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Summary

In the computational finance world both derivatives pricing and risk management have at-
tracted lots of interest amongst practitioners and academia. This PhD thesis aims to provide
wavelets based techniques to enhance some of the methodologies used in the mentioned ar-
eas. Wavelets are families of functions that can be arbitrarily translated and dilated in order
to generate orthogonal basis of L?(R). In relation to them, a collection of Fourier inversion
methods has emerged; they are based on the approximation of functions by projecting on
the wavelets basis such that the coefficients of the expansion are expressed by means of the
Fourier transform of the function to approximate.

The SWIFT (Shannon wavelet inverse Fourier technique) method for pricing European-
style options on one underlying asset was recently published and presented as an accurate,
robust and highly efficient technique based on Shannon wavelets. One of the achievements
of the thesis is the extension of the method to higher dimensions by pricing exotic option
contracts, called rainbow options, whose payoff depends on multiple assets. The multidi-
mensional extension inherits the properties of the one-dimensional method, being the expo-
nential convergence one of them. Thanks to the nature of local Shannon wavelets basis, we
do not need to rely on a-priori truncation of the integration range, we have an error bound
estimate and we use fast Fourier transform (FFT) algorithms to speed up computations. We
test the method for several examples comparing it with state-of-the-art methods found in the
literature.

When managing the risk, regulators measure the risk exposure of a financial institution
to determine the amount of capital that the institution must hold as a buffer against unex-
pected losses. The Basel Committee on Banking Supervision (BCBS) is the committee of the
world’s bank regulators. BCBS has recently set out the revised standards for minimum capi-
tal requirements for market risk, it has focused, among other things, on the two key areas of
moving risk measures from Value-at-Risk (VaR) to Expected Shortfall (ES) and considering a
comprehensive incorporation of the risk of market illiquidity. Another goal of this thesis is the
presentation of a novel numerical method based on SWIFT to compute the VaR and ES of a
given portfolio within the stochastic holding period framework to take into account liquidity
issues. Two approaches are considered: the delta-gamma approximation, for modelling the
change in value of the portfolio as a quadratic approximation of the change in value of the risk
factors, and some of the state-of-the-art stochastic processes for driving the dynamics of the
log-value change of the portfolio like the Merton jump-diffusion model and the Kou model.

Credit risk is the risk of losses from the obligor’s failure to honour the contractual agree-
ments and it is usually the main source of risk in a commercial bank. In this thesis, we also
investigate the challenging problem of estimating credit risk measures of portfolios with ex-
posure concentration under the multi-factor Gaussian and multi-factor #-copula models. It is
well-known that Monte Carlo (MC) methods are highly demanding from the computational
point of view in these situations. To overcome this issue, we present efficient and robust nu-
merical techniques based on the Haar wavelets theory for recovering the cumulative distribu-
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X SUMMARY

tion function of the loss variable from its characteristic function. The analysis of the approx-
imation error and the results obtained in the numerical experiments section show a reliable
and useful machinery for credit risk capital measurement purposes in line with Pillar II of the
Basel Accords.



Resum (Catalan summary)

En el mén de les finances computacionals, tant els preus de derivats com la gesti6 de riscos
han atret molt d’interés entre els professionals i 'academia. Aquesta tesi pretén proporcio-
nar tecniques basades en ondetes a fi de millorar algunes de les metodologies utilitzades en
aquestes arees. Les ondetes s6n families de funcions que es poden traslladar i dilatar arbi-
trariament generant bases ortogonals de L?(R). En relacié amb elles, ha sorgit una col-leccié
de metodes d’'inversi6 de Fourier que es basen en "aproximaci6 de funcions a partir de la
projecci6 en la base d’ondetes, de tal manera que els coeficients de 1'expansié s’expressen
mitjancant la transformada de Fourier de la funcié a aproximar.

El metode SWIFT (Shannon wavelet inverse Fourier technique) per valorar opcions d’estil
europeu en un subjacent s’ha publicat i presentat recentment com una teécnica precisa, ro-
busta i altament eficient basada en les ondetes de Shannon. Motivats per la valoracié d'un
tipus d’opcions exotiques anomenades opcions arc iris, que depenen de diversos actius, un
dels objectius de la tesi és I'extensié multidimensional del metode SWIFT. Aquesta extensi6é
hereta les propietats del metode unidimensional i la convergencia exponencial n'és una. Gra-
cies a la naturalesa de les ondetes de Shannon, no és necessari un truncament a priori del
rang d’integracid, tenim una estimacié de I’error i fem s d’algorismes de la transformada ra-
pida de Fourier per accelerar els calculs. El meétode es prova a partir de diversos exemples
comparant-lo amb meétodes recents en la literatura.

En 'ambit de gesti6 de risc, s6n els reguladors els que s’encarreguen de determinar la
quantitat de capital que les entitats financeres han de guardar per estar preparades per su-
portar pérdues inesperades. Es 'anomenat comité de Basilea el que s’encarrega dels regula-
dors bancaris mundials. Recentment, el comite ha revisat els estandards establerts pel capital
minim per risc de mercat i, entre altres canvis, suggereix d’'una banda moure I'estes us de la
mesura de risc VaR cap a la mesura ES, i I'altra banda, considerar la incorporaci6 del risc de-
rivat a causa de la no-liquiditat del mercat. Es per aixd, que un segon objectiu de la tesi és
presentar un nou metode numeric basat en SWIFT per als calculs del VaR (Value-at-Risk) i
I'ES (Expected Shortfall) tenint en compte un horitzé de temps estocastic per tenir en compte
els problemes de liquiditat del mercat. Es consideren dos enfocaments diferents: I’aproxima-
ci6 delta-gamma que aproxima quadraticament el valor de la cartera en el canvi de valor dels
factors de risc, i també I'aproximaci6 del valor logaritmic de la cartera a partir de processos
estocastics coneguts com ara el Merton o el Kou.

Elrisc de credit és el risc de pérdues per part del deutor en cas que no compleixi els acords
i en general és la principal font de risc en un banc comercial. En aquesta tesi, investiguem el
problema de calcular les mesures de risc de crédit de les carteres sota els models multifacto-
rials Gaussians i de ¢-copula. Es ben sabut que els métodes de Montecarlo, que sén els que
generalment s’empren, sé6n molt exigents des del punt de vista computacional en aquestes si-
tuacions. Per millorar aquests problemes, a la tesi presentem tecniques numeriques eficients
i robustes basades en les ondetes de Haar per recuperar la funcié de distribucié acumulada
de la variable de pérdues a partir de la seva funci6 caracteristica. Lanalisi de I'error i els resul-
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tats obtinguts en I'apartat d’experiments numeérics mostren una maquinaria fiable i util per
al mesurament de capital de risc de credit d’acord amb el Pilar II dels Acords de Basilea.
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CHAPTER 1

Introduction

Computational finance [27] is a cross-disciplinary field between financial mathematics and
numerical analysis. It deals with problems of practical interest in finance such as trading,
hedging and investment decisions, as well as facilitating the risk management of those de-
cisions. Areas where computational finance techniques are employed include: investment
banking, corporate strategic planning, securities trading, financial risk management, deriva-
tives trading, and investment management. Over the last 20 years, the field of computational
finance has expanded into virtually every area of finance. Not only has the demand for prac-
titioners grown dramatically, but also many specialized companies have grown up to supply
computational finance software and services.

In this thesis, we focus our efforts in two applications of computational finance: deriva-
tives pricing (specifically option pricing) and risk management (concretely market risk and
credit risk). Both areas arouse interest amongst practitioners and academia alike. The reason
is that while they are essential for the good functioning of the financial sector, both areas are
so challenging that there is still a lot of room for innovation and improvement; and the math-
ematics and computational challenges behind them attracts the interest of many academics.

OPTION PRICING

In finance, a derivative is essentially an instrument whose value depends on the values of
others, called underlying assets. They serve several purposes, their main one is to allow the
banks to hedge risks from some investment. This is, it allows financial institutions to keep the
losses bounded in case some investment goes wrong. The main types of derivative contracts
seen within financial markets include forward contracts, futures, swaps and options; see [42]
for a complete description of the instruments. The type of derivative we focus on in this thesis
are options, which are a type of contracts that give the holder the right, but not the obligation
to exercise the contract. There are two types of options: a call option, which gives the holder
the right to buy the underlying asset by a certain date for a certain price, and a put option,
which gives the holder the right to sell the underlying asset by a certain date for a certain
price. Depending on when they can be exercised we find, for example, European options,
which can be exercised only on the expiration date itself; or American options, which can be
exercised at any point before their expiration date. These options are usually referred as plain
vanilla options, since they are the most basic or standard version of a financial instrument.
On the opposite side, we find the options we refer to as exotic options. Those options have
a much more complicated structure than the standard vanilla options and may depend on
more variables than just the price of a stock or have some extra conditions concerning under
which circumstances the investor will receive a certain payoff. In this work, we focus on a
class of exotic options namely the multidimensional options, also called multicolour rainbow



2 1. INTRODUCTION

options, whose payoff depends on multiple assets.

For any financial player trading in options, it is essential to understand how to price them.
However, option pricing meaning to be able to calculate the right value of the option (or the
fair price of the contract) before maturity, is one of the big challenges in the financial world.

In 1973, Black and Scholes published a paper [10] providing a model for valuing Euro-
pean options. This is considered the starting point of option pricing theory which since then
has become a main area of mathematical finance and experienced a huge development. The
Black-Scholes (BS) model is stated under certain assumptions such as the option must be Eu-
ropean, risk-free rate and volatility of the underlying are known and constant, and returns
on the underlying asset follows a Geometric Brownian Motion (GBM) dynamics. In the BS
model, the price of the option is obtained as the solution of a partial differential equation
(PDE) that defines the evolution of the option price over time. The solution of this PDE can
alternatively be written as a conditional expectation by means of the Feynman-Kac theorem,
originally from [44]. This theorem shows that the conditional expectation of the value of a
contract payoff function under the risk-neutral measure is equivalent to the solution of a par-
tial differential equation and under the previous assumption, this partial differential equation
is the BS model and hence provides us with a closed formula for its solution.

However, the analytical formula for an option price is generally unavailable. Hence, there
is a need to develop numerical methods to approximate their prices and develop efficient al-
gorithms to implement them, so that they provide useful information in a market that changes
rapidly. The existing numerical methods for option pricing can be classified into three major
groups: Monte Carlo (MC) simulation [13], partial-(integro) differential equation (PIDE or
PDE) methods [43], and Fourier inversion methods [41]. The main advantage of Monte Carlo
simulation is that complex and exotic derivatives can be treated easily, furthermore, options
on several assets can also be handled straightforwardly, nevertheless, the main drawback of
the method is the computational cost. Alternative PIDE methods consist in deriving and then
solving numerically the partial integro-differential equation, the advantage of these methods
is that complex and exotic payoffs can be treated easily; the limitations are the slower speed in
comparison to inversion methods. Another choice of methods, which are the ones we use in
the thesis, are the Fourier inversion techniques. As previously mentioned, from the numerical
pricing partial differential equation, the corresponding solution can also be found by means
of the Feynman-Kac formula as a discounted expectation of the option value at final time, the
called risk neutral valuation formula. This class of methods is known for its computational ef-
ficiency; however, they rely on the assumption that the characteristic function of the process
is known in order to recover the probability density function inside the risk neutral valuation
formula, and unfortunately it is not always available.

RISK MANAGEMENT
Banks, brokers, portfolio managers and even the entire financial industry are exposed to risks
on a daily basis. Due to this fact and especially since the financial crisis, the importance of
risk management has increased rapidly. The fundamentals of risk management are not to
completely eliminate risks, but to manage them accordingly. As financial markets grow, there
is an increasing need to manage risks appropriately. In [57], concepts, techniques and tools
for quantitative risk management are presented.

We can distinguish between three risk categories, the boundaries of which are not always
clearly defined, nor do they form an exhaustive list of the full range of possible risks affecting



a financial institution. In banking, one of the categories is market risk, the risk of a change
in the value of a financial position due to changes in the value of the underlying component
on which that position depends, such as stock and bond prices, exchange rates, commodity
prices and so on. Another important category of risk is credit risk, the risk of not receiving
promised repayments on outstanding investments such as loans and bonds, because of the
default of the borrower. A further risk category that has received a lot of recent attention
is operational risk, the risk of losses resulting from inadequate or failed internal processes,
people and systems, or from external events.

A regulator measures the risk exposure of a financial institution in order to determine the
amount of capital that the institution has to hold as a buffer against unexpected losses. The
Basel Committee on Banking Supervision (BCBS) is a committee of the world’s bank regula-
tors that meets regularly in Basel, Switzerland; see [5-8] for some of its statements on market
risk. In 1988, the committee published what has become known as Basel I: this is an agree-
ment between the regulators on how the capital a bank is required on hold for credit risk
should be calculated. Later, the Basel Committee published the 1996 Amendment which was
implemented in 1998 and required banks to hold capital for market risk as well as credit risk.
That Amendment calculates capital for the trading book using the Value-at-Risk (VaR) mea-
sure with a horizon of 10 days and a confidence level of 99%. Basel I has been followed by
Basel II, Basel I1.5, and Basel III. Basel II, which was generally implemented in 2007, uses VaR
with a one-year time horizon and a 99.99% confidence level for calculating capital for credit
risk and operational risk. Basel I1.5, implemented in 2012, revised the way market risk capital
is calculated (stressed VaR is introduced). Basel III is increasing the amount of capital that
banks are required to hold and the proportion of that capital that must be equity. In May
2012, the Basel committee issued a discussion paper indicating that it is considering switch-
ing from VaR to Expected Shortfall for market risk. It has also focused on a comprehensive
incorporation of the risk of market illiquidity. Introducing either stochastic volatility assump-
tions or stochastic jump processes into modelling of risk factors will help to overcome these
shortcomings. Another message of paramount importance is that the time it takes to liqui-
date a risk position varies, depending on its transactions costs, the size of the risk position in
the market, the trade execution strategy and market conditions; some studies suggest that, for
some portfolios, this aspect of liquidity risk could also be addressed by extending the VaR risk
measurement horizon.

In this thesis, we focus specifically on two of the categories of risk: market risk and credit
risk.

Market risk refers to the sensitivity of an asset or portfolio to overall market price move-
ments such as interest rates, inflation, equities, currency and property. While market risk
cannot be completely removed by diversification, it can be reduced by hedging. See [26] for
a great coverage of the topic. As it is standard in practice, the value of the portfolio is mod-
elled as a function of time and a multidimensional vector of risk factors. Depending on the
model, different risk factors may be used, some common ones are logarithmic prices of fi-
nancial assets, yields and logarithmic exchange rates. A well-known method for measuring
market risk is the delta-gamma approximation [60], which assumes that the change in value
of the portfolio is a quadratic function of the change in value of the risk factors.

Value-at-Risk, developed in JP Morgan [62] in the market risk framework, is a commonly
used measure of risk. VaR calculates an expected loss amount that may not be exceeded at
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a specified confidence interval over a given holding period, assuming normal market condi-
tions. In plain words, this can be interpreted as the higher the portfolio’s VaR, the greater the
possible losses that the portfolio may suffer, so its exposure to market risks is higher. There
are commonly used methodologies to calculate VaR in the market risk framework. One of the
early methods is historical simulation, see [49], which calculates VaR from a distribution of
historical returns. It can only reflect asset sensitivities to events captured in the time hori-
zon used, but it is easy to calculate and understand. The parametric approach (also known
as Variance/Covariance), see [56], calculates VaR typically assuming that returns are normally
distributed and estimates it directly from the standard deviation of the portfolio returns; the
strengths of this method are the simplicity of the calculations and the fact that the data for the
inputs is very easy to obtain, nevertheless, the assumption of normality is the biggest weak-
ness of the method since it usually does not correspond with the reality. Monte Carlo simula-
tion [35] can calculate VaR from a distribution constructed from random outcomes. It is very
computationally intensive since thousands of scenarios need to be run for each constituent
asset in order to get an accurate solution. Nevertheless, if the assets are modelled accurately,
which is not an easy task, they would give the most accurate measure.

Whilst VaR remains an important metric for measuring market risk exposure, there are
limitations with this measure. VaR is an attractive measure because it is easy to understand.
However, it is not a coherent risk measure, as defined in [4], since it fails the sub-additivity
condition. Which means that it does not take into account the benefits of diversification.
Moreover, it does not give an indication about the severity of losses beyond the computed
quantile. Regulators are increasingly recommending a broader range of risk metrics to evalu-
ate risk exposure. There are other risk metrics which can give a more in-depth understanding
of a situation of the portfolio. For example, a measure that deals with those problems is Ex-
pected Shortfall (ES), presented in [4], also known as conditional VaR or tail loss. It averages
all the expected losses greater than VaR; if VaR is calculated at a 99% confidence level, ES av-
erages the worst 1% expected losses, thus ES is very useful where there is a high exposure to
derivatives as the distribution may be highly skewed. ES is computationally very involved and
methods used for its computations are the same as the ones presented for the VaR. Both VaR
and ES are risk measures dependent on two parameters: the confidence level and the risk
horizon.

Credit risk is the risk of losses from the obligor’s failure to honour the contractual agree-
ments. It is usually the main source of risk in a commercial bank. See [11] as a good reference
on the area. When computing credit risk, it is usual to fix a time horizon, and to consider
a credit portfolio consisting of a set of obligors. Every obligor is then characterized by three
parameters: the exposure at default, the loss given default and the probability of default. The
loss function of the portfolio is defined as the sum of individual credit losses. And the individ-
ual credit loss is the product of the exposure at default by the loss given default by a default
indicator. To evaluate the portfolio loss distribution, a key issue is to model the various de-
pendence effects, common practice is to use a so-called factor model of asset correlations. A
popular example of this model is the Vasicek one-factor Gaussian copula model (it forms the
basis of the Basel II approach), also its multi-factor version which accounts for sector con-
centration, or different copula models like the t-copula, which is capable of introducing tail
dependence in credit portfolios. Credit risk management is computed by means of risk mea-
sures of the loss distribution, using for example the respective VaR and ES of credit portfolios.
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WAVELETS

As already mentioned, Fourier inversion methods are a possible approach for both option
pricing and risk management. Carr and Madan [15] popularized these kind of techniques. In-
spired by their method, extensive research in the Fourier domain has emerged. Fourier meth-
ods depend on the availability of an expression for the characteristic function of the stochastic
processes modelling the underlying assets, but if the characteristic function is available, they
are generally the fastest methods amongst finite difference and Monte Carlo methods.

A state-of-the-art Fourier pricing method is the COS method of [28]. It is a fast method
based on a cosine expansion of the probability density function firstly used for European op-
tion pricing. A full range of extensions of the method can be found: a two-dimensional exten-
sion [74], Asian options pricing [83], pricing early-exercise and discrete barrier options [29] to
name just a few.

The first method that used wavelet expansions in this field was the WA (wavelet approxi-
mation) method [54], where Haar wavelets were used to recover the distribution function of
credit risk losses and compute risk measures. More works related with Haar wavelets (also
with B-splines) are [64], in the credit risk area [63], in market risk [66] and in the option valu-
ation framework [46, 47, 65].

Shannon wavelets, which are based on the cardinal sine (sinc) function have also been
used in the Fourier inversion context, which resulted in the method known as SWIFT (Shan-
non wavelet inverse Fourier technique) [67]. The SWIFT method has been used in option
pricing showing great results in terms of accuracy and speed. Extensions of the method have
been done for pricing early-exercise and discrete barrier options in [51], for Asian options in
[82], and some other covered in this thesis.

Let us clarify what wavelets are. Important books devoted to wavelets are [12, 19, 25, 50].
In a rough sense, a wavelet is a function that looks like a wave, travels for one or more periods
and is non-zero only over a finite interval instead of propagating forever the way sines and
cosines do. Overall, they are functions that can be arbitrarily translated and dilated in order
to generate basis. Wavelets theory can be seen as an extension of Fourier analysis in the sense
that they both aim to represent complicated functions using sums of simple ones. Although
wavelets were already used implicitly in mathematics, they were only given the status of a
consolidated scientific field around three decades ago. Up until today, their most important
contribution has been made in signal processing, an area with applications that range from
image compression to the detection of gravitational waves, passing through improving the
quality of medical imaging. However, plenty of other areas can benefit from them, amongst
them financial computing in which they have become a very active area of research.

Given a family of wavelets, we have that they form an orthonormal basis of L%(R), thus
functions in this space can be approximated in the wavelets basis. More efficient computa-
tions can be made in the special case in which the scaled and shifted wavelets form a mul-
tiresolution analysis (MRA), it is based on the existence of a family of subspaces of L%(R) sat-
isfying certain properties, which is called MRA. Previously mentioned wavelet methods, WA
and SWIFT come from wavelets that form an MRA.

1.1. OBJECTIVES
This thesis tackles three different topics in the computational finance field approached from
a common point of view: the use of wavelets to implement Fourier inversion methods. The
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different goals that have been pursued throughout this thesis are the following ones, exposed
chronologically in accordance as how they appear in the memory.

One idea we had in mind was the use of a different wavelet family instead of Haar and
Shannon. The main feature of Haar wavelets is their compact support; in contrast, Shan-
non wavelets are characterized by their continuity. For this reason, Haar is really appropriate
to approximate piecewise continuous functions and Shannon for continuous densities. We
thought about exploring Chebyshev wavelets [3] as basis for the inversion methods; note that
Chebyshev wavelets definition comes straight forward from the Chebyshev polynomials. Re-
gardless their shape, we thought about these wavelets because of the notably relation with
the COS method: if the COS method is the cosine expansion of a function f(x), this expan-
sion matches the Chebyshev series expansion of f(cos(?)), see [28]. To this end, we try to work
with an inversion Fourier method based on Chebyshev wavelets in option pricing.

