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Abstract

In this thesis, thermal transport is analyzed from the bulk to the nanoscale un-
der different approaches using first principles. On one side, the bulk thermal
conductivity is studied in the general kinetic-collective framework, where the
Boltzmann Transport Equation (BTE) for phonons is solved under the Guyer
and Krumhansl (GK) model and maximizing the entropy of the system. This
solution is known as Kinetic Collective Model (KCM). On one side, the KCM,
which splits the thermal conductivity into a kinetic and a collective contribution,
has allowed obtaining the thermal conductivity of a large number of semicon-
ductors, with excellent agreement to experimental results. On the other side, for
reduced size samples, two approaches have been considered. In the first case,
the GK boundary approach considers the boundaries as a microscopic scattering
mechanism in the kinetic regime while in the collective contribution their effects
are included from a hydrodynamic basis. The limitation of this approach for
complex geometries has prompted the development of the second case: a full
hydrodynamic thermal transport framework. A hydrodynamic thermal transport
equation has been developed based in the combination with the GK model and
the Extended Irreversible Thermodynamics (EIT) framework and using a gen-
eral hydrodynamic slip boundary condition. This has allowed to use the hydro-
dynamic KCM equation in finite elements calculations to study complex geome-
tries. Finally, an analysis of the phonon spectrum and its importance to deal with
transient transport regimes is included.

Comparison of the KCM results with other current solutions concerting all
the topics of the thesis are discussed.

Parallel to the development of the hydrodynamic model, the KCM expres-
sions from the kinetic-collective boundary approach as well as hydrodynamic
parameters have been implemented in an open source code. Sharing the model
as a tool to predict thermal transport phenomena will allow bridging the physics
of the heat transport from the microscopic to the macroscopic point of view.

vii





Contents

Acknowledgments v

Abstract vii

Contents viii

List of Figures x

Introduction 1

1 Thermal transport 5
1.1 Boltzmann Transport Equation . . . . . . . . . . . . . . . . . . 6
1.2 Solutions to the LBTE . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Thermal transport beyond Fourier . . . . . . . . . . . . . . . . 20
1.4 Thermal boundary resistance . . . . . . . . . . . . . . . . . . . 31
1.5 Thermal measurements . . . . . . . . . . . . . . . . . . . . . . 32
1.6 Thermoelectric properties . . . . . . . . . . . . . . . . . . . . . 35
1.7 Note on phonon drag . . . . . . . . . . . . . . . . . . . . . . . 36

2 First principles calculations 39
2.1 Total energy calculations . . . . . . . . . . . . . . . . . . . . . 39
2.2 Interatomic force constants . . . . . . . . . . . . . . . . . . . . 45
2.3 Phonon scattering mechanisms . . . . . . . . . . . . . . . . . . 50
2.4 Ab initio KCM expressions . . . . . . . . . . . . . . . . . . . . 59
2.5 Calculation methodologies . . . . . . . . . . . . . . . . . . . . 62
2.6 System modeling . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.7 Computational methods . . . . . . . . . . . . . . . . . . . . . . 66

3 Thermal transport of bulk semiconductors in the KCM 71
3.1 Dispersion relations and density of states . . . . . . . . . . . . . 72
3.2 Scattering rates and mean free times . . . . . . . . . . . . . . . 76
3.3 Kinetic slowdown . . . . . . . . . . . . . . . . . . . . . . . . . 80

ix



x CONTENTS

3.4 Thermal conductivity of bulk materials . . . . . . . . . . . . . . 83
3.5 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.6 Thermal conductivity in other models . . . . . . . . . . . . . . 94

4 Low dimension thermal conductivity in the KCM 99
4.1 Kinetic-collective boundary approach . . . . . . . . . . . . . . 100
4.2 Hydrodynamic KCM approach . . . . . . . . . . . . . . . . . . 105
4.3 Boundary effects in other models . . . . . . . . . . . . . . . . . 112

5 Phonon spectrum and transient regimes in the KCM 115
5.1 Phonon spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Transient regimes . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3 The role of low energy phonons . . . . . . . . . . . . . . . . . . 131
5.4 Relaxation times from the full scattering matrix . . . . . . . . . 133

6 Geometric effects in complex experiments 135
6.1 1D heat propagation . . . . . . . . . . . . . . . . . . . . . . . . 136
6.2 2D heat propagation . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3 Steady state and transient heat transport . . . . . . . . . . . . . 141
6.4 Effective modeling of KCM . . . . . . . . . . . . . . . . . . . . 146

7 Conclusions 149

A Generalization of the KCM equations 153

B Hydrodynamic heat flow in two dimensions 155

C Longitudinal heat transport in a thin film 159

Bibliography 163



List of Figures

1.1 Sketch of the kinetic and collective transport regimes . . . . . . . . 14
1.2 Resistive and total KCM relaxation times. . . . . . . . . . . . . . . 19
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Introduction

Most of the daily life devices and electronic tools have components based on
semiconductor materials. These have been traditionally used for a wide range of
applications, from transistors to photovoltaic or thermoelecric energy sources.
The improvement of these devices can be only achieved from the proper knowl-
edge of the physics involved in their operation. In recent years, the technology
industry has evolved to the nanotechnology world in an attempt to reduce the
size of the devices to dimensions as small as allowed by manufacturing. The
problem that this reduction has faced is that the properties of semiconductors at
these new scales have turned out to be different from those at larger scales. A
lot of phenomena can appear in semiconductors when the size of the materials
is reduced, such as quantum confinement, boundary effects or the appearance of
correlations. In addition, the temperature has an important effect on the proper-
ties of the material, and this can influence its performance. In the specific case
of heat transport, heat dissipation has become a new challenge in order to reduce
the size of the components. A model able to predict these new properties at all
time and length scales will also reduce the time, human and economic resources
from the design point.

There are two different approaches that can be used to face the thermal trans-
port phenomena at the nanoscale, microscopic and macroscopic. The first ap-
proach consists in obtaining the microscopic magnitudes describing the behavior
of the participating heat carriers, while the second one consists in obtaining the
relations between the thermodynamic magnitudes involved. The connection be-
tween these two approaches is the key goal of statistical physics. This has been
extensively developed for equilibrium or local equilibrium in the last century and
high predictability has been achieved. In contrast, far from equilibrium obtaining
a reliable solution is not that easy. When large thermodynamic inhomogeneities
appear, the distribution of the heat carriers becomes very complex. Spatial and
temporal dependence appear on the system and memory and non-localities are
needed for their correct description. To find the microscopic connection in these
situations a proper thermodynamic framework is necessary.

In the last years the numerical capabilities of computer clusters have made
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2 INTRODUCTION

it possible to improve the microscopic approach. Nowadays it is possible to in-
troduce all the relevant microscopic information into a very large Hamiltonian
and try to solve the transport equations directly. Despite of this, its complex-
ity can make the computational time needed to obtain a single solution huge.
This means that the combination with macroscopic approaches finding symme-
tries and conservation laws of the system can allow simplifying the problem and
obtaining a very good approximation in less computational time. So, although
microscopic models based on a Hamiltonian are the only way to obtain an exact
solution, in practice actual calculations must always reduce the amount of mi-
croscopic information used, providing thus a non-exact solution. If the error of
approximating the problem to a simpler one by using a conservation law is of
the same order as the errors introduced in practical solutions of the microscopic
approach, the latter can be more useful. The benefit of this approach is that it can
give a deeper physical insight and can show the appearance of new phenomena
that can be hidden in the complexity of microscopic approaches.

The validity of the Fourier law has been demonstrated to be broken at the
nanoscale and the formulation of a new equation valid at this scale is pursued.
Its generalization is studied through the solution of the Boltzmann Transport
Equation (BTE). The main problem of this equation is its extreme complexity.
This forces the use of simplifications in order to obtain some approximate solu-
tions.

In this thesis the Kinetic Collective Model (KCM) is proposed as a frame-
work to solve the BTE and as a generalization of Fourier’s law [1, 2, 3] to
include memory and non-local effects in order to describe heat transport at small
size and time scales. In the KCM, thermal conductivity is split into a kinetic and
a collective regime. In the first regime all the phonons interact between them
and the boundaries independently. In the collective regime a global interaction
of the phonons due to the momentum conservation of certain collisions takes
place, leading to the appearance of a hydrodynamic-like heat flow.

This dissertation is organized as follows. First, in Chapter 1 thermal trans-
port is introduced from current solutions of the BTE for phonons to recent heat
transport formulations based on superdiffusive and hydrodynamic regimes. In
Chapter 2, the first principles framework used to obtain phonon properties is
introduced, and the equations of thermal transport in the KCM are detailed.
In addition, computational details of ab initio calculations are also discussed.
In the following chapters, the KCM framework is applied to the study of ther-
mal transport in different systems and compared to other current solutions. In
Chapter 3, the thermal conductivity of bulk materials is studied. In Chap-
ter 4, systems from nano to micrometer characteristic size like nanowires and
thin films are considered for the study of thermal conductivity. In this case, solu-
tions are provided from a kinetic-collective boundary approach based on Guyer
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and Krumhansl’s derivation, and from a full hydrodynamic model. The transport
properties in transient regimes and the phonon spectrum of the presented samples
is discussed in Chapter 5. Finally, in Chapter 6 complex experiments where
diffusive heat transport can not be applied are studied within the hydrodynamic
KCM framework, before summarizing the conclusions in Chapter 7.





Chapter 1

Thermal transport

A common way to understand the heat transfer is by considering that energy is
transferred by a quantum called phonon. A phonon is a pseudo-particle with
energy ~ω and crystalline momentum ~q obtained from the solution of the equa-
tions of motion of the atoms in a periodic crystal lattice. With this building
blocks the first picture of thermal transport is that of phonons moving randomly
at their constant group velocity in a Brownian motion. The macroscopic conse-
quence of this microscopic picture is a diffusive heat transport governed by the
Fourier law. This law has been successfully used in the last two centuries, but in
the last decades divergences from classical behavior at reduced time and length
scales have been observed. The first approach to understand these deviations was
using an effective thermal conductivity depending on the characteristic length of
the samples, but still relying in the Fourier equation. This approach has also
been overtaken in the last years using more advanced techniques. Some exam-
ples are ultra-fast laser techniques measuring the effective thermal conductivity
using heaters with different sizes or working at different excitation frequency
ranges [4, 5, 6, 7, 8, 9, 10]. In these new setups an explicit generalization
of the Fourier law should be used because the effective thermal conductivity
approach does not provide good results. In consequence, other transport phe-
nomena such as ballistic transport, superdiffusive regime or collective flow have
appeared [3, 11, 12, 13, 14].

Different proposals that have tried to modify the diffusive behaviour from the
microscopic point of view through a change in the collisions relaxation times.
In situations where Fourier law is applicable, these models are able to predict
the thermal conductivity with excellent performance, but in non-homogeneous
situations the anharmonic nature of the phonon collisions makes it difficult to
find reliable results. Some of the proposed explanations are based on kinetic
models considering anisotropy or using phonon suppression functions, but none
of them seems fully satisfactory. The difficulty to explain these experiments

5



6 CHAPTER 1. THERMAL TRANSPORT

from a classical kinetic point of view [10, 14] has prompted the emergence of
new proposals based on including memory or non-locality like superdiffusive or
hydrodynamic models.

From a microscopic point of view, at reduced time and spatial scales the
Truncated Lévy Flight (TLF) model has emerged in recent years as a framework
to describe heat transport [11, 12]. The TLF model is able to capture the coex-
istence of ballistic and diffusive heat transport that can appear when the sample
size and/or temporal scale is reduced. Parallel to the microscopic formulation, in
the last half of the past century some authors [14, 15, 16, 17] have established a
description from a hydrodynamic point of view. In this case the phonons behave
like a fluid, emerging the so-called phonon hydrodynamics. This formulation
allows defining a hydrodynamic heat transport equation in which boundary con-
ditions can be imposed in order to solve complex geometry systems. While the
thermal conductivity of an infinite material can be computed from a mechani-
cal formulation, for real systems is more suitable the use of hydrodynamic heat
transport due to the finite size. In addition, this formalism allows to account for
memory and non-local effects able to reproduce recent experimental observa-
tions of deviations from Fourier heat transport [4, 5, 6, 7, 8, 9, 10].

In this chapter the different models used to obtain the thermal evolution of
a system using first principles magnitudes are introduced. The separation of
conserving and non-conserving momentum collisions is shown to be key in order
to predict the thermal conductivity in bulk materials.

To avoid mix-up in the present work Q = (Qx, Qy, Qz) is used for the heat
flux and q = (qx, qy, qz) is used for the phonon wave vector.

1.1 Boltzmann Transport Equation
When studying thermal transport, phonons have been widely used as energy
carriers. In equilibrium, the distribution function of such pseudo-particles is
the Bose-Einstein distribution, which gives information about the number of
phonons in momentum space

n0
qν (ω, T ) =

1

e~ωq/κBT − 1
, (1.1)

where qν denotes a phonon with wave vector q and branch ν with frequency ωq.
T is the equilibrium temperature and kB and ~ are the Boltzmann and reduced
Planck constants respectively.

Eq. (1.1) shows that in equilibrium the description of the system can be
achieved by using a single thermodynamic magnitude T , but, when the sys-
tem is perturbed from its equilibrium state, the phonon distribution changes and
inhomogeneities and temporal evolution appear.
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In 1892, Ludwig Boltzmann introduced his kinetic theory of gases [18] to
describe the evolution of the distribution function in these situations. This equa-
tion is called since then the Boltzmann Transport Equation (BTE). Out of equi-
librium the distribution function will evolve due to two mechanisms. First, the
presence of mechanical or thermodynamic forces in the system generates inho-
mogeneities. Second, the collisions of the phonons among themselves and with
other particles will tend to restore the equilibrium. The temporal evolution of
the distribution function is described by balancing both effects(

dnq

dt

)
drift

=

(
∂nq

∂t

)
scattering

. (1.2)

The general form of the drift operator in the phonon basis is(
dnq

dt

)
drift
≡ ∂nq

∂t
+ vq

∂nq

∂r
+ F

∂nq

∂v
, (1.3)

where vq is the group velocity of the mode q and F the force that particles
experience due to external fields. Opposite to electrons, phonons can not be
influenced by external forces, and the last term is not necessary.

In this representation the drift operator is diagonal and consequently the most
important complexity of the BTE lies in the collision term. This depends on the
type of collisions that are considered. It includes products of the distribution
function of the particles involved in the collision, having at least an incoming
and an outgoing phonon. This makes this term non-linear and renders its solution
extraordinarily difficult. In the case of phonons the most complex collision term
is the anharmonic phonon-phonon scattering. It includes at least three phonons.
In this case, the collision term has the form:(
∂nq

∂t

)
scatt

=

∫ ∫
[nqnq′(nq′′ + 1)− 1

2
nq(nq′ + 1)(nq′ + 1)]Ωq,q′,q′′

dq′dq′′

(2π)3
,

(1.4)
where Ωq,q′,q′′ is the transition probability of the collision of two phonons q and
q′ giving an outgoing phonon q′′.

As a non-linear integro-differential equation, the ability to solve the BTE de-
pends on the simplifications used. A very useful approach when the perturbation
is not very large is the linearization.

1.1.1 Linearization of the BTE
The linearized BTE (LBTE) is the equation obtained from the linearization of
the perturbation. The distribution function can be expressed as the equilibrium
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term and a deviation from it

nq = n0
q + ∆nq . (1.5)

The deviation from equilibrium can be expressed in first order of certain pertur-
bation A as:

∆nq =
∂nq

∂εq

∂εq
∂A
∇∇∇A ·∆r =

∂nq

∂εq
Φq =

n0
q(n0

q + 1)

kBT
Φq , (1.6)

where Φq accounts for the deviation from equilibrium. In the simplest situation,
A can be just the temperature T and Fourier transport is obtained by solving the
LBTE. In more complex cases, the perturbation can also depend on the heat flux
Q and Fourier transport is no longer valid to describe the heat transport in all
situations. With a little algebra, using Eqs. (1.5)-(1.6) in the scattering operator
(Eq. (1.4)), an expression of the collision term as a function of the deviation from
equilibrium can be obtained [19]:(

∂nq

∂t

)
scatt

=

∫ ∫
[Φq − Φq′ − Φq′′ ]Pq,q′,q′′

dq′dq′′

(2π)3
, (1.7)

where Pq,q′,q′′ is the equilibrium transition rate. This change simplifies enor-
mously the equation as the product of distributions disappears. This makes
Eq. (1.1) linear and consequently can be written in matrix form. Despite of
this, the diagonalization of the LBTE is still complex. Simplifying the solution
of the scattering operator by choosing the best basis to work with has been the
focus of great efforts in the last decades.

1.2 Solutions to the LBTE
The linearization of the BTE allows to express the LBTE in operator form as:

Dn = Cn , (1.8)

where n corresponds to the phonon distribution function and D and C are the
drift and collision operator respectively. The solution of the LBTE should be
obtained by inverting the drift or the collision operators, that is, obtaining the
eigenstates and eigenfunctions of

n = D−1Cn or n = C−1Dn . (1.9)

The rank of both matrices is related to the number of modes in the system, which
is an overwhelming number. Obtaining an analytic solution to the equation is not
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possible unless some simplification is used, as done in early studies [20]. Re-
cently, several numerical approaches have been tried to obtain the exact solution
through numerical inversion due to the tremendous improvements achieved in
computer performance [21, 22]. Despite of these advances, the high complexity
of the direct solution hides the physical insight. For that reason, more sophisti-
cated simplified approaches, like the Kinetic Collective Model (KCM) described
in next sections, can be really valuable.

1.2.1 Relaxation Time Approximation
To solve the problem due to the non-diagonal form of the collision term, the Re-
laxation Time Approximation (RTA) assumes that the rate at which a phonon q
relaxes does not depend on the non-equilibrium situation of the phonons collid-
ing with it. In the case of the three phonon collisions this implies nq′ = n0

q′ and
nq′′ = n0

q′′ , and only the phonon q is displaced from equilibrium nq = n0
q+∆nq.

Under these considerations the BTE becomes diagonal and can be expressed as:

vq∇n0
q = −

nq − n0
q

τq
, (1.10)

where
1

τq
= Φq

∫ ∫
Pq,q′,q′′

dq′dq′′

(2π)3
. (1.11)

Eq. (1.10) states that when a phonon is excited, the distribution function
relaxes to equilibrium as ∆nq(t) = ∆nq(t0)e−t/τq in a characteristic time τq
independent of the rest of the distribution. This equation is diagonal in the q
space for the drift and collision operators. This makes the LBTE very easy to
solve. The solution obtained is:

nq = n0
q + τqvq∇n0

q . (1.12)

By using the microscopic definition of the heat flux Q = 〈~ωvq〉 and the
Fourier law Q = −κ∇∇∇T , the thermal conductivity can be expressed as a fre-
quency integral over all the phonons:

κi,j =

∫
~ωviqvjqτq

∂n0
q(ω)

∂T
D(ω)dω , (1.13)

where T is the temperature and D(ω) the density of states (DOS). Notice that
~ω∂n0

q(ω)/∂T represents the mode specific heat Cv.
A problem with the classical RTA is that it assumes that all collisions are able

to relax the distribution function to equilibrium. This is not true, as conservation
laws like those of energy and momentum are involved in the the transition rates
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between modes. Being more specific, a subgroup of three phonon collisions are
known to conserve the crystal momentum of the distribution. These processes
are called normal (N) collisions. When only N collisions are considered, the dis-
tribution function should relax to a form keeping constant the total momentum
of the distribution. Callaway already noticed that effect, and added an additional
term to the thermal conductivity integral to remove the contribution of such pro-
cesses [20, 23]. As will be discussed later, the large amount of experimental
data obtained in recent years for different materials, shapes and heating condi-
tions have made it necessary to improve this approach. In this sense, four main
contributions have appeared: the iterative solution of phonon BTE, two direct
solutions of the phonon LBTE and the KCM. The first three proposed solutions
(known as full solutions) can provide exact solutions of LBTE for bulk samples
from a kinetic theory viewpoint. The latter has been introduced from a hydrody-
namic basis to account for the the shape and size effects that can not be studied
in an easy way just from a kinetic theory.

The main difference between the KCM and the other mentioned current so-
lutions is that the former imposes strictly the momentum conservation of N col-
lisions and uses relaxation times generalized from the RTA maintaining the sim-
plicity of such approximation. In this case, in contrast to the classical RTA, it
is necessary to distinguish between momentum conserving and non-conserving
collisions. In the other cases the collision operator is expressed in its full form
and consequently the complexity increases. Equivalent results for the thermal
conductivity are obtained in all the recent formulations.

1.2.2 Iterative solution of BTE (I-BTE)
An improvement of the RTA solution has been developed by Li et al. [24] by
an iterative procedure. In this proposal, the collision term of the step i + 1 is
obtained from the distribution function of the step i in an iterative process(

∂nq

∂t

)(i+1)

scatt
=

∫ ∫
[Φ(i)

q − Φ
(i)
q′ − Φ

(i)
q′′ ]Pq,q′,q′′

dq′dq′′

(2π)3
. (1.14)

The iterative BTE (I-BTE) starts from the RTA relaxation time as a zeroth-
order solution (Φ(0)

q′ = Φ
(0)
q′′ = 0 and Φ

(0)
q 6= 0). The relaxation time in each

step is τ (1)
q = τ

(0)
q (1 + ∆

(0)
q ), where τ (0)

q = τRTA includes terms of n0
q, n0

q′ and
n0
q′′ , while ∆q includes the ones corresponding to ∆nq, ∆nq′ and ∆nq′′ from

Eq. (1.6). Using Eq. (1.10) it is direct to obtain the non-equilibrium distribution
function of the first iteration:

n(1)
q = n0

q − vqτ (1)
q ∇n0

q . (1.15)
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In a second step a new relaxation time τ (2)
q = τ

(1)
q (1 + ∆

(1)
q ) is calculated

from the previous distribution function n(1)
q and the relaxation time τ (1)

q . The
iterative process is repeated until convergence is achieved τ (i)

q − τ (i−1)
q < ε, with

ε a convergence threshold close to 0.
This method allows to account properly for the effect for N collisions, re-

moving their contribution to the thermal resistance.

1.2.3 Direct solution of LBTE
Laurent Chaput [21] has solved in a direct procedure the LBTE (D-LBTE) for
bulk systems in the frequency domain.

In first place, it is required to recover the term ∂nq

∂t
from Eq. (1.3), neglected

in previous solutions (
dnq

dt

)
scatt

=
∂n1

q

∂t
+ vq

∂n0
q

∂r
, (1.16)

where n1
q is the first order deviation from equilibrium (nq ≈ n0

q + n1
q). Notice

that the drift operator is only applied on the equilibrium distribution function.
To obtain a symmetric collision matrix, the scattering term is written as:(

∂nq

∂t

)
scatt

= −
∑
q′

Ω′q,q′n
1
q′

sinh(xq′/2)

sinh(xq/2)
, (1.17)

where xq ≡ ~ωq/kBT . Using the ansatz fq ≡ n1
qsinh(xq/2), the LBTE in the

Fourier space is:

− iωfq(ω) +
xq

4T sinh(xq/2)
vq = −

∑
q′

Ω′q,q′fq′(ω) . (1.18)

At this point it is necessary to use crystal symmetries to reduce the calcu-
lation to the irreducible Brillouin zone (IBZ). From now on, k will have the
same role as q but in the IBZ. Using the symmetry properties of vq, Ω′q,q′ and
fq′(ω), as well as rotations R of the isogonal point group of the crystal g and the
multiplicity wk of each phonon k, the LBTE is expressed as

xq
4T sinh(xq/2)

√
wk

|g|
vαk = −i

∑
βk′

(Ω̃′αk,βq′ − iωδk,k′Pαβ
k′ )

√
wk′

|g|
fβk′ . (1.19)

|g| is the cardinal of the isogonal point group, Pαβ
k = wk

|g|
∑

R Rαβδk,Rk and

Ω̃′αk,βq′ =
√

wkwk′
|g|

∑
R′ R

′
αβΩk,R′k′ . α and β denote Cartesian indices and the
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delta function ensures energy and momentum conservation. From the definition
of energy flux and the Fourier law it is obtained the thermal conductivity tensor
in a compact matrix notation

καβ(ω) =
2kBT

2

V
〈f(ω)|[I(α, β) + I(β, α)]× (Ω̃− iωP)|f(ω)〉 , (1.20)

where V is the volume of the IBZ and Iγk,γ′k′ = δk,k′
∑

R RαγRβγ′ . The com-
mutation relation [Iαβ, Ω̃ − iωP] = 0, and the use of Iαβ = Itβα and Iαβ(Ω̃ −
iωP) =

(
Iβ,α(Ω̃− ωP)

)t
makes possible to diagonalize [Iαβ + Iβα]|er〉 =

ir(α, β)|er〉 and Ω̃|er〉 = ωr|er〉. Finally the dynamical thermal conductivity
is reduced to

καβ(ω) =

∫
ραβ(ω′)

ω′ − iω
dω′ , (1.21)

where ραβ(ω′) is the spectral density defined from the eigenvectors ir(α, β) and
the projection of the final distribution function on |er〉 [25]. This expression al-
lows to split the thermal conductivity into a real and an imaginary part, helpful
to study frequency-dependent experiments. Moreover, it can be used for steady
state calculations. For fast frequency variations, the use of the equilibrium dis-
tribution function in the drift term can lead to wrong results. A full complete
treatment of the drift operator is required in such cases [15, 26].

As can be seen from Eq. (1.21), from this definition of thermal conductivity
it is neither possible to define a carrier velocity nor a relaxation time. This is
because in this solution the scattering matrix is not diagonalized.

1.2.4 Relaxon solution of the LBTE

The diagonalization of the full collision scattering operator, instead of neglecting
non-diagonal terms like in RTA, allows obtaining eigenvectors that can be under-
stood as collective phonon excitations, that are linear combination of phonons.
These collective excitations are known as relaxons in the present approach. The
relaxation time to the equilibrium function corresponds then to the inverse of the
relaxon eigenvalues.

The direct digonalized solution of the LBTE (R-LBTE) developed by Andrea
Cepellotti and Nicola Marzari [22] starts from the classical BTE in absence of
external forces:
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∂n0
q

∂T

(
∂T (r, t)

∂t
+ vq∇T (r, t)

)
+
∂∆nq(r, t)

∂t
+ vq∇(∆nq(r, t))

= − 1

V

∑
q′

Ωqq′∆nq′(r, t) ,
(1.22)

where the changes

Ω̃qq′ = Ωqq′

√
n0
q′(n

0
q′ + 1)

n0
q(n0

q + 1)
and ∆ñq = ∆nq(n0

q(n0
q + 1))−1/2 (1.23)

are required in order to obtain a diagonalizable real symmetric scattering matrix.
In this case the eigenvectors (relaxons) are θαq and the real eigenvalues (relaxation
times) 1/ταq . The scalar product for this basis is 〈α|α′〉 ≡ 1/V

∑
q θ

α
qθ

α′
q . Then,

the BTE can be written as:√
C

kBT 2

(
∂T (r, t)

∂t
〈0|α〉+∇T (r, t)V0α

)
+
∂fα(r, t)

∂t

+
∑
α′

Vαα′∇fα′(r, t) = −fα(r, t)

τα
,

(1.24)

where C is the specific heat at temperature T and Vαα′ = 〈α|vq|α′〉 is a coupled
velocity for the perturbed distribution, except for the equilibrium term V0α that
defines the relaxon velocity. fα corresponds to the relaxon occupation number
defined from ∆ñq =

∑
α fαθ

α
q . As the scattering operator only acts on the

deviation from equilibrium, the n0
q distribution is not an eigenvector. For that

the unitary vector θ0
q =

√
n0
q(n0

q+1)~ωq√
kbT 2C

is introduced.

This procedure allows a relevant improvement from prior solutions of the
BTE in computing thermal conductivity. In contrast, diagonalizing the scatter-
ing matrix renders the drift term very complicated and then second order ex-
pressions like second sound are difficult to be defined. To obtain a diagonal
drift operator as well, it is necessary to set ∇fα = 0, losing consequently part
of information. This condition implies homogeneous perturbation, i.e., the so-
lutions are obtained considering a constant homogeneous temperature gradient.
In addition, it is considered steady state (∂/∂t = 0) and small deviations from
equilibrium. In that case, the obtained thermal conductivity is:

kij = C
∑
α

Vi
αV

j
ατα , (1.25)

where the similarity with classical expressions is clear but instead of phonon
velocities and relaxation times are those defined for relaxons.
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1.2.5 Kinetic Collective Model
The lack of validity of the classical RTA approximation can be improved by
the KCM, developed in recent years by C. de Tomás and F.X. Alvarez [1, 2].
The KCM is derived from the exact solution to the LBTE proposed by Guyer
and Krumhansl [15], based on the splitting of the collision operator in N and
resistive (R) processes (C = N + R) when calculating the scattering matrix.

In the R-LBTE approach, in order to obtain the distribution relaxation time
the full collision matrix C is diagonalized. As N processes do not contribute di-
rectly to thermal resistance but redistribute momentum over all the phonon dis-
tribution, a suitable way to solve the LBTE in their presence is by using the basis
that diagonalizes the N scattering collision operator. Contrary to R processes, N
scattering can not relax the distribution functions to equilibrium. Following this
reasoning, in KCM only the N operator is diagonalized and the LBTE is solved
in the basis of such eigenvectors. This provides a set of equations that define a
moment space related to different order perturbations of the phonon distribution
function. In this framework, the momentum basis (eigenvectors) in the KCM is
split into three elements: |η0〉, |η1〉, and |η2〉 [15]:

|η0〉 = µx[2sinh(x/2)]−1, where x ≡ ~ω
kBT

, and (1.26)

|η1i〉 = λiqi[2sinh(x/2)]−1 , (1.27)

where qi is the component i of a reciprocal wave vector and |nµ〉 are the eigen-
vectors. |n0〉 obtained from the phonon energy ~ω represents the zero order
moment (the energy ε or local temperature). |n1〉 determined from the crys-
talline momentum ~qi corresponds to the first order moment (i.e. heat flux Q).
The second order moment (i.e. flux of the heat flux Q(2)) and higher orders are
gathered into |η2〉 [15].

Figure 1.1: Sketch of the kinetic and collective transport regimes [1].

According to the KCM not all the energy is carried kinetically by indepen-
dent collisions, but part of this energy is carried by collective modes, which have
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their origin in the different effect of N collisions in front of the R ones. The col-
lective behavior appears as a result of a coupling of modes generated through N
processes. As a consequence, phonons of different modes perform as a whole R
collisions. Therefore all modes share the same collision mean free time (MFT),
the so-called collective MFT, τc. These phenomena allow to split the thermal
conductivity into a kinetic and a collective contribution weighed by a switching
factor Σ ∈ [0, 1] measuring the relative importance of the N versus R scattering:

κT = κK + κC = κ̂K · (1− Σ) + κ̂C · Σ , (1.28)

where the effect of N processes is included in Σ, which determines the contribu-
tion of each transport regime, kinetic and collective. The hatˆindicates the limit
situation.

In addition, the diagonalization done in KCM allows solving the LBTE with-
out complicating drastically the form of the drift operator, in contrast to previous
solutions [21, 22, 24]. This will allow studying complex experiments from a hy-
drodynamic framework (see Chaper 6).

Guyer and Krumhansl derivation

The derivation of KCM from Guyer and Krumhansl starts from the operator form
of the BTE:

Dn(q, r, t) = (N + R)n(q, r, t) , (1.29)

where n corresponds to the phonon distribution function and D = (∂/∂t) +
v∇r∇r∇r is the drift operator in absence of external forces. The previous equation
can be solved to nth-order in a suitable basis in the N process collision vector
space for each moment representation of the distribution function. Guyer and
Krumhansl show explicitly these basis related to the zero and first order moment
(see Eqs. (1.26)-(1.27)), and perform the development of Eq. (1.29) in matrix
form for isotropic dispersionless media. The BTE is symmetrized by using the
change n∗ = n2sinh(x/2). The total distribution function is then:

|n∗〉 =
∑
µ

aµ(r, t)|ηµ〉 , (1.30)

where ai are the coefficients for each deviation. Using this basis, the BTE can
be expressed as: 0 0 0

0 R∗11 R∗12

0 R∗21 N∗22 +R∗22

−
 D00 D10 0

D10 D11 D12

0 D21 D22

 .
 a0

a1

a2

 =

 0
0
0

 ,

(1.31)
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where θij = 〈i|θ|j〉 , being θ any of the previous operators (D,R,N) and i, j
the order of the distribution function. The first line of the equation defines the
energy conservation

∂a0

∂t
+ v∇a1 = 0 , (1.32)

where v = (vx, vy, vz) is the phonon velocity vector. The second line defines
the momentum conservation, which combined with the third line (higher order
moment) can be expressed as:

D11a1 +D10a0 =
[
R∗11 − (R∗12 −D12)(N∗22 +R∗22 −D22)−1(R∗21 −D21)

]
a1 .

