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A Chloe, a mis padres, y a mi hermana...



The best way to predict the future is to invent it.
- Alan Kay
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Abstract

Currently, more than 80 % of the documents stored on paper belong to the business
field. Advances in digitization techniques have fostered the interest in creating digital
copies in order to solve maintenance and storage problems, as well as to have efficient
ways for transmission and automatic extraction of the information contained therein.
This situation has led to the need to create systems that can automatically extract
and analyze this kind of information.

The great variety of types of documents makes this not a trivial task. The ex-
traction process of numerical data from tables or invoices differs substantially from
a task of handwriting recognition in a document with annotations. However, there
is a common link in the two tasks: Given a document, we need to identify the re-
gion where the information of interest is located. In the area of Document Analysis
this process is called Layout Analysis, and aims at identifying and categorizing the
different entities that compose the document. These entities can be text regions,
pictures, text lines or tables, among others. This process can be done from two dif-
ferent approaches: physical or logical analysis. Physical analysis focus on identifying
the physical boundaries that define the area of interest, whereas logical analysis also
models information about the role and semantics of the entities within the scope of
the document. To encode this information it is necessary to incorporate prior knowl-
edge about the task into the analysis process, which can be introduced in terms of
contextual relations between entities. The use of context has proven to be useful to
reinforce the recognition process and improve the results on many computer vision
tasks. It presents two fundamental questions: what kind of contextual information is
appropriate, and how to incorporate this information into the model.

In this thesis we study several ways to incorporate contextual information on the
task of document layout analysis. We focus on the study of Probabilistic Graphi-
cal Models and other mechanisms for the inclusion of contextual relations applied
to the specific tasks of region identification and handwritten text line segmentation.
On the one hand, we present several methods for region identification. First, we
present a method for layout analysis based on Conditional Random Fields for max-
imum a posteriori estimation. We encode a set of structural relations between dif-
ferent classes of regions on a set of features. Second, we present a method based
on 2D-Probabilistic Context-free Grammars and perform a comparative study be-
tween probabilistic graphical models and this syntactic approach. Third, we propose
a statistical approach based on the Expectation-Maximization algorithm devised to
structured documents. We perform a thorough evaluation of the proposed methods

iii
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on two particular collections of documents: a historical dataset composed of ancient
structured documents, and a collection of contemporary documents. On the other
hand, we present a probabilistic framework applied to the task of handwritten text
line segmentation. We successfully combine the EM algorithm and variational ap-
proaches for this purpose. We demonstrate that the use of contextual information
using probabilistic graphical models is of great utility for these tasks.



Resumen

Actualmente, méas del 80% de los documentos almacenados en papel pertenecen al
ambito empresarial. Avances en materia de digitalizaciéon de documentos han fomen-
tado el interés en crear copias digitales para solucionar problemas de mantenimiento
y almacenamiento, ademéas de poder disponer de formas eficientes de transmisién y
extraccion automatica de la informacién contenida en ellos. Esta situacién ha prop-
iciado la necesidad de crear sistemas capaces de extraer y analizar automaticamente
esta informacién.

La gran variedad en tipos de documentos hace que esta no sea una tarea trivial.
Un proceso de extraccion de datos numéricos de tablas o facturas difiere sustancial-
mente del reconocimiento de texto manuscrito en un documento con anotaciones. No
obstante, hay un nexo comun en las dos tareas: dado un documento, es necesario
localizar la regién donde estd la informacién de interés. En el drea del Andlisis de
Documentos, a este proceso se denomina Anélisis de la estructura del documento, y
tiene como objetivo la identificacién y categorizacién de las diferentes entidades que lo
componen. Estas entidades pueden ser regiones de texto, imédgenes, lineas de texto,
celdas de una tabla, campos de un formulario, etc. Este proceso se puede realizar
desde dos enfoques diferentes: andlisis fisico, o andlisis 16gico. El andlisis fisico con-
siste en identificar la ubicacién y los limites que definen el drea donde se encuentra la
regién de interés. El anélisis 16gico incluye ademads informacion acerca de su funcién
y significado dentro del ambito del documento. Para poder modelar esta informacion,
es necesario incorporar al proceso de andlisis un conocimiento previo sobre la tarea.
Este conocimiento previo se puede modelar haciendo uso de relaciones contextuales
entre las diferentes entidades. El uso del contexto en tareas de visiéon por computa-
dor ha demostrado ser de gran utilidad para guiar el proceso de reconocimiento y
reforzar los resultados. Este proceso implica dos cuestiones fundamentales: qué tipo
de informacién contextual es la adecuada para cada problema, y cémo incorporamos
esa informacién al modelo.

En esta tesis abordamos el andlisis de la estructura de documentos basandonos en
la incorporacién de informacién contextual en el proceso de analisis. Hacemos énfasis
en el uso de modelos graficos probabilisticos y otros mecanismos para proponer solu-
ciones al problema de la identificacion de regiones y la segmentacion de lineas de
texto manuscritas. Presentamos varios métodos que hacen uso de modelos graficos
probabilisticos para resolver las anteriores tareas, y varios tipos de informacién contex-
tual. En primer lugar presentamos un conjunto de caracteristicas que pueden modelar
informacién contextual sobre la posicion relativa entre las diferentes regiones. Uti-
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lizamos estas caracteristicas junto a otras para en varios modelos basados en modelos
graficos probabilisticos, y los comparamos con un modelo sintactico clasico basado en
gramaticas libres de contexto. En segundo lugar presentamos un marco probabilistico
aplicado a la segmentacion de lineas de lineas de texto. Combinamos el proceso de
inferencia en el modelo con la estimacion de las lineas de texto. Demostramos como
el uso de informacion contextual mediante modelos graficos probabilisticos es de gran
utilidad para estas tareas.
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Chapter 1

Introduction

Throughout history, different civilizations have captured their knowledge and ideas
in documents initially reserved to a small portion of the population. The invention
of the printing press, as we know it today, led this information to a wide sector of
the society, and foster the distribution of a large amount of documents from multiple
knowledge areas. However, it was in the last century when the amount of documents
produced increased considerably. The development of new information technologies,
and the widespread use of personal computers, instead of reducing the amount of
paper documents, it had the opposite effect. Nowadays is easier than ever to capture
information in paper, and, despite the increasing use of personal devices such as tables
or laptops, paper documents still have an important role in our lives.

The great advances in the last decades regarding digitization techniques and cam-
era capture systems, have fostered the interest in digitally preserve large amounts
of information that, up to that moment, was registered in paper documents. This
phenomenon have been mainly reflected in the scope of the business activity. Many
countries have declared regulations to force companies to have digitized versions of
documents with financial or sensitive information. Besides, with the objective of a bet-
ter information management, companies have also digitized their old paper databases
and important documentation. Nowadays, the large majority of digitized documents
belongs to this ambit [5]. Conservation of ancient and historical documents has also
an important role in the increment of digitized documents. Multiple collections of
invaluable relevance are being digitized and stored in digital libraries in order to pre-
serve its contents against aging and possible loss of data. Besides, most of these
collections can be object for many types of research studies [6]. Digitized documents
offer an easy maintenance, offers loss-less storage, and efficient ways for transmission
and perform information retrieval processes.

This situation has opened a new market niche to develop systems able to automat-
ically extract and analyze the information contained in collections of documents. One
of the most in-demand applications is the automatic extraction of information from
forms or invoices, although there are many more such as automatic check processing,



2 INTRODUCTION
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Figure 1.1: Documents contain multiple types of information in multiple ways. The
digitization process makes possible to automatically extract and process this infor-
mation.

signature verification, document classification, or information retrieval, among others.
In this dissertation we focus on the area of computer vision that tackles these tasks.
This research field is referred to as Document Analysis and Recognition (DAR) !, and
aims at investigating and developing new and better ways in what regards to extract
and process the information contained in collections of documents. The research on
DAR includes many other research areas, such as image processing, pattern recog-
nition, machine learning, and, more recently, big data technologies for storage and
scalability purposes. Furthermore, it comprises many different, but related, research
tasks, such as layout analysis, text line segmentation, text recognition, document
classification, graphics recognition, etc.

In the next sections we describe the motivation that led to the realization of this
thesis, we detail the main challenges of the addressed tasks and enumerate the set of
contributions derived from the presented work. Last, we define the structure of this
thesis.

1.1 Motivation and challenges

The automatic extraction of information from document images can be a process kind
of ambiguous. This ambiguity is the result of the large diversity of types of documents
that can be object of analysis (see Figure 1.1). Information can take different forms

IThe term DAR is also referred in the literature as Document Image Analysis (DIA) or Document
Image Analysis and Recognition (DIAR) depending on the author preferences.
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or come from different sources, for instance, we could be interested in the extraction
of some numerical values from tables or forms, or in the explicit recognition of the
text. In any case, in order to extract the information of interest, is always necessary
to identify the area of the document where it is located, and extract it in a format
that facilitates posterior analysis processes.

The task responsible for this step is referred to as document layout analysis. For-
mally, layout analysis aims at identifying and categorizing the set of entities that
compose the document. The set of entities depends on the task in question. An usual
approach is to identify the set of blocks of text, figures, or tables. However, it is also
common to perform a fine-grained analysis to detect specific parts or the document.
A particular case of this analysis is text line detection. This task consist of two main
processes that eventually may converge: the localization of the text line and its seg-
mentation by defining a pixel-wise labeling of the text components. The detection
of these entities is one of the main tasks within the document analysis process. Its
relevance relies in the fact that many other tasks depend on the results obtained.
On the one hand, the accuracy of important tasks such as signature verification or
symbol recognition depends on the correct identification of regions that include the
signature, and the symbol, respectively. On the other hand, many methods for text
recognition or word spotting directly depend on the segmentation of the set of text
lines. For instance, given the set of administrative documents shown in Figure 1.2,
the final objective is to perform recognition of the handwritten text. Recognition
systems could not be applied on the full page, or even on the handwritten region, but
they require the explicit segmentation of the text line. Besides, an incorrect segmen-
tation of the characters, or the inclusion of elements from other lines may result in
recognition errors.

We aim to investigate new models to tackle these tasks based on the inclusion
of contextual information. The role of context on many computer vision tasks, such
as object detection or real-scene image segmentation, have proved to be of great
importance in order to improve the quality of the results [7]. Recent advances in neu-
roscience have shown as our visual system make use of these contextual associations
continuously and, in fact, we make use of this resource on many other perception
tasks [8, 9]. We think that the inclusion of contextual information can add important
benefits to the analysis of the document layout and to the segmentation of the text
lines. For instance, given an document image, we can identify a particular text region
with certain features. However, if we know that the document is a newspaper page,
and detect other text regions under it, smaller in font size, and divided in columns, we
can guess that the detected regions corresponds to the headline and the body of the
new. In this case, the knowledge about the type of document and the surroundings
of the detected regions corresponds to the context.

A natural way to represent context is defining the relations between the different
entities. Probabilistic Graphical Models (PGMs) provide a powerful probabilistic
framework to encode these relationships and to model local contextual constraints
between variables. In this dissertation we study different approaches to the tasks of
layout analysis and handwritten text line segmentation. We propose several ways



4 INTRODUCTION

4 BANQUE POPULAIRE
COTE D'AZUR
€ [

,,,,,,

Figure 1.2: Two examples of administrative documents with handwritten annotations.

to encode contextual information based on the use of PGMs and other probabilistic
techniques. In the next sections we describe the particularities and main challenges
of these task.

1.1.1 Layout analysis

Layout analysis is usually defined as two separated tasks that converge to the complete
analysis of the page: physical layout analysis?, and logical layout analysis. Physical
layout analysis aims to detect the entities of a document, such as text blocks or figures,
by identifying its location and region boundaries within the page. For instance, given
a page from a newspaper, we could focus on identifying homogeneous regions corre-
sponding to the different paragraphs and categorize them as text regions in contrast
to background areas. However, we can incorporate additional knowledge about the
task in order to categorize each region according to its role within the ambit of doc-
ument. According to our previous example, a text region could a headline, footnote,
body or signature. The logical categorization of the set of functional entities, along
with their inter-relationships is referred to as the logical structure of the document,
and the process of analyzing this structure is logical layout analysis. Logical layout
analysis methods aims at detecting the same homogeneous regions than the previ-
ous approaches, but assigning this set of meaningful labels according to its semantic
within the page. In fact, the analysis of the logical structure is usually performed on
the results of a physical layout analysis stage. In addition, in documents with complex

2 Also referred to in the literature as geometric layout analysis.



1.1. Motivation and challenges 5

kS Aﬁ,—.-
/«dm-é‘;;? 5 {hﬂv.«

e

L4
A;, ,:.m Awr,». oo
/-»:rr//g/ ik -ww»— e /’(ﬁm
N Y SR 4 .,;M._.
£y ,ﬂ/«.m';m-m k.

3|

MA. ,4- )”

'_.-.’Af{f:v ,,," f#és:;.‘é - ,«és-w«
/7«-.% .'%sa,.(As;, 174

A

Boordl il Ak

%w %‘4’!" v’;// &v,*,

g e |

B

() (b)

Figure 1.3: Two examples of documents with different layout. a) Historical document
including a set of structured records. b) contemporary document containing textual
elements and images. This is an example of non-Manhattan layout where different
regions have irregular shape.

layouts, the physical layout analysis process may require of some logical information
and knowledge about the regions to perform its correct identification.

A common categorization of the types of layout distinguishes between Manhattan
and non-Manhattan layouts. A Manhattan layout is characterized by rectangular
regions that can be separable by vertical and horizontal cuts. Most machine-printed
documents, such as newspapers or scientific publications fall in this category. On
the contrary, non-Manhattan layouts are characterized by regions of irregular shape
and an arbitrary location within the page. Another common classification refers to
structured and non-structured documents. Collections of structured documents are
characterized by having a predefined organization of its contents. This organization
can be limited to a set of regions that are replicated along the page, as some documents
that contain a list of records, or to the whole page, as the case of forms. However, non-
structured documents are composed of regions that can be located at any place and do
not have a relation with other documents within the same collection. Many methods
have been developed to perform layout analysis on these types of documents. However,
despite the great advances the task is still considered as an open and challenging
problem. We summarized the main challenges of the task in four main categories:

e Document diversity. Among the main challenges it stands out the large vari-
ety of types of documents that can be object of analysis. For instance, regarding
machine-printed documents, we can find newspapers, magazines, maps or ad-
ministrative documents in all their possible forms. Each of these documents has
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a particular layout with different challenges. Regarding handwritten documents
the variability is even higher. Besides, due to the handwriting style it is com-
mon to find overlapped regions on which is not easy to identify its boundaries.
Besides, unlike machine-printed documents, it is possible that several regions
have different orientations. Historical documents present also some additional
complications. They do not follow the formatting requirements of contemporary
documents, and consequently their structure can be more difficult to extract.

e Document degradation. Although this is a challenge specially present on
historical documents, it can also occur on contemporary ones. Ancient docu-
ments are usually degraded due to aging or bad conservation issues. Under this
conditions they can include some elements that affect to the correct detection of
its content, such as holes, ink blots, show-through effects or even missing parts.
On contemporary documents, degradation can be result of missing parts result
of the acquisition process. These issues can affect to the performance of meth-
ods that rely only on physical properties of the document, such as connected
components or texture analysis.

e Generalization. Developing general methods for layout analysis is one of the
main challenges. Many physical layout analysis methods can identify regions
by analyzing the distribution of the connected components or the white space
between regions. However, many of them usually rely on assumptions about the
document structure and are difficult to generalize to very different collections.
Some learning-based methods can be adapted to be run on different collections.
Nevertheless, the scope of these methods is usually limited to rectangular regions
or structured documents.

e Encoding semantic information. To perform logical layout analysis implies
to be able to encode the functional or semantic information about the regions
into the model. Many methods and techniques have been developed for this
purpose. However, this is still an important challenge, and for some types of
free-style documents this information can be difficult to encode.

We show in Figure 1.3 two documents from different collections that illustrate
some of the concepts and challenges previously described. On the left, we show an
example of historical document whose content is arranged in a set of records. This
is an example of structured document where an structured entity is replicated along
the page. This document is characterized for a handwritten longhand script and the
existence of some ornamental items that causes overlapping between the different
regions. In contrast, on the right, we show a contemporary page from a magazine.
In this case the document mix a set of images with printed text regions of different
categories, color and size. The comparison between these two documents shows the
difficulty of developing general methods that account for such a different layouts.
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1.1.2 Handwritten text line segmentation

The problem of detecting text lines was stated decades ago in the context of machine-
printed text [10]. Since then, many methods for machine-printed documents have
been proposed with remarkable results, to the point of be considered as a solved
problem for this type of documents [11, 12]. Machine-printed text lines are expected
to be uniform throughout the document, i.e. to share the same orientation and text
style, as well as to be free of line overlapping and warping effects. However, when
these conditions are not satisfied common methods for this task can fail. Common
problems in the segmentation of machine-printed documents come from perspective
distortions or curvatures at the page limits. Both situations are related with the
acquisition process. Classical methods for this type of documents usually fail under
these circumstances, since they assume a certain certain regularity in the skew angle,
character size, and spacing between the characters and lines.

Segmentation of handwritten documents is still a challenging problem. In this
category we include any document that contains handwritten text, from common
letters, where we have an idea about where the text is located, to freestyle handwritten
documents, where the handwritten text can be located at any area of the document,
or mixed with machine-printed elements. The main challenges for the segmentation of
handwritten text lines rely mainly on the large variability in writing styles and in the
range of possible document layouts. We enumerate the main challenges concerning
this categories in the following points:

e Text orientation. In general, it is difficult that all text lines in a document
follow exactly the same orientation. This includes from slightly changes to
extreme cases that cause text line overlapping. This situation can affect to
some methods that assume continuity in the text orientation, or expect certain
separation between lines.

e Curved lines. Directly related with the previous challenge, curved lines are
one of the main challenges for text line segmentation methods. In this case,
linear or piecewise linear approximation are in general not enough accurate and
require of additional techniques.

e Text line overlapping. Another major challenge on this task is when text
lines overlap with each other. In most cases this is produced by the contact
between ascenders and descenders of characters with long strokes, although it
is also produced when text lines are huddled together. This problem is common
in some languages with complex characters and many diacritic or punctuation
symbols such as Indian Bangla or Chinese.

e Text style. Different writers use different font type and size for their texts.
Even along documents from the same writer it can be differences in the text
style. This situation forces methods to not rely only on these features.

e Document layout. Handwritten text can be located at any part of the docu-
ment. Text in regular letters is usually located at the center of the document or
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split in several regions such as address, main body and signature. However, if
we think in administrative documents with handwritten annotations, text can
be written at any location of the page. In these cases usually is necessary to
first detect the text regions and process them separately.

In Figure 1.4 we show several examples of these challenges. We must also highlight
the case of historical documents, since they add several challenges to the task [13].
Further than the challenges arising from the document structure and document degra-
dation described in the previous section, there are some artifacts that specially affect
to the text line segmentation process. Regarding to the writing style, the variability
in types of writers is now extended along the time. This implies multiple changes
in the size of the characters, longhand scripts, space between lines or the inclusion
of text ornamentation. This variability in combination with the common document
degradation is an important challenge even for the best general segmentation meth-
ods. Regarding to the document structure, elements like holes, stains or text faint are
also a drawback for the detection of text lines. In addition, show-through is specially
disturbing for this task.

All these challenges promoted that many methods proposed in the last years focus
on a particular kind of document collections. Others focus on specific problems, such
as touching lines or curved lines, and others are tailored to particular scripts or
document layouts that make them hard to generalize to other collections.

1.2 Goals and Contributions

The main objective of this thesis is to develop novel methods and techniques to incor-
porate contextual information and prior knowledge to the tasks of document layout
analysis and handwritten text line segmentation. For this purpose, we present several
approaches based on probabilistic graphical models and other statistical resources
that encode this information and deal with the main challenges of these tasks. This
thesis is framed within an industrial project that aims to develop systems for au-
tomatic processing of administrative documents. An important part of this thesis
have been focus in the research, prototyping, and development of an application for
handwritten text line segmentation devised to detect handwritten annotations on this
type of documents. Next, we summarize the set of contributions produced on each
part of this thesis.

Document layout analysis.

We propose several ways to include contextual information and prior knowledge
into the models to encode the logical structure of the page. The proposed methods
produced the following contributions:
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Figure 1.4: Tllustration of some of the main challenges for handwritten text line
segmentation. (a) Multiple orientations and huddled lines. (b) Text line overlapping
caused by ascenders and descenders. (c) Curved lines. (d) Example of multiple regions
with different orientations.
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1. Relative location features for layout analysis. We introduce relative lo-
cation features to the document layout analysis process. On this features we
can encode spatial relationships and semantic information from the set of enti-
ties. We combine them with other texture descriptors in order to perform the
physical and logical analysis.

2. Statistical method for layout analysis. We present a statistical approach
based on PGMs and the EM algorithm for layout analysis devised to structured
documents. Our method learns the structure of the document, and perform the
identification of the different entities in an iterative way. It can be applied to
several types of layouts and it is flexible to light structure changes.

3. Method for physical layout analysis based on CRFs. We propose a
method for physical layout analysis based on CRFs. Contextual information is
encoded on both, the CRF structure and the set of features. Pairwise interaction
produce an smoothing effect that deals with common degradation issues on
historical documents.

4. Comparative study between PGMs and 2D-SCFG. We perform a com-
parative study between syntactic approaches and probabilistic graphical models.
We aim to evaluate both approaches on modeling the logical structure. For this
purpose, we developed, in collaboration with the PRHLT group from the Poly-
technical University of Valencia, a method based on bi-dimensional stochastic
context-free grammars for the segmentation of structured documents, and com-
pare it against several PGMs and inference algorithms.

Handwritten text line segmentation.

We propose a general method for freestyle handwritten line segmentation. The
main objective is to be able to process any handwritten document regardless of its
layout and writing style. The use of contextual information can be useful to overcome
the described challenges. For instance, if we define a neighboring system between con-
nected components of text, the decision of labeling each component can be reinforced
with the information of its neighbors. This can be useful to deal with curved text
lines and character overlapping. We implement this contextual feature among others
using a probabilistic graphical model. The main contribution of this work relies in
the probabilistic framework designed for this task. We propose a model that can be
easily extended with new knowledge about the problem and an iterative algorithm
for computing inference and parameter learning on the model. We summarize the
produced contributions in the following four points:

1. General method for handwritten text line segmentation. We designed
our method with the objective to deal with a large variety of documents re-
gardless of their type of layout. Besides, our method is script and language
independent.
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2. Easily expandable with prior knowledge. The proposed probabilistic
framework can be easily extended with additional prior knowledge about the
task by means of the inclusion of new feature functions.

3. Probabilistic framework for parameter learning and inference. We
successfully combine the EM algorithm and variational approaches to perform
parameter learning and inference on a probabilistic graphical model.

1.3 Thesis Structure

This thesis is structured in seven different chapters:

In Chapter 1, we have described the motivation that led to the realization of this
thesis. We detailed the main challenges of the addressed tasks and enumerate the set
of contributions derived from the work that we describe on this dissertation.

In Chapter 2, we do a review of the state-of-the-art techniques developed for both
layout analysis and handwritten text line segmentation tasks. We highlight the main
strengths and weaknesses for each approach in order to justify the work presented in
this thesis.

In Chapter 3, we describe the theoretical fundamentals of the statistical models
used for the development of the methods presented on this thesis. First, we present
a review of the main types of probabilistic graphical models and its application to
computer vision tasks. Second, we analyze different approaches to compute inference
on these models. Third, we describe the Expectation-Maximization algorithm and
its application to estimate the parameters of a Gaussian mixture model. Finally, we
present the framework of bi-dimensional stochastic context-free grammars for the task
of image segmentation.

In Chapter 4, we present the set of methods developed for the task of document
layout analysis. We describe several approaches to encode contextual information
and prior knowledge about the problem. We propose two approaches based on PGMs
which diverge in the inference process. Besides, we perform a comparative study
against 2D-SCFG for the analysis of structured documents.

In Chapter 5, we present the probabilistic framework developed for the task of
handwritten line segmentation. We describe two approaches of the proposed method
in order to evaluate the contribution of contextual information to the task.

Finally, in Chapter 6, we describe the conclusions achieved and the concluding
remarks. Besides, we show the list of publications resulting of the work of this thesis.
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Chapter 2

State-of-the-art in layout analysis

In this chapter we review the main approaches and methods developed for the tasks
of layout analysis and handwritten text line segmentation in the last years. We
highlight the main strengths and weaknesses for each approach in order to justify
and contextualize the work presented in this thesis. First we go through the main
approaches for physical and logical layout analysis. Then we revise the existing
proposals for handwritten text line segmentation.

2.1 Introduction

Major advances in digitization techniques have promoted the interest in developing
systems capable of automatically extracting and processing the information contained
in digitized documents [10]. The increase on computational resources, together with
large improvements on machine learning and pattern recognition techniques, have
fostered the development of many methods for document layout analysis and segmen-
tation.

Early works on document layout analysis focused on the physical identification of
text regions from machine-printed documents. Later on, this process was extended
to other types of documents with different layouts and to other types of entities, such
as figures or tables. Logical analysis of the document structure was the next natu-
ral step in order to achieve complete analysis of the document contents. This step
required the use of additional techniques of knowledge representation and syntactic
approaches that account for the structure and relations between the different entities.
Nowadays, notable results have been achieved on both tasks an on a large variety
of types of documents. However, there are still many challenges to overcome and
place to improve, either in processing complex layouts, as in the inclusion of prior
information and modeling of the logical structure of the page. Analogously to the de-

13
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velopment of layout analysis methods, important advances were achieved for text line
segmentation on machine printed documents. However, in more complex documents,
such as handwritten or historical documents, the problem is still open. In this chapter
we review the main approaches and methods developed for these tasks, and analyze
the main strengths and weaknesses of these approaches in order to demonstrate the
contributions presented on this thesis.

2.2 Document layout analysis

In this section, we provide a detailed review of the main approaches developed for
the two main tasks: physical and logical layout analysis. There have been many
important works that survey the main approaches to these tasks [14, 15, 16, 17, 18].
Besides, there have been held several contests in order to evaluate these methods on
benchmark contemporary datasets [19, 20, 1], and historical datasets [21, 22].

