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ABSTRACT 

 
Accomplish high quality in the pharmaceutical industry is a constant challenge that 

require strict control and supervision not only from final products but also from all 

manufacturing steps according to process analytic technologies (PAT) initiative. 

In recent years, the simplicity and expeditiousness of near infrared spectroscopy 

(NIRS) together with chemometrics data analysis have substantially fostered its 

use for the determination of pharmaceutical´s physical and chemical properties.  

 

The subject of this thesis is the development of NIR methodologies useful for the 

quality control for the pharmaceutical industry, proposing and optimizing mainly 

new strategies for the selection and design of the calibration set and improving 

NIR methodologies based on product knowledge and process understanding. 

The thesis consists in three cases of study where different solid pharmaceutical 

formulations were evaluated. In the first study a new methodology for 

constructing the calibration set is proposed and its suitability for quantifying an 

API present in low concentration (10 mg.g-1) was evaluated by comparison with 

two methodologies broadly known. The main results showed the efficiency and 

suitability of the calculation ad addition of process spectra methodology for the 

quality control of a pharmaceutical granulate (final product). This methodology 

showed an outstanding performance in terms of robustness and operational 

simplicity in comparison with the other evaluated strategies. 

 

The second study consists in the optimization of a novel methodology through the 

incorporation of statistical parameters for the selection of important factors used, 

and three calibration models were calculated for the quality control of a 

formulation in its three manufacturing steps: powder, cores and coated tablets. 

Based on the results obtained with this study the model space concept was 

established defined by Hotelling’s T2and Q-residuals statistics for outlier 

identification – inside/outside the defined space – in order to select objectively the 

factors to be used in the calibration set construction. Also the efficacy of the 
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proposed methodology for stepwise pharmaceutical quality control was 

confirmed. This work represented a contribution for the field as a guideline for the 

implementation of this easy and fast methodology in the pharma industry. 

 

A third study case addresses a concern in the pharmaceutical industry regarding 

samples with tendency of segregation and its analysis by using NIR spectroscopy. 

In this study the effective scanned area and the sample representativeness is 

evaluated, and an effective alternative based on spectra acquisition on moving 

samples is proposed. The results obtained in this work confirmed the influence of 

the scanned area with the representativeness of the analyzed sample and this, in 

turn, the performance of the calculated calibration models. This study highlights 

the importance of the optimization of the surface scanned area since the quality of 

the methodologies to be developed depends strongly on this factor. This work 

presents an effective alternative for quality control on samples with tendency to 

segregate. 

The proposed methods were evaluated according to the European and 

international guidelines and represent a contribution to the PAT initiative and the 

development of NIR methodologies based on its improvement by a better product 

knowledge and process understanding. 
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RESUMEN 

 

Obtener una alta calidad en la industria farmacéutica es un reto constante que 

requiere un estricto control y supervisión de los productos manufacturados. La 

tecnología analítica de procesos (PAT, Process Analytical Technology) propone que 

esto puede lograrse de una manera óptima y sistematizada mediante el control de 

calidad en diferentes etapas de manufactura (materias primas, intermedios y 

producto acabado). 

La simplicidad y rapidez de la espectroscopía de infrarrojo cercano (NIRS, Near 

Infrared Spectroscopy) junto con el análisis quimiométrico de datos multivariables 

ha demostrado su eficacia para la determinación de propiedades físicas y 

composición química de productos farmacéuticos, y su uso en esta industria se ha 

incrementado considerablemente en los últimos años. 

 

El objetivo de esta Tesis es el desarrollo de métodos NIR para el control de calidad 

en la industria farmacéutica. Para ello, se propusieron y optimizaron nuevas 

estrategias de diseño y selección del conjunto de calibración y la mejora de las 

estrategias de modelado NIR, basado en conceptos como el conocimiento del 

producto y comprensión del proceso de acuerdo con la filosofía de trabajo PAT. 

La Tesis consiste en tres casos de estudio de diferentes formulaciones 

farmacéuticas sólidas. En el primer estudio se evalúan diferentes metodologías 

para la construcción del conjunto de calibración, y también se propone un nuevo 

modo  de cálculo y adición del espectro. Se evaluó la idoneidad de dichas 

estrategias para la cuantificación de un principio activo (API, active pharmaceutical 

ingredient) presente a baja concentración (10 miligramos por gramo). Los 

principales resultados mostraron la eficacia de esta nueva metodología para el 

control de calidad de un granulado farmacéutico (producto acabado), y demostró 

una sobresaliente capacidad en términos de robustez y simplicidad experimental 

en comparación con otras estrategias evaluadas. 

 

El segundo estudio consiste en la optimización del proceso de selección de factores 

relevantes en la implementación de una metodología novedosa para la preparación 
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del conjunto de calibración. Para ello se calcularon modelos para el control de 

calidad de una formulación en sus tres etapas de fabricación: polvo, núcleos y 

comprimidos recubiertos. De los resultados obtenidos en este estudio se confirmó 

la idoneidad del concepto de espacio del modelo definido por los estadísticos T2 

Hotelling y residuales Q para la identificación de muestra anómalas (dentro/fuera 

del espacio), y para la selección objetiva de los factores a utilizar en la construcción 

conjunto de calibración. También se corroboró la eficacia del método NIR 

propuesto para el control de calidad en variadas etapas del proceso.  

 

El tercer caso de estudio aborda una problemática en la industria farmacéutica que 

concierne al análisis NIR de muestras sólidas con tendencia a la segregación de sus 

componentes. En este estudio se evalúa el área efectiva de escaneado espectral y la 

representatividad de la porción de muestra analizada. También se propone una 

alternativa eficaz de análisis por NIR para este tipo de muestras basada en la 

adquisición de espectros de muestras en movimiento. Los resultados obtenidos en 

este trabajo confirman la influencia del área escaneada con la representatividad de 

la muestra analizada y esto, a su vez, a la capacidad predictiva de los modelos de 

calibración. Este estudio resalta la importancia de la optimización del área de 

escaneado de superficie previo cálculo del modelo, ya que se confirmó como estos 

factores influyen en los estadísticos de predicción de los métodos NIR propuestos. 

Este trabajo presenta una alternativa eficaz para el control de calidad de muestras 

heterogéneas o con tendencia a segregación. 

 

Los métodos propuestos en cada uno de los casos de estudios fueron evaluados de 

acuerdo con las directrices internacionales y europeas, y representan una 

contribución a la iniciativa PAT y el desarrollo de metodologías NIR en base a su 

mejora mediante un mejor conocimiento del producto y una mayor comprensión 

del proceso. 
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PREFACE 

 
The following thesis has been developed in the Applied Chemometrics Research 

Group at the Universitat Autònoma de Barcelona in partnership with the 

pharmaceutical industrial sector (Laboratorios Menarini SA) during the academic 

years 2013-2015. 

From a broad perspective, the general motivation of this thesis was the 

development of new methodologies useful for the pharmaceuticals control quality, 

and the optimization/implementation of multivariate calibration strategies and 

statistics parameters for molecular spectroscopy modelling enhancement.   

All the approaches presented in this thesis were developed within a work 

framework of Process Analytical Technologies guidelines (PAT), which is defined 

as a system for design, analyzing, and controlling the process through monitoring 

each manufacture step. In general, the studies presented in this thesis show 

alternatives for improving productivity by implementing new scientific knowledge 

to industrial processes based on product knowledge and process understanding.  

The scope of the work presented in the following sections are of interest to 

different sectors such as analytical chemists, pharmaceutical scientists and process 

engineers, since this is an interdisciplinary project which involves near infrared 

spectroscopy, chemometrics data analysis and pharmaceutical technology. 

 
 

 
 
 
This thesis is divided in five main parts, one introduction which contains the 

general basics of the used disciplines, one section of objectives which showed in 

detail the aim of the work performed, followed by three study cases in which 
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different industrial problematics were solved using NIR spectroscopy-

chemometrics data analysis.  

Three solid pharmaceutical formulations were evaluated for the study cases as 

final and intermediate products, therefore the suitability of the proposed 

methodologies was broadly evaluate in different products. 

The work presented in this thesis was communicated in different conferences and 

seminars, and also three articles were written (two published and one in 

preparation), representing a relevant contribution for both industrial and 

academic sectors. 
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               THE PHARMACEUTICAL INDUSTRY 

1. THE PHARMACEUTICAL INDUSTRY 

1.1 Overview 

 

The target of the pharmaceutical industry is the development of pharmaceutical 

formulations capable of cure diseases and improves people’s life. In general these 

substances contain one or more active pharmaceutical ingredients (API), which are 

molecules that act against a health malfunction or a pathogenic entity. The 

pharmaceutical formulations also contain another substances named excipients, 

which are inactive but provide important properties as stabilization, improvement 

of odor/flavor, drug delivery, pharmaceutical dissolution, among others[1], [2] 

 

A pharmaceutical product can be freely launched for consumption after the strict 

evaluation of three dimensions -constituted by critical factors- that strongly 

intervene in drug performance. These dimensions can be summarized in three 

concepts: safety, medical utility and industrialization (Fig 1)  

 

 

 

Fig1. Three dimensions of pharmaceuticals development 

  

Since pharmaceuticals affect human’s body and body functions, the health risks are 

an unavoidable component when the consumers go under pharmacological 

therapies. Therefore safety and medical utility must be ensuring before any further 
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use of the pharmaceutical product.  

These two dimensions are very important and highly correlate in which all the 

concerning regarding molecular interaction, biological activity, toxicity and 

optimal dose must be completely evaluate and under control. 

In the industrialization dimension aspects as optimization of the drug obtainment, 

technology transfer and method validation takes place. A careful planning of the 

stepwise manufacturing and plant design are required to assure that the chemical 

process works in an industrial scale. Moreover, the process must be carefully 

tuned, and a quality control system must be established to accomplish the 

requirements demanded by the regulatory agencies to ensure customer safety and 

high quality.  

 

For obtaining successfully pharmaceutical formulations, these three dimensions 

must be carefully evaluated and work perfectly together towards the 

accomplishment of regulatory agencies requirements; in this way the three of 

them could converge in the generation of a product with high quality using a 

optimized system in terms of expenses and use of resources. 

 

Since the scope of these thesis is focused in the pharma process, especially and its 

quality control methodologies, the further content is focus in the industrial 

dimension. 
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1.2 The manufacturing process 

 

The pharmaceutical products can be manufactured in different physical forms 

according with their proposed action and targets in the human body. However, 

tablets and capsules comprise the 80% of the products. A typical flowsheet of their 

manufacture is shown in the Fig 2 [2], [3]. This process can be summarized in 

several units operations which start by obtaining the pure compounds of the 

pharmaceutical formulation –API and excipients-, following for a sequence of 

blending, milling granulating, and ending by turning the mixture into structured 

products and packing. 

 

Nevertheless these operations 

are also used for the 

manufacture of other 

pharmaceutical products 

including aerosols, injectables, 

suspensions and topic 

products (creams, pomades 

i.a).  

Considering this fact, the 

pharmaceutical manufacturing 

process can be consider in a 

big picture as a “powder 

technology”, in which under a 

variety of manners is dedicate 

basically to make particles, 

modify their properties and 

turning them into solid 

structured products [3].  

Each individual manufacture 

step in the process is called a unit operation, and the pharmaceutical’s 

manufacture requires many of them to deliver the final product.  

Fig2. Typical flowsheet for tablet and 

capsule manufacturing 
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There are three principles methods for the production of a tablet: direct 

compression, wet granulation and dry granulation. The manufactures choose 

the way in which the tablet must be produced based on the characteristics of the 

formulation’s compounds [4]. 

 

Tablets can be made by 1) blending the API and excipients and 2) compacting and 

giving the form of a tablet to the blended mixture, this process is known as direct 

compression. This method can be chosen when all the components of the 

formulation after blending show proper homogeneity –uniform distribution of all 

the components in a mixture- and good flowability -the characteristic of a powder 

to flow, related to the sliding scale of its constituents-. 

 

It must be point out that the obtained tablets must have optimal hardness, optimal 

friability and fast dissolution [2], [4]. The hardness is related to the breaking point 

and structural integrity of a tablet under storage, transportation and handling 

before usage; while the friability is considered the condition of being crumbled and 

to be reduced to smaller pieces with little effort. Furthermore the 

pharmacokinetics of the pharmaceutical product and its ability to be released has 

to do with the speed of dissolution. These three characteristics influence strongly 

the product, therefore ensuing that tablets meet the optimal point of each of them 

is essential for obtaining high quality.  

Otherwise, if the components of the formulation do not compress well, do not have 

good flow ability, are too fluffy, or segregate (heterogeneity) after blending a 

granulation step is required.  

One needs to have in mind that the factors mentioned above affect the quality of 

the tablets and also can occasion problems that not only affect the manufacture but 

also the machinery for further use, if the components get stacked in the drums. 

 

In Granulation the small particles are grouped into larger ones called granules. 

Each granule should contain a proper mixture of all the components of the 

formulation and those attached to each other either by mechanical forces -that 

densify and compacts all the powders together- or by the use of an aqueous 
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solution binder [2], [4], [5].  

 

As a summary the reasons to granulate are mentioned bellow: 

• To improve powder flow 

• To improve compressibility 

• To reduce fines 

• To control the tendency of powders to segregate 

• To control density 

• To capture and fuse small quantities of active material 

 

The granulation methods can be divided into two major types: dry granulation or 

wet granulation [6]. 

 

• Dry Granulation 

This type of granulation must be carried out when the pharmaceutical compounds 

are sensitive to moisture and/or unable to withstand elevated temperature during 

drying. This method is also called slugging, chilsonating or roller compaction and it 

is perform through the reground of the mixed powders into a precise powder. This 

action increases particle density, improves powder flow and captures fines. 

The normal procedure starts by powder compaction using a tablet press followed 

by a milling procedure. In order to densify the powders, the manufacturers usually 

use a low shear producing fine particles. 

 

• Wet Granulation 

Along this method several unit operations are perform in order to get the granule. 

Firstly a pre-mix stage is performed where API and excipients are blended prior 

addition of the binder substance. Once uniformity is achieved, during the wet 

massing step the binder is added to the mixture and the components are massed to 

a predetermine point. Then a drying procedure is followed until full elimination of 

the moisture and tested by a “LOD” or loss on drying test. The obtained granulation 

is then milled to reduce the size of any caked material into a standardized particle 

size distribution through a sieving step. In the final blend, post-granulation 
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excipients are eventually added to improve the properties of the final granule 

mixture. 

Even though wet granulation is the most common processing method used in 

pharmaceutical manufacturing, it is an expensive, time/energy-consuming 

procedure in comparison with direct compression or dry granulation. Moreover 

since many unit operations take place in order to obtain granulates, it is 

indispensable to consider the complex interaction of several variables in each step, 

and a deep knowledge of the formulation it is required to control the granulate 

formation. 

 

As it was mentioned, the pharmaceutical compounds go through several unit 

operations for the modification of their properties towards obtaining the final 

product. Each operation is very important and influences strongly the 

characteristics of the products and its quality. These procedures are described 

briefly below. 

 

Milling is done when it is necessary to reduce particle size from mixtures, or there 

is need for de-lump them- in case they form lumps as a result of material’s 

moisture-. It takes place in the three types of methods: Dry compression and dry 

and wet granulation. Basically the reasons to milled pharmaceutical compounds 

are to reduce segregation, improve flow, enhance drying and limit wide particle 

size distribution. The machinery used to mill the pharmaceutical mixtures is 

choose based on the desired particle size, and these are categorized according to 

the force they impart on the powders – shear force-. 

 

Blending is one of the first steps in the pharmaceutical manufacturing, but is also 

used along the whole process. At the beginning of the manufacture, once the raw 

materials are rigorously checked, the API and the excipients –all in powder form- 

go under a mixing procedure in order to get a homogeneous distribution of all the 

components in the drug. During manufacture granulated powders or extruded 

pellets need to be also mixed to ensure homogeneity. Once the products are 

blended these are discharge into a drum, emptied into a hopper of a press or 
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encapsulator, and divided into the final dosage form. Inadequate mixing 

somewhere along the production sequence can result in rejection of finished 

product due to poor quality [3]. 

Blend studies determine that there is an optimum endpoint for each mixture, and 

every pharmaceutical formulation have a unique pathway to their optimum state 

of uniformity which is affected by factors as particle size, density between 

components and based on those, a mixing times can be predetermine. 

Time is a very important factor because if the mixture is either under blended or 

over blended problems like segregation, weight and hard variations are likely to 

appear [7]. 

Regarding the machinery to be used, there are a variety of equipment for mixing 

materials, which operate in different forms: mobile blenders, in which the bin have 

different forms and rotate about an specific axis, and the fixed blenders that are 

equipped with spiral bands, propellers or inside paddles, who are responsible for 

shearing the mixture, breaking the possible agglomerates, and drag some of it from 

one part of the container to the another in order to homogenize the whole mixture. 

However, the most common blenders used for final blending are the v blender, the 

double cone blender and the tote blender. All of these use low shear tumble 

blending as the most effective way to achieve good mixing with a variety of 

powders and granules[7]. 

Once the powders are properly mixed and have all the desire characteristics –good 

flowability and uniform content- they go to the latest unit operations in order to 

create the tablet. It should be pointed out that the prior operations influence 

strongly quality parameters of the tablet and those are not merely subject to the 

tablet formation.  

 

Tablet compression is the process in which a small quantity of the powder 

pharmaceutical mixture is pressed to obtain a define form. Technical innovations 

to tablet compression machinery have improved production rates to the point 

where more than 500.000 tablets per hour are obtained.  

This unit operation consists in four steps: filling, metering, compression and 

ejection [8]. 
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The filling step involves the transfer of the blended/granulated material into 

position to the compressing station. Then, during metering the excess of material is 

removed and the exact weight (volume) of the granulation is tuned to be 

compressed into tablets. The control of the weight of the mixture is controlled by 

the lower punch in the mold. 

 

As the name indicates, during the compression step the mixture is compress to 

form a tablet; for this, the upper and lower punches in a predetermine pressure get 

together within the mold. The distances between the punches determine the 

thickness and the hardness of the tablet, and these two characteristics are very 

important in the quality of the product. 

The final step involves ejection in which the tablet is removing from the lower 

punch-mold station, and the tablet is ready to go through the coating unit 

operation. 

 

Tablet coating is important for several reasons, like making the tablet stronger 

and tougher, improving of taste, addition of color and makes them easy to 

transport and pack. Also coatings concede specific characteristics to tablets, which 

is the case of sustained released coatings in which the tablet is released slower and 

steadier into the stomach while having the advantage of being taken at less 

frequent intervals than immediate release formulation of the same drug. 

The coating used could be a thick sugar based layer or a very thin film, but most 

pharmaceutical tablets are cover with the second option. 

 

The coating process is perform by spreading a solution-which contains the coating 

substance and the solvent- to the tablet; for several years the manufactures used 

alcohol as the solvent making the dry process easier. The use of such a solvent 

shows problems in handling operator safety, solvent recovery and the odor of the 

tablet. Therefore the improvements in tablet coating equipment have evolved to 

the use of water and the drying system with constant flow of hot air. 
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The final goal is obtaining high quality tablets with the following attributes: 

 

• Good weight, thickness and hardness control 

• Good ejection 

• No capping, lamination or sticking 

• Good friability, disintegration and dissolution. 

•  

It is important to remark that obtaining successfully pharmaceutical products with 

good quality it is only possible if the right materials, the appropriate set of unit 

operations and an optimal quality system is chosen. 

To sum up, the manufacture process in the pharmaceutical industry basically blend 

the formulation compounds, and carried out several physical transformations 

through its unit operations with the aim of obtaining homogenous unit doses that 

meet all the quality requirements defined in the guidelines. 

