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Abstract

Visual recognition is one of the main problems of computer vision that tries to
solve for image understanding. It pursuits to answer the question of what objects
are in images. This problem can be computationally solved by using relevant sets
of visual features, such as edges, corners, color or more complex object parts. This
thesis contributes on how color features have to be represented for recognition
tasks.

Image features can be extracted following two different approaches. A first ap-
proach is defining handcrafted descriptors of images followed by a learning scheme
to classify the content (named flat schemes in [71]. In this approach, perceptual
considerations are habitually used to define efficient color features. Here we pro-
pose a new flat color descriptor based on the extension of color channels to boost
the representation of spatio-chromatic contrast that overcomes state-of-the-art
approaches. However, flat schemes present a lack of generality far away from the
capabilities of biological systems. A second approach proposes to evolve these
flat schemes to a hierarchical process, as it is performed in the visual cortex. This
includes an automatic process to learn optimal features. These deep schemes, and
more specially Convolutional Neural Networks (CNNs), have shown an impressive
performance to solve different vision problems. However, there is a lack of under-
standing about the internal representation obtained, as a result of the automatic
learning. In this thesis we propose a new methodology to explore the internal
representation of trained CNNs by defining the Neuron Feature as a visualization of
the intrinsic features encoded in each individual neuron. Additionally, and inspired
by physiological techniques, we propose to compute different neuron selectivity
indexes (e.g., color, class, orientation or symmetry, amongst others) to label and
classify the full CNN neuron population to understand learned representations.

Finally, using the proposed methodology, we show an in-depth study on how
color is represented on a specific CNN, trained for object recognition, that competes
with primate representational abilities [17]. We found several parallelisms with
biological visual systems: (a) an important number of color selectivity neurons
through all the layers; (b) an opponent and low frequency representation of color
oriented edges and a higher sampling of frequency selectivity in brightness than in
color in 1st layer like in V1; (c) a higher sampling of color hue in the second layer
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aligned to observed hue maps in V2; (d) a strong color and shape entanglement
in all layers going from basic features in shallower layers (V1 and V2) to object
and background shapes in deeper layers (V4 and IT); and (e) a strong correlation
between neuron color selectivities and color dataset bias.

Key words: computer vision, flat schemes, hierarchical schemes, deep learning,
convolutional neural networks, color, selectivity indexes
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Resumen

El reconocimiento visual es uno de los principales problemas de la visión por
computador que intenta resolver para la comprensión de imágenes. Persigue res-
ponder a la pregunta de qué objetos hay en una imagen. Este problema puede
ser resuelto computacionalmente, usando conjuntos de características visuales
relevantes como bordes, esquinas, color u otras partes más complejas de los objetos.
Esta tesis contribuye en averiguar cómo las características de color tienen que ser
representadas para las tareas de reconocimiento.

Las características de las imágenes pueden ser extraídas mediante dos enfoques
distintos. Una primera estrategia es definir manualmente descriptores de imáge-
nes y posteriormente usar una técnica de aprendizaje para clasificar el contenido
(conocido como esquema llano [71]). En esta estrategia habitualmente se usan
consideraciones perceptuales para definir unas características de color eficientes.
En esta tesis proponemos un nuevo descriptor de color llano basado en la extensión
de canales de color para promover la representación del contraste espaciocromático
que supera los métodos del estado de arte. No obstante, estos esquemas llanos es-
casean de generalidad, alejándose así de las capacidades de los sistemas biológicos.
Una segunda estrategia propone evolucionar de los esquemas llanos a procesos je-
rárquicos, tal y como se desempeña en la corteza visual. Además incluye un proceso
automático para el aprendizaje de características óptimas. Los esquemas profundos,
y especialmente las redes neuronales convolucionales (CNNs), han demostrado
un impactante desempeño para solventar distintos problemas visuales. Aun así,
se carece de entender las representaciones internas obtenidas como resultado del
aprendizaje automático. En esta tesis proponemos una nueva metodología para
explorar la representación interna de CNNs entrenadas, mediante la definición de
la Neuron Feature como visualización de las propiedades intrínsecas codificadas
en cada una de las neuronas. De manera adicional, e inspirándonos en técnicas
fisiológicas, proponemos obtener diferentes índices de selectividad de las neuro-
nas (por ejemplo, color, clase, orientación o simetría, entre otros) para etiquetar y
clasificar la población de neuronas de la CNN y comprender las representaciones
aprendidas.

Finalmente, utilizando la metodología propuesta, mostramos un profundo
estudio sobre cómo el color es representado en una red específica entrenada para
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el reconocimiento de objetos y que compite con las capacidades de representación
de los primates [17]. Encontramos diversos paralelismos con los sistemas visuales
biológicos: (a) un importante número de neuronas selectivas al color a través de
todas las capas; (b) una representación de baja frecuencia y de colores oponentes
para bordes de color; mientras que hay una mayor muestra de frecuencias para las
neuronas de luminosidad (comparado con las de color) tal y como se efectúa en
V1; (c) una mayor representación de tonalidades de color en la segunda capa que
se alinea con los mapas de tonos observados en V2; (d) un fuerte vínculo entre las
características de color y de forma en todas las capas, yendo des de características
básicas en las primeras capas (V1 y V2) hasta formas relacionadas con el objeto y
el fondo en capas más profundas (V3 y V4); y (e) una fuerte correlación entre las
neuronas selectivas al color y la tendencia de la base de datos.

Palabras clave: visión por computador, esquemas llanos, estructuras jerárquicas,
aprendizaje profundo, redes convolucionales neuronales, color, índices de selectivi-
dad
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Resum

El reconeixement visual és un dels principals problemes que la visió per compu-
tador que intenta resoldre per a la comprensió d’imatges. Persegueix respondre a
la pregunta de quins objectes hi ha en una imatge. Aquest problema pot ser resolt
computacionalment, usant conjunts de característiques visuals rellevants com ara
fronteres, cantonades, color o altres parts més complexes dels objectes. Aquesta tesi
contribueix en esbrinar com les característiques del color han de ser representades
per a les tasques de reconeixement.

Les característiques de les imatges poden ser extretes mitjançant dos enfoca-
ments diferents. Una primera estratègia és definir manualment descriptors d’imat-
ges i posteriorment utilitzar una tècnica d’aprenentatge per tal de classificar-ne el
contingut (conegut com esquema pla [71]). En aquesta estratègia habitualment s’u-
sen consideracions de percepció per definir unes característiques de color eficients.
En aquesta tesi proposem un nou descriptor de color pla basat en la extensió de
canals de color per tal de promoure la representació espaciocromàtica del contrast
que supera els mètodes de l’estat de l’art. No obstant això, aquests esquemes plans
flaquegen de generalitat, allunyant-se així de les capacitats dels sistemes biològics.
Una segona estratègia proposa evolucionar aquests esquemes plans cap a processos
jeràrquics, tal i com es desenvolupa en el còrtex visual. A més, inclou un procés
automàtic per l’aprenentatge de característiques òptimes. Els esquemes profunds,
i especialment les xarxes neuronals convolucionals (CNNs), han demostrat una
impactant capacitat en solucionar diferents problemes visuals. No obstant això,
s’escasseja de comprendre les representacions internes obtingudes com a resultat
de l’aprenentatge automàtic. En aquesta tesis proposem una nova metodologia per
a explorar la representació interna de les CNNs entrenades, mitjançant la definició
de la Neuron Feature com a visualització de les propietats intrínseques codificades
en cada una de les neurones. De manera addicional, i inspirant-nos en tècniques
fisiològiques, proposem obtenir diferents índexs de selectivitat de les neurones
(per exemple, color, classe, orientació o simetria, entre altres) per tal d’etiquetar
i classificar la població de neurones de la CNN i comprendre les representacions
apreses.

Finalment, utilitzant la metodologia proposada, mostrem un estudi profund
sobre com el color és representat en una xarxa específica entrenada per al reconei-
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xement d’objectes, que competeix amb les capacitats de representació dels primats
[17]. Trobem diversos paral•lelismes amb els sistemes visuals biològics: (a) un
important nombre de neurones selectives al color a través de totes les capes; (b)
una representació de baixa freqüència i de colors oponents per a les fronteres de
color; mentre que hi ha una major mostra de freqüències per a les neurones de
lluminositat (comparat amb les de color) tal i com s’efectua a V1; (c) una major
representació de tonalitats de color a la segona capa que s’alinea amb els mapes de
tons observats a V2; (d) un fort lligam entre les característiques de color i de forma
en totes les capes, anant des de característiques bàsiques a les primeres capes (V1 i
V2) fins a formes relacionades amb l’objecte i el fons a les capes més profundes (V3
i V4); i (e) una forta correlació entre les neurones selectives al color i la tendència de
la base de dades.

Paraules clau: visió per computador, esquemes plans, estructures jeràrquiques,
aprenentatge profund, xarxes convolucionals neuronals, color, índexs de selectivitat
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1 Introduction

1.1 A brief introduction to computer vision

Primate visual system shows what seems an effortlessly ability to recognize
objects. Understanding its procedure became a target in several research fields in
the last decades, ranging from psychophysics, neurophysiology to computer vision
(among others) [32].

The visual system is one of the main input sensors that allow to understand the
world surrounding us. It is a nervous system that provides with the capability to
process visual details, starting from a physical stimuli in form of light impacting
the eyes and successively processed in the brain as electrical signals, building an
extraordinary representation that lets to identify and characterize signals as image
content. Within biological systems, the human is one of the most complex, its
complexity is irrefutable, since it is able to perform difficult tasks such as recognizing
object in the crowd and under different and variable conditions, and this is probably
the reason why more than a half of our brain is involved in vision [38].

Computer vision is a science that has its focus of attention on understanding
and simulating the Human Visual System (HVS). Its goals can be described in two
ways [54]: (a) from a biological point of view, it pursues to model the human visual
system; and (b) from an engineering point of view, it seeks to design computational
systems to solve tasks that HVS carries out. Nevertheless, both interpretations
follow a scheme that mimics the HVS: a camera (eye) captures the light source in
form of an image and it is processed through an artificial algorithm (brain) that
allows to understand the information in the image.

This field was born in 1966 when S. Papert proposed it as an artificial intelligence
summer project [106] to link a camera to a computer to describe what it saw. The
complexity of the idea behind this project incited the growth of the Computer
Vision science that it is still growing and improving solutions for several visual tasks.
Fundamental tasks pursued by computer vision can be comprised in three main
topics: (a) visual recognition, (b) 3D reconstruction and (c) motion analysis. The
first one is mainly looking for a general solution for finding a specific object or
feature from an image (set of pixels) and characterizing it by an attribution of a
semantic category. The second pursuits to recover the original three-dimensional
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structure or geometry shown in one or more images. Finally, the aim of the motion
problem is to identify a position change of an object in a scene. However, all these
problems coincide in a first stage, in which image information is transformed into a
compact representation (or description) based on several visual features. Therefore,
these visual features become a key point for any computer vision problem. But,
what is a visual feature? A general definition can be found in [37] where it is
described as a portion of an image that characterize relevant properties for solving a
visual task, i.e., a basic element of an image. The type of these features is (or should
be) directly dependent on the specific task to be solved. Due to the significance of
these elements, there is a huge set of different features used in computer vision,
related to color, shape, texture, disparity or motion, among others. Thus, the
description of an object inside an image is carried out through a particular set
of features that characterizes the visual descriptor used for the computational
algorithm that tries to understand the content of an image.

In spite of the youth of the field, it has gone through two different eras, distin-
guishable from two points of view: (a) from the features used to describe images
(handcrafted versus learned [98, 115]), and (b) from the artificial architecture where
the features are used (flat versus hierarchical schemes [71]). The evolution of going
from flat and handcrafted descriptors to hierarchical schemes having automatically
learned features has come in parallel with the outstanding technological achieve-
ments in three main areas: machine learning, image-specific hardware and software
and in the construction of big labeled-image datasets. This promoted a strong link
between both areas (Computer Vision and Biological Vision [69]) encouraging to
develop algorithms to achieve the aim of S. Papert of making computers able to
describe the content of an image.

1.2 From flat descriptors to deep learning architectures

Robustness and generalization of human vision system are remarkable, since it
is able to solve the vision recognition problem despite being under several difficult
conditions (occlusions, illumination changes, specularities,...). It demonstrates the
powerful representation achieved in the brain, which has been addressed as a source
of inspiration in the development of artificial algorithms in computer vision dealing
with the problem of vision recognition. But, which features are characterizing each
object allowing its recognition with a robust and generalized mechanism? Its answer
is not universal and it implied the designing of several artificial feature detectors in
computer vision to compute an abstraction of the image information.

Taking inspiration from early stages of ventral stream where edges, contours and
corners have shown a fundamental key for visual perception [120] several detection
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algorithms have been designed using handcrafted features to find where these
features appear on images (e.g. Canny detector for edges [18] or Harris for corners
[50]). Such feature detectors, normally based on computing partial derivations, were
used in visual descriptors to characterize each image, either as descriptors based on
local features (e.g. SIFT [84], SURF [8], LBP [103]) or global features (e.g. HOG [28],
GIST [104]). However, the success of their performance was based mainly on the
features used, which were human engineered as was the design of the descriptors.
With these approaches, computer vision algorithms were able to extract important
features from images and to build a representation (visual descriptor) to train a
classifier (such as SVM [27]) to solve a specific task, moving away from finding the
general solution for vision problems. Krüger et al. in [71] defined these kind of
approaches as flat processing schemes, where the extraction of features is carried
out in a single layer and, afterwards, used in a learning algorithm to solve a certain
task.

In spite of the progress of flat schemes during the first decades of the com-
puter vision history, these computational algorithms were still failing on generality,
as achieved with the primate visual system. As introduced by Hubel and Wiesel
[55, 56], and afterwards observed from the neuron population responses [67], visual
features are organized through a hierarchical scheme which increases progressively
the complexity of the receptive field properties. With the desire of building systems
like the primate visual system, jointly with advances on the knowledge of the visual
cortex as well as the increase of computational resources on computers, the design
of algorithms following a deep hierarchy scheme [71] gained interest. These are ar-
chitectures composed of multiple stacked levels, where information of the detected
features is transmitted from one level to its next and composing several features to
achieve an increasing complexity. Several works have pointed out the benefits of
these hierarchical models [10, 71]. They surpass the modeling and representation
limitations presented in flat schemes giving more potential on dealing with more
complicated visual problems and also they present a high generalization capability.

Therefore, computer vision evolved on building approaches adopting a hier-
archical scheme and trying to provide methods to achieve the same capability for
pattern recognition as a human being. For this purpose, the invariance to trans-
formations (e.g. with respect to the position, size or view) requires to be tackled
[109, 140]. Authors in [109] suggested that this invariance could be achieved through
pooling operations over different descriptions of the same stimulus. Following this
idea, authors in [111, 119] proposed the well-known algorithm HMAX which com-
bines a hierarchical scheme with maxpooling operations providing a biologically
inspired method. Although achieving promising results on the recognition problem,
the features used by this method for describing input images were handcrafted
(Gabor functions) and a new trend started on believing that engineered features
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would lack on providing generality. Researches in machine learning were, therefore,
aiming for substituting these handcraft features for trainable feature extraction
giving rise to the beginning of the deep learning era.

Deep learning techniques allow to learn automatically optimal representations
from unprocessed data on hierarchical models with several layers or levels of ab-
stractions. Using statistical methods, each layer is trained to focus on selecting the
best features and forwarding them to the following layer. They are able to learn
complex functions through composing non-linear transformations [73]. The use
of these techniques have impressively improved the state-of-the-art and conven-
tional methods [20]. Although they have become popular recently, mathematical
fundamentals behind these techniques as well as simple deep learning methods
were published around 80s [29, 42, 113, 144]. One of the most factors that deprived
the use of deep learning techniques on that time was the insufficient computa-
tional resources. Nowadays, this problem has been minimized thanks to the new
developments on computer sciences (GPU’s and multi-core computer systems) that
clearly influenced in the popularity of deep learning methods. A second limitation
was the nonexistence of large datasets required to deal with the huge parameter
space present in these approaches. Thus, efforts on creating large datasets with a
large variety of categories to get closer to the real world diversity (e.g. ImageNet
[114]) have also influenced in the appearance of this trend. Even so, training deep
architectures becomes a hard task due to the difficulty in optimizing them [11].

Nevertheless, among all the algorithms that are included under the label of
deep learning, there is a particular technique which has shown easier to be trained
and capable to achieve a generalization for several visual tasks [73]. This is what is
known as Convolutional Neural Network (CNN). Due to its impressive performance
has recently become a popular technique in the computer vision community. CNNs
are inspired in the visual system following the neuroscience notions of the existence
of simple and complex cells [55]. The parallelism with biological vision is derived
from the fact that a CNN presents a deep hierarchy similar to the stages in ventral
stream of the human visual system. Moreover, these layers are mainly based on two
kind of operations: (a) a bank of convolution operations followed by a non-linearity,
which allows encoding translation-invariance of features across the visual field;
and (b) a max-pooling operation that is a sub-sampling step that inserts some local
tolerance and also introduce scale invariance along the hierarchy. Therefore, two
main layers are considered: convolutional layers and pooling layers. First act as
local feature detectors while pooling gather similar features [73]. The interest on
these techniques is growing up not only for the performance achieved with them
but also for the understanding of the learned features along the hierarchy as a
source of inspiration on the understanding of the visual system [69]. Deeper details
of these techniques can be found in Section 3.2.
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1.3 Color feature for visual recognition

In previous sections we have introduced the importance of defining an appro-
priate feature to describe the image content on designing artificial mechanisms
(ideally) capable to solve visual tasks, likewise in the Human Visual System. Taking
into account that this system perceives color images of the world surrounding us
and this property is used to discriminate between objects, materials, textures, food,
among others, color has naturally become a feature that is relevant for the models
of computer vision dealing with the image understanding problem.

Although most of the first algorithms were designed to work on gray-scale
images (single-channel), ignoring color properties from images complicates the
resolution of some visual tasks or simply makes it impossible. With the acquisition
of color images computer vision researches started to evolve to use color images
and take profit of this feature.

In color images the values of pixels encode the spectral information of the
light reflected by the surfaces in the scene. These values are represented in a k-
dimensional color space ( usually k = 3, inspired on the three types of receptors of
the HVS), and a common formulation of this representation is written as

ρk =
∫
ω

Rk (λ)E(λ)S(λ)dλ, k = 1,2,3, (1.1)

where E(λ) is the illuminant of the scene, S(λ) is the surface reflectance we are
viewing, Rk (λ) is the sensitivity function of the k-th sensor defining an axis of the
color space, and ω is the visible spectrum usually ranging between 400 and 700
nanometers.

However, introducing color information to computer vision algorithms requires
to deal with the use an appropriate color model to specify a particular color, i.e., to
define the coordinate system in which each pixel is represented. This is fundamen-
tal, taking into account that, whichever is the descriptor used for solving the visual
task, any feature should be easily detected from this representation.

Although equation 1.1 tells us that color in the physical world is mathematically
modeled as a point-based phenomenon, when we face the problem of solving
higher level visual tasks, such as automatic image classification, the building of
efficient color descriptors requires a definition of color in the surrounding context.
This involves the representation of spatio-chromatic information, which is a difficult
problem to overcome. It has been tackled in previous works from different points of
view [2, 88, 133, 143].

The first one, generalized by Weickert [143], is based on the consideration of
color differences as partial derivatives computed on each RGB color channel. This
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was first addressed by Di Zenzo [31] who introduced the idea of color tensor. It
provided a way to combine channel gradients to obtain the orientation of the color
variation in a local spatial neighborhood. Subsequently, this idea was further devel-
oped by Kass and Witkin [63] for oriented patterns, and it was finally established by
Weickert [143], who introduced an additional integration scale that increases the
color-spatial coherence.

A second approach by Mäenpää and Pietikäinen [88] is based on computing
image descriptors in different color spaces and using the best space for each spe-
cific application. This idea led van de Sande et al. [133] to study which com-
binations of color representation and descriptor were the most appropriate for
recognition tasks. They considered well-known three-dimensional color spaces
such as device-dependent RGB, colorimetric XYZ, perceptually uniform CIELab
and CIELuv, cylindrical hue-saturation-lightness (HSL) and hue-saturation-value
(HSV), and physiologically-based opponent space. These spaces were combined
with common image descriptors, such as scale invariant feature transform (SIFT)
[85] and GIST [104]. In this direction, Zhang et al. [152] proposed a biologically
inspired descriptor that extends the 3D color space with a fourth opponent channel.
Recently, Cernadas et al. [19] searched for the best combination of color spaces,
normalization methods and features for texture classification, and González-Rufino
et al. [46] studied different colour-texture features to diferentiate cells in histological
images.

The third approach is based on the direct extraction of color blobs (i.e., homoge-
neous color regions) from trichromatic representations. In particular, Alvarez and
Vanrell [2] describe an image in terms of shape and color attributes of the image
blobs. In this case, the blobs are obtained from each channel of the opponent space
by using Lindeberg’s blob detector [81]. Khanina et al. [65, 66] adapted the scale-
space technique for color images and proposed to use the Hessian matrix. Ming
and Ma [93] proposed a weighted multi-scale blob detector using a hybrid operator
that combines the Laplacian and the determinant of the Hessian. The results of this
operator are later processed by a blob filter that includes a color-based Förstner
operator and a hue-based histogram.

On the other hand, within the convolutional neural networks approaches the
trend is to train these architectures from RGB color images, but the learned color
representation through their intermediate representational spaces, as well as if this
feature is learned, is unknown.
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1.4 Objectives

The ambition of having a better understanding of Convolutional Neural Net-
works techniques and their optimal learned feature representation, as well as the
belief that knowledge derived from these architectures may give insights on the
functional mechanisms of the visual cortex, give rise to this thesis.

Concretely we focus on the problem of visual recognition and, specially, on the
color representation. We pursuit to answer the following two questions:

• Which color representation properties benefit to the detection (extraction) of
features for solving the visual recognition problem?

• Is color a feature learned in a Convolutional Neural Network trained for
solving the object recognition task?

The "black-box" nature involved in Convolutional Neural Networks as a result
of an automatic feature learning without imposing any insight on the structure
promotes a lack of understanding of their intrinsic features. And it opens new goals
to be addressed:

• How can we understand (and visualize) the internal representations in a
trained CNN?

• How can we characterize the functionality of each neuron in the representa-
tion?

• How can we relate a neuron activation with a specific property, such as color?

Finally, attending that these deep learning techniques are inspired in biological
processes, we deal with the following question:

• Can we find parallelisms between learned features in CNNs and the represen-
tation done in the HVS?

We believe that the studies reported in this thesis can be useful for computer
and biological vision areas or, at least, to open new research lines seeking the
identification of which kind of features are useful for representing objects and
helping on the understanding of the visual cortex encoding.

1.5 Outline

The rest of this PhD thesis is structured in six chapters:
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• In Chapter 2 we enhance the importance of representing images, and there-
fore, their features, in an appropriate color representation holding specific
properties. We propose a new color representation which is somehow in-
spired on the existence of multiple hue maps in the HVS [107, 131] which
maximizes the intra-channel contrast and minimizes the inter-channel corre-
lation. This is analyzed under the perspective of using handcrafted descrip-
tors in a flat scheme for solving the scene recognition problem.

• In Chapter 3 we introduce Convolutional Neural Network techniques by
providing basic definitions, our notation and a summary of the main parts
involved in these approaches.

• In Chapter 4 we review the state-of-the-art in visualizing intermediate fea-
tures on trained architectures. Furthermore, we propose our Neuron Feature
as a visualization of the intrinsic properties encoded by each neuron in the
CNN and we provide examples of these visualizations on the network VGG-M
trained by Chatefield et al. [20] on the ImageNet dataset [114], also presented
in this chapter.

• In Chapter 5 we introduce a methodology to characterize each neuron activity
with a specific property, concretely to the color. Our proposal is based on the
definition of a selectivity index that allows to classify the neuron population
regarding the studied property. This chapter contains a deep study of how
color is tackled through all the network and, moreover, how the CNN encodes
color. The analysis is done including some parallelisms with the HVS.

• In Chapter 6 we extend the neuron selectivity indexes to other properties,
such as class or orientation, and we also propose a metric to find similar
neurons within a specific layer.

• Finally, in Chapter 7 we conclude this dissertation, highlighting the benefits
of the usage of a methodology capable to characterize neuron properties and
inspect learned features. Further research lines are also exposed, inspired
on seeking for other properties beyond individual neurons but focused on
neuron relationships; as well as some insights on how to take profit of the
neuron exploration to adapt a trained network into a new task.

1.6 Contributions

In this PhD dissertation we have made contributions in both flat and hierarchical
algorithms, mostly based on the color representation of both perspectives. In the
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following lines we expose these contributions, relating them to the corresponding
chapter.

• A new color representation based on the extension of color channels is pre-
sented. This is based on maximizing local intra-channel and minimizing
inter-channel correlation, providing a color representation which is adapted
to the specific content of each image. (Chapter 2)

• The introduction of the selectivity measurement (inspired on the neuro-
science) to characterize neuron properties. (Chapter 5)

• A package to explore trained Convolutional Neural Networks: NefeSi package:
Neuron Feature and Selectivity index for CNN visualization. This introduces:

– A generic visualization of individual neuron activity based on top activa-
tion images: the Neuron Feature. (Chapter 4)

– A hierarchical feature composition visualization of deeper neurons.
(Chapter 4)

– A classification of neurons considering their selectivity indexes to spe-
cific properties. (Chapter 5 and Chapter 6)

• An in-depth study of the color selectivity index on a specific network trained
for object recognition that allows to show some parallelisms with primate
visual systems (chapter 5):

– An important number of color selectivity neurons through all the layers.