(1.33)
The definition of the drift operator elements can be found elsewhere [15]. From
this equation the quantity in brackets can be defined as the phonon momentum
relaxation operator:

τ =
[
R∗11 − (R∗12 −D12)(N∗22 +R∗22 −D22)−1(R∗21 −D21)

]−1
. (1.34)

For simplicity steady state (D11 = D22 = ∂/∂t → 0 ) and homogeneous
medium (D12 and D22 vanish) is assumed, then:

τ =

[
R∗11 −

R∗12

N∗22 +R∗22

R∗21

]−1

. (1.35)

Once defined the phonon relaxation time, the thermal conductivity can be
expressed in its usual form:

κij =
∑
q

Cqv
i
qv

j
qτq . (1.36)

The main complexity to compute the thermal conductivity from the exact
solution of the BTE comes from the calculation of the terms R∗21, R∗22 and N∗22.
Knowing that R∗12 = R∗21 and studying the limit conditions when N∗ → ∞ and
N∗ → 0 some approximations can be done [15]. The scattering terms can be
then expressed as:

(R∗12)2 = R∗11

[
R∗11 − (1/(R∗−1)11)

]
where (1.37)

(R∗−1)11 → 〈1|τR(q)|1〉 , (1.38)

R∗11 → 〈1|τR(q)−1|1〉 , (1.39)

R∗22 ≈ R∗11 and (1.40)
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N∗22 → (1/τN) . (1.41)

Notice that τN is already an integrated value while τR(q) is a wave vector
dependent magnitude. In Section 2.4 details of these calculations are provided.
With these definitions, Eq. (1.35) can be expressed as:

τ = 〈1|τR(q)|1〉
[
τN + 〈1|τR(q)−1|1〉−1

τN + 〈1|τR(q)|1〉

]
. (1.42)

At this point, the terms can be rearranged as:

τ = 〈1|τR(q)|1〉

(
1− 1

1 + τN
〈1|τR(q)|1〉

)
+ 〈1|τR(q)−1|1〉−1 1

1 + τN
〈1|τR(q)|1〉

,where

1

1 + τN
〈1|τR(q)|1〉

= Σ , 〈1|τR(q)|1〉 = τK and 〈1|τR(q)−1|1〉−1 = τC . (1.43)

Σ is the switching factor and τK and τC the kinetic and collective relaxation
times respectively. Finally the thermal conductivity can be expressed in a simple
form:

κT =
1

3
Cvc

2 [τK(1− Σ) + τCΣ] = κ̂K · (1− Σ) + κ̂C · Σ , (1.44)

where c = |v|.
The derivation of the model until Eq. (1.36) allows solving the LBTE ex-

actly including all the terms of the perturbed distribution function. A simple
calculation of the thermal conductivity can be done by some approximations
(Eq. (1.40) and Eq. (1.41)) in the calculation of the scattering rates. Such ap-
proximation, reducing high order perturbation to first order, introduces an error
that should be evaluated carefully, specially for complex experiments. On con-
trary this allows removing properly the contribution of N processes to thermal
resistance and gives a clear picture of thermal transport. As N processes does not
contribute to thermal resistance, in the ideal situation where only N processes are
present, the thermal conductivity should be infinite [19]:

R→ 0;N 6= 0 then κ→∞ . (1.45)

This is obtained as the kinetic and collective thermal conductivity depend only
on R processes, and consequently it is infinite when only N scattering exists.
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Maximization of the entropy derivation

The derivation of the KCM can be also done from the principle of maximization
of entropy [1]. The microscopic entropy for a non-equilibrium distribution of
phonons is:

Sq

kB
= nqlnnq − (nq − 1)ln(nq − 1) , (1.46)

where Sq is the entropy of the mode q.
It is clear that momentum conserving processes do not contribute to thermal

resistance, but contribute indirectly to the thermal conductivity in the way that
such processes mix the different vibration modes affecting the drift-collision
balance. Knowing this, when the N processes are negligible, this mixing is low
and the entropy balance must be achieved individually, but in the other case,
all modes are mixed and this balance must be fulfilled globally. The balance
equations for the scattering and the drift operators can be expressed accordingly
as:

Ṡq|scatt =
Φq

T

∂nq

∂t

∣∣∣∣
scatt

and Ṡq|drift =
Q2

q

κqT 2
(1.47)

for the kinetic regime, and

Ṡq|scatt =

∫
Φq

T

∂nq

∂t

∣∣∣∣
scatt

dq and Ṡq|drift =
Q2

κT 2
(1.48)

in the collective regime, where in the latter the heat flux Q and the thermal
conductivity κ are already integrated magnitudes. From these expressions the
thermal conductivity in each regime as a function of the phonon mode q can be
expressed as:

κK,q =
Q2

q

TΦ∂nq
∂t

∣∣∣∣
scatt

and (1.49)

κC =
Q2

T 2
∫ Φq

T

∂nq
∂t

∣∣∣∣
scatt

dq
(1.50)

for the kinetic and collective regime respectively. Knowing that Q =
∫

Qqdq =∫
~ωqvqnqdq, where the distribution function is nq = n0

q + Φqn
0
q(n0

q + 1)/kBT .
If the deviation from equilibrium is Φq = cqq, the thermal conductivity in each
regime can be expressed as:
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κK =
1

3

∫
~ωτqc

2
q
∂n0

q

∂T
dq (1.51)

κC =
1

3

(∫
cqq

∂n0
q

∂T
dq
)2

∫
q2

~ω
1
τq

∂n0
q

∂T
dq

, (1.52)

where it can be observed that in a similar way as found in the derivation from
Guyer and Krumhansl, the kinetic term has a direct integral of the relaxation time
while in the collective term the inverse appears. Notice that in the integrals of
Eq. (1.51) and Eq. (1.52) the variables c and q denote the modulus of v and q, and
have been derived assuming isotropic media. In Section 2.4 these expressions
will be generalized for all systems.

It is important to notice that, although the KCM uses relaxation times ob-
tained assuming nq′ = n0

q′ and nq′′ = n0
q′′ as done in the RTA, the splitting of

N and R processes in the scattering operator and the projections to higher order
perturbations (|n2i〉) captures properly the anharmonic effects that contribute to
thermal transport.
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Figure 1.2: Resistive and total KCM relaxation times.

Fig. 1.2 shows the effect of N collisions in the resistive phonon distribution.
It can be observed the effect of N scattering in the MFT through Σ; reduces the
contribution to the total thermal conductivity of low frequency phonons (acous-
tic), while increasing it for the optical ones [2]. The reduction of the contribution
of the low energy phonons has been introduced extensively by including the N
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scattering as a resistive process, as done in the classical RTA. This widely known
wrong assumption [20] can lead good results when collective effects are not
important and high frequency phonons do not contribute significantly to ther-
mal resistance, but can lead to physical misrepresentations. For that reason is
more appropriate to use better approaches like full solutions or KCM, where the
change in the relaxation times due to N scattering has a more suitable entropic
interpretation.

1.3 Thermal transport beyond Fourier

It has been observed in recent experiments using fast or large gradient excitations
at micro/nano scale that not all thermal transport can be explained by the Fourier
law [4, 5, 6, 7, 8, 9, 10].

Diffusive transport is valid when the mean free path (MFP) is significantly
shorter than the characteristic length of the sample. In this description it is
assumed that phonons suffer enough scattering to be considered as moving in
Brownian motion. When the sample under study has a size much smaller than
the phonon MFP, phonons travel through the sample without suffering any scat-
tering event. This process is known as ballistic transport and in such circum-
stances the measured thermal conductivity is smaller than the bulk one due to
the reduced τq (see Eqs. (1.51)-(1.52)), in contrast of what would be expected
from electronic ballistic transport theory. Due to the large range of time and
space scales that spans the relaxation of phonons there is a transition range be-
tween pure diffusive and ballistic transport where part of the phonons still suffer
scattering while others remain traveling ballistically. These different transport
regimes can be observed in Fig. 1.3.

From the kinetic point of view, phonon transport phenomena is based on
considering that phonons are independent. From this point of view it is log-
ical to think that non-local transport can be obtained by adding the different
contribution of diffusive and ballistic particles depending on the sample scale.
Despite of this, recent experiments performed in transient regimes by means of
Time Domain Thermoreflectance (TDTR) have revealed that dynamics of energy
transport in actual materials is much more complex than this. Conservation laws
and thermodynamic constraints should be included in the picture. Their effect
is to modify the relaxation processes of individual phonons in a way that they
are no longer independent. In these circumstances it is expected that memory
and non-local effects can be observed. Phonon hydrodynamics through the Ki-
netic Collective Model (KCM) [27] and superdiffusivity through Truncated Lévy
Flights (TLF) [28] have been two models proposed to understand this transition.
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Figure 1.3: Sketch of Brownian motion, Lévy flight and ballistic transport [29].

1.3.1 Kinetic models and conservation laws

Solving the BTE in a non-homogeneous situation is a very difficult task. The
problems of diagonalizing the collision term discussed in the previous sections
are added to the problem that each point of the sample can have different tem-
perature and heat flux. This makes that problem impossible to solve exactly and
the use of approximate methods becomes necessary.

By using a kinetic model an approximate solution can be obtained by solving
on a frequency basis the LBTE and then calculating the contribution of each
mode. But to have a chance to solve it, a simplification of the collision term
should be used. In the RTA approximation the LBTE takes the form

dn(ω, x, t)

dt
+ vω · ∇n(ω, x, t) = −n(ω, x, t)− n0(ω)

τω
. (1.53)

The problem with Eq. (1.53) is that the relaxation times τω used are obtained
under the simplification approach of linealization and phenomenological diag-
onalization without taking the energy and momentum conservation laws under
consideration. Letting the different modes evolve independently as the kinetic
assumption states, these conservation laws are not guaranteed.

Additionally, the energy conservation is present in all type of collisions (im-
purities, boundaries, anharmonicities,...), and the momentum conservation is
only present in the case of N collisions. When N collisions are relevant, both
conservation laws should be imposed. 1

1At this point we stress the use of the word relevant, and not dominant. With this we indicate
that momentum conservation should be included whenever N collisions have an effect and not
only when they dominate the transport.
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In the work done by Collins et al. [30] Eq. (1.53) is combined with the
conservation of energy

∫ ∫
n0dωdµ =

∫ ∫
ndωdµ , (1.54)

where µ = cosθ. Eq. (1.54) states that the amount of energy stored in the non-
equilibrium distribution function should be the same as that of the relaxed dis-
tribution.

Notice that Eq. (1.54) is a global constraint on the phonon individual trans-
port. This means that each phonon is effectively influenced by the rest of the
distribution function in a collective way. The inclusion of the energy conserva-
tion changes the contribution of the different modes in the conductivity that can
be calculated as a suppression function acting on the bulk values.

The full solution of LBTE includes N scattering inside the relaxation times,
but detailed calculations of their effects in terms of position and time are lost
in current solutions based on direct diagonalization or iteration. In contrast,
although by using the RTA the conservation laws are not satisfied, approximate
results can be obtained. If energy and momentum conservation laws are imposed
in a more rigorous way as done in the KCM formalism better results can be
achieved.

The complexity of having a new equation for the momentum should be bal-
anced by a different simplification. This is done by analyzing the possible forms
of the distribution function. In a kinetic model, the distribution function can
take an arbitrary complexity because the modes behave independently. In the
KCM, the distribution function is a combination of only two different moments,
the zero-order and the first-order moment. Moments of higher order than one
are assumed to be non-observable because all the collisions (even N collisions)
destroy them. This makes that the complexity of the LBTE can be extraordi-
narily reduced. The final combination makes the KCM a better approach in
non-homogeneous situations.

When the LBTE is solved in the presence of boundaries, conservation laws
also have an important role. When N collisions are important, the effect of the
boundary on a specific mode is noticed on the rest of the modes. In kinetic
models, the Fuchs-Sondheimer approach [31] has been widely used to include
the effect of the boundaries [30]. But once again, this is done on an independent
mode basis and the results can be significantly improved by KCM considering
the momentum conservation in a rigorous way.
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1.3.2 Memory and non-local effects
The inclusion of momentum conservation can be generalized to any order. The
Extended Irreversible Thermodynamics (EIT) formalism [32] shows the path to
this generalization of transport equations. In Fourier diffusive transport, the heat
transport and the thermal energy are related by

Q(r, t) = −κ∇∇∇T . (1.55)

When thermal transport is evaluated at times or sizes of the order of the MFT
or MFP of the heat carriers, the previous relation is no longer valid. In such
situations there appear non-local phenomena where the heat flux in one point at
a certain time depends on the heat flux of its surroundings and at earlier times.
These are known as spatial and temporal memory effects.

In last decades D. Jou et al. have developed a full framework to deal with
thermal transport in the presence of non-local and memory effects viewpoint [16,
17, 33]. From the EIT the evolution equations of the heat transport can be ex-
pressed at different moment orders [16, 32, 34]:

ė = −∇Q(1) , (1.56)

τQ̇(1) + Q(1) = −κ∇∇∇T +∇ ·Q(2) , (1.57)

τ(2)Q̇
(2) + Q(2) = −`2

(2)∇Q(1) +∇ ·Q(3) , (1.58)

τ(3)Q̇
(3) + Q(3) = −`2

(3)∇Q(2) , (1.59)

where e is the internal energy, Q(1) = Q is heat flux, Q(2) the flux of the heat
flux, and Q(3) represents a higher order flux. The parameters `(i) and τ(i) corre-
spond to different order characteristic lengths and relaxation times.

1.3.3 Phonon hydrodynamics
Reducing the second moment equation, Eq. (1.57), to the first moment equation,
Eq. (1.58), for Q̇(2) = 0 and Q(3) = 0 one obtains:

τQ̇
(1)

+ Q(1) = −κ∇∇∇T + `2
(2)(∇2Q(1) + 2∇∇∇∇ ·Q(1)) . (1.60)

This is a general hydrodynamic heat flux equation that includes memory (time
derivative term) and non-local effects (laplacian term). This equation can be
derived as well from the Guyer and Krumhansl solution of the BTE [15]. This is
not strange as both formalisms are developed in the basis of moments.

Considering steady state Q̇ = 0, strong geometric effects (spatial variations
of Q are higher than Q itself) Q� `2∇2Q, and neglecting the term 2∇∇∇∇ ·Q(1),
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Eq. (1.60) reduces to ∇2Q = κ0/`
2∇∇∇T . The latter expression is analogous to

Navier-Stokes equation doing the analogy Q ⇔ v, T ⇔ p and η ⇔ `2/κ0,
where v is the velocity, p the pressure and η the shear viscosity. This analogy
is the responsible of the emergence of the so-called phonon hydrodynamics. For
simplicity `(2) = `. The solution of Eq. (1.60) under these circumstances for a
cylindrical geometry leads to a parabolic profile for the cross section flux:

Q(r) =
κ0∆T

4`2L
(R2 − r2) , (1.61)

which integration with non-slip conditions (v = 0, i.e. zero tangential flux on
the wall) leads the Poiseuille-like equation for the heat flow:

Q(h) =
κ0πR

4

8`2

∆T

L
. (1.62)

Eq. (1.62) allows defining an effective thermal conductivity as:

κeff =
κ0R

2

8`2
=

κ0

8Kn2 , (1.63)

where Kn = `/R is the Knudsen number. R and L are the radius and length of
the sample. Notice that this expression has been derived in analogy to the flow in
a pipe, then it is only valid for cylindrical geometries, i.e. wires. The dependence
of κeff ∝ R2 is a result of imposing non-slip condition at the walls. This is in
contrast to experimental results where κeff ∝ R for small samples, whereR� `.
This effect can be captured by including a slip boundary condition. A simple way
to include a slip condition in the boundaries to account for roughness effects is
by using a boundary condition like

QB = C`

(
∂Q

∂r

)
r=R

, (1.64)

where C is a parameter that might depend on the geometry and the roughness
(Maxwell boundary condition), related to the reflectivity and the diffusivity of
the surface. Following the previous analogy with hydrodynamics, the effective
thermal conductivity with slip boundary conduction leads to [17]:

κeff =
κ0

8Kn2 [1 + 4CKn] . (1.65)

The same derivation for a thin film gives:

κeff =
κ0

12Kn2 [1 + 6CKn] . (1.66)
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Figure 1.4: Heat flux profile with slip boundary condition [34].

It can be noticed that now, for small samples where R � `, Kn � 1,
Eq. (1.65) and Eq. (1.66) lead to a linear dependence of R on the thermal con-
ductivity. When the size of the sample (L) is smaller than the phonon char-
acteristic length (`), the effect of the boundary is not felt just in a small re-
gion close to the surface (Knudsen layer ∼ `), but it can have influence on the
whole sample. In this situation, due to the linearity of the heat flux equations
(Eq. (1.60) and Eq. (1.64)), it can be assumed that the local longitudinal heat
flux is Q(r) = Q(r) +QB.

Fig. 1.4 shows how the addition of a slip boundary condition like Eq. (1.64)
provides a non-zero flux on the walls in a certain X − Y region.

The previous developments open the door to a new way to study heat flux
from a hydrodynamic framework from Eq. (1.60), and through the use of suitable
boundary conditions QB.

1.3.4 Non-local effects in the KCM
The heat flux equations in the KCM leads to a generalization of Fourier’s law
including non-local terms. The KCM is derived up to 2nd-moment of the dis-
tribution function following the solution of the BTE proposed by Guyer and
Krumhansl (Eq. (1.30)). This expansion allows, additionally, to fulfill the mo-
mentum conservation for N processes. Doing so, hydrodynamic effects appear
due to the reduction of the 2nd-moment equation into the 1st order moment,
leading consequently to a generalized set of equations suitable for heat transport
calculations at the micro/nanoscale. These effects in the KCM framework can
be reproduced in a kinetic-collective approach or full hydrodynamic model, as
detailed in Chapter 4.

From Guyer and Krumhansl, heat transport equations for each transport regime,
kinetic and collective, can be derived. To do that it is necessary to recover the
terms D12 = D21 from the drift operator (see Eq. (1.30)) [15]. The derivation
is done for an isotropic system. To study both regimes can be defined the lim-
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iting cases R∗ � N∗ (kinetic regime) and N∗ � R∗ (collective regime). The
momentum conservation equation in the kinetic case leads to:

a1 = 〈1|R∗−1|1〉D10(1 +O(D) + ...)a0 →

Q = −1

3
Cvc

2τK(1 +O(D) + ...)∇∇∇T .
(1.67)

In the collective regime, where N∗ � R∗ :

R∗11a1 = D10a0 + (DN∗−1D)a1 + ...→

Q = −1

3
Cvc

2τC∇∇∇T + τC〈1|c∇∇∇N∗−1c∇|1〉Q + ... .
(1.68)

From the latter equations, the first order heat transport in each transport
regime can be expressed as:

Q = −κ̂K∇∇∇T , (1.69)

that is the Fourier law, valid for the kinetic regime, where the boundary effects
are simply included in τK as a Matthiessen’s rule, and

τ
dQ
dt

+ Q = −κ̂C∇∇∇T + ˆ̀2
C(∇2 + 2∇∇∇∇·)Q (1.70)

defines a hydrodynamic heat flux equation in the collective regime, where ˆ̀2
C =

〈c2τN〉〈τC〉/5 in the isotropic case.
If higher orders are considered when R∗ � N∗, momentum conservation

can be expressed as:

Q = −1

3
Cvc

2τK∇∇∇T + τK〈1|c∇∇∇R∗−1c∇|1〉Q + ... , (1.71)

and therefore:
Q = −κ̂K∇∇∇T + ˆ̀2

K(∇2 + 2∇∇∇∇·)Q , (1.72)

where ˆ̀2
K = 〈c2τR〉〈τR〉/5 in the isotropic case. Eq. (1.72) for kinetic thermal

transport can be obtained as well through gray medium models, where the crystal
is idealized by a single phonon relaxation time and MFP.

A simple 1D analysis of a two phonon channel of the BTE leads to a heat
transport solution that includes non-local effects [28, 29]. Here it is analyzed the
single pulse response P (ξ, s) in the Fourier-Laplace domain of P (x, t). Using
as a starting premise a low frequency channel (1), that governs the thermal con-
ductivity κ0, and a high frequency one (2), which governs the heat capacity Cv,
and considering large time scales compared to the phonon MFT |s|τ1,2 � 1:
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P (ξ, s) '

[
s+

D0ξ
2

1 + ξ2Λ2
(1)

]−1

, (1.73)

where Λ(1) corresponds to the MFP of the low frequency phonon, and D0 is the
thermal diffusivity. The inverse Fourier transformation of Eq. (1.73) imposing
the initial condition P (ξ, t = 0) = 1 leads to:(

1− Λ2
(1)

∂2

∂x2

)
∂P (x, t)

∂t
= −D0

∂2P (x, t)

∂x2
. (1.74)

Using the energy conservation relation ∂Q(x, t)/∂x+∂P (x, t)/∂t = δ(x)δ(t),
and knowing that (from the starting premise) P ' Cv,(2)∆T and κ0 ' Cv,(2)D0:

Q(x, t)− Λ2
(1)

∂2Q(x, t)

∂x2
= −κ0

∂∆T (x, t)

∂x
, for t� τ . (1.75)

From this derivation it is clear the analogy between Eq. (1.72) and Eq. (1.75)
obtained from the two different approaches.

1.3.5 Superdiffusive transport
Steady state thermal conductivity of several pure group IV semiconductors with
weak N scattering processes can be explained properly from a pure diffusive ki-
netic model. In contrast, experimental transient measurements have shown that
semiconductor alloys can exhibit a great frequency dependence when heated
from an alternate current source with a modulated frequency [29]. Through
this procedure phonons of different energy can be excited independently at time
scales τmod of the order of the phonon MFT and new phenomena can be studied.
This kind of experiments has revealed that in alloys quasiballistic transport is
present at certain time scales that can span several orders of magnitude. In addi-
tion, this superdiffusive regime can be also observed when the length scales of
the sample are comparable to the phonon MFP. These phenomena can be stud-
ied by means TDTR imaging, which is able to capture the temporal and spatial
response of energy impulses in the cross-plane direction of a sample.

The Maxwell-Cattaneo equation is usually used to describe ballistic to diffu-
sive transition:

τ
∂2T

∂t2
+
∂T

∂t
= χ∇2T , (1.76)

which gives temperature T in terms of time t, where τ is the MFT of phonons
and χ is the thermal diffusivity of the sample. In the diffusive regime τ ∂

2T
∂t2
� ∂T

∂t

and the diffusion equation is recovered . When the inertial terms are important
τ ∂

2T
∂t2
� ∂T

∂t
and the wave equation is obtained. Eq. (1.76) assumes that the
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transition from diffusive to ballistic transport occurs at the same time for all
the phonons. This assumption is far from reality. The MFP or MFT spectral
representations of thermal conductivity reveals that each phonon has its own
MFP and MFT [3]. A correct treatment in this case would be to solve Eq. (1.76)
for each mode, but the number of calculations will increase excessively. A more
suitable way to study this transition is the TLF model.

Ballistic transport

As it has been introduced, when phonons travel ballistically, there are no scat-
tering events and thus these phonons do not contribute to thermal resistivity as
expected from a diffusive framework. In this situation, the contribution to ther-
mal conductivity of each ballistic phonon κq(Λq) = Cv,qΛqvq will be limited for
the sample size, and then the contribution will be κq(Leff) = Cv,qLeffvq. As in
ballistic transport Leff < Λq, the measured thermal conductivity will be smaller
than the intrinsic one (κq(Leff) < κq(Λq)).

κ

KC

ff=1.8μm 

Leff=56nm 

0

20

40

60

80

100

120

140

160

0.1 1 10 100 1000 10000 100000

MFP [nm]

bulk
M
M

Ballistic phonons

Ballistic phonons

Figure 1.5: Accumulated thermal conductivity as a function of mean free path (MFP) for silicon samples
with different size Leff.

Fig. 1.5 shows the accumulated thermal conductivity for bulk silicon (Leff =
∞), 830 nm thin film and 56 nm nanowire in the KCM. As will be shown in
Section 2.3.4, the effective length for a thin film is Leff = 2.25h, then in this
case Leff = 1.8 µm. It can be observed that the phonons with a MFP larger
than Leff travel ballistically through the sample and do not contribute to thermal
conductivity.
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The Truncated Lévy Flight model

The TLF is the generalization of the kinetic transport taking into account that
energy carriers are not independent but related by the energy conservation. This,
in combination with the large range of carriers MFP/MFT, defines the transition
from a pure superdiffusive Lévy regime to a regular diffusion one. In TLF, the
effect of different time scales is captured by quantifying the deviation from the
diffusive behavior at short time scales using a fractal exponential (α) that cap-
tures the scaling of the mean-square displacement (MSD) of the thermal energy
with time [11]. The diffusive to ballistic transition is described by using calcu-
lated parameters from the scaling law of the accumulated thermal conductivity
in terms of MFP [28].

Anomalous behavior of the heat transport equation can be generalized in the
fractional dimension defined by the TLF model [35]. The relation between heat
flux and thermal energy including memory and non-local effects in 1D can be
expressed with fractional integro-differentiation operators as:

∂βP (x, t)

∂tβ
= Dαβ

∂αP (x, t)

∂|x|α
, (1.77)

where P (x, t) denotes the thermal energy density (single pulse response in the
real space), which in a pure diffusive regime is P0(x, t) = Cv,0T , being Cv,0
the specific heat and T the temperature. α and β are the fractal space and time
dimensions of the superdiffusion transport regime respectively.

In alloys like SiGe or InGaAs it has been observed a reduction of the thermal
conductivity up to a 50% in a frequency from 1-10 MHz [28]. This reduction
is due to the presence of phonons with MFP larger than the thermal penetration
length (d =

√
κ/πCvf ) of the heat source. The superdiffusive Lévy regime

defined in such situations can be expressed by a superlinear time evolution of
the MSD σ(t) ∼ tβ(1 < β < 2) in a transport space with fractal dimension
α(1 < α < 2), where β = 3 − α. The Brownian motion corresponds to a
stochastic process with fractal dimension α = 2, while the fractal dimension
that governs the transport in a ballistic regime is α = 1.

A direct way to interpret the α and β parameters is through the accumulated
thermal conductivity function. Its shape as a function of the MFP and MFT
can be directly related to the fractal exponents knowing that κ(Λ, τ) ∼ (Λ, τ)γ ,
where γ = 2− α.

The TLF model is studied from the response P of a single pulse on a sample
that obeys the BTE under RTA. This response analyzed in the Fourier-Laplace
domain, with ξ and s being the spacial and temporal transformed variables, takes
the form:
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P (ξ, s) =

∑
qCv,qΨq(ξ, s)∑

q
Cv,q
τq

[1−Ψq(ξ, s)]
, (1.78)

where
Ψq(ξ, s) =

1 + sτq
(1 + sτq)2 + ξ2Λ2

q

. (1.79)

The single pulse response can be understood in the Fourier-Laplace domain
as P (ξ, s) = CδT (ξ, s), where C is the total specific heat. From this, the MSD
of the thermal energy is σ2 = −∂2P (ξ, s)/∂ξ2 at ξ = 0. This magnitude pro-
vides the average spacial extent of the thermal field, equivalent to the thermal
penetration length in a diffusive regime. When the temporal scale of the heat-
ing source is much faster than the phonon relaxation time (s → ∞) the MSD is
σ2(t) = v̄2t2, where v̄ is a mean phonon velocity. This limit represents the ballis-
tic regime. On the other hand, when the temporal scales are slow compared with
τ , the phonons can scatter and a diffusive regime with σ2(t) = 2Dt is recovered.
Notice that in the diffusive regime the distribution tends to a Gaussian energy
density with variance 2Dt, while in the ballistic limit tends to a Lorentzian.
The transition between both regimes is smooth for materials like silicon, while
for alloys, where transport is dominated by independent collisions with alloying
atoms, this transition have a definite slope that scales as σ2 ∼ tβ . The energy
transport in such situation, known as Lévy stable process, is stochastically equiv-
alent to a random walk with fractal dimension α < 2. The pulse response in this
intermediate region can be expressed as P (ξ, s) ' 1/(s+Dα|ξ|α), where Dα is
a fractional diffusivity. If this response is reexpressed as P (ξ, s) ' [s+ψ(ξ)]−1,
in the limit s→ 0:

ψ(ξ) = ξ2

∑
q

Cv,qΛ2
q

τq[1+ξ2Λ2]∑
q

Cv,q
1+ξ2Λ2

, (1.80)

where ψ(ξ)/ξ2 represents the spacial evolution of the fractal diffusivity Dα. The
thermal conductivity can be expressed equivalently as:

κ(ξ, s) =
∑
q

Cv,q

∑
q

κq
1+ξ2Λ2

q∑
q

Cv,q
1+ξ2Λ2

q

. (1.81)

Fig. 1.6 represents the temporal evolution of the heat transport through the
normalized MSD. A superdiffusive regime governed by a fractal exponent can
be appreciated. In the time space, there is a transition from a ballistic regime at
very small times (t < 10−12 s), where σ2 ∼ t2, to a diffusive regime σ2 ∼ t for
t > 10−8 s. In InGaAs and SiGe, this transition can be expressed by σ2 ∼ tβ ,
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Figure 1.6: Renormalized mean squared displacement (MSD) obtained from the BTE for Si, SiGe and
InGaAs [28].

while in Si there is a smooth transition. The lack of a definite slope for the case
of silicon and the relation of the fractal exponents to the dominant scattering
mechanism will be discussed in Section 5.2 in the KCM framework. From a
general point of view, it can be observed that in the diffusive limit α → 2 and
β → 1, while in the ballistic limit α→ 1 and β → 2.

In Section 6.4 non-local effects will be analyzed, which in modified Fourier
models as well as in the TLF are included as extra term that contributes as a
thermal boundary resistivity (TBR) in the interface between the heating metal
contact and the semiconductor sample rms.

1.4 Thermal boundary resistance
In a sample composed of two or more layers of different materials in contact
there appears a mismatching between the different crystalline structures. This is
a typical case in samples heated though a metallic contact. If heat flows through
the interface, the incoming flux is reduced due to a resistance induced by the
crystalline mismatch. This is known as Kapitza resistance or TBR. This effect
has been widely studied in recent years from frequency dependent measurements
of thermal conductivity [8, 11].

From an effective Fourier model it is required to change the value of rms for
each pump modulation frequency in order to fit the experimental data of TDTR
experiments [8]. On contrary, the TLF, which properly distinguishes interfacial
dynamics from nearby quasiballistic heat flow suppression, is able to reproduce
the experimental data with a single value of TBR [11].
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Figure 1.7: Frequency dependence of thermal boundary resistance (TBR) rms from TDTR experiments and
comparison to a conventional (Fourier) and TLF model at room temperature [11].

In Fig. 1.7 the TBR from a conventional (Fourier) and TLF model is repre-
sented. It can be observed that for the Al/InGaAs interface, the rms value depends
strongly on the modulation frequency when studied from a Fourier standpoint.
This has been also reported for the Al/Si interface for instance [8]. In contrast,
when using the TLF model, the TBR effects can be interpreted with a single
value rms = 4.23 nKm2/W.

As mentioned in the previous section, the effects of TBR will be discussed
in Section 6.4.

1.5 Thermal measurements
All the theoretical models explained above to study thermal conductivity are de-
veloped in order to understand experimental evidence. For this suitable ways to
determine experimentally the thermal conductivity and other thermal properties
become also necessary. The easiest and oldest way to measure the thermal con-
ductivity of a sample is to impose a constant heat flux, which will create a ther-
mal gradient on the sample. Then measuring the variation of the temperature as a
function of the heat flux and applying the Fourier law (Q = −κ∇∇∇T ), the thermal
conductivity can be obtained. This kind of measurement can be used in steady
state and small temperature gradients, so thermal conductivity can be treated as
a constant value. Actually, thermal conductivity varies with the temperature and
can also vary with the frequency and orientation of the applied thermal gradient,
so this expression is restricted to few situations. To account for different crystal
orientations tensor expressions are required. In addition, thermal conductivity
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measurement through this procedure introduces an error due to heat losses by
blackbody radiation [36].

Recently, improved and more accurate measurement techniques have ap-
peared, like the 3ω method [37] or time/frequency domain ultrafast spectro-
scopies [38]. In this group, TDTR have emerged as a powerful tool to measure
the thermal conductivity as a function of time for samples in complex geome-
tries.

1.5.1 3ω method
The 3ω method is a thermal conductivity measurement technique based on the
measure of the third harmonic of an alternate voltage from an AC frequency
signal ω applied on a sample (I = I0sinωt). This electric current creates a tem-
perature fluctuation on the sample that leads to a voltage fluctuation response.
This response is directly related to thermal conductivity through [37]:

V3ω ≈
√

2I3RR′L

π4κS
, (1.82)

where L and S are the length and the cross section of the sample, and the elec-
trical resistance is given by R = R0 + R′(T − T0). R′(T ) = ∂R/∂T and κ is
the thermal conductivity of the sample.

This technique reduces the error produced by infrared radiation, specially
for small samples below 10−4 m [39]. Therefore 3ω method is a useful tool for
thermal conductivity measurements of thin films and nanowires [37].

1.5.2 Time/frequency domain thermo-reflectance
TDTR has become one of the conventional techniques to characterize the thermal
properties of thin film materials [38]. TDTR is a contactless optical pump-probe
based on heating the sample using pulsed laser (pump signal) of frequency fmod

(typically fmod ∼ 10 MHz). The beam heats a metal transducer deposited in
the sample, and the diffusion of this heat along the sample is directly related
to its thermal conductivity. The reflectivity of the sample is also affected by
the temperature, then a delayed laser probe signal measures the change of ther-
moreflectance, proportional to the transient thermal decay of the sample with
picosecond resolution. By modulating the pump signal using electro-optic mod-
ulator (EOM), the thermal penetration depth d =

√
D/(πfmod) can be changed,

where D is the thermal diffusivity. The signal is detected using a lock-in ampli-
fier tuned to the modulation frequency. The characteristic times measured with
this technique are given by τmod = 1/(2πfmod). Notice that the expression for
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the thermal penetration length is based on Fourier heat equation and it may need
to be revisited in non-Fourier transport regime.