 

1.3 Quality management in the pharmaceutical industry: quality assurance 

and quality control  

 

Since obtaining pharmaceuticals with high quality it is not only an issue that 

involves industrial productivity but also public health, manufactures, regulatory 

authorities and governments work together to ensure that pharmaceutical 

products meet acceptably all the standards of quality, safety and efficacy[9]. 

 

The quality management in the pharmaceutical industry is usually defines as the 

function that conducts, determines and implements the quality policy, in which 

two concepts are crucial: quality assurance (QA) and quality control (QC). 

QA is a “wide ranging concept covering all matters that individually or collectively 

influence the quality of a product; It is totally the arrangements made with the 

object of ensuring that pharmaceuticals are of the quality required for in their 

intended use”[10].  

According with this definition, QA could be consider as the planning, monitoring 

and tuning system that brings together control quality with the good practice of 
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manufacture (GMP’s) and other guidelines of the regulatory authorities towards 

one goal: accomplish quality [11]. 

 

By definition QC is a procedure or a set of procedures intended to ensure that a 

manufactured product accomplish a define set of quality criteria, and specially 

concerns sampling, specifications and testing; all these together with organization, 

documentation and release procedures, ensure that the necessary and relevant 

tests are carried out, and the materials and the products are not release for use or 

sale until their quality has been judged to be satisfactory [10]. 

Along the pharmaceuticals manufacture physical and chemical characteristics of 

the product are evaluated, starting by the identification of raw materials, followed 

by a batch control within the process, and ending up by tests that confirm quality 

achievement of the final product. 

Even though in the regulations there is any mandatory request for certain 

analytical methodologies to carry out the QC in this industry, manufactures and 

regulatory agencies coordinate together to choose the appropriate methods based 

on their characteristics and the quality of the generated data; most methodologies 

used in pharmaceutical control has shown a good performance and suitability for 

the purpose over the time, being ultraviolet spectroscopy UV, chromatographic 

techniques and Karl Fisher titration broadly used. 

The currently used methodologies allow analysis off line or at line which means 

that a portion of the sample must be withdrawn from the bulk and take it to the an 

external analysis station which could be located besides production or transported 

to an extra laboratory.  

Even though these procedures has been allowed manufacturers accomplish high 

quality in their products until now, some constraints regarding sampling and time 

consuming are more notable since the last years. However the pharmaceutical 

industry is quite hesitating in the implementation of new technologies due to the 

economic risk that these could represent, but new guidelines has been launch by 

the regulatory agencies suggesting and encouraging manufactures to include new 

scientific knowledge in process technology to improve productivity and optimize 

the use of the resources [12]. 
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1.4 Process analytical technology (PAT) in pharmaceutical industry 

 

With the purpose of improve manufacture in 

the pharmaceutical sector, in 2004 the FDA 

release an initiative which promotes a work 

philosophy for the innovation of 

pharmaceutical development, manufacturing 

and quality assurance. 

In this guideline the concept of quality change 

substantially, which is no longer addressed as a set of requirements to be achieved, 

and instead, quality must be build up in each manufacture step through the deep 

understanding of products and processes. Moreover, the guideline encourages the 

pharmaceutical sector to embrace and implement innovation from the scientific 

and engineering field, with the goal of enhance understanding and control of 

manufacturing [13].  

 

PAT is define in the initiative as a “system for designing, analyzing and controlling 

manufacturing through timely measurements (i.e during processing) of critical 

quality and performance attributes of raw and in-process materials, with the goal 

of ensuring final product quality”[13]. 

 

By its own definition, this philosophy suggest that products with high quality can 

be obtain as the result of an strict control and supervision of parameters that 

influence quality in each manufacture step; in this sense if quality can be ensure in 

each unit operation, the unique outcome would be products with high quality [12]. 

Moreover, this working methodology also allows spotting any problem within the 

process and allows immediate corrections, which can spare resources and money 

in case of failing. 

 

For all these to become real there is a need for the development and 

implementation of analytical methodologies suitable for the task, which allow 

online, simple and fast analysis [14].  
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On the other hand although PAT is a novel work philosophy for the pharmaceutical 

industry its origins date back to the 70´s; this has been used since then for 

chemical and petrochemical industries under the name of process analytical 

chemistry (PAC) or process analytics (PA). PAC by definition is the application of 

“on-field analysis” and chemometrics for monitoring chemical or physical 

attributes or detection of events that cannot be derived from conventional 

variables (temperature, pH, pressure, flow i.a.). While PAC is more related to real-

time analysis for the solution to production problems, PAT is a broader field 

encompassing a set of tools and principles to enhance manufacturing, process 

understanding and control which includes several areas such as process analysis, 

chemical engineering, chemometrics i.a. So, it can be considered that PAC has 

evolved in the pharmaceutical field of application into what is known nowadays as 

PAT [14]. 

As an additional data of interest, it must be mentioned that the Center of Process 

Analysis and Control (CPAC) was established in 1984 at the University of 

Washington and still operating nowadays. This works as a consortium of 

industrial, national laboratory and government agency sponsor which addresses 

multidisciplinary challenges in PAT and process control through fundamental and 

directed academic research [15]. 

 

1.5 Regulations in the pharmaceutical industry 

 
Since pharmaceutical products affect strongly consumers health and any failure 

represent a potential public health risk, the pharmaceutical production cycle is 

strictly regulate to ensure that all drugs are properly tested and produced, and that 

the test results available to regulatory authorities are complete and unbiased. 

 

As a public health concern, pharmaceuticals manufacture was an issue that each 

country addresses in the past with its own regulation, but with the expansion of 

the markets and economy globalization, the national regulatory agencies turn out 

to constitute international organisms that control the pharmaceutical production 

under the same notion of quality, assurance and efficacy [11], [16]. 
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The harmonization of regulatory requirements seems to be feasible in 1980s, when 

the European community moved towards the development of “international 

products” and moved to a single market concept. Around 10 years later a project 

known as international conference of harmonization ICH reunited together the 

regulation authorities and experts from Europe, US and Japan in order to discuss 

scientific and technical aspects of pharmaceuticals [17].  

 

The ICH aim is to provide guidance to harmonize the interpretation and 

application of technical guidelines and requirements for pharmaceutical research, 

development and manufacture; all these optimizing the expenses, avoiding 

duplication of testing without compromising safety and effectiveness. 

The ICH guidelines are divided into four groups: Q from quality, S from safety, E 

from efficacy and M from multidisciplinary.  

 

The Q guidelines encompass the quality area recommending how to conduct 

stability studies, defining relevant thresholds for impurities testing and a more 

flexible approach to pharmaceutical quality based on Good Manufacturing Practice 

(GMP) risk management. Moreover this part also conducts the harmonization of 

the three pharmacopeias (European, US and Japan) through a tripartite 

pharmacopeial harmonisation program known as the Pharmacopoeial Discussion 

Group (PDG)[17] . A summary of all the categories of the guidelines is condensed in 

Table 1 [11]. 
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Table1. ICH guidelines categories and main topics 

Q: Quality topics S: Safety topics 

Related to chemical and pharmaceutical 
quality assurance  

1. Stability 
1. in vitro and in vivo pre-clinical 
studies 

2. Analytical validation 2. Carcinogenicity studies 
3. Impurities 3. Genotoxicity studies 

4. Pharmacopoeias 
4. Toxicokinetics and 
Pharmacokinetics 

5. Quality of biotechnological products 5. Toxicity testing 
6.Specifications 6.Reproductive toxicology 
7.Good manufacturing practice 7.Biotechnological products 
8. Pharmaceutical development 8. Pharmacology studies 
9. Risk management 9. Immuno-toxicology studies 

 
10.Joint safety/Efficacy 
(Multidisciplinary topic) 

  
E: Efficiency topics M: Multidisciplinary topics 

Related to clinical studies in human 
subject 

Several topics that do not fit in other 
categories 

1. Clinical safety M1. Medical terminology (MedDRA) 

2. Clinical study reports 
M2. Electronic standards for 
transmission of regulatory information 
(ESTRI) 

3. Dose-response studies 
M3. Timing of preclinical studies in 
relation to clinical trials 

4. Ethnic factors 
M4.The common technical document 
(CDT) 

5. Good clinical practice 
M5. Data elements and standards for 
drug dictionaries 

6.Clinical trials  
7.Guidelines for clinical evaluation by 
therapeutic category  
8.Clinical evaluation   
 

However it is important to point out that there are other important regulatory 

agencies such as the European Medicine Agency (EMA), the Food and Drugs 

Administration (FDA), or the medicine and health agencies of each country. All 

these publish useful GMP´s and manufacture guidelines regarding qualitative and 

quantitative drug’s requirements and mandatory tests to assure quality, 

nevertheless all these documents are based on the regulations of the international 

organisms. 
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1.6 Analytical technologies in real time 

 

As it was mentioned before, in 2004 the FDA published a final guidance for 

industry introducing the concept of PAT and redefining pharmaceutical 

manufacturing and quality assurance for the future. 

The basic notion of this work philosophy aim to enhance product and processes 

through the analysis, design, understanding and monitoring each manufacturing 

step; in that sense the concept of quality changes to some extent to design and 

build quality into product and manufacturing process, rather than “testing for 

quality”. 

 

The guideline also addresses the concept known as real time release which is 

defined as “the ability to evaluated and ensure the acceptable quality criteria of in-

process and/or final product based on data”. This concept of PAT includes 

according to the guidance, "a valid combination of assessed material attributes and 

process controls," and based on the 1985 guidance on parametric release, which is 

used primarily in heat based sterilization of drugs. 

Some years later -2009- the parties of the ICH adopted the ICH Q8(R2) 

pharmaceutical development, which used the term real time release testing (RTRT). 

The definition of this term in the ICH Q8(R2) changed the emphasis from the 

decision to release a batch to the measurements themselves, as follows: “the ability 

to evaluate and ensure the quality of in-process and/or final product base on data 

process, which typically include a valid combination or measured material 

attributes and process controls” 

 

The implementation of RTRT represents big benefits to the industry in terms of 

economy, productivity and time. Despite of this, the industry still trying to work 

out the practicalities of implementing the approach for on-line and in line analysis, 

and therefore is not broadly applied for all the pharmaceutical manufacturers. 

Many questions remain about which instrumentation must be use and when or 

where on the production line the test must be conducted, how to evaluate on-or in-

line analyzers during manufacture and what regulatory authorities expect. 
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In another hand spectroscopic technologies have been broadly use in the las years 

for process analysis and increasingly for on-line process monitoring in different 

type of industries: chemicals, food, agriculture and pharmaceutical i.a. 

Advantages as being simple, fast, and non-invasive techniques have probed their 

suitability for quality control in the pharmaceutical industry within the PAT 

framework. 

Some years ago the PAT guideline was published as an advisable methodology to 

conduct quality control in the pharmaceutical industry, nowadays regulatory 

agencies required an organized approach based on risk management through the 

lifecycle of a pharmaceutical product [18], turning PAT as the more suitable 

approach to implemented. 

The ICH Q8(R2) clearly show the importance of monitoring: 1) critical process 

parameters (CPP) whose variability impact 2) critical quality attributes (CQA) and 

c)quality target product profile through a careful design of experiments. 

 

To sum up, enough evidence has been presented by several sectors –academy and 

regulatory agencies- of the efficiency and suitability of the implementation of new 

on-line/in-line methodologies for pharmaceuticals manufacture, also as the 

advantages of designing and creating quality in each process step. 

The use and implementation of PAT by the industries is widely increasing, as a 

result the academic sector is in charge to develop and improve all methodologies 

to make this transition as easy and profitable as possible. 

The most recent Appendix 15 of the EUGMPs [18] for the validation of 

pharmaceutical processes strongly requires the use of PAT and QbD (quality by 

design) knowledge to provide the highest confidence of the manufactured 

products. Moreover, this framework allows the chance to manufacture in real time 

release mode, consequently, efficient instrumental techniques combined with 

multivariate data analysis are crucial for this end. 
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2 NEAR INFRARED SPECTROSCOPY (NIR) 

2.1 Overview 

 

The first observations of the presence of light in the near infrared region data back 

to 1800`s by Sir William Hershel by his studies about the heating effect in the 

spectrum of solar radiation. In his experiments he used a prim to disperse the light 

into different colors, and their temperature was measured. Surprisingly he found 

out that beyond the red, at end of the spectrum the temperature appeared at its 

greatest, and from that point onwards this part of the spectrum got a little interest 

for the chemist back then [19]–[23]. 

The lack of knowledge about optical characteristics of the infrared light delayed its 

use until 1881, when Abney and Festing recorded the first spectra of organic 

liquids. This work was significantly important because for the first time a formal 

NIR measurement was performed, and also the earliest spectra interpretations; 

also the importance of the hydrogen bond in the NIR spectrum was reported by 

them [19], [20]. 

In the earlies 1900`s Coblentz build up one of the first spectrometers which was 

vibrational-thermal sensitive. Although an hour was needed to obtain a spectrum 

with this instrument, the experiments performed with it allowed Coblentz to 

discover that each compound has a NIR finger print in the spectrum and that the 

spectra of two compounds are different one form the other. Moreover, he also 

noticed the spectral patterns in compounds with similar functional groups, 

especially a remarkable band in those that contain the OH- group [19], [20]. 

Around 1950´s a growing demand for fast and quantitative methods to determine 

moisture and protein in food boost the use of NIR -especially by Norris at the US 

department of agriculture-. And by 1970 already 50 works were published 

showing the performance of the technique in analysis of atmospheric humidity, 

water, gelatin i.a [19], [21]–[23].  

Although the discovery of NIR was long ago the importance and use of the 

technique was delayed by the state of the knowledge and the technology back then. 

Moreover the spectroscopist from that time pointed out constraints for the use of 
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the technique such as absence of relevant structure information, lack of sharp 

peaks, and the difficulty of making band assignments in comparison with Mid-

Infrared. However technological advances, developments in the instrumentation 

and new algorithms-that allow statistical and mathematical analysis- turned these 

constraints into strengths, positioning in this moment the NIR spectroscopy as a 

versatile, fast, simple and robust analytical methodology in different research and 

industrial fields [19], [21]. 
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2.2 Principles of radiation 

 

The infrared (IR) region is comprised between 780 and 106 nm (12800-10 cm-1) 

between the ultraviolet-visible (UV-Vis) and microwaves in the electromagnetic 

spectrum. This region corresponds mainly to molecular rotations and vibrations, 

because IR radiation is not energetic enough to cause electronic transitions, which 

is the case for UV-Vis or X-rays. 

 

According the mechanism of the incident radiation and the characteristics of its 

interactions with the matter, the IR is, in turn, constituted by three different zones: 

Far Infrared (FIR, 4.104 -106 nm), Mid Infrared (MIR, 2500-4.104 nm) and Near 

Infrared (NIR, 800-2500 nm). Thus, in the FIR zone the absorption bands 

correspond to molecular rotations, while in MIR to molecular vibrations. 

Overtones and combination bands of the lower energy fundamental molecular 

vibrations are the ones observed NIR; these bands are significantly weaker in 

absorption comparing to the fundamental bands from which they originated, and 

can be considered as faint echoes of Mid-IR absorption [24], [25]. 

 

 

Fig1. Electromagnetic spectrum 

 

A molecule can only show infrared absorptions when the molecules experience a 

change in the dipole moment during the vibration or rotation. Just under these 

circumstances, the electrical field of the radiation can interact with the molecule, 

and provoke changes in the amplitude of its movements, resulting in the radiation 

absorption [26]. 

Since the dipole moment is determine by the magnitude of the charge difference 

and the distance of the charge centers, homonuclear species as (H2, O2, N2) do not 

absorb in the NIR, because its dipolar moment is not alter during vibrations and 
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rotations [25]. 

The interactions of infrared radiation with matter may be understood in terms of 

changes in molecular dipoles associated with vibrations; vibrations can involve 

either a change in bond length (stretching) or bond angle (bending). However even 

if the distance amongst atoms is always affected, not all vibrations modes are 

active in the IR, and it depends strongly on the structure of the molecule itself.[20], 

[25]. 

 

A molecule can be looked upon as a system of masses –atoms-joined by bonds with 

spring like properties, which can be explained by the harmonic oscillator model, 

obeying to Hooke’s law. When the masses are at rest in the equilibrium position, its 

potential energy is zero, whereas when the spring is compressed or extended its 

potential energy increases. The movement of atoms in the molecule is confined in a 

potential well, characterized by atoms attraction and repulsion. The energy levels 

of the atoms confined in the potential are quantized [24].  

The energetic levels in this model are equidistant distributed, and transitions are 

only allow it between neighbors levels (∆n= ±1); this is known as the selection rule 

Fig2 [20], [21], [23].  

 

Fig2. Schematic representation of the harmonic model 
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The potential energy of the bond is defined by a simple harmonic oscillator, given 

by the following expression [24], [25], [27]: 

 

2k x 
2

1
E =        (1.1) 

Where k is the bond force constant and x the distance amongst atoms 

An elastic bond, like a spring, has a certain intrinsic vibrational frequency, 

dependent on the mass on the system and the force constant. Classically it is 

simple to show that the oscillation frequency is[24], [25], [27]: 
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Where v is the frequency, k the force constant and m1-m2 the masses of each atom. 

 

Vibrational energies like all other molecular energies are quantized, and classic 

mechanics failed to fully describe the behavior of atoms and molecules. Therefore 

the allowed vibrational energies for any particular system may be calculated from 

de Schrödinger equation. For the simple harmonic oscillator[24], [25], [27]: 
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Where n is the vibrational quantum number (0, 1, 2…), h the Planck constant and v 

the vibrational frequency.  

Combining the equations (1.2) and (1.3) we can describe the expression that better 

represent the vibrational energy for a molecule taking into account their vibrations 

and quantized energy[27]: 
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The harmonic oscillator model cannot explain the behavior of real molecules, as it 

does not take into account Columbic repulsions between atoms or dissociation of 

bonds, which affects the potential energy of the molecule. As a result, the behavior 

of molecules resembles more closely to the model of an anharmonic oscillator Fig 

3 [20], [21], [23]–[25], [27]. 

 

Fig3. Schematic representation of the anharmonic model 

 

Energy curves of harmonic and anharmonic oscillators are very similar to low 

levels, so that the molecules have only a harmonic behavior around the 

equilibrium position, but the energy difference decreases with the increasing of the 

vibrational quantum number n. 

Therefore the expression of vibrational energy (eq 1.3) can be correct in terms of 

the anharmocinity of the molecules by the following expression [27]: 
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Where n is the vibrational quantum number (0, 1, 2…), h the Planck constant and v 

the vibrational frequency. And y, y` are anharmonicity constants. As n increases the 

terms can be ignored.  

 



                     NEAR INFRARED SPECTROSCOPYTRODUCTION 

  45 

 

The energetic levels for the anharmonic model are not equidistant distributed; 

thus at higher energetic levels, the energy between levels is lower. The allowed 

energetic transitions are not only observed for the fundamental band (∆n = ± 1), 

but for another transitions (∆n = ± 2, ± 3, ...) which correspond to overtones bands 

that show up at greater wavelengths in the NIR region. The overtones appear 

between 780 and 2000 nm, depending on the overtone order and the bond nature 

and strength. Since this transitions are less frequent than MIR fundamental 

vibrations, its bands intensity decreases between 10- 100 times for the first 

overtone (depending of the particular bond) [20], [21], [24]. 

For polyatomic molecules the simultaneous changes in the energy of two or more 

vibrations modes are named combination bands, the frequencies of which are the 

sums of multiples of each interacting frequency. Combination bands appearing 

between 1900-2500 nm [21] [21]. 