– An opponent and low frequency representation of color edges in 1st
layer as in V1.

– A higher sampling of frequency selectivity in brightness than in color of
neurons in first layer, as in V1.

– A higher sampling of color neurons in the hue dimension is found in the
second layer, aligned to observed hue maps in V2.

– A strong color and shape entanglement in all layers, going from basic
features in shallower layers (V1 and V2) to object and background shapes
in deeper layers (V4 and IT)

– A strong correlation between neuron color selectivities and color dataset
bias.
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2 A color representation for a Flat Descriptor

Extraction of spatio-chromatic features from color images is usually performed
independently on each color channel. Usual 3D color spaces, such as RGB,
present a high inter-channel correlation for natural images. This correlation can
be reduced using color-opponent representations, but the spatial structure of re-
gions with small color differences is not fully captured in two generic Red-Green
and Blue-Yellow channels. To overcome these problems, we propose a new color
coding that is adapted to the specific content of each image. Our proposal is
based on two steps: (a) setting the number of channels to the number of distinc-
tive colors we find in each image (avoiding the problem of channel correlation),
and (b) building a channel representation that maximizes contrast differences
within each color channel (avoiding the problem of low local contrast). We call
this approach more-than-three color coding (MTT) to enhance the fact that the
number of channels is adapted to the image content. The higher color complexity
an image has, the more channels can be used to represent it. Here we select dis-
tinctive colors as the most predominant in the image, which we call color pivots,
and we build the new color coding using these color pivots as a basis. To evaluate
the proposed approach we measure its efficiency in an image categorization task.
We show how a generic descriptor improves its performance at the description
level when applied on the MTT coding.

2.1 Introduction

Describing image content using most known descriptors is affected by the color
representation, which is usually performed on each channel independently. A
variety of descriptors based on local spatial features have been defined over differ-
ent three-dimensional color representations (see section 1.3), mostly on RGB or
opponent color spaces. However, in this chapter, we hypothesize that the perfor-
mance of these descriptors for high level visual tasks, such as image classification,
can be improved by using color spaces that boost the appearance of the spatio-
chromatic image structure. Boosting can be achieved by overcoming two main
drawbacks: (a) inter-channel correlation of RGB spaces, and (b) lack of contrast
in color-homogeneous regions of opponent spaces. These two effects can be seen

11



Chapter 2. A color representation for a Flat Descriptor

in Fig. 2.1, where important edges between regions of different colors (orange-
green edges) present clearer differences in color-opponent spaces with respect to
the inter-channel correlated edges in RGB. However spatial structure that appears
inside homogeneous-color regions is more contrasted in RGB than in opponent
channels, where minor details (across the green or orange area) are lost.

To prove the previous hypothesis, we propose a new color representation that
achieves decorrelation and enhancement of local color contrast based on the fol-
lowing ideas: (a) using more than three channels if required, i.e., adapting color
coding to the content of each specific image; and (b) enhancing local contrast inside
channels by maximizing the contrast with respect to the most representative color
of each channel. Following previous ideas, we compute a multi-channel representa-
tion of the spatio-chromatic image structure in a two-step process. First, we select
the set of distinctive image colors, denoted as pivots, which capture the most rele-
vant colors for each specific image. Second, the value of a pixel in each new channel
is computed by the similarity between the trichromatic color and the corresponding
pivot of the channel. We name the proposed representation more-than-three color
coding, since the number of distinctive colors is not restricted to the usual three
(although in some cases it can be three, or even two). In general, the more color
diversity the image has, the greater number of color channels our representation
has. We denote our approach as MTT (more-than-three) from now on.

Figure 2.1 – Visualization of high RGB correlation and low local contrast of color-opponent
channels for a single row of a natural image. (a) Analyzed row is highlighted in yellow. (b)
and (c) Profiles of the image row for RGB and the opponent space, respectively.

To test the proposed MTT coding, we use the semi-joint texton descriptor (STD)
introduced by Alvarez and Vanrell [2]. This descriptor, based on the Texton theory
by Julesz and Bergen [61], decomposes the image into minimal color regions (blobs).
These blobs are described in terms of their color and shape attributes, which are
not conditioned by the image space. This independence from the space makes this
descriptor the most adequate to be directly applied to the new color representation
without any additional computation. We report our results for two different exper-
iments. First, we compare the representation capabilities between MTT and two

12



2.2. More-than-three color coding (MTT)

trichromatic representations, namely RGB and opponent space, concluding that
MTT allows a more accurate representation of the image content because it has
lower correlation and higher local contrast, which allows a more carefu blob-based
representation over the full image. Second, we perform an experiment on scene
categorization showing that this approach gets a higher accuracy, outperforming
state-of-the art results computed at the descriptor level.

Although we show good performance with the proposed approach, two criti-
cisms to our initial hypothesis may arise. The first one refers to the increase in the
number of color channels compared to usual representations. However, the use of
extra channels can be linked to recent findings about the existence of multiple hue
maps in the human visual system [107, 131]. These hue maps show selectivity to
more colors than the primaries encoded in three-dimensional opponent spaces.1

The second criticism refers to tuning to each specific image content. This tuning
may complicate the description of images for comparison purposes. However, it
ensures that a better spatio-chromatic representation is obtained for image regions
that can otherwise be lost with a fixed coding, as will be shown in the experiments.

The rest of the chapter is organized as follows. In Section 2.2 we describe our
new representation. In Section 2.3 we define the experimental setup and present
the results obtained by our approach on the experiments. Finally, in Section 2.4, the
conclusions of this new color representation are discussed.

2.2 More-than-three color coding (MTT)

Our goal is to define a color representation that has a channel for each distinctive
color in the image. By distinctive colors we mean those that play an important role
in understanding the image content. We use as many channels as distinctive colors
an image has. For a given channel we assign, (i) the maximum value to pixels of
the distinctive color, and (ii) a value inversely proportional to the distance to such
distinctive color to the rest of pixels. In this way, in each channel, we are maximizing
the representation of a distinctive color preserving its spatial coherence. Since all
distinctive colors have their own channel, we ensure that all the important color
regions of the image will be fully represented in at least one channel, and that all
the region details will be maximally contrasted in the corresponding channel. We
denote the distinctive color of a channel as its pivot.

Let us note here that the proposed representation is based on the content of

1Hue maps are defined as clusters of neurons that peak when a specific color stimuli is presented.
Although a lot of research is left to be done in this area, some interesting results have begun to arise:
there are more hue maps in higher levels than the six opponent colors [79, 107], and the peaks of the cell
responses are given by particular hues [26, 112, 141].
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each image. Color coding for each image is dependent on the color pivots computed
from that particular image. For instance, an image of a forest with four distinctive
colors could be represented by a channel for green leaves, a channel for brown tree
trunks, another for blue sky, and a last one for white clouds. Meanwhile, an image of
a beach could be represented by three channels with all the details of yellowish sand
on one channel, deep blue of the sea on a second one and light blue of the sky on a
third. We want to remark that this representation has not a fixed dimensionality,
but it varies from one to any number representing the color complexity of a specific
image scene. Nonetheless, we can state that this dimensionality usually converges
to a moderate number, since natural images are typically dominated by only a few
colors [105].

The process to obtain the proposed MTT coding can be divided in two parts: (a)
the selection of pivots (Section 2.2.1) and (b) the definition of the channel values
(Section 2.2.2). A general scheme of this process is summarized in Fig. 2.2.

2.2.1 Selecting color pivots

As we have introduced before, color pivots must be the most distinctive colors
of the image. We propose to interpret distinctive colors as the most predominant
ones in the image, and we find them using the Ridge-based Analysis of Distributions
(RAD) technique [135]. The RAD algorithm groups image colors according to the
ridges of the histogram. Ridges are computed by extracting all the local maxima of
the histogram and connecting those which are close to each other.

Although other existing approaches could be used instead, we selected RAD
because it has been demonstrated to fulfill two properties that are of clear interest
to our method. First, the RAD algorithm is invariant to some color distortions as
ridges extract all the histogram maxima plus all their nearby similar values, therefore
being robust to small changes like the ones caused by noise. Second, all the points
in a ridge are connected, which means that the ridge representation is robust to
shadows and highlights, since both shadow and non-shadow regions of an object are
included in the same ridge. Thus, small color distortions will not affect our method,
since they will be captured by the ridge algorithm obtaining always a single color
pivot for each dominant color. These effects are not captured by classical clustering
methods (e.g., k-means) which group colors mainly based on color similarity, while
RAD allows joining colors from different parts of the histogram in the same ridge,
if there is a sequence of local maxima that can be connected. Next, we briefly
summarize how predominant colors are extracted with this method.

Let us define an image I as a M ×d matrix where M represents the number of
pixels in the image and d is the dimension of the color space (RGB, Lab, etc.). In
RAD, the first step is to look for local maxima on the color histogram H(I ) with the
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Figure 2.2 – Pipeline of the method. From the original image, we extract a set of ridges
corresponding to the most distinctive colors and then we select a color pivot for each ridge.
These color pivots are the basis to generate the proposed more-than-three (MTT) color
coding of the image, which results in as many channels as distinctive colors of the image

multilocal creaseness measure of Lopez et al. [82, 83] defined as

κ(x) =−d

r

r∑
k=1

ω̄t (xk ) ·n(xk ), (2.1)

where x is a bin of the histogram H(I ), xk is the k-th neighbor of x on an r-
connected neighborhood, ω̄(xk ) and n(xk ) are the dominant gradient orientation
and the unit normal vector to the discrete boundary of the neighborhood at each
boundary site xk , respectively, and d is the dimension of the histogram space. All
mathematical details can be found in [82]. In our implementation we use the RGB
color space (i.e., d = 3) quantized in 30×30×30 equally spaced bins. We use r = 6
to consider a 6-connected neighborhood as in the original implementation of RAD
[135].
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The local maxima of κ(·) which are close in the histogram are connected by
following the lines of shallowest gradient descent until a flat region is reached. The
sets of points contained in each of these lines are called ridges of the histogram and
will be denoted by

C = {c1, · · · ,cn}, (2.2)

where ci is a color value from the image. For a particular image, the set of all the
ridges extracted applying RAD will be denoted by {C I

i }i=1:L and they will represent
the most predominant colors of the image I .

Let us now focus on searching for the color pivots. For a particular ridge C I
i of

an image I , the color pivot, ρI
i , is defined as the one that fulfills

ρI
i = ar g maxc∈C I

i
H(c), (2.3)

that is, ρI
i is the color value of ridge C I

i that has maximum value in the image
histogram H(·).

2.2.2 Pivot-based encoding

After selecting the set of color pivots {ρI
i }i=1:L of image I , we define the new

spatio-chromatic representation as the M ×L matrix obtained using the similarity
metric given by

MT T I
j ,i = max

k∈1:M
(‖ρI

i − Ik,·‖m)−‖ρI
i − I j ,·‖m

∝ 1− ‖ρI
i − I j ,·‖m

maxk∈1:M ‖ρI
i − Ik,·‖m

, (2.4)

where I j ,· represents the vector consisting of the three color components of pixel
j from the original image and ‖ · ‖m represents the m-Minkowski norm. We have
used m = 2 that is equivalent to the Euclidean distance, although other distances,
such as the perceptual CIEDE2000 [86], could also be used.

The computational complexity of our approach is linear in the number of pixels
of the image for a fixed number of bins and a given dimension of the histogram space
(in our case, 30×30×30 and 3 respectively). Computing the MTT representation for
an image of 768×768 pixels takes on average 888 ms, from which 722 ms correspond
to the pivot selection (including the time of the RAD method) and 166 ms to the
pivot-based encoding step. These computations were done on a Intel Xeon CPU
E5-1620 processor.

In Fig. 2.3 we present the MTT representations of a set of images, and we
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compare them to the RGB and the opponent representations. We can see that each
MTT channel enhances different parts of the image. For example, in the first row,
MTT channels emphasize different parts of the postbox. The base and the aperture
are represented in the black channel, the box is in the red channel, the notice plate
and the background trees are mainly enhanced on the gray channel, the grass is
represented on the green channel, and the sky appears in the light gray channel. We
can appreciate how color information is less correlated on these channels than in
the RGB channels (please, focus on the green and blue channels of RGB) and that
opponent channels present less contrast between the different objects of the image.
Similarly, in the second row, the different parts of the boy’s clothes (in red, blue, and
orange channels), the snowman (in the white channel), and the background (in the
gray channel) are all enhanced in different channels. An analogous analysis can be
performed in the rest of images.

Notice that since our MTT representation is content-based we obtain a different
number of channels on each image depending on the variety of colors in it. In the
examples, the first two images have five channels whereas the last one showing
a purple flower on a green background has only two channels. Notice also that
the MTT channels represent different colors for each image. In some cases, as in
the first-row image, two shades of the same color can be represented in different
channels if they are sufficiently different from each other (in this example, gray and
light gray).

Finally, let us explain how we can derive an inverse transform to the original
space. By the construction of our space we know that for each channel: (i) the color
selected as a pivot is always a trichromatic value appearing in the image. Therefore,
the maximum value of the channel is equal to the maximum difference between the
color of the pivot and the color of a certain pixel in the image; and (ii) there exists a
pixel in the image (the one with its color at a further distance of the pivot) whose
representation in the channel is 0. Mathematically,

max
k∈1:M

MT T I
k,i = max

k∈1:M
‖ρi − Ik,·‖m . (2.5)

mi nk∈1:M MT T I
k,i = 0. (2.6)

These two properties, allow us to invert Eq. 2.4 as follows:

‖ρI
i − I j ,·‖m = max

k∈1:M
MT T I

k,i −MT T I
j ,i . (2.7)

Then, given MT T I
j ,i and ρi this last equation defines a surface (an sphere if

m = 2) of possible values for each I j ,·. Therefore, to recover the original image we
just need to know the value of three of the pivots that are linearly independent, and
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use trilateration. Then, our recovered image will be given by values I j ,·, that fulfill
Eq. 2.7 for three values of i .

(a) (b) (c) (d)

Figure 2.3 – Examples of MTT representation for several images and comparison to the
RGB and opponent representations. (a) Original images. (b) RGB channels. (c) Opponent
channels. (d) MTT channels. On channel images, values are represented on grayscale
(black=0, white=1). The color boxes under channel images show the correspondence with
RGB, opponent, and MTT channels. The proposed MTT represents images with a variable
number of channels, which depends on the number of distinctive colors of the image.

2.2.3 Illumination invariance

As explained in the introduction of this chapter, pixel values of an image depend
on the reflectance of the objects, the camera sensors, and the illumination of the
scene. Therefore, when the illumination of the scene changes (which is usual in
real images), pixel values also change, thus hindering the performance of computer
vision algorithms. Different methods have been proposed to counter the illuminant
variability effect, either by discounting the illuminant [6] or by performing some
form of color normalization [41]. In this section, we show that our image represen-
tation can be directly used as an invariant to the illumination (therefore avoiding
the need of further processing) when computed on the logRGB color space.

In RGB space, the change in illumination between two images of the same
scene can be approximately modeled by a single scaling factor on each channel (i.e.,
the Von Kries coefficient law [145]), either directly [39] or by applying the spectral
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sharpening technique [40, 136]. This is, given an image I 1, an image I 2 of the same
scene under a different illuminant can be defined as

I 2 =D1,2I 1, (2.8)

where D1,2 is a 3× 3 diagonal matrix containing the scaling factors for each
RGB channel, transforming the colors under the first illuminant to those under the
second illuminant. If we apply a logarithm operation to the RGB space, the previous
equation can be rewritten as

log(I 2) = [
d 1,2, · · · ,d 1,2]+ log(I 1), (2.9)

where d 1,2 =
[

log(D1,2
11 ), log(D1,2

22 ), log(D1,2
33 )

]T
. This is the case since D1,2 is a

diagonal matrix, and thus the channels of I 1 are treated independently. Equation
2.9 tells us that an illumination change can be modeled by a translation in logRGB
space. Therefore, for any color value x ∈ logRGB we have

H 2(x) = H 1(x +d 1,2), (2.10)

where H 1(·) and H 2(·) denote the histograms of log(I 1) and log(I 2), respectively.
Consequently, following Section 2.2.1, we have that the color pivots of log(I 1) and
log(I 2) are also related by

ρ
log(I 2)
i = ρlog(I 1)

i +d 1,2. (2.11)

From Eq. 2.11 and Eq. 2.4 we have

MT T log(I 1)
j ,i =

max
k∈1:M

(‖ρlog(I 1)
i − log(I 1

k,·)‖m
)−‖ρlog(I 1)

i − log(I 1
j ,·)))‖

m
=

max
k∈1:M

(‖ρlog(I 2)
i −d 1,2 − (log(I 2

k,·)−d 1,2)‖
m

)−

‖ρlog(I 2)
i −d 1,2 − (log(I 2

j ,·)−d 1,2)‖
m
=

max
k∈1:M

(‖ρlog(I 2)
i − log(I 2

k,·)‖m)−‖ρlog(I 2)
i − log(I 2

j ,·)‖m =

= MT T log(I 2)
j ,i .

(2.12)

Therefore, our representation computed on logRGB space is approximately
invariant to the illuminant. An example of this invariance is shown in Fig. 2.4,
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where we can see, from left to right, the original RGB image, the results of the MTT
representation fixing the number of channels to 3, and a visualization of the MTT
channels concatenated as an RGB image. It is clear that the MTT channels are very
similar for all the images, making the RGB-like visualization stable under illuminant
changes.

Figure 2.4 – Example of the approximate illuminant invariance of our representation. From
left to right: original RGB image, the three MTT channels, and the MTT representation
visualized as a RGB image. Illuminants in the original RGB images are (from top to bottom) an
approximate D65 illuminant, an illuminant with CC T = 3500K plus a blue filter, an illuminant
with CC T = 4700K, an approximate D65 illuminant plus a blue filter, and a fluorescent light.

2.3 Experiments and Results

As presented in the previous section, MTT provides a new color representation
that is based on the specific content of each image. In this section we show its power
to build generic color image descriptors. The evaluation is performed in two steps.
We first evaluate how MTT overcomes the problems of RGB and opponent spaces to
encode spatio-chromatic information of images. We evaluate this improvement in
terms of the channels correlation and local contrast and also showing how MTT rep-
resentation improves the ability of a specific image descriptor; second we evaluate
how MTT increases the performance of a descriptor in a scene classification task.

The evaluation is performed in two steps. We first evaluate how MTT overcomes
the problems of RGB and opponent spaces to encode spatio-chromatic information
of images. We evaluate this improvement in terms of the channels correlation and
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local contrast and also show how MTT representation improves the ability of an
specific image descriptor.

Considering the problem of generic image description, the comparison between
descriptors of different images built on the MTT representation requires adaptation
to any number of channels. To overcome this problem we use a the Semi-Joint
Texton descriptor (STD) [2] and a variant of it, both are explained on the next
subsection. This descriptor gives an intermediate-level representation in terms of
image blobs, i.e., color-homogeneous convex regions, that is computed regardless
of the color space.

Taking into account previous considerations, we organize this experimental
section in four subsections. First, we introduce the image descriptor used in the
experiments. Second, we provide the details of the setup used in the experiments,
which are fully explained in the remaining two subsections.

2.3.1 Image description: Semi-joint Texton Descriptor

The Semi-joint Texton Descriptor (STD) introduced by Alvarez and Vanrell in
[2] describes an image in terms of shape and color attributes of the image blobs.
STD can be computed on any color space, and we show that the performance of
this descriptor on scene recognition is improved when MTT is used instead of RGB
or the opponent representation. An interesting property of this descriptor is that
the attributes of the blobs it uses do not depend on the input color space where the
blobs are initially detected. Due to this property, the descriptions of two images can
be compared independently of the color representation where the blob detection is
performed, even if their representations have different number of channels.

The STD algorithm starts detecting the blobs of an image by applying a multi-
scale Laplacian in each separate channel of the image representation of choice.
From the blobs detected in all the channels, color and shape attributes are extracted.
Then the STD is defined as a combination of shape (ST DS ) and color (ST DC )
descriptors of image blob’s attributes (see next two following subsections):

ST D = [ST DS ST DC ] (2.13)

Shape descriptor

The shape descriptor is a histogram of blobs’ shape attributes. For each de-
tected blob, the shape attributes are area, orientation, and aspect ratio, which are
obtained independently of the color channel where the blob was detected. Then, all
blobs’ attributes are quantized in a three-dimensional blob-shape space in order to
compute the histogram. In this histogram each bin represents a visual word of the
universal shape vocabulary defined by the quantization of the blob-shape space.
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Color descriptor

The color descriptor is a histogram of blobs’ color attributes. The histogram is
computed in the HSI color space, where blobs’ color attributes are quantized. In
this histogram each bin represents a visual word of the universal color vocabulary
defined by the quantization of the color space (see Fig. 9 in [2]).

We also propose to use a variant of the color descriptor defined in [3]. This
approach is based on the color-naming model of Benavente et al. [9], which catego-
rizes any image pixel p in one of the 11 basic colors defined by Berlin and Kay [12]
(i.e., red, green, blue, yellow, orange, brown, pink, purple, white, gray, and black).
Such categorization is done by means of an 11-dimensional membership vector
µ(p), where each component µi (p) can be interpreted as the probability of color p
to belong to a particular color Ci . Pixels are assigned to the color term with highest
membership, which is then backed up with a modifier related to the lightness (i.e.,
dark, medium, or light). Using this color-naming representation the quantization
of the color space is more perceptual than the original quantization [2], where just
an equally-spaced division of the space was used.

To avoid confusions, from now on we denote by ST DOR the original descriptor
defined in [2] (shape descriptor plus color descriptor on HSI), and by ST DC N the
variant that uses color naming for the color description [3] (i.e., ST DC N is formed
by the shape descriptor and the color descriptor based on color names). Figure
2.5 shows a graphical representation of the two STD implementations used in this
chapter.

Figure 2.5 – Diagram of the process to obtain ST DOR [2] and ST DC N [3]. Blobs are detected
on each channel of the chosen color representation and shape attributes are computed to
generate the shape descriptor ST DS . The color descriptor ST DC is computed either on the
HSI color space or using color names.
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Adding spatial layout information

The STD descriptor is a global first-order statistic of blob attributes. For scene
recognition, the insertion of the spatial layout is a must, since areas with similar
colors can represent different things depending on their location in the image. For
example, medium and large blue blobs can represent either water (e.g., a lake or
the sea) or sky; in this sense, adding their spatial location will help to distinguish
whether they represent water (usually located at the bottom images) or sky (usually
located at the top).

Hence, we add the spatial component similarly to how it is added in the GIST
descriptor [104]. Given an image I we decompose it in a set of non-overlapping
sub-images I1, · · · , Ik , which are obtained by dividing each of the image dimensions
by a particular natural number (usually 2, 3, or 4). Then, we compute the descriptor
for each of the sub-images and concatenate them, obtaining a final descriptor of
the form

ST D = [ST DS1 · · ·ST DSk ST DC1 · · ·ST DCk ], (2.14)

where ST DSi and ST DCi represent the shape and color descriptors of sub-
image Ii .

2.3.2 Experimental setup

In our experiments, the maximum number of channels for the MTT represen-
tation is set to L = 8. This value was experimentally found by testing values from
L = 2 to L = 11. Results gradually improve as the value of L increases, but for L > 8
the improvement is not significant. If more than eight ridges are extracted from
an image (see Section 2.2.1), the eight ridges that represent the largest areas of the
image (computed via a watershed in the color histogram of the image) are selected.

To obtain the shape descriptor, we use the following quantization of the shape
space: 8 orientations (0◦,22.5◦,45◦,67.5◦,90◦,112.5◦,135◦,157.5◦), 7 scales (area),
and 3 aspect ratio values (isotropic, elliptical, and highly elongated). Isotropic blobs
are assigned to orientation 0◦. Thus the shape descriptor has dimension 119 =
(8 orientations×7 scales×2 aspect ratios)+7 (one bin per scale for isotropic blobs).

In the case of the color descriptor, we have used the two configurations ex-
plained in Section 2.3.1. For ST DOR , the HSI color space is quantized in 16 bins for
H, 4 for S, and 5 for I, making a size of the color descriptor 320 bins. For ST DC N ,
color is defined in terms of 11 names and three modifiers, which gives a size of 33
bins for the color descriptor. Therefore, the total size of ST DOR is 119+320 = 439
bins, whereas ST DC N has a the total size of 119+33 = 152 bins. If spatial decompo-
sition is used (see Section 2.3.1), these values should be multiplied by the number
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of sub-images considered to obtain the final size of the descriptor.
Finally, the dataset used in all the experiments is the dataset of scenes created

by Oliva and Torralba [104], which contains 2688 images of 256×256 pixels from 8
categories: coast, forest, highway, inside city, mountain, open country, street and
tall building.

2.3.3 Experiment 1: Analysis of MTT properties

In this first experiment we analyze the properties of the proposed color repre-
sentation. As we mentioned in the introduction of this chapter, the main problems
of usual color spaces to encode the spatio-chromatic image structure are due to the
high correlation between channel and the lack of local contrast for specific colors.
These two properties are inherent in the channel-based representation derived
from the sensor that reduces the capability to represent all the image details. Even
when we transform to an opponent representation, the lack of contrast of the new
chromaticity channels does not allow representation of all the details of areas with
homogeneous chromaticity. Considering these two aspects, in this experiment we
have computed the inter-channel correlation and the channel’s local contrast for
RGB, normalized opponent space 2 (nOPP), and the MTT representation have also
considered the space defined by the three eigenvectors obtained by PCA on the RGB
space.