Another focus of the research is on the extensions of the applications of the SWIFT method
in the financial area. One of the targets consists of extending the Shannon wavelets Fourier
inversion methods for pricing a class of multidimensional exotic options, namely multi-asset
options. Analytical formulae to price multi-asset derivatives are only available for the simplest
cases and hence numerical solutions are necessary. However, numerical approximations are
very expensive to obtain, despite the efforts in the financial community to come up with opti-
mal methods. Some examples of multidimensional options are exotic option contracts called
multicolour rainbow options whose payoff depends on multiple assets. One well-developed
multidimensional Fourier-based method is the multidimensional COS method presented in
[74] and called 2D-COS when the dimension is two. However, it may exhibit problems in
the vicinity of the integration boundaries because of the periodic behaviour of cosines. In
the one-dimensional case, local wavelets bases overcome some of the problems of the well-
known one-dimensional COS method [28]. We aim to extend the one-dimensional SWIFT
method to a higher dimension to be able to price European-style financial contracts with a
payoff depending on more than one asset. Providing an error analysis which facilitates the
choice of the parameters of the new method and enhance the overall speed with an FFT algo-
rithm.

A further application to consider for the SWIFT method is in the market risk area. The goal
is to present efficient and robust numerical techniques to address the computation of the VaR
and ES risk measures of a market portfolio. Moreover, following the idea introduced in [14],
we consider that the holding period follows a certain positive stochastic process to account
for liquidity risk. We also try to go a step further than [14] by considering more realistic mod-
els for the log-value of the portfolio. On the one hand, we propose the use of the delta-gamma
approach [60], where it is assumed that the change in portfolio value is a quadratic function
of the changes in the risk factors. On the other hand, we consider the Merton jump diffusion
(MJD) model [58] and the Kou model [48] to drive the log-return on the portfolio value. Under
any of these scenarios, the closed formulae to compute the risk measures within the Gaussian
setting in [14] are not available any more. However, the characteristic function of the change
in (log-)value of the portfolio is known in closed form for most of the interesting processes in
finance, in particular for the two models mentioned above. We therefore recover the density
function from its Fourier transform and then we calculate the VaR and the ES values. Among
the methods available in the literature for Fourier inversion, we choose the SWIFT method
because an important feature of the present method is that the scale of approximation is es-
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timated a priori by means of the characteristic function, and this makes this method really
convenient in practice, as opposed to the numerical methods presented in [66] in which the
number of terms has to be obtained by trial and error.

Finally, we consider the application of wavelets methods in the credit risk problem. As
previously stated, Haar wavelets have already been used in this area in [54, 63]. However,
they are only used under the one-factor Heston model, which forms the basis of the Basel I
approach. Our objective here is to investigate the challenging problem of estimating credit
risk measures of portfolios with exposure concentration under the multi-factor Gaussian and
multi-factor ¢-copula models. We point out the study of multi-factor models because they can
account for sector concentration and also ¢-copula models because provide better empirical
fit to the observed data. To the best of our knowledge, this is the first time that multi-factor
t-copula models are considered outside the MC framework. We desire to develop numerical
techniques to contribute to the efficient measurement of VaR and ES values for small or big
portfolios in the presence of exposure concentration under high-dimensional models. It is
worth remarking that small and/or concentrated portfolios are particularly challenging cases,
since asymptotic methods usually work out well for large and diversified portfolios. We aim
to estimate the risk measures in a procedure composed of two main parts. The first part is the
numerical computation of the characteristic function associated to the portfolio loss variable.
The second part of the procedure consists of a Fourier inversion to recover its cumulative dis-
tribution function. For this purpose, we thought about using WA method and also SWIFT, but
because of the shape of the wavelet we expect to see a better performance with WA because
here the functions to approximate are piecewise constant.

1.2. OUTLINE

The thesis is organized as follows. Chapter 2 provides mathematical background that will be
used later. It contains a brief introduction into functional analysis on which wavelets theory
is based; then, we present Fourier analysis which is closely related to wavelets; and finally,
wavelet theory itself. Three wavelet families are introduced: Haar, Shannon and Chebyshev.
Finally, inversion methods based on these types of wavelets are stated.

With all the mathematical and wavelet background discussed, Chapters 3, 4 and 5 form
the core of the thesis. In these three chapters, new applications of the wavelet inversion meth-
ods are presented.

In Chapter 3, we introduce the option pricing topic and discuss three wavelet European
option pricing methods based on Haar, Shannon and Chebyshev wavelets. The main section
of the chapter is Section 3.3 in which two-dimensional SWIFT for option pricing is introduced:
first the multi-dimensional wavelet framework is presented, then the 2D-SWIFT pricing for-
mula derivation with a rigorous study of the error analysis of the method, and a full set of
numerical examples to show its strengths in comparison with 2D-COS.

Chapter 4 is devoted to market risk. It starts discussing the basics in risk measurement
such as the risk measures VaR and ES. The key section in the chapter, Section 4.3, is devoted
to explaining the methodology to calculate the VaR and ES risk measures by SWIFT. It includes
a complete error analysis as well as the way to select the parameters to control the numerical
method, and a wide variety of examples.

Credit risk is addressed in Chapter 5. It starts with the formulation of the credit portfolio
losses problem as well as the description of the Gaussian and ¢-copula models for dependence
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among obligors. Then, the derivations of the characteristic functions for all the models are
presented with their efficient evaluation. It tackles the computations of VaR and ES using WA
and some numerical examples to support the efficiency of the method are presented.

Finally, in Chapter 6 we draw conclusions and results on the whole thesis. Moreover, we
give some recommendations for future research.



CHAPTER 2

Wavelet Theory

This chapter aims to provide the reader with the necessary mathematical background so that
the thesis is self-contained.

Here, we introduce the basic theory related to wavelets. We start with a brief introduction of
basic concepts, mainly of functional analysis on which wavelets theory is based on; then we
present Fourier analysis which is closely related to wavelets; and finally, wavelet theory itself.

This chapter is mainly based on the books [12], [19], [25], [50], [72], [73], and [80].

2.1. INTRODUCTION

Wavelets theory can be seen as an extension of Fourier analysis in the sense that they both
aim to represent complicated functions using sum of simple ones, although wavelet theory
appeared much later than Fourier analysis. In the thesis, we combine tools provided by these
two areas. Let us present first a brief introduction of their history and relevance.

Fourier analysis was introduced by Joseph Fourier in the early 19th century as a mean to
study the heat equation. Since then, it has become a main topic both in pure mathematics,
leading to the development of harmonic analysis which is a main field in mathematics, and in
applications including physics, signal processing, optics and several more. The main tools of
Fourier Analysis are the Fourier transform and the Fourier series, which are introduced later.
The relevance of these tools in numerous areas of technology and science comes from the fact
that they provide convenient formulae to express and approximate the complicated functions
that they often encounter.

On the other hand, the development of wavelets has been much more recent. Although
wavelets were already used implicitly in mathematics, physics, signal processing and numer-
ical analysis, they were only given the status of a consolidated scientific field around three
decades ago. Since then, their importance has increased to the point that one of the fathers
of the theory, Yves Meyer, was awarded the Abel price in 2017 (more details in [33]). Wavelets
attracted considerable interest from the mathematical community and from members of sev-
eral disciplines in which they had promising applications. The reason being that, they are very
interesting mathematical objects while being relatively simple to apply to different areas. Up
until today, their most important contribution has been made in signal processing, an area
with applications that range from image compression to the detection of gravitational waves,
passing through improving the quality of medical imaging. However, plenty of other areas
can benefit from them, amongst them financial computing in which they have become a very
active area of research.

Wavelet analysis and classical Fourier analysis can be thought as brothers in any field of
interest. In the Fourier case the target is to measure the local frequency content of a signal,
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while in the wavelet case one is comparing several magnifications of a signal with distinct
resolutions. The building blocks of Fourier analysis are sines and cosines (waves). In wavelet
analysis, the blocks are the wavelets, which are no longer just sinusoidal functions; instead
they are functions that can be arbitrarily translated and dilated in order to generate bases.
Analogous to Fourier analysis, there are also two important mathematical entities in wavelet
analysis: the integral wavelet transform and the wavelet series.

This second chapter of the thesis intents to be an introduction to the topic we work with
during the whole thesis development: wavelet inversion methods. We start defining Hilbert
spaces and we show the formula that we can use to approximate any function in these spaces
using orthonormal bases. After that, we move to Fourier analysis. We show that Fourier se-
ries can approximate any function in an appropriate Hilbert space since the functions used
in the Fourier series expansions form an orthonormal basis of this space. We also introduce
the Fourier transform and its discrete version, which are very relevant for the methodology
we use in the thesis. In this section, the fast Fourier transform (FFT) is also introduced,
which is an algorithm used in our methods in order to accelerate the calculations. Then,
we present wavelets and multiresolution analysis which is a structure generated by a certain
type of wavelets. Wavelets, like Fourier expansions, approximate functions using orthonor-
mal basis using the expansion presented in the beginning. The main difference with Fourier
expansion is that one can choose between several different wavelet bases. The most conve-
nient wavelet will be chosen depending on the kind of function one wants to approximate.
Therefore, next we present the wavelets used throughout the thesis: the Haar, the Shannon
and the Chebyshev wavelets of which the first two form a multiresolution analysis. Finally, we
introduce the Fourier inversion methods. For each family of wavelets presented, we show
how to implement the method with special attention devoted to being able to apply fast
Fourier transforms in the computations. Fourier inversion methods for the Haar and Shan-
non wavelets are already known in the literature so our implementation builds on the refer-
ences. On the other side, to the best of our knowledge, there is no prior work done in trying
to formulate a Fourier inversion method using Chebyshev wavelets. We tried several different
ideas to formulate the method in an efficient way and in the last section we present our most
promising methodology.

This chapter is organized as follows. Section 2.2 is the mathematical overview to the topic,
it is divided in basics on probability theory, norms, inner products and orthogonality. Next,
we have Section 2.3 where Fourier analysis is presented, it consist of three different sections:
Fourier series, Fourier transforms, and discrete Fourier transforms, which includes the fast
Fourier transform algorithm. Then, we move to the wavelet world in Section 2.4, there we
also present multiresolution analysis as well as we talk about the associated wavelet and the
wavelet transform. Examples of three wavelets families (Haar, Shannon and Chebyshev) are
given in Section 2.5. Finally, in Section 2.6 we introduce the three Fourier inversion methods
based on the previous wavelets which are used in the thesis. Brief conclusions are given in
Section 2.7.

2.2. MATHEMATICAL OVERVIEW

This mathematical overview section provides preliminaries of probability theory and the ba-
sics to go into the wavelet world understanding all the concepts and theory that is used there.
Mainly this first section is dedicated to probability theory, norms, inner products and orthog-
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onality. We start with some basics on probability theory that we need later when applying the
inversion methods.

Through the whole work R refers to the real line, C the complex plane and Z stands for the
set of integers.

BASICS ON PROBABILITY THEORY

Definition 2.2.1. A o-algebra (also o-field) on a set Q is a collection & of subsets of Q that
includes the empty subset, is closed under complement, and is closed under countable unions
and countable intersections. The pair (Q), &) is called a measurable space.

Definition 2.2.2. Let % be ao-field on Q. A function P : & — [0, 1] is a probability measure if
the following conditions hold,

1. P =1,
2. if Ay, Ay, ... are pairwise disjoint sets (i.e. Ain Aj = @ fori # j) belonging to &, then,

P(AJjuAyu---)=P(A)+P(A2) +---. (2.1)

The triplet (Q, &%, P) is called a probability space. The sets belonging to & are called events. An
event A is said to occur almost surely (a.s.) whenever IP(A) = 1.

Definition 2.2.3. If ¥ isao-field on Q, then a function ¢ : QO — R is said to be & -measurable if
{w e Q:¢(w) € B} for every Borel set B € B(R), being % (R) the Borel o-algebra i.e. the o-algebra
generated by the open sets of R. If (Q, %,1P) is a probability space, then such a function ¢ is
called a random variable.

Definition 2.2.4. The probability density function (PDF) of a continuous random variable X
is an integrable function f (x) satisfying the following,

1. f(x)=0, forallxeR.
2. [pfdx=1.
3. IfAisaninterval, P(X € A) = [, f(x)dx.

Definition 2.2.5. The cumulative distribution function (CDF) of a continuous random vari-
able X is defined as,

F(x) =f fdt, (2.2)

for —oco < x < c0.

Definition 2.2.6. Let X be a random variable with probability density function f, then the
expected value is defined as the following Lebesgue integral,

E[X] :f xf(x)dx. (2.3)

It can be shown that the expected value of a measurable function of X, g(X), where X has
a probability density function f(x), is given by,

E[gX)] :f gx) f(x)dx. (2.4)



12 2. WAVELET THEORY

Definition 2.2.7. Let (Q, %, P) be a probability space, and X : Q@ — R" a random variable in it.
Let (U, %) be a measurable space, and Y : Q — U another random variable. Let g : U — R" be a
> -measurable function such that, for every -measurable function f : U — R",

fg(Y)f(Y)dIP:fo(Y)d]P. (2.5)

The random variable g(Y), denoted as E[ X | Y], is a conditional expectation of X given'Y .

Proposition 2.2.8 (Law of iterated expectations). Let (Q,&,P) be a probability space, and X
and Y two random variables in it, such that the expected value of X, It [X], is defined. Then,

EX]=E[E[X] Y]], (2.6)

i.e., the expected value of the conditional expected value of X givenY is the same as the expected
value of X.

Definition 2.2.9. Let X be a continuous random variable with probability density function f.
Then, the characteristic function (ChF) of X is defined as,

E [e‘i“’X] :f_oo f(x)e % dx. 2.7

We see later that this expression is equivalent to the Fourier transform of f.

Unless otherwise stated, we assume all functions f defined on the real line R to be mea-
surable. Now, we move on to the essential concepts to introduce Fourier analysis and wavelet
theory.

NORMS
The notion of norm generalizes the classical notion of length or size of vectors in R”, p € N, to
elements of a general vector space.

Definition 2.2.10. Let V be a vector space over a field F, F being either complex C or real R. A
normonV is a function p : V — R that satisfies the following properties. For all a € F and all
u,vev,

1. (Homogeneity) p(av) = |alp(v).
2. (Triangle inequality) p(u+v) < p(u) + p(v).
3. (Positivity) p(v) = 0. p(v) =0 only for v =0.

The norm of a vector v € V is usually denoted by ||v||y.
A normed vector space is a vector space endowed with a norm.

Definition 2.2.11. A Banach space is a vector space over either R or C equipped with a norm
which is complete with respect to that norm.

The completeness condition is equivalent to that for all Cauchy sequences {v,;} in V, there
exist v € V such that ||v,, — v||ly — 0, as n — oco.

One example of Banach spaces are the L? spaces, which are function spaces defined using
a natural generalization of the p-norm for finite dimensional vector spaces.
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Definition 2.2.12. Foreach p, 1 < p < oo, let LP(S) denote the class of measurable functions f
on a measure space S such that,

flf(x)|”dx<oo. (2.8)
s
Those spaces are Banach spaces with the LP (S) norm defined by,
o x’”dx%, orl < p<oo,
”f”p::{{f_oolf( )IPdx}r, for1<p<oo 29)
ess sup sl f(x)l,  for p=oo,

where ess sup stands for the essential supremum, which is the proper generalization to measur-
able functions of the maximum.

Note that functions in L”(S) are only defined up to a set of measure 0. Since any point x € S
is a measure 0 set under the Lebesgue measure, one cannot talk about pointwise evaluation
of the functions in this space. For this reason, we need to use the essential supremum instead
of supremum. Two functions are considered equivalent in those spaces if and only if they are
the same up to a set of measure 0.

Definition 2.2.13. A separable vector spaceV is a vector space such that there exist a countable
dense subset {fu}77, fn € V. This means that for all g € V and ¢ > 0 there exists n such that

llfn—gll<e.

For all p < oo, the L” spaces are separable. This property is used later in order to approxi-
mate any function in those spaces using functions from the countable subset.
Some important inequalities that hold for the L spaces equipped with those norms are,

* The Minkowski inequality, which is an extension of the triangle inequality for function
spaces,

If+glp=Iflp+lglp. (2.10)

* The Holder inequality,
Ifgh < lflplglpp-n-1, (2.11)

where p(p —1)"! should be replaced by 1 when p = co.

As a special case of Holder inequality we have the Schwarz inequality,
Ifgli=Ifl2ligle. (2.12)

INNER PRODUCT
The standard inner product of two functions is a generalization to the dot product of two finite
dimensional vectors.

Definition 2.2.14. LetV be a vector space over a scalar field F, an inner product on V is defined
asamap (-,-): V x V — F such that the following properties hold. For x,ye V and a,b e C,

1. (Symmetry) (y,x) = (x, y), where the bar stands for the complex conjugate.

2. (Bilinearity) {ax) + bxy, y) = a{xy,y) + b{x2, ).
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3. (Positivity) (x, x) = 0, where the case of equality holds only for x = 0.
An inner vector space is a vector space endowed with an inner product.

Observe that a norm can be defined from an inner product. For f e V,

I fllv =+/<f, ). (2.13)

Definition 2.2.15. A Hilbert space H is an inner product space that is also a complete metric
space with respect to the norm induced by the inner product.

Taking p = 2 in Definition 2.2.12 we can define an inner product on L2(S) by,

<f,g>=fsf(x)g(x)dx, fr g e L4(9). (2.14)
This product satisfies all the conditions to be an inner product. Observe that,

D =If15 fel*S). (2.15)

So, the standard norm of L%(S) is derived from this inner product. We know from before that
L2(S) is closed with respect to this norm. Hence, endowed with this inner product, L?(S) be-
comes a Hilbert space.

The following definition describes a discrete analogue of L2.

Definition 2.2.16. The space I is the set of all sequences X = ...,x_1, Xo, X1,..., Xi € C, with

ORTHOGONALITY
An important part of the thesis consists of approximating functions in L?(R) using orthonor-
mal basis. In the following we present concepts such as orthogonality and projection.

Definition 2.2.17. Suppose V is an inner product space. The notion of orthogonality implies,
* Thevectors X and Y are said to be orthogonal vectors if (X,Y) = 0.

* Two subspaces V and V, of V are said to be orthogonal subspaces if each vector in V; is
orthogonal to each vector in V,.

* Two functions f and g are said to be orthogonal functions, and we write f 1 g, when

(f,g =0.

* Aset of functions is an orthogonal set of functions if and only if every distinct pair in the
set is orthogonal.

Definition 2.2.18. Suppose Vy is a finite dimensional subspace of an inner product space V.
For any vector v € V, the orthogonal projection of v onto Vj is the unique vector vy € V that is
closest to v; i.e.,
lv—woll =min|v-w]. (2.16)
weVy

To complete the theory, we also need to introduce the notion of orthonormality.
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Definition 2.2.19 (Orthonormality).

* The collection of vectorse;, i =1,---, N, is said to be an orthonormal vector collection if
each e; has unit length, |e;| = 1, and e; and e are orthogonal fori # j.

* A sequence of functions {f,}nez is said to be an orthonormal sequence of functions if
(fm> fn) = O m,n, Whered j . is the Kronecker delta defined by,

]-) .:k;
5, ::{ forj (2.17)

0, forj+#k.

If {1, 2, ¢3,...} is any orthogonal set of non-zero functions, then a corresponding or-
thonormal set {y1,¥2,¥s,...} can be constructed by “normalizing” each ¢y, that is,

_ ¢r(x)
lprll

Wi (xX) (2.18)

Now we are in a position to define a basis or Hilbert basis.
Definition 2.2.20. Given a Hilbert space V, a Hilbert basis (or simply basis) for V is an or-
thonormal set of vectors, H, with the property that every vector in V can be written as an infinite

linear combination of the vectors in the basis.

Theorem 2.2.21. Let{ fn}"’;’:l be an orthonormal set on L%(S). Then the following conditions
also characterize an orthonormal basis.

1. Foreachge LP(S),

g§=) (& f)fn- (2.19)
n=0
2. ForeachgeLP(S),
gl =>"IKg, f)l%, (2.20)

which is known as Parseval’s relation.

This corresponds to Theorem 2.4 of [80], where you can also find the proof. The theorem
provides a general procedure to approximate functions on L?. We first find an orthonormal
basis (which is not unique), pick a subset of this basis and do the orthogonal projection on to
it. As we increase the size of the subset we converge to the right function.

The values (g, f,,) are usually referred to as Fourier coefficients the reason for this will
become apparent when we introduce the Fourier series later. Note that by the Parseval’s rela-
tion, the Fourier coefficients of the expansion form an infinite dimensional vector which is an
element of .
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2.3. FOURIER ANALYSIS

The beginning of Fourier Analysis is usually placed in 1807 when Joseph Fourier presented a
memoir to the Institut de France. In his work, he claimed that any periodic function could be
represented as a series of harmonically related sinusoids.

As exposed in the introduction the two main operations in Fourier analysis are the Fourier
transforms and the Fourier series. They can be given a physical interpretation such as time-
frequency analysis of signals (considered periodic functions of the time variable). However,
they are also relevant from a mathematical point of view since they provide a tool to tackle a
really wide range of problems in topics including partial differential equations and probability
among others.