Non fundamental transitions are much less likely than transitions between 

consecutive energetic levels, so the NIR bands are less intense than those in the IR 

region. In addition, NIR bands are wider and less well defined as a result of overlap 

overtones and combination bands. However, the intensity of NIR bands depend on 

the dipole moment and the anharmonicity of the bond, thus O–H, N–H, C–H, S–H 

bonds are strong NIR absorbers and present strong bands; By contrast bands like 

C=O, C-C, C-Cl, C-F are much weaker or even absent [21], [22]. 

 

Atomic interactions between molecules (for instance hydrogen bonding or dipole 

interactions) alter vibrational energy states, thereby shifting existing absorption 

bands and giving rise to new ones, through difference in their crystal structure. 

This allow crystal forms to be distinguished one from another and physical 

properties (such as viscosity, particle size, particle size amongst others) to be 

determined [21].  
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2.3 Instrumentation 

 

The NIR instrumentation has evolved dramatically over the years, and the 

development of its devices has responded the demand of its use for analysis of 

different types of samples and diverse environments. NIR spectrophotometers 

have a huge advantage over other analytical methodologies because they have a 

broad variety of devices which can be adapted to several samples-from gels to 

grains- and that allow the analysis in different conditions and scenarios. All this 

together have fostered the use of NIR spectroscopy, as a versatile and flexible 

technique [19], [21], [28].  

 

A NIR spectrometer is generally composed of: a light source, a wavelength 

selection system, a sample holder or a sample presentation interface and a 

detector Fig4[20]–[22]. 

 

 

Fig4. Main characteristics of a NIR instrument 
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• Radiation source: The light source generates a beam that can irradiate the 

samples. The commonly used is a halogen light with tungsten filament and quartz 

window that is capable to emit a continuous spectrum from 320 nm to 2500nm. 

Another light source that can be used is named LEDs (Light Emitting Diodes), that 

depending of their composition is able to emit up to 1600 nm. The halogen lamps 

require wavelength selection system, while LEDs does not [21], [28]. 

 

• Wavelength selection system: It is very important to have an appropriate 

system for wavelength selection, because the sensitivity of the instrument depends 

very much of it; a narrow width band increases the sensitivity of the 

measurements [25]. 

NIR spectrophotometers can be grouped in two types with respect to wavelength 

selection: discrete wavelength and whole spectrum instruments [21].  

 

The discrete wavelength instruments are simpler than the others, since they 

irradiate samples with only few wavelengths; therefore they are useful for those 

applications that just required analysis in a specific spectral range.  

These instruments can selected the wavelengths by using lights sources filter that 

allow the passage of variably broad wavelengths or light-emitting diodes (LEDs) 

that emit narrow bands. The no need of moving parts makes LED-

spectrophotometers simple and robust, encouraging its use for use in portable 

equipment [20]–[22]. 

 

The instruments based on Acousto-Optical Tunable Filters (AOTF) also belong to the 

discrete wavelength instruments. These devices exploit the properties of the 

birefringent materials -usually crystals of TeO2 cut it in a special angle- that have 

the ability to change its refractive index when is crossed by an acoustic wave. In 

this way, one of the wavelengths of the incident polychromatic light is diffracted by 

the material and directed towards the sample, while the remainder pass through 

the TeO2crystal, which is transparent to NIR radiation [20]–[22]. 
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The acoustic waves are obtained by transformation of radiofrequency signals by 

piezoelectric transducers, so that the selection of wavelengths is performed by 

modulating the initial signal radio. This means that the wavelength scanning is 

very fast and allows the selection specific wavelengths required for each analysis 

Fig5 [29]. 

 

In addition, the instruments based on AOTF do not require moving parts, so it is a 

very robust technology and high repeatability, especially suitable for work in harsh 

conditions, such as industrial plants. 

 

 

 

 

Fig5. Scheme of instruments based on Acousto-Optical Tunable Filters (AOTF)  

 

Whole spectrum instruments are much more flexible than discrete wavelength 

instruments, so they can be used in wider situations. Usually include diffraction 

grating instruments or be of the Fourier transform (FT)-NIR type[21]. 

 

The diffraction grating instruments use monochromators as wavelength selection 

systems which are constituted by a set of collimators -that narrows the input beam 

to an output aligned in a specific direction- together with a dispersing element. 

This is the fundamental part of the system, allowing the decomposition of the 

incident beam as a result of constructive and destructive interactions. The most 
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commonly used dispersants elements are diffraction gratings Fig6[20], [21], [28]. 

 

 

 

 

 

 

 

 

 

 

 

Fig6. Scheme of instruments based on diffraction grating instruments 

 

The instruments based on Fourier transform (FT) are based on the division of the 

incident light into two de-phased beams subsequently recombined. The most 

commonly used device for the light division and phase shift of the beams is the 

Michelson interferometer, which is constituted by a beam splitter, a fixed mirror 

and a movable mirror. The beam splitter divides the polychromatic radiation into 

two beams, one of which is reflected by the fixed mirror and the other on the 

movable mirror. The change in the position of the movable mirror causes that both 

beams are out of phase due to the difference of optical paths and when they 

recombined again interfere constructively or destructively. The signal obtained is 

called interferogram and is a representation of signal strength versus time. With 

the implementation of the FT algorithm, the time domain becomes the frequency, 

and in this way the NIR spectrum is obtained. FT-NIR instruments are undoubtedly 

the instruments combining most of the best characteristics in terms of wavelength 

precision and accuracy, high signal to noise ratio; however they are sensitive to 

vibrations and slower than AOTF based instruments [20], [21], [28], [29]Fig7. 
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Fig7. Scheme of instruments based on Fourier transform-Michelson interferometer  

 

Micro NIRs are the most modern NIR instruments in the market since they are 

integrated systems practically with no moving parts build it in very small size –

comparable to a sugar cube in some cases-. Their exceptional benefits rely on the 

adaptation of the NIR optics from traditional instruments to small scale devices, 

using low cost materials as silicon. Also their innovative design which allows using 

a simple USB cable as power source and output system, or the use of portable 

batteries increase the versatility of the technique and enhance its suitability for “on 

the field” applications. 

One of the examples of this successful instrument miniaturization is the Micro 

electromechanical Systems (MEMs) based on scanning grating spectrometer, with an 

integrated InGaAs diode for detection in the near infrared spectrum. The suitability 

of scanning grating spectrometers for different applications are broadly known, 

with numerous descriptions and advancements published. Microelectromechanical 

systems (MEMS) technology is capable of producing and assembling scanning 

gratings. Combining the two, a scanning grating spectrometer can be fabricated, 

which benefits from the energy and cost efficiency inherent to MEMS components 

[30] Fig8. 

Also the use of Linear Variable Filters (LVF) has shown its successful 

implementation in the fabrication of micro NIRS. LVF consist in a wedged filter on 

top of a linear array of photodetectors and enables the transfer of the optical 

spectrum into a lateral light intensity profile over the array of photodetectors [31] 

FIG 8. 
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Fig8. Fully integrated micro NIR system featuring A) MEMs system and B) LFV 

system  

 

• Detectors: The detection systems in NIR spectroscopy use devices with 

semiconductors such as PbS or Ingaes, like single channel detectors In multi-

channel detectors, several detection elements are arranged in rows (diode arrays) 

or planes charged coupled devices (CCDs) in order to record many wavelengths at 

once, so as to increase the speed at which spectral information can be acquired 

[21], [22], [28]. 

 

2.4 Sample Acquisition Modes 

 

One remarkably advantage of this technique is the versatility of NIR analysis for 

different kind of samples –gas, liquids, solids and even mix phase materials- 

without need of sample pretreatment; this has fostered its use for both academia 

and industrial purposes.  

The options of sample acquisition depend strongly on the nature of the sample and 

the environment of the analysis. There are three modes to take a NIR spectrum 

(reflectance, transmittance and transflectance) and the main difference is the 

position of the sample, the detector and the optical path length [20], [22], [26], 

[32]Fig 9.  
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In the Transmittance mode is measured the fraction of transmitted radiation (not 

absorbed) by the sample, ie, the radiation reaching the detector after passing[22] 

through the sample[22], [26]. This measurement mode obeys the Beer-Lambert 

law listed in the following expression[27]: 

 

abc
P

P

T
A === 0log

1
log     (1.6) 

 

Where A is the absorbance of the sample, T the transmittance, P0 the intensity of 

the incident radiation, P the intensity of the transmitted radiation, a the molar 

absorptivity, b the optical path and c concentration. 

 

Some deviations of this law can occur due to different causes such as: reflection 

and/or scattering of radiation, very high concentrations, and chemical interactions 

of the sample, amongst others. 

 

In the Transmittance mode liquid or semi-liquid samples are measured. In this 

mode the sample is placed in a tray together with a one side reflective surface. The 

beam of the incident radiation enters the transparent face of the tray, passes 

through the sample and is reflected on the other side of the tray. Thus, it returns 

back through the sample and the radiation is captured by the detector. The 

Fig9. Scheme of acquisition sample modes in NIR A) Reflectance, B) Transflectance and 
c) Transmittance  
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resulting optical path is double the length between both tray surfaces [22], [26].  

 

The Reflectance mode measures the radiation reflected from a surface, where the 

incident radiation is focused onto the sample and two forms of reflectance can 

occur, specular and diffuse. The first one is governed by the laws of Fresnel, and it 

is reflected at the same angle of incidence without penetrating the sample, which 

contains no information on it. The contribution of the specular reflectance (as 

noise only) often played with an appropriate relative position of the detectors and 

sample. On the contrary, the diffuse component result of the partial absorption of 

the radiation by the sample and scatter in all directions[22], [26]. 

 

Kubelka and Munk developed a theory describing the diffuse reflectance process 

for powdered samples which relates the sample concentration to the scattered 

radiation intensity. The Kubelka–Munk equation is as follows[27]: 

 

k

c

R

R =− 2

2

)1(
      (1.7) 

 

Where R is the absolute reflectance of the layer, c is the concentration and k is the 

molar absorption coefficient. An alternative relationship between the 

concentration and the reflected intensity is now widely used in near-infrared 

diffuse reflectance spectroscopy, namely[20]: 

 

ca
R

A '
1

log ==      (1.8) 

 
Where A is the absorbance, R the relative reflectance (R = Rsample /-Rreference), a 'the 

constant of proportionality and c concentration. 

 

In the Transflectance mode the sample, usually liquid or semi-liquid, is placed in a 

cuvette with a reflective surface on one side. The incident radiation beam enters 

the transparent face of the cuvette, passes through the sample and is reflected on 

the other side. In this way the beam returns back through the sample and the 

radiation is captured by the detector. The resulting optical path is double the size 
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between both surfaces of the cuvette. Currently, measurement systems by means 

of optical fiber transflectance permit adaptation of NIR instruments in-line 

analysis. 

As it can be seen NIR spectroscopy offers to the analyst a broad set of 

instrumentation and also several modes of spectra acquisition. Choosing the better 

configuration depends strongly in the sample and the environment of the analysis; 

basically the NIR adjusts to the sample and not the other way around, which is a 

big advantage that positioned highly this technique for process analysis.  

Since the samples evaluated in this thesis were solid pharmaceuticals in different 

forms: powders, granulates, cores and tablets the acquisition mode used was 

diffuse reflectance. Two types of NIR instruments were used: 1) FOSS NIR systems 

5000 equipped with a rapid contain analyzer module (RCA) for solid samples and 

2) Buchi FT-NIR-Flex 500 spectrophotometer equipped with a module for solids -

Petri solid sample holder Fig10.  

 

 

 

Fig10.Solid sample accessories from the NIR  used A) RCA from Foss NIR Systems 

and B) petri dish sample holder from Buchi 
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2.5 Near infrared spectroscopy as an analytical tool in the pharmaceutical 

process 

 

In the last years NIR spectroscopy was found to be very useful for industrial 

analytical applications due to several characteristics that led NIR as a fast, simple, 

versatile and robust technique [33].  

The current analytical techniques used for pharmaceuticals quality control are 

more expensive in terms of time and money in comparison to NIR, since they 

requires sample preparation –in some cases requiring solvents- and its 

instrumentation at the moment do not allow on line analysis, which increases the 

time of analysis and this, in turn, decreases the production productivity.  

 

The landscape is quite the opposite for NIR due to its quickness to collect a 

spectrum -only few seconds- that will contain both physical and chemical 

information, therefore several parameters can be evaluated in a single 

measurement. It must be point out that the most interesting advantage of NIR 

spectroscopy is its nondestructive character of the analysis: a sample can be 

analyze without previous sample preparation, in this way avoiding important steps 

responsible for error sources. This also allows in many cases the sample to be 

reuse.  

Quality control by the pharmaceutical industry has traditionally relied on 

assessment of the raw materials prior to processing and analytical determinations 

of the end-product. Although this methodology usually allows product quality 

regulations to be met, errors or unexpected variability arising at some stage of the 

process may not be detected before reaching the end-product and lead to time and 

money losses in addition to diminished productivity [34]. 

In recent years, the US FDA has encouraged the use of process analytical 

technology (PAT) by the pharmaceutical industry. PAT is intended to assure 

product quality via careful design, monitoring, control and surveillance of each 

manufacturing stage. With this methodology, quality in the product and efficiency 

in the production process result from a deep knowledge of the process and strict 

control of any physical, chemical and quality-related factors influencing each stage. 
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Quality in pharmaceutical production processes cannot be assured merely by 

analysing raw materials and end-products; rather, it requires carefully designing 

and implementing each production stage [13], [14]. 

There is ample evidence of the usefulness of near infrared spectroscopy (NIRS) as 

a pharmaceutical process control analytical methodology. In fact, NIRS is a simple, 

expeditious, non-destructive instrumental technique [21], [33], [35]–[37] and NIR 

spectra provide both physical and chemical information about solid samples. As a 

result, its use combine with chemometrics data processing have turned it into a 

promising tool for process control within the framework of PAT. 

Moreover the recent advances in the development of Micro NIRs regarding 

portability, versatility and cost allow the measurement in different locations in the 

process line where traditional instruments could not be placed. These big 

advantages of such a small scale instruments contribute to accomplish a complete 

embrace of PAT schemes into manufacturing.
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3 CHEMOMETRICS 

3.1 Overview 

 

Nowadays there is a broad set of analytical techniques which can be used for 

analysis of compounds; each methodology can provide a specific kind of 

instrumental signal. Some of them provide as an analysis outcome, a single output 

variable, some others more than just one. However what is important to point out 

is that these signals are related to sample characteristics, allowing in this way 

species identification, characterization, and quantification. 

From the instrumental signals the analyst can obtain certain data; the amount and 

the quality of the information obtained from it depends on how the data is 

processed, and the relevant information is extracted; all these procedures are 

aimed to turn data into information, and this information into knowledge.  

The data processing in this way enhance to the maximum the advantages of each 

technique, and represent a useful tool for analysts for predicting unknown 

sample’s properties and optimizing systems, reactions or processes. 

Spectra are rich in information. That is why we can often infer chemical or physical 

information properties of a material from spectra alone. However NIR spectra 

present broad and overlapped bands which need chemometrics data processing to 

extract and understand this vast amount of data [38], [39]. 

 

Chemometrics according to Massart [40] definition is considered as “the chemical 

discipline that uses mathematics, statistics, and formal logic a) to design or select 

optimal experimental procedures b) to provide maximum relevant chemical 

information by analyzing chemical data and c) to obtain knowledge about chemical 

systems”. 

In another hand Miller defined chemometrics as “the way of analyzing chemical 

data, in which both elements Statistical and chemical thinking are combined”; also 

he remarks that there are many definitions of chemometrics but there are three 

consistent elements in all of them:  

i) Empirical modelling ii) multivariate model and iii)chemical data 
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Taking this into account, the easiest definition of chemometrics is “the application 

of multivariate, empirical modelling methods to chemical data” [39]. 

Nowadays the amount available tools and softwares to apply chemometrics to data 

analysis are quite big, but the analyst always must keep in mind to use just the 

ones needed to solve its particular problem. Miller also advice three principles to 

the successful applications of chemometrics: a) Keep the models simple, b) Do your 

best to include all the relevant responses of your analyzer to your calibration data 

and c) always contemplate your problem in both ways: statistically and 

mathematical [39]. 

This thesis is focused on the use for multivariate data analysis using chemometrics 

tools for the development of NIR methodologies useful for pharmaceutical quality 

control based on product knowledge and calibration model optimization. 
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3.2 Modelling stages 

 

Chemometric modeling can be considered as the process of correlating properties 

to spectra, using mathematical and statistical procedures over analytical data.  

When NIR spectra are used to establish this correlation the amount of outcome 

variables linked to the properties is quite large, therefore multivariate analysis is 

required [38]. 

The difference between univariate and multivariate analysis is that the first one 

related a single outcome variable with the property of interest, while in 

multivariate analysis several outcome variables X are the ones to must be related. 

The main goal of the multivariate methods is to establish classification or 

calibration models able to predict unknown properties of the samples of interest.  

The protocol to follow is described below Fig1 [20][41]: 

 

 

 

 

Fig1. Principal steps in the development, evaluation, use and maintenance of 

quantitative model based on NIR spectroscopy 
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3.2.1 Selection and preparation of calibration set 

 

The feasibility of the model depends strongly in one fundamental assumption: the 

samples of the calibration set must be of the same nature of the samples to predict. 

That means that all possible sources of variability due to the manufacturing 

process must be consider in the preparation of these samples. Moreover the 

concentration of those must be spanned in a wide enough range of values to 

determine the target parameter.  

As it was mentioned before the NIR spectrum contains physical and chemical 

information, therefore the variability regarding this both is important to consider. 

The physical variability refers to all the physical characteristic of the sample 

resulting from manufacturing steps such as: size, form, particle distribution and 

degree of compression. In addition the chemical variability is related to the 

concentration range in which the samples are spanned, and it is important to point 

out that this range must be wide enough to facilitate the quantification of the 

parameter of interest and for outliers detection [41].  

Constructing calibration sets using merely production samples is impossible since 

their concentrations will typically span a too narrow range (usually not greater 

than ±5% around the nominal API content) for a robust, accurate model to be 

constructed. A number of strategies have been proposed to develop accurate 

calibration sets spanning the desired concentration ranges and containing physical 

variability from the manufacturing process [41], [42]. The following are among the 

most salient proposals. 

(a) Using pilot plant samples. With this strategy, the calibration set is 

constructed from samples prepared at a pilot plant mimicking the operations of 

the target industrial process (e.g., granulation, grinding, compacting). The ensuing 

samples can thus be expected to be physically similar to actual production 

samples. The API and excipients contents to be used should span the pre-set 

concentration range. Although this strategy ensures incorporation of most of the 

variability’s source in the samples into the calibration set, it involves a labour-

intensive process in addition to setting up a pilot plant to conduct the industrial 

process at a smaller scale. 
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(b) Underdosing and overdosing industrial samples. This strategy expands the 

concentration range spanned by samples of industrial origin by adding a small 

amount of API or excipients to powder or granulate samples in order to obtain 

new, doped samples with an API content above (overdosed samples) or below the 

nominal value (underdosed samples). Because a small addition of API or excipients 

causes no appreciable physical change, the physical variability of overdosed and 

underdosed samples is intrinsically identical with that of production sample [42], 

[43]. However the implementation of this strategy must be carefully addressed 

when any experimental design is used to avoid eventual correlations between API 

and excipients, which can lead to possible collinearity.  

