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Abstract

A key aspect to design an orthogonal frequency division multiplexing (OFDM) system for

combined positioning and high-data-rate communications is to find optimal data and pilot

power allocations. Previously, A capacity maximizing design has been investigated for the

case of static channels. However, it is logical to consider channel variation for different

OFDM symbols due to movement. Joint design of data and pilots with considering the

time variations of the channel and correlation between the corresponding channel taps

from different OFDM symbols increases the capacity for a given time-delay estimation

accuracy. We propose a method for joint design of data and pilots for the time-varying

channels. Numerical results approve the improvement in terms of channel capacity for a

desired value of time-delay estimation accuracy.

Next, we consider the power allocations for OFDM wireless network localization

(WNL). In location-aware wireless networks, mobile nodes (agents) can obtain their

positions using range measurements to other nodes with known positions (anchors). Op-

timal subcarrier power allocation at the anchors reduces positioning error and improves

network lifetime and throughput. We present an optimization framework for ergodic

and robust subcarrier power allocations in network localization with imperfect knowledge

of network parameters based on the fundamental statistical limits. Ergodic and robust

power allocations are obtained using semidefinite optimization problems in non-iterative

and iterative forms with both unicast and multicast transmissions. Results show that

robust and ergodic power allocations provide more accurate localization than non-robust

designs under channel and agents positions uncertainty.

Finally, we extend the localization techniques for 5G systems. 5G communications are

characterized by large bandwidths, large antenna arrays, and device-to-device communi-

cation. We describe why and how these properties are conducive to accurate position-

ing. We also provide an overview of how 5G technologies have been used for positioning

in recent literature. Particularly, millimeter wave and massive multiple-input-multiple-

output (MIMO) are considered enabling technologies for future 5G networks. While
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their benefits for achieving high-data rate communications are well-known, their poten-

tial advantages for accurate positioning are largely undiscovered. We derive fundamental

bounds on the position and rotation angle estimation in the presence of clusters for wide-

band systems. A detection algorithm based on multiple measurement vectors (MMV)

matching pursuit is used for the coarse estimation of angle-of-arrival (AOA)/angle-of-

departure (AOD) and time-of-arrival (TOA) that are applied for initialization of the

estimation phase based on the expectation maximization (EM) with a sequential iterative

procedure. The results show the convergence of the estimated parameters to the values

obtained by the inverse of Fisher information matrix.
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Chapter 1

Localization in 5G: Overview and

Challenges

1.1 Introduction

The rapid increase of mobile data volume, the use of smartphones, and the global band-

width shortage are the main challenges for current wireless networks. At any given loca-

tion, the maximum available bandwidth for all cellular technologies is 780 MHz with the

carrier frequencies ranging from 700 MHz and 2.6 GHz [Rap13]. A tenfold increase of the

data rate requires an almost unavoidable increase of the available bandwidth. Given that

the goal is to have available a bandwidth on the order of GHz for high data rate commu-

nication with low latency and higher localization accuracy, millimeter wave (mm-wave)

frequencies are considered as one of the best candidates. Moreover, increasing the band-

width provides a better time resolution, thereby ensuring the accurate estimation of the

TOA that is used for localization. Fig. 1.1 shows that the mm-wave spectrum ranging

from 30 GHz to 300 GHz provides more spectrum in bands not previously used in cellular.

Particularly, for carrier frequencies fc < 6 GHz the spectrum has a maximum bandwidth

B = 0.555 GHz, in the centimeter wave (cm-wave) frequencies it is possible to achieve a

bandwidth B = 1.3 GHz with fc = 28 GHz. In the mm-wave frequencies, we achieve a

unlicensed bandwidth B = 7 GHz at fc = 60 GHz. Spatial processing techniques relying

on massive multiple-input-multiple-output (MIMO) transceivers can also be applied in

mm-wave frequencies [Rus13]. Moreover, the spectral allocations in mm-wave frequencies

are closer to each other than pieces of spectrum used by the cellular operators nowadays,

which are scattered between 700 MHz and 2.6 GHz. This makes mm-wave frequencies

more homogenous. Despite the aforementioned advantages, using mm-wave frequencies

1
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Figure 1.1: Mm-wave spectrum for 5G.

presents some challenges including path-loss and atmospheric attenuation.

However, it has been shown that attenuation due to rain and atmospheric absorp-

tion has a negligible impact on the mm-wave at 28 GHz to 38 GHz for small distances

(i.e.,less than 1 km) [Zha06]. Due to attenuation at mm-wave frequencies, directional

antennas1 can be used at the transmitters and receivers to overcome the path-loss effects.

Using a large number of antennas provides narrow beams towards the user that makes

the mm-wave link highly directional. Moreover, the large bandwidth at the mm-wave

frequencies provides TOA estimates of high accuracy. Higher directionality and higher

TOA estimation accuracy lead to better localisation accuracy.

Furthermore, the location of the user is extremely important for the transmitter in

highly directional communication. Knowing the location of the user the transmitter can

steer the beam directly or to a reflected path. For the case that the line-of-sight (LOS) is

blocked, steering the beam to the reflected path with the strongest signal power can be

helpful for user localization. The data transmission is increased based on the statistical

channel knowledge for user location. This leads to a synergy between localization and

communication. In today’s technologies such as global positioning system (GPS), accu-

rate location information cannot be provided for indoors and in urban canyons. Other

technologies such as ultra-wide bandwidth (UWB), can provide indoor localization with

1Directional antenna is an antenna designed to radiate or receive greater power in specific directions
allowing for reduced interference from unwanted sources.
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the cost of high hardware complexity [She10a]. Also, WiFi can provide indoor localization

at low cost but not so high accuracy as GPS outdoors and UWB indoors [Fol13].

The use of 5G technologies to obtain position and orientation was previously explored

in [San02, Den14, Var14b] for mm-wave and in [Hu14, Gue15, Sav15] for massive MIMO.

Beam training protocols through direction of arrival2(DOA) were considered in [San02]. A

hypothesis testing user localization approach was presented in [Den14] using the concept

of channel sparsity that is due to few and clustered paths. These methods limit virtual

angle spacings 1/NTx and 1/NRx due to the limited number of antenna elements in the

transmitter NTx and receiver NRx. Localization based on received signal strength (RSS)

was considered in [Var14a]. This approach provides meter-level positioning accuracy. A

method to estimate the position of the user devices using an extended Kalman filter com-

bined with travel time of the signal from the transmitter to the receiver (TOA) and DOA

estimations in the uplink was proposed in [Wer15a, Koi16]. This method assumes line-of-

sight (LOS) propagation thanks to the high density of the access nodes and it estimates

the clock offsets between user nodes. A method based on DOA and RSS estimation for

non-cooperative transmitter localization was considered in [Wer15b]. This method uses

an antenna structure that can selectively receive energy from different sectors (sectorized

antennas) to obtain sector-powers as sufficient statistics for DOA and RSS estimation.

However, the method assumes that different samples in a sectorized antenna are received

sequentially in time, what can slow down the localization. Using massive MIMO systems,

the work in [Hu14] considered angle-of-arrival (AOA)/angle-of-departure (AOD)3 estima-

tion for localization, and [Gue15] considered the localization in an LOS scenario by joint

TOA, AOA, and AOD.

In this chapter, it is shown that mm-wave and massive MIMO, both candidates for

5G networks, are also enabling technologies for localization. First, a brief overview of 5G

systems and the main challenges including path-loss effects are provided. Different path-

loss models are presented and the main differences between the path-loss effects in the

mm-wave frequencies and UWB systems are explained. For the sake of comparison, UWB

systems are used due to providing higher localization accuracy for indoor applications

compared to WiFi. Since the estimation of mm-wave channels is of critical importance

for user localization, the physical channel model for mm-wave systems together with

the limited scattering property are presented. This property leads to the sparsity of the

2DOA or AOA are defined as the angle between the received beam with respect to a reference line in
the receive antenna array.

3AOD is defined as the angle between the transmitted beam with respect to a reference line in the
transmit antenna array.
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mm-wave channels, which differs from UWB channels since the later are rich in scattering.

It is demonstrated that the TOA, AOA, and AOD can be estimated using the sparsity of

the mm-wave channels. Hybrid beamformers are explained as the most promising solution

for accurate beam steering in mm-wave; they can be used to generate narrow beams used

for the user localization by beam training protocols. Moreover, different localization

techniques based on the TOA, AOA, and AOD and their combination are presented as

the promising solutions in the mm-wave frequencies. Finally, the problem of joint data

and pilot design has been addressed.

This chapter is organized as follows. Section 1.2 represents an overview of 5G systems.

Section 1.3 proposes localization with the OFDM signals and their applications in the long

term evolution (LTE) systems and 60 GHz indoor. Section 1.4 provides an overview on

the mm-wave channels, parameter estimation, sparsity in the estimation of AOA/AOD,

and localization. Section 1.5 presents motivations and objectives. Finally, thesis outline

and research contributions are presented in Sections 1.5 and 1.6, respectively.

1.2 5G Systems

In this section, we briefly describe 5G systems, their properties and benefits. First,

5G waveforms and their properties are briefly explained. Second, mm-wave systems are

explained in terms of their carrier frequencies, bandwidth, and data rate. Third, the

benefits and challenges of the massive MIMO systems are described. Fourth, the concept

of device-centric architecture in 5G systems is addressed. Finally, the concepts of device to

device (D2D) communication, location-aware communications, and ultra dense networks

are described.

1.2.1 5G Waveforms

The 5G waveforms are divided into single-carrier waveforms and multi-carrier OFDM-

based waveforms. The key design targets for the physical layer waveforms in 5G are:

higher spectral efficiency, lower in-band and out-of-band emissions, asynchronous multiple

access, lower power consumption, and lower implementation complexity. In this section,

the properties of each waveforms are briefly described to justify the use of multi-carrier

OFDM-based waveforms in this dissertation.
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Single-Carrier Waveforms

Signel-carrier waveforms provide lower peak-to-average power ratio (PAPR) that leads

to high power amplifier (PA) efficiency and extended battery life. Moreover, in the

presence of multipath the equalizer is needed to achieve high spectral efficiency. Some

examples for the single-carrier waveforms are: constant envelope waveforms such as

minimum-shift keying (MSK) (adopted by IEEE 802.15.4) and Gaussian minimum-shift

keying (GMSK) (adopted by global system for mobile communications (GSM) and Blue-

tooth), single-carrier quadrature amplitude modulation (SC-QAM) (adopted by EV-DO

and UMTS) [Sor06], single-carrier frequency domain equalization (SC-FDE) (adopted by

IEEE 802.11ad), single-carrier frequency-division multiplexing (SC-FDM) (adopted by

LTE uplink), and zero-tail SC-FDM.

• Constant envelope waveforms such as MSK and GMSK provide higher transmit

efficiency by allowing constant transmit carrier power, i.e., 0 dB PAPR. Moreover,

they are able to suppress the side lobes and allow asynchronous multiplexing with

reasonable receiver complexity. However, the main drawback is the reduced spectral

efficiency [Wan08, Mur81].

• To improve the spectral efficiency of the constant envelope waveforms with increas-

ing receiver complexity due to the equalization algorithm, SC-QAM is a good can-

didate. Moreover, the PAPR is still low and asynchronous multiplexing is allowed.

• The equivalent form of SC-QAM with cyclic prefix (CP) is SC-FDE that enables

simple frequency domain equalization (FDE) implementation for single-carrier wave-

form to improve spectral efficiency under multipath fading. The main drawback of

this waveform is the degradation of the spectral efficiency due to the added CP

[Fal02].

• To mitigate multipath degradation with FDE, SC-FDM is applied. Moreover,

SC-FDM provides dynamic bandwidth allocation due to the flexibility in allocating

different bandwidth to multiple users through frequency multiplexing i.e., single-

carrier frequency-division multiple access (SC-FDMA) [YJ10].

• Finally, zero-tail SC-FDM provides flexible bandwidth assignment with improved

spectral efficiency due to removal of CP. However, configuring the zero-tail leads to

extra signaling overhead.
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Multi-Carrier Waveforms

Multi-carrier OFDM-based waveforms support orthogonal sub-carriers within a given

bandwidth. Moreover, multi-carrier OFDM-based waveforms are easily integrated with

MIMO that leads to high spectral efficiency. Some examples for the multi-carrier wave-

forms are: cyclic prefix OFDM (CP-OFDM) (adopted by LTE), CP-OFDM with4

weighted overlap and add (WOLA) (existing LTE implementation), universal-filtered

multi-carrier (UFMC), filter bank multi-carrier (FBMC), and generalized frequency divi-

sion multiplexing (GFDM) [Ban14].

• CP-OFDM is efficient due to using inverse fast Fourier transform (IFFT)/fast

Fourier transform (FFT) in the transmitter and receiver, respectively. The spec-

trum allocation to different users is flexible and the application of MIMO technology

is flexible. Moreover, the multipath mitigation is possible using simple FDE. An

application of CP-OFDM with WOLA is used in LTE downlink.

• UFMC uses band-pass transmit filter for each resource block that only passes the

assigned resource block. A guard interval of zeros is added between successive

IFFT symbols in the transmitter to prevent intersymbol interference (ISI) due to

transmit filter delay. UFMC provides similar out-of-band interference suppression

performance to CP-OFDMwith WOLA. However, the complexity of the transmitter

and receiver is increased and the systems is prone to ISI due to the lack of CP

[Wan14].

• FBMC improves spectral property using prototype filter with frequency domain

over-sampling. The main advantage of FBMC is superior side-lobe decay than other

multi-carrier waveforms but the benefit reduces with PA non-linearity. However,

the complexity of the receiver is increased, the systems are susceptible to ISI under

non-flat channel, and integration with MIMO is more complex than OFDM [Dor14,

FB11, Bel10, Fan13].

• In GFDM, multiple OFDM symbols are grouped into a block, with a CP added to

the block. In each block the prototype filter is cyclic-shift in time among different

OFDM symbols. The main advantage of GFDM is the better out-of-band inter-

ference suppression than CP-OFDM with/without WOLA. However, it requires

complicated receiver to handle ISI/intercarrier interference (ICI), the block latency

is increased, and multiplexing with CP-OFDM requires large guard band [Mic14].

4WOLA is a weighted overlap and add technique for the improvement of out-of-band and in-band
asynchronous user interference suppression.
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Figure 1.2: Different implementation options for single-carrier and multi-carrier OFDM-
based waveforms.

Fig. 1.2 shows different blocks that are used for each single-carrier and multi-carrier

OFDM-based waveforms. As it is observed, the common blocks among all the waveforms

are IFFT and serial/parallel (S/P) shown by the blue colors, while the blocks shown with

the green colors are optional and used to form the specific waveforms. Then, the data is

transmitted through necessary and optional blocks to the radio-frequency (RF) using a

specific waveform.

In conclusion, multi-carrier OFDM-based waveforms in the form of CP-OFDM offer

higher spectral efficiency and low implementation complexity and are good candidates for

the downlink with a more relaxed energy efficiency requirement. Moreover, they lead to

efficient use of power and bandwidth for cooperative localization as will be explained in

more details in Section 1.3.

1.2.2 Mm-Wave

The mm-wave band provides 5G systems with an amount of bandwidth on the order of

GHz. Some of the implications of using the mm-wave spectrum include:

• The possibility to use of cognitive radio techniques to share the spectrum with



8 CHAPTER 1. LOCALIZATION IN 5G: OVERVIEW AND CHALLENGES

satellite or radar systems.

• The capability to generate very narrow beams with smaller directional and adaptive

antenna arrays thanks to small wavelength.

Mm-wave can provide high peak, average and outage rates on the order of gigabit per

second (Gbps), as required in different 5G scenarios e.g., autonomous driving. Moreover,

it leads to better localization accuracy due to providing the bandwidth of the order of GHz

that leads to higher resolution in the estimation of the TOA for localization purposes.

Finally, in mm-wave frequencies the dimension of antenna arrays is sufficiently small and

it is possible to jointly apply mm-wave and massive MIMO for indoor localization using

AOA/AOD estimation.

1.2.3 Massive MIMO

Massive MIMO systems can operate either at mm-wave frequencies or lower ones [Swi13].

Massive MIMO systems are considered as systems with large number of antenna elements5

in the transmitter NTx # 1 and with P single-antenna or multi-antenna terminals. To

suppress interference and achieve the sum capacity of the multi-user channel, it is re-

quired to have P channel vectors mutually orthogonal (favorable propagation). For the

case of mutually non-orthogonal channel vectors, advanced signal processing methods

(e.g., dirty paper coding [Cai03]) are used. Favorable propagation can be achieved with

sufficiently large number of antenna elements NTx (e.g., NTx = 100) for a given number

of single-antenna terminals P (e.g., P = 12) in non-line-of-sight (NLOS) environments

with rich scattering or LOS environments with dropping a few worst terminals that cause

non-orthogonal channel vectors. Massive MIMO enables simple spatial multiplexing/de-

multiplexing procedures. However, channel estimation is a challenging step in the massive

MIMO systems. The channel coherency is limitted by the propagation environment, user

mobility, and the carrier frequency that limits the number of orthogonal pilots. Moreover,

reuse of pilots leads to pilot contamination that needs to be mitigated [Che14]. Fig. 1.3

shows a massive MIMO system in the uplink and downlink for LOS propagation with

the base station (BS) equipped with NTx antennas that serves P single-antenna termi-

nals. Finally, massive MIMO systems either at mm-wave frequencies or lower ones can be

used for localization by estimating the AOA/AOD with high accuracy due to using large

number of antenna arrays in the transmitter and the receiver.

5At a typical cellular frequency of 2 GHz; the wavelength is 15 cm and up to 400 dual-polarized
antennas can thus be deployed in a 1.5 m × 1.5 m array.
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uplink

downlink

Figure 1.3: Illustration of the massive MIMO system in the uplink and downlink for LOS
propagation.

1.2.4 Device-Centric Architecture

Device-centric architectures provide a promising approach to meet the increasing demand

for throughput that is required by applications in today’s mobile devices, such as video

streaming that requires at leat 0.5 Mbps data rate. The uplink and downlink as well

as control and data channels need to be reconsidered. In particular, the cell-centric

architecture should evolve into a device-centric meaning that a given device should be

able to exchange multiple information flows through different sets of heterogeneous nodes

[Boc14]. Fig. 1.4 shows the cell-centric and device-centric networks where in the cell-

centric network each user is communicating with the BS of the same cell directly while in

the device-centric network each user can cooperate with the other users directly or act as

a relay to other users for the communication with the BS or other users. More details on

the different types of device to device communication are described later in this section.

Among the device sentric and massive MIMO for 5G, mm-wave is a good candidate for

localization due to higher bandwidth and smaller size of antenna arrays due to smaller

wavelength. This enables highly directional links that are the key for the estimation of

AOA/AOD for localization purposes. Consequently, the main focus is on the mm-wave
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cell-centric device-centric

Figure 1.4: Illustration of the cell-centric (left) and the device-centric network (right).

localization for the rest of this chapter.

Device-Centric and Cell-Centric Positioning

In cell-centric localization, each agent communicates with multiple anchors6. This requires

high density of the anchors and long-range transmissions. In device-centric localization,

the agents can obtain the information from both anchors and agents. Consequently, high

anchor density or long-range transmissions are no longer required [Wym09]. If an agent

cannot obtain its position based on distance estimates with respect to the anchors, device-

centric localization is used to cooperatively obtain the position. This increases localization

accuracy and coverage 7.

1.2.5 D2D Communication

D2D communication can potentially reduce latency and power consumption and increase

peak data rates. In the device level 5G cellular network, each device communicate directly

to another device or through the support of other devices. The BS either partially or fully

controls resource, destination, and ralaying devices or not have any control. Four types

of device-level communications are briefly described [Teh14].

6At least 3 anchors are required for 3D localization.
7The fraction of nodes with accurate location estimate is called coverage.
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Device relaying communication with base station controlled link

For a device located at the edge of a cell, the signal strength is poor and it is required to

communicate with the BS by relaying the information through the other devices.

Direct device to device communication with base station controlled link

In this architecture, the two devices are directly communicating with the links information

provided by the BS.

Device relaying communication with device controlled link

Both communication and links information are provided by the other devices and the BS

is not involved in communication and link information.

Direct device to device communication with device controlled link

Two devices are directly communicating and the link information is controled by the

devices.

Two of the most important challenges in D2D communication are security and inter-

ference management [Cha09]. Security is important due to the fact that the routing of

information is through the other users. Interference becomes important especially for the

case of device relaying communication with device controller and direct device to device

communication where the centralized methods cannot be employed.

1.2.6 Location-Aware Communications

5G networks can benefit from location information. In particular for the case of D2D

resource allocation, D2D links share the same cellular resources that potentially interfere

with each other. For instance for the case of reusing the uplink resources, D2D transmis-

sions interfere with cellular transmissions at the base station. To limit the the interference,

either maximum transmission power should be limitted or D2D should not be allowed in

the regions close to the base station. Consequently, position information of the user is of

critical importance for resource allocation to ensure sufficiently large physical separation

between the D2D and base station. To this end, distance and virtual sectoring based re-

source allocation techniques are proposed in [Kur15]. Distance based resource allocation

uses a pre-selected distance constraint to control interference between D2D and cellular
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nodes. Virtual sectoring based resource allocation relies on AOA measurements. In this

approach, a D2D pair will reuse the radio resource that belongs to the vertically opposite

sector based on the specified number of virtual sectors in the cell.

Another method to minimize the interference to the primary users in cognitive radio

is the spatial spectrum sensing that can be adapted in 5G. In this approach, Gaussian

processes (GPs) are used for predicting location-dependent channel qualities and provide

statistical description of channel quality measurement in any location and any time. More

specifically, the power from primary users can be estimated through secondary users

resulting power density maps that allows resource allocation in the frequency bands that

are not crowded [Tar14, Nev12, Dam13, San09].

For vehicle-to-vehicle (V2V) networks, large-scale characteristics of the wireless chan-

nel (i.e. path loss) may be captured using channel or position/motion measurements

[Dan12]. It has been shown that the feedback of position information to accomplish link

adaptation is favorable compared to the overhead for the feedback of path-loss informa-

tion. Particularly, for the case that path-loss changes rapidly.

1.2.7 Ultra Dense Networks

The throughput of a user in 5G networks is increased by the network densification. Den-

sification in 5G networks is achieved in the spatial and frequency domain through the

deployment of small cells and using additional spectrum (e.g., millimeter wave bands

spanning from 30 to 300 GHz) [Bhu14]. Due to the use of small cells or cell splitting for

spatial densification, path-loss is reduced while both desired and interfering signals are in-

creased. Consequently, to translate densification into enhanced user experience backhaul

densification is required together with space and frequency densification. Cloud radio ac-

cess network (Cloud-RAN) architecture with coordinated multipoint processing (CoMP)

where transmit/receive processing is centralized at a single processor transmofrms the sys-

tems into a near interference free system. Massive MIMO and mm-wave communication

serve as the other candidates to improve capacity for wireless backhaul.

Mobility Management in Ultra Dense Networks

A moving node in a network or a group of such nodes form a moving network that can

communicate with the other fixed or mobile nodes. This enhance the coverage for poten-

tially large populations of jointly moving communication devices [Gup15]. Tracking and

predicting the device locations in the radio network is beneficial from various points of
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views. Location aware communications may be considered as one of the advantages of

prediciting the user locations in the wireless network. The combination of radio environ-

ment maps and predicted user node locations are used within the network for proactive

radio resource management (RRM). This leads to power consumption and load balancing

at the moment and near future together with proactively allocating orthogonal radio re-

sources in time and frequency [Hak15]. Predicted user locations can be used for different

applications including location data for self-driving cars, autonomous vehicles and robots.

1.3 OFDM Localization

Based on the discussion in Section 1.2.1, OFDM signals are good candidates for 5G

systems due to providing high data rate, less implementation complexity, and can be

easily integrated with MIMO. In this section, localization using the estimation of arrival

time with OFDM signals, applications in LTE and 60 GHz indoor, and combination with

communication are briefly explained.

1.3.1 Localization Based on Timing Estimation

OFDM systems require high timing synchronization accuracy to accuratly receive the

signal, thus the estimation of symbol timing of the received signal is of critical importance.

Once the timing estimation is achieved, the distance between BS and mobile station (MS)

can be obtained. Consequently, the location of the MS is obtained by measuring the

distance from the BSs. So, here we present the algorithms for the timing estimation that

help localization of the MS.