The basic goal of Fourier series is to take a periodic signal, and decompose it into its vari-
ous frequency components which are represented by the sine and cosine.

The Fourier transform can be viewed as an extension of the Fourier series to general, non-
periodic functions. Fourier transform takes a signal and express it in terms of the frequencies
of the waves that make up that signal.

2.3.1. FOURIER SERIES

We turn now to the study of periodic functions (specifically of period 2a for a € R). For each
p, LP (—a, a) denotes the Banach space of functions f satisfying f(x+2a) = f(x) almost every-
where (a.e.) inRand || fllzr(-g,4) < o0.

A Fourier series is a particular way of rewriting functions as the sum of simple waves (or
series of trigonometric functions). More formally, it decomposes any periodic function into
the sum of a (possibly infinite) set of simple oscillating functions, specifically complex expo-
nentials (or, equivalently, sines and cosines).

Theorem 2.3.1. Let a € R, the set of functions,

1 innx }
—e « ;n=...,-2,-1,0,1,2,... 7, (2.21)
{\/261

is an orthonormal basis for I%(—a,a).
Proof can be found in [12]. We can now introduce the complex form of Fourier series.

Definition 2.3.2. The complex Fourier series of a periodic function f(x) € L*>(~a, a) is given
by,

f@= Y a.e’™, 2.22)

n=-—0o

where the coefficients of the complex Fourier series are,

a —inmx
= — a dx. 2.23
>a _af(x)e b (2.23)

an

This expansion makes sense for any f in L?>(—a, a) thanks to Theorem 2.3.1 and Theorem
2.2.21.

Due to the relation with the exponential, and sine and cosine functions it is easy to see
that the real expression of the Fourier series is also well defined when f is a real function. This
next version is the original Fourier series.
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Definition 2.3.3. The Fourier series of a periodic function f (x) € L*>(~a, a) of period2a is given
by,
S nn S nn
fx)=ap+ Z a cos(—x) + Z by, sin(—x), (2.24)
n=1 a n=1 a

where the coefficients of the Fourier series are,

ao = 55 /<, f0)dx,

a, = éf_“af(x) cos (”—u”x) dx,

b, = éf_aaf(x) sin(%x) dx.
2.3.2. FOURIER AND INVERSE FOURIER TRANSFORMS
The Fourier series showed us how to rewrite any periodic function into a sum of sinusoids.
The Fourier Transform is the extension of this idea to non-periodic functions.

We start introducing the Fourier transform for functions in L!(R), and then this is extended

to the space of functions in L2(R). This is done in this way to avoid convergence issues since
it is not straightforward that we can define the Fourier transform on L2(R).

Definition 2.3.4. The Fourier transform of a function f € L' (R) is defined by,

flw):= f e 9% f(x)dx. (2.25)
Since f € L' (R) the integral in (2.25) converges and is bounded,
If(w)] < f |f(x)|dx < +00. (2.26)

One can verify that f is a continuous function of w. If f is also integrable, the next theorem
gives us the inverse Fourier transform.

Theorem 2.3.5. If f € L' (R) and f € L' (R) then the inverse Fourier transform of f is,
1 [°° . ;
flx)= —/ fw)e' dw. (2.27)
27 J-xo

The proof can be found in [50].

We move now to the extension in L?(R). If f € L2(R) but f ¢ L'(R) its Fourier transform
cannot be calculated with the Fourier integral formula (2.25) because f(x) e~ 9% is not inte-
grable. The Fourier transform is defined as a limit using the Fourier transforms of functions
in L'(R) N L2(R).

Since L' (R) N L2(R) is dense in L%(R), a family {f;} ez of functions in LY(R) N L2(R) that
converges to f can be found,

nl_lgloo I f = fall2=0. (2.28)

Since {fn}nez converges, it is a Cauchy sequence, which means that || f, — fll2 is arbitrarily
small if p and g are large enough. Moreover, f;, € L' (R), so its Fourier transform f,, is well
defined. The Plancherel formula, states that,

o0 1 ST
f |f(x)2dx = f |f (w)*dw, (2.29)

2
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proves that { fn}nez is also a Cauchy sequence because || fp - fq 2 = V27l fp— fqll2 is arbitrarily
small for large enough p and g. A Hilbert space is complete, which means that all Cauchy
sequences converge to an element of the space. Thus, there exists f € L%(R) such that

Jim 1f - fylla =0, (2.30)

By definition, f is the Fourier transform of f.

We conveniently do an abuse of notation and use (2.25) when a limiting process is under-
stood.

If a function f is compactly supported, f(x) =0if x < a or x > b, where —co< a < b < oo,
then its Fourier transform f (¢) is well defined also for a complex ¢.

The Parseval Identity states the following relation.

Theorem 2.3.6. Forall f,ge L2(R), the following relation holds,
f.8) = —(F. @) (2.31)
8= 27 87 '
In particular, || fll2 = 27) 2| Fll2.

2.3.3. DISCRETE FOURIER TRANSFORM
We denote by f[n], n € N the sample values or discrete signals. In practice, f[n] is known over
a finite domain, say0 < n < N.

Definition 2.3.7. The discrete Fourier transform (DFT) of f is

(2.32)

—iann)
N )

) N-1
flkl = Z f[n]exp(
n=0

where exp stands for the exponential function. And the inverse discrete Fourier transform
(IDFT) formula,

i2nkn
), (2.33)

1 N=L
flnl=— Z f[k]exp(
N =

The formula for the discrete Fourier transform is the analogous to the formula for the kth
Fourier coefficient with the sum over n taking the place of the integral over x.

The computation of the discrete Fourier transform is equivalent to the following matrix
computation. Let y; = f[i] and w = exp(=2

1\’,’ L) then we have,
y=FNQ), (2.34)

where y = (yo,-++, yn-1) T, = Go,-++, In-1)T and,

1 1 1 1
1 w w? e Nt

_ 2 4 2(N-1)

Fy=|1 o @ w : (2.35)

2
N-1  2(N-1) .. (N1
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THE FAST FOURIER TRANSFORM
The fast Fourier transform is an efficient algorithm for computing the discrete Fourier and in-
verse discrete Fourier transform. The computation of the discrete Fourier transform is equiv-
alent to multiplying the sequence y (which is an N x 1 column vector) by an N x N matrix
Fy, which is an operation that requires N> multiplications. However, the FFT algorithm takes
advantage of the special form of the matrix Fy to reduce the number of multiplications to
roughly 5Nlog, N (i.e. to G(Nlog, N)) by reorganizing the calculations. The relative savings
increase as N gets larger.

The algorithm goes as follows. When the frequency index is even, we group the terms n
and n+ N/2,

. Ni2-1 —i2mkn
fl2kl= ) (fin] +f[n+N/2])exp(—) (2.36)
= N/2
When the frequency index is odd, the same grouping becomes,
R N/2-1 —i2 —i2nk
flzk+1= Y exp( ! ””) (finl —f[n+N/2])exp(ﬂ) 2.37)
n=0 N NI/2

Equation (2.36) proves that even frequencies are obtained by calculating the DFT of the N/2
periodic signal feven[nl = flnl+ fln+ N/2].

0dd frequencies are derived from (2.37) by computing the Fourier transform of the N/2
periodic signal:

—i2nn
N

Joddlnl =exp( )(f[n]—f[n+N/2]). (2.38)

A DFT of size N may thus be calculated with two discrete Fourier transforms of size N/2 plus
O (N) operations.

The IDFT of f is derived from the forward fast Fourier transform of its complex conjugate
f* by observing that,

—i2nkn
) (2.39)

* 1 Nl 7k
f [ﬂ]zﬁkgof [k]exp(T .

The computational complexity is obtained as follows. Let C(N) be the number of elemen-
tary operations needed to compute a DFT with the FFT. Since f is complex, the calculation of
feven and foqq requires N complex additions and N/2 complex multiplications. Let KN be the
corresponding number of elementary operations. We have,

C(N)=2C(N/2)+ KN, (2.40)

since the Fourier transform of a single point is equal to itself, C(1) = 0. With the change of

variable I =log, N and the change of function T'(]) = %, we derive,

TH=TI-1D+K. (2.41)
Since T'(0) = 0, we get T'(/) = Kl and therefore,

C(N) = KNlog, (N). (2.42)

Several variations of this fast algorithm exist. The goal is to minimize the constant K. The
most efficient fast DFT to this date is the split-radix FFT algorithm, which is slightly more
complicated than the procedure just described. However, it requires only Nlog, N real mul-
tiplications and 3Nlog, N additions. When the input signal is real, there are half as many
parameters to compute.
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2.4. WAVELETS

One disadvantage of Fourier series is that its building blocks, sines and cosines are periodic
waves. A different set of building blocks, called wavelets is designed to model different type of
signals.

In a rough sense, a wavelet looks like a wave that travels for one or more periods and is
non-zero only over a finite interval instead of propagating forever the way sines and cosines
do. A wavelet can be translated forward or backward in time. It also can be stretched or com-
pressed by scaling to obtain low and high frequency wavelets.

More mathematically, wavelets consist of a family of functions constructed from dilation
and translation of a single function v in L?(R) called the wavelet. When the dilation parameter
a and the translation parameter b vary continuously, we have the following family of contin-
uous wavelets,

_1 (x-=b
Wa,p(x) =lal 21//(7), a,beR, a#0. (2.43)

We often refer to ¢ as the mother wavelet and v, , as the child wavelets.

Analogously as in Fourier analysis, the main tools provided by wavelets are the wavelet
transform and their discrete version, to which we refer as wavelet series although in the liter-
ature they are also referred as discrete wavelet transform.

Definition 2.4.1. Let f be a function in L2(R), its continuous wavelet transform is defined as,

1 -b
WTy{f}(a,b):= |a|7fRf(X)1//a_b (xT) dx. (2.44)

During the thesis we only work with wavelet series. Therefore, we do not expand more on
the continuous wavelet transform. For the interested reader we refer to reference [19].

The parameters a and b can be restricted to the following discrete values: a = a, and
b = nbyay,™, ag > 1, by > 0 and n,m € Z. Then, we have the following family of discrete
wavelets,

Wimn(X) = laol ™y (af x — nby). (2.45)

In the same way, the discrete wavelet transform (DWT) is any wavelet transform for which the
wavelets are discretely sampled. We can now define the wavelet series.

Definition 2.4.2. Let f be a function in L>(R). The wavelet series is defined as,

=Y Y L Vmn)Vmn(x), (2.46)

meZ neZ
provided that the functions (Y ,,, , : m, n € Z} form an orthonormal basis of L*(R).

We recall that if we have an orthonormal basis of L2(R) then we are able to reconstruct any
function f € L?(R) using the expansion from Theorem 2.2.21.

Observe that the last formula involves a double infinite sum, even though in practice we
only use a finite number of terms, for each term we have to calculate an integral. The com-
putation of the discrete wavelet transform can be made more efficient in the special case in
which the scaled and shifted wavelets form a multiresolution analysis. In these cases, there
exists an auxiliary function, the father wavelet ¢ (also referred as scaling function) in L2(R)
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and ay is an integer. The most common choice for gy and by are ay = 2 and by = 1 and from
now on we use those values. Note that not every orthonormal discrete wavelet basis can be
associated to a multiresolution analysis.

Multiresolution analysis does not just allow for significant computational savings with re-
spect to the other orthonormal discrete wavelet basis, but in practice most constructions of
the wavelet expansion make use of the multiresolution analysis which defines the mother
wavelet via a scaling function as well. In the thesis, we mostly use wavelets defined via mul-
tiresolution analysis, we introduce it in detail below.

2.4.1. MULTIRESOLUTION ANALYSIS

As previously mentioned, there are two functions that play a primary role in multiresolution
analysis, the scaling function ¢ and the wavelet 1, both functions in L?(R). To emphasize the
marriage involved in building this family, ¢ is sometimes called father wavelet and v mother
wavelet.

Here we present a method for constructing orthonormal wavelets that is based on the
existence of a family of subspaces of L? (R) satisfying certain properties. Such a family is called
a multiresolution analysis. The main feature of this method is to describe mathematically the
process of studying signals at different scales. It is traditional to define an MRA by specifying
five properties that the family of subspaces must satisfy.

Most of the theory we present is due to Stéphane Mallat [50]. We follow multiresolution
analysis as introduced in [12], unless otherwise stated the proof of the theorems can be found
there.

Definition 2.4.3. LetV;;,, m=...,-2,-1,0,1,2,... be a sequence of subspaces of functions in
L%(R). The collection of spaces {Vy,, m € Z} is called a multiresolution analysis (MRA) with
scaling function ¢ (also known by father wavelet) if the following conditions hold,

1. (nested) Vi, € Vipy1,

2. (densiljy)m =L*(R),

3. (separation) NV,, = {0},

4. (scaling) he function f(x) belongs to Vy,, if and only if the function f (2~ x) belongs to Vy,

5. (orthonormal basis) the function ¢ belongs to Vy and the set {¢p(x — k), k € Z} is an or-
thonormal basis (using the L%(R) inner product) for V.

The V},,’s are called approximation spaces and different choices for ¢ yield different mul-
tiresolution analysis. And we refer to m as the scale.

Within the literature, the scaling function is sometimes introduced in an alternative weaker
way. In the MRA framework the scaling function is an orthonormal basis of V;. However, it
could also be considered to be a Riesz basis, we see it in the next remark. Both ways are equiv-
alent.

Remark 2.4.4. Sometimes condition 5 (orthonormal basis of Definition 2.4.3) is relaxed by as-
suming that {¢p(x— k), k € Z} is a Riesz basis for V. That is, for every f € Vy there exists a unique
sequence {Qy}nez € 12(Z) such that,

fx) =) anpx—n), (2.47)

ne”Z
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with convergence in L2(R) and,

AY lanlP =Y. anpx—mI5<B Y la,l, (2.48)

ne”zZ ne”z nez

with 0 < A < B < oo constants independent of f € Vy. If this is the case we say that we have an
MRA with a Riesz basis. The fact that this weaker version of condition 5 (orthonormal basis) is
equivalent to the one announced above is proved in the reference [12], at the end of Section 2.1.

Theorem 2.4.5. Suppose {V,,;; m € Z} is a multiresolution analysis with scaling function ¢.
Then, for any m € Z, the set of functions,

{Pmk(x) =22 p2"x — k); k € 73, (2.49)
is an orthonormal basis for Vy,.
We are now ready to state the scaling relation.

Theorem 2.4.6. Suppose {V,,;; m € Z} is a multiresolution analysis with scaling function ¢.
Then the following relation holds,

d(x) = Z prp2x—k) where py =2f d(xX)Pp2x—k)dx. (2.50)
kez —00

Moreover, we also have,

PR Ix-1 =Y prap@mx-k), 2.51)
keZ
or, equivalently,
Pm-11=2"""Y pPr_2iPm,p (2.52)
k

where ¢y, 1 (x) = 2M2p(2Mx - k).

THE ASSOCIATED WAVELET AND WAVELET SPACES
Theorem 2.4.7. Suppose {V,,; m € Z} is a multiresolution analysis with scaling function,

dx) =) prpx—k), (2.53)
k

Pk are the coefficients in Theorem 2.4.6. Let Wy, be the span of {y (2™ x — k); k € Z}, where,

() =Y ~D*prrpx— k). (2.54)
keZ

Then Wy, € V41 is the orthogonal complement of Vy, in V11, known as the detailed space.
Furthermore, {y, (x) := oml 2W(Z’”x — k), k € Z} is an orthonormal basis for the W,,, and v is
known as the mother wavelet.

Note that ¥, ; = 2™/2y(2™ x — I) has the expansion,

V=272 Y (—1)kP1—k+zz¢>m+1,k, (2.55)
kez
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which follows from the definitions of ¥ given in Theorem 2.4.7 by substituting 2" x — [ for x,
multiplying both sides by 2”2 and adjusting the summation index.

From Theorem 2.4.7, the set {1,;,—1 r}kez is an orthonormal basis for the space Wj,_1,
which is the orthogonal complement of V,,_; in V};, (so V,;, = Wy,_1 @ V1), By successive
orthogonal decompositions,

Vin =Wp—1 0 Vip—1
=Wn-198 W28 Vi

(2.56)
=Wy 1 & W@ 0 Wya V.
Since we have defined V,,, for m < 0, we can keep going,
Vi =Wy 1 & W 0®--0 Wype W_, @V,
(2.57)

=Whnp1o9Wyo@---oW_1oW_o---.

The V,,, are nested and the union of all the V,, is the space L?(R). Therefore, we can let j — oo
and obtain the following theorem.

Theorem 2.4.8. Let{V,,; m € Z} be a multiresolution analysis with scaling functions ¢. Let Wy,
be the orthogonal complement of Vy, in Vy41. Then,

LPR)=---oW_joWod W, &---. (2.58)

In particular, each f € L%(R) can be uniquely expressed as a sum Zi":_oow k> Wi € Wy, where the
wy’s are mutually orthogonal. Equivalently, the set of all wavelets, { , i} m xez, is an orthonor-
mal basis for L2(R).

The infinite sum appearing in this theorem should be thought of as an approximation
by finite sums. In other words, each f € L?(R) can be approximated arbitrarily closed in the
L?>—norm by finite sums of the form w_,,;, + w1—;; + -+ + Wm,m-1 + Wy, for suitable large m.

We have two bases that we can use to approximate functions in L?: the one produced by
the mother wavelet and the one produced by the father wavelet.

Proposition 2.4.9. For any f € L>(R), a projection map of L?(R) onto V,,, which we denote by
P : L>(R) — Vi, is defined by,

m—-1 k=+o0

Pof(0)= ). Y dip¥jk®) =) cmikPmi(x). (2.59)
Jj=—00k=-00 kez
Here, .
dj k= f FXyjr(x)dx, (2.60)

are the wavelet coefficients, and,

Cmk = f FX)pm,rdx, (2.61)

are the scaling coefficients.
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Considering higher m values (i.e. when more terms are used), the truncated series rep-
resentation of the function f improves since we know, by Theorem 2.2.21, that as m goes to
infinity the expansion converges to the exact function. As opposed to Fourier series, a key
fact regarding the use of wavelets is that wavelets can be moved (by means of the k value),
stretched or compressed (by means of the m value) to accurately represent the local proper-
ties of a function.

2.5. EXAMPLES OF WAVELET FUNCTIONS

This section describes Haar, Shannon and Chebyshev wavelets which are the families we use
throughout the thesis. As one can see in the development of the section, Haar and Shannon
are defined through a scaling function and thus, they define a multiresolution analysis. How-
ever, Chebyshev is just introduced by the child wavelet, so we do not have a multiresolution
structure in this case.

Despite the fact that we only work with three different wavelets families there exist a wide
range of them: Haar, Daubechies, Symlets, Coiflets, Biorthogonal, Meyer, Gaussian, Morlet
and so on. The reason why we work with the chosen ones is mainly related to the shape of the
wavelet and the shape of the function we wish to recover, together with the easy treatment of
the wavelet expression.

2.5.1. HAAR WAVELETS

In 1909 Alfréd Haar proposed the Haar sequence in [40]. Haar used these functions to give
an example of an orthonormal system for L? ([0,1]). However, as previously mentioned, the
study of wavelets, and even the term wavelet, did not come until much later.

The Haar function is recognised as the first known wavelet basis and it is the simplest
example of an orthogonal wavelet. In addition, the Haar scaling function is a good example
of a compactly supported function. A function has compact support if it is identically zero
outside a finite interval.

The Haar scaling function (or equivalently father wavelet) is defined as,

1, ifo=sx<l,
¢px) = { (2.62)

0, elsewhere.

It has as Fourier transform the function,

A l—e i@
w)=—. 2.63
¢p(w) o ( )
The Haar mother wavelet function can be described as,

1, f0r05x<%,

yu(x)={-1, fory<x<l, (2.64)
0, otherwise.

The Haar scaling function and the Haar mother wavelet are shown in Figure 2.1.

Observe that by rescaling the father wavelet as ¢y ($=2) we get the father wavelet for an

orthonormal system for the finite interval [a, b], where —co<a< b <ooand a,b e R.
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(a) Haar scaling function. (b) Haar mother wavelet.

Figure 2.1: Haar wavelet family.

The drawback with the Haar decomposition is that both father and mother wavelet are
discontinuous, and as a result, it provides only crude approximations to some continuous
functions.

2.5.2. SHANNON WAVELETS
In some situations, we use wavelets in order to approximate very regular functions (usually
density functions). Therefore, it makes sense to choose a wavelet that is smooth in the time-
domain such as the Shannon wavelet. Shannon wavelets are extensively described by C. Cat-
tani in [16], they form an orthonormal basis in L?(R). Unlike Haar wavelets, they can approx-
imate functions with unbounded domain.

Shannon scaling function is given by the sinc function,

sin(mx) .
. ) lf X # 0;
¢s(x) =sinc(x) = X (2.65)
1, if x=0.
It has as Fourier transform the function,
Ps(w) =rect (ﬂ) , (2.66)
27
where rect is the rectangle function, defined as,
1
1, iflx| < =,
2
1
rect(x) = 1/2, if|lx| = X (2.67)
1
0, iflx| > —.
2
The mother function is,
. 1 . 1
sin(|x—5))—sin|27(x— 5
ey S (= 3)) —sinCer (x- 1) -

m(x-3)

Plots of Shannon scaling function and Shannon mother wavelet are shown in Figure 2.2.