 

By the addition of API for overdosed samples preparation, its concentration 

increases while the concentration of the mixture of excipients decreases 

(correlation r=-1); moreover since the concentration of all excipients 

simultaneously decreases in the meantime a correlation of r=1 is also presented 

between excipients. The same happens for underdosed samples preparation. 

 

These tight correlations (collinearity of the concentrations in the sample set) 

interferes with the modelling criteria that allow the determination of the property 

of interest, since the influence of each compound for the modelling can be hardly 

distinguish, leading in a poor selectivity of the model. 

 

(c) Laboratory samples. Laboratory samples are obtained by weighing and 

homogenization of appropriate amounts of API and excipients powders close to 

the nominal values and spanning the desired concentration range. However, a 

calibration set obtained from laboratory samples alone cannot represent the whole 

physical variability of production samples and must thus be completed with 

samples from the industrial manufacturing process. Several works have showed 

the suitability of this methodology for the preparation of the trainings set [41]–

[43].  

However, spectral differences between laboratory-made samples and production 

samples can be quite large that ensuing models are rather complex and scarcely 
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robust. This strategy is suitable for modelling when there are no spectral 

differences between laboratory and production samples; when these differences 

exist, this is not the most recommendable. 

 

(d) Calculation and addition of the process spectrum. This strategy, proposed by 

Blanco et al., [44], [45]relies on the fact that physical variability in industrial 

samples can be mathematically added to the spectra for powder laboratory 

samples in order to enable incorporation of all sources of variability into the 

calibration set. The variability in the production process is incorporated by 

calculating a virtual spectrum called the process spectrum (Sp) and adding it to a 

calibration set consisting of powder samples obtained by weighing of the different 

components. The concentration of each mixture component in the samples is 

previously established in order to encompass the desired API concentration range 

while reducing collinearity between concentrations. This procedure requires no 

reference method to determine the concentration of the target species, and has 

showed to be an easy, robust and accurate methodology suitable for the purpose. 

 
3.2.2 Determination of reference values 

 
Constructing the calibration model requires a previous determination of the 

variables to be determined. For this, a reference method must be chosen to provide 

precise and accurate values since from these depend strongly the quality of the 

model to be developed. NIR methods have shown indeed a better performance in 

terms of precision –since there is no need for sample preprocessing- in comparison 

with other methodologies, but its accuracy depends strongly on the reference 

method; hence the need of carefully chosen of the reference method, therefore in 

this thesis was used high performance liquid chromatography (HPLC) because is a 

broadly used methodology in the pharmaceuticals manufacture and its suitability 

for the purpose is widely known. Also the analytic balance was used as reference 

method. 
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3.2.3 Spectra acquisition 

 
Based on the fact that samples of the calibration set must be of the same nature of 

the samples to be predicted, the spectra acquisition must be carried out carefully 

assuring that the same instrument and computer are used, and that all the samples 

are recorded under the same conditions. 

Since the main goal of calibration is to predict properties of unknown samples, it is 

very important to assure that the variability of the instrument is very low, and that 

the main spectral contributions are due to the properties of interest is rather than 

the noise [41]. 

 

In some cases certain characteristics of the samples can be pretty notable in the 

spectra but they are not related to the parameter of interest, for instance, physical 

characteristics of the sample when a model is meant to quantify the API in a 

formulation. When this hindrance appears, the use of spectral pretreatments is 

recommended to decrease or cancel these contributions, and enhance the 

convenient signals for further modelling. 

 

In another hand, it must be carefully considered the type of sample and the 

environment of the analysis in order to select the best spectral acquisition mode 

and instrumentation-since the technique offers a wide range of analysis 

possibilities-; these with the aim of the implementation of the model in routine, 

and assure all the factors that can influence its robustness prior model installation. 

 

3.2.4 Spectral pretreatments 

 
Preprocessing NIR spectra data has become an essential part of chemometrics, and 

there are three aims for this preprocessing stage in data analysis [46]: 

a) To compress the amount of data and eliminate data that is irrelevant to the 

study that is being undertaken. 

b) To preserve or enhance sufficient information within the data in order to 

achieve the desire goal, reduce noise, increase resolution. 
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c) To extract the information in, or transform the data to, a form suitable for 

further analysis. 

 

Moreover, when chemical determination is needed preprocessing spectra is 

important to remove physical phenomena in the spectra in order to improve the 

subsequent multivariate regression, classification model or exploratory analysis.  

The most widely used approaches for preprocessing can be divided in two groups: 

scatter correction methods and spectral derivatives [47]. 

However the average of the spectra is also broadly used, because it allows noise 

reduction of the data. 

 

3.2.4.1 Average of the spectra 
 

This is a common preprocessing technique that has been automatized for almost 

all modern instruments, where several spectra of the same sample are recorded 

and once the signal has been accumulated, each wavelength is averaged by 

dividing the sum by the number of scans performed. 

The method is based on the assumption that noise is random, whereas the signal is 

not.  

 
3.2.4.2 Scatter correction methods 
 

The scattering effect can generate multiplicative variations between the spectra. 

These variations are often originate from accidental or uncontrolled differences in 

sample path length, due to variations in sample physical properties (particle size, 

thickness), sample preparation, sample presentation and perhaps even variations 

in spectrometer optics. Sometimes such variations can be problematic for further 

modelling when the parameter of interest is the concentration. The most used 

methods that can correct these variations are: standard normal variate (SNV), 

multiplicative scatter correction (MSC), extended MSC (EMSC) i.a [48]. 

The scattering effects due to physical characteristics of the samples were 

successfully corrected in this thesis using SNV[49], therefore a deeper explanation 

of how this preprocessing technique works is describes below: 
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3.2.4.3 The standard normal variate (SNV) 
 

This is a row oriented transformation in which the scattering effects are removed 

by centering the mean Absorbance of the spectrum to zero and followed by scaling 

to unit variance.  

It operates individually on each spectrum centering at an average intensity of zero 

and standard deviation equal to one. To achieve this, each wavelength absorbance 

value (AbsjSNV) is transformed according to Equation 3.1, where Absavg is the mean 

absorbance for each spectrum and S is its standard deviation. 

 

s

AbsAbs
Abs avgjSNV

j

−
=      (3.1) 

 

3.2.4.4 Spectral derivatives 
 

The spectral derivatives are the most used preprocessing techniques in analytical 

spectroscopy. Since NIR spectra are characterized by its broad and overlapped 

bands, they require preprocessing techniques that allows the enhancement and 

differentiation of the analytical signal of interest; moreover, these spectral 

pretreatments also eliminate constant and linear baseline spectral drifts. [49]. 

First and second derivatives are more common in practice than higher-order ones. 

The first derivative removes only horizontal baseline of varying levels effects, 

whilst second derivative removes both baseline and linear trends.  

The spectral derivation is mainly done for two methods: Norris and Williams 

derivation and Savitzky-Golay derivation. Both derivation techniques use 

smoothing in order to reduce the noise in the corrected spectra[46], [48].  

The basic method of derivation is based on finite differences: For the first 

derivative is calculated as the difference between two subsequent spectral 

measurements points (wavelengths) [48]. 

 

1
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The second order derivative is estimated then by calculating the difference 

between two successive points of the first-order derivative spectra: 

 

111
´´´´ 2 +−− +⋅−=−= iiiii xxixxxx      (3.3) 

 

Where x´ denotes the first derivative and xʹʹ the second derivative at point 

(wavelength) i.  

The Norris-Wiliams derivation is a basic method proposed and elaborate by 

Norris and Williams in 1984. It consists in two steps [48]: 

1) Smoothing of the spectra, where an average is made over a number of 

predetermined numbers of points: 
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Where m is the number of points in the smoothing window centered around the 

current measurement i.  

 

2) For first-order derivation the finite difference between each point is 

calculated with a given gap size (larger than zero), whilst for the second order 

derivation, take twice the smoothed value at point i and the smoothed value at  a 

gap distance in both sides: 

gapismoothgapismoothi xxx −+ −= ,,
´      (3.5) 

 

gapismoothismoothgapismoothi xxxx +− +⋅−= ,,,
´´ 2     (3.6) 

 
By applying the smoothing prior the derivate, the noise problem is decrease; 

however, Norris and Williams proposed to normalize the spectra to equal intensity 

at a single selected wavelength after derivation Fig2. 
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Fig2. Estimation of the first derivative by Norris-Williams. A 7-point window 

is used for smoothing, and a gap size of 3 is applied in derivation 

 

In the other hand, the Savitzky-Golay derivation is based on numerical derivation 

of a vector that also includes a smooth step. In order to find the derivative at center 

point i, a polynomial is fitted in a symmetric window on the raw data. When the 

parameters for this polynomial are calculated, these values are subsequently used 

as the derivative estimate -a center point-. This operation is applied to all points in 

the spectra sequentially. The number of points to calculate the polynomial 

(window size) and the degree of the fitted polynomial are both decisions that need 

to be made Fig3 [48]. 

 

 

 

Fig3. Estimation of the first derivative by Savitzky-Golay. A 7-point window 

and a second-order polynomial is used for smoothing. 
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As a summary, it must be said that Norris and Williams derivation is similar to finite 

differences, but introduces smoothing and gap-size as counteractions in the 

estimated derivate spectra, to preserve the signal/noise ratio. However, Savitzky-

Golay derivation uses more common filtering techniques to estimate the derivative 

spectra, and, instead of using the finite difference approach, fits a polynomial 

through a number of points to maintain an acceptable signal/noise ratio. In 

general, the Norris and Williams derivation and Savitzky-Golay derivation do not 

give the same estimates, therefore choosing which one must be used is merely a 

trial and error task. 

 

3.2.4.5 Reduction of variables by principal component analysis (PCA) 
 

Since multivariate NIR spectral data contain a huge number of correlated variables, 

there is a need for reduction of variables, i.e. to describe data variability by a few 

uncorrelated variables containing the relevant information for calibration 

modeling. The best known and most widely used variable reduction method is 

principal component analysis (PCA). This is a mathematical procedure that 

resolves the spectral data into orthogonal components whose linear combinations 

approximate the original data. The new variables, called principal components 

(PC), Eigenvectors or factors, correspond to the largest eigenvalues accounting for 

the largest possible variance in the data set. The first PC represents maximum 

variance amongst all linear combinations and each successive variable accounts for 

as much of the remaining variability as possible [22]. 

This chemometric tool has been broadly used in this thesis. The mathematical 

bases are described in detail in the following sections.  

 

3.2.5 Qualitative Analysis 

3.2.5.1 Overview 

 

The qualitative analysis in pharmaceutical industry is related to the identification 

or classification of a product based on their chemical or physical properties. In NIR 

spectroscopy these analysis can be performed by extracting the information from 
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the spectra using different chemometric techniques based on pattern recognition 

methods (PRM) [35], [50]. 

 

These PRM are based in the evaluation of the similarity of an object to a reference 

one or a specific class.  

 

Mathematically the comparison is made by the calculation of similarity indicators 

values, which normally refers to correlation or distance criteria.  

The PRMS can be classified in general terms as supervised or non-supervised 

methods, depending on if there is any prior knowledge of the samples and its 

nature.  

 

3.2.5.2 Principal component analysis (PCA) 

 

The large amount of experimental data in multivariate data analysis presents 

logistical and mathematical issues when it comes to process information for 

further analysis. Data compression is the process of reducing data into a 

representation that uses fewer variables, but still expressing the most important 

information.  

 

From a logistical point of view, reducing variables is a more convenient way to 

storage and transport the information; form a mathematical point of view, the 

compression of the data allows the reduction of redundant and irrelevant 

information, facilitating the subsequent modeling model techniques to perform 

more efficiently. The PCA is not doubt the most used chemometric tool for 

reduction of variables [22].  

 

The basis of PCA can be explained by a transformation of a bidimesional data 

matrix  

X (NxM) constituted by N samples (recorded spectra) and M number of variables 

(wavelengths). The PCA aim is to find the directions of maximum variability in 

which the N points in the space of dimension M are grouped. The reduction of the X 
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dimensionality is performed by calculating the lower number of new axes called 

principal components (PC) that are able to explain the maximum variability the 

samples. The first component (PC1) is the linear combination of the M variables 

that explains the maximum sample variability; the second component (PC2) will be 

orthogonal to PC1 and collect less variability than the first one. While the number 

of PC’s are increasing, the explained variability between the components decreases 

until the total variability is explained [50]. 

 

Mathematically speaking, the matrix spectral data X is decomposed in a new scores 

matrix T and loadings P, and the residual matrix E. This matrix transformation is 

described in the Equation 3.7 

 

X=T.Pt + E      (3.7) 

 

The loadings in geometric terms correspond to the cosines of the angles formed by 

the new axes with the original, and the scores are the coordinates of the samples in 

these new axes. 

 

Due to the orthogonality, all the PCs contain different information. The first PCs 

normally described the most relevant variability of the samples, while the latter 

described variations due to noise. The matrix E contains the information is not 

collected in any of the PC’s and it is known as the residual. 

 

3.2.5.3 Projection methods 

 

Projection methods are the most used techniques for exploratory analysis, since 

the results can be easily interpreted. The projection techniques are based also on 

the dimensionality data reduction, which highlight structure in the data (e.g 

clusters of samples or variables) although the main aim is not to identify them. 

Projection methods project samples into a low dimensional space using a specified 

criterion (e.g., variance in PCA). If data clustering is related to this criterion, 

clusters of samples may be visualized. The absence of meaningful sample 
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associations does not necessarily mean the information sought is not present. 

Modifications to the criterion have strong influence in the results, such as by using 

a different method [e.g., Independent Component Analysis (ICA) instead of PCA], or 

preprocessing the data by, e.g., scaling in PCA. [51]. 

 

Moreover, some quantitative thresholds can be established in order to delimit the 

space that belongs to the population encompassed in each cluster of samples, for 

instance Hotelling statistics, F-Residuals i.a. These statistics were evaluated in one 

of the study cases presented in this thesis, and they will be described in detail in 

the following sections.  

 

3.2.5.4 Correlation coefficient 

 

The correlation coefficient is an indicator of how similar are the spectra of an 

unknown sample and other that belongs to a predefine class.  

Generally, the comparison is made between a pure component and an unknown 

sample, although the class could be predefined before comparison, and a threshold 

established for the determination that the object belong to the class. 

The calculation of the coefficient correlation is given by: 

 

∑ ∑
∑=

22.

.

yixi

yixi
r i       (3.8) 

 

Where xi is the absorbance at wavelength i for the spectrum x (pure spectrum), 

and yi is the wavelength i for spectrum (spectrum of the unknown sample). The 

maximum similarity value for two spectra would be r = 1. The correlation 

coefficient is essentially a qualitative parameter for analysis and a measure of the 

collinearity of two vectors. 
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3.2.6 Quantitative Analysis 

3.2.6.1 Overview 

 

The aim to construct a calibration model is to establish a relation between the 

analytical signal and the property of interest. Since NIR spectra provide a large 

number of variables to be related, approaches based on multivariate calibrations 

must be used. 

 

In pharmaceutical analysis, most of the calibrations models are calculate for the 

quantification of major constituents in the sample. In general, the detection limit is 

about 0.1% (w/w), although for certain samples under certain matrix 

characteristics the NIR can go even to lower detection limit values. 

The quantitative methods can be divided in two groups: lineal and non-lineal 

summarized representation of some of them can be seen in the Fig4 [20], [39]: 

 

 

 

 

Fig4. Flowchart of various quantitative modelling methods 

 

The linear methods are typically used to relate an independent variable to a set of 

depended variable in the case of this thesis to the spectral data. This technique is 

very useful when there is a certainty the response of the analyzer contained all the 

information regarding the property of interest.  
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The linear methods are in turn subdivided in two types: Direct and Inverse and its 

general criteria to distinguish between both of them are based in the relation 

between the signals and the property of interest. The criteria to distinguish both of 

them rely on the general form of the model: 

 

 

Direct: X = CSt + Ex     (3.9) 

Inverse: C= XB + Ec      (3.10) 

 

Where C is the concentration matrix or the sample properties of interest,  S is the 

spectral data and E are the model residuals. Moreover the Direct methods follow 

the classical expression of Beer-Lambert law, and express the analyzer response as 

a function of the concentration, whereas the Inverse methods express 

concentration as a function of the analyzer responses [39]. The Table 1 

summarized from a broad perspective the basis of the linear methods exposed:  
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Table1. Summarized characteristics of linear quantitative modelling 

methods 

 

Method Type of 

method 

Calibration 

set/or 

reference 

Suitability for 
NIR 

Characteristic of interest 

Multiple 
linear 

regression 
(MLR) 

Inverse 

Yes Low. Due to 
the sharp 

selection of 
variables 

Limited  No of variables 

  
Correlation between signals can complicate 
models ‘calculation 

Classical 
least squares 

(CLS) 
Direct 

Yes 

Just suitable 
for 

concentration 
determination 

 
Reflection of the classical expression of the 
Beer-Lambert law 
 

From the pure 
components 

The spectra of the pure components is 
required (experimental or estimated) 
 
Since the spectrum is taken as a linear 
combination of the spectra of the pure 
components. Nonlinear responses of the 
analyzer and strong spectral interaction 
effects can alter the model  

Principal 
component 
regression 

(PCR) 

Inverse 

Yes 

Suitable 

Accounts covariance between X variables 

and should 
contain 

information 
about the 

property to be 
determined 

No problem with correlation between 
signals 

The entire spectrum can be used 
Compression of data based solely in 
explained variance in X, subsequent 
regression of PC´s 

Partial least 
squares 

(PLS) 
Inverse 

Yes 

Suitable 

Simultaneous decomposition of X and Y 
matrix. Compressed data contain the most 
variance from both X and Y 

and should 
contain 

information 
about the 

property to be 
determined 

No problem with correlation between 
signals 

Can quantify one property of interest (PLS1) 
or multiple (PLS2) 

Multivariate 
curve 

resolution 
alternative 

least squares 
(MCR-ALS) 

Direct 

Not mandatory 

Suitable 

Intend the recovery of pure responses 
profiles of the chemical constituents of an 
unresolved mixture 

Profiles From 
the pure 

components  

Can be used without knowing all the 
constituents on a mixture 

Consist of iterative process that not always 
converge to a useful solution 
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From a broad perspective it can be said that many of the non-linear methods are 

based on machine learning, which uses algorithms that can learn through the 

inputs-provide by the analyst -and several iterations; in this way the algorithm 

make predictions or decision on data. Those methods are very useful when there is 

not a linear relation between the property of interest and the response of the 

instrument; however their complexity and the number of samples required for 

modelling make its implementation difficult on routine models. 

Since in this thesis the calibration models were calculate by means of partial least 

square (PLS), a broader description is presented below: 

 

3.2.6.2 Partial Least Squares (PLS) 

 

One of the multivariate regression method most frequently used in quantitative 

NIR analysis is partial least squares (PLS) regression.  

PLS is a method that generalizes and combines features from PCA and multiple 

regressions. It is particularly useful when a set of dependent variables from a large 

set of independent variables has to be predicted. The goal of PLS is to predict the 

regression coefficients in a linear model with a large number of x- variables that 

are highly correlated [35], [50], [52]. 

The PLS algorithm uses the information contained in both the spectroscopic data 

matrix, X, and the property of interest matrix, Y, during calibration and compresses 

data in such a way that the most variance in both X and Y is explained. In this way, 

PLS reduces the potential impact of large, though irrelevant, variations in X during 

calibration. In PLS, each component is obtained by maximizing the covariance 

between Y and every possible linear function of X. 

This regression controls two blocks of variables: predictors (X) and responses 

(Y).The two data sets are simultaneously decomposed, giving the outer relations: 

 

X = TPT + E      (3.8) 

Y = UQT + F      (3.9) 

Where U and T represent the scores, PT and QT represent the loadings and E and F 
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the residuals for the X and Y matrixes respectively.  