This technique is also specially useful to measure the frequency-dependent
thermal conductivity observed in some materials [38] as well as transient trans-
port regimes [28].

In frequency domain methods (FDTR), instead of measuring the response
between temporal delayed pump and probe signals, the response of different
modulated frequency signals is measured. This procedure avoids possible me-
chanical motion between pump and probe signals in TDTR.

1.5.3 Phonon measurements
The most general ways used to measure phonon information are by inelastic
neutron scattering and by Raman spectrometry. The former enables to measure
the phonon dispersion relations of semiconductor materials. The latter is used
for the measurement of phonon linewidth of individual zone-center phonons.

When a beam of neutrons interacts with a crystal it suffers a scattering pro-
cess. In an inelastic collision, the energy and the momentum of the beam will
change, therefore analyzing the outgoing beam information about the process
occurred can be obtained. From the difference of energy and momentum the
dispersion relations (ω(q)) can be obtained along certain high symmetry direc-
tions [40].

In Raman scattering light is used instead of neutrons. The incident beam is
inelastically scattered by a surface and changes its polarization due to the cre-
ation or annihilation of vibrational modes. The energy conservation of the light
will provide information of the process occurred. If the frequency is reduced
a phonon is created or excited (Stokes process); on contrary, if it increases, a
phonon is annihilated or relaxed (anti-Stokes process). From the line width of
the intensity peaks at each frequency, the phonon lifetime (τ ) can be obtained
as the inverse of the full width at half maximum (FWHM). A drawback of this
method is that only phonons of similar wave vector to that of the incoming beam
will interact.

Another method to measure phonon lifetimes is by successive light pulses.
A principal beam is focused to the sample while a small part of it is split. The
split part is delayed a certain amount of time and then refocused to the principal
beam. Once the principal beam interacts with the sample it creates a phonon
excitation. These excited phonons will decay in a characteristic time τ . The
delayed beam when interacts with the surface with active phonon modes will
suffer backscattering depending on that population. Therefore the intensity of
this backscattering can be related with the number of active modes and its decay
time can be estimated [41].
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1.6 Thermoelectric properties
The thermal conductivity of bulk materials is key for the study of thermoelectric
materials. A dimensionless parameter ZT known as figure of merit gives the
capacity of a material to work as thermoelectric:

ZT =
σS2T

κe + κL
, (1.83)

where σ is the electric conductivity, S the Seebeck coefficient, T the tempera-
ture, and κe and κL the electronic and lattice (phononic) thermal conductivity
respectively. The product σS2 is also defined as the power factor. From this
equation it is clear that the lower the thermal conductivity the higher the effi-
ciency.

In addition to a proper knowledge of thermal properties, to finally determine
the goodness of a material as a thermoelectric, other properties need to be calcu-
lated, all of them related to electronic properties. Although this is not the main
topic of this work, a brief summary is done to establish a complete picture.

1.6.1 Electronic properties
It is well known that the main contribution of the thermal conductivity comes
from phonon interactions, but in semiconductors with high level of doping, small
band gap or metals, electrons can also have a large, or even predominant, con-
tribution to heat transport. When this occurs there is a clear split of the total
thermal conductivity in two terms κ = κL + κe. As a good approach, the
Widemann-Franz law provides an empirical expression of the electronic con-
tribution to thermal conductivity κe from the value of the electronic conductivity
σ:

κe = LTσ , (1.84)

where L is the Lorentz number and T the temperature. In most cases as a first
approximation of such contribution L = 2.44 · 10−8WΩ/K−2 is treated as a
constant. This value might depend on scattering mechanisms, then more accu-
rate results will require a deeper study of L depending on the material and the
temperature.

A more accurate calculation of the electronic contribution to thermal con-
ductivity from the BTE for electrons can be done by using [42]:

κe,αβ = κ0
αβ − Tvαj(σ−1

e )ljvlβ , (1.85)

where

κ0
αβ =

1

e2
cTV

∫
σe,αβ(Ee) · (Ee − µ)2

[
−
∂f 0

µ(T,Ee)

∂Ee

]
dEe . (1.86)
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α and β are Cartesian coordinates for the tensorial magnitudes. f 0
µ(T,Ee) is the

Fermi-Dirac distribution function, and (σ−1
e )ljvlβ = Sjβ is the Seebeck coeffi-

cient, being

vαβ =
1

ecTV

∫
σe,αβ(Ee) · (Ee − µ)

[
−
∂f 0

µ(T,Ee)

∂Ee

]
dEe . (1.87)

ec is the electron charge, µ the chemical potential,Ee the total energy of electron,
V the volume, and σe,αβ the electrical conductivity:

σe,αβ =
1

V

∫
σe,αβ(Ee)

[
−
∂f 0

µ(T,Ee)

∂Ee

]
dEe , (1.88)

where

σe,αβ(Ee) =
1

N

∑
i,k

e2
cτe,i,kuα(i,k)uβ(i,k)

δ(Ee − Ee,i,k)

dEe
. (1.89)

The subindex i refers to a band index, while k is the electron wave vector. The
phonon relaxation time τe can be calculated from its scattering matrix in a similar
way as can be done for phonons (see Section 2.3.5). A full description can be
found elsewhere [19].

All the previous set of equations (Eq. (1.84)-Eq. (1.89)), together with the
lattice contribution to thermal conductivity, allow the calculation of the figure of
merit ZT of a thermoelectric material.

1.7 Note on phonon drag
In some circumstances, when electron-phonon interaction is important, the lat-
tice vibrations can contribute to the electron movement in the crystal, increasing
then the electric conductivity and therefore the Seebeck effect and the thermo-
electric performance. The quasiparticle associated to a electron-phonon inter-
action is known as polaron. Phonon drag can be understood as a thermal flux
originated from the balance of momentum added by electron-phonon interac-
tions and destroyed by phonon-phonon processes [43].

Recently some efforts have been done in order to quantify the phonon drag
contribution to the Seebeck coefficient [43]. A way to evaluate this effect is
by comparing thermal measurements of bulk and nanowires of a material. As
phonon drag is quenched by boundary scattering, a comparison of such mea-
surements will allow quantifying its effect in bulk samples.

In a general case, the Seebeck coefficient defined from the Mott relations,
can be split into a diffusion and a phonon drag term, S = Sdiff + Sp-d. Solving
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the BTE for electrons including electron-phonon interactions it is possible to find
approximate expressions for both contributions [43]:

eTSdiff =

∫∞
0

∂f0
k

∂E
τk,ev

2
q,xD(E)(E − EF )dE∫∞

0

∂f0
k

∂E
τk,ev2

q,xD(E)dE
= 〈E − EF 〉 , (1.90)

where D(E) is the electronic density of states, vq,x the electron velocity and EF
the Fermi energy level. In this case it is assumed that phonons are in equilibrium
(nq = n0

q), and only electrons are out of equilibrium (fk = f 0
k +

∂f0
k

∂E
Φe), where

Φe ∝ k measures the deviation from equilibrium. In real processes, the electrons
can receive momentum and relax through phonon-phonon interactions. In these
cases, the phonon distribution is also displaced from equilibrium a certain mag-
nitude Φph ∝ q, then nq = n0

q−
∂n0

q
∂ε

Φph. The contribution of the terms regarding
Φph will thus provide the magnitude of the phonon drag:

eTSp-d =

1
2k3

∫∞
0
τev

2
x
∂f0

∂E
D(E)dE ·

∫ 2kc

0

ΛphCv(ω)

Λe−pf0(ω/2c)
dω∫∞

0
τev2

x
∂f0

∂E
D(E)dE

, (1.91)

where c is the phonon velocity, Cv(ω) the mode specific heat, k = |k|, and
Λph and Λe−p are the phonon and polaron MFT respectively. In the derivation
of Eq. (1.91) it has been assumed that Φph 6= f(f). This assumption is valid
for weak electron-phonon interaction. For strong interactions there will appear
couplings between f and n that will no longer allow splitting S into their two
contributions.

Eq. (1.91), even though is an approximation, suggests that longer phonon
MFP and shorter polaron MFP will contribute to improve the Seebeck effect.





Chapter 2

First principles calculations

Since the development of quantum mechanics, big efforts have been done in or-
der to implement such knowledge for computational modeling. This has allowed
predicting experimental results with an incredible accuracy.

In this work, quantum mechanics will allow calculating the total energy of a
system with a certain amount of atoms through the corresponding Hamiltonian,
and afterwards a wide range of properties related to this total energy.

First principles calculations only require to define the atoms, specifically
their type and position. In this work a full ab initio framework [44] is used to
compute the total energy of different systems in order to study thermal transport.

Large amount of systems can be modeled using ab initio techniques, but not
all have the same computational cost. The number of atoms and the expected
spatial variation of the wave functions are the main parameters that determine
the simulation time.

2.1 Total energy calculations
Ab initio calculations start by calculating the total energy of the system. For that
purpose, the so-called many-body problem consists in obtaining the total energy
and forces on each atom of a system with many interacting electrons. Therefore,
in order to compute the total energy it will be necessary to solve the Schrödinger
equation:

Hψ = Eψ , (2.1)

that relates the Hamiltonian H of the solid applied on its wave function to the
total energy E.

The general expression for a HamiltonianH under a constant external poten-
tial φ0 is:

H = φ0 + T +H2 +H3 + ... , (2.2)

39
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where T is the kinetic energy and H2 +H3 + ... are n-body crystal interaction
potential terms. H = T + H2 is defined as the harmonic Hamiltonian, where
T = Ke + Kn is the sum of the kinetic energy operator of the electrons and the
nucleus, and H2 = Ue−e + Ue−n + Un−n give the potential energy for electron-
electron, electron-nucleus and nucleus-nucleus interaction.

The high number of variables force the use of some approximations and sim-
plifications to solve Eq. (2.1) [44, 45].

2.1.1 Born-Oppenheimer approximation
The Born-Oppenheimer approximation allows separating the electronic and nu-
clear contribution in the many-body wave function due to the large difference in
their respective masses. Moreover, the fact that the forces acting on the parti-
cles are the same makes possible to consider a gas of electrons in movement in
a static configuration of cores. Then, Kn and Un−n are taken as parametrized
magnitudes and the Hamiltonian is reduced to the electron kinetic energy and
the electron-electron and electron-ion interaction:

H = T + Ue−e + Ue−n , where T = − ~2

2m
∇2 . (2.3)

2.1.2 Hartree-Fock approximation
Under the Born-Oppenheimer approximation, the interaction potential H2 can
be written as a summation over all the electrons of the solid:

H2 =
∑
i

[U(ri) +Wi(ri)] , (2.4)

where U(ri) is the potential energy by the nuclei felt by an electron at ri, and
Wi(ri) the interaction potential with the field created by the other electrons.
When this electron-dependant potential is approximated by the potential from
the whole electron cloud, including itself, it is known as the Hartree approxima-
tion:

H =
∑
i

Hi =
∑
i

[
− ~2

2m
∇2 + U(ri) +WH(ri)

]
, (2.5)

where

WH(ri) =

∫
n(r′)

|ri − r′|
d3r′ (2.6)
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and the solution can be written as a product of the monoelectronic wave func-
tions ψ = ψ1 · ψ2 · ... · ψn, being Hiψi = Eiψi the independent solutions that
provides the total energy of the system as E =

∑
iEi.

However, due to the fermionic nature of the electrons, the system must be
anti-symmetric under the exchange of two electrons. Thus, requiring the so-
lutions to be single Slater determinants, as opposed to simple wave function
products, adds a non-local exchange term to the potential felt by electrons, ac-
counting for the reduction of the energy of the electronic system caused by the
anti-symmetry of the wave function E → E − EX . This is the Hartree-Fock
approximation.

2.1.3 Density Functional Theory (DFT)
Hohenberg and Kohn [46] proved that there is a one-to-one correspondence be-
tween the external (i.e. non-purely electronic) potential acting on an electron gas
and its ground state charge density. Moreover, they showed that the ground state
charge density is the one that minimizes a universal (but unknown) energy func-
tional depending only on the charge density, not the wave functions. Shortly
after, Kohn and Sham [47] made the ansatz that the total energy of the gas of
electrons can be calculated formally by an ancillary system of non-interacting
electrons, related to the original many-body problem, moving in an effective
non-local potential due to the other electrons.

The exchange-correlation energy EXC is the contribution to the electronic
energy of the system defined as the difference of many-body energy and the
energy in the Hartree approximation:

EXC(n) = T − Ti(n) + Ue−e − EHartree(n) , (2.7)

where Ti(n) is the kinetic energy of an independent electron and

EHartree(n) =
1

2

∫ ∫
n(r)n(r′)

|r− r′|
d3rd3r′ (2.8)

is the Hartree energy. Unfortunately, the exact form of EXC(n) is not known.
The minimization of the total energy functional of the non-interacting prob-

lem, in terms of the constituent wave functions leads to an equivalent set of self-
consistent one-electron equations known as Kohn Sham (KS) equations. The
eigenvalues of these equations will lead to the total electronic energy of the sys-
tem, and they are related to the spectrum of the true many-body system. The KS
equations are:[

−~2

2m
∇2 + U(r) +W (r) + VXC(r)

]
ψi(r) = Eiψi(r) , (2.9)
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where VXC corresponds to the exchange-correlation potential.
From a computational point of view, these set of equations must be solved

self-consistently, iterating from a trial electronic density minimizing the total
functional energy until convergence is achieved.

Local Density Approximation and Generalized Gradient Approximation

Even the simplification reached using DFT, an approximate expression for the
exchange-correlation energy for the one-electron set of equations is required. If
the variation in the electronic density expected to be slow, the Local Density
Approximation (LDA) can be used. LDA assumes that EXC at the point r is
equal to the exchange-correlation energy per electron εXC in a homogeneous
electron gas with the same density of the electron gas at the point r:

ELDA
XC (n) =

∫
εXC(n)n(r)d3r , (2.10)

where n(r) =
∑

i |ψi(r)|2 is the electronic density.
When LDA overestimates EXC , the Generalized Gradient Approximation

(GGA) provides a more accurate solution. This approximation expands the elec-
tronic density in terms of its magnitude and its gradient to correct for variations
of the electronic density away from r:

EGGA
XC (n) =

∫
εXC(n,∇∇∇n)n(r)d3r . (2.11)

Pseudopotential approximation

Most of the physical properties of solids are much more dependent on the va-
lence electrons than on the core ones. The substitution of the full electron-ion
potential by a weaker potential that deals only with the valence electrons, remov-
ing the core electrons and ionic potential, allows expanding the wave functions
into a smaller set of plane waves that computationally greatly simplifies the so-
lution of the Schrödinger equation. When using pseudopotentials, it is necessary
to ensure the accuracy of the exchange correlation energy by having equal values
of the integrals of the squared amplitudes of the pseudo and real wave functions
outside the core. Such pseudopotentials are known as norm-conserving pseu-
dopotentials.

To generate a pseudopotential it is necessary to perform all-electrons energy
calculations for a single atom and then assure that a parametric form of the pseu-
dopotential with suitable parameters provide the same wave functions beyond
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Figure 2.1: Sketch of a pseudopotential and all-electrons functions [44].

a cutoff radius rc (typically 2-3 times the core radius), and the same eigenval-
ues as the all-electrons atom. In Fig. 2.1 the convergence of the pseudopotential
function to the all-electron value beyond rc is represented.

The generation of pseudopotentials must be made consistently with the XC
functional that will be used. In the present work, pseudopotentials generated for
use with the GGA as parametrized by Perdew, Burke and Ernzerfhof (PBE) or
for use with the LDA as parametrized by Perdew and Zunger will be employed.

2.1.4 Periodic supercell and Bloch’s theorem

Despite of the simplifications done to reduce the complexity of solving the to-
tal energy problem, it is necessary to face the problem of infinite number of
non-interacting electrons in a static potential of an infinite number of ions. That
means that is required to calculate infinite wave functions expanded on an infi-
nite basis set. This problem can be solved by generating a periodic system that
reproduces the original one using the Bloch’s theorem. For simplification let us
define the potential as V (r) = U(r) +W (r) + VXC(r).

Fig. 2.2 represents a supercell created by repetition of a cubic cell by using
translational symmetry. For an ideal crystal V (r) must have the periodicity of
the Bravais lattice, then V (r) = V (r + R), R being a real space lattice vector.
This condition must be accomplished as well for the probability density of the
stationary states:

|ψi(r + R)|2 = |ψi(r)|2 . (2.12)
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Figure 2.2: Cubic supercell created by a 3x3x3 repetition of a conventional diamond-like 8 atoms cell.

Then a general solution ψi(r) = eiqru(r) leads to:

ψi(r + R) = eiqRψi(r) , (2.13)

known as Bloch’s theorem, where q is a reciprocal space vector.
From the previous concepts, the definition of ψq(r) in the reciprocal space

from the Fourier transform

ψq(r) = eiqruq(r) =
∑

G

C(q−G)ei(q−G)r (2.14)

allows expressing the Schrödinger equation as a simple linear system of equa-
tions:[

~2|q−G|2

2m
− Eq

]
C(q−G) +

∑
G′′

V (G′′ −G)C(q−G′′) , (2.15)

where G and G′′ are reciprocal lattice vectors and the coefficientsC are unknown
values to be determined from the equations.

2.1.5 Perturbation theory
The solution of several real physical problems that require total energy calcu-
lations many times have to be treated inside perturbation theory. This requires
introducing a perturbation term E(n, λ), where n is the charge density and λ the
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perturbation parameter. The perturbed energy can be expanded in series and the
total energy can be found to the n-th order truncation of such perturbation:

E(n, λ) = E0(n)+
∂E(n, λ)

∂λ
λ+

1

2!

∂2E(n, λ)

∂λ2
λ2+

1

3!

∂3E(n, λ)

∂λ3
λ3+... . (2.16)

Baroni, Giannozzi and Testa [48] used the perturbation theory in the DFT frame-
work (Density Functional Perturbation Theory, DFPT), making it possible to
compute anharmonic properties of semiconductors [49] from ab initio tech-
niques.

2.2 Interatomic force constants
In order to calculate the total energy from the Hamiltonian Eq. (2.1), once all
approximations are done, it is necessary to choose a pseudopotential able to re-
produce the interaction terms defined above. The forces between atoms obtained
provide the interatomic force constants (IFC), from which the terms of the crys-
tal Hamiltonian can rewritten:

H2 =
1

2!

∑
lk,α

∑
l′k′,β

φlk,l
′k′

αβ ulkα ul
′k′

β and (2.17)

H3 =
1

3!

∑
lk,α

∑
l′k′,β

∑
l′′k′′,γ

φlk,l
′k′,l′′k′′

αβγ ulkα ul
′k′

β ul
′′k′′

γ , (2.18)

where φαβ corresponds to the harmonic force constants, and φαβγ to the anhar-
monic ones. α β and γ are Cartesian indices to refer the direction of the dis-
placement ulk (the perturbation) of the atom k in the unit cell l. Notice that all
the magnitudes are defined in real space. In the same nomenclature, the kinetic
energy term is expressed as:

T =
1

2

∑
lk,α

mk[u̇
lk
α ]2 . (2.19)

To obtain the total energy of the system from the IFC analytic methods are re-
quired.

For accurate calculations of the IFC a proper choice of the length of the
atomic displacement is important. To calculate harmonic IFCs, the displace-
ment should be small enough to avoid anharmonic contributions. In contrast, to
account for the anharmonic effects these displacements have to be longer.
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2.2.1 Harmonic force constants
The harmonic force constants correspond to the terms φαβ(lk, l′k′) defined in
the total Hamiltonian of the system. These values can be obtained by doing
displacements of two atoms (or one atom in two different directions) of the cell
and calculating the total energy. The usual treatment of these magnitudes is to
perform the calculations in the reciprocal space:

φk,k
′

αβ (q,q’) =
∑
l,l′

φlk,l
′k′

αβ eiqR
l

eiq
′Rl′

, (2.20)

where Rl is the atomic position R of the unit cell l. Then the harmonic force
constants are calculated as:

φk,k
′

αβ (q,q’) =
∂2E

∂ukα(q)∂uk
′
β (q’)

, (2.21)

where
uk(q) =

∑
l

ulkeiqR
l

(2.22)

are the atomic displacements in the reciprocal space. Notice that now the atomic
displacements are expressed in the reciprocal space as a Fourier transform of the
displacement in the real space.

From the harmonic force constants the eigenvalue equation can be written,
whose solution provides the phonon frequencies and eigenvectors, i.e. the dis-
persion relations (DR):∑

βk′

1
√

mkmk′
Dk,k′

αβ (q)ek
′

β (q) = ω2ekα(q) , (2.23)

where mk and mk′ are the masses of the displaced atoms, ω the eigenvalue ( i.e.
the frequency), e(q) the eigenvectors, and Dαβ the dynamical matrix:

Dk,k′

αβ (q) =
∑
l′

φ0k,l′k′

αβ eiqR
l′

. (2.24)

From the calculation point of view, to obtain the harmonic IFC it is enough to
do one displacement for each of the different type of atom in the unit cell.

2.2.2 Anharmonic force constants
The anharmonic force constants are those of higher order interaction than the
harmonic ones. Derivation of the expressions are given for third order anhar-
monic IFC. Extension to higher orders can be easy obtained from the presented
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equations. The third-order derivatives of the total energy provide the third-order
IFC from which phonon-phonon scattering rates can be obtained:

φk,k
′,k′′

αβγ (q,q’,q”) =
∂3E

∂ukα(q)∂uk
′
β (q’)uk′′γ (q”)

. (2.25)

In the last decade Esfarjani et al. [50] have developed the computational im-
plementation of the calculation of harmonic and anharmonic IFC. To calculate
anharmonic force constants in a supercell, the number of the interacting neigh-
bors has to be limited, otherwise the number of calculations will be manually
or computationally unachievable. Even doing this restriction, no less than inter-
actions up to the third neighbor must to be considered if accurate anharmonic
IFCs are desired. In this case the number of interactions still remain very high.
Additional constrictions to reduce the number of calculations are based on the
symmetry of the systems. Expressions of the constrictions are given for the IFC
in the real space definition [51]. Higher order perturbation will require extra
constrictions [50, 51]. These are important to capture anharmonicity at high
temperature or low pressure systems.

a) Invariance under permutation of indices

From its definition, a force constant is a derivative of the total energy with respect
to a perturbation (see Eq. (2.21) and Eq. (2.25)), then its value is independent on
the order of differentiation:

φlk,
′lk′

αβ = φl
′k′,lk
βα . (2.26)

The same expression can be extended to higher orders.

b) Invariance under arbitrary translation of the system

The invariance of the force constants under an arbirary translation of the system
is known as acoustic sum rule (ASR). The ASR can be written mathematically
as: ∑

l′k′

φ0k,l′k′

αβ = 0 ∀ (αβ, k) and (2.27)

∑
l′′k′′

φ0k,l′k′,l′′k′′

αβγ = 0 ∀ (αβ, k, k′′) , (2.28)

for the harmonic and anharmonic force constants respectively.
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c) Invariance under arbitrary rotation of the system

In analogy to the translation invariance, the IFC are invariant under an arbitrary
rotation of the system.∑

l′k′

φ0k,l′k′,l′′k′′

αβγ (rl
′′k′′

δ )εγδν + φ0k,l′k′

γβ εγαν+

φ0k,l′k′

αγ εγβν = 0 ∀ (αν, l, kk′) .

(2.29)

The latter equation is expressed using Einstein summation notation, where εαβγ

is the antisymmetric Levy-Civita tensor. The term (rl
′′k′′

δ ) corresponds to the
component δ of the vector from the origin to the atom k′′ in the unit cell l′′.

d) Other symmetries

Other symmetries depending on the crystal point/space group may help to reduce
the number of force constants to be calculated, like lattice translation, rotation
or mirror. For a certain mirror or rotation symmetry operation S:

φlk,l
′k′

αβ =
∑
α′β′

φlk,l
′k′

α′β′ S
αα′Sββ

′
(2.30)

in the case of second order forces. For low symmetry crystals extra constraints
on elastic constants can be used [52].

2.2.3 Calculation methods
There are two main methods to obtain the IFC, the 2n+1 theorem and finite
differences method. Both of them make use of the invariance described above
to compute only the minimal set of perturbations able to produce all the IFC for
calculation of harmonic and anharmonic properties.

a) Finite difference method

To obtain an approximate expression of the energy on the atoms once the system
is perturbed under a displacement, a suitable treatment is to do a Taylor expan-
sion of the energy respect to the displacement. When only one atom is displaced,
in real space:

E(δulkα ) ≈ E(0) +
∂E

∂δulkα
δulkα +

1

2

∂2E

∂2δulkα
(δulkα )2 , (2.31)
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where δulkα is an small displacement of the atom lk in the direction α and E(0)
the energy in the relaxed state. For two atoms displaced:

E(δulkα , δu
l′k′

β ) ≈ E(0) +
∂E

∂δulkα
δulkα +

∂E

∂δul
′k′
β

δul
′k′

β

+
1

2

∂2E

∂2δulkα
(δulkα )2 +

1

2

∂2E

∂2δul
′k′
β

(δul
′k′

β )2 +
∂2E

∂δulkα ∂u
l′k′
β

δulkα δu
l′k′

β .

(2.32)

To make use of the Taylor expressions of the energy, the harmonic force
constants (Eq. (2.21)) can be rewritten in the real space as:

φlk,l
′k′

αβ =
∂

∂ulkα

∂E

∂ul
′k′
β

=
∂

∂ulkα
Fl′k′β . (2.33)

The previous expression represents a change in the force constant in the com-
ponent α of an atom lk when an atom l′k′ is displaced a distance δu in the direc-
tion β. The simplest case to calculate the harmonic IFC is to consider lk = l′k′

and α = β, then rearranging terms from Eq. (2.31) and its opposite E(−δukα):

φlk,l
′k′

αβ =
∂Flkα
∂ulkα

≈
Flkα − Flk−α

2δulkα
. (2.34)

Eq. (2.34) is enough to compute the whole dynamical matrix. For the anhar-
monic IFC an analog treatment can be done:

φlk,l
′k′,l′′k′′

αβγ =
∂

∂ulkα

∂2E

∂ul
′k′
β ul′′k′′γ

. (2.35)

Then making use of Eq. (2.31) and Eq. (2.32) and its opposites E(−δulkα ) and
E(−δulkα ,−δul

′k′

β ) with a little algebra:

φlk,l
′k′,l′′k′′

αβγ ≈ ∂

∂ulkα

El′k′l′′k′′

βγ + El′k′l′′k′′

−β−γ − Elk
β − Elk

−β − El′′k′′
γ − El′′k′′

−γ + 2E(0)

2δul
′k′
β δul′′k′′γ

,

(2.36)
where the terms ∂El′k′l′′k′′

βγ /∂ulkα = F l′k′l′′k′′

βγ (α, lk) refers to the force that feels
the component α of the atom lk when the atom l′k′ is displaced δu in the direc-
tion β (δul′k′β ) and the atom l′′k′′ is displaced in the direction γ (δul′′k′′γ ).

The total energy calculations involved in the previous equations can be done
in the DFT framework.
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b) 2n+1 theorem

The use of DFT together with perturbation theory leads to the density func-
tional perturbation theory (DFPT), able to compute harmonic and anharmonic
couplings [53]. The 2n+1 theorem of DFPT establishes the relationship of the
(2n+1)-order energy derivatives to the first n-th order eigenfunctions of a system.
Then, to obtain at least 3rd order energy derivatives to compute anharmonic ef-
fects (Eq. (2.31)) just the first derivatives of the charge density are required,
which can be expressed as well using the perturbation theory as:

n(r, λ) = n0(r) +
∂n(r)

∂λ
λ+

1

2!

∂2n(r)

∂λ2
λ2 +

1

3!

∂3n(r)

∂λ3
λ3 + ... . (2.37)

Treating the atomic displacements as a perturbation of the system λ, the lin-
ear response ∂n(r)/∂λ will provide the third derivatives of the energy. To do
that it is necessary to do self-consistent calculations as a function of the atomic
displacements. Phonon energies are also obtained with this methodology.

In some special cases like for calculation of phonon dispersion of metallic
or magnetic systems, or when using ultrasoft pseudopotentials, the use of direct
methods becomes more suitable.

2.3 Phonon scattering mechanisms
When a perturbation in energy (or temperature) or in crystal momentum is in-
ducted in a crystal, the phonon population becomes displaced from the equilib-
rium one. Due to the interaction of phonons with boundaries, impurities and
other phonons, such population relaxes to the equilibrium one in a characteristic
time, known as the phonon lifetime.

The phonon scattering processes govern the dynamics of a crystal. Indepen-
dent phonon oscillations correspond to harmonic vibrations of the lattice that
provide the dispersion relations. Regarding anharmonic vibrations, 3-phonon
scattering mechanisms have been proved to be enough to compute the thermal
conductivity of pure bulk semiconductors. When impurities and/or boundaries
are present in the sample extra scattering mechanisms need to be included in the
calculations.

2.3.1 Fermi Golden Rule
To find the probability of a transition from an initial state Ei to a final state Ef it
is necessary to use Fermi’s Golden Rule (FGR):
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Γ =
2π

~
∑
f

|〈i|H|f〉|2δ(Ei − Ef ) , (2.38)

where the HamiltonianH can be as generic as desired. The delta function δ(Ei−
Ef ) corresponds to the conservation of the energy between the initial and final
state. For anharmonic processesHanharm = H3, defined in Section 2.1.

2.3.2 3-phonon scattering rates
When a system is perturbed from its equilibrium the atomic positions starts to
vibrate and there appear linear combinations of vibration modes. Some of these
vibrations can interact with a probability that depends on the well known FGR.
All of these interactions between phonons must conserve the energy between
the initial and final states, but the crystalline momentum ~q can be conserved
or not. When in a collision the momentum is conserved is defined a normal (N)
process, otherwise is called umklapp (U) process1. Moreover two other kinds
of processes can occur, one phonon interacting with another to produce a final
single phonon (type 1) or one phonon that splits into two phonons (type 2).

The quantum of energy for a phonon is defined as E = ~ω, then the conser-
vation of energy:

ωq = ωq′ + ωq′′ or ωq + ωq′ = ωq′′ . (2.39)

The conservation of momentum for N processes is:

q = q’ + q” or q + q’ = q” , (2.40)

while for U processes:

q = q’ + q” + G or q + q’ = q” + G , (2.41)

where G is a reciprocal lattice vector.
From Fig. 2.3, when q”0 is inside the first Brollouin Zone (1BZ) G = 0 and

a N process (q”0=q”) occurs. On the contrary, when q”0 is outside the 1BZ,
the process is re-expressed in a 1BZ equivalent q-vector q” and becomes an U
process.

To define properly the N and U processes it is important to have the 1BZ
zone centered at q = (0, 0, 0), the so-called Γ point. With these premises, it is

1Strictly speaking, umklapp collisions also conserve crystalline momentum, but a non-zero
vector of the reciprocal lattice must be used to bring back the final momentum to the first Bril-
louin zone.
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Figure 2.3: Top: Feynman diagram of type 1 and type 2 processes. Bottom: Sketch of phonon-phonon
scattering processes.

considered that N and U processes are only properly defined in the 1BZ of the
primitive cell centered at Γ, otherwise the splitting N-U can be different.

For simplicity of notation let’s use the sub/super index q
q to indicate the de-

pendence of a magnitude on a phonon mode and capital q to denote the phonon
wave vector. The goal of calculating the scattering rates is to obtain the relax-
ation time of each process as:

τq =
1

2Γq

, (2.42)

where here Γq represents the scattering rate, and can be split into two types of
processes:

Γq = Ωq′q′′

q + Ωq′′

qq′ . (2.43)

The first term corresponds to type 1 processes and the second to type 2. Ω is the
transition rate of each process, which is defined in terms of the scattering matrix:

Ωq′q′′

q =
π

2~2Nq

∑
q′q′′

|V q′q′′

q |2(1 + nq′ + nq′′)δ(ωq − ωq′ − ωq′′) (2.44)

Ωq′′

qq′ =
π

~2Nq

∑
q′q′′

|V q′′

qq′ |
2(nq′ − nq′′)δ(ωq + ωq′ − ωq′′) . (2.45)

V q′′

qq′ is the 3-phonon transition matrix, n the Bose-Einstein distribution function
for each mode and δ(ω) is a Dirac delta. Nq refers to the number of q-points
considered in the mesh sampling over the Brillouin zone. The factor 1/2 in
Eq. (2.44) is introduced to avoid counting twice the same process q = q’+q” =
q” + q’. Notice that the selection of the q-points will determine if the process
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is N or U. One can determine N or U scattering rate by doing the summation
over all the q,q’,q” that fulfill the condition that G = 0 (N) or G 6= 0 (U) (see
Eq. (2.40) and Eq. (2.41)).

At this point, the calculation of the scattering matrix in the reciprocal space
can be expressed in terms of anharmonic IFC described in previous sections:

V (qq′q′′) =

(
~
2

)3/2∑
k

∑
l′k′

∑
l′′k′′

∑
αβγ

φ0k,lk′,lk′′

αβγ eiq
′Rl′eiq

′′Rl′′

·
eqαe

q′

β e
q′′
γ√mkmk′mk′′ωqωq′ωq′′

,

(2.46)

where e and ω are the eigenvectors and the eigenvalues for each mode obtained
from the solution of the dynamical matrix and mk the mass of the atom in the
position k. The term of the Fourier transform eiqRl for the basis atom has been
ommited as R = 0. In the latter expression, the summation in k goes over all
the atoms of the primitive cell, and k′ and k′′ over all the number of selected
neighboring cells l′, l′′.