26 2. WAVELET THEORY

08 1 0.8
0.6r 1 0.6
04r 1 041
0.2r 1 021

\.//\ % - \/ /\V/\ N N /\V/\V \/ N\
VoV , VYL VY

0.4} 1 0.4 F

og(x)
x)
>

-0.6 1 -0.6
-0.8 1 1 -0.8

(a) Shannon scaling function. (b) Shannon mother wavelet.

Figure 2.2: Shannon wavelet family.

2.5.3. CHEBYSHEV WAVELETS
As a third wavelet basis, we consider Chebyshev wavelets. The reason to look at this wavelet
family is because the COS method [28] (state-of-the-art within the class of Fourier inversion
methods) is related with Chebyshev polynomials of first kind. COS method is the cosine ex-
pansion of a function f(x) in x; this expansion matches the Chebyshev series expansion of
f(arccos(?)) in t.

Chebyshev wavelets, see [3] for a nice description, are derived from conventional Cheby-
shev polynomials. That is why we start by introducing the Chebyshev polynomials.

CHEBYSHEV POLYNOMIALS
In mathematics, the Chebyshev polynomials [18], named after Pafnuty Chebysheyv, are a se-
quence of orthogonal polynomials which are related to de Moivre’s formula and which can
be defined recursively. One usually distinguishes between Chebyshev polynomials of the first
kind which are denoted T}, and Chebyshev polynomials of the second kind which are denoted
Up.

Both Chebyshev polynomials T, and U, are polynomials of degree n and the sequence
of Chebyshev polynomials of either kind composes a polynomial sequence. In the study of
differential equations, they arise as the solution to the Chebyshev differential equations,

1-x3)y"—xy +n?y=0, (2.69)

and,

1-x*y"-3xy +n(n+2)y=0, (2.70)

for the polynomials of the first and second kind, respectively.

As we mentioned, we are interested in seeing the behaviour of the wavelets related to first
kind Chebyshev polynomials, that is why we concentrate only on the first kind ones. However,
note that everything can be analogously developed for the second kind ones.
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Chebyshev polynomials of first kind
Let us denote by Ty (x), k =0,1,..., the Chebyshev polynomials of first kind of degree k (see
Figure 2.3), given by,

T (x) = cos(k0), (2.71)

inwhich 8 = arccos(x). So, Ty (cos(0)) = cos(kf) or Ti(x) = cos(karccos(x)). Alternatively, they
can be expressed by the recursive relation,

e To(x) =1,
e T1(x) =x,

* Tni1(x) =2xTy(x) — Ty1(x).

X

Figure 2.3: First kind Chebyshev polynomials.

Chebyshev polynomials of the first kind are orthogonal with respect to the weight func-

tion, on (-1,1),
(D(x+1) B 1 2.72)
2 Vi—x2 '

The Fourier transform of the Chebyshev polynomials is presented in theorem 1 of [31].

Theorem 2.5.1. Let Ti.(1) denote the finite Fourier transform of the Chebyshev polynomial
Tr(x), i.e.,

1
Tk()t)=f e M T(x)dx, AeC, k=0,1,2,..., (2.73)
-1

where Ty (x) denotes the Chebyshev polynomial
T (x) = cos(karccos(x)), -1<x<1, k=0,1,2,.... (2.74)

Then,

N 0, k=1,
Ty (0) = { (—1)k+1_] . (2.75)
T =0,2,3,....
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Furthermore,
. kel [ eid o eit
T D) = +(-1)"*——1, 1eC\{0}, k=0,1,2,..., 2.76
k() n;an otV G {0} (2.76)
where the coefficients X are defined as follows:
ak =0k, ak=(nF 13, 2.77)

ak = (—pkr-lpn=2 \ 1 [T k=), n=3,4,...,k+1. (2.78)
I=1 - j=1

k-n+2 (I’l + l—3) n+l-3
Remark 2.5.2. Some properties of Chebyshev polynomials are,
© LT,(x)=nUy_1(x),n=12,....

o [Up(x)dx = Lol

n+1

o [Tp(x)dx= % _ xz,i(lx)'

CHEBYSHEV WAVELETS

Unlike the other two wavelets we have presented before, the Chebyshev wavelets do not have
multiresolution analysis structure. This will make their definition and approximating formula
very different from the other two. Observe that we do not define them from the scaling func-
tion, which does not exist, but from the child wavelets (2.43) instead.

Chebyshev wavelets of first kind
Presented in [3], first kind Chebyshev wavelets are defined by wgl )= wC(m,n,k, x), so as
one can note they have four arguments which are,

* mwhich is any non-negative integer representing the scale,
* n=1,23,..,2"1

* [ is the degree of Chebyshev polynomial of first kind,

* xisthe normalized time.

The Chebyshev wavelets of 1st kind are defined on the interval [0, 1) by,

2M2T My —2n+1), L <x< I
C — k y 2m—1 2m—1 ’ 2
Vinn k() { 0, otherwise, (2.79)
where,
1
=) k = 0)
T ={ % (2.80)
V2T, k>0,

and k=0,1,---, M—-1,n=1,2,---,2m°1,
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Figure 2.4: First kind Chebyshev wavelets for different degrees, with m = 4.

Chebyshev wavelets form an orthonormal basis of the space Lfa([O, 1)) which is the space

of weighted square integrable functions, where @(x) =
then the inner product for this space is given by

1 . )
ENETE] asin (2.72). Let g, f € L7 ([0,1)

1 -
&N :fo gx) f(x)@(x)dx. (2.81)

This inner product has the same properties as the standard inner product presented previ-
ously in Definition 2.2.14. The weight functions for the Chebyshev wavelets are,

Dy (x) =

where @, (x) = 2™ lx—n+1).
Generalising to an interval [a, b) Chebyshev wavelets are defined by,

Vi =

22T (2Mx—2n+1),

0,

(Dl,m(x),
@2,m(x);

(Dzm—lym(x),

0<t< =i

om=1)
1 2
Sm=T =x< SmT»
(2.82)
i
SwTsx<l,
(b—a)(n-1) (b—a)n
a+-—pga—=x<a+ =5;=1,
2m-t 2m-1 (2.83)

otherwise.
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And they are orthonormal with respect to the weight function,

@1,m (%), asx<a+ (Zbr;_ﬁ),
®2,m (), d+% Sx<a+2;lr7njfl),

Om(x) =1 . . (2.84)

_1_ _
@om-1 1, (X), a+ (zmzm# <x<bhb.

Proposition 2.5.3. The Fourier transform of the Chebyshev wavelets of the first kind in a gen-
eral interval [a, b) is given by,

. _ 2 _io(2n=1) s (W
GC @) =2 /;e io(%m )Tk(z_m)' (2.85)
Proof.
w;,nyk(a}):fRe_"‘”xwg%k(x)dx
I (2.86)
:2’"’2[_1 e 92 x - 2n+1)dx.
om—1
For k>0,
~ m/2 2 Zm%l —iwx m
wm'n,k(w):z = e Tr(2"x—-2n+1)dx
. o (2.87)
om—1 .
=pm/2 ;/271 e "“*cos(karccos(2?™x—2n+1))dx.
om—1
By using a change of variables y =2 x —2n + 1, we end up with,
. _ 2 1 . y+2n-1
§C (@) =2 mlz\/;f e io“ 5 )cos(karccos(y))dy
i -1
o T [ (2.88)
= mi2, [ 2 e-io(5m f e 27 cos(karccos(y))dy,
Y -1
which equals (2.85). U

2.6. INVERSION METHODS
This section contains the description of the Fourier inversion methods based on the previ-
ously mentioned wavelets.

Given an unknown function f € L2(R) for which we know its Fourier transform f , the
Fourier inversion method consists of using the f to recover f. To make this statement more
precise, for an orthonormal basis {gbn}jfzo, from (2.19) we know we can express f as,

f= i (frpn)bn. (2.89)
n=0

Fourier inversion methods are based on choosing appropriate basis functions so that one can
express the inner product in (2.89) in terms of f.

As the reader can notice in this section, we consider for Haar and Shannon basis father
wavelets (or scaling functions) rather than mother wavelets due to its simplicity.
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2.6.1. HAAR WAVELET APPROXIMATION (WA)
The WA (wavelet approximation) method is introduced in [54] and is based on a wavelet ex-
pansion using the Haar scaling function from Section 2.5.1.

Let us consider a function f € L*(R) and its Fourier transform f whenever it exists. We
restrict ourselves to a bounded interval [a, b], since f € L%(R) we can expect that the mass in
the tails of f decays to zero, so it can be well approximated in a finite interval [a, b] by,

f[a,b] (0 = {f(x), ifxel[a,b], (2.90)
0, otherwise.

Since Haar wavelets form an MRA, given any m, we can use the right hand side of formula
(2.59) to approximate 140 (x) = f1*Y (x) for all x € [a, b], where,

2m-1

FW= =Y o g
k=0

Al a), 2.91)

b-—a

H
m,k

wavelet family {p! }icz is defined by ¢F! | (x) := 2"™2¢ (2" x - k) (according to Theorem
2.4.5) and for a fixed scale m forms an orthonormal basis of V.

Observe that the sum goes from 0 to 2™ — 1. The reason for this is that at scale m, we divide
the interval [a, b] in 2™ disjoint intervals of equal size such that the union of all of them is the
full interval. For every k = 0,...,2" — 1, we get a child wavelet with support in one of these
intervals.

Note that we will specify later on how to choose the bounded interval [a, b] according to
the application of the method. As we will see, usually a set of functions called cumulants is
employed. In other situations, maybe the function to approximate is already defined in an
interval. For the scale of approximation m, according to the specific application, a range of
values is normally used based on the performance appreciated in numerical experiments.

with convergence in the L?(R)-norm. Here c! are the wavelet coefficients and the Haar

COEFFICIENTS COMPUTATION
The main idea behind WA is to approximate f by f,[,f'b] and to compute the wavelet coeffi-
cients cﬁl[ i by inverting the Fourier transform. Proceeding this way, as in [54], we have,

o) = fR Fye®rdy ~ fR flabl(yemiov gy

2m—1 y-a (2.92)
— H H —iwyd .
,;)Cm’k(ﬁ@(pm’k(b—a)e J’)
. . _y-a
Introducing the change of variables x = 7—,
A . Zm_l .
f=b-ae ™ Y il Re“‘”(b_“)x(pg,k(x)dx
o~ (2.93)

Co2ma A
=(b-a)e ' ) ngkgbgyk (b-a)w).
k=0

Note,
ol =25 (i) oz, (2.94)
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. . _jt-a
Considering the change of variables z = e™" 2™ “, we have that

A 2™ m my 271
f(b ailog(z)):Z_Z(b—a)zzb—ang(ilog(z)) Y c,’,{,kzk. (2.95)
- k=0
And defining,
am_1 zmlzz%f(;—milog(z))
Puz):i= ¥ o 2K, Qm(2) = e (2.96)
" ,CZ:O mk " (b— &)pp(ilog(2))

we have that P;,(z) = Q. (2). Since Py, is a polynomial, it is analytic inside a disc of the com-
plex plane {z € C: |z| < p} for p > 0. Thus, by means of the Cauchy’s integral formula we obtain
the following expression for the coefficients,

frf,fﬁ y%dz, k=0,---,2" -1, (2.97)
where y denotes a circle of radius p, p > 0, about the origin. As pointed out in [64], we take
o =0.9995, as the optimal value to minimize the discretization and roundoff errors when com-
puting the coefficients numerically.

Now, applying the change of variables z = pe’* and the approximation P,, = Q,,, we end
up with the coefficients expression,

1 2n . .
H —-ik

Remark 2.6.1. The integral in (2.98) is approximated by the trapezoidal rule and computed
using the FFT. The approximation of the coefficients with the trapezoidal rule is,

H H,* 1 A 2y ok
Con ke = Cop 1 = FY; Y Qmlpe'u™ye # ", (2.99)
n=0

where M = 2"". Note here that we have used the fact that the integrand for n = 0 is the same as
n = M, and we have added them together. The use of the FFT in the sum expression (2.99) is
straightforward.

2.6.2. SHANNON WAVELET INVERSE FOURIER TECHNIQUE (SWIFT)
Given a function f € L? (R), we consider its expansion in terms of the Shannon scaling func-
tion (see Section 2.5.2) at the level of resolution m. The aim is to recover the coefficients of the
approximation from the Fourier transform of the function f which is assumed to be known in
closed-form. The SWIFT method introduced in [67] effectively achieves this purpose.

As mentioned previously, the Shannon scaling function forms a multiresolution analysis.
Following the MRA theory (according to Proposition 2.4.9), a function f € L% (R) can be ap-
proximated at the level of resolution m by,

fO=PufX) =) 5 (b5, (1), (2.100)
kez
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where & f converges to f in L?(R), i.e. |f— 2 fll2 — 0, when m — +oo. Here, the co-
efficients ¢S o« are defined in (2.61) and <p5 (0= 2M2p (2™ x — k) from (2.49), where ¢ is
defined in (2 65).

The infinite series in (2.100) is well-approximated (see Lemma 1 of [67] for details) by a
finite summation without loss of considerable density mass, since f € I2(R),

kp
Pnf ) = fn(X):= Y ch P (), (2.101)
]C:kl

for certain accurately chosen values k; and k.

COEFFICIENTS COMPUTATION
The next step is the computation of the coefficients in (2.101). Recalling (2.61) and (2.49), we
have that,

k=D = fR f(x)@fn,k(x) dx =22 fR Fx)ps2™x—k)dx. (2.102)

Using the classical Vieta’s formula [32], the cardinal sine can be expressed as the following
infinite product,
¢s(x) = sinc(x) = ]'[ cos( > ) (2.103)
j=1
If we truncate the infinite product (2.103) into a finite product with a total of J terms, then,
thanks to the cosine product-to-sum identity [71], we have,

27!

J 1 2j—1
H Ccos E = — Z Ccos J TX|. (2.104)
i=1 2 2J-1 i 27

By (2.103) and (2.104) the sinc function can thus be approximated as,

, . 27 r2j-1
¢s(x) =sinc(x) = sinc”™ (x) :— =l Z cos( nx). (2.105)

Replacing the function ¢ in (2.102) by the approximation (2.105) we obtain,

mi2 2)-1

cfnykchn’fk— Z f(x)cos(

n(me - k)) dx. (2.106)

Next, by taking into account that R ( f ©) = Jg f(x) cos(éx)dx in (2.25), where R(z) denotes
the real part of z, and observing that,

kn(2j-1)

Feetmar = f i) fodx, 2.107)
R

we can simplify (2.106) to,

omi2 2/t

2 Da2™\  iknej-1
= ST Z%R (&)e 7 (2.108)

2J ’

Remark 2.6.2. Formula (2.108) can be conveniently rearranged to compute the coefficients
with the use of the FFT.
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PARAMETERS SELECTION
The set of parameters that are important in the method are the scale of approximation m, the
Vieta’s formula truncation value J, and the truncation parameters k; and k.

Usually k; and k, are also computed by the use of cumulants, but it depends on the ap-
plication. We will discuss their choice in more detail later in Definition 3.2.9 in a specific
application of the method.

The scale of approximation is selected according to [51], where a procedure to choose the
scale parameter m based on band-limited functions is presented.

Definition 2.6.3. A function f is called band-limited if there exists a positive constant B < oo
such that its Fourier transform f is identically zero in |w| > Bm, i.e.,

1 Bm .
(x) = — (w)e'*dw. (2.109)
/ V2 J-Brn !

We can state that if a function f is band-limited with B < 2™, then there exists an w such
that for all |w| > 2™x, | f(w)| < tol, for a user defined tol > 0. As we will see, although the
functions we work with are not band-limited, the modulus of their characteristic functions
tend to zero for w — oo, so we can choose the scale of approximation such that the coefficients
are negligibly small. Hence, we define a tolerance level tol a priori, and we search for the
smallest value m, such that | f (w)| < tol.

A strategy for choosing J follows from Lemma 2 of [67] which states the following.
Lemma 2.6.4. Ifwe define the absolute error €(x) := sinc(x) — 2,%1 Z?S cos (zé—fnx), then,

(mc)?

le(x)] = 207D — ()2

(2.110)

forte[—c,cl, whereceR, ¢ >0 and ] =log,(mc).

Together with what is stated in Theorem 1 of [67], we assume F(x) to be the CDF of a ran-
dom variable X and define H(x) := F(—x)+1—F(x). Let a > 0 be a constant such that H(a) <e,
for € > 0. The lemma implies that if we set My, ;. := max (|2 a — kl,|12™ a + k|) and then we de-
fine My, := maxy, <k<k, Mm,k, a good strategy to choose J is to take J = j := [log, (m M,)1, where
[x] denotes the smallest integer greater or equal than x. Although for each k different values
of J could be chosen, we decide to choose a global one in order to benefit from the application
of the FFT.

2.6.3. CHEBYSHEV WAVELET APPROXIMATION (CWA)

Recall that we focus on function approximations by first kind Chebyshev wavelets (2.5.3).
As we explained in Section 2.5.3, {¢/, ik} nen+ ken form an orthonormal basis for L(ZD (la, b]).
Hence, according to Theorem 2.2.21, any function in this space may be expanded as,

FO=Y Y e W ), 2.111)
n=1k=0
where,
ng,n,k = <f(x)’1//$n,n,k(x)>wm- (2.112)



2.6. INVERSION METHODS 35

The series (2.111) is truncated as

2m-1 -1
fQ= Y Y e W ) (2.113)
n=1 k=0
The sum for the 7 index goes from 1 to 2”*~1. The reason for this is that the interval [a, b)
is divided in 2™~! disjoint intervals of equal size such that the union of all of them is the
full interval. Hence for any fixed n € {1,...2""!}, the wavelets v, , x are supported in the n-
th interval. On the other side, M is an arbitrary number, which refers to the degree of the
Chebyshev polynomials used in the approximations. The higher M is, the more precise the
approximation becomes.

Note that we have already defined the method by considering the function to approximate
finaninterval [a, b). If it was not the case, the function would of course need to be truncated,
again by probably the use of cumulants. Also, the scale of approximation m needs to be de-
fined. Note that it appears here a different parameter with respect to the other methods which
is the maximum degree of the polynomials considered, M.

COEFFICIENTS COMPUTATION
Our goal is to get an expression for the coefficients in (2.112). We proceed by using the inverse
Fourier transform and the Bessel function as follows.

Let us consider the inverse Fourier transform,

1 . .
flx)= \/T_nfwf(w)e“‘”‘dw, (2.114)
and place it inside (2.112):

e i = FO,YS, (Do, = fR fYS, (DO n(x)dx

1 ~ .
== fR fR f@eyS, | (0on,(x)dodx.

Using Fubini’s theorem and replacing the weight expression (2.82) inside the previous integral
(2.115) we end up with the following expression. For k > 0,

1 2 1 1 N . cos(y)+2n—-1
C _ [ & iw s

Using the Bessel function, defined by,

(2.115)

i
Tu(2) = _f elzcos(@)cos(n@)dg, 2.117)
T Jo
we obtain, .
c 1 [ i) @)
Cm,n,k—zm,sze 2 M dw. (2.118)

For k = 0 the expression is the same except from a constant.

Remark 2.6.5. The Bessel function is implemented efficiently in Matlab which is the software
we use.

Note that we may apply the FFT in (2.118) after a numerical integration. That is one of the
reasons we choose this coefficients computation technique as the preferred one.
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2.7. CONCLUSIONS

Through this chapter, we have introduced the mathematical foundations that lay underneath
the research we present in the following chapters; to this end, we presented basic concepts
of probability theory and functional analysis. After that, we introduced Fourier analysis and
wavelet theory. Using the theory from the functional analysis section we have justified how
both Fourier and wavelet analysis can be used to approximate functions in L2(R). Once the
main concepts of wavelet theory were introduced, we presented the wavelet families that we
will be using throughout the thesis: Haar, Shannon and Chebyshev wavelets. We closed the
chapter presenting the Fourier inversion methods, and how to describe and implement them
efficiently combining concepts introduced in Fourier and wavelet theory.

Haar and Shannon wavelet families have been widely used in the literature, and algo-
rithms to implement Fourier inversion methods using them already exist. On the other hand,
Chebyshev wavelets have been introduced recently and to the best of our knowledge there has
been no previous work towards applying them to the Fourier inversion method. Hence, the
computation of the coefficients based on the use of the Bessel function is novel. Nevertheless,
note that approximation coefficients from the Chebyshev method have an extra parameter
because of the double sum on the approximation, thus the approach does not look promising
so far.

The inversion methods are based on the assumption that the Fourier transform of the
function to approximate is known. Since we aim to propose methods to approximate func-
tions in a competitive computational time, we emphasize that FFT algorithm in the coeffi-
cients computation of the three inversion methods can be applied.



CHAPTER 3

A Novel Two-Dimensional Technique for
Pricing European Options

The main aim of this chapter is to introduce the two-dimensional SWIFT method, a Fourier
inversion method based on Shannon wavelets used for pricing European rainbow options (de-
veloped through the scope of the thesis and published in the paper [22]).

With this objective in mind, this chapter starts by introducing the reader in the option pricing
area, presenting then the collection of the wavelet methods used for one-dimensional European
option pricing (based on Haar, Shannon and Chebyshev wavelets) and finalizing by putting
forward the SWIFT multidimensional extension.

This chapter is based on the books [9], [42] and on the articles [22], [65] and [67].