In PLS –like in PCA- a number of appropriate components must be selected, which 

assure that all the quantitative information is collected with the less amount of 

possible noise or other spectral information that do not concern to the parameters 

of interest. 

As it was mentioned before the decomposition of the two matrices is performed 

simultaneously, and the main feature of this decomposition is seeking maximum 

correlation between the spectra and the property to be determined.  

Once the model correct calibration is established, it is possible to predict the 

outcome for a new sample or a set of external calibration samples. The correct 

prediction of new samples will depend on the good predictive ability of the model 

calibration. 

 

3.2.7 Model evaluation 

 

The best way to evaluate the predictive ability of the model is running an external 

prediction test. This test will predict known Y values by the PLS model and will 

compare them with the known values. Different global statistics parameters can be 

evaluate such as average of residuals or standard deviation. However, the root 

mean square error (RMSE) and the relative standard error (RSE) are the standard 

values to use for PLS model testing. These values evaluate the residuals with the 

reference values [20]. 

 

RSE(%) =
Yinir −Yiref( )2

i=1

n

∑

(Yiref )2

i=1

n

∑
.100    (3.10) 

 

n

YiYi

RMSE

n

i

refnir∑
=

−
= 1

2)(

     (3.11) 

Where n = number of samples, Yinir and Yiref are magnitudes of determine property 
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by NIR or reference method.  

It is important to point out that RSE is always expressed as a relative value (%), 

while the RMSE as an absolute one with the unities of the property to be 

determined. 

Regarding the set of samples that is being validated the RSE and RMSE would be 

renamed as RSEC/RMSEC (for calibration) and RSEP/RMSEP (for prediction). 

 

3.2.8 Model validation 

 

Validation is the final stage of development of an analytical method. The objective 

of validation of an analytical procedure is to demonstrate that it is suitable for its 

intended purpose [53]. 

Prior validation, the analytical procedures and aim of the proposed method should 

be clearly defined and understood. This understanding should be obtained from 

scientific knowledge based on method development and optimization. 

The typical parameters tested during validation are listed below: 

3 Selectivity  

4 Linearity  

5 Range  

6 Accuracy  

7 Precision (repeatability, intermediate precision, and reproducibility) 

8 Quantitation limit  

9 Detection limit 

10 Robustness 

 

However depending on the purpose of the analytical methods some parameters 

are mandatory while other remain optional Since the methods developed in this 

thesis are NIR spectroscopy based-methods, some modification in the validation 

are considered by the regulation guidelines. 

Each parameter is described briefly below [53], [54]: 

 

Specificity is the ability to assess unequivocally the analyte in the presence of 
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components which may be expected to be present. In the case of NIR 

methodologies the selectivity is tested through the construction of spectral 

libraries enabling unambiguous identification of the presence of the compound(s) 

of interest [54]. 

 

Linearity implies that the response between the signal and the property is 

proportional across the range. For univariate calibration this parameter is 

evaluated though the relation between signal/concentration. For multivariate 

calibrations the lineal relation between the reference value (obtained with a 

reference method) and the estimate value (obtained by the proposed method) 

must be related [53], [54]. 

 

Range is related to the interval between the upper and lower concentration of 

analyte in the sample to be determined. In other words, is the calibration interval 

which is recommended for pharmaceuticals to encompass ±20% with respect to 

the nominal concentration [53], [54]. 

 

Accuracy expresses the closeness of agreement between the value which is 

accepted either as a conventional true value or an accepted reference value and the 

value found. This should be established across the specified range of the NIRS 

procedure and should be appropriate for its intended use [53], [54].  

The regulations recommend to perform at least 9 measurements in at least three 

different levels (3 levels x 3 replicates). Also a test that allows the evaluation of 

differences between obtained values and reference values is advised. 

 

Precision expresses the closeness between a series of measurements of the 

sample.  

Precision may be considered at three levels: repeatability, intermediate precision 

and reproducibility[53], [54] . 

Repeatability expresses the precision under the same operating conditions over a 

short interval of time. Repeatability is also termed intra-assay precision. It is 

evaluated using a minimum of 9 determinations at three concentration levels, or 



 

  81 

 

    CHEMOMETRICS 

with a minimum of 6 determinations at 100% -nominal value- [53], [54]. 

Intermediate precision expresses the degree of reproducibility of the results 

making slightly variations of the normal work manner such as: different days, 

different analysts, and different equipment i.a. 

Reproducibility implies precision between laboratories; it broadens the 

intermediate precision with this extra factor. 

 

Quantitation limit can be defined as the lowest amount of an analyte that can be 

detected by the proposed methodology with suitable precision and accuracy.  

The quantitation limit is a parameter of quantitative assays for low levels of 

compounds in sample matrices, and is used particularly for the determination of 

impurities and/or degradation products [53].  

 

Detection limit is the lowest amount of analyte in a sample which can be detected 

but not necessarily quantitated as an exact value [53]. 

For NIR methodologies limits of detection and quantification only need to be 

demonstrated when relevant and where the analyte is considered to be an 

impurity [54]. 

 

Robustness is the parameter that the reliability of the analytical method under the 

influence of changes in the standard test conditions [53], [54]. 
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            OBJECTIVES 

The quality in the pharmaceutical industry is strictly controlled and supervised by 

several regulatory agencies. These regulations ensure the correct and efficient 

manufacturing of pharmaceuticals, so that in this way the manufactured products 

meet quality requirements. 

 

Any failure in the production process is not only a concern of the manufacturers, 

but also represent a public health issue since pharmaceuticals affect strongly the 

health of the consumers. In the recent years different regulations redefined the 

concept of quality, which is attempt to be design and build in each manufacture 

step, instead of testing for quality in the raw materials and final products. 

Near infrared spectroscopy has shown its suitability for pharmaceutical quality 

control due to its simplicity, speed and non-destructive nature. Moreover, recent 

advances in the instrumentation have enhanced the versatility of the technique 

allowing the implementation of NIR in different parts of the production line for 

online analysis. 

 

Based on this, the general aim of this thesis is the development of new NIR 

methodologies for the quality control of pharmaceuticals through the 

manufacturing process using multivariate data analysis techniques. These 

methodologies are aimed to solve real industrial problems though the product 

understanding and the enhancement of modelling strategies. 

For this the following specific objectives were proposed: 

 

• Study of different pharmaceutical formulations –powders, granulates cores 

and tablets- to evaluate the relation between the NIR spectra and the chemical and 

physical variability. 

• Development of NIR calibration models able to quantify active principle 

ingredient (API) at different manufacturing steps.  

• Enhancements of the multivariate modelling process by the evaluation of 

different strategies for construct the calibration set and its suitability for the 

incorporation of physical and chemical variability. 
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• Study of quality metrics for the optimization of the construction of 

calibration set strategies. 

• Evaluation of the influence of surface scanned area and sample 

representativeness in the spectral information. 
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Case of study I 

Strategies for selecting the calibration set in 

pharmaceutical near infrared analysis. 

A comparative study 
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In this work, we assessed three different calibration strategies for the 

quantification of the API in a pharmaceutical granulate in low concentration (10 

mg·g–1). Such strategies were used to construct calibration models allowing all 

potential variability in new, unknown samples to be considered. 

The models were constructed by PLS using samples of variable origin including 

laboratory-made powder mixtures and industrial samples; and variability in 

production samples was incorporated via a mathematical algorithm.  
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2.1. INTRODUCTION 

 
In recent years, the expeditiousness, non-destructive nature and high flexibility of 

near infrared spectroscopy (NIRS), among other favourable features, have fostered 

its use for the determination of quality-related parameters by the pharmaceutical 

industry. The quantification of the active pharmaceutical ingredient (API) from the 

early stages to the end of the process is critical to achieve a high quality of the 

pharmaceutical products. These advantages have turned NIRS into an effective 

alternative to more expensive and labour-intensive techniques as HPLC. Also, the 

greatest disadvantage of NIRS (viz., its limited selectivity due to wide-overlapped 

bands) can hinder its use for the identification/quantification of components 

present in a mixture in low concentration. The determination of an API in low dose 

may present some difficulties depending of the nature of the sample such as 

homogeneity and API aggregation that could hinder a good spectroscopic 

measurement etc. Some previous studies have shown the effectiveness of NIR 

spectroscopy joint to chemometrics to quantify low concentration API´s in tablets, 

suspension and other forms [1]–[4]. Quantification studies for API´s present in 

such a small quantity are required for powder mixtures and blends in order to 

assess and ensure a high quality of the products from the early stages to the end.  

The NIR impediments mentioned before can be overcome by using multivariate 

procedures to extract important information with the aid of an appropriate 

chemometric algorithm as partial least squares (PLS). At present, all NIRS 

instruments come with chemometric softwares [5]–[8] intended to facilitate 

application of the technique to samples of highly diverse nature and easy data 

collection-further analysis. 

 

Near infrared spectra contain both physical and chemical information about 

samples. This affords analyses of both the qualitative type (e.g., identification and 

characterization of raw materials, monitoring of reactions and/or processes, 

identification of polymorphs, assessment of mixture homogeneity) and the 

quantitative type (e.g., quantitation of Active Pharmaceutical Ingredients (API), 

excipients, moisture or particle size). Many of these determinations are critical 
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with a view to assessing quality in pharmaceutical products [9]–[11]. 

Developing robust, accurate, precise methodologies for these determinations 

requires using calibration sets containing as much variability as possible in the 

nature and properties of the target samples. In addition, the samples to be included 

in the calibration set for a quantitative determination should span a wide enough 

concentration range to ensure accurate quantitation of normal samples and easy 

identification of the abnormals [12], [13]. 

 

Constructing calibration sets containing all potential sources of variability in the 

samples to be predicted is usually difficult and occasionally impossible. Also, it 

requires exercising due care to avoid developing inaccurate models. 

Pharmaceutical samples are prepared from very pure high purity raw materials 

with highly compliant, similar physical properties (reduced variability); also, they 

are usually subjected to simple, reproducible processes. Such a low variability in 

the raw materials and manufacturing procedures of pharmaceutical samples can 

be expected to ensure easy incorporation of their whole variability into a 

calibration set consisting of a few samples. For accurate determination of unknown 

samples, calibration samples should exhibit enough chemical variability (viz., API 

and excipient concentrations ± 20% around their nominal values as per ICH 

guidelines) and physical variability (particle shape, size and distribution, etc., 

which are subject to changes arising from the manufacturing process). 

 

Constructing a correct calibration set from production samples alone is impossible 

since their concentrations will typically span too narrow a range (usually not 

greater than ±5% around the nominal API content) for a robust, accurate model to 

be constructed. A number of strategies have been proposed to develop accurate 

calibration sets spanning the desired concentration ranges and containing physical 

variability in the manufacturing process [12], [13]. The following are among the 

most salient proposals. 

 

(a) Using pilot plant samples. With this strategy, the calibration set is 

constructed from samples prepared at a pilot plant mimicking the operations of 
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the target industrial process (viz., granulation, grinding, compacting). The ensuing 

samples can thus be expected to be physically similar to actual production 

samples. The API and excipient contents to be used should span the pre-set range. 

Although this strategy ensures incorporation of most of the variability’s source in 

the samples into the calibration set, it involves a labour-intensive process in 

addition to setting up a pilot plant to conduct the industrial process at a smaller 

scale —which is often impossible. This strategy was omitted here as we had no 

pilot plant. 

 

(b) Underdosing and overdosing industrial samples. This strategy expands the 

concentration range spanned by samples of industrial origin by adding a small 

amount of API or excipients to powder or granulate samples in order to obtain 

new, doped samples with an API content above (overdosed samples) or below the 

nominal value (underdosed samples). Because a small addition of API or excipient 

causes no appreciable physical change, the physical variability of overdosed and 

underdosed samples is intrinsically identical with that of production samples [13], 

[14]. However the implementation of this strategy must be carefully addressed 

because of the eventual collinearity problem (simultaneous increasing/decreasing 

of the concentration for all the components in the formulation) that will conclude 

in a poor selectivity of the model 

 

(c) Laboratory samples. Laboratory samples are obtained by weighing and 

homogenization of appropriate amounts of API and excipient powders close to the 

nominal values and spanning the desired concentration range. However, a 

calibration set obtained from laboratory samples alone does not represent the 

whole physical variability of production samples and must thus be expanded with 

samples from the industrial manufacturing process [13], [14].  

This strategy is useful when there are no spectral changes between laboratory 

powder and production samples –especially when both do not differ on the 

physical properties-; otherwise this strategy is not suitable for the purpose.  

As shown in previous work, expanding the calibration set with about 30% of 

samples of industrial origin suffices to this end. 
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(d) Calculation and addition of the process spectrum. This strategy, proposed by 

Blanco et al. [15], relies on the fact that physical variability in industrial samples 

can be mathematically added to the spectra for powder laboratory samples in 

order to enable incorporation of all sources of variability into the calibration set.  

 

The variability in the production process is incorporated by calculating a virtual 

spectrum called the process spectrum (Sp) –which only contains physical 

variability-, and adding it to a calibration set consisting of powder samples 

obtained by weighing of the different components. The concentration of each 

mixture component in the samples is previously established in order to encompass 

the desired API concentration range while reducing collinearity between 

concentrations. It is important to point out that several process spectra can be 

calculated and added to the calibration set matrix allowing a fully incorporation of 

the physical variability of the process (a number between three and four is usually 

sufficient). Also this variability can be expanded by the use of a factor m that can be 

multiplied to the Sp according to the predictive ability of the calibration model –

which is checked by the PCA score plot obtained from the process spectra 

projected into the calibration samples-[16].  

 

Extended Spectrum = Laboratory + Process Spectrum x m (m=0.5-1.5)         (1) 

 

 

This strategy is very useful for pharmaceutical applications since its manufacture 

process consist in several transformations of the product: granulation, 

compression and coating i.a. 

 

This procedure requires no reference method to determine the concentration of 

the target species. The Fig1 describes in detail the proposed methodology.  
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Fig1. Calculation and addition of process spectra methodology 

 

 

 

 

 

 

 

In this work, we compared the efficiency of the last three strategies by using 

calibration sets constructed from doped samples or laboratory samples, or by 

calculation and addition of the process spectrum. The calibration sets were 

constructed using a small number of samples in order to reduce experimental 

work but still large enough to ensure accurate prediction of industrial production 

samples. 

The strategies were applied to a pharmaceutical preparation with a low content in 

API and a high content in the major excipient in order to enhance their advantages 

and disadvantages for easier comparison. 



 

100 

 

 

 

 

CASE OF STUDY ICASE OF STUDY I 

2.2. EXPERIMENTAL SECTION 

 

2.2.1. Production samples 

 

The target pharmaceutical formulation was a granulated solid containing 10 mg·g1 

Dexketoprofene trometamol as API, sucrose (96% w/w) as major excipient, and 

lemon flavour, neohesperidine, dihydrochalcone, Quinoline Yellow and ammonium 

glycyrrhizinate as minor excipients. All pure components and production samples 

were supplied by Laboratorios Menarini, S.A. (Badalona, Spain). The API content of 

the samples was determined by HPLC. 

 

2.2.2 Laboratory samples 

 

Powder samples, Laboratory samples in powder form were prepared by mixing 

appropriate amounts of API, placebo (a mixture of minor excipients jointly 

accounting for about 3% of the total content) and sucrose to span the API 

concentration range 8–12 mg·g–1 (i.e., ± 20% around the nominal value). Three 

placebos were used for the samples preparation, in which the concentration of the 

sucrose vary on a range of ± 5% around the nominal value –since this the major 

excipient which constituted the 96% of the mixture-. Samples were prepared by 

randomly supplying each placebo with the required amounts of API and sucrose, 

and homogenized on a Turbula shaker prior to recording of their near infrared 

(NIR) spectra. The reference values of these samples were obtained by weighing. 

The large differences between excipient concentrations precluded the use of 

sampling design techniques to reduce correlation between the concentrations of 

API and sucrose (the major excipient). 

 

Doped samples were obtained by adding an appropriate amount of API 

(overdosing) or placebo (underdosing) to three randomly chosen industrial 

granulates whose API content was determined by HPLC to obtain a wide enough 

range of API concentrations. The resulting doped samples were homogenized prior 

to recording of their NIR spectra. The API reference values for these samples were 
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obtained by weighing and the concentrations in the industrial samples were 

determined by using the reference (HPLC) method. 

 

2.2.3. Recording of NIR spectra 

 

The previously prepared laboratory samples were homogenized in a Turbula T2C 

WAB shaker mixer and their NIR reflectance spectra recorded by using a FOSS 

NIRSystems 5000 spectrophotometer equipped with a rapid content analyser 

(RCA) module and governed via the software Vision v. 2.22. Spectra were recorded 

at 2 nm intervals over the wavelength range 1100–2500 nm. Samples were placed 

in a glass cell and turned over with a spatula prior to measurement in order to 

change the surface scanned and sampling another portion of the sample. A blank 

spectrum was obtained from an empty cell at the start of each working session. A 

ceramic plate bundled with the instrument was used as reference for 

measurements.  

 

2.2.4. Preparation of calibration and validation sets 

 

The prepared samples were split into two subsets: one to construct the calibration 

model and the other to validate it. The number of samples used in the calibration 

set for the different strategies was similar comprising 18 samples with the doping 

strategy, 23 with the mixed calibration strategy (powder samples + industrial 

granulates) and 20 with the process spectrum strategy. For the Calculation and 

addition of process spectrum (Sp) methodology the preparation of the samples 

involved firstly obtaining the Sp as the difference between the spectrum for an 

industrial granulate (Sind) and a powder laboratory sample (Slab) containing an 

identical concentration of API (Fig. 1; the calculated difference is expressed as a 

mathematical vector defining variability in the production process. 
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Fig1. NIR spectrum of industrial granulate, powder laboratory and calculated 

process spectrum 

 

Subsequently, the reduced process variability matrix is obtained by the addition of 

the calculated vector (SP) to the spectral matrix from several powder mixtures 

(Scon) spanning the desire range of API concentrations. This “new” calculated 

matrix contains both the physical and chemical variability and was used for both 

calibration and validation set.  

 

In order to increase or decrease the variability in the process spectrum SP, the 

calculated vector can be multiplied by a factor m, which is near-unity, and by a 

simple spectra addition as it was mentioned before an extended variability matrix 

can be obtained.  

 

The confirmation of the incorporated variability was performed by an analysis of a 

scatter plot of scores obtained from spectra for laboratory samples that were 

combined with the process spectrum (Slab + Sp) and that for production samples 

[15], [17]. 
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2.2.5. Construction of calibration models 

 

Spectra were subjected to various pretreatments including the Standard Normal 

Variate (SNV), and the first and second derivatives. Derivative spectra were 

obtained by using the Savitzky–Golay and Norris algorithms with a moving 

window or Gap of variable size in addition to a second-order polynomial. All 

spectra were processed and multivariate calibration models constructed with the 

aid of the software Unscrambler v. 9.8 from CAMO (Trondheim, Norway). 

 

Calibration models were constructed by cross-validation (leave-one-out method) 

using the PLS algorithm. The individual models exhibiting the lowest residual 

variance in terms of the number of latent variables were selected for refining, 

using the number of PLS factors leading to the smallest root mean square error of 

prediction (RMSEP) for an external set consisting of production samples  

 

2.2.6 Validation of proposed calibration models 

 

The potential industrial usefulness of the selected calibration strategies was 

assessed by validating their results in accordance with ICH and EMA guidelines 

[18], [19]. The specific parameters assessed included selectivity, linearity, 

accuracy, precision (repeatability and intermediate precision) and robustness. 