From symmetry conditions one can see that |V q′q′′
q | = |V q′′

qq′| = |V (qq′q′′)|
then:

Γq =
π

2~2Nq

∑
q′q′′

|V (qq′q′′)|2[(1 + nq′ + nq′′)δ(ωq − ωq′ − ωq′′)

+2(nq′ − nq′′)δ(ωq + ωq′ − ωq′′)] .

(2.47)

From a computational point of view, the conservation of energy determined
by the delta function can be expressed as a Gaussian or Lorentzian function,
where a smearing parameter ε must be included in order to determine the re-
striction of the condition. This parameter should be modified with the mesh
sampling, the finer the mesh, the smaller the smearing:

δGaussian(x) =
e−(x

ε
)2

ε
√
π

, δLorentzian(x) =
1

π

ε
2

x2 + ( ε
2
)2
. (2.48)

Instead of using a Gaussian or Lorentzian approaches, the relaxation time
can be also determined from the imaginary part of the phonon propagator self-
energy Σ(q) of 3-phonon scattering process [54, 55]:

Σ(q) =
1

2~2Nq

∑
q′q′′

|V (qq′q′′)|2

·
[

1 + nq′ + nq′′

ωc − ωq′ − ωq′′
+

2(nq′ − nq′′)

ωc + ωq′ − ωq′′

]
,

(2.49)
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where ωc = ωq−iε, being ε a smearing factor depending on the q-point mesh, as
found for in the Gaussian or Lorentzian cases. Then, as Σ(q) = Σ′(q)− iΣ′′(q),
τq = 1/2Σ′′(q). Notice that Σ′′(q) = Γq.

Another way to compute the 3-phonon scattering rates is by means the im-
proved tetrahedron method. In this method the Brillouin zone is sampled by
tetrahedrons and linear interpolation is done to compute the phonon eigenval-
ues [56]. The main advantage of this method is that it is not required to define
an smearing value, as done in the Gaussian and Lorentzian functions.

As pointed out, the number of selected neighbors is important to capture the
anharmonicity of the crystal, but is not the only important parameter. As a good
approximation to reproduce for instance the thermal conductivity of semicon-
ductors it is valid to use the Bose-Einstein equilibrium distribution function to
compute the transition scattering matrix. In recent experiments [4, 5, 6, 7, 8,
9, 10] where ultrafast heating or huge temperature gradients are employed this
approximation is no longer valid as the deviation from equilibrium is important.

An analogous derivation can be done to compute the electron relaxation time
τe required for the calculation of the electrical conductivity σe and the electrical
thermal conductivity κe. In analogy with phonons, while the process q → q′q′′

is expressed as n(1+n′)(1+n′′), for electrons the process k→ k′k′′ is expressed
as f(1−f ′)(1−f ′′), where f is the electron occupation number. In equilibrium,
f0 is the Fermi-Dirac distribution function.

2.3.3 Mass variation scattering
In real crystals there exists a certain number of imperfections that can scatter
phonons. Boundaries, grain boundaries and dislocations are some of them, but
the most relevant mechanisms for highly crystalline solids are the ones due to
mass variations. Its origin relies basically in impurities, different isotopic con-
centrations and different atomic species like in the case of alloys. This scattering
rate can be also derived from the FGR. To do that it is necessary to know the ex-
pression of the perturbed Hamiltonian due to mass variations. An expression
given by Klemens [57, 58] and Tamura [59] is:

H =
1

2
δM

(
dr

dt

)2

, (2.50)

where r is the atomic position. If the interaction is elastic, then the energy and
the crystalline momentum are conserved. Moreover, if cubic symmetry is con-
sidered, then from the FGR [59]

ΓIq =
π

4Nq

ω2
q

∑
q′

δ(ωq − ωq′)
∑
s

γ(s)|e∗(s,q′)e(s,q)|2 , (2.51)
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where

γ(s) =
∑
i

fi(s)

(
1− mi(s)

Ms

)2

(2.52)

is the mass fluctuation factor. fi is the fraction of the ith isotope with mass mi

and Ms =
∑

i fimi(s) the averaged mass.
Notice that Eq. (2.51) does not have any spatial dependence, then after a little

algebra the mass variation impurity scattering can be expressed in terms of the
density of states Dω in a very simple way [60]:

τ−1
I =

π

6
γ(s)D(ω)ω2 . (2.53)

Notice that all these magnitudes are calculated and no free parameters are used.
The alloy relaxation time needs a more detailed discussion. In single species

crystals the mass defect term describes the variability in isotopic abundance but
in alloys it should also account for the variability in the force and lattice constants
[57]. In this case it is necessary to redefine the fluctuation factor:

γ(s) =
1

12
γ2
M +

(
1√
6
γc2 −

√
2

3
QGγR

)2

, (2.54)

where

γα =
∑
i

xi

(
αi − ᾱx
ᾱx

)2

(2.55)

is the coefficient of variance of mass(M ), squared velocity (c2) or impurity ra-
dius (R), being αi the value for the isotope/species i and ᾱx the averaged value
over all the atoms. Q is a factor that depends on the type of the impurity (for
substitution Q = 4.2 [57]) and G is the Grüneisen parameter. This parameter
relates the change in the phonon frequency with the volume of the crystal, and
can be obtained from first principles as:

Gq = − 1

6ωq

∑
k

∑
l′k′

∑
l′′k′′

∑
αβγ

φ0k,lk′,lk′′

αβγ

·
eq∗α e

q′

β√
mkmk′

eiq
′Rl′rl

′′k′′

δ .

(2.56)

As done by Capinski et al. [60], in Eq. (2.53), instead of the Debye approx-
imation, the density of states (DOS) obtained from the full dispersion relations
(DR) at stoichiometry x, D(ω) is used. As expected, the second and third terms
reduce to zero for pure silicon or germanium and the isotopic mass defect corre-
sponding to the first term is the only one remaining.
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2.3.4 Boundary scattering
A widely extended way to account for the individual collisions of phonons with
the boundaries in a certain geometry is to use Casimir’s expression [61] τb(ω) =
Leff/v(ω). This expression acts as a limiter for phonons with a mean free path
(MFP) vτ longer than Leff. Different simple geometries can be studied with this
expression using thatLeff is the diameter for wires, 1.12l for rods (i.e. rectangular
cross section beams), where l =

√
l1 · l2, and 2.25h for thin films, where h is the

film thickness [1].

D

h
ℓ1

ℓ2

Q
Q

Q

Figure 2.4: Sketch of typical sample geometries. From left to right: wire, film and rod.

In kinetic models the way to include Casimir’s expression for boundary ef-
fects is to add it through the Mathiessen rule τK = (1/τint + 1/τB)−1, where τint

correspond to the intrinsic relaxation times (umklapp and impurity). Boundary
effects become more important as the temperature decreases. At low temper-
atures the umklapp scattering decreases drastically, as atomic movements are
decreased, and then its relaxation time becomes huge. In contrast, Casimir’s
expressions is independent of temperature. At these temperatures low energy
phonons dominate the thermal conductivity.

Figure 2.5: Left: Umklapp (U), normal (N), impurity (I) and boundary (B) relaxation times for silicon at
T = 3 K and Leff = 2.8 mm. Right: Silicon experimental thermal conductivity [62].

Fig. 2.5 shows all the relaxation times involved in thermal transport at T =
3 K and the experimental thermal conductivity of silicon. As can be observed in
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Fig. 2.5 left, at low temperatures it is clear that the boundary scattering relaxes
much faster than the other mechanisms. Fig. 2.5 right shows the temperature de-
pendence of the thermal conductivity and the specific trend at low temperatures.
In the KCM framework, at low temperatures Σ→ 0 and therefore the total ther-
mal conductivity tends to the kinetic one (κT → κK). As κK = Cvv

2
xτ , and the

dominant mechanism is the boundary τ → τB = Leff/vx, thus κT = CvvxLeff.
The phonon velocity and the effective length are temperature independent, then
κT only depends on temperature through the specific heat. It is well known that
at low temperatures Cv ∝ T 3, then κT ∝ T 3.
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Figure 2.6: Normalized effective thermal conductivity as a function of the Knudsen number. Dashed lines
represent logarithmic interpolation for 1 >Kn> 5. Analogy with Casimir’s expressions are
written for comparison.

The geometry effects have been also studied in terms of the dimensionless
Knudsen number (Kn = Λ/L), where Λi is the intrinsic phonon MFP and L
the length of the sample. Two expressions are given by Zang [63] to express
the effective thermal conductivity for wires and thin films for small and high
Knudsen values. In this case, L refers directly to the diameter for wires and to
the thickness for films, without any proportionality constant.

For high Knudsen Kn>5:
κeff

κbulk
=

2Kn− 1

Kn2 + 2Kn− 1
for films , (2.57)

κeff

κbulk
=

4Kn− 1

4Kn2 + 4Kn− 1
for wires . (2.58)
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For small Knudsen Kn < 1 it is possible to use the same expression for wires
and films:

κeff

κbulk
=

m

m+ 1
for Kn < 1 , (2.59)

where m = 3 for films and m = 4/3 for wires.
Fig. 2.6 shows Zang’s expressions in comparison with Casimir’s expression

rewritten in terms of κeff/κbulk for wires and films. Notice that as Zang’s expres-
sions are only defined for Kn > 5 and Kn < 1, therefore interpolation is required
in between. Even the trend for films and wires is similar in both derivations,
small differences can be appreciated in the region from Kn = 0.1 to Kn = 10.

In Chapter 4 boundary effects are studied from a kinetic-collective approach
and from a full hydrodynamic framework.

2.3.5 Electron-phonon scattering
Dealing with highly doped semiconductors having a carrier concentration above
1017 cm−3 or metals, the electron-phonon interaction can be a source of scatter-
ing events that contribute to the reduction of the thermal conductivity [64]. In a
vibrating lattice, atoms are displaced from its equilibrium position, and then the
effective electrostatic potential that an electron feels is altered [19].

An analog treatment to the one found for 3-phonon scattering can be done
considering the Fermi-Dirac distribution function for electrons. In this case the
conservation of energy and momentum is also applicable:

Γqλ =
π

~
∑
mn,k

|gλmn(q,k)|2 · [fnk(1− fmk+q)nqλδ(εmk+q − εnk − ~ωqλ)

−fnk(1− fmk−q)(nqλ + 1)δ(εmk−q − εnk + ~ωqλ)] ,

(2.60)

where f ,k and n,q are the electron and phonon distribution functions and wave
vectors respectively, ε the electron energy, and gλmn the transition matrix. Details
of the matrix elements can be found elsewhere [19, 64]. This contribution can
be added to the phonon-phonon scattering rate in order to compute the total
thermal conductivity. In the case of electron-phonon collisions, the momentum
conservation also allows distinguishing between N and U processes [19] q+k =
k’ + G or q = k + k’ + G, for G = 0 or G 6= 0, again restricting the definition
to the 1BZ of the primitive cell centered at Γ.

A simplified way to compute the contribution of phonon-electron interaction
without the need of calculating all the collision matrix is using [42]:

κe−p =
27LTI2

4

ρe(TD/T )6π2z2
e

, (2.61)
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where L is the Lorentz number, ρe the electrical resistivity, TD the Debye tem-
perature, ze the number of free electrons per atom and

In =

∫ TD/T

0

xnex

(ex − 1)2
dx , with x ≡ ~ω

kBT
. (2.62)

Notice that Eq. (2.61) does not allow distinguishing between normal and
umklapp processes, in contrast to Eq. (2.60).

As it has been shown in Section 1.7, the electron-phonon interaction has a
contribution to the Seebeck coefficient (S). Therefore improvement of this term
will lead to an increase of the figure of merit (ZT ). A subject of future study
could be to observe if a collective transport regime emerged from dominant N
electron-phonon interaction can be relevant to improve S and consequently the
thermoelectric performance.

2.4 Ab initio KCM expressions
In a general situation the thermal conductivity is a complex calculation including
different order relaxation times. The Kinetic Collective Model (KCM) offers a
way to calculate the total thermal conductivity by imposing momentum conser-
vation in the normal scattering term of the collision matrix. This allows splitting
the total thermal conductivity into a kinetic and a collective contribution:

κT (T ) = κ̂K(T ) · (1− Σ) + κ̂C(T ) · Σ = κK(T ) + κC(T ) , (2.63)

where the hat ˆ indicates the maximum possible contribution of each regime and:

Σ(T ) =
ΓN(T )

ΓN(T ) + ΓR(T )
, (2.64)

where ΓN(T ) and ΓR(T ) are averaged N and resistive (R) scattering rates. The
kinetic and collective terms have two main differences. The first is the way to
calculate the total mean free time of the participating scattering mechanisms, and
the second is the form to include boundary effects in the calculations. In this sec-
tion will be considered the first aspect. The inclusion of boundary effects will be
treated in Chapter 4. Here, the KCM transport equations, as derived from Guyer
and Krumhansl [15] and extended to anisotropic systems (see Appendix A) to-
gether with the maximization of entropy derivation [1], are presented.

The expressions for the calculations of the thermal conductivity can be calcu-
lated as a summation over all the modes q in the first Brillouin zone or by doing
a frequency integral accounting for the density of states D(ω) of each mode 2:

2This assumption is only valid for isotropic systems.
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1

NqV0

∑
q

→
∫ ωmax

0

D(ω)dω , (2.65)

where Nq is the number of q-points in the mesh sampling and V0 the volume
of the unit cell. This procedure (when applicable) will reduce the computational
time by binning the modes in a dω fraction with its respective weight determined
by the DOS.

For the sake of simplicity, the different projections of the phonon distribution
function in the momentum space found in the KCM equations in terms of Cq,i

are defined as:

Cq,i =
(q
ω

)i
Cq , for i = 0, 1 , (2.66)

and

Cq,i =

(
q⊗ q
ω2

)
Cq , for i = 2 . (2.67)

These terms appears as a generalization of the Debye dispersionless approxi-
mation used in the original derivation of Guyer and Krumhansl [15] (see Ap-
pendix A). Notice that Eq. (2.67) for i = 0 is the mode specific heat Cq.

Using the summation over q, the kinetic contribution is defined as:

κ̂K(T ) =
1

NqV0

∑
q

Cq,0vq ⊗ vqτq,R , (2.68)

where
τ−1
q,R = 2Γq,R = 2(Γq,I + Γq,U) (2.69)

is the total resistive relaxation time of the mode q, calculated through the addi-
tion of the impurity τI and umklapp τU scattering rates times, intrinsic of each
material. The considered intrinsic processes are those that do not depend on
geometry nor external effects. From the definition of the kinetic thermal con-
ductivity, the kinetic mean free time (MFT) can be directly expressed as:

τ̂R(T ) =
κ̂K(T )∑

qCq,0vq ⊗ vq

=

∑
qCq,0vq ⊗ vqτq,R∑

qCq,0vq ⊗ vq

. (2.70)

The other contribution to the total thermal conductivity κT , the collective
contribution, is calculated as:

κ̂C(T ) =
1

NV0

∑
qCq,1vq ⊗

∑
qCq,1vq∑

qCq,2τ
−1
q,R

, (2.71)

where the collective MFT is an average over the whole distribution:
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τC(T ) =

∑
qCq,2∑

q τ
−1
q,RCq,2

. (2.72)

The N scattering involved in the calculation of the switching factor Σ defined
in Eq. (2.64) is:

ΓN(T )−1 =

∑
q Γ−1

q,NCq,0∑
qCq,0

, (2.73)

and the resistive scattering rate is nothing but ΓR(T ) = (2τ̂R(T ))−1.
From the previous expressions, the total relaxation time per mode in the

KCM is defined as:

τT (q, T ) = τ̂q,K · (1− Σ) + τ̂C(T ) · Σ = τq,K + τC(T ) . (2.74)

Notice that the collective MFT is already an integrated value that is constant
for all the modes. This contribution is the responsible of the enhancement of
the optical modes [2], as shown in Fig. 1.2. In analogy, the total temperature
dependent MFT will be:

τT (T ) = τ̂K(T ) · (1− Σ) + τ̂C(T ) · Σ = τK(T ) + τC(T ) . (2.75)

These MFT in the KCM framework correspond to the so-called collectons. Sim-
ilar to relaxons, the collectons are a linear combination of phonons.

2.4.1 Note on Matthiessen’s rule
It has been reported in recent works that Matthiessen’s rule approximation may
fail in some materials [22, 65, 66, 67], specially at low temperatures [22]. The
total thermal conductivity computed from individual relaxation times will over-
estimate the real thermal conductivity computed from a full collision matrix in-
cluding all the scattering mechanisms:

1

κT
≤ 1

κ1

+
1

κ2

. (2.76)

As pointed out by Cepellotti et al., the major failure of this approximation
comes from the splitting of N and U processes and adding the thermal conduc-
tivity obtained from their individual contributions.3 In the KCM, N processes
do not contribute to the thermal conductivity, but they play an important role
through the switching factor. Therefore this failure is not present in the KCM.

3We want to remark that N processes alone must not contribute to the thermal resistance as
are momentum conserving collisions.
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2.5 Calculation methodologies
The study of material properties through ab initio calculations can be performed
by lattice and molecular dynamics. In lattice dynamics simulations, the New-
ton’s movement equations are solved analytically assuming harmonic vibrations
and fixed positions. In this kind of simulations, thus, crystalline materials with
high symmetry are required in order to allow the use of periodic conditions to
solve the equations. To account for atomic interactions a potential obtained un-
der perturbation theory is required, which should include anharmonic terms to
compute temperature effects.

Lattice dynamics simulations based on the solution of the BTE have achieved
in the last decade great importance as can be computed in a full first principles
framework, thus avoiding fitting parameters. Good agreement between experi-
mental data and ab initio calculations has been achieved [3, 24, 68, 69].

Molecular dynamics is a calculation approach used to study material prop-
erties by numerically integrating the classical Newton equations. This approach
consists in a simulation of an atomic system that uses analytical potentials (like
Lennard-Jones or Stillinger-Weber) to account for the interaction between atoms,
allowing the study of time-dependent phenomena like first order phase transi-
tions, or the efficient computation of thermodynamic quantities.

The equilibrium structure is determined by an initial random guess of the
velocity of the particles and averaging over long time intervals at a fixed tem-
perature and pressure. To control these two latter parameters, a Nose-Hoover
thermostat and a Berendsen barostat can be used, respectively [42]. Then from
the force acting on each atom, the acceleration is determined and the velocity is
estimated at each time step. From these parameters it is possible to calculate the
heat flux at each time and position using:

Q =
d

dt

N∑
i=1

riEi , (2.77)

where ri is the atomic position and Ei its respective energy excluding the site
energy. The thermal conductivity can be computed using the Green-Kubo rela-
tions:

κ =
1

kBT 2V

∫ ∞
0

〈Q(t+ τ)Q(t)〉 dτ , (2.78)

where the thermal conductivity κ is related to the heat flux autocorrelation func-
tion 〈Q(t+ τ)Q(t)〉. V and T are the volume and temperature of the calculation
respectively. Another way to compute the thermal conductivity is by determin-
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ing the heat flux under an external temperature gradient and using the Fourier
law (non-equilibrium molecular dynamics (NEMD)).

2.6 System modeling
As explained in previous sections, a wrong choice of the potential or number of
atoms could lead to a very time expensive or high computational cost calculation.
The use of pseudopotentials in the framework of the total energy pseudopotential
method does not require such amount of information (i.e. memory) as the real
potential of each atom.

Figure 2.7: Work flow of ab initio calculations [44].

The previous scheme shows the standard calculation procedure for total en-
ergy calculations, where Vion is the ionic potential obtained by summing the
product of the structure factor S(G) and the pseudopotential over all species of
atoms.

Starting from a trial function of the electronic density, expressions for VH
and VXC are constructed. From these potentials the Kohn-Sham equations are
solved and the eigenstates of the system are obtained. These eigenstates generate
a new electronic density, which normally differs from the trial one. If both are
the same, the solution is self-consistent and the total energy is computed. On the
contrary, from the new electronic density new VH and VXC are calculated and
the process is repeated until the starting electric density is the same as the final
one up to some predetermined tolerance.

In order to obtain accurate results able to obtain the correct properties of a
crystal, some convergence tests, not just self-consistency, have to be done.
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Equilibrium lattice constant

To find the equilibrium lattice constant that minimizes the energy of the system
it is necessary to perform several total energy calculations varying the lattice
constant until find the one that leads to the minimum total energy for the system.
This parameter will correspond to the minimum of the curve in an energy-lattice
constant plot.
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Figure 2.8: Total energy versus lattice constant for a 2-atoms silicon primitive cell.

Convergence criteria

The electronic states and the total energy of the system are calculated in a spe-
cial set of q points in the Brillouin Zone using a homogeneous Monkhorst-Pack
grid. Good performance is obtained for insulators and semiconductors with
broad grids, while for semi-metals and metals a denser grid is required in or-
der to define the Fermi surface more accurately. For self-consistent calculations,
the total energy should converge as the density of the grid increases.
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Figure 2.9: Total energy versus q-point grid sampling for a 2-atoms silicon primitive cell.

Kinetic energy cutoff

In theory, the electronic wave functions must be expanded in an infinite plane-
wave basis set, but computationally this is impossible. Taking into account that
the plane waves coefficients in Bloch’s theorem for the lower kinetic energy
states are the important ones, the basis set can be truncated to a certain energy
value. The total energy of the system should converge as the cutoff energy is
increased.
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Figure 2.10: Total energy versus kinetic energy cutoff for a 2-atoms silicon primitive cell.

2.6.1 Alloy simulation
Some important properties of materials can be found not in pure materials but in
alloys. In the case of two well known thermoelectric materials like Si and Ge,
an important reduction of thermal conductivity is found in the alloy Si1-xGex for
germanium concentrations higher than x = 0.05. The computational simulation
of alloys is done mainly by two procedures, the Virtual Crystal Approximation
(VCA) and the random distribution of impurities.
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a) Virtual crystal approximation

The VCA is employed when the total energy pseudopotential calculations frame-
work is used. This technique uses a mixture of the pseudopotential of the two
compounds that forms the alloy in the desired composition [70]. Once the new
pseudopotential is obtained the calculation is done in the same way as described
in Section 2.1.

b) Random distribution of impurities

Alloy can be also simulated by generating supercells with random substitutions
of a certain number of impurities to the desired alloy composition. Calculations
for a fixed number of impurities need to be done with different distributions and
average the results in order to improve the procedure. A big enough supercell is
required for these simulations to avoid the interaction of defects with the ones
of the neighboring supercell. A convergence test can be done increasing the
supercell size maintaining the impurity ratio until the total energy converges.

The simulation of defects (vacancies) in a cell can be done in the same way
as the random distribution of impurities but instead of substituting the atom,
removing it.

This kind of alloy simulations are more suitable for molecular dynamics sim-
ulations where large systems can be implemented. This way the distribution of
alloying atoms or defects can be more arbitrary and does not require to run as
much different simulations and averaging.

A comparison of the phonon scattering rates, relaxation times and the density
of states using both techniques can be obtained elsewhere [71].

An improvement of this technique are the special quasirandom structures
(SQS’s) [72]. In this case, it is demonstrated that for a finite number of periodic
cells, there exist specific configurations that improve the results instead of com-
pletely random configurations. The selection criteria has a physical meaning,
for example using that generally distant atoms contribute less to the total energy
than the closer ones.

Another technique used for the simulation of alloys is the so-called cluster
expansion [73], which allows rapid evaluation of different configurations in or-
der to obtain averaged properties.

2.7 Computational methods
In this section the general workflow used for the KCM ab initio calculations of
thermal properties is detailed.
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The ab initio methods allow calculating the harmonic properties of the crys-
tal, such as the dispersion relations and density of states, as well as anhamonic
properties from the interatomic force constants. All these calculations can be
done with available software such as QUANTUM ESPRESSO [49] or VASP
package [74, 75, 76, 77].

The first step is to describe the crystal under study. In this case, parameters
such as an initial guess of lattice constant based on the experimental value, cell
structure and atomic masses need to be specified. In a second step, it is neces-
sary to choose a suitable pseudopotential and run convergence tests to find the
lattice parameter that minimizes the total energy of the system. Once this pa-
rameter is obtained the supercell can be created. The size of the supercell will
be determined by the total number of atoms. As explained, in ab initio lattice
dynamics simulations the time and memory of the simulation is determined by
the number and type of atoms. A reasonable supercell will have around 100-200
atoms. Tests on computational time and memory use can be done in order to
determine the most suitable supercell.

A second step is to determine the harmonic properties of the crystal. This
will allow knowing the phonon band structure.

Once the harmonic information of the crystal is known, in order to study ther-
mal transport it is necessary to obtain anharmonic IFC from small atomic dis-
placements. To determine the number of displacements and the atoms involved
it is necessary to establish a cutoff radius. This value will determine the number
of neighbors involved in the calculation. This procedure can be done directly
by open source codes such as ALAMODE [78] or Phono3py [79]. Depending
on the desired cutoff radius, the number of interactions will be determined and
reduced according to the crystal symmetries (see Section 2.2). For each of these
displacements will be required to find the total energy of the system in order to
obtain the IFC. It is recommended to use a supercell at least twice the size of the
cutoff radius [50].

The last step prior to compute the thermal properties of the system is to deter-
mine the 3-phonon interaction scattering rates according to Eq. (2.43). ALAM-
ODE and Phono3py can calculate directly the scattering matrix in order to ob-
tain the phonon relaxation times. For the calculation of the thermal properties,
ALAMODE has already as an output the thermal conductivity under the Relax-
ation Time Approximation (RTA). In the case of Phono3py in addition to RTA,
the direct solution of the BTE (D-LBTE) is also available.

In the KCM, the computation of thermal properties requires the splitting of N
and U processes. This has been manually implemented in both ALAMODE and
Phono3py codes to test the model. Recently Phono3py has included the option
of this splitting in the source code. The ab initio KCM equations (Section 2.4)
have been implemented in an open source code and uploaded to be used as a
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post-processing tool of Phono3py outputs in order to calculate the thermal con-
ductivity and hydrodynamic parameters.

Figure 2.11: KCM thermal transport program example [80].

In Fig. 2.11 an example of the output of the KCM script developed to com-
pute thermal properties of semiconductors from first principles is shown [80].
From this program it can be obtained the thermal conductivity for bulk materials
as for reduced size samples using the kinetic-collective boundary approach (see
Chapter 4). In addition the accumulated thermal conductivity as a function of
the frequency and mean free path (MFP) can be obtained, as well as temperature
dependent relaxation times and non-local length to be used in a full hydrody-
namic model.

2.7.1 Calculation tips
In the calculations of IFCs using the direct method in a supercell it is preferable
to use a cubic supercell. This will simplify the identification of the crystal sym-
metries. In addition, a cubic supercell is more suitable for an isotropic choice of
neighboring atoms in the calculation of anharmoinic IFC.

In the calculation of the thermal conductivity in the KCM it is required to
split N and U processes. As defined above, the differentiation of this processes
is related to the 1BZ. Therefore depending on the choice of the cell used in for
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Figure 2.12: Primitive and conventional representation the diamond-like cell for silicon. The dark blue
atoms represent the atoms of the basis.

the sampling of the reciprocal space this splitting can be slightly different. Even
though in the general definition of N and U processes it is not taken into account,
the proper way to define them is in the 1BZ of the primitive cell, otherwise the
choice of N and U processes will be arbitrary.

Figure 2.13: First Brillouin zone (1BZ) and irreducible Brillouin zone (IBZ) for the cubic conventional 8-
atoms cell (right) and for the primitive 2-atoms cell (left) of the FCC structure. Green and red
lines denotes the projection of q on the XY and XZ planes respectively.

In Fig. 2.12 the primitive cell and a conventional cell for silicon are rep-
resented in order to observe the different shape in each case. In Fig. 2.13 is
represented the sampling of the reciprocal space in the primitive and conven-
tional cells shown in Fig. 2.12. As expected, the reciprocal space of the rhombic
primitive cell has a different shape as the one for the cubic conventional one.
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Figure 2.14: Normal and umklapp relaxation times calculated from a 2-atoms FCC primitive cell and 8-
atoms conventional cell for silicon. The umklapp relaxation time is multiplied by x1000 to
easier differentiation.

The N and U relaxation times as a function of frequency are represented in
Fig. 2.14. As can be observed, even though the shape is quite similar in both
cases, small differences can be appreciated. For simple structures this might not
have a relevant effect in the calculation of thermal conductivity, but in complex
cells the difference could be higher. Therefore it is always recommended to deal
with primitive cell when using KCM to have well defined N and U processes.



Chapter 3

Thermal transport of bulk
semiconductors in the KCM

In Chapter 1 the Kinetic Collective Model (KCM), a framework that allow de-
scribing the phonon heat transport in solids including non-local and memory ef-
fects, has been presented. It has been shown how to obtain the relaxation times
that determine the propagation of the different phonons on a sample as correction
from the values obtained from the Relaxation Time Approximation (RTA).

In Chapter 2 a set of equations and techniques allowing to calculate the mag-
nitudes involved in the transport properties from ab initio have been described.
In a first stage, it was explained how to obtain from the harmonic interactions
of the lattice the phonon dispersion relations (DR) and mode velocities. On a
second step, anharmonic effects allow calculating the phonon relaxation times
for the different phonon collisions.

In this chapter, ab initio techniques are used in the KCM to describe the
thermal conductivity avoiding any fitting parameter.

First, thermal conductivity of several well known diamond-like bulk semi-
conductors as Si, Ge, C (diamond) and GaAs are calculated in a wide range of
sizes and temperatures, showing good agreement with experimental data with-
out the use of any fitting parameter. The study is extended to other structures
different from classical diamond-like crystals, like lead telluride (PbTe) or more
complex materials such as α-quartz (SiO2) or bismuth telluride (Bi2Te3).

On a second part the KCM is applied to study the thermal conductivity of
Si1−xGex and InxGa1−xAs alloys. The calculated thermal conductivities match
well with the experimental data at different alloy concentrations. The model
shows that impurity concentrations as little as 0.4% effectively suppress the col-
lective contribution to the thermal conductivity in Si1−xGex, while in InxGa1−xAs,
non-negligible collective contribution (15%) is present at all alloy concentra-
tions. The study shows the significance of proper inclusion of N processes even

71
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in alloys for accurate modeling of the thermal transport.
Finally graphene has been also calculated in the KCM to study a sample

material where collective regime is dominant. The correct prediction of kinetic
alloys and collective graphene shows the strength of the KCM.

The results are compared with conventional pure kinetic models and is shown
that the split of the thermal conductivity in a kinetic and collective contribution
allows to understand some discrepancies with experimental data of those models.

3.1 Dispersion relations and density of states
To obtain the DR of the studied materials, information about the unit cell and
atomic masses is required. In the present case, for Si, Ge, C, a FCC bravais
lattice with 2 atoms in the basis is defined, known as diamond structure. In
this case the basis consists on one atom in the position (0,0,0) and the other
at (1/4, 1/4, 1/4). For GaAs, Ga is in (0,0,0) while As in (1/4, 1/4, 1/4). In
the case of the alloys, the virtual Si1−xGex atom behaves in the same way of
Si for instance, but with the mass of the defined stoichiometry x. On the other
side, InxGa1−xAs behaves like GaAs, where the place of Ga is occupied by a
virtual atom InxGa1−x. PbTe has a NaCl structure, that is a FCC with 2 atoms in
the basis, one at (0,0,0) and the other at (0, 1/2, 0). In the case of more complex
structures, α-quartz has an hexagonal cell with 9 atoms and Bi2Te3 an hexagonal
cell with 15 atoms. The different studied structures can be observed in Fig. 3.1.

Figure 3.1: Crystal structures of the different studied materials obtained with XCrySDen [81].

All the ab initio magnitudes required for the calculations of DR and density
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of states (DOS) detailed in Section 2.2 are calculated from first principles using
the QUANTUM ESPRESSO package [49] and VASP package [74, 75, 76, 77].

For Si, Ge, C, GaAs and the alloys QUANTUM ESPRESSO has been used,
which implements Density Functional Theory (DFT) [46, 47] under the Local
Density Approximation (LDA) in the parametrization of Perdew and Zunger [82].
Core electrons were accounted for with norm-conserving pseudopotentials of the
Von Barth-Car type [83]. Plane waves were cut off at an energy of 60 Hartree.
Born effective charges, which account for the electrons shared in the covalent
bond in polar materials, and dielectric tensor were employed for GaAs to account
for its polar behavior. The calculations have been carried on a 3x3x3 supercell
with 216 atoms generated from the conventional 8-atoms cell. The harmonic and
anharmonic interatomic force constants (IFC) have been calculated in a 4x4x4
q-point grid.
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Figure 3.2: Dispersion relations of silicon, germanium, diamond and gallium arsenide along high symmetry
directions. Dots represent experimental data from [40, 84, 85].

Fig. 3.2 shows the DR of the studied pure semiconductors. As one can ob-
serve, the DR for silicon and germanium are quite similar despite differences in
the maximum frequency value. For diamond, the optical branches achieve fre-
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quencies as high as 40 THz due to the small mass of the atoms. The lighter the
atom, the higher the maximum frequency.