Correlation-Based

In correlation based timing estimation, the cross correlation between the received signal

and a known reference replica is obtained at the receiver. Then, the arrival time is

estimated by finding the sample where the correlation has a maximum.

Preamble-Based

In the preamble-based methods, the autocorrelation between the received signal and con-

jugation of delayed received signal is obtained. The algorithm ensures better performance

compared to the previous method because phase information suffers from high variations
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under bad channel conditions, so two adjacent symbols are affected almost equally and

they still have high correlation [Yua08]. Different preamble structures can be used for

this method including: Schmidl preamble, Park preamble, Kim preamble, Ren preamble,

and Kang preamble [Sch97, GR05, Par02, Kim05].

Cooperative OFDM Localization

One common approach in either source localization or navigation problem relies on time

difference of arrival (TDOA) measurements to multiple sensors. In TDOA-based methods,

there are either two BSs transmitting the same signal or two spatially separated MSs mea-

suring the same transmission. In most of the cases only one BS is available, hence multiple

MSs must cooperate by sharing data. As opposed to received signal strength (RSS) and

AOA based methods for localization, sharing data for TDOA-based localization methods

require significant bandwidth. This is due to the fact that TDOA-based localization ap-

plies generalized cross correlation of the two received signals that requires retransmission

of a long portion of the signal. The retransmission of a long portion of the signal may

require a large amount of bandwidth and power, which are limited resources for mobile.

Exploiting the structure of OFDM signal reduce the amount of information that needs to

be shared among the MSs and leads to efficient use of power and bandwidth. This is due

to the fact that the beginning and the end of each block in CP-OFDM are identical due to

the presence of CP. Consequently, each MS can estimate some statistical feature of each

block (e.g., the sample mean or variance) and transmits the sequence of block reception

times and the associated feature values to another MS, rather than retransmitting the

entire signal [Mar09].

1.3.2 Applications

Some of the applications of the OFDM signals in the LTE systems and 60 GHz indoor

for localization are explained in this section.

LTE

LTE systems use OFDM signals in the downlink due to robustness to radio channel disper-

sion with reduced receiver complexity [Ses11]. In the LTE systems, physical channels are

carrying information at higher levels and are defined as: physical downlink shared chan-

nel (PDSCH), physical broadcast channel (PBCH), physical multicast channel (PMCH),
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physical control format indicator channel (PCFICH), physical downlink control chan-

nel (PDCCH), and physical hybrid ARQ indicator channel (PHICH). There are four

types of downlink reference signals in the LTE systems each transmitted using a single

antenna port and are defined as:

• multimedia broadcast over single frequency network (MBSFN) reference signals.

signals.

• cell-specific reference signal (CRS).

• user equipment (UE) specific reference signals.

• positioning reference signal (PRS).

For timing estimation, LTE systems use PRS signals in the downlink to improve the tim-

ing measurements by decreasing the inter-cell interference. PRS signals help estimating

the channel impulse response to equalize the signal correctly. Moreover, it solves the in-

terfernce between data and pilot by avoiding the data transmission in the resource blocks

dedicated for positioning, e.g., PDSCH is not transmitted in the positioning subframe.

Fig. 1.5 shows the allocation of data (blue lines) and pilots (red lines) for one OFDM

symbol and a given channel magnitude shown by the green dashed curve where each

subcarrier is used as either data or pilot.

PRS signals are sent in one to six consecutive subframes with a specific offset∆ PRS with

the configuration index IPRS and the period TPRS [Ses11]. Fig. 1.6 shows the configuration

of the complex-valued symbols of the PRS in time and frequency. The main parameters

of PRS signals are given in Table 1.1.

pilot

data

channel magnitude

discrete frequency index

Figure 1.5: Data and pilots subcarrier power allocation for a given channel frequency
response.
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PRS

CRS

time

frequency

66.67 µs

15 kHz

resource block

Figure 1.6: Time and frequency distribution of the LTE CRS and PRS pilot signals.

Table 1.1: Main parameters of the PRS.
PRS bandwidth 1.4, 3, 5, 10, 15, and 20 MHz
PRS periodicity 160, 320, 640, or 1280 ms

consecutive subframes 1, 2, 4, or 6
PRS muting information 2, 4, 8, 16 bits

PRS pattern 6-reuse in frequency
PRS sequence length-31 Gold sequence

60 GHz Indoor

For 60 GHz indoor localization, OFDM signals can be used to measure the differential time

difference of arrival (DTDOA). The localization is based on distance measurements of a

node with unknown position, e.g., MS, and the nodes with the known positions, e.g., BSs.

In the DTDOA for 60 GHz indoor localization with OFDM signals the BSs do not need

to be synchronized and just exchange data with the host PC. There is a link between each

BS and the host PC to collect time stamps and to perform calculations for the localization

of the MS. The master BS initialize the localization process by transmitting a pseudo

noise (PN) sequence received by slave BSs. The receiving time is precisely recorded by the

slave BSs with their local clocks. Then, the MS transmits the PN sequence to all the BSs

with the receiving time again recorded by all the BSs. The difference between the request

and the response signals are calculated and sent to the host PC. Then, the pair wise

propagation time differences between different BSs are used to eliminate the processing
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time in the MS that is called DTDOA. In contrast to TDOA no time synchronization

is required. More details on the 60 GHz indoor localization with OFDM signals can be

found in [Win06].

1.4 Mm-Wave Localization

Mm-wave RF signals are the best solutions to be utilized for high speed data transmis-

sion. Moreover, multi-carrier OFDM-based signals can be used in mm-wave frequencies

for the bandwidth of the order of GHz to provide better localization capabilities that

also helps high speed data transmission in 5G systems. Some examples for OFDM-based

signals in mm-wave frequencies are personal area network (PAN) and wireless local area

network (WLAN) standards that use about 2 GHz of bandwidth and support OFDM or

SC-FDE type modulations to provide data rates up to 6 Gbps. Consequently, in this

section we briefly describe mm-wave channels, the methods to estimate the channel pa-

rameters including AOA/AOD and TOA using the sparsity of the mm-wave channels,

and mm-wave localization techniques in LOS, in the presence of clusters, and the case

of blocked LOS. First, different path-loss models for mm-wave channels are described.

Second, a double directional channel model is presented. Third, some estimation tech-

niques are proposed and the concept of channel sparsity in mm-wave is explained. Fourth,

multi-beam transmission, hybrid beamformers, and beam training protocols are described

as the key elements for AOA/AOD estimation. Finally, some of the mm-wave localization

techniques in terms of position and rotation angle estimation are described.

1.4.1 Mm-Wave MIMO Channel Model

In a mm-wave MIMO system, channel parameters including AOA/AOD, channel gains,

and TOA (i.e., the parameters that describe multipath components (MPCs)) are used

for the localization purposes. A common approach for modeling the mm-wave MIMO

channels is to group a set of rays with some close parameters in a cluster. Consequently,

the channel response between the receiver and the transmitter can be written as the sum

of K specular MPCs and the LOS as [Ric05, Gus14, Alm07]

H(t, f) =
K∑

k=0

ρkBRx(f,θRx,k)XkB
T
Tx(f,θTx,k)e

−j2πfτkej2πtνk , (1.4.1)
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where ρk denotes the path-loss of the n-th cluster that can be obtained using the geometry

based statistical models [Li15, Li14], BTx(f,θTx,k) ∈ CNTx×2 and BRx(f,θRx,k) ∈ CNRx×2

denote the complex beam pattern of the transmit array and the receive array with hor-

izontal and vertical polarisation, respectively, Xk ∈ C2×2 contains the four polarimetric

transmission coefficients for the k-th MPC, τk is the k-th TOA, and νk denotes the Doppler

frequency for the k-th MPC.

1.4.2 Parameter Estimation

Some of the typical algorithms used in channel estimation in 5G are:

1. Space-alternating generalized expectation maximization (SAGE).

2. Joint and iterative maximum likelihood estimation in [Ric06], named RIMAX.

In the parameter estimation of the MPC, it is usually assumed the impulse response in

(1.4.1) to consist of specular scattering.

SAGE

Particularly, SAGE algorithm (that is an algorithm based on expectation maximization

and successively cancels interference) uses this assumption [Fle99]. The SAGE algorithm

jointly estimates MPC parameters, i.e., AOA/AOD, channel gains, Doppler shifts, and

TOAs.

The SAGE method can be considered as the preferred algorithm to estimate the MPC

parameters due to the fact that in the mm-wave frequencies most of the power can be

attributed to specular components. In the SAGE algorithm, the channel response in

(1.4.1) consists of the superposition of K + 1 plane waves where K is the number of

MPCs with specular scattering property, and the index 0 denotes the LOS path, which is

omitted for the obstructed-line-of-sight (OLOS) scenario.

RIMAX

In addition to specular scattering, considering diffuse scattering improves the parameter

estimation. RIMAX is an estimation method that considers the diffuse scattering in

addition to specular scattering to improve the estimation of parameters. Moreover, an

extended Kalman filter can be used for tracking the parameters in a sequential way for

the case of time-varying channels.
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1.4.3 Multi-Beam Transmission

To overcome the severe effect of path-loss 8 in mm-wave frequencies, one can increase the

number of antenna elements to achieve beamforming gain. There exist some challenges

in using a large number of antennas (from a few tens to hundreds of antennas) in the

transmitter and receiver. One of the main challenges in using large number of antenna

elements is to design beamformers that can generate narrow beams. In practice, analog

beamformers using phase shifters suffer from the quantization error and fail to point the

beam with sufficient accuracy [Han15, Poo12]. Moreover, digital beamformers in their

conventional form require digital-to-analog-converter (DAC) for each antenna element

in the transmitter and analog-to-digital-converter (ADC) for each antenna element in

the receiver. Considering the large number of antenna elements in the transmitter and

receiver, and the fact that DACs and ADCs consume a lot of power at mm-wave, one

needs to use a more efficient way for beamforming. Moreover, multi-stream transmission

using hybrid beamformers is required for both communication and localization purposes

[Alk14, Pis14, Zhu16]. Particularly, it is critical to have more than one beam towards

each user in order to make localization possible, as it will be explained in more detail

later on.

In this section, first we review the hybrid beamformers as an important way for multi-

beam transmission to obtain AOA/AOD that are used for localization purposes using

the sparsity of the mm-wave MIMO channel in the beamspace. Second, a beam training

protocol to find the strongest link between transmitter and receiver and consequently

estimation of AOA/AOD as a key step for the localization is investigated.

Hybrid beamformers

Hybrid beamformers are used to avoid the complexity in the implementation of the typical

digital beamformers that require DAC for each antenna of the transmitter and ADC for

each antenna of the receiver, i.e., NTx DACs in the transmitter and NRx ADCs in the

receiver. Instead, hybrid beamformers use Mt < NTx and Mr < NRx DACs and ADCs

in the transmitter and receiver, respectively, where Mt and Mr denote the number of

transmit and received beams that are much smaller than the number of antenna elements.

Moreover, they provide multi-beam transmission like digital beamformers but with less

complexity. Especially, in the estimation of AOD and AOA in LOS conditions one needs

to send more than one beam at each transmission as will be explained in the next section.

8For a given distance, the FSPL at 60 GHz is 28 dB larger than 2.4 GHz.



20 CHAPTER 1. LOCALIZATION IN 5G: OVERVIEW AND CHALLENGES

.

.

.

.

.

.

Baseband

Digital Precoding (Tx)

or Combining (Rx)

DAC

or ADC

DAC

or ADC

RF
Chain

RF
Chain

RF

or Combining (Rx)

Analog Precoding (Tx)Ns Mt/Mr

Figure 1.7: MIMO architecture at mm-wave based on hybrid analog-digital precoding and
combining.

Hybrid beamformers are comprised of a baseband digital pre-coder, DACs, radio frequency

(RF) chains, and a RF analog pre-coder in the transmitter; and analog RF combiner, RF

chains, ADCs, and a baseband digital combiner in the receiver. More details about hybrid

beamformers in the lower frequencies can be found in [Zha05, Sud06].

Fig. 1.7 shows the MIMO architecture at mm-wave using a hybrid beamformer in

which Ns data streams are fed to the baseband digital pre-coder, Mt > Ns outputs of

the baseband precoder are converted to analog and used to generate Mt beams through

RF chains that are connected to the antenna arrays by the RF analog pre-coder. On the

receiver side, the received signals are fed to the RF analog combiner to capture the Mr

beams, then the resulting signals are converted to digital and fed to the baseband digital

combiner to reconstruct the Ns transmitted data streams.

Hybrid analog precoder/combiner can be implemented in two different ways using

phase shifters and switches [Haj05, Piv13, MR15]. Although the lack of precision of analog

shifter can be compensated in the digital precoder/combiner, using switches instead of

analog phase shifters exploits the sparse nature of the mm-wave channel by implementing

a compressed spatial sampling on the received signal and further reduces the complexity

of the hybrid architecture using phase shifters.
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Beam training protocols

The beam training protocol is a very important step in the AOA/AOD estimation and

will be briefly explained in this section. The beam training protocol included in IEEE

802.11ad includes three major steps [ISO14]:

• Sector Level Sweep (SLS): This stage is based on a coarse combination between the

sector (at the transmitter side) and antenna (at the receiver side). The transmitter

sends signals for each of its sectors, with a number of sectors up to 64 per antenna.

After completing the sweep by the transmitter, the MS selects the best sector and

sends feedback to the transmitter. At the end of this stage a coarse estimation of

the AOD is obtained.

• Beam Refinement Protocol (BRP): In this stage, the coarse estimation of the AOD

will be refined by sending the orthogonal beams within the optimal sector found

from the previous stage. The receiver sends feedback to the transmitter regarding

the success of the new beam. At the end of this stage a refined estimation of the

AOD is obtained.

• Beam tracking: This stage includes a periodic refinement over a small number of

antenna configurations.

Beam training protocols can be generalized for hybrid precoding rather than only for

analog beamformers. The main advantage is the capability to steer the beam with more

accuracy than using only phase shifters thanks to the compensation of the error in analog

part using the digital pre-coder. This approach starts with the coarse search for the best

AOA/AOD and channel gains (SLS step) and refines the estimated values (BRP step) in

the final stages using a novel multi-resolution beamforming codebook.

Fig. 1.8 illustrates the beam training protocol as an important strategy to find the

best link between the BS and the MS. Particularly, when one link is not strong enough or

is blocked and cannot be used to estimate the channel parameters (i.e., AOA/AOD, delay,

and channel gain), using first the beam training protocol, we can obtain the sector that

provides the LOS conditions, and then we use the LOS link9 to localize the MS using the

AOA/AOD and delay estimates, as will be discussed below. In what follows, we provide

an overview on the localization of the MS using AOA/AOD, and TOA in a mm-wave

MIMO system.

9Although, it is possible to use the information from the NLOS link for localization as will be discussed
in the next section.
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Figure 1.8: Finding the optimal sector and beam for the localization of the MS by the
SLS and BRP.

1.4.4 Mm-Wave localization Techniques

From the above discussion, we interpret that all the aforementioned methods either use

the information from angles, delays, or RSS. However, one may envision that both angles

and delays can be used for the localization at the same time. Particularly, large number

of antenna elements in the transmitter and receiver in the 5G systems provides steerable

narrow beams that can be used for localization with AOA/AOD and TOA.

Fig. 1.9 shows the LOS link for the localization of the MS using joint angle and delay

measurements. The TOA provides a circle with the radius of d0 from the MS centered

in q, AOD and AOA provide lines that eventually leads to the localization of the MS as

shown in Fig. 1.10. This can be simply expressed as

(qx − px)
2 + (qy − py)

2 = d20, (1.4.2)

and

tan(θTx,0) =
py − qy
px − qx

. (1.4.3)

Solving (1.4.2) and (1.4.3) leads to

p = q+ d0u(θTx,0),



1.4. MM-WAVE LOCALIZATION 23

θTx,0 π − θRx,0

d0

BS

MS
q

p

x

y

α

Figure 1.9: LOS link for the localization based on joint AOA/AOD and TOA estimation.
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Figure 1.10: Demonstration of the localization in the LOS with TOA and AOA/AOD.
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Figure 1.11: LOS in the presence of clusters for the localization based on joint AOA/AOD
and TOA estimation.
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Figure 1.12: NLOS link for the localization based on joint AOA/AOD and TOA estima-
tion.
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Figure 1.13: Demonstration of the localization in the NLOS with TOA and AOA/AOD.

where u(θTx,0) = [cos(θTx,0), sin(θTx,0)]T. Moreover, the orientation is obtained as α =

π + θTx,0 − θRx,0. Fig. 1.11 shows the LOS link in the presence of clusters. In this case,

the presence of clusters reduces the localization accuracy depending on the location of the

clusters towards the LOS link as will be shown in the simulation results. Moreover, the

orientation is only estimated through the LOS link and the clusters do not provide any

information on the orientation of the MS.

Fig. 1.12 demonstrates the use of NLOS links 10 for the localization of the MS using

joint angle and delay measurements and a given orientation α0. In this case the location

of the MS can be obtained using the following equations

‖p− s1‖+ ‖q− s1‖ = d1, (1.4.4)

‖p− s2‖+ ‖q− s2‖ = d2, (1.4.5)

s1 = q+ d1,1u(θTx,1), (1.4.6)

s2 = q+ d2,1u(θTx,2), (1.4.7)

10This can be also considered as the blocked LOS as in the mm-wave frequencies blockage happens
quite often especially for indoor localization.
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tan(π − (θRx,1 + α0)) =
s1,y − py
px − s1,x

, (1.4.8)

tan(π − (θRx,2 + α0)) =
−s2,y + py
px − s2,x

, (1.4.9)

where q is known, {θTx,k, θRx,k, dk} denotes the set of estimated parameters that are

assumed to be known, p is the unknown location of the MS, and {sk, dk,1} denotes the

set of unknown parameters including the location of the k-th cluster sk and the distance

between the k-th cluster and the BS dk,1. Considering 2-D localization, there are 8

unknown parameters that can be obtained by the above set of equations. The TOA from

two clusters provide the intersection from two circles as shown in Fig. 1.13, while the

AOAs provide the lines for the localization of the MS.

1.5 Motivation and Objectives

High data rate with good localization accuracy is a challenging problem in 5G systems.

Signals that are designed for one application, e.g., high data rate communication, perform

poorly for the other application, e.g., localization. Moreover, in the WNL the performance

of the signals designed for localization of the MS is susceptible to the network uncertainties

such as position and channel uncertainties. Fig. 1.14 shows the effect of the agent

movement in the uncertainty disk that leads to the wrong estimation of the location of

the MS. Thus, novel design algorithms using OFDM signals are proposed to counteract

the effect of poor performance in terms of localization or communication and network

uncertainties. Using the OFDM signals is of interest due to the allocation of some of the

subcarriers for data transmission and the rest of subcarriers for localization and channel

estimation. Moreover, due to frequency diversity OFDM signals enable saving the total

required power for WNL in the presence of network uncertainties.

In mm-wave localization, the main challenge is the severe effect of path-loss. It is

important to find a solution for the the severe effect of path-loss due to good capabilities

of the mm-wave frequencies for indoor localization including large bandwidth. To this end,

large number of antenna arrays can be used in the transmitter and receiver. However,

using the large number of antenna arrays requires designing the beamformers to form the

beams towards the nodes with unknown positions. Thus, a novel estimation approach

using the sparsity of mm-wave channels can be applied to estimate the AOA/AOD and

consequently TOA that are required for localization of the MS. Particularly, a hybrid

precoding system with OFDM signals for the goal of position and orientation estimation
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Figure 1.14: Illustration of the effect of position uncertainty on WNL.

of the MS that helps increasing the spectral efficiency is critical for 5G systems.

The aim of this thesis is to explore the capabilities of OFDM signals for joint local-

ization and communication, WNL, and sparse estimation of channel parameters for 5G

localization.

1.6 Thesis Outline

Chapter 2 provides background on joint data and pilot design for the joint localization

and communication purposes using OFDM signals. In particular, the problem is extended

for the case of time varying channels as the extension to the previously proposed results

for static channels [Mon13].

Chapter 3 provides an extensive research on ergodic and robust power allocations for

OFDM WNL. Different power allocation methods are proposed for minimizing the total

power with respect to constraints on the localization accuracy. Ergodic power allocation

is proposed based on the sample average representation of the expected squared position

error bound (SPEB) and the solution is obtained using the semidefinite optimization.
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Robust allocations using different uncertainties on the channel coefficients are proposed.

Chapter 4 provides an extensive research on the 5G position and orientation estima-

tion. The fundamental bounds on the position and orientation together with channel

parameters in the presence of clusters are proposed. The sparse estimation algorithms

are proposed to achieve the proposed bounds.

1.7 Research Contributions

The work of this dissertation has been presented in several publications such as journals,

book chapters, and international conferences. These research contributions are listed for

every chapter.

Chapter 2

The main result of this chapter is the OFDM signal design for joint localization and

communication for the case of time-varying frequency selective channels. The results in

this chapter have been published either directly or indirectly in the following international

conferences or are supposed to be submitted as journal papers:

[1] A. Shahmansoori, R. Montalban, J. A. Lopez-Salcedo,G. Seco-Granados, “Design

of OFDM Sequences for Joint Communications and Positioning Based on the Asymptotic

Expected CRB,” in International Conference on Localization and GNSS (ICL-GNSS),

2014.

[2] A. Shahmansoori, R. Montalban, G. Seco-Granados, “Effect of Channel Variability

on Pilot Design for Joint Communications and Positioning in OFDM,” Proc. IEEE Intl.

Symposium on Wireless Communication Systems (ISWCS), Aug 26 2014.

[3] A. Shahmansoori, R. Montalban, G. Seco-Granados, “Optimal OFDM Pilot Se-

quences for Time-Delay and Channel Estimation Based on the Expected CRB for a Large

Number of Subcarriers,” in The 15th IEEE International Workshop on Signal Processing

Advances in Wireless Communications (SPAWC), 2014.

Chapter 3

The main result of this chapter is the design of ergodic and robust power allocations

for OFDM WNL. Different channel uncertainties are considered for the aforementioned
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allocations and the results are compared with their single-carrier counterparts. The result

of this chapter is submitted to the following journal and conference papers:

[4] Arash Shahmansoori, Gonzalo Seco-Granados, and Henk Wymeersch, “Robust and

Ergodic Power Allocation for OFDM Wireless Network Localization,” submitted to IEEE

Transactions on Wireless Communications, May 2016.

[5] Arash Shahmansoori, Gonzalo Seco-Granados, Henk Wymeersch, “Robust Power

Allocation for OFDM Wireless Network Localization,” IEEE International Conference on

Communications (ICC) 2015.

Chapter 4

The main result of this chapter is the fundamental bounds on the position and orientation

estimation for 5G localization in the presence of clusters. The sparse estimation methods

are developed that approach the aforementioned bounds. The results in this paper have

been/supposed to be submitted to the following journal, conference papers, and book

chapter:

[6] Arash Shahmansoori, Gabriel E. Garcia, Giuseppe Destino, Gonzalo Seco-Granados,

Henk Wymeersch, “5G Position and Orientation Estimation through Millimeter Wave

MIMO,” IEEE Global Telecomm. Conf. (GLOBECOM) 2015.

[7] Arash Shahmansoori, Gonzalo Seco-Granados, Henk Wymeersch, “Survey on 5G

Positioning,” Multi-Technology Positioning, to appear as a book chapter published by

Springer.

[8] Arash Shahmansoori, Gabriel E. Garcia, Giuseppe Destino, Gonzalo Seco-Granados,

Henk Wymeersch, “Position and Orientation Estimation through Millimeter Wave MIMO

in 5G Systems,” to be submitted to IEEE Transactions on Signal Processing.
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Chapter 2

OFDM Allocation under Timing

Accuracy Constraints

2.1 Introduction

The design of combined positioning and communication systems that can perform well

in terms of high-data-rate transmission and delay estimation accuracy is a challenging

problem. In general, the signals used for one purpose perform poorly in the other case.

To date different approaches are proposed for the signal design for channel estimation

that leads to equi-power and equi-space pilots [Neg98, Bar03, Min06]. Pilot design for

carrier frequency offset (CFO) estimation and joint estimation of channel and CFO are

proposed in [Min05] and [Sto03], respectively. However, joint data and pilot design based

on channel and time-delay estimation is received a little attention.