 

2.3 RESULTS AND DISCUSSION  

 

Obtaining effective calibration models for the target pharmaceutical preparation is 

made difficult by its low API content (10 mg·g–1), and the high spectral (0.879) and 

concentration correlation (0.939) between the API and sucrose —the major 

excipient, which accounts for 96% of the formulation—. The high correlations 

between these two components cannot be ignored owing to the high content in 

sucrose of the mixture and the additional high spectral correlation. In order to 

circumvent these shortcomings, we used various spectral pretreatments and 

wavelength ranges to obtain more simple models of adequate predictive ability. 
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Thus, shifts due to scattering were addressed by using the Standard Normal 

Variate (SNV) and spectral discrimination was improved by using derivative 

spectra obtained with the Savitzky–Golay (S.G) or Norris algorithm, which typically 

lead to simpler, better models. Using the first spectral derivative in combination 

with SNV in either sequence failed to improve the predictive ability (i.e., to 

decrease the RMSEP) of the models. On the other hand, a combination of second 

SNV– derivative (S.G) spectra was highly efficient in improving the calibration sets 

obtained with two of the three strategies. Also, the spectra pretreatment with SNV 

followed by derivatives led to slightly better predictions. 

The use of second derivative from both Savitzky-Golay and Norris resulted to be 

the most suitable for processing the NIR spectra for this formulation. Since the 

nature of the samples is different for each strategy, it is presumed that one 

algorithm is more effective in one methodology than in the others due to the noise 

attenuation factor in each derivative. Therefore, the second derivatives were chose 

for further spectral pretreatment in this study [20]. 

As can be seen from Fig 2, the combination of the previous spectral pretreatments 

correct the shifts due to scattering effects and hence the differentiation amongst 

characteristic bands. Additionally, after these pretreatments were applied, the 

spectral correlation coefficients between the API and sucrose: to 0.080 with SNV + 

second derivative and 0.077 with 2D Norris + SNV were considerable reduced.. 

This reduction was expected to facilitate construction of effective calibration 

models and led us to adopt the two spectral treatments for further testing.  

The importance of the order for applying the spectral pretreatments was 

presented by Fern [21], who suggested that when, a combination of SNV and 

derivatives is suitable for the extraction of spectral information, this must be 

perform in this order rather in the other way around, since the SNV corrects the 

scatter by dividing each spectrum by its standard deviation, which not will be the 

same if the derivative is perform firstly; moreover also this combination is 

advisable when it is desire to model chemically characteristics of the sample 

instead of physical. However the selection criterion to choose the most convenient 

spectral pretreatments was made based on the predictive ability of each calculated 

model with the different combinations. 
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Fig2. NIR spectrum of industrial granulate, powder laboratory and calculated 

process spectrum a) Absorbance, b)SNV pretreated spectra and c) SNV + 2D (S.G) 

pretreated spectra 

 

The figure mentioned above also illustrate that the spectrum for the API exhibits 

no strong characteristic bands and should therefore be used in its entirety. 

However, the reduced wavelength range from 2114 to 2488 nm, selected in terms 

of the regression coefficients and loading weights of the models, was used instead 

for potentially improved model accuracy and predictive ability. Application of the 

previous spectral treatments over the reduced wavelength range decreased the 

effects due to scattering and improved discrimination between the spectra for the 

API and sucrose. 

 

One crucial step in constructing calibration models is selecting appropriate 

samples for inclusion in the calibration set. In fact, the sample set should contain 

all chemical and physical variability in production samples since such variability 

has a strong effect on NIR spectra (see spectral changes due to concentration 

increased Fig. 3). Also, the spectra for all samples should be recorded under 

identical conditions as those for the samples to be predicted in order to avoid 

introducing additional sources of variability such as the way spectra are acquired, 

their noise level or the equipment used. Therefore, all calibration sets should meet 

two essential requirements, namely: (a) the API contents of the samples should 

span the present concentration range; and (b) the sample set should contain all 

potential physical and spectral variability. Both requirements can be met with the 

three strategies used here. 
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Fig3. Spectral changes due to API concentration increase 
 

One of the aims of this work was to develop calibration models based on a small 

number of samples in order to reduce experimental work but still large enough to 

ensure accurate prediction of industrial production samples. We used the three 

above-described strategies to prepare the samples for inclusion in the calibration 

set and compared their results. Then, we validated the ensuing models and 

selected the most suitable among them for use in routine production control 

analyses. The samples used to construct the models were selected among those 

described under Experimental and imposed the requirement that their 

concentrations should span a range ± 20% around the nominal value of the 

formulation. The number of samples used to construct the models were similar 

differed between strategies and was suited to the spectral range to be spanned and 

to physical variability in the manufacturing process. Thus, the calibration set 

comprised 18 samples with the doping strategy, 23 with the mixed calibration 

strategy (powder samples + industrial granulates) and 20 with the process 

spectrum strategy. 

 

Most of the models constructed with the sample doping strategy provided accurate 

predictions of production samples; the best results were obtained by using SNV in 

combination with a second derivative treatment based on the Savitzky–Golay 
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algorithm with a 11-point moving window and a second-order polynomial; 

however it is important to point out that several combinations of the derivative 

configuration pretreatment were evaluated: number of points for the moving 

window-seven, nine and fifteen-and and polynomial order. Table 1 shows the 

characteristics of selected models. The best results were provided by two models 

using the whole wavelength range and the reduced range (2114–2488 nm), with a 

prediction error (RMSEP) of 0.276 and 0.228 mg·g-1 (RSEP%= 2.812, 2.321), 

respectively. Although the predictive ability for both models goodness of 

predictions was similarly good, the model using the whole wavelength range 

required 4 factors for calculation and accounted for 98.7% of the predictive 

variance, whereas that using the reduced wavelength required 6 factors and 

accounted for 99.9% of the variance. Besides the Bias for the model with the whole 

spectral range is lower than the one using the short wavelength (-0.008 and 0.054 

respectively) demonstrating the accuracy of it.  We selected the former because it 

was simpler —it used fewer factors— and yet provided accurate predictions. 

 

The calibration models obtained from laboratory samples and industrial 

granulates (i.e., mixed calibration sets) were constructed from 13 powder samples 

containing amounts of API and excipients obtained by weighing and 10 granulate 

samples whose API contents were determined by HPLC. Table 1 describes the 

models obtained with different spectral treatments. As can be seen, the model 

based on SNV in combination with a second-derivative treatment with the Norris 

algorithm (Gap size = –1, second-order polynomial) provided the most accurate 

predictions (RMSEP = 0.187; RSEP%=1.902). The model used 5 factors and 

accounted for 98.7% of the Y-variance. Using this strategy with the reduced 

wavelength range led to slightly better calibration results; however, the ensuing 

model was more complex —it required 6 factors—, accounted for 98.9% of the Y-

variance and failed to improve predictions (RMSEP-RSEP). 

For the strategy based on calculation and addition of the process spectrum 

involved obtaining the process spectrum the plot revealed that the clusters of 

production samples and (Slab +Sp) samples were rather distant and hence that the 

two sample clusters were rather different. This may have resulted from Sp not 
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being representative of the whole physical variability in the process. Such 

variability was increased/decreased by using factor m (m = 1 or 0.5). Multiplying 

Sp by m provided a cluster of production samples surrounded by the laboratory 

samples combined with the process spectrum (Slab + mSp). Fig.4 shows the scores 

plot of the spectra for calibration and production samples. 

 

Table 1 summarizes the figures of merit of the ensuing models. As can be seen, the 

model with the highest predictive ability (RMSEP = 0.225; RSEP%=2.295) was that 

constructed by using powder samples and powder samples + mSp (with m = 1 or 

0.5), 6 factors, the whole wavelength range and a Savitzky–Golay second-

derivative treatment with a 3-point moving window and a second-  
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Table1. Figures of merit of calibration model 
 

 

Doping strategy Mixed calibration strategy 
Calculation and addition of process 

spectrum strategy 

*1100-2498 nm 

**2104-2498 nm 
Calibration 18 Samples 

Prediction 

41 samples Calibration 23 Samples 
Prediction 

41 samples Calibration 20 Samples 
Prediction 

41 samples 

 
%Exp 
Y-var 

#Facto
rs 

RSEC RSEP(%) 
%Exp 
Y-var 

#Facto
rs 

RSEC RSEP(%) 
%Exp 
Y-var. 

#Facto
rs 

RSEC RSEP(%) 

SNV+1D (S.G)* 98.7 4 1.332 4.190 97.6 9 1.346 7.280 99.5 7 0.814 16.68 

SNV+2D (S.G)* 98.7 4 1.326 2.812 98.3 8 1.119 4797 99.5 6 0.801 2.295 

SNV+2D (S.G)** 99.9 6 0.459 2.321 98.3 8 1.268 6.292 99.7 6 0.783 3.230 

2D(Norris)+SNV* 99.1 4 1.120 3.520 98.7 5 1.016 1.902 99.3 5 0.979 8.890 

2D(Norris)+SNV*

* 
99.4 4 0.922 3.842 98.9 6 0.916 3.294 99.5 5 0.842 4.870 
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Fig4. Projection of industrial samples in PCA score plot of laboratory samples and 

laboratory samples+SP  

 

3.1. Validation  

 

The potential industrial usefulness of the selected calibration strategies was assessed 

by validating their results in accordance with ICH and EMA guidelines [13], [14]. The 

specific parameters assessed included selectivity, linearity, accuracy, precision 

(repeatability and intermediate precision) and robustness. 

 

Selectivity of the proposed NIR methods is achieved by identifying the pharmaceutical 

preparation in a spectral library [22]. The library allows the identification of the 

pharmaceutical preparation rather than the pure raw materials (active ingredient and 

excipients) using a supervised pattern recognition method (PRM) criterion. The PRMs 

rely on similarity measurements, where similarity here is taken to the extent to which 

an object (spectrum) is identical to one another. While unsupervised methods search 
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for clustering in a N-dimensional space without knowing the class to which the sample 

belongs, the supervised methods depend on a previous training of the system using a 

set of objects belonging to the specific, previously known class. In this work, the 

applied identification criterion was the residual variance of the principal components, 

which is primarily based on a spectra PCA calculation defining the model of the known 

class and establishing a threshold as an indicative value. Then, the spectrum from the 

sample to be analyzed is reconstructed through the created PC´s and the obtained 

residuals are used to calculate the sample’s probability of belonging to the known 

class [22]. The library was constructed using 21 granulates belonging to different 

production batches and the software Vision v2.20-2.51 (FOSS NIRSystem, Silver 

Spring, USA). The second-derivative spectra (S.G), the wavelength range 1100–2488 

nm and a threshold of 0.94 (positive identification for values lower than this value) 

were used. All 40 samples were successfully identified showing values between 0.645 

and 0.933. The values for the pure raw materials were 0.99 and higher. 

 

Linearity was assessed by using 11 samples uniformly spanning the working 

concentration range (viz., ± 20% around the nominal value) to quantify the API with 

the three NIR strategies. A plot of responses against reference values had a slope and 

intercept containing unity and zero, respectively, at the 95% confidence level. 

 

Accuracy was assessed as the degree of agreement between reference and NIR values 

for 23 samples spanning the working concentration ranges. The sample doping 

strategy showed a higher Bias (-0.165) while for the mixed calibration and the 

calculation and addition of process spectrum strategies this value was similar (-0.028 

and -0.025 respectively). A t-test on the residuals confirmed the absence of significant 

differences between methods at the 95% confidence level with each of the three 

strategies. 

 

Precision was assessed as repeatability and intermediate precision. Repeatability was 

determined by having the spectrum for an industrial granulate recorded by the same 
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analyst six times and calculating its relative standard deviation (%RSD) in order to 

quantify the coefficient of variation for each method. The highest %RSD value was 

that obtained with the strategy involving the process spectrum. Intermediate 

precision was determined by having the NIR spectra for an industrial granulate 

sample recorded by two different analysts on 3 different days. An analysis of variance 

(ANOVA) with 2 factors (analyst and day) revealed the absence of significant 

differences from the reference method. 

 

Robustness was assessed by predicting the values for a second set of industrial 

granulates consisting of 34 samples. The samples were obtained from various 

production batches manufactured after the first sample set studied and analysed by 

using the previously developed models a few months after the samples used to 

construct the models were measured. The results testified to the good predictive 

ability of the three models for external samples not included in the calibration set and 

measured after development of the models. 

 

Table 2 summarizes the results for each parameter. Based on them, the proposed 

strategies meet all validation requirements set in the above-mentioned guidelines. 
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Table2. Results obtained from calibration model validation 

 

 

Parameter 
Strategy 

 under and  
overdosage 

Mixing set 
Calibration 

strategy 

Strategy  
Calculation 

and 
addition of  

process 
spectrum 

Linearity 

n 11 11 11 
Concentration range 
(mg.g-1) 

7.98-11.80 8.02-11.90 8.27-12.03 

Intercept 0.07±1.80 0.21±1.57 0.05±1.45 
Slope 1.01±0.18 1.04±0.16 1.0±0.15 
R 0.972 0.98 0.982 

Accuracy 

n 23 23 23 
Bias -0.165 -0.028 -0.025 
S.D 0.266 0.162 0.185 
t. Experimental 0.725 0.204 0.16 
t.Critic 2.074 2.074 2.074 

Repeatability 
RSD(%) 1.099 1.754 3.001 
Mean NIR(mg.g-1) 9.531 10.300 10.284 

Intermediate 
precision 

Day    
F. Experimental 0.591 1.354 0.192 
F. Critic 19 19 19 
RSD(%) 0.103 0.632 1.704 
Analyst    
F. Experimental 0.057 1.04 0.015 
F.Critic 18.51 18.51 18.51 
RSD(%) 0.119 0.742 1.508 

Robustness 

n 34 34 34 
RMSEP (mg.g-1) 0.254 0.500 0.239 
Bias -0.017 -0.391 0.008 
S.D 0.257 0.316 0.243 
t. Experimental 0.08 1.473 0.039 
t.Critic 2.035 2.035 2.035 
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2.3.2. Comparison of calibration models obtained with the three strategies 

 

The three calibration models confirm their ability to predict industrial granulates; 

therefore the proposed strategies successfully incorporate the whole variability of the 

industrial samples. Projecting the results for industrial granulates on a scores plot for 

the calibration samples used with each strategy revealed that the calibration set 

contained all industrial samples and hence that the proposed strategies allows 

effective calibration sets to be constructed with a view to developing accurate models 

for quantitation of the API (see Fig.5) [23]. This was particularly so with the strategy 

based on the process spectrum, which was the most efficient in including the 

production cluster in the calibration set. 
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Fig5. Projection of industrial granulates in calibration PCA scores plot of used 

strategies 

 

The optimum number of PLS factors for constructing the models with the three 

strategies ranged from 4 to 6; also, the bias and their standard deviations were similar 

for all models. 

The model based on mixed calibration sets and the first set of industrial granulate 

samples was that providing the most accurate predictions (RMSEP = 0.187; 

RSEP%=1.902), followed by those based on doped samples (RMSEP = 0.276; 
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RSEP%=2.812) and addition of the process spectrum (RMSEP = 0.225; 

RSEP%=2.295), which performed similarly in this respect. However, the analysis of a 

second set of production samples led to substantially increased prediction statistics 

with the model using mixed calibration sets (RMSEP = 0.500; RSEP%=5.029), but 

essentially unchanged statistics with those based on doped samples (RMSEP= 0.254; 

RSEP%=2.552) and the process spectrum (RMSEP = 0.239; RSEP%=2.407). All RMSEP 

values, however, were good enough to afford application of the three strategies to the 

industrial manufacturing process. 

 

One other major factor in choosing a particular methodology is the amount of 

experimental work needed to prepare samples for inclusion in the different models. 

Thus, laboratory samples are prepared by weighing of their components, which 

facilitates obtainment of high-quality reference values; on the other hand, industrial 

samples must be analysed with a reference method that may be complicated and 

sluggish, and will certainly be less accurate and precise than weighing.  

 

The mixed model using laboratory and industrial samples ensures incorporation of all 

physical variability via appropriate industrial samples and all chemical variability via 

laboratory samples. Although the model requires using an increased number of 

samples, it can be expected to provide high-quality predictions of industrial samples. 

However, the obtained experimental data showed a considerable increase of errors 

amongst the two tested groups of granulates, implicating the robustness of this 

strategy. The model using doped industrial granulates ensures inclusion of physical 

and chemical variability; however, this methodology presents some drawbacks as the 

sample preparation process is time-consuming and reference values are less accurate 

as they are obtained by application of the reference method and consideration of the 

amount of API or placebo added —or alternatively, by analysing all samples with the 

reference method, which means an extra experimental effort. Moreover, 

homogenizing the small amounts of components added to the samples can be quite 

difficult. 
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The strategy involving calculation and addition of the process spectrum requires 

using no reference method to construct the models as reference values can be 

obtained simply by weighing —time saving and less experimental work and hence 

more accurately than with a reference method. This strategy affords optimal 

incorporation of physical and chemical variability by virtue of sample preparation, 

and calculation and addition of the process spectrum, being two simple, expeditious 

processes. 

 

2.4. CONCLUSIONS 

 

An API present in a pharmaceutical granulate in low concentration was successfully 

quantified using the three proposed methodologies. The chemical and physical 

variability was incorporated to the calibration sets through different strategies 

showing a good predictive ability and the developed analytical methodologies were 

validated according to the normative (EMA& ICH). The calculation and addition of 

process spectrum methodology was chosen as the most suitable strategy for the 

purpose due to a higher performance in terms of robustness, easy inclusion of 

variability in the samples without reference method and less experimental work. 
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In this work, we developed calibration models useful in the quality control of a 

pharmaceutical formulation during its three manufacturing stages, namely: blending 

(powder), pressing (cores) and coating (tablets). A novel methodology is proposed for 

selecting the calibration set, the so called “process spectrum” strategy into which 

physical changes in the samples at each stage are algebraically incorporated. 

Also, we established the concept of “model space”, which is defined by Hotelling’s t2 

and q-residuals. These statistics allow outlier identification inside and outside the 

model space in order to facilitate more objective selection of the factors to be used in 

constructing the calibration set. 
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3.1 INTRODUCTION 

 

Quality control by the pharmaceutical industry has traditionally relied on assessment 

of the raw materials prior to processing and analytical determinations of the end-

product. Although this methodology usually allows product quality regulations to be 

met, errors or unexpected variability arising at some stage of the process may not be 

detected before reaching the end-product and lead to time and money losses in 

addition to diminished productivity. 

 

In recent years, the US FDA has encouraged the use of process analytical technology 

(PAT) by the pharmaceutical industry. PAT is intended to assure product quality via 

careful design, monitoring, control and surveillance of each manufacturing stage. With 

this methodology, quality in the product and efficiency in the production process 

result from a deep knowledge of the process and strict control of any physical, 

chemical and quality-related factors influencing each stage. Quality in pharmaceutical 

production processes cannot be assured merely by analysing raw materials and end-

products; rather, it requires carefully designing and implementing each production 

stage [1], [2]. 

 

There is ample evidence of the usefulness of near infrared spectroscopy (NIRS) as a 

pharmaceutical process control analytical methodology. In fact, NIRS is a simple, 

expeditious, non-destructive instrumental technique [3]–[7] and NIR spectra provide 

both physical and chemical information about solid samples. As a result, its use 

combine with chemometrics data processing have turned it into a promising tool for 

process control within the framework of PAT. 