The DR of gallium arsenide have one important difference compared to the
above materials. At the gamma point (Γ) there is a splitting of the optical
branches that is not observable in the other studied materials. The origin of
such behavior is the effect of the Born charges appeared as a consequence of its
polar nature.

From the DR it is possible to calculate the DOS for each material through
a binning of the frequencies of each branch in a frequency region dω. Fig. 3.3
shows the DOS obtained from the DR shown in Fig. 3.2. Direct correlation can
be observed from the shape of the DR and DOS. The zones in the DR where there
is more concentration of occupied bands corresponds to the higher concentration
of states in the DOS.
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Figure 3.3: Density of states of silicon, germanium, diamond and gallium arsenide.

For the calculation of Si1−xGex and InxGa1−xAs alloys the Virtual Crystal
Approximation (VCA) described in Section 2.6.1 has been used. At each com-
position x, the lattice parameter was adjusted until the pressure was less than
0.1 kbar. Solution of the ensuing dynamical matrix provides the DR and trans-
port parameters. In this case the DR will have a similar shape as found in the
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previous cases, as the crystal cell is the same. While Si1−xGex will have DR
similar to those of Si and Ge, InxGa1−xAs will have the shape of GaAs, again
with the splitting of the optical branches at the Γ point due to its polar behavior.
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Figure 3.4: Density of states for different Si1−xGex alloys ranging from silicon to germanium with incre-
ments of x=0.1 in the germanium concentration.
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Fig. 3.4 and Fig. 3.5 show the DOS for the Si1−xGex and InxGa1−xAs al-
loys for different alloy concentrations x. It can be observed how the DOS of
each stoichiometry has a similar shape but the maximum achievable frequency
is reduced as the total mass is increased.

In the case of PbTe and more complex materials as α-quartz and Bi2Te3 the
calculations have been done using VASP under the LDA. LDA pseudopotentials
in the parametrization of Perdew and Zunger are used [86]. Plane waves are
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cut off at 300 eV. For the simulations of PbTe is used a 4x4x4 cubic cell, for
α-quartz a 6x6x3 supercell with 972 atoms, and for Bi2Te3 a 3x3x1 supercell of
135 atoms. For the computation of DR, DOS and IFC has been used a 4x4x4
q-point grid in the first case, a 4x4x2 for α-quartz and 3x3x1 for Bi2Te3.
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Figure 3.6: Dispersion relations along high symmetry directions and density of states of PbTe.

Fig. 3.6 shows the DR and DOS of PbTe. It can be observed that, although
is a FCC structure with 2 atoms in the basis as in the previous studied cases, the
shape of both representations is quite different. This is caused by the different
basis of each crystal structure. In Fig. 3.7 the same plot is done for α-quartz. In
this case, the primitive cell has 9 atoms, therefore will appear 27 phonon bands.
An appreciable feature of this material is the appearance of a gap larger than
5 THz.

In Bi2Te3 the shape of the DR and DOS is used a hexagonal conventional
cell of 15 atoms instead of the trigonal one of 5 atoms. This is more suitable for
the generation of a symmetric supercell for next anharmonic ICF calculations.

The used cell will provide 45 phonon branches. In this case, as well as in α-
quartz, the high mass of the atoms are responsible for the low energy phonons,
in the opposite way as pointed out for diamond in Fig. 3.3.

3.2 Scattering rates and mean free times
To compute the thermal conductivity, in addition to the DR and DOS, which
provide the phonon velocities and number of phonon modes, it is necessary to
obtain the phonon collision relaxation times. Such relaxation times are obtained
from the phonon scattering rates through the collision matrix.
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Figure 3.8: Dispersion relations along high symmetry directions and density of states of Bi2Te3.

In the KCM, the phonon relaxation times are obtained by a combination of
two contributions, the kinetic and the collective relaxation times. These are two
different averages of the resistive scattering mechanisms present in the sample.
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The linear combination is calculated through the switching factor Σ, including
normal (N) scattering as defined in Section 2.4 Eqs. (2.74)-(2.75).

The originality of KCM approach is that the relaxation times are based on
the RTA but splitting N and umklapp (U) processes. From this, the KCM can
be understood as a generalization of the RTA. In addition, this generalization
allows including the effect of the conservation laws on the thermal transport. The
connection of conservation laws with the changes in the relaxation times allows
a deeper understanding of the underlying physics despite of the simplicity of the
approach.

The calculation of the relaxation times requires to obtain a set of anharmonic
IFC to generate the collision matrix (see Section 2.3). This step requires a large
number of calculations. For cubic cells it is possible to use the same supercell
as used in the calculation of the DR. Calculations of the interactions up to 3rd
neighbors have been performed to compute second and third order force con-
stants. N and U phonon relaxation times are obtained through the anharmonic
IFC. A 40x40x40 q-point grid is used for phonon Brillouin zone sampling in
such calculations, while a 160x160x160 mesh is used for a finner DOS calcula-
tions. For this purpose the open code package ALAMODE [78] is used, where
splitting of N and U events has been manually implemented in the code. Extrap-
olation of the latter values has been done for low frequencies in the DOS mesh
sampling.
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Figure 3.9: Umklapp (left) and normal (right) silicon relaxation times calculated from first principles in a
40x40x40 q-point grid at 300 K. Solid lines represent analytical expressions.

From Fig. 3.9 the relaxation times of each of the acoustic and optical branches
of silicon can be observed. It is interesting to compare the ab initio results with
analytical expressions τ = A · ωn. This kind of analytical expressions were
used previously of the implementation of the first principles calculations in an
achievable computational time [1, 27]. Nowadays analytical expressions for the
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relaxation times can be used as a good approximation for fast calculations or
even to obtain results at very low frequencies, where the required computational
resources are still very high, as shown in Section 5.3.

Figure 3.10: Umklapp (left) and normal (right) bismuth telluride relaxation times calculated from first prin-
ciples in a 24x24x8 q-point grid at 300K. Indexation has been omitted to avoid mix-up. Colors
are considered to show the trend of the different branches.

For Bi2Te3 and α-quartz the N and U three phonon scattering relaxation
times are calculated useing Phono3py [79] in a 24x24x8 and 20x20x20 q-point
grid sampling respectively.

For diamond-like semiconductors the trend of the N and U relaxation times
are very similar as they are strongly dependent of cell structure. For more com-
plex materials like Bi2Te3 the frequency behavior can be significantly different.
In Fig 3.10 are represented the N and U relaxation times for Bi2Te3. As it can
be observed, there is a huge dispersion in the relaxation time of each branch in
terms of frequency. This behavior makes it complicated to define an analytic ex-
pression able to fit the data as has been found for the previous semiconductors.
Despite of this drawback, approximate calculations in terms of frequency can be
done by averaging the relaxation time in a fraction dω. More accurate results can
be obtained through a full q-mode calculation, but from a computational point
of view access to low frequency phonons is still complicated.

Finally, in addition to the N and U relaxation times, for real bulk materials its
is also necessary the relaxation time corresponding to the impurity/mass defect
scattering events. Using Eq. (2.51) or Eq. (2.53) from Section 2.3 in a q or
ω-mode respectively the isotope scattering can be directly calculated. Fig. 3.11
shows the impurity relaxation time for the studied pure samples corresponding to
natural isotopic concentration. As can be observed, at low frequencies the trend
is τI ∝ ω−4. From Tamura’s expression Eq. (2.53) there is a dependence τ−1

I ∝
D(ω)ω2, where D(ω) is the DOS. At low frequencies D(ω) ∝ ω2, therefore it
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Figure 3.11: Impurity relaxation time for Si, Ge, C, Ge, PbTe, α-quartz and Bi2Te3 as a function of fre-
quency in a 20x20x20 q-point grid.

is clear that τI ∝ ω−4. In Section 5.2 the influence of this scattering event in the
transient response of thermal conductivity of alloys is discussed.

3.3 Kinetic slowdown
In the RTA N processes are treated equivalent to R ones. Therefore, the total
relaxation time obtained under this approximation can be expressed as:

τRTA(ω) =
1

1
τR(ω)

+ 1
τN (ω)

. (3.1)

As in most cases τN < τR (specially at low frequencies), τN dominates, and
the obtained relaxation time is lower than considering only resistive collisions.
A reduction of the resistive effects is necessary but not sufficient to obtain the
thermal conductivity. The KCM may have an explanation of why the thermal
conductivity in the classical RTA seems to indicate that N scattering is acting as
a resistive collision. Having a look at the KCM expression, the total relaxation
time is expressed as τKCM(T ) = τ̂K(T ) ·(1−Σ)+ τ̂C(T ) ·Σ, where τ̂K(T ) ·(1−
Σ) = τK(T ) and τ̂C(T ) · Σ = τC(T ) are the kinetic and collective contributions
to the total relaxation time. The hatˆdenotes the limiting cases. Developing the
kinetic contribution term:

τK = τ̂K(T ) · (1− Σ) = τ̂K(T ) ·

(
1− 1

1 + τN (T )
τ̂K(T )

)
=

1
1

τ̂K(T )
+ 1

τN (T )

, (3.2)
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where τ̂K(T ) = τR(T ). Notice the similarities between the kinetic relaxation
time τK and τRTA. The main difference is that in one case it is an integrated
value depending only on the temperature, while in the other it is a frequency de-
pendent magnitude. From this, it can be observed that in the KCM the factor that
produces the reduction of the contribution of resisitve terms is (1− Σ). This ef-
fect is the so-called kinetic slowdown, which can be observable in the relaxation
times (see Fig. 1.2) but also directly in the thermal conductivity (see Fig. 3.16).
This reduction of the mean free time (MFT) is a consequence of the appear-
ance of a collective regime. In addition, from τKCM(T ) it can be observed that
the total relaxation time requires an extra contribution τC(T ). In systems where
τN > τR, Σ → 0 and τRTA ≈ τKCM = τ̂K provides a good approximation.
On the contrary, when τN � τR, the contribution of τC is relevant and the RTA
underestimates the thermal conductivity [3].
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Figure 3.12: Temperature dependent relaxation times for bulk silicon.

The effect of N processes on the relaxation times in the RTA and KCM for
bulk silicon is represented in Fig. 3.12. It can be observed that for temperatures
above 150 K, τRTA is equivalent to τK , while at lower temperatures they are
slightly different. This is not strange as, although the expressions are quite simi-
lar, in one case the addition of N and R processes is done prior to integration and
in the other case afterwards. As, at low temperatures, thermal transport is dom-
inated by low frequency phonons (where N scattering dominates), the failure of
the RTA is higher in this region. At 300 K, for instance, the kinetic slowdown
induced by (1−Σ) in the KCM gives a value very close to the one obtained un-
der the RTA. In this case, it can be also noticed that the non-negligible collective
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contribution τC(T ) makes the total relaxation time in the KCM slightly higher
than in the RTA. This difference will be more remarkable in materials where N
processes are more dominant, like diamond.

Figure 3.13: Frequency dependent relaxation times for bulk silicon. Comparison of RTA, KCM, kinetic
(resistive) and collective relaxation times from Alamode.

In the frequency domain, the kinetic slowdown is represented in Fig. 3.13.
Here the kinetic (resistive, i.e. umklapp and impurity/mass defect) and col-
lective relaxation times, which give the total KCM relaxation time (τ(ω) =
τ̂K(ω) · (1 − Σ) + τ̂C(T ) · Σ) are compared to RTA. Notice that the collec-
tive relaxation time is also resitive but frequency independent (see Section 2.4).
From this figure the effect of Σ in reducing the contribution of the low frequency
resistive phonons is clear. In addition, it is observable that the RTA in this re-
gion provides similar relaxation times. What the RTA is not able to reproduce
properly is the enhancement of optical phonons. This effect is caused by the
collective contribution τ̂C ·Σ. As in the high frequency region τC > τK , the total
relaxation time is dominated by the collective term. This contribution makes the
RTA understimate the thermal conductivity of silicon by ∼ 20 W/mK [3]. In
addition, this is the reason why in Fig. 3.12 τRTA < τKCM .

As have been shown, the incorrect inclusion of the N processes as resistive
in the RTA gives a reduction of the thermal conductivity that must be interpreted
correctly based in the KCM formalism. Otherwise wrong results will be ob-
tained in cases where N scattering is dominant. Also, the use of the Σ factor
allows quantifying exactly the reduction of the thermal conductivity due to N
effects. This information is completely lost using RTA or with full solutions, as



3.4. THERMAL CONDUCTIVITY OF BULK MATERIALS 83

in the latter case only a single value of relaxation time or thermal conductivity is
obtained, in contrast to the KCM.

3.4 Thermal conductivity of bulk materials
The thermal conductivity of bulk materials have been calculated using the KCM
ab initio relaxation times shown in Section 3.2 and the thermal transport equa-
tions from Section 2.4.

The model has been tested successfully using integrations with averaged fre-
quency and q dependent expressions. While for the latter case it is necessary
to increase the grid point sampling until achieve convergence, the former allows
easy extrapolation to low frequencies with suitable expressions (see Section 5.3).

3.4.1 Group IV and III-V semiconductors
Table 3.1 shows the values of the parameters concerning the calculations of ther-
mal conductivity.

Material Lattice parameter γ
[Å] [adim]

Silicon 5.401 20.01 · 10−5

Germanium 5.775 58.7 · 10−5

Diamond 3.573 7.54 · 10−4

Gallium Arsenide 5.547 γGa = 0, γAs = 1.97 · 10−4

Table 3.1: Values of lattice parameter, mass defect term γ for natural bulk group IV and III-V semiconduc-
tors.

The calculated thermal conductivities of KCM compared to experimental
measurements for bulk Si, Ge, diamond and GaAs samples in a range of temper-
atures are plotted in Fig. 3.14. Good agreement is obtained between predictions
and experimental data without any adjustable parameter. Similar results for bulk
samples have been reported using the iterative solution of the BTE [90]. As dis-
cussed in Section 3.3, in samples where N scattering is important, like diamond
or graphene, RTA underestimates the thermal conductivity [24], as the collec-
tive contribution is neglected in this approach. Notice that the experimental data
have a finite size of the order of ∼ 10−3 m, therefore boundary effects can be
noticed at low temperatures.

The dependence of Σ on temperature and size could be key to interpret ex-
periments at different temperatures and sizes [6, 91]. Indeed, the collective con-
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Figure 3.15: Switching factor Σ for Si, Ge, GaAs and C in terms of temperature. Left: bulk. Right:
Leff = 2.8 mm.

tribution, which is the contribution to heat transport due to momentum conserva-
tion, is probably responsible for the hydrodynamic behavior proposed recently
to describe thermal conduction in recent works [13, 14]. Then, hydrodynamic
effects are expected to be relevant for finite values of Σ.

Fig. 3.15 shows the switching factor for the presented group IV and III-V
semiconductors as a function of temperature. In the left plot is represented the
Σbulk, where no boundary effects are included, which represents the intrinsic
collective behavior. If boundary scattering does not limit the thermal transport,
at low temperatures the thermal conductivity tends to infinite, as N scattering
dominates. This dominance of N effects at low temperatures is also reflected in
Σbulk. From this representation it can be observed that when no boundaries are
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considered the collective behavior becomes more important as the temperature
decreases. This increase is due to the fact that at low temperatures, although an-
harmonicities decrease, the N scattering is dominant in front of U processes. In
recent theoretical works it has been reported the appearance of a hydrodynamic
behavior at low temperatures in 2D materials like graphene [13, 14], in agree-
ment with the behavior predicted by Σbulk. It is expected that when materials
intrinsically exhibit collective behavior, as found in silicon or diamond, hydro-
dynamic heat flux equations can be used with suitable boundary conditions to
compute the thermal conductivity as a function of temperature and size [15].

The Σbulk representation allows in addition to observe that the range where
the impurity scattering has more impact on the thermal transport is around 20-
100 K for the presented samples. It is also interesting to see the high value of
Σbulk for diamond in the range of 70-300 K due to the dominance of N processes.

In real samples, even though are named bulk, boundary effects are present,
and can be noticed at low temperatures. Boundary scattering is resistive, and
its inclusion on the total resisitve relaxation time will change the value of Σ.
In Fig. 3.15 right it can be observed that for finte sizes near to bulk values
(Leff = 2.8 mm) the collective contribution to thermal conductivity goes to zero
as the temperature decreases due to boundary effects. As boundary scattering is
independent of the temperature, at low temperatures it will dominate the ther-
mal transport. At intermediate temperatures, around 100 K the samples exhibit
a transition from a kinetic (Σ = 0) to a collective (Σ = 1) transport regime,
where boundary effects begin to loose importance in front of impurity and 3-
phonon scattering. When the temperature is increased Σ tends to saturate to a
fixed value. In this region the collective contribution to thermal conductivity has
its maximum value. In the next chapter it will be described in detail the effects
of the boundaries on the collective regime through the Σ factor.

From Fig. 3.15 it can be observed that the reduction of the kinetic contri-
bution (kinetic slowdown) at 300 K is around 50% for the presented materials
(Σ ∼ 0.5). Despite of this significant value of Σ, the collective contribution
to thermal conductivity is less than 10% for Si, Ge and GaAs. In contrast, in
diamond such contribution is up to 16% of the total thermal conductivity. This
means, that the effect of N processes in this material has a higher impact, not
just by reducing the kinetic contribution but leading a significant collective one.
Even though in Si, Ge and GaAs the collective contribution to thermal conduc-
tivity is not as important as in C, the high Σ indicates that hydrodynamic effects
are expected to be observed at reduced scales.

The kinetic and collective contributions to thermal conductivity of Leff =
1 mm diamond as a function of temperature are represented in Fig. 3.16. It can
be observed, that skipping the low temperature range where due to the finite size
the boundary dominates, there is an important collective contribution to thermal
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Figure 3.16: Kinetic and collective contributions to thermal conductivity of Leff = 1 mm diamond in terms
of temperature. Experimental data from [88].

conductivity in the whole range, being ∼ 400 W/mK at 300 K.

3.4.2 Other pure structures
Regarding bulk materials, other structures as PbTe with different basis of that
dimanond-like materials, α-quartz and Bi2Te3 has been also studied in the ab
initio KCM framework.

Bismuth telluride

The low thermal conductivity of Bi2Te3 has made of this material a valuable
thermoelectric, having a figure of merit around ZT ∼ 1 in its bulk form and
achieving values up to 1.4 at reduced dimensions [92]. Recently it has been re-
ported that first principles calculations of high anharmonic crystals may require
to consider the temperature dependence of the Born-Oppenheimer potential en-
ergy surface [92]. Despite of this, LDA pseudopotentials at T = 0 K have
demonstrated also to provide good results [86]. Table 3.2 shows the parameters
used for the ab initio calculations.

For the calculation of the thermal conductivity of bismuth telluride, due to
its anisotropy, the thermal conductivity tensor will not be diagonal and with the
same values for each component, as found in Si or Ge for instance. In this case
it is not possible to do the classical simplification of vq ⊗ vq → 1/3c2. It will
be necessary to compute the whole tensor to determine the thermal conductivity
of each component.

The thermal conductivity κXX of Bi2Te3 is represented in Fig. 3.17. Good
agreement between experimental data and the KCM prediction is obtained. As
can be observed, the collective regime has only a small contribution at low



3.4. THERMAL CONDUCTIVITY OF BULK MATERIALS 87

Material Lattice parameter γ
[Å] [adim]

a1=(4.35, 0, 0)
Bismuth telluride a2=(-2.18, 3.77, 0) γBi = 0, γTe = 2.84 · 10−4

a3=(0, 0, 29.86)

Table 3.2: Values of lattice parameter and mass defect term γ for natural bismuth telluride. The lattice
vectors correspond to the conventional hexagonal cell.
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Figure 3.17: Thermal conductivity of bulk bismuth telluride. Solid black line represents the total thermal
conductivity. The filled green line accounts for the kinetic contribution and the filled red zone
for the collective contribution. Experimental data from [93].

temperatures, being less than 10% at 300 K. In contrast, the kinetic slowdown
caused by the effect of N processes reduces the kinetic contribution up to a 53%
(Σ = 0.53).

The low thermal conductivity of bulk Bi2Te3 has its origin on the high U
scattering rates at low frequencies. As the U scattering rate increases the relax-
ation time decreases. Therefore, as κ ∝ τU , the thermal conductivity will be
small. Comparing Fig. 3.9 and Fig. 3.10, it can be observed how in silicon the
U relaxation time increases as τU ∝ ω3 at low frequencies, while for Bi2Te3 the
exponent is clearly smaller than 2. This explains the huge difference of thermal
conductivity between both materials.

Lead telluride and α-quartz

Another test of the model has been done to calculate the thermal conductivity
of PbTe and α-quartz. In the case of α-quartz, due to its high asymmetry, the
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thermal transport will strongly depend on the crystal direction. Although the
available experimental data for the Y Y and ZZ components is quite old [94], a
broad comparison can be done with the KCM prediction. The values used for
the ab initio simulations are shown in Table 3.3.

Material Lattice parameter γ
[Å] [adim]

Lead telluride 6.57 γPb = 1.94 · 10−5, γTe = 2.84 · 10−4

a1=(4.87, 0, 0)
α-quartz a2=(-2.43, 4.22, 0) γSi = 2.01 · 10−4, γO = 3.36 · 10−5

a3=(0, 0, 5.37)

Table 3.3: Values of lattice parameters and impurity terms γ for natural PbTe and α-quartz. The lattice
vectors corresponds to the NaCle and hexagonal cell respectively.

0

5

10

15

20

25

30

T
h
e
rm

a
l 
C

o
n
d
u
c
ti
v
it
y
 [
W

/m
K

]

Temperature [K]

Theory PbTe
Theory -quartz yy
Theory -quartz zz

Exp PbTe
Exp -quartz yy
Exp -quartz zz

300 400

Figure 3.18: Thermal conductivity of PbTe and α-quartz predicted by KCM. Experimental data from [94]
and [95] for α-quartz and PbTe respectively.

In Fig. 3.18 the KCM prediction of thermal conductivity in terms of tempera-
ture for PbTe and α-quartz is represented. Good agreement with the experimen-
tal data in both cases can be observed. The small disagreement found in α-quartz
can have several explanations. As the crystal structure has very low symmetry,
this can affect to the first principles calculations. A deeper study of convergence
of all the parameters used for the calculations, as well as larger supercell is re-
quired in order to achieve better results. More recent experimental data will also
help to compare with the theoretical predictions. The low thermal conductivity
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of this materials can be attributed to the flatness of the phonon bands, which lead
to small phonon velocities.

In the case of PbTe, α-quartzY Y and α-quartzZZ the kinetic slowdown is
50%, 48% and 55% respectively. Despite of the high Σ, the collective con-
tribution to thermal conductivity in both materials is ∼1% , ∼6% and ∼0.4%
respectively.

3.4.3 Alloy thermal conductivity
Pure semiconductors can have significant collective effects while alloys, due
the high impurity scattering, are mainly kinetic. In the KCM, the splitting of
the thermal conductivity in two contributions is able to describe properly the
transition from a pure material to an alloy, in contrast to pure kinetic approaches.

The calculations for alloy samples require the use of mixed pseudopotentials
using the VCA and the special treatment of the alloy scattering term described
in Section 2.6.1.

The DR, DOS, IFC and different scattering terms have been computed for
different alloy concentrations x. For Si1−xGex, such calculations have been car-
ried in the VCA for x = 0.0025, 0.004, 0.01, 0.04, 0.1, 0.2, 0.4, 0.5, 0.82 and for
InxGa1−xAs at x = 0.01, 0.15, 0.3, 0.53 compositions. Interpolation has been
used in the latter case for smaller and intermediate concentrations.
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Figure 3.19: Lattice parameter and alloy term Γ for Si1−xGex alloy as a function of germanium concentra-
tion x.

In Fig. 3.19 the lattice parameter and the alloy term γ for Si1−xGex in terms
of the Ge concentration x is represented. As can be observed, as the Ge con-
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centration increases, both the lattice parameter and the alloy term increases as
well. As it is expected, the lattice parameter continue increasing until achieve
the value of pure germanium. In contrast, the alloy term increases until an alloy
concentration of∼50% and then starts to decrease, defining an inverse parabolic
shape.
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Figure 3.20: Thermal conductivity of Leff = 7mm rods in terms of alloy concentration x at 300 K for a)
Si1−xGex and b) InxGa1−xAs. Green and red filled zones denote the kinetic and collective
contributions to the thermal conductivity respectively. The black solid line is the total ther-
mal conductivity. Insets represent magnifications at low impurity concentrations.Experimental
data for Si1−xGex are from [96, 97, 98]. GaAs experimental data are taken from [89] and the
first principles model from [28].

Fig. 3.20 shows the KCM prediction of the thermal conductivity for Si1−xGex
and InxGa1−xAs rods at 300 K. One observes that theoretical predictions (black
lines) agree with experimental data for Si1−xGex. For InxGa1−xAs some incon-
sistencies between old published bulk experimental data [96, 99] can be noticed,
reporting values smaller than 5 W/mK, and recent 1.6 µm thin films measure-
ments of 5.5 W/mK for In0.53Ga0.47As at 300 K [100]. The recent data suggests
that bulk values are expected to be higher than 5.5 W/mK. Note that collective
thermal transport (red region) is only important for very pure materials close to
x = 0, being mostly destroyed with impurity fractions as low as 0.4% and 4%
for Si1−xGex and InxGa1−xAs respectively.

From the insets it can be appreciated that although the kinetic contribution
can describe most of the concentration range, it is not able to explain the conduc-
tivity near the pure region x ∼ 0, where the collective term contributes almost
up to a 10% of the thermal conductivity [71]. It is the correct treatment of
N processes, as done by KCM or iterative and full solution methods, that pro-
vides good predictions at all concentrations. These results show that a proper
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description of the collective contribution is necessary to understand the large
drop in thermal conductivity at small impurity concentrations. In the case of
InxGa1−xAs, it is visible that the reduction of the collective contribution when
the alloy concentration is increased is not that sharp as found in Si1−xGex. This
is a consequence of the difference of the strength of the alloy scattering in each
sample: the isotopic mass variation term in Si1−xGex alloys is several times
larger than in InxGa1−xAs alloys (see Section 5.1).
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Figure 3.21: Switching factor Σ corresponding to Fig. 3.20a) and b) showing the transition to a kinetic-
dominant regime as impurity increases.

A magnitude that quantifies differences between Si1−xGex and InxGa1−xAs
is the Σ factor, represented in Fig. 3.21. For pure materials like Si and GaAs
values of ΣSi ∼ 0.52 and ΣGaAs ∼ 0.49 at 300 K are obtained. When the alloy
concentration is increased this value decreases fast below 0.1 for Si1−xGex, with
a minimum of ∼ 0.04 around Si0.7Ge0.3. In contrast, in the case of InxGa1−xAs
the reduction of Σ is smoother, decreasing from 0.49 → 0.15 for In concentra-
tions going from x = 0→ x = 0.3. Since the larger the value of Σ the larger the
collective contribution, the sharper change of Σ in Si1−xGex alloys as impurity
increases translates into a sharper drop in conductivity, as displayed in Fig. 3.20.

A second issue to be pointed out, is that as a consequence of N scattering,
do not only appear a collective contribution to thermal conductivity but also
causes the slowdown of kinetic modes (kinetic slowdown). The pure kinetic
term k̂k is thus reduced by a factor (1 − Σ). Since the minimum values of
Σ displayed in Fig. 3.21 are 0.04 for Si1−xGex and 0.15 for InxGa1−xAs, this
correction amounts at least a 4% and a 15%, respectively. In general, according
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to these calculations, it will be more important in InxGa1−xAs than in Si1−xGex.
It is important to notice, that although full solutions can provide the exact

value of thermal conductivity, as KCM, the contribution of N effects can not
be directly quantified. In contrast, the splitting of the thermal conductivity in a
kinetic and a collective contribution in the KCM allows quantifying easily such
contribution.

3.5 Graphene
In the study of bulk samples, the KCM has been applied in graphene, a trend-
ing topic 2D material, although intrinsically it is a zero bandgap semiconductor.
Moreover, even though is a 2D material, the calculation of the thermal conduc-
tivity do not require to apply any boundary condition.

Material Lattice parameter γ
·a[Å] [adim]

a1=(1, 0, 0)
Graphene a2=(0.5, sin(2π/3), 0) 7.39 · 10−5

a3=(5, 0, 0)

Table 3.4: Values of lattice parameter and mass defect term γ for natural graphene. The lattice vectors
correspond to the primitive cell with lattice parameter a = 2.4678 Å.

Figure 3.22: Crystal structure of graphene obtained with XCrySDen [81].

Table 3.4 and Fig. 3.22 show the crystal parameters and structure of graphene
respectively used for the first principles calculations. As done with the other ma-
terials, first of all is required to calculate the DR, DOS and IFC. From Table 3.4
can be observed that despite of being a 2D material it is specified a z compo-
nent. That is because the available ab initio softwares requires this parameter in
order to create a supercell. In these calculations a 6x6x1 supercell with 72 atoms



3.5. GRAPHENE 93

has been used. Notice that the distance z(a3) must be larger than the other two
dimensions in order to avoid interaction of the atoms from the upper sheet when
calculating IFC. The harmonic and anhamornic IFC have been computed in a
3x3x1 q-point mesh sampling.
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Figure 3.23: Dispersion relations and normalized density of states of graphene monolayer.

Fig. 3.23 shows the DR and DOS of graphene. As the primitive cell has 2
atoms in its basis, the DR representation shows 6 phonon bands.
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Figure 3.24: Thermal conductivity of graphene monolayer in therms of temperature. Experimental data are
taken from [101].
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The ab initio calculation of the thermal conductivity of graphene requires to
scale the output value to the real volume. As it can be observed in Eq. (2.68)
and Eq. (2.71), the thermal conductivity is normalized by the volume. As in the
cell generation it is used a large z component to avoid undesired interactions,
the larger the parameter the smaller the thermal conductivity. To obtain the final
value of lattice thermal conductivity it is necessary to rescale this value to the
interlayer distance of the bulk material, graphite in this case.

The thermal conductivity of a graphene monolayer with natural isotopic im-
purity concentration is shown in Fig. 3.24. The electronic contributuion of in-
trinsic graphene has been measured to be around κe ∼10 W/mK at 300 K [102].
This value has been removed as a constant contribution at all temperatures to
compare to the KCM prediction. For high doped graphene such contribution can
achieve values of κe ∼300 W/mK at 300 K [103]. It can be observed that KCM
provides a close prediction to experimental data within the error bars. A proper
inclusion of the temperature dependent electronic contribution will help to im-
prove the predictions. In this figure it is clear that in the thermal transport of
graphene the collective regime plays an important role. At 300 K the contribu-
tion of the collective regime to the thermal conductivity is of 42%, and increases
as the temperature goes down. This is due to the dominance of N scattering
in front of the resistive mechanisms, having Σ ∼ 0.7 at 300 K. In agreement
with KCM, the importance of collective effects on graphene has been recently
proposed in several works to understand its thermal transport [14, 13].

Despite of the high importance of graphene for several electronic applica-
tions, its performance as a thermoelectric material is poor as intrinsically has no
gap and high thermal conductivity. Other monolayer materials like phosphorene
can be more suitable for this purpose [104].

From the present results obtained for graphene, it is clear that collective ef-
fects are important in order to understand its thermal transport. Therefore, a
model able to quantify exactly the contribution of this collective effects, as done
by KCM, is appropriate to study this kind of materials.

3.6 Thermal conductivity in other models

The solution of thermal conductivity provided by the ab initio KCM has been
compared with other models presented in Section 1.2.

In Fig. 3.25 the predictions of the thermal conductivity as a function of tem-
perature of the different presented models for natural bulk silicon and diamond
are represented . As can be observed all the recent solutions provide good ap-
proximation to experimental data. It can be observed that the RTA slightly un-
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Figure 3.25: Left: Thermal conductivity of natural bulk silicon as a function of temperature for RTA, I-
BTE [68], D-LBTE [21], R-LBTE [22] and KCM. Right: Thermal conductivity of natural
bulk natural diamond as a function of temperature for RTA, I-BTE [68], D-LBTE and KCM
using q-mode integration.

derestimates the experimental value of the thermal conductivity in the whole
temperature range for silicon, while for diamond underestimates up to 27%.

Differences between KCM and other models can be due to the expansion of
the non-equilibrium distribution function. In general approaches it is used that
the non-equilibrium distribution function is expanded to the first order in energy
n = neq + n1(ε) (0th-moment of the distribution) or first order in momentum
n = neq + n1(q) (1st-moment of the distribution). This procedure accounts for
the conservation of energy of the whole distribution but the momentum conser-
vation is not globally imposed. The action of N scattering in the distribution can
not be properly accounted because this scattering mechanism can not relax the
1st-moment (heat flux) and the 2nd-moment (flux of the heat flux) is directly af-
fected. In contrast, the KCM, regarding the approximation done to calculate the
relaxation times, is derived up to nth-moment of the distribution function. This
expansion allows in addition to fulfill the momentum conservation globally. Do-
ing so, hydrodynamic effects appear due to the reduction of the 2nd-moment
equation to the 1st-moment, leading consequently to a generalized set of equa-
tions for the micro/nanoscale heat transport.