A common approach before proceeding with the analysis of a document, is to apply
preprocessing techniques that aim to eliminate any imperfections that may affect
the performance of methods. Probably the most common preprocessing operation is
skew estimation [16]. The objective is to find the orientation angle with respect to
the horizontal and vertical directions in order straighten out the document content.
Other common operations are: noise reduction operations, perspective corrections, or
deblurring processes.

2.2.1 Physical layout analysis

The main objective of this task is to detect and label maximal homogeneous regions
corresponding to the text blocks, illustrations, math symbols, or any other entity that
belong to the ambit of the document. The common approaches and methodologies
applied to this task have been commonly organized within three main categories:
bottom-up, top-down, and hybrid methods.

Bottom-up

Bottom-up approaches usually start the analysis at low-level entities such as pix-
els, which are grouped in other larger entities such as connected components, words,
text lines, and ultimately in blocks. Initially this approach was used for the detection
of text regions, but it can be also applied to detect other type of entities such as
images or tables. An important technique used by many bottom-up method is the
Run Length Smearing Algorithm (RLSA) [23]. This algorithm merges character into
words, text lines and even text regions by smearing the text area to join the differ-
ent text components. This method is usually more efficient than other pixel-based
approaches, and have produced good results even on noisy and skewed documents.
For instance, in [24], a preprocessing step based on the Hough transform and the
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RLSA algorithm, is performed for skew estimation and to estimate line spacing. The
merging process of the text components is then performed using RLSA smoothing
operations. This process results on a set of small regions that are then connected
in base of a connected component analysis based on a set of morphological features.
Other methods diverge in the process of assembling the low-level entities. Some rele-
vant works are [25, 26, 27]. In [25], the authors propose a similar procedure to analyze
the set of connected components based also on morphological features. However in
this case they do not work at pixel level, but they estimate the set of bounding boxes
around each component, and use these boxes as the units for the sake of reducing the
complexity of the method. The docstrum method is one of the most popular methods
of this approach [27]. It aims at detecting text regions, tables or equations. First they
apply a preprocessing step to remove noise from the image. Then, a clustering process
is performed in order to group connected components, first into text-lines, and then
in text blocks. The clustering process is performed in base of the distance and angle
between neighbor components, which are analyzed within an histogram of features.
Other relevant references on the bottom-up paradigm are the Voronoi-diagram-based
algorithm in [28], the page decomposition algorithm in [17], or the text/graphics sep-
aration algorithm in [29]. Initial bottom-up methods were mainly devised to identify
text regions with respect to the background. Other methods widened this process
to identify also other types of entities such as images, graphics, or even discriminate
between different types of text regions by combining segmentation and classification
approaches [30]. Other recent works have focused in the the use of classifiers at pixel
level, and then they group pixels according to the result of the classification [31].

Top-down

Top-down methods follow the opposite process for the detection of the different
regions. The underlying idea is to start the analysis from the top-level entities or
the full page description, and split it into smaller areas such as columns or wide
regions. Then these entities are split until finding the wanted areas. The most popular
approach form this family is the recursive X-Y-cuts algorithm [32]. The method
recursively splits the document image into smaller rectangular regions according to
the result of horizontal and vertical projection profiles computed on each iteration.
The method estimates the cut areas in base of a set of thresholds from the histogram
of projections, which is different for each level. In order to estimate the threshold and
the stop criterion of the method, it relies on prior information about the task. Many
other posterior methods have been inspired by this approach, eventually modified .

Many other approaches have focused on the analysis of projection profiles. And
nowadays the naive version based on the analysis of peaks and valley on the resulting
histogram is used as baseline for comparing the performance of other approaches
[33, 34]. In [33], projection profiles are computed from the set of bounding boxes of
the connected components. It is applied for the detection of text paragraphs, lines
and words. In [34], the authors aim to detect text regions and lines in documents
with a little skew. The approach is based on dividing the image in vertical strips
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and computing projection profiles on each of them. Then, results on each strip are
combined to build the final regions. Other important work is [35], where the authors
present a method for the analysis of columns of text. They propose a parametric
model for which they call global-to-local analysis, which infers the segmentation of
text columns based on a set of assumptions of the shape of the regions.

Hybrid and other techniques

Hybrid methods combines the previous approaches to exploit the benefits from
both methodologies. Some examples of hybrid methods are [36, 37, 38]. In [36],
a top-down approach is used to locate the horizontal and vertical white separators
between columns and large blocks of text. Then, connected components are merged
to compose the set of text-lines and final regions on several orientations. In [37], the
hybrid method consist in a bottom-up approach to perform a first guess of the region
shapes and the location of the tab-stops. Then, these tab-stops are used to deduce
the column layout and the reading order of the page following a top-down approach.

Other types of methods combine the detection process with classification tech-
niques in order to discriminate between different types of regions, such as images,
equations or different categories of text regions [30]. Neural networks have been also
used for this purpose [39]. The use of neural networks avoids the manual selection of
model parameters used by other classification methods. Another example is the use
of binary classification trees for the classifications of extracted regions in several cate-
gories [40]. Text classification features have had an important role in the classification
process. Texture descriptors are one the most used features to discriminate between
the set of document entities [41, 42, 43]. Besides, many works also used morphological
features, such as contour analysis the morphological distribution of text lines [44].

2.2.2 Logical layout analysis

Logical layout analysis aims to assign a set of meaningful labels to the set of regions
that compose the document. To achieve this objective, methods proposed for this
task require of a prior knowledge about the document structure, the semantic of the
regions, and the relations between them. In this section we describe three main cat-
egories of logical layout analysis methods: tree-representation approaches, syntactic
analysis-based approaches, and probabilistic methods.

Tree-representation

A popular approach in the last decades has been to represent the document logical
structure by trees derived from a set of rules. The set of rules is defined according to
the knowledge about the task. The layout analysis process consist in the construction
of these trees starting from the physical entities detected. For instance, in [45], the
authors propose a method to derive the logical tree and define the reading order
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according to a set of deterministic rules. This method obtained very good results on
several type of machine-printed documents such as magazines, scientific publications
or newspapers. In [46] the tree derivation process is performed from a set of weighted
rules. They propose a search algorithm through the different hypothesis in order to
find the most probable logical tree. Some other methods have been proposed based
on this approach, which usually diverge on the initial method to obtain the physical
regions and the type of defined rules.

Syntactic analysis

Syntactic methods make use of context-free grammars to represent the knowledge
about the structure of the documents [47]. The analysis of the document layout is
therefore presented as a parsing process according to the defined grammar. Basically,
the problem is reduced to finding the most likely parse tree for a given document
structure. The process usually perform the physical and logical steps together, since
the shape and relative location of the regions is usually encoded in the grammar
together with its semantic value. In [32], the authors present a syntactic approach
based on context-free grammars for the analysis of technical journals. Grammar
rules were defined to aggregate pixels along the parsing process in order to form the
different logical regions. More recently, probabilistic versions of context-free grammars
have been also used for structural and logical layout analysis [48, 49]. Besides, the
bi-dimensional approach for these grammars offers advantages for the definition of
the rules, and the type of tasks that can be addressed by representing bi-dimensional
contextual relations [50, 51]. A recent work using grammars proposed a discriminative
grammar instead of the common generative approach used on previous approaches
[52]. This work proved that discriminative models are more powerful than the previous
probabilistic context-free grammars.

Probabilistic and learning-based methods

Probabilistic resources have been limited up to this point to weight the grammar
rules or to the use of classifiers. The possibility of learning-based method have been
explored in the past, with the objective of creating methods able to learn a structure
and infer a solution given a document. Some early works incorporated learning sys-
tems able to discriminate between document categories [53]. The system incorporated
specific derivation rules for each document category, which were applied according to
the classification step. However, was the use of Hidden Markov Models (HMMs) what
suppose a major change in the use of probabilistic methods. A method based on an
extension of HMMs was proposed in [54] for page decoding. The authors proposed
a generative model to manage bi-dimensional regions and infer the logical structure
based in the analysis of sequences of small portions of the document. In posterior
works, they presented a significant improvement on this method in terms of compu-
tational efficiency [55]. Another example of learning-based method is [56]. In this
work, the authors first generate a set of overlapping zones according to the Voronoi
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tessellation. Then, they propose an inference process based on a linear constrained
optimization problem to find the optimal configuration of overlapping zones. The
use of probabilistic graphical models have been also extended from HMMs to other
models. In [11], the authors propose to use a Markov Random Field to model the sta-
tistical relationships between the different elements on the document. More recently,
in [57] a hierarchical CRF is proposed for noise removal and text region labeling using
a set of Globally Matched Wavelet (GMW) filters as features.

2.2.3 Discussion

We reviewed the main approaches developed for the problem of layout analysis. Meth-
ods for physical layout analysis have obtained good results on many types of docu-
ments. However, a common problem to all the described approaches relies in the
adaptability to other collections. Most methods are based on assumptions about the
document structure, and are difficult to generalize to different collections. Top-down
methods, for instance, can only be applied to detect polygonal regions with a clear
separation between them. Bottom up approaches usually fail if the regions are over-
lapped and if the document contains noise or degraded parts. Hybrid approaches, in
the same way that get profit from the advantage of the other approaches, it is also
weak against the cited situations. Probabilistic methods can deal with some of these
problems, as the case of overlapping regions or the adaptability to other collections.
Besides, in some cases they provide a probability of the final detection that can be
uses as a measure to the quality of the results. However, they usually require of train-
ing data that is not always available, and the learning and inference processes can
also lead to computational problems on particular configurations of complex models.

Logical layout analysis methods are able to encode hierarchical relations and se-
mantic information about the entities, which is useful to guide the region detection
process. However, many of them work on the already detected regions, so they can
drag all the previous stated inconvenients. Instead, some of them combine the physi-
cal detection with the logical categorization process, which is very convenient to deal
with ambiguities in the labeling process. Many logical layout analysis methods rely
on a previous knowledge about the problem. The type of knowledge depends on the
desired level of analysis. The more detailed categorization of the document entities,
the more prior information is required. This condition presents a situation where very
specialized methods are not able to generalize on other collections, unless new prior
knowledge is added to the model. For this reason, some of the best reported layout
analysis systems are usually focus to particular types of documents layouts. Methods
that are able to learn this knowledge have been also reported. An important charac-
teristic of learning-based of methods is the flexibility to assume changes with respect
to the learned structure, for instance, in what regards to the region sizes or range
of locations within the page. Regarding rule-based methods, the set of derivation
rules can become rather arbitrary and, as we commented before, the adaptability to
other collections of documents can be difficult. Besides, the use of deterministic rules
may lead to ambiguities of the tree-construction process. Syntactic approaches based
on grammars also suffer from the adaptability problems. Besides, the complexity of
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the parsing process can be a drawback for many tasks, since it is exponential in the
number of terminal symbols.

2.3 Handwritten text line segmentation

There have been many attempts to tackle the task of text line segmentation from
different perspectives. As a particular case of physical layout analysis, common ap-
proaches are based in the bottom-up and top-down paradigms. However, further than
the common paradigms, many other have emerged in order to cover the variations
that handwritten documents present. We have categorized them into Hough-based
methods, morphology-based methods, and other approaches. Several contest have
been also held on benchmark datasets [58, 2, 3]. In the following, we highlight the
main families of methods, as well as the advantages and disadvantages of some rep-
resentative works for each of them.

Bottom-up

Bottom-up methods, analogously to layout analysis methods, are based on the
analysis at pixel level or at connected component level, which are then combined to
form characters, words and ultimately, lines. Next we explain the most popular mech-
anisms for the detection of text lines. Some methods use criteria based in geometric
relationships between the components, as distance, angle, overlap degree or similar-
ity [30, 59]. The CMM method [3], for instance, groups connected components that
are mostly horizontally aligned. Other works propose a clustering method based in a
metric distance computed using the Minimal Spanning Tree (MST) technique [60]. In
[61] the authors define a text line as a cluster of connected components, and propose
an optimization method to minimize a fitting function that combines the fitting error
of each component to the line, and the distance between lines. In [62], the authors
propose a probabilistic approach to estimate the text line density function based in
an anisotropic Kernel, and use the level set method to determine the line boundaries.
Other reference works on this paradigm are [42, 63, 64, 65].

Top-down

Between these most popular top-down approaches we must quote again the pro-
jection profile-based methods as the successful approaches [32]. Line segmentation
methods based on this approach are based in projecting textual pixels on the vertical
axis, which results in the histogram projection of the distribution of the text compo-
nents. Maximum and minimum peaks shall represent, in an ideal case, the location of
the text lines and line spacing, respectively. A example of this approach is the work
in [66]. However, these methods are sensitive to orientation changes or to curved lines
[67]. A common solution to deal with this problem is to divide the document into
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vertical strips and compute histogram projections on each region. Then, merge the
results of consecutive strips to form the final lines according to geometric properties
[68, 69, 70, 71], or probabilistic approaches [72, 73]. Projection profile techniques are
also widely used for the task deskewing documents [74]. In addition, it is common to
use this approach to find an initial location of the lines, and then run another more
sophisticated method to find them [75, 59].

Hough-based

This family of methods use the Hough Transform [76] to locate the different text
lines [29, 77]. This transform extract some key points of the image and computes a
set of lines that best fit to these set of points [78]. Other works propose a scheme to
compute the alignments of the different line hypothesis obtained to extract the set of
text lines [77]. Besides of this mechanism, the authors also use contextual information
about neighbor hypothesis to enrich the final decision. In [29], the alignment in the
Hough domain is performed by exhaustive search in several directions starting from
the minimal points on the left of the document. Other important references are
[79, 80, 75].

Morphology-based

Morphology-based methods, including smearing-based approaches, also produce
good results [81, 82, 83]. These methods make use of the morphological properties of
the documents to infer the location of the lines. In [84], the authors combine basic
erosion and dilation operators with histogram projections to detect the text lines and
deal with the overlapping problem. The run-length smearing algorithm (RLSA) is
another example [23]. The fuzzy [85] and adaptive [58] versions of this algorithm
have been applied to handwritten documents with remarkable results in the case of
skewed and curved lines.

Other methodologies

Other types of methods have been developed for the purpose of segmenting text
lines. Graph-based approaches [86, 87, 3] extract the graph representation of the
document and exploit the graph properties to estimate the text line locations. In
[86], for instance, the authors compute the skeleton of the text components to build a
graph. Then they propose a mechanism based in the A* algorithm to find the set of
paths of minimum energy between the nodes that represent the space between the text
lines. The approach of finding the minimum cost path have been also exploited using
dynamic programming methods [88] or the Viterbi algorithm [73]. Active contours
(snakes) [89] is another technique that has produced good results [90, 91]. Statistical
approaches are less common in the literature for this task. Statistical resources have
been used to model density functions to discriminate between text and background
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[62], or as a tool in the post-process steps to split touching characters using a linear
SVM classifier [73]. Another example is found in [72], where the decision of associating
a touching component to one or another line is given by a set of bi-variate Gaussian
distributions.

2.3.1 Discussion

We reviewed the main approaches to the task of handwritten line segmentation. Many
are able to deal with the most challenging problems of this task, however, the effort to
overcome these problems usually translates into a weakness against other situations.

Text line overlapping is one of the most challenging situations for all the ap-
proaches. General bottom-up methods are specially sensitive to noisy or crowded
documents, since the merging process usually fails under these circumstances. Top-
down methods based on projection profiles, and some methods based on morphological
operators, are also sensitive to these conditions. As a consequence of this, many of
these methods are difficult to generalize to other scripts or languages, since they usu-
ally require specific heuristics or post-process steps to detect overlapping and treat it
aside [62].

Curved lines are also an important issue for projection-based and hough-based
methods. Instead, methods based on bottom-up approaches or morphological oper-
ations are usually robust against this condition. A similar effect is produced if text
regions contain text lines in multiple orientations. While, top-down approaches can
deal with different page and region orientations, they can be affected by this effect. In
general, bottom-up, hough-based and morphological-based methods are also robust
to these conditions.
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Chapter 3

Theoretical framework

In this chapter we give an overview of the main statistical techniques that have
inspired the methods presented on this thesis. We review the main concepts about
probabilistic graphical models and describe the main inference algorithms used in
this work. In addition, we also describe the framework of bi-dimensional stochastic
context-free grammars to be applied on a page segmentation task.

3.1 Introduction

The use of machine learning techniques and other statistical models have contributed
to achieve great improvements in computer vision and document analysis tasks. With
these methods we are able to efficiently learn from observed data, and to perform a
set of deductions about unknown information in order to provide a solution to a
problem. For the development of the methods presented in this thesis we have used a
set of probabilistic techniques. Specially, we have focused in the use of Probabilistic
Graphical models.

Probabilistic graphical models are a powerful formalism to encode relationships
between multiple variables. It combines the robustness of probabilistic resources with
the flexibility of graph theory. PGMs rely on the concept of conditional independence!
to represent in a diagrammatic representation the probability distribution between a
set of variables. It is an important concept, since it determines the structure of the
model, and helps to simplify the estimation of the probability distribution in views
to compute inference on the model.

There are several important properties of PGMs that justify their success in many

1The conditional independence condition states that two variables A and B are conditionally
independent given a third variable C if, given the value of C, the knowledge about the value of B
does not affect to the estimation of A, formally p(A|B,C) = p(A|C).
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(a) (b)

Figure 3.1: Example of Bayesian Network and Markov Random Field for a given set
of variables.

computer vision tasks, among other fields. On the one hand, they are able to model
contextual constraints between variables, and allow to incorporate additional assump-
tions in the form of prior probability distributions in the same graphical formulation.
On the other hand, the graph representation provides an easy way to visualize and
model the structure of a given problem. Last, there is an extensive research on the
problem of computing inference and parameter learning that allows the application
of this framework to a large collection of problems, specially in the case of problems
where uncertainty plays a role.

Depending on the set of conditional independences that can be encoded in the
model, and the family of distributions that derives from these relationships, we dis-
tinguish between directed models, also referred to as Bayesian Networks, and undi-
rected models. Both representations model probability distributions of the variables,
and depends on the definition of the problem to choose each of them. Among the
main types of undirected models we highlight Markov Random Fields, Conditional
Random Fields, and Factor graphs.

In this chapter we describe the theoretical background of the probabilistic models
used for developing the methods we present throughout this thesis. First, we introduce
the basic notation. Second, we describe the fundamentals of the main types of PGM.
Then, we review the problem of inference and parameter learning and describe the
used methods. Finally, we describe other statistical methods used in this thesis: EM
algorithm, and Stochastic Context-Free Grammars.

3.2 Notation

A PGM is formally represented as a graph denoted by G = (V,£), where the set V
represent the nodes on the graph, and £ the set of edges. The set of nodes corresponds
to a set of discrete random variables X. We denote the specific values of these variables
as x, and concretely, as x; for a particular node i € V. We refer to a set of unknown
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variables as Y, and analogously, y and y; denote the realization of the whole set and
of a particular variable, respectively.

3.3 Bayesian networks

Bayesian networks (BN) are probabilistic graphical models represented by Directed
Acyclic Graphs (DAG). An arrow in the model is used to establish a conditional
dependence between the two involved variables. The definition of this kind of rela-
tionships allows to factorize the joint probability distribution p(z) into a product of
conditional and prior distributions as:

p() = [ pleilen,) (3.1)

%

where x,, denote the variables to which x; is conditioned in the model, also referred
to as parent variables. We depict an example of BN for a given set of variables in
Figure 3.1a. According to the depicted model, the joint distribution between the
variables is expressed as:

p(z) = p(x3|z1)p(xd|zl, 22)p(x5|22)p(x6|zd, 25)p(x1)p(x2) (3.2)

which results in a more compact and easy way to compute it, than the usual chain rule.
BN can be used to model probability distributions on the condition that they satisfy
the called local Markov property. This condition basically states that all the variables
in the model have to be conditionally independent of any of their non-descendants
given their parent variables. Formally:

VieV, x; J_fﬂNi

L,

where x n, denotes the set of non-descendant variables. BN are used to model problems
where exists a relation of causality between variables, such as speech recognition
systems or some predictive applications. They have been applied to many research
fields, such as computational biology, monitoring industrial processes, or decision
support systems.

3.4 Markov random fields

Markov Random Fields (MRFs) are represented by an undirected graph that can
contain loops. As in the case of BN, variables have also to satisfy the local Markov
property. The notion of parents and descendants is substituted by a local neighbor-
hood of connected variables, and analogously, this property states that a variable has
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to be conditionally independent of any other variable in the model given all its neigh-
bors. In addition, it must satisfy the called global Markov property, which states that
any two subsets of variables (A, B) are conditionally independent given a separating
subset C' (where every path from a node in A to a node in B passes through C).
Formally:

X4 L Xp|Xc

An important notion in MRF is the concept of clique. A clique refers to a subset
of vertexes such that every two distinct vertexes in the clique are adjacent. According
to this definition, a clique is mazimal when it can not be extended by including any
other vertex. In the example of Figure 3.1b, an example of maximal clique is the one
composed of the variables (x4, 25, z6).

According to the Hammersley-Clifford theorem [92], a probability distribution is
represented by a MRF defined by the graph G, if it satisfies the Markov properties with
respect to G, and its density function is strictly positive. In this case the probability
distribution is a Gibbs distribution, and therefore G is a Gibbs random field that can
be factorized over the set of cliques of the graph as:

o) = 5 [] el (33

ceC

where ¥.(z.) are potential functions defined over the variables of the clique ¢, and C'is
the set of all cliques in G. Potential functions are not necessarily probability functions.
This is one of the main differences with respect to BN, which are factorized in a set
of conditional and prior probability functions. This arbitrariness in the definition
of the potential functions makes necessary a normalization step in order to define a
proper probability measure. This normalization is represented by the term Z, also
called partition function. The computation of Z is one of the main challenges for
computing inference and parameter learning in MRF, since it sums over all possible
configurations of z as:

Z=>"1J Pelac) (3.4)

Tz ceC

which is not always possible to compute depending on the model. We discuss this
problem in Section 3.5. Another common approach to define the joint distribution of
a MRF relies on the definition of energy functions over the set of cliques. The energy
of a clique is defined as:

Oc(wc) = —log U () (3.5)

since by definition we are sure that potential functions W, are strictly positive. In
this way, we can define the energy of a MRF in terms of a sum of clique energies,
which is easier to manage compared to the previous product of potential functions:
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Figure 3.2: Two possible configurations of the factor graph linked to the previous
models.

B@) =3 0(a.) (3.6)

ceC

and then, define the joint probability distribution in terms of this energy as:

pla) = 5 exp(~E(x)) (37)
The use of MRFs is highly extended in many fields due to their ability to model
contextual relationships between variables and to solve labeling and parsing problems.
In computer vision, they have been applied to many tasks such as image restoration,
stereo-vision, optical flow or image segmentation. On this type of problems, the most
common MRF topology used is the pairwise MRF model. This type of MRF consist
of the definition of potential functions over cliques of less than three variables. This
includes potential functions over single variables, called unary potentials, and a set of
potential functions on pairs of variables, called pairwise potentials. The most popular
pairwise configurations are grid-like models and part-based models. The first one
takes advantage from the grid structure from the pixels of an image and establish
relations between neighbor pixels. In this case the cliques are defined from neighbor
variables considering a 4 or 8 neighborhood. The second one is used for problems
with a deformable structure between the variables such as pose recognition or other
tasks with pictorial structures. The energy of these type of models is usually defined
as:

E(x) =Y Oi(z)+ Y 0ij(x:i)) (3.8)

S {i,j}e&

where 6;(z;) are the unary potentials, and 6; j(z; ;) the pairwise potential for each
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pair of connected variables (i,7) on the defined MRF. Another important type of
MRF is the conditional random field. Here, the main features do not rely on the
structure of the model, but in the type of probability distribution modeled.

3.4.1 Conditional random fields

Conditional Random Fields (CRFs) are a type of graphical model used to encode
a conditional probability distribution between a set of latent variables and a set of
observations. Essentially a CRF follows the same principles than the ones described
for MRFs, since it is subset of them, with the exception that a CRF is globally
conditioned to the set of observations.

CRFs were introduced by Lafferty et al. in [93] as an alternative of MRF to label
sequences of data. In contrast to the generative approach of MRF, which usually
requires lots of data to learn the model parameters, CRF's are discriminative models
that focus on the data distribution, and condition the set of labels to this data. For
instance, in an image segmentation problem we can consider a set of latent variables
y, representing the class labels, which are conditioned to a set of observations x
from each image pixel that we want to segment. CRFs do not model the probability
distribution over the observed variables x, which dependencies can be complex. This
simplifies the modeling of the distribution between the two sets, which is the main
advantages of CRFs. The conditional distribution modeled is also a Gibbs distribution,
and therefore it can be defined as a product of factors on the cliques as:

plylz) = % 1T we(ve, ) (3.9)
ceC

In the same way than for MRF, we can also define the conditional distribution in
terms of the energy associated to the set of clique potentials:

p(ylz) = ﬁ exp{—E(y, 2)} (3.10)

note that the partition function depends on the set of observations, and only sums
over the set of latent variables y as:

Z(x) = Z H lI/c(ycaxc) (3.11)

Again, in the computation of the partition function relies the main difficulty to
compute inference on these models. CRFs have been widely used on many labeling
tasks, such as image segmentation and object recognition.
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3.4.2 Factor graphs

Eventually, when we model a problem using a PGM, it can be convenient to have
a representation that directly specifies the factorization of the model. This type of
representation is called factor graph, and can be defined for both BN and MRF models.
A factor graph is an undirected bipartite graph that connects a set of variables i € V
with a set of factors nodes F' € F. It is an useful representation in order to easily
visualize the factorization of a graphical model and to understand certain families of
inference algorithms. On this type of graphical model, each factor is represented by
the symbol B, which is connected to the set of variables that are part of the definition
of the factor. As we described before, the same MRF or BN structure is use to model
a family of probability distributions that satisfies the Markov properties. Therefore,
the structure of the factor graph linked to a particular MRF or BN is not unique, since
it depends on the definition of the set of factors, and this depends on the definition
of the problem. We show in Figure 3.2 two examples of factor graphs that are valid
to represent the graphical models depicted in Figure 3.1.