For a given image, the inter-channel correlation has been computed as the
average of the minimum pairwise-channel correlation3, and to obtain the local
contrast, we use the method defined by Haun and Peli [51].

The results are shown in Table 2.1. We can see that the MTT representation
presents a combined result of low inter-channel correlation and high local contrast.
If these results are compared to the ones obtained by the opponent space, we
see that MTT obtains better results in both measures. PCA presents the lowest
correlation at the cost of also obtaining the lowest local contrast. Comparing to
the RGB space, the local contrast of RGB channels is slightly higher than in MTT,
but in RGB, the correlation between its channels is considerably higher than in
MTT. We also looked at the behavior of local contrast when considering only the
three MTT channels that have higher local contrast for each image. In this case,
the result for MTT is over 10% higher than in RGB, showing that a subset of the
MTT channels presents higher local correlation than any other representation of
the same dimension.

Let us now show how the better results of MTT in correlation and local contrast

2As defined in the C-SIFT descriptor [133].
3We use this measure instead of a global correlation average due to the different number of channels

in each color representation.
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Table 2.1 – Correlation among the different channels and mean local contrast for the different
color spaces for all the images on the Oliva and Torralba dataset.

Correlation Local contrast
RGB 0.82 (± 0.18) 20.47 (± 10.21)

nOPP 0.30 (± 0.20) 10.75 (± 7.48)

PCA 0.00 (± 0.02) 9.55 (± 8.26)

MTT 0.25 (± 0.18) 19.24 (± 10.76)

enable better image description. To this end, we detect the blobs in each image of
the dataset (using the blob descriptor encoded in the ST D descriptor) on different
color representations to analyze how well these blobs describe the content of the
image. We assume that, in general, the more area covered by detected blobs, the
better the overall appearance of the image will be described. Thus, an image can
be reconstructed by plotting their blobs at the locations where they were detected,
and filling them with the corresponding color attribute. Figure 2.6 shows a visual
comparison between the blobs detected on the proposed MTT, the normalized
opponent color space, and the RGB space. We can appreciate that on MTT, more
parts of the image are described, the details are better represented and the overall
structure of the original image (i.e., the gist of the image) is more appreciable.

To give a quantitative analysis of the results in the previous figure, in Table 2.2
we show the percentages of covered area by blobs detected on RGB, the opponent
space and MTT. As can be seen, the percentage of area covered by blobs detected on
MTT is higher than those obtained on the other color representations. This increase
can be found in all the categories of the dataset. For example, in the forest category
the increase is over 13% with respect to RGB. This could be because images from
this category have low contrast and similar hues, which makes that areas of similar
color can not be detected as different regions in the opponent or the RGB channels.
By contrast, MTT is more able to represent different shades of the same hue in
different channels, which facilitates the posterior blob detection.

Finally, let us analyze how our better detection of the gist of the image trans-
lates to the shape descriptor part ST DS . To this end, in Fig. 2.7 we compare the
distributions of detected blobs from an image using opponent and MTT repre-
sentations. Distributions are displayed as 3D histograms where one of the axes
represents orientation, another jointly represents aspect ratio and area, and the
third represents the number of blobs. We can appreciate that each visual word in
ST DS clusters blobs with a similar visual appearance (i.e, similar area, orientation,
and aspect ratio). We note that ST DS on the MTT channels detects more blobs
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 2.6 – Blobs detected on different color representations. Each row corresponds to one
of the categories of the dataset. (a), (e) and (i) Original images. (b), (f) and (j) Blobs detected
using the RGB color space. (c), (g) and (k) Blobs detected using the normalized opponent
space. (d), (h) and (l) Blobs detected using the MTT representation.

Table 2.2 – Percentages of covered area for each category on the Oliva and Torralba dataset
using ST DOR descriptor on RGB, normalized opponent (nOPP) and MTT channels.

Category RGB nOPP MTT
Coast 85.52% 78.41% 96.10%
Forest 84.61% 83.36% 97.95%

Highway 79.32% 69.03% 91.52%
Inside city 90.01% 85.06% 98.75%
Mountain 85.28% 82.44% 96.24%

Open country 90.93% 87.30% 97.71%
Street 81.74% 73.94% 95.06%

Tall building 87.33% 83.65% 96.43%
All 85.94% 80.99% 96.38%
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than on the opponent space, specially on those bins where some blobs are already
detected on the opponent space. Moreover, MTT enables the detection of blobs
with attributes corresponding to bins where only a few blobs are detected on the
opponent channels. These extra blobs detected on the MTT representation are
mainly found in large uniform areas, which explains why MTT is more effective
representing the overall structures of the image, as we have seen in Fig. 2.6.

(a) (b) (c)

Figure 2.7 – Comparison of the shape descriptors of an image (a) obtained on the opponent
space (b) and on the MTT representation (c). Shape descriptors are shown as a 3D histogram
where each bin clusters detected blobs with similar area, orientation and aspect ratio. On the
aspect ratio and area axis, ’1’ corresponds to isotropic blobs, ’2’ to elliptical blobs, and ’3’ to
highly elongated blobs. Bins corresponding to different areas are plotted in different colors.
Area increases along the axis.

2.3.4 Experiment 2: Scene recognition

In this experiment, we test the efficiency of the new representation when it is
used to compute the STD for scene recognition tasks. We first compare different
spatial decompositions to determine the best configuration of STD and then we
compare the results to the state of the art on the database of Oliva and Torralba
[104]. The experiments are done following the same methodology used in [16]. A
linear support vector machine is trained and tested on a randomly selected split of
600 images for training and 120 images for testing. This procedure is repeated 10
times and results are averaged.

Analysis of spatial decomposition

As stated in Section 2.3.1, the inclusion of spatial information on STD can
improve the results for general tasks in computer vision. Spatial information is a
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building part in some image descriptors, such as GIST [104], but it should not be
confused with the idea of spatial pyramids [72], where the descriptor is computed
on regions of different sizes and are later combined into a single descriptor.

To analyze the relationship between the number of sub-images used and the
accuracy achieved, we have computed the results of the original implementation
of STD (ST DOR ) and STD using color names (ST DC N ) on different color spaces,
considering the whole image (no spatial decomposition) and different number of
sub-images (4, 9, and 16). According to these results (see Fig. 2.8), the inclusion of
spatial information in the descriptor by dividing the image into four sub-images
increases the accuracy by at least 4% in all cases. Considering nine sub-images
still increases the accuracy, but the increase is not as remarkable as in the previous
case. After that, the increase is not significant or there is even a slight decrease in
accuracy in the case of the descriptors computed on RGB.

Comparison to state of the art

Given the results of the previous section, we use four sub-images to compute
ST DOR and ST DC N because this configuration provides us with good performance,
and the size of the descriptor does not increase dramatically (1756 for ST DOR and
608 for ST DC N ). Now, these results are compared to the ones reported in [16]
for three well-known descriptors: SIFT [85], GIST [104], and HMAX [96] and are
presented in Table 2.3. Rows 1 to 3 summarize the results of Brown and Süsstrunk
in [16]. We only report the color space where each descriptor achieved the best
results. The highest accuracy was obtained with GIST on the opponent space
(without normalization). Rows 4 to 6 and 7 to 9 show the performance of ST DOR

and ST DC N , respectively. In both cases, the descriptor is computed on three color
representations (RGB, normalized opponent space, and MTT).

Analyzing the results, the use of MTT on both STD descriptors provides with
an improvement on the accuracy of about 4% and 4.5% comparing to RGB and
the normalized opponent space, respectively. This result can also be observed in
Fig. 2.8 where for any number of sub-images, any descriptor computed on MTT
overcomes the same descriptor computed on RGB or on the normalized opponent
space.

Moreover, we computed the Wilcoxon test with the hypothesis that the results
obtained with GIST on the opponent space and with ST DC N on MTT in the ten
trials of the experiments belonged to the same distribution. We obtained a p-value
of 0.0020 with a significance level of 5%. Therefore, we can reject our null hypothesis
and conclude that the improvement obtained by ST DC N on MTT over GIST on the
opponent space is statistically significant. Therefore, we can conclude that the use
of MTT improves the results of the STD descriptors with respect to the use of RGB or
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Table 2.3 – Accuracy (%) and standard deviation computed over ten trials on the scene
recognition experiment. Results for HMAX, GIST, and SIFT were extracted from [16]. In
parenthesis we show the color space used.

Descriptor Accuracy (%)
SIFT(nOPP) 69.6 (± 2.5)
HMAX(RGB) 74.0 (± 4.4)
GIST(OPP) 77.8 (± 3.4)
ST DOR (nOPP) 75.7 (± 3.5)
ST DOR (RGB) 76.3 (± 3.5)
ST DOR (MTT) 80.1 (± 3.6)
ST DC N (nOPP) 78.6 (± 2.5)
ST DC N (RGB) 79.1 (± 4.6)
ST DC N (MTT) 83.0 (± 3.0)

the normalized opponent space. Furthermore, both ST DOR and ST DC N computed
on MTT outperform GIST results reported in [16]. Let us remark here that our best
result (ST DC N on MTT channels with an accuracy of 83.0%) is obtained with a
descriptor composed by 608 bins, while the GIST descriptor has a size of 960 bins.

Moving to the analysis by category, Fig. 2.9 shows the confusion matrix of our
best result (ST DC N on MTT). Each cell of the matrix shows the percentage of images
of a class (row) classified as each of the classes (columns). From the matrix we can
see that the category with higher accuracy is forest. This could be expected since
this category shows a low intraclass variability. By contrast, open country and coast
present a high confusion (e.g., 14% of coast images are classified as open country).
Similarly, city and tall building are two categories with a certain confusion (8% of
images of each class classified in the other class). Both cases can be explained by
the fact that images in these pairs of categories show high similarities; for example,
open country has many images of lakes and rivers that can be confused with images
of coast, and city category contains many images of buildings combined with other
elements such as cars and pedestrians that can be confused with images from the
tall building category.

2.4 Conclusions

In this chapter we propose a new color representation based on the specific
content of the image. With this approach we sought an image color coding that
enhances spatio-chromatic information and reduces inter-channel correlation. The
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Figure 2.8 – Accuracy on scene recognition
in terms of the number of sub-images used
to compute STD descriptors on different
color spaces.

Figure 2.9 – Mean confusion matrix of the
scene recognition experiment on Oliva and
Torralba dataset using ST DC N computed
on the MTT representation. Greenish cells
correspond to the results with accuracy
higher than 70%, while reddish cells cor-
respond to the misclassified results with a
percentage above 5%.

goal is achieved in a two-step process. First, we set the number of channels used in
MTT with the number of relevant colors the image has, defined as pivots. Second,
we build individual channel representation that maximizes contrast differences
using a similarity metric with respect to the color pivot related to each channel.

The proposed approach presents some clear advantages:

• Represents images according to its own color complexity, this is with more
than three dimensions if required. As each dominant color is mostly repre-
sented in one of the dimensions, our approach shows more ability to capture
the image details.

• Increases the local contrast and reduces the correlation of the resulting chan-
nels, which plays a crucial role in several tasks such as edge and blob detec-
tion, segmentation, and recognition.

• Presents illuminant invariance properties if it is built onto a log space. This
can be an important benefit, essentially in recognition tasks.

• Increases performance when applied to build color image description for
scene classification. This increase is mainly due to the improvement in the
blob detection step of the color descriptor.
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To demonstrate these advantages we have performed two experiments. First, a
qualitative experiment to show the performance of the MTT representation in a blob
detection task. We visualize how the proposed approach presents low correlation
and high local contrast, and how it improves the area covered by detected features
across the full image plane. A second quantitative experiment has been performed
for scene recognition. We show how the same descriptor improves its performance
when applied on the MTT coding, and we compare the results to current state-of-art
descriptors, which are overcome.

With the studies performed in this chapter we have tabled the discussion that is
not only an important key point to find which kind of feature is needed to solve a spe-
cific problem but also the color space where they are extracted. Therefore,finding
the optimal combination of these two properties is a difficult task that has favored
the arrival of the new paradigm in computer science of designing architectures
capable to automatically learn both color space and visual features to describe the
content of an image.
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3 Convolutional Neural Networks:
Basic definitions

Convolutional Neural Networks (CNNs) are a kind of deep learning techniques de-
fined as feed-forward architectures compound of several stacked layers that oper-
ate on their inputs to produce a representation change. In this sense, each layer
yields a new level in the encoding process. Mainly, two types of layers are used,
the convolutional and the pooling. Nevertheless, the main responsible layers on
the encoding process are the convolutional ones, which are compound of several
neurons. These neurons are characterized through a set of trainable weights (and
biases) that are adapted to solve a specific visual task and act as feature detectors
on their inputs. CNNs are biologically inspired methods, so that connectivity be-
tween neurons follows the hierarchical scheme found in the visual cortex and in-
creasing complexity through layers.
In this chapter we introduce what exactly are the Convolutional Neural Networks,
and how they are designed as well as the functionality of each part.

3.1 Introduction

Convolutional Neural Networks (CNNs) are a kind of artificial Neural Networks
that have demonstrated a powerful capability on solving different computer vision
problems of diverse nature [74, 75], such as image classification or object recogni-
tion. Therefore, they have become a key point in the advances in deep learning.
They are designed to be applied on images and to learn visual properties from
them. Although they have been designed to solve engineering problems, they take
inspiration from the brain and their computations could be implemented by bio-
logical neurons, so they consist of several filters distributed along a set of layers that
simulate neurons of the brain organized likewise the visual cortex. These filters are,
in fact, a set of weights and biases that are learned on a training step pursuing the
recognition of patterns in a similar way that our brain learns. As stated by biologists,
neuronal learning is the result of achieve strong connections between neurons due
to the frequent occurrences on specific patterns [52].

They are based on hierarchical feed-forward architectures concatenating dif-
ferent levels of convolutional and pooling layers, so that each layer operates on
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their inputs to produce a representation change. On the one hand, the convolution
operations followed by a non-linearity add some translation-invariance of features
across the visual field. On the other hand, the max-pooling operations reduce the
size of the image representation and add some local tolerance or even introduce
scale invariance along the hierarchy. In this sense, they incorporate invariance to
some transformations, following principles stated on [109, 140] that also inspired
the authors of [118, 119] to develop the HMAX approach.

Main advantages of these CNNs are twofold: flexibility for easy design different
architectures allowing to solve different kind of vision problems; and ability to be au-
tomatically trained in order to learn the best weights (for all the network parameters)
to achieve the best performance on a specific visual task. As we already mentioned
before, these two advantages emerged thanks to the outstanding of technological
achievements in three main areas: machine learning, image-specific hardware
and software and in the construction of big labeled-image datasets. However, the
success on the training has been also benefited by two properties. First, instead
of learning fully connected neurons as in Regular Neural Networks approaches,
they use local connectivity, in the sense that they are just focused on subregions
of the input image. This has reduced drastically the huge number of parameters.
Second, the sharing of the parameters that allows to reuse commonalities existing
in different positions in the input image and collaborates to the generalization and
in the efficiency of these methods.

Taking advantage of the aforementioned results, CNNs have been proposed
by several authors [17, 69, 71] as a suitable framework to model biological vision.
Furthermore, several trained CNN architectures were compared in representational
performance with the primate IT cortex on the visual recognition task. Cadieu et al.
[17] proved using a kernel analysis that, contrary to what happened with previous
artificial architectures such as HMAX [118, 119], current deep convolutional neural
networks are starting to show important representational capabilities. Although
this not prove that these computational mechanisms are similar to the primate
visual system, we can not exclude these networks as a source of representational
inspiration.

In this chapter we report technical details of CNNs in Section 3.2, starting with
providing the definition of main concepts involved in these architectures, as well
as our notation. Afterwards, in Section 3.2.1, we summarize the principal types
of layers that are used in CNNs. Section 3.2.2 provides a guide of the arithmetics
implied in these architectures, regarding shape sizes changes through each layer or
to determine regions considered in each operation. Finally, the learning process is
outlined in Section 3.2.3.
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3.2 Convolutional Neural Networks (CNNs). Technical
details

The basic architecture of a general CNN is shown in Fig. 3.1, where three types
of layers are distinguished. First, an input layer receives an image. Second, hidden
layers composed of a set of neurons responsible of mapping its previous input
into high dimensional feature space (represented as gray squared in the figure).
And finally, the output layer which also consists of a set of filters but, instead of
projecting features into a new space, its functionality is to handle the visual task
for which the network was trained (e.g., it provides class scores on a classification
problem). Although in this thesis we focus on this classical scheme (following the
LeNet scheme [74]) where all neurons in a layer are used for the subsequent neurons
in a sequential way, let us to mention that some different schemes have been
proposed. Authors in [70], with their well-known AlexNet architecture, presented a
slightly different scheme by defining two streams as two sub-classical architectures
to favor the training process and be computed onto 2 GPUs. Another example is
the breaking scheme used in the well-known GoogLeNet [130] which considers the
idea of allowing to not always have stacked layers sequentially.

Let us remark here some terminologies and notations regarding CNNs:

• Input image (I ): Image (usually represented in RGB) of sizes1 ih × iw × id ,
being id the dimension of the color space in which the image is represented
(e.g., id = 3 in case of RGB). It is referred to the original image without any
transformation, going beyond the preprocessed changes ( e.g., normalization
or scaling).

• Neuron (F ): Set of weights that constitutes a filter2. It is a three-dimensional
structure of size n = nh ×nw ×nd , being nd equal to the number of neurons
that constitutes the previous convolutional layer t , denoted as (k t

q ) or, in
the case of a being neuron belonging to the first convolutional layer, to the
dimension of the color space of the input image. Each convolutional layer
(l ) consists of a set of filters F l = {F l

j } for j = 1, · · · ,k l
q (k l

q is the number of

neurons in layer l ), likewise the j -th neuron of a layer l is denoted F l
j = {F j ,i },

being i = 1, ..,nk
d . In addition, let us to specify that all the neurons belonging

to the same layer have the same size.

1For consistency, in this thesis the dimensions will be considered as height × width × channels.
2Some literature refers neurons to the pixels, either of the input image or feature maps (e.g., in

[101]).
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Figure 3.1 – Draft of the structure of a CNN architecture. It consist of an input layer, n hidden
layers (here n=4) and an output layer. Top elements simulates the architecture of a network
of 5 layers with 7,11, 14, 14 and 3 neurons (represented as gray squares), respectively. In
the bottom there is a visualization of the image representation when it is applied into the
network. Note that we use the terminology neuron to indicate a filter in a convolutional
network.

• Activation (a): Result of a unique evaluation of an operation, which corre-
sponds to a single value.

• Feature map (Z ): Image representation after a transformation made by a
layer. It is a two-dimensional structure that contains all the activation values
obtained from the specific operation:
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Z =


a(1,1) a(1,2) · · · a(1,w)

a(2,1) a(2,2) · · · a(2,w)
...

...
. . .

...
a(h,1) a(h,2) · · · a(h,w)

 (3.1)

Following the aforementioned notation, the three-dimensional structure of
the set of stacked output feature maps is referred as Z l = {Z l

j } for j = 1, · · ·z l
d ,

obtained as a result of applying the layer l on the set of feature maps of the
previous layer {Z l−1

j } . We use the notation of z l = z l
h × z l

w × z l
d to indicate

the size3 of the output feature maps of layer l . Note that first feature maps
correspond to the preprocessed input image, Z 0 = I .

• Receptive field (R): Volume (set of pixels) of the input image that is visible to
an operation at a certain time. The receptive field of an activation belonging
to the Z l feature map of a layer l is denoted by R(al

(h,w)) and, fixing h and

w , it is the same ∀al
j ,(h,w) , j = 1, · · · , z l

d . We use r l to refer to the size of the

receptive field of any activation of layer l , which is r l = r l
h × r l

w × r l
d , where

r l
d = id is the dimension of the color space used for represent the input image4.

Note that each pixel of a feature map of a given layer has a different receptive
field but with the same size.

• Visual field (V l ,lt ):5 Volume (set of pixels) of the feature maps Z lt of a pre-
vious layer lt (lt < l ) that has been used for obtaining a specific activation
al

j ,(h,w) of the output feature map (Z l
j ) in layer l . Note that V l ,0(al

(h,w)) =
R(al

(h,w)). We will describe this volume from the top-left (h1, w1) and the

bottom-right (h2, w2) coordinates6, jointly with the indexation of the first
(ch1) and last channel (ch2) used :

V l ,lt (al
(h,w)) = [(hlt

1 , w lt
1 ), (hlt

2 , w lt
2 ), (chlt

1 ,chlt
2 )] (3.2)

Let us to remark here that coordinates are described from the corresponding

3See Section 3.2.2 to know how to calculate the size of the set of stacked feature maps.
4See Section 3.2.2 to know how to calculate the receptive field of a given activation.
5Similar to the receptive field, but by visual field we mean the volume seen by an operation in each

evaluation with respect to a feature map of any previous layer instead of with respect to the input image.
Se Section 3.2.2 to know how to calculate the visual field of a given activation.

6Coordinates are expressed in the following reference system: the closest pixel to the origin of the
system is the top-left (which has coordinates (1,1)), and the farest pixel is the bottom-right (having as
coordinates the size of the image)
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feature map Z lt in which the visual field is defined7. In typical architectures,

chlt
1 = 1 and chlt

2 = z lt
d . We denote its size as v l ,lt = v l ,lt

h × v l ,lt
w × v l ,lt

d , being

v l ,l = 1. Likewise in the case of the receptive field, the set of activations of
different feature maps of the same layer and with the same coordinates share
the same visual field.

Once specified the definition of these terms, see Fig. 3.2 as a graphical explana-
tion. In Fig. 3.2a and Fig. 3.2b we clarify the differences between the neuron term
used in some literature (e.g., in [101]) and our usage (used also in [62]), to avoid
confusions: Fig. 3.2a shows a gray-scale image of 20x20 pixels (black circles), each
one considered as neuron (and usually represented by circles) in some literature;
while the synthetic representation of an image (or a feature map) of the same size in
Fig. 3.2b is operated by a neuron of size 5x5 (plotted in a red framed square), which
also corresponds to the receptive field if the synthetic image is the input image. Our
usage of neuron term in this artificial architectures fits with the meaning assigned
in biological literature: structures in the visual cortex that spikes when a specific
stimuli is in their receptive fields.

(a) Input image of 20x20 pixels (b) Filter of size 5x5 pixels on a synthetic feature
map of 20x20 pixels.

Figure 3.2 – Image, feature map, pixels and receptive field concepts.

By the other hand, let us to define three hyper-parameters that directly affect to
the output feature map of a layer l (either convolutional or pooling) :

7In the case that the layer lt +1 introduces some padding, then the coordinates are with respect to
the image representation that contains the feature map Z lt with the specific wrapping margin
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• Kernel size (k l ): Size of the input feature map (Z l−1) used for generate each
of the activations of layer l . Note that k l = v l ,l−1 and furthermore, in the
case of layer l being a convolutional layer, the kernel size is exactly the size
of its filters plus the number of neurons considered in this layer (k l

q ), i.e.,

k l = nl = nl
h ×nl

w ×nl
d ×k l

q .

• Stride parameter (sl ): Distance between two neighborhood regions in two
consecutive evaluations, i.e., the distance to take between the places to allo-
cate two consequent visual fields. If the stride is greater than 1 the operation
of the layer is not taken in all the possible subregions and it might discard
some pixels from the input feature map. In this case, some information is
missed in the output. In Fig. 3.3a we synthesize the effect of three differ-
ent stride values (1,2,3) between two consecutive evaluations. The center
displacement to apply between two subsequent evaluations is, therefore, de-
fined by the stride. In this thesis we consider s as a vector of two elements,
to indicate strides in x and y directions. Nevertheless, when both directions
contains the same stride, we will express s as a single element vector, for
simplicity.

• Padding parameter (p l ): Size of the margin to fill (usually, by zeros) the
input feature map of a layer before any operation is applied. In Fig. 3.3b
we represent the effect of this parameter (black circles) on a given origi-
nal feature map (gray circles). We consider p l as a vector of four elements:
[p l

1, p l
2, p l

3, p l
4] =[top, bottom, left, right], although p will be expressed with

just a single value when all of them have the same padding. In the example of
the figure, p = [3].

As it has been mentioned, these artificial architectures consist of several stacked
layers that operates in their input feature maps, providing a new representation of
the image (set of feature maps) that is going to be used as input in the subsequent
layer. The operation that is carried out defines the type of layer (further details in
Section 3.2.1).

3.2.1 Main layers

Most CNNs are defined by stacking Convolutional, Non-linear layers and Pooling-
layer although some incorporate other type of layers, such as a normalization layer.
The way they are stacked (and the specific hyper-parameters set on each one) de-
fines a specific architecture. The vast majority of the common libraries that are
used in the community (e.g., MatConvNet [137], Caffe [60], Theano [132], Torch7
[21], TensorFlow [1]) allow flexibility to easily design custom architectures.
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(a) Stride (b) Padding

Figure 3.3 – The effect of the stride (left) and padding (right) parameters on feature maps.

Convolutional layers

Convolutional layers are, in fact, the basis of any Convolutional Neural Network.
The representational transformation of the images is mainly carried out by the
neurons allocated in these layers, which act as feature detectors as a result of an
automatic training that learns the best weights to represent their input and also
achieve the best performance on a specific visual task. These neuron weights, in
fact, control the influence of one neuron of a previous layer with itself and define
the visual feature encoded by this neuron (see Fig. 3.4).