From a computational point of view, the energy and momentum conservation
can also affect the solutions obtained by I-BTE, D-LBTE and R-LBTE. In first
place, the energy conservation is imposed mathematically by a delta function.
As explained in Section 2.3, this delta function is computed by a Gaussian or
Lorentzian function or in a tetrahedron method, therefore, the energy conser-
vation is never exactly fulfilled, even though the weight can be very small. In
addition, having a phonon distribution function n ' n0 + Φ · n0(n0 + 1)/kBT ,
the scattering matrix element derived by Ziman [19] in Eq. (2.44) for the process
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Figure 3.26: Collision operator split in normal and resistive processes. Each line of the matrix corresponds
to a different moment of the distribution function.

of annihilation of one phonon can be expressed as:

Γi ∝ (Φi,1 − Φi,2 − Φi,3) , (3.3)

where i refers to energy or momentum for instance. In the case of the energy,
Φi ∝ ε and for the momentum conservation Φi ∝ q. Therefore for N processes
Γi ≡ 0 for the energy and momentum. The fact that this is not exactly fulfilled
due to computational restrictions can have consequences in the calculation of
any parameter derived from the scattering matrix, like the thermal conductivity.

In the KCM the energy and momentum conservation is always fulfilled be-
cause, as this is a known premise, it is directly imposed in the scattering matrix.
In Fig. 3.26 the scattering matrix solved in the KCM is represented. As can be
observed, the scattering matrix is split in two terms, referring to N and resistive
(R, umklapp and impurity/mass defect) processes. The first element of the diag-
onal (red square) of each matrix corresponds to the energy conservation, and the
second one (blue square) to the momentum conservation. As can be observed
inside squares, the energy conservation is directly imposed in both terms. In ad-
dition, it can be noticed that the momentum conservation for N processes (blue
square) is also imposed, as expected.

In the precise case of dealing with the full scattering matrix, when N colli-
sions are dominant, the null value in the matrix element can carry problems on
the diagonalization. In such cases this matrix element will fluctuate around the
zero and the diagonal matrix is not invertible. Computationally this will create a
divergence on the solution.

In Fig. 3.27 the solution of the D-LBTE from 20-1000 K compared with
KCM solutions including spurious terms is represented. The series of KCM
simulations for different values f · ΓN , where f = 1, 10−1, 10−2, 10−3, −10−1,
−10−2,−10−3 represents the effect of include a value f ·ΓN where must be a zero
according to Fig. 3.26. As it can be observed above 150 K this spurious terms
do not have any effect on the thermal conductivity, but at lower temperatures,
where N processes become more important, create divergences on the solution
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Figure 3.27: Thermal conductivity of natural bulk natural diamond as a function of temperature for D-
LBTE obtained from Phono3py [79], KCM and altered solutions.

of the thermal conductivity. This kind of divergences are also observable in the
D-LBTE solution (unstable region).

Regarding iterative methods to solve the BTE, it has been demonstrated that
a wrong choice of the initial guess for the relaxation times can lead to diver-
gences [22]. This can happen when the initial guess is very far from the real
value. As the starting point is the classical RTA relaxation time, in materials
where N is important, this value is far from the real one. This can happens in
materials like diamond or graphene for instance. In such situations a more suit-
able starting point could be the KCM relaxation times, which are quite close to
the real value and can provide fast convergence.





Chapter 4

Low dimension thermal
conductivity in the KCM

When studying thermal transport, low dimension systems are of great impor-
tance. Once the size of a sample is reduced, thermal properties are different from
those expected for bulk materials. In the case of thermal conductivity, boundary
effects at reduced sizes induce a reduction of the thermal transport.

The most common way to introduce boundary effects has been to limit the
contribution of phonons through Casmir’s model [61]. In recent years the evo-
lution of the technology has allowed to synthesize samples of small size up to
few nanometers, where the boundary effects in thermal transport need a more
complex treatment.

The KCM gives a new approach to the problem of boundary effects with
respect to the viewpoint of pure kinetic models, where only individual bound-
ary scattering processes can be accounted. Although the latter models with ad-
justable parameters can provide good fits to experimental data at the nanoscale,
the relaxation times used at small scales still need to be modified with respect to
the ones used in bulk [105].

From the general Guyer and Krumhansl kinetic-collective boundary approach
in the KCM, a kinetic treatment of the boundary effects through the Matthiessen’s
rule of the Casimir’s term in the kinetic regime is used. In contrast, for the col-
lective regime contribution, the use of a form factor F gives a Poiseuille-like
profile to the heat flux. Using this model, good predictions for small samples
can be achieved.

Additionally, a full KCM hydrodynamic model is used to study thermal
transport at the nanoscale. This approach shows that a hydrodynamic model
with suitable boundary conditions can also provide remarkable agreement with
the experimental data at low dimension scales.

99
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4.1 Kinetic-collective boundary approach

In Chapter 3 boundary effects have been neglected. To include size effects in the
classical KCM formulation it is required to treat the kinetic and collective regime
independently. In the kinetic term, boundary effects are included, as usual,
through the Matthiessen’s rule using Casmir’s expression τB = Leff/v [61],
where Leff is the characteristic size of the sample and v the phonon velocity.
In the collective contribution phonons behave like a whole defining a hydrody-
namic flow, therefore boundary conditions should be equivalent to the ones felt
in a system like the flow in a pipe. Boundary effects in the collective regime are
determined by a form factor F (Leff) obtained by solving a hydrodynamic heat
flux equation with non-slip boundary conditions (QB(R) = 0) [33]. This form
factor, which depends on the effective length of the sample is expressed as:

F (Leff) =
1

2π2

L2
eff

`2

(√
1 + 4π2

`2

L2
eff
− 1

)
, (4.1)

whereLeff = dwire is the diameter in the case of wires, Leff = 2.25h for thin films,
with h the film thickness, and Leff = 1.12

√
A for square rods of cross section A.

In this case ` denotes the phonon mean free path (MFP) in the collective regime
limit τN � τR, which can be expressed as `2 = 〈v2τN〉〈τC〉 [15]. Notice that
the factor 1/5 in the collective characteristic length appears only in the isotropic
dispersionless approximation [15].

Using the previous boundary condition in the collective regime (Eq. (4.1)),
the collective contribution to thermal conductivity will be κC = κ̂C · Σ · F .
From this derivation one can do calculations of thermal conductivity for bulk
and simple geometries like wires, films and rods using:

κT = κBK · (1− Σ) + κC · Σ · F . (4.2)

From Fig. 4.1 it can be observed that the kinetic boundary effects reproduce
a homogeneous flow where the heat flux is the same in the whole cross section
of the sample. In contrast, in the collective regime the hydrodynamic bound-
ary condition reproduces the parabolic profile observed in a Poiseuille flow. As
explained, while boundary scattering τB is included through the Mathiessen’s
rule in the kinetic contribution, the form factor F (Leff) describes size effects in
the collective term. Thus, in the calculation of τc only umklapp (U) and impurity
scattering processes are considered. In bulk materials τB →∞ and, F (Leff) = 1,
then the thermal conductivity only depends on intrinsic scattering events.
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Figure 4.1: Heat transport profile sketch to identify the contribution of kinetic and hydrodynamic boundary
effects.

4.1.1 Group IV and III-V semiconductors
The thermal conductivity of several bulk semiconductor materials has been stud-
ied in Chapter 3. In the present section the thermal conductivity of silicon
nanowires and films is studied using the kinetic-collective boundary approach
for reduced size samples.
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Figure 4.2: Thermal conductivity of silicon thin films and nanowires in terms of temperature [106, 107].

Fig. 4.2 shows the KCM predictions of the thermal conductivity for silicon
nanowires and films. Good predictions are obtained for both type of samples
at sizes bigger than Leff=50 nm. The strong reduction observed in the exper-
imental data of the 22 nm NW could be associated to an enhancement of the
boundary effects due to the high roughness of the surface. This effect is not
captured in the simple specular and diffuse scattering model used in the present
approach. While in the case of thin films, good predictions have been obtained
in previous works as a function of size [108], the KCM is pioneer on predictions
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of silicon nanowires as a function of temperature and size using a parameter-
free approach. Some normal(N)-as-resistive based descriptions like classical
RTA have also provided good fits to data at the nanoscale by including a form
factor and by using different isotopic scattering relaxation times from the bulk
ones [105, 109]. In contrast, in KCM the use of a diffuse-specular scattering and
hydrodynamic model in the kinetic and collective terms, respectively, allows to
make nanoscale predictions without modifying bulk parameters. In this case, the
form factor F is derived ensuring the conservation of energy and momentum of
the whole phonon distribution [26, 33], in contrast to form factors derived from
N-as-resistive standpoints.
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Figure 4.3: Switching factor Σ for bulk silicon, 2.8 mm rod, 830 nm film and 56 nm wire as a function of
temperature. The purple region indicates the effect of the impurity scattering.

The value of Σ, as defined in Eq. (2.64), for bulk silicon, 2.8 mm rod, 830 nm
thin film and 56 nm nanowire in terms of temperature is represented in Fig. 4.3.
The dependence of Σ on size and temperature can be directly obtained by exam-
ining how resistive (R) and N processes change as those parameters are modified.
Since the boundary scattering τB has been introduced in the resistive term τBR ,
as size is reduced, the rate of boundary collisions increases (and so the R colli-
sion rates), meanwhile N scattering rates do not change. As a result, as size is
reduced R collisions become dominant and the parameter Σ tends to zero. The
observed reduction of Σ as the temperature decreases has the same origin: at
low temperatures, anharmonicities become less important in front of boundary
and impurity scattering rates, which are temperature independent, and this re-
duces the collective contribution. At high temperatures, Σ increases in all cases
tending to a constant value. The bulk value Σbulk, which represents the intrinsic
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collective behavior, has been also included in Fig. 4.3 for comparison. It can
be observed that at low temperatures, if boundary scattering did not limit heat
transport, thermal transport would be dominated by the collective regime due to
the dominance of N processes in front of the R ones.

4.1.2 Bismuth telluride
A set of different wire diameter Bi2Te3 nanowires has been studied in the KCM
framework. Bulk Bi2Te3 has already a very low thermal conductivity, therefore it
is expected a higher reduction when the diameter is decreased. For that propose
Muñoz et at. [110] have synthesized well oriented nanowires along a specific
low conductivity direction [1 1 0], with perfect stoichiometry, high density, and
high crystal quality.

For the calculation of the thermal conductivity along a certain direction it is
necessary to project the phonon velocity towards the desired orientation. In the
case of hexagonal Bi2Te3 cell, the direction [1 1 0] corresponds to the normalized
vector v=(sin(2π/3), 0.5, 0).

Wire diameter Total thermal conductivity Lattice thermal conductivity
[nm] [W/mK] [W/mK]

300 ± 75 1.78 ± 0.46 1.72 ± 0.48
52 ± 5 0.72 ± 0.37 0.53 ± 0.4
45 ± 4 0.58 ± 0.47 0.36 ± 0.51
25 ± 4 0.52 ± 0.35 0.18 ± 0.38

Table 4.1: Experimental total and lattice thermal conductivity for bismuth telluride nanowires at
300 K [110].

The experimental thermal conductivity of Bi2Te3 nanowires is shown in Ta-
ble 4.1. The total thermal conductivity corresponds to the direct experimen-
tal measurement. To determine the lattice thermal conductivity, the electronic
contribution has been removed using Wiedemann-Franz law with a constant
Lorentz number of L = 2.44 · 10−8 WΩ/K2. The electrical conductivity of
the samples, necessary to determine the electronic contribution, is of the order
of κe ∼ 104 S/m al 300 K [111].

Fig. 4.4 shows the experimental and predicted by KCM thermal conductivity
for a set of nanowires ranging from 300 nm to 25 nm. A 4 µm thick film is used
as reference. The predicted values agree with the experimental data within the
error bars. It can be observed that as the wire diameter is reduced the thermal
conductivity decreases significantly until 0.18 ± 0.38 W/mK for the 25 ± 4 nm
wire.
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Figure 4.4: Thermal conductivity at 300K of Bi2Te3 nanowires and a thin film [1 1 0] oriented. Leff cor-
responds to the diameter for the wires and 2.25h for the film. Experimental data are taken
from [110].

For the present samples, the grain size was estimated to be ∼10µm [110].
Since boundary scattering limit the phonons with MFP larger than the wire di-
ameter (D�10 µm), the estimated grain size does not affect the thermal conduc-
tivity.

Comparing the micro/nano Bi2Te3 samples and bulk, one can realize that it
is necessary to have very small crystalline samples in order to have a thermal
conductivity smaller than the bulk one.

4.1.3 SiGe alloys
In addition to silicon nanowires, Si1−xGex nanowires have been also studied in
the KCM in the kinetic-collective boundary approach. Si1−xGex alloys are of
great interest for thermoelectric applications, as in their bulk form they already
have a very low thermal conductivity. Therefore it is expected to find an even
better performance in reduced samples.

The results from Fig. 4.5 show that the kinetic-collective approach of bound-
ary effects is not enough to predict the whole trend of the thermal conductivity
in terms of temperature, even though at room temperature good agreement is
obtained. As can be observed, the general trend defined by the present approach
tends to flatten the temperature profile from quite low temperatures, while exper-
imental data features a slower increase with a different slope. Therefore it seems
that the kinetic-collective approach as defined in the present case is not enough to
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Figure 4.5: Thermal conductivity in terms of temperature for Si1−xGex at different alloy concentration x.
Experimental data are taken from [112].

describe the temperature profile of thermal conductivity for these highly kinetic
samples.

4.2 Hydrodynamic KCM approach

In recent years hydrodynamic heat transport has emerged as a promising ap-
proach in order to predict the thermal conductivity of semiconductors at small
scales [16, 17, 34, 113]. Phonon hydrodynamics, introduced in Section 1.3,
allows to explore the study of thermal transport of reduced size systems like
nanowires or thin films. This approach may help to study some micro/nano sam-
ples where other models fail.

In Section 2.3 boundary effects have been introduced from a kinetic point of
view. In the previous section, the KCM has dealt with kinetic boundary effects
in the kinetic regime and with hydrodynamic derived conditions in the collective
one. In this section, a full hydrodynamic equation, able to describe mixed kinetic
and collective regimes, is used to predict the thermal conductivity of nanowires.
This allows to use suitable boundary conditions to have into account the geome-
try of each sample under study. In small samples, where their characteristic size
is of the same order or smaller than the characteristic phonon MFP, the effect of
roughness has been demonstrated also to have an imporant impact on the thermal
conductivity [105]. In these cases, expressions including geometric parameters
accounting for surface roughness are required.
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4.2.1 KCM heat flux equations
Despite of the richness of works that have proposed generalizations of the Fourier
law, up to now none of these models allows reproducing the experimental results
at all scales and different geometries. The lack of a model tested in a sufficiently
wide range of experimental situations supposes, on one hand, a theoretical chal-
lenge to physicists. On the other hand it is an important drawback to engineers,
who need valid equations to determine the behavior of their designs prior to
fabrication.

Here a generalized equation that is able to reproduce several of the discrep-
ancies from the Fourier law observed in different experiments up to now [4, 5,
6, 7, 8, 9, 10] is proposed:

τ
dQ

dt
+ Q = −κ∇∇∇T + `2(∇2Q + 2∇∇∇∇∇∇ ·Q) , (4.3)

where τ , κ and ` are bulk (i.e. without considering any boundary effect) total
relaxation time, thermal conductivity and non-local length respectively. This is
the so-called hydrodynamic KCM equation. The value of ` determines the non-
local range in phonon transport and is related to the viscosity (i.e. friction) that
the phonon distribution notices.

The main advantage that the hydrodynamic KCM offers in front of kinetic
models is that starting from the hydrodynamic equation (Eq. (4.3)) avoids to
solve directly the LBTE for phonons, which is quite complicated for complex
geometries such as multilayer or 3D structures, for instance. To do these cal-
culations in KCM for any geometry it is necessary to define the parameters in
the hydrodynamic equation that merges both limits, kinetic and collective. The
derivation of Eq. (1.60) done by Guyer and Krumhansl is done studying the lim-
iting case where N processes dominate, τN � τR. In this limit, corresponding
to the collective regime (i.e. Σ = 1), the non-local length is ˆ̀2

C = 〈v2τN〉〈τC〉.
The hatˆonly indicates that it is a limit situation. To have a global hydrodynamic
equation, the kinetic limit τN � τR (i.e. Σ = 0) has been studied in the KCM
framework. In this case the non-local length tends to ˆ̀2

K = 〈v2τR〉〈τR〉. From
the KCM equations, where the thermal conductivity is calculated as an interpo-
lation through Σ between the kinetic and the collective limits (see Eq. (1.28)),
the non-local length can be generalized as:

`2 = ˆ̀2
K · (1− Σ) + ˆ̀2

C · Σ = `2
K + `2

C . (4.4)

The generalized non-local length together with the total thermal conductiv-
ity and relaxation time expressed as τ = (1 − Σ) · τK + Σ · τC , define all
the parameters of hydrodynamic KCM equation. This equation, together with
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suitable boundary conditions, can be solved by finite elements to study thermal
properties in complex geometries. Calculating the temperature dependence of
τ , κ and ` from first principles complex experimental setups can be predicted,
where boundary effects need to be introduced as boundary conditions. Further
extensions of Eq. (4.3) can be done by considering a dependence of the thermal
conductivity on the temperature gradient as κ(∇∇∇T ) or considering the effect of
Lévy flights.

4.2.2 Effective thermal conductivity
In the present work, in collaboration with CRM, the KCM hydrodynamic equa-
tion Eq. (4.3) has been solved analytically by splitting the radial and axial com-
ponents of the flux in a cylindrical geometry [114]. Doing so, a generic expres-
sion of the effective thermal conductivity (ETC) is obtained:

κeff

κ0

=

(
1− 2 Kn I1(Kn−1)

I0(Kn−1) + CI1(Kn−1)

)
, (4.5)

where Iν represents the modified Bessel function of first kind. In this case Kn =
`/R, where ` is the non-local length and R is the wire radius. The parameter C
that determines the specular and diffuse scattering will be related to the geometry
of the roughness, represented on Fig. 4.6.

Δ

L

Figure 4.6: Sketch of roughness parameters.

General hydrodynamic boundary conditions

In order to solve analytically the KCM hydrodynamic equation, Eq. (4.3), some
boundary conditions are necessary. As stated, the generic solution of the effec-
tive thermal conductivity has been done by spitting the heat flux in radial (v) and
axial (w) components Q(v, w). The most general boundary conditions that can
be applied are:

v|r=0 = 0 , v|r=R = 0 , (4.6)

∂w

∂r
|r=0 = 0 , w|r=R = −KnC

∂w

∂r
|r=R , (4.7)
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where C 6= 0 is a slip boundary parameter depending on the roughness of the
surface. A general value used for the slip condition is C = 1. To capture
the variation of the slip condition in temperature, it can be generalized. When
C = 0 the flux at the boundary is zero but for C > 0 the flow is not completely
removed at the boundary. For very rough surfaces, the specularity is very low,
this means that the flux at the boundary tends to zero, and in that case C → 0.
On the contrary, when the specularity increases, the flux does not notice the
boundary and C →∞. The C value can thus be determined by the comparison
between the wavelength of the phonons and the average height of the roughness.
At high temperatures the wavelength of the phonons is small and consequently
the specularity is reduced, while at low temperatures the averaged wavelength
increases and the phonons notice more specular boundary effect. To avoid the
use of C as a fitting parameter, it is calculated from the microscopic information.
As the interaction of the carriers with the boundary depends on the specularity
of the surface, the slip parameter C will depend on these collisions. To model
this behavior the slip coefficient can be expressed as [17]:

C(T ) =
1 + p(T )

1− p(T )
, (4.8)

where p(T ) is the specularity defined from the ratio of the roughness height
∆ (see Fig. 4.6) and the mean wavelength of the phonon distribution at each
temperature, λ(T ) [19]:

p(T ) = e−π(
4π∆
λ(T ))

2

. (4.9)

The mean wavelength of the phonon distribution can be calculated from the
mean wave vector q(T ) as λ(T ) = 2π/q(T ), where:

q(T ) =

∑
qCqqq∑
qCq

, (4.10)

being Cq the mode specific heat and qq the wave vector.
Under the previous conditions, if the surface is purely diffuse, p = 0 and

C = 1. On contrary, when the surface is purely specular p = 1 and C → ∞.
Thus, C ∈ [1,∞) determines the behavior of the surface. Notice that in none
of the two limits a zero flow at the boundary (C = 0) is obtained. The heat
flow at the boundary is an average between those phonons moving towards the
surface and those leaving it. The boundary condition only acts on those leaving,
making impossible to completely destroy the incoming flow. To get values lower
than C = 1 it is required to include backscattering. In this situation, if phonons
leaving the surface backward generate a flux in the oposite direction of those
going forward, the average flux will be destroyed. A generalization of Eq. (1.64)
in this case could be [34]:
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QB = C`

(
∂Q

∂r

)
r=R

− α`2

(
∂2Q

∂r2

)
r=R

, (4.11)

where α measures the intensity of the backscattering and will depend on the
roughness. This phenomena appears only in the presence of very large roughness
and will not be considered in this work.

4.2.3 Hydrodynamic thermal transport in nanowires
The hydrodynamic KCM equation (Eq. 4.3) has been applied to study the ther-
mal transport of several nanowire samples. In this case it has been used to pre-
dict the thermal conductivity of silicon nanowires. The solution can be obtained
equivalently from the ETC solution or by direct computation in a finite ele-
ments software using the general boundary conditions defined in Eq. (4.6) and
Eq. (4.7), with C as defined in Eq. (4.8). To obtain this parameter, a small rough-
ness has been considered, ∆=0.4 Å. On one side, the hydrodynamic model has
been applied to silicon nanowires, where already the kinetic-collective boundary
approach has shown good performance. On the other side, as Si1−xGex alloys
are not so well predicted by the latter approach, it has been tested on the hydro-
dynamic model in order to improve the prediction.

The time derivative term accounting for memory effects has been neglected,
as the present study only considers steady state.
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Figure 4.7: Thermal conductivity, non-local length and relaxation time of bulk silicon as a function of
temperature.

The hydrodynamic KCM only requires intrinsic (i.e. bulk) properties to be
used. In the case of silicon, the bulk thermal conductivity, non-local length and
total relaxation time as a function of temperature are represented in Fig. 4.7.

Full hydrodynamic KCM predictions for silicon nanowires of 115 nm, 56 nm
and 37 nm are represented in Fig. 4.8. The upper red line represents the intrin-
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Figure 4.8: Thermal conductivity of silicon nanowires as a function of temperature with full hydrodynamic
KCM. Sketch of three hydrodynamic regions is overhead. Experimental data from [107].

sic thermal conductivity, which is used as an input. From this value, applying
boundary conditions the thermal conductivity of the wires is calculated. Good
agreement with the experimental data for the three samples in the whole tem-
perature range can be observed. In the case of the 56 nm wire, the small under-
prediction below 100 K could be caused by a wrong assumption of the impurity
scattering, as natural isotope concentration has been assumed in all cases.

In the hydrodynamic KCM approach, the characteristics of the hydrody-
namic regime are determined by the value of the non-local length `, through
the Knudsen number (Kn = `/L). When Kn → 0, the hydrodynamic behav-
ior is not important and the Fourier law is recovered. On the contrary, when
the Kn → ∞, the hydrodynamic behavior is important and Eq. (4.3) including
non-local effects is needed.

In Fig. 4.9 different heat flux profiles are represented as a function of the
slip condition for a cylindrical geometry. As can be observed, when Kn →
∞ the profile flattens and can be interpreted as a Fourier model. This effect
is similar to the trend of Σ at low temperatures in the KCM when boundary
effects are included: Σ → 0. In this situation a pure kinetic framework can be
used. Notice that both Fourier and Guyer-Krumhansl equations are continuous
equations. This leads to believe that an effective Fourier law can be used to
interpret the hydrodynamic equation in certain limits.

In the case of Si1−xGex alloys, the kinetic-collective approach of boundary
effects is not enough to reproduce the whole temperature trend (see Fig. 4.5). To
improve this, the full hydrodynamic KCM approach has been used to predict the
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Figure 4.9: Effective heat flux profile for different values of slip condition in a wire.

temperature profile of the presented Si1−xGex alloys.
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Figure 4.10: Thermal conductivity of Si1−xGex nanowires as a function of temperature for different diam-
eters and concentrations x. Experimental data are taken from [112].

In the case of silicon nanowires, as indicated previously the bulk thermal
conductivity was used as an input. This means that there is no a priori limitation
of phonon transport. This premise was not enough to reproduce the experimental
data for Si1−xGex alloys. Doing that, the temperature profile was the same as
found in the kinetic-collective approach (see Fig. 4.5). To fully reproduce the
temperature trend in this case the thermal conductivity in the input file needed to
be limited by the length of the wire. Phonons with MFP longer than the length
of the sample are removed.
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Fig. 4.10 shows the thermal conductivity as a function of temperature for
x = 0.1, x = 0.19, and x = 0.41 Si1−xGex wires of different diameter. It can be
observed that the finite elements solution is able to reproduce the experimental
data in the whole temperature range.

The good agreement between the experimental data and the KCM hydrody-
namic approach shows that the hydrodynamic heat flux can be a useful frame-
work to model the thermal transport at the nanoscale. To improve the model, the
limitation of the thermal conductivity due to the wire length found in Si1−xGex
alloys should be included as a boundary condition to solve the hydrodynamic
equation. This effect might be due to Lévy Flights or other not considered non-
local effects that should be studied in future work.

4.3 Boundary effects in other models
In addition to the treatment of boundary effects done by KCM, both in the
kinetic-collective approach and in the hydrodynamic approach, other models
have also proposed ways to deal with the boundary effects beyond Casimir’s
expression.

The iterative solution of the Boltzmann Transport Equation (I-BTE), intro-
duced in Section 1.2, can also include size effects for the case of nanowires
(NW) through an exponential suppression function based on Fuchs-Sondheimer
works [31], aiming reproducing a Poiseuille profile, as done in the KCM. In this
case, the relaxation time for the iteration (i) considering pure diffuse scattering
can be expressed as:

τ (i)
q = τ (i−1)

q (1 + ∆(0)
q )

(
1

Sc

∫
Sc

(1− e−|(r−rb)/τ (i−1)vq|)dS

)
, (4.12)

where r and rb denote the cartesian coordinate in the wire and the border respec-
tively, and Sc the cross section of the NW. While the BTE can be solved exactly
iteratively for bulk materials, the inclusion of boundary effects makes it neces-
sary to approximate the relaxation times by its averaged values τ̄q and ∆̄q over
the cross section of the wire.

Cepellotti et al. recently have done as well a hydrodynamic boundary ap-
proach to their relaxon solution of the LBTE (R-LBTE) [115]. In this case, in
order to obtain a suitable expression for the heat transport it is required to ob-
tain a linear combination of relaxons, with occupation numbers di and solve the
LBTE. The solution for a cylindrical geometry leads to:

di = d∞i (1− e−(y±W/2)/λ
(y)
i ) , (4.13)
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where di in the boundaries are considered null. W represents the wire diame-
ter, d∞i the bulk occupation numbers and λ(y)

i are the eigenvalues of the friction
length matrix Λ

(y)
αβ that account for boundary effects. It can be noticed the anal-

ogy of the friction length with the non-local length used in the KCM and in turn
its analogy with the viscosity of a fluid.

Similarities between the latter equation and the solution obtained from I-BTE
in Eq. (4.12) can be observed. In both cases there is an exponential reduction
depending on the distance towards boundaries.

In the case of the R-LBTE solution including boundary effects it is required
to obtain a linear combination of relaxons (that already are a linear combination
of phonons) in order to find a basis to solve the problem.

A third way to introduce boundary effects in kinetic models is though a
phonon suppression function S that removes the contribution of MFP (Λ) larger
than the characteristic size (L) of the sample [116]:

κeff =
∑
q

S

(
Λq

L

)
κq(Λ) . (4.14)

The shape of the suppression function is dependent of the geometry of the sys-
tem, which can be obtained analytically for simple geometries. For complex
geometries a hydrodynamic-based approach with general boundary conditions
would be more suitable (see Chapter 6).

The success of KCM on solving the thermal transport of nanowires (see Sec-
tion 4.2) shows that simply using the moment basis of two well known tangible
magnitudes as temperature T and heat flux Q (see Section 1.2.5) is enough to
solve the thermal transport at reduced scales.

Fig. 4.11 presents a comparison of KCM and I-BTE [24] calculations of
the thermal conductivity from bulk to 22 nm wires at 300 K. KCM provides
good predictions without any fitting parameter for wires as small as 56 nm. The
overprediction of the smallest wires, as seen in Fig. 4.2, could be associated to
an increased roughness effect [105, 117]. This behavior has also been observed
for thin films at similar scales [108]. The green zone in Fig. 4.11 displays the
kinetic contribution to thermal conductivity, namely κK . The difference between
the black line and the green zone is the collective contribution (red zone), κC .
While the agreement to the experimental data using only kinetic transport is
good for the smallest diameters (where the red zone vanishes), for bigger sizes
a collective contribution appears. This explains the convergence of κT to κK for
small samples displayed in Fig. 4.11.

The boundary effects as included in the I-BTE and R-LBTE frameworks can
be used to compute the thermal conductivity in wires as a function of its di-
ameter. The shape reproduced by their equations will reproduce a curved heat
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flux profile similar to the one found in the KCM approach based in a hydrody-
namic formulation. The main drawback of these analytic equations is that are
still limited to very simple geometries like wires or thin films. In contrast, a full
hydrodynamic model will allow the study of thermal transport of more complex
geometries from finite elements simulations, as shown in Chapter 6.



Chapter 5

Phonon spectrum and transient
regimes in the KCM

The goal of reduce the device sizes and obtain faster performance has caused that
recent experiments are moving the focus to measurements at short length and
time scales [4, 5, 6, 7, 8, 9, 10]. This makes it necessary to have a model which
is able to work in the transient regime between diffusive and ballistic heat trans-
port. Such models would depend strongly on the phonon mean free paths (MFP)
and mean free times (MFT). For that reason, models able to provide a deeper
insight on the different transport phenomena would become a suitable tool for
such experiments. Works along this line have demonstrated that pure kinetic
models are not enough to understand thermal conductivity at short length and
time scales [8, 10]. A collective or hydrodynamic flow has been used to explain
the origin of the non-monotonous dependence of the thermal boundary resistance
as a function of the size of the heating source arising from ultrafast laser heating
experiments [10]. Also theoretically, collective transport has been successfully
used to understand first principles results on graphene thermal transport [14, 13],
where normal (N) scattering plays an important role. All seems to point out that
models including collective effects will be necessary in next years in order to
analyze these new experiments.

These results open the door to discuss how the precise combination of kinetic
and collective contributions to heat transport could provide a useful framework
to interpret recent complex experiments displaying non-Fourier behavior.

5.1 Phonon spectrum
In the last years, several works have pointed out the importance of long MFP
(i.e. low frequency) phonons in thermal conductivity. It is widely accepted that

115
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these phonons have a very important contribution to heat transport, but current
Density Functional Theory (DFT) calculations seem to provide larger contribu-
tions by long MFP phonons than the experimental observations [118, 119]. The
origin of this effect is the finite q-point mesh sampling of the Brillouin zone
achievable computationally. To be able to predict correctly the thermal conduc-
tivity from such ab initio calculations, Akhiezer damping has been proposed.
This macroscopic relaxation mechanism has been phenomenologically used to
reduce the first principles obtained MFT as an extra scattering mechanism in the
Matthiessen’s rule [119]. In the KCM framework alternative explanations to ac-
count for the reduction in the contribution of low frequency phonons to thermal
conductivity are proposed based on the effects of the collective regime and on
the calculation of low energy relaxation times.

To give a detailed overview of the phonon spectrum in the KCM framework,
four different types of samples will be studied. In first place, the most com-
monly studied semiconductor, silicon; second, two typical thermoelectric alloys,
Si1−xGex and InxGa1−xAs; third, low thermal conductivity compounds, Bi2Te3,
PbTe and α-quartz, and finally graphene.

5.1.1 KCM phonon spectrum of Si
As explained in Section 2.4, a suitable way to run fast thermal transport calcula-
tions is by binning the q-mode values in ω dependent parameters with a weight
determined by the density of states (DOS).
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Figure 5.1: Normal, umklapp, impurity and boundary relaxation times for Leff = 2.8 mm and Leff =
115 nm silicon at 50 K and 300 K in terms of frequency.

Fig 5.1 shows the averaged frequency dependent relaxation times for Leff =
2.8 mm andLeff = 115 nm silicon at 50 K and 300 K. Notice that the reduction of
the parameters to an averaged frequency dependent magnitude still maintains the
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Figure 5.2: Kinetic and collective mean free times (MFT) for Leff = 2.8 mm and Leff = 115 nm silicon at
50 K and 300 K in terms of temperature

same trend observed in the direct calculation (Fig. 3.9). From this figure it can be
observed that as the temperature is increased the N and umklapp (U) relaxation
times are reduced, i.e., the distribution relaxes faster to equilibrium. In addition,
it is evidenced that the boundary and impurity/mass defect relaxation times are
temperature independent. The boundary effects accounted from Casmir’s ex-
pression depend on the frequency through the velocity, while the impurity/mass
defect scattering does so through the DOS. From the individual relaxation times,
a MFT can be defined as the time between collisions in a transport phenom-
ena. In the KCM two transport regimes are defined, kinetic and collective. In
the kinetic regime all phonons interact individually and therefore all processes
can be arranged in a frequency dependent MFT through the Matthiessen’s rule.
In contrast, in the collective regime, the effect of N processes acts like a glue
between phonons and a single frequency-independent MFT is defined for all of
them. In Fig 5.2, the MFT of both transport regimes for Leff = 2.8 mm and
Leff = 115 nm silicon at 50 K and 300 K is represented. For big size samples the
boundary effects in the kinetic regime are only visible at very low frequencies,
while in nano/micro samples this effect flattens the MFT curve even at interme-
diate frequencies. The completely straight line of the collective regime (red line)
highlights its frequency independent behavior. In addition, there are no differ-
ences between small and thick samples in this regime, as boundary effects do not
affect to the relaxation time but the collective thermal conductivity as an external
form factor F (see Eq. (4.2)).

