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Introducción

En las últimas dos décadas, se han hecho muchos trabajos dedicados a encontrar y estudiar

Atractores Extraños no caoticos (SNA, por sus siglas en inglés). El término SNA fue introducido

y estudiado por C. Grebogi, E. Ott, S. Pelikan, y J. A. Yorke, en el artı́culo Strange attractors

that are not chaotic [7]. Cabe mencionar que, antes de que la noción de SNA fuera formalizada,

ya existı́an construcciones de funciones que contenı́an objetos similares, algunas de ellas, se

pueden encontrar en [11], [12] y [16]. Pero, después de [7], el estudio de estos objetos se hizo

popular rápidamente y apareció un notable número de artı́culos estudiando diferentes modelos

en los cuales también aparecen dichos SNA. Posteriormente, en [10] fue publicado otro modelo

importante, el modelo de Keller, el cual es una versión abstracta del modelo contenido en [7].

Estrechamente ligados al estudio de dichos objetos, los autores Roberta Fabbri, Tobias Jäger,

Russell Johnson y Gerhard Keller publicaron el artı́culo A Sharkovskiı̆-type Theorem for Minimally

Forced Interval Maps [9]. En el mismo, el teorema de Sharkovskiı̆ fue extendido a una clase de

sistemas que son, esencialmente, funciones del intervalo forzadas cuasiperiodicamente. Antes

de describir, brevemente, las herramientas y conjuntos que se definen en [9], haremos un breve

resumen del Teorema de Sharkovskiı̆ y, mencionaremos algunas de sus consecuencias más im-

portantes.

Sharkovskiı̆ enunció y demostró su célebre teorema en el año 1964 en [14]. Este resultado

supuso, entre otros aspectos, el inicio del estudio de lo que hoy conocemos como dinámica com-

binatoria en el intervalo. En dicho teorema se introduce la siguiente ordenación de los números

naturales:

3 � 5 � 7 � 9 � . . . � 2 · 3 � 2 · 5 � 2 · 7 � 2 · 9 � . . . �

22 · 3 � 22 · 5 � 22 · 7 � 22 · 9 � . . . � 2n · 3 � 2n · 5 � 2n · 7 � 2n · 9 � . . . �

2∞ . . . � 2n � . . . � 23 � 22 � 2 � 1.

Observemos que el mı́nimo es 1 y el máximo es 3.Necesitamos incluir el sı́mbolo 2∞ para asegu-

rar la existencia del supremo de ciertos conjuntos, en particular el supremo de {1, 2, 4, . . . , 2n, . . . }
es 2∞.



Dado I un intervalo en la recta real, definiremos el conjunto C0(I, I) = {f : I → I :

f es una función contı́nua }. Fijada una función f ∈ C0(I, I) y un punto x ∈ I diremos que

{fn(x) : n ∈ N} es la órbita de x. Si existe m ∈ N tal que fm(x) = x diremos que la órbita de x

es periódica y si fk(x) 6= x para toda k < m, diremos que x tiene periodo m. Observemos que,

particularmente, una órbita A = {fn(x) : n ∈ N} es invariante pues satisface f(A) ⊂ A.
El teorema de Sharkovskiı̆, para I, afirma: Toda función f ∈ C0(I, I) que tiene una órbita

periódica de periodo q, también tiene una órbita periódica de periodo p ∈ N para cada p < q.

Recı́procamente, para cada q ∈ N ∪ {2∞} existe una función fq ∈ C0(I, I) tal que el conjunto de

puntos periódicos de fq es {p ∈ N : p < q}.
Este resultado establece que la existencia de órbitas periódicas, de un determinado periodo,

en una aplicación del intervalo ”fuerza” la existencia de órbitas periódicas de otros periodos.

Un refinamiento de este teorema es lo que conocemos como teorı́a del forcing de órbitas periódicas

en el intervalo.

Fijado un periodo, es inmediato observar que hay distintos tipos combinatorios de órbitas

del mismo periodo. Sea P = {p1 < . . . < pn} una órbita periódica de perı́odo n de una función

f del intervalo. Podemos asociar a la órbita periódica una permutación σ, de orden n (a partir

de ahora, n-ciclo) dada por σ(i) = j si y solo si f(pi) = pj . Asociamos ası́ a una órbita periódica

P de periodo n un n-ciclo σ al que llamamos pattern de P .

Diremos que un pattern σ fuerza otro pattern τ si toda función del intervalo que tiene una

órbita periódica con el pattern σ tiene también una órbita periódica con el pattern τ . La teorı́a

del forcing en el intervalo prueba que la anterior relación es una relación de orden parcial y

describe con exactitud el conjunto de patterns forzados por un pattern prefijado.

Volviendo al artı́culo [9], en él, el Teorema de Sharkovskiı̆ fue extendido a una clase de fun-

ciones triangulares en el cilindro. A fin de enunciar las principales propiedades de dicha clase y

objetos introducidos en dicho artı́culo, primero estableceremos un poco de notación.

Dados S1 = R/Z y I = [0, 1] ⊂ R, denotamos por Ω al Cilindro S1 × I. Escribiremos un

punto en Ω como (θ, x) donde θ ∈ S1 y x ∈ I. Denotaremos por S(Ω) a la clase de funciones

forzadas cuasiperiodicamente de Ω en Ω, que son de la forma: F (θ, x) = (R(θ), f(θ, x)) donde

R(θ) = θ + ω (mod 1), ω ∈ R\Q y f : Ω → I.
En [9] los autores consideran conjuntos invariantes, que no son órbitas periódicas de pun-

tos. Ni tan solo objetos minimales. Ellos consideran bandas periódicas, objetos que pasamos a

definir. Denotamos porAθ a la fibra de un subconjuntoA deΩ en un punto θ ∈ S1.Diremos que

una banda es un subconjunto cerrado A del cilindro, tal que Aθ es un intervalo para toda θ en un

residual de S1. Recordemos que G ⊆ S1 es un subconjunto residual si contiene la intersección de

una familia numerable de subconjuntos abiertos y densos de S1.

Por otro lado, dos bandasA yB satisfacenA < B (Definición 3.13 en [9]) si existe un conjunto

residualG ⊂ S1, tal que para toda (θ, x) ∈ A y (θ, y) ∈ B implica x < y para toda θ ∈ G.Diremos

que las bandas son ordenadas si, o bienA < B o bienA > B. Finalmente, decimos que una banda
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B ⊂ Ω es n-periódica, para una función F ∈ S(Ω) (Definición 3.15 en [9]), si Fn(B) = B y los

conjuntos imagen B,F 1(B), F 2(B), . . . , Fn−1(B) son disjuntos y ordenados en pares.

En el caso trivial en el que f no depende de θ las bandas periódicas son conjuntos de

cı́rculos en el cilindro que son obtenidos como productos del cı́rculo S1 multiplicado por órbitas

periódicas P (o órbitas periódicas de intervalos) de f , es decir: S1 × P.
El Teorema de Sharkovskiı̆ dado en [9] establece que toda función F ∈ S(Ω) que tiene una

banda q-periódica tiene también una banda p-periódica, para todo p ∈ N tal que q � p. Al igual

que en el caso del intervalo el recı́proco de éste teorema también es cierto. Basta tomar funciones

en las cuales la función en la segunda componente es desacoplada.

Nuestro primer objetivo, desarrollado en el Capı́tulo 1, es extender el teorema principal en [9]

para obtener una teorı́a del forcing entre patterns de bandas periódicas. Demostraremos que

la relación de forcing en el intervalo y en nuestra clase coinciden. Provaremos que una per-

mutación cı́clica τ fuerza ν como pattern en el intervalo si y solo si τ fuerza ν como pattern en el

cilindro (en el Teorema A enunciaremos una versión más precisa). Una consecuencia inmediata

del forcing entre patterns de bandas periódicas, es que tiene como corolario (Corolario 1.28) el

teorema de Sharkovskiı̆ para skew-products cuasiperiodicmente forzados en el cilindro provado

en [9]. Lo usaremos también en los resultados que mencionamos a continuación.

El Teorema A, nos da herramientas para estudiar la entropı́a de las funciones skew-product

forzadas cuasiperiodicamente en el cilindro. Recordemos que la entropı́a topológica és una me-

dida lo caótico que puede ser un sistema. Para ello definimos la noción de s-herradura para

skew-products forzados cuasiperiodicamente en el cilindro y demostramos, como en el caso

del intervalo, que si una función skew-product cuasiperiodicamente forzada en el cilindro tiene

una s-herradura entonces su entropı́a topologica es mayor o igual que log(s) (Teorema B). Ob-

servemos que éste teorema es importante, pues nos facilita el cálculo de cotas inferiores para la

entropı́a.

El concepto de s-herradura, es parte fundamental, para demostrar el resultado que establece

que si un skew-product forzado cuasiperiódicamente en el cilindro, tiene una órbita periódica,

con pattern τ, entonces h(F ) ≥ h(fτ ), donde fτ denota la función connect-the-dots en el intervalo

sobre una órbita periódica con pattern τ. Esto implica que si el periodo de τ es 2nq con n ≥ 0

y q ≥ 1 impar, entonces h(F ) ≥ log(λq)
2n , donde λ1 = 1 y, para toda q ≥ 3, λq es la raı́z más

grande del polinomio xq − 2xq−2 − 1. Aún más, para cada m = 2nq con n ≥ 0 y q ≥ 1 impar,

existe un skew-product cuasiperiodicamente forzado en el cilindro Fm con una órbita periódica

de periodo m tal que h(Fm) =
log(λq)

2n (Teorema C). Esto extiende el resultado análogo, para

funciones en el intervalo, a skew-products forzados cuasiperiodicamente en el cilindro.

El teorema de Sharkovskiı̆ para bandas periódicas remite de manera natural a las siguientes

preguntas ¿Es cierto el teorema de Sharkovskiı̆ para curvas periódicas? y más generalmente:

¿Es cierto que todo skew product forzado cuasiperiodicamente tiene una curva invariante? El

segundo capı́tulo de la memorı́a está dedicado a dar una respuesta negativa a ambas cuestiones
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(Teorema D). Concretamente construiremos un skew-product forzado cuasiperiódicamente que

tiene una curva 2-periódica y no tiene una curva invariante. En está construcción jugará un papel

muy relevante unos objetos que llamamos pseudo-curvas (llamadas bandas pinchadas núcleo

en [9]). La ventaja de usarlas es que se puede definir correctamente el espacio de pseudo-curvas,

que equipado con la métrica adecuada es completo. Éste es un hecho extraordinariamente útil

en la demostración del Teorema 2.45.

El capı́tulo se divide en tres partes. En la primera (Sección 2.2) desarrollamos una Teorı́a gene-

ral de las pseudo-curvas. Analizamos a las pseudo-curvas como un espacio métrico y demostramos

que es un espacio métrico completo. En la segunda parte (Sección 2.3), construimos una pseudo-

curva, que no es una curva, que jugará un papel esencial en nuestra construcción. En la tercera

parte (Secciones 2.4, 2.5, 2.6, 2.7) construimos la función que nos dejará invariante la pseudo-

curva y demostramos el Teorema D. Dada la dificultad técnica de algunos resultados necesarios

para la prueba del Teorema D, hemos pospuesto su demostración a las secciones 2.8, 2.9 y 2.10.

Finalmente, el Capı́tulo 1 ha sido publicado como artı́culo [2], en la revista Journal of Math-

ematical Analysis and Applications. El Capı́tulo 2 será enviado como artı́culo [3] a una revista

especializada.
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1

Entropy for skew-products in the cylinder

1.1 Introduction

In this chapter we want to study the coexistence and implications between periodic objects of

maps on the cylinder Ω = S1 × I, of the form:

F :

(
θ

x

)
−→

(
Rω(θ)

f(θ, x)

)
,

where S1 = R/Z, I = [0, 1], Rω(θ) = θ+ω (mod 1) with ω ∈ R\Q and f(θ, x) = fθ(x) is continu-

ous on both variables. To study this class of maps, in [9], were developed clever techniques that

lead to a theorem of the Sharkovskiı̆ type for this class of maps and periodic orbits of appropriate

objects.

We aim at extending these results and techniques to study the combinatorial dynamics (forc-

ing) and entropy of the skew-products from the class S(Ω) consisting on all maps of the above

type.

As already remarked in [9], instead of S1 we could take any compact metric space Θ that ad-

mits a minimal homeomorphism R : Θ −→ Θ such that R` is minimal for every ` > 1. However,

for simplicity and clarity we will remain in the class S(Ω).

Before stating the main results of this chapter, we will recall the extension of Sharkovskiı̆

Theorem to S(Ω) from [9], together with the necessary notation. We start by clarifying the notion

of a periodic orbit for maps from S(Ω). To this end we informally introduce some key notions

that will be defined more precisely in Section 1.2.

Let X be a compact metric space. A subset G ⊂ X is residual if it contains the intersection of

a countable family of open dense subsets in X.

In what follows, π : Ω −→ S1 will denote the standard projection from Ω to the circle.

Instead of periodic points we use objects that project over the whole S1, called strips in [9,

Definition 3.9]. A strip in Ω is a closed set B ⊂ Ω such that π(B) = S1 (i.e., B projects on the

whole S1) and π−1(θ) ∩ B is a closed interval (perhaps degenerate to a point) for every θ in a

residual set of S1.



Given two stripsA andB,we will writeA < B andA ≤ B ( [9, Definition 3.13]) if there exists

a residual set G ⊂ S1, such that for every (θ, x) ∈ A ∩ π−1(G) and (θ, y) ∈ B ∩ π−1(G) it follows

that x < y and, respectively, x ≤ y. We say that the strips A and B are ordered1 (respectively

weakly ordered) if either A < B or A > B (respectively A ≤ B or A ≥ B).

Given F ∈ S(Ω) and n ∈ N, a strip B ⊂ Ω is called n-periodic for F ( [9, Definition 3.15]), if

Fn(B) = B and the image setsB, F (B), F 2(B), . . . , Fn−1(B) are pairwise disjoint and pairwise

ordered.

To state the main theorem of [9] we need to recall the Sharkovskiı̆ Ordering ( [14, 15]). The

Sharkovskiı̆ Ordering is a linear ordering of N defined as follows:

3 Sh> 5 Sh> 7 Sh> 9 Sh> · · · Sh>

2 · 3 Sh> 2 · 5 Sh> 2 · 7 Sh> 2 · 9 Sh> · · · Sh>

4 · 3 Sh> 4 · 5 Sh> 4 · 7 Sh> 4 · 9 Sh> · · · Sh>

...

2n · 3 Sh> 2n · 5 Sh> 2n · 7 Sh> 2n · 9 Sh> · · · Sh>

...

· · · Sh> 2n Sh> · · · Sh> 16 Sh> 8 Sh> 4 Sh> 2 Sh> 1.

In the ordering Sh≥ the least element is 1 and the largest one is 3. The supremum of the set

{1, 2, 4, . . . , 2n, . . . } does not exist.

Sharkovskiı̆ Theorem for maps from S(Ω) 1 ( [9]) Assume that the map F ∈ S(Ω) has a p-periodic

strip. Then F has a q-periodic strip for every q <Sh p.

Our first main result (Theorem A) concerns the forcing relation. As we will see in detail, the

strips patterns of periodic orbits of strips of maps from S(Ω) can be formalized in a natural way

as cyclic permutations, as in the case of the periodic patterns for interval maps. Our first main

result states that a cyclic permutation τ forces a cyclic permutation ν as interval patterns if and

only if τ forces ν as strips patterns.

Since the Sharkovskiı̆ Theorem in the interval follows from the forcing relation, a corollary

of Theorem A is the Sharkovskiı̆ Theorem for maps from S(Ω).

Next, an s-horseshoe for maps from S(Ω) can be defined also in a natural way. Our second

main result (Theorem B) states that if a map F ∈ S(Ω) has an s-horseshoe then h(F ), the topo-

logical entropy of F , satisfies h(F ) ≥ log(s). This is a generalization of the well known result for

the interval.

The third main result of the chapter (Theorem C) states that if a map F ∈ S(Ω) has a periodic

orbit of strips with strips pattern τ, then h(F ) ≥ h(fτ ), where fτ denotes the connect-the-dots
1 This notion will be defined with greater detail but equivalently in Definition 1.17. We are giving here

this less technical definition just to simplify this general section.
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interval map over a periodic orbit with pattern τ . A corollary of this fact and the lower bounds

of the topological entropy of interval maps from [4] is that, if the period of τ is 2nq with n ≥ 0

and q ≥ 1 odd, then h(F ) ≥ log(λq)
2n , where λ1 = 1 and, for each q ≥ 3, λq is the largest root of

the polynomial xq − 2xq−2 − 1. Moreover, for every m = 2nq with n ≥ 0 and q ≥ 1 odd, there

exists a quasiperiodically forced skew-product on the cylinder Fm with a periodic orbit of strips

of period m such that h(Fm) =
log(λq)

2n .

The chapter is organized as follows. In Section 1.2 we introduce the notation and we state

the results in detail and in Section 1.3 we prove Theorem A Finally, in Section 1.4 we prove

Theorems B and C.

1.2 Definitions and statements of results

We start by recalling the notion of interval pattern and related results. Afterwards we will intro-

duce the natural extension to the class S(Ω) by defining the cylinder patterns.

In what follows we will denote the class of continuous maps from the interval I to itself by

C0(I, I).

1.2.1 Interval patterns

Given f ∈ C0(I, I), we say that p ∈ I is an n-periodic point of f if fn(p) = p and f j(p) 6= p for

j = 1, 2, . . . , n− 1. The set of points {p, f(p), f2(p), . . . , fn−1(p)} will be called a periodic orbit. A

periodic orbit P = {p1, p2, . . . , pn} is said to have the spatial labelling if p1 < p2 < · · · < pn. In

what follows, every periodic orbit will be assumed to have the spatial labelling unless otherwise

stated.

Definition 1.1 (Interval pattern). Let P = {p1 < p2 < · · · < pn} be a periodic orbit of a map

f ∈ C0(I, I) and let τ be a cyclic permutation over {1, 2, . . . , n}. The periodic orbit P is said to have the

(periodic) interval pattern τ if and only if f(pi) = pτ(i) for i = 1, 2, . . . , n. The period of P , n, will

also be called the period of τ .

Remark 1.2. Every cyclic permutation can occur as interval pattern.

To study the dynamics of functions from C0(I, I) we introduce the following ordering on the

set of interval patterns.

Definition 1.3 (Forcing). Given two interval patterns τ and ν, we say that τ forces ν, as interval

patterns, denoted by τ =⇒I ν, if and only if every f ∈ C0(I, I) that has a periodic orbit with interval

pattern τ also has a periodic orbit with interval pattern ν. By [1, Theorem 2.5], the relation =⇒I is a

partial ordering.

Next we define a canonical map for an interval pattern as follows.
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Definition 1.4 (τ -linear map). Let f ∈ C0(I, I) and let P = {p
1
, p

2
, . . . , p

n
} be an n-periodic orbit of

f with the spatial labelling (p1 < p2 < · · · < pn ). We define the P -linear map fP as the unique map in

C0(I, I) such that fP (pi) = f(p
i
) for i = 1, 2, . . . , n, fP is affine in each interval of the form [pi, pi+1]

for i = 1, 2, . . . , n − 1, and fP is constant on each of the two connected components of I\[p1, pn]. The

map fP is also called P -connect-the-dots map.

Observe that the map fP is uniquely determined by P and f
∣∣
P

.

Let τ be the pattern of the periodic orbit P. The map fP will also be called a τ -linear map and

denoted by fτ . Then the maps fτ are not unique but all maps fτ
∣∣
[minP,maxP ]

are topologically conjugate

and, thus, they have the same topological entropy and periodic orbits.

The next result is a useful characterization of the forcing relation of interval patterns in terms

of the τ -linear maps.

Theorem 1.5 (Characterization of the forcing relation). Let τ and ν be two interval patterns. Then,

τ =⇒I ν if and only if fτ has a periodic orbit with pattern ν.

1.2.2 Strips Theory

In this subsection we introduce a new (more restrictive) kind of strips with better properties and

we study the basic properties that we will need throughout the chapter. To introduce this new

kind of strips we first need to introduce the notion of a core of a set.

Given a compact metric space (X, d) we denote the set of all closed (compact) subsets of X

by 2X , and we endow this space with the Hausdorff metric

Hd(B,C) = max{max
b∈B

min
c∈C

d(c, b),max
c∈C

min
b∈B

d(c, b)}

= max{max
b∈B

d(b, C),max
c∈C

d(c,B)}.

It is well known that (2X , Hd) is compact. Also, given a set A we will denote the closure of A by

A.

Definition 1.6 ( [9]). Let M be a subset of 2Ω . We define the core of M , denoted M c, as⋂
G∈G(S1)

M ∩ π−1(G),

where G(S1) denotes the set of all residual subsets of S1. Observe that if M is compact, then M c ⊂ M

and, π(M) = S1 implies π(M c) = S1.

This definition of core is rather intrincate. Below we settle an equivalent and more useful

definition in the spirit of Lemma 3.2 and Remark 3.3 of [9]. The role of the resial of continuity

in this equivalent definition is stated without proof in [9] and, hence, we include the proof for

completeness.
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Let M ∈ 2Ω be such that π(M) = S1. We define the map φ
M
: S1 −→ 2I by φ

M
(θ) :=Mθ, and

G
M

:= {θ ∈ S1 : φ
M

is continuous at θ}. It can be easily seen that φ
M

is upper semicontinuous

(i.e. for every θ ∈ S1 and every open U ⊂ I such that φ
M
(θ) ⊂ U, {z ∈ S1 : φ

M
(z) ⊂ U} is open

in S1). Hence, by [8, Theorem 7.10], the set G
M

is residual. The set G
M

will be called the residual

of continuity of M .

Given G ⊂ S1 and a map ϕ : G −→ 2I, Graph(ϕ) := {(θ, ϕ(θ)) : θ ∈ G} ⊂ S1 × 2I denotes the

graph of ϕ. By abuse of notation we will identify Graph(ϕ) with the set
⋃
θ∈G{θ} × ϕ(θ). Hence,

we will consider Graph(ϕ) as a subset of Ω (or of G× I), and Graph(ϕ) is a compact subset of Ω.

Lemma 1.7. Let M be a compact subset of Ω. Then,

M c = Graph
(
φ
M

∣∣
G

)
=M ∩ π−1(G)

for every residual set G ⊂ G
M
. Moreover, M ∩ π−1(G) =M c ∩ π−1(G) and (M c)

c
=M c.

Proof. We start by proving the first statement of the lemma. Notice that if

M ∩ π−1(G
M
) ⊂M ∩ π−1(H) for every H ∈ G, (1.1)

then

M ∩ π−1(G) ⊂M ∩ π−1(G
M
) ⊂M c =

⋂
H∈G

M ∩ π−1(H) ⊂M ∩ π−1(G).

Hence, we only have to prove (1.1).

Let H ∈ G and let (θ, x) ∈ M ∩ π−1(G
M
) (i.e. θ ∈ G

M
and (θ, x) ∈ Mθ = φ

M
(θ)). Since

H is residual, it is dense in S1. Therefore, there exists a sequence {θn}∞n=1 ⊂ H converging

to θ. Since θ ∈ G
M

, φ
M

is continuous in θ. So, limφ
M
(θn) = φ

M
(θ) and, for every ε > 0

exists N ∈ N such that d
(
(θ, x), φ

M
(θn)

)
≤ Hd(φM (θ), φ

M
(θn)) < ε for every n ≥ N. Since

the sets φ
M
(θn) are compact, for every n ∈ N, there exists (θn, xn) ∈ φ

M
(θn) ⊂ M ∩ π−1(H)

such that d
(
(θ, x), (θn, xn)

)
= d

(
(θ, x), φ

M
(θn)

)
. Thus, lim(θn, xn) = (θ, x) and, hence, (θ, x) ∈

M ∩ π−1(H). This implies M ∩ π−1(G
M
) ⊂M ∩ π−1(H) which, in turn, implies (1.1).

By the first statement,

M ∩ π−1(G) ⊂M ∩ π−1(G) ∩ π−1(G) =M c ∩ π−1(G) ⊂M ∩ π−1(G).

Now, to end the proof of the lemma, take G̃ = G
M
∩G

Mc
, which is a residual set. By the part of

the lemma already proven we have,

(M c)
c
=M c ∩ π−1

(
G̃
)
=M ∩ π−1

(
G̃
)
=M c.

Now we are ready to define the notion of band.

Definition 1.8 (Band). Every strip A ⊂ Ω such that Ac = A will be called a band.
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Remark 1.9. In view of Lemma 1.7 a band could be equivalently defined as follows: A band is a

set of the form Graph(ϕ),where ϕ is a continuous map from a residual set of S1 to the connected

elements (intervals) of 2I.

Given F ∈ S(Ω), a strip A is F−invariant if F (A) ⊂ A and F−strongly invariant if F (A) = A.

As usual, the intersection of two F−invariant strips is either empty or an F−invariant strip. An

invariant strip is called minimal if it does not have a strictly contained invariant strip.

Remark 1.10. From Corollary 3.5 and Lemmas 3.10 and 3.11 of [9] it follows that the bands in Ω

have the following properties for every map from S(Ω):

(1) The image of a band is a band.

(2) Every invariant strip contains an invariant minimal strip.

(3) Every invariant minimal strip is a strongly invariant band.

Moreover, the Sharkovskiı̆ Theorem for maps from S(Ω) is indeed,

Sharkovskiı̆ Theorem for maps from S(Ω) 2 ( [9]) Assume that F ∈ S(Ω) has a p-periodic strip.

Then F has a q-periodic band for every q <Sh p.

Next we introduce a particular kind of bands that play a key role in this theory since they

allow us to better study and work with the bands.

Given a set A ⊂ Ω and θ ∈ Ω we will denote the set A ∩ π−1(θ) by Aθ.

Definition 1.11. A band A is called solid when Aθ is an interval for every θ ∈ S1 and δ(A) :=

inf{diam(Aθ) : θ ∈ S1} > 0. Also, A is called pinched if Aθ is a point for each θ in a residual subset of

S1.

Remark 1.12. From [9, Theorem 4.11] it follows that there are only two kind of strongly invariant

bands: solid or pinched.

Despite of the fact that the above notion of pinched band is completely natural, for several

reasons that will become clear later (see also [3]) we prefer to view the pinched bands as pseudo-

curves in the spirit of Remark 1.9:

Definition 1.13. Let G be a residual set of S1 and let ϕ : G −→ I be a continuous map from G to I. The

set Graph(ϕ) will be called a pseudo-curve.

The next remark summarizes the basic properties of the pseudo-curves.

Remark 1.14. The following properties of the pseudo-curves are easy to prove:

(1) Every pseudo-curve is a band. In particular π
(
Graph(ϕ)

)
= S1.
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(2) The image of a pseudo-curve is a pseudo-curve. Moreover, every invariant pseudo-curve is

strongly invariant and minimal.

Now assume that Graph(ϕ) is a pseudo-curve where ϕ is a map from G to I. Then,

(3) G
Graph(ϕ)

⊃ G (see e.g. [13, Lemma 7.2]).

(4) Graph(ϕ) ∩ π−1(G) = Graph(ϕ).

Next we want to define a partial ordering in the set of strips. We recall that a map g from

S1 to I is lower semicontinuous (respectively upper semicontinuous) at θ ∈ S1 if for every λ < g(θ)

(respectively λ > g(θ)) there exists a neighbourhood V of θ such that λ < g(V ) (respectively

λ > g(V )). When this condition holds at every point in S1 g is said to be lower semicontinuous on

S1 (respectively upper semicontinuous on S1).

Definition 1.15 ( [9, Definition 4.1(a)]). Given A ∈ 2Ω such that π(A) = S1 we define the functions

M
A
(θ) := max{x ∈ I : (θ, x) ∈ A}

m
A
(θ) := min{x ∈ I : (θ, x) ∈ A}.

It can be seen that M
A

is an upper semicontinuous function from S1 to I and m
A

is a lower semicontinu-

ous function from S1 to I. From [8, Theorem 7.10], each of the functions m
A

and M
A

is continuous on a

residual set of S1.We denote byGm
A

(respectivelyG
M
A

) the residual set of continuity ofm
A

(respectively

M
A

).

Remark 1.16. If A is a pseudo-curve, it follows from [13, Lemma 7.2] that G
A
= G

M
A

= G
m
A

=

{θ ∈ S1 : M
A
(θ) = m

A
(θ)} (that is, A is pinched in G

A
= G

M
A
= G

m
A

) and, hence,

A = Graph

(
M

A

∣∣
G
M
A

)
= Graph

(
m
A

∣∣
Gm

A

)
.

Definition 1.17 ( [9, Definition 3.13]). Given two strips A and B we write A < B (respectively

A ≤ B) if there exists a residual set G in S1 such that M
A
(θ) < m

B
(θ) (respectively M

A
(θ) ≤ m

B
(θ))

for all θ ∈ G. We say that two strips are ordered (respectively weakly ordered) if either A < B or

A > B (respectively A ≤ B or A ≥ B).

Remark 1.18. It follows from the definition that two (weakly) ordered strips have pairwise dis-

joint interiors.

The above ordering can be better formulated in terms of the covers of a strip.
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Definition 1.19. Let A ⊂ Ω be a strip. We define the top cover of A as the pseudo-curve defined by

M
A

∣∣
G
M
A

:

A+ := Graph

(
M

A

∣∣
G
M
A

)
,

and the bottom cover of A as the pseudo-curve defined by m
A

∣∣
Gm

A

:

A− := Graph

(
m
A

∣∣
Gm

A

)
.

Remark 1.20. The sets A+ and A− are bands but in general do not coincide with Graph (M
A
) and

Graph (m
A
) respectively. Moreover, if A is a pseudo-curve then, from Remark 1.16, A+ = A− =

A.

Remark 1.21. Let A and B be two strips. By Remark 1.16 we have, A < B if and only if A+ < B−

and A ≤ B if and only if A+ ≤ B−.

To end this subsection we introduce the useful notion of band between two pseudo-curves. Al-

though this definition is inspired in the definition of a basic strip from [9] (see Definition 1.39) we

follow our approach based in pseudo-curves.

Definition 1.22. Let A and B be pseudo-curves such that A < B. We define the band between A and

B as:

E
AB

:=
⋃

θ∈G
M
A
∩Gm

B

{θ} × (M
A
(θ),m

B
(θ)).

The properties of the set E
AB

are summarized by:

Lemma 1.23. Let A and B be pseudo-curves such that A < B. Then,

(a) E−
AB

= A and E+
AB

= B. Moreover, (E
AB

)
θ
= {θ} × [M

A
(θ),m

B
(θ)] for every θ ∈ G

M
A
∩G

m
B
.

(b) E
AB

is a band.

(c) E
AB

:= Int (E
AB

). In particular, E
AB

has non-empty interior.

Proof. From the definition of E
AB

it follows that

Graph

(
M

A

∣∣
G
M
A
∩Gm

B

)
⊂ E

AB
.

Thus,

A = Ac = Graph

(
M

A

∣∣
G
M
A
∩Gm

B

)
⊂ E

AB

12



by Remarks 1.14(1) and 1.16 and Lemma 1.7. Consequently, m
E
AB
≤ m

A
. Now we will prove

that m
E
AB
≥ m

A
and, hence, m

E
AB

= m
A
. To see this note that, for every θ ∈ S1, there exists a

sequence

{(θn, xn)}n∈N ⊂
⋃

θ∈G
M
A
∩Gm

B

{θ} × (M
A
(θ),m

B
(θ))

which converges to (θ,m
E
AB

(θ)). Observe that xn ≥ M
A
(θn) ≥ m

A
(θn) for every n. Therefore,

by Remark 1.16 m
E
AB

(θ) = limn xn ≥ lim infnmA
(θn) ≥ mA(θ).

Since m
E
AB

= m
A

, from Definition 1.19 and Remark 1.16 it follows that E−
AB

= A.

In a similar way we get that M
E
AB

=M
B

and E+
AB

= B.

Then, by the part already proven and Remark 1.16,

(E
AB

)
θ
= {θ} × [M

A
(θ),m

B
(θ)] for every θ ∈ G

M
A
∩G

m
B
. (1.2)

This ends the proof of (a).

Now we prove (b). From the previous statement it follows thatE
AB

is a strip. Hence, we have

to show that (E
AB

)
c
= E

AB
which, by Definition 1.6, it reduces to prove that E

AB
⊂ (E

AB
)
c
.

Moreover, it is enough to show that

Eθ
AB
⊂ (E

AB
)
c for every θ ∈ G

M
A
∩G

m
B

(1.3)

because, by (1.2),

E
AB
⊂

⋃
θ∈G

M
A
∩Gm

B

Eθ
AB
⊂ (E

AB
)
c
= (E

AB
)
c
.

To prove (1.3) observe that, since G
M
A
∩G

m
B
∩G

E
AB

is a residual set (contained in G
E
AB

),

from Lemma 1.7 we get

(E
AB

)
c
= E

AB
∩ π−1

(
G
M
A
∩Gm

B
∩G

E
AB

)
=

⋃
θ∈G

M
A
∩Gm

B
∩G

E
AB

Eθ
AB
. (1.4)

In particular, ⋃
θ∈G

M
A
∩Gm

B
∩G

E
AB

Eθ
AB
⊂ (E

AB
)
c
.

Fix θ ∈
(
G
M
A
∩G

m
B

)
\G

E
AB
. Since G

M
A
∩ G

m
B
∩ G

E
AB

is a residual set, there exists a

sequence {θn}∞n=1 ⊂ G
M
A
∩ G

m
B
∩ G

E
AB

whose limit is θ. The continuity of the functions M
A

and m
B

in G
M
A
∩ Gm

B
implies that limM

A
(θn) = M

A
(θ) and limm

B
(θn) = m

B
(θ). Therefore,

again by (1.2), every point ofEθ
AB

is limit of points in {Eθn
AB
}∞n=1. This implies thatEθ

AB
⊂ (E

AB
)
c

by (1.4). This ends the proof of (b).

To prove (c) observe that Int (E
AB

) ⊂ E
AB
. So, it is enough to show that⋃

θ∈G
M
A
∩Gm

B

{θ} × (M
A
(θ),m

B
(θ)) ⊂ Int (E

AB
) .

13



Take (θ, x) ∈ {θ} × (M
A
(θ),m

B
(θ)) with θ ∈ G

M
A
∩G

m
B
. Since x 6= M

A
(θ) and x 6= m

B
(θ),

there exists ε > 0 such that x > M
A
(θ)+ ε and x < m

B
(θ)− ε. On the other hand, the continuity

of M
A

and m
B

on G
M
A
∩ G

m
B

implies that there exist δ > 0 such that θ′ ∈ G
M
A
∩ G

m
B

and

|θ − θ′| < δ implies |M
A
(θ)−M

A
(θ′)| < ε and |m

B
(θ)−m

B
(θ′)| < ε. Now we define

r := min {δ, |x−M
A
(θ)− ε|, |x−m

B
(θ) + ε|} > 0.

Observe that, with this choice of r, M
A
(θ) + ε ≤ x− r < x+ r ≤ m

B
(θ)− ε.

Let U := {(θ′, y) ∈ Ω : |θ − θ′| < r and |x − y| < r} be an open neighbourhood of (θ, x). We

will prove that every (θ′, y) ∈ U belongs to E
AB
. If θ′ ∈ G

M
A
∩G

m
B
, from the choice of δ and r,

it follows that (θ′, y) ∈ {θ′} × (x− r, x+ r) ⊂ {θ′} × [M
A
(θ′),m

B
(θ′)] ⊂ E

AB
. Now assume that

θ′ /∈ G
M
A
∩ Gm

B
and consider a sequence {θn}n∈N ⊂ G

M
A
∩ Gm

B
∩ (θ − r, θ + r) converging

to θ′. Clearly, (θn, y) ∈ U for every n ∈ N and, by the part already proven, (θn, y) ∈ E
AB
.

Consequently, since E
AB

is closed, (θ′, y) = lim(θn, y) ∈ EAB .

1.2.3 Strip patterns

In this subsection we define the notion of strips pattern and forcing for maps from S(Ω) along

the lines of Subsection 1.2.1.

Definition 1.24 ( [9, Definition 3.15]). Let F ∈ S(Ω). We say that a strip A ⊆ Ω is a p-periodic

strip if F p(A) = A and the strips A,F (A), . . . , F p−1(A) are pairwise disjoint and ordered. The set

{A,F (A), . . . , F p−1(A)} is called an n-periodic orbit of strips.

By Remarks 1.10 and 1.12, it follows that we can restrict our attention to two kind of periodic orbit of

bands: the solid ones and the pseudo-curves.

A periodic orbit of strips {B1, B2, . . . , Bp} is said to have the spatial labelling if B1 < B2 <

. . . < Bp. In what follows we will assume that every periodic orbit of strips has the spatial

labelling.

Definition 1.25 (Strip pattern). Let F ∈ S(Ω) and let B = {B1, B2, . . . , Bn} be a periodic orbit of

strips. The strips pattern of B is the permutation τ such that F (Bi) = Bτ(i) for every i = 1, 2, . . . , n.

When a map F ∈ S(Ω) has a periodic orbit of strips with strips pattern τ we say that F exhibits the

pattern τ .

Remark 1.26. Interval and strips patterns are formally the same algebraic objects; that is cyclic

permutations.

Definition 1.27 (Forcing). Let τ and ν be strips patterns. We say that τ forces ν in Ω, denoted by

τ =⇒Ω ν, if and only if every map F ∈ S(Ω) that exhibits the strips pattern τ also exhibits the quasiperi-

odic pattern ν.
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The next theorem is the first main result of this chapter. It characterizes the relation =⇒Ω by

comparison with =⇒I .

Theorem A Let τ and ν be patterns (both in I and Ω). Then,

τ =⇒I ν if and only if τ =⇒Ω ν.

The first important consequence of Theorem A is the next result which follows from the fact

that the Sharkovskiı̆ theorem is a corollary of the forcing relation for interval maps.

Corollary 1.28. The Sharkovskiı̆ Theorem for maps from S(Ω) holds.