3.5 Inference and parameter learning

When we use MRFs to model a particular problem, once we have defined the factor-
ization of the model there are two main tasks to perform: parameter learning, and
inference. Parameter learning refers to estimation of the parameters linked to the set
of defined factors. A defined MRF describes a family of probability distribution, but
by parametrizing the set of factors we can specialize the model to the specific problem
addressed. Once we defined the model and its parameters the inference process consist
on estimating the optimal configuration of the model variables so that it maximizes
the probability distribution, or instead, minimizes the energy of the model. In this
section we describe the main methods developed for the inference task. In particular,
we focus on the methods devised to discrete MRFs, since it is the type tasks that we
address in this thesis. However, many of the described approaches have approxima-
tions for the continuous case, and an extensive research have been also done for this
type of models.

The inference problem on MRFs is usually formulated in terms of Maximum a
posteriori (MAP) estimation as:

& = argmax p(z) (3.12)

xT

according to the probabilistic interpretation, or, defined in terms on an energy min-
imization process in case of defining the MRF as the sum of clique energies (see
Eq. 3.6):

& = argmin E(z) (3.13)

xT
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in any case, this problem is known to be NP-hard [94], and results intractable for most
MRF configurations, except for some specific model topologies as tree-like structures.
The main difficulty lies in the number of variables and the graph structure. For a
reduced number of variables it is possible to compute exact inference in a tractable
time, but when this number increases, the complexity also does in an exponential
way. Regarding the structure, algorithms as Junction Tree are able to achieve exact
inference on trees, although its complexity is also exponential with the size of the
cliques. On real applications the exact computation is not possible, and we must
resort to approximate methods. Fortunately, there have been an extensive research
on this problem that have produced important results and methods.

From the energy minimization perspective, methods such as simulated annealing
(SA) or Iterated conditioned modes (ICM) where proposed decades ago with impor-
tant results in the field. The ICM algorithm [95] belongs to the family of local search
methods. It relies in the idea that if all the variables but one were observed, it is easy
to compute MAP estimation for this variable. Therefore, the algorithm iteratively
computes the probability for each variable according to the value of the rest, which
are then updated. SA algorithm instead relies on a meta-heuristic to maximize the
optimization function. It is based on the Monte Carlo method to generate sample
states of a thermodynamic system. Both algorithms have the inconvenient of falling
on local maximum. However, they are still a good choice for many tasks.

More recently, other families of methods such as Graph Cuts (CG) approaches or
Loopy Belief Propagation (LBP) have been proposed with remarkable improvements
to the task. Besides, optimization techniques have been also improved with methods
such as the LP primal-dual optimization and other dual approximations. In the next
sections we review some these families of methods in detail.

3.5.1 Graph Cuts

Graph Cuts-based methods are a very popular approach due to its efficiency and high
quality results achieved on many visual perception problems. They rely on the max-
flow/min-cut theorem in order to minimize the energy of discrete MRFs [4]. The basic
form of Graph Cuts is to construct a graph G’ = (V',&’), called s-t graph, with three
types of nodes V = {s,t,p}. Two of them are called terminal nodes, which correspond
to the source s and sink ¢ nodes in the context of maz-flow/min-cut problem. The
set p corresponds to the set of pixels p € P from the modeled image. There are also
two types of edges defined as (p,q) € &'. First, ts edges connects the source node s
with each of the pixels p. Second, ¢, edges connects analogously the sink ¢ with the
pixels. Each of the edges has a non-negative capacity w(p,q). The objective of the
method, is to find a cut C such that G’ = (V', £’ —C) of minimum cost, where at least
each pixel is connected with a terminal node. The overall cost is defined as:

ce)y= Y. wpa) (3.14)

(p,q)e{&'=C}
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The use of this approach on some binary problems (such as denoising a binary
image or binary segmentation) proved to obtain the exact solution in polynomial time.
However, in problems with more than two possible labels the exact computation is
not possible and approximations are required.

The previous definition describes Graph Cuts from the graph theory perspective,
however, the usual interpretation of this algorithm on a computer vision task is done
in terms of an energy minimization problem. Here, the objective is to find a labeling
f that minimizes the energy:

E(f) = Edata(f) + Esmoath(f) (315)

we can see the correspondence between this equation and the definition of the energy
on a MRF in Eq. 3.8. Here, Ega1q(f) represents the unary potentials, or the cost of
assigning the labeling f according to the observed data. Espmootn(f) represents the
pairwise potentials. In the context of Graph Cuts is also defined as a discontinuity
preserving function, and measures the cost of assigning neighbor pixels p, ¢ with the
labels f,, fq, respectively. The form of these functions is usually defined as:

E(f)=Y_Dpy(H)+ > Viqlforfd) (3.16)

peP {p.a}eN

where N is the set of neighbor pixels according to the defined structure. The definition
of functions D, and V}, ; depends on the requirements of the problem. However, there
are some restrictions that they have to satisfy. In the case of V}, , it has to be defined
as a metric or semimetrics, and therefore satisfy the properties that define them.
More information about this constraints can be found in the original paper [4].

The common use of Graph Cuts on multi-label problems is when V, , takes the
form of a Potts model [96]. On This model V,,, = ug, \T(fp # fy), where ug,
is the cost of assigning to neighbor pixels the labels f, and f,, and T'(-) is 1 when
the argument is true or 0 otherwise. The Potts model in the frame of an energy
minimization problem is related to the known multiway cut problem, and therefore,
the problem can be solved using this approach. The multiway cut problem is also
defined on a graph G’ = {V’,&’}. The set of nodes is composed by two kinds of
nodes V = {l,p}. First, there is a set of I-nodes, which corresponds to each of the
L labels of the problem. Second, there is a set of p-nodes, which corresponds to
the P image pixels. The set of edges is also composed by two different sets. First,
t-links connects each of the terminal nodes to the set of pixels. They have a weight
assigned wy, ;3 = Dp(l). Second, n-links connects the set of p — vertices according
to a defined neighborhood. Each n-link has also a weight such as wy, ;3 = ugp.q)-
An illustration of this structure is shown in Figure 3.3a. The labeling problem is
then defined as finding the cut C that minimizes the energy defined in Eq. 3.16. The
cut is constrained to include only one t-link between a pixel and the terminal nodes.
An example of a multiway cut is shown in Figure 3.3b. It is proved that finding
the minimum cut corresponds to the solution to the energy minimization problem on
MRF.
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Figure 3.3: Illustration of the multi-label GC process. [4]

3.5.2 Belief propagation algorithms

Belief propagation (BP), also referred to as sum-product algorithm, is a message-
passing algorithm widely used to compute inference on different families of PGMs.
The algorithm is defined on the factor graph of the problem, and aims to compute
the partition function Z and the marginal distributions for all variables p;(x;), and
for each factor on the model pr(xr). The algorithm was initially formulated for
tree-structured PGMs, for which it is possible to compute exact solution to these
problems [97]. Later on, an extension of BP was proposed to its application on
general graphs with loops, in which case it provides an approximation to the marginals
and partition function. This version of the algorithm is referred to as Loopy Belief
Propagation (LBP). In this section we first describe the main concepts of the BP
algorithm for tree-structured graphs. Then, we describe the main variations of the
loopy version and how it is applied to compute MAP estimation on computer vision
tasks.

The basic idea of BP is to exchange a set of messages between variables and
factors. The meaning of these messages can be understood as a conditional function
of a variable or factor, given the information received from the rest of the model. Two
types of messages are involved in the algorithm: variable-to-factor messages, my, 7,
and factor-to-variable messages, mg_,,. In order to introduce the formulation of
each part of the algorithm, we define the set N'(F) as the list of variables linked to a
factor F', and the set M(1) as the list of factors to which the variable 4 is connected.
First, variable-to-factor messages are defined as:

FreM(i)\{F}

which means that the message sent to a factor is the sum of all the messages received
on i, except the one from this factor. Similarly, the factor to variable message is
defined as:
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Mmp_yy, = log Z exp | —Er(zrp) + Z MPr g, (3.18)
TE\Ti FJEN(F)\{i}

which is the sum of the factor potential with messages from all other variables,
marginalized over all variables except the one associated with i. Note that for numer-
ical reasons we are defining the algorithm in terms of log-factors and log-messages.
Factor potential —Ep(xp) corresponds with the clique energy defined on Eq. 3.5. In
the case of tree-represented graphs, the message order is determined by the structure
of the tree. The common procedure is to first send messages from the leaves to a node
previously defined as a root (leaf-to-root). Then, in a second step, it proceeds in the
inverse order sending messages from the root to the leafs (root-to-leaf). In this kind
of graphs is enough to perform these two steps once in order to ensure convergence
and compute exact values of the partition function and the set of marginals.

In the case of general graphs, the main difference relies in the message-passing
process. In graphs with loops, as grid-like graphs, no particular order can be defined
since loops incorporate redundancy to the process. This condition results on non-
exact messages, which are usually referred to as beliefs in the general form of the
LBP algorithm. The usual procedure on loopy graphs is to initialize all messages
to a fixed value, and then perform message updates iteratively in a defined order.
The message-passing scheme can be addressed on two ways: sequential or parallel.
Some works have study both approaches and proved that even though the sequential
approach is faster, results remain almost the same [98]. In any case, messages are now
approximations of the true beliefs, and therefore the partition function and marginals
are approximations of the exact values. The formulation of the messages compared to
the original BP introduces some changes. While the equation for computing factor-
to-variable messages in Eq. 3.18 remains equal, the equation for variable-to-factor
messages changes slightly to introduce a required normalization factor. Thus, being
m’ the message defined in Eq. 3.17, the normalized expression is:

A= log Z eXp(m;;i%F(wi))
— (3.19)

o
My, —F(x) = My, F(x;) A

where ) is the normalization term that includes messages sent from other variables to
the objective factor. It is common to perform several iterations of the message-passing
process aiming at achieving more accurate messages. Once this process finish, it is
possible to compute the partition function and the set of beliefs for each factor and
variable. The factor beliefs are computed as:

1
pr(zr) = 7o exXP —FEp(zp) + Z ME sz, (3.20)
r JEN(P\{i}
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where the normalization term is defined as Zp = log)_, exp(pr(zr)). Similarly,
the variable belief is defined as:

pi(x; —exp Z mpf_m (3.21)
FreM(i

where the normalization term is Z; = log ), exp(pi(;)). In order to compute the
partition function, the set of local normalization functions Z F, Z; have to be taken
into account independently. Thus, the expression to compute Z is:

Z = Z |M |_ ]- sz Ingz 2)] -
S%

— Z pr TR (EF(SEF) +logpr(zr))

FeF zr

(3.22)

Loopy belief propagation have been successfully applied on many computer vision
tasks with remarkable results [99, 100]. MAP inference can be performed by replacing
the marginalization on Eq. 3.18 by a maximization, and updating the normalization
function on Eq. 3.17 accordingly. Then the final MAP estimation is performed by
finding the state of the variable x; that maximizes its called max-belief:

2; = argmax p;(z;), Vi€V (3.23)
x;

Despite the success of the algorithm on many tasks, in its general form it does not
guarantee to converge to a fixed point, which for some problems it can lead to poor
estimations of the marginals. In addition, the theoretical properties have not been well
understood, and it is not clear how the algorithm performs so well on loopy graphs.
Research on the convergence problems led to establish that fixed points from the BP
algorithm correspond to extrema of the Bethe and Kikuchi free energy [101]. This
motivated the the derivation of convergent extensions of the LBP algorithm [102]
based on these principles, and many other variational methods were proposed to
minimize these energies, such as the CCCP and UPS algorithms [103, 104].

3.5.3 Variational methods

Variational bayesian methods are a family of techniques used to compute an approx-
imation to the exact probability distribution when exact estimation is not feasible.
For a given probability distribution p(z) defined by a PGM, a common interpretation
of these methods relies on the approximation of the so-called free energy, which is
defined as:

F(p)=E(p) — S(p) (3.24)
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where F(p) corresponds to the energy, and S(p) is the entropy of the model. The
problem of finding the exact probability distribution p(z) is reduced to minimize the
function of F(p), which for general PGMs, is defined as:

Zzp (zc)log e (we) +2p )log p(x (3.25)

ceC zc

where C'is the set of cliques that compose the PGM and ¥.(x.) the potential function
associated to this clique. The problem of computing this energy is that the estimation
of the entropy term is also intractable in practice, since it sums over an exponential
number of elements. Different variational methods diverge on how the entropy term
is approximated. This problem have been addressed from two different perspectives,
the called mean-field and Kikuchi approximations. In this section we define both
approaches, with special emphasis on Kikuchi approximation, since we rely on it for
the definition of some of the algorithms proposed on this thesis.

Kikuchi approximation

The Kikuchi approximation is based on estimating the entropy term as a combi-
nation of several marginal entropies as:

= Zp( log p(z Z Cy Zp x) log p(x) (3.26)

YER Ty

where v € R denotes the so-called regions on which are defined a set of pseudo-
marginals p(x.). These regions are composed of a subset of variables from the model,
which usually corresponds with the set of cliques C and its successive intersections.
The term c, is the Moebius or overcounting numbers. The use of this approximation
of the entropy term lead to an approximate probability distribution ¢ on which the
Kikuchi free energy is defined:

Ficikueni(q) = — Y Y a(z)log We(ae) + D ey Y qlw)logg(z,)  (3.27)

ceC =z YER Ty

As we stated in the previous section, it have been proved that fixed points of LBP
correspond to extrema of the called Bethe free energy [102]. Bethe free energy is a
particular case of the Kikuchi free energy, where the set of regions is defined in a
particular way. We can see the parallelism between the first term on Eq. 3.22 and the
expression of the Kikuchi free energy. In fact, an estimation of Z can be obtained by
solving the following optimization problem:

—log Z ~ min Fikuchi(q) (3.28)
q€Q
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which is subjected to a set of constraints on the pseudo-marginals ¢(z.) to ensure con-
sistency and normalization of the probability distribution q. @) represents the family of
distributions that satisfy this set of constraints. The constrained minimization prob-
lem can be solved by introducing Lagrange multipliers and solving the derived dual
problem, which is convex and ensures to find the proper solution [101]. The solution
to this problem for a particular configuration of the regions R lead to the definition of
the Generalized Belief Propagation (GBP) algorithm, which is guaranteed to converge
to a local minimum of the Kikuchi energy.

Mean Field approximation

The previous approach relies in the approximation of the entropy term as a sum
of local entropies, in contrast, the mean field approximation face the minimization of
the free energy by reducing the number of possible probability distributions to a set
of tractable probability distributions ¢ € Q. In this way, the problem is reduced to
the following optimization:

q = argergin KLD(q(z)|p(x)) (3.29)

where K LD is the Kullback-Leibler divergence between two probability distributions.
Therefor, the objective of mean field methods is to find the distribution ¢ that best
approximates the original probability distribution. The KLD is defined as:

KLD(q(x)|lp(x) = 3 q(x) log T*

- p(z)
= Zq(x) logq(x) — ZQ(QT) log p(x) (3.30)
=—-S(q) + Z ZQF zr)Ep(zr) +log Zp
FeF zp

where S(q) is the entropy of the distribution ¢, and ¢r(zr) the marginal distribution
over the variables in F'. Note that the partition function Z,, do not depend on ¢, and
therefore it is not necessary to compute in the minimization of the KLD. Once we
solve the minimization and find ¢*, we can approximate the set of marginals qp(z ),
and provide which is called the mean field lower bound of the true partition function
as:

log Zp > =S(q) + > > ar(wr)Ey(xr) (3.31)

FeF zp

Different approaches to define the family of distributions Q, and further general-
izations of the mean field algorithm, have been tackled in the literature. Additional
information can be found in the following references [105, 106].
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There is a close relation between the well-known Expectation-Maximization algo-
rithm and variational methods. Keeping in mind the essential aspects, both methods
alm at estimating unknown probability distributions and are defined in terms of the
KLD distance. In the next section we describe the Expectation Maximization algo-
rithm in order to estimate the parameters of probability distributions defined on a
set of latent variables.

3.6 Expectation-Maximization algorithm

In previous sections we describe a set of models and techniques widely used to model
complex data distributions. The success of this type of techniques is possible due
to the existence of advanced methods for parameter learning from a set of observa-
tions. However, there are tasks where the only data available for training these mod-
els is incomplete, and therefore, the parameter estimation becomes a difficult task.
Although there are some attempts to perform robust parameter learning on missing
data, most of these approaches are based in the same principles than the Expectation-
Maximization algorithm. The Expectation-Maximization (EM) algorithm is a method
that enables parameter estimation in probabilistic models with incomplete data. It
is based in the maximum likelihood (ML) estimator, which is a method to estimate
parameters in a probabilistic model. The EM algorithm generalize this concept to
the case of incomplete data.

First, lets recall the definition of the ML estimation problem. We have a data set
composed of N samples X = {z1,...xx} that has a certain density function p(z|©)
ruled by the set of parameters ©. The likelihood estimate of the parameters given
data is then defined as:

N
£(0]x) = [[ p(x:l©) (3.32)

=1

the function describes how well the set of parameters explain the data. In a maximum-
likelihood problem, the goal therefore is to to find the parameters © that maximizes
the L. In practice, it is common to work with the logarithm of the likelihood function,
called the log-likelihood, since it results more convenient to work with sums, and
because the log-function is a strictly increasing function, which is also convenient in
views of a maximization. The difficulty of this problem depends on the form of p. In
the particular case of a Gaussian distribution © = (u, 02), the problem boils down to
set derivatives of £ to zero and solve for both parameters. However, this can not be
so easy in other types of distribution and require more complex techniques.

The EM algorithm [107] allows to perform this maximization in the case of complex
likelihood functions or when some data is missing. Following the previous definition,
now we add to the observed data X the set of missing data ). The new log-likelihood
function is then defined as £L(©]|X,Y) = p(X,Y|O). Again, the problem is to find the
parameters © that rule the distribution p.
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The EM algorithm consist of two iterative steps repeated until the convergence
of the solution. First, the Expectation (E) step consist of the computation of the
expected value of the log-likelihood function with respect to the unknown data given
the observed data and the current parameter values as:

Q(0|0") =E|logp(X, Y|0)|X, O (3.33)

where © are the current set of parameters. Then, in the Maximization (M) step the
algorithm finds new values of © so that they maximize the value of the expectation
in the previous step. This is:

© = argmax Q(0,0") (3.34)
©

The algorithm guarantees convergence to a local maximum of the log-likelihood
function. Depending on the starting values the convergence can be to a local or global
maximum of the function. This fact has promoted a variety of heuristic approaches
to avoid that local maximums, and there are many works focused on the convergence
of this algorithm [108, 109]. Here we present the general version of the EM algorithm.
Depending on the application the algorithm can take several forms. In the following
we present the derivation for the case of the parameter estimation of a Gaussian
Mixture Model (GMM), one the the most common applications of the EM algorithm.

3.6.1 Gaussian Mixture Model estimation via EM

We tackle the particular case of the estimation of the parameters of a Mixture of
Gaussian functions[110]. GMM are a very popular resource to model complex proba-
bilistic density functions on continuous-valued feature vectors [111], and therefore are
widely used in the pattern recognition community. The probability density function
of a GMM is a wighted sum of M Gaussian functions defined as:

M
p(@(©) = wipy(x|6)) (3.35)
k=1

where x represents the data, and © = {wy, ..., wps, 01, ..., 05 }. The weights satisfy
that 21]:[:1 wy = 1, and 0 = (px, k) for each component & of the mixture. Now, lets
assume that there is another set of unobserved data ) that complements the observed
data X. The most common interpretation for ) is that contains the information of
which component of the mixture has generated each sample x. Therefore, if we know
the values of ) the log-likelihood function is defined as:

N

i=1
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The problem is that we do not know the distribution of the unobserved data.
Since the EM computes the previous expected value with respect to this data, we
must define an proper expression for it. Thus, we can think in an initialization of
the parameters in © computed according to some criteria. This set of initial values
is ©’. Give this set of parameters, we can derive an expression for the set of hidden
variables y in the model as:

N
p(ylX,0") = [ plyilz:i, ©) (3.37)
i=1
where the probability for each sample is defined as:

wy, Py, (x:]0;,)
M
> pm1 Wi Pk(Ti0))

Now, considering all this information, we can provide an expression for the function
Q@ in Eq 3.33:

p(yilwi, ') = (3.38)

Q(0,0) = log(wrpk (xi|0k))p(k|zi, ©")

M-

(3.39)

[]= I0]=
M1

M N
log(wi)p(klz:, ©) + > > log(pk(w:l0x))p(kla:, ©)
1 k=11=1

™~
Il
—
«
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So, we have the expression corresponding to the E-step of the algorithm that
computes the expected value of the log-likelihood function linked to initial set of
parameters that defines the GMM. The next step consist of the estimation of new
parameter values such that we maximize ). This optimization can be done by setting
partial derivatives of () with respect to each type of parameter to zero, and solve for
each of them. Since wy, is not related with the parameters in 6, we can perform their
maximization independently.

In the case of the expression for wy we can introduce the Lagrange multiplier A
with the constraint that ), wy = 1. Solving the resulting equation gives:

1 N
"W_NZ p(k|z;,© (3.40)

Now we compute the expressions for the parameters of each Gaussian component
0r = (uk, Xx). For this generic case, we assume a mixture of d-dimensional Gaussian
functions defined as:

1

—Lz—p) TS (-
Pk($|ﬂk72k):W€ 2(Fmp) 8 o) (3.41)
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In order to obtain update expressions for each parameter of the mixture, we com-
bine Eq 3.41 in Eq 3.33 and solve for 86/% =0 and aaTQk = 0. The process provides the
final equations for new parameter estimates according to the old set of parameters as:

N
, p(k|x;, ©
Nzew _ Zl:}\/‘x p( |l‘ ) (342)
> iz (klzi, ©)
N / new new\T
. k iy [ i
spew _ Lam PR|es ©) (s — i) (s — i) (3.43)

SN (klz;, ©)



Chapter 4

Document layout analysis

In this chapter we present several methods developed for the task of document layout
analysis. We propose several approaches to encode contextual information and prior
knowledge about the problem. First, we present a set of features to encode relative
location prior. Second, we propose an approach based on CRF for the segmentation
of the document using different inference algorithms. Third, we present an statistical
approach based on PGMs and the EM algorithm devised to structured documents.
Last, we perform a comparative study against a method based 2D-PCFG for the
analysis of structured documents.

4.1 Introduction

The ultimate aim of document analysis systems is to extract the information of interest
from collections of documents. Within this process, layout analysis is the task in
charge of identifying where this information is located based on the analysis of the
document structure. Information of interest can be represented by multiple forms,
making it necessary to incorporate to the analysis process a prior knowledge about
the nature of the information to extract, and about any other circumstances that
guide the identification process.

This prior knowledge can be defined according to contextual relations between
entities. A contextual relation defines a set of circumstances which occur around a
fact. For instance, if the objective is to identify signatures in a collection of letters,
we can define that the region that contains the signature is more likely to be found
at the bottom of the document, and it will be accompanied by other bigger text re-
gions. Contextual relations between entities can be used to express different types of
information. We distinguish between three main categories of relations: structural,
hierarchical and semantic. First, structural relations express co-occurrences between
entities and other characteristics, such as relative location or morphological restric-

41
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tions. Second, hierarchical relations describe the distribution of each entity according
to other more complex or simpler logical entities. Last, semantic relations establish
conceptual links concerning the role of each entity. Several questions arise in what
regards to the inclusion of contextual relations in our methods. (i) Which mechanism
should we use to incorporate this information into the model?. (ii) Is this information
provided, or does it have to be learned?.

In this chapter we present several answers to these questions in the ambit of the
layout analysis task. We aim to model different types of contextual information from
several sources, and encode it through different mechanisms, to guide the layout anal-
ysis process and improve the results on several tasks. We focus on the use of PGMs
for this purpose. First, we tackle the problem of layout analysis as a classification
task to find the most likely configuration of class labels for each pixel of the image.
Our model is based on CRFs for MAP probability estimation. CRFs allow us to
encode local contextual relations between variables, such as pairwise continuity con-
straints. Besides, we encode a set of structural relations between different classes of
regions on a set of features. These features provide information about the relative
location between the different classes of entities. Second, we perform a comparative
study between our methods based on PGMs and the syntactic approach of 2D-PCFG.
Context-free grammars are a common resource to encode structural and hierarchical
relations, and the comparison against PGMs result of great interest for the field. We
present a method based on this paradigm developed in collaboration with the PRHLT
group from the Polytechnical University of Valencia. We define a grammar that ac-
counts for a learned structure of a documents, and implement a derivation algorithm
to find the most likely structure according to the grammar rules. Last, we propose a
method for layout analysis of structured documents. We model structural relations
and hierarchical dependencies between regions of interest by a Bayesian Network.
Then, according to the modeled structure, we approximate the set of regions by a
set of bi-dimensional Gaussian functions. We present an iterative algorithm based on
the EM algorithm to compute maximum likelihood of the parameters, and use the
previous set of relative location features as another source of input information to the
model. We perform a thorough evaluation of the proposed methods on two particular
collections of documents: a historical dataset composed of ancient structured docu-
ments, and a collection of non-structured contemporary documents. We summarize
the set of contributions of this chapter in the following points:

1. Relative location features for layout analysis. We introduce relative lo-
cation features to the document layout analysis process. On this features we
can encode spatial relationships and semantic information from the set of enti-
ties. We combine them with other texture descriptors in order to improve the
physical and logical analysis.

2. Statistical method for layout analysis. We present a statistical approach
based on PGMs and the EM algorithm for layout analysis devised to structured
documents. Our method learns the structure of the document, and perform the
identification of the different entities in an iterative way. It can be applied to
several types of layouts and it is flexible to light structure changes.
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3. Comparative study between PGMs and 2D-PCFG. We perform a com-
parative study between syntactic approaches and probabilistic graphical mod-
els. We aim to evaluate both approaches on modeling the logical structure. For
this purpose, we developed, in collaboration with the PRHLT group from the
Polytechnical University of Valencia, a method based on bi-dimensional prob-
abilistic context-free grammars for the segmentation of structured documents,
and compare it against several PGMs and inference algorithms.