Each filter applies the mathematical model of a neuron, which is a dot product
between the input and the weights and adds a bias [13, 90], simulating in this way a
biological neuron. This operation is done repetitively in different subregions on the
input image to find the visual feature (same weights) in any position, allowing to
share parameters. This can be computed using the discrete convolution? operation
[59]. Thus, given a set of z l

d output feature maps {Z l
i }i=1:zl

d
of a layer l , they are

transformed by its following convolutional layer l +1 as:

{
Z l+1

j

}
j=1:k l+1

q
= { zl

d∑
i

Z l
i ?F l+1

j ,i +bl+1
j

}
j=1:k l+1

q
(3.3)

where F l+1
j ,i is the i -th channel of the j -th neuron in layer l +1, and bl+1

j is the

bias of this j -th neuron. Note that the discrete convolution is, firstly, a channel-wise
operation so that the i -th input feature map is convolved by the i -th channel of the
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Figure 3.4 – Illustration of the neuron connectivity. First convolutional layer consist of 2
different neurons (or filters) while the second, of four different neurons. Grayish squares
plotted in the right graphic how weights control the influence of the neurons. Note how the
vertical and horizontal lines represented by the weights in the first convolutional layer are
used to build the visual features +, I, H, L in the second layer.

neuron F of the subsequent layer and afterwards sums results from all channels.
The output of each filter generates a feature map that is stacked by the rest of the
output filter maps of the layer (generated by the remaining neurons). In this way,
pixels belonging to the same feature map share the same neuron (sharing of the
parameters). A graphical illustration of this multidimensional operation is shown in
Fig. 3.5.

In this way, these layers computes a template matching searching the set of
features encoded by each neuron on the input image (see Fig. 3.6).

Fully-connected layers

Some literature distinguishes between a fully-connected layer and a convolu-
tional layer, although they can be considered the same type since the operation
performed is quite similar. The main difference is that neurons in full-connected
layers act as neurons in Regular Neural Networks in the sense that filter’s size gather
all the previous activations, i.e., kernel size of these filters overlay the entire input
feature maps. Then, Eq. 3.3 can be simplified as a dot product:
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Figure 3.5 – Illustration of a convolutional layer of two neurons (represented in black and
purple volumes). Input feature maps are channel-wise operated with the corresponding
channel of the filter and afterwards are combined by summing them. Each neuron in this
layer is a three-dimensional structure of size 5x5x4 (note that depth is constrained by the
number of input feature maps, which is equal to four). At each evaluation, each filter (neuron)
operates with the set of pixels of the input feature map that are covered by the area of the
neuron and provides a single value, so that it builds the corresponding feature map that will
be afterwards stacked with the rest of generated feature maps by the same layer.

{
Z l+1

j

}
j=1:k l+1

q
= { zl

d∑
i

Z l
i ·F l+1

j ,i +bl+1
j

}
j=1:k l+1

q
(3.4)

From the point of view of their functionality, there is another reason to distin-
guish between both types of layers. As well as convolutional layers are devoted to
the feature detection task, fully-connected layers are more related to the classifica-
tion from the high-dimensional representation of the image gotten from the set of
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Figure 3.6 – Toy example of an image representation through a CNN with two convolutional
layers. Each neuron is more activated (more white in the illustration) when its encoded
feature is found on the image (template matching).

convolutional layers.

Pooling layers

These layers introduce some local translation invariance and reduce the size of
the image representation (feature maps) by gathering several features over a small
neighborhood. In consequence, the use of these layers contribute to the reduction
of the amount of parameters as well as the overfitting and provide some generaliza-
tion to the architecture. Nevertheless, it computes a channel-wise operation, so that
each slice (channel) is operated independently. Typical operation used for compute
the pooling is the MAX operation, which do not require any parameter learning.
However, Springenberg et al. in [127] concluded that these layers can be substituted
by a convolutional layer with a greater stride achieving the same performance.

Each activation of the output feature map of a max-pooling layer l is computed
as:

al+1
j ,(h,w) = max(V l+1,l (al+1

j ,(h,w))) (3.5)

Therefore, the max-pooling subsamples the image representation by keeping the
maximum value within a region defined with the kernel size (k) of the layer (see
Fig. 3.7).

Other operations that can be computed as a pooling are average, stochastic or
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(a) Pooling input (b) Pooling grid (c) Pooling output

Figure 3.7 – Illustration of a max-pooling operation. In the first row there is shown an example
of an image, while in the second row a toy example. For both cases we have assumed a set of
hyper-parameters that provide non overlaping regions k = [2,2], s = [2] for the first row and
K = [3,3], s = [3] for the second. Max-pooling reduces the image representation by keeping
the maximum within a small region. In this figure are shown the (a) input representations,
(b) the subregions where the operation is carried out, and (c) the output result.

L2-norm poolings, among others [14, 15, 76, 148].

Non-linear layers

Although convolutional layers constitute the basis of any CNN, they apply a
linear operation. Even thought several several convolutional layers are stacked, the
result is still a linear mapping of the input images. Nevertheless, typical classifi-
cation problems where CNNs are applied to solve them consist on complex data
which their representation is not good enough through several linear mappings and
be clustered by a linear classifier. In this context is where non-linear layers gain
importance: they are nonlinear functions that introduce to the network a way to
learn nonlinear transformations of the input data and achieve feature representa-
tions into a new space where they are linearly separable. These are element-wise
functions that are generally applied after each convolution and do not vary the size
of the input feature maps. Common non-linear functions are sigmoid, hyperbolic
tangent and rectified linear units (ReLU) (see Fig. 3.8), although the last function
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has become more popular due to its benefits [45, 97, 125]: outperforms sigmoid
results, facilitates a faster and effective training due to its constant gradient (which
also prevents the vanishing problem8) and provides more sparse representations,
among others.

(a) Sigmoid, f (x) = 1
1+e−x (b) Tanh, f (x) = ex−e−x

ex+e−x (c) Relu, f (x) = max(0, x)

Figure 3.8 – Common non-linear functions applied in CNNs.

In classification problems it is common to use the softmax operation as a non-
linear layer in the output layer. This operation causes the output to be interpreted
as a probability vector:

al+1
j ,(h,w) =

exp
(
al

j ,(h,w)

)
∑

t=1,··· ,zl
d

exp
(
al

t ,(h,w)

) (3.6)

so that the predicted class becomes the one with highest estimated probability.

Normalization layers

In order to normalize the responses achieved in the network between different
neurons there are specific layers called Local Response Normalization (LRN), which
incorporates some kind of inhibition scheme in the network based on the lateral
inhibition found in biological brains: capacity of a neuron of being highly activated
by attenuating the activation of neighbor neurons and, on the contrary, reducing its
activation when similar responses are obtained in the neighborhood neurons. This
element-wise operation gathers features from η different feature maps (channels)
but the resulting set of feature maps keeps the input size. Krizhevsky et al. in [70]
defined this inhibition as:

8The vanishing problem appears on gradient-based methods when gradients are within the range
(-1,1) so that a successive multiplication of them decreases considerably, tending to zero quickly.
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al+1
j ,(h,w) = al

j ,(h,w)

(
κ+α

t=mi n(zl
d ,−η/2)∑

t=max(0,−η/2)
(al

t ,(h,w))
2
)−β

(3.7)

where α,β and κ are hyper-parameters. Although in [70] LRNs have demon-
strated to improve accuracy results, in [124] concluded that its utility does not
benefit beyond memory and computation efficiency and LRNs ave been overcome
by other techniques such as batch normalization9 or dropout10.

3.2.2 CNN arithmetics

In previous subsection the operations computed by each kind of layer are de-
scribed but we have not specified how they modify input representation sizes or
which is the region used for obtaining a specific activation. Here we expose how to
calculate these properties.

Output feature maps size

Depending on the parameter settings and the type of the layer l , the size of its
output feature maps will be three-dimensional structure of size z l = z l

h × z l
w × z l

d ,

with height and width (i.e., z l (i ) ∀i = 1,2) :

z l (i ) =


f loor

(
zl−1(i )+p l (2(i−1)+1)+p l (2(i−1)+2)−k l (i )

sl (i )

)
+1, if l is conv. or pool.

z l−1(i ), otherwise

(3.8)

and depth:

z l
d = z l (3) =


k l

q , if l is convolutional

z l−1(3), otherwise
(3.9)

Note that only convolutional and pooling layers can modify input sizes and, from
the first fully-connected layer, feature maps should have z l

h = z l
w = 1, due to k l (i ) =

z l−1(i )+p l (2(i −1)+1)+p l (2(i −1)+2), ∀i = 1,2. As a general norm, feature maps
sizes are decreased through layers.

9Technique performed across different images used in the same training batch that minimizes the
covariance shift (mean activations close to 0 and standard deviation close to 1), proposed in [58] showing
a benefit on the training computational time.

10Technique to overcome the overfitting problem by disabling some random neurons during the
training process [129].
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As a particular comment, let us to remark that when division in Eq. 3.8 is not an
integer value could be considered an invalid configuration of the architecture, since
neurons do not symmetrically analyze the entire image.

Receptive field size (or intermediate visual field size) of an activation

Going back to Fig. 3.6, there is somehow represented another concept (and
explicitly shown in Fig. 3.9) which has not yet been commented in detail: the
receptive field size (r ) is (usually) increased through layers. Assuming that in this
figure hyper-parameters are set to k1 = [3,3,1,2], k2 = [3,3,2,4], p1,2 = [0] and
s1,2 = [1] the receptive field size of a neuron in the second convolutional layer is
r 2 = 5×5 while r 1 = 3×3; although both layers consist of filters of sizes 3x3 pixels.
It means that an activation obtained from a neuron in the second layer responds to
5×5 pixels in the input image.

Figure 3.9 – Receptive Field (and visual field) illustration of a CNN with two convolutional
layers with 3×3 filters. Receptive field sizes are (usually) increased through layers.

Isolating from Eq. 3.8 and Eq. 3.9, and taking into account that padding parame-
ter has no effect on computing the visual field of an activation, the receptive field
size of any activation obtained from a layer l can be computed with iterative process
shown in Algorithm 1.

Corresponding receptive field (or intermediate visual field) of an activation

Following with the connection between an activation and its receptive field,
here we address to specify the set of pixels in the input image that are described
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Algorithm 1 Receptive field size of any activation of layer l

1: lt ← l
2: while lt > 0 do
3: if lt is convolutional or pooling then
4: v l ,lt−1

h ← v l ,lt
h × slt (1)− slt (1)+k lt (1)

5: v l ,lt−1
w ← v l ,lt

w × slt (2)− slt (2)+k lt (2)
6: else
7: v l ,lt−1

h ← v l ,lt
h

8: v l ,lt−1
w ← v l ,lt

w
9: end if

10: if lt is convolutional then
11: v l ,lt−1

d ← k lt
d

12: else
13: v l ,lt−1

d ← v l ,lt−1
d

14: end if
15: lt = lt −1
16: end while
17: return v l ,0

in a specific layer l with an activation al
j ,(h,w), i.e, to define R(al

j ,(h,w)). This can be

obtained from an iterative process as shown in Algorithm 2. Note that ∀ j all the set
of activations {al

j ,(h,w)} are obtained from the same receptive field (and the same

intermediate visual fields).
Note that if some padding is added in some layer, activations allocated in the

borders of a feature map have a visual field with respect to a previous layer that
contains part of the margin added by the padding.

Total padding with respect the input image

We finished last section with the observation that some receptive fields (or
intermediate visual fields) can fall into a padding region although we have not
specified the amount of padding pixels to be added on the input image, which is
necessary to correctly allocate the region obtained through Algorithm 2 on the input
image. Using Algorithm 3 we can obtain the amount of pixels to wrap input image
in the top, bottom, left and right directions (add).
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Algorithm 2 Receptive field of an activation of layer l

1: hl
1 ← h . (h, w) are the coordinates of the activation

2: w l
1 ← w

3: hl
2 ← h

4: w l
2 ← w

5: lt ← l
6: while lt > 0 do
7: if lt is convolutional or pooling then
8: hlt−1

1 ← slt (1)× (hlt
1 −1)+1 . If h

lt −1
1 <= plt (1), V l ,lt −1 contains padding pixels.

9: w lt−1
1 ← slt (2)× (w lt

1 −1)+1 . If w
lt −1
1 <= plt (3), V l ,lt −1 contains padding pixels.

10: hlt−1
2 ← slt (1)×hlt

2 +k lt (1)−1 . If h
lt −1
2 > z

lt −1
h

, V l ,lt −1 contains padding pixels.

11: w lt−1
2 ← slt (2)×w lt

2 +k lt (2)−1 . If w
lt −1
2 > z

lt −1
w , V l ,lt −1 contains padding pixels.

12: else
13: hlt−1

1 ← hlt
1

14: w lt−1
1 ← w lt

1

15: hlt−1
2 ← hlt

2

16: w lt−1
2 ← w lt

2
17: end if
18: chlt−1

1 ← 1 . Common architectures use all the feature maps

19: chlt−1
2 ← z lt−1

20: V l ,lt−1 ← [(hlt−1
1 , w lt−1

1 ), (hlt−1
2 , w lt−1

2 ), (chlt−1
1 ,chlt−1

2 )]
21: lt = lt −1
22: end while
23: return V l ,0

3.2.3 Learning weights: backpropagation algorithm

In previous sections we have described technical details of Convolutional Neural
Networks likewise their architecture and their different types of layers that operate
with their input in a specific way. Nevertheless if these techniques have become
popular and one of the most successful models on solving computer visual prob-
lems is, apart from their intrinsic hierarchical architecture, due to their ability on
learning the optimal visual features for solving the visual task. Therefore, in this
section we summarize how each neuron is adjusted to search for a specific visual
task (e.g., an oriented edge) and to be connected in a specific way with previous
neurons.

In a preliminary stage, neuron weights are initialized with some method (usually,

49



Chapter 3. Convolutional Neural Networks:
Basic definitions

Algorithm 3 Total padding of a layer l

1: tmp ← [1,1,1,1]
2: add ← [0,0,0,0]
3: lt ← 1
4: while lt < l do
5: if lt is convolutional or pooling then
6: add(1) ← add(1)+p lt (1)× tmp(1) . Top margin

7: add(2) ← add(2)+p lt (2)−mod
(
z lt−1

h +p lt (1)+p lt (2)−k lt
h , slt

h )
)
) . Bottom

8: add(3) ← add(3)+p lt (3)× tmp(2) . Left margin

9: add(4) ← add(4)+p lt (4)−mod
(
z lt−1

w +p lt (3)+p lt (4)−k lt
w , slt

w )
)
) . Right

10: tmp(1) ← slt (1)× tmp(1)
11: tmp(2) ← slt (2)× tmp(2)
12: end if
13: lt ← lt +1
14: end while
15: return add

using a random initialization) as well as their biases (generally initialized by 0), so
that they do not contain any visual feature encoded. These parameters are updated
during the learning stage. This is habitually performed with a gradient-based
procedure known as stochastic gradient descend and using backpropagation, which
follows the idea of computing the gradient with respect to the input by propagating
gradients through all layers starting from the output of the network and successively
propagate gradients until the first layer [73] thanks to the chain rule.

The training starts with a forward pass which analyses an input image I through
the entire network and provides an output (Z l ). Note that the network is a function
g l (I ) = Z l , as a result of a composition of several functions:

g l (I ) = (g l ◦ g l−1 ◦ · · · ◦ g 1)(I ), (3.10)

where g i is the function applied by the layer i .
Since network parameters (weights and biases (θ)) are initially randomized (or

set null for the biases), the output mapping of the first iteration will be distant from
the desired, so that this error should be measured. Therefore, during the training
and whatever the type of training (supervised or unsupervised), is necessary to
define a loss function (L ) be optimized11. This loss function measures how well

11Often, loss functions are combined with some regularizations (a penalty term) in order to deal with
the overfitting problem and the optimization algorithm is performed considering both concepts.
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the method fits the data to solve a specific problem by grading some property
and should be defined accordingly with the activation function used at the output
layer and also with the task to solve. For example, within the group of supervised
learning, a CNN that is applied to solve image classification, a useful loss function
to minimize is the softmax loss or the cross-entropy loss (such as in [70, 149])
or the hinge loss function (e.g., in [20]) to compare the predicted class with the
expected one. Contrary, L2 squared norm is commonly used for learning image
representation (likewise in [64, 151]) or a log-likelihood for generative models (e.g.,
in [47]).

It is somehow expected to train the network in order to accomplish its goal of
solving the task without errors and this idea is carried out by upating the parameters
θ along the negative direction (gradient) of the loss function:

θl
i , j = θl

i , j −η
∂L

∂θl
i , j

(3.11)

being η the learning rate12. Each partial derivative is indicating how each param-
eter influences to the loss function, so that the error calculated at the output is
distributed back through the network layers. The backpropagation procedure gives
an efficient way to compute these partial derivatives by using the chain rule:

∂L

∂θ
lt
i , j

= ∂L

∂g l

∂g l

∂g l−1
· · · ∂g lt+1

∂g lt

∂g lt

∂θ
lt
i , j

(3.12)

By doing these updates successively for several iterations the architecture is
adjusting its parameters and, therefore, defining the optimal visual features to solve
the specific problem.

12The learning rate is a value to specify how fast the set of weights have to be adjusted.
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4 CNN visualization and Neuron Feature

In parallel with the success of CNNs to solve vision problems, there is a growing in-
terest in developing methodologies to understand and visualize the internal rep-
resentations of these networks. How the responses of a trained CNN encode the
visual information is a fundamental question for computer and eventually for
human vision. Image representations provided by the first convolutional layer
as well as the resolution change provided by the max-polling operation are easy
to understand, however, as soon as a second and further convolutional layers are
added in the representation, any intuition is lost.
This chapter reviews the state-of-the-art approaches for understanding the inter-
mediate features and introduces the Neuron Feature as a new proposal for visual-
izing the main intrinsic properties encoded by each neuron.

4.1 Introduction

The evolution of going from flat to hierarchical descriptions (specifically, Con-
volutional Neural Networks) has been accompanied with the lack of understanding
visual representations. Therefore, within the new paradigm of computer vision
where advances have moved away from designing handcraft features using deep
learning architectures and achieving promising performance, there is a growing
interest in developing methodologies to understand and visualize the internal repre-
sentations of these techniques. However, this is a complex task due to the generality
achieved with these kind of approaches, their inherent depth and the non-invertible
operations that they apply.
In this chapter we introduce the problem of visualizing intermediate features by
reviewing the state-of-the-art approaches in Section 4.2, which is generally ad-
dressed by proposals that are image-dependent or methods that synthesize an
image using an optimization algorithm that finishes with artificial artifacts. Trying
to overcome these problems, in Section 4.3 we propose a new methodology to get
an image showing the intrinsic features of each neuron (called Neuron Feature),
which seeks to get an image visualization by keeping natural image properties and
by not beeing dependent of a single input image. Some visualizations are shown for
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neurons of the VGG-M network of Chatefield et al. [20] (see Section 4.3.2) trained
in the well-known ImageNet dataset [114] (see Section 4.3.1). We emphasize the
potential of our visualization by decomposing images in their most relevant and
non-overlapped neuron features through each convolutional layer in Section 4.4
and improving the understanding of deeper neurons through their hierarchical
composition of shallower neurons in Section 4.5. We enclose this chapter with a
discussion of the conclusions in Section 4.6.

4.2 State-of-the-art: Visualizing features

The remarkable increase in performance of Convolutional Neural Networks
(CNNs) to solve computer vision problem is somehow diminished by the lack of
understanding of the internal representations that capture the intrinsic image
features, as a natural consequence of an automatic feature learning to achieve
the goal task. Each of the stacked layers of the architecture is operating on their
inputs to produce a representation change. Taking into account that convolutional
layers are the main responsible of detecting visual features encoded through their
set of neurons, these representation changes are done in terms of the features
encoded in each layer, likewise each neuron is codifying some feature based on the
previous convolutional layer feature space. This relationship is what can be derived
from the weights of the neuron. As well as the effects of the first convolutional
layer can be easily understood, the understanding of the learned features becomes
more difficult through deeper layers. This unawareness has been promoting the
interest on understanding and analyzing the learned features and several works
have proposed different methodologies to address this understanding problem,
going beyond proposing different CNN architectures or learning techniques.

Recently, in [80] two main groups of works are mentioned. On one side those
works that deal with the problem from a theoretical point of view. These are works
such as [94] where kernel sequences are used to conclude that deep networks
create increasingly better representations as the number of layer increases, [108]
which explains why a deep learning network learns simple features first and that
the representation complexity increases as the layers get deeper, [48] where an
explanation for why an adversarial example created for one network is still valid in
many others and they usually assign it the same (wrong) class, or [4] that presents
algorithms for training certain deep generative models with provable polynomial
running time. On the other side, an empirical point of view, which comprises
approaches that pursuit methodologies to visualize intermediate features in the
image space, or approaches that analyze the effect of modifying a given feature
map in a neuron activation. Our work is framed in the first subset of empirical
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approaches.
Visualizing intermediate features seeks to describe the activity of individual

neurons. This description is the basis of this thesis hypothesis that is based on the
idea that a proper understanding of the activity of the individual neurons allow
us to draw a map of the CNN behavior. This behavior can be understood either
in terms of relevant image features or in terms of the discriminative power of the
neurons across the full architecture.

The first and most obvious way to describe the activity of a single neuron is
given by the inherent set of weights of the learned filters. These weights can be used
to compare neurons between them, either within the same layer or versus neurons
in similar CNNs which have been trained under different initialization conditions,
as it is proposed by [80]. A direct visualization of these weights is intuitive when they
belong to neurons of a first convolutional layer. However, when layers are stacked,
this intuition disappears and the capability to understand the neuron activity is
lost. Firstly, due to the high dimensionality of the neurons structure, and secondly,
because of the fact that the deeper the neuron, the bigger receptive field has, so
that the understanding of its intrinsic feature directly by the filter weights is too
compressed for its comprehension.

A second method to describe neuron activity is projecting the filter weights
into the image space, trying to get the inherent feature that maximally activates
the filter. The projection can be computed by composing the inversion of the layer
operators under a specific neuron towards the image space. In this line we, devel-
oped an approach to obtain what we named Decoded Filter (DF), the projection
of the neuron into the image space. The resulting image represents an estimation
of the feature that should highly activate such neuron. The decoding algorithm
inverts filter weights independently of any image. To this end, the effect of a convo-
lution layer is inverted by computing the deconvolution operation1 [150] between a
neuron with the set of neurons in the previous layer. On the other hand, the non-
invertible operation of pooling layers is estimated through a simple upsampling
of the representation. This approach would give a good estimation of the feature
image if most of the layer operators were invertible. However, when the number
of non-invertible operators increases, the estimation becomes unintelligible. The
projection of the filter itself have also been explored in [128] for architectures with
no pooling layers since pooling is the less invertible operator. They point out the
interest of obtaining such a representation, since it would allow the understanding
of neuron activity independently of the input image. However, the majority of
proficient CNNs contain pooling layers.

A third way to describe neuron activity is by exploring the images that maximally

1The deconvolution operation is a convolution with the filter transposed.
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activate the neuron. In this sense, authors in [44] sorted images from the highest
to the lowest activation and display the set of receptive fields of the top-scoring
images. From the observation of each set of top-scoring receptive fields, they
can give an intuition about to which kind of features is each neuron selective to,
extracting common features from them. They observe that some neurons were
related to concepts (such as faces or text) and others to material properties (such as
specular reflections). Nevertheless, this conceptualization is a human post-process
that might be biased: is the neuron really selective to an entire face shape or its
intrinsic feature is just the composition of two-sided blobs (eyes) with an horizontal
edge (mouth) in the bottom defining a shape structure that is more commonly
found in faces? Following this idea, appeared one of the most relevant works
pursuing the visualization of intermediate features, the one proposed by Zeiler and
Fergus in [149]. They also use the top-score images to understand the behavior of
each neuron but, instead of visualizing their receptive fields, they use the neuron
representation for each top-score image and project them into the image space. For
this purpose, they isolate the strongest activation inside the feature map obtained
by the neuron of interest. Through the deconvolution approach [150], they invert
convolutional layers and, for reversing max-pooling layers, they use the switches2

to replace each representation in the correct place. With this, they are able to
obtain a visualization in the images space of the feature of the receptive field that
provoke a high activation to the studied neuron. By observing different projections
that maximally activate a certain neuron they get the intuition about the main
features learned on the network. Later on, in [128] the guided backpropagation
improved Zeiler and Fergus approach with a new way of inverting rectified linear
(ReLU) nonlinearities, achieving better visualizations of the activations. The guided
back-propagation is also based on the idea of keeping localizations (switches),
but focused on those pixels where ReLU layers discard the activations during the
forward pass. In this way, they apply the ReLU operation (likewise in the forward
pass) and also refuse (set to 0) any pixel value belonging to the switches when
inverting the representations through this non-linear layer. These approaches
present a main drawback, their feature visualization is image-specific, since the
maximum activation of a neuron not always generalize the intrinsic feature of the
neuron, or should be extrapolated as a post-process by observing commonalities
of the set of top-score images (or representations). To solve this problem, in some
works instead of using the image that provokes the maximum activation, they use
optimization techniques to generate an image that maximizes the activation. The
key point of these works is to use an appropriate regularization in the generation

2In [151] the term of switch refers to the localization (coordinates) where each maximum came from
during the forward pass.
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process, otherwise, the resulting image appearance is unrealistic and difficult to
understand. This idea was firstly proposed for authors of [35] but focused on two
deep learning models different from CNNs (the Deep Belief Networks [53] and the
Stacked Denoising Auto-Encoder [138]). Their research was still focused on looking
for the response of each individual unit but, using a gradient ascent algorithm, they
synthesize an image which provokes a high activation of a specific neuron. This
was afterwards extended to CNNs by authors of [123], who propose a method to
generate an image which is representative of a certain final class by maximizing
the score of this image to be classified in a certain class (or highly activates the
specified neuron) with an L2-regularization. A similar work was performed in
[147], but taking advantage of combining three different regularizations to achieve
more recognizable images. They show results for neurons in any layer (not just
the ones in the last convolutional layer). Nevertheless, Nguyen et al. showed in
[100] that generated synthetic images that maximally activate a specific neuron
may have unrecognizable structures or simply with unnatural patterns far away
from the inherent nature of any object. The work [48] concluded that the local
linear behavior of CNNs might cause these high activations from unrealistic images.
Recently, these generative approaches have been extended in [99] to contemplate
the hypothesis that a neuron may be highly activated by different intrinsic features
or different patterns (named multifaceted). Under this criterion, they give several
representational images that may highly activate a specific neuron, capturing, in this
way, the intrinsic feature variability linked to each neuron. Although this set of works
have explored different regularizations to achieve more realistic intrinsic feature
representations, their visualizations present important artifacts that complicate the
understanding of the intrinsic property.