3.1. INTRODUCTION

In the last 50 years, derivatives have become increasingly important in finance, options being
actively traded on many exchanges through the world. A derivative can be defined as a finan-
cial instrument whose value depends on the values of others, called underlying assets. Option
contracts are a type of derivatives that give the holder a right, but not the obligation to exercise
the contract. Options are traded both on exchanges and in over-the-counter markets. There
are two types of options: a call option, which gives the holder the right to buy the underlying
asset by a certain date for a certain price, and a put option, which gives the holder the right
to sell the underlying asset by a certain date for a certain price. Options are traded on a wide
range of different underlying assets. The price in the contract is known as the exercise price or
strike price, the date in the contract is known as the expiration date or maturity. There are two
sides to every option contract: the investor who has bought the option is said to have taken a
long position, and the investor who has sold the option has taken a short position.

We can distinguish different options according to when they can be exercised. The most
basic ones, European options, can be exercised only on the expiration date itself. American
options can be exercised at any time point before their expiration date. Exotic options differ
in structure from common American or European options in terms of the underlying asset, or
the calculation of how or when the investor receives a certain payoff.

The optionality in exercising the right written in the option should be emphasized. This is
what distinguishes options from other contracts like forwards and futures, where the holder is
obliged to buy or sell the underlying asset. Whereas it costs nothing to enter into a forward or
futures contract, there is a cost to acquiring an option. Option pricing i.e., knowing the value
of the option (or the fair price of the contract) before maturity, is one of the big challenges
in the financial world. Option pricing theory has made vast strides since 1973, when Black

37
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and Scholes published their ground-breaking paper providing a model for valuing dividend-
protected European options. The Black-Scholes (BS) model makes certain assumptions: the
option must be European, no dividends are paid out during the life of the option, efficiency
of the markets, no transaction costs in buying the option, risk-free rate and volatility of the
underlying are known and constant, and returns on the underlying follow predetermined dy-
namics called geometric Brownian motion (GBM).

In the BS model, the price of the option is obtained as the solution of a partial differential
equation. The solution of this PDE can alternatively be written as a conditional expectation
by means of the Feynman-Kac theorem. This theorem shows that the conditional expectation
of the value of a contract payoff function under the risk-neutral measure is equivalent to the
solution of a partial differential equation and under the previous assumption, this partial dif-
ferential equation is the BS model and hence provides us with a closed formula for its solution.
Moreover, it is also useful within the Fourier inversion framework as we will see later.

An analytical formula for the option price is generally unavailable. Hence, there is a need
to develop numerical methods to approximate their prices and develop efficient algorithms
to implement them, so that they provide useful information in a market that changes rapidly.
The existing numerical methods for option pricing can be classified into three major groups:
Monte Carlo (MC) simulation, partial-(integro) differential equation (PIDE or PDE) methods,
and Fourier inversion methods. This thesis is focused on the subset of the Fourier inversion
methods that make use of wavelets. The wavelet inversion methods we work with are based
on knowing the Fourier transform of the probability density function corresponding to the
underlying stochastic process. That is why we focus on the subset of asset models called ex-
ponential Lévy processes for which the characteristic function is available. Exponential Lévy
models generalize the classical Black and Scholes set-up by allowing the stock prices to jump
while preserving the independence and stationarity of returns.

On the pricing of one-dimensional European options, we study Fourier inversion methods
based on Haar, Shannon and Chebyshev wavelets. From those methods, Shannon wavelets
are the ones that give better performance and that is why the method is chosen to be ex-
tended to multidimensional option pricing. We focus on extending the Shannon wavelets
Fourier inversion methods for pricing a class of multidimensional exotic options, known as
rainbow options. Analytical formulae to price multi-asset derivatives are only available for
the simplest cases and hence numerical solutions are necessary. However, numerical approx-
imations are very expensive to obtain, despite the efforts in the financial community to come
up with optimal methods. One of the most commonly used methods for pricing multidimen-
sional options is Monte Carlo simulation. This method has the advantage of scaling linearly
with the number of dimensions. However, convergence is slow and a large number of simula-
tions is needed if accurate results are desired. On the other hand, the numerical complexity of
both PDE and Fourier-based methods increase exponentially with dimension, a phenomenon
known as curse of dimensionality. For this reason, and despite their drawbacks, Monte Carlo
methods are the most commonly used methods when the dimension is larger than four or
five, depending on the specific product. Nevertheless, in the cases in which the characteris-
tic function of the multidimensional process is known, even for higher dimensions than one,
Fourier methods may be efficiently implemented so their numerical complexity is lower than
Monte Carlo simulation when the dimension is not very large.

One well-developed multidimensional Fourier-based method is the multidimensional COS
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method presented in [74] and called 2D-COS when the dimension is two. However, it may ex-
hibit problems in the vicinity of the integration boundaries because of the periodic behaviour
of cosines. This problem becomes evident for long maturity options, where round-off errors
may accumulate near domain boundaries. Also for short maturity options, typically governed
by a highly peaked density function, many cosine terms may be needed for an accurate rep-
resentation. In addition, an accurate integration interval is important to capture the whole
mass of the recovered density, but the choice of the interval is entirely based on the cumu-
lants, which sometimes are not easily available or do not provide a good truncation range.

In the one-dimensional case, local wavelets bases have been considered in [65, 67], which
overcome some of the problems of the known one-dimensional COS method [28]. Wavelets
give flexibility and enhance robustness when pricing long maturity options and heavy tailed
asset processes. We aim to extend the one-dimensional SWIFT method to higher dimensions
to be able to price European-style financial contracts with a payoff depending on more than
one asset. For two-dimensional contracts we call it 2D-SWIFT. We provide an error analy-
sis which facilitates the choice of the parameters of the new method and enhance the over-
all speed with a fast Fourier transform (FFT) algorithm. We test our method with examples
and methods from the literature, like for instance the well-known 2D-COS method. We price
basket (both geometric and arithmetic), spread, call-on-max, put-on-min, and correlation
options. The numerical experiments show that the 2D-SWIFT is a very competitive pricing
algorithm. The method benefits from the fact that we do not need to truncate the integra-
tion range a priori, the density coefficients can be computed with an FFT algorithm and the
number of terms can be automatically calculated once settled up the precision in the approx-
imation, achieving great precision with short running times.

This chapter is organized as follows. Section 3.2 is an introduction to the option pricing
topic, it covers the basic concepts, as well as the Black-Scholes setting, the idea of Lévy pro-
cesses, and the notion of the different approaches for option pricing. Inside it, the three one-
dimensional option pricing methods based on wavelets are also presented: Haar, Shannon
and Chebyshev. Then, we move to the main section of the chapter, Section 3.3, in which two-
dimensional SWIFT for option pricing is shown: first, it is introduced the multidimensional
wavelet framework, then the 2D-SWIFT pricing formula derivation with a rigorous study of
the error analysis of the method is presented, and at the end, a full set of numerical examples
to show the strength of the method is provided. Finally, Section 3.4 is a brief conclusion about
the aspects treated in the chapter.

3.2. EUROPEAN OPTION PRICING FRAMEWORK
We start by formally introducing the European call and put options also called vanilla options
because of their simplicity.

Definition 3.2.1. A European call option with exercise price (or strike price) K and maturity
time (exercise date) T on the underlying asset (with price S; at time t) is a contract defined by
the following clauses: the holder of the contract has, exactly at time T, the right to buy one unit
(or one share) of the underlying stock at the price K from the writer of the option; the holder of
the option is in no way obliged to buy the underlying stock.

A European put option is an option which in the same way gives the holder the right to sell
a unit (or a share) of the underlying asset at a predetermined strike price at time T, with no
obligation on selling.
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For convenience, we refer to the underlying asset as stock. The payoff of an option on the
expiration date is determined by the price of the underlying asset. The payoffs for a European
call option and European put options are as follows,

Call option payoff = (St — K)* = max (St - K,0), G

Put option payoff = (K — S7)* = max (K — S7,0), '
where S7 is equal to the spot price of the underlying security at time T and K equals the strike
price of the option.

Note that payoffs are never negative. We can plot them at expiration as function of the
price of the underlying asset, see Figure 3.1.
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Figure 3.1: Vanilla options payoffs, K = 100.

As mentioned in the introduction, the answer to the question: “what is a fair price for the
contract?” is one of the more widely studied problems in finance. The first model to answer
this question is attributed to Black, Scholes and Merton, and we introduce it next.

3.2.1. LEVY PROCESSES
BLACK-SCHOLES SETTING
The Black-Scholes formula (also called Black-Scholes-Merton) was the first widely used model
for option pricing. It is used to calculate the theoretical value of European-style options us-
ing current stock prices, expected dividends, the option’s strike price, expected interest rates,
time to expiration and expected volatility. The formula, developed by three economists: Fis-
cher Black, Myron Scholes and Robert Merton, is perhaps the world’s most well-known option
pricing model, and was introduced in 1973 in their paper, “The Pricing of Options and Cor-
porate Liabilities” published in the Journal of Political Economy, [10]. Black passed away two
years before Scholes and Merton were awarded the 1997 Nobel Prize in Economics for their
work in finding a new method to determine the value of derivatives (the Nobel Prize is not
given posthumously; however, the Nobel committee acknowledged Black’s role in the Black-
Scholes model).

The basic tool to understand continuous-time finance is the Brownian motion (also known
as Wiener process). To introduce it, first let us define what is a stochastic process, which is a
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mathematical object consisting of a (countable or uncountable) collection of random vari-
ables indexed by time.

Definition 3.2.2. Suppose that (£, %,P) is a probability space, and that I is a subset of [0, 00).
Suppose further that for each t € I, there is a random variable X; : QO — R defined on (£, %, P).
A family of random variables indexed by 9, X = {X;, t € 97}, is called a stochastic process.

A discrete time stochastic process is a countable collection of random variables indexed by
the non-negative integers, 9 = N, and a continuous time stochastic process is an uncountable
collection of random variables indexed by the non-negative real numbers, I = [0,00).

Definition 3.2.3. Being t the time variable, a Brownian motion (BM) or Wiener process is a
continuous-time stochastic process {Wy,0 < t < oo} such that,

1. Wy=0.

2. Wy is almost surely continuous.

3. W; has independent increments.
4 Wi—W~AH(0,t—5) for0<s<t,

where N (u,0?) denotes the normal distribution with expected value u and variance o>. The
condition that it has independent increments means that if0 < s1 < 11 < sy < fp then Wy, — Wy,
and Wy, — W, are independent random variables.

BM is not appropriate for modelling stock prices; the most obvious reason is that it can
take negative values. We introduce here a non-negative variation of BM called geometric
Brownian motion, which is a popular model for generating stock prices and leads to the Black-
Scholes model.

Definition 3.2.4. A stochastic process {S;, t € I} is said to follow a geometric Brownian mo-
tion if it satisfies the following stochastic differential equation (SDE),

dst:IJStdt‘FO'S[dW[, (3.2)

where Wy is a Brownian motion, and (i, known as the percentage drift, and o, known as the
percentage volatility, are constants.

Note that for an arbitrary initial value Sy the above SDE has the analytic solution,

s
St=50exp((p—?) l’+0'Wt). (3.3)

Now we turn to the Black-Scholes formula. The basic idea behind this formula is an ar-
bitrage equilibrium among three assets: stock, bond, and European call option. It is a risk-
neutral valuation because investors in their model economy were implicitly assumed to be
risk neutral and they are concerned only with maximizing profits. A more realistic, discrete-
time formulation of option pricing (by using a binomial tree) was later proposed by William
Sharpe [78], and formalized by Cox-Ross-Rubinstein in [24], which will not be discussed here.
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Theorem 3.2.5 (Black-Scholes partial differential equation). Let v(x, t) denote the price at time
t of a derivative (such as a European call option) of stock when Sy = x. Then v must satisfy the
partial differential equation,
6v+6vrx+102v02x2 rv=0 (3.4)
ot 0x 2 0x? 7 '
where, 1 is the interest rate and o the volatility. With a final condition being the payoff of the
option at the maturity time.

There exists a relationship between call and put options, which naturally arises because
of the arbitrage conditions in financial markets equilibrium. It is called the put-call parity
relation, if v, is the price of the put and v, the price of the call, then,

rT

vVe+Ke ' = vp+So, (3.5)

at time t = 0. The formula shows that the value of a European call with a certain exercise price
and exercise date can be deduced from the value of a European put with the same exercise
price and exercise date, and viceversa.

It remains to introduce the Black-Scholes pricing formula. The approach adopted by Black
and Scholes consisted in transforming the Black Scholes PDE into the heat equation [10],
for which a solution is known. But we will alternatively present it by the application of the
Feynman-Kac theorem. Feynman-Kac theorem establishes a link between parabolic partial
differential equations and stochastic processes.

Theorem 3.2.6 (Feynman-Kac). Suppose that x = x; follows the process,
dx=p(x, ndt+o(x, )dW?, (3.6)

under the risk neutral probability measure Q, with Wt@ a Wiener process. And suppose that for
allxeR and t € [0, T| a sufficiently differential function v = v(x, t) follows the partial differen-
tiable equation given by,

2

102 4 Lo 022l v v =0 3.7)
MO UG T2 70 g~ DV =R '

ov

ot

with boundary condition v(x, T), where , o, r are known functions. Then, v(x, t) can be writ-
ten as,
T
v(x, 1) =BQ | e Jr Towduy (¢ ) 77, | (3.8)

where EQ represents the expected value with respect to the risk neutral measure Q and F, is a
filtration.

To apply the Feynman-Kac theorem to the Black-Scholes call price, one can note that the
value v, = v(Sy, t) of a European call option written at time ¢ with strike price K when interest
rates are constant r follows the Black-Scholes PDE (3.4) with boundary condition v(St, T) =
(St — K)*. This PDE is the PDE in Equation (3.7) with x = Sy, u(x,t) =Sy, and o(x, t) = 0 S;.
Hence, the Feynman-Kac theorem applies and the value of the European call is,

ve=v(S, ) =e " TTIEL[(Sr- KT I1F], (3.9)
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which can be evaluated by straightforward integration and gives the call price that we present
in the next theorem. The put price can be obtained analogously or by the put-call parity rela-
tionin (3.5).

Theorem 3.2.7 (Black-Scholes option pricing formula). When the stock price S; follows a GBM,
the price of a European call option v (Sy, t) with time to maturity At = T —t (T is maturity date
and t the initial date), strike price K, with constant volatility o and constant rate r is given by,

Ve(Sp, ) = S ®(dy) — e "M KD (dy), (3.10)
where ,
log(%) + (r+ %)At
dy = , (3.11)
oVAt

dy = dy — oV At, and where ®(y) = \/%7[ f_yoo e~2 dt is the standard normal CDE Similarly, the
price of a European put option v,(Sy, t) on the same variables is,

Vp(Sy, 1) = e TAKD(—dy) — S, D(~dy). (3.12)

LEVY PROCESSES

As mentioned in the introduction, the Black-Scholes model relies on a number of assump-
tions, one of them being that the underlying asset dynamics follows a GBM. However, later
research has shown that GBM has serious drawbacks at describing the stocks market. Expo-
nential Lévy models generalize the classical Black and Scholes set-up by allowing the stock
prices to jump while preserving the independence and stationary of returns. This agrees with
empirical data so it makes them better fitted to model the underlying dynamics. Moreover, we
are especially interested in them since the characteristic function is known so we can apply
Fourier inversion methods. Lévy processes provide a framework that can easily capture the
empirical observations both under the real-world and under the risk-neutral measure. The
reader is referred to [69] for indicative examples and also to [23] and [77] for description of the
processes.

Definition 3.2.8. A stochastic process £ ={%;: t = 0} is said to be a Lévy process if it satisfies
the following properties:

1. %y =0 almost surely.

2. Forany0s i<t <---<tp<oo, %, -y, Ly, —%Ls,,.... %L1, — <y, , are independent
(independence of increments).

3. Foranys<t, %;—%; is equal in distribution to £;_; (stationary increments).

4. Foranye >0 and t =0 it holds thatlimy,_.oIP(| %+, — £l > €) = 0 (continuity in proba-
bility).

Under the real-world measure, we model the asset price process as the exponential of a
Lévy process, that is,
Si=Soexp %, 0=st=<T, (3.13)
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where {Z;: t = 0} is the Lévy process whose distribution has been estimated from the data set
available for the particular asset.
By the Lévy-Khintchine formula, see [23], the characteristic function of the Lévy process
% equals,
fe, 1) =exp—t¥ o (W), (3.14)

where ¥ & is the characteristic exponent defined as ¥ ¢ (w) :=logE [exp(iw%#))], and its exis-
tence is proved in [69].

3.2.2. NUMERICAL METHODS
As stated previously, the numerical methods used for option pricing can be classified in three
major categories.

MONTE CARLO METHODS

A widely used method for pricing options is to use a Monte Carlo simulation. The main ad-
vantage of this method is that complex and exotic derivatives can be treated easily — which is
very important in applications. Moreover, options on several assets can also be handled easily
using Monte Carlo simulations. The main drawback of Monte Carlo methods is the slow com-
putational speed due to the required large number of simulations in order to have accurate
results.

PIDE/PDE METHODS
An alternative for pricing options is to derive and then solve numerically the partial integro-
differential equation that the option price satisfies. Note that in their seminal paper Black and
Scholes derive such a PDE for the price of a European option.

The advantage of PIDE/PDE methods is that complex and exotic payoffs can be treated
easily; the limitations are the slower speed in comparison to inversion methods and the com-
putational complexity when handling options on several assets.

FOURIER INVERSION METHODS

Another choice of methods are the Fourier inversion techniques. The pricing of European
options in computational finance is governed by the numerical solution of partial differential,
or partial integro-differential, equations. The corresponding solution, being the option value
at time ¢, can be found by means of the Feynman-Kac formula as a discounted expectation of
the option value at final time ¢ = T, the so-called payoff function. Here we consider the risk
neutral valuation formula,

vix, ) =e "TTOER [u(y, Dx] = e—’(T‘”f v(y, T) f(ylx)dy, (3.15)
R

where v denotes the option pricing value, T is the maturity, ¢ the initial date, IE? the expecta-
tion under the risk-neutral measure @, x and y are state variables at time ¢ and T, respectively,
f(ylx) is the probability density of y given x and r is the risk-neutral interest rate.

Whereas f is typically not known, the characteristic function of the log-asset price is often
available (sometimes in closed-form), that is, the Fourier transform of f. We represent the
payoff as a function of the log-asset price, and denote the log-asset prices by,

x=1log(S;/K) and y=1log(Sr/K), (3.16)
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with S; the underlying price at time ¢ and K the strike price. The payoff v(y, T) for European
options in log-asset space is then given by,

1, f 11,
v(y, T)= [aK(ey—l)]+, with a = oraca (3.17)
—1, foraput.

From formula (3.17), the strategy to determine the price of the option using wavelet inversion
methods consists of replacing the density function f by an approximation based on a wavelet
expansion (i.e. the methods we have already presented in Section 2.6) where the coefficients
are recovered from the Fourier transform.

In what follows, we introduce how to deal with option pricing in each of the wavelet in-
version methods presented. From now on, we assume that the density functions are in [2(R).
Since we can expect that the mass in the tails of the density function f(y|x) rapidly decays to
zero, we can apply the methods explained before in Section 2.6.

Now, let us introduce the concept of cumulants which helps us to determine finite do-
mains in these Fourier techniques.

Definition 3.2.9. Let X be a random variable and fX its corresponding characteristic function.
We define the cumulant generating function of X by,

g() :=logE [eX] = log fx(~iw), (3.18)

and the i™ cumulant of X, denoted by ;, is given by the i — th derivative at zero of g(w),
x; := g (0). (3.19)
When numerically approximating integrals, truncation of integrals with infinite integra-

tion domain is required. A proposed way in [28] is to make use on the cumulants of the distri-
bution. Let k; denote the n-th cumulant of y =1og(S7/K) and let L > 0 be a scaling parameter,

then,
K1 —L\/K2+\/K ,k1+L\/’K2+\/K4

where L is suggested to be chosen in the range [7.5,10].

la,b] := , (3.20)

3.2.3. ONE-DIMENSIONAL OPTION PRICING WAVELET METHODS
We devote this section to introduce the option pricing methods based on the wavelets pre-
sented before in Section 2.5.

HAAR-WA OPTION PRICING

This option pricing method is original from [65]. We follow the steps given by the authors
to introduce it. Let us start by truncating the infinity integration range to [a, b] < R without
loosing significant accuracy. In order to carry out this truncation the cumulants approach of
(3.20) is used. Using the WA expansion (2.91), the density function is approximated by,

2m—1
Py =Y Cﬁ,k(xkpﬁ,k(
k=0

y—a)_

b—a (3.21)
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Note the [a, b] because of the truncation of the interval. Then, it is used in the valuation
formula,

b
b(x, B) = V1Y) (x, 1) = D f v, T f (0 dy,
a

b
V1P (x, 1) = v1@P) (x, 1) = e"(T_”f v(y, D fi4P (y1x)dy, (3.22)

a

2m—
b — T =
vt e 0 = vl 0 i=e T Y el ve
k=0

where, )
a . H (Y—4
Vm,k.—fu v(y,T)d)m’k(b_a)dy, (3.23)

are called the payoff coefficients, and cf;l[’ .. are the coefficients of the density approximation
given by (2.97) and thus called density coefficients. Recall that we have a = 1 for a call option
and a = —1 for a put option. The expression of the payoff coefficients is given in the next
proposition. The proof can be found in [65].

