiveness of the

image regions our descriptor can provide even better results. Combining these detectors and

descriptors with camera pose estimation can improve drastically the performance of our PnP

approaches, reducing the number of outliers because of their distinctiveness abilities under

different viewing conditions, specially the ones related with viewpoint changes.
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ference on Image Analysis, Tromsö, Norway, May 1993, pages 857–866, 1993.

[79] Tony Lindeberg. Scale-Space Theory in Computer Vision (The International Series in
Engineering and Computer Science). Springer, December 1993.

[80] Tony Lindeberg. Feature detection with automatic scale selection. International Jour-
nal of Computer Vision, 30:77–116, 1998.

[81] Tony Lindeberg. A computational theory of visual receptive fields. Biological Cyber-
netics, 107(6):589–635, 2013.

[82] Tony Lindeberg and Jonas Gårding. Shape-adapted smoothing in estimation of 3-

d shape cues from affine deformations of local 2-d brightness structure. Image and
Vision Computing, 15(6):415–434, 1997.

[83] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for

semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2015.

[84] David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004.



BIBLIOGRAPHY 143

[85] C-P Lu, Gregory D Hager, and Eric Mjolsness. Fast and globally convergent pose

estimation from video images. IEEE Transactions Pattern Analysis and Machine In-
telligence, 22(6):610–622, 2000.

[86] Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear param-

eters. SIAM Journal on Applied Mathematics, 11(2):431–441, 1963.

[87] Brais Martinez, Luis Ferraz, Xavier Binefa, and Jose Diaz-Caro. Multiple kernel two-

step tracking. In International Conference on Image Processing, pages 2785–2788.

IEEE, 2006.

[88] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from maxi-

mally stable extremal regions. In British Machine Vision Conference, pages 384–393,

2002.

[89] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. IEEE
Transactions Pattern Analysis and Machine Intelligence, 27(10):1615–1630, 2005.

[90] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky,

T. Kadir, and L. Van Gool. A comparison of affine region detectors. International
Journal of Computer Vision, 65:43–72, 2005.

[91] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant interest point

detectors. International Journal of Computer Vision, 60:63–86, 2004.

[92] Anlong Ming and Huadong Ma. A blob detector in color images. In Conference on
Image and Video Retrieval, pages 364–370, 2007.

[93] H. Mobahi, R. Collobert, and J. Weston. Deep learning from temporal coherence in

video. In International Conference in Machine Learning, 2009.

[94] F. Mokhtarian and F. Mohanna. Performance evaluation of corner detectors using

consistency and accuracy measures. Computer Vision and Image Understanding,

102(1):81–94, 2006.

[95] F. Mokhtarian and R. Suomela. Robust image corner detection through curvature scale

space. IEEE Transactions Pattern Analysis and Machine Intelligence, 20(12):1376–

1381, 1998.

[96] J.M. Morel and G. Yu. Asift: A new framework for fully affine invariant image com-

parison. SIAM Journal on Imaging Sciences, 2(2):438–469, 2009.

[97] Francesc Moreno-Noguer, Vincent Lepetit, and Pascal Fua. Accurate non-iterative

o(n) solution to the pnp problem. In International Conference on Computer Vision,

pages 1–8, 2007.

[98] Francesc Moreno-Noguer, Vincent Lepetit, and Pascal Fua. Pose priors for simultane-

ously solving alignment and correspondence. In European Conference on Computer
Vision, volume 2, pages 405–418, 2008.



144 BIBLIOGRAPHY

[99] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with automatic

algorithm configuration. In International Conference on Computer Vision Theory and
Application, pages 331–340, 2009.

[100] Michael A. Nielsen. Neural networks and deep learning. Determination Press, 2015.

[101] J. Alison Noble. Finding corners. Image and Vision Computing, pages 2–121, 1988.

[102] Carl Olsson, Anders Eriksson, and Richard Hartley. Outlier removal using duality.

In IEEE Conference on Computer Vision and Pattern Recognition, pages 1450–1457,

2010.

[103] Carl Olsson, Fredrik Kahl, and Magnus Oskarsson. Branch-and-bound methods for

euclidean registration problems. IEEE Transactions Pattern Analysis and Machine
Intelligence, 31(5):783–794, 2009.

[104] C. Osendorfer, J. Bayer, S. Urban, and P. van der Smagt. Convolutional neural net-

works learn compact local image descriptors. In Neural Information Processing, vol-

ume 8228, pages 624–630. Springer, 2013.

[105] M. Ozuysal, V. Lepetit, and P. Fua. Pose estimation for category specific multiview

object localization. In IEEE Conference on Computer Vision and Pattern Recognition,

2009.

[106] N. Payet and S. Todorovic. From contours to 3D object detection and pose estimation.

In International Conference on Computer Vision, 2011.

[107] A. Penate-Sanchez, F. Moreno-Noguer, J. Andrade-Cetto, and F. Fleuret. LETHA:

Learning from high quality inputs for 3D pose estimation in low quality images. In 3D
Vision, 2014.

[108] Adrian Penate-Sanchez, Juan Andrade-Cetto, and Francesc Moreno-Noguer. Exhaus-

tive linearization for robust camera pose and focal length estimation. IEEE Transac-
tions Pattern Analysis and Machine Intelligence, 35(10):2387–2400, 2013.

[109] B.T. Polyak. Some methods of speeding up the convergence of iteration methods.

USSR Computational Mathematics and Mathematical Physics, 4(5):1 – 17, 1964.

[110] Long Quan and Zhongdan Lan. Linear n-point camera pose determination. IEEE
Transactions Pattern Analysis and Machine Intelligence, 21(8):774–780, 1999.

[111] Rahul Raguram, Jan-Michael Frahm, and Marc Pollefeys. A comparative analysis of

ransac techniques leading to adaptive real-time random sample consensus. In Euro-
pean Conference on Computer Vision, pages 500–513, 2008.

[112] V. Rodehorst and A. Koschan. Comparison and evaluation of feature point detectors.

In International Symposium Turkish-German Joint Geodetic Day, 2006.

[113] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: an efficient

alternative to SIFT or SURF. In International Conference on Computer Vision, 2011.



BIBLIOGRAPHY 145

[114] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning represen-

tations by back-propagating errors. Nature, 323(6088):533–536, 1986.

[115] Jordi Sánchez-Riera, Jonas Ostlund, Pascal Fua, and Francesc Moreno-Noguer. Simul-

taneous pose, correspondence and non-rigid shape. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 1189–1196, 2010.

[116] Peter H Schönemann and Robert M Carroll. Fitting one matrix to another under choice

of a central dilation and a rigid motion. Psychometrika, 35(2):245–255, 1970.

[117] Gerald Schweighofer and Axel Pinz. Globally optimal o (n) solution to the pnp prob-

lem for general camera models. In British Machine Vision Conference, pages 1–10,

2008.

[118] P. Sermanet, S. Chintala, and Y. LeCun. Convolutional neural networks applied to

house numbers digit classification. In International Conference on Pattern Recogni-
tion, 2012.
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