Recently, joint data and pilot designs based on Cramér-Rao bound (CRB) and ex-

pected CRB (ECRB) of time-delay and channel coefficients are investigated by solving

the relaxed optimization and masking the relaxed solution to allow subcarriers to be used

either for estimation or data transmission [Lar11, Mon13]. However, the methods are not

taking into account the effect of channel variations with time that usually happens in

reality, and only consider the designs for static channels. In other words, they assume

that channel coefficients are the same for different OFDM symbols. Specially, in the long-

term evolution (LTE) systems one needs to design an optimal positioning reference signal

that can be applied for high data rate communications and achieve desired time-delay

estimation accuracy.

The design of data and pilots in time and frequency for high-data rate communications

31
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with a given time-delay estimation accuracy that is used for localization is of critical

importance in the 5G systems. As an application, for mobility management in ultra dense

networks power consumption and load balancing is necessary with allocating orthogonal

radio resources in time and frequency. In this chapter, we consider time-varying frequency

selective channels for the joint design of data and pilots based on the expected CRB

(ECRB) of time-delay and channel coefficients. The proposed model is more general

than [Lar11, Mon13] by considering time variations and not assuming time-delays to be

resolvable, i.e., it is not assumed that τl = τ1 + (l − 1)Ts where τ1 is the delay from the

first path and Ts denotes the sampling period. The ECRB of time-delay and channel

coefficients are used to obtain the approximate lower bound of channel capacity that is

used for combined data and pilot optimization to maximize the capacity for a certain

time-delay accuracy. The optimization problem is not convex, so we obtain the relaxed

solution and consider data and pilot accordingly by applying a two-dimensional mask.

The results show that the close-to-optimal solution requires the semi stair-wise pattern

of the pilots.

2.2 System Model and Preliminaries

Using the assumption that channel variations in delay subspace is much slower than

channel variations in the amplitude subspace [Sim04], see Appendix 2.A, we obtain1

r = B(IK ⊗
[
Γ(τ1)g̃f . . . Γ(τL)g̃f

]
)h+w, (2.2.2)

wherein B is an KN × KN diagonal matrix with N × N diagonal matrix at the ith

OFDM symbol as Bi and N and K being the number of subcarriers and OFDM symbols,

respectively, IK is K × K identity matrix, Γ(τi) is an N × N diagonal matrix with the

kth diagonal element of exp(−j 2π
N kτi) for k = 0, . . . , N − 1 with τi denoting the ith

delay, g̃f is an N × 1 vector defined as g̃T
f = [g̃f(0), . . . , g̃f(N − 1)] with g̃f(k) defined as

multiplication of kth row of DFT matrix F with N −W zero-padded sampled response

vector of transmit, channel, and receiver filter g̃T = [g(0T ), . . . , g((W − 1)T ), 0, . . . , 0]

where W denotes the maximum number of the non-zero samples, hT = [hT
1 , . . . ,h

T
K ] in

1Also, if we assume that the delay from the lth path can be written as a function of the delay from the
first path as τl = (l−1)+τ1 and g(lT ) = δ(lT ) where δ(.) denotes the Dirac delta function [Lar11, Mon13],
then (2.2.2) can be further simplified as

y = B(IK ⊗ Γ(τ1)FL)h+w, (2.2.1)

which is the extended version of the model proposed in [Lar11, Mon13] for K OFDM symbols.
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which hi is an L × 1 complex amplitude of different paths for the ith OFDM symbol,

wT = [wT
1 , . . . ,w

T
K ] where wi is an N × 1 zero-mean complex Gaussian noise vector with

the variance of σ2
w, and r denotes the KN × 1 received signal.

2.3 Fundamental Bounds

In this section, first we compute the Cramér-Rao bound (CRB) of joint time-delay of the

first path τ1 and complex fading coefficients h. Then, an approximate expression for the

joint ECRB of τ1 and h is investigated using the Laplace approximation. Then, we obtain

the bounds for the special case of g̃f = 1 and τl = τ1 + (l − 1)Ts.

2.3.1 FIM

Let ξ = [τT,([hT],)[hT]]T denote the parameter vector of interest, where ([.] and

)[.] stand for real and imaginary parts of h respectively. The received signal vec-

tor r is a circularly symmetric Gaussian vector with mean defined as µ = B(IK ⊗[
Γ(τ1)g̃f . . . Γ(τL)g̃f

]
)h and covariance C = σ2

wI. It is known that the FIM for esti-

mation of [ ξT σ2
w ]T is block diagonal i.e., the estimation of ξ is decoupled from that of

σ2
w [Sto03]. Therefore, we only consider the FIM of ξ, I(ξ) defined as

I(ξ) =
2

σ2
w

(
[
∂µ̃H

∂ξ
P
∂µ̃

ξT

]

, (2.3.1)

where µ̃ = (IK ⊗
[
Γ(τ1)g̃f . . . Γ(τL)g̃f

]
)h, and P = BHB. The FIM can be written as

(see the Appendix 2.B)

I(ξ) =
2

σ2
w




Q̃ )[Z] ([Z]

−)[ZH] ([YHPY] −)[YHPY]

([ZH] )[YHPY] ([YHPY]



 , (2.3.2)

where

Q̃ =
K∑

i=1

(





Q11
i . . . Q1L

i
...

. . .
...

QL1
i . . . QLL

i



 , (2.3.3)

and

ZH =
[
XH

1 h . . . XH
d h

]
, (2.3.4)
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with Qlm
i is defined for l = m = 1, . . . , d as Qlm

i = h∗
l,ihm,ig̃H

f Γ(τl−τm)DHPiDg̃f , Pi is an

N ×N diagonal matrix of input power at the ith OFDM symbol, and D is the derivative

matrix of Γ(τi) with respect to τi that results an N × N diagonal matrix with the kth

entry equal to 2π
N k for k = 0, . . . , N − 1. Also, Xl is defined as Xl = YH

l PY with Y and

Yl defined as

Y = (IK ⊗
[
Γ(τ1)g̃f . . . Γ(τL)g̃f

]
),

and

Yi = (IK ⊗
[
0 . . . 0 D Γ(τi)g̃f 0 . . . 0

]
),

respectively. Using the formula for the inverse of block matrices [Kay10], we obtain

CRB(τ ) and CRB([([hT],)[hT]]T) as

CRB(τ ) =
σ2
w

2
Φ−1, (2.3.5)

and

CRB([([hT],)[hT]]T) =
σ2
w

2
Ψ−1, (2.3.6)

where Φ = Q̃− FH
b F

−1
a Fb, and Ψ = Fa − FbQ̃−1FH

b with

Fa =

[
([YHPY] −)[YHPY]

)[YHPY] ([YHPY]

]

,

Fb =

[
−)[ZH]

([ZH]

]

,

Q̃ =
K∑

i=1

(





Q11
i . . . Q1L

i
...

. . .
...

QL1
i . . . QLL

i



 ,

ZH =
[
XH

1 h . . . XH
d h

]
,

Y = (IK ⊗
[
Γ(τ1)g̃f . . . Γ(τL)g̃f

]
),

with Qlm
i = h∗

l,ihm,ig̃H
f Γ(τl − τm)DHPiDg̃f for l = m = 1, . . . , d. Finally, we obtain the

CRB of time-delay and complex coefficients ([h] + j)[h] from the real and imaginary

parts of h as

CRB(τ ) =
σ2
w

2
(Q̃−([Z(YHPY)−1ZH]︸ ︷︷ ︸

Φ

)−1, (2.3.7)
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and

CRB(h) =
σ2
w

2
(2(YHPY)−1 +ΥΦ−1ΥH). (2.3.8)

Taking the expectation with respect to channel coefficients h, using Laplace approxima-

tion E[XY ] ≈
E[X]
E[Y ] , and assuming the real and imaginary parts of channel coefficients ([h]

and )[h] are independent or E[([h])[hH]] = 0, we obtain the ECRB of time-delay and

channel coefficients as

ECRB(τ ) ≈ σ2
w

2
(Q̃D −ΦR︸ ︷︷ ︸

Φ̃

)−1, (2.3.9)

and

ECRB(h) ≈ σ2
w

2
(2(YHPY)−1 + (YHPY)−1XH(Φ̃−1 ⊗Ch)X(YHPY)−1), (2.3.10)

where

ΦR = (





tr{Ξ11Ch} . . . tr{Ξ1LCh}
...

. . .
...

tr{ΞL1Ch} . . . tr{ΞLLCh}



 ,

and Ξij = Xi(YHPY)−1XH
j , X

H = [XH
1 , . . . ,X

H
L ], Q̃D is defined as

Q̃D =
K∑

i=1





|h1,i|2Q̃ . . . 0
...

. . .
...

0 . . . |hL,i|2Q̃



 ,

with Q̃ = g̃H
f D

HPiDg̃f , and |hl,i|2 = E[|hl,i|2].

2.3.2 Special Case

We compute the Fisher information matrix (FIM), CRB, and ECRB of time-delay and

channel coefficients for the special case when g̃f = 1 and τl = τ1+(l−1)Ts. Choosing the

time-delay as τl = τ1+(l−1)Ts converts the FIM to the following form (see the Appendix

2.C)

J(ζ) =
2

σ2
w




1TQ̃1 )[1TZ̃] ([1TZ̃]

−)[Z̃H1] ([ỸHPỸ] −)[ỸHPỸ]

([Z̃H1] )[ỸHPỸ] ([ỸHPỸ]



 , (2.3.11)
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where ζ = [τ1,([hT],)[hT]]T denotes the parameter vector of interest, 1 is L × 1 vector

with all-one elements, Z̃ is defined as Z̃H =
[
X̃H

1 h . . . X̃H
Lh

]
, with X̃l = ỸH

l PỸ where

Ỹ = IK ⊗
[
f1 . . . fL

]
,

Ỹl = IK ⊗
[
0 . . . 0 Dfl 0 . . . 0

]
,

and fl is an N × 1 vector with the kth entry equal to e−j 2π
N

k(l−1) for l = 1, . . . , L and

k = 0, . . . , N − 1. Consequently, we obtain the CRB of time-delay from the first path

CRB(τ1) and the CRB of channel coefficients CRB(h) as

CRB(τ1) =
σ2
w

2
(1TQ̃1− 1TZ̃(ỸHPỸ)−1Z̃H1︸ ︷︷ ︸

γ

)−1, (2.3.12)

and

CRB(h) =
σ2
w

2
(2(ỸHPỸ)−1 + γ−1(ỸHPỸ)−1Z̃H11TZ̃(ỸHPỸ)−1). (2.3.13)

Taking the expectation with respect to channel coefficients and using the Laplace approx-

imation, we obtain

ECRB(τ1) ≈
σ2
w

2
(1TQ̃D1− tr{[X̃(ỸHPỸ)−1X̃H][11T ⊗Ch]})−1, (2.3.14)

and

ECRB(h) ≈ σ2
w

2
(2(ỸHPỸ)−1 + γ̃−1(ỸHPỸ)−1X̃H(11T ⊗Ch)X̃(ỸHPỸ)−1), (2.3.15)

where

γ̃ = 1TQ̃D1− tr{[X̃(ỸHPỸ)−1X̃H][11T ⊗Ch]},

and X̃H =
[
X̃H

1 . . . X̃H
L

]
.

2.3.3 The Choice for Channel Covariance Matrix

Allowing the correlation between channel coefficients in each burst and from burst to

burst using the zero-order bessel function pattern or uniform Doppler spectrum one can
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obtain the channel covariance matrix Ch. By definition, we obtain

Ch =





C11
h . . . C1K

h
...

. . .
...

CK1
h . . . CKK

h



 , (2.3.16)

where Cij
h is defined as Cij

h = E[hihH
j ]. If we assume that different channel coefficients in

each burst are correlated but uncorrelated from burst to burst, then the off-diagonal block

matrices Cij
h for i "= j are diagonal with diagonal entries proportional to Doppler spectrum

of the form of zero-order bessel function J0(2πfD(i− j)T ) or flat Doppler spectrum 1/fD

where fD represents the maximum Doppler frequency.

2.4 Channel Capacity with Partially Known CSI

In this section, we obtain channel capacity as a function of power vector p and ECRB of

time-delay and channel coefficients. It is assumed that τl = (l−1)+ τ1 and g(lT ) = δ(lT )

and the model in (2.2.1) is used. Defining ι(τ1,h) as ι(τ1,h) = (IK ⊗ Γ(τ1)FL)h, and

replacing it by its estimated version plus the error term in the estimation as ι(τ1,h) =

ι̂(τ1, a) + ι̃(τ1, a), (2.2.2) can be written as

r = B(̂ι(τ1,h) + ι̃(τ1,h)) +w. (2.4.1)

We can rewrite (2.4.1) as

r = (Ĥ(τ1,h) + H̃(τ1,h))b+w, (2.4.2)

where H(τ1,h) is the diagonal form of vector ι(τ1,h) with ι(τ1, a) as the main diagonal,

Ĥ(τ1,h) and H̃(τ1,h) are diagonal forms of ι̂(τ1,h) and ι̃(τ1, a) with ι̂(τ1,h) and ι̃(τ1,h)

as the main diagonal elements, respectively, and b is the vector form of the diagonal input

B that is formed by the diagonal elements of B as bT =
[
B[0] . . . B[KN − 1]

]
. It can

be shown that the lower bound of the ergodic capacity C lb is of the form of [Has03]

Clb =
1

NK
E[log2 det(I+PR−1

e ĤĤH)], (2.4.3)

where

ĤĤH = diag{(IK ⊗ FL)hh
H(IK ⊗ FH

L )}, (2.4.4)
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and

Re = PCH̃ + σ2
wI, (2.4.5)

with CH̃ defined as CH̃ = H̃H̃H. We obtain the approximate value for the lower bound

of ergodic capacity CH̃ by moving the expectation inside the log2 det(.) function using

Jensens inequality and applying E[X
Y
] ≈ E[X]

E[Y] . The result is

C lb ≈
1

NK
log2 det(I+PR̃−1

e E[ĤĤH]), (2.4.6)

where

E[ĤĤH] = diag{(IK ⊗ FL)Ch(IK ⊗ FH
L)}, (2.4.7)

and

R̃e = PCH̃ + σ2
wI, (2.4.8)

with CH̃ defined as CH̃ = E[H̃H̃H]. This represents the expected value of the estimation

error that can be lower bounded using the ECRB of time-delay and channel coefficients

that can be further converted to ι(τ1,h) as a function of time-delay τ1 and channel coef-

ficients h as

CH̃ + diag{E[h̃′

(ζ)J̃−1(ζ)(h̃
′

(ζ))H]}, (2.4.9)

where

h̃
′

(ζ) = [α ∆],

J̃−1(ζ) = TtJ
−1(ζ)TH

t ,

and we define α = (IK ⊗DΓ(τ1)FL)h and ∆ = (IK ⊗Γ(τ1)FL), and Tt is the conversion

matrix to convert real and imaginary parts ([h] and )[h] of channel coefficients to the

complex coefficients h, and it is defined as

Tt =

[
1 0T 0T

0 I jI

]

.

Finally, replacing the inverse of the converted FIM J̃−1 in (2.4.9) and simplifications, see

the Appendix 2.D, we obtain

diag{E[h̃′

(ζ)J̃−1(ζ)(h̃
′

(ζ))H]} = diag{∆ECRB(h)∆H}

+ ECRB(τ1)diag{E[ααH]}, (2.4.10)
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where

diag{∆ECRB(h)∆H} = diag{(IK ⊗ FL)ECRB(h)(IK ⊗ FH
L)}, (2.4.11)

and

diag{E[ααH]} = diag{(IK ⊗DFL)Ch(IK ⊗ FH
LD

H)}. (2.4.12)

Using (2.4.6)-(2.4.10), we conclude that the approximate value for the lower bound of

ergodic capacity is a function of ECRB of time-delay ECRB(τ1), ECRB of channel coeffi-

cients ECRB(h), input power for different OFDM symbols P, and interpolated frequency

response of channel covariance matrix Ch in time and frequency or (IK⊗FL)Ch(IK⊗FH
L).

2.5 Combined Data and Pilot Design

In this section, we formulate the optimization problem used for the pilot design for joint

communication and time-delay estimation. To maximize the cost function that is the

lower bound of an approximation of the ergodic capacity (2.4.6), one needs to solve the

following optimization problem

(P1)






max
p

C lb

s.t. ECRB(τ1) ≤ ε

1Tp ≤ PT

pT
p pd = 0

pp + 0;pd + 0,

(2.5.1)

where pp and pd are the pilot and data power vectors. The first constraint limits the

time-delay estimation accuracy by introducing a small value ε as the upper bound, the

second constraint limits the total power for the design to PT while the power vector p

stands for the sum of data and pilot vectors p = pp + pd, the third constraint makes the

problem to be combinatorial and non-convex, and finally the last constraint assure the

data and pilot vectors to be non-negative. We propose the relaxed form of the problem
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by removing the third constraint as

(P2)






max
p

C lb

s.t. ECRB(τ1) ≤ ε

1Tp ≤ PT

pp + 0;pd + 0.

(2.5.2)

Problem (P2) can be solved using the interior point method. After solving the relaxed

optimization problem (P2) we choose the subcarriers that are used as both data and pilot

as pilot if the pilot power is much stronger than data, as data if the data power is much

stronger than the pilot, and if they are of similar value data and pilots are allocated such

that the time-delay estimation accuracy constraint is fulfilled with sufficiently high data

rate. This way, we obtain a close-to-optimal solution for the joint time-delay estimation

and communication design problem.

2.6 Simulation Results

2.6.1 Simulation Setup

Static Channels

For static channels, we use IEEE 802.11 channel model with the maximum number of

paths L = -10×στ/Ts. where στ is the RMS delay spread and Ts represents the sampling

period.

Time-Varying Channels

In the following, we present numerical evaluations of the two dimensional combined data

and pilot design for time-varying frequency selective channels. The simulation settings

are N = 32, K = 30, L = 5, and τ
′

1 = (τ1/Ts) = 0.1. Further, we consider 32 subcarriers

with∆ f = 15 KHz resulting the bandwidth of 480 KHz. The signal-to-noise ratio (SNR)

is defined as SNR ! PT/σ2
w and is set to 27 dB. We use the channel covariance matrix

in (2.3.16) with allowing correlation between different channel taps within each OFDM

symbol C ii
h and diagonal pattern for correlation between symbol to symbol C ij

h using

the zero-order bessel function J0(2πfD(i − j)T ) with notmalized Doppler frequency of
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fD = 0.3. To compare the result with [Mon13], we consider transmit, channel, and

received filter response as a simple delta function g(lT ) = δ(lT ) and assume τl = (l−1)+τ1.

2.6.2 Results and Discussion

Joint Design

Fig. 2.1(a)-2.1(c) show the joint design of pilots and data power allocations based on the

proposed channel model with maximum number of paths L = 4, L = 6, and L = 8,

with diagonal channel covariance matrices, i.e. independent channel coefficients, defined

in the simulation parameters, and number of subcarriers N = 48. The results show that

using the channel of length L, joint design of pilots and data power allocations requires at

least L+ 2 pilots for estimation with the rest of subcarriers saved for data transmission.

Obviously, increasing the number of taps from L = 4 to L = 8 reduces the capacity by

around 2.3% since the number of subcarriers for data transmission is reduced.

Fig 2.2 shows the joint design of data and pilots. Channel capacity for the combined

design optimization problem (P1) is 1.12 for the upper bound of time-delay estimation

accuracy of ε =1e-5 and the SNR of 27 dB. The position of pilots follows a semi stair-wise

pattern that is what we more or less see as in the PRS sequences of LTE.

Comparison Study

In this part, we compare the behavior of optimization problems (P1) and (P2) then

the behavior of the optimization with and without considering the time-delay estimation

constraint is investigated. Fig. 2.3 compares the lower bound of channel capacity for the

different values of the upper bound of time delay estimation accuracy parameter ε of the

problems (P1) and (P2). The relaxed solution allowing each subcarrier to be used as data

and pilot provides 31% higher capacity in the flat part of the curves comparing to the

solution after masking and limiting each subcarriers to be considered as either data or

pilot. Fig. 2.3 shows that by reducing ε, that is, increasing the accuracy in the estimation

of time-delay, the capacity is reduced since more subcarriers are needed to be allocated

as pilots. Fig. 2.4 and Fig. 2.5 compares the designs with and without considering time

delay constraint in terms of ECRB(τ1) and Clb for different SNR and with the upper

bound on the time delay estimation accuracy of ε = 1e − 5 respectively. Interestingly,

based on Fig. 2.4 after SNR = 29 dB the delay constraint is fulfilled without considering it

in the optimization problem as a constraint. This means that by increasing the SNR the
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time delay constraint in the optimization problem can be fulfilled even without directly

applying it in the optimization problem. Fig. 2.5 shows that after SNR = 27 dB the values

for the channel capacity with and without considering the delay constraint converge since

the delay constraint is fulfilled by increasing the SNR even for the case that is not applied

directly as a constraint in the optimization problem.

2.7 Conclusion

Combined design of data and pilots considering the effect of channel variations for dif-

ferent OFDM symbols improves the channel capacity comparing to the designs without

considering the effect of time variations for a given time-delay estimation accuracy. Re-

sults show that joint design of data and pilots leads to a better performance in terms of

capacity for a desired value of the time-delay estimation accuracy.
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Figure 2.1: Joint design of pilot and data power allocations for the channels of different
length.



44CHAPTER 2. OFDMALLOCATION UNDER TIMING ACCURACY CONSTRAINTS

OFDM Symbol Index

Su
bc

ar
rie

r I
nd

ex

 

 

5 10 15 20 25 30

−15

−10

−5

0

5

10

15
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 2.2: Joint Data and pilot allocations in a block-fading time-varying OFDM system.
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Appendix 2.A

Proof for (2.2.2)

The sampled received signal at t = nTs from a standard OFDM block passed through

a frequency selective and time-varying channel at the ith OFDM symbol after removing

the guard interval is

r̃i[n] =
∑

m∈Z

si[n−m]κi[m] + wi[n], (2.A.1)

where r̃i[n] = r̃i(nTs), κi[m] = κi(mTs), si[n] is the inverse DFT of the input at the n′th

subcarrier defined as si[n] = 1/
√
N

∑N−1
n′=0Bi[n′]ej

2π
N

n′n, and wi[n] = wi(nTs). We assume

that κi[m] has a limited time support of W such that κi[m] = 0 for m /∈ [0,W − 1]. By

Poisson summation formula, it turns out that

∑

m

κi[m]e−j 2π
N

mk =
1

Ts

∑

l

Ki(
l

Ts
+

k

NTs
)

(a)
=

1

Ts
Ki(

k

NTs
)

(b)
=

W−1∑

l=0

κi,le
−j 2π

N
lk, (2.A.2)

where (a) is obtained based on the fact that only the first term of the summation is

supported, and (b) is the direct result of the DFT of the channel response κi,l with

the time support of W . Replacing si[n] by si[n] = 1/
√
N

∑N−1
n′=0Bi[n′]ej

2π
N

n′n and using

(2.A.1), we obtain

r̃i[n] =
1√
N

N−1∑

n′=0

Bi[n
′]

W−1∑

l=0

κi,le
j 2π
N

n′(n−l) + wi[n]. (2.A.3)

47
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Taking the DFT of r̃i[n] shown as ri[n′] and writing the result in a matrix-vector form

results

ri = BiFWκi +wi, (2.A.4)

where Bi represents an N × N diagonal matrix of the input at ith OFDM symbol, FW

is the first W columns of the discrete Fourier transform (DFT) matrix F, and κi is an

W × 1 sampled channel response at the ith OFDM symbol.

The channel vector κi can be decomposed as the multiplication of a slow-varying

matrix G(τ ) and fast-varying fading coefficients hi as κi = G(τ )hi where G(τ ) is an

W ×L matrix as a result of sampling the transmit, channel, and received filter responses

for L different paths and W samples, hi is an L×1 complex amplitude of different path for

the ith OFDM symbol, and τ is the delay vector for L paths defined as τT = [τ1, ...,τ L].

Replacing κi = G(τ )hi in (2.A.4), vectorizing for K OFDM symbols, zero-padding the

ith column of G(τ ) by N −W as g̃T(τi) = [g(0T − τi), ..., g((W − 1)T − τi), 0, ..., 0], and

applying the DFT matrix F we obtain (2.2.2).