The rest of the chapter is organized as follows. In section 4.2 we describe the
two layout analysis tasks addressed in this thesis. Then, in Section 4.3 we describe
the set of features used by all the proposed models and how they are encoded within
them. In Section 4.4 we describe the first proposed model based in CRFs. Section 4.5
describes the model using 2D-PCFG for layout analysis on structured documents. In
Section 4.6 we describe the model proposed for layout segmentation based in fitting
Gaussian functions. Then, in Section 4.7 we show the experimental evaluation and the
comparative study between PGMs and 2D-PCFG. Last, we show the main conclusions
of this chapter in Section 4.8.

4.2 Document collections

In this section we describe the two layout analysis tasks that we address in this
chapter. Although the set of proposed methods can be generalized to other types of
collections, we put special emphasis on these tasks, since they gather the main chal-
lenges of layout analysis, and will help to validate the set of contributions of our work.
First, we present the Barcelona Historical Handwritten Marriages database. This is
a collection of high interest for many historians, and the objective is to identify the
different regions that compose a page in order to extract and analyze the information
within them. Second, we present the PRImA database. A benchmark collection in
the field of layout analysis.

4.2.1 BH2M: the Barcelona Historical Handwritten Marriages
database

Marriage license books are handwritten documents that have been used in ecclesias-
tical institutions for centuries for registering marriages. Most of these books have a
structure similar to an accounting book. Figure 4.1 shows an example of page of a
marriage license book belonging to a collection of 291 books conserved at the Cathe-
dral of Barcelona and conducted in the period from the year 1451 until 1905. The set
of books includes approximately 550,000 marriage licenses from 250 parishes. The
pages in these books were orderly written, and although there are differences over the
centuries, the layout in each page was quite rigid.

Every book is divided in two parts: the first part is an index of names, and
the second part contains the marriage license records (see [112] for a more detailed
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Figure 4.1: Example of page of a marriage license book from volume 208 containing
six records.
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description of this collection). In this thesis we focus on the analysis of the pages in the
second part of the books. Each page is composed of several records, such that each one
is associated with a marriage license. Each record has in turn a husband name’s block
(Figure 4.2.a), the main block (Figure 4.2.b), and the taz block (Figure 4.2.c). Note
that the documents can have additional textual zones, like the date that can be seen
at the beginning of the page (it can also appear in the middle of a page), and the two
large calligraphic letters' that separate the consecutive records that were registered
the same day. These additional zones were ignored in these experiments, i.e., they are
considered like background because they were not considered relevant for subsequent
transcription tasks. The process for creating the ground-truth requires marking the
minimum rectangle containing the identified classes: Body, Name and Taz. All the
pixels that did not belong to any of these regions are considered background.

+(b)

(©)

Figure 4.2: Example of the page segmentation problem for two records. Several
background zones are considered and each record is composed of three parts: (a)
Name (b) Body (¢) Tax.

The final goal in these collection is to obtain the transcription of each marriage
license. The correct segmentation of each page becomes a challenging task. The
problem is to correctly isolate every record in a page, and to relate their corresponding
parts, that is, the name, the body text and the tax associated with each entry. We
focus on detecting the bounding boxes around the main parts of each record and
relate them within the record logical entity. Note that a fine-grained detection of
the frontiers of each zone would be ideal, but this is difficult because sometimes
two zones overlap if rectangular bounding boxes are used. (see the lower record
in Fig. 4.2). The problem of detecting the records can be stated as two different
problems: first, to classify the textual zones into the previously mentioned classes of
entities (Background, Name, Body and Taz); and second, to detect the complete set
of records of each page.

IThese letters are D. D. that is the abbreviation of “Dit dia” which means “The mentioned day”.
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Despite the great number of volumes in this dataset, currently only a few of
them are being used on different tasks like handwriting recognition, word spotting,
or layout analysis. A public database for the volume 69 of this collection is available
and covers almost all the tasks of a document analysis pipeline (layout analysis, line
segmentation, word segmentation, word spotting and handwriting recognition) [113].
However this database focus exclusively on the Body part of each record and do not
include the other parts that compose them. For this reason, for the experiments
reported in this chapter we focus on another book on the collection, concretely the
volume 208. However, as the documents in all the volumes have the same structure,
the proposed models could be applied to the remaining books equally.

4.2.2 PRImA Layout Analysis Dataset

The Pattern Recognition and Image Analysis dataset (PRImA) [1] is a benchmark
dataset created for the evaluation of layout analysis (physical and logical) method.
The dataset is composed of a set of realistic documents covering a wide variety of
document layouts, including most of the important challenges in layout analysis. The
collection is focus on pages from magazines and technical/scientific publications since
they are most likely to be focus of digitization and automatic processing tasks. The
set of magazines scans come from several publications about general news, business
and technology information which contain a mixture of simple layouts, as Manhat-
tan structures and newspaper-like structures, as well as complex layouts as non-
Manhattan layouts, different font sizes and graphical content. We show several sam-
ples of this collection in Figure 4.3. In the case of technical documents they usually
present common layouts from journals and conference proceedings, with both simple
and complex layouts as well.

Documents in this dataset are in general less structured than the BH2M dataset,
so we use it as an example for non-structured documents in order to validate the
effect of the proposed resources to analyze the structure of a document. The entire
dataset is composed 305 ground-truthed images whose ground-truth is described and
stored according to the PAGE (Page Analysis and Ground truth Elements) framework
[114]. For the proposed experiments we use a subset of the publicly available PRImA
dataset, in order to match with the subset used for the ICDAR 2009 and 2011 page
segmentation competitions [1]. Besides, we focus on the two classes of entities text
and images without taking into account any logical label.
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Figure 4.3: Sample images from the PRImA dataset.
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In this section we describe the set of features used for the task of layout analysis. We
describe two different feature descriptors used to capture discriminant information
for both physical and logical layout analysis processes. On the one hand we describe
a descriptor based in the Gabor transform to extract texture information from the
document. This feature provide discriminant information to differentiate between text
classes and between text and background elements. On the other hand we define the
set of features that encode spatial relations between entities. From now onward, we
refer to them as Relative Location Features (RLF). Both sets of features are applied
to collections of structured and non-structured documents in order to evaluate their

contribution to the task.
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4.3.1 Document representation

Although our objective is to label each pixel with the most likely class, modeling the
problem at pixel level is not always possible or the best choice. On the one hand
there is the problem of model complexity. High resolution images are composed by
several millions of pixels. If we build a graphical model composed of such amount
of variables, computing inference and parameter learning can be intractable even for
approximate methods. This also affects to the feature extraction process, since it can
be difficult in terms of complexity. On the other hand, there is the problem of the
type of information captured at pixel level. Feature extraction at pixel-level may not
encode context information that can be useful for the kind of tasks that we face.

A common approach to overcome these problems is to model the image as a set
of superpixels. A superpixel is a cluster of adjacent pixels that are grouped according
to different criteria. Depending on the task they can be grouped according to texture
similarity, color or other visual feature. Besides, they can be also grouped according
to its semantic information. However, since there is no general superpixel generation
method that works for every kind of images and scenarios, the process of dividing
the image in these groups has to be done attending to the task requirements. In
the case of document images the superpixel set can be set regarding to its texture.
As a result of this process, image is divided into a set of superpixels containing text
and background regions. However, common degradation in the case of historical
documents, or any other source of noise can result in an superpixels over-estimation
that may not be logical with the document content, and therefore, the final labeling
may not be accurate.

For the proposed methods in this chapter we choose a representation for our
document images based on a set of S regular cells of N x N pixels forming a grid
layer over the pixels. Using this representation we reduce the computational cost of
our methods, and at the same time we preserve the integrity of the image content
and capture local contextual information by analyzing the group of cell pixels.

4.3.2 Texture features

Texture descriptors are regularly used in segmentation tasks to extract information
about the spatial arrangement of color or intensities from areas of an image. One
common descriptor is the Gabor filter. A Gabor filter is a linear filter based in the
Gabor transform commonly used for texture analysis. It is defined by a sinusoidal
wave of complex values modulated by an exponential function [115]. This exponential
function is a Gaussian function centered in the origin of coordinates, with a parameter
controlling the size of the function support?. In the frequency space, the Gabor
transform is also defined by a Gaussian function, centered in the frequency fy and
support inversely proportional to frequency fy. Furthermore, in images the filter
support has an elliptical shape tuned by three parameters v, n and 6:

2We refer as support of a Gaussian function the region enclosing 99% of the energy.
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It is well-known that the Fourier transform of a Gaussian function is again a
Gaussian function. In addition, if we scale the support of Gabor filters by a factor
of k=™, the support of their Fourier transform are proportional to k™. In particular,
given the definition of Gabor filters in Eq. (4.1), the support of Gabor filters in the
spatial domain are ellipses with axis proportional to ﬂ:’jkm and ﬁkm. The values
of n and « are obtained according to the number of orientations n, the scaling factor
k, and the overlapping degree ¢ of filters in the Fourier space as:

k—1+/—1logq v—loggq
L B I e
k+1 T 7tan o -

The usual application of this descriptor to texture analysis in document images is
to compute a bank of filters of this type for several orientations and signal frequencies.
Some works have studied the best way to select the set of orientations and frequencies
[116]. According to the recommendations in that work, we consider an exponential
spacing of m frequencies: f; = k™' f4z, with [ = {0,....,m — 1}, where faz is
the maximum frequency fixed, f; the lth frequency and k the scaling factor £ > 1.
Regarding the orientation angle, the most common approach is to set orientations
uniformly as 6, = b27/n, with b = {0, ...n — 1}, where n is the number of orientation
to be considered.

Despite of the advantages of Gabor filters regarding the information captured and
its flexibility there are some considerations to take into account. The main difficulty
in the use of these filters is the computational cost of computing the responses for
all the filters in the bank. The involved Fourier transform, for example, is one of
the most expensive process to be computed in the computation of a Gabor response.
A fast implementation of a bank of this type of filters was proposed in [117]. As
a result of the application of this method on a pixel, we obtain a feature vector g
of dimensions n X m, which covers almost all the spectrum of frequencies up to the
highest one f,,,. Here, the feature g;; is given by the filter response of frequency [
and orientation b on a particular document pixel.

Recent studies suggest that the analysis of the relationships between filter re-
sponses can discriminate between different objects or classes in a classification task
[118]. We choose a Gaussian mixture model (GMM) in order to estimate a likelihood
probability p(g | ¢) for of each possible class ¢ given the descriptor g computed at
pixel level for each pixel p. According to this mixture we are able to estimate the
probability p(c | s) for a given cell of the image s € S for each possible class ¢ as:
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plc]s) = (4.2)

where p(c) is the prior probability for the class ¢. Next we explain the details of
the GMM model used for this purpose.

GMDM-based classifier GMM are widely used to approximate complex probabilis-
tic density functions on continuous-valued feature vectors [111]. The resulting pdf is
defined as the result of a weighted sum of M Gaussian components as:

p(glpi, i) szq glui, i) (4.3)

where ¢ is the feature vector described above and w; corresponds with the weight
of the Gaussian component ¢ defined by the parameters pu;, ;. These weights are
restricted to satisfy Zf\il w; = 1. Each density function ¢(g|u;, >;) correspond to one
of the M Gaussian components and is given by the expression:

q(glpi, X)) = \/%Lmexp{—;(g—m)’zil(g—m)} (4.4)

where p; and Y; are the mean and covariance matrix of the component i, repec-
tively. Therefore, the final set of parameters that defines the mixture is: Ogypr =
{wy, p1, 21, ooy war, iar, s - We perform the estimation of this values by means of
the common Expectation-Maximization (EM) process for GMM as was explained in
Section 3.6. Thus, given this mixture we can compute now the probability for each
pixel ps € s given its descriptor g, for each considered class.

4.3.3 Relative location features

So far, we described how PGMs can encode prior information about the problem by
modeling the relations in the graph structure or by the definition of factor functions
that encode this information. However, pairwise relationships are limited to the
relations between variables in a defined neighborhood, and the use of other high-level
configurations implies an additional computational effort. Therefore, the remaining
mechanism to encode contextual information and prior knowledge is through the set
of features. In this section we define RLF and how they are used for our document
layout analysis task.

The concept of relative location prior was introduced in [119] to encode this prior
information in order to capture inter-class spatial relationships. That work was de-
vised to segmentation of real scene images where exists a previous knowledge about
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the most common location and about the semantic of the classes. We propose to ap-
ply this same approach to the analysis of the layout of document images. There are
some tasks where a previous knowledge about the semantics of the classes can be used
to guide the segmentation process, for instance, if we want to discriminate between
the classes body and tax (see Figure 4.2), we can restrict the system to find taz pixels
only in areas above and at the right side from body pixels. There are also some cases
where we do not have a semantic knowledge but we know from the definition of the
problem that there is a co-occurrence relation between the classes. In administrative
documents, for instance, we may know that the signature appears always in some
place at the bottom of the document.

To implement this set of features we follow several steps. First, we have to compute
a set of probability maps for each pair of classes. These maps encode the probability
of finding elements from one class in a particular location according to its relative
position to elements of another class. Second, we need an initial estimation of the
most likely class given a particular pixel or region. This step is usually performed
by another classification process. The logic of this step relies is to have a starting
point on which apply the relative location prior, and then correct this initial labeling
according to it. Finally, combining these two steps we can define the set of RLF.

Probability maps Probability maps are a mechanism that allow us to represent
the location where is most likely to find elements of one class with respect to the
location of an element of another class. In other words, given two classes ¢; and ¢;,
and one pixel from each class p; and p;, we say that the map M, |, (u,v) encodes the
probability that the pixel p;, with a relative displacement (u,v) from p;, belongs to
the class ¢; as:

My, \e; (w,v) = P(ci|pi, pj, cj) (4.5)

We learn a probability map for each pair of classes, including the map of one class
respect to itself. Besides, the maps are not reciprocal, i.e. M|, (u,v) # M, e, (u,v),
so that the required number of maps to compute will be, considering C classes, is C?
maps.

The learning process of the probability maps is based on counting the number
of times that each possible displacement between pixels from two different classes
is given within the training set. More concretely, the map M., ., will be computed
by calculating all the displacements between the pixels from the class ¢; and the
pixels from the class ¢;. For example, let the pixels p; = (z5,%:) vy pj = (,9;),
the displacement between them is (u,v) = (z; — x;,¥; — y;). Once calculate this
displacement, the value of the map M., at the position (u,v) is increased by one.
Repeating the same calculation for each pair of pixels from the classes ¢; and c¢;
and normalizing we obtain a region where the majority of the votes are grouped,
which correspond to the most probably area. Going back to the document example
in Figure 4.2, we show the probability map Mpyody|name in Figure 4.4.
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Figure 4.4: Probability map Mysqy[name for the BH2M dataset.

Computing all the possible displacements between pixels of one class (original) with
respect to another (reference) may result computationally expensive. In order to
reduce the number of calculations we substitute the pixels of the reference class by
the centroids of the cells according to our document representation. Since we still
consider all the pixels of the original class, this process does not substantially affect
to the global result of the map.

Encoding Relative Location Features We start from a image representation
consisting in our set of cells S, and we calculate an initial class prediction ¢; for
each of them with a probability p(és|s) given by the GMM classifier in (4.2). The
computation of the RLF is conducted as follows: each cell in the image will cast a
total of C' votes over each of the other cells. These votes can be understood as how
likely is to assign a particular label to each of these cells, according to the initial
labelling assigned to them, and the information provided by the probability maps.
Thus, considering K cells, each cell recibes C(K — 1) votes from the rest.

In order to get more profit from the RLF, and following the approach in [119], we
split the process to compute two different RLF called vo¢pher and vserp. The first one
gather the votes from cells with different initial class label, and the second one the
votes that come from cells with equal labels. That division will allow us to assign
different weights to each feature. The implementation of these features is formulated
as:
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e (s) = Y My, e, (v — 35,y — ;)
JAici £

vt () =D ayMeyja, (w3 — a5, yi — yj)

JFiici=¢;

(4.6)

where (z;,y;) and (z;, y,) are the coordinates from the centroids of the cells s; and s;,
respectively. Votes are also weighted by o; = p(és,|s;), which is estimated in (4.2).
We appreciate the importance of a confident initial classification.

As a last stage, we normalize the set of features in order to define a proper prob-
ability distribution. In this case we normalize to ensure that chzl vother(s) = 1, and
respectively for the values of v3¢f .

Cs

Logistic Regression-based classifier Now we show how to include the defined
set of features into a model as local information of a cell. We define the probability
function pfinai(cs | s) that includes all the information gathered up to this point.
That includes both the new Relative Location Features and the initial class prediction
based on the Gaussian Mixture Model from Gabor features. More concretely, Relative
Location Features are linearly combined with the texture-based features as follows:

Prinai(cs | 8) = w'" log P(cs|s)+
th th l 1 (47)
+wg " log v " (5) Fwit Flogvse f(s),

Cs
where the weights w?, w*" and w5/ are learned using a logistic regression model
from labeled data, and p(cs|s) is the one defined in (4.2).

4.4 Conditional Random Fields

In this section we describe the first method proposed for the task of layout analysis.
We tackle the problem as a labeling task where we want to compute the most likely
configuration of the class labels for each pixel on the image. Then, we extract the
homogeneous regions that share the same label to obtain the final configuration of
the regions from the page.

This process provides the physical identification of the set of regions. In order to
encode its logical meaning we resort to the set of Relative Location Features defined
on the previous section. Using these features we obtain two main benefits: reinforce
the classification process, and define a more complex set of labels for a given problem.
For instance, for the task of layout analysis on the BH2M dataset, using only texture
descriptors probably is not possible to discriminate between the different entities that
compose a record further than detecting text regions, since the visual appearance and
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text morphology is quite similar. However, introducing relative location prior, what
was before a regular text region, can be now categorized according to its semantic
role.

We rely on Conditional Random Fields for this task. Using this model, the ob-
jective is to compute MAP probability in order to find the configuration of the class
labels for each pixel that maximizes the probability defined by the CRF. We use the
document representation described in Section 4.3.1 for efficiency purpose. Therefore,
we wan to obtain the set of labels for each cell on the image.

We define a grid-like CRF according to the cell representation composed of two
kind of random variables. First, we define the set of observed variables X, which
correspond with each of the cells. Second, we define a set of hidden variables Y
linked to each of the observations, which represent the set of class labels. The result
is an undirected graph G = (V, ) where vertexes in V are the variables, and £ is the
set of edges of the graph. We also define two types of edges in £. First, we have
edges connecting each observed variable with its corresponding label. Second, we
have edges connecting the set of hidden variables representing the level of interaction
between them. For the proposed model, we consider a set of pairwise relationships in
a 4-neighborhood of each cell. Thus, our MAP probability problem is formulated as:

Y = argmax p(Y | X) (4.8)
Y

where p(Y | X) is the probability of the CRF. As we described in the previous chapter,
we can model this MAP problem in terms of energy minimization as:

(s,k)ee

where Z is the corresponding partition function. The term (x5, ys) represents local
potentials of each cell s, which in our case is how likely is to assign the label y, to
the cell e,, and ¢(y;,y;) represent the pairwise potentials, which defines the penalty
of assigning labels ys, yr to neighbor cells i, j.

We propose two approaches to define the local term ) (xs,ys) according to the
described set of features. In the first place, we use the texture-based descriptor
encoded by the GMM as we define in Eq. (4.2). In the second place, we use the
combination of the previous descriptor with the RLF as we show Eq. (4.7). Analyzing
the role of both set of features, we can validate the contribution of the RLF to the
task.

In what regards to the pairwise term we propose a pairwise function that takes
into account the knowledge about the problem. We define a set of parameters for each
possible pair of classes. These parameters are learned according to the observations
in the training set.
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4.4.1 Inference and parameter learning

In the previous chapter we described several methods for the task of computing in-
ference and parameter learning on PGM. For this work we aim to compare several of
these methods in order to analyze their effect in a real problem. For the presented
model we propose to compare three main algorithms from each family of methods.
First, we use the o — 8 — swap version of Graph-Cut algorithm, which uses the MAP
probability problem definition as an energy minimization process. In this case we use
the implementation released in [4]. We define the pairwise potential using a Potts-
based model where ¢(ys, yx) = Ty, . - T(Ys 7# Yr), where the factor «(-) is 1 if the
condition is true and 0 if is false, and T},_,, is the cost associated to each situation.
We use the same penalty cost for each pair of classes. The use of this function must
favors the pixels included on the same regions to be labeled with the same label,
while obtaining better defined boundaries between regions. Second, we use LBP as
representative of the message-passing algorithms. For this algorithm we use the same
pairwise function described above, but in this case we fix the value of T),_,, according
to the prevalence on the training set of each pair of classes. This function is more
strict in the labeling of the regions, since pairs of non-observed classes are penalized.
Last, we use the ICM algorithm as a simple example of variational methods based in
the search paradigm. We use the UGM toolkit [120] that includes implementations
for both parameter learning and MAP estimation of these two approaches, among
others.

4.5 2D probabilistic context-free grammars

In this section we present the method based on 2D-PCFG for the task of layout anal-
ysis. A context-free model is a natural way to model both the horizontal and vertical
context of the problem, where there are dependencies among rows, columns and 2D
regions. This type of grammars are able to represent efficiently contextual relations
that are relevant for the task of document segmentation. Basically, the problem is
reduced to finding the most likely parse tree ¢ for a given document structure.

A Context-Free Grammar (CFG) G is a tuple (N, X, S, R), where N is a finite set
of non-terminal symbols, % is a finite set of terminal symbols (N N2 = (), S € N
is the start symbol of the grammar, and R is a finite set of rules: A — a, A € N,
ac(NuD)*t.

A Probabilistic Context-Free Grammar (PCFG) G, is defined as a pair (G, P),
where G is a CFG and P : R —]0,1] is a probability function of rule application,
ie. VAe N: Y P(A — «;) = 1; where ny is the number of rules associated
with non-terminal symbol A. This type of grammars can be represented in Chomsky
Normal Form (CNF) resulting in only two types of productions: binary rules A — BC
and terminal rules A — ¢ (where A, B,C € N and c € ¥).

Bidimensional Probabilistic Context-Free Grammar (2D-PCFG) are a generaliza-
tion of PCFG that are able to deal with bidimensional matrices. In this extension,
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nonterminal symbols account for 2D regions. The binary rules of a 2D-PCFG have
an additional parameter r € {H, V} that describes a spatial relation: horizontal con-
catenation (H) or vertical concatenation (V). Given a rule A = B C, the combined
subproblems B and C must be arranged according to the spatial relation constraint,
i.e., horizontally adjacent and same height for r = H and vertically adjacent and same
width for r = V. This extension is enough in order to apply this framework to the
kind of problems we are dealing with. The segmentation of a document image can be
obtained as the most likely derivation given a 2D-PCFG, such that the region that
defines the input image is recursively divided either vertically or horizontally into
smaller rectangular regions.

Parsing Algorithm

Given a page image, the problem is to obtain the most likely parsing according to
a 2D-PCFG. For this purpose, the input page is considered as a bidimensional matrix
I with dimensions w X h and each cell of the matrix can be either a pixel or a cell
of dx d pixels. Then, we define an extension of the well-known CYK algorithm
to account for bidimensional structures. We have basically extended the algorithm
described in [121] to include the probabilistic information of our model.

The CYK algorithm for 2D-PCFG is essentially a dynamic programming method,
which fills in a parsing table 7. Following a notation very similar to [122], each
element of 7 is a probabilistic nonterminal vector, where their components are
defined as:

Tew@rigi)lAl = P(A= 2ay) @+14+1) (4.10)
Sk
Twy),ariyinAl = P(AS 2@y, (etiy+i) (4.11)

Each region 2(; ) (z+4iy+j) is defined as a rectangle delimited by its top-left corner
(z,y) and its bottom-right corner (x+i,y+j). We denote £ix; = £(2(z,y),(a+i,y+5))
as the size (i x j) of the subproblem associated with a region =z ) (z4iy+5). The
probabilities P represent the probability of the most likely derivation from nontermi-
nal A resulting in the region z.

If the size of the subproblem is larger than 1 x 1, then there exists some binary
rule (A = B O, with B,C € N, and r € {H,V}) and some split point k such that,
in a similar way to [122], we can divide the problem in two subproblems:

Y
P(AS 2y @riyts) = Pllixg|A) max {

H 5 & A &
max P(A = BC) P(B S 2@y, (o+hy+i) P(C = 2athy), rivtd) »

14 A + A +
max. P(A = BC) P(B = z(uy),(a+iy+k) P(C = 2@ ytk),(e+iy+i) b (412)
where a new hypothesis is computed from two smaller subproblems, such that the
probability is maximized for every possible vertical and horizontal decomposition re-
sulting in the region 2(; ), (z+i,y+j)- It should be noted that the 2D-PCFG provides
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syntactic and spatial constraints P(A = B C), and we have also included the proba-
bility P(¢;x; | A) that a nonterminal A accounts for a problem of size i x j.

The probability P(¢;x; | A) has two effects on the parsing process. First, it helps
to model the spatial relations among every part of a given page because there is
a specific nonterminal for each zone of interest. For instance, this can be seen in
Figure 4.2 where the size of the background region on top of the page will be different
from the size of the background zone over a tax region. Furthermore, many unlikely
hypotheses are pruned during the parsing process due to its size information, hence,
it speeds up the algorithm.

Considering the definition of the matrix parsing table 7 (Eq. (4.11)), the expres-
sion of the Eq. (4.12) can be rewritten to obtain the general term of the parsing
algorithm. Thus, for all 7 and j, 2 <i < w, 2 < j < h, we have:

T @it A = Pllix; | A) max {

)

max P(A = BC) Ty wthay+i) B) Tk orignC]

1<k<i

max P(A = BC) Tiay (i) B Tari. it €] )

For subproblems of size equal to 1 x 1 and taking into account the definition of
Eq. (4.10), the derivation probability of a single cell (size region equal to 1 x 1) can
be marginalized according to the class label (terminal) c¢. Given that we need to
calculate the most likely parsing, we can approximate the sum by a maximization,
and considering some other usual assumptions the probability of the derivation of a
single cell is:

P(A= 2(py) (er1941)) = Plix1 | A) max P(A—c) Pc|z) (4.13)

where P(f1x1 | A) is the probability that nonterminal A derives a subproblem of
size 1 x 1; P(c| z) represents the probability that a cell (region) z belongs to class
¢, and P(A — ¢) is the probability of a terminal rule for terminal (class) ¢

Taking into account the matrix 7 (Eq. (4.10)), we can rewrite the expression of
Eq. (4.13) to obtain the initialization term of the parsing algorithm. Thus, for each
region z of size 1 x 1, we have:

7-(gc,y),(z+1,y+1)[A] = P(€1><1 | A) méiX P(A - C) P(C | Z(z,y),(m+1,y+1)) (414)

Finally, the most likely parsing of the full input page is obtained in 70,0, (w,n)[S]
such that S is the start symbol of the 2D-PCFG. It is important to notice that all the
probability distributions involved in the parsing process can be learnt from labeled
data. The time complexity of the algorithm is O(w3h?®|R|) and the spatial complexity
is O(w?h?).