Proof. Assume that F ∈ S(Ω) exhibits a p-periodic strips pattern τ and let q ∈ N be such that

p Sh> q. By [1, Corollary 2.7.4], τ =⇒I ν for some strips pattern ν of period q. Then, by Theo-

rem A, τ =⇒Ω ν and, by definition, F also has a q-periodic orbit of strips (with strips pattern ν).

Then the corollary follows from Remark 1.10(2,3).

Next we are going to study the relation between the forcing relation and the topological

entropy of maps from S(Ω). To this end we introduce the notion of horseshoe in S(Ω).

Let F ∈ S(Ω) and let A and B be bands in Ω. We say that A F -covers B if either F (A−) ≤ B−

and F (A+) ≥ B+, or F (A−) ≥ B+ and F (A+) ≤ B−.

Definition 1.29 (Horseshoe). An s-horseshoe for a map F ∈ S(Ω) is a pair (J,D) where J is a band

and D is a set of s ≥ 2 pairwise weakly ordered bands, each of them with non-empty interior, such that

L F−covers J for every L ∈ D. Observe that, by Remark 1.18, the elements of D have pairwise disjoint

interiors.

The next theorem is the second main result of the chapter. It relates the topological entropy

of maps from S(Ω) with horseshoes.

Theorem B Assume that F ∈ S(Ω) has an s-horseshoe. Then

h(F ) ≥ log(s).

Next we want to introduce a class of maps that play the role of the connect-the-dots maps

in the interval case and use them to study the topological entropy in relation with the periodic

orbits of strips.

Definition 1.30 (Quasiperiodic τ -linear map). Given a strips pattern τ we define a quasiperiodic

τ -linear map Fτ ∈ S(Ω) as:

Fτ (θ, x) := (Rω(θ), fτ (x))

where Rω is the irrational rotation by angle ω and fτ is a τ -linear interval map (Definition 1.4 — recall

that τ is also an interval pattern).
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Remark 1.31. Since, by definition, fτ has a periodic orbit with interval pattern τ, Fτ has a periodic

orbit of bands (in fact curves which are horizontal circles) with strips pattern τ.

The next main result shows that the quasiperiodic τ -linear maps have minimal entropy

among all maps from S(Ω) which exhibit the strips pattern τ , again as in the interval case.

Theorem C Assume that F ∈ S(Ω) exhibits the strips pattern τ . Then

h(F ) ≥ h(Fτ ) = h(fτ ).

Theorem C has an interesting consequence concerning the entropy of strips patterns that we

define as follows.

Definition 1.32 (Entropy of strips patterns). Given a strips pattern τ we define the entropy of τ as

h(τ) := inf{h(F ) : F ∈ S(Ω) and F exhibits the strips pattern τ}.

With this definition, in view of the Remark 1.31, Theorem C can be written as follows:

Theorem C Assume that F ∈ S(Ω) exhibits the strips pattern τ . Then

h(τ) = h(Fτ ) = h(fτ ).

By [1, Corollary 4.4.7] and [1, Lemma 4.4.11] we immediately get the following simple but

important corollary of Theorem C which will allow us to obtain lower bounds of the topological

entropy depending on the set of periods.

Corollary 1.33. Assume that τ and ν are strips patterns such that τ =⇒Ω ν. Then h(τ) ≥ h(ν).

Corollary 1.34. Assume that F ∈ S(Ω) has a periodic orbit of strips of period 2nq with n ≥ 0 and q ≥ 1

odd. Then,

h(F ) ≥ log(λq)

2n

where λ1 = 1 and, for each q ≥ 3 odd, λq is the largest root of the polynomial xq − 2xq−2 − 1. Moreover,

for every m = 2nq with n ≥ 0 and q ≥ 1 odd, there exists a map Fm ∈ S(Ω) with a periodic orbit of

bands of period m such that h(Fm) =
log(λq)

2n .

Proof. Let τ denote the strips pattern of a periodic orbit of strips of F of period 2nq. By Theo-

rem C and [4] (see also Corollaries 4.4.7 and 4.4.18 of [1]) we get that

h(F ) ≥ h(fτ ) ≥
log λq
2n

.

To prove the second statement we use [1, Theorem 4.4.17]: for every m = 2nq there exists a

primary pattern νm of period m such that h(fνm) =
log λq

2n . Then, from Theorem C, we can take

Fm = Fνm .
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1.3 Proof of Theorem A

To prove Theorem A we need some more notation and preliminary results.

An important tool in the study of patterns is the Markov graph. Signed Markov graphs are a

specialization of Markov graphs. Next we define them and clarify the relation with our situation.

A a combinatorial (directed) signed graph is defined as a pair G = (V,A) where V is a finite set,

called the set of vertices, and A ⊂ V × V × {+,−} is called the set of signed arrows. Given a signed

arrow α = (I, J, s) ∈ A, I is the beginning of α, J is the end of α and s is the sign of α. Such an

arrow α is denoted by I s−→ J.

1.3.1 Signed Markov graphs in the interval

We start by introducing the notion of signed covering. In what follows, Bd(A) will denote the

boundary of A.

Definition 1.35. Let f ∈ C0(I, I) and let I, J ⊂ I be two intervals. We say that I positively F -covers

J , denoted by I +−−→ J (or I +−−→
f

J if we need to specify the map), if f(min I) ≤ min J < max J ≤

f(max I) and, analogously, we say that I negatively F -covers J , denoted by I −−−→ J (or I −−−→
f

J), if

f(max I) ≤ min J < max J ≤ f(min I). Observe that if I s1−−→ J1 and I s2−−→ J2 then s1 = s2.

We will write I s1==−→ J or I s1==−→
f

J to denote that f(I) = J and I s1−−→
f

J (in particular,

f(Bd(I)) = Bd(J)).

We associate a signed graph to a periodic orbit of an interval map as follows.

Definition 1.36. Let f ∈ C0(I, I) and let P be a periodic orbit f . A P -basic interval is the closure of

a connected component of [minP,maxP ]\P. The P -signed Markov graph of f is the combinatorial

signed graph that has the set of all basic intervals as set of vertices V and the signed arrows in A are the

ones given by Definition 1.35.

Remark 1.37. Observe that the P -signed Markov graph of f depends only on f
∣∣
P

or more pre-

cisely on the pattern of P . It does not depend on the concrete choice of the points of P and on

the graph of f outside P . Consequently, if P is a periodic orbit of f ∈ C0(I, I) and Q is a peri-

odic orbit of g ∈ C0(I, I) with the same pattern then the P -signed Markov graph of f and the

Q-signed Markov graph of g coincide. In particular, the P -signed Markov graph of f and the

P -signed Markov graph of fP coincide.

1.3.2 Signed Markov graphs inΩ

Now we also associate a signed graph to a periodic orbit of strips. We start by defining the

notion of signed covering for bands. It is an improvement of the notion of F -covering introduced

before.

17



Definition 1.38 (Signed covering [9, Definition 4.14]). Let F ∈ S(Ω) and let A and B be bands in

Ω. We say that A positively F -covers B, denoted by A +−−→ B (or A +−−→
F

B if we need to specify the

map), if2 F (A−) ≤ B− and F (A+) ≥ B+ and, analogously, we say that A negatively F -covers B,

denoted by A −−−→ B (or A −−−→
F

B), if F (A−) ≥ B+ and F (A+) ≤ B−.

Observe that, as in the interval case (see Definition 1.35), if A s1−−→ B1 and A s2−−→ B2, then s1 = s2.

We will write A s1==−→ B or A s1==−→
F

B to denote that F (A) = B and A s1−−→
F

B.

Next, by using the notion of band between two pseudo-curves, we will define the analogous

of basic interval (basic band) and signed Markov graph for maps from S(Ω).

Definition 1.39. Let F ∈ S(Ω) and let B = {B1, B2, . . . , Bn} be a periodic orbit of strips of F with the

spatial labelling (that is, B1 < B2 < · · · < Bn). For every i = 1, 2, . . . , n− 1 the band (see Remark 1.21

and Lemma 1.23)

I
BiBi+1

:= E
B

+
i
B
−
i+1

= Int

(
E
B

+
i
B
−
i+1

)
will be called a basic band. Observe that, from Lemma 1.23(a), I−

BiBi+1
= B+

i and I+
BiBi+1

= B−i+1.

The B-signed Markov graph of F is the combinatorial signed graph that has the set of all basic

bands as set of vertices V and the signed arrows in A are the ones given by Definition 1.38.

Clearly, all the basic bands are contained in E
B1Bn

, I
BiBi+1

≤ I
Bi+1Bi+2

for i = 1, 2, . . . , n− 2

and if I
BiBi+1

∩ I
BjBj+1

6= ∅ then |i− j| = 1.

Remark 1.40. As in the interval case (see Remark 1.37) the P -signed Markov graph of F is a

pattern invariant. Moreover, if P is a periodic orbit of F ∈ S(Ω) and Q is a periodic orbit of the

interval map f ∈ C0(I, I) with the same pattern, then the P -signed Markov graph of F and the

Q-signed Markov graph of f coincide. In particular, the P -signed Markov graph of F and the

P -signed Markov graph of fP coincide.

The following lemma summarizes the properties of basic bands and arrows. We will use it

in the proof of Theorem A.

Lemma 1.41. The following statements hold.

(a) Let F ∈ S(Ω) and let A and B be bands such that there is a signed arrow A
s−→ B from A to B in

the signed Markov graph of F . Then,

(a.1) F (A) ⊃ B.

(a.2) A s−→ D for every band D ⊂ B.

(a.3) There exists a band C ⊂ A such that C s
==−→ B. Moreover, F (C+) ⊂ B+ and F (C−) ⊂ B−

if s = +, and F (C−) ⊂ B+ and F (C+) ⊂ B− if s = −.
2 Although these definitions are formally different from [9, Definition 4.14], they are equivalent by [9,

Lemma 4.3(c,d)] and the definitions of the weak ordering of strips.
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(a.4) Assume that A s−→ B̃ with B ≤ B̃ and let C and C̃ denote the bands given by (a.3) for B and

B̃ respectively. Then, C ≤ C̃ if s = +, and C ≥ C̃ if s = −.
(b) Let F ∈ S(Ω) and let A be a band such that A ±−−→ A. Then there exists a band A∞ ⊂ A such that

A∞
±

==−→ A∞.

Proof. Statement (a.1) is [9, Lemma 4.15] and (a.2) follows directly from the definitions. State-

ments (a.3,4) are [9, Lemma 4.19] while statement (b) is [9, Lemma 4.21].

1.3.3 Loops of signed Markov graphs

Given a combinatorial signed Markov graph G, a sequence of arrows

α = I0
s0−−→ I1

s1−−→ · · · sm−1−−−−→ Im−1

will be called a path of length m. The length of α will be denoted by |α|. When a path be-

gins and ends in the same vertex (i.e. Im−1 = I0) it will be called a loop. Observe that, then

I1
s1−−→ I2

s2−−→ · · · sm−2−−−−→ Im−1
sm−−→ I1 is also a loop in G. This loop is called a shift of α and

denoted by S(α). For n ≥ 0, we will denote by Sn the n-th iterate of the shift. That is,

Sn(α) = Ij0
sj0−−−→ Ij1

sj1−−−→ Ij2
sj2−−−→ · · ·

sjm−2−−−−−→ Ijm−1
,

where jr = r + n (mod m). Note that Skm(α) = α for every k ≥ 0.

Let α = I0
s0−−→ I1

s1−−→ · · · sm−2−−−−→ Im−1 and β = J0
r0−−→ J1

r1−−→ · · · rl−2−−−→ Jl−1 be two

paths such that the last vertex of α coincides with the first vertex of β (i.e. Im−1 = J0). The path

I0
s0−−→ I1

s1−−→ · · · sm−1−−−−→ J0
r0−−→ J1

r1−−→ · · · rl−1−−−→ Jl−1 is the concatenation of α and β and is

denoted by αβ. In this spirit, for every n ≥ 1, αn will denote the concatenation of α with himself

n-times. the path αn will be called the n-repetition of α. Also, α∞ will denote the infinite path

ααα · · · .
A loop is called simple if it is not a repetition of a shorter loop. Observe that, in that case, the

length of the shorter loop divides the length of the long one.

The next lemma translates the non-repetitiveness of a loop to conditions on its liftings. Its

proof is folk knowledge.

Lemma 1.42. Let α be a signed loop of length n in a combinatorial signed Markov graphG. If α is simple,

Si(α) 6= Sj(α) for every i 6= j.

Given a path α = I0
s0−−→ I1

s1−−→ . . . Im−1
sm−1−−−−→ Im we define the sign of α, denoted by

Sign(α), as
∏m
i=1 si, where in this expression we use the obvious multiplication rules:

+ ·+ = − · − = +, and

+ ·− = − ·+ = −.
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Finally we introduce a (lexicographical) ordering in the set of paths of signed combinatorial

graphs. To this end we start by introducing a linear ordering in the set of vertices. This ordering

is arbitrary but fixed.

In the case of Markov graphs, the spatial labelling of orbits induces a natural ordering in

the set of basic intervals or basic bands, which is the ordering that we are going to adopt. More

precisely, if P = {p0, p1, . . . , pn−1} is a periodic orbit with the spatial labelling, then we endow

the set of vertices (basic intervals) of the associated signed Markov graph with the following

ordering:

[p0, p1] < [p1, p2] < · · · < [pn−2, pn−1].

Analogously, if B = {B0, B1, . . . , Bn−1} is a periodic orbit of strips with the spatial labelling,

then we endow the set of vertices (basic intervals) of the associated signed Markov graph with

the following ordering:

I
B0B1

< I
B1B2

< · · · < I
Bn−2Bn−1

.

Then, the above ordering in the set of vertices naturally induces a lexicographical ordering in

the set of paths of the signed combinatorial graph as follows. Let

α = I0
s0−−→ I1

s1−−→ · · · In−1
sn−1−−−−→ In and

β = J0
r0−−→ J1

r1−−→ · · ·Jm−1
rm−1−−−−→ Jm

be paths such that there exists k ≤ min{n,m} with Ik 6= Jk and Ii = Ji for i = 0, 1, . . . , k − 1

(recall that, by Definition 1.35, if Ii = Ji then the signs si and ri of the corresponding arrows

coincide). We write α < β if and only ifIk < Jk when s = +, or

Ik > Jk when s = −,

where s = Sign
(
I0

s0−−→ I1
s1−−→ · · · Ik−1

sk−1−−−−→ Ik

)
= s0s1 · · · sk−1.

Next we relate the loops in signed Markov graphs with periodic orbits.

Definition 1.43. Let f ∈ C0(I, I) and let p be a periodic point of f and let

α = J0
s0−−→ J1

s1−−→ · · · Jn−1
sn−1−−−−→ J0

be a loop in the P -signed Markov graph of f. We say that α and p are associated if p has period n and

f i(p) ∈ Ji for every i = 0, 1, . . . , n − 1. Observe that in such case Sm(α) and fm(p) are associated for

all m ≥ 1.

The next lemma relates the ordering of periodic points with the ordering of the associated

loops. Its proof is a simple exercise.
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Lemma 1.44. Let f ∈ C0(I, I) and let fP be a P -linear map, where P is a periodic orbit. Let x and y be

two distinct periodic points of fP associated respectively to two distinct loops α and β in the P -signed

Markov graph of fP . Then x < y if and only if α < β. Consequently, for every n ≥ 1, fn(x) < fn(y) if

and only if Sn(α) < Sn(β).

The next lemma is folk knowledge but we include the proof because we are not able to

provide an explicit reference for it.

Lemma 1.45. Let τ be a pattern and let fτ = fP be a P -linear map, where P is a periodic orbit of fP of

pattern τ. Assume that {q0, q1, q2, . . . , qm} is a periodic orbit of fτ with pattern ν 6= τ. Then there exists

a unique loop α in the P -signed Markov graph of fP associated to q0. Moreover, α is simple.

Proof. The existence and unicity of the loop α follows from [1, Lemma 1.2.12]. We have to show

that α is simple. Assume that α is the k repetition of a loop

β = J0
s0−−→ J1

s1−−→ · · · J`−1
s`−1−−−→ J0

of length ` with k ≥ 2 and m = k`. By [1, Lemma 1.2.6], there exist intervals K0 ⊂ J0,K1 ⊂
J1, . . . ,K`−1 ⊂ J`−1 such tat Ki

si==−→ Ki+1 for i = 0, 1, . . . , ` − 2 and K`−1
s`−1

==−→ J0. Clearly,

since fP is P -linear, f `P
∣∣
K0

is an affine map from K0 onto J0. On the other hand, since q0 is

associated to α = βk it follows that f iP (q0), f
i+`
P (q0), . . . , f

i+(k−1)`
P (q0) ∈ Ji for i = 0, 1, . . . , ` −

1 and, consequently, q0, f
`
P (q0), . . . , f

(k−1)`
P (q0) ∈ K0. Consequently, since f `P

(
f

(k−1)`
P (q0)

)
=

fmp (q0) = q0, it follows that {q0, f
`
P (q0), . . . , f

(k−1)`
P (q0)} is a periodic orbit f `P

∣∣
K0

with period

k ≥ 2. The affinity of f `P
∣∣
K0

implies that f `P
∣∣
K0

is decreasing with slope -1 and k = 2. The fact

that f `P
∣∣
K0

(K0) = J0 implies that K0 = J0 and the endpoints of J0 are also a periodic orbit

of f `P
∣∣
K0

of period 2. In this situation P and {q0, q1, q2, . . . , qm} both have the same period and

pattern; a contradiction.

Now we want to extend the notion of associated periodic orbit and loop and Lemma 1.44 to

periodic orbits of strips.

Definition 1.46. Let F ∈ S(Ω) and let and let B be a periodic orbit of strips of F . We say that a loop

α = J0
s0−−→ J1

s1−−→ · · · Jn−1
sn−1−−−−→ J0

in the B-signed Markov graph of F and a strip A are associated if A is an n−periodic strip of F and

F i(A) ∈ Ji for every i = 0, 1, . . . , n − 1. Observe that in such case Sm(α) and Fm(A) are associated

for all m ≥ 1.

The next lemma extends Lemma 1.2.7 and Corollary 1.2.8 of [1] to quasiperiodically forced

skew products on the cylinder.
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Lemma 1.47. Let F ∈ S(Ω) and let J0, J1, . . . , Jn−1 be basic bands such that

α = J0
s0−−→ J1

s1−−→ · · · Jn−1
sn−1−−−−→ J0

is a simple loop in a signed Markov graph of F. Then there exists a periodic band C ⊂ J0 associated to

α (and hence of period n). Moreover, for every i, j ∈ {0, 1, . . . , n − 1}, F i(C) < F j(C) if and only if

Si(α) < Sj(α).

Proof. Let A be a basic band and let B1 ≤ B2 ≤ · · · ≤ Bm be all basic bands F -covered by

A. By Lemma 1.41(a.3,4) there exist bands K(A,B1) ≤ K(A,B2) ≤ · · · ≤ K(A,Bm) contained

in A such that K(A,Bi)
sA==−→ Bi for i = 1, 2, . . . ,m, where sA denotes the sign of all arrows

A
sA−−→ Bi (see Definition 1.38).

Now we recursively define a family of 2n bands in the following way. We set K2n−1 :=

K(Jn−1, J0) ⊂ Jn−1 so that K2n−1
sn−1

==−→ J0.

Then, assume that Kj ⊂ Jj (mod n) have already been defined for j = i+ 1, i+ 2, . . . , 2n− 1

and i ∈ {0, 1, . . . , 2n − 2}. Since Jı̃
sı̃−−→ Ji+1 (mod n) with ı̃ = i (mod n), by Lemma 1.41(a.2,3),

there exists a band Ki ⊂ K
(
Jı̃, Ji+1 (mod n)

)
⊂ Jı̃ such that Ki

sı̃==−→ Ki+1.

Now we claim that for every i, j ∈ {0, 1, . . . , n− 1} Si(α) < Sj(α) is equivalent to Ki ≤ Kj .

If Si(α) 6= Sj(α) there exists k ∈ {0, 1, . . . , n− 1} such that

Si(α) = Ji
si−−→ Ji+1

si+1−−−→ · · ·Jk+i−1
sk+i−1−−−−−→ Jk+i

sk+i−−−→ Jk+i+1 · · · and

Sj(α) = Ji
si−−→ Ji+1

si+1−−−→ · · ·Jk+i−1
sk+i−1−−−−−→ Jk+j

sk+j−−−→ Jk+j+1 · · ·

with Jk+i (mod n) 6= Jk+j (mod n) (where every sub-index in the above paths must be read mod-

ulo n). By construction, Kk+i ⊂ Jk+i (mod n) and Kk+j ⊂ Jk+j (mod n). Hence, Kk+i ≤ Kk+j if

and only if Jk+i (mod n) < Jk+j (mod n). By definition

Kk+i−1

sk+i−1 (mod n)
==−→ Kk+i and Kk+i−1 ⊂ K

(
Jk+i−1 (mod n), Jk+i (mod n)

)
,

and

Kk+j−1

sk+i−1 (mod n)
==−→ Kk+j and Kk+j−1 ⊂ K

(
Jk+i−1 (mod n), Jk+j (mod n)

)
.

Thus, Kk+i−1 ≤ Kk+j−1 if and only if Kk+i ≤ Kk+j and sk+i−1 (mod n) = +. So, Kk+i−1 ≤
Kk+j−1 if and only if Jk+i (mod n) < Jk+j (mod n) and sk+i−1 (mod n) = +. By iterating this

argument k − 1 times backwards we get that Ki ≤ Kj if and only if Jk+i (mod n) < Jk+j (mod n)

and

Sign
(
Ji

si−−→ Ji+1
si+1−−−→ · · ·Jk+i−1

sk+i−1−−−−−→ Jk+i

)
= sisi+1 · · · sk+i−1 = +

(where every sub-index in the above formula is modulo n). This ends the proof of the claim.

Observe that, since Kn ⊂ J0, from the construction of the sets Kn we get that Kn−1 ⊂
K2n−1,Kn−2 ⊂ K2n−2, . . . ,K0 ⊂ Kn andK0

Sign(α)
==−→
Fn

Kn. Then, by Lemma 1.41(a.2,b) there exists

a band C ⊂ K0 ⊂ J0 such that C Sign(α)
==−→
Fn

C and F i(C) ⊂ Ki ⊂ Ji for i = 0, 1, . . . , n− 1.
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Since C is a periodic strip, F i(C) and F j(C) are either disjoint or equal. Hence, by the claim,

F i(C) < F j(C) if and only if Si(α) < Sj(α). Now, Lemma 1.42 tells us that Si(α) 6= Sj(α)

whenever i 6= j. Consequently, F i(C) 6= F j(C) whenever i 6= j and C has period n. This ends

the proof of the lemma.

Remark 1.48. From the construction in the above proof it follows that if F ∈ S(Ω) and

α = J0
s0−−→ J1

s1−−→ · · ·Jn−1
sn−1−−−−→ J0

is a loop in the a signed Markov graph of F by basic bands, then there exist bands K0 =

K0(α) ⊂ J0, K1 ⊂ J1, . . . , Kn−1 ⊂ Jn−1 such that Ki
si==−→ Ki+1 for i = 0, 1, . . . , n − 2 and

Kn−1
sn−1

==−→ J0. In particular, K0
Sign(α)
==−→
Fn

J0. Moreover, if β is another loop such that α∞ 6= β∞,

then K0(α) and K0(β) have pairwise disjoint interiors.

1.3.4 Proof of Theorem A

We start this subsection with a lemma that studies the periodic orbits of the uncoupled quasiperi-

odically forced skew-products on the cylinder (in particular for the maps Fτ ).

Lemma 1.49. Let f ∈ C0(I, I) and let F be a map from S(Ω) such that F (θ, x) = (Rω(θ), f(x)). Then,

the following statements hold.

(a) Assume that P = {p1, p2, . . . , pn} is a periodic orbit of f with pattern τ. Then S1 × P is a periodic

orbit of F with pattern τ.

(b) If B is a periodic orbit of strips of F with pattern τ then there exists a periodic orbit P of f with

pattern τ such that S1 × P is a periodic orbit of F with pattern τ and S1 × P ⊂ B. In particular,

every cyclic permutation is a pattern of a function of F ∈ S(Ω).

Proof. The first statement follows directly from the definition of a pattern. Now we prove (b).

Let B = {B1, B2, . . . , Bn} be periodic orbit of strips of F with pattern τ (that is, F (Bi) = Bτ(i)

for i = 1, 2, . . . , n). Since F = (Rω, f) it follows that F k = (Rkω, f
k) for every k ∈ N (so the

iterates of F are also uncoupled quasiperiodically forced skew-products). So, since Fn(Bi) = Bi

for every i, it follows that the strips Bi are horizontal. That is, for every i there exists a closed

interval Ji ⊂ I such that Bi = S1 × Ji. Moreover, since the strips are pairwise disjoint, so are the

intervals Ji. Clearly, f(Ji) = Jτ(i) for every i and, hence, fn(J1) = J1. So, there exists a point

p1 ∈ J1 such that fn(p1) = p1 and fk(p1) ∈ fk(J1) = Jτk(1) for k ≥ 0. Since the intervals Ji are

pairwise disjoint, the set P = {p1, f(p1), . . . , f
n−1(p1)} is a periodic orbit of f of period n such

that S1×P ⊂ B. Moreover, if we set fk(p1) = pτk(1) for k = 1, 2, . . . , n−1, then P has the spatial

labelling and it follows that the pattern of P is τ.

Proof (Proof of Theorem A). First we prove that τ =⇒Ω ν implies τ =⇒I ν. The assumption

τ =⇒Ω ν implies that every map F ∈ S(Ω) that exhibits the strips pattern τ also exhibits
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the strips pattern ν. In particular, the map Fτ has a periodic orbit of strips with pattern ν. By

Lemma 1.49, fτ has a periodic orbit with pattern ν. Therefore, τ =⇒I ν by the characterization

of the forcing relation in the interval (Theorem 1.5).

Now we prove that τ =⇒I ν implies τ =⇒Ω ν. Clearly, we may assume that ν 6= τ . We have

to show that every F ∈ S(Ω) that has a periodic orbit of strips B = {B0, B1, . . . , Bn−1} with

strips pattern τ also has a periodic orbit of strips with strips pattern ν.

We consider the map fτ = fP where P is a periodic orbit with pattern τ. By Theorem 1.5,

fτ has periodic orbit Q = {q0, q1, . . . , qn−1} with pattern ν. Since Q has the spatial labelling,

q0 = minQ,

Since ν 6= τ , by Lemma 1.45, there exists a simple loop

α = I0
s0−−→ I1

s1−−→ · · · sn−2−−−−→ In−1
sn−1−−−−→ I0

in the P -signed Markov graph of fτ associated to q0. Moreover, by Definition 1.43,

q0 ∼ I0
s0−−→ I1

s1−−→ · · · sn−2−−−−→ In−1
sn−1−−−−→ I0

fτ (q0) ∼ I1
s1−−→ I2

s2−−→ · · · sn−1−−−−→ I0
s0−−→ I1

f2
τ (q0) ∼ I2

s2−−→ I3
s3−−→ · · · sn−1−−−−→ I0

s0−−→ I1
s1−−→ I2

...
...

fn−1
τ (q0) ∼ In−1

sn−1−−−−→ I0
s0−−→ I1

s1−−→ I2 · · ·
sn−2−−−−→ In−1,

where the symbol∼means “associated with”. By Remark 1.40 (see also Remark 1.37), the above

loop α also exists in the B-signed Markov graph of F by replacing the basic intervals Ii =

[qi, qi+1] by the basic bands I
BiBi+1

:

α = I
B0B1

s0−−→ I
B1B2

s1−−→ · · · sn−2−−−−→ I
Bn−2Bn−1

sn−1−−−−→ I
B0B1

.

By Lemma 1.47 and Definition 1.46, F has a periodic band Q0 associated to α (and hence of

period n), and

Q0 ∼ I
B0B1

s0−−→ I
B1B2

s1−−→ · · · sn−2−−−−→ I
Bn−2Bn−1

sn−1−−−−→ I
B0B1

F (Q0) ∼ I
B1B2

s1−−→ I
B2B3

s2−−→ · · · sn−2−−−−→ I
Bn−2Bn−1

sn−1−−−−→ I
B0B1

s0−−→ I
B1B2

F 2(Q0) ∼ I
B2B3

s2−−→ · · · sn−2−−−−→ I
Bn−2Bn−1

sn−1−−−−→ I
B0B1

s0−−→ I
B1B2

s1−−→ I
B2B3

...
...

Fn−1(Q0) ∼ I
Bn−2Bn−1

sn−1−−−−→ I
B0B1

s0−−→ I
B1B2

s1−−→ · · · sn−2−−−−→ I
Bn−2Bn−1

.

By Lemmas 1.44 and 1.42, the order of the points f iτ (q0) induces an order on the shifts of the

loop Si(α), with the usual lexicographical ordering and, by Lemma 1.47, the order of the shifts

Si(α) induces the same order on the bands F i(Q0). Thus, for every i, j ∈ {0, 1, . . . , n− 1}, i 6= j,

F i(Q0) < F j(Q0) if and only if f iτ (q0) < f jτ (q0). So, {Q0, F (Q0), F
2(Q0), . . . , F

n−1(Q0)} and

{q0, q1, . . . , qn−1} have the same pattern ν. This concludes the proof.

24



1.4 Proof of Theorems B and C

We start by proving Theorem B.

The next technical lemma is inspired in [1, Lemma 4.3.1].

Lemma 1.50. Let F ∈ S(Ω) and let (J,D) be an s-horseshoe of F. Then, there exists Dn, a set of sn

pairwise weakly ordered bands contained in J, each of them with non-empty interior, such that (J,Dn) is

a sn-horseshoe for Fn.

Proof. We use induction. For n = 1 there is nothing to prove.

Suppose that the induction hypothesis holds for some n and let D ∈ D and C ∈ Dn. Since

C ⊂ J has non-empty interior andD ±−−→ J, by Lemma 1.41(a.2,3), there exists a bandB(D,C) ⊂

D with non-empty interior such that B(D,C)
±

==−→ C. Moreover, given C ′ ∈ Dn with C ′ 6= C,

B(D,C) andB(D,C ′) can be chosen to be weakly ordered becauseC andC ′ are weakly ordered

by assumption. Since, C ∈ Dn, B(D,C)
±−−−→

Fn+1
J. Thus, the family

Dn+1 = {B(D,C) : D ∈ D and C ∈ Dn}

consists of sn+1 pairwise weakly ordered bands contained in J, each of them with non-empty in-

terior, such that B(D,C) Fn+1-covers J. Consequently, (J,Dn+1) is an sn+1-horseshoe for Fn+1.

Proof (Proof of Theorem B). Fix n > 0. By Lemma 1.50, Fn has a sn-horseshoe (J,D). Remove the

smallest and the biggest band of D and call K the smallest band that contains the remaining

elements of D. Clearly, K is contained in the interior of J. Thus, by Lemma 1.41(a.2,3), each

element D of D contains in its interior a band A(D) such that A(D)
±

==−→
Fn

K. Then there exists

an open cover B of the strip J (formed by open sets B such Bθ is an open interval for every

θ ∈ S1), such that for each D ∈ D
∣∣
K
, the band A(D) intersects only one element B(D) of B

(then it has to be contained in it) and if D,D′ ∈ D
∣∣
K

with D 6= D′ then B(D) 6= B(D′). For

D0, D1, . . . , Dk−1 ∈ D
∣∣
K

the set ∩k−1
i=0 F

−n(A(Di)) is non-empty and intersects only one element

of BkFn , namely ∩k−1
i=0 F

−n(B(Di)). Therefore the sets ∩k−1
i=0 F

−n(A(Di)) are different for different

sequences (D0, D1, . . . , Dk−1), and thus

N (BkFn) ≥ (CardD − 2)k,

where N (BkFn) is defined as in [1, Section 4.1]. Hence,

h(F ) =
1

n
h(Fn) ≥ 1

n
h(Fn,B) ≥ 1

n
log(Card(D)− 2) =

1

n
log(sn − 2).

Since n is arbitrary, we obtain h(F ) ≥ log(s).

Now we aim at proving Theorem C. To this end we have to introduce some more notation

and preliminary results concerning the topological entropy.
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Given a map f ∈ S(Ω), h(F
∣∣
Iθ
) is defined for every Iθ := {θ}× I (despite of the fact that it is

not F -invariant) by using the Bowen definition of the topological entropy (c.f. [5, 6]). Moreover,

the Bowen Formula gives

max{h(R), hfib(F )} ≤ h(F ) ≤ h(R) + hfib(F )

where

hfib(F ) = supθ∈S1 h(F
∣∣
Iθ
).

Since h(R) = 0, it follows that h(F ) = hfib(F ).

In the particular case of the uncoupled maps Fτ = (R, fτ ) we easily get the following result:

Lemma 1.51. Let τ be a pattern (both in I and Ω). Then h(Fτ
∣∣
Iθ
) = h(fτ ) for every θ ∈ S1. Conse-

quently,

h(Fτ ) = hfib(Fτ ) = h(fτ ).

Given a signed Markov graphGwith vertices I1, I2, . . . , In we associate to it a n×n transition

matrix TG = (tij) by setting tij = 1 if and only if there is a signed arrow from the vertex Ii to the

vertex Ij in G. Otherwise, tij is set to 0.

The spectral radius of a matrix T, denoted by ρ(T ), is equal to the maximum of the absolute

values of the eigenvalues of T.

Lemma 1.52. Let P be a periodic orbit of strips of F ∈ S(Ω) and let T be the transition matrix of the

P -signed Markov graph of F. Then

h(F ) ≥ max{0, log(ρ(T ))}.

Proof. If ρ(T ) ≤ 1 then there is nothing to prove. So, we assume that ρ(T ) > 1. Let J be the i-th

P -basic band and let s be the i-th entry of the diagonal of Tn. By [1, Lemma 4.4.1] there are s

loops of length n in the P -signed Markov graph of F beginning and ending at J.Hence, if s ≥ 2,

Fn has an s-horseshoe (J,D) by Remark 1.48. By Theorem B, h(F ) = 1
nh(F

n) ≥ 1
n log(s).

If there are k basic bands, the trace of Tn is not larger than k times the maximal entry on the

diagonal of Tn. Hence, h(F ) ≥ 1
n log

(
1
k tr(T

n)
)
. Therefore, by [1, Lemma 4.4.2],

h(F ) ≥ lim sup
n→∞

1

n
log

(
1

k
tr(Tn)

)
= lim sup

n→∞

1

n
log(tr(Tn) = log(ρ(T )).

Proof (Proof of Theorem C). Let P be a periodic orbit of strips with pattern τ and let T be the transi-

tion matrix of the P -signed Markov graph of F. Let fτ = fQ be a Q-linear map in C0(I, I), where

Q is a periodic orbit of fQ with pattern τ. In view of Remark 1.40 (see also Remark 1.37), T is also

the transition matrix of the Q-signed Markov graph of fτ . Consequently, by [1, Theorem 4.4.5],

h(fτ ) = max{0, log (ρ(T ))}. By Lemmas 1.52 and 1.51,

h(F ) ≥ max{0, log(ρ(T ))} = h(fτ ) = h(Fτ ).
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2

A skew-product aplication without invariant curves

2.1 Introduction

We consider the coexistence and implications between periodic objects of maps on the cylinder

Ω = S1 × I, of the form:

F :

(
θ

x

)
−→

(
Rω(θ)

ζ(θ, x)

)
,

where S1 = R/Z, I is an interval of the real line, Rω(θ) = θ + ω (mod 1) with ω ∈ R\Q and

ζ(θ, x) = ζθ(x) is continuous on both variables. The class of all maps of the above type will be

denoted by S(Ω).

In this setting a very basic and natural question is the following: is it true that any map in the

class S(Ω) has an invariant curve?

In [9], the authors created an appropriate topological framework that allowed them to obtain

the following extension of the Sharkovskiı̆ Theorem to the class S(Ω)1.

Let X be a compact metric space. We recall that a subset G ⊂ X is residual if it contains the

intersection of a countable family of open dense subsets in X.

In what follows, π : Ω −→ S1 will denote the standard projection from Ω to the circle. Given

a set B ⊂ S1, for convenience we will use the following notation:

���B := π−1(B) = B × I ⊂ Ω

In the particular case when B = {θ}, instead of ���{θ} we will simply write ���θ. Also, given

A ⊂ Ω, we will denote by A���B the set

A ∩���B = {(θ, x) ∈ Ω : θ ∈ B and (θ, x) ∈ A}.

In the particular case when B = {θ}, instead of A���θ we will simply write Aθ.

1 As already remarked in [9], instead of S1 we could take any compact metric space Θ that admits a

minimal homeomorphism R : Θ −→ Θ such thatR` is minimal for every ` > 1. However, for simplicity

and clarity we will remain in the class S(Ω).



Instead of periodic points we use objects that project over the whole S1, called strips in [9,

Definition 3.9]. A set B ⊂ Ω such that π(B) = S1 (i.e., B projects on the whole S1) will be called

a circular set.

Definition 2.1. A strip in Ω is a compact circular set B ⊂ Ω such that Bθ is a closed interval (perhaps

degenerate to a point) for every θ in a residual set of S1.

Given two strips A and B, we will write A < B and A ≤ B ( [9, Definition 3.13]) if there

exists a residual set G ⊂ S1, such that for every (θ, x) ∈ A���G and (θ, y) ∈ B���G it follows that

x < y and, respectively, x ≤ y. We say that the strips A and B are ordered (respectively weakly

ordered) if either A < B or A > B (respectively A ≤ B or A ≥ B).

Definition 2.2 ( [9, Definition 3.15]). A strip B ⊂ Ω is called n-periodic for F ∈ S(Ω) if Fn(B) =

B and the image sets B, F (B), F 2(B), . . . , Fn−1(B) are pairwise disjoint and pairwise ordered (see

Figure 2.1 for examples).
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Figure 2.1: In the left picture we show an example two periodic orbit of curves, and in the second

we show a possible example of a three periodic orbit solid strips.