Appendix 2.B

Proof for (2.3.2)

To obtain each block of FIM, we use the fact that

∂µ̃H

∂τi
= jhHYH

i ,

∂µ̃H

∂([h] = YH,

∂µ̃H

∂)[h] = −jYH. (2.B.1)

Therefore, we obtain each block of the FIM as

2

σ2
w

([∂µ̃
H

∂τ
P
∂µ̃

∂τT
] =

K∑

i=1

2

σ2
w

(





Q11
i . . . Q1L

i
...

. . .
...

QL1
i . . . QLL

i



 , (2.B.2)
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2

σ2
w

([∂µ̃
H

∂τ
P

∂µ̃

∂([hT]
] =

2

σ2
w





)[hHX1]
...

)[hHXL]



 , (2.B.3)

2

σ2
w

([∂µ̃
H

∂τ
P

∂µ̃

∂)[hT]
] =

2

σ2
w





([hHX1]
...

([hHXL]



 , (2.B.4)

2

σ2
w

([ ∂µ̃
H

∂([h]
P

∂µ̃

∂([hT]
] =

2

σ2
w

([YHPY], (2.B.5)

2

σ2
w

([ ∂µ̃
H

∂)[h]P
∂µ̃

∂)[hT]
] =

2

σ2
w

([YHPY], (2.B.6)

2

σ2
w

([ ∂µ̃
H

∂([h]P
∂µ̃

∂)[hT]
] = − 2

σ2
w

)[YHPY]. (2.B.7)

That can be formed as (2.3.2).

Appendix 2.C

Proof for the FIM of the Special Case

Considering the fact that µ̃ is a function of ψl = τl = τ1 + (l − 1)Ts, real and imaginary

parts of channel coefficients, and using the chain rule for the derivative of a function, we

obtain

∂ν̃

∂τ1
=

L∑

i=1

∂µ̃

∂ψi

1︷︸︸︷
∂ψi

∂τ1
|ψi=τi=

L∑

i=1

∂µ̃

∂τi
, (2.C.1)

where ν̃ is a function of τ1 and real and imaginary parts of channel coefficients. Using

(2.C.1), we obtain each block of the FIM for the special case as

∂ν̃H

∂τ1
P
∂ν̃

∂τ1
=

L∑

i′=1

L∑

i=1

∂µ̃H

∂τi
P
∂µ̃

∂τi′
. (2.C.2)

The above expression is equal to 1TQ̃1.

([∂ν̃
H

∂τ1
P

∂ν̃

([hT]
] =

L∑

i=1

)[∂µ̃
H

∂τi
P

∂µ̃

([hT]
]. (2.C.3)
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The above expression is equal to )[1TZ̃], the same way we can prove the expression for

([1TZ̃]. Note that the expression for ỸHPỸ easily follows by replacing τl = τ1+(l−1)Ts

and g̃f = 1 in the definition of Y.

Appendix 2.D

Proof for (2.4.10)

We obtain the inverse of converted FIM as

2

σ2
w

J−1(ζ) = γ−1

[
1 )[βT] −([βT])[β] γΩ11 γΩ12

−([β] γΩT
21 γΩ22

]

. (2.D.1)

Also, the elements of the inverse of the FIM are found as

β = (ỸHPỸ)−1z, (2.D.1a)

Ω11 = ([(ỸHPỸ)−1] + γ−1)[β])[βT], (2.D.1b)

Ω12 = −)[(ỸHPỸ)−1]− γ−1)[β]([βT], (2.D.1c)

Ω21 = )[(ỸHPỸ)−1]− γ−1([β])[βT], (2.D.1d)

Ω22 = ([(ỸHPỸ)−1] + γ−1([β]([βT]. (2.D.1e)

Using the conversion matrix Tt we obtain

2

σ2
w

J̃−1(ζ) =
[
γ−1 jγ−1βH − jγ−1β 2(ỸHPỸ)−1 + γ−1ββH

]
, (2.D.2)

diag{E[h̃′

(ζ)J̃−1(ζ)(h̃
′

(ζ))H]} =

diag{E[∆CRB(a)∆H]

+ E[αCRB(τ1)α
H] +

σ2
w

2
E[X +XH]}, (2.D.3)

X = jγ−1αβH∆H. (2.D.4)

Using the property diag{u}diag{vH} = diag{uvH} where u and v are arbitrary column

vectors, one can easily prove that diag{E[X+XH]} = 0. Therefore, we obtain (2.4.10).



Chapter 3

OFDM Wireless Network

Localization

3.1 Introduction

High-accuracy localization is of critical importance in many location-based applications

and services, e.g., cellular positioning, search-and-rescue tasks, blue-force tracking, com-

munication, and military systems [Say05, God05]. WNL refers to the process of finding

the positions of users (agents) using measurements to nodes with known positions (an-

chors). The transmission power of the nodes plays an important role in WNL, not only in

terms of lifetime and throughput, but also in positioning accuracy [Mes07]. Therefore, an

optimal power allocation among both anchors and subcarriers is important for reducing

power consumption and increasing positioning accuracy.

Several power allocation methods have been presented for single-carrier transmission

in synchronous networks [She14, Dai14]. These methods include the positioning accu-

racy as either an objective or a constraint, using fundamental performance limits. In

[She10b, She10c], the fundamental limits of wideband localization have been derived in

terms of SPEB and directional position error bound (DPEB) for the case of single-carrier

signals. To overcome the uncertainties on the network parameters, a robust power al-

location has been proposed in [Li13] by converting the minimization of the SPEB and

of the maximum DPEB (mDPEB) subject to a total power constraint into semidefinite

programming (SDP) and second-order cone programming (SOCP) forms. The authors

in [She14, Dai14, Li13] assumed a unicast transmission scheme, that is to say, when an

anchor transmits a signal, it is only listened by one agent. However, for a synchronous net-

51
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work, this leads to suboptimal solutions in terms of total required power by the anchors.

Moreover, current and emerging communications standards generally employ multi-carrier

signals, in particular orthogonal frequency division multiplexing (OFDM). Multicarrier

transmissions are beneficial when the data rates increase and hence wider bandwidths are

needed. Current research for localization using OFDM signals is mainly focused on time

delay estimation [DPR12]. In [Sha15], a power allocation for OFDM WNL is developed

by converting the optimization into SDP form and numerical averaging over the position

error bound.

In this chapter, we extend [Sha15] and formulate the ergodic and robust power alloca-

tions in an OFDM WNL with uncertainties on the network parameters (which include the

channel coefficients and the positions of the agents) based on the fundamental statistical

limits, rather than focusing on a specific localization technique. Our main contributions

are summarized as follows.

• We develop an ergodic power allocation that minimizes the total power subject to

a maximum acceptable value for the expected SPEB, averaged over a set of channel

coefficients and agents’ positions.

• We develop a robust power allocation to minimize the total power subject to a

maximum acceptable value for the worst-case SPEB, maximized over a set of channel

coefficients and agents’ positions.

The remainder of this chapter is organized as follows. The system model, including the

different types of uncertainty, are presented in Section 3.2. A standard non-robust power

allocation, ignoring uncertainty, is summarized in Section 3.3. The proposed ergodic and

robust power allocations are derived in Sections 3.4 and 3.5, respectively. The different

approaches are compared numerically in Section 3.6, before we draw conclusions in Section

3.7.

Notation: diag{Xm}m∈M denotes the block-diagonal matrix with the mth block equal

to Xm and m in the set of indices M; diag{xm}M−1
m=0 denotes an M ×M diagonal matrix

formed with the values xm; {xi} represents the set of all vectors xi for all possible values

of the subindex i; IN is the N × N identity matrix; 1N is the N × 1 all-one vector; ‖.‖
denotes the l2-norm; ⊗ denotes the Kronecker product; tr{X} denotes the trace of the

matrix X; X + Y means that the matrix X−Y is positive semi-definite (PSD); X 0 Y

means that the matrix X − Y is positive definite; x + y and x 0 y mean that all the

elements of x − y are nonnegative and positive, respectively; and ({.} and ){.} denote

the real and imaginary parts, respectively.



3.2. SYSTEM MODEL 53

3.2 System Model

In this section, we present the signal model for multi-carrier network localization. Then,

uncertainty models for network parameters are defined.

3.2.1 Observation Model

Consider a wireless network with Nb anchors with known positions and Na agents with

unknown positions. The sets of agents and anchors are denoted by Na = {1, . . . , Na}
and Nb = {Na + 1, . . . , Na + Nb}, respectively. The two-dimensional positions of kth

agent and jth anchor are denoted by qk = [xk yk]T for k ∈ Na and qj = [xj yj]T for

j ∈ Nb. Anchors may be elements of the fixed infrastructure, whereas agents may be

mobile users. We assume that all nodes are perfectly synchronized [Li13] and use OFDM

transmissions from anchors to agents to localize the agents. We will focus on the case

where each anchor j sends an OFDM signal, which is received by all agents (multicast

transmission). However, all methods are easily modified for the case where each anchor j

sends an OFDM signal that is received by one agent at a time (unicast transmission).

We denote as rk,j the N × 1 vector representing the received signal by agent k

produced by the transmission of anchor j with N subcarriers, after cyclic prefix re-

moval and transformation to the frequency domain. The vector rk,j can be expressed

as [Lar11, San12, Mor09]

rk,j = Γ(tk,j)BjFLhk,j +wk,j, (3.2.1)

where Bj = diag{Bj[n]}N/2
n=−N/2 is an N ×N diagonal matrix representing the N symbols

sent by anchor j on each of the subcarriers, FL represents the first L columns of the

N×N discrete Fourier transform (DFT) matrix with L being the number of channel taps

between nodes j and k (without loss of generality, we assume the same number of taps for

all channels), hk,j = [h(1)
k,j . . . h

(L)
k,j ]

T with the real and imaginary parts defined as hR,k,j and

hI,k,j is the channel response between the corresponding anchor and agent, respectively,

Γ(tk,j) = diag{exp(−j2πntk,j/T )}N/2
n=−N/2 where tk,j is the arrival time of the first path

and is given by tk,j = ‖qk−qj‖/c with c representing the speed of light. The symbol time

duration is denoted as T , and wk,j is an N × 1 noise vector distibuted as CN (0, σ2
wIN).

We introduce r as the vector representation of the received waveforms by all agents from

all anchors, given by r = [rT1 . . . rTNa
]T with rk = [rTk,Na+1 . . . rTk,Na+Nb

]T.
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Note that for unicast operation, each anchor j will send different OFDM signals to

each agent. In terms of the model, the only difference is that we have to replace Bj by

Bk,j in (3.2.1).

Our goal is to minimize the total transmission power (PT,multi =
∑

j∈Nb
tr{Pj} where

Pj = BH
j Bj for multicast and PT,uni =

∑
k∈Na

∑
j∈Nb

tr{Pk,j} where Pk,j = BH
k,jBk,j for

unicast) required to obtain a certain positioning accuracy in terms of the fundamental

statistical limits in the presence of uncertainties in the channel and the agent positions.

We note that we do not consider different subcarriers for different users, so that each user

can make use of the full system bandwidth.

3.2.2 Uncertainty Model

We consider a scenario in which we have some a priori information regarding the channel

coefficients and the locations of the agents.

For the channel, we consider that hk,j = ĥk,j+∆hk,j, where ĥk,j is an a priori estimate

of the channel and ∆hk,j is the uncertainty on the channel, belonging to either the sets

H(1)
k,j or H

(2)
k,j , with

H(1)
k,j ! {∆hk,j : ‖∆hk,j‖ ≤ ε} , (3.2.2)

H(2)
k,j ! {∆hk,j : |∆hk,j,l| ≤ εl, l = 1, ..., L} . (3.2.3)

Here,∆ hk,j,l is the uncertainty of the lth channel tap, while εl and ε represent bounds

on the uncertainty. Denoting by φk,j = ± arctan(yk − yj)/(xk − xj) the angle between

the jth anchor and kth agent with respect to the positive x axis (with positive sign for

xk > xj and yk > yj or xk < xj and yk < yj and negative sign otherwise), we can write

φk,j = φ̂k,j +∆φk,j, where φ̂k,j is an a priori estimate and∆ φk,j is the uncertainty of the

angle, limited to |∆φk,j| ≤ δk,j, with 0 ≤ δk,j < π /2. Fig. 3.1 shows the network scheme

with four anchors and the k-th agent with the agent’s actual position to lie within a circle

of radius εd, and the relative angle between the k-th agent and the j-th anchor is shown

by φk,j.

3.3 Non-Robust Power Allocation

In this section, we provide the SPEB for OFDM signals and the formulation of the non-

robust power allocation, without considering any uncertainties.
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q̂k
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δk,j

φk,j

x

εd

Figure 3.1: Illustration of the uncertainty model for WNL for agent k with the angular
uncertainty δk,j and the relative angle φk,j.

3.3.1 Squared Position Error Bound

We consider the agents’ positions and channel coefficients as deterministic unknown pa-

rameters and we determine the corresponding Fisher information matrix (FIM). From this

FIM, we can derive the SPEB. Let us define η = [qT
1 . . .qT

Na
θT
1 . . .θT

Na
]T where the whole

set of channel coefficients is θk = [kT
k,Na+1 . . .k

T
k,Na+Nb

]T, in which kk,j = [hT
R,k,j hT

I,k,j]
T.

The FIM of the parameters in η is

Jη = Er|η[−
∂2 ln f(r;η)

∂η∂ηT
]. (3.3.1)

This FIM is a 2(NaNbL+Na)× 2(NaNbL+Na) real PSD matrix, with the property that

for any unbiased estimate η̂ of η, it holds that [Kay10]

Er|η[(η̂ − η)(η̂ − η)T] + J−1
η . (3.3.2)
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The FIM Jη has the following form

Jη =





Φ(q,q) Φ(q, θ1) . . . Φ(q, θNa)

Φ(θ1,q) Φ(θ1, θ1) . . . Φ(θ1, θNa)
...

. . .
...

Φ(θNa ,q) Φ(θNa , θ1) . . . Φ(θNa , θNa)




, (3.3.3)

where we have used the following definitions q = [qT
1 . . .qT

Na
]T ,

Φ(x,y) !
2

σ2
w

(
{
∂µH

∂x

∂µ

∂yT

}
, (3.3.4)

and µ ! Γ̄(t)(INa ⊗ B)F̄Lh with Γ̄(t) = diag{Γ̄(tk)}k∈Na, B = diag{Bj}j∈Nb
, F̄L =

INaNb
⊗ FL, h = [hT

1 . . .hT
Na
]T, in which Γ̄(tk) and hk are defined as

Γ̄(tk) = diag{Γ(tk,j)}j∈Nb
,

and hk = [hT
k,Na+1 . . . hT

k,Na+Nb
]T. The terms Φ(θk, θm), Φ(qk,qm), Φ(θm,qk), and

Φ(qk, θm) are zero for k "= m (see Appendix 3.A), so that the equivalent FIM (EFIM) of

the agents’ positions is given by

Je(q) = ζ
∑

j∈Nb

diag{λ1,jJr(φ1,j), . . . ,λNa,jJr(φNa,j)}, (3.3.5)

where ζ = 2/(c2σ2
w), Jr(φk,j) = ur(φk,j)uT

r (φk,j) with ur(φk,j) = [cosφk,j sinφk,j]T is the

so-called ranging direction matrix (RDM) and λk,j is the ranging information intensity

(RII), given by [Sha15]

λk,j = hH
k,jM

(1)
j (pj)hk,j − hH

k,jM
(2)
j (pj)hk,j, (3.3.6)

where

M(1)
j (pj) = FH

LD
HPjDFL, (3.3.7)

M(2)
j (pj) = ΞH(pj)Σ

−1(pj)Ξ(pj), (3.3.8)

in which D = diag{j2πn/T}N/2
n=−N/2, Ξ(pj) = FH

LPjDFL, and Σ(pj) = FH
LPjFL. Finally,

the SPEB for kth agent is given by

Pk({pj}) ! tr{J−1
e (qk)}, (3.3.9)
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where pj is the N × 1 vector of transmitted power taken from the main diagonal of Pj ,

and

Je(qk) = ζ
∑

j∈Nb

λk,jJr(φk,j). (3.3.10)

3.3.2 Formulation of the Non-Robust Power Allocation Problem

The non-robust power allocation consists in obtaining the values of {pj} that are optimum

for the estimated values of the channel and angles, ĥk,j and φ̂k,j, which are therefore used

in the formulation of the problem. For multicast1 transmission, it has the following form

ANR : minimize
{pj}

∑

j∈Nb

1Tpj (3.3.10a)

subject to Pk({pj}) ≤ β, ∀k ∈ Na (3.3.10b)

pj + 0, ∀j ∈ Nb (3.3.10c)

where β is maximum acceptable SPEB of the agents. We note that: (3.3.10a) aims at

minimizing the total power of the anchors required to localize the agents; (3.3.10b) sets

an upper bound β to the SPEB of the agents; (3.3.10c) restricts the anchor power vectors

pj to be non-negative. Problem ANR is the extension to multicarrier signals of minimum

energy cost problem in [Li13] for multicast transmission. Finally, we note that ANR is a

convex optimization problem.

The problem ANR can be written in the SDP form [Boy04] by replacing each constraint

in (3.3.10b) by

Je(qk) + G̃k, (3.3.11)

Θ̃(G̃k; β) + 0, (3.3.12)

where G̃k is a 2× 2 auxiliary matrix and

Θ̃(G̃k; β) =




β ṽT

1 ṽT
2

ṽ1 G̃k 0

ṽ2 0 G̃k



 , (3.3.13)

where ṽ1 = [1, 0]T and ṽ2 = [0, 1]T. Moreover, the matrix inequality Je(qk) + G̃k can be

1All of the optimization problems within this paper can be easily reformulated for unicast transmission
by replacing pj with pk,j and

∑
j∈Nb

1Tpj with
∑

k∈Na

∑
j∈Nb

1Tpk,j with pk,j defined as an N × 1
power vector for transmission from the jth anchor to the kth agent.



58 CHAPTER 3. OFDM WIRELESS NETWORK LOCALIZATION

written as a linear matrix inequality on the power vector pj . In particular, we can replace

Je(qk) + G̃k by Πk({pj}, G̃k) + 0, where

Πk({pj}, G̃k) = (3.3.14)
[∑

j∈Nb
νk,j(pj)Jr(φ̂k,j)− G̃k ΨH

k ({pj})
Ψk({pj}) Σ({pj})

]

,

in which νk,j(pj) = ζĥH
k,jM

(1)
j (pj)ĥk,j, ΨH

k ({pj}) = [ΨH
k,1(p1) . . .ΨH

k,Nb
(pNb

)] and

ΨH
k,j(pj) =

√
ζur(φ̂k,j)ĥ

H
k,jΞ

H(pj),

Σ({pj}) = diag{Σ(p1), . . . ,Σ(pNb
)}.

The non-robust design uses only the estimated channel coefficients and agent locations

for the power allocation problem. The main drawback of the proposed non-robust allo-

cation is that the designed power allocation is specific for particular network parameters.

This causes the actual SPEB to deviate from the maximum value β when the agent’s

real positions and channels do not coincide with the ones used in the design. The goal of

the ergodic and robust allocations is to control this deviation by taking into account in

the design the uncertainty between the real parameters (i.e., channels and positions) and

those assumed for the design.

3.4 Ergodic Power Allocation

In this section, we introduce the so-called ergodic power allocation and convert it to an

SDP form. The ergodic power allocation problem for the case of multicast design has the

following form

AE : minimize
{pj}

∑

j∈Nb

1Tpj (3.4.0a)

subject to Eη[tr{J−1
e (qk)}] ≤ β, ∀k ∈ Na (3.4.0b)

pj + 0. ∀j ∈ Nb (3.4.0c)

We note that (3.4.0b) sets an upper bound β to the expected SPEB of the agents, with

respect to the channel coefficients hk,j and agents’ positions qk. Given that the analytical

calculation of (3.4.0b) is inaccessible, we resort to a numerical approximation by averaging
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over Mq realizations:

1

Mq

Mq∑

m=1

tr{[J−1
e,k,m({pj})]} ≤ β, (3.4.1)

where

Je,k,m({pj}) = ζ
∑

j∈Nb

λk,j,mJr(φk,j,m), (3.4.2)

λk,j,m = hH
k,j,m(M

(1)
j (pj)−M(2)

j (pj))hk,j,m, (3.4.3)

with hk,j,m and φk,j,m being generated according to one of the uncertainty models in

Section 3.2.2.

Using the same approach as in Section 3.3.2, we can reformulate AE in SDP form as

ASDP
E : minimize

{pj},{Gk}

∑

j∈Nb

1Tpj (3.4.3a)

subject to Θ(Gk; β) + 0, ∀k ∈ Na (3.4.3b)

Πk,m({pj},Gk,m) + 0, ∀k ∈ Na, ∀m ∈ Mq (3.4.3c)

pj + 0, ∀j ∈ Nb (3.4.3d)

where Mq = {1, . . . ,Mq}, Gk = diag{Gk,m}Mq

m=1 comprises Mq auxiliary 2 × 2 matrices

Gk,m,

Θ(Gk; β) =




Mqβ vT

1 vT
2

v1 Gk 0

v2 0 Gk



 , (3.4.4)

with v1 = 1Mq ⊗ ṽ1 and v2 = 1Mq ⊗ ṽ2. The matrix Πk,m({pj},Gk,m) is defined as

Πk,m({pj},Gk,m) = (3.4.5)
[∑

j∈Nb
νk,j,m(pj)Jr(φk,j,m)−Gk,m ΨH

k,m({pj})
Ψk,m({pj}) Σ({pj})

]

,

in which νk,j,m(pj) = ζhH
k,j,mM

(1)
j (pj)hk,j,m, andΨH

k,m({pj}) = [ΨH
k,1,m(p1) . . .ΨH

k,Nb,m
(pNb

)],

with ΨH
k,j,m(pj) =

√
ζur(φk,j,m)hH

k,j,mΞ
H(pj).
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3.5 Robust Power Allocation

In this section, we propose a robust power allocation, accounting for the worst-case channel

and position uncertainty.

3.5.1 General Formulation

The robust power allocation problem for multicast design is of the following form

AR : minimize
{pj}

∑

j∈Nb

1Tpj (3.5.0a)

subject to Pmax
k ({pj}) ≤ β, ∀k ∈ Na (3.5.0b)

pj + 0, ∀j ∈ Nb (3.5.0c)

where Pmax
k ({pj}) is the worst-case SPEB:

Pmax
k ({pj}) ! max

hk ,φk

Pk({pj}), (3.5.1)

in which φk = [φk,Na+1...φk,Na+Nb]T. We note that since (3.5.1) is the piecewise maximum

over convex functions, the problem AR is a convex problem. Therefore, there is a variety

of algorithms to solve the robust power allocation with guaranteed convergence (e.g., a

cutting plane method), but with high complexity. Our ambition is to propose a potentially

suboptimal method but with a reduced complexity. We will achieve this by solving the

problem through a minimax game, where one player chooses a best power allocation

and the second player the worst possible channel. Such an approach does not necessarily

converge, unless the constraints satisfy certain technical conditions [Boy04, Section 10.3.4].

However, simulations show that in practice our algorithm converges.

Due to the structure of the SPEB in (3.3.5), the maximization over φk,j for any given

value of hk,j can be determined as in [Li13], by replacing Jr(φk,j) with Qr(φ̂k,j, δk,j) =

Jr(φ̂k,j)− sin δk,jI2. Later, we will rely on the eigen-decomposition of Qr(φ̂k,j, δk,j). It is

readily verified that the two eigen-vectors ofQr(φ̂k,j, δk,j) are ur,1(φ̂k,j) = [cos φ̂k,j, sin φ̂k,j]T

and ur,2(φ̂k,j) = [− sin φ̂k,j, cos φ̂k,j]T, with eigenvalues γ(+)
k,j = 1 − sin δk,j ≥ 0, and

γ(−)
k,j = − sin δk,j ≤ 0. However, the worst-case channel depends on the power-allocation,

and hence we have to resort to an iterative approach, outlined below.

In Algorithm 1, the worst-case channel deviation ∆hws
k,j is determined using a previ-

ously determined power allocation, and this power allocation is progressively refined. In
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Algorithm 1 Robust Power Allocation
1: Set m = 1.
2: Determine an initial guess of {p(m−1)

j }.
3: Determine the worst-case channel deviation ∆hws

k,j for the current guess of {p
(m−1)
j }.

4: Determine a pessimistic power allocation {ppess,j}, ignoring γ(−)
k,j . Set {p

(m)
j = ppess,j}.