Finally, other works focus on proposing approaches able to reconstruct the input
image given a feature map, going further of analyzing the individual neuron activity.
In [89], authors make use of optimization algorithms to search for an image whose
feature map best matches a given feature map by incorporating natural image
priors. Contrary, in [34], the authors propose to reconstruct the input image from its
feature maps of a given convolutional network by training a new deconvolutional
network to learn filter weights that minimize the image reconstruction error when
these filters are applied to the image feature maps. With this approach they are also
able to get an image reconstruction with natural priors.

In the second subset of empirical approaches, [33] train a generative deconvolu-
tional network to create images from neuron activations. With this methodology,
the variation of the activations enables the visualization of the differences in the gen-
erated images. A similar analysis is done by [5], but instead of forward-propagate
different activations to the image space and comparing them, they observe the
changes on neuron activations when similar computer-generated images with dif-
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ferent scene factors are introduced into a CNN. These works contribute in giving
a deeper understanding on the internal CNN behavior. Both works conclude that
there are specific neurons which are sensitive to color changes, point of views, scale
or lighting configurations.

Likewise, in [149] in this chapter we pursuit visualizing the intrinsic feature
of a neuron by analyzing the images that maximally activates a specific neuron.
However, to avoid the lack of generality of this approach, we define the Neuron
Feature (see Section 4.3) which is not based on a single maximum activation. The
Neuron Feature is a weighted average version of a set of maximum activation images
that capture the essential properties shared by the most important activations and
makes it not to be image-specific. Additionally, our Neuron Feature overcomes the
problem of unrealistic representation we mentioned earlier, by directly averaging
on the image space. In this way we achieve two main advantages: (a) keeping the
properties of the natural images, and (b) providing a very straightforward approach
to compute it.

4.3 Neuron Feature visualization

In this section we finally present our approach for visualizing the intrinsic fea-
tures of each individual neuron, which will allow to describe the neuron activity for
each unit. As we already mentioned, we propose to visualize the image feature that
activates a neuron, whenever is possible, by directly computing a weighted average
of the N -th first receptive field images that maximally activate this neuron (also
labeled as cropped images), likewise sorted in [44]. We will refer to this visualization
as the Neuron Feature (NF).

In order to build the NF we first need to calculate the activations associated to
each individual neuron. For each neuron we select the set of images that achieve
a minimum normalized activation value but constrained to a maximum number
of images for practical reasons3. By normalized activation (â) we mean the value
of the maximum activation of a neuron for a specific input image (Ii ), which is
normalized by the maximum of these values achieved by the same neuron over all
the images in the dataset:

âl
j (Ii ) =

max
(
al

j ,(h,w)(Ii )
)

max
(
al

j ,(h,w)(It )
) ,∀(h, w) ∈ [(1,1), · · · , (z l

h , z l
w )],∀It ∈ dataset (4.1)

In Fig. 4.1 we can see the behavior of the ranked normalized responses of a

3In this thesis we use a maximum number of images equal to Nmax = 100 and a minimum activation
value over a 70% of the maximum activation for computing the NF. We plot these values on Fig. 4.1
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4.3. Neuron Feature visualization

subset of neurons for every convolution layer of the VGG-M CNN (See Sec. 4.3.2)
trained on ImageNet by [20] (See Sec. 4.3.1). The y-axis represents the normalized
activation value of a single neuron to an image of the dataset. Images are ranked on
the x-axis according with their activation value, from highest to lowest activation
(we just plot the first 400 images for each neuron). Therefore, the first normalized ac-
tivation value is always 1 for all neurons and then its values decrease monotonically.
This normalization allows to compare different neuron behaviors, from neurons
which are activated by most of the images (flatter behavior), to neurons that are
highly activated only for a subset of images and have very little activation for the
rest (steeper behavior). In this figure we also provide the percentage of area for
each plotted curve. This percentage is computed over the area of the neuron that
presents the maximum AUC in the entire architecture. We can observe different
behaviors in all layers. In general, we can state that in deeper layers the behavior of
the neurons is steeper (lower AUC), i.e., neurons highly spike for a small number
of images. However, in shallower layers the behavior is flatter, i.e., neurons highly
spike for a lot of images. This is an expected behavior, since the image features
spiking neurons in first layers (e.g., oriented edges) are shared by almost all the
images, while the features spiking shallow neurons are more selective features (e.g.,
faces) that only spike for specific images. The observation of the responses confirms
the adequacy of our assumption to fix a minimum value for the activation (here,
we use â ≥ 0.70) and a maximum number of images to capture the most important
activations for all the neurons (we use Nmax = 100).

Thus, the NF is computed as:

N F (F l
j ) = 1

Nmax

Nmax∑
t=1

âl
j (It )× It (4.2)

where âl
j (It ) is the normalized activation of the t-th cropped image, denoted as It ,

of the j -th neuron F l
j ) of a layer l .

With this computation we pursuit on visualizing shared features between the
top-scored images preserving as much as possible a realistic and natural appearance
of the visualization.

4.3.1 The ImageNet Dataset

The success obtained with Convolutional Neural Networks has been achieved
with the existence of large datasets needed for training the huge space of parameters
insight them. Computer vision field was used to work in small datasets (such as
PASCAL Visual Object Challenge dataset [36], which consists of 20 object classes)

59



Chapter 4. CNN visualization and Neuron Feature

(a) Conv1 (b) Conv2 (c) Conv3 (d) Conv4 (e) Conv5

Figure 4.1 – Normalized activations of a subset of neurons for the first 400 ranked images
through all convolutional layers. For each layer we plot the normalized activation for the
neurons with highest and smallest AUC (Area Under Curve), and some other examples in
between these extremes. For all neurons the highest normalized activations is 1, and the
percentage of AUC is computed with respect to the neuron AUC achieving the biggest area in
the entire network. Doted lines indicate the constrains we use for computing the NF. The
vertical corresponds to the maximum number of images to take into account for its building
(Nmax = 100), while the horizontal one is the minimum activation to be achieved to be
considered (Th=70%).

during the first decade of the 21st century, achieving a good progress on its projects.
The ambition of having enough data for representing the real world (which obviously
contains more than 20 objects) encouraged researchers to collect millions of real
world images of thousands of classes and to label them. This effort gave rise to the
well-knwon ImageNet dataset [114], which is a large visual dataset where images are
classified according to the lexical WordNet hierarchy [92]. Experiments performed
in this thesis are done on the ILSRVC124 version of this dataset. It consists of around
1.2M images labeled in 1.000 different object categories. Images are mostly given
in uncalibrated RGB color and some of them are gray-level and they can present
different sizes within the dataset. Sensors used in acquisition are unknown for each
image, thus there is no chance to work on any RGB calibrated color space. Moreover,
it is built from a huge variety of scenes, including objects belonging to 1000 different
categories (such as dog classes, clocks, flower classes or type of buildings amongst
others). This diversity of objects can moreover appear with large variations in size,
points of view, poses, backgrounds and a large range of lighting conditions (indoor
or outdoor).

4Images can be browsed on http://image-net.org/challenges/LSVRC/2012/browse-synsets, as well
the concepts (synsets) that describe each image.
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4.3.2 Case of study: the trained network VGG-M

In this thesis we analyze the neurons of a CNN architecture trained on the
ILSRVC12 version of the ImageNet, although our proposals can be applied in most of
current networks that follows a sequential scheme. We report the results for the VGG-
M CNN5 that was trained by Chatfield et al. [20] for a generic visual task of object
recognition. The supervised training step of this network was performed through
the minimization (with a gradient descent technique) of a loss function representing
the classification error over 1000 object categories. The training process provides
us a large set of fitted filter weights associated to each neuron and the parameters
of the functions involved in this architecture, achieving a 36.9 and 15.5 top-1 and
top-5 errors, respectively. Details of the CNN architecture are given in table 4.16.
We selected this network since it has a similar structure to those which have been
reported as having a representational performance that competes with human
performance (as was proved in [17]).

The network expects inputs of 224×224×3 pixels, with images represented in
RGB. Due to the fact that the dataset contains images with diverse sizes, they are
scaled to fit the constraints of the network, and gray-level images are channel-wise
replicated. From Table 4.1 note that the receptive field from the 16th layer to the
last is bigger (331×331×3) than the input size (224×224×3), as a consequence of
have added some paddings along the architecture.

Regarding the convolutional layers, the network presents eight different lay-
ers. Nevertheless the fifth firsts are devoted to the representational task, while
the remaining three are used for the classification tasks (note that these are fully
connected layers and are named as FC). Most of the studies done in this thesis
are focused in the convolutional layers that are trained to act as feature detectors
(Conv1, Conv2, Conv3, Conv4 and Conv5).

4.3.3 Examples of Neuron Features

Once seen how to compute our visualization, in this section we plot some
neurons through their corresponding Neuron Features.

In Fig. 4.2 we can see some NFs and their corresponding set of first 100 maximum
activations, and in Fig. 4.3 (left) we can see a selected subset of 24 NF per layer. In
this image we can identify specific shapes that display the intrinsic property that

5For the MatConvNet library [137], the trained VGG-M can be downloaded from
http://www.vlfeat.org/matconvnet/models/imagenet-vgg-m.mat

6In Conv2 we have detected 37 dead neurons and they are discarded on this plot. By dead neurons
we mean neurons whose activation for any input image is not enough to drive the subsequent ReLU (i.e.,
negative activation). Therefore, results reported in these thesis considers that COnv2 has 219 neurons
instead of 256.
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Chapter 4. CNN visualization and Neuron Feature

(a) Conv1 (b) Conv2 (c) Conv3 (d) Conv4 (e) Conv5

Figure 4.2 – Neuron Feature (NF) visualizations (top) for 5 neurons of the different convolu-
tional layers of VGG-M with their corresponding 100 cropped images (bottom). Note that
NFs are scaled bigger than the set of 100 top-scored for a better understanding, but each
one of the top-scored images has, originally, the same size as the corresponding NF. See in
Table 4.1 the correct receptive field size (r ) for each layer to know the real size of these figures.

fires a single neuron. At first glance, we can see how in this particular network
the first two layers are devoted to basic properties. Oriented edges of different
frequencies and in different colors in the first layer; textures, blobs, bars and more
specific curves in the second layer. The rest of the layers seem to be devoted to
more complex objects. We can see that dog and human faces, cars and flowers are
detected at different scales in different layers, since the size of the NF and their
corresponding receptive fields increase with depth. This visualization of the neuron
activity can be seen as a way to visualize a trained vocabulary of the CNN that
opens multiple ways to analyze the global behavior of the network from its single
units. However, not all neurons present such a clear tuning to an identifiable shape.
Some neurons present a blurred version of NF, such as, those in the right of Fig. 4.3.
The level of blurring is directly related to a high variability between the maximally
activated images for a neuron.

At this point, we want to make a short parenthesis to relate the previous repre-
sentational observations with the scientific problem about neural coding that is
focus of attention in visual brain research ([68]). We are referring to the hypothesis
about distributed representations that encode object information in neuron popu-
lation codes, that co-exist with strong evidences of neurons which are only activated
by a very specific object. In line with this idea, we invite to speculate about neurons
presenting a highly structured NF could be closer to localist code neurons while
neurons with a blurred NF as closer to a distributed code. This neuron variability
has been recently explained in terms of neuron multifacets by [99] and they have
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Conv1
(a) Structured (b) Blurred

Conv2
(c) Structured (d) Blurred

Conv3
(e) Structured (f ) Blurred

Conv4
(g) Structured (h) Blurred

Conv5
(i) Structured (j) Blurred

Figure 4.3 – Examples of NFs for each convolutional layer of the network VGG-M (see sec-
tion 4.3.2. (Left) 24 examples of structured NF, (Right), blurred NFs. Although sizes of NF
increments through layers, we scale them into the same size. Original sizes are: 7×7×3 ,
27×27×3, 75×75×3, 107×107×3 and 139×139×3 for Conv1, Conv2, Conv3, Conv4 and
Conv5, respectively (see Table 4.1).

introduced a class of algorithms for neuron multifaceted feature visualization. In
this line, our NF visualization can be adapted to the multifacets of each neuron by
clustering top-scored images from their output feature map of the neuron layer
(like in [99]), i.e., applying a k-means approach to the output maps and computing
the NF for each cluster (see Fig. 4.4). Each multifaceted representation is visualizing
spatial feature similarity and can describe the variability allowed by the neuron.
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(a) Original NF (b) Multifaceted representation

Figure 4.4 – NF visualization (a) without considering multifacets, and (b) for each cluster
on the representation. Birds are classified by visual features, splitting between left and right
profiles, or more bluish and yellowish birds in different groups.

Finally, we want to add a further analysis about how neuron feature is related
to the neuron activity is representing. In Fig. 4.5a we plot the level of the neuron
responses when the input image is its own NF. This level is determined by comparing
the maximum activation achieved by the neuron from overall Neuron Features.
We can observe a high degree of activation (in greenish) between the NF and the
response of the net to this feature. However we have some disagreements between
the NF and the neuron activations, which increase through Conv3, Conv4 and
Conv5. That seems to be explained by an increase in invariance that is obvious
when the size of the image increases. In fact, from Figs. 4.5b- 4.5e blurred NFs tends
to have obtain lower activations on their corresponding neurons, while NFs with
a clear structure are able to highly spike the neuron they represents. Note that in
Fig. 4.5b all the NF have, apparently, a structured shape but some of them produces
a negative activation. Both NFs are build form receptive fields that contain text and
this level of detail is diminished on the weighted average. This is another situation
showing that shallower layers are focused to image details.

4.4 Relevant NFs of an image

The Neuron Feature visualization can be also useful to visualize how an image is
mainly represented through the network. As principal representation we mean the
feature encoded by the neuron which achieves the highest normalized activation
in a certain location of the image, compared with all neurons of the same layer.
Here we provide some examples in Figs. 4.6, 4.7, 4.8, 4.9, where an image of a
daisy, cardoon, red wine and school bus categories are shown through these non-
overlapped main representations along the five convolutional layers. Note that here
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(a) Distribution of the normalized activations of each neuron to
their corresponding NF.

(b) Conv2

(c) Conv3 (d) Conv4 (e) Conv5

Figure 4.5 – Normalized activations for each NF on their corresponding neuron. (a) Distribu-
tion of the normalized activations along the five convolutional layers. (b)-(e) Examples of NF
organized depending on their normalized activation

are plotted a subset of Neuron Features of shallower layers, selecting them from
the one with higher activation to the lower such that no overlapping occurs. For
each layer, the background is an attenuated version of the original image and it
is overlapped with the Neuron Feature of the neuron that is maximally activated.
Note how visualized features in the NF describe adequate visual properties for each
image. However, this visualization is only showing the principal activation and it is
usually accompanied with other activations, so that, their combination allows to
describe the complete image. For exmaple, in Fig. 4.9e there is a NF with a wheel of
a red vehicle, although the input image corresponds to a yellow bus. Therefore, this

65



Chapter 4. CNN visualization and Neuron Feature

region is mainly described as "there is a wheel" but have also high activations on
neurons with a yellowish appearance. A similar situation appears in Fig. 4.6c, where
the edges between the stamens region and petals of the daisy flower are described
with edges correctly oriented, but with different color appearance (although it is
quite similar). On the other hand, this visualization is somehow enhancing the most
discriminative features of the image and how they are represented through the layer.
For example, in Fig. 4.7 the cardoon representation starts in Conv1 with several
homogeneous magenta neurons defining the flower of the plant. The subsequent
layers define this region through greenish and magenta oriented edges that finally
ends with a neuron feature with a center (and magenta) surround (and greenish)
shape.

(a) Input Image (b) Conv1 (c) Conv2

(d) Conv3 (e) Conv4 (f ) Conv5

Figure 4.6 – A daisy image seen through the NFs corresponding to the neuron that is maxi-
mally activated on each position.

4.5 Hierarchical feature composition

In the same line, a similar visualization can provide an insight of how shallower
neurons are composed to provide a more complex feature in a deeper layer. The
set of receptive fields used for building the NF of a specific neuron can be used for
obtaining such hierarchy, so that the main representation of each location is the
neuron who achieves a maximum weighted mean normalized activation in these

66



4.5. Hierarchical feature composition

(a) Input Image (b) Conv1 (c) Conv2

(d) Conv3 (e) Conv4 (f ) Conv5

Figure 4.7 – A cardoon image seen through the NFs corresponding to the neuron that is
maximally activated on each position.

(a) Input Image (b) Conv1 (c) Conv2

(d) Conv3 (e) Conv4 (f ) Conv5

Figure 4.8 – A red wine image seen through the NFs corresponding to the neuron that is
maximally activated on each position.
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(a) Input Image (b) Conv1 (c) Conv2

(d) Conv3 (e) Conv4 (f ) Conv5

Figure 4.9 – A school bus image seen through the NFs corresponding to the neuron that is
maximally activated on each position.

coordinates. This weighted mean normalized activation is the average of the set of
normalized activations obtained for each top-score image ({I j } j=1:Nmax ) weighted
by the corresponding contribution to the building of the NF (â j (I j )).

In Fig. 4.10 and 4.11 we show these composition for six neurons of Conv4 and
Conv5 through their previous convolutional layers, respectively. This visualization
allows us to better understand the activity of the studied Neuron. In the follow-
ing lines we report some conclusions that arise from these visualizations. First,
the location variability allowed by the neuron to some edges or curves are repre-
sented through textured and oriented edges neurons in Conv2 (see bowl neurons
on Fig. 4.10 first row and Fig. 4.11 second row). Second, discriminant colors of
the Neuron Feature are also highly represented through almost all layers (see the
pinkish tongue of the dog or the skin-tone in Fig. 4.10 or the magenta-green and
the green-pinkish center surrounds neurons in Fig. 4.11). Third, textures may be
relevant in some neurons and these features gain interest on this composition (see
the representations of the guitar strings in Fig. 4.10). Other arised observation
is that the increasing of the feature complexity is achieved from the consecutive
composition of simple features (see how the white and dark edges are relevant to
define a dog face neuron in Fig. 4.10, the wine glass and the triumphal arch neurons
in Fig. 4.11. Finally, note that some neurons are highly activated by most of the
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posterior neurons, such as the white or black neurons in Conv1 or the magenta
and grainy texture in Conv5. This kind of neurons have a flat behavior (recover
Fig. 4.1) and they provably are not too much informative by their own and they to
be understood jointly with another neuron with a high activation.

4.6 Conclusions

Convolutional Neural Networks are deep architectures that sequentially stack
layers to increase, in this way, the complexity of the encoded visual features. Each
convoloutional layer is somehow defining a new representational space charac-
terized by the encoded features in its set of neurons. Due to the non-invertible
operations involved in these techniques, as well as the high dimensionality of these
feature spaces and the subsequent compression of information through layers make
visualization of intrinsic features a difficult task.
Nevertheless, several works that have been proposed to understand and visualize
these intermediate representations are reviewed in this chapter, concluding that
they are giving non-realistic images or too much image-dependent. Our Neuron
Feature (NF) visualization tries to overcome these problems (although in some
cases, the variability allowed by the network provokes a blurred visualization with-
out any recognizable structure) and visualize the intrinsic features for each neuron.
Most of the NFs have shown to be good neuron feature representative, considering
that they generally provoke a high activation on the neuron they are representing
when they are analyzed through the network. Moreover, NFs can be used to under-
stand which features are more representatives in intermediate levels of the network
or even to visualize a composition neurons of previous levels adding more useful
information to the comprehension of the neuron activity.
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(a) Neuron Feature (b) Conv3 (c) Conv2 (d) Conv1

Figure 4.10 – Neuron composition for six neurons of Conv4. For each convolutional layer,
non-overlapped main represenatations are shown, so that it shows stronger connections
between the Neuron Feature (a) and Neurons in previous layers ((b) - (d))
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l Type Name Parameters Input size Output Size r

1 Convolutional Conv1
k = 7×7×3×96

224×224×3 109×109×96 7×7×3p = 0
s = 2

2 Non-linear Relu1 ReLU 109×109×96 109×109×96 7×7×3

3 Normalization Norm1

η= 5

109×109×96 109×109×96 7×7×3
α= 2

β= 1×10−4

κ= 0.75

4 Pooling Pool1
k = 3×3×1

109×109×96 54×54×96 11×11×3p = [0,1,0,1]
s = 2

5 Convolutional Conv2
k = 5×5×96×256

54×54×96 26×26×256 27×27×3p = 1
s = 2

6 Non-linear Relu2 ReLU 54×54×256 54×54×256 27×27×3

7 Normalization Norm2

η= 5

54×54×256 54×54×256 27×27×3
α= 2

β= 1×10−4

κ= 0.75

8 Pooling Pool2
k = 3×3×1×1

54×54×256 13×13×256 43×43×3p = [0,1,0,1]
s = 2

9 Convolutional Conv3
k = 3×3×256×512

13×13×256 13×13×512 75×75×3p = 1
s = 1

10 Non-linear Relu3 ReLU 13×13×512 13×13×512 75×75×3

11 Convolutional Conv4
k = 3×3×512×512

13×13×512 13×13×512 107×107×3p = 1
s = 1

12 Non-linear Relu4 ReLU 13×13×512 13×13×512 107×107×3

13 Convolutional Conv5
k = 3×3×512×512

13×13×512 13×13×512 139×139×3p = 1
s = 1

14 Non-linear Relu5 ReLU 13×13×512 13×13×512 139×139×3

15 Pooling Pool5
k = 3×3×1×1

13×13×512 6×6×512 171×171×3p = [0,1,0,1]
s = 2

16 Convolutional FC6
k = 6×6×512×4096

6×6×512 1×1×4096 331×331×3p = 0
s = 1

17 Non-linear Relu6 ReLU 1×1×4096 1×1×4096 331×331×3

18 Convolutional FC7
k = 1×1×4096×4096

6×6×512 1×1×4096 331×331×3p = 0
s = 1

19 Non-linear Relu7 ReLU 1×1×4096 1×1×4096 331×331×3

20 Convolutional FC8
k = 1×1×4096×1000

1×1×4096 1×1×1000 331×331×3p = 0
s = 1

21 Non-linear Prob Softmax 1×1×4096 1×1×4096 331×331×3

Table 4.1 – VGG-M architecture designed by [20], where l is the layer ID, r the receptive field
size, and k, p and s are the hyper-parameters kernel size, padding and stride, respectively.
α,β,κ,η are hyper-parameters of non-linear layers.
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(a) Neuron Feature (b) Conv4 (c) Conv3 (d) Conv2 (e) Conv1

Figure 4.11 – Neuron composition for six neurons of Conv5. For each convolutional layer,
non-overlapped main represenatations are shown, so that it shows stronger connections
between the Neuron Feature (a) and Neurons in previous layers ((b) - (e))
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5 Color selectivity index in trained CNNs

Convolutional Neural Networks have been proposed as suitable frameworks to
model biological vision. Some of these artificial networks have shown represen-
tational properties that rival primate performances in object recognition tasks
as proved by Cadieu et al. [17]. In this chapter we explore how color is encoded
in one of these artificial networks by estimating a selectivity index for each indi-
vidual neuron, we use the one trained by Chatfield et al. [20] on the ImageNet
dataset [114]. The proposed index allows to classify the full neuron population
of the network, whether they are color selective or not and if they are single or
double color. We find out that all five convolutional layers of the network present
a large number of color selective neurons. Color opponency clearly emerges in
the first layer, presenting 4 main axes (Black-White, Red-Cyan, Blue-Yellow and
Magenta-Green), but it is reduced and rotated as we go deeper in the network.
In the second convolutional layer we find a more dense hue sampling of color
neurons and opponency is almost reduced to one new main axis, which is Bluish-
Orangish coinciding with the dataset bias. The three remaining layers have color
neurons are similar between them, presenting different type of neurons detect-
ing specific colored objects (e.g. orangish faces), specific surrounds (e.g. blue
sky or green grass) or specific colored or contrasted object-surround configura-
tions (e.g. blue blob in a green surround). Overall, our work concludes that color
and shape representation are successively entangled through all the layers of the
studied network, showing up some parallelisms with reported evidences in pri-
mate brain that can provide and providing some inspiration about intermediate
hierarchical spatio-chromatic representations.