 

More than 80% of all pharmaceutical formulations are available in tablet form. Tablet 

manufacturing processes are usually complex and involve several steps that can 

introduce different sources of variability. As a result, assessing tablet quality entails 
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determining a number of critical attributes at each production stage, in this sense the 

development and implantation of NIR methodologies in pharmaceutical processes is 

requested in order to determine critical parameters that affect directly to the quality 

of products [8], [9]. 

Tablet production processes involve several stages whereby the raw materials are 

subject to various —mostly physical— treatments. The first stage is blending of the 

raw materials, which are usually in powder form. The resulting uniform blend is then 

pressed to obtain usually oval samples (cores). Finally, cores are coated in order to 

facilitate preservation under ambient conditions, conceal unpleasant odours or 

flavours, or ensure appropriate release of the pharmaceutical. 

 

Controlling the amount active principal ingredient (API) at all stages of the production 

process is crucial because it influences not only the quality of the end-product but also 

consumers’ health. In this work, we used NIRS for quality control of a tablet 

manufacturing process by quantifying the API at the three production stages. To this 

end, we constructed a different PLS calibration model for each stage by using a simple, 

novel approach requiring no reference method to select the calibration set. The 

proposed approach incorporate the variability of production samples to the 

calibration set via an algebraic procedure involving addition of the process spectrum. 

Also, it uses the model space (a new concept based on the statistics Hotelling’s T2 and 

Q-residuals [10]) to optimize the sample selection process and facilitate construction 

of the calibration model.  

 

Based on the definition that an outlier is considered as “an observation that does not 

fit to a pattern”, these statistics were used precisely to spot those samples that do not 

have the same spectral characteristics to the samples that want to be predicted. 

Hotelling’s T2 and Q-residuals statistics are very useful to spot X outliers – related to 

analytical profiles- since they are calculated with the T (scores) and E (residuals) 

values obtained by the deconvolution of the X matrix –spectra- by PCA means. In this 

sense T2 statistics reflects the extremeness of the samples response within the PCA 
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model space, while Q values reflects the amount of sample response that is outside of 

the PCA model space [10], [11].  

The use of this two quality-metrics parameters combined allow the creation the model 

space for a fully evaluation of all the parameters that interfere with the use of the 

proposed methodology. 

 

3.2 EXPERIMENTAL SECTION 

 

3.2.1. Production samples 

 

The target formulation contained 8.7 wt% API (cetirizine) and four excipients 

accounting for more than 90 wt% in combination, namely: lactose, microcrystalline 

cellulose, magnesium stearate and colloidal silica. The oval tablets were 10 × 4 mm. 

samples of the pure components and of the products processed at each stage [viz., 

powder, cores and coated tablets (the end-product)] were kindly supplied by 

Laboratories Menarini, SA (Badalona, Spain).The API contents of the samples were 

determined by HPLC. 

 

3.2.2. Laboratory samples  

 

A set of 23 laboratory samples was prepared by blending appropriate amounts of API 

and placebo (the excipient mixture). As per the ICH guidelines [11], the API 

concentration was expanded ± 20% around its nominal value. Three different placebo 

blends spanning concentration values ±5% around the nominal amount of each 

excipient in the formulation were also used. Placebos were prepared by using a d-

optimal design in order to minimize collinearity between excipient concentrations.  
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3.2.3. Recording of NIR spectra 

 

Laboratory samples were blended in a T2C WAB shaker mixer, and their NIR 

reflectance spectra recorded on a model 5000 spectrophotometer equipped with a 

rapid content analyser (RCA) and governed via the software vision v. 2.22, all spectra 

were recorded using Foss NIRsystems. at 2 nm intervals over the wavelength range 

1100–2500 nm. 

The spectra for the powder samples were recorded in glass cuvettes and samples 

turned over with a spatula between recordings. Cores and tablets were also analysed 

in this manner. a blank spectrum for the empty cuvette was recorded at the beginning 

of each working session. The spectral reference used was the instrument’s bundled 

ceramic plate. 

 

3.2.4. Preparation of the calibration set by calculating and adding process 

spectra 

 

The process involved calculating the process spectrum (Sp) as the difference between 

an industrial spectrum (Sind) and that for a laboratory powder sample spectrum 

(Slab) containing the same concentration API —and also, ideally, of excipients. the 

difference was expressed mathematically as a vector defining variability in the 

production process: 

 

Sp = Sind – Slab      (1) 

Then, the reduced process variability spectral matrix (Sred) was calculated by adding 

the process spectrum to the spectral matrix for various powder blends spanning the 

desired API concentration range (Scon): 

 

Sred = Sp + Scon      (2) 
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The “new” matrix contained both physical and chemical variability, and was useful as 

such to selected spectra for the calibration set. Variability in Sp can be increased or 

decreased by using a multiplying factor m close to unity. Simply adding up the spectra 

as described above provides an “extended variability matrix” Sred*m [12]–[14].  

By using the m factor in this strategy the variability can be increased according to the 

predictive ability of the calibration set, which is checked by a projection of the 

samples into a PCA of the calibration set. 

 

3.2.5. Definition of the model space and detection of outliers  

 

In order to determine if the characteristics of the calibration set fall within the 

variation range of the samples to be predicted, it is required to define a model space 

allowing suitable samples to be selected for its construction, and any not belonging to 

the population defining the model to be excluded [10], [15]. 

 

The model space was defined from a principal component analysis (PCA) of industrial 

samples (cores and coated tablets), using the scores T and residuals E of the 

deconvoluted matrix to calculate Hotelling’s t2 and q-residuals with p = 0.05. Samples 

for the calibration set were selected and outliers identified from the score scatter plot 

for the calibration samples provided by the PCA, using Hotelling’s ellipse at the 95% 

confidence level and a plot of t2 Hotelling vs q residuals. 

 

3.2.6. Construction of calibration models 

 

Spectra were subjected to various treatments including the standard normal variate 

(SNV), and the first and second derivative as calculated with the Savitzky–Golay 

algorithm. spectral treatments were applied and multivariate models constructed by 

using the software the Unscrambler v. 9.8 from camo (Trondheim, Norway). 

The PLS algorithm was used to construct calibration models by cross-validation 

(leave-one-out method) and the model exhibiting the lowest residual variance with 
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the number of latent variables selected for further testing. 

Calibration models were refined by using the number of PLS factors leading to the 

lowest relative square error of prediction (RSEP) and root mean square error of 

prediction (RMSEP) for an external set of production samples. 

 

3.3 RESULTS AND DISCUSSION 

 

Assuring quality in a pharmaceutical end-product and optimizing its production 

process entails critically controlling and monitoring each potentially influential factor 

at all manufacturing stages. The API content is one of such factor. In this work, we 

constructed three different calibration models to quantify the API present in a 

proportion of 8.7% (w/w)-in the target pharmaceutical formulation in its three forms 

during the production process, namely: powder, cores and coated tablets. 

 

Ensuring adequate predictive ability obviously required using an appropriate set of 

calibration samples containing similar variability to the industrial samples aimed to 

be predicted. This required incorporating chemical variability by using a wide enough 

range of API concentration to allow accurate quantitation of extreme samples and 

physical variability by considering spectral changes arising from physical changes in 

the samples by effect of the different stages of the production process. Monitoring the 

API content of the target pharmaceutical formation throughout the process required 

careful consideration of physical changes in the samples owing to their influence on 

NIR spectra and hence on the ensuing models. 

 

A preliminary spectral analysis of the pharmaceutical formulation was conducted on 

samples from the three production stages. The samples exhibited substantial 

differences in their NIR spectra by effect of physical changes due to differences in 

scatter between each process stage. This variability can be explained to differences in 

particle size between the powder samples and to the effects of compaction to obtain 
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cores and lacquering to obtain the end-product: coated tablets. Core compaction cause 

spectral shifts, whereas lacquering reduced the amount of light reaching the sample 

through partial absorption in the coating (see Fig. 1a). A principal component analysis 

(PCA) of the results revealed the presence of three distinct clusters of samples despite 

their having an identical chemical composition (Fig. 1b). 
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Fig1. (a) NIR Spectra and (b) score scatter plot (SNV) for the target formulation 

at each production step: powder, cores and coated tablets. (c) SNV spectra from 

formulation in different forms and API 

 

Initially, the formulation was a powdered blend of the API and excipients. In the 

absence of chemical interactions between components, the blend was assumed no to 

require incorporating physical variability into its model, so only chemical variability 

was considered in the calibration set. This was accomplished by preparing 23 

mixtures containing variable amounts of API and excipients that were expanded with 

others containing concentrations ± 20% and ± 5%, respectively, around the nominal 
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values in the formulation. The resulting samples were split between a calibration set 

and a validation set in a ratio about 70/30. 

 

Different spectral pretreatments were tested; Spectral shifts due to scattering were 

reduced by using a standard normal variate (SNV) treatment and resolution was 

improved by calculating the second derivative with the Savitzky–Golay algorithm (11 

points moving window) although several combinations of the derivative configuration 

pretreatment was evaluated: number of points for the moving window-seven, nine 

and fifteen-and the polynomial order. Using second-derivative spectra in combination 

with the whole spectral range (1100–2500 nm) allowed a simple model consisting of 

only 4 factors and explaining 99% of the Y-variance to be constructed. The model 

exhibited a good predictive ability: RSEP = 0.812%, RMSEP = 0.071 % w/w and bias = 

0.040. 

 

3.3.2. Incorporating physical variability: core and tablet models 

 

Core compaction and tablet coating cause physical changes reflecting in the NIR 

spectra. Such changes were deemed “physical variability due to the process” and 

incorporated into the calibration set by calculating and adding the process spectrum. 

This approach allows one to consider both physical and chemical variability in three 

steps, namely: (1) calculating the process spectrum as the difference between that for 

an industrial sample and a powder sample of identical chemical composition; (2) 

adding the process spectrum (Sp) to a matrix Scon obtained from the spectra for 

powder samples of known API and excipient concentrations spanning the desired 

range, the resulting matrix, Sred, containing both physical and chemical variability; and 

(3) increasing or decreasing the variability of Sred by multiplying Sp by a factor m 

greater or lesser than unity in order to ensure that the process spectrum will be 

representative of the whole physical variability in the process. 

 

Previous studies revealed the usefulness and robustness of this approach to 
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incorporating the whole variability of the process into the calibration set [12] and its 

ability to provide simple models with a good predictive ability with substantially 

reduced experimental work and the need for no reference method. However, some 

critical aspects for the development of this methodology such as selecting the 

multiplying factor (m) and samples for the calibration set, and confirming that all 

physical variability was considered by adding Sp, relied exclusively on a PCA of 

industrial samples and their projections onto the space for the selected calibration set. 

In order to objectively select those factors governing performance in this calibration 

methodology, we introduced the concept of model space. In this work, the model space 

was constructed from a PCA of industrial samples (cores or coated tablets). In parallel, 

critical thresholds were calculated from the statistics Hotelling’s T2 and Q-residuals by 

relating the scores T and residuals E, respectively, of the deconvoluted matrix. The 

information thus obtained was complementary, and the two factors allowed outliers 

falling inside and outside the space to be identified [8]. A projection of samples onto 

the PCA model afforded their evaluation in the space defined by the samples to be 

predicted, and hence confirmation of whether they were suitable for inclusion in the 

calibration set. 

 

The second stage of the process (core compaction) was modelled by PLS regression on 

the 23 samples previously used to construct the model for the powder. Their spectra 

were used to obtain a matrix containing chemical variability (Scon). The spectral 

matrix was projected onto the space defined by the first two PCA scores for the core 

spectra. As can be seen from Fig. 2a, the spectra belonged to two different 

populations; also, the first factor explained physical differences between the two 

groups of samples, which suggest that the spectra were unsuitable for constructing an 

accurate calibration model for the cores. As can clearly be seen from Fig. 2b, the 

powder samples fell beyond the critical thresholds for Hotelling’s T2 and Q-residuals 

as calculated at the 95% probability level, thereby confirming the previous results for 

the projection.  
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Fig2. (a) Definition of the model space in terms of Hotelling's ellipse at the 95% 

probability level and projection of powder samples into cores PCA space. (b) Critical 

thresholds of the model space as calculated from Hotelling's T2 and Q-residuals, and 

projection of powder samples. 

 

 

The process spectrum (Sp) was calculated from three samples on the outside on the 

PCA space in order to include all physical variability in the cores. Subtracting the 

spectra for such samples from a powder sample of the same concentration gave three 

process spectra including the physical variability of the cores (see Fig. 3). These 

spectra were randomly added to Scon in order to construct a matrix Sred including 

physical and chemical variability. 
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Fig3. NIR spectra for industrial (cores) and powder samples, and calculated process 

spectra. 

 

Fig4. PCA Score scatter plot and model space for the cores. Projection of the powder 

samples + Sp (Sred). 

 

Projecting the scores of Sred onto the space defined by the spectra for the cores (Fig. 4) 

revealed that the samples were similar to the cores; however, some fell outside the 

cluster and were thus insufficiently represented by the model. Because constructing 
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an accurate model requires ensuring that the samples to be predicted will be included 

in the same cluster as the calibration samples, we introduced a new treatment 

involving multiplying the process spectrum by a factor m to obtain new matrix Sred*m. 

The optimum m value for this purpose was found to be 0.7. As can be seen from Fig. 5, 

the scores for the samples in Sred*m fell within the model space and comprised all 

cores. However, some samples fell outside Hotelling’s ellipse and beyond the critical 

thresholds of the T2 vs Q-residual plot, so they were excluded from the model.  

 

Fig5. Model space for cores (projection of powder samples + Sp, Sred*m0.7, 1). (a) Score 

scatter plot for the cores. (b) Critical thresholds as calculated from Hotelling's T2 and 

Q-residuals. 

 

The calibration model was thus constructed from those samples falling within the 

model space (n = 37), using the first Savitzky-Golay derivative with 11 points, and 

second-order polynomial. Under these conditions, 7 PLS factors explained 98.3% of 

the Y-variance and the whole wavelength range. The results thus obtained in the 

analysis of 15 batches of production cores revealed a good predictive ability in the 
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model, with RSEP = 2.812%, RMSEP = 0.242 % w/w and bias = 0.060. 

 

The calibration model for the last stage of the process (viz., obtainment of coated 

tablets) was constructed in the same manner as the previous one (viz., by defining the 

model space and selecting samples for calculation of Sp). The high variability observed 

in the distribution of scores for the production samples led us to calculate two process 

spectra that were added to the spectral matrix for the powder samples. Physical 

variability was introduced by using a multiplying factor m of 0.8. Then, the samples 

for inclusion in the calibration set were selected as described above. Each step was 

assessed and samples were selected from the score scatter plot (viz., the space bound 

by Hotelling’s ellipse at the 95% probability level) and the T2 vs Q-residual plot (see 

Fig. 6). 

 

Fig 6. Model space for the tablets (p = 0.05) and projection of powder samples + Sp 

(Sred*m 0.8, 1).(a) Score scatter plot for coated tablets. Critical thresholds as calculated 

from Hotelling's T2 and Q-residuals. 

 

 

The model was constructed from a total of 43 calibration samples, using first Savitzky-

Golay derivative spectra consisting of 11 points ans second-order polynomial. 7 PLS 

factors were found to account for 98% of the Y-variance and the whole wavelength 
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range. The model was then applied to 25 coated tablets, which were predicted with 

quite good results: RSEP =  

2.682%, RMSEP = 0.223 % w/w and bias = –0.016. 

Table 1 summarizes the figures of merit of the models for the three stages of the 

pharmaceutical production process. 

 

3.4. CONCLUSIONS 

 

A simple, fast NIRS-based methodology for monitoring the API content of a 

pharmaceutical formulation throughout its production process was developed. 

Calculation and objective selection of the process spectrum in terms of a model space 

and the statistics Hotelling’s T2 and Q-residuals allowed optimal calibration sets to be 

constructed by using the proposed methodology, which should therefore be useful for 

quality control analyses in the pharmaceutical industry as it requires using no 

reference method, but only weighing, to quantify the API and excipients 
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4. Case of study III 

 

NIR calibration models for samples with 

tendency to segregation 
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In this work, we evaluated two modes for spectral acquisition, namely static and 

dynamic,  in which the effective surface of the scanned area was modified,  which is 

related to the representativeness of the analyzed sample, by using a sample holder 

accessory that allowed the rotation of the sample while the spectrum was collected.  

The collected spectra were subsequently used for the calculation of NIR calibration 

models in order to study in detail the relation between the scanned areas with the 

information contained in each spectrum, which in turn also influences the predictive 

ability of the models. 
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4.1 INTRODUCTION  

 

In recent years the use of NIR-diffuse reflectance has increased considerably for the 

quality control of solid samples in the pharmaceutical industry. This is due to the 

undoubted advantages that offers such as: being a simple, fast and noninvasive 

technique; moreover is highly versatile due to the development in its instrumentation, 

since nowadays the analysis can be performed using several accessories like optical 

fibers, portable NIR i.a., that facilitate an online monitoring of the manufacturing 

process [1]–[5]. 

Eighty percent of the manufactured products by the pharmaceutical industry 

correspond to tablets and capsules. Muzzio et al have defined the manufacturing 

process in this industry as a "powder technology" which is based primarily on making 

particles, modifying their properties and finally converting them in structured 

products [6]. 

 

Blending is an essential unit operation for the pharmaceutical industry, in which is the 

active pharmaceutical ingredient(s) –API(s)- and excipients are mixed until achieving 

homogeneity; this is done in order to obtain formulations with the correct proportion 

of all its components. Achieving homogeneous mixtures do not only depend on the 

unit operation itself, but also on the nature of the components that constitute the 

mixture and the interaction between them. It is important to evaluate the physical 

attributes of the granules that compose the solid samples such as particle size, shape, 

surface properties amongst others, since from these characteristics depends if the 

mixture can be properly homogenized or if this has a tendency to segregate. 

Segregation is known as the process in which the components of a powder mixture 

are separated by effect of an external stimulus, resulting in the spatial heterogeneity 

[7], [8]. 

In literature are reported at least ten mechanisms that promote segregation [9], 

however Carson and Johanson et al [10] have simplified them in five: trajectory, sifting, 
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fluidization, air current and angle of repose. Although the separation of components 

can occur by combination of several mechanisms, segregation by sifting is the most 

common. This occurs mainly due to differences in particle size between components, 

and promotes the movement top-to-bottom of smaller particles through a matrix of 

larger particles, thereby forming a lower layer with the finest particles component 

and higher layers with larger [11]. 

 

It is widely known that the simple vibration of the machinery or the exposition of the 

material to airflow may cause segregation. Therefore the problems related to this 

phenomenon can be mitigated by adjustments and adaptation of instrumentation and 

processes to thereby reduce the adverse effects this may cause this lack of uniformity 

in the material [7]. 

 

For the pharmaceutical industry, segregation represent a big problematic because this 

affect directly the quality of products and processes. Batch failures related to 

uniformity content might arise if the components of the pharmaceutical formulation 

experience segregation; resulting in productivity decrease, waste of resources and an 

increase in the production costs. 

 

In the analysis of solid samples by diffuse reflectance-NIR there are key factors that 

strongly influence the information that can be extract from each spectrum: i) the 

physical presentation of the sample –and the intrinsic characteristic of the 

compounds-, and ii) the surface scanned area; From these depend that a successful 

analysis can be performed and, in turn, a suitable monitoring of the process [12]. 

Moreover it is important that the analyzed samples are representative of the sampled 

material, that through its analysis all the information related to parameters that 

influence the quality of the product can be accurately extracted [13], [14]. 