5: Determine Xk({pj}) and ∆hws
k,j for the current guess of {p(m)

j }.
6: Determine a corrected power allocation {p(m+1)

j = pcorr,j}, accounting for γ(−)
k,j .

7: Set m = m+ 1 and go back to step 5 until |∆P (m)
T,multi| ≤ ξth.

what follows, we solve the robust power allocation for two sets of uncertainties on the

channel coefficients, H(1)
k,j and H(2)

k,j from Section 3.2.2, according to the above procedure.

3.5.2 Robust Power Allocation for ∆hk,j ∈ H(1)
k,j

In this section, first we obtain the worst-case channel deviation ∆hws
k,j (step 2 in Algorithm

1) using an initial guess of {pj} (step 3 in Algorithm 1). Second, a pessimistic power

allocation is obtained based on the worst-case channel deviation (step 4 in Algorithm

1). Third, a corrected power allocation is designed by the inclusion of a PSD matrix

in the SDP optimization based on the solution of the pessimistic power allocation and

accounting for γ(−)
k,j (step 6 in Algorithm 1). The algorithm stops when the change in the

used power is smaller than a predefined threshold ξth (step 7 in Algorithm 1).

Worst-Case Channel

The values of the channel coefficients that maximize the SPEB can be obtained by solving

the following optimization problem.

minimize
∆hk,j∈H

(1)
k,j

λk,j. (3.5.2)

To solve (3.5.2), we propose the following proposition, requiring introduction of Ωj(pj) !

M(1)
j (pj)−M(2)

j (pj).

Proposition 1 Solving (3.5.2) leads to

∆hws
k,j(pj) = −(Ωj(pj) + 3k,jIL)

−1Ωj(pj)ĥk,j, (3.5.3)
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in which 3k,j denotes the Lagrange multiplier associated with the constraint ∆hk,j ∈ H(1)
k,j.

Proof: See Appendix 3.B.

The value of 3k,j can be found numerically relying on the Karush-Kuhn-Tucker (KKT)

conditions, as detailed in Appendix 3.C. Substituting (3.5.3) into the definition of λk,j

(3.3.6) leads to the worst-case RII

λmin
k,j = ĥH

k,jΛ̃
H
k,j(pj)Ωj(pj)Λ̃k,j(pj)ĥk,j, (3.5.4)

in which

Λ̃k,j(pj) = IL −Uj(pj)(Λj(pj) + 3k,jIL)
−1Λj(pj)U

H
j (pj),

withUj(pj) andΛj(pj) obtained by eigen-decompositionΩj(pj) = Uj(pj)Λj(pj)UH
j (pj).

It is clear that λmin
k,j depends on pj in such a way that J̄e,k({pj}) !

∑
j∈Nb

λmin
k,j Qr(φ̂k,j, δk,j)

can no longer be written as a linear function of the power (in contrast to the non-robust

and ergodic designs). This is the reason why we have to resort to the procedure in

Algorithm 1.

Pessimistic Power Allocation

Given a guess of the power allocation and a corresponding guess of ∆hws
k,j, we can express

the current guess of the worst-case EFIM as J̄e,k({pj}) = Ĵe,k({pj})+Xk({pj}) in which

Ĵe,k({pj}) includes the M(1)
j (pj)-related part of the EFIM and the M(2)

j (pj)-related part

of the EFIM corresponding to the positive eigenvalues γ(+)
k,j , and the PSD matrixXk({pj})

is the M(2)
j (pj)-related part of the EFIM corresponding to the negative eigenvalues γ(−)

k,j ,

that is

Xk({pj}) = ζ
∑

j∈Nb

|γ(−)
k,j |ur,2(φ̂k,j)(ĥk,j +∆hws

k,j)
HM(2)

j (pj)(ĥk,j +∆hws
k,j)u

T
r,2(φ̂k,j).

(3.5.5)

Consequently, Ĵe,k({pj}) can be decomposed as

Ĵe,k({pj}) =
∑

j∈Nb

ν̃k,j(pj)Qr(φ̂k,j, δk,j)− Ψ̃H
k,j(pj)Σ

−1(pj)Ψ̃k,j(pj), (3.5.6)
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with

ν̃k,j(pj) = ζ(ĥk,j +∆hws
k,j)

HM(1)
j (pj)(ĥk,j +∆hws

k,j), (3.5.7)

Ψ̃H
k,j(pj) =

√
ζγ(+)

k,j ur,1(φ̂k,j)(ĥk,j +∆hws
k,j)

HΞH(pj). (3.5.8)

It is now clear that since J̄e,k({pj}) + Ĵe,k({pj}), a power allocation based on Ĵe,k({pj})
will lead to an overly robust design (i.e., a pessimistic design). The constraint

tr{Ĵ−1
e,k({pj})} ≤ β

can be formulated as an SDP. This SDP (for a given value of ∆hws
k,j) is of exactly the

same form as the non-robust SDP (3.3.11)–(3.3.14), but in Π̃k({pj}, G̃k) from (3.3.14),

νk,j(pj) is replaced by ν̃k,j(pj), ΨH
k ({pj}) is replaced by Ψ̃H

k ({pj}) and Jr(φ̂k,j) is replaced

by Qr(φ̂k,j, δk,j). We denote the solution as {ppess,j}.

Corrected Power Allocation

For the same guess of∆hws
k,j, we now account forXk({ppess,j}) to obtain a less conservative

power allocation. This is achieved through the following optimization:

ASDP
R : minimize

{pj},{G̃k}

∑

j∈Nb

1Tpj (3.5.8a)

subject to Θ̃(G̃k; β) + 0, ∀k ∈ Na (3.5.8b)

Π̃k({pj}, G̃k;Xk({ppess,j})) + 0, (3.5.8c)

pj + 0, ∀j ∈ Nb (3.5.8d)

in which G̃k is an auxiliary matrix, Θ̃(G̃k; β) was defined in (3.3.13), and

Π̃k({pj}, G̃k;Xk({ppess,j})) = (3.5.9)
[∑

j∈Nb
ν̃k,j(pj)Qr(φ̂k,j, δk,j) +Xk({ppess,j})− G̃k Ψ̃H

k ({pj})
Ψ̃k({pj}) Σ({pj})

]

.

The solution to ASDP
R will be denoted by {pcorr,j}. Note that the inclusion of the PSD

matrix Xk({ppess,j}) in (3.5.8c) will lead to a reduction in the allocated power, i.e.,
∑

j∈Nb
1Tpcorr,j ≤

∑
j∈Nb

1Tppess,j.
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Figure 3.1: Evolution of the normalized total power PT,multi =
∑

j∈Nb
1Tpcorr,j for ∆hk,j ∈

H(1)
k,j and ∆hk,j ∈ H(2)

k,j and 3 different channels.

Complete Iterative Procedure

The complete procedure proceeds as outlined in Algorithm 1. Starting from an initial

guess of the power allocation, the ∆hws
k,j is determined (see Section 3.5.2). Then a con-

servative power allocation is determined (see Section 3.5.2), followed by a correction (see

Section 3.5.2). Then the entire procedure (Section 3.5.2 and Section 3.5.2) is repeated

until a measure of convergence is achieved. In our case, we consider the absolute value of

the relative change of the total power

|∆P (m)
T,multi| !

|P (m+1)
T,multi − P (m)

T,multi|
P (m)
T,multi

,

with P (m)
T,multi =

∑
j∈Nb

1Tp(m)
j to be smaller than a given threshold ξth, i.e., |∆P (m)

T,multi| ≤
ξth.
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Table 3.1: Approximate complexity comparison of the non-robust, ergodic and robust
power allocations, for N subcarriers, L-path channels, Na agents, Nb anchors, Mq samples,
and Mmax iterations in Algorithm 1.

number of Newton steps Newton step complexity

non-robust
√

(NaL+N)Nb NaN2
bL

2(NbL+N) +N3Nb

ergodic
√
MqNbNaL+NNb MqNaN2

bL
2(NbL+N) +M3

qNa +N3Nb

robust Mmax
√

(NaL+N)Nb NaN2
bL

2(NbL+N) +N3Nb

3.5.3 Robust Power Allocation for ∆hk,j ∈ H(2)
k,j

Worst-Case Channel

The worst-case channel for ∆hk,j ∈ H(2)
k,j is found by solving

minimize
∆hk,j∈H

(2)
k,j

λk,j. (3.5.10)

The optimization problem (3.5.10) is formed by a quadratic cost function with linear

constraints. This type of problems have no closed-form solution, but it is well-known that

it can be solved with the simplex method, interior-point methods (IPMs), or it can be

transformed to SDP and solved as an SDP [Boy04].

Pessimistic and Corrected Power Allocations

Similar to Section 3.5.2 and Section 3.5.2, we can follow the same iterative procedure

from Algorithm 1. Fig. 3.1 shows the convergence pattern of the proposed algorithm for

unicast and multicast transmissions. It turns out that after a few iterations, the algorithm

converges.

Remark: Computational Complexity

The complexity of each of the methods can be determined through an analysis based on

the extension of the barrier methods with the general inequality constraints [Boy04]. The

result, expressed in terms of the number of Newton steps and the complexity per Newton

step, is detailed in Table 3.1. We note that with respect to the non-robust allocation, the

ergodic allocation has a complexity that is around M1.5
q times higher, while the robust

allocation has a complexity around Mmax times higher.
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Figure 3.1: Network topology with four anchors (red triangles) and four agents (blue
dots) over the 1000 m × 1000 m map. The pink dots represent possible positions due to
uncertainty, and the dash-dot circle denotes the uncertainty disk.

3.6 Simulation Results

In this section, we compare the performance of the ergodic, robust, and non-robust designs

in terms of the total allocated power, as well as the distribution of the power across

subcarriers, and the SPEB performance.

3.6.1 Simulation Setup

We consider a network with Nb = 4 anchors and Na = 4 agents. Each agent has a nominal

position and nominal channel to each of the anchors. Due to, for instance, movement, the

agents’ positions and the channels become uncertain. The possible positions after move-

ment are within an uncertainty disk with radius∆ r = 40m around the nominal positions

qk [m] ∈ {[±166.7 ± 166.7]T} for k ∈ {1, 2, 3, 4}, as shown in Fig. 3.1. This position

uncertainty then translates to angle uncertainty with∆ φk,j ∈ [−δk,j ,+δk,j], which is ob-

tained using simple trigonometric calculations. For the signals, we set2 N/T = 10 MHz,

and N = 32 subcarriers. All channels have L = 5 taps. Examples of the magnitude of

2The most usual working modes of long term evolution (LTE) are based on the 5 MHz and 10 MHz
operating bandwidth [3GP14, DPR14]. Thus, we have chosen 10 MHz operating bandwidths in order to
represent usual LTE positioning conditions.
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Figure 3.2: Magnitude of the frequency response for channels between anchor k = 7 and
the agents: nominal response |FLĥk,j| (top), response with channel uncertainty |FL(ĥk,j+
∆hk,j)| (bottom).

channel frequency response associated with the nominal channels ĥk,j generated randomly

as CN (0, 5IL) from anchor 7 to all four agents are presented in Fig. 3.2 (top). Channel

uncertainties are generated from the uncertainty region based on H1 with ε = 0.6 vi-

sualized in the frequency domain in Fig. 3.2 (bottom). To evaluate the different power

allocations, we consider Nq = 150 possible channel and position realizations. Finally, we

set the SPEB threshold
√
β =

√
0.5 = 0.7071 [m].

We have considered five power allocation approaches:

• Benchmark: Power allocation is based on the true positions and channel coefficients

after the movement. This is (3.3.10a)–(3.3.10c) using the actual value of the channel

and agents’ positions. Note that this strategy is not causal, as it relies on the

positions after movement.

• Non-robust: Power allocation is based on the SDP form of problemANR in (3.3.10a)-

(3.3.10c), using the nominal positions and nominal channels. Note that the resulting

allocation may violate the SPEB constraint when evaluated in the true positions

with the true channels.

• Ergodic: Power allocation is based on AE in (3.4.0a)–(3.4.0c) with the SDP refor-

mulation of (3.4.4) for Mq realizations of channel coefficients and positions after
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Figure 3.3: Unicast: SPEB after movement vs SNR for 150 channel and position values
after movement.

movement. We have found that Mq = 25 is sufficient (i.e., power allocations do not

change significantly for Mq > 25) and we use this value for the remainder of the

paper.

• Robust H1: Power allocation is based on the solution of the problem AR in (3.5.0a)–

(3.5.0c) with channel uncertainties modeled to belong to H(1)
k,j.

• Robust H2: Power allocation is based on the solution of the problem AR in (3.5.0a)–

(3.5.0c) with channel uncertainties modeled to belong to H(2)
k,j. The upper bound on

the per-channel tap uncertainty is set to εl = ε/
√
L, so that H(1)

k,j ⊃ H(2)
k,j .

For each of these power allocations, we determine the total power as well as the actual

SPEB for Nq = 150 realizations of the channels and agents’ positions after movement.

In addition, we also evaluate the SPEB of the non-robust approach when the power is

increased to the same level as the ergodic and robust approaches. The SDPs and convex

programs are solved using CVX [Gra10].
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Figure 3.4: Multicast: SPEB after movement vs SNR for 150 channel and position values
after movement.

3.6.2 Results and Discussion

Total allocated power

Fig. 3.3–3.4 show the result for unicast and multicast transmissions, respectively. In

these plots, we show the SPEB vs SNRuni = PT,uni/σ2
w and SNRmulti = PT,multi/σ2

w in

which PT,uni =
∑

k∈Na

∑
j∈Nb

1Tpk,j and PT,multi =
∑

j∈Nb
1Tpj . For the unicast scenario

(Fig. 3.3), the non-causal benchmark method leads to an
√
SPEB of exactly 0.7071 m,

while the non-robust solution has a fixed power allocation, leading to widely varying

SPEB, depending on the positions and channels after movement. We note that for all

the 150 channels and positions under evaluation, the SPEB constraint is violated by the

non-robust power allocation. The ergodic allocation requires slightly more power than

the non-robust design, but leads to a lower SPEB, with an average around the target

value of
√
β = 0.7071 m. Scaling up the power in the non-robust design to a total level

equal to the ergodic design leads to a slight improvement in the SPEB (represented with

the black markers in Fig. 3.3), but is still much worse than the ergodic design in terms

of the average SPEB. To show the performance of the ergodic design using the sampling

average in (3.4.1), the mean value of the SPEB using ergodic design with the sampling
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average is shown by the orange ‘*’ on top of the green squares. It can be observed that

using the ergodic design with the sampling average in (3.4.1), the resulting allocation

very likely fulfills (3.4.0b) with the desired localization accuracy of
√
β = 0.7071 m. The

approximate performance of the mean value of the sample average close to the desired

accuracy of
√
β = 0.7071 m can be justified using the sample average approximation for

“stochastic programming” problems [Kle01]. The two robust designs require even more

power, but are able to meet the SPEB requirement for each realization of the channels

and positions after movement based on H1 channel uncertainty. We note that the robust

H1 approach requires more power than the robust H2 approach, what is logical given

that for the selected ε and εl the H1 uncertainty region is larger than H2. This leads to

the fact that the robust H2 for some values after the agent movement slightly violates

the benchmark
√
β = 0.7071 m due to the fact that the upper bound on the per-channel

tap uncertainty is set to εl = ε/
√
L, so that H(1)

k,j ⊃ H(2)
k,j. As with the ergodic approach,

scaling up the power of the non-robust approach to the level of the robust approaches

still violates the SPEB constraint. This means that simply increasing the power is not an

efficient way to fulfill the SPEB bound in the presence of channel and position uncertainty,

and that the inclusion of the uncertainty in the design itself is fundamental to achieve

a given performance without paying an excessive penalty in power. For the multicast

scenario (Fig. 3.4), we observe similar trends. Interestingly, for all allocations, the total

required power for different power allocation methods in unicast transmission is less than

Na = 4 times the total power in multicast transmission. This is due to the fact that

while unicast requires more transmissions, each transmission can be optimized (in terms

of total power and per-subcarrier allocation) for each individual agent.

Power across subcarriers

We analyze the per-carrier allocation for robust H1 case since the same argument can be

made for the other allocations. Fig. 3.5 shows the normalized per-carrier allocations for

multicast and unicast transmissions together with non-robust allocations. We observe that

subcarriers at the edges are used in all (i.e., robust and non-robust) allocations (as also

observed in [Lar11]), while for other subcarriers, robust and non-robust designs allocate

power to different subcarriers. This justifies the fact that a scaling of the total power for

the non-robust design cannot achieve the same performance as the ergodic and robust

designs. Moreover, the unicast transmission allow different power across subcarriers to

achieve the desired value of SPEB for each agent. This is the main reason why the total

power increase for unicast transmission is less than Na = 4 times the total power for their
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Figure 3.5: Robust H1 power allocation based on (left) unicast transmission and (right)
multicast transmission for anchor 7.

multicast counterparts. Finally, it is worth mentioning that the similarity between robust

designs increases by reducing the number of channel taps L. Particularly, using L = 1 the

performance of the robust designs with the assumptions H1 and H2 would be the same,

since the channel vector reduces to a scalar.

Performance of the allocations for different uncertainties

In Fig. 3.6–3.8, we investigate the performance of robust and ergodic allocations for
√
β = 0.7071 m with different uncertainties on the channel coefficients ε, εl = ε/

√
L,

and∆ r [m] ∈ {0, 10, 20, 30, 40} for multicast and unicast transmissions. In general, the

required SNR for ergodic and robust designs increases by increasing the channel and/or

location uncertainties. From Fig. 3.6–3.7, we observe that by going from∆ r = 0 m to

∆r = 40 m for ε =
√
Lεl = 0.6, the required increase of the SNR is approximately 2 dB

for unicast and 1 dB for multicast with robust H1 and robust H2 allocations. For the

ergodic design by going from∆ r = 0 m to ∆r = 40 m for ε =
√
Lεl = 0.6, the required

increase of the SNR is approximately 1.1 dB for unicast and 0.9 dB for multicast under

H1 uncertainty, and 1.15 dB for unicast and 0.8 dB for multicast under H2 uncertainty.

Moreover, the required increase of the SNR for the robust designs based on channel

uncertainties for a given location uncertainty is around 6 dB for robust H1, 4 dB for

robust H2, and 1dB for ergodic H1 and H2 with multicast and unicast transmissions.
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Figure 3.6: Required SNR with respect to channel uncertainty H1 and location uncer-
tainty with∆ r [m] ∈ {0(blue), 10(red), 20(black), 30(pink), 40(green)} for (top) unicast
and (bottom) multicast transmissions and

√
β = 0.7071 m.

From Fig. 3.8, it is observed that the maximum increase of the required SNR by only

considering the effect of location uncertainty (i.e., ε =
√
Lε = 0) is around 2.3 dB for

robust and 1.2 dB for ergodic with unicast transmission, and around 1.4 dB for robust

and 0.8 dB for ergodic with multicast transmission. From the above observations, we

conclude that the increase of the required SNR based on the location uncertainty for a

given channel uncertainty is much smaller than the increase of the required SNR based

on channel uncertainty for a given location uncertainty especially for the robust designs.

Comparison with single-carrier allocations

Finally, we compare the non-robust, ergodic, and robust single-carrier transmissions with

their multi-carrier counterparts. The EFIM for the position of kth agent with single-

carrier allocation is given by [Li13]

Je(qk) =
∑

j∈Nb

ξk,jpk,jJr(φk,j),



3.6. SIMULATION RESULTS 73

0 0.2 0.4 0.6 0.8

6.5

7

7.5

8

0 0.2 0.4 0.6 0.8

7

8

9

10

11

0 0.2 0.4 0.6 0.8

2

2.5

3

0 0.2 0.4 0.6 0.8
2

3

4

5

6

7

√
Lεl

S
N
R

u
n
i
[d
B
]

√
Lεl

S
N
R

u
n
i
[d
B
]

√
Lεl

S
N
R

m
u
lt
i
[d
B
]

√
Lεl

S
N
R

m
u
lt
i
[d
B
]

ergodic

ergodic

robust H2

robust H2

Figure 3.7: Required SNR with respect to channel uncertainty H2 and location uncer-
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√
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where pk,j denotes the transmitted power from anchor j to agent k,

ξk,j =
8π2W 2

c2
(1− χk,j)

|αk,j,1|2

σ2
w

,

where W = N/T is the effective bandwidth, χk,j denotes the path-overlap coefficient,

and αk,j,1 is the complex channel gain of the first path. To make the comparison with

multicarrier transmission possible, we set |αk,j,1|2 = ‖hk,j‖2 and χk,j = 0. Although this

value of χk,j makes the comparison slightly optimistic for single-carrier transmission since

the partial overlap of the L paths considered in the multicarrier case could increase the

value of χk,j, this is considered acceptable given that the goal is to show the advantage

of multicarrier power allocation for localization. Fig. 3.9 shows the relative total power

increase∆ PT = (PT,sc − PT,mc)/PT,mc in single-carrier transmission (with power PT,sc)

compared to multi-carrier designs (with power PT,mc) for the different allocations and

50 channel realizations. For visualization purposes, the powers have been sorted. The

average relative power increases for multicast are 7.8 (non-robust), 6.1 and 5.9 (ergodic

H1 and ergodic H2), and 1.9 and 2.5 (robust H1 and robust H2, respectively). For

the unicast scenario, these gains increase with an additional 50% for each approach.

In general we observe that multi-carrier transmission requires less power than single-

carrier transmission to achieve a given localization accuracy, but this gain diminishes
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with increased robustness.

3.7 Conclusion

We have addressed the problem of power allocation for network localization under uncer-

tainty in both channel and user locations. We considered per-channel tap and norm-based

uncertainty. We first proposed a non-robust design based on perfect network parameters

for OFDM-based positioning via SDP programming. To consider channel and location

uncertainties, ergodic and robust power allocations for OFDM-based positioning with

multicast and unicast transmission have been developed. We have observed that ergodic

and robust designs outperform the non-robust designs even by increasing the total power

of the non-robust design uniformly to the level of the ergodic and robust allocations.

Moreover, we showed that compared with location uncertainty, channel uncertainty con-

siderably affects the required SNR especially for the robust design. Finally, we observed

that the total required power for multi-carrier designs was less than their single-carrier

counterparts.
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Appendix 3.A

Proof forΦ (xk,xm) = 0 for k "= m

The terms Φ(θk, θm), Φ(qk,qm), Φ(θm,qk), and Φ(qk, θm) are zero for k "= m. We start

with Φ(θk, θm), and continue with Φ(qk,qm) and Φ(θm,qk). By definition, we have

Φ(θk, θm) =
2

σ2
w

(
{
∂µH

∂θk

∂µ

∂θm

}
, (3.A.1)

where µ is defined as

µ =
[
µT

1 , . . . ,µ
T
Na

]T
, (3.A.2)

in which

µk =
[
µT

k,Na+1, . . . ,µ
T
k,Na+Nb

]T
, (3.A.3)

and µk,j = Γ(tk,j)BjFLhk,j. Taking the derivative of µH with respect to θk leads to

∂µH

∂θk
=

[
∂µH

1
∂θk

, . . . ,
∂µH

k

∂θk
, . . . ,

∂µH
Na

∂θk

]
. (3.A.4)

The only non-zero element in (3.A.4) is the term ∂µH
k /∂θk, while the only non-zero

element of ∂µ/∂θm is the term ∂µm/∂θm. So, the multiplication of these terms is zero

for k "= m. A similar argument can be made for the terms Φ(qk,qm), Φ(θm,qk), and

Φ(qk, θm).

77
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Appendix 3.B

Proof for Proposition 1

The Lagrangian associated with the optimization problem (3.5.2) can be expressed as

L(∆hk,j; 3k,j) = (ĥk,j +∆hk,j)
HΩj(pj)(ĥk,j +∆hk,j)+ 3k,j(‖∆hk,j‖2 − ε2), (3.B.1)

with the Lagrange multiplier 3k,j ≥ 0. The KKT conditions provide necessary and suf-

ficient conditions for convex optimization problems. From the KKT conditions, the La-

grangian equation is

∇∆hk,j
L(∆hk,j; 3

ws
k,j) |∆hws

k,j
= 0. (3.B.2)

Using the Lagrangian equation (3.B.2), we obtain (3.5.3).