Note that an inconvenient of 2D-PCFG is the need of training data to learn the
probabilities that drive the grammar. In the case of its application to document
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segmentation this means that we can only learn this probabilities from documents
with a fixed structure or limited number of possible layouts. For a new document
whose structure has not been learned and differ from the observations, the grammar
will try to fit it to the most likely according to the learned structures, which can result
in inaccurate segmentation results.

Model Estimation

The model based on 2D-PCFG for parsing structured documents has, in turn,
some probabilistic distributions that need to be learnt. First, the probability P(c | s)
that a certain cell s of the image belongs to class c is described in Section 4.3. We
use the same two approaches to this probability than for the CRF-based model. This
two approaches are the texture-based descriptor encoded by the GMM and defined
in Eq. (4.2), and the combination with the RLF described in Eq. (4.7).

There are two additional distributions that we have to estimate: the probabilities
P(¢;x; | A) and the probability of the rules of the grammar P(A — «) from Eq. (4.12).
In order to learn automatically these distributions, we performed a forced recognition
of the training set. Given a certain document, the forced recognition was carried out
by providing the probability P(c | s) using the ground-truth information. Concretely,
for each cell s belonging to class ¢* we set P(c¢* | s) = 1 and P(c | s) = 0, Ve # c¢*.
The remaining distributions were considered equiprobable.

Hence, we obtain for each document the best parsing according to the 2D-PCFG
model. On one hand, the probability distribution of the size for each non-terminal A
was estimated according to the occurrences in the forced recognition of the training
set as

Plting | 4) = "0t

(4.15)

such that n(A;x;) is the number of times that non-terminal A accounts for a region
of size i X j in the training set, and n(A) the total number times that non-terminal
A accounted for a region of any size.

On the other hand, the probabilities of the rules of the grammar are estimated
using the set of derivation trees obtained from the forced recognition of the training
set as:

P(A = ¢) = ”(:(Z)C)
(AL BO) (4.16)
P(A— BC)= (A)

where each rule probability is computed using the number of times that the rule
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was used in the training set, normalized by the total number of rules with non-terminal
A as left-hand symbol n(A). In order to make the model able to account for unseen
events, after these distributions were estimated, we also smoothed them by setting a
minimum probability threshold.

4.5.1 Application to the BH2M database

Now we describe how the previous method was applied to the particular task of
the segmentation of the records on the BH2M database. We describe the set of
grammar rules defined to account for the particularities of this collection. We define
two different sets of grammar rules:

e Cell combinations:

These rules denote the horizontal and vertical concatenation of sub-regions in
order to create larger regions of the terminal classes.

BackGround —— Bg

Name — Nm

Body —_— Bd

Tax —_— Tx

BackGround LN BackGround BackGround

BackGround —— BackGround BackGround
H

Name — Name Name

Name V—> Name Name

Body A . Body Body

Body ., Body Body

Tax H—> Tax Tax

Tax V—> Tax Tax

Document structure:

These rules define the structure of the document given the set of detected regions
and its geometrical information: For a set of regions with a certain probability

of , and their probabilities to be some of the

Page —— BackGround  FullRegSeqBg
FullRegSeqBg -V FullRegSeq BackGround
FullRegSeqBg -V FullReg BackGround
FullRegSeq V-RR FullRegSeq FullReg
FullRegSeq ~ —— . FullReg FullReg
FullRegSeq — T, BackGround RegisterBg
RegisterBg S SN Register BackGround



60 DOCUMENT LAYOUT ANALYSIS

H-NB

Register ———  FullName BodyTax
FullName — %, BackGround NameBg
NameBg — %, Name BackGround
BodyTax — BT . Body Full Tax
FullTax B’ BackGround  Tax

The specific relations 'RR’, 'NB’ and 'BT’ model the vertical concatenation
between records, and the geometrical correspondence between 'Name-Body’ and
‘Body-Tax’ entities, respectively. The initial symbol of the grammar is Page.
As we stated before, we learn the probability of each rule from the training set.

4.6 EM-based region fitting model

In this section we present the last method proposed for the task of layout analysis.
The two previous methods encoded the set of contextual relations through different
mechanisms. Our CRF-based method relied on the inclusion of relative location prior
through the set of features, and the implicit contextual relations modeled by the graph
structure. In the approach based on 2D-PCFG, part of the semantic about the classes
of entities was modeled through the probabilistic rules of the grammar. The method
that we propose now aims to encode the characteristics of the document structure also
within the definition of the model itself, similarly than grammar rules. We rely on a
Bayesian Network in order to encode dependence relations between model variables,
and to provide a factorization of the probability distribution that accounts for the
document structure.

Our model allows to represent many types of collections of documents as long
as they are represented by some sort of structure. Basically, in the BN we encode
the relations between the different types of entities that compose a page, and the
dependencies between these entities and other variables from the model, such as our
set of features, or any other information that we want to model. Then, according to
the factorization of the BN, for a given segmentation hypothesis we can compute a
probability that indicates how well this segmentation fits the actual content on the
page.

We focus on the hypothesis that we can approximate the location and shape of
the different entities on the document by a set of bi-dimensional Gaussian functions.
Thus, we propose an iterative algorithm based in the EM-algorithm to estimate the
parameters of each of these functions, according to the probability distribution mod-
eled by the BN. In this way, we are able to find the configuration that better fits the
structure of the page. Several questions arise from this hypothesis. First, for a given
document the number of Gaussian components to fit is unknown. We need, at least,
to have available a prior knowledge about the configuration of the page in order to
initialize the set of components. Second, given the final configuration of the Gaussian
function, we have to estimate the boundaries of the region that is representing.
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In the next sections we define the probabilistic framework of the proposed method
in base of the particular case of the defined layout analysis task for the BH2M col-
lection. Documents on this collection are composed of a set of records, that are the
same time are composed of a set of regions, distributed along the page. The location
and size of these entities may vary through the set of pages. Although initially we
do not know how many records compose the document, we do know how they are
structured, and therefore, we could learn about the variations of their location and
region sizes. However, note that this method can be also addressed to other tasks
just by modifying the graphical model according to the characteristics of the problem.
Next, we present the instance of the proposed method for this particular task.

4.6.1 Model

Our method is focus on structured documents where the entities that compose them
are located in similar areas of the document but varying in its final size and location.
This variability can be encoded by means of a bi-dimensional Gaussian function whose
mean represent the location across the two coordinates, and whose variance defines
the final size of the detected region. We aim to detect rectangular portions of the
document, which can be eventually rotated.

We use a random sample of N pixels for the representation of the document
content. We replace the previous representation in cells of pixels in order to increase
the flexibility of the fitting process of the Gaussian functions, since we think that in
this case the space between cell centroids and the rigidity of a grid was not enough
accurate for this process. We define a set of variables linked to the set of random pixel
locations selected from the document image. First, we define a set of random variables
g and u, where g represent the local observations based in the features extracted at
pixel level, and u is the set of coordinates (z,y) of each selected pixel. In addition,
we define a set of unknown variables y, s, 7, representing the regions, the records, and
the number of records in the document, respectively. We treat the class background
separately as we detailed in the next section. Therefore, for a given document we
define a set of L = y x r possible labels plus the background class.

We depict the variable dependencies in the BN shown in Figure 4.5. First, tex-
ture descriptors g depend on the type of regions y (incoming arrow in the node g).
Secondly, not all positions w in the document image are equally probable for all the
semantic labels y and records s (incoming arrows in the node u). Finally, the values
that can take s depend on the numbers of regions in the document r. Besides, we also
represent the implicit dependence between a record and the regions that compose it.

We aim to fit a set of rectangular regions to the page, and to label each pixel
within these regions to its corresponding region class. Therefore, we define our model
as the following MAP probability estimation problem:

~ n73n79n>un p
n

9, 8,7 = argmax p(y, s, 7|g, u) = argmax
Y,8,T YnySn,T p(gn’ u7l|r)
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Q_ O

Figure 4.5: PGM showing dependences between variables.

thus, we reduce the problem to estimate the conditional densities p(yn, Sn, gn, Un|T)
and p(gn, un|r) for each pixel n and each possible value of r. We learn the value of p(r)
for each possible value of » computing its relative frequency from the training set. We
rely on the proposed BN to factorize the probability distribution p(yn, Sn, gn, Un|r):

p(yna SnyGns un|r) = p(9n|yn)p(un|yna Sn)p(yn)p(sn‘r) (4'18)

which, without lose of generality can be rearranged as:

PYns 8> Gns Un|T) = D(Gns Un|Yns $0)D(Yn, Sn|T) (4.19)

We observe that we can apply the EM algorithm to the factorization above, being
D(Yn, Sn|r) = P(yn)p(sn|r) the weights of the probability p(gn,tn|yn, sn). To define
D(Gn, Un|Yn, $n) we rely again on the graphical model of Figure 4.5:

p(gna un‘ym sn) = p(gn‘yn)p(un‘yna sn) (4’20)

where p(gn|y,) is estimated from the texture descriptor defined in Eq. (4.4) and
Eq. (4.6), depending on the set of features we want to use. On the other hand,
D(Un|Yn, Sn) is provided by the Gaussian function as:
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1 _
unlimesa) = exp {30 = 0S40 s} (420

which correspond with the pdf linked to the bi-dimensional Gaussian function that
fits the region yy, s, with parameters 0, s = (fty,5, 2y.s). Finally, we define p(gy,, u,|r)
by summing conditional probabilities:

(g ulr) =" p(gn, tin|yn, $0)P(Yn, snl7) (4.22)
Y,s

Thus, our method depends on the configuration of the set of defined Gaussian
functions. We define the total amount of parameters © as the union of all the pa-
rameters 6, ;. Once we have defined the equations of our model, we need to establish
how to update the parameters of the mixture to find the corresponding regions.

EM for region estimation

In Section 3.6 we defined the EM algorithm for the estimation of the parameter
of a Gaussian mixture. For this method we adopted the same general equations
presented but adapted to the proposed probabilistic framework. Our adapted version
of the EM algorithm follows the following steps: During the E-step we compute the
expectation of the variables y, s, r conditioned to the observations g, u and the old set
of parameters ©’:

N
Q(Gv 6/) = Z Z logp(yn, 5n|r)p(yna Sns T|gn7 Un, @,)Jr

Y,s n=1

N (4.23)
+ Z Z log(pk(gn? Uﬂ|9y,€))p(yna 57L7 T’|gn, un7 @/)

y,s n=1

which in our case consist in the computation of Eq. (4.17). Then, in the M-step,
the parameters of the Gaussian functions are updated. This process is repeated until
the convergence of the algorithm. We rely in the update expressions computed in
Section 3.6. These expressions, adapted to the proposed models are:

new En uﬂpOld(y’ru Sns r|gn7 un)

Hys = Zn pold(yru Sns r|gn7 un) (4 24)
ynew _ En pold(yn, Sn; Tlgn; Un)(un - MZ;“’)(UR - M;/L,esw)t .
Y,s T

Zn Pold(Yns Sn> | Gn, Un)
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besides, we update the mixture weights as:

new 1
p(y,s\r) = N Zpold(ynasnvr|gnvun) (425)

In the case of the background class, we define its conditional probability as:

new

1
p(background|gy,u =
( e S Pt g )

An update on the parameters of the Gaussian mixture results in a displacement
and a re-scaling of the Gaussian ellipses to better fit the entities on the page. After
some iterations these components are suppose to be centered on the regions that we
want to detect. We set the convergence criterion in base of the Kullback-Leibler
divergence between two consecutive estimation of Eq. (4.17). We summarize our
method in Algorithm 1.

Algorithm 1: EM algorithm for region fitting

1. © initialization
2. E-step:
a Estimate p(y, s, r|g,u,0'), Eq. (4.17)
3. M-step: estimation of the region parameters
a Update ©: © «+— ©',  Eq. (4.24)
4. Repeat steps 2-3 until convergence

5. End

EM initialization

An inconvenience of the EM algorithm is its sensitivity to the initial configuration
of the parameters. We need to provide an accurate initial estimation of both the
number and the parameters of the Gaussian functions that we want to fit. With this
purpose we define an additional set of features in order to capture the information
about the common shape and location of any possible entity to detect.

Shape and location descriptors are both learned from the labeled data in the
training set. Shape descriptors are learned by analyzing the height h, , and width
wy, s for each class y within a region s. Note that these features are not dependent to
the number of regions within a page, since they just provide information about the
dimension of each entity. In what regards to the location descriptor we distinguish
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between the possible number of regions in s. We compute the euclidean distance
dys = (dzvys,dyys) from the center of each entity y in a region s to the origin of
the page for each of the observations.

According to these values we can initialize the set of Gaussian components. Ini-
tially the algorithm starts with a coarse estimation of the parameters {u, X} for each
of the components of the mixture. We define a component for each possible pair
of elements {y, s}. Thus, the mean of the resulting Gaussian is defined by the pair
Py,s = {Hde, . Mdy, .- To define the co-variance matrix we took into account that
the variance of the size of a region is independent from its location. Since each of
the co-variance matrices represent the size of each region we to approximate each
co-variance by two flat Uniform distributions, one for each of the dimensions. Thus,
according to the definition of these distributions and the relation between the vari-
ances of Gaussian and Uniform distributions, the final form of the co-variance matrix
is defined by:

2
Fhy s
— 12
Zyvs -

+Ui2u,s 0

2
/Lwy,s 2
0 12 T 0w,

(4.26)

where pi,,, . and pp,, , are the mean width and mean height computed from the training
set, respectively, and U?ins and U%Ly . the corresponding variances.

Final labeling

Given the distribution of each component along the page, we estimate for each of
them the rectangular bounding box that comprises it. The last step of our method is
to compute these rectangular regions that according to our assumptions should match
up with the different regions of the page.

We defined each of these rectangles according to the computed parameters of
each of the components of the mixture. On the one hand, the center of a region
will be defined by the mean of its component p, ;. On the other hand, in order to
estimate the size of the region we define the co-variance matrix as ¥, , = ADA?,
where A represents the rotation matrix and D is a diagonal matrix that will define
the dimensions of the region as: [sz,sy] = 2v/3 - diag(D). These values define a
rectangular area on the image that will be labeled as the region {y,s}. Repeating
this computation for every component of the mixture will give the final segmentation
of the image.
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4.7 Experimental evaluation

In this section we describe the set of experiments performed in order to validate the
proposed methods on the task of document layout analysis. We presented two datasets
as representatives of structured and non-structured collections of documents in Sec-
tion 4.2. In the following sections we describe the metrics used to show the obtained
results, the set of datasets selected, and the battery of experiments performed.

4.7.1 Metrics

We present our results in terms of precision, recall and F-Measure computed at pixel
level. These metrics are commonly used in the task of segmentation and allow to
compare with other works in the area. The precision rate measures the portion
of detected pixels that are correct, while the recall measure indicates the portion
of correct pixels that are detected with respect to the total. The harmonic mean
between these two measures is the F-Measure. These metrics are used in the ICDAR
2009 Page Segmentation Competition together with another metrics to evaluate the
contestant methods, so we able to directly compare our results with them. Precision,
recall and F-measure are computed at pixel level as:

True Positives

Precision rate = — —
True Positives + False Positives

True Positives
Recall rate = 4.27
At T = "True Positives + False Negatives 20

Precision - Recall

F-Measure =

Precision + Recall

4.7.2 Statistical hypothesis test

We are also interested in checking the contribution of the RLF from a statistical
point of view. A common way to perform this verification is by means of a Student’s
t-test on the obtained results, however, as this measure is devised to be applied on
Normal functions, and the F-measure does not satisfy this condition, we compute the
Wilcoxon rank-sum test instead. This test is considered the non-parametric version
of the Student’s t-test, and is suitable for non-Normal functions. The test is devised
to check whether one of two independent distributions tends to produce larger values
than the other. With this verification on the results obtained by our methods, we are
able to check whether the results produced by the experiments using RLF significantly
better or not with regard a significance level o. The statistic U given by the test is
computed by the expression:

nl(nl+1)

1=R1-
U R 5

(4.28)
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Figure 4.6: Ground-truth tool

where nl, in our case, is the number of results obtained only by the experiments
using Gabor features on each page of the test set, and R1 is the sum of the F-measure
obtained on each image. The statistic U is then given by the minimum value between
U1 and U2, considering U2 the same calculation in the case of the results obtained by
the RLF approach. We consider in our experiments a significance level of 5%, which
means that values of U under this value will be considered statistically significant.

4.7.3 Ground Truth

The corresponding ground-truth for the volume 208 of the BH2M dataset was man-
ually created for the realization of these experiments. The labeling process was done
through a web-based crowd-sourcing tool developed in the Computer Vision Center
(CVC) that allows to label different collections from the ongoing projects. The tool is
devised to receive the contributions from any person interested in participate in the
project, either by tagging the different elements or making text transcription. The
labeling process consist in marking each of the three areas of a interest on each li-
cense by drawing the corresponding bounding boxes. A screen-shot from the labeling
process of one page can be seen in Figure 4.6. The final ground-truth is given by a
SVG file with all the registered information of the page. This output file contains the
coordinates of the upper corners from the different bounding boxes and its vertical
and horizontal length. The hierarchical distribution from the SVG tags allow to ar-
range the file in a set of licenses, which results very useful for our task. The entire
volume contains 593 pages of which we label at pixel level the first 200 pages of the
volume. We randomly split 150 pages for training, 10 pages as validation set and the
remaining 40 for test. The resolution of the images is 300 dpi (= 2750 x 3940 pixels).
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4.7.4 Parameters and settings

Along the previous sections we described some parameters required for the definition
of the methods proposed. In this section we describe this set of parameters and how
they are fixed.

General settings

Now we describe the parameters concerning the set of feature descriptors and the
document representation. In what regards to the document representation in cells,
we evaluate cells of 25 x 25 and 50 x 50 pixels. Since we are interested in reducing
the computational time of our methods and at the same time capture contextual
information in the cell, considering sizes under these values is not a coherent option.
On the other hand, considering sizes above these values could exclude small regions
of interest producing some missing detection.

With respect to the parameters of the texture filter bank, we computed a 36-
dimensional feature vector using 9 orientations and 4 frequencies of the filter. These
values were chosen to ensure that the Gabor functions cover the frequency space.
Additionally, we set the overlapping degree ¢ = 0.5, finae = 0.35, and the scaling
factor k = v/2. Finally, we also learnt the parameters of the logistic regression used
in Eq. (4.7) from the training set. We apply this process over each image in the
training set on a total of 3,000,000 pixels randomly selected. We randomly select
500,000 feature vectors from the resulting features from each class of the dataset.
Thus, we use 500,000 samples to learn the GMM for each class. We set the number
of components of each mixture in 36, the same than the number of components on
the feature vector.

In what regards to the implementation of the probability maps, we set the size of
a map in 200 x 200 pixels, so that the computed displacements have to be normalized
by the image width and height and quantized to be represented in this range. We also
fix the Map coordinates in the range [—1,1] x [—1,1] (see Figure 4.4). In addition,
each map is normalized in order to define a proper probability distribution and ensure

Yoo Mejer (u,v) = 1.

We test all the proposed methods on the two sets of presented features. First we
show results using only texture features, and compare with the RLF. In any case, the
computation of the RLF was done according to the initial classification obtained by the
GMM using texture features as we explain in Section 4.3.3. In order to understand the
contribution of the RLF we show in Figure 4.7 the initial classification of a document.
We appreciate as some cells at the left of the image are labeled with the class tax,
when this class must appears only in the right side. This effect is expected to be
corrected by the RLF.
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(a) Original image. (b) Classification result.

Figure 4.7: Initial cell-level classification result of one image from BH2M dataset.
The different classes are: tax (red), body (blue), name (green).

EM-based settings

We define two stop criteria for our EM algorithm. On the one hand, we fix
the maximum number of iterations of the EM to 50, we empirically check that over
this value there are not significant changes in the result. On the other hand, we
established the convergence criterion according to the Kullback-Leibler divergence
between two consecutive iterations for the distribution of p(y, s, r|g,u). We fixed a
convergence value for ¢ < 0. With respect to the parameters of the method, we
fixed the number of random points in 20,000 to ensure an acceptable computational
time and a proper coverage of the page. The mean size of an image in the evaluated
dataset is 4,000 x 2000 pixels, so we are processing a page using only the 2% of
the total information on it. We select the set of random pixels ensuring an uniform
distribution on the page.

In what regards to the parameter r that denote the number of records, we checked
that this number in the training set is bounded from 5 to 7 records, so we will run our
method for these three possible values of r, and keep the one with high probability.

Finally, we considered two criteria in order to evaluate the quality of the results.
On the one hand we want to detect the logical layout of the page, which means to
detect all the records and we will require the three parts in a record to be correctly
identified. Therefore we provide a measure of global detection of regions. On the other
hand we want to perform quantitative and qualitative comparison of this approach
with respect to the other methods.
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2D-PCFG settings

We used a 2D-PCFG to tackle the page segmentation problem on the BH2M
dataset. Given the nature of the problem such that the documents have a known
structure, we manually define the grammar as defined in Section 4.5.1. According to
the model described in Section 4.5, we have to train several probability distributions.
The probabilities of the productions of the grammar and the size probabilities for
each non-terminal are estimated from the training data as explained in Section 4.5.

The 2D-PCFG model combines probability distributions that are learned indepen-
dently, hence, there may be scaling problems when multiplying the different probabil-
ities. For this reason, the resulting probability is obtained such that each distribution
has an exponential weight that adjusted the scale of them. As a result, we have to
tune three weights: the probabilities of the grammar P(A — ¢) or P(A 5 BC), the
probability of a region P(c | z) and the probabilities P(¢;x; | A). Then, the weights of
the system are tuned using the downhill simplex algorithm by maximizing the average
F-measure for classes Name, Body and Taxr when recognizing the validation set.

4.7.5 Experiments
Cell size experiment

We define a document representation in a set of cells composing a rectangular grid.
In this experiment we evaluate the effect of using different cell size for the task of
layout analysis of the BH2M dataset. We compare two different cell sizes, 25 x 25
and 50 x 50 pixels.

The model selected to carry out this experiment is the CRF-based approach using
the set of features composed by the combination of both Gabor features and the
RLF. The results of the experiment are shown in Table 4.1. We appreciate that using
cell size of 50 x 50 we obtain better results in general than using 25 x 25 pixels per
cell. Initially we can think that using smaller cell sizes would produce better results,
however, the distribution of the classes within the image explain these results. The
area of the class tax is small in comparison with the classes body and name, so the
division of this region into cells may produce that some tax cells are labeled with
the class background, obtaining a small precision rate as can be seen in the results.
The same effect is observed for the class name in less proportion. Considering the
obtained results, for the rest of experiments we fix a cell size of 50 x 50 pixels.

Results on BH2M dataset

This section describes the experimentation carried out to evaluate the different mod-
els proposed for the task of layout analysis on the BH2M dataset. We emphasize
on the logical analysis of the layout, since we want to detect each record and label
each of its semantic parts accordingly. In the first place we perform a comparison
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Relative Location Features Relative Location Features
Cell size 25x25 Cell size 50x50
Precision | Recall | F-measure || Precision | Recall | F-measure
Body 0.83 0.96 0.88 0.88 0.96 0.92
Name 0.70 0.72 0.71 0.77 0.73 0.74
Tax 0.31 0.65 0.41 0.69 0.66 0.66

Table 4.1: Results on 5CofM dataset comparing cell sizes of 25 x 25 and 50 x 50 pixels.

between the model based on PGMs in contrast to 2D-PCFG. We test on this ex-
periment the performance of three inference algorithms for PGMs: GraphCut, Loopy
Belief Propagation (LBP) and Iterated Conditional Models (ICM); and compare their
performance against the proposed grammatical model. In the second place we show
the result obtained by the EM-based method. In this case we perform a qualitative
comparison of the record detection in contrast to the previous two approaches.

We resume in Table 4.2 the results obtained in the sequence of experiments per-
formed. In views of the results we can identify four main discussion topics: the
qualitative detection of the records, the comparison between set of features, the com-
parison between inference methods, and the comparison between the two proposed
models.

Regarding the qualitative detection of the records, results show that in general
for all the approaches the class Body is detected with good F-measure rates, whereas
classes Name and Tax represent the most challenging part. This effect is related
with the proportion of the document that represents each region, because it is more
difficult to properly classify small regions. Errors are usually found at the boundaries
of the regions, and therefore a missing cell of the Tax class have more impact on the
results than the same cell of the Body class.

Regarding text classification features, we can clearly observe two different be-
haviours. PGMs performed significantly better with RLF features than when regular
Gabor features are used. In general, the recognition of the three classes is always
improved, specially in terms of precision rate. The improvement in the detection of
the Name entities is remarkable, which demonstrates the improvement in the cell
classification with respect to the initial Gabor-based classification (See Figure 4.7).
The class Tax was the most challenging class for both sets of features. We see that
altough the differences in F-measure is small, using Gabor features achieves less pre-
cision but more recall rates whereas RLF detects more precise areas and lower recall
rates, since the search area focalized to the area given by the probability maps. To
assert whether these differences are significant or not from a statistical viewpoint, we
run a two-sided Wilcoxon rank sum test with a significance level of 5%. The test ob-
tained values under the confidence level on every experiment based on PGMs, which
proves that including RLF into the CRF model significantly improves the detection
results of the regions from structured documents.