5.1 Introduction

The understanding of the intermediate representations achieved by Convolu-
tional Neural Networks has been achieved through different methods that try to
visualize them in the input image space (see Sections 4.2 and 4.3). However, the
interpretation of the neuron activity emerged from these visualizations has been
done by their mere observation and characterizing them through significant con-
cepts. This opens a new line of research for developing methodologies seeking how
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to define the roles played for each neuron which is the basis of this chapter. Here
we pursuit on assessing the affinity of any neuron to be activated when a specific
color appears in the input sample.

Moreover, in this chapter we hypothesize that, considering we can find some
parallelisms between layers of a trained artificial network with known evidences
in the human visual cortex [69], we can pursuit some inspiration about how color
could be encoded in beyond-opponent human visual pathway by understanding
how color is encoded in layers of artificial networks. To this end, we propose a
method to explore how this artificial network is encoding color information based
on the estimation of color selectivity indexes over the whole neuron population
of the network. Proposed method is based on two basic ideas. First, to compile
the set of image patches that maximally activates a neuron. Second, to estimate a
color-selectivity index on each neuron based on this set. Once we measured color
selectivity indexes we can discriminate different groups of neurons, accordingly
with their ability to be color selective or not, or being selective to a single-color
or to a double-color pair1. The classification of neurons at each layer allows to
extract interesting representational properties, such as the amount of color tunned
neurons appearing at each layer, or how color and shape are entangled through
network layers, or opponency properties emerging from double-color neurons.
Once we obtain the map of the network color selectivity we show a clear correlation
with the color distribution of the image dataset used to train the network. Reported
results provide a compelling hypothesis about color representation beyond cone-
opponency.

5.2 Method

In this section we propose to describe neurons by their inherent response to
a specific property, using an index. The index has to allow to rank them in a pro-
portional order between their response and the existence of the property in the
input image. Therefore, we translate the problem of describing neuron activity to
the problem of proposing methods which are able to quantify specific image facets
that correlate with the degree of activation of the neuron holding such a property. A
selectivity index of a single unit is a flexible an independent method for discrimi-
nating or clustering between neurons inside the same network. This analysis can

1In this thesis we will use this terminology single and double to refer to color neurons which are
either selective to one single color or to a pair of colors appearing on a specific shape configuration. Note
that it differs from the terminology used in [121] where the terms single-opponent and double-opponent
are used to refer cells responding to large areas of homogeneous color, or responding to color patterns,
textures, and color boundaries, respectively. Although they could broadly present some similarities, they
should not be directly equated.

74



5.2. Method

be done by collecting the set of images that maximally activates each neuron and
deriving specific measurements on these image patches or receptive fields and on
their activation values. Additionally, selectivity indexes can be defined either for
image features or for image labels. In what follows, we propose a selectivity index
belonging to the first group related to the color property.

5.2.1 Selectivity index

The concept of neuron selectivity has long been established in neuroscience.
Authors in [13] provide a general definition of the selectivity, which is a property
related to a neuron that measures how much the neuronal response (i.e, the neuron
activity) is affected by changes on the stimulus. In this sense, a high selectivity index
characterizes a neuron to be highly dependent to a specific property, so that when
this property is slightly changed, the neuron activity is considerably decreased. In
this thesis, then, we propose to adopt this neuroscientist concept to model the
activity of neurons in a trained CNN related to a specific concept, such as color (see
next section 5.2.2).

5.2.2 Color selectivity index

Color selectivity is a property that can be proved in specific neurons of the
human brain. The level of activation of the neuron when the observer is exposed
to a stimulus with a strong color bias, and its corresponding low activation when
the color is not present, is the object of attention in vision research that pursuits
the understanding of how color is coded in the human visual system ([121],[25]).
Following this idea, we propose a computational algorithm to measure color se-
lectivity of an artificial neuron, understanding color selectivity as the property of
a neuron that highly activates when a particular color appears in the input image
and, contrary, gives a low activation when this color is not present.

Our color selectivity index of a neuron is computed by estimating the variation
between its global activation to color patches with respect to its global activation to
their corresponding gray-level patches. Following this idea, color selectivity index
of a neuron can be measured as the ratio of the area under the activation curve
(AUC) to the gray-scale version of the N-top image patches that maximally activate
it, divided by its AUC obtained from the original images in RGB. For this, we use
the set of top-scored images used to compute the Neuron Feature for each neuron
(see Section 4.3). In order to maximally preserve the shape pattern of an image, we
propose to use a gray-level transformation based on the image color distribution
in the OPP color space, hich allows to isolate intensity from chromaticity. We
use the first eigenvector using the Principal Component Analysis (PCA) on this
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distribution as the axis where to project each color pixel. In this way, we obtain
a gray-scale image that maximizes the color image variance. Selected space is as
a linear transform on the RGB color space in order not to introduce more non-
linearities besides those already included by each different sensor. This RGB to OPP
(opponent space) transform is given by:

O1 = (R +G +B −1.5)/1.5, (5.1)

O2 = (R −G), (5.2)

O3 = (R +G −2B)/2 (5.3)

which is based on the one proposed by Platanoits et al. in [110] but normalizing
and shifting the three axes within the range

[−1,1
]
. This space was conceived to

achieve some physiological inspiration on uncalibrated RGB, and it has provided
interesting results in computer vision2.

Thus, given the set of N-scored images {It }t=1:N and their corresponding gray-
versions {I ′t }t=1:N of the j -th neuron at layer l , we define the color selectivity index
as follows:

αl
j = 1−

∑N
t=1 âl

j (I ′t )∑N
j=1 âl

j (It )
(5.4)

where {âl
j (It )} j=1:N are the neuron normalized activation values to the original

N-top ranked image patches, and {âl
j (I ′t )} j=1:N are the normalized activation values

obtained by the same neurons to the gray-level versions of the N -top images.
In Figs. 5.1a and 5.1b we show the neuron activity curves of two different neurons

in Conv5 of the VGG-M network (see Section 4.3.2), activation values (Y axis) are
ranked in a decreasing order from left to right (X axis). We plot neuron activation
curves to the N-top original image patches (in blue) and to the corresponding
gray-level image versions of these N-top image patches (in red). Note that in the
same X axis we are representing two different image rankings, one for color images
and another for gray-level images. Neuron in (a) shows equivalent activations for
both image sets (color and gray-level), while neuron in (b) plots a clear decrease in
activation for gray-level images. Proposed index gives α= 0.07 for the first neuron
which is a non-color selective neuron, and givesα= 0.92, considered color selective.

To confirm the adequacy of the proposed index, in the same figure we explore

2Regarding this opponent transform we also want to mention that it was proved to show a large
discriminant power for image segmentation using a Principal Component Analysis in the experiments
reported by Ohta et al. in [102]. And it has also been proved to give the best results in color-shape
descriptors for object recognition in Van de Sande et al. in [133].
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(a) Low color selective neuron (α= 0.07) (b) High color selective neuron (α= 0.92)

(c) Flat neuron activation (α= 0.07) (d) Gaussian-like neuron activation (α= 0.92)

Figure 5.1 – Activation values to different image versions. (a) and (b) Ranked activation
values (Y axis) to the first 100-top activated image patches (X axis), for two different neurons.
Blue lines link ranked activations to the 100-top patches of a neuron. Red lines link ranked
activations to the gray-level versions of the 100-top patches. (c) and (d) Activation values of
the same neurons to different color transformation (rotated along hue axis) of the 100-top
image patches. Blue lines are linking the activation values to all color-rotated versions of the
same image patch.

the neuron activation to the same N-top image patches when they are transformed
into different hue distributions. This transformation is achieved by a pixel-wise
operation which computes chromatic rotation on the chromaticity plane of the
OPP color space and keeping constant intensity. In Figs. 5.1c and 5.1d we plot
the neuron activation (Y axis) for each color rotation (X axis) for the same neurons
shown in Figs. 5.1a and 5.1b, respectively. In these plots we show three of the N-top
image patches and some of their color transformations along the X axis. Framed
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with a red rectangle are the original RGB image patches. At the bottom and framed
in blue is the corresponding NF of the neuron. Each blue line links all the neuron
activation values to the corresponding images along chromaticity transformations.
Again, two different behaviors emerge: a neuron that its activation is not changed
along the color transformations is a non-color selective neuron (flat behavior),
while a neuron that clearly changes its activation in front of a color transformation
is a color-selective neuron (Gaussian behavior). Mean variance computed on these
activation curves for each neuron present a clear correlation with our proposed
color selectivity index. Pearson’s correlation (r ) indexes through layers are 0.95,
0.85, 0.85, 0.88 and 0.88, from shallower to deeper convolutional layers.

We want to note that this index is just measuring selectivity to color but not to
what color, we work on this point in subsequent sections.

5.2.3 Classifying neuron population

In order to analyze color coding though all network layers, we propose to use
color selectivity index to classify neurons in several classes, we do this classification
in three stages. A first classification discriminates the entire neuron population in
three groups: color selective, low color selective and non color selective. A second
stage classifies color selective neurons in two groups: single or double. And a third
stage classifies double color neurons in opponent or non opponent.

First classification is directly done applying some threshold over the color se-
lectivity index (α). Non color selective neurons are those with α< 0.10, and when
α > 0.25 we label them as color selective neurons. Which means, if the AUC of a
neuron activity in front of a gray scale version of the N-top patches decreases more
than 25% with respect to their original RGB patches, it is considered high color
selective neuron. While neurons are non color selective when this AUC variation is
less than 10%. Between these two groups, neurons are considered low color selec-
tive neurons. See Fig. 5.1a and 5.1b as examples of low and high selective neurons,
respectively. Although the thresholds we applied can seem arbitrary, they were
coherently set on the observed selectivity over the set of top ranked image patches
activating the neurons, and from the behavior of the neuron activity through a
chromatic transformation of the same image patch (see Figs. 5.1c and 5.1d). From
our experience, different variations of these thresholds would bring to similar con-
clusions. Shallower layers have neurons with extreme color index values (either very
high or very low) while deeper neurons are mainly described by intermediate index
values. A neuron with α > 0.25 presents a clear Gaussian behavior of its neuron
activity, while a neuron with α< 0.10 presents a flat behavior.

Within the group of color selective neurons we distinguish two main groups:
single color neurons, presenting selectivity to one single color; and double color
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neurons, presenting selectivity to a pair of colors. The definition of these two types
of neurons was already introduced in section 5.1. Classification is performed by
fitting a Gaussian mixture model on their NF hue distribution using a Expectation-
Maximization (EM) algorithm. Each fitted univariate Gaussian is defined by its
mean and covariance. EM is applied for different numbers of Gaussians (from one
to four), and it is finally set to the minimum number that differs less than a 10% over
the global mean square error with the distribution. This step allows to get one (a
pair of) representative hue (hues) for each single (double) color neuron. Selectivity
to three or four colors was never found.

Once we have the color-map of all double color neurons through the network
layers, we will analyze whether specific chromatic axes emerge representing spatial
color opponency which is a central property in early stages of the primate visual
systems [30, 77]. In Fig. 5.6 we plot the axis related to each double color selective
neuron. To measure how close it is to be in an opponent axis we compute the
angular distance to be at 180◦ from the actual angle formed by the pair. These
angles are considered with respect to the center of the O2-O3 chromatic plane.

5.3 Results and Discussion

General purpose CNN architectures are usually trained on RGB color images.
However there is a strong belief in the computer vision community that color is a
dispensable property. The results we obtain by indexing color selective neurons
make us conclude that there is no basis for such a belief. Our analysis shows that
color is strongly entangled at all levels of the CNN representation. In a preliminary
experiment we have tested a subset of ImageNet images with VGG-M (trained on
ImageNet dataset [114] and designed by Chatefield et al. [20], see Sections 4.3.1 and
4.3.2) in their original color and the same subset in a gray scale representation. Clas-
sification performance show a considerable decrease: while original RGB images
are classified with a 27.50% top-1 error and 10.14% top-5 error, gray scale image
versions present 51.12% and 26.37% errors, top-1 and top-5 errors, respectively.

Results of computing color selectivity index on all neurons of the VGG-M are
summarized in Table 5.13. Neurons are classified in seven groups following the
criteria defined in section 5.2.3.

To visualize how this color index correlates with the neuron activity, we plot

3Originally, VGG-M CNN has 256 neurons in the second convolutional layer. However, as a result of
the training process, 37 dead neurons were detected, as we mentioned in previous chapter. Due to Dead
neuron is a neuron which do not contributes to the internal representation of the network and generally
have weights are almost random and it is equally activated for any image patch, they are discarded. This
explains why presented results on Conv2 corresponds to just 219 neurons.
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Selectivity Conv1 Conv2 Conv3 Conv4 Conv5
#Neurons 96 219 512 512 512

Non Color 56 (58.33%) 118 (53.88%) 225 (43.95%) 113 (22.07%) 52 (10.16%)
Low Color Sel 2 (2.08%) 28 (12.79%) 69 (33.01%) 255 (49.80%) 250 (48.83%)

Color Sel 38 (39.58%) 73 (33.33 %) 118 (23.05%) 144 (28.13%) 210 (41.02%)
Single Color 12 (12.50%) 49 (22.37%) 102 (19.92%) 134 (26.16%) 198 (38.67%)

Double Color 26 (27.08%) 24 (10.96%) 16 (3.13%) 10 (1.95%) 12 (2.34%)
Opponent 19 (19.79%) 14 (6.39%) 8 (1.56%) 1 (0.20%) 1 (0.20%)

Non opponent 7 (7.29%) 10 (4.57%) 8 (1.56%) 9 (1.76%) 11 (2.15%)

Table 5.1 – Distribution of color and non color selective neurons through layers. Within
the color selective neurons two subgroups: single color and double color, referring to the
number of color the neuron is selective to. Within the double color neurons two subgroups:
opponent and non opponent, depending how close are colors to present a hue-angle close
to 180◦ or not, respectively. In parenthesis (%) percentage of neurons of the group within the
layer.

some examples in Fig.5.2. In this figure each neuron is described twofold: through
its corresponding NF and also with their corresponding set of 100 receptive fields
used to build this NF. These patches are sorted decreasingly by their activation
on the neuron (from left to right and from top to bottom). We can see that the
appearance of the NF describes features that are mostly shared by the 100 image
patches. Note how neurons sided on the right have a clear color dependence,
compared with the ones shown in the left of the figure.

First conclusion derived from Table 5.1 is that there are color selective neurons
in all the layers. This correlates with the idea that color is encoded all the way from
V1 to IT cortex as concluded by Shapley et al. in [121]. A graphical representation of
selectivity index values across layers and corresponding percentage of neurons is
plotted in Fig. 5.3. Average color selectivity index per layer is 0.35, 0.24, 0.22, 0.24,
0.22 and 0.28 for Conv1 to Conv5, respectively, which is quite constant. But, while
neurons with higher color selectivity indexes are more concentrated in shallow
layers, it compensates with a higher number of lower color selectivity neurons in
deeper layers (percentage of color selective neurons in Conv4 and Conv5 surpass
shallow layers).

In the following sections we deeply analyze these results from two points of
view. First, directly from the general derived color properties (Sections, 5.3.1, 5.3.2
and 5.3.3), and second, from the specialization of three main groups: Conv1, Conv2
and Conv3-Conv5 together considering the similarity of their neuron population
(Sections 5.3.4, 5.3.5, 5.3.6). Here we take some risk hypothesizing some parallelism
of these three groups with the V1, V2 and V4/PIT/TE, suggested in the hierarchical
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Figure 5.2 – NFs and their 100-top image patches corresponding to 10 neurons of different
layers. Neurons in shallow layers are described in two first rows, while for the ones in deeper
layers, through the last two rows. 1st and 3rd row correspond to NFs showing the intrinsic
properties that may describe the neuron activity of the corresponding neuron. 2nd and 4th
rows plot the set of 100-top image patches that maximally activate the corresponding neuron.
Note that these patches are sorted from left to right and from top to bottom according to
activation value in a decreasing order. Color selectivity index, α is given for each neuron.
Note that NFs are shown with a bigger size than each image patch in order to help on the
intrinsic visualization.

model of color processing in macaque cerebral cortex summarized by Conway et al.
in [25].

5.3.1 Single and double color neurons

Regarding single and double selective neurons, the number of single neurons
increases with depth while the number of double decreases. In Fig. 5.4a we plot
all single neurons along different convolutional layers, from Conv1 (inner ring) to
Conv5 (outer ring). Each single color neuron is plotted at its representative hue
(estimated Gaussian mean). Observe that the distribution falls in two main hue
regions on deeper layers (orangish and bluish), while representatives are more
distributed over hue in shallow layers. The rest of plots (Figs. 5.4b - 5.4f) show single
(outer ring) and double color neurons (inner ring) per layer. Double color neurons
are plotted by their two representative hues (two estimated Gaussian means), same
NF is reproduced on both hues and they are linked by a line to visualize their
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Figure 5.3 – Map of network color selectivity. Percentage of neurons within different ranges of
color selectivity indexes for each layer. Thresholds applied in this thesis α= 0.1 and α= 0.25
are marked with the black and red lines, respectively.

connection. Intersection of lines in similar directions outlines the emergence of
color axes. A Bluish-Orangish/Brownish axis clearly arises in deeper layers, but this
is studied in subsequent lines.

Although ImageNet is built from millions of different real images, its color
distribution is not homogeneous. We estimate the color distribution of the complete
ImageNet dataset and it is shown in Fig. 5.5. Colored bars plotted represent its color
distribution (Y axis) based on hue-angle (X axis) computed on O2-O3 plane of the
opponent color space given in equation 5.2.2. The hue-angle, γ, of a given a pixel,
ρ = (o1,o2,o3), is computed as γ(ρ) = arctan( o3

o2
). Distribution presents a clear bias

(a bimodal Gaussian distribution), peaking at orangish hues and at bluish hues.
They could be due to a rich presence of brownish animals and people skin likewise
sky backgrounds respectively. We will not analyze if this dataset bias correlates
with natural scene statistics, but it is normal that calibrated natural scene statistics
present some kind of bias, which can vary depending on season, area or latitude
[142]. Therefore, the emergence of a more dense sampling in brownish and bluish
regions observed in Fig. 5.4a with these color peaks on ImageNet suggest a similar
distribution. To this aim, both distributions are compared. The one obtained from
color selective neurons according to their selective hue is also shown in Fig. 5.5 as
a black line on colored bars. We combine single and double neurons (for double
neurons we consider both hues and duplicate the single neuron hues). We can
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(a) All layers (Only single color neurons) (b) Conv1

(c) Conv2 (d) Conv3

(e) Conv4 (f ) Conv5

Figure 5.4 – Chromaticity of color selective neurons across layers. (a) Single color neurons for
all layers. (b), (c), (d), (e) and (f) Single color neurons (outer ring) and double color neurons
(inner ring) for layers Conv1, Conv2, Conv3, Conv4 and Conv5 respectively. Double color
neurons are plotted twice (to represent double chromaticity) and linked with a line.
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Figure 5.5 – ImageNet hue distribution (colored bars) and Number of color selective neuron
per hue (black line).

observe a clear similarity between both distributions, presenting two significant
peaks on orangish and bluish hue regions. Concretelly, both distributions are highly
correlated, with a Pearson correlation coefficient (r ) of 0.89. This result confirms
that color selective neurons learned by the CNN are adapted to the dataset bias, in a
similar way to what happens with color bias in natural scenes that has been proved
to have implications in higher color sensitivity in the human visual system [91].

5.3.2 Opponency property

To analyze opponency property of double color neurons we represent their color
pairs (Mean Color1 and Mean Color2) as an (X,Y) point in a two dimensional hue
space (see Fig. 5.6). Being Color1 the one with smallest hue angle and Color 2 with
largest. In this way, perfect opponency (or 180◦ of angular distance between them)
is represented by the location of the black dashed line (top left corner). The closer
a neuron is to this dashed line, the more opponent it is. Overall, we can see from
these plots that opponency decreases with depth. The maximum is found at first
convolutional layer. We performed a cluster analysis to find main emerging axes,
defined as groups of neurons sharing the same axes direction. For this purpose, we
use k-means technique and test from K = 3 to 7 to detect the best number of clusters
using Elbow method, which is based on a ratio of the between-group variance with
respect to the total variance.

In Table 5.2 we list obtained clusters. We assigned an axis name to each cluster

84



5.3. Results and Discussion

(a) Conv1 (b) Conv2

(c) Conv3 (d) Conv4

(e) Conv5

Figure 5.6 – Emergent axes from Cluster analysis on double color neurons, from (a) Conv1 to
(e) Conv5. Neurons are given by their pair of colors: mean hue of Color 1 in X axis (smallest
hue) and mean hue of Color2 in Y axis (biggest hue). Top left dashed line represents location
of perfect opponent pairs (180◦)
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Double neurons Conv1 Conv2 Conv3 Conv4 Conv5

Blue-Yellow 11.69 - - - -
Red-Cyan 13.26 - - - -

Magenta-Green 20.05 32.64 89.86 101.66 65.72
Red-Green - 56.32 - - -

Blue-Orange - 3.27 1.46 - -
Blue-Brown - - 3.03 14.81 0.31
Blue-Green - - 27.71 31.85 40.38

Brown-Green - - 87.56 107.54 100.97

Table 5.2 – Deviation from opponency for clustered double color neurons through all layers.
Neuron cluster with small deviation < 21◦ (in bold) are proposed as opponent emergent axes.

and compute its angular distance to perfect opponency. Color names used to label
each axis were approximately assigned by the observation of the NFs in the cluster.
From this table we can conclude two main observations: (a) in layer Conv1 all
double color neurons present a remarkable opponency property (rows 1 to 3), (b)
a special Bluish-Orangish (or a similar Bluish-Brownish) axis emerges from layer
Conv2 up to the deepest layers (Rows 5-6). The emergency of these axes is supported
by the small angular distance (in bold) to perfect opponency. Although we will refer
to this axis as Blue-Orange (or Blue-Brown) the Blue hue presents a clear clockwise
rotation with respect to Blue-Yellow axis found in Conv1 (see Fig. 5.4).

5.3.3 Color and shape entanglement

As seen in previous sections, color is an important property that may charac-
terize the activity of a neuron. Nevertheless, this property always appears strongly
linked with the intrinsic shape that also activates the neuron. In this section we
analyze the entanglement of both properties, shape and color, which can be un-
derstood as a template matching scheme linked to the activity of any neuron along
the artificial network. With color-shape entanglement we mean that the activation
of a single neuron requires the appearance of a specific color in an appropriate
configuration or shape.

This color-shape entanglement appears through all the layers. Regarding shal-
lower layers we plot in Fig. 5.7 a set of neuron activation curves for two color
neurons in 5.7a Conv1 and 5.7b Conv2, both representing colored edges oriented in
135◦. Each neuron activation curve is obtained from a set of oriented edge images,
sharing the same orientation but with different opponent color pairs. Different
oriented edges are tested for both neurons and maximum activations are achieved
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(a) Conv1 color neuron (α= 0.99) (b) Conv2 color neuron (α= 0.44)

Figure 5.7 – Neuron activation of two edge-oriented double color selective neurons, (a) Conv1
(α= 0.99) and (b) Conv2 (α= 0.44). Activation curve for different synthetic oriented color
edges, varying in hue-pairs and orientation. Blue line connects activations corresponding to
images with the same orientation but different color-pair. Neuron NFs are framed in blue on
the top-left corners.

when color pair and orientation match with the input image (see the neuron NF
visualization on the top left corner).

In the same line, neurons in deeper layers which are responsible to detect more
complex shapes also present this color-shape dependence. For these neurons we
show two examples of activation curves where shape structure is changed through
a spatial rotation. In Fig. 5.8 we plot several activation curves of a face selective
neuron found in Conv4 (Fig. 5.8a) and pf a pooltable neuron in Conv5 (Fig. 5.8b),
both with a high color selective index (α= 0.59 and α= 0.65, respectively). These
curves show the variation of the activation curves when same face or pool table
images that highly activate each neuron are spatially rotated. Note that the same
image with spatial rotations modifies the activity of the neuron, although sharing
same color appearance.

The strong entanglement between color and shape in the human visual system
has been proved in several works, revised by Shapley et al. [122], concluding that
this high relation between shape and color is found in HVS neurons along different
areas.

5.3.4 Layer Conv1

Trained neurons in layer Conv1 are compiled in Fig. 5.9. Our classification of
the neuron population in this layer can be resumed in two main groups: selective
and non selective neurons around 40% and 60%, respectively. Only two neurons
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(a) Conv4 color neuron (α= 0.59) (b) Conv5 color neuron (α= 0.65)

Figure 5.8 – Neuron activation of two edge-oriented double color selective neurons, (a) Conv4
(α= 0.99) and (b) Conv2 (α= 0.44). Activation curve for different synthetic oriented color
edges, varying in hue-pairs and orientation. Blue line connects activations corresponding to
images with the same orientation but different color-pair. Neuron NFs are framed in blue on
the top-left corners.

are found as low color selective, and as a particularity of this layer, there are more
double color neurons than single. The low spatial frequency selectivity observed in
color selective neurons jointly with the diversity of spatial frequencies of non color
selective neurons correlates with reported evidences in human vision in [78, 117].
Moreover, we want to state that CNN training does not hold any constraint about
similarities between neurons of the same layer. Then, boundaries between layers
are fuzzy and we can find neurons in second layer that could be grouped with these
Conv1 neurons, and we find neurons in first layer that for its spatio-chromatic
properties would fit better in Conv2 (framed in red). Thus, for clarity reasons we
keep our conclusions at the layer level, not trying to give a global and exhaustive
classification of the color neurons.