Appendix 3.C

Proof for the Lagrange Multiplier ρk,j

To obtain the Lagrange multiplier 3k,j for a given value of pj, we use the Lagrangian

equation
∂

∂3k,j
L(∆hws

k,j; 3k,j) |'ws
k,j
= 0. (3.C.1)

This leads to

‖∆hws
k,j‖2 = ε2. (3.C.2)

Replacing (3.5.3) in (3.C.2) and the eigen-decomposition Ωj(pj) = Uj(pj)Λj(pj)UH
j (pj)

with ∆gk,j = UH
j (pj)∆hk,j and ĝk,j = UH

j (pj)ĥk,j results:

L∑

l=1

γ2j,l
(γj,l + 3ws

k,j)
2
|ĝk,j,l|2 = ε2, (3.C.3)

in which γj,l is the lth entry of the diagonal matrix of the eigenvalues Λj(pj) and ĝk,j,l de-

notes the lth element of ĝk,j. In principle, (3.C.3) can be efficiently solved using Newton’s

method. Among the roots of (3.C.3), we choose the one that results the smallest value

of the cost function λk,j. Note that 3k,j cannot be zero as it results λmin
k,j = 0. Moreover,

since the Newton’s method requires the initial value for the Lagrange multiplier 3k,j, we
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present the following proposition that provides the necessary condition on the value of

3k,j to fulfill (3.C.3) and apply it as the initial value for the Newton’s method.

Proposition 2 A necessary condition on 3k,j to fulfill (3.C.3) is 3k,j > 3max
k,j where

3max
k,j = max

l

(
γj,l|ĝk,j,l|

ε
− γj,l

)
.∀l ∈ {1, . . . , L} (3.C.4)
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Chapter 4

5G Position and Orientation

Estimation

4.1 Introduction

5G communication networks will likely adopt mm-wave and massive MIMO technologies,

thanks to a number of favorable properties. In particular, operating at carrier frequencies

between 30 and 300 GHz, with large available bandwidths and with highly directional

communication, mm-wave can provide extremely high data rates to users through dense

spatial multiplexing by using a large number of antennas [Zho11, Rap13]. While these

properties are desirable for 5G services, mm-wave communications also face a number

of challenges. Among these challenges, the severe path loss at those high carrier fre-

quencies stands out. The resulting loss in SNR must be countered through sophisticated

beamforming at the transmitter and/or receiver side, leading to highly directional links

[Wan09, Hur13, Tsa11]. However, this in turn requires knowledge of the propagation

channel.

Location information can serve as a proxy for channel information to perform beam-

forming: when the location of the user is known, the base station can steer its transmission

to the user, either directly or through a reflected path. This leads to a synergy between

localization and communication. However, in order to reap the benefits of location infor-

mation for highly directional communications, both the devices’ positions and orientations

should be accurately estimated. Today’s technologies cannot always provide this infor-

mation in an efficient and reliable manner. For instance, the GPS is a well-established

technology that can provide location information outdoors. However, in GPS-challenged

81
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Figure 4.1: Two dimensional illustration of the LOS (blue link) and NLOS (red link) based
positioning problem. The BS location q and BS orientation are known, but arbitrary.
The location of the MS p, cluster sk, rotation angle α, AOAs {θRx,k}, AODs {θTx,k}, the
channel between BS and MS, and the distance between the antenna centers are unknown.
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environments (e.g., indoors and in urban canyons), the accuracy is poor. Other radio tech-

nologies, such as UWB can be a solution for indoor positioning, but requires additional

infrastructure and suffers from high hardware complexity [She10a].

In this chapter, we show that mm-wave and massive MIMO, which are both candi-

date features for 5G communication networks, are also enabling technologies for accurate

positioning and device orientation estimation. The limited scattering and high-directivity

are unique characteristics of mm-wave channel and massive MIMO, respectively. The

fundamental bounds on position and orientation are derived in the presence of clusters

of a scenario illustrated in Fig. 4.1. In the LOS conditions, angle-of-departure (AOD) is

used for the estimation of position while angle-of-arrival (AOA) provides the estimation of

orientation. In the non-line-of-sight (NLOS) and OLOS conditions1, there is no geomet-

rical relation between the AOA/AOD and the rotation angle of the MS. Consequently,

the NLOS links do not provide any information on the rotation angle directly. This is

addressed in the chapter by obtaining the position error bound (PEB) and analyzing the

effect of adding the clusters on the PEB in the presence of the LOS. An algorithm based

on the MMV matching pursuit is proposed for the coarse estimation of the AOA/AOD

and TOA that are used for the initialization of the EM with a sequential iterative proce-

dure. Finally, the estimated values of AOA/AOD, TOA, and channel coefficients are used

for localization using the extended invariance principle (EXIP) in estimation by means

of a weighted least squares (WLS) fit [Sto89, Swi02]. The results show that the errors

in the estimated values of AOA/AOD and TOA and consequently also in the estimated

position and device orientation converge to their corresponding bounds.

Related Work:

The use of 5G technologies to obtain position and orientation was previously explored in

[San02, Den14, Var14b] for mm-wave and in [Hu14, Gue15, Sav15] for massive MIMO. The

early work [San02] considered estimation and tracking of DOA through beam-switching.

User localization was treated in [Den14], formulated as a hypothesis testing problem,

limiting the spatial resolution. A different approach was taken in [Var14b], where meter-

level positioning accuracy was obtained by measuring received signal strength levels. In

the massive MIMO case, [Hu14] considered estimation of angles, while [Gue15] treated

joint estimation of delay, AOD, and AOA, in the LOS conditions and evaluated the impact

of errors in delays and phase shifters. In [Sav15], positioning was solved using a Gaussian

1NLOS is defined as the condition that the LOS path exists and the clusters are not blocking the LOS.
OLOS is defined as the condition that the LOS path is blocked by the clusters.
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process regressor, operating on a vector of received signal strengths through fingerprinting.

4.2 System Model

We consider a MIMO system with a BS equipped with Nt antennas and a MS equipped

by Nr antennas. Locations of the MS and BS are denoted by p = [px, py]T ∈ R2 and

q = [qx, qy]T ∈ R2 with the α ∈ [0, 2π) denoting the rotation angle of the MS’s antenna

array.

4.2.1 Transmitter Model

Consider the OFDM based system model in Fig. 4.1 where a BS with hybrid analog/digital

precoder communicates with a single MS. At the BS, Mt transmitted symbols x[n] =

[x1[n], . . . , xMt [n]]
T ∈ CMt at each subcarrier n = 0, . . . , N − 1 are first precoded using

an Mt ×Mt digital precoding matrix FBB[n], and transformed to the time-domain using

N -point inverse fast Fourier transform (IFFT). A cyclic prefix (CP) of length TCP = DTs

is added before applying the Nt×Mt RF precoding FRF where Ts is the sampling period.

It is assumed that all the arriving paths fall into the interval TCP to avoid ISI. The

RF precoding matrix FRF is the same for all the subcarriers [Alk15]. For simplicity of

notation, we consider the Nt×Mt transmit beamformer matrix2 F[n] = FRFFBB[n] where

F[n] = [f1[n], f2[n], . . . , fMt [n]] ∈ CNt×Mt .

4.2.2 Channel Model

We define the channel model with considering the effect of frequency dependent array

responses (beam squint) [Bra15]. Assuming steering vectors to be frequency dependent,

which is the case for wideband communication (with fractional bandwidth FB ! B/fc up

to 50% where B is the bandwidth and fc denotes the carrier frequency [Gha02]) and the

large number of antenna arrays, the channel model can be expressed as

H[n] = ARx[n]Γ[n]A
H
Tx[n], (4.2.1)

2Each column of the wideband transmit beamformer matrix F[n] can be applied using M antennas
in the other dimension (sensor delay line (SDL) [Gha02, Liu09]) or tapped delay line (TDL) [Haw14] of
length M for each antenna to obtain a wideband beamforming matrix F̃ of size NtM ×Mt in a frequency
independent form.
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Figure 4.1: A block diagram of the multicarrier based BS that employs hybrid ana-
log/digital precoding. At the MS, the CP is removed and the time domain signal is
transformed to frequency domain by employing FFT.
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where

Γ[n] = diag{γn(h0, τ0), . . . , γn(hK , τK)},

ATx[n] =
[
aTx,n(θTx,0), . . . , aTx,n(θTx,K)

]
,

and ARx[n] is defined similarly by replacing the subscript Tx by Rx, K is the number of

NLOS paths, γn(hk, τk) = h̃ke−j2πnτk/(NTs) where h̃k = αkhk, αk =
√
(NtNr)/ρk in which

ρk denotes the path loss between BS and MS for the k-th path, hk is the complex channel

gain for the k-th path, τk denotes the time-delay of the k-th path, aTx,n(θTx,k) ∈ CNt and

aRx,n(θRx,k) ∈ CNr are the frequency dependent antenna steering and response vectors,

θTx,k and θRx,k are the AOD and AOA of the k-th path, respectively. The wideband

antenna steering vector at the transmitter for the uniform linear array (ULA) would be

aTx,n(θTx,k) = (4.2.2)

1√
Nt

[1, ej
2π
λn

d sin(θTx,k), . . . , ej(Nt−1) 2π
λn

d sin(θTx,k)]T,

where3 λn = c/(fn + fc) is the signal wavelength at the n-th sub-band fn = n/T where

T = NTs denotes the OFDM symbol duration with Ts being the sampling period, n =

0, . . . , N − 1 subcarriers are used so that the bandwidth is B = N/T and c is the speed

of light, and d denotes the distance between the antenna elements defined as d = λc/2.

Thus, aRx,n(θRx,k) is defined similarly by replacing the subscript Tx by Rx and Nt by

Nr in (4.2.2). The narrowband counterpart of the above channel model is obtained by

defining frequency independent array steering vector

aTx(θTx,k) = (4.2.3)

1√
Nt

[1, ej
2π
λc

d sin(θTx,k), . . . , ej(Nt−1) 2π
λc

d sin(θTx,k)]T,

where d = λc/2 and λc = c/fc, and aRx(θTx,k) is defined similarly by replacing the

subscript Tx by Rx and Nt by Nr.

4.2.3 Receiver Model

We define receiver model for the aforementioned channel model. After the CP removal

and fast Fourier transform (FFT), the received signal at subcarrier n before processing

3The variation of λn with respect to λc = c/fc for fc = 60 GHz and the bandwidth B ranging from
10 MHz to 500 MHz is sufficiently small, i.e., λn/λc ≈ 0.99.
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can be then expressed as

y[n] = H[n]F[n]x[n] + n[n], (4.2.4)

where H[n] is defined in (4.2.1), and n[n] ∈ CNr is a Gaussian noise vector with zero

mean and two-side power spectral density N0/2. The narrowband receiver model can be

obtained similar to (4.2.4) by replacing narrowband channel model as explained in the

previous section and wideband beamformer F[n] with the narrowband counterpart F.

The goal is to obtain position p and orientation α of the MS from y[n] for the frequency

band [−B/2, B/2]. We do not assume any specific receiver-side processing or beamforming

to derive a fundamental lower bound, i.e., (4.2.4) is used to derive the fundamental lower

bound.

4.3 Derivation of the Fundamental Bounds

In this section, we derive the FIM and the Cramér-Rao bound (CRB) for the estimation

problem of position and orientation of the MS for the LOS without and with NLOS links.

Also, we consider the estimation of position of the MS for the case when the LOS is

blocked and only the NLOS links exist, i.e., OLOS. We name the case when only the

LOS exists as LOS, the case when both LOS and NLOS links exist as NLOS, and the

case when the LOS is blocked as OLOS.

4.3.1 Channel Parameters

Let η ∈ R5(K+1) be the vector consisting of the unknown channel parameters

η =
[
ηT
0 , . . . ,η

T
K

]T
, (4.3.1)

in which ηk consists of the unknown channel parameters (delay, AOD, AOA, and channel

coefficients) for the k-th path

ηk =
[
τk, θ

T
k , h̃

T
k

]T
, (4.3.2)

where h̃k =
[
h̃R,k, h̃I,k

]T
is the complex channel gain for the k-th path with h̃R,k and h̃I,k

being the real and imaginary parts of h̃k, and θk =
[
θTx,k, θRx,k

]T
.

Defining η̂ as the unbiased estimator of η, the mean squared error (MSE) is bounded
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as [Kay10]

Ey|η

[
(η̂ − η)(η̂ − η)T

]
+ J−1

η , (4.3.3)

in which Ey|η[.] denotes the expectation parameterized by the unknown parameters η,

and Jη is the 5(K + 1)× 5(K + 1) FIM defined as

Jη ! Ey|η

[
−∂

2 ln f(y|η)
∂η∂ηT

]
, (4.3.4)

where f(y|η) is the likelihood ratio of the random vector y obtained from the Karhunen-

Loeve expansion of y[n] conditioned on η. More specifically, f(y|η) can be written as

[Poo94]

f(y|η)∝exp

{
2

N0

N−1∑

n=0

({µH[n]y[n]}− 1

N0

N−1∑

n=0

‖µ[n]‖2
}

, (4.3.5)

and µ[n] ! H[n]F[n]x[n].

4.3.2 FIM

The FIM in (4.3.4) can be structured as

Jη =





Ψ(η0,η0) . . . Ψ(η0,ηK)
...

. . .
...

Ψ(ηK ,η0) . . . Ψ(ηK ,ηK)



 , (4.3.6)

in which the operator Ψ(xr,xs) is defined as

Ψ(xr,xs) ! Ey|η

[
−∂

2 ln f(y|η)
∂xr∂xT

s

]
, (4.3.7)

with f(y|η) replaced from (4.3.5). The sub-matrix Ψ(ηr,ηs) in (4.3.6) can be written as

Ψ(ηr,ηs) =
N−1∑

n=0

Ψn(ηr,ηs), (4.3.8)

in which the integral is applied element-wise, and

Ψn(ηr,ηs) =




Ψn(τr, τs) Ψn(τr, θs) Ψn(τr,hs)

Ψn(θr, τs) Ψn(θr, θs) Ψn(θr,hs)

Ψn(hr, τs) Ψn(hr, θs) Ψn(hr,hs)



 . (4.3.9)
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The entries of Ψn(ηr,ηs) are derived in Appendix 4.A. The narrowband counterparts

for the entries of the FIM for the LOS and without considering the effect of clusters are

obtained in [Sha15] by replacing frequency dependent array steering vectors aTx,n(θTx,k)

and aRx,n(θRx,k) with their frequency independent counterparts aTx(θTx,k) and aRx(θTx,k),

respectively. For the narrowband systems, the summation over subcarriers is applied only

to the terms Ak,n(τr, τs) that are defined in the Appendix 4.A.

4.3.3 CRB for Position and Orientation

In this section, we find the Jacobian matrix for the transformation from η to η̃ =[
η̃T
0 , . . . , η̃

T
K

]T
, where η̃k =

[
sTk , h̃

T
k

]T
with sk = [sk,x, sk,y]T ∈ R2 denoting the loca-

tion of the k-th scatterer shown in Fig. 4.1 for k "= 0 and η̃0 =
[
pT,α ,h̃T

0

]T
. The FIM of

η̃ is obtained by means of the (4K + 5)× 5(K + 1) transformation matrix T as

Jη̃ = TJηT
T, (4.3.10)

where

T !
∂η

∂η̃
. (4.3.11)

The entries of T can be obtained by the relations between the parameters in η and η̃

from the geometry of the problem shown in Fig. 4.1 as:

τ0 = ‖p− q‖/c,

τk = ‖q− sk‖/c+ ‖p− sk‖/c,

cos(θTx,0) = (px − qx)/‖p− q‖,

cos(θTx,k) = (sk,x − qx)/‖sk − q‖,

cos(π − (θRx,k + α)) = (px − sk,x)/‖p− sk‖,

α = π + θTx,0 − θRx,0,

Consequently, we obtain

T =





T0,0 . . . TK,0

...
. . .

...

T0,K . . . TK,K



 , (4.3.12)

in which Tr,s is defined as

Tr,s !
∂ηT

r

∂η̃s

. (4.3.13)
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For s "= 0, Tr,s is obtained as

Tr,s =

[
∂τr/∂ss ∂θT

r /∂ss ∂h̃T
r /∂ss

∂τr/∂h̃s ∂θ
T
r /∂h̃s ∂h̃T

r /∂h̃s

]

, (4.3.14)

and Tr,0 is obtained as

Tr,0 =




∂τr/∂p ∂θT

r /∂p ∂h̃T
r /∂p

∂τr/∂α ∂θT
r /∂α ∂h̃T

r /∂α

∂τr/∂h̃0 ∂θ
T
r /∂h̃0 ∂h̃T

r /∂h̃0



 , (4.3.15)

where

∂τ0/∂p =
1

c

[
cos(θTx,0), sin(θTx,0)

]T
,

∂θTx,0/∂p =
1

‖p− q‖

[
− sin(θTx,0), cos(θTx,0)

]T
,

∂θRx,0/∂α = −1,

∂τr/∂p =
1

c

[
cos(π − θRx,r),− sin(π − θRx,r)

]T
, r "= 0

∂τr/∂sr =
1

c

[
cos(θTx,r) + cos(θRx,r), sin(θTx,r) + sin(θRx,r)

]T
, r "= 0

∂θTx,r/∂sr =
1

‖sr − q‖

[
− sin(θTx,r), cos(θTx,r)

]T

∂θRx,r/∂p =
1

‖p− sr‖

[
sin(π − θRx,r), cos(π − θRx,r)

]T
, r "= 0

∂θRx,r/∂α = −1, r "= 0

∂θRx,r/∂sr = − 1

‖p− sr‖

[
sin(π − θRx,r), cos(π − θRx,r)

]T
, r "= 0

and ∂h̃T
r /h̃r = I2 for r = 0, . . . , K. The rest of terms in T are zero, and T is of full row

rank.

4.3.4 Localization Bounds

The PEB is obtained by inverting Jη̃, summation over the diagonal entries of the 2 × 2

sub-matrix, and taking the root square as:

PEB =
√

tr
{
[J−1

η̃ ]1:2,1:2
}
, (4.3.16)
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and the rotation error bound (REB) is obtained as:

REB =
√

[J−1
η̃ ]3,3, (4.3.17)

where the operations [.]1:2,1:2 and [.]3,3 denote the selection of the first 2 × 2 sub-matrix

and the third diagonal entry of J−1
η̃ , respectively.

4.4 Position and Orientation Estimation

In this section, we propose a beamspace transceiver model that can be used to im-

plement the proposed signal model in (4.2.4). The main advantage of the proposed

beamspace transceiver is reducing the complexity using the sparsity of the mm-wave

MIMO channel [Bra13, Bra15]. We assume that the channel dispersion factor for φmax =

max{| sin(θTx,k)|, | sin(θRx,k)|} and Nmax = max{Nt, Nr} defined as

∆ch = NmaxFB(d/λc)φmax,

is not affecting the performance, i.e.,∆ ch 6 (|f/fc| 6 0.02 over the bandwidth) for

−B/2 ≤ f ≤ B/2, see [Bra15] for a multi-beam solution for the case that this condition

is violated. Then, a two stage algorithm including detection and estimation is proposed

for the estimation of AOA/AOD and TOA that are used for position and orientation

estimation using the EXIP.

4.4.1 Beamspace Transceiver

Prior to sector beam search to choose the strongest link between the BS and MS, the

number of required beams for estimation of the position of the MS is not known. The

wideband beamformer F[n] uses Mt = Nt orthogonal beams in the transmitter to cover

the angle span [0, 2π). However, this is costly to implement considering the large antenna

arrays in the transmitter and receiver. Therefore, we resort to the beamspace transceiver

to obtain the dominant beams and design the wideband beamformer only for those beams.

Beamspace transceiver exploits the sparsity of the mm-wave MIMO channel H[n] by
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introducing the discrete Fourier transform (DFT) matrix4

UTx !
[
uTx(φ̃Tx,−Lt), . . . ,uTx(φ̃Tx,Lt)

]
,

uTx(φ̃Tx,p) !
1√
Nt

[
1, . . . , ej2π(Nt−1)φ̃Tx,p

]
,

where Lt is defined such that p is ranging from −(Nt − 1)/2 to (Nt − 1)/2 and from

−Nt/2 to Nt/2 − 1 for odd and even values of Nt, respectively, and φ̃Tx,p = p∆φ̃Tx for

−Lt ≤ p ≤ Lt denotes the uniform sampling of the principal φ period for virtual spatial

angles∆ φ̃Tx = 1/Nt, and Lr is defined similarly by replacing the subscript t by r[Say02].

Similarly, URx is defined by replacing the subscript Tx by Rx and Nt by Nr. The partial

virtual representation of the channel with respect to space can be written as [Bra15]

Hv[n] = UH
RxH[n]UTx = [Hv,i,m[n]]i∈I(Nr),m∈I(Nt)

, (4.4.1)

Hv,i,m[n] =
K∑

k=0

γn(hk, τk)ςNr(φRx,k,n − φ̃Rx,i)ςNt(φTx,k,n − φ̃Tx,m), (4.4.2)

where I(M) = {l : l = 0, . . . ,M − 1} is the set of indices,

ςNt(φTx,k,n − φ̃Tx,m) =
sin(πNt(φTx,k,n − φ̃Tx,m))√
Nt sin(π(φTx,k,n − φ̃Tx,m))

,

and φTx,k,n = (d/λn) sin(θTx,k) and ςNr(φRx,k,n − φ̃Rx,i) is defined similarly by replacing

the subscript Tx by Rx and Nt by Nr. From (4.4.1)-(4.4.2), it is observed that Hv[n]

is approximately sparse in the angular domain, since ‘strong’ components are generated

only in the directions of {θTx,k} and {θRx,k}. However, since the AOAs/AODs are actually

continuous, different off-grid based algorithms can be used to reduce the quantization

error [Zhu10, Eka11]. This is the main reason that the proposed algorithm includes the

detection phase and estimation phase to compensate for quantization error.

For the training phase, we consider sequential transmission of G signals

{x(1)[n], . . . ,x(G)[n]},

where x(g)[n] is an Mt × 1 vector. Consequently, the g-th received signal would be

y(g)[n] = H[n]F(g)[n]x(g)[n] + n(g)[n]. (4.4.3)

4This can be achieved approximately using the lens-based analog multi-beamforming proposed in
[Bra13].
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Replacing H[n] from (4.4.1) in (4.4.3), vectorization, and stacking y(g)[n] on top of each

other, we obtain

ȳ[n] = Ω[n]h̄v[n] + n̄[n], (4.4.4)

where5

Ω[n] =





Ω(1)[n]
...

Ω(G)[n]



 ,

Ω(g)[n] = (Z(g)
Tx[n])

T ⊗URx,

Z(g)
Tx[n] = UH

TxF
(g)[n]x(g)[n],

and h̄v[n] denotes the NrNt × 1 vector formed by vectorizing Hv[n] defined in (4.4.1).

Due to the sparsity of h̄v[n], (4.4.4) is seen to be a sparse reconstruction problem and a

compressed sensing (CS) based estimation method can be used for the estimation of h̄v[n]

with much reduced pilot overhead. Moreover, detecting the columns of DFT matrices

UTx and URx corresponding to non-zero entries of the sparse vector h̄v[n] leads to the

estimation of AOA/AOD with a quantization error due to the limited grid size that

is compensated in the estimation phase. Next, we explain the estimation of channel

parameters: {θTx,k, θRx,k, τk, h̃k} in a two-stage procedure including detection phase and

estimation phase.

4.4.2 Sparse Estimation of Channel Parameters

In this section, first we explain the detection of the non-zero entries of the (K +1)-sparse

vector h̄v[n] with unknown K + 1. Then, a method for the estimation of correspond-

ing channel parameters to the detected non-zero entries of h̄v[n] is proposed. Since the

collection of vectors h̄v[n] ∈ CNrNt×1, for i = 1, . . . , N , corresponding to the sensing ma-

trix Ω[n] in (4.4.4) is approximately joint (K + 1)-sparse, i.e., | ∪n supp(h̄v[n])| ≤ S

5For the special case when one beam is transmitted in the sequential transmission of G signals (i.e.,
Mt = 1), we obtain

Y[n] = H[n]F̄[n]X[n] +N[n], (4.4.5)

where Y[n] denotes the Nr × G received matrix, F̄[n] is the Nt ×G beamforming matrix with the g-th
column f (g)[n], X[n] denotes the G×G diagonal matrix of the input signal with the g-th entry of x(g)[n],
and N[n] denotes the Nr × G zero mean Gaussian noise matrix. The expression (4.4.5) can be written
in the form of sparse reconstruction problem as in (4.4.4) by replacing H[n] from (4.4.1) in (4.4.3) and
vectorization. To accurately estimate h̄v[n] from (4.4.4), it is required to have G ≥ Nt in conventional
algorithms (e.g., minimum mean square error (MMSE)). This leads G to be much larger than the channel
coherence time and results in pilot overhead [Alk14].
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Algorithm 2 Detection Phase
Input: Recieved signals ȳ[n], sensing matrix Ω[n], and the threshold δ.
Output: The detected channel parameters for k = 0, . . . , K.