To state the main theorem of [9] we need to recall the Sharkovskiı̆ Ordering ( [14, 15]). The

Sharkovskiı̆ Ordering is a linear ordering of N defined as follows:

28



3 Sh> 5 Sh> 7 Sh> 9 Sh> · · · Sh>

2 · 3 Sh> 2 · 5 Sh> 2 · 7 Sh> 2 · 9 Sh> · · · Sh>

4 · 3 Sh> 4 · 5 Sh> 4 · 7 Sh> 4 · 9 Sh> · · · Sh>

...

2n · 3 Sh> 2n · 5 Sh> 2n · 7 Sh> 2n · 9 Sh> · · · Sh>

...

· · · Sh> 2n Sh> · · · Sh> 16 Sh> 8 Sh> 4 Sh> 2 Sh> 1.

In the ordering Sh≥ the least element is 1 and the largest one is 3. The supremum of the set

{1, 2, 4, . . . , 2n, . . . } does not exist.

Sharkovskiı̆ Theorem for maps from S(Ω) 3 ( [9]) Assume that the map F ∈ S(Ω) has a p-periodic

strip. Then F has a q-periodic strip for every q <Sh p.

In view of this result, the new following natural question (that is stronger that the previous

one) arises: Does Theorem 3 holds when restricted to curves? where a curve is defined as the graph of

a continuous map from S1 to I. More precisely, is it true that if F has a q-periodic curve and p ≤Sh q

then does there exists a p-periodic curve of F?

The aim of this chapter is to answer both of the above questions in the negative by con-

structing a counterexample. This is done by the following result which is the main result of the

chapter.

Theorem D There exists a map T ∈ S(Ω) with f(θ, ·) non-increasing for every θ ∈ S1, such that T

permutes the upper and lower circles of Ω (thus having a periodic orbit of period two of curves), and T

does not have any invariant curve.

The construction will be done in two steps. First, in Section 2.3, we construct a strip A which

is a pseudo-curve which is not a curve. This strip is obtained as a limit of sets defined inductively

by using of a collection of winged boxes R (i∗) ⊂ Ω. Second, we construct a Cauchy sequence

{Tm}∞m=0 that gives as a limit the function T from Theorem D having A as invariant set. To this

end, in Section 2.4 we define a collection of auxiliary functions Gi defined on the winged boxes

R (i∗). Next, in Section 2.5 we introduce a notion of depth in the set of winged boxes R (i∗)

which defines a convenient stratification in the set of winged boxes R (i∗). In Section 2.6 we

study the wings of box and its interaction with boxes of higher depth. In Section 2.7, by using

the auxiliary functions from Section 2.4, the stratification from Section 2.5 and the technical

results from Section 2.6 we construct the Cauchy sequence {Tm}∞m=0 ⊂ S(Ω), we define the

map T = limm→∞ Tm, and we prove Theorem D.

For clarity, we omit the proofs of all results from Section 2.7. These proofs will be provided

in Sections 2.8, 2.9 and 2.10. Section 2.2 is devoted to introduce the necessary definitions and, in
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particular, to introduce the notion of pseudo-curve and some necessary results on the space of

pseudo-curves.

2.2 Definitions and preliminary results

The main aim of this section is to introduce the definition and basic results about pseudo-curves.

Given G ⊂ S1 and a map ϕ : G −→ I, Graph(ϕ) denotes the graph of ϕ. Also, given a set A we

will denote the closure of A by A.

Definition 2.3 (Pseudo-curve). Let G be a residual set of S1 and let ϕ : G −→ I be a continuous map

from G to I. The set Graph(ϕ), denoted by A
(ϕ,G)

, will be called a pseudo-curve. Notice that every

pseudo-curve is a compact circular set.

Also,A will denote the class of all pseudo-curves.

A set A ⊂ Ω is F -invariant (respectively strongly F -invariant) if F (A) ⊂ A (respectively

F (A) = A). Observe that if F ∈ S(Ω), every compact F -invariant set is circular. A closed invari-

ant set is called minimal if it does not contain any proper closed invariant set.

An arc of a curve is the graph of a continuous function from an arc of S1 to I.
The pseudo-curves have the following properties which are easy to prove:

Lemma 2.4. Given a pseudo-curve A
(ϕ,G)

∈A the following statements hold.

(a) Aθ
(ϕ,G)

consists of a single point for every θ ∈ G. Consequently,

A
���G
(ϕ,G)

= Graph(ϕ).

(b) Every circular compact set contained in a pseudo-curve coincides with the pseudo-curve.

(c) A
(ϕ,G)

= Graph(ϕ
∣∣
G̃
) for every G̃ ⊂ G dense in S1.

(d) If A
(ϕ,G)

contains a curve then it is a curve.

Proof. We start by proving (a). By the definition of a pseudo-curve we have Graph(ϕ) ⊂ A
���G
(ϕ,G)

.

To prove the other inclusion fix θ ∈ G and x ∈ I such that (θ, x) ∈ A
(ϕ,G)

. Then, there exists a

sequence {(θn, ϕ(θn))}∞n=1 ⊂ Graph(ϕ) such that limn→∞(θn, ϕ(θn)) = (θ, x). The continuity of

ϕ in G (and hence in θ) implies x = ϕ(θ) and, therefore, (θ, x) ∈ Graph(ϕ).

Now we prove (b). Assume that B ⊂ A
(ϕ,G)

is a circular compact set. From the assumptions

and statement (a) we get A���G
(ϕ,G)

= B
���G. Hence,

A
(ϕ,G)

= Graph(ϕ) = A���G
(ϕ,G)

= B���G ⊂ B.

Now (d) follows directly from (b) and the fact that a curve is compact since it is the graph

of a continuous function. Statement (c) also follows from (b) because Graph
(
ϕ
∣∣
G̃

)
⊂ A

(ϕ,G)
and

Graph
(
ϕ
∣∣
G̃

)
is a circular set (since G̃ is dense in S1).
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We also will be interested in the pseudo-curves as a possible invariant objects of maps from

S(Ω). The next lemma studies their properties in this case.

Lemma 2.5. Let F ∈ S(Ω) and assume that A
(ϕ,G)

∈A is an F -invariant pseudo-curve. Then,

(a) A
(ϕ,G)

is strongly F -invariant and minimal.

(b) If A
(ϕ,G)

contains an arc of a curve then it is a curve.

Proof. We start by proving (a). LetB ⊂ A
(ϕ,G)

be a closed invariant set. We have thatB is circular

and, by Lemma 2.4(b), B = A
(ϕ,G)

. Hence, A
(ϕ,G)

is minimal.

On the other hand, F (A
(ϕ,G)

) ⊂ A
(ϕ,G)

implies F 2(A
(ϕ,G)

) ⊂ F (A
(ϕ,G)

) and, hence, F (A
(ϕ,G)

)

is a compact F -invariant set. Therefore, by the part already proven, F (A
(ϕ,G)

) = A
(ϕ,G)

.

Now we prove (b). Let S be an (open) arc of S1 and let ξ : S −→ I be a continuous map such

that Graph(ξ) ⊂ A
(ϕ,G)

. Clearly, there exists m ∈ N such that
⋃m
i=0R

i
ω(S) = S1. Now we set

ξ0 := ξ and, for i = 1, 2, . . . ,m, we define ξi : Riω(S) −→ I by

ξi(θ) := f
(
R−1
ω (θ), ξi−1

(
R−1
ω (θ)

))
.

The continuity of f implies that every ξi is an arc of a curve and Graph(ξi) = F (Graph(ξi−1)).

Hence,
m⋃
i=0

Graph(ξi) =

m⋃
i=0

F i(Graph(ξ)) ⊂ A
(ϕ,G)

because A
(ϕ,G)

is F -invariant.

In view of Lemma 2.4(d) we only have to show that
⋃m
i=0 Graph(ξi) is a curve. We will prove

prove this by induction.

Assume that ∅ 6= M  {0, 1, 2, . . . ,m} verifies that SM :=
⋃
i∈M Riω(S) is an (open) arc of

S1 and
⋃
i∈M Graph(ξi) is an arc of a curve (initially we can take M to be any unitary subset

of {0, 1, 2, . . . ,m}). Then, there exists a continuous map ξ
M
: SM −→ I such that Graph(ξ

M
) =⋃

i∈M Graph(ξi).

Clearly, there exists j ∈ {0, 1, 2, . . . ,m}\M such that SM,j := SM ∩Rjω(S) 6= ∅. The set SM,j is

an open arc of S1 and, by Lemma 2.4(a), ξ
M

∣∣
SM,j∩G

= ξj
∣∣
SM,j∩G

because Graph(ξ
M
),Graph(ξj) ⊂

A
(ϕ,G)

. Since SM,j ∩ G is dense in SM,j , given θ ∈ SM,j\G, there exists a sequence {θn}∞n=0 ⊂
SM,j ∩G converging to θ. The continuity of ξ

M
and ξj on SM,j implies that

ξ
M
(θ) = lim

n→∞
ξ
M
(θn) = lim

n→∞
ξj(θn) = ξj(θ).

Consequently, ξ
M

∣∣
SM,j

= ξj
∣∣
SM,j

and Graph(ξ
M
)∪Graph(ξj) is an arc of a curve (defined on the

open arc SM ∪Rjω(S)). By redefining M as M ∪{j} and iterating this procedure until M ∪{j} =
{0, 1, 2, . . . ,m}we see that the whole

⋃m
i=0 Graph(ξi) is a curve.

Next we will introduce and study the space of pseudo-curves.
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Definition 2.6. We define the space of pseudo-curve generators as

C := {(ϕ,G) : G is a residual set in S1 and ϕ : G −→ I is a continuous map}.

On C we also define the supremum pseudo-metric d∞ : C× C −→ R+ by:

d∞
(
(ϕ,G), (ϕ′, G′)

)
:= sup

θ∈G∩G′
|ϕ(θ)− ϕ′(θ)|.

Clearly, d∞((ϕ,G), (ϕ
′, G′)) = 0 if and only if ϕ

∣∣
G∩G′ = ϕ′

∣∣
G∩G′ and, hence, d∞ is a pseudo-metric.

The next lemma will be useful in using the metric d∞ .

Lemma 2.7. Let (ϕ,G), (ϕ′, G′) ∈ C. Then,

d∞
(
(ϕ,G), (ϕ′, G′)

)
= sup
θ∈G̃
|ϕ(θ)− ϕ′(θ)|

for every G̃ ⊂ G ∩G′ dense in S1.

Proof. Set d
∞,G̃

(
(ϕ,G), (ϕ′, G′)

)
:= supθ∈G̃|ϕ(θ) − ϕ′(θ)|. With this notation, we clearly have

d
∞,G̃

(
(ϕ,G), (ϕ′, G′)

)
≤ d∞

(
(ϕ,G), (ϕ′, G′)

)
.

To prove the reverse inequality take θ ∈ (G ∩ G′)\G̃. Since G̃ is dense in S1, there exists a

sequence {θn}∞n=0 ⊂ G̃ converging to θ. On the other hand, by definition, the maps ϕ and ϕ′, are

continuous in G ∩G′ (and, hence, in θ). Consequently, |ϕ(θ), ϕ′(θ)| = limn→∞|ϕ(θn)− ϕ′(θn)| ≤
d
∞,G̃

(
(ϕ,G), (ϕ′, G′)

)
. This ends the proof of the lemma.

As it is customary we will introduce an equivalent relation in the space of pseudo-curve

generators so that the quotient space will be a metric space.

Definition 2.8. Two pseudo-curve generators (ϕ,G), (ϕ′, G′) ∈ C are said to be equivalent, denoted

by (ϕ,G) ∼ (ϕ′, G′) if and only if A
(ϕ,G)

= A
(ϕ′,G′) . Clearly ∼ is an equivalence relation in C. The

∼-equivalence class of (ϕ,G) ∈ C will be denoted by [ϕ,G].

Remark 2.9. From Lemma 2.4(a,c) it follows that (ϕ,G) ∼ (ϕ′, G′) if and only if ϕ
∣∣
G̃
= ϕ′

∣∣
G̃

for ev-

ery G̃ ⊂ G∩G′ dense in S1. In particular, by taking G̃ = G∩G′,we get that d∞((ϕ,G), (ϕ
′, G′)) =

0 if and only if (ϕ,G) ∼ (ϕ′, G′).

Definition 2.10. The space C/∼ will be called the space of pseudo-curves generator classes and

denoted by PC. Also, on PC we define the supremum metric, also denoted d∞ : PC × PC −→ R+ by

abuse of notation, in the following way. Given A = [ϕA, GA], B = [ϕB , GB ] ∈ PC we set

d∞(A,B) := d∞
(
(ϕA, GA), (ϕB , GB)

)
.

Note that d∞ is well defined. To see this take [ϕA, GA] = [ϕ′A, GA′ ], [ϕB , GB ] ∈ C. Then, by

Lemma 2.7 and Remark 2.9 applied to G̃ = GA ∩ GA′ ∩ GB we get d∞
(
(ϕA, GA), (ϕB , GB)

)
=

d∞
(
(ϕA′ , GA′), (ϕB , GB)

)
.
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The next result establishes the basic properties of the space of pseudo-curves generator

classes (PC, d∞).

Proposition 2.11. The space of pseudo-curves generator classes PC is a complete metric space.

Proof. The fact that d∞ is a metric in PC follows from Remark 2.9.

Now we prove that PC is complete. Assume that {[ϕn, Gn]}∞n=1 is a Cauchy sequence in PC.
We have to see that limn→∞[ϕn, Gn] ∈ PC.

Set, G := ∩∞i=1Gn. Since this intersection is countable, G is still a residual set. The definition

of d∞ implies that the sequence {ϕn(θ)}∞n=1 ⊂ I is a Cauchy sequence in I for every θ ∈ G. So, it

is convergent and we can define a map ϕ : G −→ I by ϕ(θ) := limn→∞ ϕn(θ).

If (ϕ,G) ∈ C we have [ϕ,G] ∈ PC and, from the definition of ϕ it follows that

lim
n→∞

d∞([ϕ,G], [ϕn, Gn]) =sup
θ∈G∩Gn

lim
n→∞

|ϕ(θ)− ϕn(θ)| = 0.

Consequently, [ϕ,G] = limn→∞[ϕn, Gn]. Since ϕ is the uniform limit of a sequence of continuous

functions on G, it is continuous on G. That is, (ϕ,G) ∈ C.

In what follows we want to look at the spaceA as a metric space and relate this metric space

with (PC, d∞).
Let ρ denote the euclidean metric in Ω. Then, the space (Ω, ρ) is a compact metric space. We

recall that the Hausdorff metric is defined in the space of compact subsets of (Ω, ρ), by

Hρ(A,B) = max

max
(θ,x)∈A

ρ((θ, x),B),max
(θ,x)∈B

ρ((θ, x),A)

 .

Then, (A, Hρ) is a metric space. To study the relation between (PC, d∞) and (A, Hρ) we need a

couple of simple technical results.

Lemma 2.12. Let A,B ⊂ Ω be compact circular sets. Then,

Hρ(A,B) ≤ max
θ∈S1

Hρ

(
Aθ,Bθ

)
.

Proof. It follows directly from the definitions:
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Hρ (A,B) ≤ max

sup
(θ,x)∈A

ρ
(
(θ, x),Bθ

)
,sup
(θ,x)∈B

ρ
(
(θ, x),Aθ

)
= max

sup
θ∈S1

max
{x∈I : (θ,x)∈A}

ρ
(
(θ, x),Bθ

)
,

sup
θ∈S1

max
{x∈I : (θ,x)∈B}

ρ
(
(θ, x),Aθ

)
= sup
θ∈S1

max

max
{x∈I : (θ,x)∈A}

ρ
(
(θ, x),Bθ

)
,max
{x∈I : (θ,x)∈B}

ρ
(
(θ, x),Aθ

)
= sup
θ∈S1

Hρ

(
Aθ,Bθ

)
.

Proposition 2.13. Let (ϕ,G), (ϕ̃, G̃) ∈ C. Then,

Hρ

(
A

(ϕ,G)
,A

(ϕ̃,G̃)

)
≤ sup
θ∈S1

Hρ

(
Aθ

(ϕ,G)
,Aθ

(ϕ̃,G̃)

)
= d∞

(
(ϕ,G), (ϕ̃, G̃)

)
.

Proof. The first inequality follows from Lemma 2.12.

Now we prove the second equality. By Lemma 2.4(a),

d∞
(
(ϕ,G), (ϕ̃, G̃)

)
=sup
θ∈G∩G̃

|ϕ(θ)− ϕ̃(θ)| =sup
θ∈G∩G̃

Hρ

(
Aθ

(ϕ,G)
,Aθ

(ϕ̃,G̃)

)
.

So, to end the proof of the lemma, we have to see that

Hρ

(
Aθ

(ϕ,G)
,Aθ

(ϕ̃,G̃)

)
≤ d∞

(
(ϕ,G), (ϕ̃, G̃)

)
for every θ ∈ S1\(G ∩ G̃).

Fix θ ∈ S1\(G∩ G̃). From the definition of the Hausdorff metric it follows that there exist x, y ∈ I
such that Hρ

(
Aθ

(ϕ,G)
,Aθ

(ϕ̃,G̃)

)
= |x− y|, (θ, x) ∈ Aθ

(ϕ,G)
, and (θ, y) ∈ Aθ

(ϕ̃,G̃)
.

SinceG∩G̃ is residual (and thus dense) in S1, from Lemma 2.4(a,c) it follows that there exists

sequences {(θn, ϕ(θn))}∞n=0, {(θn, ϕ̃(θn))}∞n=0 ⊂ ���(G ∩ G̃) such that limn→∞(θn, ϕ(θn)) = (θ, x)

and limn→∞(θn, ϕ̃(θn)) = (θ, y). Hence,

Hρ

(
Aθ

(ϕ,G)
,Aθ

(ϕ̃,G̃)

)
= |x− y| = lim

n→∞
|ϕ(θn)− ϕ̃(θn)| ≤ d∞

(
(ϕ,G), (ϕ̃, G̃)

)
.

Proposition 2.13 tells us that that if {[ϕn, Gn]}∞n=1 is a Cauchy sequence in PC then A
(ϕn,Gn)

is

a Cauchy sequence in (A, Hρ), and if [ϕ,G] = limn→∞[ϕn, Gn] then A
(ϕ,G)

= limn→∞ A
(ϕn,Gn)

.

Unfortunately the space (A, Hρ) is not complete as the following simple example shows.

Example 2.14 (The space (A, Hρ) is not complete). Consider continuous maps ξn : S1 −→ I with

n ∈ N, n ≥ 2, defined by

ξn(θ) =


2nθ if θ ∈ [0, 1

2n ],

2(1− nθ) if θ ∈ [ 1
2n ,

1
n ],

0 if θ ≥ 1
n .
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Clearly, (ξn,S1) ∈ C andHρ(A(ξn,S1)
,A

(ξm,S1)
) ≤ 1

min{n,m} .Hence, {A
(ξn,S1)

} is a Cauchy sequence

inA. However, the sequence {A
(ξn,S1)

} has no limit inA. Indeed, limn→∞ A
(ξn,S1)

= L = (S1 ×
{0})∪({0}× [0, 1]),which is not the closure of the graph of a continuous map on a residual set of

S1 (in other words, L /∈A). This is consistent with the fact that, clearly, {[ξn,S1]} is not a Cauchy

sequence in (PC, d∞).

2.3 Construction of a connected pseudo-curve

The aim of this subsection is to construct a strip A = A
(γ,G)

as a connected pseudo-curve with

certain topological properties that will allow us to define the map T ∈ S(Ω) having this pseudo-

curve as the only proper invariant object. The pseudo-curve A
(γ,G)

will be obtained as a limit in

PC of a sequence of pseudo-curves that will be constructed recursively.

We will start by introducing the necessary notation.

In what follows, for simplicity, we will take the interval I as the interval [−2, 2]. Also, fix

ω ∈ [0, 1]\Q. For any ` ∈ Z set `∗ = `ω (mod 1) and O∗(ω) = {`∗ : ` ∈ Z}. That is, O∗(ω) is the

orbit of 0 by the rotation of angle ω.

We will denote by d
S1

the arc distance on S1 = R/Z. That is, for θ1, θ2 ∈ S1, we set

d
S1
(θ1, θ2) :=

θ2 − θ1 when θ1 ≤ θ2, and

(θ2 + 1)− θ1 when θ1 > θ2.

The closed arc of S1 joining θ1 and θ2 in the natural direction will be denoted by [θ1, θ2]. That is,

[θ1, θ2] =

{t (mod 1) : θ1 ≤ t ≤ θ2} when θ1 ≤ θ2, and

{t (mod 1) : θ1 ≤ t ≤ θ2 + 1} when θ1 > θ2.

The open arc of S1 joining θ1 and θ2 will be denoted by (θ1, θ2) = [θ1, θ2]\{θ1, θ2}, and is defined

analogously with strict inequalities Given an arc B ⊂ S1, Bd(B) will denote the set of endpoints

of B.

We will denote the open (respectively closed) ball (in S1) of radius δ centred at θ ∈ S1 by

Bδ(θ) (respectively Bδ[θ]):

Bδ (θ) = {θ̃ ∈ S1 : d
S1
(θ, θ̃) < δ} = (θ − δ (mod 1), θ + δ (mod 1)), and

Bδ [θ] = Bδ (θ) = {θ̃ ∈ S1 : d
S1
(θ, θ̃) ≤ δ} = [θ − δ (mod 1), θ + δ (mod 1)].

We consider the space Ω endowed the metric induced by the maximum of d
S1

and the abso-

lute value on I. That is, given (θ, x), (ν, y) ∈ Ω we set

d
Ω
((θ, x), (ν, y)) := max

{
d

S1
(θ, ν), |x− y|

}
.

Then, given A ⊂ Ω we will denote the interior of A by Int(A) and diam(A) will denote the

diameter of A whenever A is compact.
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1

−1

1−1

φ(θ)

β(θ)

−β(θ)

Figure 2.2: The graphs of the functions φ (in blue) and ±β in thick black. The red dashed curve

is (1− |x|)2.

To define the sequence of pseudo-curves that will converge to A
(γ,G)

we first need to con-

struct an auxiliary family {R(`∗)}`∈Z of compact regions in Ω and a family of compact sets

{Γϕ
`∗}`∈Z such that, for every ` ∈ Z, Γϕ

`∗ ⊂ R(`∗) and it is the restriction of a pseudo-curve

generator to π(R(`∗)). To do this we define the auxiliary functions β : [−1, 1] −→ [−1, 1] and

φ : [−1, 1]\{0} −→ [−1, 1] by (see Figure 2.2):

β(x) := 1− |x| and φ(x) := (1− |x|)2 sin
(π
x

)
.

Note that −β(x) < φ(x) < β(x), for all x ∈ [−1, 1]\{0} and the graphs of −β and β intersect the

closure of the graph of φ only at the points (0,−1), (0, 1), (−1, 0) and (1, 0).

To define the families {R(`∗)}`∈Z and {Γϕ
`∗}`∈Z we use the following generic boxes.

For every θ ∈ S1 and δ < 1
2 , ϑθ : [−δ, δ] −→ S1 denotes the map defined by ϑ

θ
(x) = x + θ

(mod 1).Clearly ϑθ is a homeomorphism between [−δ, δ] andBδ[θ] . Finally ϑ−1
θ : Bδ[θ] −→ [−δ, δ]

denotes the inverse homeomorphism of ϑθ.

Definition 2.15 (Generic boxes). Fix `, n ∈ Z, n ≥ |`|, α ∈ (0, 2−n), δ ∈ (0, α), a ∈ [−1, 1] and

a+, a− ∈ Ba(2−nβ(δ)) (see Figure 2.3). Now we consider the Jordan closed curve in Ω, formed by the

graphs of the functions

a+ 2−n(β ◦ ϑ−1
`∗

)
∣∣
Bδ[`∗]

and a− 2−n(β ◦ ϑ−1
`∗

)
∣∣
Bδ[`∗]

,

together with the four segments that join the points:
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(`∗ − α, a−) with
(
`∗ − δ, a− 2−nβ(−δ)

)
,

(`∗ − α, a−) with
(
`∗ − δ, a+ 2−nβ(−δ)

)
,

(`∗ + α, a+) with
(
`∗ + δ, a− 2−nβ(δ)

)
, and

(`∗ + α, a+) with
(
`∗ + δ, a+ 2−nβ(δ)

)
.

We denote the closure of the connected component of the complement of the above Jordan curve in Ω that

contains the point (`∗, a) by R(`∗, n, α, δ, a, a+, a−) (the coloured region in Figure 2.3). Observe that

π (R(`∗, n, α, δ, a, a+, a−)) , the projection ofR(`∗, n, α, δ, a, a+, a−) to S1, isBα[`∗] = [`∗−α, `∗+α].

`∗ − α `∗ − δ `∗ `∗ + δ `∗ + α

a

a+ 1
2n

(β ◦ ϑ−1
`∗ )(θ)

a− 1
2n

(β ◦ ϑ−1
`∗ )(θ)

a−

a+

Γϕ
(`∗,n,α,δ,a,a+,a−)

Figure 2.3: The regionR(`∗, n, α, δ, a, a+, a−) is the colored filled area, delimited in the rectangle
���Bδ[`∗] by the graphs of the functions a ± 1

2n (β ◦ ϑ
−1
`∗

)(θ). In blue the set Γϕ
(`∗,n,α,δ,a,a+,a−)

inductively defining the pseudo-curve.

We denote by

ϕ
`∗ = ϕ

(`∗,n,α,δ,a,a+,a−)
: Bα[`

∗] \{`∗} −→ I

the continuous map defined as follows:

(i) ϕ
`∗

∣∣
Bδ[`∗]\{`∗}

= a+ (−1)`2−n(φ ◦ ϑ−1
`∗

).

(ii) ϕ
`∗ (`

∗ − α) = a− and ϕ
`∗ (`

∗ + α) = a+.

(iii) ϕ
`∗

∣∣
[`∗−α,`∗−δ] and ϕ

`∗

∣∣
[`∗+δ,`∗+α]

are affine.

We also denote by Γϕ
(`∗,n,α,δ,a,a+,a−)

⊂ R(`∗, n, α, δ, a, a+, a−) the closure in Ω of the graph of

ϕ
(`∗,n,α,δ,a,a+,a−)

.
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Remark 2.16. The region R(`∗, n, α, δ, a, a+, a−) and the set Γϕ
(`∗,n,α,δ,a,a+,a−)

satisfy the follow-

ing properties:

(1) R(`∗, n, α, δ, a, a+, a−) ⊂ Bα[`∗]× [a− 2−n, a+ 2−n].

(2) diam(R(`∗, n, α, δ, a, a+, a−)) = diam(R(`∗, n, α, δ, a, a+, a−)`
∗
) = 2 · 2−n.

(3) The sets Γϕ
(`∗,n,α,δ,a,a+,a−)

and ∂R(`∗, n, α, δ, a, a+, a−) only intersect at the points (`∗, a −
2−n), (`∗, a+ 2−n), (`∗ − α, a−) and (`∗ + α, a+).

(4)
(
Γϕ

(`∗,n,α,δ,a,a+,a−)

)`∗
= R(`∗, n, α, δ, a, a+, a−)`

∗
is an interval.

(5) LetR(`∗, n, α, δ, a, a+, a−) andR(k∗, ñ, α̃, δ̃, ã, ã+, ã−) be two regions, then Bα[`∗]∩Bα̃[k∗] =
∅ implies

R(`∗, n, α, δ, a, a+, a−) ∩R(k∗, ñ, α̃, δ̃, ã, ã+, ã−) = ∅.

For every j ∈ Z+, we set

Zj := {i ∈ Z : |i| ≤ j} = {−j,−j + 1, . . . ,−1, 0, 1, . . . , j − 1, j} and

Z∗j := {i∗ : i ∈ Zj}.

With the help of the setsR(`∗, n, α, δ, a, a+, a−) and Γϕ
(`∗,n,α,δ,a,a+,a−)

,which are the “bricks”

of our construction we are ready to define the sequence of pseudo-curve generators {(γ
j
,S1\Z∗j )}∞j=0

that we are looking for.

To do this, for every j ≥ 0 we define

• a strictly increasing sequence {nj}∞j=0 ⊂ N,
• a strictly decreasing sequence {αj}∞j=0 such that 2−nj+1 < αj < 2−nj

• and a sequence {δj}∞j=0 with 2−nj+1 < δj < αj

verifying some technical properties that we will make explicit below, and we define a sequence

of boxes R(j∗) := R(j∗, nj , αj , δj , aj , a+
j , a

−
j ) and R((−j)∗) := R((−j)∗, nj , αj , δj , a−j , a+

−j , a
−
−j)

(for j = 0 both sets coincide) with projections

π (R(j∗)) = Bαj [j
∗] and π (R((−j)∗)) = Bαj [(−j)∗] .

Finally, with the use of all these sequences and objects we can define our functions γj
∣∣
S1\Z∗j

.

Observe that we are using the intervals of the form Bα|`|[`
∗] , Bδ|`|[`

∗] and also Bα|`|−1
[`∗]

when ` is negative. To ease the use of these intervals we introduce the following notation:

B` [`∗] :=

Bα`[`∗] if ` ≥ 0, or

Bα|`+1|[`
∗] if ` < 0,

and B` (`∗) :=

Bα`(`∗) if ` ≥ 0, or

Bα|`+1|(`
∗) if ` < 0.

Notice that the ball B` [`
∗] has diameter αj for ` ∈ {j,−(j + 1)}.
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Remark 2.17. With the above notation Bα|`|[`
∗]  B` (`

∗) for every ` < 0. Moreover, for ` ∈ Z and

j ∈ Z+,

Rω
(
Bαj [`

∗]
)
= Bαj [(`+ 1)∗] , and

Rω
(
B` [`∗]

)
=

Bα`[(`+ 1)∗] if ` ≥ 0, or

Bα|`+1|[(`+ 1)∗] if ` < 0.

Also, the same formulae holds with α replaced by δ and for open balls.

The next crucial definition fixes in detail all quantities and objects mentioned above.

Definition 2.18. We start by defining R(0∗) := R(0∗, n0, α0, δ0, 0, 0, 0) and ϕ
0∗ := ϕ

(0∗,n0,α0,δ0,0,0,0)

by choosing (Definition 2.15) n0 = 1, α0 <
1
2 = 2−n0 and δ0 < α0 small enough so that the intervals

B0 [0
∗] = Bα0[0

∗] , Bα0[1
∗] and B−1[(−1)∗] = Bα0[(−1)∗] are pairwise disjoint; and (−2)∗, 2∗ /∈

B−1[(−1)∗] and, additionally, Bd (Bα0
[0∗]) ∩O∗(ω) = ∅.

We also set a+
0 = a−0 = a0 = 0, and we define the map γ

0
: S1\{0} −→ I by

γ
0
(θ) =

ϕ0∗ (θ) if θ ∈ Bα0
[0∗] \{0},

0 if θ /∈ Bα0
[0∗].

For consistency with the definition of γj in the case j ≥ 1, we define the map γ−1 : S1\{0} −→ I by

γ−1(θ) = 0 for every θ ∈ S1. Then, notice that, a0 = γ−1(0
∗), a±0 = ϕ

0∗ (0
∗±α0) = γ−1(0

∗±α0), and

γ
0
(θ) = γ−1

(θ) for every θ /∈ Bα0
[0∗] .

Next, for every j ∈ N we define R(j∗), R((−j)∗) and (γ
j
,S1\Z∗j ) from the corresponding boxes

R(i∗) and Bα|i|[i
∗] ⊂ Bi [i

∗] for i ∈ Zj−1, and (γ
j−1

,S1\Z∗j−1) as follows. We take nj , δj and αj such

that (see Figure 2.4 to fix ideas):

(R.1) nj > nj−1, δj < αj < 2−nj < δj−1 < αj−1 and(
Bd
(
Bαj [(−j)∗]

)
∪ Bd

(
Bαj [j

∗]
))
∩O∗(ω) = ∅.

(R.2) The intervals

Bj [j∗] = Bαj [j
∗] ,

Rω
(
Bαj [j

∗]
)
= Bαj [(j + 1)∗] ,

B−j [(−j)∗] = Bαj−1
[(−j)∗] and

B−(j+1) [(−(j + 1))∗] = Bαj [(−(j + 1))∗]

are pairwise disjoint,

γj−1

(
Bαj [`

∗]
)
⊂
[
γj−1(`

∗)− 2−nj , γj−1(`
∗) + 2−nj

]
for every ` ∈ {j + 1,−(j + 1)},
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B` [`∗] ∩ Z∗j+1 = {`∗} for ` ∈ {j,−(j + 1)} and

Bαj [(j + 1)∗] ∩ Z∗j+1 = {(j + 1)∗},

and (−(j + 2))∗, (j + 2)∗ /∈ B−(j+1)[(−(j + 1))∗] = Bαj [(−(j + 1))∗] .

(R.3) Bd
(
Bα|k|[(k + 1)∗]

)
∩
(
Bαj [j

∗] ∪Bαj [(−j)∗]
)
= ∅ for every k ∈ Zj−1.

(R.4) Assume that there exists k ∈ Zj−1 such that Bαj [(j + 1)∗] ∩ Bk [k∗] 6= ∅ and |k| is maximal

verifying these conditions. Then,Bαj [(j + 1)∗] is contained in one of the two connected components

of Bα|k|(k
∗) \{k∗} when Bαj [(j + 1)∗] ∩ Bα|k|[k∗] 6= ∅, and Bαj [(j + 1)∗] is contained in one of

the two connected components of Bk (k
∗) \Bα|k|[k∗] if Bαj [(j + 1)∗] ∩ Bα|k|[k∗] = ∅ (note that,

in this case, k must be negative).

(R.5) Let ` ∈ {j,−(j +1)} (recall that the ball B` [`
∗] has diameter αj for these two values of ` and only

for them).

(R.5.i) If `∗ /∈
⋃
i∈Zj−1

Bi [i
∗] then, B` [`

∗] ∩Bi [i∗] = ∅ for every i ∈ Zj−1.

(R.5.ii) If `∗ ∈ Bm[m∗] for some m ∈ Zj−1 such that |m| is maximal with these properties, then

(R.5.ii.1) B` [`
∗] ∩Bi [i∗] = ∅ for every i ∈ Zj−1 such that |i| ≥ |m|, i 6= m, and

(R.5.ii.2) B` [`
∗] is contained in (a connected component of)

Bm (m∗) \
(
Bd
(
Bα|m| [m

∗]
)
∪ {m∗}

)
=(

m∗ − α|m|−1
,m∗ − α|m|

)
∪
(
m∗ − α|m| ,m

∗)∪(
m∗,m∗ + α|m|

)
∪
(
m∗ + α|m| ,m

∗ + α|m|−1

)
(observe that B` [`

∗] ⊂ Bm(m
∗) \Bα|m|[m∗] can only happen when m < 0

since Bm[m∗] = Bα|m|[m
∗] for m ≥ 0).

(R.6) Let ` ∈ {j,−j}. If B` [`
∗] ∩ Bm[m∗] = ∅ for every m ∈ Zj , m 6= ` then, to define R(`∗) and the

map ϕ
`∗ , we set

a` = γ
j−1

(`∗) = a±` = γ
j−1

(`∗ ± αj) = 0.

Otherwise, there exists m ∈ Zj−1 such that B` [`
∗] is contained in a connected component of

Bm(m
∗) \

(
Bd
(
Bα|m|[m

∗]
)
∪ {m∗}

)
and |m| is maximal with these properties. Then, to define

R(`∗) and the map ϕ
`∗ , we set

(R.6.i) a` := γ|m|(`
∗), a±` := γ|m|(`

∗ ± αj) and Graph
(
γ|m|

∣∣
Bαj [`∗]

)
⊂ R(`∗).

(R.6.ii) Assume that there exists k ∈ Z|m| ⊂ Zj−1 such that B` [`
∗] ⊂ Bα|k|(k

∗) \{k∗}. Then,

R(`∗) is contained in one of the two connected components of Int
(
R(k∗)\���k∗

)
.

Finally we define γ
j
: S1\Z∗j −→ I by

γj (θ) =


ϕ
j∗ (θ) if θ ∈ Bαj [j∗] \{j∗},

ϕ
(−j)∗ (θ) if θ ∈ Bαj [(−j)∗] \{(−j)∗},

γ
j−1

(θ) if θ /∈
(
Bαj [j

∗] ∪Bαj [(−j)∗] ∪ Z∗j−1

)
.

(notice that Z∗j = Z∗j−1 ∪ {j∗, (−j)∗}).
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R(0∗)

R(1∗) R((−1)∗)

R(2∗)R((−2)∗)

R(4∗)
R

((
−

4
)∗

)

R
(
3
∗
)

R
(
(
−

3
)
∗
)

Figure 2.4: The boxes R(`∗) for ` ∈ {−4,−3,−2,−1, 0, 1, 2, 3, 4} and the graph of γ
4
. The wings

are represented as a thick garnet curve surrounding the graph of γ
4
. For clarity the scale and

separation between boxes is not preserved. The circle S1 is parametrized as [− 1
2 ,

1
2 ).

For every ` ∈ Zwe define the winged region associated to ` as

R (`∗) :=


R(`∗) if ` ≥ 0, or

R(`∗) ∪Graph
(
γ|`|
∣∣
B` [`∗]\Bα|`| (`

∗)

)
if ` < 0.

The next technical lemma shows that the objects from Definition 2.18 exist (that is, they are

well defined), and studies some of the basic properties of the family of pseudo-curve generators

{(γ
i
,S1\Z∗i )}∞i=0.

Remark 2.19 (Explicit consequences of Definition 2.18). The following statements are easy conse-

quences of Definition 2.18. They are stated explicitly for easiness of usage.

(R.1) nj > j. This follows from Definition 2.18(R.1) and the fact that we have set n0 = 1 and

nj > nj−1 for j ∈ N.
(R.2) For every j ∈ N,

B−j [(−j)∗] ∩ Z∗j+1 = {(−j)∗}.

This follows from Definition 2.18(R.2) for j − 1. We get
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B−j [(−j)∗] ∩ Z∗j = {(−j)∗} and (−(j + 1))∗, (j + 1)∗ /∈ B−j [(−j)∗] .
which shows the statement.