Now we analyze the results obtained by different inference methods. In general,
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Model Features Class Precision Recall F-measure
Body 0.89 0.87 0.88
Gabor Name 0.27 0.82 0.40
Graph Cut Tax 0.35 0.94 0.51
Body 0.88 0.96 0.92
RLF Name 0.77 0.73 0.74
Tax 0.69 0.66 0.66
Body 0.89 0.83 0.86
Gabor Name 0.27 0.74 0.39
LBP Tax 0.45 0.79 0.56
Body 0.88 0.93 0.90
RLF Name 0.72 0.71 0.69
Tax 0.85 0.43 0.55
Body 0.89 0.83 0.85
Gabor Name 0.27 0.74 0.39
ICM Tax 0.45 0.79 0.56
Body 0.89 0.92 0.91
RLF Name 0.71 0.74 0.72
Tax 0.90 0.45 0.58
Body 0.91 0.95 0.93
Gabor Name 0.73 0.86 0.78
9D-PCFG Tax 0.69 0.80 0.71
Body 0.90 0.95 0.92
RLF Name 0.77 0.79 0.77
Tax 0.78 0.65 0.68

Table 4.2: Classification results for different models and text classification features.
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LBP is the method that obtained worst recognition rates, whereas ICM and Graph-
Cut obtain similar values, being Graph-Cut the one with higher detection rates for
the three classes, with F-measure 0.92, 0.74 and 0.76 for classes Body, Name and Taz,
respectively. We believe that this differences rely on the definition of the pairwise
potential. In the case of LBP we established the set of parameters according to the
prevalence on the training set of each pair of classes. However, since elemants from
the classes Name and Taxz are less common, the resulting parameters are biased and
favors the labeling of Body elements. However, in the case of the Graph-Cut approach
all classes are considered equiprobable in this sense, and the only penalization comes
from the assignation of different neigbor classes.

Regarding the results obtained by the 2D-PCFG model we see as this model obtain
similar performance using both sets of features, and even results with Gabor features
were slightly better than results provided by RLF features. 2D-PCFG is a powerful
model that is able to take advantage of the knowledge about the document structure.
Thus, grammars were able to overcome the lacks of Gabor features obtaining very good
results for all classes without the additional spatial information provided by RLF.
Given that we learn probabilistic information about the structure of the documents
from training data, the model was able to successfully parse using the regular Gabor
features. Figure 4.11 shows an example of recognition using 2D-PCFG and both sets of
features. We can see how the overlapping region between Name and Body is classified
as Body. Also, as results pointed out (see Table 4.2), Gabor features obtained higher
recall and we can see that resulting regions are larger. On the other hand, RLF
provided higher precision by adjusting better the size of the regions detected. Finally,
recognizing the space between records is difficult due to the large calligraphic letters
considered as background.

Comparing the performance of the different models, we see as in this task 2D-
PCFG obtain better results than PGMs, more remarkable in the case of the Tax
class. The 2D-PCFG model with Gabor features achieved F-measure 0.93, 0.78 and
0.71 for classes Body, Name and Taz, respectively. Results showed that grammars
achieved a great improvement even using Gabor features, while PGMs in the proposed
configuration requires of the additional set of features in order to capture the structure
information as was expected.

Our CRF-based model classify cells but they do not identify the explicit segmenta-
tion in records. However, the most likely hypothesis according to the 2D-PCFG model
provides a derivation tree that accounts for both the structure of the document and
the segmentation in cells. Using this information we can compute the number of
records detected in each document, and then, compute the percentage of documents
in the test set where the number of records detected is correct. We consider that a
record is detected when we identify the three regions that compose it with at least a
50% of precision rate. 2D-PCFG in combination with Gabor features computed the
right number of records in 80% of the test documents, whereas with RLF features only
52.5% of the documents had the correct number of records detected. The lower rate in
PGMs in mainly produced by the records where the Taxz class is not detected or due
to over-segmentation of the regions. This measure helps to assess the quality of the
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Figure 4.10: ¢) 2D-PCFG with RLF

Figure 4.11: Example of page segmentation and structure detection with 2D-PCFG
and different text classification features.
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Model Features Class Precision Recall F-measure
Body 0.83 0.93 0.88
Gabor Name 0.27 0.99 0.41
EM-based Tax 0.20 0.95 0.32
Body 0.85 0.93 0.89
RLF Name 0.39 0.94 0.54
Tax 0.27 0.90 0.41

Table 4.3: Classification results for different models and text classification features.

recognition such that we can see that in addition to the slight improvement of Gabor
features with respect to RLF features, the number of records detected presented a
significant improvement for the 2D-PCFG.

Experiments EM-based method

We show in Table 4.3 the results obtained for the three different classes and both
set of features. Overall results show a similar trend in the detection of each class. Re-
gions from classes Body and Name are detected with higher F-measure rates, whereas
the class Tax still represent the most challenging part.

We see that in terms of F-measure rates the proposed method does not produce
a significant improvement in the detection of the three classes, however we think
that these values do not fairly reflects the real contribution of the method. The
contribution can be seen in the Recall values with respect to the other methods.
With the proposed method we are able to detect more than the 90% of all the regions
using any set of features, which in the domain of our task should be considered as a
great advantage. In addition, given that the objective of our method is to obtain a
logical layout of the page, we also evaluated the obtained results by the number of
pages properly segmented (i.e., the number of detected records equal to the number of
records in the page.), getting an 90% of accuracy.

In comparison with the PGMs approach, the representation in cells of pixels pro-
duced that some of the small regions from classes name and tax were missed. That
situation also affects to the method based in 2D-PCFG, where in some cases the tax
region was undetected and therefore the detection of the full record was not correct.
Another drawback of the previous methods in comparison with this approach is that
the area between two records is merged within the Body class producing an overlap-
ping of all the records and consequently in the case of the CRF was not able to return
a proper segmentation of the page in records. These problems are improved in the
proposed approach. The method is designed to detect the three elements of a record,
so that in the case of detecting a record, all three parts will be always included on
it. Besides, the representation with random pixels avoid the loss of small regions in
comparison with the approach based in cells, since some pixel will be always included
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(a) CRF-based (b) 2D-PCFG

(c) EM-based (d) Ground-Truth

Figure 4.12: Comparison between the results obtained by previous methods with
respect to the proposed for a specific page.

in the detected area.

All the previous situations are illustrated in Fig. 4.12. Analyzing this image it
is also possible to understand the loss in the precision rate. We see that using the
proposed approach the regions obtained match with the expected results, although
the obtained area for the classes name and tax is usually wider that the area in the
GroundTruth. That effect is produced mainly by two reasons. On the one hand the
area around these regions usually presents some noise that the EM tries to fit into the
region, also in most of the records the name and body regions are overlapped, so it is
common that some of the overlapped pixels influence the corresponding component of
the mixture. On the other hand the variance of the size and location of these classes
is higher than in the case of the class body. That provokes that at the beginning the
components are initialized with larger values in the covariance matrix and because of
the noise in the region is difficult to fit to the proper region.

In what regards to the use of RLF with respect to Gabor features, as we saw in the
previous methods, the use of these features improve the results when the method do
not take the structure into account, as in the case of CRFs. In the presented method
the structure was already implicit in the definition of the classes, so the use of RLF
in this case do not produce any significant improvement.
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Features Class Precision Recall F-measure

Gabor Text 0.87 0.93 0.90
Image 0.74 0.88 0.79

RLF Text 0.89 0.96  0.92 (0.0539)
Image 0.80 0.85  0.82 (0.7007)

Table 4.4: Results obtained on the PRImA dataset by the CRF-based method (p-value
from Wilcoxon test in brackets).

Results on PRImMA dataset

We describe now the results obtained from the experiments performed on the PRImA
dataset. For this dataset we can only show results from the CRF-based approach, since
the rest of methods can no be applied to this collection of documents. Both methods,
2D-PCFG and the EM-based, are devised to structured documents and require of
an structure to learn the form of the grammar, and distribution of the Gaussian
functions, respectively. Therefore, we present results using the proposed CRF-based
method. Following the same methodology than in the previous set of experiments, we
present results for the two sets of features presented. Besides, regarding the inference
algorithm, since Graph-Cut obtained the higher rates, we select this method for the
evaluation on this dataset.

We show in Table 4.4. Due to the non-structured layout of this collection, the
improvement produced by the inclusion of the RLF is not statistically significant
according to the values obtained by the Wilcoxon test. Note that the p-value in
the case of text regions is not far from 0.05, which means that even for this kind of
loosely structured documents, RLF can help in segmenting text regions. However, for
the class image, the obtained p-value (0.7) show that these features are useless, an
expected outcome since images are located in any part of the document.

Making a comparison with the other methods on this task [1, 42] (Table 4.5, we
appreciate as the detection rate in terms of F- measure is up to the highest results
achieved in the contest (84% — 95%). In the case of our class image they do not
concretely refer to this class but they consider the class Non-text where is included
also graphs and other elements, so our results are not directly comparable with them.
We show an example of the segmentation of a document in this dataset in Figure 4.13.



78

DOCUMENT LAYOUT ANALYSIS

Method Non-text | Text Overall
DICE 0.66 0.92 0.90
Fraunhofer 0.75 0.95 0.93
REGIM-ENIS 0.67 0.92 0.88
Tesseract 0.74 0.93 0.91
Gabor features 0.79 0.90 | 0.85 (0.0539)
Gabor + RLF 0.82 0.92 | 0.87 (0.7007)

Table 4.5: Comparison with the submited methods to the ICDAR2009 page segmen-

tation competition [1].

Figure 4.13: Result of the segmentation of one image from the PRImA dataset
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4.8 Conclusion

In this chapter we tackled the problem of document layout analysis. We want to
detect and segment the different regions that compose a document, and if it is possible,
being able to categorize these regions in the set of logical labels that are defined by
the task. We defined two set of features for this purpose. A set of texture descriptors
to discriminate between the different classes of entities in a more physical way, and
a set of relative location descriptors that contributes to the inclusion of the logical
knowledge about these entities through its location on the page. We prove that, in
models that do no take account of the structure of the document in an implicit way,
the contribution of the RLF is significant to encode the logical definition of the classes
as long as it can be encoded as a location restriction. On the contrary, in models that
already learn in some way about the structure and the logical meaning of the classes,
the effect of these features, although is not counterproductive, it does not deserve the
computational effort to obtain them.

We proposed three different methods for detecting document regions. In the first
place we model the problem as a MAP probability estimation of a CRF. We represent
the CRF graph according to the grid defined by the cell representation of the im-
age. The final segmentation is achieved through several inference methods using the
information of both set of features and pairwise models. Graph-Cut-based method
obtained the higher results. In this type of segmentation tasks, methods based on
region cuts are be more accurate in order to set region boundaries. Message-passing
approaches requires of more informative features and pairwise models to ensure that
the information sent through the variables is rich enough to discriminate correctly.
The label bias on the BH2M turn out to be determinant for this method, which was
not able to classify the smaller classes correctly. This effect is also validated on the
ICM algorithm, which do not rely on the pairwise potentials and also gets higher
detection rates for this classes.

In the second place we propose two methods devised to structured documents
that take into account this structure in the definition of the models. First, 2D-
PCFG compute the most likely derivation tree of the document given the rules of
the grammar. Second, we presented a model based in a simple CRF where the
dependencies between variables are not considered. The graphical model here was
devised to represent the dependencies between variables and to model the probability
for each pixel conditioned to a set of Gaussian distributions. In this model, the
region estimation process consisted in fitting a set of Gaussian functions on each
candidate region. We propose an iterative scheme based in the EM algorithm to find
the optimum configuration of the set of Gaussian.

We prove that these structured methods, are better choices for the analysis of
layouts with a strong structure, Whereas in case of free layouts these methods can
not be applied directly. However, models based in PGM are more flexible and can be
adapted to any type of layout. They just need of a proper definition of the features
and the relationships between variables.
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Chapter 5

Handwritten text line segmentation

The task of text line segmentation arises as a particular case of physical layout
analysis where the entities to segment are text lines of a text region. In this chapter we
present our method for the task handwritten text line segmentation. We present two
different approaches: First, a basic model used to prove our hypothesis. Second, we
present the full probabilistic framework based on MRFs for inference and parameter
learning. We combine this framework with an improved version of our initial approach
to build our final method.

5.1 Introduction

Text line segmentation is an important part of the document analysis process. When
we as humans read a text paragraph, it is easy to know that is structured in a set
of lines and identify each of them. However, in order to develop automatic systems
capable to read text, it is necessary a process to separate between the set of text lines.

The final objective of text line segmentation is to assign the same label to each of
the components that compose a text line, being either pixels or connected components.
The search process of these components is commonly performed following two possible
approaches, depending on the type of document and the difficulty of the task. The
first approach consist on finding a set of imaginary lines that connect the set of text
characters that compose the text line. These lines are usually categorized as baseline,
which connects the lower part of the characters bodies, median line, which connects
the upper part of the character bodies, and the upper and lower lines, which joins the
top and bottom part of the set of ascenders and descenders of the long characters,
respectively [13]. By estimating these set of lines it is easy to label the component
that compose the text line, and focus on particular areas in order to solve overlapping
problems. The second approach is based on searching the set of aligned components

81
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that compose a text line. This process can be performed using different techniques
as we described in Chapter 2. This approach is more common for documents with
complex layouts.

There are many solutions to the problem of text line segmentation on machine-
printed documents that produce robust solutions in general. Text lines from machine-
printed documents are characterized by having similar character size, interline spacing
and the absence of overlapping and wrapping effect, which facilitates the task. How-
ever, segmentation on handwritten documents is still considered an open problem.
The great variability on author styles and document layout are the main challenges.
It is common to find multiple line orientations, overlapping between the ascenders and
descenders from some characters, curved lines and irregular line sizes. In addition,
it is common to find documents with annotations or corrections over the text that
also complicate the task. On historical documents, apart from the described issues,
document degradation and the inclusion of ornamentation and other entities are also
an issue to take into account.

In this chapter we present a general method for the task of handwritten text line
segmentation. It is based on the estimation of a set of regression lines to fit text lines
in handwritten documents. First, we present an initial approach devised to validate
our working hypothesis and detect the possible weaknesses of the method. Then,
we present our probabilistic framework for inference and parameter learning. We
successfully combine the EM algorithm and variational approaches for this purpose.
Thus, we summarize the main contributions of this chapter as follows:

1. General method for handwritten text line segmentation. We designed
our method with the objective to deal with a large variety of documents re-
gardless of their type of layout. Besides, our method is script and language
independent.

2. Easily expandable with prior knowledge. The proposed probabilistic
framework can be easily extended with additional prior knowledge about the
task by means of the inclusion of new feature functions.

3. Probabilistic framework for parameter learning and inference. We
successfully combine the EM algorithm and variational approaches to perform
parameter learning and inference on a probabilistic graphical model.

The remainder of this chapter is organized as follows. In Section 5.2 we describe
an overview of the method proposed for handwritten line segmentation. Then, in Sec-
tion 5.3 we describe the initial approach to this method based in GMM. In Section 5.4
we present the probabilistic framework and the final version of the method. Then,
in Section 5.5 we show the experimental evaluation of the different methods. Last,
we describe in Section ?? the collaborative European project for which the proposed
methods were developed
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5.2 Method overview

We define a handwritten document as a collection of text paragraphs written along
the page, each of them composed of a set of text lines. Each of these lines is composed
by a set of words and letters, that in turn, are defined by a set of foreground pixels.
Our working hypothesis for the segmentation of text lines is the following: for a given
text line, knowing the set of pixels that compose it, we can estimate a regression line
through this set of pixels that is a good estimate of the original text line position.
Besides, we can model a probability distribution between the set of pixels and the
set of text lines. According to this distribution, a given pixel will have a higher
probability to belong to its correspondent regression line than to another.

Our document definition covers from documents with an unique text region, to
documents with several handwritten annotations along the page. In the last case, each
text region can be written in different styles. In order to deal with this variability
we designed our method to be applied on each paragraph separately, which implies a
previous step in the document processing for identifying the set of paragraphs, and
allow us to deal with complex document layouts. In order to clarify the notation,
from now onward, and without loss of generality, we define our method assuming a
single text region.

Text region segmentation

We rely on the Delaunay triangulation for the region segmentation process. The
process is based on the text region extraction method defined in [123]. We compute
the Delaunay triangulation from a set of selected pixel locations. The main idea of this
method is that the Delaunay triangles that connect different text regions have longest
sides compared with the triangles that connect components from the same region.
We compute an histogram H of longest sides (LS) of the triangles and estimate a
threshold over which a triangle is considered to connect text regions. Then, removing
this set of triangles will divide the Delaunay graph into a set of sub-graphs that
identify the set of text regions. Then, the histogram is smoothed by computing local
averages over 2w + 1 neighbor points:

1 T+w
H(zx) = w1 Z h(i) (5.1)

where x is the LS in pixels. From the resulting histogram we extract the maximum
value [, which is related with the text line space. Then, the final threshold Ly, is
computed as:

Ly, =min{z : > [, and H(z) <1} (5.2)

In Figure 5.1 we show an example of applying this process to a handwritten
document with different text regions. We must highlight that our objective here is
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(a) (b) (c)

Figure 5.1: Text region segmentation process. a) Original image. b) Delaunay trian-
gulation computed on the set of selected random pixels. ¢) Result of the process after
removing the selected triangles isolating several text regions.

not to perform the best possible text region segmentation, but to perform a coarse
segmentation that help us to divide the problem and treat each of them accordingly
to its particular characteristics.

Linear Regression

Regression based techniques are used when, given a cloud of points in the space in the
form {(z1,y1), (z2,Y2), ...y (Tn, Yn)}, it is assumed that they are linearly correlated but
corrupted by white noise. White noise distributions follow a Gaussian law, centered in
the origin with a particular variance o?. Thus, for the set of text pixels that compose
a particular text line, our objective is to estimate the regression line that better fits
this set of pixels. Besides, the Gaussian distribution defined by its variance o2 is a
good resource to use in order to define the probability for each pixel to belong to each
line.

We propose to use a linear regression model where each line is defined by an
equation of the type y = ax + b, being b the y-intercept and a the slope of the line.
The measure to indicate the difference between the observed value for a pixel (2, yn)
and its predicted value on the regression line is the residue ¢,, and is defined as
€n = Yn — b — ax,. According to the set of residues, the usual way to estimate how
well a regression line fits the set of pixels is given by the summation of all the square
residues:

Sy = Zsi = Z(yn —b—ax,)* (5.3)

The objective therefore is to obtain the parameters of the regression line a,b
that minimize S,. This optimization problem can be solved by computing partial
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derivatives on both parameters and finding its zero values:

S,

P = Z -2z, (yp —b—ax,) =0
" (5.4)
%Sl;r = Z —2(yp, —b—ax,) =0

Straightforward manipulation of the previous equations gives the known linear
regression equations for a, b:

_ 2@ —T)(Yn = 7)

a =
Zn (l’n - T)z
1 (5.5)
b= N Z(yn - axn)
n
in addition, o2 is computed by mean square error equation:
al2 = # Z(yn —-b— axn)2 (56)
N -2

n

Thus, a regression line [ is defined by the three parameters: {a;, b;, 07}, that at the
same time define a Gaussian density function linked to its variance. The likelihood
probability associated to this Gaussian function is:

ly=b—az) W)Q} (5.7)

q(z, y|l) o eXp{ 207

The main problem that arises from our hypothesis is that for a given document,
both the number of text lines and the set of pixels that composed each of them are
unknown, since actually is the problem that we want to solve. We rely in the classic
EM algorithm to overcome this situation by estimating the parameters that define
the set of regression lines that better fit data.

The use of the EM algorithm in our problem can be illustrated in the following
way: given a handwritten document, we initialize a set of L regression lines according
to some criterion. Then, in the successive iterations of the method we will compute
new estimates for the parameters a;, by, 07, VI € L in order to find the configuration
that better fits the set of text lines. The new estimation is computed in base of the
probability distribution defined over the set of regression lines and the data.

In the following sections we describe two different approaches to model this prob-
ability distribution:
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1. We define a first simple model in order to validate our working hypothesis. This
model is based in the estimation of a Gaussian Mixture Model (GMM) where
each component of the mixture is linked to a regression line.

2. Our second model is an extension of the previous one. We develop a probabilis-
tic framework for computing inference and parameter learning on a MRF. We
combine the EM scheme for the estimation of the parameters of the regression
lines within the learning framework.

5.3 Gaussian approach

We select a set of N pixels that correspond with the gravity centers of the set of text
connected components. Liked to this set of pixels we define the set of variables in
our model. On the one hand we define a set of observed variables e,, = (2, yn), that
represent the coordinates of the selected locations. On the other hand we define a set
of hidden variables h to encode the text line labels for each location. Thus, we define
our GMM with the following expression:

p(h=1le,0) = [ palenlhn = 1, ©)p(hn = 1) (5.8)

therefore, our model combines a prior probability p(h,, =), that represents the mix-
ture weights, and a likelihood probability p, (e, |h, = 1), which are modeled by the set
of Gaussian density functions linked to each line [ as we formulated in Eq.(5.7). Last,
the parameters in © correspond with the parameters that define each of the Gaussian
components, which according to our model are the parameters of the regression lines:
O = {a1,b1,0%,...;ar,br, 02}, for each of the L regression lines of the mixture.

We use the EM algorithm for the estimation of the set of parameters of the mixture.
For this purpose, the conditional expectation of the log-likelihood function described
in Eq. (3.33), but adapted to our model, takes the form:

L N
(9|6 ZZZOQ pn 6n|h =1 @) ( l))p(hn = l‘ena@) =

=1 n=1
L N
=33 p(hn = 1)p(hn =llen, ©)+ (5.9)
=1 n=1
L N
+ Z Z loy(pn(en|hn =1, a)p(hn = l|6n7 6)
=1 n=1

where 6 € O refers to the subset of parameters of a specific component of the mixture.
Now we can compute the update expressions to estimate the new parameter values
for the regression lines. For this purpose we compute partial derivatives on @) with
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respect to each of them. In addition we estimate the update expression for p(h,),
which is independent from the rest. Thus, the set of update expressions results in:

anew — Zn(xn - j)(yn - g)pOZd(h” = l|€”)
! Zn(xn - j)Zpold(hn = llen)
prew En (yn - a}?ewxn)pold(hn = l|en)
l

= 5.10
5 poralhn, = llen) (5.10)
02,new _ En(a?ewxn + b?ew _ yn)onld(hn — l|en)
! anold(hn = l|en>
and the expression for the probability p(hy,):
(hn) = 5 3 Potalln = llen) (5.11)
Prew\lin _N ~ DPold\/tn, = t]|€n .

We observe the similarity between the obtained updates and the classical regres-
sion equations in Eq. (5.5). Indeed, these equations generalized in the degenerate case,
where p(hy = lle,) is a Dirac distribution. Therefore we summarize our method in
Algorithm 2. After the initialization of the the method we iterate between the EM
steps until the convergence of the model. First, in the E-step we estimate the probabil-
ity distribution of the mixture computing p(h|e, ©’) for the current set of parameters
©’. Then, in the M-step we compute new estimates of the parameters of the mixture.

Algorithm 2: EM algorithm for regression line estimation

1. © initialization

2. E-step:
a Estimate p(hle, ©")

3. M-step: estimation of regression lines
a Update ©: © + ©'

4. Repeat steps 2-3 until convergence

5. End

In the next sections we describe the initialization process of the set of regres-
sion lines and the process to label each of the textual components once the method
converges.
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5.3.1 Initialization and final labeling

It is known that the EM algorithm is often sensitive to the initial choice of parameters.
An inaccurate initialization of regression line parameters may lead the method to
fall into a local maximum that do not correspond with the better text line fitting.
For each text region detected by the region segmentation process we initialize the
correspondent set of regression lines. This is an important step, since we have to
ensure the initialization of enough regression lines in order to fit all the text lines.
After the convergence of the method we analyze the results obtained in order to detect
extra lines and to label each text component to the most likely text line.

Line initialization For each text region detected we compute an estimation of the
number of regression lines to initialize and its initial parameters. We first estimate the
main orientation of the text region. To do so, we rely again on the orientation of the
Delaunay triangle sides. We compute the set of normalized vectors defined by each
triangle side v; = (v1,v3) and keep only the ones with positive direction, e.g., vectors
from left to right. Then, the estimate the orientation as the mean vector orientation.

Next, we estimate the number of regression lines to initialize on each paragraph.
First, we rotate the text region according to the computed orientation to process
it horizontally. Then, we estimate the text region height h, and mean connected
component height h... Then, we define the number of regression lines in this region
as L = h,/hec.

Finally, we compute the initial configuration of the regression lines by distributing
equitably the estimated number of lines along the paragraph. Variance o;; is then
computed according the Eq. (5.5) assigning each connected component to the nearest
regression line. Note that initially all the lines have the same orientation and interline
space. This initialization process is devised to produce an over-estimation of the
number of regression lines. We need to ensure that we fit enough lines, and then we
can detect and remove the surplus ones.

Post-process and final labeling As consequence of the initial over-estimation of
the number of text lines some of the regression lines may end-up the process without
fitting any line, and therefore they have to be removed before the final labeling. We
define a threshold e of the probability p(h = I) under which a regression line will be
removed.

Final labeling is done at pixel level. Labeling at connected component level is not
an option because of touching characters. Therefore, each text pixel e = (x,y) will
be labeled according to the most probable line as:

o~

= arg mlaxp(h =l|z,y) (5.12)
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5.3.2 Discussion

The proposed approach addresses the problem of fitting a set of regression lines
through the text components in base of a GMM. This probabilistic model provides
information at pixel level about how it fits to each of the regression lines. However,
the type of information modeled in this model is only local to each pixel location,
since we are not considering any contextual information or the interaction between
neighbor pixels or regions. We think that modeling this information can be of great
importance specially for this task, since it can help to reinforce the labeling decision
of conflict areas such as touching components or the case of in curved regions. For the
next approach to the proble, we propose to model the probability distribution with a
MRF in order to capture this information.

In addition, in the previous model we estimate regression lines of the same length
than the region width. This approach is correct for regular text regions as long as they
are properly segmented. Even in that case, the existence of short lines or misaligned
words can result in a wrong detection or in the confusion of the fitting process. In
the next proposed model we solve this situation by defining segments instead of full
lines. In this way we can account for broken lines, misaligned fragments of text, or
even process several regions at the time.

Last, we consider that although the proposed initialization accounts for most of
the region layouts, due to the sensitivity of the EM algorithm to this step we must
provide a more intelligent. Therefore, in the next model we improve this step by
adding some common techniques for a coarse line detection.