First convolutional layer presents a key role in color-pairs representation due
to the strong opponency shown by all clusters of double color neurons. They
are representing a three dimensional opponent space based on three chromatic
channels: two with a higher number of neurons Red-Cyan and Blue-Yellow, that
could correlate with the findings of Derrington et al. in [30] (extensely reviewed in
[77]). And a third one, Green-Magenta, with less neurons, but which could be related
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Figure 5.9 – 96 Neuron Features of the set of Conv1 neurons classified in terms of color
selectivity. 38 Color selective neurons (39.58%). 12 single Color (12.50%) and 26 double
opponent neurons (27.08%). 13 Red-Cyan, 10 Blue-Yellow and 3 Magenta-Green cells.

with the fourth oponnent channel reported by Conway et al. in [22] (Black-White
is counted). Each pair of colors has an angular distance (opponency property) of
166.74◦, 168.31◦ and 160◦, respectively. We want to remark here that our results are
just an approximation on an uncalibrated space where labels are assigned by mere
NF observation. This opponency is highlighted by Fig. 5.10, where activation curves
of three double color neurons in Conv1 oriented in 45◦ (one for each color axis) to
different synthetic color edges in the same orientation are plotted. We compute
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Figure 5.10 – Representation of color edges.
Activation curves of three different double op-
ponent color neurons at Conv1 to 4 different
types of edges regarding the opponency prop-
erty of the pair of colors on the tested edges:
opponent edges (180), 135, 90 and 45 color
edges.

Figure 5.11 – Activation curves of single neu-
rons in Conv1 over series of images varying
along the hue dimension. Stimuli are rotated
hue versions of the maximum activating im-
age for each neuron.

the activation on 4 different type of edges composed by pairs of colors holding
different angular distances between them: 45◦, 90◦, 135◦ and 180◦, each type of
edge is generated along a sampling of the entire hue. In this figure, for each type of
edges we plot the color edge achieving the maximum activation for each neuron.
For the case of opponent edges (180◦, maximum color pair contrast difference),
the maximal neuron activations are achieved when the edge coincides with the NF
pattern (see the legend for a visualization of NFs of the studied neurons). The rest
of color edges are represented by different triplets of weights on the neuron basis.
In this way we show how any color-edge is represented by the three main group of
opponent axes emerging in this layer Conv1.

Similarly, we study how regions of a single color are represented by the network.
We observe that they are based on a composition of basic primary colors represented
by single color selective neurons single color neurons in this layer are specialized
on the following basic hues: Red, Green, Blue, Magenta, Cyan and Yellow, which is a
quite standard and balanced sampling of the hue circle, whose combination allows
to represent all the color hues. In Fig. 5.11 we can see the activation curves of these
basic neurons to homogeneous regions along the hue dimension. Some of them
present more than a neuron for a similar primary hue.
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Figure 5.12 – 219 Neuron Features of Conv2: 75 being color selective neurons (34.25%) with
54 single neurons and 21 double neurons (13 for the Blue-Orange, 4 for the Magenta green
and other 4 for the Red-Green
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Figure 5.13 – Activation curves of single neu-
rons in Conv2 over series of images varying
along the hue dimension. Stimuli are rotated
hue versions of the maximum activating im-
age for each neuron.

(a) (b)

Figure 5.14 – Orange-blue edge representa-
tion in Conv1. (a) Activation values of some
neurons in Conv1 (NFs are in first row) to a
set of images (first column) in a color scale
from blue (minimum) to red (maximum). (b)
Double neurons in Conv1 over the hue space
an a Orange-Blue image (dashed line), which
is highly represented in Conv2 through the
Blue-Orange axis, is represented between
two main neurons in Conv1 (Blue-Yelow and
Red-Cyan) in this hue space.

5.3.5 Layer Conv2

Neurons in Conv2 were classified as shown in Fig. 5.124. At a first glance, we can
see that non color selective neurons present an increase in shape complexity with
respect to previous layer: more complex edges as circular edges in diverse directions,
oriented bars, shading effects, centered and shifted blobs or homogeneous textures
and edges between textures. They are more complex features than oriented edges
and basic gratings of the previous Conv1. However, they can not be identified as
object shapes like those we will find in subsequent Conv3-Conv5. This layer seems
to represent surface details beyond its boundaries.

Regarding color selective neurons we find colored edges and homogeneous
neurons as in layer Conv1. The main novelty regarding their shape is that there are
also colored blobs and oriented bars. Likewise in Conv1, single color neurons are
responsible to detect single color regions based in a combination of basic hues but
in this level of representation, it is more detailed due to a more dense sampling
of primary hues is covered by the set of single neurons, as can be perceived from
Fig. 5.13. Thus the color of a region can be more precisely described in this more

4Organization and label assignment in this figure were visually performed from NF shape and color,
with the exception of the opponent axes that come from a cluster analysis
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extensive basis.
This density of representation becomes a peculiarity of this layer for both, single

and double color neurons, as can be observed in Fig. 5.4c, where color selectivity
turns into a more dense sampling on the hue circle, in comparison to the rest of
layers. To quantize this observation, we computed a sparsity measure l 0, studied in
[57]5, on the hue distribution of colors that neurons are selective to. We performed
this measure for different hue sampling sizes. Results are shown in Fig. 5.3(b), where
a clear minimum in sparsity emerges at Conv2. This continuum in hue selectivity
could be related with measurements reported by [49, 141, 146] about the existence
of hue maps in V2 cortical areas revised in [23].

Figure 5.15 – Sparsity of network color selectivity: how many color selective neurons and
how many different colors are selective to. Sampling of the hue space by neuron selectivity.
The lower sparsity is the more dense is the sampling, i.e. the higher the number of different
colors neurons are selective to.

Double color neurons were clustered in three main axes (see Fig. 5.6b: Magenta-
Green, Red-Green and Blue-Orange. Two first axes (Red-Green and Magenta-Cyan)
seem an extension of axes in Conv1, but loosing the opponency property. However,
the emergent Blue-Orange axis with a small deviation from opponency of 3.27◦
(see Table 5.2) is a novelty of this layer, that anticipates edges of object shapes that
will be represented in posterior layers laying on the hue bias of the dataset. This
axis is a rotation of the Blue-Yellow axis found in Conv1 that matches the bias of
the training dataset. In Fig. 5.14a we show how several image patches that highly

5Measure l 0, defined as l 0 = { j : C j = 0}, counts the number of zero bins in a sampled distribution,
denoted as {c j }.
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activate a Bluish-Orangish neuron of Conv2 are represented in Conv1. NFs of the
first convolutional layer that are most activated by these kind of Orange-Blue edge
stimuli (oriented in 135◦) are plotted in the first row. Tested images are shown in
the first column. Activation values are shown in a scale from blue (minimum) to
red (maximum). This composition can be easily understood from their location
in the chromaticity plane of the opponent color space shown in Fig. 5.14b, where
double color neurons are allocated twice in corresponding coordinates of their pair
of colors in this chromaticity space, likewise the representation of a Blue-Orange
image (shown bigger since its size corresponds to the receptive field size of a neuron
in Conv2). This example brings us to speculate about the hierarchy of the Bluish-
Orangish neuron population code in Conv2: it is activated when a Red-Cyan neuron
of Conv1 with an edge of 135◦ is highly activated jointly with a high activation of a
Yellow-Blue neuron (also in Conv1) with a 90◦ oriented edge6.

Neuron peculiarities of this layer can be summarized as: more complex surface
features (essentially non color), a more dense hue sampling, reminiscent neurons
from earlier opponent axes and neurons defining a new Blue-Orange axis anticipat-
ing the edges of the dataset bias where color neuron activity will be concentrated
in subsequent layers. Previous conclusions could correlate with the singular in-
termediate role attributed to V2 in biological systems reported in several works
[24, 95, 121, 126].

5.3.6 Deeper layers: Conv3, Conv4 and Conv5

The last three convolutional layers of the architecture consist of color selective
neurons that seem to be highly linked to object shapes. Note that NFs present more
blurred edges of averaged images, since increase of size affects pixel-wise spatial
variability.

In Figs. 5.16, 5.17 and 5.18 we can overview all color selective neurons in these
layers, from Conv3 to Conv5 respectively. Note that even in deeper layers we found
high color selective neurons. Nevertheless, further research is required for a full
understanding of color and shape representation in these layers, although we can
glimpse like 4 main groups of neurons that should be more carefully explored.
First, neurons devoted to specific object shapes with a characteristic color (e.g.
red and brown mushrooms, skin in faces and human bodies, dog faces among
others). Second, neurons activated by homogeneous image areas of specific shapes
simulating surround areas (e.g. sky and grass backgrounds). Third, double color
neurons that can represent colored objects or objects parts on specific colored

6Note that in Conv1 a Blue-Yellow neuron having an oriented edge of 135◦ (with yellow in the
bottom-left and blue in the top-right) was not found. In its absence, the vertical edge neuron is the most
similar.
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Figure 5.16 – Color selective neurons in Conv3 classified regarding to their color properties.

backgrounds (e.g. blue bird in a green surround or ladybugs in green leaves). Fourth,
single color selective neurons whose NF does not identify a specific shape, but
presenting colored regions either as a central blob or as a surround, and with strong
intensity variations. From the observation of these NFs we can also conclude that
scale invariance is represented by multiples neurons representing similar shapes
at different layers (different resolution) or small and large versions of the same
shape within the same layer. In Fig. 5.19 we show the effect of a neuron of each of
these groups when the same shape stimuli has different colored versions. These
modifications are computed by rotating color image pixels on the chromaticity
plane (along hue dimension). Note that these neurons are uniquely selective to a
specific color appearance.

Double color neurons only represent a 2.5% of the three layers. Some of them
present clear opponency in the Blue-Orange or Blue-Brown, but some others (non-
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Figure 5.17 – Color selective neurons in Conv4 classified regarding to their color properties.

opponent) present different combinations devoted to represent green or brown
surrounds jointly with different colored objects (brown, orange, blue or magenta).

Parallelism with biological systems is difficult to be established at this point,
since higher-order visual areas are not as known as V1 and our analysis requires
further research. However, in what follows we report some conclusions in primate
visual systems that can show some similar ideas with previous conclusions, like
linked color-shape or object-surround selectivity.

Multiple areas have been reported to present color selectivity (reviewed by
Conway et al. in [24]). Although deeper visual ares of the human visual system are
not known like in previous areas, some areas seem to combine shape and color
selectivity like V4 and PIT (posterior inferior temporal cortex) while others present
narrowly color and saturation tuning and weak shape selectivity in TE (anterior
IT). Additionally, in an earlier work, Schein et al. in [116] stated that neurons in V4
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Figure 5.18 – Color selective neurons in Conv4 classified regarding to their color properties.
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(a) Red Mushroom neuron in Conv4 (α= 0.53) (b) Sky neuron in Conv3 (α= 0.70)

(c) Ladybug in a green surround neuron in Conv5
(α= 0.91)

(d) Central yellowish blob in Conv3 (α= 0.96)

Figure 5.19 – Activation curve of color selective neurons in deep layers for different versions
of the same image by rotating hues. Maximum activation corresponds to a perfect matching
with the original color of the image patch that maximally activates this neuron. Neuron NF is
framed in blue (top-left).

present high probability to be color selective to a large range of colors and white
surfaces, as well as an unusual spectral property sensitive to surrounds that may
play a role in figure/ground separation. In any case, a detailed study of spatial
selectivity on color artificial neurons could help in putting some more light on
spatio-chromatic behaviors at these higher levels.

Although deeper visual ares of the human visual system are not known like in
previous areas, in V4 and PIT (posterior inferior temporal cortex) color and complex
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shape selectivity has been found [24]. Moreover, [116] stated that neurons in V4 are
selective to large range of colors and white surfaces and also sensitive to surrounds
that may participate in the separation between object and background.

5.4 Conclusions

In this chapter we study how color is encoded by a trained convolutional neural
network. We propose a color selectivity index to characterize the neuron activation
to the presence of a specific color in the input images. This is done by computing a
color selectivity index on all the neurons and, concretelly, we report results on the
VGG-M with five convolutional layers trained for object an object classification task
on the ImageNet dataset by Chatefield et al. After analyzing indexes and observing
the NFs across all the network neurons, we arrived to the following conclusions:

First, a large number of color selective neurons are found through all five layers
of the neuronal architecture, although index is higher in shallow layers and lower
in deeper layers. Color and shape are entangled together at each color selective
neuron in all layers. Moreover, single color neurons represents single color regions
while double color neurons are devoted to color edge detection.

Second, layer Conv1 shows a strong opponent property with three axes and
a clear distinction between color and non color selective neurons. These two
groups also show different spatial properties: low spatial frequency selectivity in
color neurons, and high spatial frequency selectivity in non color neurons. Both
conclusions show a clear correlation with human vision. Single neurons encode all
colors in a primary basis of six basic colors, while double color neurons provoke
the emergence of a color space holding a strong opponency property. This space
is mainly characterized by the Red-Cyan and the Blue-Yellow axes jointly with a
slightly representation of the emerged Green-Magenta axis.

Third, layer Conv2 presents two main particularities: (a) emergence of a new
opponent axis in the same direction of the image dataset bias; and (b) a more
dense sampling of hue of color selective neurons (suggesting some correlation with
hue maps in V2). Additionally, non color selective neurons present more complex
features than the oriented edges and basic gratings of the first layer. But they can
not be seen as object shapes like those in subsequent layers. This layer seems to be
representing surface details beyond its boundaries.

Fourth, layers Conv3, Conv4 and Conv5, all of them present color selective
neurons with similar properties. Neurons are selective to colors mostly within the
dataset bias, that lies on the Blue-Orange (or -Brown) axis plus some extensions
towards Green. Regarding the spatial activation of color neurons, we identified
four main groups of color selective neurons presenting different types of color
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shape interactions: specific object shapes (as dog-faces, mushrooms, human body),
homogeneous surround areas (as sky or green-grass), specific object-surrounds
(blue-bird in grass or ladybug on leave), or generic colored shaped-blobs with strong
intensity contrast. Finally, to mention that scale invariance is represented by using
multiple neurons selective to different scales.
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6 Extending neuron selectivities and other
indexes

The neuron activity is characterized by several factors, such as color or shape of
the intrinsic feature of the neuron. In consequence, the understanding of how
these architectures are encoding features through layers requires to describe the
neuron activity by a large set of properties. In this chapter we deal with this char-
acterization by extending previous color selectivity index to shape or class selec-
tivity and going opening a new research line focused beyond the individual neu-
ron description through starting on jointly analyzing neuron activities of more
than one property.
The grouping of all the selectivities give rise to our NeFesi package, which gather
the information of each neuron and becomes a tool to improve on the under-
standing of the representational capabilities involved in CNNs.

6.1 Introduction

Understanding the neuron activity can be described through the responses of
each neuron to a given specific property. Last chapter was focused on describ-
ing a methodology to quantify the correspondence between the activation of a
neuron with the color property. However, to completely understand the neuron
activity there are more properties that can be analyzed and, therefore, increasing
the comprehension of what kind of properties are learned with these Convolutional
Neural Network techniques. Following with the aim of proposing more selectivity
indexes to describe each neuron activity in this chapter we propose other selectivity
indexes. First, likewise in color, related to the image property but here are focused
to shape selectivities. We define the shape involved in a neuron by its symmetry
selectivity index and its orientation selectivity index. Second, a selectivity index
that corresponds to characterize each neuron in a higher level as it is its relation
with a specific class of the dataset. Let us to remark that this last selectivity index
make sense in those kind of networks that are train to solve the problem of object
recognition in a supervised way.

The extension of selectivity indexes is used to analyze the VGG-M network
designed and trained by Chatefield et al. (see Sec. 4.3.2 for details in the architecture)
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on the ImageNet dataset (introduced before in Sec. 4.3.1). However, like in previous
chapters, our indexes could be applied to other networks following a sequential
scheme. Let us to remark that any of the studied selectivities related to image
properties are introduced as a constraint during the training, so that results emerge
from the nature of the dataset. By the other hand, the training was performed
in order to solve the problem of object recognition and therefore, the CNN tries
to provide a prediction which coincides with the assigned label in the dataset.
Nevertheless, the interest on analyzing the class selectivity falls on figure out if some
of the neurons are specialized to encode features mainly related to a specific class.

Note that most of the approaches dealing with the understanding problem de-
scribes each neuron independently. However, as stated in [68], a fully understanding
of these architectures requires an analysis of the distributed codes. Bringing our
work closer to this idea, we propose to compare neurons regarding their neuron
activity, so that a similarity between neurons can be identified. Moreover, the class
selectivity index can be also used to describe the population code involved to a
definition of a specific class.

This chapter presents shape selectivities in section 6.2 and the class selectivity
index in section 6.3. Our proposal to compute the similarity between neurons is
introduced in section 6.4. Finally, we summarize our proposals in a package called
NeFeSi which group all the selectivities to describe some neuron activities in a
section 6.5. We enclose this chapter with some discussion in section 6.6.

6.2 Shape selectivities

Assuming that each neuron acts as a feature detector by searching its own
encoded visual property on the input image like a template matching, it is obvious
that any neuron is selective to specific shape, so that we can assume that all the
neurons have a direct relation with a particular shape structure. From the mere
observation of the Neuron Features (see Section 4.3) we can conclude that shallower
layers are devoted to simple features such as homogeneous regions, blobs, bars,
edges or textures. However, deeper layers present a higher complexity in terms
of their shape structure. Nevertheless, we pursuit on quantifying two properties
related to shape, the mirror symmetry (Section 6.2.1) and rotation (Section 6.2.2)
using a methodology similar to our proposal for defining color selectivity index (see
Section 5.2.2).
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6.2. Shape selectivities

6.2.1 Symmetry selectivity index

Taking into account that there are a large types of symmetry, let us to specify
that by symmetry selectivity we refer to the capacity of a neuron to encode a visual
property which has a half of its structure as a mirror of the other part. Therefore, a
neuron with a high symmetry selectivity index does not modify its neuron activation
to an image an its mirrored transformation through a symmetry axis. Thus, given
the set of N-scored images {It }t=1:N of the j -th neuron at layer l and the angle θ of
the symmetry axis, we define the θ-symmetry selectivity index as follows:

σl
θ, j =

∑N
t=1 âl

j (φ(It ,θ))∑N
j=1 âl

j (It )
(6.1)

where φ is the function that reflects each of the top-scored images along the
symmetry axis of angle θ. In our experiments we consider four types of θ-symmetry
depending on the angle of this axis : 0◦, 45◦, 90◦ and 0◦. These, are averaged to
obtain an index of a global symmetry selectivity:

σl
j =

1

Nθ

∑
θ

σl
θ, j (6.2)

where Nθ is the number of different symmetry axis defined.
This global symmetry seeks to identify neurons encoding visual features that

are invariant to any symmetry transformation, such as homogeneous, blob or radial
features.

6.2.2 Orientation selectivity index

The generalization achieved with these techniques is partially done through:
(a) using the convolution operation that allows translation invariance of a specific
feature inside the overall input image; and (b) using pooling operations which in-
troduces some local translation invariance. However, we believe that some neurons
allow some degree of invariance to small rotations and we propose to quantify this
degree using an orientation selectivity index. In fact, these degree was shown in
Chapter 5 in Fig. 5.8, where variations in rotation affect to the neuron curve in a
Gaussian shape. The more narrow Gaussian, the more orientation selectivity has the
neuron. In this sense, given the set of N-scored images {It }t=1:N of the j -th neuron
at layer l and the angle θ of the rotation, we define the θ-orientation selectivity
index as:
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(a) Global symmetry selectivity (b) Global orientation selectivity

Figure 6.1 – Percentage of network shape selectivity indexes within different ranges along
the set of convolutional layers. (a) Global symmetry selectivity, and (b) Global orientation
selectivity.

ρl
Θ, j = 1−

∑N
t=1 âl

j (Φ(It ,Θ))∑N
j=1 âl

j (It )
(6.3)

where Φ is the function that rotates each of the top-scored images in Θ degrees.
Thus, a highΘ-orientation selectivity index indicates that the visual feature encoded
by a specific neuron presents a strong alignment with a specific orientation, while a
low index characterize the neuron as allowing some degree of invariance through
a rotation of Θ degrees. Likewise in symmetry selectivity, we also define a global
orientation selectivity by averaging the set of Θ-orientation selectivities:

ρl
j =

1

NΘ

∑
θ

ρl
Θ, j (6.4)

where NΘ is the number of different rotations defined. Note that lower global
orientation selectivity indexes will be achieved when the neuron is insensitive to
most of rotation changes, and therefore, it is another procedure to identify visual
features related to homogeneous regions, centered blobs or centered and radial
structures.

We compute our shape selectivity indexes for all the neurons in the VGG-M. The
distribution of them along the different convolutional layers can be seen in Fig. 6.1,
where the distribution of global symmetry indexes (Fig. 6.1a) and for the global ro-
tation (Fig. 6.1b) are shown. From this plot we see that few of neurons are encoding
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(a) Maximum θ-symmetry selectivity neuron dis-
tribution comparing the selectivity index for θ =
0◦,θ = 45◦,θ = 90◦,θ = 135◦

(b) Vertical symmetry (θ = 90◦) distribution along
layers

Figure 6.2 – Partial symetry distribution. (a) shows the distribution of neurons regarding
which kind of partial symmetry is higher compared to the other partial symmetry indexes.
(b) shows the distribution of the vertical symmetry along layers.

features with a high global symmetry property (most found in Conv3), while a large
number of neurons present a high correlation with a specific orientation. However,
within the different symmetries tested (θ = 0,45,90,135) we found that there are
more neurons that present a higher vertical symmetry (i.e., θ = 90◦) compared with
the remaining, as can be seen in Fig. 6.2a, where we plot the distribution of neurons
regarding their maximum θ-symmetry. Although few neurons present a high global
symmetry index, there exist a high amount of neurons presenting selectivity to
vertical symmetry, as shown in Fig. 6.2b which increase through layers. This can
be correlated with several studies that confirm that vertical symmetry has a clear
advantage in visual perception, compared to the horizontal (reviewed in [43, 139])
and also to differentiate a specific object from the background [87]. In Fig. 6.3
we show some Neuron Features classified regarding their horizontal and vertical
symmetries.

Regarding the orientation, note from Fig. 6.1b shallower layer present higher
global orientation selectivity indexes, which also confirms that deeper neurons
admit higher variability in their features. In Fig. 6.3 we plot several Neuron Features
(top left) with their corresponding set of top-scored images (bottom) for each
neuron example, sorted from less global orientation selectivity (left) to higher global
orientation selectivity (right). Four examples are shown for each convolutional layer
(from Conv1 in the top to Conv5 in the bottom). We can see how neurons with lower
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Figure 6.3 – Examples of Neuron Features classified regrading their horizontal and vertical
symmetry selectivities for each convolutional layer

global orientation selectivity indexes are related to (a) homogeneous regions (see
left example of Conv1), (b) blob regions (left examples of Conv2 or Conv3) or (c)
radial structures (left examples of Conv4 and Conv5). Moreover, neurons presenting
a higher global orientation selectivity index present less variations in their structure,
as can be seen from the set of N-top-scored images.

6.3 Class selectivity index

Previous work has been focused on describing selectivity indexes related to
image properties. Nevertheless, this section translate the selectivity property to
a higher level of abstraction like image labels. The idea has been also recently
proposed in [7], where authors have introduced an approach to quantify the re-
lationship between a neuron and a visual concept based on broadly and dense
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Figure 6.4 – Examples of Neurons, sorted from low to high global orientation selectivity index
from left to right and from early to deeper layers from top to bottom.
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labeled dataset. Therefore, the goal is to define the class selectivity as a property of
a neuron that can help to establish its discriminative power for one specific class
or can allow to cluster neurons accordingly with the ontological properties of their
class labels.

We propose a method to compute a class selectivity index for individual neurons
by compiling the class labels of the images that maximally activate this neuron in a
single descriptor. We define class selectivity from the set of class labels of the N -top
scored images used to build the NF of a specific neuron. To quantify this index we
build the class label distribution of the full set of images. As in the color selectivity
index, we weight the significance of a class label by the relative activation of its
image. Thus, the relative frequency of each class c for a certain neuron is defined as:

H l
c, j =

∑Nc
u âl

j (Iu)∑N
t âl

j (It )
(6.5)

where Nc refers to the number of images, among the N top scored images activating
this neuron, that belong to class c ({Iu}u=1:Nu ⊆ {It }t=1:N ). From now on, we will
refer to vector Hc of a given neuron as the c-selectivity index.

A set of c-selectivity indexes involved in a neuron can be used for measuring the
class intersection index between two different neurons, i.e., a metric to compare
how many classes are shared by these two neurons. We propose to compute this
metric as:

∩l
j1, j2

= |ct |
max(|c j1 |, |c j2 |)

, s.t. H l
ct , ji

≥ th ∀i = 1,2 (6.6)

where c j1 are the classes involved in the j1-th neuron, i.e, the set of ct such that
H l

ct , ji
≥ th (and analogous for the j2-th neuron); and th is a threshold to avoid

classes with a low c-selectivity index.
Given the densities for all the classes, our class selectivity index is defined as

follows:

γl
j =

N −M

N −1
(6.7)

where M is the minimum number of classes that covers a pre-fixed ratio, th, of the
neuron activation. This can be denoted as

∑M
c Hc ≥ th. This threshold allows to

avoid considering class labels with very small activation weights. Jointly with the
index value, the selectivity provides the set of M classes that describe the neuron
selectivity and their corresponding relative frequency values.