(R.6) Let j ∈ N and ` ∈ {j,−j}, and assume that B` [`
∗] ∩ Bm[m∗] = ∅ for every m ∈ Zj , m 6= `.

Then, γ
r

∣∣
B` [`∗]

= γ
0

∣∣
B` [`∗]

≡ 0 for r = 1, 2, . . . , j − 1.

(R.6.i) Assume that here exists m ∈ Zj−1 such that B` [`
∗] is contained in a connected

component of Bm(m∗) \
(
Bd
(
Bα|m|[m

∗]
)
∪ {m∗}

)
and |m| is maximal with these

properties. Then, γr
∣∣
B` [`∗]

= γ|m|
∣∣
B` [`∗]

for r = |m|+ 1, |m|+ 2, . . . , j − 1.

(R.6.ii) Assume that there exists k ∈ Z|m| ⊂ Zj−1 such that B` [`
∗] ⊂ Bα|k|(k

∗) \{k∗}
and |k| is maximal with these properties. Then, γ

r

∣∣
B` [`∗]

= γ|k|
∣∣
B` [`∗]

for r =

|k|+ 1, |k|+ 2, . . . , |m|.

To prove (R.6) notice that when B` [`
∗] ∩ Bα|m|[m∗] ⊂ B` [`

∗] ∩ Bm[m∗] = ∅ for every m ∈ Zj ,
m 6= `, from the definition of γ

r
for 0 ≤ r < j we get that γ

r

∣∣
B` [`∗]

= γ
0

∣∣
B` [`∗]

≡ 0 for r =

1, 2, . . . , j − 1.

(R.6.i) The maximality of |m|, together with Definition 2.18(R.2), imply that B` [`
∗] ∩Bα|i|[i∗] ⊂

B` [`
∗] ∩Bi [i∗] = ∅ for every i ∈ Zj−1, |i| ≥ |m|, i 6= m. So, by the definition of the functions γ

r
,

γr
∣∣
Bαj [`∗]

= γ|m|
∣∣
Bαj [`∗]

for r = |m|+ 1, |m|+ 2, . . . , j − 1.

(R.6.ii) When |k| = |m| (R.6.ii) holds trivially. So, assume that |k| < |m|.As in the case (R.6.i), the

maximality of |k| and Definition 2.18(R.2) imply that B` [`
∗] ∩ Bα|r|[r∗] = ∅ for every r ∈ Zj−1,

|r| ≥ |k|, r 6= k. So, (R.6.ii) follows from the definition of the functions γr .

Lemma 2.20. For every j ∈ Z+ the regions R(j∗) and R((−j)∗) (and hence R (j∗) and R ((−j)∗)),
and the maps (γ

j
,S1\Z∗j ) are well defined. Moreover, the following statements hold:

(a) (γ
j
,S1\Z∗j ) ∈ C. Furthermore, for every ` ∈ {j + 1,−(j + 1)},

γ
j

(
Bαj [`

∗]
)
⊂
[
γ
j
(`∗)− 2−nj , γ

j
(`∗) + 2−nj

]
.

(b)
⋃
`∈ZR (`∗) ⊂ S1 × [−1, 1] and Graph

(
γ
j

∣∣
S1\Z∗j

)
⊂ S1 × [−1, 1].

(c) For ` ∈ {j,−j} we have Graph
(
γj−1

∣∣
Bαj [`∗]

)
⊂ R(`∗), a` = γj−1(`

∗), and a±` = ϕ
`∗ (`

∗ ± αj) =
γ
j−1

(`∗ ± αj).
(d) Graph

(
γ
n

∣∣
Bαj [`∗]\Z∗n

)
⊂ R(`∗) for every n ≥ j and ` ∈ {j,−j}.

(e) For every ` ∈ {j,−j},

γ
j

∣∣
(B` [`∗]\Bαj (`∗))∪Rω(B` [`∗]\Bαj (`∗)) = γ

j−1

∣∣
(B` [`∗]\Bαj (`∗))∪Rω(B` [`∗]\Bαj (`∗)).

Moreover, for every θ ∈ Bd(B` [`
∗] \Bαj(`∗)) = Bd(Bαj [`

∗]) ∪ Bd(B` [`
∗]), we have θ /∈ Bn [n∗] ∪

B−n[(−n)∗] and γ
n
(θ) = γ

j
(θ) = γ

j−1
(θ) for every n > j, and Rω(θ) /∈ Bαn[n∗] ∪ Bαn[(−n)∗]

and γn
(
Rω(θ)

)
= γj−1

(
Rω(θ)

)
for every n ≥ j.
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(f) For every ` ∈ Z,R (`∗) is a compact connected set such that π (R (`∗)) = B` [`
∗] , γ|`|

∣∣
B` [`∗]\Bα|`| (`

∗)

is continuous and

diam
(
R (`∗)

)
=

diam (R(`∗)) = diam (R((−`)∗)) = 2 · 2−n` ≤ 2−` if ` ≥ 0,

2 · 2−n|`+1| ≤ 2 · 2−|`| if ` < 0.

(g) Given `,m ∈ Z such that |`| ≥ |m|, ` 6= m and B` [`
∗] ∩Bm[m∗] 6= ∅, it follows that |`| > |m|, and

either B` [`
∗] ⊂ Bα|m|(m

∗) \{m∗} and the region R (`∗) is contained in one of the two connected

components of Int
(
R(m∗)\���m∗

)
, or m < 0 and B` [`

∗] is contained in one of the two connected

components of Bm(m∗) \Bα|m|[m∗].

Proof. We start by proving the first statement of the lemma and (a) by induction.

Observe that n0 = 1, α0, δ0 and γ
0

are defined so that Definition 2.18(R.1–2) for j = 0 and

(γ
0
,S1\Z∗0 ) ∈ C are verified except for the obvious fact that B−j[(−j)∗] = Bj [j

∗] . On the other

hand, by construction, Bα0[0
∗] is disjoint from Bα0[1

∗] and Bα0[(−1)∗] . Then, by the definition

of γ0 ,

γ
0
(Bα0

[`∗]) = {0} ⊂ [− 1
2 ,

1
2 ] =

[
γ

0
(`∗)− 2−n0 , γ

0
(`∗) + 2−n0

]
for ` ∈ {1,−1}. Hence, (a) holds.

Fix j > 0 and assume that we have defined n`, α`, δ` and γ
`

such that all Definition 2.18(R.1–

6) above and (a) hold for ` = 0, 1, . . . , j − 1.

Since the elements of Z∗j+2 are pairwise different, we can choose an integer nj > nj−1 and δj
and αj small enough so that

• 0 < δj < αj < 2−nj < δj−1,

• (−(j + 2))∗, (j + 2)∗ /∈ B−(j+1)[(−(j + 1))∗] = Bαj [(−(j + 1))∗] ,

• the three intervals Bj [j
∗] = Bαj [j

∗] , Rω
(
Bαj [j

∗]
)
= Bαj [(j + 1)∗] and B−(j+1)[(−(j + 1))∗]

are pairwise disjoint,

• B` [`
∗] ∩ Z∗j+1 = {`∗} for ` ∈ {j,−(j + 1)},

Bαj [(j + 1)∗] ∩ Z∗j+1 = {(j + 1)∗} and, additionally,

•
(
Bd
(
Bαj [(−j)∗]

)
∪ Bd

(
Bαj [j

∗]
))
∩O∗(ω) = ∅.

Then, Definition 2.18(R.1) is verified. Moreover, from the above conditions it follows that

Bαj [`
∗] ∩ Z∗j+1 = {`∗} for every ` ∈ {j + 1,−(j + 1)}. Thus, by statement (a) for j − 1, γj−1

is defined and continuous on `∗ ∈ Bαj [`∗] because this interval is disjoint from Z∗j−1. Hence, we

can decrease the value of αj (and, accordingly, the value of 0 < δj < αj), if necessary, to get

• γ
j−1

(
Bαj [`

∗]
)
⊂
[
γ
j−1

(`∗)− 2−nj , γ
j−1

(`∗) + 2−nj
]

for every ` ∈ {j + 1,−(j + 1)}.

To see that Definition 2.18(R.2) is verified it remains to show that the intervals Bj [j
∗] ,

Bαj [(j + 1)∗] andB−(j+1)[(−(j + 1))∗] are disjoint fromB−j[(−j)∗] . By induction, Definition 2.18(R.2)
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holds for j − 1. Thus we see, that (−(j +1))∗, (j +1)∗ /∈ B−j[(−j)∗] , and Rω
(
Bαj−1

[(j − 1)∗]
)
=

Bαj−1[j
∗] is disjoint from B−j[(−j)∗] . Hence, we can decrease the value of αj (and, accord-

ingly, the value of 0 < δj < αj), if necessary, until Bαj [(j + 1)∗] and B−(j+1)[(−(j + 1))∗] =

Bαj [(−(j + 1))∗] are disjoint from B−j[(−j)∗] . On the other hand we have that αj < 2−nj <

δj−1 < αj−1. So, Bj [j
∗] = Bαj [j

∗] ⊂ Bαj−1
[j∗] is disjoint from B−j[(−j)∗] .

Up to now we have seen that we can choose nj , δj and αj so that Definition 2.18(R.1–2)

hold for j. Let us see that we can choose αj such that Definition 2.18(R.3) also holds. Observe

that for every `, i ∈ Z and every m ≥ 0 it follows that Bd (Bαm[`∗]) ∩ O∗(ω) 6= ∅ if and only

if Bd
(
Riω (Bαm[`

∗])
)
∩ O∗(ω) = Bd (Bαm[(`+ i)∗]) ∩ O∗(ω) 6= ∅. Therefore, by using Defini-

tion 2.18(R.1) inductively, we obtain⋃
k∈Zj−1

Bd
(
Bα|k| [(k + 1)∗]

)
∩ {(−j)∗, j∗} ⊂

⋃
k∈Zj−1

Bd
(
Bα|k| [(k + 1)∗]

)
∩O∗(ω) = ∅.

Consequently, since
⋃
k∈Zj−1

Bd
(
Bα|k|[(k + 1)∗]

)
is a finite set, by decreasing again the value of

αj , if necessary, we can achieve that Definition 2.18(R.3) holds for j and Definition 2.18(R.1–2)

are still verified.

Next we will take care of Definition 2.18(R.4). If (j + 1)∗ /∈
⋃
i∈Zj−1

Bi [i
∗] , by decreasing

again the value ofαj (and δj), if necessary, we can achieve thatBαj [(j + 1)∗]∩
(⋃

i∈Zj−1
Bi [i

∗]
)
=

∅ while preserving that Definition 2.18(R.1–3) are verified for j. In this case Definition 2.18(R.4)

holds trivially.

Conversely, assume that there exists k ∈ Zj−1 such that (j + 1)∗ ∈ Bk [k∗] and |k| is maximal

verifying these conditions. By Definition 2.18(R.2), k is unique (that is, the condition cannot be

verified by k and −k simultaneously). On the other hand, by the Definition 2.18(R.1) for |k| and

|k|−1 and the comment above, (j+1)∗ /∈ Bd (Bk [k
∗])∪Bd

(
Bα|k|[k

∗]
)
. Since k ∈ Zj−1, |k| ≤ j−1

and, hence, (j+1)∗ /∈ Z∗|k| (in particular j∗ 6= k∗). Consequently, (j+1)∗ is contained in one of the

connected components of Bk (k
∗) \

(
Bd
(
Bα|k|[k

∗]
)
∪ Z∗|k|

)
. Then, by decreasing again the value

of αj , if necessary, we can get that Bαj [(j + 1)∗] is contained in the connected component of

Bk (k
∗) \

(
Bd
(
Bα|k|[k

∗]
)
∪ Z∗|k|

)
where (j+1)∗ lies, while preserving that Definition 2.18(R.1–3)

are verified for j. Consequently, Definition 2.18(R.1–4) hold for j.

Now we will deal with Definition 2.18(R.5). If `∗ /∈
⋃
i∈Zj−1

Bi [i
∗] , by decreasing again

the value of αj , if necessary, we can get Definition 2.18(R.5.i) while preserving that Defini-

tion 2.18(R.1–4) are verified for j.

Assume that there exists m ∈ Zj−1 such that `∗ ∈ Bm[m
∗] and |m| is maximal with these

properties. As in the above construction, by Definition 2.18(R.1–2),

`∗ ∈ Bm (m∗) \
(
Bd
(
Bα|m| [m

∗]
)
∪ {m∗}

)
and m is unique (that is, the condition cannot be verified simultaneously by m and −m). Con-

sequently, `∗ /∈ Bi [i
∗] for every i ∈ Zj−1 such that |i| ≥ |m|, i 6= m. Thus, by decreasing
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again the value of αj , if necessary, we can get that Definition 2.18(R.1–4) still hold, Defini-

tion 2.18(R.5.ii.1) is verified and the interval B` [`
∗] is contained in the connected component

of Bm(m∗) \
(
Bd
(
Bα|m|[m

∗]
)
∪ {m∗}

)
where `∗ lies. So, Definition 2.18(R.5.ii.2) also holds.

We claim that

for every `,m ∈ Z such that |m| ≤ |`| ≤ j, ` 6= m, either B` [`
∗]∩Bm[m∗] = ∅ or |m| < |`| and B` [`

∗]

is contained in a connected component of

Bm (m∗) \
(
Bd
(
Bα|m| [m

∗]
)
∪ {m∗}

)
.

We prove the claim by induction. Observe that the claim holds trivially for |m| ≤ |`| ≤ 1 because

B0 [0
∗] , B1 [1

∗] = Bα1[1
∗] ⊂ Bα0[1

∗] and B−1[(−1)∗] are pairwise disjoint by construction.

Assume that the claim holds for every |m| ≤ |`| < j. So, to prove the claim, we may assume

that ` ∈ {j,−j}, m ∈ Zj−1 ∪ {−`} and B` [`
∗] ∩ Bm[m∗] 6= ∅. By Definition 2.18(R.2), Bj [j

∗] ∩
B−j[(−j)∗] = ∅. Consequently, m 6= −` (that is, m ∈ Zj−1 and |`| = j > |m|). On the other

hand, if ` = −j, Definition 2.18(R.2) for j − 1 shows that Bj−1[(j − 1)∗] , B−(j−1)[(−(j − 1))∗]

and B−j[(−j)∗] are pairwise disjoint. Thus, m ∈ Zj−2 in this case.

Hence, by the Definition 2.18(R.5) for j when ` = j and for j − 1 when ` = −j, there exists

k ∈ Zj−1 (in fact when ` = −j, k ∈ Zj−2) such thatB` [`
∗] is contained in a connected component

of Bk (k
∗) \

(
Bd
(
Bα|k|[k

∗]
)
∪ {k∗}

)
and |`| = j > |k| ≥ |m|.

If m = k then the claim holds. Otherwise, m 6= k and since j = |`| > |k| ≥ |m|, by

the induction hypotheses, |k| > |m|, and Bk [k
∗] is contained in a connected component of

Bm(m
∗) \

(
Bd
(
Bα|m|[m

∗]
)
∪ {m∗}

)
. So, the claim holds also in this case. This ends the proof

of the claim.

Finally, we consider Definition 2.18(R.6). The fact that either B` [`
∗] ∩ Bm[m∗] = ∅ for every

m ∈ Zj , m 6= ` or there exists m ∈ Zj−1 such that B` [`
∗] is contained in a connected component

of Bm(m∗) \
(
Bd
(
Bα|m|[m

∗]
)
∪ {m∗}

)
follows from the claim.

To show that Definition 2.18(R.6.i) can be guaranteed, it is enough to decrease again the value

of αj , if necessary, until Bαj [`∗] is disjoint from Z∗|m| and Definition 2.18(R.1–5) are still verified.

Thus by (a) for |m|, γ|m| is well defined and continuous on Bαj [`∗] . So, we can set a` := γ|m|(`
∗)

and, by decreasing again αj (if necessary), we get Graph
(
γ|m|

∣∣
Bαj [`∗]

)
⊂ R(j∗).

To show that Definition 2.18(R.6.ii) can be guaranteed we first assume that k = m. As before,

if necessary, we can increase the value of nj and, accordingly, decrease the values of αj < 2−nj

and 0 < δj < αj so that Definition 2.18(R.1–5) and (R.6.i) are still verified for j and in addition,

(`∗, a` + 2−nj ), (`∗, a` − 2−nj ) ∈ Int(R(k∗))

and the regionR(`∗) is contained in one of the two connected components of Int
(
R(k∗)\���k∗

)
.

Assume now that k 6= m (recall that |k| ≤ |m| < j). In this case we have B` [`
∗] ⊂ Bm(m

∗) ∩
Bα|k|(k

∗). In particular, Bm(m∗) ∩Bα|k|(k∗) 6= ∅ and, by the above claim, |k| < |m| and B` [`
∗] ⊂
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Bm[m
∗] is contained in a connected component ofBk (k

∗) \
(
Bd
(
Bα|k|[k

∗]
)
∪ {k∗}

)
. The fact that

B` [`
∗] ⊂ Bα|k|(k

∗) \{k∗} implies that B` [`
∗] ⊂ Bm[m

∗] ⊂ Bα|k|(k
∗) \{k∗}. Then, as above we

can increase the value of nj and, accordingly, decrease the values of αj < 2−nj and 0 < δj < αj

so that Definition 2.18(R.1–5) and (R.6.i) are still verified,

(`∗, a` + 2−nj ), (`∗, a` − 2−nj ) ∈ Int(R(k∗))

and the regionR(`∗) is contained in one of the two connected components of Int
(
R(k∗)\���k∗

)
.

Now assume that |k| is not maximal verifying the assumptions. Then, there exists r ∈ Z|m| ⊂
Zj−1 such that B` [`

∗] ⊂ Bα|r|(r∗) \{r∗} and |r| is maximal with these properties.

We have |k| ≤ |r| ≤ |m| < j and

Br [r∗] ∩Bk [k∗] ⊃ Bα|r| (r
∗) ∩Bα|k| (k

∗) 6= ∅

because B` [`
∗] ⊂ Bα|r|(r

∗) ∩ Bα|k|(k∗) . Then, by the claim, |k| < |r| and Br [r
∗] is con-

tained in a connected component of Bk (k
∗) \

(
Bd
(
Bα|k|[k

∗]
)
∪ {k∗}

)
. The fact that B` [`

∗] ⊂
Bα|k|(k

∗) \{k∗} implies that Br [r∗] ⊂ Bα|k|(k
∗) \{k∗}. By the part already proven and Defini-

tion 2.18(R.6.ii) for |r| < j we get that R(`∗) is contained in one of the two connected compo-

nents of Int
(
R(r∗)\���r∗

)
and R(r∗) is contained in one of the two connected components of

Int
(
R(k∗)\���k∗

)
. This shows that Definition 2.18(R.6.ii) can be guaranteed.

Let us prove that (a) holds for j. Since the set S1\Z∗j is residual, to prove that (γ
j
,S1\Z∗j ) ∈

C we have to show that γj
∣∣
S1\Z∗j

is continuous. Note that, from Definition 2.18(R.6.ii), a±` =

ϕ
`∗ (`

∗ ± αj) = γj−1(`
∗ ± αj). Hence, the continuity of γj

∣∣
S1\Z∗j

follows from the fact that γj−1 is

continuous on S1\Z∗j−1 ⊃ S1\Z∗j and the continuity of ϕ
j∗ and ϕ

(−j)∗ (Definition 2.15).

This ends the proof of the first statement of the lemma and the first statement of (a). For

every ` ∈ {j + 1,−(j + 1)}, from By Definition 2.18(R.1,2) we get:

γ
j−1

(
Bαj [`

∗]
)
⊂
[
γ
j−1

(`∗)− 2−nj , γ
j−1

(`∗) + 2−nj
]

Bαj [`
∗] is disjoint from Bαj [j

∗] and Bαj−1 [(−j)∗] ⊃ Bαj [(−j))∗], and

{`∗} /∈ Bαj [`∗] ∩ Z∗j−1 ⊂ Bαj [`∗] ∩ Z∗j+1 = {`∗}.

So, from the definition of γ
j

it follows that

γj
∣∣
Bαj [`∗]

= γj−1

∣∣
Bαj [`∗]

and, thus, (a) holds.

Statement (c) follows immediately from Definition 2.18(R.6) and Remark 2.19(R.6).

Next we prove (b,d,e,f,g).

(d) When n = j, we get Bαj [`∗] \Z∗j = Bαj [`
∗] \{`∗} from Definition 2.18(R.2). Hence,

Graph
(
γ
j

∣∣
Bαj [`∗]\Z∗j

)
⊂ R(`∗)
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by the definition of γ
j

(Definition 2.18) and the definition of ϕ
`∗ (Definition 2.15).

Now assume that n > j and fix θ ∈ Bαj [`∗] \Z∗n. We have to show that the point (θ, γn(θ)) ∈
R(`∗). If θ /∈ Bα|m|[m

∗] for every m such that j < |m| ≤ n then, by the iterative use of the

definition of γ
i

for i = j + 1, j + 2, . . . , n (Definition 2.18) and Definition 2.15,

(θ, γn(θ)) = (θ, γn−1(θ)) = · · · = (θ, γj+1(θ)) = (θ, γj (θ)) = (θ, ϕ
`∗ (θ)) ∈ R(`

∗).

Otherwise, by Definition 2.18(R.2), there existsm ∈ Z such that |`| < |m| ≤ n, θ ∈ Bα|m|[m∗] \Z∗n,
and θ /∈ Bα|s|[s

∗] for every s such that |m| < |s| ≤ n. This implies that B` [`
∗] ∩ Bm[m∗] ⊃

Bαj [`
∗] ∩ Bα|m|[m∗] 6= ∅ and |m| is maximal with these properties. So, by the claim for j = |m|,

Bm[m
∗] is contained in a connected component of B` (`

∗) \
(
Bd
(
Bα|`|[`

∗]
)
∪ {`∗}

)
. Moreover,

since θ ∈ Bm(m∗) ∩ Bαj [`∗] 6= ∅, Bm[m∗] ⊂ Bα|`|[`
∗] \{`∗}. Thus, by Definition 2.18(R.6.ii) and

Remark 2.19(R.6.ii) for j = |m|, ` replaced by m and k replaced by `, R(m∗) ⊂ R(`∗) and (d)

follows from the part already proven by replacing ` by m and j by |m|.

(g) By the claim we have that for every `,m ∈ Z such that |`| ≥ |m|, ` 6= m and B` [`
∗] ∩

Bm[m
∗] 6= ∅, it follows that |`| > |m|, and B` [`

∗] is contained in a connected component of

Bm(m
∗) \

(
Bd
(
Bα|m|[m

∗]
)
∪ {m∗}

)
. Only it remains to show that if B` [`

∗] ⊂ Bα|m|(m
∗) \{m∗},

then the regionR (`∗) is contained in one of the two connected components of Int
(
R(m∗)\���m∗

)
.

By Definition 2.18(R.6.ii) we know that this holds for R(`∗) instead of R (`∗). Hence, if

` ≥ 0, (g) holds because R (`∗) = R(`∗). Assume now that ` < 0. Since R (`∗) = R(`∗) ∪
Graph

(
γ|`|
∣∣
B` [`∗]\Bα|`| (`

∗)

)
is connected, R(`∗) ⊂ R(m∗), and Int

(
R(m∗)\���m∗

)
has two con-

nected components, it is enough to show that

Graph
(
γ|`|
∣∣
B` [`∗]\Bα|`| (`

∗)

)
⊂ R(m∗).

Since B` [`
∗] \Bα|`|(`∗) ⊂ B` [`

∗] ⊂ Bα|m|(m
∗) \{m∗}, statement (g) follows from (d) with ` re-

placed by m, j by |m| and n replaced by |`|.

(b) With (g) in mind we set

D := {` ∈ Z : R (`∗) 6⊂ R(i∗) for every i ∈ Z\{`}}.

Clearly,

⋃
`∈Z
R (`∗) =

 ⋃
i∈Z\D

R (i∗)

 ∪(⋃
`∈D

R (`∗)

)

⊂

(⋃
i∈D

R(i∗)

)
∪

(⋃
`∈D

R (`∗)

)
=
⋃
`∈D

R (`∗)

Case 2.21. Claim: For every ` ∈ D, γ|`|−1

∣∣
B` [`∗]\Bα|`| (`

∗)
≡ 0.
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First we prove statement (b) from the above claim and then we will prove the claim. To this

end we start by pointing out few elementary facts.

From the definition ofR (`∗) we see thatR (`∗)\R(`∗) = ∅ for every ` ≥ 0 andR (`∗)\R(`∗) ⊂
Graph

(
γ|`|
∣∣
B` [`∗]\Bα|`| (`

∗)

)
for every ` < 0. So, in any case,

R (`∗)\R(`∗) ⊂ Graph
(
γ|`|
∣∣
B` [`∗]\Bα|`| (`

∗)

)
for every ` ∈ Z.

On the other hand, the arc B` [`
∗] ⊃ B` [`

∗] \Bα|`|(`∗) is disjoint from the arc B−`[(−`)∗] ⊃
Bα|`|[(−`)∗] by Definition 2.18(R.2). Thus, by Definition 2.18 and (a),

γ|`|−1

∣∣
B` [`∗]\Bα|`| (`

∗)
= γ|`|

∣∣
B` [`∗]\Bα|`| (`

∗)
.

Furthermore, by the Claim and Definition 2.18(R.6), a+
` = a−` = a` = 0 for every ` ∈ D. So,

by Remark 2.16(1),

R(`∗) ⊂ Bα|`| [`
∗]× [−2−n|`| , 2−n|`| ] ⊂ Bα|`| [`

∗]× [−2−|`|, 2−|`|] ⊂ Bα|`| [`
∗]× [−1, 1].

Therefore, summarizing and using again by the Claim,⋃
`∈Z
R (`∗) ⊂

⋃
`∈D

R (`∗) ⊂
⋃
`∈D

(
R(`∗) ∪Graph

(
γ|`|
∣∣
B` [`∗]\Bα|`| (`

∗)

))

=

(⋃
`∈D

R(`∗)

)
∪

(⋃
`∈D

Graph
(
γ|`|−1

∣∣
B` [`∗]\Bα|`| (`

∗)

))

⊂

(⋃
`∈D

Bα|`| [`
∗]

)
× [−1, 1] ∪ S1 × {0} ⊂ S1 × [−1, 1].

So, the first part of (b) is proved, provided that the claim holds. Let us prove the second state-

ment of (b). Observe that, since(⋃
`∈Z
R(`∗)

)
∪ S1 × {0} ⊂

(⋃
`∈Z
R (`∗)

)
∪ S1 × {0} ⊂ S1 × [−1, 1],

it is enough to show that

Graph
(
γj
∣∣
S1\Z∗j

)
⊂

(⋃
`∈Z
R(`∗)

)
∪ S1 × {0}

for every j ∈ Z+. We will prove this statement by induction on j.

By construction we have

Graph
(
γ

0

∣∣
S1\{0∗}

)
⊂ R(0∗) ∪ S1 × {0} ⊂

(⋃
`∈Z
R(`∗)

)
∪ S1 × {0}.

So, the statement holds for j = 0. Now assume that it holds for some j ≥ 0, and prove it for

j + 1. By Definition 2.18 and (d),
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Graph
(
γ
j+1

∣∣
S1\Z∗j+1

)
⊂ R(j∗) ∪R((−j)∗) ∪Graph

(
γ
j

∣∣
S1\Z∗j

)
⊂ R(j∗) ∪R((−j)∗) ∪

(⋃
`∈Z
R(`∗)

)
∪ S1 × {0}

⊂

(⋃
`∈Z
R(`∗)

)
∪ S1 × {0}.

To end the proof of (b) it remains to show the Claim.

Let ` ∈ D and m ∈ Z|`|, m 6= `. Then, eitherB` [`∗] ∩Bm[m∗] = ∅ or

|`| > |m|, m < 0 and B` [`
∗] ⊂ Bm(m∗) \Bα|m|[m∗] .

(2.1)

To see this, observe that ifB` [`
∗]∩Bm[m∗] 6= ∅ then, by (g), |`| > |m| and eitherR (`∗) ⊂ R(m∗)

or m < 0 and B` [`
∗] ⊂ Bm(m∗) \Bα|m|[m∗] , and the first possibility is ruled out because ` ∈ D.

By using iteratively the dichotomy (2.1) we get that, for every ` ∈ D, there exists a sequence

m0,m1, . . . ,mk = ` ∈ Zwith k ≥ 0 such thatBm0
[(m0)

∗]∩Bq [q∗] = ∅ for every q ∈ Z|m0|, q 6= m0

and, in the case k > 0, |m0| < |m1| < · · · < |mk| = |`| and, for every p = 0, 1, . . . , k − 1,

• mp < 0,

• Bmp+1
[(mp+1)

∗] ⊂ Bmp((mp)
∗) \Bα|mp|[(mp)

∗] and

• Bmp+1
[(mp+1)

∗] ∩Bq [q∗] = ∅ for every q ∈ Z|mp+1|, q 6= mp,mp+1 and |mp| ≤ |q|.

The condition Bm0
[(m0)

∗] ∩Bq [q∗] = ∅ for every q ∈ Z|m0|, q 6= m0 implies

γ|m0|−1

∣∣
Bm0

[(m0)∗]
= γ|m0|−2

∣∣
Bm0

[(m0)∗]
= · · · = γ0

∣∣
Bm0

[(m0)∗]
≡ 0

by Definition 2.18(R.6) and Remark 2.19(R.6) (with ` = m0). This ends the proof of the Claim

when k = 0.

Assume now that k > 0. As before we have

γ|m0|−1

∣∣
Bm0

[(m0)∗]\Bα|m0|
((m0)∗)

= γ|m0|

∣∣
Bm0

[(m0)∗]\Bα|m0|
((m0)∗)

.

This, together with the inclusion,

Bm1
[(m1)

∗] ⊂ Bm0
((m0)

∗) \Bα|m0|
[(m0)

∗]

implies that

γ|m0|

∣∣
Bm1

[(m1)∗]
≡ 0.

Then, by Definition 2.18(R.6.i) and Remark 2.19(R.6.i) with ` = m1,

0 ≡ γ|m0|

∣∣
Bm1

[(m1)∗]
= γ|m0|+1

∣∣
Bm1

[(m1)∗]
= · · · = γ|m1|−1

∣∣
Bm1

[(m1)∗]
.

If k = 1 we are done. Otherwise, k ≥ 2 and, as above,
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γ|m1|

∣∣
Bm2

[(m2)∗]
≡ 0.

By iterating the above arguments at most k times the Claim holds. This ends the proof of (b).

(e) By Definition 2.18(R.2) and Remark 2.19(R.2) it follows that

θ /∈ Z∗j+1 ∪Bαj (`∗) ∪B−` ((−`)∗) for every θ ∈ B` [`∗] \Bαj (`∗) .

So, by (a), γ
j−1

(θ) is well defined and γ
j−1

is continuous at θ. Thus, by the definition of γ
j

(Definition 2.18) and the continuity of γ
j−1

at θ, γ
j
(θ) = γ

j−1
(θ).

Now assume that θ ∈ Bd(B` [`
∗] \Bαj(`∗)) = Bd(Bαj [`

∗]) ∪ Bd(B` [`
∗]). By (g), θ /∈ Bn [n∗] ∪

B−n[(−n)∗] for every n > j. So, by the iterative use of the definition of γ
i

for i = j+1, j+2, . . . , n

(Definition 2.18) we get

γ
j
(θ) = γ

j+1
(θ) = · · · = γ

n−1
(θ) = γ

n
(θ).

Now we prove the part of (e) concerningRω(B` [`
∗] \Bαj(`∗)).We first assume that ` = j ≥ 0.

Then,

Bj [j∗] = Bαj [j
∗] , θ ∈ Bd(Bαj [j

∗]) and Rω(θ) ∈ Bd(Bαj [(j + 1)∗]).

Again by Definition 2.18(R.2), Rω(θ) /∈ Z∗j+1∪Bαj [j∗]∪B−j[(−j)∗] . So, by (a) and the definition

of γ
j

(Definition 2.18), γ
j−1

(
Rω(θ)

)
is well defined and γ

j

(
Rω(θ)

)
= γ

j−1

(
Rω(θ)

)
. By Defini-

tion 2.18(R.3) (with j = n and k = ` = j), Rω(θ) /∈ Bαn[n∗] ∪ Bαn[(−n)∗] for every n > j. So,

γn
(
Rω(θ)

)
= γj

(
Rω(θ)

)
as above.

Assume now that ` = −j < 0. In this case we have B` [`
∗] = Bα|`+1|[`

∗] and, hence, Rω(θ) ∈
Bα|`+1|[(`+ 1)∗] \Bαj((`+ 1)∗) . By Definition 2.18(R.1) we have

Bαj [(`+ 1)∗] ⊂ Bα|`+1| [(`+ 1)∗] ⊂ B`+1 [(`+ 1)∗] .

Thus, Rω(θ) ∈ B`+1[(`+ 1)∗] \{(` + 1)∗}. Again by Definition 2.18(R.2) and Remark 2.19(R.2)

(with j replaced by −(`+ 1)),

Rω(θ) /∈ Z∗` ∪Bα−(`+1)
[(−`)∗] ∪B` [`∗] ⊃ Z∗j ∪Bαj [j∗] ∪B−j [(−j)∗] .

So, by (a) and the definition of γ
j

(Definition 2.18), γ
j−1

(
Rω(θ)

)
is well defined and γ

j

(
Rω(θ)

)
=

γj−1

(
Rω(θ)

)
.

To end the proof of (e), assume as above that θ ∈ Bd(Bαj [`
∗]) ∪ Bd(B` [`

∗]) and, hence,

Rω(θ) ∈ Bd(Bαj [(`+ 1)∗]) ∪ Bd
(
Bα|`+1|[(`+ 1)∗]

)
. We have to show that, in this case, Rω(θ) /∈

Bαn[n
∗] ∪ Bαn[(−n)∗] for every n > j (the fact that γ

n

(
Rω(θ)

)
= γ

j

(
Rω(θ)

)
follows as above).

When Rω(θ) ∈ Bd(Bαj [(`+ 1)∗]) this follows from Definition 2.18(R.3) as before. Assume now

that Rω(θ) ∈ Bd
(
Bα|`+1|[(`+ 1)∗]

)
. Then, by (g), Rω(θ) /∈ Bn [n∗] ∪B−n[(−n)∗] for every n > j.

(f) If ` ≥ 0 then the first two statements of (f) follow directly from the definitions. Moreover, by

Remarks 2.16(2) and 2.19(R.1),
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diam
(
R (`∗)

)
= diam (R(`∗)) = diam (R((−`)∗)) = 2 · 2−n` ≤ 2 · 2−(`+1) = 2−`.

Assume that ` < 0. From Definition 2.18(R.2) and Remark 2.19(R.2) we get
(
B` [`

∗] \Bα|`|(`∗)
)
∩

Z∗|`| = ∅ and, hence, γ|`| is continuous in an open neighbourhood of B` [`
∗] \Bα|`|(`∗) by (a). On

the other hand, by (d),
(
θ, γ|`|(θ)

)
∈ R(`∗) for every θ ∈ Bd

(
Bα|`|[`

∗]
)
⊂ B` [`∗] \Bα|`|(`∗) . Thus,

R (`∗) = R(`∗) ∪Graph
(
γ|`|
∣∣
B` [`∗]\Bα|`| (`

∗)

)
is closed, connected and projects onto the whole B` [`

∗] .

On the other hand, by (e) and (a) (since ` < 0, |`+ 1| = |`| − 1),

γ|`|
(
B` [`∗] \Bα|`| (`

∗)
)
= γ|`|−1

(
Bα|`+1| [`

∗] \Bα|`| (`
∗)
)

⊂
[
γ|`|−1

(`∗)− 2−n|`|−1 , γ|`|−1
(`∗) + 2−n|`|−1

]
.

Thus, by Remark 2.16(1), (c) and Definition 2.18(R.1),

R (`∗) = R(`∗) ∪Graph
(
γ|`|
∣∣
B` [`∗]\Bα|`| (`

∗)

)
⊂ Bα|`| [`

∗]×
[
γ|`|−1

(`∗)− 2−n|`| , γ|`|−1
(`∗) + 2−n|`|

]
∪(

Bα|`+1| [`
∗] \Bα|`| (`

∗)
)
×
[
γ|`|−1

(`∗)− 2−n|`|−1 , γ|`|−1
(`∗) + 2−n|`|−1

]
⊂ Bα|`+1| [`

∗]×
[
γ|`|−1

(`∗)− 2−n|`|−1 , γ|`|−1
(`∗) + 2−n|`|−1

]
.

Hence, by Definition 2.18(R.1) and Remark 2.19(R.1),

diam
(
R (`∗)

)
≤ 2 ·max{α|`+1|, 2

−n|`|−1} = 2 · 2−n|`|−1 ≤ 2 · 2−|`|.

The next results allow us to define the limit pseudo-curve generated by the sequence

{(γ
i
,S1\Z∗i )}∞i=0.

Lemma 2.22. The sequence {(γi ,S1\Z∗i )}∞i=0 ⊂ C is convergent in C.

Proof. By Proposition 2.11 it suffices to show that {(γ
i
,S1\Z∗i )}∞i=0 is a Cauchy sequence in C. By

the definition of γi (Definition 2.18) we have

d∞
(
γ
i−1
, γ

i

)
=sup
θ∈S1\Z∗i

|γ
i−1

(θ)− γ
i
(θ)|

=sup
θ∈(Bαi [i

∗]\{i∗})∪(Bαi [(−i)
∗]\{(−i)∗})

|γ
i−1

(θ)− γ
i
(θ)|.

By Lemmas 2.20(c,d), and Definition 2.18(R.2) and Remark 2.19(R.2),

(θ, γi−1(θ)), (θ, γi(θ)) ∈ R(`∗) for θ ∈ Bαi [`∗] \{`∗} and ` ∈ {i,−i}.