θ̂(0)Tx,k = arcsin
(
(λc/d)(nTx,k − Lt − 1)∆φ̃Tx

)
, (4.4.6)

θ̂(0)Rx,k = arcsin
(
(λc/d)(nRx,k − Lr − 1)∆φ̃Rx

)
, (4.4.7)

gains in (4.4.19), and τ̂ (0)k in (4.4.20).

1: For n = 0, . . . , N − 1, the residual vectors are set to r−1[n] = 0 and r0[n] = ȳ[n], the
orthogonalized coefficient vector β̂n = 0, K0 is chosen to be an empty set, and t = 1.

2: while (4.4.12) do
3: Find AOA/AOD pair using (4.4.8).
4: Update AOA/AOD set of indices Kt = Kt−1 ∪ {ñ}.
5: Orthogonalize the selected basis vector as (4.4.9).
6: Update the residual vector rt[n] as (4.4.10).
7: t = t+ 1.
8: end while
9: Find hv,t[n] for n = 0, . . . , N − 1 based on (4.4.13).
10: Find gains using (4.4.19), and TOA using (4.4.20).

with supp(h̄v[n]) ! {m ∈ {1, . . . , NrNt}|[|h̄v[n]]m| ≥ γth} where γth is a threshold on the

non-zero entries of h̄v[n] and [h̄v[n]]m denotes the m-th entry of h̄v[n], one can use the

compressed sensing tools for the estimation of channel parameters, e.g., distributed com-

pressed sensing-simultaneous OMP (DCS-SOMP) [Dua05], compressive sampling matched

pursuit (CoSOMP) [Dua09], and group sparse compressed sensing (GCS) [Eld10a]. For

the special case when the sparsity pattern of the sensing matrix is the same for all the

measurement vectors for MMV one can apply group basis pursuit denoising (G-BPDN)

or simultaneous OMP (SOMP) [Tro06, Che06, Cot05, Eld10b]. If the FB and the number

of antennas are not violating the condition for the small array dispersion, there exists a

common sparse support among the N signals h̄v[n]. Consequently, a DCS-SOMP method

can be applied for the detection of channel parameters. In the estimation phase, the

channel parameters in the detection phase are refined by numerically determining the

maximum likelihood estimation (MLE) using an iterative procedure.

Detection Phase

During the detection phase we focus on getting coarse estimates of the parameters:

AOA/AOD, delays, and gains for each path. In the estimation phase, these estimates are
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then refined. The following sets of parameters are defined in the detection phase: ωm[n]

denotes the m-th column of measurement matrix Ω[n], rt[n] is the residual of the mea-

surement ȳ[n] remaining after the first t iterations, β̂n ∈ CK+1 denotes the orthogonalized

coefficient vector with the t-th entry of β̂n(t), and Kt is the set of indices after the first t

iterations. The detection phase in Algorithm 2 summarizes the detection of AOA/AOD,

TOA, and the corresponding gains. In the step 1 of the detection phase, the iteration

counter is set to t = 1, the residual vectors are set to rt−2[n] = 0 and rt−1[n] = ȳ[n] for

n = 0, . . . , N − 1, the orthogonalized coefficient vector is set to β̂n = 0, the set of indices

Kt−1 is an empty set, and error threshold δ. In step 3, the AOA/AOD is obtained by

choosing the column of Ω[n] denoted by ωm[n] with the strongest correlation with the

residual vector rt−1[n] as

ñt = argmax
m=1,...,NrNt

N−1∑

n=0

|ωH
m[n]rt−1[n]|
‖ωm[n]‖2

. (4.4.8)

The index of AOD and AOA is obtained from the uniform Nt and Nr points grids as

nTx,t = -ñt/Nr. and nRx,t = mod(ñt − 1, Nr) + 1, respectively, where -.. is the ceiling

operator and mod(ñt−1, Nr) denotes the reminder of ñt−1 when divided by Nr. In step 4,

the set of indices Kt is updated from the step 3 corresponding to the column of Ω[n] with

the highest correlation with the residual vector rt−1[n]. In step 5, we orthogonalize the

selected basis vector ωñt [n] against the orthogonalized set of previously selected dictionary

vectors

ρt[n] = ωñt [n]−
t−1∑

t̃=0

ωH
ñt
[n]ρt̃[n]

‖ρt̃[n]‖2
ρt̃[n]. (4.4.9)

In step 6, the residual vector rt[n] is updated by subtracting the effect of chosen columns

from rt−1[n] as:

rt[n] = rt−1[n]− β̂n(t)ρt[n], (4.4.10)

where

β̂n(t) =
ρH
t [n]rt−1[n]

‖ρt[n]‖22
. (4.4.11)

In step 7, the iteration counter is updated and the detection phase continues as long as:

N−1∑

n=0

‖rt−1[n]− rt−2[n]‖22 > δ . (4.4.12)



96 CHAPTER 4. 5G POSITION AND ORIENTATION ESTIMATION

In step 9, the mutilated version of the sparse vector h̄v[n] assosiated with Kt,

hv,t[n] =
[
hv,1[n], . . . , hv,K+1[n]

]T
,

is recovered using the QR factorization of the mutilated basisΩKt[n] = [ωñ1 [n], . . . ,ωñK+1 [n]]

as ΩKt[n] = Υ[n]R[n] where Υ[n] = [ρ1[n], . . . ,ρK+1[n]]. Since

ΩKt[n]hv,t[n] = Υ[n]R[n]hv,t[n] = Υ[n]β̂n,

we obtain

hv,t[n] = R−1[n]β̂n. (4.4.13)

In step 10, after detecting hv,t[n] for n = 0, . . . , N − 1, the TOA can be obtained using

the following model for the detected values hv,t[n] at different subcarriers.

Hv,t = Γ(τ )Hd,x +V, (4.4.14)

where Hv,t = diag{h(0)
v,t , . . . ,h

(K)
v,t } denotes6 an N(K +1)× (K +1) block diagonal matrix

with h(k)
v,t = [h(k)

v,t [0], . . . , h
(k)
v,t [N − 1]]T where h(k)

v,t [n] is the n-th element of h(k)
v,t for n =

0, . . . , N − 1, Hd,x = diag{h̃0xTR(θ0), . . . , h̃KxTR(θK)} where xTR(θk) denotes an N × 1

vector with the n-th entry xTR,n(θk) defined as

xTR,n(θk) ! uH
Rx(φ̃Rx,nRx,t−Lr−1)aRx,n(θRx,k)a

H
Tx,n(θTx,k)uTx(φ̃Tx,nTx,t−Lt−1). (4.4.15)

The expression in (4.4.15) is simplified as

|xTR,n(θk)| = ςNt(φTx,k,n − φ̃Tx,nTx,k−Lt−1)ςNr(φRx,k,n − φ̃Rx,nRx,k−Lr−1),

where V denotes the noise matrix that is formed identically to Hv,t, τ = [τ0, . . . , τK ]T,

and Γ(τ ) = diag{Γ(τ0), . . . ,Γ(τK)} where

Γ(τk) = diag{1, . . . , e−j2π(N−1)τk/(NTs)}.

Assuming that the channel dispersion factor due to beam squint is not affecting the

6The proposed matching pursuit algorithm is rank-blind and it is not assumed that the number of the
detected paths (i.e., K+1) is known [Dav12]. Since K+1 is unknown, we use the change of residual fitting
error in (4.4.12) at each iteration to thresholds based on the noise power to determine the termination
of the algorithm.
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performance, it is observed that xTR,n(θk) ≈ xTR(θk) and (4.4.14) is simplified as:

Hv,t = Γ̃(τ )H̃d,x +V, (4.4.16)

where Γ̃(τ ) = diag{γ(τ0), . . . ,γ(τK)} in which γ(τk) = [1, . . . , e−j2π(N−1)τk/(NTs)]T and

H̃d,x = diag{ς̃0, . . . , ς̃K} where ς̃k = h̃kxTR(θk). The MLE solution for (4.4.16) can be

found as

τ̂ ,
ˆ̃
Hd,x = argmin

τ ,H̃d,x

‖Hv,t − Γ̃(τ )H̃d,x‖2F. (4.4.17)

The expression (4.4.17) is simplified as

{τ̂k, ˆ̃ςk} = argmin
{τk},{ς̃k}

K∑

k=0

(
N |ς̃k|2 − 2(

{
ς̃∗kγ

H(τk)h
(k)
v,t

})
. (4.4.18)

Taking the derivative of (4.4.18) with respect to ς̃∗k for k = 0, . . . , K we obtain

ˆ̃ςk =
1

N
γH(τk)h

(k)
v,t . (4.4.19)

Replacing (4.4.19) in (4.4.18), τ̂k for k = 0, . . . , K is obtained as

τ̂k = argmax
τk

|γH(τk)h
(k)
v,t |2. (4.4.20)

Once τ̂k is obtained from (4.4.20), ˆ̃ςk is obtained by replacing τ̂k in (4.4.19). It is worth

mentioning that the term xTR(θk) in the expression of ς̃k is ideally equal to one. However,

due to the limited grid size for the detection of continuous AOAs/AODs, xTR(θk) leads

to some errors in the detection of channel coefficients. This effect will be compensated

in the estimation phase. Note that (4.4.20), require a one-dimensional search and the

maximum can be obtained by solving the function with a sufficiently fine grid of points.

Using the fact that all arriving paths fall into the interval TCP, we choose a sufficiently

fine grid of points with the time resolution as a multiple, δτ , of the baseband sampling

T/N to obtain Kτ = δτNTCP/T grid of points

τk ∈
{

T

δτN
,
2T

δτN
, . . . , TCP

}
.

Consequently, there is no need to apply more complex algorithms for multi-dimensional

search, e.g., iterative quadratic maximum likelihood (IQML) algorithm for ULAs [Bre86].
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Estimation Phase

After the detection phase, channel parameters are estimated in an iterative procedure

that is initialized by the detected values. Given that we have initial estimates of all

parameters, one can perform an iterative ascent algorithm directly on the log likelihood

function associated with the model (4.4.4). However, this requires a multi-dimensional

minimization and computationally complex solutions. A more practical approach would

be to use the EM algorithm with the incomplete data space in (4.4.4) as the superposition

of K + 1 complete data space ȳk[n] as:

ȳ[n] =
K∑

k=0

Ω[n]h̄v,k[n] + n̄k[n]︸ ︷︷ ︸
ȳk[n]

, (4.4.21)

where h̄v,k[n] denotes the vectorized form of Hv,k[n] defined as UH
RxHk[n]UTx with Hk[n]

being the corresponding term for the k-th path in the channel frequency response H[n]

in (4.2.1). In (4.4.21), it is assumed that n̄[n] =
∑K

k=0 n̄k[n]. This requires the noise

processes n̄k[n] to be independent of each other and have the total power spectral density

of N0/2. Writing (4.4.21) for all the subcarriers results:

ȳ =
K∑

k=0

Ω̄h̄v,k + n̄k︸ ︷︷ ︸
ȳk

, (4.4.22)

where

Ω̄ = diag {Ω[0], . . . ,Ω[N − 1]} ,

ȳ =
[
ȳT[0], . . . , ȳT[N − 1]

]T
,

h̄v,k =
[
h̄T
v,k[0], . . . , h̄

T
v,k[N − 1]

]T
,

n̄k =
[
n̄T
k [0], . . . , n̄

T
k [N − 1]

]T
.

In the (m + 1)-th iteration, the expectation and maximization steps are performed as

follows.

Expectation

In the expectation step, we compute the conditional expectation of the hidden data space

ȳk log-likelihood function based on the previous estimation η̂(m) and the incomplete data
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Algorithm 3 Estimation Phase

Input: The detected channel parameters η̂(0).
Output: The estimated channel parameters η̂.

1: Repeat:
(a) Expectation: Determine Q(ηk|η̂(m)) based on (4.4.24).
(b) Maximization: Maximize Q(ηk|η̂(m)) with respect to ηk sequentially using

Gauss-Seidel-type iterations to obtain θ̂(m+1)
Tx,k , θ̂(m+1)

Rx,k , τ̂ (m+1)
k , and ˆ̃h(m+1)

k , respectively.

2: Until: η̂ converges.

space ȳ as:

Q(ηk|η̂(m)) ! E

[
ln f(ȳk|ηk, {η̂

(m)
l }l &=k)|ȳ, η̂(m)

]
. (4.4.23)

For k = 0, . . . , K, we obtain

Q(ηk|η̂(m)) ∝ −‖ẑ(m)
k − µ̄(ηk)‖2︸ ︷︷ ︸
Q̃(ηk|η̂

(m))

, (4.4.24)

where µ̄(ηk) = Ω̄h̄v,k, and

ẑ(m)
k = ȳ −

K∑

l &=k,l=0

µ̄(η̂(m)
l ). (4.4.25)

For the initialization of the iterative procedure, we use the AOA/AOD, TOA, and chan-

nel coefficients from the detection phase using θ̂(0)Tx,k and θ̂(0)Rx,k obtained from (4.4.6) and

(4.4.7), respectively, τ̂ (0)k computed from (4.4.20), and the corresponding coefficient ob-

tained from (4.4.19).

Maximization

In the maximization step, the goal is to find ηk such that (4.4.24) is maximized or

Q̃(ηk|η̂(m)) is minimized. In other words, we have

η̂
(m+1)
k = argmin

ηk

Q̃(ηk|η̂(m)). (4.4.26)

Solving (4.4.26) directly for ηk is analytically complex due to the fact that it is hard to

compute the gradient and Hessian with respect to ηk. Instead, we update the parameters

θ̂(m+1)
Tx,k , θ̂(m+1)

Rx,k , τ̂ (m+1)
k , and ˆ̃h(m+1)

k sequentially using Gauss-Seidel-type iterations [Ort66].

The estimation phase in Algorithm 3 summarizes the procedure of estimating channel

parameters.
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4.4.3 Conversion to Position and Rotation Angle

Conversion of the estimated channel parameters to position and rotation angle in LOS

and NLOS is proposed in this section.

LOS

For the case of LOS, there exists an invertible mapping /los(.) such that

η0 = /los(η̃0) ∈ Dη0
, ∀η̃0 ∈ Dη̃0

(4.4.27)

where Dη0
and Dη̃0

represent the domains of the generic parameters η0 and η̃0, respec-

tively. The classical invariance principle of estimation theory could be invoked to prove

the equivalence of minimizing the maximum likelihood (ML) criterion in terms of either

η0 or η̃0 [Zac81]. Consequently, the estimated values of p̂ and α̂ are obtained directly

from

p̂ = q+ d̂0[cos(θ̂Tx,0), sin(θ̂Tx,0)]
T, (4.4.28)

and α̂ = π + θ̂Tx,0 − θ̂Rx,0 where d̂0 = cτ̂0 denotes the distance between the MS and the

BS in the LOS.

NLOS

For the case of NLOS with K clusters and a LOS path, the EXIP could be used assuming

there exists a function /nlos(.) satisfying

η = /nlos(η̃) ∈ Dη, ∀η̃ ∈ Dη̃ (4.4.29)

where Dη and Dη̃ represent the domains of the generic parameters η and η̃, respectively.

Consequently, for sufficiently large number of data samples N the estimated ˆ̃η obtained

as
ˆ̃η = argmin

η̃

(η̂ −/nlos(η̃))
T Jη (η̂ −/nlos(η̃)) , (4.4.30)

is asymptotically equivalent to the estimate of the transformed parameter η̃ [Sto89,

Swi02]. The Levenberg-Marquardt algorithm (LMA), also known as the damped least-

squares (DLS) method, can be used to solve (4.4.30) [Lev44, Mar63]. Unlike Gauss-

Newton algorithm (GNA), LMA finds a solution even if it starts very far off the op-

timal solution. To initialize η̃ in (4.4.30) using the LMA algorithm, the estimated p̂,



4.5. SIMULATION RESULTS 101

α̂, ĥk from the LOS and the NLOS links could be used, and ŝk can be obtained using

tan(π − (θ̂Rx,k + α̂)) = (p̂y − s1,y)/(p̂x − s1,x) and tan(θ̂Tx,k) = (s1,y − qy)/(s1,x − qx) with

θ̂Rx,k, θ̂Tx,k, α̂, and p̂ obtained from the LOS and NLOS links.

4.5 Simulation Results

In this section, we present simulation results to demonstrate the performance of the

proposed bound and the estimator with respect to different parameters.

4.5.1 Simulation Setup

Performance of the Bounds

Performance is measured in terms of the PEB expressed in meters and the REB expressed

in radians in (4.3.16) and (4.3.17), respectively. We compute the PEB for different loca-

tions of the MS for the BS located at a fixed position. The comparison between PEB for

the case of LOS and in the presence of the clusters is provided. Finally, the localization

performance in the presence of clusters (i.e., NLOS) is compared with the performance

when the LOS is blocked (i.e., OLOS). To analyze the performance of the localization

bounds, we set fc = 60 GHz, B = 600 MHz, and N0 = 2W/GHz. The inter-element

spacing is assumed to be d = λc/2. The number of transmit and receive antennas for the

non-polarized ULAs are set to Nt = 64 and Nr = 8.

Comparison between the Bounds and the Estimator

We set fc = 60 GHz, B = 100 MHz, c = 0.3 m/ns, and N = 20. The geometry-based

statistical path loss [Li14] is used with path length dk and the number of reflectors in each

path is set to one, i.e., it is assumed that there is one cluster in each NLOS path. The

number of transmit and receive antennas are set to Nt = 64 and Nr = 64, respectively.

The BS is located at q [m] = [0, 0]T and the MS is located at p [m] = [4, 0]T with the

rotation angle α = 0.1 rad. We consider the sequential transmission of G = 30 signals

x(g)[n]. In order to guarantee the good performance for sparse signal recovery based on

the compressed sensing theory [Eld12], we choose the m-th entry of [F(g)
BB[n]x

(g)[n]]m to be

of the form of ejθm,n,g where θm,n,g follows the i.i.d. uniform distribution U [0, 2π). More-

over, [F(g)
RF]m1,m2 = ejθm1,m2,g where θm1,m2,g is obtained from the i.i.d. uniform distribution

U [0, 2π). The values of the CRB for TOAk, AOAk, and AODk are defined similar to PEB
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Figure 4.1: Performances of the AOD, AOA, and TOA in the LOS for different locations
of the MS and the BS located at q [m] = [0, 0]T, for a scenario with 3 beams in the
directions [±π/3, π /3 + 0.01].

and REB in (4.3.16) and (4.3.17), respectively, by inverting the FIM, choosing the corre-

sponding diagonal entries and taking the root square. Finally, the received signal-to-noise

ratio (SNR) is defined as SNR ! E[‖ ¯̃Ωh̄‖22]/E[‖n̄‖22] where h̄ = [h̄T[0], . . . , h̄T[N − 1]]T

with h̄[n] denoting the column-wise vector form ofH[n], and
¯̃
Ω = diag{Ω̃[0], . . . , Ω̃[N−1]}

with

Ω̃[n] =





Ω̃(1)[n]
...

Ω̃(G)[n]



 ,

and Ω̃(g)[n] = (F(g)[n]x(g)[n])T ⊗ INr .
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Figure 4.2: Performances of the PEB (top) and REB (bottom) in the LOS for different
locations of the MS and the BS located at q [m] = [0, 0]T, for a scenario with 3 beams in
the directions [±π/3, π /3 + 0.01].

4.5.2 Results and Discussion

Performance in LOS

Fig. 4.1-4.2 show the AOD, AOA, and TOA in the LOS and the resulting values of the

PEB and REB for different locations of the MS. It is observed that in the directions of the

beams, the AOA/AOD and TOA together with the PEB and REB have the lowest values,

while in the other locations the values are much higher. More specifically, for a distance of

‖q−p‖ = 0.5m, the PEB in the directions of the beams is approximately 5 cm while the

highest PEB is approximately 3 m. The REB values range from 0.01 rad in the direction

π/3, over 0.02 rad in the direction −π/3, up to 0.2 rad outside any of the beams. We

observe the impact of the extra beam in the direction of π/3 that provides increased SNR,

leading to better TOA information (in the Fisher sense) and good information regarding

AOA/AOD that leads to reducing the PEB and REB. On the other hand, the single beam

that is transmitted in the direction of −π/3 provides good TOA and AOA information

but leads to poor AOD information (except for MS locations close to the BS). Hence, the

PEB and REB in the direction of −π/3 are higher.
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Fig. 4.3 shows the evolution of the root-mean-square error (RMSE) of TOA and

AOA/AOD for 1000 Monte Carlo realizations in the LOS conditions. The corresponding

bounds are shown by the red lines with the same markers as the corresponding values of

the RMSE for a given received SNR. It is observed that after a few iterations of Algo-

rithm 2 the RMSE of TOA and AOA/AOD converges to the corresponding bounds even

for SNR = −20 dB,−10 dB, 0 dB. The performance of the RMSE of the estimation

algorithm for 1000 Monte Carlo realizations with respect to different values of the re-

ceived SNR is shown in Fig. 4.4–4.5. It is observed that after SNR ≈ −20 dB the RMSE

of the TOA, and AOA/AOD converge to their corresponding bounds (red dashed lines).

Moreover, the proposed algorithm performs well even for very low values of the received

SNR which is the typical case at mm-wave systems before beamforming.

Performance in NLOS and OLOS

In the presence of LOS, the effect of NLOS paths on position estimation is shown in Fig.

4.6. It can be observed that adding the clusters sequentially reduces the position infor-

mation (in the Fisher sense) that leads to higher values of the PEB. Moreover, sufficiently

good localization accuracy can be obtained even at low SNR.

Fig. 4.7 compares the PEB for the LOS in presence of clusters and OLOS conditions.