Fig. 5.3 top displays the kinetic and collective thermal conductivity accumu-
lation function (TCSD) predicted by KCM for bulk silicon in terms of frequency
at 300 K, where one observes that both contributions span the whole range of
the spectra. While at low frequencies the kinetic regime dominates, the col-
lective contribution becomes more important at high frequencies. From the ther-
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mal conductivity accumulation function (TCAF) it can be observed that phonons
with frequency lower than 2 THz contribute to 40% of the thermal conductivity.
On the other side, phonons with frequency higher than 6 THz contribute up to
a 20%. A direct correspondence with the MFP spectral distribution (Fig. 5.3
bottom) can be done through this representation. Fig. 5.3 bottom shows the
MFP in terms of frequency for the kinetic and collective terms. From the KCM,
ΛK(ω, T ) = vτK is the kinetic MFP, and ΛC(T ) = v̄τC is the collective MFP,
where

v̄ =

∑
q vqCq∑

q Cq
(5.1)

is the mean phonon velocity (independent of ω). vq and Cq are the phonon
mode velocity and specific heat respectively. It is important to notice that while
the kinetic MFP is different for all the modes, the collective MFP is the same
for all of them. An effective MFP (blue asterisk) has been included to show
the effect of the collective phonons from a pure kinetic point of view, where
Λeff(ω, T ) = ΛK(ω) · (1 − Σ) + ΛC(T ) · Σ . From this representation it can be
appreciated a reduction of the MFP of long MFP phonons at low frequencies and
an increase for the smaller ones at high frequencies [2]. This effect caused by the
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collective regime is a consequence of the energy and momentum conservation
of the whole distribution introduced through Σ [26].
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In Fig. 5.4 the accumulated thermal conductivity in terms of MFP for bulk
silicon at 300 K is represented to show the differences between KCM and current
kinetic models. It can be observed that, in contrast to the other presented models,
in the KCM the larger MFP phonon that contributes to κ is ΛK ∼ 20 µm, in
agreement with experimental observations [119]. This is due to the fact that for
low frequency phonons, the use of Han’s expressions [120] provides a τ−1

U ∝
ω2 dependence for the U processes instead of the widely used approximation
τ−1
U ∝ ω3. Note that the use of an analytical expression allows avoiding the

over/underestimations provided by the limited grid in DFT calculations at these
frequency ranges [118].

A characteristic feature of the KCM accumulation function is the appearance
of a step at the collective MFP, ΛC . From Fig. 5.4 it can be seen that while the
kinetic contribution spans all the distribution, the collective one occurs only at a
fixed MFP, ΛC ∼ 20 nm for natural silicon at 300 K. The height of this step is
proportional to the value of Σ and, as the switching factor depends on the size
of the sample, it will be different for each Leff, according to Fig. 4.3. Comparing
the curves for different sizes (56 nm nanowire, 830 nm thin film and bulk) in
Fig. 5.4 it can be concluded that the TSDF of a sample can not be obtained by
just removing from the bulk curve the contribution of phonons with MFP larger
than its characteristic length Leff [108].
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The position of the step at ΛC in the TCAF can be related to a characteristic
non-local scale ` (see Eq. (4.2.1)) that is associated with hydrodynamic effects
like Poiseuille flow or second sound. A direct detection of this step would be
difficult for small samples because at these scales Σ is small. The calculated
non-local scale for silicon at 300 K is ` ∼ 190 nm. Recent experiments carried
on bulk silicon by Hoogeboom-Pot et al. [10] show that collective effects appear
when characteristic scales of the order of 102 nm are considered in the exper-
iment. Although this scale is in agreement with the obtained non-local length
`, deeper study is required to understand properly the origin of this non-local
effect. It is important to remark that the consequences of collective effects on
the measured thermal conductivity will depend on each experimental setup. This
experiment is discussed in detail in Section 6.1.

The phonon spectrum of the other studied group IV and III-V semicon-
ductors present the same general features as shown for silicon. In the case of
diamond for example, as the collective contribution to thermal conductivity is
higher, the height of the step corresponding to this contribution in the accumu-
lation function in terms of MFP will be larger.

5.1.2 KCM phonon spectrum of Si1−xGex and InxGa1−xAs
In order to observe differences between pure semiconductors and alloys, the
kinetic and collective contributions to thermal conductivity in terms of frequency
for Leff = 7 mm Si1−xGex and InxGa1−xAs at 300 K are presented in Fig. 5.5.

Fig. 5.5 displays the TCAF for the two presented alloys at x = 0.01, show-
ing a significant slowing down of the kinetic transport. This reduction of the
kinetic heat transport due to N collisions is obtained in the classical RTA ap-
proach through the inclusion of N scattering as a resistive mechanism in the
Matthiessen’s rule. The present model thus helps to understand why, when Σ
is small, the RTA is expected to work. Notice that KCM offers a more gen-
eral framework for accounting the effects of N scattering, namely, the reduction
of kinetic transport (kinetic slowdown), and the existence of a collective heat
transport.

In Fig. 5.6 the phonon spectral distribution of the thermal conductivity at two
common alloy concentrations Si0.82Ge0.18 (top) and In0.53Ga0.47As (bottom), at
300 K and Leff = 7 mm is shown. The green region represents the kinetic and
the red one the collective contribution to thermal conductivity respectively. The
general trend of the spectral distribution is the same as found in silicon but hav-
ing a smaller contribution of the collective regime in the whole frequency range.
In contrast, the accumulation function is remarkably different. While in silicon
the contribution of modes below 2 THz had a contribution of 40% to the total
thermal conductivity, for the two presented alloys this contribution is up to 90%.
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Figure 5.5: Thermal conductivity accumulation function (TCAF) for Si0.99Ge0.01 (left) and
In0.01Ga0.99As (right) for Leff = 7 mm rods at T=300 K. Blue dashed line represents
the total TCAF. The kinetic contribution to the thermal conductivity κK (green dashed line) is
reduced the factor (1-Σ) as compared to the pure kinetic conductivity κ̂K (black line). The
red region denotes the collective contribution. Even though the collective term κC may be
small for 1% alloy samples, the kinetic transport is significantly slowed down due to normal
processes.

In addition, the contribution of phonons with a frequency higher than 6 THz is
almost negligible in both alloys. The insets in Fig. 5.6, representing a magnifi-
cation of the high frequency region, show that only in the case of In0.53Ga0.47As
appears a small (but insignificant) collective contribution to the thermal conduc-
tivity at high frequencies.

From a microscopic point of view, collective and kinetic contributions should
have very different transient behavior. This can be shown by noticing that while
each mode has a different MFP in the kinetic regime, the collective MFP is
the same for all of them. Fig. 5.7 shows the MFP accumulation function for
Si0.82Ge0.18, In0.53Ga0.47As and natural Si at 300 K with Leff = 7 mm. It can be
observed that for Si0.82Ge0.18 (dashed light green) the main contribution to κT
comes from large MFP phonons, with an important contribution of those bigger
than 100 µm. On the other hand, for silicon all the contribution to κT comes
from phonons with MFP smaller than ∼20 µm, larger phonons does not affect.
In the case of In0.53Ga0.47As it is found an intermediate behavior. A jump in
the cumulative thermal conductivity due to collective effects can be seen clearly
for silicon at the MFP of ∼20 nm. In contrast, the contribution of the collective
phonons to thermal conductivity in the alloys is almost negligible. Accordingly,
a definite slope can be observed in the TCAF. Notice that this does not mean that
N scattering is not important, as kinetic slowdown is still present.
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Figure 5.6: Thermal conductivity spectral distribution (TCSD) and thermal conductivity accumulation
function (TCAF) in terms of frequency for Si0.82Ge0.18 (top) and In0.53Ga0.47As (bottom)
for Leff = 7 mm rods at T=300 K. Filled curves are the kinetic and collective contributions to
TCSD. Inset: High frequency magnification of TCAF.
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Present results from Fig. 5.6 and Fig. 5.7 agree with recent works pointing
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on the direction that long MFP phonons are important to predict the thermal con-
ductivity in alloy samples [28, 29, 121]. In kinetic transport regimes, as found
in alloys and in the kinetic contribution of pure samples, the phonon distribution
spans all the MFP range. On the contrary, the collective contribution found in
pure samples, appearing as a result of the momentum conservation of N pro-
cesses, contributes as a single step. From the phonon contribution to thermal
transport at each frequency and/or MFP useful information of the experimental
observations of transient phenomena can be obtained.

As shown in previous articles, silicon has an important collective behavior [1,
2, 3]. The non-negligible collective contribution to κT in a single MFP found in
silicon [3] could be a reason behind the non-definite slope in the total thermal
conductivity contribution. Fig. 5.7 shows how the addition of the collective term
to κK in silicon causes the appearance of a non-definite slope in κT . If the
MFP information is obtained by the reconstruction through a kinetic model this
behavior can not be appreciated. Information of the thermal conductivity in
terms of frequency and MFP for kinetic and collective regimes separately is key
to understand the behavior of an specific sample.

5.1.3 KCM phonon spectrum in low κ compounds
The KCM has been used to study the thermal conductivity of low thermal con-
ductivity compounds as Bi2Te3, PbTe and α-quartz, showing good agreement to
experimental data (see Section 3.4). Now, the phonon spectrum is studied to get
more information about the different contributions to thermal conductivity.

In the case of Bi2Te3, Fig. 5.8 shows the TCAF and the TCSD for a 4 µm
film and two wires of 300 nm and 25 nm at 300 K. It can be observed that the
size reduction has a deep effect on the contribution of low frequency phonons
to the thermal conductivity. In addition, a strong decrease of the high frequency
phonon contribution can be noticed in the case of the 25 nm NW. The TCAF
representation shows that phonons with frequencies lower than 1012 rad/s have a
small contribution to thermal conductivity for the presented samples. The major
contribution in all cases comes from phonons with frequencies of 6 · 1012 rad/s
and forward.

The decrease of the thermal conductivity contribution at low frequencies
from Fig. 5.8 can be attributed to a reduction of the MFP of the acoustic phonons
due to boundary scattering effects. This effect becomes more important for the
smallest samples as the surface to volume rate is increased. Notice that even at
diameters as small as 25 nm the suppression of low frequency modes is not com-
plete. This indicates that boundary scattering does not block totally the thermal
conductivity even at these extremely reduced sizes. In addition it can be ob-
served that the main contribution to thermal conductivity comes from phonons
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Figure 5.8: Spectral and accumulated thermal conductivity for a 4 µm film, 300 nm and 25 nm wires
of Bi2Te3 at 300 K. Top: Spectral thermal conductivity as a function of frequency. Bottom:
Accumulated thermal conductivity as a function of frequency.

with a frequency higher than 1013 rad/s. Therefore there is a significant contri-
bution of optical modes.

According to the mode velocity obtained from the dispersion relations (DR)
and Fig. 5.8, the higher contribution to thermal conductivity comes from phonons
with MFP smaller than 1.5 nm. It is interesting to notice that for silicon, in con-
trast, more than 50% of the contribution is due to phonons with MFP smaller
than 1 µm.

In Fig. 5.9 the N and U relaxation times (top) and TCAF (bottom) for PbTe
in terms of frequency are represented. As can be observed, the U relaxation time
follows the trend τU ∼ ω−3 predicted by Herring [122], while for τN ∼ ω−1.5,
slightly lower than the expected τN ∼ ω−2 for diamond-like materials. This
might be caused by the different atomic basis of the FCC structure. In the TCAF
representation a smooth increase of the thermal conductivity from 0.2 THz can
be observed. As pointed out in Section 3.4, in PbTe the collective contribution to
thermal conductivity is κC ∼ 1%, therefore it is not observable. The significant
effect represented in this figure is the kinetic slowdown. As ΣPbTe(300 K)=0.5,
the kinetic contribution κ̂K is significantly reduced (50%).

In the case of α-quartz, Fig. 5.10 shows the N and U relaxation times (top)
and TCAF (bottom) in terms of frequency. From the relaxation time it can be
observed that there is an important dispersion of values due to the high number of
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Figure 5.9: Top: First principles normal and umklapp relaxation times for PbTe as a function of frequency.
Bottom: Thermal conductivity accumulation function (TCAF) in terms of frequency.

phonon branches, 27 in this case. From the TCAF important differences between
κ(ω)Y Y and κ(ω)ZZ can be observed. While κ(ω)Y Y shows a smooth increase
of the thermal conductivity from 0.2 THz, similar to that found in PbTe (Fig. 5.9
top), in κ(ω)ZZ there is a huge contribution of low frequency phonons. It can
be observed that phonons with less than 1 THz provide more than 95% of the
total thermal conductivity. This is caused by the different phonon mode velocity
in each direction. In addition, while for α-quartzZZ the collective contribution
is negligible (0.4%), in α-quartzY Y a collective contribution of 6% due to high
frequency phonons is observable.

5.1.4 KCM phonon spectrum of graphene
In addition to the studied 3D samples, here the phonon spectrum and the thermal
conductivity accumulation functions for graphene are presented.

Fig. 5.11 shows the first principles relaxation times for graphene. The red
line corresponds to the impurity scattering with natural isotope concentration,
and the green and blue ones the N and U relaxation times respectively. The vis-
ible splitting of the scattering mechanisms corresponds to different vibrational
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Figure 5.10: Top: First principles normal and umklapp relaxation times for α-quartz as a function of fre-
quency. Bottom: Thermal conductivity accumulation function (TCAF) in terms of frequency
for α-quartzY Y and α-quartzZZ .

modes. From this representation it is clear that the N scattering dominates at
medium and low frequencies. While at high frequencies all the scattering mech-
anisms have a relaxation time of the same order, at medium and low frequencies
the differences between the N scattering and the other mechanisms is more than
one order of magnitude. This dominance of N processes indicates that there will
be a high importance of collective effects, and therefore phonon hydrodynamics
will dominate the transport, as reported in recent works [13, 14].

The TCAF for graphene is represented in Fig. 5.12. Here the contributions
of the kinetic and collective regime to thermal conductivity are represented. It
can be observed that the kinetic modes have a contribution of almost 60% at
low frequencies. In contrast, the collective modes contribute up to a 40% from
frequencies higher than 1 THz. The visible step at low frequencies of the accu-
mulation function is due to the limited grid sampling.
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Figure 5.11: Phonon relaxation times for graphene. τI corresponds to the impurity relaxation time of natu-
ral isotopic concentration, and τU and τN to the umklapp and normal relaxation times obtained
from first principles respectively.
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Figure 5.12: Spectral and accumulated thermal conductivity of natural graphene as a function of frequency.

5.2 Transient regimes
The diffusive transport in the KCM deals with the heat transport from the point
of view of the dominance of resistive scattering processes over the non-resistive
ones. On the contrary, the ballistic transport is based on the differentiation of
boundary scattering versus the other scattering processes. Since the KCM has
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been applied successfully in the diffusive regime, a next step is to see how the
kinetic and collective regime can give new insight in transient regimes from
diffusive to ballistic transport.

At short time scales, transient regimes measured by means Time Domain
Thermo Reflectance (TDTR) have revealed that dynamics of energy transport
in actual materials is more complex than a broad distinction between ballistic
and diffusive regimes. Phonon MFP can span several orders of magnitude and
the transition from ballistic to diffusive is not at the same time or length scale
for each mode. This means that for a specific time scale, part of the phonons
can be ballistic while other should remain diffusive. This behavior leads to the
appearance of a superdiffusive regime, explained accurately by Truncated Lévy
Flights (TLF) for highly kinetic samples [28] (see Section 1.3). In materials
where collective transport is important, like silicon, the diffusive-ballistic tran-
sition behaves in a different way due to the emergence of a collective regime.
A careful study of MFP and frequency dependence of thermal conductivity is
needed in order to understand such phenomena.

The phonon spectral distribution of the thermal conductivity in the KCM
combined with the TLF formalism [28, 29] seems a suitable framework to deal
with the transition from diffusive to ballistic thermal transport in pure and alloy
semiconductors. This transition from short to long time scales can be described
by the Maxwell-Cattaneo equation [123] τ∂2T/∂t2 + ∂T/∂t = χ∇2T , where
τ is the mean characteristic time of phonon distribution and χ is the thermal
diffusivity of the sample. Despite of this clear distinction, dynamics of energy
transport in actual semiconductors is more complex. The Maxwell-Cattaneo
equation is valid only when a single characteristic time τ can be defined from
the phonon distribution. This is only possible in the collective regime, as all
the modes share the same MFT. However, in the kinetic-dominated regime this
is not possible as the MFT of the different phonons can span several orders of
magnitude. Therefore the diffusive to ballistic transition has a different time
scale for each phonon mode.

As seen in Fig. 5.7 for alloys, all the modes span all the phonon distribution.
Therefore in high kinetic samples like alloys, the relaxation times of each mode
are different and the transition from ballistic to diffusive is at different times
τ(ω). As each phonon has its own MFP, the Maxwell-Cattaneo equation, which
assumes that the transition from diffusive to ballistic occurs at the same time
for all the phonons, can not be applied. A correct treatment in this case would
be to solve the Maxwell-Cattaneo equation for each mode, but the number of
calculations will increase drastically.

In Fig. 5.13 the effect of Lévy Flights in the spatial domain has been repro-
duced in order to study the impact of collective transport. The kinetic expression
of TLF has been introduced in Section 1.3.5 Eq. (1.81). From the Laplace trans-
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Figure 5.13: Fractal thermal conductivity reproduced in the KCM framework for silicon at 300 K.

formed of the steady state hydrodynamic KCM equation in the collective regime,
neglecting the term 2∇∇∇∇·Q, the collective thermal conductivity is expressed as:

κ(ξ, T ) =
κ(T )

1 + ξ2ΛC(T )2
. (5.2)

As it can be observed, in the kinetic regime, where Σ = 0 and the TLF model is
completely valid, there is a transition from diffusive to ballistic transport through
a superdiffusive (or quasiballistic) regime. In the collective regime, where Σ =
1, the transition from diffusive to ballistic is very sharp, that means that there
is a single spatial scale that governs this transition. In intermediate regimes,
where Σ ∈ (0, 1), there is a transition from the TLF limit to the collective limit.
When Σ increases the superdiffusive region tends to flatten until is completely
destroyed in the ideal collective transport.

The spatial evolution of the thermal diffusivity for In0.53Ga0.47As and
Si0.82Ge0.18 [28, 29] is represented in Fig. 5.14. In the case of alloys the transi-
tion to diffusive to ballistic transport regime is clearly governed by a superdif-
fusive region with a fractal exponent. It can be observed that the region with a
superdiffusive behavior with fractional exponent spans 4 orders of magnitude in
time for Si0.82Ge0.18 while 3 orders for In0.53Ga0.47As. In Si the transition from
pure ballistic to diffusive regime seems to be smoother, as has been observed in
Fig. 5.13.

In previous works [28, 29], the transient diffusive-ballistic behavior related
to the cumulative thermal conductivity slope by fractal superdiffusive expo-
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Figure 5.14: Fractal diffusivity defined from ψ(ξ)/ξ2 for In0.53Ga0.47As and Si0.82Ge0.18. Si0.82Ge0.18

curve is upscaled to ease the visualization [28]. Three scaling regions with different exponents
may be identified.

nents in the TLF model appears to behave different in Si and Si1−xGex alloys.
In Fig. 5.14 the emergence of a superdiffusive regime with exponent 1.34 for
Si1−xGex alloy can be observed, while in Fig. 5.13 for silicon (Σ ∼ 0.5), where
collective phonons are not negligible, there is a smoother transition from bal-
listic to diffusive regimes. This behavior may be explained in terms of the dif-
ferent weight of the collective contribution Σ shown in Fig. 3.21. As detailed
in Fig. 5.13, the fractal behavior is a kinetic phenomenon and, as the collective
contribution increases, the temporal window where this behavior can be probed
shrinks.

The origin of the different slopes pointed out previously in Fig. 5.7 and
Fig. 5.14 can be observed in Fig. 5.15. As noticed by Vermeersch et al. [28],
the slope of the accumulation function can be related to the exponent of the
dominant scattering mechanism. To see this relation, Fig. 5.15 shows the U and
impurity/alloy relaxation times for Si, In0.53Ga0.47As, and Si0.82Ge0.18. It can be
observed that U scattering is dominant for silicon, which has a trend that goes
from τ ∝ ω−3 to τ ∝ ω−2, according to the first principles calculations and
in agreement with Han’s expressions [124]. For Si0.82Ge0.18 and In0.53Ga0.47As
the dominant scattering is the alloy term with τ ∝ ω−4, although is stronger in
Si0.82Ge0.18. This shows why both have also the same exponent in the accumu-
lation function but with different extents of the superdiffusive region.
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Figure 5.15: Umklapp and impurity/alloy first principles relaxation times for Si, In0.53Ga0.47As and
Si0.82Ge0.18 at 300 K.

5.3 The role of low energy phonons

It has been already pointed out and observed from various representations of the
thermal conductivity as a function of frequency that low frequency phonons can
have relevant consequences on the calculations of thermal conductivity, espe-
cially in alloys.

The low energy phonon calculations regarding thermal conductivity involve
harmonic and anharmonic terms. From an ab initio framework, while the har-
monic terms can be calculated without further complications for fine q-point
mesh sampling, the anharmonic ones require higher computational resources.
The goodness of such calculations are determined by the interatomic force con-
stants (IFC) computed from first principles. In order to obtain proper IFC, the
modeling of the system and the convergence of the different involved parameters
should be tested accurately (see Section 2.2 and Section 2.5).

In the calculation of the 3-phonon scattering rates, the access to low en-
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Figure 5.16: Umklapp relaxation times at 300 K, 100 K and 50 K for natural silicon. Symbols represent
the ab initio values and lines Han’s expressions

ergy phonons depends on the q-point mesh sampling. The finner the mesh, the
lower the available energy phonons. This makes very complex the access to
anharmonic information of very low frequency phonons from a computational
viewpoint. If the thermal conductivity is computed directly in a q-mode sum-
mation with a coarse mesh sampling, the information of low energy phonons is
neglected and could lead to wrong results. In such situations, Akheizer damping
has been introduced as an extra relaxation time in order to avoid this effect [119].
As explained in previous chapters, it is possible to average the q-mode informa-
tion in order to deal with frequency integrals. In this case, extrapolations for
N and U relaxation times at low energy phonons have been deduced analyti-
cally [120, 122, 124]. These expressions make it easy to obtain such parameters
even for extremely low frequencies, preventing thus to lose the information from
these phonons. Doing so, it is not required to introduce any extra relaxation time
in order to predict the experimental data.

For N processes at low frequency Herring [122] demonstrated that the N re-
laxation times have a τN ∝ ω2T 3 frequency and temperature dependence for
diamond-like structures. In the case of U processes, such dependence is more
complex. Han and Klemens [120, 124] deduced an expression to determine the
relaxation time for different transition processes at low frequencies: T +L→ L
and T + T → L, where L and T indicate longitudinal and transverse branches
respectively. In the case diamond-like semiconductors the most common process
is T +L→ L, being the relaxation time expressed in the continuum approxima-
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tion as:
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(5.3)
where here γ is the Grüneisen parameter, ρ the material density and the sub-
scripts L and T refer to longitudinal and transverse modes. rc is the radius of the
1BZ expressed as:
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)
, (5.4)

where G = |G| = 4π/a and R = π/(
√

2a) for the [1 0 0] direction in a cubic
cell, being a the lattice parameter and c the sound velocity of the phonon i.

Fig. 5.16 represents the ab initio U relaxation times and Han’s expression for
silicon at 300 K, 100 K and 50 K using the density of silicon and its averaged γ
calculated from first principles in a 40x40x40 q-point grid. As can be observed,
Han’s expression for T + L → L processes reproduces properly the ab initio
calculated relaxation times at intermediate-low frequency region and provides a
good extrapolation at low frequencies.

5.4 Relaxation times from the full scattering
matrix

The linearized Boltzmann Transport Equation (LBTE) can be solved in different
ways, as has been introduced in Section 1.2. Depending on how it is solved, the
total relaxation time of distribution function of the heat carrier can be different.

Fig. 5.17 compares the total relaxation time of the carrier distribution for sil-
icon and diamond in the Relaxation Time Approximation (RTA), the relaxaton
solution of the LBTE (R-LBTE) and KCM models obtained from first principles
calculations on Phno3py package [79]. Notice that in this figure carrier relax-
ation times are compared, not just phonon relaxation times. In the case of the
R-LBTE the heat carriers have been defined as relaxons [22]. In analogy, in the
KCM the heat carriers are called collectons. From this figure it can be observed
that in both KCM and R-LBTE the relaxation times of the carriers at high fre-
quencies are higher than the phonon relaxation times in RTA. In the KCM this
effect is attributed to collective regime, which leads to an enhancement of the
optical phonons [2] as shown in Fig. 1.2. In addition, it can be observed that
the relaxation times obtained in KCM (collectons) and R-LBTE (relaxons) re-
produce a similar trend. This suggests that as well as in KCM, the full solution
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Figure 5.17: First principles total relaxation times for silicon (left) and diamond (right) under the Relax-
ation Time Approximation (RTA), relaxon solution of LBTE (R-LBTE) and KCM models
from Phono3py.

of the collision matrix also captures the effect of the collective regime. This is
expected as both models are solutions of the same phonon LBTE. Finally, com-
paring the relaxation times for silicon and diamond, it can be observed that the
light atomic mass of the carbon atoms leads to a weak phonon interaction, visible
as a higher relaxation time.

In previous sections of this chapter it has been shown that high frequency
phonons do not have a remarkable contribution to the thermal conductivity in
most cases, except for diamond or graphene. Therefore direct consequences of
the enhancement of the optical phonons by the collective regime can not be ana-
lyzed, in general, from the thermal conductivity of bulk materials. The enhance-
ment of optical phonons depends on the collective relaxation time τC as well as
on the Σ factor. Those are parameters that are only defined in the KCM frame-
work. Therefore, even though the relaxation time of the distribution function in
other models can be similar, those parameters can not be obtained and the origin
of the mentioned enhancement is hidden. As will be explained in Chapter 6,
complex experiments can be reproduced by the KCM hydrodynamic model. In
this case, non-local parameters that are directly related to the collective regime
are required (see Eq. (4.2.1)).



Chapter 6

Geometric effects in complex
experiments

The use of complex geometries and heating conditions in recent experiments
have shown that Fourier law is not able to reproduce all the obtained results [4,
5, 6, 7, 8, 9, 10]. In this line, the KCM equations for the heat flux including
memory and non-local effects have been proposed as an explanation for the ob-
served behavior. This chapter includes a novel work that combines experimental
and theoretical research performed in collaboration with the Birck Nanotechnol-
ogy Center (West Lafayette, USA), where steady state and transient heat trans-
port have been studied on silicon and In0.53Ga0.47As samples. In addition, the
KCM provides new explanations for two recent published experiments that ex-
hibit non-Fourier effects in 1- and 2-dimension systems.

In materials where normal (N) scattering is important, such as Si, Ge, GaAs
or diamond, the KCM has been used to calculate the thermal conductivity of
bulk and in simple geometries like nanowires and thin films, from nanometer
to micron scales showing good agreement with experimental data [3]. In these
simple geometries, non-locality can be analytically integrated and included into
a form factor F that modulates the collective contribution to thermal conductiv-
ity depending on the sample size [3, 33]. In addition, the analytic solution of the
hydrodynamic KCM equation and the solution by finite elements have shown
good results in such systems (see Section 4.2).

In the present chapter more general geometries in situations where an ana-
lytic solution is not available are studied. In these cases, it is required to use the
hydrodynamic heat flux equation presented in Section 4.2:

τ
dQ

dt
+ Q = −κ∇∇∇T + `2(∇∇∇2 + 2∇∇∇∇·)Q . (6.1)

The first terms on the left and the right sides of Eq. (6.1) define the clas-
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sical Fourier law. The second term on left hand side includes thermal inertia
effects and is necessary when the time variations are of the order of the heat
carrier mean free time (MFT). In most semiconductors, this time is of the or-
der of picoseconds, much smaller than the characteristic time of many pump-
probe experiments, which detect temperature changes in 100’s of picoseconds to
nanosecond range. The second term on the right side includes non-local effects
and it depends on the non-local length `, which is of the order of hundreds of
nanometers for many semiconductors, as v ∼ 103 m/s and τ ∼ 10−12 s. As it
will be shown, this term can dominate the observed non-Fourier behavior. This
term is analogous to the viscous term in the Navier-Stokes equations of fluid
mechanics, and it reflects the partial conservation of crystalline momentum in
N collisions. Notice that this term is not necessarily along the direction of the
temperature gradient and, as a result, the heat flux generated by Eq. (6.1) can not
be parallel to the temperature gradient, a behavior that can not be described by
an effective Fourier law. Obviously, Eq. (6.1) can not reproduce all the complex-
ities of the phonon spectrum and interactions, such as the Lévy flights [29], but,
as shown in this chapter, it can explain the main deviations from the Fourier law
observed in experiments.

6.1 1D heat propagation
The simplicity of 1D geometries allows comparing the hydrodynamic KCM re-
sults with both experimental data and BTE solutions, where models can some-
times be simplified and analytically solved. The hydrodynamic heat transport
can be also studied from a 1D spatially sinusoidal temperature pattern created
on a silicon membrane and left to return to equilibrium [4]. Johnson et al. ob-
tain the effective thermal conductivity in this setup by measuring the decay time
of the patterned heat, known as transient thermal grating (TTG). By combining
Fourier law using an effective thermal conductivity with the energy conservation
the expected decay rate can be obtained:

γ =
κeffζ

2

C
, (6.2)

where ζ = 2π/L is the inverse scale length, L being the grating period and C the
specific heat. Standard Fourier theory predicts a constant thermal conductivity
and consequently a quadratic rise in the decay rate as a function of the inverse
length scale. Experimental data do not follow this prediction, showing a decrease
of the apparent effective conductivity with increasing values of ζ . One should
note that since a patterned heat source is created in the volume of the membrane,
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this does not introduce an additional boundary in the system. Thus the use of a
boundary relaxation time is not justified to fit the results.

In this specific configuration a solution of Eq. (6.1) in 1D can be easily ob-
tained in the transformed Fourier space. The spatial derivatives of the heat flux
in that equation give a contribution equal to 3`2ζ2 in the left hand side. The
decay rate is then:

γ =
κζ2c`

1 + 3`2ζ2
. (6.3)

Figure 6.1: Effective decay rate as a function of the inverse grating length scale: experiments (symbols),
Fourier predictions with the bulk heat conductivity (blue line), the effective thin film conduc-
tivity (red line) and hydrodynamic KCM predictions, Eq. (6.1) (green line).

The obtained 1D solution can not be applied to Johnsons’s [4] experiment for
a membrane of small thickness h much larger than `. In this case the transverse
coordinate must be taken into account in Eq. (6.1), and therefore the solution
deviates from the one-dimensional form. It can be shown (see Appendix B)
that, for the small values of `ζ that are relevant in the experiment, the effect of the
transverse profile is to substitute the bulk conductivity κ by the effective in-plane
conductivity of the membrane, κeff(h), and the parameter `2 by an effective value
reduced in the same proportion, `2

eff = `2κeff/κ. In Fig. 6.1, the experimental
results and the prediction of Eq. (6.2) are plotted using the bulk value of the
thermal conductivity and the KCM prediction given by Eq. (6.1). The non-local
length calculated from first principles is ` = 190 nm.

Using the Boltzmann Transport Equation (BTE), a similar expression has
been obtained in which the reduction of the thermal conductivity is a conse-
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quence of phonon suppression function eliminating phonons from the distribu-
tion when their mean free path (MFP) was approximately larger than the grating
period [4]. In the case of Eq. (6.1), this factor has a hydrodynamic interpretation,
that is to say, it is not based on individual phonons but it describes the collective
heat flow.

In higher spatial dimensions, Eq. (6.1) is quite useful as compared to the di-
rect solution of BTE since the vector nature of the heat flow is directly taken
into account. In 2D and 3D, BTE can only be solved in very simplified geome-
tries extracting a limited amount of information. Iterative solutions in general
configurations are computationally prohibitive as solutions may not be local in
space. KCM offers the possibility to solve Eq. (6.1) combined with the energy
conservation law by using a finite element approach. This avoids analytic ma-
trix inversion and integration, in contrast to kinetic approaches of BTE. It is
necessary to complement the second-order differential equation with appropri-
ate boundary conditions to fix the heat flux at the boundaries. Slip boundary
conditions have been used in this approach (see Appendix C).

The same grating experiment has been analyzed also by Zeng et al. for
two set of silicon membranes of 390 nm thick [116]. In this work, different
models are used in order to interpret the results. On one side a spectral Monte
Carlo (MC) simulation with boundary scattering and on the other a gray MC and
effective MFP model based on phonon suppression functions.
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Figure 6.2: Thermal grating simulations from different models. Left: Fuchs-Sondheimer (FS), spectral
monte carlo (MC), gray MC and effective mean free path (MFP) model [116]. Right: Hydro-
dynamic KCM with different slip boundary conditions and non-local length ` = 190 nm.