Hence, by Lemma 2.20(f),

d∞(γi−1
, γ

i
) ≤ diam(R(i∗)) = diam(R((−i)∗)) ≤ 2−i.
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Since ni is a strictly increasing sequence, for every m ≥ 0,

d∞(γi+m , γi) ≤
i+m∑
k=i+1

2−k < 2−(i+1)
∞∑
k=0

1
2k

= 2 · 2−(i+1),

and consequently {(γi ,S1\Z∗i )}∞i=0 is a Cauchy sequence in C.

Lemma 2.22 allows us to define the following limit pseudo-curve generator of the sequence

{(γ
i
,S1\Z∗i )}∞i=0.

Definition 2.23. There exists (γ,S1\O∗(ω)) ∈ C such that

(γ,S1\O∗(ω)) = lim
i→∞

(γ
i
,S1\Z∗i )

(that is, γ(θ) = limi→∞ γ
i
(θ) for every θ ∈ S1\O∗(ω)). Observe that

S1\O∗(ω) =
∞⋂
i=1

(
S1\Z∗i

)
is a residual set in S1.

Now, we are ready to define the sequence of pseudo-curves associated to the sequence

{(γ
i
,S1\Z∗i )}∞i=0, and to the limit pseudo-curve generator (γ,S1\O∗(ω)). This will finally define

the pseudo-curve A that we want to construct.

Definition 2.24. We denote by

Aj := A
(γ
j
,S1\Z∗

j
)
= Graph(γj ,S1\Z∗j )

the pseudo-curve defined by (γj ,S1\Z∗j ) ∈ C, and

A = A
(γ,S1\O∗(ω))

:= Graph(γ,S1\O∗(ω)).

By Definition 2.23 and Proposition 2.13, A = limj→∞ A
(γ
j
,S1\Z∗

j
)
.

The next lemmas study the properties the pseudo-curves Aj and A.

Lemma 2.25. The following statements hold for every ` ∈ Z:

(a) Aθn ⊂ R(`∗)θ for every n ≥ |`| − 1 and θ ∈ Bα|`|[`∗] .
(b) A`

∗

n = A`
∗

|`| ⊂ R(`
∗)`
∗

for every n ≥ |`|. Moreover, A`
∗

|`| = R(`
∗)`
∗

is a non-degenerate interval.

(c) Aθ` = {(θ, γ`(θ)} for every θ ∈ S1\Z∗` .
(d) A|`| ⊂ S1 × [−1, 1].

Proof. (a) By Lemma 2.20(c,d), Graph
(
γn
∣∣
Bα|`| [`

∗]\Z∗n

)
⊂ R(`∗). Then, the statement follows

from the compacity ofR(`∗).
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(b) From the definition of γ
i

(Definition 2.18) and Definition 2.18(R.2), for every n > |`| there

exists an ε(n) > 0 such that γn(θ) = γ|`|(θ) for every θ ∈ Bε(n)(`
∗) \{`∗}. Hence A`

∗

n = A`
∗

|`|.

Moreover, γ|`| coincides with ϕ
`∗ in a neighbourhood of `∗. Thus, A`

∗

|`| = R(`
∗)`
∗

and it is an

interval by Definition 2.15 and Remark 2.16(4).

Finally statement (c) follows from Lemma 2.4(a) and Definition 2.24, and (d) from Lemma 2.20(b).

Lemma 2.26. The following statements hold.

(a) Aθ ⊂ R(`∗)θ for every ` ∈ Z and θ ∈ Bα|`|[`∗] .
(b) A`

∗
= A`

∗

|`| for every ` ∈ Z. In particular A`
∗

is a non-degenerate interval.

(c) If θ /∈ O∗(ω), then Aθ = {(θ, γ(θ))}.
(d) A ⊂ S1 × [−1, 1].

Proof. Statement (c) follows directly from Lemma 2.4(a).

Now we prove (a). From Lemma 2.25(a), Aθn ⊂ R(`∗) for every ` ∈ Z and n ≥ |`|. On the

other hand, by Definition 2.23 and Proposition 2.13, Aθ = limn→∞ Aθn. Hence the result follows

from the compacity ofR(`∗).
By Lemma 2.25(b) and the part of the lemma already proved we have

A`
∗
= lim
n→∞

A`
∗

n = A`
∗

|`|.

Statement (d) follows from Lemma 2.25(d), the compacity of S1 × [−1, 1] and the fact that A =

limj→∞ Aj .

The next proposition, summarizes the main properties of the set A.

Proposition 2.27. The set A is a connected, does not contain any arc of curve andΩ\A has two connected

components.

Proof. From statements (b) and (c) of the previous lemma, we know that Aθ is connected for

every θ ∈ S1.

If A is not connected there exist closed (in A) sets U and V such that U∩V = ∅ and U∪V = A.

Observe that π(U) ∪ π(V ) = π(A) = S1 because every pseudo-curve is a circular set. Moreover,

since A is compact, U and V are also compact sets of Ω. Hence, π(U) are π(V ) compact in S1.

Since S1 is connected, π(U) ∩ π(V ) 6= ∅. For every θ ∈ π(U) ∩ π(V ) we have,

Aθ = (U ∪ V )θ = Uθ ∪ V θ.

The sets Uθ and V θ are closed, non-empty and disjoint. Consequently, Aθ is not connected; a

contradiction. This proves that A is connected.

By Lemma 2.26(b), A`
∗

is a non-degenerate interval for every ` ∈ O∗(ω). Then, since O∗(ω)

is dense in S1, A does not contain any arc of curve by Lemma 2.5(b).

To prove that Ω\A has two connected components we define
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Ω− := {(θ, y) ∈ Ω : y < min{x ∈ I : (θ, x) ∈ A}}, and

Ω+ := {(θ, y) ∈ Ω : y > max{x ∈ I : (θ, x) ∈ A}}.

By Lemma 2.26(d) we know that

−1 ≤ min{x ∈ I : (θ, x) ∈ A} ≤ max{x ∈ I : (θ, x) ∈ A} ≤ 1.

Hence, Ω\A = Ω− ∪ Ω+, Ω+ and Ω− are disjoint open circular subsets of Ω and Ω− ⊃ S1 ×
[−2,−1] and Ω+ ⊃ S1 × [1, 2] (in particular, for every θ ∈ S1, Ωθ+ and Ωθ− are non-degenerate

intervals). Thus, Ω+ and Ω− are arc-wise connected and, hence, connected.

2.4 A collection of auxiliary functionsGi defined on the boxesR (i∗)

In this section we define a family of auxiliary functions Gi : R(i∗) −→ Ω with i ∈ Z and study

their properties.

In what follows we consider the supremum metric d∞ on the class of all functionsF : A −→ Ω

with A ⊂ Ω. That is, given F,G : A −→ Ω we set

d∞(F,G) :=sup
(θ,x)∈A

d
Ω
(F (θ, x), G(θ, x)).

In the special case when F and G are skew products with the same base, that is when F (θ, x) =

(R(θ), f(θ, x)) and G(θ, x) = (R(θ), g(θ, x)), then

d∞(F,G) :=sup
(θ,x)∈A

|f(θ, x)− g(θ, x)|.

Observe that (S(Ω), d∞) is a complete metric space.

Before defining the maps Gi we need to introduce the necessary notation, and recall and

collect some basic facts that we will use in this definition and to study their properties.

For every i ∈ Z, we define

Mi : Bi [i
∗] −→ I by Mi(θ) := max{x ∈ I : (θ, x) ∈ R (i∗)}, and

mi : Bi [i
∗] −→ I by mi(θ) := min{x ∈ I : (θ, x) ∈ R (i∗)}.

The next simple lemma states the basic properties of the maps mi and Mi.

Lemma 2.28. The following statements hold for every i ∈ Z

(a) −1 ≤ mi(θ) ≤Mi(θ) ≤ 1 for every θ ∈ Bi [i∗].
(b) mi and Mi are continuous.

(c) mi

∣∣
Bα|i| [i

∗]
and Mi

∣∣
Bα|i| [i

∗]
are piecewise linear.

(d) mi(θ) =Mi(θ) = γ|i|(θ) if and only if θ ∈ Bi [i∗] \Bα|i|(i∗) .
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Proof. It follows easily from Definition 2.15, the definition of a winged region and Lemma 2.20(b,f).

Notice that, for every i ∈ Z,

R (i∗) =
⋃
θ∈Bi [i∗]

R (i∗)θ =
⋃
θ∈Bi [i∗]

{θ} × [mi(θ),Mi(θ)].

In what follows the interval [mi(θ),Mi(θ)] ⊂ I, defined for every θ ∈ Bi [i∗] , will be denoted

by Ii,θ. Clearly, for every θ ∈ Bi [i∗] ,R (i∗)θ = {θ} × Ii,θ.
By Definition 2.18(R.2) and Remark 2.19(R.2),

Bi [i∗] \{i∗} is disjoint from Z∗|i|.

Hence, Lemmas 2.20(a,d) and 2.25(c) can be summarized as:
γ|`|
∣∣
B` [`∗]\{`∗} is continuous,

γ|`|(θ) ∈ I`,θ for every θ ∈ B` [`∗] \{`∗}, and

Aθ|`| = {(θ, γ|`|(θ)} for every θ ∈ B` [`∗] \{`∗}

(2.1)

for ` ∈ {i, i+ 1}.
Now we define a family of continuous maps Gi : R (i∗) −→ Ω with i ∈ Z, by

Gi(θ, x) =
(
Rω(θ), gi(θ, x)

)
Also, for every θ ∈ Bi [i∗] , we will denote the map gi(θ, ·) : Ii,θ −→ I by g

i,θ
.

To define the functions g
i,θ
, for clarity, we will consider separately two different situations:

• i ≥ 0, when R (i∗) = R(i∗), Bi [i∗] = Bα|i|[i
∗] and Gi(R(i∗)) strictly contains the smaller

boxR((i+ 1)∗), and

• i ≤ −1, when Gi(R (i∗)) is strictly contained in the bigger boxR((i+ 1)∗).

We start by defining g
i,θ

for i ≥ 0 in three different ways, depending on the base point θ ∈
Bαi[i

∗]. In this definition, for simplicity we will useR(i∗) instead ofR (i∗) and Bα|i|[i
∗] instead

of Bi [i
∗] .

Notice that, by Definition 2.18(R.1) and Lemma 2.20(c),

for every i ≥ 0

Bδi+1
[i∗] ⊂ Bαi+1

(i∗) and Bαi+1
[i∗] ⊂ Bδi (i∗) ⊂ Bαi (i∗) , and

γ
i−1

(i∗) = ai and γ
i
((i+ 1)∗) = ai+1.

(2.2)

Definition 2.29 (Definition of gi for i ≥ 0).

θ ∈ Bδi+1
[i∗] g

i,θ
(x) := γ

i
((i+ 1)∗) + 2ni

2ni+1

(
γ
i−1

(i∗)− x
)
.
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θ ∈ Bαi+1
[i∗]\Bδi+1

(i∗) we define g
i,θ

to be the unique piecewise affine map with two affine

pieces, defined on Ii,θ, whose graph joins
(
mi(θ),Mi+1

(
Rω(θ)

))
with(

γi(θ), γi+1

(
Rω(θ)

))
, and this with the point

(
Mi(θ),mi+1

(
Rω(θ)

))
(in particular, g

i,θ

(
γ
i
(θ)
)
= γ

i+1

(
Rω(θ)

)
),

θ ∈ Bαi[i
∗]\Bαi+1

(i∗) g
i,θ
(x) := γi+1

(
Rω(θ)

)
(that is, g

i,θ
is constant).

The next lemma states the basic properties of the functions Gi for i ≥ 0.

Lemma 2.30. The following statements hold for every i ≥ 0 :

(a) The map g
i,θ

is well defined and non-increasing for every θ ∈ Bαi[i∗] . Moreover, −1 ≤ g
i,θ
(x) ≤ 1

for every θ ∈ Bαi[i∗] and x ∈ Ii,θ. Furthermore, the function Gi is continuous.

(b) Gi
∣∣
R(i∗)θ

is affine and Gi
(
R(i∗)θ

)
= R((i + 1)∗)Rω(θ) for every θ ∈ Bδi+1[i

∗] ; Gi
∣∣
R(i∗)θ

is piece-

wise affine with two pieces and Gi
(
R(i∗)θ

)
= R((i+ 1)∗)Rω(θ) for every θ ∈ Bαi+1

[i∗] \Bδi+1
(i∗) ;

and

Gi
(
R(i∗)θ

)
= A

Rω(θ)
i+1 for every θ ∈ Bαi[i∗] \Bαi+1(i

∗) .

(c) Gi(Aθi ) = A
Rω(θ)
i+1 for every θ ∈ Bαi[i∗] .

Proof. We will prove all statements of the lemma simultaneously and according to the regions

in the definition of the map gi.

• We start with the regionR(i∗)���Bδi+1
[i∗].

Let z ∈ [−δi, δi] ⊂ R and let θ = i∗ + z ∈ Bδi[i∗] . From Definition 2.15 and (2.2) we get

mi(θ) = ai − 2−ni(1− z) = γi−1(i
∗)− 2−ni(1− z), and

Mi(θ) = ai + 2−ni(1− z) = γ
i−1

(i∗) + 2−ni(1− z).
(2.3)

In a similar way, for every θ ∈ Bδi+1[i
∗] (that is, z ∈ [−δi+1, δi+1]), we haveRω(θ) = (i+1)∗+z ∈

Bδi+1[(i+ 1)∗] , and

mi+1(Rω(θ)) = ai+1 − 2−ni+1(1− z) = γi((i+ 1)∗)− 2−ni+1(1− z), and

Mi+1(Rω(θ)) = ai+1 + 2−ni+1(1− z) = γ
i
((i+ 1)∗) + 2−ni+1(1− z).

(2.4)

Hence, for every θ ∈ Bδi+1[i
∗] ,

g
i,θ
(mi(θ)) = γi((i+ 1)∗) + 2ni

2ni+1 2
−ni(1− z) = γ

i
((i+ 1)∗) + 2−ni+1(1− z)

=Mi+1(Rω(θ)),

g
i,θ
(Mi(θ)) = γ

i
((i+ 1)∗)− 2ni

2ni+1 2
−ni(1− z) = γ

i
((i+ 1)∗)− 2−ni+1(1− z)

= mi+1(Rω(θ)).

(2.5)

So, g
i,θ

∣∣
Ii,θ

is the affine map whose graph joins the point
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(
mi(θ),Mi+1(Rω(θ))

)
with

(
Mi(θ),mi+1(Rω(θ))

)
.

In particular, g
i,θ

sends the interval Ii,θ affinely onto Ii+1,Rω(θ) or, equivalently, Gi sends the

interval R(i∗)θ affinely onto R((i + 1)∗)Rω(θ). Then, by Lemma 2.20(b), this implies that −1 ≤
g
i,θ
(x) ≤ 1 for every x ∈ Ii,θ. Moreover, the continuity of the maps mi, Mi, mi+1 ◦ Rω and

Mi+1 ◦Rω imply that gi is well defined and continuous onR(i∗)���Bδi+1
[i∗]

Next we will prove that Gi
(
Aθi
)
= A

Rω(θ)
i+1 for every θ ∈ Bδi+1

[i∗] . We take θ = i∗ + z ∈
Bδi+1

[i∗] \{i∗}. Then, clearly, z ∈ [−δi+1, δi+1]\{0} ⊂ R. By Definitions 2.18 and 2.15 and state-

ment (2.2),

γ
i
(θ) = ϕ

i∗ (θ) = ai + 2−nid = γ
i−1

(i∗) + 2−nid ∈ Ii,θ, and

γi+1(Rω(θ)) = ϕ
(i+1)∗ (θ) = ai+1 − 2−ni+1d = γi−1(i

∗)− 2−ni+1d ∈ Ii+1,Rω(θ),

where d = (−1)iφ(z). So, for every θ ∈ Bδi+1
[i∗] \{i∗},

g
i,θ
(γi(θ)) = γi((i+ 1)∗)− 2ni

2ni+1
2−nid = γi+1(Rω(θ)). (2.6)

Thus, from (2.2) and (2.1) we get

Gi
(
Aθi
)
= Gi

(
{(θ, γi(θ))}

)
= {(Rω(θ), gi,θ (γi(θ)))}

= {(Rω(θ), γi+1
(Rω(θ)))} = A

Rω(θ)
i+1

for every θ ∈ Bδi+1[i
∗] \{i∗}. On the other hand, by the part already proven, g

i,i∗ sends the

interval Ii,i∗ affinely to Ii+1,(i+1)∗ or, equivalently, Gi sends the interval R(i∗)i∗ = {i∗} × Ii,i∗
affinely onto R((i + 1)∗)(i+1)∗ = {(i + 1)∗} × Ii,(i+1)∗ . This implies that Gi

(
Ai
∗

i

)
= A

(i+1)∗

i+1 by

Lemma 2.25(b). Hence, Gi
(
Aθi
)
= A

Rω(θ)
i+1 for every θ ∈ Bδi+1[i

∗] .

• Now we studyR(i∗)���(Bαi+1
[i∗]\Bδi+1

(i∗)).

Observe that Rω(Bα[i∗] \{i∗}) = Bα[(i+ 1)∗] \{(i+ 1)∗} for α ∈ {αi, αi+1}. Then, by (2.1)

γ
i+1
◦Rω

∣∣
Bαi [i

∗]\{i∗} is continuous, and

γi+1(Rω(θ)) ∈ Ii+1,Rω(θ) for every θ ∈ Bαi+1 [i
∗] \{i∗}.

(2.7)

So, the continuity of the maps mi, Mi, mi+1 ◦ Rω and Mi+1 ◦ Rω imply that gi is well defined

and continuous onR(i∗)���(Bαi+1
[i∗]\Bδi+1

(i∗)), and(
γ
i
(θ), γ

i+1
(Rω(θ))

)
∈ Ii,θ × Ii+1,Rω(θ)

for every θ ∈ Bαi+1
[i∗] \Bδi+1

(i∗) .Consequently, g
i,θ

maps Ii,θ piecewise affinely with two pieces

onto Ii+1,Rω(θ) or, equivalently, Gi sends the interval R(i∗)θ piecewise affinely with two pieces

onto R((i + 1)∗)Rω(θ). Again, by Lemma 2.20(b), this implies that −1 ≤ g
i,θ
(x) ≤ 1 for every

x ∈ Ii,θ. On the other hand, from (2.2) and (2.1) we have

57



Gi
(
Aθi
)
= Gi

(
{(θ, γ

i
(θ))}

)
= {(Rω(θ), gi,θ (γi(θ)))}

= {(Rω(θ), γi+1
(Rω(θ)))} = A

Rω(θ)
i+1

for every θ ∈ Bαi+1
[i∗] \Bδi+1

(i∗) .

• Finally, we study the regionR(i∗)���(Bαi [i
∗]\Bαi+1

(i∗)).

In this case, by definition and Lemma 2.20(b) we have −1 ≤ g
i,θ
(x) ≤ 1 for every x ∈ Ii,θ. By

(2.7), gi(·, x) = γ
i+1
◦Rω is well defined and continuous in both variables onR(i∗)���(Bαi [i

∗]\Bαi+1
(i∗))

because mi and Mi are continuous. Moreover, for every θ ∈ Bαi[i∗] \Bαi+1(i
∗) and x such that

(θ, x) ∈ R(i∗)θ, we have

{Gi(θ, x)} = {(Rω(θ), gi(θ, x))} = {(Rω(θ), γi+1
(Rω(θ))} = A

Rω(θ)
i+1

by Definition 2.24 and Lemma 2.4(a). Thus, by Lemma 2.25(a),

Gi
(
Aθi
)
= Gi

(
R(i∗)θ

)
= A

Rω(θ)
i+1 .

From all the previous arguments (b) and (c) follow. To end the proof of (a) we have to see

that Gi is well defined and globally continuous. This amounts to show that it is well defined on

the fibres

R(i∗)(i
∗±δi+1) = {i∗ ± δi+1} × Ii,i∗±δi+1

and

R(i∗)(i
∗±αi+1) = {i∗ ± αi+1} × Ii,i∗±αi+1 .

We will only show that the two definitions of gi coincide on {θ} × Ii,θ with θ ∈ {i∗ + δi+1, i
∗ +

αi+1}. The case θ ∈ {i∗ − δi+1, i
∗ − αi+1} follows analogously.

We start with θ = i∗+αi+1 ∈ Bδi(i∗) . In this case,Rω(θ) = (i+1)∗+αi+1 ∈ Bd(Bαi+1[(i+ 1)∗])

and, by Definition 2.15 and Lemma 2.20(c),

Mi+1(Rω(θ)) = mi+1(Rω(θ)) = a+
i+1 = γi+1(Rω(θ)).

Thus, the piecewise affine map whose graph joins the points(
mi(θ),Mi+1(Rω(θ))

)
,
(
γ
i
(θ), γ

i+1
(Rω(θ))

)
, and

(
Mi(θ),mi+1(Rω(θ))

)
is the constant map γi+1(Rω(θ)). Hence, g

i,θ
is well defined for θ = i∗ + αi+1.

Now we deal with the case θ = i∗+ δi+1 ∈ Bδi[i∗] . By (2.5) and (2.6) we know that the points(
mi(θ),Mi+1(Rω(θ))

)
,
(
γ
i
(θ), γ

i+1
(Rω(θ))

)
and

(
Mi(θ),mi+1(Rω(θ))

)
belong to

Graph

(
x 7→ γ

i
((i+ 1)∗) +

2ni

2ni+1

(
γ
i−1

(i∗)− x
))

.

Consequently, the map γ
i
((i + 1)∗) + 2ni

2ni+1

(
γ
i−1

(i∗)− x
)

coincides with the piecewise affine

map whose graph joins
(
mi(θ),Mi+1(Rω(θ))

)
,
(
γ
i
(θ), γ

i+1
(Rω(θ))

)
and

(
Mi(θ),mi+1(Rω(θ))

)
.

This ends the proof of (a).
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Now we define g
i,θ

for i < 0. In this case, since we are going from a smaller box R (i∗) to

a bigger one, we only need to define g
i,θ

in two different ways, depending on the base point

θ ∈ Bi [i∗].
As in the previous case we need to fix some facts about the elements that we will use in the

definition.

By Definition 2.18(R.1) and Lemma 2.20(c),

for every i < 0

Bδ|i| [(i+ 1)∗] ⊂ Bα|i| [(i+ 1)∗] ⊂ Bδ|i+1| ((i+ 1)∗) ⊂ Bα|i+1| ((i+ 1)∗) ,

Rω
(
Bi [i∗]

)
= Bα|i+1| [(i+ 1)∗] , Bδ|i| [i

∗] ⊂ Bα|i| (i
∗) , and

γ|i+1|(i
∗) = ai and γ|i+2|((i+ 1)∗) = ai+1.

(2.8)

Consequently, from (2.1) and Definitions 2.15 and 2.18 we get

mi(θ) < γ|i|(θ) < Mi(θ) and

mi+1(Rω(θ)) < γ|i+1|(Rω(θ)) < Mi+1(Rω(θ))

for every θ ∈ Bα|i|(i∗) \{i∗} (and Rω(θ) ∈ Bα|i|((i+ 1)∗) \{(i+ 1)∗}). Then,

κ̃i(θ) = min

1,
mi+1(Rω(θ))− γ|i+1|(Rω(θ))

2
n|i|

2
n|i+1| (γ|i|(θ)−Mi(θ))

,
Mi+1(Rω(θ))− γ|i+1|(Rω(θ))

2
n|i|

2
n|i+1| (γ|i|(θ)−mi(θ))

 > 0

defines a continuous function κ̃i : Bα|i|(i
∗) \Bδ|i|(i∗) −→ (0, 1]. To define the map gi we need an

auxiliary function

κi : Bα|i|[i
∗] \Bδ|i|(i∗) −→ [0, 1]

such that κi is non-decreasing and continuous, κi(i∗ ± δ|i|) = κ̃i(i
∗ ± δ|i|), and κi(θ) ≤ κ̃i(θ) for

every θ ∈ Bα|i|(i∗) \Bδ|i|(i∗) . In principle any such function would do, but for definiteness, and

to show that such function exists, we note that we can take, for instance,

κi(θ) =

inft∈[θ,i∗−δ|i|]∩Bα|i| (i
∗) κ̃i(t) if θ ≤ i∗ − δ|i|,

inft∈[i∗+δ|i|,θ]∩Bα|i| (i
∗) κ̃i(t) if θ ≥ i∗ + δ|i|.

It is easy to check that this map verifies the desired properties.

Definition 2.31 (Definition of gi for i < 0). For every (θ, x) ∈ R (i∗) we set

g
i,θ
(x) :=


2
n|i|

2
n|i+1|

(
γ|i+1|(i

∗)− x
)
+ γ|i+2|((i+ 1)∗) if θ ∈ Bδ|i|[i∗] ,

2
n|i|

2
n|i+1| κi(θ)

(
γ|i|(θ)− x

)
+ γ|i+1|(Rω(θ)) if θ ∈ Bα|i|[i∗] \Bδ|i|(i∗)

γ|i+1|(Rω(θ)) if θ ∈ Bi [i∗] \Bα|i|(i∗) .
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The next lemma states the basic properties of the functions Gi for i < 0.

Lemma 2.32. The following statements hold for every i < 0 :

(a) The map g
i,θ

is well defined and non-increasing for every θ ∈ Bαi[i∗] . Moreover, −1 ≤ g
i,θ
(x) ≤ 1

for every θ ∈ Bαi[i∗] and x ∈ Ii,θ. Furthermore, the function Gi is continuous.

(b) Gi
∣∣
R (i∗)θ

is affine, Gi
(
R (i∗)θ

)
⊂ R((i + 1)∗)Rω(θ) for every θ ∈ Bi [i∗] and Gi

(
R (i∗)θ

)
=

R((i+ 1)∗)Rω(θ) for every θ ∈ Bδ|i|[i∗] .
(c) Gi(Aθ|i|) = A

Rω(θ)
|i+1| for every θ ∈ Bi [i∗] .

Proof. First we will prove that the map Gi is continuous and that Gi
∣∣
R (i∗)θ

is affine, according

to the three regions in the definition.

• As in the previous lemma we start withR (i∗)
���Bδ|i| [i

∗]
= R(i∗)

���Bδ|i| [i
∗]
.

As in the same case of Lemma 2.30, by using (2.8) instead of (2.2), it follows that g
i,θ

∣∣
Ii,θ

is the

affine map whose graph joins the points
(
mi(θ),Mi+1(Rω(θ))

)
and

(
Mi(θ),mi+1(Rω(θ))

)
, gi is

well defined and continuous onR(i∗)
���Bδ|i| [i

∗]
,

g
i,θ
(γ|i|(θ)) = γ|i+1|(Rω(θ)) for every θ ∈ Bδ|i| [i

∗] \{i∗},

Gi sends the intervalR(i∗)θ affinely ontoR((i+ 1)∗)θ, and

Gi
(
Aθ|i|
)
= A

Rω(θ)
|i+1| for every θ ∈ Bδ|i| [i

∗].

• R (i∗)
���
(
Bα|i| [i

∗]\Bδ|i| (i
∗)
)
= R(i∗)

���
(
Bα|i| [i

∗]\Bδ|i| (i
∗)
)
.

From (2.1) we know that the maps γ|i| and γ|i+1|◦Rω are continuous on the domainBα|i|[i
∗] \Bδ|i|(i∗) .

Hence, the continuity of gi follows from the continuity of the maps κi, mi, Mi, mi+1 ◦ Rω and

Mi+1 ◦Rω.
Notice that, from the definition of gi in this region we clearly have that

g
i,θ
(γ|i|(θ)) = γ|i+1|(Rω(θ)), and

Gi
∣∣
R (i∗)θ

= gi(θ, ·) is affine.

• R (i∗)
���
(
Bi [i∗]\Bα|i| (i

∗)
)
.

In this case we have mi(θ) = γ|i|(θ) =Mi(θ) by definition. Then, the map Gi
∣∣
R (i∗)θ

= gi(θ, ·) is

affine because it is constant, and gi is continuous because γ|i| and γ|i+1| ◦ Rω are continuous on

the domain Bi [i
∗] \{i∗} by (2.1).

To end the proof of (a) we have to see that Gi is well defined and globally continuous. This

amounts to show that it is well defined on the fibres

R(i∗)(i
∗±δ|i|) and R(i∗)(i

∗±α|i|)
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We start by showing that the two definitions of gi coincide on the fibresR(i∗)θ for θ ∈ {i∗±α|i|}.
In this case we have mi(θ) = γ|i|(θ) =Mi(θ). Consequently, Ii,θ = {γ|i|(θ)} and

2n|i|

2
n|i+1|

κi(θ)
(
γ|i|(θ)− x

)
+ γ|i+1|(Rω(θ)) = γ|i+1|(Rω(θ))

for x ∈ Ii,θ.
Next we considerR(i∗)θ = {θ}× Ii,θ with θ = i∗+ δ|i|. We will show that the two definitions

of gi coincide on this set. The case θ = i∗ − δ|i| follows analogously.

For simplicity we will denote

gδ|i|
i,θ

(x) :=
2n|i|

2
n|i+1|

(
γ|i+1|(i

∗)− x
)
+ γ|i+2|((i+ 1)∗), and

ξ
i,θ
(x) :=

2n|i|

2
n|i+1|

(
γ|i|(θ)− x

)
+ γ|i+1|(Rω(θ)).

Notice that gδ|i|i,θ is the map g
i,θ

as defined in the first region while

κi(θ)
(
ξ
i,θ
− γ|i+1|(Rω(θ))

)
+ γ|i+1|(Rω(θ))

is the map g
i,θ

as defined in the second region. In a similar way to the previous lemma we have

that
(
γ|i|(θ), γ|i+1|(Rω(θ))

)
∈ Graph

(
g
δ|i|
i,θ

)
. Hence, since gδ|i|i,θ is affine with slope − 2

n|i|

2
n|i+1| , it

follows that gδ|i|i,θ = ξ
i,θ
. So, to end the proof of the lemma, we only have to see that κi(i∗+ δ|i|) =

κ̃i(i
∗ + δ|i|) = 1.

Since the points
(
mi(θ),Mi+1(Rω(θ))

)
and

(
Mi(θ),mi+1(Rω(θ))

)
also belong to Graph

(
g
δ|i|
i,θ

)
=

Graph
(
ξ
i,θ

)
, it follows that

mi+1(Rω(θ)) = ξ
i,θ
(Mi(θ)) =

2n|i|

2
n|i+1|

(
γ|i|(θ)−Mi(θ)

)
+ γ|i+1|(Rω(θ)), and

Mi+1(Rω(θ)) = ξ
i,θ
(mi(θ)) =

2n|i|

2
n|i+1|

(
γ|i|(θ)−mi(θ)

)
+ γ|i+1|(Rω(θ)).

This shows that κ̃i(i∗ + δ|i|) = κ̃i(θ) = 1 and ends the proof of (a).

Now we prove (b) according to the three regions in the definition. From the part of the lemma

already proven we already know that Gi
∣∣
R (i∗)θ

is affine, and Gi
(
R (i∗)θ

)
= R((i + 1)∗)Rω(θ)

for every θ ∈ Bδ|i|[i∗] . So, to end the proof of (b) we have to see that

g
i,θ
(Ii,θ) ⊂ Ii+1,Rω(θ) (2.9)

for every θ ∈ Bi [i∗] \Bδ|i|[i∗] (by definition, since i < 0, Bi [i
∗] = Bα|i+1|[i

∗] ; therefore, Rω(θ) ∈
Bα|i+1|[(i+ 1)∗] and Ii+1,Rω(θ) = R((i+ 1)∗)Rω(θ)).

For θ ∈ Bi [i∗] \Bα|i|(i∗) , by (2.1), we have

g
i,θ
(Ii,θ) = {γ|i+1|(Rω(θ))} ⊂ Ii+1,Rω(θ).

Now we consider θ ∈ Bα|i|(i∗) \Bδ|i|[i∗] . Since
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κi(θ) ≤ κ̃i(θ) ≤
Mi+1(Rω(θ))− γ|i+1|(Rω(θ))

2
n|i|

2
n|i+1| (γ|i|(θ)−mi(θ))

,

we have

g
i,θ
(mi(θ)) ≤

2n|i|

2
n|i+1|

Mi+1(Rω(θ))− γ|i+1|(Rω(θ))

2
n|i|

2
n|i+1| (γ|i|(θ)−mi(θ))

(
γ|i|(θ)−mi(θ)

)
+ γ|i+1|(Rω(θ))

=Mi+1(Rω(θ)).

An analogous computation shows that g
i,θ
(Mi(θ)) ≥ mi+1(Rω(θ)). Hence, (2.9) holds because

g
i,θ

is affine. This ends the proof of (b).

Then, by Lemma 2.20(b), Statement (b) of the lemma implies that −1 ≤ g
i,θ
(x) ≤ 1 for every

x ∈ Ii,θ.
By the part of the lemma already proved we know that Gi

(
Aθ|i|
)
= A

Rω(θ)
|i+1| for every θ ∈

Bδ|i|[i
∗]. On the other hand, as in the previous lemma, from (2.8) and (2.1) we get

Gi
(
Aθ|i|
)
= Gi

(
{(θ, γ|i|(θ))}

)
= {(Rω(θ), gi,θ (γ|i|(θ)))}

= {(Rω(θ), γ|i+1|(Rω(θ)))} = A
Rω(θ)
|i+1|

for every θ ∈ Bi [i∗] \Bδ|i|[i∗] . So, (c) holds.

Up to now we have defined the family of auxiliary functions Gi : R (i∗) −→ Ω with i ∈ Z.
The next step before being able to define the family {Tm} ⊂ S(Ω) is to fix some stratification in

the set of boxesR (i∗).

2.5 A stratification in the set of boxesR (i∗)

In this section we introduce a notion of depth in the set of arcs Bi [i
∗] defined earlier. This notion

introduce a stratification in the set of boxesR (i∗) that we study below.

Definition 2.33. For every ` ∈ Z we define the depth of `, which will be denoted by depth(`), as the

cardinality of the set (see Lemma 2.20(g))

{i ∈ Z : B` [`∗]  Bi [i∗]} = {i ∈ Z : B` [`∗] ∩Bi [i∗] 6= ∅} =

{i ∈ Z : R (`∗)  R (i∗)} = {i ∈ Z : R (`∗) ∩R (i∗) 6= ∅}.

Also, for every m ∈ Z+, we denote

D
m
:= {` ∈ Z : depth(`) = m},

D∗
m
:= {i∗ : i ∈ D

m
}, and

µm := min{|i| : i ∈ D
m
}.
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The next lemma studies the stratification on Z created by the notion of depth.

Lemma 2.34. The following statements hold:

(a) D
m+1
⊂ {` ∈ Z : ∃ i ∈ D

m
such that B` [`

∗]  Bi [i
∗]}.

(b) For every `, k ∈ D
m

it follows that B` [`
∗] ∩Bk [k∗] = ∅.

Proof. Observe that if B` [`
∗]  Bi [i

∗] then depth(`) ≥ depth(i) + 1. Hence, (a) holds.

Statement (b) follows from Lemma 2.20(g).

In what follows, for every m ∈ Z+ we set

B
m
:=

⋃
i∈Dm

Bi [i∗] ⊃ D∗
m
.

Note that, by Lemma 2.34(b), B
m

is a disjoint union of closed arcs. Therefore, for every θ ∈ B
m
,

there exists a unique i ∈ Dm such that θ ∈ Bi [i∗] . We will denote such integer i by b (θ,m) ∈
D
m
.

The next two lemmas study the properties of the winged boxes Bi [i
∗] andR (i∗) according

to the depth stratification. Lemma 2.36 is the real motivation to introduce the winged boxes.

Lemma 2.35. The following statements hold:

(a) The sequence {µm}∞m=0 is strictly increasing. In particular limm→∞ µm =∞.
(b) For every m ∈ Z+, B

m
is dense in S1, B

m+1
⊂ B

m
and D∗

m
∩ B

m+1
= ∅.

(c) O∗(ω) ⊂ B
0
, and Aθ = {(θ, 0)} for every θ ∈ S1\B

0
.

(d) Let i ∈ Z and θ ∈ Bi [i
∗] \B

depth(i)+1
. Then, θ /∈ O∗(ω) unless θ = i∗, and Aθn = Aθ|i| for every

n ≥ |i|. In particular Aθ = Aθ|i|.

Proof. By Lemmas 2.34(a) and 2.20(g) it follows that for every m ∈ Z+ and ` ∈ D
m+1

there exists

i ∈ D
m

such that B` [`
∗]  Bi [i

∗] and |i| < |`|. Thus, B
m+1
⊂ B

m
and µm < µm+1. This proves

(a) and the second statement of (b).

Next we will show that i∗ /∈ B
m+1

for every i ∈ Dm . Assume by way of contradiction that

there exists i ∈ D
m

such that i∗ ∈ B
m+1

. Let k = b (i∗,m+ 1) ∈ D
m+1

. Clearly, i 6= k and

i∗ ∈ Bk [k∗] . Then, by Lemma 2.20(g), |k| < |i| and Bi [i
∗]  Bk [k

∗] . Thus,

m = depth(i) ≥ depth(k) + 1 = m+ 2;

a contradiction.

Now we prove the first statement of (c). From the definitions and the part of (b) already

proven we have

O∗(ω) ⊂
⋃
i∈Z

Bi [i∗] ⊂
∞⋃
m=0

B
m
= B

0
.
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To end the proof of (b) it remains to show the density of B
m
.We will do it by induction onm.

Clearly B
0
⊃ O∗(ω) is dense in S1 because so is O∗(ω). Suppose that (b) holds for B

m
. We will

show that (b) also holds for B
m+1

. Choose θ ∈ B
m

and set i = b (θ,m) . Since O∗(ω) is dense in

S1, there exists a sequence {sn}∞n=0 ⊂ Z such that s∗n ∈ Bi (i∗) and limn→∞ s∗n = θ. As above,

we get that depth(sn) ≥ depth(i) + 1 = m + 1. Moreover, s∗n ∈ Bdepth(sn)
⊂ B

m+1
for every n.

Consequently, B
m
⊂ B

m+1
, and the density of B

m+1
follows from the density of B

m
.