Proposition 3.2.10. Let us define Ay, = %, Br=a+ kA, vi=Pr+Am, 6 =max(0, By) and
(. = min(0,y). Assuming that a < 0 < b, then the coefficients computed by the WA method are
as follows,

. 2’"’2K(e7'<‘e§k+5"—7"), foryi>0, (3.24)
mk 0, otheruwise. ’ '

. zm/ZK(eﬁk—e(k+(k—ﬁk)’ for B <0, 5.25)
mk 0, otherwise. .

fork=0,..,2"~1. Ifa<b<0 then, V, , =0,V | = 2M2K (ePr — eV +y1.— By), for k =
0,...,2™ —1. And conversely, if0 < a < b then, Vn‘l,lk =0, V;l’k = 22K (e¥k — ePr + By —yy) for
k=0,...,2Mm—1.

There is a complete error analysis available in Section 4 of [65].

SWIFT OPTION PRICING
The SWIFT option pricing method is introduced in [67]. It starts by approximating the density
function f in terms of a Shannon wavelets expansion, as presented in Section 2.6.2,

ky
fol0 =Y e D (D= Y cn (065, (). (3.26)
kezZ k=k,

The approximation on the right hand side of (3.26) come from the fact of that the coefficients

vanish when k — oo if we assume that limy_.., f(x) =0.

We set I, = [Zk—,i,, Zk—,i] , then the option pricing formula becomes,

(3.27)

ko
v(x, ) % Ups(x, )= 7Ty cﬁl WV
s

k=ky
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where V;,, . are the payoff coefficients defined as,

Vi 1= fl v(y, DS,  ()dy. (3.28)

The truncation parameters k; and ky, are defined by means of cumulants, see (3.20). If a
and b are the parameters given by the cumulants, then

k k
—L<a<bs =, (3.29)
2m 2m
which implies [a, b] < I},.

Based on Proposition 2 of [67], we have the following expression for the payoff coefficients.

Note that the proof can be found there as well.

Proposition 3.2.11. Let us define k; = max(k;,0), k» = min(ky,0). The payoff coefficients for a
European call option are computed as follows,

szlz 21 1 ki ke k1 ks .
B L e A S
' ’ 0, ifk, <0.
and for the put option,
K2mi/2 2] 1 k ]‘C_ _ ki ]‘C_ .
mG~V 1*:: 271 [Il(zrlnrzri) IZ(zr}wZVZn)]r lfkl<0,, (331)
0) lfk] = 0.
where,
szm b .; m a.: m
Il(a,b):m [e sin(C;(2"b—k)) —e“sin(C;j2"a-k))
J
+ cjzm (eb cos(Cj2"b—k)) —ecos(C;j(2"a- k)))] , (3.32)

I(a,b) = (sm(cj(z'”b k)) —sin(C;(2"a-k))),

21
and Cj = =5—1.

Note that by considering a constant J in (3.30) and (3.31), it is possible to apply the FFT to
speed up the computation of payoff coefficients.

CHEBYSHEV-WA OPTION PRICING
For option pricing using Chebyshev wavelets we consider first kind Chebyshev wavelets pre-
sented in Section 2.5.3. The option pricing formula is,

vx, ) =e A fR vy, D f(y | x)dy, (3.33)

where v(y, T) is the payoff function of the option. After truncating the integral and approxi-
mating the density by Chebyshev wavelets, we end up with,

2k-1 p—1

v(x, t) = U[a b](x, £ =e "™ Zl ,CZ cmnkf v(y, T)wrcn)n’k(ylx)dy. (3.34)
n 0
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We define the payoff coefficients as,

b
Vin,nk (X) :=/ ¢, 10y, TYdy. (3.35)
a

Thus, we can rewrite the pricing formula as,

2k -1
,b -rA
UL?,C] (x,n)=e rAt Zl kX: ng,n,kvm»”)k(x)' (3.36)
n=1 k=0

Let us show how to compute the payoff coefficients (3.35) for a put option (the call option
would be analogous). Recall that for a put option, the payoffis v(y, T) = [K(1 - e”)]*. Thus,

b
Vi) =K [ (1= S, v 10y
. (3.37)

=K (l_e_)/) C ( |x)d,
[a,blN(-00,0] ViV Y.

From this last expression, we consider three situations: a<0<b,a<b<0and0<a<b,let]
represent any of them. In each case, we need to compute the following two integrals,

fl v w0y, fI eyl (dy. (3.38)

Using the properties detailed in Remark 2.5.2, it is straightforward to compute the first inte-
gral. The difficulty comes from computing the second integral. After some algebraic manipu-
lations we arrive to the following integral,

f e Ti(x)dx, (3.39)
I’

where I is an arithmetic modification of the previous domain I. We tried to solve this inte-
gral using two different approaches: the trigonometric expression and the recursive formula.
However, we did not arrive to any efficient form to compute the integral.

Summarizing, Chebysev wavelets in the context of option pricing present lots of difficul-
ties in terms of computational efficiency. We could use numerical integration to approximate
the integral but this would mean more errors and a significant increase in CPU time. Recall
that the method to compute the density coefficients in (2.118) is computationally involved.
That is why we do not consider Chebyshev wavelet method for option pricing any more since
it cannot compete against WA or SWIFT.

NUMERICAL EXAMPLES

We briefly show the performance of WA and SWIFT in option pricing. We can observe that
SWIFT achieves more accurate results even using fewer terms in the approximation. For this
reason, we will extend it to the multidimensional case because it is the one that performs
better in the option pricing problem, see more about its performance in [67].
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Figure 3.2: Comparing WA and SWIFT for pricing European Call option with
§=100,K=120,r=0.1,0 =0.3and T =0.1.

3.3. TWO-DIMENSIONAL SWIFT FOR OPTION PRICING

We extend the SWIFT method to higher dimensions and use it to price exotic option contracts.
The multidimensional extension inherits the properties of the one-dimensional method, the
exponential convergence being one of them.

In order to present the method, we first need to extend wavelet theory to the multidimen-
sional case. It is presented for two dimensions, and it can be extended in the same way to any
dimensions. However, we should keep in mind that due to the curse of dimensionality of this
method (or any other method of this nature), wavelets can only approximate functions up to
areasonable number of dimensions.

The state-of-the-art method from the same nature is the 2D-COS method [74]. We use it
as a benchmark, so let us present a brief introduction to the method. Note that bold letters
denote vectors.

Remark 3.3.1. The COS method is based on Fourier cosine series expansions. The COS method
in one dimension [28] reads,

b N-1
v(x, 1) = e "ME [(Xy, Tl » Tae‘r“Z' Vie(T)Fie(x0), (3.40)
k=0

where,

2 A k e
Fr(x) = b—am(f(b_na)elknm)’
3.41)

2 [P y—a
Vi(T) = —— v(y, T)cos|kn=——|dy,
e (T) b_afa (. ) cos (kmy— ) dy
and the apostrophe in the sum means a slightly modification for the k = 0 coefficient expression.
The parameters [a, b] are the truncated domain determined by the cumulants. And N is the
number of terms, without a rule on how to choose it.
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The 2D-COS method [74] reads,

—ay by —a Ni—1N,—1
vx, 1) = e MES (X, T)) = AT A 2" e Ay Z Vioky(DF 1, (%), (3.42)
2 K120 k220
where,
Ff x)+F.  (x)
ki k Ky k
Fkl,kz(x): 1,k 5 1,2 ,
2 A klﬂ’
Ff (x)= —— R ex (—ikln Fikom ) ,
ky,ky b1—a; by —ay by — al’ibfijzz Ix p b—a by — ay
Q1 Q-1 2nm +1 2np+1by—a; by—a
Ve ko (T) = Z Z g ,y22)cos(k17r : )COS(]CzJI 2 L e 2).
=0712=0 2Q Q Q

(3.43)

The parameters [ay, b1], [az, by] are the truncated domains in each dimension determined by
the cumulants. N1, N, are the same as N for each dimension, and Q is a parameter that appears
from a numerical integration.

From now on, in order to simplify notation, we omit the measure Q in the expectation
symbol E?, so we just use IE.

3.3.1. MULTIDIMENSIONAL WAVELETS FRAMEWORK
We introduce here some useful definitions for the two-dimensional wavelet framework which
can be easily extended to more dimensions.

We work now in L2(R?), which is the vector space of measurable, square-integrable two-
dimensional functions. For any two functions h(x, y), p(x, y) € L?(R?), their inner product in
L? (R?) is defined by,

(h(x,y),p(x¥)): ff x,y)p(x,y)dxdy, (3.44)

where p is the complex conjugate of p. The bivariate Fourier transform of a function h(x, y) €
L?(R?) is defined by,

h(u1, up) = ff h(x,y)e (x+wy) gxqy, (3.45)
R2

We introduce now the wavelet theory in two dimensions. Note that we base the discussion
on the multiresolution analysis because as we have already mentioned, it is how Shannon
wavelets are structured. Multiresolution analysis which defines general wavelet structures in
L? spaces, can be generalized to any dimension d € N (see [59] for details). We illustrate the
two-dimensional case.

A multiresolution approximation of L?(R?) is a sequence of subspaces of L?(R?) which
satisfies a straightforward two-dimensional extension of the properties of MRA presented in
Definition 2.4.3. Let (V,%) me7 be such a multiresolution approximation of L[%(R?). One can
show that there exists a unique two-dimensional scaling function ®(x, y) whose dilation and
translation give an orthonormal basis of each space V,%,l (see [25, 50]).
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We stay in the particular case of separable wavelet bases and separable multiresolutions,
due to the direct connection to the one-dimensional case, and because it avoids mixing of in-
formation at two different scales. For such multiresolution approximations, each vector space
V2 is decomposed as a tensor product of two identical subspaces of L?(R) whose elements are
products of functions dilated at the same scale,

V2=V ® V. (3.46)

The sequence of vector spaces (V,%l) mez forms a multiresolution approximation of L2(R?) if
and only if {V;;, m € Z} is a multiresolution analysis of L%(R). It is easy to see that the two-
dimensional scaling function ®(x, y) can be written as,

D(x,y) :=Pp(x)P(y), (3.47)

where ¢(x) is the one-dimensional scaling function of V.
As stated, {¢p,;, x; k € Z} is an orthonormal basis of V. Since V,% =V ® Vy,, for x = (x1, x2)
and k = (ki, k»), we have that,

{ @k () = Pk, (K1) P e, (2D 22 (3.48)

is an orthonormal basis of V2.
Let W2, be the detail space equal to the orthogonal complement of the lower resolution

approximation space V,%l in Vr%l +1

2 2 2
V2 =VieW?:. (3.49)

m+1 =

The following theorem builds a wavelet basis of each detail space W,7;l, to construct later a
wavelet orthonormal basis of L?(R?). A separable orthonormal wavelet basis of L?(R?) is con-
structed with separable products of a scaling function ¢ and a wavelet .

Theorem 3.3.2 (Theorem 7.24 of [50]). Let ¢ be a scaling function and y be the corresponding
wavelet generating a orthonormal wavelet basis of L*>(R). We define the three wavelets,

Wl(x) = plx)w(x), P2(x) = w(x1)d(x2), P2 (x) = w(x)y(x2), (3.50)

and denote, forl=n<3,

W, e @) = 2" (2" — ky, 2" — ke). (3.51)
Then, the wavelet family,
1 2 3
{\Pm,k‘ \Pm,k‘ \Pm’k}kezz (3.52)
forms an orthonormal basis of W2,. And,
1 2 3
{\Pm,k’ \Pm,k’ \Pm'k}(m,k)EZxZZ (353)

forms an orthonormal basis of L2(R?).
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For any function f(x1, x2) € I2(R?), a projection map %2, : [2(R?) — V,%,l is defined as,

m—1

Pufx,x2)i= Y, > > > A7k T, (1 X2)
je—con=1,23k €z k,eZ

=3 ) Cmkik@mky ks, (X1, X2) (3.54)
ki1€ZkyeZ
= Z Z Cm,kl,kz(,bm,kl (xl)¢m,k2(x2)r
k1 eZ kgEZ
where,
Crm,ky ks C=ffRzf(xl,xz)q)m,kl,kz(xl,xz)dxldxz (3.55)
are the scaling coefficients, and,
n . n
dj,k1,k2 = ,/\[[RZ f(xl,xg)‘l’m,kbkz (xl,xg) dxldxg (3.56)

are the wavelets coefficients. The convergence is in the L?(R?) norm, this is,

I f—Pmfll2 iy (3.57)

0.
—+00

We consider the Shannon father function rather than the mother wavelet, due to its tractabil-
ity and simplicity. Hence, our wavelet bases are a set of Shannon scaling functions in the
subspace V;;, given by, for x € R,

Gk (x) = 2" 2sinc (2" x — k). (3.58)

The two-dimensional Shannon scaling function is given by, see Figure 3.3,

Dy iy ko (X1, X2) 1= P ey (K1) P e, (X2) = 2" sinc (2™ x1 — ky)sinc (2" x2 — k). (3.59)

1
0.8
0.6
0.4
0.2

0
-0.2
-0.4

5 EL ; B KO 5

Figure 3.3: Two-dimensional Shannon wavelet ®¢ ¢ o (x1, x2), with
(x1,%2) € [~6,6]%.
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Wavelets bases in higher dimensions

Separable orthonormal wavelet bases of L?(RP) can be constructed for any p = 2 with a pro-

cedure similar to the two-dimensional extension. Let ¢ be a scaling function and y a wavelet

that yields an orthogonal basis of L?(R). Now, we have that V) = V,,® ---® V,,, and W}, is the

detail space, i.e. the orthogonal complement of the lower resolution approximation space.
We denote 0° := ¢ and 6 := . For an integer 0 < ¢ < 27 written in binary form, e = €1 - -¢,,

we associate p-dimensional functions defined in x = (x1,---, xp) by,

e (x) := 0% (x1) -0 (xp), (3.60)

For € = 0, we obtain a p—dimensional scaling function,

YO x) = x) - (xp). (3.61)

Non-zero indexes € correspond to 27 — 1 wavelets. At any scale 2™ and for n = (ny,---, np) we
denote,

Yo () 1= 2P 2 (2" xy — g, -, 2™ X — ). (3.62)

Theorem 3.3.3 (Theorem 7.25 in [50]). The family obtained by dilating and translating the
2P — 1 wavelets fore # 0,

{wf;”:"}lsxzp,nezp (3.63)
is an orthonormal basis of W),. And the family,
{Win,n}156<2ny(myn)ezp+l (3.64)

is an orthonormal basis of L? (RP).

For any function f € L2(RP), a projection map of L%(RP) onto V,Z, P, . L>([RP) — Vn’i, is
defined as,

P f (%) : = Z ) IED IR Z ey W e e e, ()

j=—000<es2P kyeZk,€Z k€ (3.65)

=Y Y Y ke ky Pk KD Pk, (X2) - Pk, (Xp),
ki€Zk, ez  kpez

where ¢, -k, are the scaling coefficients and d ]” kuks the wavelets coefficients.
The p-dimensional Shannon scaling function is given by,

D, ky, e ky (X) 1= P ey (1) - Py, () = Z%Sinc(mel — k1) ---sinc(2" x,, — kp). (3.66)

Further details about wavelets in high dimensions can be found in Section 7.7.4 of [50].

3.3.2. EUROPEAN RAINBOW OPTION PRICING
Motivation
We start this section by defining the two-dimensional pricing formula as a discounted expec-
tation of the option value at expiration.

Similarly as in dimension one, assume (Q, %, P) is a probability space, T > 0 is the finite
terminal time, and I = (¥5)p<s< is a filtration with the usual conditions. Then, the process



54 3. ANOVEL TWO-DIMENSIONAL TECHNIQUE FOR PRICING EUROPEAN OPTIONS

X; = (X},X?) denotes a two-dimensional stochastic process on the filtered probability space

Q,&,TF, P), representing the log-asset prices of the underlying asset. We assume that the
bivariate characteristic function of the stochastic process is known.

The value of a European rainbow option with payoff function g(-), which depends on the
underlying asset price, is given by the risk-neutral option valuation formula,

vx,0) = e "ME[gXp)] =e f fR 8w fydy, (3.67)

where x = (x1, x2) is the current state, f(y1,y21x1,X2) is the underlying conditional density
function, r is the risk-free rate and At := T — ¢ denotes time to expiration.

The strategy followed to determine the price of the multidimensional option follows the
same idea as for the one-dimensional options. It consists of approximating the density func-
tion f in (3.67) by a finite combination of Shannon scaling functions and recovering the coef-
ficients of the approximation from its Fourier transform.

Option pricing

We present the 2D-SWIFT formula to recover the density function f in expression (3.67) as-
suming that its Fourier transform f is known. The density function of the asset price pro-
cess at terminal time T is usually not known, but often its characteristic function is known.
The method is based on the approximation of the density function by a finite combination of
Shannon wavelets in dimension two. Once the density has been recovered, we replace f by its
approximation in formula (3.67) to get the final price of the financial contract. This two-step
procedure is explained in detail first, while the general case for higher dimensions is briefly
exposed later.

DERIVATION OF THE 2D-SWIFT METHOD
As mentioned before, the first step during the derivation of the 2D-SWIFT pricing formula is
the recovery of the density function. We distinguish three main steps,

Step 1. We approximate the conditional density function by a finite combination of Shan-
non scaling functions,

Fx) = fiyIX) =Py fylx) =Y, D Dy k, P ke ke, (V) (3.68)
k]€Zk2€Z

where Dy, i, r,, the density coefficients, are defined by,

Dm,kl,kz x) := ffRZ f(Y|X)(Dm,kbk2 (y) dy. (3.69)

Step 2. Next, we truncate the summation range such that ky € {ly,...,uj} and kp € {l5, ..., up},
and thus, the density approximation becomes,

AWK = LyX):= D Y Dk, P iy k, () (3.70)
klzll kzzlz

Step 3. Using the complex exponential formula (3.74), we approximate the two-dimensional
Shannon scaling function as,

zm N o fom N o foma
Pty ko V) = Py, )= 17 2 € @"n=k) § 10, 272k, (3.71)
ji=1 J2=1
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2j-1 . . . . . .
where Q; = -7 + ]T”' For convenience, we use in both dimensions the same discretization

for the sinc approximation, this is, N points.
Then, from (3.69) and (3.71), we approximate the density coefficients D, k, i, (X) by,

Din,kl,kz x):= szf(y|x)®;Yklyk2 (y)dy
om N N

_.Zn: ann 'Zn:, anm n
g ,-Z_l jz—le e ffmzf (ylxe! =12 d y d ys 3.72)
1=1 2=
om N N iy O ko 2
:ﬁ -Zl Zle e nf(_lezm,_szzmlx)'
J1i=1)2=

Finally, from (3.70) and (3.72) we obtain the density approximation,
uy U

fz(Y|X) = f* (y|X) = Z Z D:’l,kl,kg (x)q)m,kl,kz (Y) (3.73)
klzll k'g:lz

Approximation of the sinc function
Central to the option pricing process, is a convenient approximation of the sinc function by
means of a midpoint quadrature rule. For ¢, x € R,

L[~ 4 1 X\ I . 1 & 0
sinc(t) = —fsinc(x)e’ Ydx= —frect(—) e xdx:—f e'™ dx = sincy (1) := — Ze’ it
27 Jr 27 Jr 2n 27 Jn N5

(3.74)
where sinc represents the Fourier transform of sinc, N is the number of points in the midpoint
quadrature and Q; := -7 + %n.

Recall that the approximation presented in the one-dimensional case in (2.105) reads,

1A -1 ) 1A .
sinc(#) = sinc™ () := —— ) cos t| = S Y cos(w;1), (3.75)
j=1 j=1

1
2/- 2J 4

forw; = zé—jln. It can be easily shown that the approximation (2.105) is a particular case of
the approximation (3.74) for N = 2/, indeed,

N/2 P N/2 ( . (2j- [ 2j- N/2 . (2i-
SlnC*(t) — E Z COS(ZJ lj[[) _ l Z (el(ZJNI)nt'l'e_l[Z]Nl)nt) _ 1 el(Zle)nt
N N &

(3.76)

12 I8P e _ 1 2 i3 e _ 1 N (A e _
+— e'\'N = _ e UN = — e\ N =sincy (7).
Nj:lgN/Z Nj=1ZN/2 Nj; "

The complex exponential form (3.74) will facilitate the derivation of the density and payoff
coefficients along the option pricing procedure presented in the next section.

The 2D-SWIFT formula for the approximation of v(x, t) in (3.67) is obtained first by trun-
cating the integration range,

by b
VX, ) = vi(x, 1) = e”mf f gy) f(ylx) ady, (3.77)
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for some values a,, ay, by, b2, and then replacing the density f(y|x) by the approximation
f*(ylx) from (3.73). Finally, the 2D-SWIFT pricing formula is given by,

b b,
nxH=vixt:= e_rAtf f gy) f*ylx) dy

Uy b1 bz
Y Y D00 [ ey a7
k=l k=1,
uy U
=e_rAt Z Z D:ﬂ,kl,kg(x) vakl’kz’
klzll kgzlg

where we define the payoff coefficients as,

bl bz
Gm,ky k, = f EW P,k k, (y) dy. (3.79)
a ay

Remark 3.3.4. An alternative method to get the density coefficients would be a straightforward
extension of the one-dimensional method [67], which basically considers the approximation in
(2.105) for the sinc function. We approximate the two-dimensional Shannon scaling function

as,
m  2J71 !