Thus, a low class selectivity index indicates a poor contribution of this neuron
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to a single class (minimum is 0 when M = N ), while a high value (maximum is 1)
indicates a strong contribution of this neuron to a single class. In between we can
have different degrees of selectivity to different number of classes. Obviously, this
index is irrelevant for the last fully connected layers in a CNN, but it allows to group
related neurons across different convolutional layers.

Here we want to point out, that this index can also contribute to give some
insights about the problem of how information is coded through layers, in the
debate of localist and distributed neural codes we mentioned before in Sec. 4.3.3
([68]). Neurons with high class selectivity index should be in line with a localist code,
while neurons with low class selectivity index should be part of a distributed code.
The way the index is defined allows a large range of interpretations in between these
two kinds of coding as it has been outlined in the visual coding literature.

Following with the analysis of ranking neurons by their response to a certain
property, here we focus on the proposed selectivity index that relates to image labels
instead of to an image property, is the class selectivity index, which only applies
for classification networks. We report the results of different experiments where
we have fixed th = 1, which means we consider all the class labels for the N = 100
images that maximally activates the neuron. As we mentioned before, this index
can enlighten how classes are encoded through the net layers, that again it can be
related to the scientific problem of how general object recognition is encoded in
the human brain.

Here we hypothesize that the difference between localist or distributed codes
[68] could correlate with the idea of neurons highly selective to a single class and
neurons highly selective to several classes, respectively. We already discussed about
these two concepts in Sec. 4.3.3 where we speculate by relating the shape variability
of each neuron with these terms, i.e., different visual features highly spike a specific
neuron. However, as stated in [68], the interpretation of this terms can be confused.
From another point of view, localist codes can be referred to the relation of the
neuron activation for a given specific object, i.e., a specific class, while distributed
codes are achieved when several neurons are jointly activated, describing, in this
way, the object and differing from another object when, for example, these neuron
configuration presents small changes in some of the neurons (e.g., some of the
neurons highly activated in the first case are disabled and substituted by others for
codifying the second object). In this sense, the debate falls to relate each neuron
activation with the presence (or absence) of a specific object. Taking into account
this new interpretation, let us to make a short parenthesis on the class selectivity
index and go back to the Neuron Feature visualization. In Sec. 4.3.3 we present
a multifaceted NF visualization (and shown in Fig. 4.4) that tries to include the
variability of the neuron taking into account the representation of visual features
involved to the activation of a specific neuron, likewise is pursued in [99]. Here,
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and incorporating the new interpretation of the localist and distributed codes, we
present a new way to visualize the multifaceted NF visualizations by splitting the
N-top scored images regarding the class. Therefore, each facet visualization is
obtained by computing the NF over the subset of images belonging to a specific
class. Following with the same example of the bird-neuron in Conv4, this neuron
presents a high class selectivity index, γ= 0.95 being, therefore, highly related with
different but few classes. Concretely, it is mostly related to the goldfinch (with a
c-selectivity index of H = 0.33) , jay (H = 0.30) and brambling (H = 0.17) classes.
These visualizations are shown in Fig. 6.5 where the discriminative power of the
color to distinguish between these three classes of birds emerged in each NF.

(a) original NF (b) Class Multifaceted representation

Figure 6.5 – NF visualization (a) without considering multifacets, and (b) for each class. Birds
are classified by their type of birds (brambling, jay and goldfish, from left to right). Note that
these classes are distinguished by their inherent color.

Regarding the class selectivity index, in a first experiment we analyze how many
neurons present different degrees of class selectivity through layers. The bars in
Fig. 6.6 plot the relative quantity of neurons that are class selective compared to
those that are not. Grey represents the ratio of neurons that are not activated by a
single class and reddish represent neurons that are highly activated by a single class.
Opposite to what we showed about color selectivity, we found most of class selective
neurons in deeper layers, and no class selectivity in shallow layers, as expected. We
have moved from a very basic image property, color, to a very high level property,
class label. This fact corroborates the idea that CNNs start by defining basic feature
detectors that are shared by most of the classes, and the neurons become more
specialized when they belong to deeper layers representing larger areas in the image
space and therefore more complex shapes. We start to have neurons with relevant
class selectivity in layer Conv3, where 5% of neurons is quite class selective and we
found some neurons with a degree of selective close to 1. These ratios progressively
increase up to layer conv5 where we have more than 50% of neurons with a class

110



6.3. Class selectivity index

Figure 6.6 – Number of neurons and degree of class selectivity through layers. Grayish bars
are for low index values and reddish for high index values.

selectivity index greater than 0.6, that means that we have less than 40 different
classes activating this neuron, which is a very selective ratio considering the number
of classes of the ImageNet dataset. In the same layer, 20% of neurons present a high
class selectivity index, than means less than 20 different classes.

Secondly, we have visualized the properties of a set of images presenting differ-
ent degrees of class selectivity in Fig. 6.7 for different levels of depth. We visualize
each neuron with their NF visualization and the corresponding cropped images.
We also show two tag clouds of each neuron. They visualize the importance of each
class label. With an orange frame we plot the leave classes of the ImageNet ontology,
while in the green frame we plot generic classes. This second analysis could help
finding neurons that are specialized to a general semantic concept that different
final classes share. Note that neurons with high class selectivity index have a set of
cropped images that we can identify as belonging to the same class.

Combining our NF visualization with the NF having a high class selectivity
index of a specific class, we can infer main visual structures that allow an optimal
representation. In Fig. 6.8 we show the NFs of neurons with high bell pepper
selectivity distribution and a sample of the cropped images that highly activates
each of the neurons. This figure shows how bell peppers are codified or seen
through the network describing the variety of elements of the class that allow
its discrimination. We can see the importance of color for this class, there are

111



Chapter 6. Extending neuron selectivities and other indexes

Figure 6.7 – Neurons with different class selectivity indexes. For each neuron two images
(top: NF, bottom: cropped images) and two tag clouds (top: leave classes, bottom: all classes
in the ontology).

neurons selective to a variety of pepper colors (yellowish, reddish or greenish),
additionally we can see the importance of the pepper stem as another discriminative
property, and finally the global shape of the pepper as an elongated colored blob
ending. While in the first two layers we find edges combining different pairs of
colors characterizing boundaries of different colored peppers, in the deepest layers
we find the higher level properties (stems, pepper-shapes and color of peppers)
similarly encoded in all the layers at different scales. Finally we stress the utility of
ranking images by selectivity indexes in Fig. 6.9, where we show interesting neurons
in different convolutional layers that present high values for both selectivity indexes,
neurons which are both, color and class selective.
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Figure 6.8 – Neurons with a high class selectivity to bell pepper class. For each pair we show
the corresponding NF (left) and one of the top cropped images categorized as a bell pepper
that highly activates the neuron (right). Neurons are shown from high class selectivity to less
from left to right.

6.4 Neuron-pair similarity index

The methodology used for describing these set of color, symmetry and rotation
selectivity indexes can be also extended for study neuron features beyond individual
activities and identifying neurons that are learned to encode similar features. Simi-
larly to the work reported in [80] this metric pursuits to compare different neurons
and give a tool to seek for similar or different neurons in the same layer. However, it
can also be extended to compare neurons in two different architectures. For this
purpose, we define the neuron-pair similarity index by comparing the crossed area
under the activation curve between two neurons ( j1-th and j2-th neurons) of a layer
l as follows:

ξl
j1, j2

= 1

2

(∑N
t=1 âl

j1
(I j2

t )∑N
j=1 âl

j1
(I j1

t )
+

∑N
t=1 âl

j2
(I j1

t )∑N
j=1 âl

j2
(I j2

t )

)
(6.8)

where {I j1
t }t=1:N and {I j2

t }t=1:N are the set of N-top scored images the j1-th and
j2-th neurons of a layer l , respectively.
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Figure 6.9 – Examples of neurons with high color and class selectivity indexes.

Our neuron-pair similarity index allows to compare neurons regarding their
neuron activity to same stimuli. Figs. 6.10, 6.11 and 6.12 visualize this similarity
from a neuron in Conv3, Conv4 and Conv5, respectively. The studied neurons are
plotted in the centers of the figures, and the rest of neurons are plotted in circles
depending on their similarity index with the center neuron. Inner circle contains
closest neurons while outer circle contains neurons with less similarity. Note that
closest neurons share concepts with the central neuron: rounded edge or corner
for the neuron shown in Fig. 6.10, blackish-blob mostly related to a car wheel in
Fig. 6.11 or the face shape in Fig. 6.12. The density of each circle also informs about
the discriminative power of the neuron compared with the remaining neurons in
the same layer: the less density in inner circles the more discriminative the neuron
is. By discriminative power we refer to the specialization of its visual feature. In
this sense, the car wheel (Fig. 6.11) or the face (Fig. 6.12) neurons represent specific
features that are not shared with most of neurons, while a rounded edge (Fig. 6.10)
is highly represented with several neurons in Conv3.

Moreover, the set of similarity index computer by all possible neuron pairs
within the same layer can be combined with the t-SNE visualization [134] to plot
a set of neurons in a two-dimensional map where similarities between neurons
are preserved. In this case, we use the opposite similarity index, i.e., we consider
1−ξ to compute the distance between neurons. In Fig. 6.13 we show this mapping
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Figure 6.10 – Similarity between neurons of a neuron in Conv3 representing a rounded edge.
Each neuron is plotted in a circle depending on the similarity index with respect to the central
neuron. Outer circles gather NFs with low similarity index, while inner circles contain the
visualization of similar neurons.

Figure 6.11 – Similarity between neurons of a neuron in Conv4 representing a car wheel.
Each neuron is plotted in a circle depending on the similarity index with respect to the central
neuron. Outer circles gather NFs with low similarity index, while inner circles contain the
visualization of similar neurons.
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Figure 6.12 – Similarity between neurons of a neuron in Conv5 representing a human face.
Each neuron is plotted in a circle depending on the similarity index with respect to the central
neuron. Outer circles gather NFs with low similarity index, while inner circles contain the
visualization of similar neurons.

for the set of neurons in Conv1. Neurons are gathered depending on their color
appearance, orientation and frequency.

6.5 A visualization tool

This thesis has been mainly focused to propose a set of selectivity indexes to
favor on the neuron understanding problem. Each selectivity index is devoted
to describe a property by isolating it from other factors. However, neurons are
spiked by a combination of several properties and gathering all the information
the understanding of each neuron activity is improved. Thus, we group all of
our proposals in a visualization tool called NeFeSi: Neuron Feature and Selectivity
index for CNN visualization, which helps on the understanding of the intermediate
learned features for CNNs that follows a sequential scheme.

In this section, therefore, we include some visualizations that include more
than one selectivity index and tries to highlight the potential of visualizing intrinsic
features encoded by each neuron, as well as the description of the neuron activity
through individual properties for the understanding problem.
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Figure 6.13 – t-SNE visualization of the neurons in Conv1 from the set of similarity indexes.

In Fig. 6.14 we show the highest similar neurons to a specific neuron (query)
to and the most distant neurons. Each studied neuron is shown in the left, while
the other NF plotted in the same row are sorted by their similarity from high to low
similarity index (from left to right). All presented selectivity indexes are described
under each visualization1. Let us to deeply discuss about the examples shown in
this figure in the following lines.

Studied neuron for Conv1 is cleary color-selective (α= 0.99) as well as this prop-
erty is discriminant from its similar neurons. Although query neuron is selective
to red color closest neurons are selective to magenta, since any other neuron in
this layer is devoted to reddish homogeneous regions. Other interesting property
of this neuron (and of the set of similar neurons) is that it is not selective to any
specific orientation. The most distant neuron also accomplishes these properties
(high color selectivity and low orientation selectivity index) but it is representing a
distinct color. Note that red and green color tones have a perfect opponent property
in the Opponent color space.

1In Fig. 6.14 the intersection index is calculate by setting th = 0.95.
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For the case plotted in Conv2, color is contemptible but orientation selectivity
gains relevance. This is inferred not only for the high orientation selectivity shown
by the query neuron (ρ = 0.71) but also for the index of most similar neurons. Due to
the importance of this property for the studied neuron, neurons of the tail present
also a high orientation selectivity but, from their visualization, their orientation is
almost perpendicular to the studied neuron.

The example of the face neuron shown for Conv3 does not present a property
that covers up the rest of the factors, but as much as color, class, orientation and
symmetry selectivities are defining its neuron activity. Closest neurons shares a
color selectivity to a similar color tone and are also related to few of the classes in
the dataset. Concretely, same classes are represented from both studied neuron
and closer neurons, since the class intersection index is high enough.

The remaining examples (neurons of Conv4 and Conv5) present similar proper-
ties. These neurons are mostly characterized by having high class selectivity index
(although the set of classes in which they are related is poorly shared by their closest
neurons, since their class intersection indexes are low) and holding some symmetry
property. Note, specially for the neuron in Conv5, the high global symmetry indexes
jointly with low orientation selectivities for the most similar neurons and the stud-
ied one (ı.e., it is encoding a feature which have a radial symmetry). Most distant
neurons have lost this symmetry property.

The t-SNE visualization shown in Fig. 6.13 provides a mapping where similar
neurons are grouped spatially. However, due to the amount of neurons belonging to
deeper layers, the analysis from this plot can be difficult, as can be seen in Fig. 6.15a
for the case of the Conv4. However, some clusters emerges from this plot: dog faces
in the bottom right, close to human faces; homogeneous regions in the bottom
left; circular edges in the top left; or car wheels in the middle top. Nevertheless,
this visualization can be used to dissect from the neuron population under some
criteria. For example, taking into account the c-class selectivity this visualization
allows to (a) visualize those NF highly involved to codify a feature of the class c, (b)
infer about the population code that uses the network to characterize a specific
class c, and (c) visualize how similar are the neurons involved in this class. The
remaining plots in Fig. 6.15 use this dissection to show the NFs of the neurons
involved for three classes of birds, the brambling (Fig. 6.15b), the jay (Fig. 6.15c)
and the goldfinch(Fig. 6.15d). In the top left corner of each plot we show an image of
the ImageNet dataset belonging to the corresponding class. We have already these
classes in Fig. 6.5 where, from the multifaceted visualization obtained from the type
of classes where each of the N-top scored images belongs, it emerged that color was
a discriminative property to differentiate between these types of birds. In this figure,
common Neuron Features are framed in red. Note that orangish Neuron Features
appear at top right in Fig. 6.15b, while yellowish neurons emerged at the middle
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Figure 6.14 – Description of five neurons of the VGG-M network. The analysis is performed
through the observation of the most similar neurons and from the set of indexes analyzed in
this thesis.First row shows NFs of neurons in Conv1, while last row is devoted to the Conv5.
First column shows the set of neurons we are trying to describe (queries), and the set of NFs
plotted in the right part shows the head and the tail of the sorted neurons regarding their
similarity with the query neuron.
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(a) L11 t-SNE visualization from similarity indexes (b) Neurons with H > 0 for c= brambling

(c) Neurons with H > 0 for c= jay (d) Neurons with H > 0 for c= goldfinch

Figure 6.15 – (a) t-SNE visualization from similarity index for Conv4. (b),(c) and (d) shows the
subset of neurons in Conv4 involved in the brambling, jay and goldfinch birds, respectively.

right in Fig. 6.15d and a white blob surrounded by a blue background comes out at
the bottom left in Fig. 6.15c.

6.6 Conclusions

In this chapter we have extended the description of the neuron activity through
other properties with the aim of providing a general tool improving the understand-
ing of each neuron role.

First, two selectivities are defined to extract properties related to the shape of
the visual feature: the symmetry and the orientation. These global selectivities
are obtained from a set of partial selectivities that are devoted to characterize
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changes on the neuron activity when the set of images that highly spike a specific
neuron suffer a specific symmetry or specific rotation transformation. The analysis
performed in these selectivities concludes that a few of the neurons present a high
global symmetry (i.e., few neurons encodes visual features that are symmetric in
different symmetry axes simultaneously), but within different angles of symmetry
axes, the vertical symmetry is the most preserved in general. In fact, this property
is mostly kept in deeper layers. On the other hand, there are neurons sensitive on
rotation changes in all the layers. However, deeper layers allow some degree of
tolerance in this transformation that favors to the generalization achieved by the
CNN.

Second, and in a higher level of abstraction, we propose to describe the neuron
activity from the relation of a neuron of having a high activation to a stimuli of
a specific class. This property is related to deeper layers, since the number of
class selective neuron increases through layers. Nevertheless, the results show that
CNNs present neurons specialized to some class (or classes) much before the fully
connected layers, even few neurons in early layers present a high class selectivity,
such as the digital clock or the window screen neurons found in Conv3 and Conv2,
respectively. Using this abstracted selectivity, we also speculate about the debate
of localist and distributed codes. Here we suggest that neurons with high class
selectivity index may be closer to a localist code.

This chapter opens a new research line in the understanding problem, moti-
vating to extend the analysis of the neuron activities beyond an individual neuron.
In this sense, it proposes a similarity index that compares the neuron activities of
two neurons. With this description, the discriminative power within a layer of each
neuron can be inferred: the more amount of similar neurons has a specific neuron,
the less discriminative power.

Finally, we enhance the potential of providing selectivities to describe each
neuron activity by isolating several factors and, afterwards, gathering them to
improve and generalize the understanding of a neuron. We enclose the visualization
and understanding proposals of this thesis in a package called NeFeSi, which can
be useful to analyze and provide a general map of the learned features of a trained
CNN.
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7.1 Conclusions

The problem of visual recognition is one of the main problems in computer
vision. It consists on understanding, identifying and recognizing visual properties
from an image. However, it is a difficult task. First, because there exist an infinity
of different objects int the real world, and each one presents a large variability of
appearance regarding the shape, point of view, color and texture, among others.
Second, because it is unknown how to represent the image content in a optimal way.
With the aim of providing an approach able to deal with this problem, the feature
extraction plays a key role.

Taking inspiration from known evidences in early stages of ventral stream of the
primate visual system, the progress on this science is achieved by directly defining
handcraft specific features to decompose image in a high-dimensional space, good
enough for solving a determinate visual task. Most of these processes consisted on a
simple hierarchy based on a single step devoted to feature extraction and combined
with a learning algorithm (named as flat schemes in [71]). However, the feature
extraction is performed in a color space and it is so important to propose a set of
characteristics that is capable to deal with the maximum possible generalization as
well as the color space where these characteristics are represented.

In order to enhance color differences within a channel and favors feature ex-
traction, in the second chapter we propose a new color representation called more-
than-three color coding (MTT) which minimizes the inter-channel correlation of the
color representation and maximizes the local contrast to favor the feature detection
in each channel. However, this representation is adapted to the image content, so
that it allocates a channel to each distinctive color in the image. In general, the
more diversity the image has, the greater number of color channels our represen-
tation has. Other properties of this representation beyond a maximization of the
intra-channel local contrast and a minimization of inter-channel correlation are the
ability to capture image details, the illuminant invariance and the improvement on
the feature detection. These advantages demonstrate to favor the scene recognition
problem, overcoming state-of-the-art results.

In spite of the simplicity of flat schemes, computer vision achieved a promising
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progress on solving tasks such as object recognition or object detector. However,
they presented a lack of generality far away from the capabilities of the visual cortex.
Advances in neuroscience, jointly with the appearance of large datasets and the
computational resources give arise to a new way of developing computer vision
algorithms which follow a deep hierarchy (likewise the type of scheme followed by
the visual cortex) combined with learning algorithms capable to automatically learn
optimal visual features. This new paradigm has been overcoming results on different
visual tasks, specifically with the Convolutional Neural Networks (CNNs) techniques.
Moreover, CNNs have shown capabilities that rival the primate performances [17]
and a suitable framwork to model biological vision [17, 69, 71].

Convolutional Neural Networks are deep architectures that sequentially stack
layers to increase, in this way, the complexity of the encoded visual features. They
are usually built from a composition of convolutional layers, pooling layers and non-
linear layers, which successively produce several image representation changes.
Convolutional layers are composed of a set of neurons, each of them acts as a
feature detector. Therefore, this kind of layers are the main responsible of the
representational changes and the codification the input image is based on the
visual features encoded by each one of the neurons. However, this weights are
successively adapted using an automatic learning process that gives rise to the lack
of understanding of their intermediate representations.

In this thesis we deal to face the problem of the understanding the intermediate
representations. First, a visualization of the intrinsic features encoded by each
neuron is proposed in chapter 6. We label it as Neuron Feature (NF) and it is built
by computing weighted average of the images of the dataset that activate a specific
neuron the most. With this computation we achieve a visualization keeping more
natural properties compared to most of the state-of-the-art approaches. Although
neurons with a high variability of visual features entail blurred NF, most of the
neurons present a meaningful NF visualization. We focused our studies on the
VGG-M trained and designed by Chatefield et al. on the ImageNet dataset [114].
The visualization of its neurons shows that early layers are devoted to simple and
basic features, such as oriented edges, oriented bars, textures or homogeneous
regions. However, deeper layers are specialized to more complex features (e.g, a
human face) or object surround neurons. In addition, a hierarchical composition of
NFs improves the understanding of the neuron activity.

In parallel to the visualization and trying to provide a visualizatin tool (called
NeFeSi: Neuron Feature and Selectivity index) able to automatically describe a
neuron. For this propose we propose a methodology inspired in physiological
techniques to quantify and describe each of the neurons in terms of specific features
through several selectivity indexes and, therefore, allowing to classify neurons of
a trained CNN. These indexes reflect the ability of a neuron to response when a
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specific visual property is introduced as a stimulus. Several selectivity indexes are
proposed related to color, symmetry, orientation and class. The use of these indexes
jointly with the visualization of the NF of the neurons simplifies the description
of the neuron activity and improves the understanding of its activity. In general,
we find that there are color selective neurons in all the layers, while few of the
neurons contains visual features presenting a symmetry simultaneously to different
directions. However, the vertical symmetry is the most preserved and neurons in
deeper layers present higher indexes for this property. On the other hand, oriented
selective neurons are found in all the layers. However, while early layers present
higher indexes of orientation selectivities, class selectivity is more devoted to deeper
neurons.

Finally, in this thesis, color selectivities are deeply studied and it allows to
find some parallelisms with primate visuals system. In Conv1 color edges are
represented through opponent pair of colors with a low frequency, while brightness
neurons present a larger sampling on the frequency that correlates with findings in
V1. Regarding color neurons in Conv2, they cover a higher sampling of the color hue
that can be equated with the hue maps in V2. However, the overall color neurons
present a strong correlation with the Orange-Blue bias of the dataset. Although color
is studied independently from other properties, neurons present a strong color and
shape entanglement in all the layers, moving from simple and basic features in early
layers to object surround neurons in deeper layers.

7.2 Further Perspective

The impressive performance achieved by the new trend of solving computer
vision problems with deep learning techniques such as Convolutional Neural Net-
works awakes the curiosity of how they encode visual information to achieve such
results. As presented in this thesis, describing neurons from their inherent proper-
ties can be an useful approach to understand the representation capabilities of these
architectures. However, this study opens new research lines that we summarize in
the following paragraphs.

A direct research continuation should be focused on defining other neuron
properties, such as to determine the orientation (vertical, horizontal or oblique,
among others) of the presented feature. We develop a global orientation selectivity
index which only characterize the neuron in terms of how sensitive it is to small
changes on rotation of a given stimulus. Therefore, we suggest to evolve our index
to concrete the orientation of the intrinsic feature. In addition, we encourage to
define other factors that may be involved in the encoded features like frequency
selectivity or selectivities to simple features like bars, edges, circles or corners.
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From a engineer computer vision point of view, the presented approach can be
extended to improve trained architectures. Since the computational cost of training
a CNN from scratch is expensive, there is a new trend of fine-tuning trained CNN to
be adapted into a new vision problem. A practical alternative may be to figure out
which properties directly affect to the performance on the visual task and address
the fine tuning just to the subset of neurons that do not present these factors; or
even include some restrictions to guide on the learning step on codifying neurons
holding such interesting properties.

From a scientific point of view, this thesis recover the open debate of the ex-
istence of localist and distributed codes[68] in visual perception. In this sense,
we rise the need of adapting understanding techniques to analyze interactions
between neurons and expand the analysis beyond individual neuron descriptions.
In this line, our similarity index can be used to detect when two similar neurons
present different activations on a given stimulus and figure out which feature are
they codifying in this situation.

Finally, assuming that these neurons have shown to model biological vision[17,
69, 71] and that they show important representational capabilities compared to the
primates vision [17], in further studies could emerge other parallelisms with the
HVS that can be interesting for both computer vision and biological areas.

7.3 Scientific Articles

7.3.1 Abstracts

• Ivet Rafegas and Maria Vanrell. Colour Visual Coding in trained Deep Neural
Networks. European Conference on Visual Perception (ECVP). Barcelona.
2016.

7.3.2 Journals

• Ivet Rafegas, Javier Vazquez-Corral, Robert Benavente, Maria Vanrell and
Susana Alvarez. Enhancing spatio-chromatic representation with more-
than-three color coding for image description. Journal of the Optical Society
of America A (JOSA). 34 (5). 827–837. 2017.

• Ivet Rafegas and Maria Vanrell. Color encoding on biologically-inspired
convolutional neural networks. Special Issue on Color: cone Opponency and
Beyond. Vision Research. 2017. Under review.
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7.3.3 International Conferences and Workshops

• Ivet Rafegas and Maria Vanrell. Color spaces emerging from deep convo-
lutional networks. Color and Imaging Conference (CIC). (1). 225-230. San
Diego. 2016. Award for the best interactive session.

• Ivet Rafegas and Maria Vanrell. Color representation in CNNs: parallelisms
with biological vision. ICCV Workshop on Mutual Benefits of Cognitive and
Computer Vision (MBCC). Venice. 2017
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