Next we prove the second statement of (c). From above it follows that⋃
i∈Z

Bα|i| [i
∗] ⊂

⋃
i∈Z

Bi [i∗] ⊂ B
0
.

Hence, by the definition of the maps γm (Definition 2.18) it follows that γm(θ) = γ0(θ) = 0 for

every θ /∈ B
0

and m ∈ Z+. So, γ(θ) = limm→∞ γm(θ) = 0, and Aθ = {(θ, γ(θ))} = {(θ, 0)} by

Lemma 2.26(c). This ends the proof of (c).

(d) If θ = i∗ then the statement follows from Lemmas 2.25(b) and 2.26(b). So, we assume that

θ 6= i∗.

By Definition 2.18(R.2) and Remark 2.19(R.2) we get that θ /∈ Z∗|i|+1. Hence, if θ ∈ O∗(ω), it

follows that θ = k∗ ∈ B
depth(k)

with |k| > |i|+1 and Bk [k
∗]∩Bi [i∗] 6= ∅. Thus, by Lemma 2.20(g),

depth(k) ≥ depth(i) + 1. By (b), this implies that θ = k∗ ∈ B
depth(i)+1

; a contradiction. Therefore,

θ /∈ O∗(ω). On the other hand, θ /∈ B−i[(−i)∗] by Definition 2.18(R.2).

If θ /∈ Bα|k|[k∗] for every k ∈ Z such that |k| > |i|, then γ
n
(θ) = γ|i|(θ) and Aθn = Aθ|i| for every

n ≥ |i|, by Definition 2.18 and Lemma 2.25(c).

Now assume that θ ∈ Bα|k|[k
∗] for some k ∈ Z such that |k| > |i| and |k| is minimal with

these properties. If θ ∈ Bk (k∗) , as above we get that depth(k) ≥ depth(i) + 1 and θ ∈ B
depth(k)

⊂
B

depth(i)+1
. Thus, θ ∈ Bd(Bk [k

∗]) = Bd(Bα|k|[k
∗]) and k ≥ 0. So, by Lemma 2.20(c) and the

definition of the maps γ
j

(Definition 2.18), γ|k|(θ) = γ|k|−1
(θ). Moreover, by Lemma 2.20(e),

γj (θ) = γ|k|(θ) for every j > |k|. On the other hand, the minimality of |k| implies that θ /∈
Bα|`|[`

∗] for every ` ∈ Z such that |k| > |`| > |i|. Hence, by the definition of the maps γj
(Definition 2.18), γ

j
(θ) = γ|i|(θ) for every |k| > j > |i|. In short, we have proved that γ

j
(θ) =

γ|i|(θ) for every j ≥ |i|. Thus, as above, Aθn = Aθ|i| for every n ≥ |i|. This ends the proof of the

lemma.

Lemma 2.36. Assume that Bi [i
∗] ⊂ Bk [k

∗] for some i ∈ Dm , k ∈ Dm−1 and m ∈ N. Then, |k| < |i|
and |k+1| < |i+ 1| unless k ≥ 0 and i = −(k+2) (whence |k+1| = |i+ 1|). Moreover, the following

statements hold:

(a) For every θ ∈ Bi [i∗] ,
γ|k|(θ) = γ|k|+1

(θ) = · · · = γ|i|−1
(θ) ∈ Ii,θ

and, when |k + 1| < |i+ 1|,

γ|k+1| (Rω(θ)) = γ|k+1|+1
(Rω(θ)) = · · · = γ|i+1|−1

(Rω(θ))
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(b) For every θ ∈ Bi [i∗] \Bα|i|(i∗) ,

γ|i|(θ) = γ|i|−1
(θ) and Ii,θ = {γ|i|(θ)} = {γ|k|(θ)} ⊂ Ik,θ.

Proof. The fact that |k| < |i| follows from Lemma 2.20(g). Therefore, either |k + 1| < |i+ 1| or

k ≥ 0, i = −(k+2) and |k+1| = |i+ 1| or k ≥ 0, i = −(k+1) and |k+1| > |i+ 1|. In the last case,

Bi [i
∗] = B−(k+1)[(−(k + 1))∗] and Bk [k

∗] must be disjoint by Definition 2.18(R.2) (with j = k);

which is a contradiction. Thus |k + 1| < |i+ 1| unless k ≥ 0 and i = −(k + 2) (|k + 1| = |i+ 1|).
By Definition 2.18(R.2) and Remark 2.19(R.2), Bi [i

∗]∩Z∗|i|−1 = ∅. Hence, from the definition

of the maps γj (Definition 2.18), to prove that

γ|k|
∣∣
Bi [i∗]

= γ|k|+1

∣∣
Bi [i∗]

= · · · = γ|i|−2

∣∣
Bi [i∗]

= γ|i|−1

∣∣
Bi [i∗]

,

it is enough to show that Bα|`|[`
∗] ∩ Bi [i∗] = ∅ for every ` such that |k| < |`| < |i|. Assume that

Bα|`|[`
∗] ∩Bi [i∗] 6= ∅ for some ` such that |k| < |`| < |i|. Then,

∅ 6= Bα|`| [`
∗] ∩Bi [i∗] ⊂ B` [`∗] ∩Bi [i∗] ⊂ B` [`∗] ∩Bk [k∗]

and, by Lemma 2.20(g),

Bi [i∗]  B` [`∗]  Bk [k∗] .

So, in a similar way as before,

m = depth(i) ≥ depth(`) + 1 ≥ depth(k) + 2 = m+ 1;

a contradiction. This ends the proof of the first statement of (a).

Now we show that if |k + 1| < |i+ 1| − 1, then

γ|k+1| (Rω(θ)) = γ|k+1|+1
(Rω(θ)) = · · · = γ|i+1|−1

(Rω(θ)) ,

and are well defined.

First we prove that γ
`
(Rω(θ)) is well defined for every ` = 0, 1, . . . , |i+ 1| − 1. For every

θ ∈ Bi [i∗] we have

Rω(θ) ∈ Rω
(
Bi [i∗]

)
=

Bαi[(i+ 1)∗] when i ≥ 0, and

Bα|i+1|[(i+ 1)∗] ⊂ Bi+1[(i+ 1)∗] when i < 0.

In any case, by Definition 2.18(R.2) and Remark 2.19(R.2) with j = i when i ≥ 0 and ` =

−(j + 1) = i+ 1 when i < 0, and Lemma 2.20(a),

Rω(θ) /∈

Z∗i when i ≥ 0, and

Z∗|i+1|−1 when i < 0,

and γ
`
(Rω(θ)) is well defined for ` = 0, 1, . . . , |i+ 1|−1 (recall thatZ∗m ⊂ Z∗m+1 for everym ≥ 0).
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Now, assume by way of contradiction that

γ
`
(Rω(θ)) 6= γ

`−1
(Rω(θ)) for some ` ∈ {|k + 1|+ 1, |k + 1|+ 2, . . . , |i+ 1| − 1},

and ` is minimal with this property (observe that ` ≥ 1). By the definition of the map γ
`

(Defini-

tion 2.18),

Rω(θ) ∈ Bα` ((q + 1)∗) with q ∈ {`− 1,−(`+ 1)}

and, hence, θ ∈ Bα`(q∗) .
Since |k + 1|+ 1 ≤ ` < |i+ 1|, when q = −(`+ 1) ≤ −2,

|k + 1|+ 2 ≤ −q ≤ |i+ 1| and Bα` (q
∗) = B−(`+1) ((−(`+ 1))∗) = Bq (q∗) .

Otherwise, when q = `− 1 ≥ 0, |k + 1| ≤ q ≤ |i+ 1| − 2 and

Bα` (q
∗) ⊂ Bα`−1

((`− 1)∗) = B`−1 ((`− 1)∗) = Bq (q∗) ,

by Definition 2.18(R.1).

Next we want to use Lemma 2.20(g) to show that Bi [i
∗]  Bq [q

∗]  Bk [k
∗] . To this end we

have to compare |q|with |i| and |k|.
Notice Bq [q∗] ∩Bk [k∗] 6= ∅ because

θ ∈ Bq (q∗) ∩Bi [i∗] ⊂ Bq (q∗) ∩Bk [k∗] .

If k ≥ 0, |q| ≥ |k + 1| > |k|. When k, q < 0, |q| ≥ |k + 1| + 2 = |k| + 1 > |k|. If k < 0

and q ≥ 0, |q| = q ≥ |k + 1| = |k| − 1. If q = |k| − 1 (that is, k = −(q + 1)), as above, by

Definition 2.18(R.2) with j = q we get Bk [k
∗] ∩ Bq [q∗] = ∅; a contradiction. So, |q| > |k| unless

|q| = |k| and k < 0 ≤ q. Summarizing, we have shown that |q| ≥ |k| and q 6= k. Then, from

Lemma 2.20(g) we get that |q| > |k| and Bq [q∗]  Bk [k
∗] .

Now we will study the relation of Bq [q∗] with the box Bi [i
∗] . From above we get that

Bq [q
∗]∩Bi [i∗] 6= ∅. If i < 0, |q| ≤ |i+ 1| = |i| − 1. When q, i ≥ 0, we have |q| = q ≤ |i+ 1| − 2 =

|i| − 1. If i ≥ 0 and q < 0, |q| ≤ |i+ 1| = |i|+ 1.

Assume that i ≥ 0 and q = −(i + 1) < 0. In this case, additionally, q = −(` + 1) and, thus,

i = ` ≥ 1. Then,

Rω(θ) ∈ Rω
(
Bi [i∗]

)
= Rω (Bαi [i

∗]) = Bαi [(i+ 1)∗] , and

Rω(θ) ∈ Bα` ((q + 1)∗) = Bαi ((−i)∗) ⊂ B−i ((−i)∗) ,

which is a contradiction by Definition 2.18(R.2). Summarizing, |q| < |i| unless |q| = |i| and

q < 0 ≤ i (that is, |q| ≤ |i| and q 6= i). Then, again by Lemma 2.20(g), |q| < |i| and Bi [i
∗]  

Bq [q
∗]  Bk [k

∗] . So, as before,

m = depth(i) ≥ depth(q) + 1 ≥ depth(k) + 2 = m+ 1;
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a contradiction. This ends the proof of (a).

Now we assume that θ ∈ Bi [i∗] \Bα|i|(i∗) . By Lemmas 2.20(e) and 2.28(d),

γ|i|(θ) = γ|i|−1
(θ) and Ii,θ = {γ|i|(θ)} = {γ|i|−1

(θ)} = {γ|k|(θ)}.

On the other hand, by Lemma 2.35(b), D∗
m−1
∩ B

m
= ∅ which implies that θ 6= k∗ because

k∗ ∈ D∗
m−1

and θ ∈ Bi [i∗] \Bα|i|(i∗) ⊂ Bm . So, by (2.1),

Ii,θ = {γ|i|(θ)} = {γ|k|(θ)} ⊂ Ik,θ.

Now we prove that γ|i|−1
(θ) ∈ Ii,θ for every θ ∈ Bi [i

∗] . From above, we have Ii,θ =

{γ|i|−1
(θ)} for every θ ∈ Bi [i∗] \Bα|i|(i∗) . Moreover, when θ ∈ Bα|i|(i∗) the statement follows

directly from Lemma 2.20(c). Thus, (b) is proved.

2.6 Boxes in the wings

To prove Theorem D we will inductively construct a Cauchy sequence {Tm}∞m=0 ⊂ S(Ω) that

gives the function T from Theorem D as a limit.

This section is devoted to study the points in the wings of boxes in the circle and its interac-

tion with boxes of higher depth. The resulting technology is necessary to be able to construct the

sequence {Tm}∞m=0 so that it is Cauchy sequence. Unfortunately this will complicate even more

the definition of the functions Tm and the proof of its continuity.

We start by introducing some more notation. For every m ∈ Z+ we set

Bm :=
⋃

i∈Dm

Bα|i| [i
∗] ⊂ B

m
, and

WDB
m
:=
{
θ ∈ B

m
\B

m
: θ ∈ B

j
for some j > m

}
.

On the other hand, the smallest number j from the above definition will be called the least

essential depth of θ below m, and will be denoted by led (θ,m) . That is, led (θ,m) denotes the

positive integer larger than m such that

θ ∈ B
j
\Bj for j = m,m+ 1, . . . , led(θ,m)− 1 and θ ∈ B

led(θ,m)
.

The following simple lemmas are useful to better understand and use the above definitions.

The next lemma establishes the relation between boxes in the wings of increasing depth.

Lemma 2.37. Assume that θ ∈ WDBm for some m ∈ Z+ and set ` = led (θ,m) . Then, the following

statements hold.

(a) For every j = m,m + 1, . . . , ` the numbers ij = b (θ, j) ∈ D
j

are well defined and are all of them

negative except, perhaps, i` = b (θ, led (θ,m)) .
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(b)

|im| < |im+1| < · · · < |i`−1| < |i`|, and

θ ∈ Bα|i`| [(i`)
∗] ⊂ Bi`−1

((i`−1)
∗) \Bα|i`−1|

[(i`−1)
∗]

⊂ Bi`−2
((i`−2)

∗) \Bα|i`−2|
[(i`−2)

∗] ⊂ · · · ⊂ Bim ((im)∗) \Bα|im| [(im)∗] .

(c) For every j = m,m+1, . . . , `−1, Bα|i`|[(i`)
∗] ⊂WDB

j
, led (ν, j) = led (θ,m) and b (ν, led (ν, j)) =

b (θ, led (θ,m)) = i` for every ν ∈ Bα|i`|[(i`)
∗] .

(d) Iim,ν = {γ|im|(ν)} ⊂ Ii`,ν for every ν ∈ Bα|i`|((i`)
∗) and

Iim,ν = {γ|im|(ν)} = {mi`(ν)} = {Mi`(ν)} = {γ|i`|(ν)} = Ii`,ν

for every ν ∈ Bd
(
Bα|i`|[(i`)

∗]
)
.

Proof. Since Bi [i
∗] = Bαi[i

∗] for every i ≥ 0,

B
m
\B

m
=

⋃
i∈Dm
i<0

(
Bi [i∗] \Bα|i| [i

∗]
)

(2.1)

for every m ∈ Z+.

Statement (a) follows from Lemma 2.35(b) and (2.1). Then, (b) follows from Lemma 2.20(g).

Statement (c) is an easy consequence of (b) and the definitions.

Now we prove (d) iteratively. Fix ν ∈ Bα|i`|((i`)
∗) . By (b)

ν ∈ Bim+1
((im+1)

∗) \Bα|im+1|
[(im+1)

∗] ⊂ Bim ((im)∗) \Bα|im| [(im)∗]

provided that ` = led (θ,m) > m+ 1. Hence, by Lemmas 2.28(d) and 2.36,

γ|im|(ν) = γ|im|+1
(ν) = · · · = γ|im+1|

(ν), and

Iim,ν = {γ|im|(ν)} = {γ|im+1|
(ν)} = Iim+1,ν .

By iterating this argument we get,

γ|im|(ν) = γ|im|+1
(ν) = · · · = γ|i`−1|

(ν) and Iim,ν = Ii`−1,ν .

Again by (b) and Lemmas 2.28(d) and 2.36,

γ|im|(ν) = γ|im|+1
(ν) = · · · = γ|i`|(ν) and Iim,ν = Ii`,ν

when ν ∈ Bd
(
Bα|i`|[(i`)

∗]
)

and, otherwise,

γ|im|(ν) = γ|im|+1
(ν) = · · · = γ|i`−1|(ν) and Iim,ν ⊂ Ii`,ν .

Equipped with above results and definition we are going to define two maps, analogous to

the maps mi and Mi, on the wings of the negative boxes.

68



Definition 2.38. For every m ∈ Z+ we define

WFD
m
:= {b (θ, led(θ,m)) : θ ∈WDB

m
} ⊂ Z,

WIBm := Int(WDBm) =
⋃
i∈WFDm

Bα|i| (i
∗) ,

WB
m
:=

⋃
i∈Dm
i<0

(
Bi [i∗] \Bα|i| (i

∗)
)
, and

EB
m
:=

⋃
i∈Dm

Bd
(
Bi [i∗]

)
⊂ B

m
.

By Lemma 2.37(a,c), WFD
m

is well defined and

WIBm ⊂WDBm ⊂ Bm\Bm ⊂WBm .

Consequently,

B
m
= Bm ∪WBm .

Then, we can define functions τm : WB
m
−→ I and λm : WB

m
−→ I as follows:

τm(θ) :=

Mb (θ,led(θ,m))(θ) if θ ∈WIB
m

,

γ
|b (θ,m)|

(θ) otherwise,

λm(θ) :=

mb (θ,led(θ,m))(θ) if θ ∈WIB
m

,

γ
|b (θ,m)|

(θ) otherwise.

Clearly, by Lemmas 2.28(a) and 2.20(b),

−1 ≤ λm(θ) ≤ τm(θ) ≤ 1

for every θ ∈WB
m
. So, we can define

IW
m,θ

:= [λm(θ), τm(θ)] ⊂ [0, 1].

The next lemmas will help us in the definition and study of the maps Tm.

Lemma 2.39. The following statements hold for every m ∈ Z+.

(a) WIB
m
∩ B

m
=WIB

m
∩ EB

m
= ∅.

(b) Let θ ∈WB
m
. Then, Ib (θ,m),θ =

{
γ
|b (θ,m)|

(θ)
}
,

Ib (θ,m),θ = IWm,θ
when θ /∈WIBm , and

Ib (θ,m),θ ⊂ IWm,θ
when θ ∈WIB

m
.

69



(c) Assume that m ∈ N and let U be a connected component of WB
m

such that U ⊂ WB
m−1

. Then,

WDBm ∩ U ⊂WDBm−1 ,WIBm ∩ U =WIBm−1 ∩ U and IW
m,θ

= IW
m−1,θ

for every θ ∈ U.

Proof. (a) By Lemma 2.37(b),

θ ∈ Bb (θ,m)

(
(b (θ,m))∗

)
\Bα|b (θ,m)|

[
(b (θ,m))∗

]
and b (θ,m) < 0 for every θ ∈WIB

m
⊂WDB

m
. So, by Lemma 2.34(b), we get θ /∈ B

m
∪ EB

m
.

(b) The fact that Ib (θ,m),θ =
{
γ
|b (θ,m)|

(θ)
}

follows from Lemma 2.28(d). The other two state-

ments follow from Definition 2.38 and Lemma 2.37(d).

(c) The assumption that U is a connected component of WB
m

and U ⊂ WB
m−1

implies by

Lemmas 2.34(b) and 2.20(g) that there exist i ∈ D
m

and k ∈ D
m−1

, i, k < 0, such that U is a

connected component of

Bi [i∗] \Bα|i| (i
∗) ⊂ Bk (k∗) \Bα|k| [k

∗] ⊂WB
m−1

.

Again by Lemma 2.34(b) this implies that U ⊂ B
m−1
\B

m−1
. Moreover, by definition, WDB

m
⊂

B
m
\Bm . Consequently,WDBm ∩ U ⊂WDBm−1 .

Let θ ∈ WIB
m
∩ U ⊂ WDB

m
∩ U ⊂ WDB

m−1
∩ U. By Definition 2.38 and Lemma 2.37(a,b),

i = b (θ,m) and there exists ` = b (θ, led (θ,m)) ∈WFD
m

such that

θ ∈ Bα|`| (`
∗) ⊂ Bi [i∗] \Bα|i| (i

∗) ⊂ Bk (k∗) \Bα|k| [k
∗] .

Therefore, again by Lemma 2.37(a–c) and Definition 2.38, led (θ,m− 1) = led (θ,m) ,

` = b (θ, led(θ,m)) = b (θ, led(θ,m− 1)) ∈WFD
m−1

and θ ∈ Bα|`|(`∗) ⊂WIBm−1 . Hence,WIBm ∩ U ⊂WIBm−1 .

Now assume that θ ∈ WIB
m−1
∩ U. As above, there exist r = b (θ,m) ∈ D

m
and ` =

b (θ, led (θ,m− 1)) ∈WFD
m−1

such that

θ ∈ Bα|`| (`
∗) ⊂ Br (r∗) \Bα|r| [r

∗] ⊂ Bk (k∗) \Bα|k| [k
∗] .

Since θ ∈ U ⊂ Bi [i
∗], Lemma 2.34(b) gives i = r and θ ∈ Bα|`|(`

∗) ⊂ U. Moreover, by

Lemma 2.37(c), ` = b (θ, led (θ,m− 1)) = b (θ, led (θ,m)) ∈ WFD
m

and, so, θ ∈ Bα|`|(`
∗) ⊂

WIBm . Thus,WIBm ∩ U =WIBm−1 ∩ U.
To end the proof of the lemma we have to show that IW

m,θ
= IW

m−1,θ
for every θ ∈ U.

Assume first that θ ∈ U\WIB
m
⊂WB

m
\WIB

m
. Then,

θ ∈ U\WIB
m
= U\WIB

m−1
⊂WB

m−1
\WIB

m−1

and, by (b) and Lemmas 2.28(d) and 2.36,
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IW
m,θ

= Ii,θ = {γ|i|(θ)} = {γ|k|(θ)} = Ik,θ = IWm−1,θ
.

If θ ∈ U ∩WIB
m
= U ∩WIB

m−1
then we get

IW
m,θ

=
[
mb (θ,led(θ,m))(θ),Mb (θ,led(θ,m))(θ)

]
=
[
mb (θ,led(θ,m−1))(θ),Mb (θ,led(θ,m−1))(θ)

]
= IW

m−1,θ

from Definition 2.38 and Lemma 2.37(c).

Lemma 2.40. Let m ∈ Z+ and let U be a connected component ofWB
m
. Then, the functions λm

∣∣
U

and

τm
∣∣
U

are continuous.

Proof. We will prove only the continuity of λm
∣∣
U
. The proof of the continuity of τm

∣∣
U

is analo-

gous.

By Lemmas 2.37(c) and 2.28(b) we get

for every ` ∈ WFD
m
, ` = b (ν, led(ν,m)) for every ν ∈ Bα|`| [`

∗] , and the function m`

is continuous on Bα|`| [`
∗] .

(2.2)

Let ` ∈ WFD
m

be such that Bα|`|(`
∗) ⊂ WIBm ∩ U. Thus, by (2.2), the function λm = m` is

continuous on Bα|`|(`
∗) .

So, we have to show that λm is continuous at every θ ∈ U\WIB
m
. To show this we will use

a simple usual ε–δ game. Fix ε > 0.

By Lemma 2.34(b) it follows that U is a connected component of Bi [i
∗] \Bα|i|(i∗) for some

i ∈ D
m
, i < 0, and

b (ν,m) = i for every ν ∈ U. (2.3)

By Lemma 2.20(a) and Definition 2.18(R.2) and Remark 2.19(R.2), the function γ|i|
∣∣
U

is continu-

ous. So,

there exists δ|i| = δ|i|(θ) > 0 such that |γ|i|(θ), γ|i|(ν)| < ε/2 provided that d
S1
(θ, ν) <

δ|i|.
(2.4)

On the other hand, by (2.2),

for every ` ∈ WFD
m
, there exists δ` > 0 such that |m`(θ̃),m`(ν)| < ε/2 for every

θ̃ ∈ Bd
(
Bα|`| [`

∗]
)

and ν ∈ BdBα|`| [`
∗] such that d

S1
(θ, ν) < δ`.

(2.5)

Now we will define δ. Note that there exists N ∈ N such that 2−N < ε/2. Then we set:

δ = δ(θ) := min
{
δ|i|(θ),min{δ` : ` ∈WFD

m
and |`| < N}

}
.

Clearly, δ > 0 because the set {` ∈WFD
m
: |`| < N} is finite.

To end the proof of the lemma we have to show that

|λm(θ)− λm(ν)| < ε
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whenever ν ∈ U and d
S1
(θ, ν) < δ.

Assume that ν ∈ U and d
S1
(θ, ν) < δ (recall that we have the assumption that θ /∈ WIBm ). If

ν /∈WIB
m
, then d

S1
(θ, ν) < δ ≤ δ|i|(θ) and, by (2.3) and (2.4),

|λm(θ)− λm(ν)| = |γ|i|(θ)− γ|i|(ν)| < ε/2 < ε.

Now assume that there exists ` ∈ WFD
m

such that ν ∈ Bα|`|(`
∗) ⊂ WIBm . Clearly, there

exists θ̃ ∈ Bd
(
Bα|`|[`

∗]
)

such that

d
S1
(θ, θ̃) < d

S1
(θ, ν) < δ ≤ δ|i|(θ) and

d
S1
(θ̃, ν) < d

S1
(θ, ν) < δ.

Observe that, by Lemma 2.34(b), θ̃ /∈WIBm . Hence, by (2.3) and Lemma 2.37(c,d),

λm(θ̃) = γ|i|(θ̃) = m`(θ̃).

If |`| < N, then d
S1
(θ̃, ν) < δ ≤ δ` and, by (2.5), |m`(θ̃) − m`(ν)| < ε/2. Otherwise, by

Lemma 2.20(f),

|m`(θ̃)−m`(ν)| < diam (R(`∗)) ≤ 2−|`| ≤ 2−N < ε/2.

In any case, |m`(θ̃)−m`(ν)| < ε/2. Thus, again by (2.3) and (2.4),

|λm(θ)− λm(ν)| ≤ |λm(θ)− λm(θ̃)|+ |λm(θ̃)− λm(ν)|

= |γ|i|(θ)− γ|i|(θ̃)|+ |m`(θ̃)−m`(ν)| < ε.

2.7 A Cauchy sequence of skew products. Proof of Theorem D

In this section prove Theorem D. To do this we inductively construct a Cauchy sequence

{Tm}∞m=0 ⊂ S(Ω) that gives the function T from Theorem D as a limit.

The sequence {Tm}∞m=0 ⊂ S(Ω) is defined so that

Tm(θ, x) = (Rω(θ), fm(θ, x))

and fm : Ω −→ I is continuous in both variables. To build these functions we will use the aux-

iliary functions Gi : R(i∗) −→ Ω with i ∈ Z from Section 2.4. The maps fm(θ, ·) will also be de-

noted as fm,θ, and will be defined non-increasing, and such that fm,θ(2) = −2 and fm,θ(−2) = 2

for every θ ∈ S1.

To make more evident the strategy of the construction of this sequence of maps we will

separate several cases, and we will state without proofs the results that study these maps. After

establishing all the definitions and results related to the construction of the sequence {Tm}∞m=0

without having been distracted by the technicalities involving the proofs, we will proceed to

provide the missing proofs. More precisely, we will start by defining the map T0 and stating
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without proof the proposition that summarizes the necessary properties of this map. Next we

will inductively define the maps {Tm}∞m=1 ⊂ S(Ω) and state without proof the proposition that

establishes the properties of the whole sequence {Tm}∞m=0.

Then, as we have said, we prove Theorem D and in the next three sections we will provide

all pending proofs.

In what follows C(I, I) will denote the class of all continuous maps from I to itself. We endow

C(I, I) with the supremum metric denoted by ‖·‖ so that (C(I, I), ‖·‖) is a complete metric space.

Next we define the map T0.

Definition 2.41 (The map T0). Assume first that θ ∈ B
0

and let i = b (θ, 0) (that is θ ∈ Bi [i
∗]). In

this case we set:

f0,θ(x) =


g
i,θ
(x) if x ∈ Ii,θ,

g
i,θ

(mi(θ))−2

mi(θ)+2 (x+ 2) + 2 if x ∈ [−2,mi(θ)],

g
i,θ

(Mi(θ))+2

Mi(θ)−2 (x− 2)− 2 if x ∈ [Mi(θ), 2].

If θ ∈ S1\B
0

then we define f0,θ to be the unique piecewise affine map with two affine pieces whose graph

joins the point (−2, 2) with (0, γ(Rω(θ))), and this with the point (2,−2).

Next we introduce some more notation to be able to define the maps {Tm}∞m=1. For every

k ∈ Zwe set

Vk∗ := ���Bk [k∗] = Bk [k∗]× I

and, for every m ∈ Z+,

V
m
:= ���B

m
= B

m
× I =

⋃
i∈Dm

Vi∗ .

Definition 2.42 (The maps Tm with m > 0). Now we assume that we have defined the function Tm−1

for some m ≥ 1 and we define

Tm(θ, x) = (Rω(θ), fm(θ, x))

as follows. By Lemma 2.34(b), for every (θ, x) ∈ V
m
, we have

θ ∈ Bi [i∗] ⊂ B
m

with i = b (θ,m) ∈ D
m

(and, of course, x ∈ I). Then we define:
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fm,θ(x) =



fm−1,θ(x) if θ ∈ S1\B
m
; x ∈ I,

g
i,θ
(x) if θ ∈ B

m
; x ∈ Ii,θ,

2−g
i,θ

(mi(θ))

2−fm−1,θ(mi(θ))
(fm−1,θ(x)− 2) + 2 if θ ∈ Bm ; x ∈ [−2,mi(θ)],

2+g
i,θ

(Mi(θ))

2+fm−1,θ(Mi(θ))
(fm−1,θ(x) + 2)− 2 if θ ∈ Bm ; x ∈ [Mi(θ), 2],

γ|i+1| (Rω(θ)) if θ ∈WB
m
; x ∈ IW

m,θ
,

2−γ|i+1| (Rω(θ))

2−fm−1,θ(λm(θ)) (fm−1,θ(x)− 2) + 2 if θ ∈WB
m
; x ∈ [−2, λm(θ)],

2+γ|i+1| (Rω(θ))

2+fm−1,θ(τm(θ)) (fm−1,θ(x) + 2)− 2 if θ ∈WB
m
; x ∈ [τm(θ), 2].

Since V
m
⊂ V

m−1
, fm−1,θ is defined on V

m
. Moreover, the above formula defines fm,θ for every θ ∈ B

m

since, by Definition 2.38, B
m
= B

m
∪WB

m
.We also remark that fm,θ formally is defined in two different

ways when θ ∈WB
m
∩ Bm . Later on we will show that fm,θ is well defined.

The next proposition studies the maps {Tm}∞m=0 and describes their properties.

Proposition 2.43. The following statements hold for every m ∈ Z+.

(a) The map Tm is well defined, continuous and belongs to S(Ω).

(b) For every θ ∈ S1, fm,θ is non-increasing, and fm,θ(2) = −2, fm,θ(−2) = 2. Moreover, −1 ≤
f0,θ

(
Mb (θ,m)(θ)

)
≤ f0,θ

(
mb (θ,m)(θ)

)
≤ 1 for every θ ∈ B

m
.

(c) For every i ∈ Dm , Tm
∣∣
R (i∗)

= Gi, Tm

(
Ai
∗

|i|

)
= A

(i+1)∗

|i+1| , and

Tk
∣∣
{i∗}×I = Tm

∣∣
{i∗}×I (that is, fk,i∗ = fm,i∗ ) for every k > m.

The next result shows that the sequence {Tm}∞m=0 has a limit in S(Ω).

Proposition 2.44. For every m ≥ 2 and θ ∈ S1,

‖fm,θ − fm−1,θ‖ ≤ 2 · 2−|b (θ,m−1)|. (2.1)

Moreover, the sequence {Tm}∞k=0 is a Cauchy sequence.

Finally we are ready to prove the main result of the chapter. It follows from the next result

which gives a more concrete version of Theorem D.

Theorem 2.45. There exists a map T ∈ S(Ω) with f(θ, ·) non-increasing for every θ ∈ S1, such that T

permutes the upper and lower circles of Ω (thus having a periodic orbit of period two of curves), and there

exists a connected pseudo-curve A ⊂ Ω which does not contain any arc of a curve such that T (A) = A

and there does not exist any T -invariant curve.

Proof. By Propositions 2.43 and 2.44, there exists a map

T (θ, x) = (Rω(θ), f(θ, x)) = (Rω(θ), lim
m→∞

fm(θ, x)) ∈ S(Ω)
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with f(θ, ·) non-increasing for every θ ∈ S1 such that T permutes the upper and lower circles

of Ω (that is, f(θ, 2) = −2 and f(θ,−2) = 2). As the connected set A we take the one given by

Proposition 2.27 (and Definition 2.24).

To end the proof of the theorem we need to show that T (A) = A, since this already implies

that there does not exist any T -invariant curve. To see it, assume by way of contradiction that

there exists an invariant curve and denote its graph by B. Since B is the graph of a (continuous)

curve, it is compact and connected. On the other hand, letΩ+ andΩ− be the two connected com-

ponents of Ω\A from the proof of Proposition 2.27. The facts that T (A) = A, f(θ, ·) is decreasing

for every θ ∈ S1, and T permutes the upper and lower circles of Ω imply that T (Ω+) = Ω− and

T (Ω−) = Ω+. Hence, by the invariance of B, B * Ω+ and B * Ω−. The connectivity of A and

B imply that there exists (θ, x) ∈ A ∩B. Consequently,

B = {Tn(θ, x) : n ∈ Z+} ⊂ A;

a contradiction because A does not contain any arc of a curve.

So, only it remains to prove that T (A) = A. By using Proposition 2.43(c) and Lemma 2.26(b)

we get that Tm
(
Ai
∗)

= A(i+1)∗ , and Tk
∣∣
Ai∗

= Tm
∣∣
Ai∗

for every k,m ∈ Z+, k ≥ m and i ∈ Dm .

Consequently, by the definition of the map T we have, T (Ai
∗
) = A(i+1)∗ for every i ∈ Z or,

equivalently, T
(
A

���O∗(ω)
)
= A

���O∗(ω).

Now we consider Aθ with θ ∈ S1\O∗(ω). Since O∗(ω) is dense in S1, there exists a sequence

{(θn, xn)}∞n=0 ⊂ A
���O∗(ω) such that limn→∞ θn = θ. By the compacity of A we can assume

(by taking a convergent subsequence, if necessary) that {(θn, xn)}∞n=0 is convergent to a point

(θ, x) ∈ A. By Lemma 2.26(c), Aθ = (θ, x) (and x = γ(θ)). On the other hand, by the part of

the statement already proven, T (θn, xn) ∈ A for every n. Hence, by the continuity of T and the

compacity of A,

T (θ, x) = (Rω(θ), f(θ, x)) = lim
n→∞

T (θn, xn) ∈ ARω(θ).

Since θ /∈ O∗(ω) we have that Rω(θ) /∈ O∗(ω) and, again by Lemma 2.26(c), ARω(θ) consists of a

unique point. Hence, T (Aθ) = ARω(θ) for every θ ∈ S1\O∗(ω). Equivalently, T
(
A

���
(
S1\O∗(ω)

))
=

A
���
(
S1\O∗(ω)

)
. This ends the proof of the theorem.

2.8 Proof of Proposition 2.43 in the casem = 0

This section is devoted to prove Proposition 2.43 for m = 0; that is, to study the map T0. It is the

first technical counterpart of Section 2.7.

To prove Proposition 2.43 for T0 we will need some more notation and a technical lemma.

Given a skew product F (θ, x) = (Rω(θ), ζ(θ, x) from Ω = S1 × I to itself we define the fibre

map function of F, fib(F ) : S1 −→ C(I, I) by fib(F )(θ) := ζ(θ, ·). A simple exercise shows that F is

continuous if and only if ζ(θ, ·) is continuous for every θ ∈ S1, and fib(F ) is continuous.
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Lemma 2.46. Let θ ∈ Bd (Bi [i
∗]) for some i ∈ D

0
. Then, mi(θ) = Mi(θ) = 0, gi(θ,mi(θ)) =

γ(Rω(θ)), and f0,θ is the unique piecewise affine map with two affine pieces whose graph joins the point

(−2, 2) with (0, γ(Rω(θ))), and this with the point (2,−2).

Proof. By Lemma 2.28(d) and Definition 2.41, we have mi(θ) = Mi(θ). Hence, f0,θ is the piece-

wise affine map with two affine pieces whose graph joins the point (−2, 2) with
(
mi(θ), gi,θ (mi(θ))

)
,

and this with the point (2,−2). So, we need to show that mi(θ) = 0, and g
i,θ

(mi(θ)) = γ(Rω(θ)).

Lemma 2.20(g) and the fact that depth i = 0, Bi [i
∗] ∩ B` [`∗] = ∅ for every ` ∈ Z|i|, i 6= `.

Consequently, by Definition 2.18(R.6), mi(θ) =Mi(θ) = a−i = 0.

Now we show that g
i,θ
(mi(θ)) = γ(Rω(θ)). From the definition of the map gi (Definitions 2.29

and 2.31), Lemma 2.20(e) and Definitions 2.23 and 2.18(R.1), we get

g
i,θ
(mi(θ)) = γ|i+1|(Rω(θ)) = γ(Rω(θ)).

This ends the proof of the lemma.

Proof (Proof of Proposition 2.43 for m = 0). By Lemma 2.20(b),

−1 ≤ mb (θ,0)(θ) ≤Mb (θ,0)(θ) ≤ 1

for every θ ∈ B
0
. So, T0 is well defined.

(b) If θ ∈ S1\B
0
, then the statement follows directly from Definition 2.41. Now assume that

θ ∈ B
0

and let i = b (θ, 0) . From the definition of the maps gi,θ (Definitions 2.29 and 2.31)

and Definition 2.41, it follows that f0,θ

∣∣
Ii,θ

is piecewise affine and non-increasing. On the other

hand, again by Definition 2.41, f0,θ

∣∣
[−2,mi(θ)]

and f0,θ

∣∣
[Mi(θ),2]

are affine with negative slope and

f0,θ(2) = −2 and f0,θ(−2) = 2. The fact that

−1 ≤ f0,θ

(
Mb (θ,0)(θ)

)
≤ f0,θ

(
mb (θ,0)(θ)

)
≤ 1

for every θ ∈ B
0

follows from Definition 2.41 and Lemmas 2.30(a) and 2.32(a). This ends the

proof of (b).

(c) Recall that

R (i∗) =
⋃
θ∈Bi [i∗]

{θ} × Ii,θ.