 

The physical and chemical information contained in an NIR spectrum corresponds to 

the number of scans in which the sample has been irradiated in a specific area. This 



        CASE OF STUDY III 

  147 

 

 

area is related to the irradiation spot size of the instrument, whereby the information 

extracted from the analysis depends on the characteristics of the material at that 

point. Also it can be assumed that the bigger the scanned area, the greater the amount 

of sample that is analyzed; so this also affects the representativeness of the analyzed 

sample. On the other hand, Andersson et al have demonstrated how the scanned area 

can be increased through the acquisition of NIR spectra of moving solid samples, using 

accessories that allow the rotation of the sample during the spectra recording or 

optical fibers that can be put into tanks in motion [12]. 

In this study we assessed how the effective surface scanned area -in two modes of NIR 

spectra acquisition- influences the analysis of a pharmaceutical formulation with 

tendency to segregation. For this, we used a sample accessory that allows the rotation 

of the sample while the spectrum was recorded – Petri sample holder-. Spectra were 

acquired with the accessory static and in motion, and these were used for the 

subsequent calculation of calibration models; in this way we related the spectral 

acquisition mode with the quality of the extracted information and in turn, the 

performance of the calibration models. 

 

4. 2. EXPERIMENTAL SECTION 

 

4.2.1 Production samples 

 

The target formulation contained 166.67 mg.g-1 of API (sucralfate) which is present in 

a proportion of 16.7% w/w in the mixture, and four excipients: vanilla flavor, sorbitol 

30/60 GDO, sorbitol GDO P60G and saccharin. The sorbitols represent about 83% 

w/w of the formulation, while the other excipients are present in low proportion. 

The commercial product –production samples- is distributed as fine granules obtained 

by dry granulation. This formulation has a tendency to segregation due to differences 

in particle size between its major excipients: 180 microns sorbitol GDO 30/60 and 45 

microns for sorbitol GDO P60G. 
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Samples of the pure components and the end product were kindly supplied by 

Laboratorios Menarini, SA (Badalona, Spain) and its API content was determined by 

HPLC. 

 

4.2.2 Laboratory samples 

 

A set of 40 laboratory samples was prepared by blending appropriate amounts of API 

and placebo (the excipients mixture). The concentration of API was expanded ± 20% 

around its nominal value. Five placebo blends spanning concentration values ± 7.5% 

around the nominal amount of each excipient in the formulation were also used. 

Placebos were prepared by using a fractioned factorial design in order to minimize 

collinearity between excipient concentrations. The experimental design for the 

placebos preparation was a factorial fractional with 1 central point in which the major 

concentration variations were set up for both Sorbitols since those are the major 

excipients in the mixture. 

 

4.2.3 Recording of NIR spectra 

 

Laboratory samples were blended in a T2C shaker WAB shaker mixer, and their NIR 

reflectance spectra were recorded on a Buchi FT-NIR-Flex 500 spectrophotometer 

equipped with a module for solids -Petri solid sample-holder governed by the 

NIRWare software. The recordings were made using the sample module unmoving 

and in motion; three spectra of each sample was taken in both recording modes which 

were acquired in the range 10000 to 4000 cm -1 with a spectral resolution of 4 cm-1 ; 

the estimated recording time was 2 scans / sec).  

The spectra were recorded by placing the samples in a glass Petri dish, and samples 

turned over with a spatula between recordings. A blank spectrum for the empty 

cuvette was recorded at the beginning of each working session. The spectral internal 

and external reference used was the instrument’s bundled ceramic plate. 
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For the static spectral recording mode, the final spectrum was the result of 32 scans 

maintaining fixed the irradiation surface of the sample, and the tray was manually 

turned around 120 degrees during the recording of the three replicates. For the 

dynamic mode, the 32 scans of each spectrum were accumulated during rotation of 

the tray. 

 

4.2.4 Determination of the effective surface area scanned 

 

For the determination of the effective surface scanned area, it is important to consider 

the size of the irradiation spot - for recording spectra unmoving- and also the 

dimensions of the Petri dish -for the spectral recording mode in motion. Therefore one 

can be calculated as the area of a circle and the other as an annular area.  

 

4.2.5. Construction of calibration models 

 

Spectra were subjected to various treatments including the standard normal variate 

(SNV), and the first and second derivative as calculated with the Savitzky–Golay and 

Norris algorithm. The spectral treatments were applied and multivariate models 

constructed by using the software the Unscrambler v. 9.8 from Camo (Trondheim, 

Norway). 

The PLS algorithm was used to construct calibration models by cross-validation 

(leave-one-out method) and the model exhibiting the lowest residual variance with 

the number of latent variables selected for further testing. 

Calibration models were refined by using the number of PLS factors leading to the 

lowest relative square error of prediction (RSEP%) and root mean square error of 

prediction (RMSEP mg·g-1) for an external set of production samples. 
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4.2.6 Validation of proposed calibration models 

 

The potential industrial usefulness of the selected calibration strategies was assessed 

by validating their results in accordance with ICH and EMA guidelines [15], [16]. The 

specific parameters assessed included selectivity, linearity, accuracy, precision 

(repeatability and intermediate precision) and robustness. 

 

4.3 RESULTS AND DISCUSSIONS 

 

One of the most common factors that may cause segregation is the difference in the 

particle size amongst components in a mixture. This is the case of the studied 

pharmaceutical formulation, in which the most predominant particle size difference is 

between two major excipients -which constitutes 85%w/w of the mixture- showing a 

tendency to segregation. 

The analysis of parameters that influence quality of pharmaceuticals can present 

some constrains due to its inhomogeneity. However through the evaluation and 

optimization of the surface scanned area in NIR analysis it is possible to dispose 

representative samples that reflect all the characteristics of the sampled material, and 

at the mean time allow obtaining a successful analysis. 

The content of API is one of the quality determining parameters in the manufacture of 

pharmaceuticals; therefore its monitoring is continuously perform in different process 

unit operations. 

 

With the aim of evaluate the influence of the surface scanned area on the quality of the 

information obtained in each NIR spectrum and, in turn, on the performance of the 

calibration models, two spectra recording modes were studied in which the irradiate 

surface was set. 
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4.3.1 Sampling with the spectrophotometer and calculation of the effective 

surface area 

 

The spectra were recorded using the sample accessory –Petri sample holder- 

unmoving and in motion; for both modes 32 scans were taken for each spectrum. 

For the dynamic recording spectra mode, the spot of irradiation was considered for 

the calculation of the effective surface scanned area. The diameter of this spot is 1.6 

cm, therefore the scanned area calculated was 2.01 cm2. However considering that 

three replicates were recorded the total scanned area was 6.03 cm2. 

For the area calculations with the sample accessory in motion, besides of the 

irradiation spot other factors were taking into account, such as the recording time of 

the instrument -2 scans/sec- and that for the collection of the 32 scans the sample 

rotates 360o. Moreover the diameter of the Petri plate is 8.5 cm, and the rotation 

speed was 1.66 cm/s, therefore the calculated annular area was 34.69 cm2 Fig 1. 

 

 

Fig 1Experimental setup for spectra NIR acquisition A)dimension of Petri plate 

(d= 8.5 cm), in grey the surface area scanned by the spectra recording on 

moving sample B) dimension of spot radiation (d=1.6 cm), in yellow the surface 

area scanned in the static spectra recording mode. 
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With the obtained results from the effective surface scanned area calculations we 

could confirm that a significantly larger amount of sample could be analysed through 

the record of the spectra with the samples in motion. For the evaluation of the relation 

of this amount of sample and the quality of the obtained information, the spectra were 

used for the subsequent calculation of calibration models. 

 

4.3.2 Construction of NIR calibration models 

 

Once the spectra were recorded in both spectra recording modes and the calculation 

of the effective surface scanned area performed, we proceeded to construct the 

calibration models to quantify the API in the pharmaceutical formulation. 

A set of 40 samples which contain different quantities of API and excipients were 

used; their concentration was spanned ± 20% around API nominal value and ± 7.5% 

from the majoritarian excipients. This set was divided in proportion 70/30 to be used 

as calibration and validation respectively. 

The strategy followed for the construction of the calibration set was a mix calibration, 

in which both laboratory powder mixtures and production samples were used.  

 

Firstly, a calibration model was calculated using the spectra recorded with the static 

mode. Prior model calculation different spectral pretreatments were evaluated in 

order to reduce the scattering effects (by using Standard Normal Variate, SNV) and 

improve spectra differentiation using first and second derivative (from both, Savitzky 

Golay and Norris algorithms). The best results were obtained by using Savitzky–Golay 

algorithm with a 15-point moving window and a second-order polynomial, in 

combination with SNV in the spectral range 9500-5000 cm-1 –where the API showed 

representative bands- Fig 2;moreoverv this model was calculated using 6 factors that 

explained the 99.5% of Y-Variance. The predictive ability was evaluated by testing 21 

samples, 9 of which correspond to production samples and 12 to laboratory powder 

mixture that constitute the validation set, showing the following prediction errors: 

RSEP(%)= 5.018- RMSEP(mg.g-1)=2.830, SD=-1.652.  
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Fig 2. Absorbance spectra of API, pharmaceutical formulation and placebo. Spectral 

range used for model calculation highlighted 

 

For the construction of the calibration model using the dynamic mode, a previous 

spectral pretreatment evaluation was performed prior the model calculation. The 

model based on Norris derivative (second order; Gaps size:9) in combination with 

SNV in the same spectral using 5 factors -that explained 98% of Y-Variance- provided 

the most accurate predictions RSEP(%)= 2.925- RMSEP(mg.g-1)=1.623, SD=2.790. 

 

With the results obtained from the calculated models, we confirmed that the spectra 

recording dynamic mode –in which the surface scanned area is bigger-allow the 

calculation of simpler and more accurate models. The prediction errors values (RSEP, 

RMSEP) were lower for the model in motion showing a better agreement between the 

proposed and the reference method. Moreover the values obtained for the standard 

deviation also showed a better performance of the model in terms of precision. 

The comparison between these two models probed the strong influence of the surface 

scanned area with the information contained in each NIR spectrum, and, in turn, with 

the performance of the calculated calibration models. Also, with this evaluation we 
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confirm the importance of sample representativeness for model construction; and 

how in this way the suitability of the proposed methodologies can be assured giving as 

an outcome reliable analysis. Table 1 shows the characteristics of selected models. 

 

Table1. Figures of merit of the calibration model for two spectra recording 

modes using the solid sample accessory unmoving and in motion. 

        
CALIBRATION PREDICTION 

  
Spectral 

Pretreatment 
No 

Factors 
%Y-
Exp 

RSEC(%) RSEP% RMSEP SD 

Static 

mode  
2D(S.G)+SNV 6 99.5 0.233 5.018 2.830 2.790 

Dynamic 

mode 
2D(Norris)+SNV 5 98 1.215 2.925 1.623 1.652 

        
 

4.3.3. Validation of the proposed NIR calibration models 

 

The potential industrial usefulness of the selected calibration strategies was assessed 

by validating their results in accordance with ICH and EMA guidelines [15], [16]. The 

specific parameters assessed included selectivity, linearity, accuracy, precision 

(repeatability and intermediate precision) and robustness. 

 

Selectivity of the proposed NIR methods is achieved by identifying the pharmaceutical 

preparation in a spectral library. The library allows the identification of the 

pharmaceutical preparation rather than the pure raw materials (active ingredient and 

excipients) [17]. 

 

The applied identification criterion was the correlation coefficient. The library was 

constructed using 19 granulates belonging to different production batches, the 

second-derivative spectra (S.G), the whole spectral range 10000-4000 cm-1. All the 19 

samples were successfully identify showing identification values between 0.997 and1, 

while for the API, Sorbitol GDO 30/60 and Sorbitol P60G the values were 0.313, -0.914 
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and -0.919 respectively. The obtained results showed the suitability of the library for 

the proper identification of the pharmaceutical formulation and the discrimination of 

its pure components. 

 

Linearity was assessed by using 12 samples uniformly spanning the working 

concentration range (± 20% around the nominal value) to quantify the API with both 

spectra recording modes. A plot of responses against reference values had a slope and 

intercept containing unity and zero, respectively, at the 95% confidence level. 

Regarding the correlation coefficient, it can be seen a higher value for the dynamic 

mode in comparison with the static mode - R= 0.974 y R= 0.775 respectively- 

showing that the first mentioned model present a better agreement with the reference 

method. 

 

Accuracy was assessed as the degree of agreement between reference and NIR values 

for 21 samples spanning the working concentration ranges. The sample predicted 

with the “in motion model mode” showed a lower Bias (0.368) while for the 

“unmoving model mode” showed a higher Bias value (-2.306). The same tendency was 

observed for the Standard Deviation values. 

A t-test on the residuals confirmed the absence of significant differences between 

methods at the 95% confidence level with each of the two models. 

 

Precision was assessed as repeatability and intermediate precision. Repeatability was 

determined by having the spectrum for an industrial granulate recorded by the same 

analyst six times and calculating its relative standard deviation (%RSD) in order to 

quantify the coefficient of variation for each method. The highest %RSD value was 

that obtained with the “static mode model” 7.91% while the calculated for the 

“dynamic mode model” was 2.53%.  

 

Intermediate precision was determined by having the NIR spectra for an industrial 

granulate sample recorded by two different analysts on 3 different days. An analysis 
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of variance (ANOVA) with 2 factors (analyst and day) revealed the absence of 

significant differences from the reference method. 

Robustness was assessed by predicting the values for a second set of industrial 

granulates and laboratory powder mixtures consisting of 49 samples. The samples 

were obtained from various production batches manufactured after the first sample 

set studied and analysed by using the previously developed models a few months 

after the samples used to construct the models were measured. The results testified to 

the good predictive ability of the both models for external samples not included in the 

calibration set and measured after development of the models. However the 

prediction errors still presenting higher values for the “unmoving mode model”. Table 

2 summarizes the results for each parameter.  
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Table2. Results obtained from calibration model validation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter 
Static 
mode 

Dynamic 
mode 

Linearity 

n 12 12 
concentration 
range (mg.g-1) 

45.3-66.3 43.3-66.3 

Intercept 0.6 ± 23 -1.7±9 
Slope 20 ± 0.4 1.03±0.17 
R 0.775 0.974 

Accuracy 

n 9 9 
Bias -2.306 0.368 
S.D Residuals 4.172 1.761 
t. Experimental 0.675 0.233 
t. Critic 2.306 2.306 

Repeteability RSD (%) 7.91 2.53 

Intermediate Precision 

Day     
F Experimental 0.6 1.9 
F. Critic 19 19 
RSD (%) 6.82 2.14 
    
Analyst    
F Experimental 6.09 0.02 
F. Critic 18.512 18.512 
RSD (%) 3.256 3.45 
    
RSD global (%) 4.968 3.586 

Robustness 

n 49 49 
RMSEP (mg.g-1) 4.95 3.12 
Bias (-0.145 1.417 
S.D Residuals 5.001 2.809 
t.Experimental 0.035 0.613 
t. Critic 2.01 2.01 
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4.4. CONCLUSIONS 

 

In this study we evaluated two spectra recording modes for the development of NIR 

calibration models useful in the quantification of an API in samples with tendency to 

segregate. With the obtained results we demonstrated the importance of sample 

representativeness – which is strongly related to the effective surface scanned area- 

and its influence in the quality of the information obtained in each spectrum. Also we 

demonstrated how this relationship influences in turn, the development of NIR 

methods and its performance in terms of simplicity, accuracy, precision and 

robustness. 

This work represents an easy and effective alternative for the analysis of samples with 

tendency to segregate, and represent a contribution for the optimization of quality 

control methods based on NIR spectroscopy 
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CONCLUSIONS 

Based on the results obtained in each case of study, the following conclusions can be 

extracted and summarized: 

1- New methodologies useful for the quality control of pharmaceuticals have been 

developed using NIR spectroscopy combined to chemometrics; these methodologies 

represent a solution for industrial constrains and are suitable for its use in 

manufacture. 

 

2- The active pharmaceutical ingredient (API) of different pharmaceutical 

formulations was successfully quantified in different solid forms: powder, granulates, 

cores and tablets, confirming the suitability of the NIR technique and the chemometric 

methods for this analysis. 
 

3- Strategies such under/overdosing of industrial samples, mix calibration sets 

and calculation and addition of process spectra were used for the design and selection 

of the calibration set and its performance evaluated. The physical and chemical 

variability were successfully incorporate. The strategy of calculation and addition of 

process spectrum showed a better performance in terms of robustness, easiness 

inclusion of sample variability without the need of reference method and simplifying 

the experimental procedure. 

 

4- The calculation and addition of process spectrum strategy was optimized by 

using the statistics Hotelling’s T2 and Q-residuals based on the model space for 

monitoring the API content on a formulation through its manufacturing process: 

blending, tableting and coating. In this way an objective and successful procedure for 

the implementation of this strategy was proposed, which showed its suitability for the 

quality control analysis of pharmaceuticals in different physical forms. 
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5- The influence of the effective surface scanned area of the spectral acquisition 

procedure was confirmed by testing two spectral record modes which allows static 

and dynamic spectral acquisition. 

 

6- The importance of sample representativeness on the quality of the information 

contained in each spectrum NIR was demonstrated by the association of the surface 

scanned area and the performance of the calculated models. The results clearly 

showed that using an spectral acquisition mode which allows a bigger scanned area, 

enable the construction of simplest, accurate and robust models. 

 

7- Problems in the analysis of samples with tendency to segregation -which can 

led to batch failures related to uniformity content- can be mitigate by incrementing 

the effective surface area, and this area can be increased by the use of instrument 

sampling accessories for dynamic spectral acquisition.. 

 
 
 
 
 
 
 
 
 
 



165 

 

 
 
 
 
 
 
 
 

LIST OF PUBLICATIONS AND 

CONFERENCES 

 

 

 

 

 

 

 
 
 
 



 

166 

 

 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 

 
 



 

167 

 

 SCIENCE COMMUNICATION 

1. Publications 

1.1 Published work 

• Cárdenas V., Blanco M., Alcalà M., “Strategies for selecting the calibration set in 
pharmaceutical near infrared spectroscopy analysis. A comparative study”. Journal of 
Pharmaceutical Innovation, 4 (272-281) 2014. 
 
• Cárdenas V., Cordobés M., Blanco M., Alcalà M. “Strategy for design NIR 
calibration sets based on process spectrum and model space. An innovative approach 
for process analytical technology”. Journal of Pharmaceutical and Biomedical Analysis, 
144 (28, 33) 2015. 

1.2 In preparation 

• Cárdenas V., García L., Blanco M., Alcalà M. “NIR calibration models for samples 
with tendency to segregation” 

 

2. Communications in scientific meetings 

2.1 Oral communications 

• Cárdenas V., Alcalà M., Blanco M., “Different strategies for multivariate 
calibration using NIR data in the pharmaceutical quality control” V Workshop of 
chemometrics, Badajoz, Spain 2013. 

• Cárdenas V., Alcalà M., Blanco M., “Process spectra strategy for NIR calibration 
set preparation: An innovative tool for pharmaceutical analysis-PAT” 14th 
Instrumental Analysis Conference”. Barcelona, Spain 2014. 
 

• Cárdenas V., Blanco M., Alcalà M., “Efficency of process spectrum methodology 
in NIR pharmaceuticals quality control analysis. An innovative tool for process 
analytical technologies”. Jornades doctorals, Programa de doctorat en Quimica. 
Bellatera, Spain 2015. 

 

2.2 Poster communications 

• Cárdenas V., Córdobes M., Alcalà M., Blanco M.“Multivariate NIR calibration 

strategies useful for quality control of pharmaceutical formulations”, VIII Colloquium 

Chemiometricum Mediterraneum, Bevagna, Italy 2013. 



 

 

 