O ke ) = 30771y Z 2 cos(), " y1 — ki) cos(w), (2™ y2 — k2)), (3.80)
J1=1j2=1
wherew; : 2]2, 7. Hence, the density coefficients can also be approximated by,
om 2772/t
Dy 1, ® = o Z Z ffsz(ylx) [T cosw;, @™ yn—ky)) dy. (3.81)
n=1,2

Using the goniometric relation 2 cos(a) cos(f8) = cos(a + B) + cos(a — ), we obtain from (3.81),

gom+1 2/71 2/

Die k™ = 5551 2

fR flylxcos( Y wj, @™y, —kp)dy
2 n=1,2

=1 j2=1 (3.82)
f fycos( Y D" wj,@"yn—ka)) dy|.
n=1.2
Observe that —wj, = w1-j,. Then,
gm+l 2771 27!
Dyt ke ® = 571y Y ffzf(ylx)cos( Y w;,@"yn—ky)) dy. (3.83)
h=1j=1-2-1//R n=1,2

SinceRe % = cos(a), we find,

om+1 271 2/t

m, (CiX =120, 2" yu—kn))
Dm,kl,kg(x) 22(] 1 Z Z f[l;iz f(y|x)e l 1,20 ¥ dy

=1 jp=1-2/-1
om+1 271 2/

22(] 5 (iZn:I,ijnkn) ffzf(Y|X)e(_iZ"=1'2wjn2mJ’n) dy (3.84)
R

h1=1j,=1-2/-1

om+1 271 o1

(OIS n n)
= 220-1) Y Y fwp2"wp2Mxelmeei
J1=1 j,=1-2/-1
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where f is the Fourier transform of f. For N = 2/, we have D* ky kg( X) = D** Lk (x). We note
that Vieta’s formula is more tedious to use and we will therefore consider the approxzmatzon
(3.74) to compute the payoff coefficients in Section 3.3.4.

Remark 3.3.5. In our search for an efficient method, formula (3.72) can be conveniently rear-
ranged to get a new expression where an FFT algorithm can be applied. Using the fact that,

—i2nk

. _ Ny o
-iQjk= (j-1) mk(N 1), (3.85)

N N N —i2nk: . —i2nk .
D}, i) = e Ttk Z Y F(-9;2m,-q2m e v e W (D) (3.86)
=1 =1

We apply N times an FFT for each sum in (3.86) and the computational complexity to perform
this task is G (N?log, (N)).

GENERAL MULTIDIMENSIONAL SWIFT FORMULA
The 2D-SWIFT formula can be easily generalized to higher dimensions. It is clear, however,
that if we choose the dimension d to be very large, the curse of dimensionality issue will occur
and numerical techniques turn out to be useless in practical terms.

For x € R%, the d-dimensional formula reads,

u 1273 Uq
v =e Y N e Y D @Gk ke ki (3.87)
klzllkzzlz kd:ld
where,
2% (L-1)(ky +hytrtg)
* _ —im + +eet m m m
Dm,klykzw,kd(x)_]\[de T ¢ Z Z Z f( ‘Q‘le szz ’“"_Q]'dz )

=l o=l ja=la

—i2nk . —i2nky (. i2mk
ce vt Uam) L= 2 (o) gt (1 1)

(3.88)

and,
by by ba
G,k ke kg =f f EWDP k) ky, - kg (V) AY. (3.89)
a ay aq

3.3.3. ERROR ANALYSIS AND PARAMETERS SELECTION
In this section, we present an error analysis of the 2D-SWIFT method and give a prescription
on the selection of the parameters.

ERROR ANALYSIS

There are two main sources of error. The first one is the error due to the truncation of the
integration range in (3.67), while the second one is the error caused by replacing the density
function f in (3.77) by f*. If we define,

& =lvx, - 1), and, &:=|v(x1)—-v*(x 1), (3.90)
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then the overall error & := |v(x, f) — v* (X, )| can be bounded by & < &; + &». In what follows,
we give a detailed analysis of the error. Let us start by considering,

&1 =lvx, ) -l = f lgy) f(ylx)| dy. (3.91)
R\[a1,b1] JR\[ay,b,)

Since the mass in the tails of the density function f tends to zero at infinity, for every £; > 0
there exist values ay, ay, b1, b» > 0 such that,

T:= f f flydy=e. (3.92)
R\[ay,b;] JR\[ay,b,]

If we assume that g is bounded in the domain of integration, then,
&1 =78l (3.93)

where ||gllo is the infinity norm of g. This error can be made arbitrarily small by increas-
ing the size of the truncation intervals. Observe that the assumption on the boundedness of
function g is satisfied for put options. If we consider call options, then we may impose some
assumptions on the decay rate of the density function f to have an estimation of the error.
For sake of clarity and simplicity in the exposition, we stay within the assumption of bounded
payoffs.

As mentioned in Section 3.3.2, there are three sources of error when approximating f by
f*. If we define,

(i) the projection error, given by,

€p:=|fy® - AW ={fyX = Y Y Dy, @iy, (W] (3.94)
ki€Zk,eZ
where Dy, i, , and @, i, i, are in (3.69) and (3.59) respectively,
(i) the sum truncation error,
e =1AX - L= ) Y Dk, @@k, W) (3.95)
kil un} koglly, - up}
(iii) and the coefficients approximation error,
1251 Uy
ec:=lLy-rymi=|> Y (Dm,kl,kz ®) =Dy, 1k, (X)) Pk b, M|, (3.96)
klzll kgzlg
then,
A b1 bz
&=|lnx)-vxn|=le" tf f gW(flyx) —f~ (yIX))dy‘
a, Jap (3.97)
<e "M b - ail by - @l lglloo(€p + €1 +€0),
and,
E=(t+e ™ |bi—allb:— azlep+e;+ec)) 18 lloo. (3.98)

The projection error in one dimension is studied in [51], and we use a similar procedure
to give an estimation of that error for the two-dimensional case.
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Lemma 3.3.6. Consider an MRA generated by Shannon scaling function ® defined in (3.47).
With the same notation as before,
ep<K@2"m2"n), (3.99)

where,

1 o
K(v,v0):= _zf f |f(w)ldw, (3.100)
47 o, 1>, Jws)> v,

and f is the bivariate Fourier transform of f defined in (3.45).

Proof. From (3.68), (3.69) and (3.94) we write,

ep = |fYIX) — P fyx)|, (3.101)
where,
PufIX) =Y Y Dy ks P,y 1, (V) (3.102)
ki€Zk,eZ
and,
D ey e, (%) := f fR YOy k1, () dy. (3.103)
By Parseval’s identity,
1 A
D,y ke, X) = o) f sz (@)D, 1, 1, (@) dw, (3.104)

where w = (w1, w>,) and f and qADm' k. k, denote the Fourier transform of f and @, k, i, respec-
tively. We observe that by (3.59) we can write,

Dy ke, = f fR Doy, W I dy = by g, (1) P, (w2), (3.105)

where, as pointed out in [67],

—izimw

N _ e w
i) = = rect(2m+1n), (3.106)

and rect is the rectangle function, defined in (2.67). Now by (3.104), (3.105) and (3.106),

_ 1 1 ) ik—}y,w ik—,znw
Dm,khkz(x)—mz—mflgf(w)ez Le'2m 2 de), (3.107)

where € := [-2""'7m,2" 7] x [-2™x,2™x]. If we replace this last expression of coefficients in
(3.102) and interchange the summation and integration we get,

. k . ke
> 2 © o 1 ()T V1122 |, (3.108)
ki1€ZkyeZ

P [f(yIx) = ype zszf fw)

If we take into account that by Theorem 1.2.1 of [79],

Y Gmi(y)e TV =25V, when we (-2"m,2"m), (3.109)
kez



60 3. ANOVEL TWO-DIMENSIONAL TECHNIQUE FOR PRICING EUROPEAN OPTIONS

then the projection £, f can be written as,

1 R .
— iw'y
P f(yIx) —4ﬂ2f[gf(w)e dw. (3.110)

Finally, by (3.110) and the definition of the inverse Fourier transform! of f, we have,

s%ff If@)ldw,  (3.112)
4n RA\E

and this concludes the proof. O

1
€p = |fyx) - Pnflylx)|= yvs

f fwe™®Ydw
R2\%

The sum truncation error €, depends on the size of the scaling coefficients D, i, r,, since
from (3.95) we have,
g2 ) Y |Dmk ke ®)], (3.113)
kig{ly, w1} ko@{ly, -, up}

and by Lemma 3.3.6,

Fo® =Y > Dk ke, @y ik, (V)| < K277, 2"' ). (3.114)

k'1 eZ kg eZ

In particular, if we evaluate expression (3.114) iny = (Zk—,}l, f—,%,) then,

<K@2"m,2Mm), (3.115)

X) - szm,kl,kg (x)

ki ko
oz
which means that the coefficients D, i, r, are very well approximated by,

ki ko

1
Dm,kl,k2 x) = —f 2_’”’ om

2m

X), (3.116)

when | f (w)| in (3.100) decays very fast, as typically happens with the densities considered in
this work. Finally, if we assume that the density f tends to zero at minus and plus infinity,
then the error €; can be neglected for sufficiently big truncation values Iy, Iy, u;, u» in (3.70).
In Section 3.3.3 we give a detailed explanation on how to select these values.

The last error we need to estimate is €, defined in (3.96). For this purpose, we present the
following two lemmas.

Lemma 3.3.7 (Lemma 2 of [67]). Define the absolute error &y (t) := sinc(t) — sinc* (t). Then,

(c)?
&y (1)] < o (3.117)

J+1) _ (7‘[6)2,

forte[—c,cl, whereceR,c>0and ] =zlog,(nc).

1The two-dimensional inverse Fourier transform fof f is by definition,

flylx) = ﬁffwz Fwe®Ydw. 3.111)
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Lemma 3.3.8. Define the error &y (t, ) := sinc(ty) sinc(ty) — sinc* (t1)sinc* (t,). Then,
|6y (01, 1) <18V ()] + 18y (82)]. (3.118)
Proof. We observe that,

&y (1, ) = sinc(t;)sinc(ty) — sinc™ (#1)sinc* (f,) — sinc® (¢1)sinc () + sinc® (¢1)sinc ()
= sinc(fy)[sinc(#;) —sinc® (#;)] + sinc™ (1) [sinc(f,) — sinc™ ()] (3.119)
=sinc(t) &y (1) +sinc” (7)Ev (f).

The proof concludes by noting that [sinc(f,)| = |sinc*(#;)| =1 forall f;, % € R. O

Theorem 3.3.9. Let F(x) be the distribution function of a two-dimensional random variable X
and define H(x) := F(—x) + 1 — F(x). Let c1, ¢ > 0 be constants such that H(c1, c2) <¢, fore >0,
and let ¢ :== max(cy, ¢2). Define,

My, . =max(12"c—kil, 12" c+kil), M., =max(]2"c— k|12 c+kal),  (3.120)

m, ko
Mo,k k, *= maX(M}n,kl,an,kz), (3.121)

and consider ] =10g, (T Mk, k,)- Then,

Dy by ®) = Dy o ()] <27 (2e+4c|| 102 (3.122)

)

22(J+1) _ (”Mm,kl,kz 2
andlimj_. D;kn,kl,kz (X) = Dy, iy ke, X).

Proof. From (3.59), (3.69), (3.71), (3.72) and taking into account the equivalence (3.76), we
write,

|Dm,k1,k2 (x) - D:i,kl,kg (X))

=2™m

ffu@z fylx) [sinc"™ y1 — ky)sinc2™ y, — kp) — sinc™ (2™ y; — ky)sinc™ 2" yo — k)] dy ’
<2" [ff Fyx) [sinc™ y1 — k1)sinc (2™ y, — k) — sinc* (2™ y1 — ky)sinc* 2™y, — ko) | dy
@L‘

+

ff Fylx) (sinc2™ y1 — ki)sinc(2™y, — ko) —sinc* (2" y; — ki)sinc* (2" y2 — k»)) dy’ ] .
9
(3.123)
where @ := [—cy, 1] U [— ¢, ¢2] and 2° := R\ 9.
Since the mass in the tails of the density f tends to zero when ¢; and c¢; tend to infinity, for
all € > 0 there exist c;, ¢, > 0 such that H(cy, ¢2) < €. Further,

|sinc2™ y1 — kp)sinc(2” y, — kp) —sinc* (2™ yy — ky)sinc* 2™y, — k)| < 2, (3.124)

for all y € R?, and therefore the first integral at the right hand-side of inequality (3.123) is
bounded by 2e.
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Now if we apply the Cauchy-Schwarz inequality to the second integral then,

Uf Fylx) (sinc2™y — ki)sinc(2™ y» — k) —sinc™ (27 y1 — ky)sinc® 2™y, — k2)) dy
2

<IfCXl2 (/[@ (Ev @™y —k1,2"y, - kz))2 dy)2

1
2
<uremls ([ [ (v -k +svemy- k) ay)
(3.125)
where the last inequality is satisfied by Lemma 3.3.8. We observe that if —c < y; < ¢, then

—2Mc—k; <2™My;—k; <2™c—k; and therefore, 2" y;—k; € [—an k_,an .|, where by definition
¢ =max(cy, o) and i = 1,2. We note that,
[—ankl_,anyki] < [~Mym gk M kb)), 0= 1,2, (3.126)

then by Lemma 3.3.7, the integral at the right hand-side of the second inequality in (3.125) is
bounded by,
2T M ey k)

2c- ) 3.127
220+D — (M i, k,)? ( :
when J =1og, (T Mk, k,)-
Finally, by (3.123), (3.125) and (3.127) we end up with the error estimate,
2
% M k1 k

Dy ky, ke, ®) = Dy g g () <27 (26+4c||f( %12 (Mo 1) 2). (3.128)

o 22(]+1) - (anvklka)
O

Finally, from (3.96) and Theorem 3.3.9,

ec <2"(uy = b+ (1t = b+ 1) | Dty 4,00 = Dy 1 9|

(M) [
22(]*1)—(7'[Mm,k1.k2)2 .

< 22m(u1 - l1 + 1) (up — lg +1) (2€+4C||f( -1 x) ||2

PARAMETERS SELECTION

The parameters of the method are the scale of approximation m in (3.68), the range of coef-
ficients I; < k; < uy, b < k» < up in (3.70), the number of terms N = 2/ to approximate the
cardinal sine function in (3.71), and the truncation of the integration domain [a;, b1] x [ay, b»]
in expression (3.77).

Concerning the scale of approximation m, we know from Lemma 3.3.6 that the approxi-
mation error decreases with m. Further, this error is even smaller when the modulus of the
characteristic function decays rapidly. We propose an adaptive computation of m by follow-
ing this strategy. We select m such that given a tolerance €2 > 0,

|f (=27, =2 )| + | f (=27, 2™ m) | + | f @™, =2 )| + | f (2";, 2 m)| < €. (3.130)
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An initial guess of the integration domain [a,, b1] x [ay, b»] is given (for example) by the
n—th cumulant «; , of X;' = logSi and the parameter L = 10, like for the 2D-COS method in

[74],
K11 — Ly/ K21+ v/Ka1, K11 + Ly /K21 +/Ka,1
K12 = L\/K22+/Ka2, K12+ L\/ K22+ /K42

We compute the coefficients D:‘n, kuks by means of an FFT algorithm, with k; ranging from
li = |2™a;] to u; = [2™b;] and i = 1,2. It is worth underlining that this a-priori truncation
facilitates the application of an FFT algorithm as mentioned in Remark 3.3.5 to get the stated
computational complexity. Then, in order to know whether the initial truncated range is ac-
curate or not, we measure the size of the density coefficients at the boundaries. For this pur-
pose, we compute D:n,ll,O’D;n,ul,O’D;,O,lz’ Dy, o.u,» Since as we have seen in (3.116) the size of
those coefficients is closely related to the value of the density at the boundary points. If nec-
essary, we can compute extra coefficients until the desired precision is reached. Moreover,
we can also calculate the volume underneath the surface represented by the density f as a

byproduct and verify that the volume is close to 1. Considering the partition of the domain
hi hy

2 g

[a1, b1l x [az, b2] =

(3.131)

X

[a1, b1] x [ay, by] given by points of the form ( ) for hy, hy € Z, the two-dimensional

composite trapezoidal rule gives us the following approximation,

* * * *
Dm,ll,lz +Dm,u1,lz + Dm,ll,ug + Dmyulvuz

1
V(f*):=ffR2f*(y|x)dy:y:: )
Ki—-1 K-1
* * * *
+2 Zl (Dm,lm,zz +Dm,ll+i,uz)+2 Zl (Dm,zl,zz+j+Dm,u1,zz+j) (3.132)
i= Jj=

K-1 (K -1
+4) ( > D;kn,ll+i,lz+j)] »
j=1 \i=1

with K; = u; — [; + 1. For the sake of simplicity, we will consider a = min(a;, ay) and b =
max(by, by), and work with a, b instead of a;, a,, b; and b,, being this selection more con-
servative.

Finally, the selection of J is related to the error studied in Theorem 3.3.9. Although a dif-
ferent J can be selected for each pair (ky, k»), we prefer to consider a constant /, defined here
by J = [log, (m maxg, k, Mm,k, k,)] where [-] stands for the ceiling function. The reason is that,
in practice, the computationally most involved part in (3.72) is the evaluation of f at the grid
points. Those values can be computed only once and used in the FFT algorithm mentioned
in Remark 3.3.5.

3.3.4. NUMERICAL EXPERIMENTS
We present a wide variety of examples to test the 2D-SWIFT method for pricing European
rainbow options. We consider arithmetic basket call options, geometric basket put option,
spread options, call-on-max and put-on-min options, and correlation options.

For simplicity, and without loss of generality, in all examples we assume ¢ = 0. The asset
price is modelled by either correlated geometric Brownian motions or by Merton’s jumps-
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diffusion (JD) process (but any other Lévy process or process with known characteristic func-
tion could be used). The cumulants for these dynamics are well-known and we therefore
consider them as our initial guess in (3.131). It is worth remarking that this selection of the in-
terval appears to be accurate in all the examples considered in this work, and we do not need
to compute extra coefficients. The programs in this chapter have been coded in MATLAB and
run on a Dell Vostro 320 with Intel Core 2 Duo E7500 2.93GHz processor and 4GB RAM.
Under GBM dynamics the risk-neutral asset prices evolve according to the following dy-
namics,
dsi=rSidt+o;Sldw], i=1,2, (3.133)

with correlation d Wti d Wtj = p;jdt, r the risk-free rate, and o; the volatility of asset i. We
switch to the log-process X/ :=logSj,

. 1 .
dx! = (r—Eaf)dHaidwg. (3.134)

The log-asset prices at time ¢ given the current state at ¢ = 0 are bivariate normally distributed,
i.e.,
X~ N Xo+ pAt, ), (3.135)

with y; =r— %U? and covariance matrix X;; = 0;0;p;jAt. The Fourier transform function

(defined in (3.45)) reads f (ulx) = e~ X' fLéVy(—u), with,

N 1
frewy) =exp(ip'Aru— zu’Zu). (3.136)

Under a Merton’s jump-diffusion process the asset prices follow the dynamics described
by the stochastic differential equation,

dsi=(r-Ax;)Sidt+0;S.dW} + J;Stdq;, i=1,2, (3.137)

with x; := E[e/i —1], g, a Poisson process with mean arrival date A, and J = (J, J») bivari-
ate normally distributed jump sizes with mean p] = [p{ ,ug]’ and covariance matrix Z{j =

U{U;pl].j. The log-processes X; :=log Si read,
) 1 .
dX!=(r—Mx;— Eaf)dmaidwg +J;dq;. (3.138)

The Fourier transform function is f (ulx) = e ixu fLéVy(—u), with,

A .o 1 / : 1] 1 IsJ

Lé = -5 - - ’ .

frewy(m) =exp|ip Atu 2u Zu|exp|(AAt|explip uzuZ ul-1 (3.139)
where y; = (r — Ax; — %a?)At, Zjj=0;0jpjjAtandk; = e+

BASKET OPTIONS ON TWO UNDERLYINGS
We present the pricing of arithmetic basket call options driven by two-dimensional correlated
GBM. Table 3.1 contains the payoff of arithmetic and geometric basket options on two under-
lyings.

In the arithmetic case, the payoff coefficients (3.79) are given by,
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l \ \ Arithmetic \ Geometric ‘
F

Call g(yl,yz)=(%€”+%ey2—1<) g, y2) = (VelVerz —K)*
¥

Put g(yl.yz)z(K—(%eJ’u%eﬂ)) g(y1,¥2) = (K= VeViverz)*

Table 3.1: Payoffs for basket options on two underlyings.

1 1 +
Gy ky = Mg (Eeyl + Eeyz —K) D@ ey k, () Ay (3.140)

If we truncate the integration range, use the exponential approximation (3.74) of the sinc

function and interchange sums with integrals, then G, , r, = an, Kk where,
2" XX ok —iauk [P 71 1 i, 2my i, 2m
Gt = X, e el [[ [ (Gen s e o] e dyra,
J2=1j1=1 a
(3.141)
2]] 1 2]2 1

and Qj, = -7+ =—n,Q;, = —m + =5—n. The double integral in (3.141) cannot be solved
analytically, and We therefore apply numerlcal integration. We approximate it by a midpoint
quadrature with Q terms, obtaining,

. 2" (b a? N

+
i = g 57 3 57 5% (o Joms k| l2m o2 gt i,

J2=1j1=1hL=15L=1
(3.142)

wheren;, =a +boa (21 1). After rearranging terms, we end up with the following formula,

2 N ;

% ~2m (b_a) 212" (1+ )(ﬁ—a)eln 1+ (k1+k2 Z l2m%((l+bz;ou)(j1+j2)

mkike = N2 Q2 —

||M2

(3.143)

M M i2m - i2m - —i2n . —i2n .
. Z Z X(ll,lz)eﬁh(ll—l)eﬁjz(lz—l)eTkl(h—l)e N kz(]z—l),
12:111:1

for M := me In order to ensure that M € Z, we choose Q of the form Q = 2" (b — a), for
n=m, and,
+ _i2Ma-a)(1+ ) (h+12)
(%e’”l+%e’”2—K) e Q , iflj<Qandl <Q,
X(h, )= (3.144)
0, otherwise.