Hence, from Definition 2.41 and the definition of Gi (Definitions 2.29 and 2.31) it follows that

Tm(θ, x) =
(
Rω(θ), fm(θ, x)

)
=
(
Rω(θ), gi,θ (x)

)
= Gi(θ, x),

for every (θ, x) ∈ R (i∗). Thus, T0

(
Ai
∗

|i|

)
= A

(i+1)∗

|i+1| from Lemmas 2.25(b), 2.30(c) and 2.32(c). On

the other hand, Lemma 2.35(b) implies that i∗ ∈ B
0

but i∗ /∈ B
k

for every k ∈ N. Then, we get

fk,i∗ = f0,i∗ from Definition 2.42.
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(a) Since T0 is a skew product with base Rω we only have to prove that f0 is continuous.

By Definition 2.41, for every θ ∈ S1, the map f0,θ is continuous. So we have to prove that the

map fib(T0) (that is, the map s 7→ f0,s) is continuous.

In the rest of the proof we will denote

IB
0
:=

⋃
i∈D

0

Bi (i∗) ⊂ B
0
.

Clearly, since for every i ∈ Z, the maps mi and Mi are continuous on Bi [i
∗] , it follows that

the map s 7→ f0,s is continuous on IB
0
. Thus, we have to see that the fibre map function is

continuous at every θ ∈ S1\IB
0
; that is, limj→∞ f0,θj = f0,θ for every {θj}∞j=1 ⊂ S1 converging

to θ. Given α > 0, we can consider four sets associated to such a sequence:

{j ∈ N : θj ∈ S1\IB
0
}, {j ∈ N : θj ∈ IB0

\Bα (θ)},

{j ∈ N : θj ∈ (θ, θ + α) ∩ IB
0
} and {j ∈ N : θj ∈ (θ − α, θ) ∩ IB

0
}.

Observe that the second set {j ∈ N : θj ∈ IB0
\Bα(θ)} is always finite and that any of the

other three sets gives rise to a subsequence of {θj}∞j=1 converging to θ, when it is infinite. Con-

sequently, the continuity of the fibre map function s 7→ f0,s at θ is equivalent to the fact that

limj→∞ f0,θj = f0,θ for every {θj}∞j=1 converging to θ and such that, for some α > 0, {θj}∞j=1 is

contained either in S1\IB
0
, or (θ, θ + α) ∩ IB

0
, or (θ − α, θ) ∩ IB

0
. We will only deal with the

first two cases since the proof in the last case (for (θ − α, θ)) can be done symmetrically.

Case 2.47. Case 1: limj→∞ θj = θ and {θj}∞j=1 ⊂ S1\IB
0
.

By Definition 2.41 and Lemma 2.46, f0,θj (respectively f0,θ) is the unique piecewise affine

map with two affine pieces whose graph joins the point (−2, 2) with (0, γ(Rω(θj))) (respec-

tively (0, γ(Rω(θ)))), and this with the point (2,−2). By Lemma 2.35(c) and Definition 2.23 the

function γ is continuous at Rω(θ) /∈ O∗(ω). Hence, limj→∞ γ(Rω(θj)) = γ(Rω(θ)) and, thus,

limj→∞ f0,θj = f0,θ.

Case 2.48. Case 2: limj→∞ θj = θ and {θj}∞j=1 ⊂ (θ, θ + α) ∩ IB
0
.

If there exists i ∈ D0 such that θ is the left endpoint of Bi [i
∗] ⊂ B

0
then the result follows

from Definition 2.41, the continuity of the maps mi and Mi and the continuity of the maps gi
(Lemmas 2.30(a) and 2.32(a)).

Assume now that θ is not the left endpoint of Bi (i
∗) for every i ∈ D

0
. For every j ∈ N we

set ij := b (θj , 0) ∈ D0 (that is, θj ∈ Bij
((ij)

∗)).

We claim that limj→∞|ij | =∞ and consequently, by Definition 2.18(R.1),

lim
j→∞

2−n|ij+1| = lim
j→∞

2−n|ij | = 0. (2.1)

To prove this claim, assume by way of contradiction that there exists L such that for every k ∈ N
there exists jk ≥ k such that |ijk | ≤ L. Then,
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{θjk}∞k=1 ⊂
∞⋃
k=1

Bijk
((ijk)

∗)

and, since {ijk : k ∈ N} is finite, it follows that there exists i ∈ {ijk : k ∈ N} ⊂ D
0

and a

subsequence of {θjk}∞k=1, that by abuse of notation will also be called {θjk}, such that {θjk}∞k=1 ⊂
Bi (i

∗) . So,

θ = lim
k→∞

θjk ∈ Bi [i∗] ;

a contradiction. So, the claim (and hence (2.1)) holds.

Next we claim that the conditions

lim
j→∞

Mij (θj) = lim
j→∞

mij (θj) = 0, and (2.2)

there exists a sequence {xj}∞j=1 with xj ∈ Iij ,θj = [mij (θj),Mij (θj)] for every j, such

that lim
j→∞

f0,θj (xj) = γ(Rω(θ))
(2.3)

imply

lim
j→∞

f0,θj = f0,θ.

To prove the claim notice that, by Definition 2.41 and Lemma 2.46, f0,θ is the unique piece-

wise affine map with two affine pieces whose graph joins the point (−2, 2) with (0, γ(Rω(θ))),

and this with the point (2,−2). On the other hand, for every j,

• f0,θj

∣∣
[−2,mij

(θj)]
is the affine map joining the point (−2, 2) with the point (mij (θj), gij (θj ,mij (θj))),

and

• f0,θj

∣∣
[Mij

(θj),2]
is the affine map joining the point (Mij (θj), gij (θj ,Mij (θj))) with the point(2,−2)

(see Figure 2.5). Moreover, from the part of the proposition already proven we know that f0,θj

is non-increasing and continuous. Therefore, the claim holds provided that

lim
j→∞

diam
(
f0,θj

(
Iij ,θj

))
= 0

(see again Figure 2.5).

When θj ∈ Bαij
[(ij)

∗] \Bαij+1
((ij)

∗) and ij ≥ 0, by Definitions 2.41 and 2.29,

diam
(
f0,θj

(
Iij ,θj

))
= diam

(
g
ij ,θj

(
Iij ,θj

))
= diam

(
{γij+1

(Rω(θj)}
)
= 0.

Otherwise, by Definition 2.41, and Lemmas 2.30(b) and 2.32(b),

{Rω(θj)} × f0,θj

(
Iij ,θj

)
= {Rω(θj)} × gij ,θj

(
Iij ,θj

)
= Gij

(
R((ij)∗)θj

)
⊂ R((ij + 1)∗)Rω(θj).

So, by Remark 2.16(2),

diam
(
f0,θj

(
Iij ,θj

))
≤ diam (R((ij + 1)∗)) ≤ 2 · 2−n|ij+1| .
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−2
−2

2

2

0

γ(Rω(θ))

Iij ,θj = [mij
(θj),Mij

(θj)]

Iij+1,Rω(θj)

f0,θj

f0,θ

Figure 2.5: A symbolic representation of the maps f0,θ and f0,θj in Case 2 of the proof of Proof of

Proposition 2.43 for m = 0. The map f0,θ and the points 0 and γ(Rω(θ)) are drawn in blue. The

map f0,θj and the corresponding intervals Iij ,θj and Iij+1,Rω(θj) are drawn in red.

In any case,

0 ≤ diam
(
f0,θj

(
Iij ,θj

))
≤ 2 · 2−n|ij+1| for every j ∈ N

and, by (2.1), limj→∞ diam
(
f0,θj

(
Iij ,θj

))
= 0. This ends the proof of the claim.

By the last claim, to end the proof of the proposition in the case m = 0 it is enough to show

that (2.2–2.3) hold. We start by proving (2.2). By Lemma 2.46,

mij (Bd(Bij [(ij)
∗])) =Mij (Bd(Bij [(ij)

∗])) = 0,

and from the definition of the maps mij and Mij , Definition 2.15 (or Lemma 2.28) and Re-

mark 2.16(2), for every s ∈ Bij
((ij)

∗) we get

− 1 ≤ mij (s) < 0 < Mij (s) ≤ 1, and

Mij (s)−mij (s) = diam
(
Iij ,s

)
≤ 2 · 2−n|ij | .

(2.4)

So, (2.2) holds by (2.1). Now we prove (2.3).

By (2.1), (2.2) and (2.8), it follows that

mij (θj) < γ|ij |(θj) < Mij (θj) if θj 6= (ij)
∗, and

mij (θj) < γ|ij |−1
(θj) = 0 < Mij (θj) if θj = (ij)

∗.

Also, from Definition 2.41, the definitions of Gi and g
i,θ

(Definitions 2.29 and 2.31), and Lem-

mas 2.30(c) and 2.32(c) we get
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f0,θj (γ|ij |(θj)) = g
ij ,θj

(γ|ij |(θj)) = γ|ij+1|(Rω(θj)) if θj 6= (ij)
∗,

f0,θj (γij−1
(θj)) = g

ij ,θj
(γij−1

(θj)) = γij
(Rω(θj)) if θj = (ij)

∗ and ij ≥ 0, and

f0,θj (γ|ij |−1
(θj)) = g

ij ,θj
(γ|ij+1|(θj)) = γ|ij+2|(Rω(θj)) if θj = (ij)

∗ and ij < 0.

Thus, to prove (2.3), we have to show that
limj→∞ γ|ij+1|(Rω(θj)) = γ(Rω(θ)) if θj 6= (ij)

∗,

limj→∞ γij
(Rω(θj)) = γ(Rω(θ)) if θj = (ij)

∗ and ij ≥ 0, and

limj→∞ γ|ij+2|(Rω(θj)) = γ(Rω(θ)) if θj = (ij)
∗ and ij < 0

(2.5)

(that is, we take xj := γ|ij |(θj) if θj 6= (ij)
∗, xj := γij−1

(θj) if θj = (ij)
∗ and ij ≥ 0, and xj :=

γ|ij |−1
(θj) if θj = (ij)

∗ and ij < 0).

Let ε > 0. By Lemma 2.35(c) and Definition 2.18(R.1) we have that θ /∈ O∗(ω) and, hence,

Rω(θ) /∈ O∗(ω). By the continuity of γ on S1\O∗(ω) and the fact that limi→∞ γ
i
= γ, there exist

δ > 0 and L ∈ N such that

|γ(Rω(θ))− γ(θ̂)| < ε/2 for every θ̂ ∈ Bδ (Rω(θ)) \O∗(ω), and

d∞ (γ, γ
i
) < ε/2 for every i ≥ L.

Then, since limj→∞ θj = θ and limj→∞|ij | =∞, there exists N ∈ N such that |θ − θj | < δ/2, and

|ij | ≥ L+ 2 for every j ≥ N.
First we will show that

|γ(Rω(θ))− γ|ij+1|(Rω(θj))| ≤ ε

for every j ≥ N such that θj 6= (ij)
∗. To see it observe that, by Definition 2.18(R.2) and Re-

mark 2.19(R.2), θj , Rω(θj) /∈ Z∗|ij+1| whenever θj 6= (ij)
∗. Thus, γ|ij+1| is continuous at Rω(θj) by

Lemma 2.20(a).

Also, there exists a sequence {θ̂j`}∞`=1 ⊂
(
Bδ/2(θj) ∩ Bij

((ij)
∗)
)
\O∗(ω) converging to θj , be-

cause S1\O∗(ω) is dense in S1.Clearly, for every j ≥ N,we have {Rω(θ̂j`)}∞`=1 ⊂ Bδ(Rω(θ)) \O∗(ω)
and lim`→∞Rω(θ̂j`) = Rω(θj). Moreover, since {Rω(θ̂j`)}∞`=1 ⊂ S1\O∗(ω) ⊂ S1\Z∗|ij+1|, γ|ij+1| is

defined for every Rω(θ̂j`). Then, for every j ≥ N and ` ∈ N, we have

|γ(Rω(θ))− γ|ij+1|(Rω(θ̂j`))| ≤ |γ(Rω(θ))− γ(Rω(θ̂j`))|+

|γ(Rω(θ̂j`))− γ|ij+1|(Rω(θ̂j`))|

< ε
2 + d∞

(
γ, γ|ij+1|

)
< ε.

Consequently,

|γ(Rω(θ))− γ|ij+1|(Rω(θj))| = lim
`→∞
|γ(Rω(θ))− γ|ij+1|(Rω(θ̂j`))| ≤ ε

This ends the proof of the first equality of (2.5). The second and third equalities of (2.5) follow

as above by replacing γ|ij+1| by γij
(respectively γ|ij+2| ), and noting that
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Rω(θj) = Rω((ij)
∗) =

((ij + 1))∗ /∈ Z∗ij if ij ≥ 0, and

((−(|ij | − 1)))∗ /∈ Z∗|ij |−2 if ij < 0.

This ends the proof of the continuity of T0, and the proposition for the case m = 0.

2.9 Proof of Proposition 2.43 form > 0

This section is the second technical counterpart of Section 2.7 and is devoted to prove Proposi-

tion 2.43 for every map Tm with m > 0. To do this we will need some more technical results.

Also we will use the notion of fibre map function introduced in the previous section.

The next two lemmas establish some basic properties of the maps Tm
∣∣
V
m

and clarify some

aspects of Definition 2.42.

Lemma 2.49. For every m ∈ N and for every θ ∈ B
m
,

fm,θ
∣∣
Ii,θ

= g
i,θ

∣∣
Ii,θ
,

where i = b (θ,m) . Moreover, assume that θ ∈WB
m
\WIBm . Then,

fm,θ(x) =


g
i,θ
(x) if x ∈ Ii,θ,

2−g
i,θ

(mi(θ))

2−fm−1,θ(mi(θ))
(fm−1,θ(x)− 2) + 2 if x ∈ [−2,mi(θ)],

2+g
i,θ

(Mi(θ))

2+fm−1,θ(Mi(θ))
(fm−1,θ(x) + 2)− 2 if x ∈ [Mi(θ), 2].

Proof. We start by proving the first statement. When θ ∈ B
m

there is nothing to prove. So, assume

that θ ∈ B
m
\B

m
. By Definition 2.38, θ ∈WB

m
, i < 0 and θ ∈ Bi [i

∗] \Bα|i|(i∗) . By Lemma 2.39(b),

Ii,θ = {γ|i|(θ)} ⊂ IWm,θ
.

Consequently, by Definition 2.42 and the definition of the maps g
i,θ

for i < 0 (Definition 2.31 —

notice that Ii,θ ⊂ R (i∗) by definition),

fm,θ
(
γ|i|(θ)

)
= γ|i+1| (Rω(θ)) = g

i,θ

(
γ|i|(θ)

)
.

So, the first statement holds. Now we prove the second one. By Lemma 2.39(b),

Ii,θ = {mi(θ)} = {Mi(θ)} = {γ|i|(θ)} = {λm(θ)} = {τm(θ)} = IW
m,θ
.

Thus, by the part already proven, the formulas
g
i,θ
(x) if x ∈ Ii,θ,

2−g
i,θ

(mi(θ))

2−fm−1,θ(mi(θ))
(fm−1,θ(x)− 2) + 2 if x ∈ [−2,mi(θ)],

2+g
i,θ

(Mi(θ))

2+fm−1,θ(Mi(θ))
(fm−1,θ(x) + 2)− 2 if x ∈ [Mi(θ), 2],
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and


γ|i+1| (Rω(θ)) if x ∈ IW

m,θ
,

2−γ|i+1| (Rω(θ))

2−fm−1,θ(λm(θ)) (fm−1,θ(x)− 2) + 2 if x ∈ [−2, λm(θ)],

2+γ|i+1| (Rω(θ))

2+fm−1,θ(τm(θ)) (fm−1,θ(x) + 2)− 2 if x ∈ [τm(θ), 2],

coincide.

Lemma 2.50. The following statements hold for every m ∈ N and i ∈ D
m
:

(a) The map Tm
∣∣
V
i∗

is well defined and continuous.

(b) For every θ ∈ Bi [i∗] ,
(b.i) fm,θ(2) = −2 and fm,θ(−2) = 2,

(b.ii) fm,θ is piecewise affine and non-increasing, and

(b.iii) −1 ≤ fm,θ (Mi(θ)) ≤ fm,θ (mi(θ)) ≤ 1.

(c) Tm
∣∣
R (i∗)

= Gi and Tm
(
Ai
∗

|i|

)
= A

(i+1)∗

|i+1| .

Proof. Clearly, Tm
∣∣
V
i∗

is well defined and continuous if and only if so is fm
∣∣
V
i∗
.

We will prove by induction on m ∈ Z+ that, (a), (b) and

(b.iv) fm,θ
∣∣
[−2,−1]

and fm,θ
∣∣
[1,2]

are affine, fm,θ(−1) < 2 and fm,θ(1) > −2

hold for every θ ∈ Bi [i∗] .
First we will show that (a), (b) and (b.iv) hold form = 0 and i ∈ D0 (we are including the map

f0 studied earlier to correctly start the induction process). By Proposition 2.43(a,b) for m = 0 we

have that T0

∣∣
V
i∗

is well defined and continuous and (b) holds. By Definition 2.41, we also know

that fm,θ
∣∣
[−2,mi(θ)]

and fm,θ
∣∣
[Mi(θ),2]

are affine. Then, (b.iv) follows from−1 ≤ mi(θ) ≤Mi(θ) ≤ 1

(see Lemma 2.28(a)) and (b.iii).

Assume now that (a), (b) and (b.iv) hold for somem−1 ∈ Z+ and prove it form and i ∈ D
m
.

By Lemma 2.34(a), θ ∈ Bi [i
∗]  Bk [k

∗] for some k ∈ D
m−1

. Consequently, Vi∗ ⊂ Vk∗ and

fm−1

∣∣
V
i∗

is well defined and continuous.

By Lemma 2.28(a) and Definition 2.38,

−1 ≤ mi(θ) ≤Mi(θ) ≤ 1 for θ ∈ Bi [i∗], and

−1 ≤ λm(θ) ≤ τm(θ) ≤ 1 for θ ∈ Bi [i∗] \Bα|i| (i
∗) ⊂WB

m
(i < 0).

(2.1)

Consequently, by (b.ii) and (b.iv) for m− 1,

−2 < fm−1,θ(1) ≤ fm−1,θ (Mi(θ)) ≤ fm−1,θ (mi(θ)) ≤ fm,θ(−1) < 2

for every θ ∈ Bi [i∗], and
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−2 < fm−1,θ(1) ≤ fm−1,θ (τm(θ)) ≤ fm−1,θ (λm(θ)) ≤ fm,θ(−1) < 2

for θ ∈ Bi [i∗] \Bα|i|(i∗) ⊂WBm when i < 0.

On the other hand, as it was observed in Definition 2.42, fm,θ is defined in two different

ways when θ ∈ WB
m
∩ Bm . In such a case, by Lemmas 2.39(a,b) and 2.49, θ /∈ WIBm and both

definitions for fm,θ coincide. Hence, fm
∣∣
V
i∗

is well defined.

Now we prove that fm
∣∣
V
i∗

is continuous by using the continuity of fm−1

∣∣
V
i∗
. SinceBα|i|[i

∗] ⊂
B
m
, by Definition 2.42, the continuity of the maps mi and Mi (see Lemma 2.28(b)), and the

continuity of the maps gi (Lemmas 2.30(a) and 2.32 (a)), fm
∣∣
���Bα|i| [i

∗]
is continuous. Now we

assume that i < 0 and we study the continuity of fm
∣∣
���U

on a connected component U of

Bi [i
∗] \Bα|i|(i∗) . Observe that, by Definition 2.38 and Lemma 2.34(b), U is a connected com-

ponent of WB
m
. Then, again by Definition 2.42, the continuity of the maps λm

∣∣
U

and τm
∣∣
U

(Lemma 2.40), and the continuity of the map γ|i|
∣∣
U

(Lemma 2.20(a) and Definition 2.18(R.2) and

Remark 2.19(R.2)), fm
∣∣
���U

is continuous. Therefore, fm
∣∣
V
i∗

is continuous because it is well de-

fined on ���
((
Bi [i

∗] \Bα|i|(i∗)
)
∩Bα|i|[i∗]

)
.

Let θ ∈ Bα|i|[i∗] ⊂ Bm . By Definition 2.42, and the definition of the maps gi,θ (Definitions 2.29

and 2.31), fm,θ
∣∣
Ii,θ

is piecewise affine and non-increasing. So, by Lemma 2.49 for m − 1 and

Definition 2.42, fm,θ(2) = −2, fm,θ(−2) = 2, and fm,θ
∣∣
[−2,mi(θ)]

and fm,θ
∣∣
[Mi(θ),2]

are affine

transformations of the map fm−1,θ with positive slope. Hence, (b.i,ii) hold for fm,θ in this case.

Moreover, (b.iv) is verified by (2.1) and (b.iv) for m− 1.

Consider θ ∈ Bi [i
∗] \Bα|i|(i∗) ⊂ WB

m
. Again by Definition 2.42, fm,θ

∣∣
IW

m,θ

is constant.

Then, (b.i,ii) and (b.iv) hold for fm,θ as above by replacing mi(θ) and Mi(θ) by λm(θ) and τm(θ),

respectively.

By (b.ii) and (2.1) we have fm,θ (Mi(θ)) ≤ fm,θ (mi(θ)) .Hence, (b.iii) follows from Lemma 2.49,

Definition 2.42, Lemmas 2.30(b) and 2.25(c), Definition 2.18(R.2) and Remark 2.19(R.2), Lemma 2.32(b)

and Lemma 2.20(b).

(c) In a similar way to the proof of Proposition 2.43 for the case m = 0,

R (i∗) =
⋃
θ∈Bi [i∗]

{θ} × Ii,θ ⊂ Vi∗ ⊂ Vm

and, by Definition 2.42, Lemma 2.49 and the definition ofGi (Definitions 2.29 and 2.31) it follows

that

Tm(θ, x) =
(
Rω(θ), fm(θ, x)

)
=
(
Rω(θ), gi,θ (x)

)
= Gi(θ, x),

for every (θ, x) ∈ R (i∗). Thus, Tm
(
Ai
∗

|i|

)
= A

(i+1)∗

|i+1| from Lemmas 2.25(b), 2.30(c) and 2.32(c).

The next technical lemma compares the images of fm,θ and fm−1,θ on a point. It is an exten-

sion of Lemma 2.36.
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Lemma 2.51. Assume that Bi [i
∗] ⊂ Bk [k

∗] for some i ∈ D
m
, k ∈ D

m−1
and m ∈ N. Then, for every

θ ∈ Bi [i∗] \Bα|i|(i∗) , mi(θ) =Mi(θ) = γi(θ) and

fm,θ (mi(θ)) = g
i,θ

(mi(θ)) = γ|i+1| (Rω(θ)) , and

fm−1,θ (mi(θ)) = g
k,θ

(mi(θ)) = γ|k+1| (Rω(θ)) .

Proof. The fact that mi(θ) = Mi(θ) = γ
i
(θ) follows directly from the definitions. The first equa-

tion follows from Lemma 2.49, and the definition of the map g
i,θ

(Definitions 2.29 and 2.31).

By Lemma 2.36, Ii,θ = {mi(θ)} = {γ|k|(θ)} ⊂ Ik,θ. Moreover, as in the proof of Lemma 2.36,

θ 6= k∗. Consequently, by Definition 2.41, Lemma 2.49, Lemmas 2.30(c) and 2.32(c) and (2.1)

(alternatively, for the last equality check directly the proofs of the Lemmas 2.30(c) and 2.32(c)),

fm−1,θ (mi(θ)) = g
k,θ

(mi(θ)) = g
k,θ

(
γ|k|(θ)

)
= γ|k+1| (Rω(θ)) .

The following lemma is the analogue of Lemma 2.46 for m ≥ 1. To state it we will use the set

���EB
m
= EB

m
× I ⊂ V

m
.

Lemma 2.52. Tm
∣∣
���EB

m

= Tm−1

∣∣
���EB

m

for everym ∈ N. Equivalently, fm,θ = fm−1,θ for everym ∈ N
and θ ∈ EB

m
.

Proof. Fix m ∈ N and θ ∈ EB
m
⊂ B

m
. By Lemma 2.34(a,b), there exist i ∈ D

m
and k ∈ D

m−1

such that θ ∈ Bd (Bi [i
∗]) ⊂ Bi [i∗]  Bk [k

∗] . So, we are in the assumptions of Lemmas 2.36 and

2.51 and, hence,

Ii,θ = {mi(θ)} = {γ|i|(θ)} = {γ|k|(θ)} ⊂ Ik,θ,

fm,θ (mi(θ)) = g
i,θ

(mi(θ)) = γ|i+1| (Rω(θ)) , and

fm−1,θ (mi(θ)) = g
k,θ

(mi(θ)) = γ|k+1| (Rω(θ)) .

Thus, if i ≥ 0, θ ∈ B
m

and, by Definition 2.42 and Lemma 2.50(a), to prove that fm,θ = fm−1,θ

we only have to show that

g
i,θ

(mi(θ)) = γ|i+1| (Rω(θ)) = γ|k+1| (Rω(θ)) = fm−1,θ (mi(θ)) .

When i < 0, θ ∈ WB
m
∩ EB

m
and, by Lemma 2.39(a), θ /∈ WIBm . Then, by Lemma 2.49, we

get again that

g
i,θ

(mi(θ)) = γ|i+1| (Rω(θ)) = γ|k+1| (Rω(θ)) = fm−1,θ (mi(θ)) .

implies fm,θ = fm−1,θ.

If |k+1| = |i+ 1| there is nothing to prove. So, by Lemma 2.36, we can assume that |k+1| <
|i+ 1| and we have

γ|k+1| (Rω(θ)) = γ|k+1|+1
(Rω(θ)) = · · · = γ|i+1|−1

(Rω(θ)) .
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Hence, we have to show that γ|i+1| (Rω(θ)) = γ|i+1|−1
(Rω(θ)) . If i ≥ 0 we get

γ|i+1| (Rω(θ)) = γ
i+1

(Rω(θ)) = γ
i
(Rω(θ)) = γ|i+1|−1

(Rω(θ))

by Lemma 2.20(e). Otherwise we have i < 0, θ ∈ Bd (Bi [i
∗]) = Bd

(
Bα|i+1|[i

∗]
)

and, conse-

quently, Rω(θ) ∈ Bd
(
Bα|i+1|[(i+ 1)∗]

)
. Again by Lemma 2.20(e) for j = |i+ 1|,

γ|i+1| (Rω(θ)) = γ|i+1|−1
(Rω(θ)) .

This ends the proof of the lemma.

Now we aim at computing two different kind of upper bounds for ‖fm,θ − fm−1,θ‖ (Lemma 2.54

and Proposition 2.44). This will be a key tool in the proof of Propositions 2.43 form > 0 and 2.44.

The next two lemmas and remark will be useful to automate and simplify the proofs of these

two results.

Lemma 2.53.

‖fm,θ − fm−1,θ‖ =


∥∥∥∥fm,θ∣∣I

b (θ,m),θ

− fm−1,θ

∣∣
I
b (θ,m),θ

∥∥∥∥ when θ ∈ B
m
\WIB

m
, and∥∥∥∥fm,θ∣∣IW

m,θ

− fm−1,θ

∣∣
IW

m,θ

∥∥∥∥ when θ ∈WIB
m

,

for every m ≥ 2 and θ ∈ B
m
.

Proof. Set i = b (θ,m) ∈ D
m

, so that θ ∈ Bi [i∗].
When θ ∈ B

m
\WIBm = Bm ∪WBm\WIBm , by Definition 2.42 and Lemma 2.49, it is enough

to show that

|fm,θ(x)− fm−1,θ(x)| ≤ |fm,θ(mi(θ))− fm−1,θ(mi(θ))|

for every x ∈ [−2,mi(θ)], and

|fm,θ(x)− fm−1,θ(x)| ≤ |fm,θ(Mi(θ))− fm−1,θ(Mi(θ))|

for every x ∈ [Mi(θ), 2]. We will prove the first statement. The second one follows similarly.

Definition 2.42 and Lemma 2.49 give

fm,θ(x)− fm−1,θ(x) =
2− g

i,θ
(mi(θ))

2− fm−1,θ (mi(θ))
(fm−1,θ(x)− 2) + 2− fm−1,θ(x)

=
2− fm,θ (mi(θ))

2− fm−1,θ (mi(θ))
(fm−1,θ(x)− 2)− (fm−1,θ(x)− 2)

= (fm−1,θ(x)− 2)

(
2− fm,θ (mi(θ))

2− fm−1,θ (mi(θ))
− 1

)
= (2− fm−1,θ(x))

fm,θ (mi(θ))− fm−1,θ (mi(θ))

2− fm−1,θ (mi(θ))
.

By Lemma 2.50(b), 2 ≥ fm−1,θ(x) ≥ fm−1,θ (mi(θ)) and 1 ≥ fm−1,θ (mi(θ)) . Hence,
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|fm,θ(x)− fm−1,θ(x)| = (2− fm−1,θ(x))
|fm,θ (mi(θ))− fm−1,θ (mi(θ))|

2− fm−1,θ (mi(θ))

≤ |fm,θ (mi(θ))− fm−1,θ (mi(θ))|.

Now assume that θ ∈WIBm ⊂WBm . By Definition 2.42 it is enough to show that

|fm,θ(x)− fm−1,θ(x)| ≤ |fm,θ(λm(θ))− fm−1,θ(λm(θ))|

for every x ∈ [−2, λm(θ)], and

|fm,θ(x)− fm−1,θ(x)| ≤ |fm,θ(τm(θ))− fm−1,θ(τm(θ))|

for every x ∈ [τm(θ), 2]. As before, we will prove the first statement. The second one follows

similarly. We have

fm,θ(x)− fm−1,θ(x) = (2− fm−1,θ(x))
fm,θ (λm(θ))− fm−1,θ (λm(θ))

2− fm−1,θ (λm(θ))
.

By Lemma 2.50(b), 2 ≥ fm−1,θ(x) ≥ fm−1,θ (λm(θ)) and hence,

|fm,θ(x)− fm−1,θ(x)| ≤ |fm,θ (mi(θ))− fm−1,θ (mi(θ))|

provided that 2−fm−1,θ (λm(θ)) 6= 0.Assume by way of contradiction that we have fm−1,θ (λm(θ)) =

2. Then, by Definition 2.38 and Lemma 2.50(b), −1 ≤ λm(θ) and

2 ≥ fm−1,θ(−1) ≥ fm−1,θ (λm(θ)) = 2;

which contradicts statement (b.iv) from the proof of Lemma 2.50.

Next we compute an upper bound for ‖fm,θ − fm−1,θ‖ for every θ ∈ Bi [i∗] and i ∈ Dm such

that diam(Bi [i
∗]) is small enough.

Lemma 2.54. Assume that Tm−1 is continuous for some m ≥ 2 and let ε be positive. Then, there exist

%m(ε) ∈ N such that

‖fm,θ − fm−1,θ‖ ≤ ε

for every θ ∈ Bi [i∗] and i ∈ D
m

(that is, Bi [i
∗] ⊂ B

m
) such that |i| ≥ %m(ε).

Proof. Since Tm−1 is uniformly continuous, there exists δm−1 = δm−1(ε) > 0 such that

d
Ω
(Tm−1(θ, x), Tm−1(ν, y)) < ε

provided that d
Ω
((θ, x), (ν, y)) < δm−1. We choose %m = %m(ε) ∈ N such that

3 · 2−%m < min{δm−1(ε/2), ε/2}.

Assume that i ∈ D
m

verifies |i| ≥ %m(ε) and let (θ, x) ∈ Vi∗ = Bi [i
∗] × I. When θ ∈

Bi [i
∗] \WIB

m
we can use Lemma 2.53 with Ii,θ to compute ‖fm,θ − fm−1,θ‖ . We have to show

that |fm,θ(x)− fm−1,θ(x)| < ε for every x ∈ Ii,θ.
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Let ν ∈ Bd (Bi [i
∗]) ⊂ EB

m
. We have (θ, x), (ν,mi(ν)) ∈ R (i∗) and, by Lemmas 2.50(c) and

2.20(f),

d
Ω
(Tm(θ, x), Tm(ν,mi(ν))) = d

Ω
(Gi(θ, x), Gi(ν,mi(ν)))

≤ diam
(
Gi
(
R (i∗)

))
, and

d
Ω
((θ, x), (ν,mi(ν)) ≤ diam

(
R (i∗)

)
≤ 2 · 2−|i| < 3 · 2−%m < δm−1(ε/2).

Thus,

d
Ω
(Tm−1(θ, x), Tm−1(ν,mi(ν)) < ε/2.

Consequently, by Lemma 2.52,

|fm,θ(x)− fm−1,θ(x)| = d
Ω
(Tm(θ, x), Tm−1(θ, x))

≤ d
Ω
(Tm(θ, x), Tm−1(ν,mi(ν))) +

d
Ω
(Tm−1(ν,mi(ν)), Tm−1(θ, x))

< d
Ω
(Tm(θ, x), Tm(ν,mi(ν))) + ε/2

< diam
(
Gi
(
R (i∗)

))
+ ε/2.

Now we look at the size of Gi (R (i∗)) . When i < 0, from Lemmas 2.32(b) and 2.20(f), we

obtain

diam
(
Gi
(
R (i∗)

))
≤ diam (R((i+ 1)∗)) ≤ 2−(|i|−1) < 2 · 2−|i|. (2.2)

When i ≥ 0, from Lemma 2.30(b) we get

Gi
(
R (i∗)

)
= Gi (R(i∗)) ⊂ R((i+ 1)∗) ∪ A

���(Bαi [(i+1)∗]\Bαi+1
((i+1)∗))

i+1 .

Moreover, as in the proof of Lemma 2.20(f) for ` < 0, the set

R((i+ 1)∗) ∪ A
���(Bαi [(i+1)∗]\Bαi+1

((i+1)∗))
i+1

is connected. So, by Lemma 2.20(f),

diam
(
Gi
(
R (i∗)

))
≤ diam

(
R((i+ 1)∗) ∪ A

���(Bαi [(i+1)∗]\Bαi+1
((i+1)∗))

i+1

)
≤ diam (R((i+ 1)∗)) + diam

(
A

���(Bαi [(i+1)∗]\Bαi+1
((i+1)∗))

i+1

)
≤ 2−(i+1) + diam

(
A

���(Bαi [(i+1)∗]\Bαi+1
((i+1)∗))

i+1

)
.

As noticed earlier, Bαi[(i+ 1)∗] \Bαi+1
((i+ 1)∗) is disjoint from

Bαi+1
((i+ 1)∗) ∪B−(i+1) [(−(i+ 1))∗] ∪ Z∗i+1

by Definition 2.18(R.2) and Remark 2.19(R.2). So, by Lemma 2.25(c), Definition 2.18 and Lemma 2.20(a),

87



Aνi+1 = {(ν, γ
i+1

(ν)} = {(ν, γ
i
(ν)}

∈ {ν} ×
[
γ
i
((i+ 1)∗)− 2−ni , γ

i
((i+ 1)∗) + 2−ni

]
.

for every ν ∈ Bαi[(i+ 1)∗] \Bαi+1
((i+ 1)∗) . On the other hand, γ

i
((i + 1)∗) ∈ Ii+1,(i+1)∗ by

Lemma 2.20(c). Hence, by Remark 2.16(2), Definition 2.18(R.1) and Remark 2.19(R.1),

diam

(
A

���(Bαi [(i+1)∗]\Bαi+1
((i+1)∗))

i+1

)
≤ max

{
diam

(
Bαi [(i+ 1)∗] \Bαi+1

((i+ 1)∗)
)
, 2 · (2−ni + 2−ni+1)

}
≤ 2 ·max

{
αi, 2

−ni + 2−ni+1
}
= 2 · (2−ni + 2−ni+1)

< 4 · 2−ni ≤ 2 · 2−i.

Summarizing, when i ≥ 0,

diam
(
Gi
(
R (i∗)

))
≤ 2−(i+1) + 2 · 2−i < 3 · 2−i

and, from (2.2),

diam
(
Gi
(
R (i∗)

))
< 3 · 2−|i| ≤ 3 · 2−%m < ε/2

for every i ∈ Z+. Thus, for every x ∈ Ii,θ,

|fm,θ(x)− fm−1,θ(x)| < diam
(
Gi
(
R (i∗)

))
+ ε/2 < ε.

Now assume that θ ∈ Bi [i
∗] ∩ WIB

m
. We can use Lemma 2.53 with IW

m,θ
to compute

‖fm,θ − fm−1,θ‖ . We have to show that |fm,θ(x) − fm−1,θ(x)| < ε for every x ∈ IW
m,θ
. Since

θ ∈WIBm , by Definition 2.38 and Lemma 2.39(b), i < 0, θ ∈WB
m

and

Ii,θ =
{
γ|i|(θ)

}
⊂ IW

m,θ
= I`,θ 3 x

with ` = b (θ, led (θ,m)) ∈ WFD
m
. In this case we will consider the points (θ, x) ∈ R(`∗) and

(ν,mi(ν)), (θ, γ|i|(θ)) ∈ R (i∗) with ν ∈ Bd (Bi [i
∗]) ⊂ EB

m
. By Lemma 2.37(b), Remark 2.16(2)

and Lemma 2.20(f), |i| < |`| and

d
Ω
((θ, x), (ν,mi(ν)) ≤ d

Ω
((θ, x), (θ, γ|i|(θ)) + d

Ω
((θ, γ|i|(θ)), (ν,mi(ν))

≤ |x− γ|i|(θ)|+ diam
(
R (i∗)

)
≤ diam (R(`∗)) + diam

(
R (i∗)

)
≤ 2−|`| + 2 · 2−|i| < 3 · 2−|i| ≤ 3 · 2−%m < δm−1(ε/2).

Thus,

d
Ω
(Tm−1(θ, x), Tm−1(ν,mi(ν)) < ε/2.

On the other hand, by Lemma 2.50(c), Definition 2.42 and (2.2),
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d
Ω
(Tm(θ, x), Tm(ν,mi(ν)))

≤ d
Ω
(Tm(θ, x), Tm(θ, γ|i|(θ))) + d

Ω
(Tm(θ, γ|i|(θ)), Tm(ν,mi(ν)))

≤ |fm,θ(x)− fm,θ(γ|i|(θ))|+ d
Ω
(Gi(θ, γ|i|(θ)), Gi(ν,mi(ν)))

= d
Ω
(Gi(θ, x), Gi(ν,mi(ν))) ≤ diam

(
Gi
(
R (i∗)

))
< 2 · 2−|i|

≤ 3 · 2−%m < ε/2.