In Fig. 6.2 is represented the experimental data of thermal grating on sili-
con membranes and the different models used to analyze them. In the left plot
the different models used by Zeng et al. are shown. In addition, the Fuchs-
Sondheimer (FS) calculation, which neglects the effect of grating, shows the
limit situation [31]. In the right plot are represented the predictions of the hy-
drodynamic KCM model for different slip boundary conditions and a non-local
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length of ` = 190 nm. In comparison it can be appreciated that KCM performs
better than the other models, as the tail for small grating periods is perfectly pre-
dicted for any slip condition. The drop of the tail depends only on the non-local
length `. Regarding the exact value of the slip condition, as it has been men-
tioned in Section 4.2, it depends on the characteristics of the roughness of the
sample, therefore a deeper study is required in order to obtain the exact value.

The better performance of the KCM can be understood from the non-equilibrium
framework. Kinetic models, as the ones represented in Fig. 6.2 left, are solved
from individual phonon relaxation times τ(ω, T ) calculated from standard non-
equilibrium distribution functions where the perturbation only depends on a tem-
perature gradient A(∇∇∇T ) (see Section 1.1.1). In the present experimental setup
it is clear that also exists a heat flux gradient, therefore A(∇∇∇T,∇ · Q), then the
relaxation times calculated from the first approach alone are no longer valid. In
the KCM, in contrary, is used a hydrodynamic equation with an integrated relax-
ation time τ(T ) for each temperature. Although this relaxation time is calculated
from a perturbation A(∇∇∇T ), the hydrodynamic equation is derived from higher
order perturbations (see Section 1.3.3) regarding variations of the heat flux Q.
This makes the hydrodynamic KCM approach more suitable for these kind of
experiments.

As mentioned by Zeng et al., the effective models derived in their work are
specific for the studied geometry (a membrane) and can not be applied in other
systems. The hydrodynamic KCM equation, as include generic boundary condi-
tions, can be applied to any geometry when solved by finite elements.

6.2 2D heat propagation
As the second test of validity, Eq. (6.1) is used to describe a phenomenon that has
been observed by using several heating lines in a patterned configuration [10].
These arrays are nickel heating lines of width L grown on a silicon substrate
separated periodically a distance 4L.

A laser generates a short heating pulse on the lines and their thermal decay
is measured using pump-probe techniques. The authors find a maximum in the
effective thermal boundary resistance (TBR) as L is reduced; that is, as the lines
become closer to each other, the effective TBR increases up to a point around
300 nm, below which it decreases. Then, for the closest lines, the substrate
seems to evacuate energy better than for lines slightly farther apart. This was
interpreted so that, when the nanoscale heat sources are close enough, collec-
tive effects among phonons from the different heater lines increase dissipation
efficiency. By using the finite element solution of Eq. (6.1) (without any TBR),
predictions of the hydrodynamic model for an isolated heater line and for the
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periodic array of lines are obtained. Interestingly, the KCM predicts an effect
equivalent to the one attributed to an effective thermal resistivity in the interface
between the heater and the sample, i.e. the TBR. This effective thermal resis-
tivity is obtained as the best fit of a TBR to match the KCM decay curve when
using a Fourier law for the substrate. Fig. 6.3 shows that, by using a non-local
length ` = 190 nm the hydrodynamic model is able to predict the experimental
data for line widths larger than 300 nm. The advantage of the hydrodynamic
model with a fixed ` is that it avoids the need to fit by hand the effective resis-
tivity for each sample. Also, the fact that the value for the non-local length for
this experiment is the same the one used to describe the previous experiment on
silicon from Section 6.1 supports the consistency of the model.

Figure 6.3: Effective thermal resistivity as a function of the heater width L with periodicity 4L on top of
silicon. Black dots denote the effective resistivity needed by a Fourier law to fit the experimental
data [10]. Red and blue dots correspond to the values of the effective resistivity in a Fourier
model needed to reproduce the KCM decay curves for a single line and a periodic array of lines,
respectively. The blue zone corresponds to the error in the KCM with periodic configuration.

When the heating line width decreases below a value around 300 nm the
KCM model fails, as it provides a monotonic increase of the effective resistivity.
This behavior is not amended by considering an array of heater lines instead of a
single line, since the model predictions are the same in both cases (no coopera-
tive behavior among lines is predicted by the KCM model). However, the KCM
can give some insight on the decay of the effective thermal resistivity at small
sizes observed in the experiment. The origin of this behavior may be related to
some experimental observations found in the next experiment on silicon and will
be discussed in Section 6.3.
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6.3 Steady state and transient heat transport
This study consists in an experiment in which metal lines are deposited on a
semiconductor substrate and they are heated using an electrical current. By us-
ing gold heater lines of different widths fabricated using electron beam lithog-
raphy, features smaller than the phonon characteristic MFP are obtained. This
study has been performed with different size heating lines on top of silicon and
In0.53Ga0.47As.

Figure 6.4: Experimental setup of TDTR imaging [125].

In Fig. 6.4 the experimental setup used for thermal imaging of silicon and
In0.53Ga0.47As is represented. The figure reproduces the exact configuration for
In0.53Ga0.47As, where an InP layer is also observable. In the case of silicon,
the configuration is just formed by a single layer of silicon of 500 µm. On the
top of the sample, a 20 nm insulating layer of Al2O3 is deposited. Samples are
heated through the metal heating lines by Joule effect applying an alternating
current. This heating lines, of 90 nm thickness, are deposited on the top of
Al2O3 through a small 5 nm layer of Ti for adhesion proposes. The amount of
heat deposited on the line is determined by a two contact voltage measurement
and the temperature rise can be independently measured using the resistance
of the metal lines or through the temperature field on the substrate using Time
Domain Thermoreflectance (TDRT) (more details about the experimental setup
are provided in Ref. [125]). The silicon samples do not have the sensor golden
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line, therefore in the In0.53Ga0.47As case a step in the temperature profile near
to the heating line, not appearing in the silcon samples, will be appreciated.
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Eq. (6.1) combined with the energy balance equation can be solved through
finite elements for this specific geometry to give the temperature profiles mea-
sured by TDTR. In Fig. 6.5 and Fig. 6.6, the KCM steady state solution for the
cross section temperature profile on and around the metal lines on top of silicon
is compared with experimental data. Notice that the nominal (i.e. bulk) value
of thermal conductivity for silicon is 124 W/m·K. This indicates a small impu-
rity content in the sample, which will have an impact on the calculation of the
non-local parameters. The agreement of the hydrodynamic KCM model with
experiments is remarkable. It can be observed that for 1 µm and 400 nm width
lines the hydrodynamic model is able to predict the temperature profile in the
whole spatial range by using the bulk thermal conductivity and a non-local pa-
rameter of ` = 293 nm. Notice that this parameter does not correspond to the one
used in pure silicon samples. For the 200 nm heating line, the KCM using bulk
properties overestimates the heater temperature. In order to fit all the tempera-
ture profile is necessary to use a thermal conductivity value of κ = 170 W/mK,
larger than the reported bulk values. This can be caused by the leak of inclu-
sion of superdiffusive effects in the model or other effects related to a possible
dependence of the thermal conductivity on the temperature gradient (κ(∇T∇T∇T )). It
is interesting to compare the KCM solution to that obtained from an effective
Fourier approach. It can be seen that if one uses Fourier’s law to interpret the
data it is not possible to completely explain the full temperature distribution. Us-
ing the nominal conductivity, the tail of the profile can be predicted but the heater
temperature is underestimated. On the other hand, if a lower effective thermal
conductivity (adjusted) is used to reproduce the increase in the heater temper-
ature, the tail is over-predicted. These theoretical predictions are in agreement
with previous works [8] where a non-isotropic thermal conductivity for in-plane
and out of plane directions are used in order to describe the observed thermal
profiles in similar setups. However, required anisotropy of thermal conductiv-
ity is unphysical for diamond-like crystals, whereas KCM can predict the data
assuming an isotropic thermal conductivity [125].

The observed lower temperatures near the heat source, as compared to Fourier
prediction, can be explained based on the properties of the non-local term in
Eq. (6.1). The hydrodynamic behavior of the heat flux can be observed in the
details in Fig. 6.6b and Fig. 6.6c. Using the vector identity ∇2Q = ∇∇∇(∇Q) −
∇× (∇×Q) in a steady situation (∇Q = 0) one can see that the heat flux is, in
general, not parallel to the temperature gradient Q = −`(∇∇∇×ω)−κ∇∇∇T , where
ω = ∇ × Q is the vorticity of the heat flux. Near the edge of the heater the
incoming heat flux, which initially has only y component Qy, changes along the
x direction when it enters into the substrate generating a vorticity ωz = ∂Qy/∂x.
This vorticity is confined to a layer of the order of ` near the interface, and will
give a rotational contribution to the heat fluxQr

x = −`∂ωz/∂y. This contribution
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to the heat flux is opposite to the conduction term Qc
x = −κ∂T/∂x, producing

an effective reduction of local temperature. Such information is lost if one re-
duces the description from 2D to 1D imposing a cylindrical symmetry, in which
case an increase in the thermal boundary resistance needs to be introduced [5, 8].
This effect has been discarded experimentally to be due to diffraction by doing
thermoreflectance imaging measurements with different wavelengths.

A recent work on electric transport in graphene has reported a similar re-
sponse of the electric resistivity attributed to electron viscosity phenomena [126].
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In comparison with the experiment analyzed in Section 6.2, KCM properly
describes the stationary temperature profiles for heater lines larger than 400 nm.
However, for the 200 nm width line (Fig. 6.6a) it was necessary to increase the
bulk thermal conductivity as κeff = 1.4κ in order to fit the temperature profile.
Therefore, in the setup of Section 6.2, for heating lines smaller than 300 nm it
can be expected the need to increase the thermal conductivity in order to fit the
data. Pure KCM model is able to describe both experiments at line widths larger
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than 300 nm and requires modification of the thermal conductivity at smaller
sizes. Actually using the same factor κeff = 1.4κ, the value obtained for the
effective resistivity (3.5 ± 0.4 nKm2/W) predicts the experimental data (3.8 ±
0.3 nKm2/W) within the error bars. The substrate seems to evacuate heat faster
than expected from the current formulation of the model.

Going back to the 3D setup, similar results to those found for silicon are
also observable in Fig. 6.7 for In0.53Ga0.47As. Now, the experimental configu-
ration corresponds exactly to Fig. 6.4. As has been observed for silicon, TDTR
shows enhanced heat transport adjacent to junctions at distances of the order of
its non-local length ` ∼ 120 nm. Again, the Fourier model, even adjusting the
thermal conductivity is not able to reproduce the whole trend. From the magnifi-
cation of the zone close to the heater, it can be appreciated that both nominal and
adjusted Fourier overpredict the thermal conductivity, while the hydrodynamic
model provides good agreement in all the cross section. In agreement with the
observations for silicon, the heat flow around large heating lines (W>1 µm) is
well predicted by nominal Fourier. On contrary, the reduced size devices are
better predicted by the KCM hydrodynamic model.
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Fig. 6.8 shows the transient response for 500 nm, 400 nm and 200 nm heating
lines on In0.53Ga0.47As. Experimental data (dots) are compared with Fourier
theory with adjusted thermal conductivity and the KCM hydrodynamic model.
It can be observed that the rise in temperature is well predicted in both models for
the two bigger devices. On the other hand, for the smallest device the modified
Fourier underpredicts considerably the temperature rise. In addition it can be
observed a faster cooling than the predicted by the Fourier theory in all cases. In
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this sense, the hydrodynamic model provides a better agreement for all devices,
even though small discrepancies still exist, especially for the smallest device.

6.4 Effective modeling of KCM
In this chapter the hydrodynamic KCM has been applied to explain different ex-
periments on thermal transport. Here, the effect of the hydrodynamic heat trans-
port governed by the term `2∇Q is studied from the point of view of an effective
thermal conductivity and compared with the effects of TBR and anisotropy.

Figure 6.9: Effective thermal conductivity obtained from a Fourier representation of the KCM solution.

In Fig. 6.9 the effective thermal conductivity obtained for the experiment on
silicon detailed in the Section 6.3 is presented. To obtain an effective thermal
conductivity value from the KCM solution, it is assumed the Fourier law, and
therefore from the obtained flux Q and the temperature gradient ∇∇∇T in each
point the effective thermal conductivity is obtained as κeff = −|Q|/∇∇∇T . As
it can be observed, close to the heater the effect of the viscosity term is to re-
duce the effective thermal conductivity. Far to the heater, the effect of this term
disappears and the bulk thermal conductivity is recovered. The observed reduc-
tion of the thermal conductivity near to the heater can be assimilated to a TBR.
For this propose a simulation of the same setup in In0.53Ga0.47As using a Fourier
model and including an extra layer between the heater and the substrate has been
done. In this case, the thermal conductivity of the layer and its thickness H will
determine the value of its resistivity as rms = H/κL.

Fig. 6.10 shows the solution obtained by the KCM and the effective Fourier
including an adjusted TBR. It can be observed that the inclusion of a TBR can
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Figure 6.10: Temperature profile on In0.53Ga0.47As for W=200 nm, W=400 nm and W=10 µm. Bottom
right: 2D temperature profile with KCM and Fourier+TBR superposed with heat flux vector
Q (red arrows) and minus temperature gradient −∇∇∇T (white arrows).

Width 200 nm 500 nm 10 µm
KCM / Fourier KCM / Fourier KCM / Fourier

κeff [W/mK] 8.1 / 8.1 6.1 / 6.1 5.3 / 5.3
TBR [nKm2/W] 0 / 35.8 0 / 33.7 0 / 9.2

Table 6.1: Values of effective thermal conductivity and TBR for different width heating lines on
In0.53Ga0.47As.

reproduce the same trend found by the KCM and in agreement with the experi-
mental data. Table 6.1 contains the values used to reproduce these data. As it can
be observed, both models need to adjust the thermal conductivity for small heater
widths. On the other hand, while in the KCM a constant value of ` = 150 nm is
used for all the samples, the TBR in the Fourier model needs to be adjusted for
each sample. In addition, the values required for the TBR are very large com-
pared to the reported AMM/DMM values [11, 29]. In the 2D temperature profile
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it can be observed that, while in the KCM the heat flux and minus gradient of T
are not always parallel, in the Fourier model have always the same direction.

Finally, due to recent attempts to explain Fourier failures from an anisotropic
point of view in isotopic systems [8], an anisotropic Fourier model has been
used to reproduce the In0.53Ga0.47As experimental data. In this case, different in
plane and out of plane thermal conductivity values have been adjusted in order
to obtain the best fit.

Figure 6.11: Best anisotropic fit to experimental In0.53Ga0.47As temperature profile with W=500 nm.

The anisotropic Fourier model that fit the temperature on the center of the
heater and on the top of the sensor is represented in Fig. 6.11. The values used
are κInGaAs,IP = 1.1 W/mK and κInGaAs,OP = 11.7 W/mK. As it can be observed,
even though the temperature at the heater and the sensor are correct, the trend
of the temperature profile far from the center does not correctly reproduce the
experimental data. It is not strange that an anisotropic model fails to predict
experiments in isotropic crystals such as In0.53Ga0.47As or silicon.



Chapter 7

Conclusions

A novel contribution of this work has been to develop the equations of Guyer
and Krumhansl (GK) in a first principles framework considering the maximiza-
tion of the entropy to obtain a fully predictive model to compute the thermal
conductivity of semiconductors. These equations have been combined with Ex-
tended Irreversible Thermodynamics (EIT) to obtain a hydrodynamic equation
to describe the heat flux beyond the Fourier law including non-local and mem-
ory effects able to reproduce recent experiments under ultra-fast heating or high
temperature gradients. All these set of equations to describe the thermal con-
ductivity and heat flux is what conforms the Kinetic Collective Model (KCM)
framework.

The collective behavior has been introduced as a fundamental piece to un-
derstand the thermal conductivity when normal (N) scattering plays an impor-
tant role. This new transport mechanism is combined with the kinetic trans-
port in the KCM, providing a way to calculate the thermal conductivity without
treating normal scattering as a resistive mechanism, in contrast to N-as-resistive
approaches like in the classical Relaxation Time Approximation (RTA).

The importance of collective behavior in a specific sample is determined by
the parameter Σ, calculated from the ratio of normal to resistive scattering rates.
As boundary scattering is included in the resistive term, when size is reduced
Σ → 0, and also vanishes at low temperatures. In bulk samples, where bound-
aries are not considered, the collective behavior is relevant at all temperatures,
becoming more important as temperature decreases. Since the collective regime
is expected to be the responsible for the appearance of hydrodynamic effects, for
finite values of Σ hydrodynamic equations can be used to study heat transport.

By using first principles calculations, KCM has provided good agreement
with experimental data for a large number of samples without free parameters.
They include several bulk materials and micro/nano silicon films and wires in a
wide range of temperatures. While thermal conductivity of some samples can
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be predicted by RTA, KCM additionally provides good predictions for bulk dia-
mond and silicon nanowires thanks to the correct treatment of normal processes
and the form factor used in the collective regime to account for boundary effects.

Regarding bulk samples, the role of normal scattering in heat transport of
alloys has been also analyzed. Thermal conductivity values derived from the
KCM for Si1−xGex and InxGa1−xAs alloys show good agreement with experi-
mental data and previous calculations. Without introducing any fitting param-
eters, the proper combination of kinetic and collective transport can accurately
predict thermal conductivity at low alloy concentrations. Impurity concentra-
tions as little as 0.4% almost eliminate the collective contribution in Si1−xGex,
while in InxGa1−xAs, the collective contribution is strongly reduced, but not
completely removed, at 4% concentrations. This insight could be useful when
addressing phenomena such as phonon drag or dopant effects in semiconductor
thermoelectrics. Moreover, while the impact of collective transport on steady-
state thermal conductivity of bulk alloys is negligible at most concentrations, the
role of normal scattering is always important by slowing down the kinetic trans-
port, thus reducing thermal conductivity by 4-15% at room temperature. The
latter effect can have a big impact on the analysis of ultrafast thermal transport at
small length scales. The slowing down of the kinetic modes have been reported
to be also relevant in all the studied samples for finite values of Σ, reducing the
kinetic contribution up to 50% in most cases.

On the study of low dimension samples two approaches have been used.
On one side, the GK kinetic-collective approach has been applied successfully
to several silicon and Bi2Te3 samples. In this approach, phonons larger than the
sample characteristic size are limited in the kinetic regime while a hydrodynamic
form factor accounts for the boundaries in the collective one. A full hydrody-
namic approach derived from GK and EIT have also shown good performance
on silicon and has improved the prediction for Si1−xGex nanowires of different
impurity concentrations.

From the phonon spectral analysis the contribution to the thermal conductiv-
ity of each heat carrier in terms of frequency and mean free path (MFP) has been
obtained. While high frequency carriers have a significant contribution for pure
materials, low frequency ones are the responsible of heat transport in alloys.

The role of low energy phonons has been demonstrated to be important in
order to compute the thermal conductivity and to analyze the thermal conductiv-
ity accumulation function in terms of MFP. KCM supplies an explanation for the
reduction of the contribution of long MFP phonons based on the effect of the col-
lective regime and the calculation of low frequency relaxation times. In addition,
in the KCM accumulation function the emergence of a collective characteristic
length provides information of the scales where deviations from Fourier can be
relevant, which is not visible from classical representations. Moreover, the de-
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pendence of Σ on the characteristic size Leff changes the shape of this function,
and therefore override the general belief that the thermal conductivity for a cer-
tain size Leff can be obtained by removing the contribution from phonons with
MFP greater than it.

The spectral MFP information has allowed to study the transient response
between diffusive and ballistic regimes. It is shown that the collective regime,
where phonons share the same MFP, narrows the spatial window of superdiffu-
sive heat transport. In addition, the slope of the accumulation function has been
correlated to the dominant scattering mechanism.

The study of complex experimental setups has evidenced that the hydrody-
namic KCM thermal transport equation can explain the observed deviations from
Fourier law in nanoscale devices with several geometries. The model using in-
trinsic material properties is able to describe the different studied experiments up
to scales larger than 200 nm. The hydrodynamic transport includes a non-local
term ` resembling viscous friction in fluids, thus increasing the resistance of heat
to flow as size becomes smaller. It has been shown that this increased resistance
produces the same effect as an increase of thermal boundary resistance (TBR)
as size is reduced. Then, experiments which have been interpreted by consider-
ing a size-dependent TBR may be reinterpreted as a hydrodynamic effect. The
hydrodynamic view has the advantage of predicting the thermal response using
a single non-local length, `, instead of fitting the TBR for each experiment.

In summary, the collective regime defined in KCM introduces relevant infor-
mation on phonon transport that could be useful to describe experiments where
non-Fourier behavior has been reported, as in high temperature gradients or
ultra-fast experiments using pump-probe and/or thermoreflectance setups. The
hydrodynamic KCM has been applied successfully to general 3D geometries,
where BTE approaches are hard to implement. Its implementation via a finite
elements method could be directly combined with current tools used in nano-
electronics device modeling and optimization. In addition, this new model could
lead to a better understanding of the heat transport from microscopic to macro-
scopic scales and help to a deeper study of the microscopic interpretation of the
TBR.





Appendix A

Generalization of the KCM
equations

In certain systems where differences between normal and umklapp processes are
relevant or the symmetries of the crystal are complex, the Debye approximation
used in the first formulation of the model—where homogeneity and isotropy are
assumed [15]—is no longer valid. Some discrepancies to experimental data can
appear in such situations.

In order the improve the solution, some terms need to be reformulated. In
the first case, the normalization constant λ from 〈1|1〉, previously defined as
λ2 = 3kB~2c2/Cv, takes the form:

λ2
ij =

~2kB∑
q

(
qi⊗qj
ω2
q

)
x2

q
exq

(exq−1)2

, (A.1)

where xq = ~ωq/kBT . Notice that the denominator represents the mode specific
heat corrected by a term (qi ⊗ qj/ω2

q).
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Appendix B

Hydrodynamic heat flow in two
dimensions

A major difference between the Fourier law and the hydrodynamic heat flux
equation, Eq. (6.1), is that the heat flux provided by the latter is not, in general,
parallel to the temperature gradient. In addition, it may contain a non vanishing
vorticity. This behavior can not be seen in purely one-dimensional systems, but
it can already be observed in two-dimensional ones. Here a general solution for
the heat flux given by Eq. (6.1) is provided, making explicit this behavior. This
solution also yields a general expression for the decay time in grating experi-
ments.

In two dimensions, thermal magnitudes are functions of the x,y coordinates
only. The heat flux has two components, Q = (Qx, Qy), which are the solution
of Eq. (6.1):

[(
1 0
0 1

)
− `2

(
3∂2

x + ∂2
y 2∂x∂y

2∂y∂x ∂2
x + 3∂2

y

)](
Qx

Qy

)
= −

(
κ 0
0 κ

)(
∂xT
∂yT

)
,

(B.1)
where the time derivative and 2∇∇∇∇∇∇·Q have been neglected. Separable solutions
in which the dependence on the spatial coordinates are of the form:

T,Q ∝ ei(mxx+myy) , (B.2)

with m = (mx,my) a possibly complex wave vector. Substituting Eq. (B.2) into
Eq. (B.1) gives:

[(
1 0
0 1

)
− `2

(
3m2

x +m2
y 2mxmy

2mymx m2
x + 3m2

y

)](
Qx

Qy

)
= −iκT

(
mx

my

)
.

(B.3)
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The matrix on the left hand side of this equation has two eigenvalues, µαand
µβ . From one side, µα = 1 + 3m2`2 has eigenvectors parallel to m, and can
be expressed as Qα = imΦ = ∇∇∇Φ, where Φ is a scalar function with potential
heat flux, and therefore non-rotational, and m = |m|. From the other side,
µβ = 1 + m2`2 has eigenvectors normal to m, and can be expressed as Qβ =
iz×mψ = z×∇∇∇ψ. z is the unit vector normal to the xy plane, and the scalar ψ
is analogous to the stream function in fluid mechanics. This heat flux has non-
vanishing curl ∇ × Qβ = z∇2ψ = −zm2ψ. Then it is qualitatively different
from the heat flux in Fourier theory.

It can be observed that the right hand side of Eq. (B.3) is an α eigenvector.
Then, expressing the total heat flux Q as a combination of the two eigenvectors,
Q = Qα + qβ = imΦ + iz× kψ, two equations can be obtained from Eq. (B.3):

(1− 3m2`2)Qα = −κiTm and (B.4)

(1−m2`2)Qβ = 0. (B.5)

Since both equations are uncoupled they can be solved independently. From
Eq. (B.4) the potential Φ is obtained:

Φ = − κT

1 + 3m2`2
. (B.6)

Eq. (B.6) suggests that the potential part of the heat flux, Qα, is obtained from
the temperature gradient through an effective heat conductivity, λeff = κ/(1 +
3m2`2).

The time evolution of the temperature profile depends on Qα only, as it can
be seen from the energy conservation law:

cv
∂T

∂t
+∇Q = 0 , (B.7)

where cv is the specific heat per unit volume. Noting that∇Qβ = 0 and∇Qα =
−m2Φ and using Eq. (B.6), one obtains:

cv
∂T

∂t
+

κm2

1 + 3m2`2
T = 0 . (B.8)

The temperature profile decay can be obtained directly from Eq. (B.8) as

γ =
κm2/cv

1 + 3m2`2
. (B.9)

For a purely one dimensional initial profile, T (x, y, t = 0) = sin(ζx), in an
unbounded medium in the X and Y directions one has that Eq. (B.9) leads to
Eq. (B.7). However, if this initial profile is imposed in a membrane of smaller
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thickness in the Y direction, a dependence of the solution on the transverse co-
ordinate will appear, which needs to be taken into account through a different
value from 0.

The rotational contribution to the heat flux can be described through the
stream function. From Eq. (B.5), equation for ψ is obtained as:

(1 +m2`2)ψ = 0 , (B.10)

which shows that the stream function is not vanishing only if m2 = −1/`2.
Therefore some components of m must be complex. Assuming that mx = ζ is
real, then my = ±i

√
ζ2 + 1/`2 , and one has

ψ ∝ eiζx±β(ζ)y ,where β(ζ) =
√
ζ2 + 1/`2 . (B.11)

This function decays exponentially in a length of the order of β−1. The vorticity,
which is proportional to ψ, also decays in a length of order of β−1.

Finally, for a complete determination of the heat flux, the differential equa-
tions in Eq. (B.1) must be supplemented with suitable boundary conditions. Each
condition imposed on the components of the heat flux will introduce a coupling
between the potential Qα and rotational Qβ contributions to the flux. According
to the definitions of Φ and ψ, the components of the heat flux are given by

Qx =
∂Φ

∂x
− ∂ψ

∂y
and (B.12)

Qy =
∂Φ

∂y
+
∂ψ

∂x
. (B.13)





Appendix C

Longitudinal heat transport in a
thin film

A membrane of width h described by the coordinate y ∈ [−h/2, h/2] with finite
extension along the X direction and an initial temperature profile T (x, y, t =
0) = sin(ζx) is considered.

The evolution of the system for t > 0 is given by Eq. (B.1) and Eq. (B.7)
together with boundary conditions at both surfaces of the film, y = ±h/2:

• Insulating boundary conditions,Qy(y±h/2) = 0. According to Eq. (B.13):

∂Φ

∂y
|y=±h/2 +

∂ψ

∂x
|y=±h/2 = 0 . (C.1)

• Slip boundary condition, Qx = C`∂Qx/∂y, where C is a slip coefficient,
and the orientation towards the interior of the film is taken as positive
in the derivative; this slip condition is analogous to the one employed in
hydrodynamics [34]. Using Eq. (B.12) leads to:

∂Φ

∂x
|y=±h/2 −

∂ψ

∂y
|y=±h/2 = ±C`∇2ψ|y=±h/2 . (C.2)

To obtain the right hand side of this equality it has been used that the first
boundary condition, Qy = 0 at y = ±h/2, applies to all x values, so ∂Qy/∂x =
0 = ∂2Φ/∂x∂y + ∂2ψ/∂x2 at the boundaries. The solution to this problem
can be obtained as a combination of the previously obtained separable solutions.
According to the symmetry of the problem, the contributions to the temperature
field must be of the form

Tm(x, y, t) = Ame
−γmtsin(ζx)cos(myy) , (C.3)
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where the decay rate γm is given by Eq. (B.9) with m2 = ζ2 + m2
y. The differ-

ential equation fixes this temporal dependence for the functions Tm, and also for
Φm. According to Eq. (B.6) one has:

Φm(x, y, t) = Bme
−γmtsin(ζx)cos(myy) , (C.4)

with Bm = −κAm/(1 + 3m2`2). The form ψm, according to Eq. (B.11) and the
symmetries of the problem, is

ψm(x, y, t) = Dm(t)cos(ζx)sinh(βy) . (C.5)

The time dependence of Eq. (C.5) will be fixed by the boundary conditions.
The first boundary condition (Eq. (C.1)) gives

Dm(t) = −Bme
−γmtmy

ζ

sin(myh/2)

sinh(βh/2)
. (C.6)

Using the second boundary condition given by Eq. (C.2), the following rela-
tion is obtained:

mytan(myh/2) = −ζ
2

β

tanh(βh/2)

1 + C
2β`

tanh(βh/2)
. (C.7)

This is an eigenvalue for the magnitude my. There is an infinite number of real
solutions for my: given that the right-hand-side of the equation is negative, there
will be a solution in each of the intervalsmyh/2 ∈ [(n−1/2)π, nπ], n = 1, 2, ...
The decay rate for the n-th solution increases with n, because m2 = ζ2 + m2

y.
However, there exists also an imaginary solution, my = iα, with α determined
by

αh

2
tanh(αh/2) =

(
ζh

2

)2 tanh(βh/2)
βh
2

+ Ch
2`

tanh(βh/2)
. (C.8)

The solution given by Eq. (C.8) provides the eigenfunction with the slowest
decay, since m2 = ζ2 − α2 takes the smallest value:

γ =
κζ2

C

1− α2/ζ2

1 + 3`2ζ2(1− α2/ζ2)
. (C.9)

Therefore, the change of the decay rate from the bulk expression, Eq. (B.9), due
to the finite thickness of the film can be absorbed in a ζ-dependent modification
of coefficients κ and `2 through the same factor, f = 1−α2/ζ2. The effect of the
finite thickness is thus to reduce the decay rate as compared to the unbounded
case; this is what expected from the viscous-like term in the hydrodynamic heat
flux equation.
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As Eq. (C.8) shows, α is a function of h, ` and ζ , and then, for dimensional
reasons, the functional form of the correction factor f is f(ζh, h/`). In the
experiments, the values of ζh are always very small (smaller than∼ 0.1), so that
this quotient is nearly independent of ζ (see Fig. C.1):

limζh→01− (
α

ζ
)2 = 1− (

2`

h
)

tanh(h/2)`

1 + Ctanh(h/2)`
≡ f0(h/`) . (C.10)

Figure C.1: Correction coefficient f as a function of ζh/2 for different values of h/` and for boundary
conditions C = 0 (left) and C = 1 (right). For the experimental range, ζh < 1, the value of f
remains approximately constant.

In the experimental interval one has:

γ =
κeffζ

2/C

1 + 3`2
eζ

2
, (C.11)

with κeff = κf(h/`) and `2
eff = `2fo(h/`) = `2κeff/κ. The change in the de-

cay rate can be described through the use of an effective reduced conductivity
κeff and an effective non-local length `eff. In all the applications a general slip
condition C=1 is used, which is related to the specularity of boundaries [34].
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molekülen, Sitzungsberichte der Akademie der Wissenschaften, Wien 66
(1872).

[19] J. Ziman, Electrons and Phonons The Theory of (Oxford University Press,
Oxford, 2001).

[20] J. Callaway, Model for lattice thermal conductivity at low temperatures,
Phys. Rev. 113, 1046 (1959).



BIBLIOGRAPHY 165

[21] L. Chaput, Direct solution to the linearized phonon boltzmann equation,
Phys. Rev. Lett. 110, 1 (2013).

[22] A. Cepellotti and N. Marzari, Thermal Transport in Crystals as a Kinetic
Theory of Relaxons, Phys. Rev. X 6, 041013 (2016).

[23] P. B. Allen, Improved Callaway model for lattice thermal conductivity,
Phys. Rev. B 88, 144302 (2013).

[24] W. Li, N. Mingo, L. Lindsay, D. A. Broido, D. A. Stewart, and N. A.
Katcho, Thermal conductivity of diamond nanowires from first principles,
Phys. Rev. B 85, 1 (2012).

[25] L. Chaput, Supplementary Material, Phys. Rev. Lett. 110, 1 (2013).

[26] R. A. Guyer and J. A. Krumhansl, Thermal conductivity, second sound,
and phonon hydrodynamic phenomena in nonmetallic crystals, Phys. Rev.
148, 778 (1966).

[27] C. De Tomas, A. Cantarero, a. F. Lopeandia, and F. X. Alvarez, Thermal
conductivity of group-IV semiconductors from a kinetic-collective model,
Proc. R. Soc. A 470, 20140371 (2014).

[28] B. Vermeersch, J. Carrete, N. Mingo, and A. Shakouri, Superdiffusive heat
conduction in semiconductor alloys. I. Theoretical foundations, Phys.
Rev. B 91, 085202 (2015).

[29] B. Vermeersch, A. M. S. Mohammed, G. Pernot, Y. R. Koh, and A. Shak-
ouri, Superdiffusive heat conduction in semiconductor alloys. II. Trun-
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