5.4 Probabilistic framework

In this section we describe the second model proposed for the task of handwritten
text line segmentation. We follow the same hypothesis than for the previous method
although we improve several aspects of the previous approach. First, we preset a
more complex probabilistic model that consist of a MRF with an additional set of
features. Besides we improve the linear regression model and refine the initialization
and post-process steps.

We select a random set of IV text pixels ensuring an uniform distribution along the
document image in order to cover all the textual components. The use of a random
sample reduce the complexity of the overall method, and according to previous works
it should not significantly affects to the final result as long as the sample covers all
the data.

We define a MRF model composed of two kind of random variables. On the one
hand, we have random variables e = (z, y) which correspond to pixel coordinates and,
on the other hand, we have hidden variables, h, which denote the labels of text lines.
The topology of our model is given by the Delaunay triangulation computed from the
set of random pixels, as we show in Figure 5.2a. The result is an undirected graph
G = (V,€) where vertexes in V are the variables h and e. The set £ is composed of two
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kind of edges. First, we have edges between pixel coordinates e and the corresponding
text line label. Second, we have edges between adjacent hidden variables h.

ha

(a) Undirected graph: G = (V, ) (b) Factor graph

Figure 5.2: Illustration of a region of our MRF. (a) Variables in green represent the
observed pixels, e. In red, hidden variables h representing the text line labels. (b)
Mlustration of the two types of factors. Green factors are the v factors that relates
the observed and the hidden values. Red factors are the u factors composed only by
the hidden values.

We represent our MRF model by a factor graph composed of two type of factor
functions in agreement with the two kind of edges describe above, see Figure 5.2b.
First, we have factor functions modeling dependencies between observed pixels, e,
and hidden variables, h. These are 3-order factors since pixel coordinates are two
random variables and we denote them by ¥,,, with v € [1, N]. Second, we have factor
functions modeling dependencies between pairs of hidden variables and we denote
them by ¥,, where u = (4,j) runs over the edges of the Delaunay triangulation.
Thus, the MRF factorizes as a product of ¥,, and ¥, as follows:

p(e, h|©) = % H Uy (e, hy|Oa) H Vo (hy|©y) = Hpv(ev|hv7 04)p(h|0) (5.13)

where © = (0,4,0;) is the set of shared parameters, i.e. all factors ¥, share the
same parameters O,, and similarly, all factors ¥, share parameters ©,. Note that
the topology of G allow us to factorizes the MRF model as a product of conditional
likelihood probabilities p,(ey|hy, ©4) of pixels e, = (z,,y,) and the prior probability
of hidden variables h, p(h|©;). Given this later factorization is easy to see that we
can also factorize the partition function Z(©) as:

Z(0) = [ Zu(hv,©4)Zo(64) (5.14)
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where Z,(h,,0,) and Zy(0y) denote, respectively, the partition function of the con-
ditional likelihood probabilities and the prior probability.

As the previous model, we rely on the classic EM algorithm [107] for the estimation
of the new regression line parameters. This method essentially follows the same
scheme. The main difference concerns the parameter learning step of the MRF model.
First, in the E-step, we update the parameters of the prior probability p(h|O;). We
update these parameters using the proposed extension of the GBP, which we explain
in section 5.4.2, to allow parameter learning. With the parameters learned we can
approximate the posterior probability of each single hidden variable h, given the
coordinates e,. Then, in the M-step, we update the parameters ©,, which correspond
to the regression lines. In summary, our proposed scheme is Algorithm 3:

Algorithm 3: EM algorithm for MRF models
1. © = (04, Oy) initialization

2. E-step: parameter learning of prior probability

a Update ©: Oy < O}
b Estimate p(hy|e,, ©, O)

3. M-step: estimation of regression lines
a Update ©,: 6, «+ O/
4. Repeat steps 2-3 until convergence

5. End

In the remainder of this section we explain the linear regression scheme and how to
estimate the new updates of its parameters ©,. Then we explain how to learn model
parameters linked to the prior probability p(h|©). We will conclude this section with
the definition of the feature functions used for the handwritten text line segmentation
task.

5.4.1 EM algorithm for linear regression

We defined a set of factor functions that encode the information within the MRF.
Each factor function is composed of a set of feature functions f; and g; where k
runs in I, or I, depending whether the feature function is defined on ¥, or ¥,,
respectively. These feature functions are embedded in factors as:

log W, = > fr(hul|Oy)

kel,

log¥, = Z 9k (hy, €4|©4)

kel,

(5.15)
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b =ayz, + by,

ly = apx, + by,

Figure 5.3: Hypothetical region of our graphical model that relates the pixels from
words from consecutive lines. Messages sent through the dashed lines are supposed
to favor a different label for each connected pixel.

we replace the above definitions and the MRF model of Eq. (5.13) in @ and we have:

Q@)=Y 3"

u kel

kah 90)pu(hu]©}) | +

hay

Ty [ng (hoseaO0)puhsles, O, 0})

v kel, L hy

(5.16)
—log Z(O©)

with this expression we find the new parameter updates by finding the local maximum
of @, which correspond with the M-step. Thus, the partial derivative of @ for a
parameter 0 € O, is:

8

QO18) =" Ea, ( 7o 9 u:€0lOa )ev,@’>

v kel,

. (5.17)
- ; 8791@ IOng(hva @a) =0

For this model we rely again in a linear regression model, although with an slight
modification. The objective again is to estimate a set of L lines in the form y, =
a;x,+b; with vertical variance Jl ; from the set of pixels that compose it. We introduce
a new parameter in order to define a pair of bounds that defines a segment of .
The main reason is to fit lines of different sizes instead of considering an unique
line size. These bounds are given with respect to the center of the segment ¢; by the
horizontal variance 012, 5~ Therefore, a line [ is defined by the following five parameters:
0o = {ai,by,c1,004,015} that define two Gaussian density functions linked to the
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horizontal and vertical variances. The associated likelihood probabilities are:

v — ATy — b 2
Pe(To, Yolho = 1,04) dexp{(y 2l 2 2 }
Ot

2 (5.18)
ps(xv’val“ - l76a) X exXp {(I‘U—Cl)}

for a pixel e, = (z4,¥,) and a line . These densities will provide a measure of how
well a particular pixel fits a line. Figure 5.3 shows an example of a MRF region with
two regression lines across two hypothetical words from consecutive text lines [; and
ls.

Now we formulate the update equations for each parameter by solving the deriva-
tive in Eq. (5.17) for each of them. For a given document the number of parameters
to estimate is |©,] = 5L. Note that only parameters Uﬁt and 012,3 appear on the par-
tition function log Z,(h,, ©,). The update expressions for 6, are similar than in our
previous approach, although in this case the posterior p,(h, = l|e,, O, 0}) is given
by the inference algorithm explained later in section 5.4.2:

Qe — Zv(‘r’l} B j")(yv - g)p’v(h”l} = l|e'uv 6/0,7 eb)
: 20T — 2)?py(hy = lley, O, Op)
b;be'w — Z'u(yv — a?ewxﬂ)pv(hv = l|6va G;a Gb)
Zv pv(hv = Z|BU, 9:17 @b)
C?ew _ Zv(xv - jv)pv(hv = l‘ev,@;,e)b) (5 19>
Z,Upv(hv :l|e’l)7®:17@b) '
o2 > (Yo — afay — 01 )?py(hy = lley, O, Op)
h >, polhy = ey, 05, 04)
2 Zu(xv - c?ew)va(hv = llevv @:17 Oy)

[

o# Z,Upv(h'u :l|ev7®:p@b)

In addition, we also estimate the prior probability of each line [ given the updated
parameters O, as:

1
pv(hv = l|®a7 @b) = NZP’U(h’U = l|€v, 6(17 @b) (520>

The key point is that posterior probabilities p,(h, = l|e,, O, Op) are unknown and
consequently we cannot update the parameters of the regression lines. To overcome
this problem, we run an approximate inference algorithm that allow us to learn MRF
parameters and estimate p,(hy, = lley, ©4, 0p).

5.4.2 Inference and Learning

In the previous section, we described how to estimate the parameters O, linked to
regression lines. However, parameters O remain unknown and still have to be learned.
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Many parameter learning methods for MRF models relay on free energy methods.
These are variational methods that seek density functions that approximate true
marginals by beliefs functions that satisfies a set of constraints. Free energies are
quite close to Q(©, ©’) used within the EM algorithm and defined in Eq. (5.16), since
both are defined in terms of the Kullback-Leibler divergence (KLD). For instance, the
free energy associated to Belief Propagation (BP) algorithm is the Bethe energy as:

Fetne(p(hle, 0, 04)) = > pu(hu|Os) log p, (7 |64)+

(5.21)
+ Z nvpv(hv|€va @;, 61)) 1ngv(hv|eva @;7 @b)

where n, are related to the number of neighbors of h,, and can be negative. In our
case, we have to include the information given by the likelihood functions of regression
lines. So, we define the free energy as:

F(p(hle,0),05)) = > pu(hu|©s)10g pu(hu|Op)+
+ 3 copolholes, O, 05) log py (huley, O, 04)+ (5.22)

Y30 gkhe, €0|©)pu(holey, 6, 05)

v k€l hy

where parameters ¢, > 0 are any positive real value. The approximate marginals and
conditional marginals have to satisfy the usual constraints used in message-passing
methods. We summarize them in Table 5.1. First, since p, and p, are marginal
approximations, they have to be normalized. Second, we have to impose the sum-
normalization constraint between py (h,|©p) and p,(hyle,, ©L, Op) to ensure consis-
tency between marginal estimation. Unlike usual message-passing algorithms and
to well tie the estimated prior probabilities by the model with the observed data,
we impose consistency between prior probability of single variables h,, p.(h,|©s),
and posterior probability p,(h,|e,, ©%,Op). Finally, we have to ensure coherence be-
tween the observations, encoded in the empirical moments py, and model prediction.
This last set of constraints is the called moment-matching constraint and it provides
the parameter learning step for the pairwise parameters and global prior probability,
Eq. (5.20). Thus, the minimization of Eq. (5.22) results on a constrained minimization
problem that can be solved by means of the Lagrange multipliers as:
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Constraint \ Formula \ L. Multiplier
normalization > on, Pulhu|Op) =1 Uy,
Zhv Du(hyley, 0, 0p) =1 vy
sum-normalization Zhu\v Du(he|©p) = po(hylew, ©F, Op) A
moment-matching Y u Ju(hu)Du(ha|Op) = 1 0

Table 5.1: Set of constraints for the optimization of (5.22)

L(puvpvaa 67 N) =
Z Zpu(hu|@b) Ingu(hu‘Gb)J’_
u  h,

+ Z Cy va(hv|€va @;, ®b) logpv(hv|6va @;, G)b)+
v hy

D0 gilho, )0, )pu(holey, ©), O4)+
k  hy,

+Zak[2fk w)Pu(Pu|Op) —

Zpu h |@b pv(hv|eva®;7@b)

u\'u

Zyv

(5.23)
+

+

153) %) SPMNA

v uDV h,

ZyulZpu (ha|©p) — 1

va h |ev7®a7@b) -1

The Lagrangian is convex for all positive ¢, over the sets of constraints defined
[101]. The computation of partial derivatives of L with respect to py(h,|©p) and
Py (hyley, ©F, Op) lead us to the expressions:

10g pu(hu|Op) = —vy — 1 - Z Ok fie(hu) = D Aosul(ho)

vCu

Ingv(hv|eva®:m@b) - _1+ ng hvvev|61 +*Z)\vﬁu

’U

(5.24)

vCu

where 0y, fi(h,,) refers herein to the feature function fy(h,|0;) defined in Eq.(5.15).

Now, we know that »; pu(hu|Os) = 1, and similarly p, (ho|e,, Oy, Oy), therefore,
computing the exponential values on both sides of the equation, and summing for ho



96 HANDWRITTEN TEXT LINE SEGMENTATION

and ), , we obtain the values for v, and v, as:

vu=—1+log) exp {— P AUNEDS Awmv)}
k

ha vCu

VU_—CU—‘,-CUlOgZeXp{ ng Iy, €,]0©%) —|—Z )\U_m U}

hy vCu

(5.25)

The above are the corresponding partition functions for approximate marginals
Pu(hy|©p) and conditional marginals p, (hy|e,, ©), Op). Plugging the expressions for
Du(hy|©) and p, (hyley, ©F, Op) on the primal problem we find the dual problem L*:

“(A,0) = ZlogZ (O, A chlong(ev,G)ﬁl,Gb,A)fZkak (5.26)
k

v

which is convex [124]. From the definition of the dual problem we can derive the ex-
pressions for its parameters to obtain the formulas that build Algorithm 4. We find the
optimal prior probabilities p,(h,|Os) and a posterior probabilities p,(hyley, ©, Op)
by finding the optimal parameters A and © minimizing the dual problem L*, which
is convex on Ay, (hy) € A and 0 € ©p. The partial derivative with respect to 6y is:

oL
a0 ka )Pu(h|Op) — pix = 0 (5.27)

Observe that the gradient of the dual problem with respect to 8y, is 0 when moment-
matching constraints are satisfied. Since the prior p,(h,|0;) depends on parameter
0 we apply line search strategy to find better updates of 6;. We fix the length 7 of
each step according to the Armijo conditions and the update step is:

ekeawn(m pul]©) - ) (5.28)

O, are shared by all ¥,, and we can perform several iterations before starting
sending messages. In practice, this does not improve accuracy neither speed up the
convergence. Therefore, we update once between each message-passing process.

The message-passing process consist of computing partial derivative with respect
Av—su(hy), being fixed model parameters ) and ©/, found in the previous gradient
descend and EM iteration, respectively. This block-gradient descend strategy has
been successfully applied before in many other numerical schemes such as [101, 125].
Algorithm 4 follows the same ideas appearing in those papers. Partial derivative with
respect to Ay (hy) lead to the sum-marginalization constraint:

Z pu h |®b pv(hv|eva 9;7 917) =0 (529)

Ru\w

8/\u—>u
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For each hidden variable h,, we fix ©p, ©/ is always fixed in this algorithm,
consider the partial derivative with respect to A, (h,) and let us say that )\Eff;q,f) (hy)
is the value where the gradient is 0. Then, from the sum-marginalization consistency
constraint, we have:

pv(hv|€va (—);? @b) =

Zpu h |@b

aAv%u
u\v
A (hy)
pv(h |ev7@a79b) 7pu(hv|eb)
Ao (ho) (5.30)
1ngv(hv|ev7 6(17 @b) )‘E)nf#:) (h ) )‘U%u(hv)—i_ .

+ Ingu(hv|@b)
A (h) = Ny (B) + log po(hy ey, ©F, O) —
- Ingu(hv|®b)

where we express the update message /\gﬁﬁf)(hv) in terms of the old messages. To
estimate p, (hy|ey, O, Op) we add the last row of (5.30) over all the pairs u of hidden

variables including h,,:

SN (h,

uIJv

+ Z Ingv(hv‘evv @;7 eb) -

uIJv

) = Z /\U—>u(hv +

v (5.31)
> " logpu(hy|Oy)

uIv

Then, defining A, as the number of pairs u containing v and rearranging the

terms:

Av Ingv(hv|eva @:m Gb)

Cy Ingv(h |6va®a7®b =Vy —

and adding both equations in both sides, we obtain the update for

1ngv(hv|eva @:17 eb):

Ingv(hv|ev» @,aa @b) =

Jrcv—i—A

where log ¢, (hyley, ©),) = 2= —

= Z Agnjﬁ))(hv) + Z[logpu(hv|6b) — Ao (h)]
uDv uDdv (532)
ng hoy€s|04) = Y AT ()
UV
/
— i loB i (e, ©0)+
(5.33)
> [log pu(h|O3) = Aysu ()]
uIdv
1— Ci >k Gk(ho, €4]0)) and
=
pu(hv @b) o °
eAHu|(hu> (5.34)
uIJv

(h |€v,@ ) (% h | v)
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We can now to compute the update )\yffj)(hv):

)\E;nfif)(hv) = Avﬁu(hv) + Ingv(hvleva 9;7 @b)_

(5.35)
- Ingu(hv |@b)

The above formulas are more compactly expressed if we define message functions
by: My_u(hy) = e*v=+") and then, the update rules are:

vu\lly mv—)u(hv) (5 36)
pv(hv|evv @:17 @b) '
mv—m(hv) = m (h )
viul v

In summary, we have the update expression to update the parameters of the
feature functions, and the expression for the messages sent between the u and wv.
These update formulas arranged as shown in Algorithm 4 provide a block gradient
descend method that can be parallelized. At each iteration we find new updates of
the prior model parameters O, then we send messages, first from hidden variables h,,
to pairs of hidden variables u, and then we combine them obtaining the new messages
to update the posterior probability p,(hy|e,, O, 0) for the next EM iteration of the
main algorithm.

5.4.3 Feature functions

In previous sections we defined a general pairwise MRF model adapted to the detec-
tion of an unknown number of text lines. This model allow a wide range of unary
feature functions to estimate text line position and pairwise feature functions to model
text line labels between adjacent pixels. Now we describe the set of feature functions
fr and g, defined in Eq. (5.15) used for the task of handwritten text line segmentation.

Local fitting This function uses the information provided by the two Gaussian
distributions defined in Eq. (5.18) with a slight modification inspired by [61]. It
corresponds to a flattened Gaussian distribution on its maximum value. The width
of this Gaussian plateau is controlled by a threshold S;, which is computed as in [61]
and it estimates the interline space above and below line /. In summary, we define
this function as:

(ﬁff_cl)2 ; d; < rS
gi(ho =1,6,]0,) £ 291 0= o (5.37)
v , €v|Yq (y*;t;ﬂ%:bl) + (12;?? if d > 1S

where d; is the residue of the regression line, and r € [0, 1]. This flattened procedure
slightly modifies the computation of the partition function of likelihood probabilities
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Algorithm 4: Message passing algorithm for constrained minimization of free
energies. 7, and Z, are the partition function and 7 is a step length satisfying
the Armijo condition.

Data: {u}: empirical moments.

Result: ©;, A: model parameters, {p,(hy|ey, O, Op), pu(hy|Op)} marginals.
Initialize: 0 = 0, Oy € O, My_yy(hy) = 1;

while not converged do

for Vk e {I,} do

O < 0 +n <Z Si(h)pu(ha|©y) — Nlc)
ha

for Vv do
for Yu D v do

pu(hv|@b) = Z pu(hu|@b)
h

u\v

pu h'U @
M) = m<<hb>>
vV—U v

1
1 ) ot Ay
po(holey, ©,0) = vn (e—Zk gk (hv,e0|07,) H m'u(—u(hu)>
v uIv
for Yu D v do
_ pv(hv|ev7 9:1; ®b)

mv%u(hv) B mv<—u(hu)

1

1 ey
pu(hu|@b) = (e—Zk O fr (ha) H mv—m(hv))

Z
u vCu
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2

po(ey|hy, ©),04) but it still depend only on the variances o2, and therefore, the

update equations in Eq. (5.19) remain valid.

Line probability This function integrates the prior probability in Eq. (5.20) into
the learning process described in Algorithm 4. This prior probability can be seen
as a moment of the indicator function [h, = [] and consequently we can learn its
associated parameter 6;. We update the corresponding empirical moment py with the
line probability estimated in each iteration. In our case, for each line the empirical
moment is p; = p,(hy =1|©4, 0p). Thus, the function is defined as:

Ji(hy = 110) £ Oi[hy =1] (5.38)

With this function we expect to avoid to assign variables to surplus lines, and
reinforce the regression lines with higher probabilities.

Pairwise function Pairwise functions encode the probability of assigning a set of
labels to neighbor variables. In our task we encode in this function some assumptions
about the configuration of the lines. For example, in a given document two connected
variables are more likely to belong to the same text line, i.e. share the same label,
or as much, to consecutive lines. Besides, some documents may have two connected
variables from non-consecutive text lines, although they represent a few cases with
respect to the most common layouts. We define our pairwise function according
to those three possible scenarios. The function is defined on ¥,, and returns the
parameter associated to each possible case:

. bo if |hi—hj|io
fk(hi7hj|®b) = 91 Zf |h7 — h]| =1 (539)
b2 if |hi—h| =2

where 6y, 01,05 are parameters in ©; shared for all pair of hidden variables in u and
learned with Algorithm 4. The empirical moments puy for this function are learned
from the training set by analyzing the frequency of each considered case. In summary,
we have 5L, parameters to estimate during the M-Step, and 3+L parameters in © to
learn.

5.4.4 Initialization and final labeling

In this section we describe the steps required to configure our method for the task of
handwritten line segmentation. First, we define the initialization step which is crucial
for the good performance of the EM algorithm. Second, we describe the post-process
and final labeling.

Initialization The initialization of our method for handwritten line segmentation
consist of two steps. In the first place we detect the different text regions or paragraphs
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Figure 5.4: Example of the noise removal step in the initialization of the method. a)
Original document image. b) Processed image after the removal of the noise compo-
nents.

that compose the document image using the method described at the beginning of
this chapter. Then, for each of them we initialize the parameters of the regression
lines.

Noise removal Noise in documents are usually small connected components that
can affect negatively to the line fitting process of our method. Noise elements can
be produced in the scanning process, be small ink stains, or residues from previous
processes such as machine-printed text separation step. In order to identify and
remove noise connected components, we compute the mean area value a.. and remove
the ones which area is under a certain threshold of the mean t;¢q. In this way we
achieve to remove most small components and obtain a cleaner image. During this
process we can also remove some diacritics symbols that are part of the text, however,
all the components will be assigned to a line in the final process of the method, so it
will not be a problem in the final result.

Initial line hypothesis It is known that the EM algorithm is often sensitive to the
initial choice of the parameters. An inaccurate initialization of the line parameters
may lead the method to fall into a local maximum that do not correspond with the
better text line fitting. We combine several common techniques to propose an initial
set of regression lines, which will be refined along the iterations of the method.

e Blob estimation: We apply several steps based in the work [126] for skew correc-
tion and blob identification. We apply a set anisotropic 2D Gaussian filters of
size W x H on a range of orientations a and select the one with better response
on the projection profile. Then, we apply the Otsu binarization method to the
filtered image in order to obtain a set of blobs that represent the approximate
line locations.

e Overlapping detection: We analyze the obtained blobs in order to detect over-
lapping as result of touching or curved lines in the document. To do so, we
compute the mean connected component height and divide the blobs propor-
tionally to a threshold ¢, of this value. Besides, we identify residual blobs result
of filtering diacritics or noise components. We compute the ratio of text within
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Figure 5.5: Example of an accurate initialization process on an easy document. a)
Original image. b) Gaussian filtering. c¢) Resulting blobs. d) Initial regression lines.

each blob and remove the ones under a threshold ¢, learned from the training
set.

e Line estimation: The number of resulting blobs define the initial number of
candidate lines. For each blob, we estimate the regression line parameters using
the common line regression equations on the set of pixels that compose each of
them.

As can be seen in the image Fig. 5.5, in documents with simple layouts where lines
are properly separated, the initialization itself can be a good result of the detection of
the lines. A simple labeling at pixel level by proximity to the line should be enough.
In these cases, the execution of our posterior inference process will converge in a few
iterations and will be useful to label ascenders and descenders, or other problematic
characters. However, in complex documents with crowded or slightly curved text
the process is more challenging and the initialization usually is not accurate enough.
Fig 5.6 shows an example of a challenging image where only a few initial lines fit
exactly the correct text line.

A straightforward consequence of the initialization step is the possible over es-
timation of lines. It is possible that a line is approximated by two or more initial
line fragments. Besides, some diacritics from non-romance languages might be also
approximated by a short line segments. This effect is not a drawback for our method,
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Figure 5.6: Example of non accurate initialization process in a document image with
crowded text. a) Original image. b) Gaussian filtering. c¢) Resulting blobs. d) Initial
regression lines.

but the opposite. An initial over-segmentation is recommended, since we need to be
sure that we fit the enough number of lines to cover all the text lines. In the case of
initializing less than the correct number, some textual components will be probably
assigned to the incorrect line, producing several miss detection.

Post-process and final labeling

In the post-process step we analyze the obtained result in order to detect and
merge possible fragmented lines and remove surplus ones. After that, we label each
of the textual connected components according to the probability given by the MRF
model.

e Surplus lines removal: We remove the extra lines remaining after the algorithm
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convergence. Extra lines are featured by a low probability close to zero. We
detect and remove these lines by identifying the ones which probability is under
an ¢ value fixed beforehand.

e Fragmented lines: The over-segmentation from the initialization step may lead
to a fragmentation of a text line. Since our model is linear, the method deals
with curved lines by splitting the line into two or more segments. We analyze
the relative position between the lines in order to identify these cases and unify
the fragments into a single line.

e Final labeling: For each variable e we select the line ! that maximizes the
probability p,(h, = l|e,,®). We assign the connected component that contains
the variable to the line only if all the variables within the component share the
same label. Multiple labels in one component usually correspond with touching
characters. In that case we label each pixel of the component by distance to the
closest regression line.

5.5 Experimental evaluation

In this section we show the set of experiments designed for the task of handwritten
line segmentation. We pursue several objectives in this section. In the first place
we show qualitative and quantitative results obtained from the two presented ap-
proaches. These results allow to compare both methods and evaluate the impact of
the inclusion of pairwise relationships as contextual information with respect to the
local model. In the second place we prove the generality of our methods to be applied
on collections of documents with different layouts and characteristics. For this objec-
tive we dispose of several benchmark collections among which are included historical
documents, administrative annotated documents, letter-type documents and regular
documents with centered text in many different languages. With these experiments
we validate the hypothesis that led to the development of this method. Besides, we
will discuss the future improvements and research lines opened after this work.

5.5.1 Metrics

Now we describe the set of metrics used to display the results of the different ex-
periments. We adopted the evaluation protocol settled for the successive ICDAR
handwritten segmentation competitions as the main evaluation measure to validate
our results. This measure is widely used as a benchmark in the document analysis
community to evaluate their LS methods, so that we shall be able to compare against
the rest of published methods.