So, in a similar way as before, Lemma 2.52 gives

|fm,θ(x)− fm−1,θ(x)| = d
Ω
(Tm(θ, x), Tm−1(θ, x))

≤ d
Ω
(Tm(θ, x), Tm−1(ν,mi(ν))) +

d
Ω
(Tm−1(ν,mi(ν)), Tm−1(θ, x))

< ε.

Proof (Proof of Proposition 2.43 for m > 0).

(a) We start by proving by induction on m that Tm is continuous for every m ∈ Z+.

By Proposition 2.43(a) for m = 0, T0 is continuous. So, we may assume that Tm−1 is continu-

ous for some m ∈ N and prove that Tm is continuous.

Let ε > 0 be fixed but arbitrary, and let (θ, x), (ν, y) ∈ Ω. We have to show that there exists

δ(ε) > 0 such that

d
Ω
(Tm(θ, x), Tm(ν, y)) < ε when d

Ω
((θ, x), (ν, y)) < δ.

We start by defining δ(ε). To this end we need to introduce some more notation and establish

some facts about the maps Tm and Tm−1.

Since Tm−1 is uniformly continuous, we know that

there exists δm−1 = δm−1(ε) > 0 such that d
Ω
(Tm−1(θ, x), Tm−1(ν, y)) < ε provided

that d
Ω
((θ, x), (ν, y)) < δm−1.

(2.3)

On the other hand, Lemma 2.50(a) tells us that Tm
∣∣
V
i∗

is uniformly continuous for every

i ∈ D
m
. So, for every i ∈ D

m
,

there exists δm,i = δm,i(ε) > 0 such that d
Ω
(Tm(θ, x), Tm(ν, y)) < ε for every

(θ, x), (ν, y) ∈ Vi∗ ⊂ Vm verifying d
Ω
((θ, x), (ν, y)) < δm,i(ε).

(2.4)

Then, by using the numbers δm−1(ε/7) given by (2.3), δm,i(ε/7) given by (2.4) and %m(ε/7)

given by Lemma 2.54, we set

δ = δ(ε) := min
{
δm−1(ε/7),min{δm,i(ε/7) : i ∈ Dm ∩ Z%m(ε/7)}

}
.

Clearly, δ > 0 because the set D
m
∩ Z%m(ε/7) is finite.

Now we will show that if d
Ω
((θ, x), (ν, y)) < δ, then d

Ω
(Tm(θ, x), Tm(ν, y)) < ε.
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Assume first that (θ, x), (ν, y) ∈ V`∗ for some ` ∈ D
m
∩ Z%m(ε/7). We have

d
Ω
((θ, x), (ν, y)) < δ ≤ min{δm,i(ε/7) : i ∈ D

m
∩ Z%m(ε/7)} ≤ δm,`(ε/7).

Hence, by (2.4),

d
Ω
(Tm(θ, x), Tm(ν, y)) < ε/7 < ε.

Next we assume that (θ, x), (ν, y) ∈ V`∗ for some ` ∈ D
m

such that |`| > %m(ε/7) (in particu-

lar, θ, ν ∈ B` [`∗]). In this situation we have

d
Ω
((θ, x), (ν, y)) < δ ≤ δm−1(ε/7)

and, by (2.3) and Lemma 2.54,

d
Ω
(Tm(θ, x), Tm(ν, y)) ≤ d

Ω
(Tm(θ, x), Tm−1(θ, x)) + d

Ω
(Tm−1(θ, x), Tm−1(ν, y)) +

d
Ω
(Tm−1(ν, y), Tm(ν, y))

= |fm,θ(x)− fm−1,θ(x)|+ d
Ω
(Tm−1(θ, x), Tm−1(ν, y)) +

|fm,ν(y)− fm−1,ν(y)|

≤ ‖fm,θ − fm−1,θ‖+ d
Ω
(Tm−1(θ, x), Tm−1(ν, y)) +

‖fm,ν − fm−1,ν‖

< 3
7ε < ε.

In summary, we have proved that

d
Ω
(Tm(θ, x), Tm(ν, y)) < 3

7ε

when d
Ω
((θ, x), (ν, y)) < δ and (θ, x), (ν, y) ∈ V`∗ for some ` ∈ Dm .

Next we assume that (θ, x), (ν, y) ∈ V
m

but (θ, x), (ν, y) /∈ V`∗ for every ` ∈ D
m
. By

Lemma 2.34(a,b), there exist i = b (θ,m) , k = b (ν,m) ∈ D
m
, i 6= k, such that θ ∈ Bi [i

∗] ,

(θ, x) ∈ Vi∗ , ν ∈ Bk [k∗] and (ν, y) ∈ Vk∗ . Then, there exist

θ̃ ∈ A ∩ Bd
(
Bi [i∗]

)
⊂ EB

m
and ν̃ ∈ A ∩ Bd

(
Bk [k∗]

)
⊂ EB

m
,

where A denotes the closed arc of S1 such that

diam(A) = d
S1
(θ, ν) and Bd(A) = {θ, ν}.

Clearly we have, (θ, x),
(
θ̃, x
)
∈ Vi∗ , (ν, y),

(
ν̃, y
)
∈ Vk∗ and, by the previous case,

d
Ω

(
(θ, x),

(
θ̃, x
))

= d
S1

(
θ, θ̃
)
≤ d

S1
(θ, ν) ≤ d

Ω
((θ, x), (ν, y)) < δ,

d
Ω

(
Tm(θ, x), Tm

(
θ̃, x
))

< 3
7ε

d
Ω

(
(ν, y),

(
ν̃, y
))

= d
S1

(
ν, ν̃
)
≤ d

S1
(θ, ν) ≤ d

Ω
((θ, x), (ν, y)) < δ, and

d
Ω

(
Tm(ν, y), Tm

(
ν̃, y
))
< 3

7ε.
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On the other hand,
(
θ̃, x
)
,
(
ν̃, y
)
∈ ���EB

m
⊂ V

m
⊂ V

m−1
and, by Lemma 2.52 and (2.3),

d
Ω

((
θ̃, x
)
,
(
ν̃, y
))

= max
{

d
S1

(
θ̃, ν̃
)
, |x− y|

}
≤ max

{
d

S1
(θ, ν), |x− y|

}
= d

Ω
((θ, x), (ν, y)) < δ ≤ δm,i(ε/7), and

d
Ω
(Tm(θ, x), Tm(ν, y)) ≤ d

Ω

(
Tm(θ, x), Tm

(
θ̃, x
))

+ d
Ω

(
Tm
(
θ̃, x
)
, Tm

(
ν̃, y
))

+

d
Ω

(
Tm
(
ν̃, y
)
, Tm(ν, y)

)
< 3

7ε+ d
Ω

(
Tm−1

(
θ̃, x
)
, Tm−1

(
ν̃, y
))

+ 3
7ε = ε.

If (θ, x), (ν, y) /∈ V
m

then, by Definition 2.42 and (2.3) ,

d
Ω
(Tm(θ, x), Tm(ν, y)) = d

Ω
(Tm−1(θ, x), Tm−1(ν, y)) < ε/7 < ε

because d
Ω
((θ, x), (ν, y)) < δ ≤ δm−1(ε/7).

Lastly, assume that (ν, y) /∈ V
m

but (θ, x) ∈ Vi∗ ⊂ Vm , for some i ∈ Dm (that is, θ ∈ Bi [i∗]).
In this situation, as before, there exists θ̃ ∈ Bd (Bi [i

∗]) ⊂ EB
m

such that, by Lemma 2.52 and

Definition 2.42 (
(
θ̃, x
)
∈ ���EB

m
⊂ V

m
⊂ V

m−1
), and (2.3),

d
Ω

(
(θ, x),

(
θ̃, x
))

< δ,

d
Ω

((
θ̃, x
)
, (ν, y

))
< δ ≤ δm−1(ε/7),

d
Ω

(
Tm(θ, x), Tm

(
θ̃, x
))

< 3
7ε, and

d
Ω
(Tm(θ, x), Tm(ν, y)) ≤ d

Ω

(
Tm(θ, x), Tm

(
θ̃, x
))

+ d
Ω

(
Tm
(
θ̃, x
)
, Tm(ν, y)

)
< 3

7ε+ d
Ω

(
Tm−1

(
θ̃, x
)
, Tm−1(ν, y)

)
< ε.

This ends the proof of the continuity of Tm and, hence, of (a).

(b) When θ ∈ B
m

the statement follows from Lemma 2.50(b). When θ ∈ S1\B
m
, it follows from

the part already proven and the continuity of Tm.

(c) The first two statements follow from Lemma 2.50(c) and statement (a). On the other hand,

as in the proof of Proposition 2.43(c) for m = 0, Lemma 2.35(b) implies that i∗ ∈ B
m

but i∗ /∈ B
k

for every k > m. Then, we get fk,i∗ = fm,i∗ from Definition 2.42.

2.10 Proof of Proposition 2.44

This section is devoted to prove Proposition 2.44. It is the third technical counterpart of Sec-

tion 2.7. In contrast to Lemma 2.54 the bound given by Proposition 2.44. is valid for every θ ∈ B
m

.

Before starting the proof of this proposition we will state and prove a number of very simple

lemmas that will help in automating the proof of Proposition 2.44.
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Lemma 2.55. Assume that Bi [i
∗] ⊂ Bk [k∗] for some i ∈ D

m
, k ∈ D

m−1
and m ≥ 2, and assume that

either

i < 0 and θ ∈ Bi [i∗] \{i∗} or i ≥ 0 and θ ∈ Bαi [i∗] \Bαi+1
(i∗) .

Then,

|γ|i+1| (Rω(θ))− γ|k+1| (Rω(θ))| ≤ 2−|k|.

Proof. The lemma holds trivially when |k + 1| = |i+ 1|. Thus, we may assume that |k + 1| 6=
|i+ 1|. Then by Lemma 2.36, |k| < |i|, |k + 1| < |i+ 1| and

γ|k+1| (Rω(θ)) = γ|k+1|+1
(Rω(θ)) = · · · = γ|i+1|−1

(Rω(θ)) .

By assumption we have

θ ∈

Bαi[i∗] \Bαi+1
(i∗) when i ≥ 0, and

Bi [i
∗] \{i∗} = Bα|i+1|[i

∗] \{i∗} when i < 0,

and, hence,

Rω(θ) ∈

Bαi[(i+ 1)∗] \Bαi+1
((i+ 1)∗) when i ≥ 0, and

Bα|i+1|[(i+ 1)∗] \{(i+ 1)∗} when i < 0.

Thus, in the case i ≥ 0 we have

Rω(θ) /∈ Bαi+1
((i+ 1)∗) ∪B−(i+1) [(−(i+ 1))∗] ∪ Z∗i+1

by Definition 2.18(R.2) and Remark 2.19(R.2). So, by Definition 2.18,

γ
i+1

(Rω(θ)) = γ
i
(Rω(θ)) = γ|k+1| (Rω(θ)) .

This ends the proof of the lemma in this case.

Assume now that i < 0. By Lemma 2.20(c,d,f) and Definition 2.18(R.2) and Remark 2.19(R.2),

|γ|i+1| (Rω(θ))− γ|k+1| (Rω(θ))| = |γ|i+1| (Rω(θ))− γ|i+1|−1
(Rω(θ))|

≤ diam (R((i+ 1)∗)) ≤ 2−|i+1| ≤ 2−|k|

(observe that |i+ 1| > |k + 1| ≥ |k| − 1).

Lemma 2.56. Let s, t ∈ Z, s 6= t be such that θ ∈ Bs (s∗) \Bα|s|(s∗) , and either t < 0 and θ ∈ Bα|t|(t∗)
or t ≥ 0 and θ ∈ Bαt+1

(t∗) . Then, the following statements hold:

(a) Rω(θ) ∈ Bα|s+1|((s+ 1)∗) ∩Bα|t+1|((t+ 1)∗) .

(b) Let u, v ∈ Z be such that {u, v} = {s, t} and |u+ 1| ≤ |v + 1|.
Then, Iv+1,Rω(θ) ⊂ Iu+1,Rω(θ).

(c)

|x− y| ≤ 2 · 2−|u|

for every x ∈ It+1,Rω(θ) and y ∈ Is+1,Rω(θ).

92



Proof. By assumption we have

θ ∈

Bαt+1
(t∗) when t ≥ 0, and

Bα|t|(t
∗) ⊂ Bt (t∗) = Bα|t+1|(t

∗) when t < 0.

Hence, Rω(θ) ∈ Bα|t+1|((t+ 1)∗) . Moreover, as in the proof of Lemma 2.55, s < 0 and Rω(θ) ∈
Bα|s+1|((s+ 1)∗) . This proves (a).

Now we prove (b). From (a) we have

Rω(θ) ∈ Bα|u+1| ((u+ 1)∗) ∩Bα|v+1| ((v + 1)∗)

⊂ Bα|u+1| ((u+ 1)∗) ∩Bv+1 [(v + 1)∗] .

Moreover, s 6= t implies u+1 6= v+1 and we have |u+1| ≤ |v+1| by assumption. Consequently,

by Lemma 2.20(g,d) and Definition 2.18(R.2) and Remark 2.19(R.2), |u+ 1| < |v + 1| and

R((v + 1)∗) ⊂ Int
(
R((u+ 1)∗)\���{(u+ 1)∗}

)
which implies (b).

Thus, x, y ∈ Iu+1,Rω(θ) and, by Lemma 2.20(f),

|x− y| ≤ diam (R((u+ 1)∗)) ≤ 2−|u+1| ≤ 2−(|u|−1) = 2 · 2−|u|.

Now we are ready to start the proof of Proposition 2.44.

Proof (Proof of Proposition 2.44). We start by showing that {Tm}∞k=0 is a Cauchy sequence, assum-

ing that the bound (2.1) holds for every m ≥ 2 and θ ∈ S1.

We start by estimating d∞(Tm, Tm+1) for every m ∈ N. From (2.1) and the definition of µm

d∞(Tm, Tm+1) = sup
θ∈S1
‖fm,θ − fm+1,θ‖ ≤ 2 · sup

θ∈S1
2−|b (θ,m)| ≤ 2 · 2−µm .

By Lemma 2.35(a) {µm}∞m=0 is strictly increasing (and limm→∞ µm =∞). Therefore, for every

ε > 0, there exists N ≥ 2, such that 4 · 2−µm < ε for every m ≥ N. Hence,

d∞(Tm, Tm+i) ≤
m+i−1∑
`=m

d∞(T`, T`+1) ≤ 2 ·
m+i−1∑
`=m

2−µ`

≤ 2 · 2−µm
∞∑
`=0

2−` = 4 · 2−µm ≤ 4 · 2−µN < ε

for every m ≥ N and i ∈ N. So, {Tm}∞k=0 is a Cauchy sequence.

Now we prove (2.1). That is,

‖fm,θ − fm−1,θ‖ ≤ 2 · 2−|b (θ,m−1)|

for every m ≥ 2 and θ ∈ S1.
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From Definition 2.42 and Lemma 2.52 we know that fm,θ = fm−1,θ for every θ ∈
(
S1\B

m

)
∪

EB
m
. Then, (2.1) holds in this case.

In the rest of the involved proof we assume that θ ∈ B
m
\EB

m
. Thus, by Lemmas 2.34(a,b),

2.20(g) and 2.36,

θ ∈ Bi (i∗) ⊂ Bk (k∗) \
(
Bd
(
Bα|k|[k

∗]
)
∪ {k∗}

)
where

i = b (θ,m) ∈ D
m
, k = b (θ,m− 1) ∈ D

m−1
,

|k| < |i|, and |k + 1| ≤ |i+ 1|.

Moreover, Vi∗ ⊂ Vk∗ ⊂ Vm−1
. Consequently, by Lemma 2.50(a,b), the maps fm,θ and fm−1,θ are

well defined, continuous, piecewise affine and non-increasing, and fm,θ(2) = fm−1,θ(2) = −2
and fm,θ(−2) = fm−1,θ(−2) = 2 (see Figures 2.6, 2.7 and 2.8 for some examples in generic cases).

We split the proof into three cases according to whether θ belongs to

Bi (i∗) \Bα|i| (i
∗) , Bα|i| (i

∗) ⊂ Bk (k∗) \Bα|k| [k
∗] or Bα|i| (i

∗) ⊂ Bα|k| (k
∗) .

Case 2.57. Case 1. θ ∈ Bi (i∗) \Bα|i|(i∗) .

We have i < 0 because Bi (i
∗) = Bαi(i

∗) for i ≥ 0. Moreover, by Definition 2.38, θ ∈WB
m
.

To deal with this case we consider three subcases.

Case 2.58. Subcase 1.1. θ ∈
(
Bi (i

∗) \Bα|i|(i∗)
)
\WIB

m
.

By Lemmas 2.36, 2.51, 2.53 and 2.55,

Ii,θ = {mi(θ)} = {γ|i|(θ)} = {γ|k|(θ)} ⊂ Ik,θ,

fm,θ (mi(θ)) = γ|i+1| (Rω(θ)) ,

fm−1,θ (mi(θ)) = γ|k+1| (Rω(θ)) , and

‖fm,θ − fm−1,θ‖ =
∥∥∥fm,θ∣∣Ii,θ − fm−1,θ

∣∣
Ii,θ

∥∥∥ = |fm,θ (mi(θ))− fm−1,θ (mi(θ))|

= |γ|i+1| (Rω(θ))− γ|k+1| (Rω(θ))| ≤ 2−|b (θ,m−1)|.

Case 2.59. Subcase 1.2. θ ∈
(
Bi (i

∗) \Bα|i|(i∗)
)
∩WIB

m
and Bi (i

∗) ⊂ Bk (k∗) \Bα|k|[k∗] .

In this subcase, by Definition 2.38 we have

θ ∈ Bk (k∗) \Bα|k| [k
∗] ⊂WB

m−1

(recall that i < 0). Then, by Lemmas 2.36 and 2.39(b,c), Definition 2.42 and Lemmas 2.53 and

2.55,

Ii,θ = {γ|i|(θ)} = {γ|k|(θ)} ⊂ IWm,θ
= IW

m−1,θ
,

fm,θ(x) = γ|i+1| (Rω(θ)) for every x ∈ IW
m,θ

,

fm−1,θ(x) = γ|k+1| (Rω(θ)) for every x ∈ IW
m−1,θ

, and

‖fm,θ − fm−1,θ‖ =
∥∥∥∥fm,θ∣∣IW

m,θ

− fm−1,θ

∣∣
IW

m,θ

∥∥∥∥
= |γ|i+1| (Rω(θ))− γ|k+1| (Rω(θ))| ≤ 2−|b (θ,m−1)|.
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Observe that since Bi (i
∗) is connected and

Bi (i∗) ⊂ Bk (k∗) \
(
Bd
(
Bα|k| [k

∗]
)
∪ {k∗}

)
,

Bi (i
∗) 6⊂ Bk (k∗) \Bα|k|[k∗] implies Bi (i

∗) ⊂ Bα|k|(k∗) \{k∗}.

Case 2.60. Subcase 1.3. θ ∈
(
Bi (i

∗) \Bα|i|(i∗)
)
∩WIBm and Bi (i

∗) ⊂ Bα|k|(k
∗) \{k∗} (see Fig-

ure 2.6 for a symbolic representation of this case).

−2
−2

2

2

Ik,θmk(θ) Mk(θ)

Ik+1,Rω(θ)

mk+1

(
Rω(θ)

)

Mk+1

(
Rω(θ)

)

fm−1,θ

gk,θ

IW
m,θ

λm(θ) τm(θ)

γ|i+1| (Rω(θ))

fm,θ

Figure 2.6: A symbolic representation of the maps fm,θ and fm−1,θ in Subcase 1.3 of Proposi-

tion 2.44 (θ ∈
(
Bi (i

∗) \Bα|i|(i∗)
)
∩WIB

m
and Bi (i

∗) ⊂ Bα|k|(k
∗) \{k∗}). The map fm−1,θ and

the corresponding intervals Ik,θ and Ik+1,Rω(θ) are drawn in blue. The map fm,θ, the interval

IW
m,θ

and the point γ|i+1| (Rω(θ)) are drawn in red.

By Lemmas 2.36 and 2.39(b) and Definition 2.42,

Ii,θ = {γ|i|(θ)} = {γ|k|(θ)} ⊂ IWm,θ
, and

fm,θ(x) = γ|i+1| (Rω(θ)) for every x ∈ IW
m,θ

.

On the other hand, by Definition 2.38 and Lemma 2.37(a,b), θ ∈WIB
m
⊂WDB

m
, and

θ ∈ Bα|`| [`
∗] ⊂ Bi (i∗) \Bα|i| [i

∗] ⊂ Bα|k| (k
∗) \{k∗}
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with ` = b (θ, led (θ,m)) ∈ WFD
m

and |`| > |i| > |k|. Then, by Lemma 2.20(g) and Defini-

tion 2.38,R(`∗) ⊂ Int
(
R(k∗)\���k∗

)
and

IW
m,θ

= I`,θ ⊂ Ik,θ.

Moreover, since θ ∈ Bα|k|(k∗) ⊂ Bm , Definition 2.42, Lemmas 2.30(b) and 2.32(b), and the defi-

nition of the maps g
i,θ

for i ≥ 0 (Definition 2.29) give

fm−1,θ

(
IW

m,θ

)
⊂ fm−1,θ (Ik,θ)

⊂

Ik+1,Rω(θ) if k < 0 or k ≥ 0 and θ ∈ Bαk+1
(k∗) ,

{γ
k+1

(Rω(θ))} if k ≥ 0 and θ ∈ Bαk[k∗] \Bαk+1
(k∗).

Now, as before, we will use Lemma 2.53 to bound ‖fm,θ − fm−1,θ‖ . We start with the sim-

plest case: k ≥ 0 and θ ∈ Bαk[k∗] \Bαk+1
(k∗) . By Lemma 2.55,

‖fm,θ − fm−1,θ‖ =
∥∥∥∥fm,θ∣∣IW

m,θ

− fm−1,θ

∣∣
IW

m,θ

∥∥∥∥
= |γ|i+1| (Rω(θ))− γ|k+1| (Rω(θ))| ≤ 2−|b (θ,m−1)|.

Now we assume that k < 0 or k ≥ 0 and θ ∈ Bαk+1
(k∗) . In this case Lemma 2.56 applies. By

Lemmas 2.56, 2.20(d) and Definition 2.18(R.2) and Remark 2.19(R.2), and Lemma 2.53 we have

γ|i+1| (Rω(θ)) ∈ Ii+1,Rω(θ) ⊂ Ik+1,Rω(θ),

fm−1,θ(x) ∈ Ik+1,Rω(θ) for every x ∈ IW
m,θ

.

and

‖fm,θ − fm−1,θ‖ =sup

x∈IW
m,θ

|fm,θ(x)− fm−1,θ(x)|

=sup

x∈IW
m,θ

|γ|i+1| (Rω(θ))− fm−1,θ(x)|

≤ 2 · 2−|k| = 2 · 2−|b (θ,m−1)|.

This ends the proof of the proposition in this case.

Case 2.61. Case 2. θ ∈ Bα|i|(i∗) ⊂ Bk (k
∗) \Bα|k|[k∗] (see Figure 2.7 for a symbolic representation

of this case).

In this case we will use Lemma 2.53 with Ii,θ. Thus, we need to compare the maps fm,θ
∣∣
Ii,θ

and

fm−1,θ

∣∣
Ii,θ
.

Directly from the definitions we get k < 0, Bα|i|[i
∗] ⊂ B

m
and Bα|k|[k

∗] ⊂ B
m−1

. Conse-

quently, by Lemma 2.34(b) and Definition 2.38,
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−2
−2

2

2

Ii,θ = IW
m−1,θmi(θ) = λm−1(θ) Mi(θ) = τm−1(θ)

Ii+1,Rω(θ)

mi+1

(
Rω(θ)

)

Mi+1

(
Rω(θ)

)

fm,θ

gi,θ

γ|k+1| (Rω(θ))

Ik+1,Rω(θ)

fm−1,θ

Figure 2.7: A symbolic representation of the maps fm,θ and fm−1,θ in Case 2 (θ ∈ Bα|i|(i
∗) ⊂

Bk (k
∗) \Bα|k|[k∗]) of Proposition 2.44. The map fm−1,θ and the corresponding intervals IW

m−1,θ

and Ik+1,Rω(θ) are drawn in blue. The map fm,θ and the corresponding intervals Ii,θ = IW
m−1,θ

and Ii+1,Rω(θ) are drawn in red.

θ ∈ B
m

and θ ∈ B
m−1
\B

m−1
⊂WDB

m−1
⊂WB

m−1
.

Moreover, led (θ,m− 1) = m, i = b (θ,m) = b (θ, led (θ,m− 1)) ∈ WFD
m−1

and, by Defini-

tion 2.38, θ ∈WIBm−1 , and

IW
m−1,θ

= Ii,θ.

Furthermore, since k < 0, as in the proof of Lemma 2.55, Rω(θ) ∈ Bα|k+1|((k + 1)∗) . Thus,

Definition 2.42, Lemma 2.20(d) and Definition 2.18(R.2) and Remark 2.19(R.2), give

fm−1,θ(x) = γ|k+1| (Rω(θ)) ∈ Ik+1,Rω(θ)

for every x ∈ Ii,θ = IWm−1,θ
.

Now we will use Lemma 2.53 to bound the norm ‖fm,θ − fm−1,θ‖ . By Definition 2.38 and

Lemma 2.53, θ ∈ Bm ⊂ Bm\WIBm , and
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‖fm,θ − fm−1,θ‖ =sup

x∈Ii,θ

|fm,θ(x)− fm−1,θ(x)|

=sup

x∈Ii,θ

|fm,θ(x)− γ|k+1| (Rω(θ))|.

Next we will compute fm,θ(Ii,θ).We start with the simplest case: i ≥ 0 and θ ∈ Bαi(i∗) \Bαi+1
(i∗) .

By Definition 2.42, the definition of the maps g
i,θ

for i ≥ 0 (Definition 2.29) and Lemma 2.55,

‖fm,θ − fm−1,θ‖ =sup

x∈Ii,θ

|fm,θ(x)− γ|k+1| (Rω(θ))|

= |γi+1 (Rω(θ))− γ|k+1| (Rω(θ))| ≤ 2−|b (θ,m−1)|.

Assume that i < 0 or i ≥ 0 and θ ∈ Bαi+1
(i∗) . Then, again by Definition 2.42 and Lem-

mas 2.30(b), 2.32(b) and 2.56,

fm,θ(x) ∈ Ii+1,Rω(θ) ⊂ Ik+1,Rω(θ) for every x ∈ Ii,θ,

and

‖fm,θ − fm−1,θ‖ =sup

x∈Ii,θ

|fm,θ(x)− γ|k+1| (Rω(θ))|

≤ 2 · 2−|k| = 2 · 2−|b (θ,m−1)|.

This ends the proof of the proposition in Case 2.

Case 2.62. Case 3. θ ∈ Bα|i|(i∗) ⊂ Bα|k|(k∗) .

In this case we have Bα|i|(i
∗) ⊂ B

m
and Bα|k|(k

∗) ⊂ B
m−1

so that, θ ∈ B
m
∩ B

m−1
. Moreover, by

Lemma 2.20(g),R(i∗) ⊂ Int
(
R(k∗)\���k∗

)
and, hence,

Ii,θ ⊂ Ik,θ.

Since θ ∈ Bm , by Definition 2.38 and Lemma 2.53, θ ∈ B
m
\WIB

m
, and

‖fm,θ − fm−1,θ‖ =
∥∥∥fm,θ∣∣Ii,θ − fm−1,θ

∣∣
Ii,θ

∥∥∥ =sup

x∈Ii,θ

|fm,θ(x)− fm−1,θ(x)|.

Thus, we need to compare the maps fm,θ
∣∣
Ii,θ

and fm−1,θ

∣∣
Ii,θ
. To do this we consider two sub-

cases.

Case 2.63. Subcase 3.1. Either k < 0 or k ≥ 0 and θ ∈ Bαk+1
(k∗)

(see Figure 2.8 for a symbolic representation of this case).
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mk+1

(
Rω(θ)

)

Mk+1

(
Rω(θ)
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gk,θ

Ii,θ
mi(θ) Mi(θ)

Ii+1,Rω(θ)

mi+1

(
Rω(θ)

)
Mi+1

(
Rω(θ)

)fm,θ

gi,θ

Figure 2.8: A symbolic representation of the maps fm,θ and fm−1,θ in Subcase 3.1 from the proof

of Proposition 2.44 (θ ∈ Bα|i|(i∗) and Ii,θ ⊂ Ik,θ and either k < 0 or k ≥ 0 and i∗ ∈ Bαk+1
[k∗]).

The map fm−1,θ and the corresponding intervals Ik,θ and Ik+1,Rω(θ) are drawn in blue. The map

fm,θ and the corresponding intervals Ii,θ and Ii+1,Rω(θ) are drawn in red.

In this situation we aim at proving that

fm−1,θ (Ii,θ) , fm,θ (Ii,θ) ⊂ Ik+1,Rω(θ).

We start with fm−1,θ (Ii,θ) . By Definition 2.42 and Lemmas 2.30(b) and 2.32(b) we obtain

fm−1,θ (Ii,θ) ⊂ fm−1,θ (Ik,θ) = g
k,θ

(Ik,θ) ⊂ Ik+1,Rω(θ).

Next we show that fm,θ (Ii,θ) ⊂ Ik+1,Rω(θ).

Since k < 0 or k ≥ 0 and θ ∈ Bαk+1
(k∗) , by Definition 2.18(R.1) we obtain

Rω(θ) ∈

Rω
(
Bα|k|(k

∗)
)
= Bα|k|((k + 1)∗) ⊂ Bα|k+1|((k + 1)∗) if k < 0,

Rω
(
Bαk+1

(k∗)
)
= Bαk+1

((k + 1)∗) if k ≥ 0 and θ ∈ Bαk+1
(k∗).

(2.1)

Assume that i < 0 or i ≥ 0 and θ ∈ Bαi+1(i
∗) . By (2.1) with k replaced by i,

Rω(θ) ∈ Bα|i+1| ((i+ 1)∗) ∩Bαk+1
((k + 1)∗) ⊂ Bi+1 [(i+ 1)∗] ∩Bk+1 [(k + 1)∗] .

Therefore, since |k+1| ≤ |i+ 1| and k+1 6= i+1, from Lemma 2.20(g) we obtain |k+1| < |i+ 1|,
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Bα|i+1| [(i+ 1)∗] ⊂ Bα|k+1| ((k + 1)∗) \{(k + 1)∗}, and

R((i+ 1)∗) ⊂ Int
(
R((k + 1)∗)\���(k + 1)∗

)
.

Thus, by Definition 2.42 and Lemmas 2.30(b) and 2.32(b),

fm,θ (Ii,θ) = g
i,θ

(Ii,θ) ⊂ Ii+1,Rω(θ) ⊂ Ik+1,Rω(θ).

Now we will consider the case i ≥ 0 and θ ∈ Bαi(i∗) \Bαi+1(i
∗) . The fact that |k| < |i| = i

implies |k + 1| ≤ |k|+ 1 ≤ i. We claim that

Bαi ((i+ 1)∗) ⊂ Bα|k+1| ((k + 1)∗) \{(k + 1)∗}.

To prove the claim note that, by (2.1),

Rω(θ) ∈ Rω (Bαi (i∗)) ∩Bα|k+1| ((k + 1)∗) ⊂ Bαi ((i+ 1)∗) ∩Bk+1 [(k + 1)∗] .

Moreover, the intervalBαi((i+ 1)∗) is disjoint fromBi [i
∗] andB−i[(−i)∗] by Definition 2.18(R.2).

Thus, i 6= k + 1,−(k + 1) and, hence, |k + 1| < i (that is, k + 1 ∈ Zi−1). So, there exists q ∈ Zi−1

such that Bαi[(i+ 1)∗] ∩ Bq [q∗] 6= ∅ and |q| ≥ |k + 1| is maximal verifying these conditions. By

Definition 2.18(R.4),

Bαi ((i+ 1)∗) ⊂ Bq (q∗) \
(
Bd
(
Bα|q| [q

∗]
)
∪ {q∗}

)
.

So, the claim holds when q = k + 1. Assume that q 6= k + 1. Then,

Rω(θ) ∈ Bαi ((i+ 1)∗) ∩Bα|k+1| ((k + 1)∗) ⊂ Bq (q∗) ∩Bα|k+1| ((k + 1)∗) .

Hence, by Lemma 2.20(g), |q| > |k + 1| and

Bαi ((i+ 1)∗) ⊂ Bq [q∗] ⊂ Bα|k+1| ((k + 1)∗) \{(k + 1)∗}.

This ends the proof of the claim.

On the other hand, by Definition 2.18(R.2) and Remark 2.19(R.2),(
Bαi [(i+ 1)∗] \Bαi+1 ((i+ 1)∗)

)
∩ Zi+1 = ∅.

Thus, by the claim,

Rω(θ) ∈ Rω
(
Bαi (i

∗) \Bαi+1 (i
∗)
)
= Bαi ((i+ 1)∗) \Bαi+1 ((i+ 1)∗)

⊂ Bα|k+1| ((k + 1)∗) \Zi+1.

By Definition 2.42, the definition of the maps g
i,θ

for i ≥ 0 (Definition 2.29) and Lemma 2.20(d)

(with ` = k + 1 and n = i+ 1),

fm,θ (Ii,θ) = g
i,θ

(Ii,θ) =
{
γ
i+1

(Rω(θ))
}
⊂ Ik+1,Rω(θ).
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Summarizing, we have proved that

fm−1,θ (Ii,θ) , fm,θ (Ii,θ) ⊂ Ik+1,Rω(θ).

So, by Lemma 2.20(f) (and the fact that |k + 1| ≥ |k| − 1),

‖fm,θ − fm−1,θ‖ =sup

x∈Ii,θ

|fm,θ(x)− fm−1,θ(x)| ≤ diam
(
Ik+1,Rω(θ)

)
≤ diam (R((k + 1)∗)) ≤ 2−|k+1| ≤ 2 · 2−|k| = 2 · 2−|b (θ,m−1)|.

This ends the proof of the proposition in this subcase.

Case 2.64. Subcase 3.2. k ≥ 0 and θ ∈ Bαk(k∗) \Bαk+1
(k∗) .

We start by computing fm−1,θ (Ii,θ) . By Definition 2.42 and the definition of the maps g
k,θ

for

k ≥ 0 (Definition 2.29),

fm−1,θ (Ii,θ) ⊂ fm−1,θ (Ik,θ) = g
k,θ

(Ik,θ) = {γk+1
(Rω(θ))}.

Analogously, if i ≥ 0 and θ ∈ Bαi(i∗) \Bαi+1(i
∗) ,

fm,θ (Ii,θ) = g
i,θ

(Ii,θ) = {γi+1
(Rω(θ))}.

Then, by Lemma 2.55,

‖fm,θ − fm−1,θ‖ =
∥∥∥fm,θ∣∣Ii,θ − fm−1,θ

∣∣
Ii,θ

∥∥∥
= |γ

i+1
(Rω(θ))− γk+1

(Rω(θ))| ≤ 2−|b (θ,m−1)|.

Assume now that i < 0 or i ≥ 0 and θ ∈ Bαi+1(i
∗) . By (2.1), Definition 2.42 and Lem-

mas 2.30(b) and 2.32(b)

Rω(θ) ∈ Bα|i+1| ((i+ 1)∗) , and

fm,θ (Ii,θ) = g
i,θ

(Ii,θ) ⊂ Ii+1,Rω(θ).

Moreover, if k + 1 < |i+ 1|, by Lemmas 2.36(a) and 2.20(c), we have

fm−1,θ (Ii,θ) =
{
γ
k+1

(Rω(θ))
}
=
{
γ|i+1|−1

(Rω(θ))
}
⊂ Ii+1,Rω(θ).

Therefore, by Lemma 2.20(f),

‖fm,θ − fm−1,θ‖ =sup

x∈Ii,θ

|fm,θ(x)− fm−1,θ(x)|

=sup

x∈Ii,θ

|fm,θ(x)− γ|i+1|−1
(Rω(θ))|

≤ diam
(
Ii+1,Rω(θ)

)
≤ diam (R((i+ 1)∗)) ≤ 2−|i+1|

< 2−(k+1) < 2−|b (θ,m−1)|.
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So, to end the proof of the proposition we have to show that, in this subcase, k + 1 < |i+ 1|.
To prove this, notice that when i ≥ 0, k + 1 = |k| + 1 < |i| + 1 = |i+ 1|. So, assume by way of

contradiction that i < 0 and k + 1 = |i+ 1| (recall that k + 1 ≤ |i+ 1|). Then, k + 1 = −(i + 1)

and, hence,

Rω(θ) ∈ Rω (Bαk (k∗)) = Bαk ((k + 1)∗) , and

Rω(θ) ∈ Bα|i+1| ((i+ 1)∗) = Bαk+1
((−(k + 1))∗) ⊂ B−(k+1) ((−(k + 1))∗) ,

which is a contradiction by Definition 2.18(R.2).
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14. O. M. Šarkovs′kiı̆. Co-existence of cycles of a continuous mapping of the line into itself. Ukrain. Mat.

Z̆., 16:61–71, 1964.



15. A. N. Sharkovskiı̆. Coexistence of cycles of a continuous map of the line into itself. In Thirty years

after Sharkovskiı̆’s theorem: new perspectives (Murcia, 1994), volume 8 of World Sci. Ser. Nonlinear Sci. Ser.

B Spec. Theme Issues Proc., pages 1–11. World Sci. Publ., River Edge, NJ, 1995. Translated by J. Tolosa,

Reprint of the paper reviewed in MR1361914 (96j:58058).

16. R.E. Vinograd. A problem suggested by n.p. erugin. Differ. Uravn., 11 (4)(1):632–638, 1975.

104


	Títol de la tesi: Combinatorial dynamics of strippatterns of quasiperiodic skewproducts in the cylinder
	Nom autor/a: Leopoldo Morales López