It can be observed that the PEB for the OLOS is much higher than the LOS condition

(around 35 dB at SNR ≈ 1 dB). Moreover, adding the clusters make the performance

worse due to reducing the position information in the Fisher sense. Fig. 4.8 shows the

evolution of the RMSE of TOA and AOA/AOD for 1000 Monte Carlo realizations in the

presence of a cluster located at sk [m] = [1.5, 0.4]T. It can be observed that the RMSE of

TOA and AOA/AOD converges after a few iterations to the corresponding bounds (shown

by the red lines with the same markers as the corresponding values of the RMSE for a

given received SNR) for the LOS (left column) and NLOS (right column) paths even at

very low received SNR. The performance of the RMSE of the estimation algorithm for

1000 Monte Carlo realizations with respect to the received SNR is shown in Fig. 4.9-4.10.

It is observed that after a few iterations the RMSE of TOA, AOA/AOD, rotation angle,

and position converge to the corresponding bounds (shown by the red lines) even for very

low values of the received SNR. Particularly, at SNR ≈ −10 dB the TOA, AOA/AOD,

rotation angle, and position approach the corresponding bounds.
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Comparison with Adaptive CS in [Alk14]

We compare the performance of the proposed detection-estimation approach with the

adaptive CS in [Alk14] in terms of training overhead. To make the results comparable

with [Alk14], we apply the received beamformer in the proposed algorithm by multiplying

the left hand side of the g-th received signal in (4.4.3) with the Hermitian of W(g)[n] =

W(g)
RFW

(g)
BB[n] where W

(g)
RF denotes the Nr×Mr RF combining matrix that is similar to the

RF precoder andW(g)
BB[n] denotes theMr×Mr digital combining matrix with the (m1, m2)-

th entry of ejθm1,m2,n,g where θm1,m2,n,g follows the i.i.d. uniform distribution U [0, 2π). The
rest of development in the proposed algorithm remains unchanged. The parameters for the

adaptive CS are adjusted to the simulation setup. Moreover, Ks = 2 beamforming vectors

are used in 2s−1 subsets for the codebook level s, Mr = 2, and the AOAs/AODs resolutions

are set to 2π/Nres where Nres = 2NQ with phase shifters quantization bits NQ = 7. The

training overhead for the adaptive CS is Gad ! Ks(K + 1)2-Ks(K + 1)/Mr. logNres/(K+1)
Ks

[Alk14], and the training overhead for the proposed algorithm is Gprop = G. Fig. 4.11

shows the root-square error (RSE) and the RMSE of AOA and AOD with blue and red

squares, respectively, for 50 realizations in the LOS for the adaptive CS and the proposed
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method. The results show that for Gprop ≥ 20 the variations of RMSE of AOA and AOD

is negligible, while the adaptive CS requires Gad ≥ 32 to approach the desired resolution

that is restricted by phase shifters quantization bits NQ = 7 for the LOS. Fig. 4.12 shows

that for Gprop ≥ 24 the variations of RMSE of AOAs and AODs is negligible, while the

adaptive CS requires Gad ≥ 64 to approach the desired resolution that is restricted by

phase shifters quantization bits NQ = 7 for the NLOS. This can be justified using the

fact that the proposed algorithm leverages the angular sparsity of the mm-wave channel,

while the adaptive CS does not take into account the angular sparsity in the estimation

of AOAs/AODs. Consequently, the relative training overhead∆ G = (Gad −Gprop)/Gprop

increases for the adaptive CS compared to the proposed method. More specifically,∆ G

is around 0.6 for the LOS and 1.67 for the NLOS. In principle, by increasing the number

of channel path the training overhead increases by approximately (K + 1)3 logNres/(K+1)
Ks

for the adaptive CS, while the training overhead is not significantly changing using the

proposed method.
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Figure 4.8: The evolution of RMSE of TOA and AOA/AOD for the LOS (left column)
and the NLOS (right column) paths at SNR = −20 dB,−10 dB, 0 dB.
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Figure 4.11: Comparison of the RSE/RMSE of AOA/AOD estimation schemes against
the training overhead at SNR = 0 dB for the LOS.
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Figure 4.12: Comparison of the RSE/RMSE of AOA/AOD estimation schemes against
the training overhead at SNR = 0 dB for the NLOS.
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4.6 Conclusion

We have presented a study of the fundamental bounds of a wideband MIMO mm-wave

system. Using LOS and NLOS channel models, we have first computed the FIM for

delay, AOD, AOA, and channel gain. We have then transformed the FIM to comprise

the position and rotation angle of MS. A two stage algorithm including the detection

phase and the estimation phase for the sparse estimation of AOA, AOD, and TOA has

been developed. The results show that the estimated values of AOA, AOD, and TOA

converge to the corresponding values obtained from the inverse of the FIM. Moreover,

the estimated values of position and rotation angle converge to the PEB and REB after

a few iterations.
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Appendix 4.A

Proof for (4.3.9)

Replacing y[n] from (4.2.4) in (4.3.5), using (4.3.7), and considering Ey|η[n[n]] = 0, we

obtain

Ψ(xr, xs) =
2

N0

N−1∑

n=0

(
{
∂µH[n]

∂xr

∂µ[n]

∂xs

}
. (4.A.1)

The elements of the FIM are obtained based on (4.A.1). The terms including {τr, τs} and

{θr, θs} are summarized as:

Ψn(τr, τs) =
2

N0
({h̃∗

rh̃sARx,n(θRx,r, θRx,s)A
(2)
Tx,F,n(τr, τs, θTx,s, θTx,r)}, (4.A.2)

Ψn(τr, θTx,s) =
2

N0
({jh̃∗

rh̃sARx,n(θRx,r, θRx,s)A
(1)
DTx,s,F,n(τr, τs, θTx,s, θTx,r)}, (4.A.3)

Ψn(τr, θRx,s) =
2

N0
({jh̃∗

rh̃sADRx,s,n(θRx,r, θRx,s)A
(1)
Tx,F,n(τr, τs, θTx,s, θTx,r)}, (4.A.4)

Ψn(θTx,r, θTx,s) =
2

N0
({h̃∗

rh̃sARx,n(θRx,r, θRx,s)ADdTx,F,n(τr, τs, θTx,s, θTx,r)}, (4.A.5)

Ψn(θTx,r, θRx,s) =
2

N0
({h̃∗

rh̃sADRx,s,n(θRx,r, θRx,s)A
(0)
DTx,r,F,n(τr, τs, θTx,s, θTx,r)},(4.A.6)

Ψn(θRx,r, θRx,s) =
2

N0
({h̃∗

rh̃sADRx,r,s,n(θRx,r, θRx,s)A
(0)
Tx,F,n(τr, τs, θTx,s, θTx,r)}. (4.A.7)

The following notations are introduced:

A(k)
Tx,F,n(τr, τs, θTx,s, θTx,r) ! aH

Tx,F,n(θTx,s)Ak,n(τr, τs)aTx,F,n(θTx,r), (4.A.8)

A(l)
DTx,s,F,n(τr, τs, θTx,s, θTx,r) ! aH

DTx,F,n(θTx,s)Al,n(τr, τs)aTx,F,n(θTx,r), (4.A.9)

A(l)
DTx,r,F,n(τr, τs, θTx,s, θTx,r) ! aH

Tx,F,n(θTx,s)Al,n(τr, τs)aDTx,F,n(θTx,r), (4.A.10)

ADdTx,F,n(τr, τs, θTx,s, θTx,r) ! aH
DTx,F,n(θTx,s)A0,n(τr, τs)aDTx,F,n(θTx,r), (4.A.11)

where l ∈ {0, 1}, and Ak,n(τr, τs), k ∈ {0, 1, 2}, is given by
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Ak,n(τr, τs) ! (2πn)k x[n]xH[n]e−j2πn(τn−τm)/(NTs). (4.A.12)

The vectors aTx,F,n(θTx,r) and aDTx,F,n(θTx,r) are given by

aTx,F,n(θTx,r) = FH[n]aTx,n(θTx,r),

and

aDTx,F,n(θTx,r) = FH[n]DTx,r[n]aTx,n(θTx,r).

The matrix DTx,r[n] is defined as

DTx,r[n] ! j
2π

λn
d cos(θTx,r)diag{0, . . . , Nt − 1}. (4.A.13)

The scalars ARx,n(θRx,r, θRx,s), ADRx,s,n(θRx,r, θRx,s), and ADRx,r,s,n(θRx,r, θRx,s) are defined

as

ARx,n(θRx,r, θRx,s) ! aH
Rx,n(θRx,r)aRx,n(θRx,s), (4.A.14)

ADRx,s,n(θRx,r, θRx,s) ! aH
Rx,n(θRx,r)DRx,s[n]aRx,n(θRx,s), (4.A.15)

ADRx,r,s,n(θRx,r, θRx,s) ! aH
Rx,n(θRx,r)D

H
Rx,r[n]DRx,s[n]aRx,n(θRx,s), (4.A.16)

where DRx,r[n] has the same expression as (4.A.13) by replacing the subscript Tx by Rx

and Nt by Nr. The terms including channel coefficients are summarized as:

Ψn(τr, h̃s) =
2

N0
[({jh̃∗

rARx,n(θRx,r, θRx,s)A
(1)
Tx,F,n(τr, τs, θTx,s, θTx,r)},

({−h̃∗
rARx,n(θRx,r, θRx,s)A

(1)
Tx,F,n(τr, τs, θTx,s, θTx,r)}], (4.A.17)

Ψn(θTx,r, h̃s) =
2

N0
[({h̃∗

rARx,n(θRx,r, θRx,s)A
(0)
DTx,r ,F,n(τr, τs, θTx,s, θTx,r)},

({jh̃∗
rARx,n(θRx,r, θRx,s)A

(0)
DTx,r,F,n(τr, τs, θTx,s, θTx,r)}], (4.A.18)

Ψn(θRx,r, h̃s) = − 2

N0
[({h̃∗

rADRx,r ,n(θRx,r, θRx,s)A
(0)
Tx,F,n(τr, τs, θTx,s, θTx,r)},

({jh̃∗
rADRx,r,n(θRx,r, θRx,s)A

(0)
Tx,F,n(τr, τs, θTx,s, θTx,r)}], (4.A.19)

Ψn(({h̃r},({h̃s}) = Ψn(){h̃r},){h̃s}) =
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2

N0
({ARx,n(θRx,r, θRx,s)A

(0)
Tx,F,n(τr, τs, θTx,s, θTx,r)}, (4.A.20)

Ψn(({h̃r},){h̃s}) = −Ψn(){h̃r},({h̃s}) =
2

N0
({jARx,n(θRx,r, θRx,s)A

(0)
Tx,F,n(τr, τs, θTx,s, θTx,r)}. (4.A.21)
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Chapter 5

Conclusions and Future Work

This dissertation has explored the potential of OFDM signals for localization in 5G sys-

tems. In particular, this dissertation has put emphasis on the design of OFDM signals

under timing and localization accuracy constraints and sparse estimation of channel pa-

rameters for position and orientation estimation in 5G systems. As a result, the proposed

design of OFDM signals provides high data rate under timing accuracy constraints and

robust performance with respect to network parameter uncertainty with the reduced to-

tal power consumption compared to the single-carrier counterparts. Additionally, OFDM

signals are used in the mm-wave frequencies due to good capabilities of the mm-wave fre-

quencies for indoor localization in 5G systems. Large number of antenna arrays are used

as a solution for the severe effect of path-loss for indoor localization based on OFDM sig-

nals in the mm-wave frequencies. The proposed method estimates the channel parameters

with the reduced training overhead using the sparsity of mm-wave channels for different

subcarriers and finds the position and rotation angle of the MS for indoor localization in

5G systems.

Fig. 5.1 shows the application of OFDM signals for joint localization and communi-

cation, WNL, and sparse position and orientation estimation. The topics where contri-

butions have been presented are highlighted in this figure for the sake of clarity. In 5G

systems, the information about the location can improve the data rate. This requires the

design of signals that provide high data rate and good localization accuracy. To this end,

we first consider the topic of joint localization and communication with OFDM signals.

This topic has been shown to result in the distinction between time varying and static

channels for the design of near optimal OFDM sequences. This is an important issue be-

cause, unlike the design of near optimal OFDM sequences for static channels considering

the effect of time variations among different OFDM symbols may lead to a more efficient
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Figure 5.1: Overview of the topics covered within the dissertation.

design for joint localization and communication. In this way, the goal of Chapter 2 has

been to design near optimal OFDM sequences in time and frequency for time varying fre-

quency selective channels so that the expected performance loss incurred by applying the

near optimal OFDM sequences for static channels can be evaluated. This has constituted

the first part of this dissertation.

Once the near optimal OFDM sequences in time and frequency is obtained for time

varying and frequency selective channels for single link, the next step has been to move

forward into the design of near optimal OFDM sequences for WNL, i.e., subcarrier power

allocation. This has constituted the second part of this dissertation. The basic task is the

subcarrier power allocation among different BSs in a wireless network for multicast and

unicast transmissions. For the case of non-robust subcarrier power allocation, Chapter 3

has shown that the major problem is related with uncertainty on the network parameters.

For this reason, ergodic and robust subcarrier allocations have been shown to be essential

to compensate the lack of knowledge on the network parameters prior to subcarrier power

allocation.

Chapter 4 has dealt with sparse estimation of position and rotation angle of the MS

using the OFDM signals in a frequency selective hybrid precoding system for 5G local-

ization.

Next, we summarize the contributions and future research lines for each of the topics

addressed in this dissertation.
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Joint Localization and Communication

The discussion on the joint data and pilot design has been addressed in Chapter 2 under

time varying and frequency selective channels. The main goal has been to design near

optimal data and pilot in time and frequency in an analytical manner. To this end,

the lower bound on the channel capacity with partially known channel state information

(CSI) is considered as the objective function to be maximized under an upper bound

on the desired time-delay estimation accuracy. Contrary to the traditional measure of

capacity with known CSI and the bound on the time-delay estimation accuracy, the

effect of unknown time-delay and channel coefficient are considered in the lower bound

of channel capacity and channel statistics (i.e., channel mean and covariance) are used in

the formulation of time-delay estimation bound.

In the recent literature, most of the results are dealing with joint data and pilot design

for localization and communication for static channels. However, in the real scenarios the

time variations in the channel subspace is much faster than the delay subspace and leads

to time variations from one OFDM symbol to another OFDM symbol. Thus, considering

the effect of time variations between different OFDM symbols may improve the data rate

for a given localization accuracy. In this part of the dissertation, one of the most impor-

tant contributions is that the closed-form expressions are provided for the lower bound of

capacity with partially known CSI for time varying frequency selective channels. More-

over, the bounds on the channel coefficients and time-delay for time varying frequency

selective channels have been obtained.

In the second step, the design of data and pilot in time and frequency using a relaxed

form of the combinatorial optimization problem has led to an important conclusion. Con-

sidering the effect of correlation between different OFDM symbols in the design of OFDM

sequences in time and frequency led to a semi stair-wise pattern for the joint data and

pilot design. Interestingly, this is what we observed in the LTE systems with the PRS in

the downlink with the stair-wise pattern. Moreover, ignoring the effect of time variations

due to the rapid change in the channel coefficient subspace and applying the joint data

and pilot design for static channels led to reducing the channel capacity for the same

time-delay accuracy.

When allowing each subcarrier to be used as data and pilot, i.e., the relaxed solution,

the capacity is increased by around 31% compared to the solution after masking and

limiting each subcarriers to be considered as either data or pilot. Interestingly, in the high

SNR regime and after a given threshold on the SNR the time-delay estimation constraint
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in the optimization problem for the joint data and pilot design is automatically fulfilled.

The topic that has not been addressed in this dissertation but may be subject to

further investigation is the following:

• Extension of the joint data and pilot design for MIMO OFDM is an interesting

problem for the case of quasi stationary channels. The main challenge here is to

consider the effects of time, frequency, and space in the design of data and pilots (i.e.,

3D design of data and pilots) such that the channel capacity with partially known

CSI is maximized for a given localization accuracy. In this case, due to antenna

arrays in the transmitter and receiver it is possible to use not only the time-delay

but also the AOA/AOD for the localization. Using the information provided by

the AOA/AOD are useful due to the fact that they are less susceptible to noise.

Moreover, the interference cancellation techniques can be applied using the angular

information.

Wireless Network Localization

Optimal subcarrier power allocation requires perfect knowledge of the network parame-

ters including the position of the MS that is yet to be estimated and the channel coeffi-

cients. However, this leads to the non-robust subcarrier allocations that are susceptible

to variations of the network parameters. Consequently, considering the effects of network

uncertainty on the design of subcarrier power allocation has been shown to be of criti-

cal importance in OFDM WNL. In this dissertation, the uncertainties on the network

parameters are treated in the expected and worst case forms using ergodic and robust

subcarrier power allocations, respectively. For the case of the ergodic subcarrier power

allocation, the total transmitted power in the network is minimized for a given upper

bound on the expected value of SPEB. Since the problem is of the form of stochastic

optimization, it can be approximated by the corresponding sample average function as

the approximate solution for the ergodic subcarrier power allocation. For the case of

robust subcarrier power allocation, the worst case SPEB has been obtained using the

worst case channel coefficients and positions uncertainties. Then, the robust subcarrier

power allocation problem has been formulated by minimizing the total transmitted power

subject to an upper bound on the maximum SPEB for given uncertainties on the agents’

positions and channel coefficients. The uncertainties on the channel coefficients have been

considered as per-tap and vector uncertainties to analyze the effect of different types of

uncertainties on the localization accuracy and total power consumption. The simulation
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results have led to the following important conclusions:

• It can be observed that the ergodic and robust subcarrier power allocations out-

perform non-robust solutions with the same total power. This is due to the fact

that the proposed subcarrier power allocations use different subcarriers with taking

into account the effects of channel coefficients and position uncertainties. Conse-

quently, increasing the total power is not the only factor that affects the ergodic

and robust subcarrier power allocations but also the appropriate subcarriers are

of critical importance. This can be observed where except the subcarriers at the

bandwidth edges the subcarriers used for the non-robust design are different from

the subcarriers used for the ergodic and the robust allocations.

• It is observed that increasing the uncertainty on the network parameters leads to

increasing the required SNR. Moreover, the required increase of the SNR is affected

mainly due to channel uncertainty. The important conclusion from the above dis-

cussion is that channel uncertainty is affecting the required SNR for the localization

much more than location uncertainty.

• Interestingly, for a given bandwidth the results show that the subcarrier power

allocation outperforms the single-carrier counterparts. More specifically, the aver-

age relative total power increase in single-carrier design compared to multi-carrier

OFDM-based design for a given bandwidth is of the order of 7.8 for non-robust,

around 6 for ergodic, and around 2 for the robust allocations for the multicast

transmissions, and with an additional 50% for each approach with the unicast trans-

missions.

Considering the above conclusions from the simulation results and the clear advantage of

multi-carrier OFDM-based robust allocations over single-carrier counterparts, there are

still some pending issues to be further investigated:

• A natural extension to the proposed model for single antenna OFDM receiver is to

obtain the subcarrier power allocations for the case of MIMO systems. In this case

not only the locations of the subcarrier play an important role in the localization

procedure but also the choice of antenna is of critical importance. Different beam-

forming techniques may be applied and the design problem for the localization may

be reduced to beamformer design.

• The effect of time variations may be considered in the model for OFDM localization.

Observing the effect of agent movement and considering prior knowledge on the
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channel coefficients and positions in the forms of probability density functions are

very exciting extensions in terms of subcarrier power allocation and localization

bounds.

• Considering the effect of interference where each BS is transmitting its signal si-

multaneously on the localization accuracy and subcarrier power allocations is an

interesting extension to the proposed approach where we assume sequential trans-

mission of the signals.

Sparse Estimation of Position and Orientation

For the localization in mm-wave massive MIMO systems, there is a clear demand for the

estimation of rotation angle of the MS together with the position using one BS. This is

due to the fact that only the estimation of the position may lead to ambiguity due to the

unknown rotation angle. It has been shown that the LOS path can provide the sufficient

information for the rotation angle estimation as indicated in Chapter 4. Moreover, for

the case of OLOS it is not possible to estimate the rotation angle as the NLOS links do

not provide sufficient information for the estimation of the rotation angle.

There are two main contributions to be highlighted in the topic of position and orien-

tation estimation in 5G systems:

• First, the localization bounds on the position and rotation angle for the wideband

systems accounting for the array dispersion have been obtained. The bounds have

been obtained for the case of LOS, in the presence of clusters, and for the case when

the LOS is blocked.

• To estimate the parameters including AOAs/AODs, TOAs and channel coefficients

with the reduced training overhead, the sparsity of the mm-wave channels has been

considered using the beamspace transceiver. The sparse estimation of the channel

parameters has been organized as a two-stage procedure including detection and

estimation steps. In the detection phase, the coarse estimation of channel param-

eters has been obtained. In the estimation phase, the estimated values from the

detection phase have been refined by compensating for the limited grid size effect

in the detection phase using an EM like sequential iterative procedure.

Simulation results show that even at very low received SNR that is the case for the

mm-wave systems before beamforming the estimated parameters using the proposed
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detection-estimation algorithm converge to the proposed bounds. More specifically, at

−10 dB all the parameters converge to their corresponding bounds for the LOS and the

NLOS. Consequently, the estimated values of the AOAs/AODs and TOAs and position

and rotation angle converge to the true values even at very low received SNR. More-

over, the proposed detection-estimation approach for the sparse estimation of channel

parameters significantly outperforms the existing contributions in the literature using the

adaptive CS in terms of training overhead for the estimation of AOAs/AODs. More

specifically, the relative increase of the training overhead is around 0.6 and 1.67 for the

LOS and the NLOS, respectively, for the adaptive CS compared to the proposed method.

The performance results of the proposed detection-estimation algorithm for the sparse

estimation of the position and rotation angle outperform the adaptive CS in the literature

and converge to the corresponding bounds. However, some of the research lines that still

remain open are the following:

• The effect of time variations in the channel model and estimation of the parameters

of interest for the case that the channel is time varying is an interesting extension

of the proposed method.

• Considering the effect of array dispersion and beam squint in the proposed detection-

estimation algorithms is a very interesting problem. This is due to the fact the

fractional bandwidth (FB) is violating the condition for the common sparse support

assumed by the DCS-SOMP in the detection phase of the proposed algorithm. So,

it would be interesting to apply a modified form of the proposed DCS-SOMP in

the detection phase to account for different angular sparse support among different

subcarriers.



128 CHAPTER 5. CONCLUSIONS AND FUTURE WORK



Abbreviations

ADC analog-to-digital-converter

AOA angle-of-arrival

AOD angle-of-departure

BF beamforming

BS base station

CoSOMP compressive sampling matched pursuit

CP cyclic prefix

CP-OFDM cyclic prefix OFDM

CRB Cramér-Rao bound

CRS cell-specific reference signal

CS compressed sensing

CSI channel state information

DAC digital-to-analog-converter

DCS distributed compressed sensing

DCS-SOMP distributed compressed sensing-simultaneous OMP

DFT discrete Fourier transform

DLS damped least-squares

DTDOA differential time difference of arrival
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ECRB expected CRB

EFIM equivalent Fisher information matrix

EM expectation maximization

EXIP extended invariance principle

FB fractional bandwidth

FBMC filter bank multi-carrier

FFT fast Fourier transform

FIM Fisher information matrix

FDE frequency domain equalization

G-BPDN group basis pursuit denoising

GCS group sparse compressed sensing

GFDM generalized frequency division multiplexing

GMSK Gaussian minimum-shift keying

GNA Gauss-Newton algorithm

GPS global positioning system

GSM global system for mobile communications

ICI intercarrier interference

IFFT inverse fast Fourier transform

IQML iterative quadratic maximum likelihood

ISI intersymbol interference

LMA Levenberg-Marquardt algorithm

LOS line-of-sight

LTE long term evolution

MBSFN multimedia broadcast over single frequency network
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ML maximum likelihood

MLE maximum likelihood estimation

MMSE minimum mean square error

MMV multiple measurement vectors

MIMO multiple-input-multiple-output

MISO multiple input single output

MS mobile station

MSK minimum-shift keying

mm-wave millimeter wave

NLOS non-line-of-sight

OFDM orthogonal frequency division multiplexing

OLOS obstructed-line-of-sight

OMP orthogonal matching pursuit

PA power amplifier

PAN personal area network

PAPR peak-to-average power ratio

PBCH physical broadcast channel

PCFICH physical control format indicator channel

PDCCH physical downlink control channel

PDSCH physical downlink shared channel

PEB position error bound

PHICH physical hybrid ARQ indicator channel

PMCH physical multicast channel

PN pseudo noise
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PRS positioning reference signal

PSD positive semidefinite

QoS quality-of-service

RA-ORMP rank-aware order recursive matching pursuit

REB rotation error bound

ReMBo reduce MMV and boost

RF radio-frequency

RMS root-mean-square

RMSE root-mean-square error

RSE root-square error

RSS received signal strength

SINR signal-to-interference-plus-noise ratio

SNR signal-to-noise ratio

SPEB squared position error bound

SC-FDE single-carrier frequency domain equalization

SC-FDM single-carrier frequency-division multiplexing

SC-FDMA single-carrier frequency-division multiple access

SC-QAM single-carrier quadrature amplitude modulation

SDL sensor delay line

S/P serial/parallel

SMV single measurement vector

SOMP simultaneous OMP

TDL tapped delay line

TDOA time difference of arrival
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TOA time-of-arrival

UE user equipment

UFMC universal-filtered multi-carrier

ULA uniform linear array

UWB ultra-wide bandwidth

WIMAX worldwide interoperability for microwave access

WLAN wireless local area network

WLS weighted least squares

WNL wireless network localization

WOLA weighted overlap and add



134 CHAPTER 5. CONCLUSIONS AND FUTURE WORK



Bibliography

[3GP14] “3GPP TS 36.101, evolved universal terrestrial radio access (E-UTRA); user

equipment (UE) radio transmission and reception, Rel. 9, V9.18.0”, Jan 2014.

[Alk14] A. Alkhateeb, O. E. Ayach, G. Leus, R. W. Heath Jr, “Channel estimation

and hybrid precoding for millimeter wave cellular systems”, IEEE Journal of

Selected Topics in Signal Processing , Vol. 8, no 5, pags. 831–846, 2014.

[Alk15] A. Alkhateeb, R. W. Heath, “Frequency selective hybrid precoding for limited

feedback millimeter wave systems”, submitted to IEEE Transactions on Com-

munications (Invited Paper), Oct. 2015.

[Alm07] P. Almers, E. Bonek, A. Burr, N. Czink, M. Debbah, V. Degli-Esposti, H. Hof-
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