The performance evaluation method is based on counting the number of one-to-
one (020) matches between the detected lines and the ground truth. This comparison
is performed by computing the MatchScore table of [127]. The values within this
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Figure 5.7: Interface of the ICDAR Evaluation tool for handwritten text line and
word segmentation.

table measure the correspondence between the set of pixels G; from a detected region
i and a the set of pixels R; from a region j in the ground truth computed as

MatchScore(i, j) = (5.40)

being T'(s) a function that counts the elements on each set s. Several indicators are
then computed from this table. Being N the count of ground truth elements and M
the count of result elements, the values of the Detection Rate (DR%) and Recognition
Accuracy (RA%) are computed as

020 020
DR=— RA=— 5.41
20 RA= 2 (5.41)

then, the metric F-measure value (FM%) is computed combining the previous values
as

_ 2DR-RA

FM = ——
DR+ RA

(5.42)

To consider a one-to-one match is required that the matching score is equal or above
an acceptance threshold T,, we use the same threshold than the competitions fixed
in T, = 95%. Figure 5.7 shows the interface of the evaluation tool provided by the
competition site.

In the case of the collection annotated administrative documents, since we do
not disposed of a ground truth with the characteristics required for this evaluation
protocol, we will provide results in terms of RA, DR and FM.
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Figure 5.8: Three samples of document images from the ICDAR 2009 HW segmen-
tation contest.

5.5.2 Datasets

Now we present the set of benchmark datasets selected for this experimental evalua-
tion. We chose several collections of documents with different features and difficulties
with the objective to prove the adaptability of our method to different types of lay-
outs, languages and font types. Next we describe the main features of each dataset
in detail.

ICDAR 2009 dataset

This dataset is composed of a set of binary scanned handwritten documents created
by different writers. For the construction of the dataset each writer was ask to write
the same extract of text according to their own writing style and language. The set
of languages includes English, German, Greek and French. The full dataset contains
300 document images, which are divided in two partitions for training (100 images)
and test (200 images). The test partition contain a total of 4043 text lines. The
layout of the documents consist of a central paragraph of text and free of graphical
or non-textual elements, although some of them may contain some small noise com-
ponents. In general the lines are well separated with the exception of some touching
characters in some documents. Only a few documents present multi-skewed text and
light curvatures. Figure 5.8 shows some examples of documents.

ICDAR 2013 dataset

This dataset was an update of the previous one with the objective to include docu-
ments with an additional complexity. This dataset is composed of 300 images divided
in 150 images for training and 150 images for test, being this last set composed of
2649 text lines. The layout of the documets is similar than the previous one, although
it contains more complex and cramped documents as well as some multi-paragraph
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Figure 5.9: Three samples of document images from the ICDAR 2013 HW segmen-
tation contest.

and multi-skewed documents. The main difference relies in the inclusion of new com-
plex documents written in Indian Bangla with different content and document sizes.
Figure 5.9 shows some examples of documents from this dataset.

George Washington dataset

This dataset is composed of 20 grey-level images from the George Washington Papers
at the Library of Congress dated from the 18th century [128]. The documents are
written in English language in a longhand script from two different writers. This
database adds a set of different challenges with respect to the previous one due to the
old script style, overlapping lines and a more complex layout. Also, the documents
may contain non-text elements as stamps or line separators. We show several examples
in Figure 5.10. For this dataset there is not a defined ground truth for the task of
line segmentation, therefore we have manually created our own specially for this task
and use the same ICDAR evaluation protocol. For this reason, it is not possible to
compare our results with any other methods apart from previous works and the work
in [86]. We present the results as an indicator of the adaptability of our method to
historical documents.

Annotated administrative documents

Last, we have tested our method in a collection of administrative documents with
handwritten annotations. This is a more heterogeneous and complex dataset, since
contains documents with multiple text regions, each of them with different character-
istics as orientation and writing style. The collection includes letter-type documents,
annotations in machine-printed documents, information from bank checks and other
irregular documents. The set of documents on which our method will be applied is
the result of the application of a previous machine-printed text separation [129], in
order to remove all possible not handwritten components. The dataset is written in
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Figure 5.10: Three samples of document images from the George Washington dataset.

English and French languages and is composed by 433 document images. We show
some examples of documents in Fig 5.11.

5.5.3 Parameters and settings

We defined in our two method proposals several parameters required in the different
steps of the methods. In this section we describe each of them in detail as well as
other settings needed for the set of experiments.

Gaussian model

In the case of the Gaussian model we only required to set the stop criteria of the
EM algorithm. On the one hand we fixed the maximum number of iterations of the
algorithm to 200. We empirically set this value to ensure a proper adjustment of the
regression lines, since in the majority of the cases the convergence was reached under
this value. On the second hand we established as the second convergence criterion
the Kullback-Leibler divergence between the probability distributions computed on
two consecutive iterations. We have considered a convergence value of e = 1074,

Pairwise model

For this model we dispose of several parameters for the successive steps of our
algorithm. In the first place, in the initialization step we use a value for t4,¢q = 0.2%G ¢
as threshold to filter up noisy components. Since we only want to perform a coarse
filtering, this simple threshold achieves to remove most noise components and avoids
to confuse the EM regression process. The removed components at the end of the
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Figure 5.11: Three samples of document images from the dataset of annotated ad-
ministrative documents.

process will be labeled in the same way than the rest.

In the second place, for the estimation of the initial line hypothesis we apply a skew
estimation and blob detection based in [126], although we changed some parameter
values according to the performed experiments. We apply a set of Gaussian filters with
different orientations in the range of [—40, 40] degrees, and a filter size of %Hcc x 10W,
with a vertical and horizontal standard deviation of %HCC and %Ww, respectively.

In the third place, in what regards to the configuration of the MRF we learned
the parameters of the pairwise function from the training set of the ICDAR datasets.
We consider this dataset as an accurate sample of common handwriting script, and
therefore we use the same parameter values for the other experiments. We empirically
validated that updating these parameters along the iterations of the method did not
significantly improve the segmentation results, but the updating process increased
the processing time. Therefore for all the shown experiments we maintained the same
learned parameters.

Last, for the parameters of the fitting function in Eq. (5.37) we have used a
ratio value » = 0.3 and a value for ¢ = 0.1 for the pixels outside this range. The
maximum number of iterations of the EM was fixed to 50, with an additional stopping
criterion based in a threshold of the Kullback-Leibler divergence (KLD) between two
consecutive iterations distributions iterations of 1 x 1074,

5.5.4 Experiments
Random pixel selection

We aim at analyzing the impact of the density of random text pixels selected for
the construction of the graphical model. We conduct this experiment on the ICDAR
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2013 dataset for a pixel ratio of 1%, 3%,5%,10% and 15% of the total amount of
text pixels. Table 5.2 shows the obtained results in terms of the F-measure, mean
processing time, and its corresponding confidence intervals.

We see that using values above 5% does not produce significant improvements
in the results, while the computational complexity increases considerably due to the
large number of variables and connections in the MRF model. With a 1% of pixels,
we obtain a 95.52% in almost four times less computational time compared to 5%.
However, the reduction in the number of pixels may leave some text regions uncovered,
which can lead to an incorrect segmentation. Besides, we observe that the confidence
interval for higher number of pixels increases. This implies that the method becomes
less stable. For the rest of experiments we select a 5% of text pixels as standard
value, since it seems to provide a good trade-off between data representation and
time complexity.

(%) of points \ FM(%) \ Time(mean)
1% 95.52 + 1.46 12.6s + 1.1
3% 96.95 + 1.24 28.4s + 2.7
5% 97.05 £ 1.17 42.4s + 3.3
10% 97.05 £ 1.18 81.3s + 7.7
15% 97.05 £ 1.25 | 115.1s + 11.2

Table 5.2: Results for different percentage of random points selected for the construc-
tion of the graphical model.

ICDAR 2009 dataset

We show in Table 5.3 the results obtained on the ICDAR 2009 Handwriting Segmen-
tation dataset. We obtained an 95.20% FM for our first method using only local
features and the set of Gaussian distributions as the probabilistic framework. We see
as our method overcomes some of the other contestant methods, while there is still
place for improvement in order to reach the top results.

We performed an exhaustive analysis of the results an identified three main er-
ror sources that we describe next. In the first place we identified a problem in the
detection of short text lines usually located at the end of the document. This error
comes directly from the estimation of the line probability in (5.11). Since the number
of connected components that compose this type of lines is lower than the number of
components from larger text lines, the computed probability is significantly smaller
that the corresponding probability for the other regression lines. This promotes an
snowball effect in the rest of iterations where this line probability becomes smaller
and finally disappear from the computations. An example of this error is shown in
Figure 5.12. We see as the last text line is not fitted by any regression line, and
consequently its text components are be assigned to the closest regression line. The
penalization of this situation in the evaluation protocol is twofold, since it affects
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Method M 020 | DR (%) | RA (%) | FM (%)
CUBS 4036 | 4016 99.55 99.50 99.53
ILSP-LWSeg-09 4043 | 4000 99.16 98.94 99.05
HandwritingPAIS 4031 | 3973 98.49 98.56 98.52
CMM 4044 | 3975 98.54 98.29 98.42
Fernandez et al. [86] | 4176 | 3971 98,40 95,00 96,67
CASIA-MSTSeg 4049 | 3867 95.86 95.51 95.68

PortoUniv 4028 | 3811 94.47 94.61 94.54
PPSL 4084 | 3792 94.00 92.85 93.42
LRDE 4423 | 3901 96.70 88.20 92.25
Jadavpur Univ 4075 | 3541 87.78 86.90 87.34
ETS 4033 | 3496 86.66 86.68 86.67
AegeanUniv 4054 | 3130 77.59 77.21 77.40
REGIM 4563 | 1629 40.38 35.70 37.20
Gaussian 4061 | 3858 | 95.60 95.00 95.20

Pairwise 4044 | 3986 | 98.81 98.56 98.68

Table 5.3: Results on the ICDAR2009 Handwriting Segmentation Contest [2]
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Figure 5.12: Example of excluded short lines at the end of a page.

to two 020 associations and the total number of lines is not correct. We estimate
that this error correspond almost to the 40% of the reported errors, so the method
performance should be significantly better once this error is fixed.

The second error source is related to the over-estimation of the number of lines in
the initialization step. As a result of this we have observed two possible situations.
The first one refers to extra lines that end up fitting some ascenders and descenders
located between two text lines correctly estimated by other regression lines. This
situation slightly affect the quantitative results by adding and extra detection and in
some cases affecting to some 020 associations. The effect in the qualitative results
may be worst since all the ascenders and descenders from a text line could be assigned
to the extra line and in this way hinder the possible recognition of the text line. The
second situation caused by this type of error occurs when the extra line crosses and
intersects several other regression lines (see Figure 5.13 for an example). In this
situation the incorrect line is trying to fit isolated text components from diacritic
symbols or noise. At the end of the algorithm these type of lines get high probability
due to the fitted components are not being assigned to any other line, and therefore,
is not removed in the post-process step. This situation affects to both quantitative
and qualitative results depending on how many text components are fitted by the
incorrect line. We estimated this represent around the 50% of the reported errors.
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Figure 5.13: Example of a crossing line result of over-estimating the number of lines.

Last, we have grouped a set of not so common mistakes in the third group of
errors. This type of mistakes represent around the 10% of the reported cases and are
directly related with an under-estimation of the number of lines. Due to this problem,
some lines may end up the process not being fitted by any regression line, or in the
worst case, sharing a regression line with another text line, which results in the lose
of two text lines.

The second proposed method based in the PGM have proven to overcome most
of the issues of the first proposal. We obtain a 98.68% FM value, with a confidence
interval [98.23,99.13]. This result compares with the top methods of the competition
and overcomes the result obtained by the GMM approach. In addition, the analysis
of the results shows that 166/200 images reach 100% of FM, while the main errors
are concentrated in a few error cases. This result demonstrates the contribution of
the MRF model in the incorporation of contextual information and the improvement
in the initialization and post-process step.

Despite of the improvements in the post-process step to remove extra lines, one
of the most recurrent error sources comes again from the over-segmentation and non-
removed extra lines. In this case the extra lines often fits small diacritics or noise, and
are usually reduced to unique text connected components and in general the effect
on the other lines is smaller compared with the previous method. In this case the
quantitative results are penalized because of the extra detection, however, the effect
in the qualitative results has been reduced and, in views to the recognition of the text,
this issue should not affect to the global recognition, since the rest of the lines are
correctly segmented. An example of an annoying extra line can be seen in Figure 5.14,
although in the majority of the cases this is corrected properly in the post-process,
this remaining errors affect to several one-to-one associations.

Another type of error observed is produced in reduced areas with several touch-
ing characters from consecutive lines. In those cases the connectivity in the graph
between these characters may be high in comparison with other non-touching char-
acters, and therefore the exchanged messages may favor the same labeling for all the
text component instead of split between lines. An example of this effect can be seen
in Figure 5.15.

ICDAR 2013 dataset

In Table 5.4 we show the result obtained on the ICDAR 2013 Handwriting Segmen-
tation dataset. The additional complexity of this dataset is reflected in the results,
where we obtain a 90.16 and a 97.05% of F-Measure for our Gaussian and Pairwise
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Figure 5.14: Two examples of extra lines not removed in the post-process step.
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Figure 5.15: Segmentation error produced when several characters from the same word
are highly connected with another text line. The messages sent between variables from
these words favor the same labeling for every component in conflict.

approaches, respectively. In this case the behaviour of our first approach was similar
than for the previous collection, and the new characteristics of the dataset stand out
the weaknesses of this approach. We carry out the analysis of the results according
to the results obtained by the Pairwise method.

In this case the errors found are also similar than the ones obtained in the previous
experiment, although we observed some new situations due to the new sources of
document layouts. In general, documents with cramped lines are well addressed by
the detection of overlapped lines or the overestimation from the initialization step.
In these cases it is possible that we initialize a line that covers two or more text lines
in the document (see Figure 5.6). If this is not detected and we have initialized some
extra lines, some of them usually end-up fitting the text components of the overlapped
lines. However, there are still some cases where our method is not able to separate
text lines that are too overlap as can be seen in the bottom example in Figure 5.16. In
addition, our method is able to deal with light curvatures of the text by splitting the
line in fragments or because the connectivity of the curved area favors it. However,
in some cases as the top example in Figure 5.16 the linear approach of our regression
is not enough and ends-up fitting components from other lines. Nevertheless, in the
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Method M 020 | DR(%) | RA(%) | FM(%)
INMC 2614 | 2614 98.68 98.64 98.66
NUS 2645 | 2605 98.34 98.49 98.41
GOLESTAN-a 2646 | 2602 98.23 98.34 98.28
CUBS 2677 | 2595 97.96 96.94 97.45
IRISA 2674 | 2592 97.85 96.93 97.39
LRDE 2632 | 2568 96.94 97.57 97.25
Fernandez et al. [86] | 2697 | 2551 96,30 94,58 95,43
QATAR-b 2609 | 2430 91.73 73.14 92.43
MSHK 2696 | 2428 91.66 90.06 90.85
Gaussian 2715 | 2418 | 91.28 89.06 90.16

Pairwise 2647 | 2570 | 97.01 97.09 97.05

Table 5.4: Results on the ICDAR2013 Handwriting Segmentation Contest [3]

Method M | o20 | DR (%) | RA (%) | FM (%)
Fernandez et al.[86] | 693 | 653 91,30 94,20 92,70
Cruz et al. [130] | 631 | 551 | 82,60 | 87,30 | 84,80
Base line [86] 727 | 338 47,20 46,40 46,70

Proposed | 702 [ 614 | 92.05 | 88.16 | 90.06

Table 5.5: Results on the George Washington dataset.

practice our method is able to deal with the majority of these situations as seen in
Figure 5.19.

In comparison with the rest of the methods we see as our results are slightly below
the top methods in quantitative terms. We could perform a more exhaustive compar-
ison if we had per image results, however we can provide some additional information
in views of future comparisons. For instance, we obtained a total of 125/150 images
labeled with a 100% of FM, while for the rest of images the 80% of the errors are re-
lated with over-segmented lines and extra lines fitting isolated components. In views
of text recognition this errors should not be a problem to obtain a correct result. The
other 20% or error sources are related with the overlapping of very close lines and
some other problems arising from crowded areas of text (Figure 5.16). In addition,
we also provide the confidence interval as 97.05% 4= 1.25 for an o = 0.05.

George Washington database

Results obtained on the George Washington database are shown in Table 5.5. We
performed this experiment using the same configuration than in the previous ones,
the idea is to evaluate the adaptability to other datasets without parameter tuning
or training. In addition, we have not taking into account some special characteristics



5.5. Experimental evaluation 115

| ‘ 'o’{ b%Ung“/(jé “{‘mnc&f M‘L‘””O’@f

fe overSew *V\e C(Go\J(\o/"
L'J “{(M/")

‘L omev] /)v:rk‘ U (,WV’S
v/é// o fiamce 4

He m’mawm creation ¢F g stong well meed
\’lOﬁO %Dlernmen‘lﬂfb chnd necl e mQ;%& Iy

TLWS H‘S yfﬂ[f@%hw 51%4%1 Es%obf?)shed mom oo

Figure 5.16: Two examples of having extra lines.

of this dataset that could be integrated into the model for a better performance.

Some of this characteristics are for example the non-textual elements. Some images
contain stamps, separator lines between paragraphs or underlines, which detection
may affect to the numerical results. These underlines are usually labeled in the ground
truth as a component of the upper text line, while our methods could recognize it as
a separated text line (see Figure 5.17). The same effect happens in some arbitrary
separator lines, signatures of footnotes, which are labeled in the ground truth as a part
or another line or as an independent line. This labeling issue, although does not have
an impact in the qualitative results, and in an hypothetical text recognition, it does
affect to the numerical result, since implies several one-to-one bad associations and
an excess of the number of segmented lines. In addition, to process this documents
we previously had to apply a binarization step to extract the connected components
of text. We used the common Otsu [131] binarization technique, which incorporates
some noise into the image that may affect to the overall result.

We obtained an 84.8% of FM value for our Gaussian model. The same problems
observed in the experiments on ICDAR dataset are observed here, although they
are concentrated in the cases described below. For instance, is common that two
regression lines overlap and end up fitting the same line apart from the line that were
supposed to fit. An example of this error is shown in Figure 5.18. This effect was
handled by the graphical model by the incorporation of the pairwise information.
These relationships force the model to not cross and therefore corrects this type of
error. In addition, the new representation in line segments is able to fit smaller
lines even if they are aligned in a different way in any location of the document.
Overcoming this problem led to a 90.06% of FM value with an increase of the DR of
almost a 10%. The labeling problem of underlines and similar structure still affects
to the quantitative results, although the separate detection of these lines is not an
issue in views of recognition.
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Figure 5.17: Example of separator line included in a wrong regression line.
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Figure 5.18: Two regression lines trying to fit on connected components from different
lines.

Administrative annotated documents

As for the GW dataset, we use the same parameter configuration than for the ICDAR
experiments. In this dataset one of the challenges is to detect the different text regions
in order to process them separately. For instance, in Figure 5.11a we can appreciate
at the bottom of the central block of text three text lines with different font that
have to be labeled separately. We can see another example in Figure 5.11b, where
several lines at the bottom of the document may be merged as the same line in the
case of processing the full page. Our method behaves on these cases on two possible
ways. In most of the cases the different text regions are detected in the initialization
step and then processed separately. However, in some documents where the region
segmentation is not achieved, text lines are approximated by several regression lines
due to the initial over-segmentation.

On this experiment we are not able to compare to other works, since it is a non-
published collection of documents, however we can compare against our previous work
in order to validate the new model. Table 5.6 shows the results obtained. We see that
the results are significantly improved with the new proposed approach. The observed
improvement confirm the contribution of the proposed model. In addition, the result
on this dataset proves the versatility of our method on complex layouts.

The main sources errors in this dataset are again related with the effect of over-
segmentation of some of the text lines, and the labeling of residual non-textual ele-
ments as lines, which reduces the accuracy of the method. However, as in the previous
dataset, this effects should not have a big impact on a posterior recognition task.
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Figure 5.19: Results on four fragments of images from the ICDAR 2013 dataset that
include crowded text and light curvatures.
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Method | Precision | Recall | FM(%)
Gaussian 69.45 72.38 70.88
Pairwise 79.75 82.70 | 81.19

Table 5.6: Results on the administrative handwritten annotation dataset.

5.6 Conclusion

In this chapter we present two models for the task handwriting text line segmentation
based on the estimation of a set of regression lines. Our models rely on the EM algo-
rithm for the estimation of the regression parameters, and diverge in the probability
distribution that model. First, we propose a GMM where each component of the mix-
ture represents a regression line. Second, we propose a probabilistic framework that
relies on a MRF model for parameter learning of neighboring pixels. We implement a
message-passing-based algorithm to compute approximate inference and learning the
model parameters. Our methods can be applied on documents with different layouts
and features. Besides, our framework permits to easily extend the model with the
inclusion of prior information by means of new feature functions.

We conduct several experiments with promising results on four collections of doc-
uments without model reconfiguration. The selected datasets include several types
of layouts, historical an contemporary documents, from several writers and scripts.
Besides, our method is able to deal with most of the situations regarding touching
text lines and light curvatures of the text, which demonstrates the contributions of
the proposed model. The results validate our initial hypothesis, since we prove that
a set of regression lines can fit with high accuracy the actual text lines locations.

As future work lines, we consider to use higher order regression model that could
lead to better approximation of curved and complex lines. Besides, we think that
some of the current errors may be corrected with the inclusion of more informative
feature functions. Note that we use a reduced and basic set of feature functions based
on the pixel location and common pairwise interactions. We believe that the inclu-
sion of more specific knowledge could improve the overall results. For instance, we
can incorporate improved pairwise feature that analyzes the edge length and relative
position between the connected variables. In addition, we plan to integrate new dis-
criminant features in order to perform machine-printed /handwritten text separation
and line segmentation within the same process. In this way we will be able to process
administrative annotated documents directly without the need of previous steps.



Chapter 6

Conclusions and Future Work

In this thesis we have tackled the problem of document layout analysis and the specific
case of handwritten text line segmentation. We proposed several methods based on
probabilistic graphical models and other sources of contextual information for this
purpose, and we have evaluated them on several collections to prove our hypotheses,
and compare us against other works in the field. In this section we highlight the
main conclusions extracted from the work presented in this thesis, and describe the
research lines opened as a result of the performed contributions.

6.1 Summary and future work
Layout analysis

In what regards to the chapter of layout analysis, we wanted to analyze and develop
methods that account for contextual relations. In order to define these relations
we relied on both, the definition of the task, and the implicit characteristics of the
datasets to which our methods were addressed. We presented several methods and
statistical resources for this task, and performed a series of experiments to validate our
hypotheses and contributions. In the following, we summarize the main conclusions
extracted from this work.

We incorporated relative location prior into the models through the set of RLF.
This is a good resource to introduce this kind of contextual information, since the
formulation as a features allows to incorporate them within any model. We performed
experiments to validate the contribution of these features to the different tasks, and
concluded that its use produces significant improvements on the detection of the re-
gions from structured documents. This was an expected behavior that was confirmed
by our experiments. In the case of non-structured documents, the global effect of

119
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these features was only significant, from a statistical point of view, in the detection of
common regions, such as text regions. In less common regions, the probability maps,
and therefore the set of features, is not informative enough to improve its recogni-
tion. Another way to validate the contribution of these features is analyzing its role
through the different methods. We saw as the inclusion of RLF on the 2D-PCFG did
not produce any improvement, quite the opposite, since the model already accounted
for the relative location of the regions in the document. However, in the other models
without an explicit representation of the document structure, the contribution of RLF
was determinant.

We presented several methods for the task of layout analysis, each of them de-
vised to encode some kind of contextual information. Our model based on CRF
was designed to integrate the set of RLF and to encode pairwise contextual relation-
ships between neighbor variables in the graph. The effect of these relationships was
smoother regions in the final segmentation. We compared several inference algorithm,
and conclude that the o — 5 — swap version of Graph-Cuts was the method that offer
better response for this task. We presented a statistical method for layout analysis
on partially structured documents. We modeled relations between regions and model
variables by means of a Bayesian network, which allowed us to compute the proba-
bility of a particular segmentation result and select the best among several iterations
of the method. Besides the EM-based algorithm proved to be able to account for
changes in the location and size of the regions with respect to the learned structure.
We obtained remarkable results with our method based on 2D-PFCG for layout anal-
ysis on the BH2M dataset. The proposed grammar accounted for the structure of the
document composed of sets of records. However, the method was highly expensive
in computational time, and therefore it is not clear if it can be used on practical
applications.

Handwritten text line segmentation

In what regards to the handwritten line segmentation task, we presented two
approaches based on the hypothesis of fitting a set of regression lines through the
text line components. Our models rely on the EM algorithm for the estimation of the
regression parameters, and diverge in the probability distribution that model.

First, we proposed a simple probability distribution based on a set of Gaussian
distributions where each component of the mixture represented a regression line. With
this model we demonstrated that our hypothesis was correct, and obtained good
results on several benchmark datasets. However, this model was defined on local
information at pixel level and we considered that using contextual information may
lead to the correction of some of the detected error. This was the main motivation
to develop the second proposed approach. We proposed a probabilistic framework
that relied on a MRF. We successfully combined the EM process with an inference
algorithm and a parameter learning process. Through this model we incorporated
several types of contextual relationships between variables and between lines, that
lead to significant improvements in all the datasets.
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Our method can be applied on documents with different layouts and features.
Besides, our framework permits to easily extend the model with the inclusion of prior
information by means of new feature functions. The experiments performed aim to
demonstrate also the generality of our method. We selected datasets that include
several types of layouts, historical an contemporary documents, from several writers
and scripts. We proved that our method is able to deal with most of the situations
regarding touching text lines and light curvatures of the text, which demonstrates the
contributions of the proposed model. The results validate our initial hypothesis, since
we prove that a set of regression lines can fit with high accuracy the actual text lines
locations.

As a consequence of this work, we considered that several research lines for future
work have been opened:

e The transition to a higher order regression model could lead to a better approx-
imation of curved and complex lines.

e The model is easy to extend with additional feature functions. The research of
more informative feature functions, or the use of additional classifiers or other
machine learning techniques to encode information through these function may
lead to great improvements of the results.

e Several tasks of document analysis can be also included in the method through
the set of functions. We consider that could be possible to perform machine-
printed /handwritten text separation and line segmentation within the same
process. Which would be of great interest for business-oriented applications.
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