Clearly we can apply a combination of FFT and inverse FFT algorithms to compute the
sums efficiently in (3.143). Figure 3.4 shows the log-scale plots of the errors (left) and CPU
time (right), where n is chosen such that Q = 2" (b — a) and m is the level of resolution. We
take the parameters and reference price from [74]. We observe that 2D-SWIFT converges ex-
ponentially.

It is worth mentioning that the price of a geometric basket option under GBM equals the

Black-Scholes price of the corresponding European option with initial price Sy = \/Sé\ /82,
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Error of a European arithmetic basket call CPU time of a European arithmetic basket call

Price error (log-scale)
CPU Time

Figure 3.4: Error (left) and CPU time (right) in seconds of a two-dimensional
arithmetic basket call option under the GBM dynamics. The parameter values are
S0 =1(90,110),r=0.04,01=0.2,02=0.3,0=0.25,T =1, K=100 and L = 10.
Reference: 10.173230.

volatility 6 and dividend rate 5 , where,

1 s 1
6==_[> oiojpij and 6==)
2 i 25

So, we can perform a consistency check and compare the results of our method with the ana-
lytical option values.

Now, we price a geometric put option driven by two-dimensional correlated GBM. When
pricing any option with 2D-SWIFT we need first to compute payoff coefficients, the payoff
coefficients in this kind of options can be obtained analytically.

In Figure 3.5, we compare the error and the CPU time (expressed in seconds) between
2D-COS and 2D-SWIFT methods when using the same number of coefficients. We observe
exponential convergence of the 2D-SWIFT method as well as 2D-COS in the left-side graph,
and that the CPU time for 2D-SWIFT is higher than 2D-COS, although 2D-SWIFT is a very
competitive method.

Depending on the type of option, the double integral in (3.140) cannot be solved analyt-
ically, and we therefore need to apply a numerical quadrature scheme. In this example we
also solve the integral numerically in order to have an insight in the behaviour of the error
according to the number of terms used in the integral approximation.

In Figure 3.6 the surfaces of the errors (left) and CPU time (right) are shown, where 7 is
chosen such that Q = 2" (b — a) (recall that Q is the number of points in the midpoint quadra-
ture for the double integral), and m is the level of resolution. The parameter values are the
same as in Figure 3.5, and we present the absolute errors in Table 3.2.

From Figure 3.6 and Table 3.2 we observe the convergence of the method with respect to
the scale of approximation m.

1 1
5+ 50?) - 562. (3.145)



3.3. TWO-DIMENSIONAL SWIFT FOR OPTION PRICING 67

» Pricing a European geometric basket put g:PU time for a European geometric basket put
10 10
—+— 2D-SWIFT. —+— 2D-SWIFT.
0 —*— 2D-COS Lol : —*— 2D-COS
10° 1 1 ;
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Number of coefficients Number of coefficients

Figure 3.5: Log-error and CPU time in seconds of a two-dimensional geometric
basket put option under the GBM dynamics. The parameter values are
S0 =1(90,110),r =0.04,01 =0.2,02 =0.3,0 =0.25,K=100,L=10and T = 1.

m
0 1 2 3 4 5 6
5.53e-01 2.09e+00 7.12e-01 3.68e—-01 3.68e—01 3.68e—01 3.68e-01
8.71e-01 1.05e+00 1.09e—01 5.34e—-02 5.34e—-02 5.34e-02 5.34e-02
7.92e-01 1.04e+00 1.68e—02 1.84e—-02 1.84e-02 1.84e—02 1.84e-02
7.95e-01 1.01e+00 2.79e-02 6.14e-03 6.14e-03 6.14e-03 6.14e—03
7.98e-01 9.97e-01 3.26e—02 6.95e—-04 6.96e—04 6.96e—-04 6.96e—04
7.98e—-01 9.96e-01 3.27e-02 4.77e-04 4.79e-04 4.79e-04 4.79e-04
7.98e-01 9.95e-01 3.33e-02 1.4le-04 1.40e-04 1.40e-04 1.40e—04
7.98e-01 9.95e-01 3.31e-02 1.46e-05 1.33e-05 1.33e-05 1.33e-05
7.98e—-01 9.95e-01 3.31e-02 2.58e-06 4.12e-06 4.12e—-06 4.12e-06

=]
© 0 N O G W~

Table 3.2: Absolut errors for a two-dimensional geometric basket put option under
GBM dynamics. The reference price is 6.696961159991261.

SPREAD OPTIONS
Next we price a two-dimensional European spread call option with strike K on two assets
driven by a two-dimensional correlated GBM. Because of their generic nature, spread options
are used in markets like the fixed income markets, the currency and foreign exchange markets,
the commodity futures markets and the energy markets. The payoff function for the European
call spread is given by,

g(y1,¥2) = max(e’ — e¥> — K, 0). (3.146)

We distinguish two cases, when K = 0 (this case is known as the exchange of assets) the pay-
off coefficients in (3.79) can be obtained analytically, while for K > 0 we use the midpoint
quadrature, as presented in the previous example.

We report in Figure 3.7 the error and CPU time for the 2D-SWIFT method when the un-
derlying processes follow GBM dynamics. We observe exponential convergence and compet-
itive CPU time for 2D-SWIFT method. We take as reference price the result of the 2D-SWIFT
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Error of a European geometric basket put CPU time of a European geometric basket put

Price error (log-scale)
CPU Time

Figure 3.6: Error and CPU time in seconds (both measured in log-scale) of a
two-dimensional geometric basket put option under the GBM dynamics.

method with m =12 and n =12.

Error for a European spread CPU time for a European spread

Price error (log-scale)
CPU Time

[T A
o® @ & N O N
N R L

Figure 3.7: Error (left) and CPU time in seconds (right) corresponding to the
pricing of a two-dimensional European call spread under the GBM dynamics. The
parameters are Sop = (90,110), r =0.04, 01 =0.2,02=0.3, p=0.25, K =20, L=10
and T = 1. Reference: 1.352591908717933.

As previously mentioned, exchange of assets is the name given to spread options when
K = 0. If we assume that the processes follow GBM dynamics, we can use the Margrabe for-
mula [52] as the reference price to compare the error and the CPU time between 2D-COS and
2D-SWIFT methods. We use the parameters from problem number 6 of the BENCHOP project
[81]. The results are shown in Figure 3.8, where we observe again exponential convergence
and competitive CPU time for the 2D-SWIFT method.
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» Pricing a European call spread on 2 underlyings CF;U time for a European call spread on 2 underlyings
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—+— 2D-SWIFT e
o % 2D_COS —+— 2D-SWIFT
100 1 —— 2D-COS
107" i

107 |
o
[ _4
o 10" -2
‘; GE) 10
2 6 [
— 10 5
S o
> O 3|
gty 10
o

10704

107
107"
10714 0 ‘1 ‘2 3 1075 0 ‘1 ‘2 3
10 10 10 10 10 10 10 10
Number of Coefficients Number of coefficients

Figure 3.8: Error (left) and CPU time in seconds (right) corresponding to the
pricing of a two-dimensional European call spread under the GBM dynamics. The
parameters are Sg = (100,90),r =0.03,01 =02 =0.15,0 =0.5,K=0,L =10 and
T=1.

OPTIONS ON THE MINIMUM OR THE MAXIMUM OF TWO RISKY ASSETS
Here we consider a two-dimensional European option either on the minimum or on the max-
imum of two assets. Table 3.3 shows the corresponding payoffs.

l H on minimum \ on maximum ‘

Call || g(y1,y2) = (min(e?,e?2) - K)* | g(y1,y2) = (max(e?, e?2) — K)*
but || g(y1,y2) = (K—min(e?,e’2))* | g(y1,y2) = (K—max(el?,e?))*

Table 3.3: Payoffs for options on the minimum/maximum of two assets.

For the payoffs described in Table 3.3, the double integral of the payoff coefficients in
(3.79) can be solved analytically. In Figure 3.9 we present the error of some of these options
driven by different dynamics and compare them with the 2D-COS method. Again, the 2D-
SWIFT method converges exponentially.

CORRELATION OPTIONS

A correlation option is an extension of the plain vanilla European call to two dimensions. Its
payoff is the product of two European calls with different strikes. Similar to spread options,
correlation options allow the purchaser to speculate on how asset prices will move together,
as the option requires both assets to move in the same direction in order to have at maturity
time a non-zero value. The payoff of a correlation option is given by,

g,y =(e"-K) (e -K)". (3.147)

The payoff coefficients in this case are computed analytically. We present in Table 3.4 the
relative error when pricing with the 2D-SWIFT method under GBM and JD dynamics. The pa-
rameters corresponding to the GBM process are Sy = (90,100),7 = 0.04,0, =0.2,02, =0.3,p =



70 3. ANOVEL TWO-DIMENSIONAL TECHNIQUE FOR PRICING EUROPEAN OPTIONS

Pricing a European GBM call-on-max Pricing a European JD put-on-min
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Figure 3.9: Pricing errors by means of 2D-SWIFT and 2D-COS methods under
different dynamics. The left plot corresponds to a call-on-max driven by GBM
dynamics, with parameters Sy = (40,40), r = 0.048799, 01 =0.2,02 =0.3, p = 0.5,
K =40,L=10and T =7/12. The right plot stands for a put-on-min driven by JD
dynamics, with parameters Sg = (90,110), r =0.05, 0 = (0.12,0.15), p =0.3,
K=100,1=0.6, uy=(-0.1,0.1), 05 = (0.17,0.13), py = 0.2, L=10and T = 1.

0.25,T =1,K; =90,K, = 110,L = 10. The parameters for the JD dynamics are the same as
for GBM with the jump component A = 0.6, uy = (-0.1,0.1),0; = (0.17,0.13) and correlation
pj = —0.2. The reference value for the GBM case is computed by means of Monte Carlo sim-
ulation with one million paths and the 95% confidence interval is given. Regarding the JD
dynamics, the reference price is given by 2D-SWIFT with scale of approximation m = 10. We
select the scale of approximation m by means of formula (3.130) where we set €, = 1.0e — 04.

’ Dynamics H m ‘ Relative error ‘

GBM 3 1.9¢-03
JD || 3 8.5e—07

Table 3.4: Reference price for GBM: 204.2355, 95% confidence interval:
[203.0214,205.4495], price given by 2D-SWIFT: 204.6172. Reference price for JD:
212.9888744552966.

With this example we can see how correlation options behave in the presence of jumps.
We study the dependence on the parameter A, i.e. the mean arrival rate in the Merton’s jump-
diffusion model. We see in Figure 3.10 the evolution of the option value according to this
parameter. The rest of parameters of the model is the same as before. We can clearly observe
the increasing value of the option when A is increased.

3.3.5. STRENGTHS OF 2D-SWIFT
For the cases shown in the numerical experiments section, the convergence is similar for 2D-
SWIFT and 2D-COS. The difference is that 2D-SWIFT is computationally a bit slower than
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2D-SWIFT for pricing correlation options
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Figure 3.10: Correlation option prices with respect to the parameter A under JD
dynamics.

2D-COS, although it is still very competitive. It is worth mentioning that 2D-SWIFT could be
speeded up by running in different threads (i.e. in parallel) the density and payoff coefficients.
In this section we present the strengths of 2D-SWIFT with respect to 2D-COS, so that we can
appreciate the advantages of using the new method presented in this work.

INTEGRATION RANGE AND SCALE OF APPROXIMATION
The 2D-COS method has a strong dependence on the integration range based on the cu-
mulants in expression (3.131). On the contrary, as explained in Section 3.3.3, the 2D-SWIFT
method considers the integration range as an initial guess, being able to adapt it if necessary.
Once the integration range has been calculated, the accuracy of the 2D-COS method de-
pends on the number of coefficients used in the approximation of the density. If the number
of terms in the expansion is not properly chosen, the 2D-COS method does not perform well.
The larger the interval the more terms we should consider, although it is not a-priori clear how
many coefficients should be used. In regard to the 2D-SWIFT method, the scale of approxi-
mation m is a-priori fixed with the help of formula (3.130) and the number of coefficients is
determined automatically. In Figure 3.11 we have fixed the number of terms employed for the
2D-COS approximation and m for 2D-SWIFT, and we have changed the size of the integration
range by modifying the parameter L in both methods. As we can observe, the approximation
deteriorates for the 2D-COS while it remains very accurate for the 2D-SWIFT method, show-
ing that 2D-SWIFT is not sensitive with respect to this parameter.

BEHAVIOUR FOR EXTREME MATURITIES
Small maturities
Small maturity options are important in high-frequency trading, also short-term binary op-
tions are well-known in the markets. The density function for small maturities is highly peaked.
Thus, the characteristic function is very smooth with fat tails as we see in Figure 3.12.

In these situations, the length of the interval goes to zero, and the scale m increases when
T tends to 0, because of the shape of the density. It can be seen numerically that the interval
length goes to zero quicker than the scale goes to infinity. Thus, the number of coefficients
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Pricing a European geometric basket call option on 2 underlyings

—+— 2D-SWIFT
—*— 2D-COS

Price error (log-scale)
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Figure 3.11: Absolute errors corresponding to the 2D-COS (red) and 2D-SWIFT
(blue).

Figure 3.12: Density (left) and characteristic function (right) for GBM dynamics
when T =0.001.

needed by the 2D-SWIFT method tends to be very small, providing advantage in the use of
the method for high dimensions. For example, when pricing with 2D-SWIFT a geometric call
option on two assets driven by GBM dynamics with parameters Sy = (100,100), r =0.1, 0} =
0.2,02=0.3, p=0.2, T =0.001 and K = 100, using a scale of m = 6 with just 6 coefficients we
obtain an error of 3.32e—03.

Long maturities

Long maturity options are present in insurance markets. For example in [61], insurance con-
tracts of a call spread up to 50 years are considered. Moreover, in recent years the long-dated
FX option’s market has grown considerably. Currently, some traded and liquid long-dated FX
hybrid products are Power-Reverse Dual-Currency swaps (PRDC) as well as vanilla or exotic
long-dated products such as barrier options. In the case of large maturities, the density func-
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tion has fat tails and the respective characteristic function is very peaked as shown in Figure
3.13.
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Figure 3.13: Density (left) and characteristic function (right) for GBM dynamics
when T =100.

Thus, the interval length increases and the scale value decreases when T takes large val-
ues. As we show in Figure 3.14, the choice of L when working with large maturities is again a
problem. If L is set around 10 as suggested in [74] for moderate maturities, then the results
are not accurate.

Pricing a geometric basket call for T=50 . Pricing a geometric basket call for T=100 s Pricing a geometric basket call for T=200
- - 10 T T 10 T -
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Figure 3.14: Absolute errors when pricing by means of the 2D-COS (with 200
terms) and 2D-SWIFT methods (at scale m = 1) a European geometric basket call
option on two underlyings with parameters Sy = (100,100), r = 0.5, 0 = (0.4,0.4),

p =0.2, K =90. The reference price is 20.189651798215621.

As studied in [65], when dealing with long maturities roundoff errors appear for payoff
options that are unbounded. We see in Figure 3.15 the behaviour of the payoff functions that
we consider and the domains where they can grow rapidly. The payoff functions for put op-
tions are bounded. However, for calls and spreads roundoff errors may appear. Due to the
local nature of Shannon wavelets, we can remove part of the sum in the final pricing formula
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Figure 3.15: Some two-dimensional payoff functions.

(3.78) to avoid roundoff errors by eliminating some coefficients. We note that this is possible
because each coefficient is only relevant for a very small interval within the integration range,
while in the case of the 2D-COS method, all coefficients intervene in the approximation along
the whole integration range. Table 3.5 confirms the quality of the 2D-SWIFT method. We use
50 (respectively 100) terms in the 2D-COS expansion, and the same number of coefficients for
2D-SWIFT, corresponding to the scale m = 0 (respectively m = 1). Although a direct imple-

mentation of both methods gives inaccurate results, 2D-SWIFT performs much better when
we remove some terms at the boundaries.

Method || Error (m =0) Range Error (m=1) Range
2D-COS 1.18e+01 - 4.48e—-07 -
2D-SWIFT 1.59e+01 —14<ky, kp <37 5.99e—07 —28<ky, k2 <73
2D-SWIFT (terms removed) 5.40e—02 —l4<ky,kp<24 4.60e—07 —-28<kj,kp <65

Table 3.5: Absolute errors when pricing a geometric basket call option with
parameters Sg = (100,100), r =0.1, o = (0.25,0.25), p = 0.8, K =120, T =100,
L =10. Reference price is 73.156120362425582.

3.4. CONCLUSIONS

We started the chapter with a brief introduction of the mathematical concepts behind option
pricing. Then we introduced wavelets based Fourier inversion methods for option pricing and
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carried out a numerical study of the SWIFT and WA methods. It has been shown that SWIFT
method outperforms WA in accuracy, whereas they are similar in CPU time.

While those two methods can be found in the literature, we decided to try to make use
of Chebyshev wavelets, which come from Chebyshev polynomials to invert a characteristic
function in an analogous way as it is done with SWIFT and Shannon wavelets. To the best of
our knowledge no previous attempts to use this wavelets in option pricing have been done. In
the previous chapter we presented a technique for the computation of the density coefficients
making use of the Bessel function. In this one, we attempted to price European put options.
We were expecting to find the payoff coefficients in a simple form, but this has not been the
case. Since we were not satisfied with the complexity behind approximating both density and
payoff coefficients using these wavelets, we decided to abandon this approach.

After that, we have presented the two-dimensional SWIFT method which is motivated by
the problem of multidimensional option pricing of European rainbow options.

First, we presented the multiresolution analysis framework in two and higher dimensions
for separable spaces as well as the Shannon wavelets representation. We also presented pric-
ing formulas for European options in two and higher dimensions using a more convenient
approximation than the one previously followed in the literature for the cardinal sine func-
tion. We give a complete error analysis of the new method and provide a prescription on how
to select the parameters appearing in the method according to the precision required.

We tested with a wide variety of numerical examples the efficiency of the method in the
two-dimensional case for different kinds of European rainbow options of assets driven by dif-
ferent dynamics like GBM or JD. Basket options, spread options, options on the minimum
or the maximum of two risky assets and correlation options were considered. We compared
2D-SWIFT results with the state-of-the-art 2D-COS method, with closed-form solutions when
available, with Monte Carlo simulation or with 2D-SWIFT with a large scale of approximation.
Finally, we presented the strengths of the 2D-SWIFT machinery, which includes the domain
truncation issue, the calculation of the scale of approximation and the number of coefficients
used as well as the results when dealing with extreme maturities. As it has been mentioned,
extending the method to high dimensions, more than 4 or 5 depending on the specific kind of
product, will not be useful because the curse of dimensionality appears.

We have shown that 2D-SWIFT inherits the strengths of the one-dimensional technique
presented in [67] for European-style options, like for instance, the a-priori knowledge of the
approximation scale.






CHAPTER 4

Computation of Market Risk Measures with
Stochastic Liquidity Horizon

An investor or institution involved in a certain financial market may experience losses due to
factors related to its performance. The quantitative study of those possible losses is known as
market risk measurement.

Much of the regulation originated from the Basel Committee of Banking Supervision. This com-
mittee has recently set out the revised standards for minimum capital requirements for market
risk. The Committee has focused, among other things, on the two key areas of moving from
Value-at-Risk (VaR) to Expected Shortfall (ES) and considering a comprehensive incorporation
of the risk of market illiquidity by extending the risk measurement horizon. In this chapter
we present the application of the SWIFT method to compute the VaR and ES of a given portfo-
lio within a stochastic holding period framework. Two approaches are considered, the delta-
gamma approximation, for modelling the change in value of the portfolio as a quadratic ap-
proximation of the change in value of the risk factors, and some of the state-of-the-art stochas-
tic processes for driving the dynamics of the log-value change of the portfolio like the Merton
Jjump-diffusion model and the Kou model.

This chapter is based on the article [20)].

4.1. INTRODUCTION
Financial risk refers to the possibility of suffering financial losses (or gains) because of un-
predictable changes in the underlying risk factors. In this chapter we are concerned with
the measurement of one particular form of financial risk known as market risk, or the risk
of loss arising from unexpected changes in market prices such as security prices or market
rates. Within market risk, we find different categories such as interest-rate risk, equity risk,
exchange rate risk, commodity price risk amongst others. This classification is based on the
different underlying risk factors which can be for example the interest rate or a stock price.
Market risk is one of the three main categories of financial risk, the other two being credit
risk which concerns with the risk of loss arising from the failure of a counterpart to make a
promised payment which we will cover in the next chapter; and operational risk which deal
with the risk of loss arising from the failures of internal systems or from people who operate
in them. The three risk categories boundaries are not always clearly defined and they are not
a complete list of all the possible risks a financial institution is exposed to. Some risk concepts
are present in most risk categories, like liquidity and model risk. Liquidity risk can be roughly
defined as the risk that an investment may not be bought or sold quickly enough to prevent
or minimize the loss because of the absence of a buyer/seller on the market to perform this

77
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operation. On the other hand, model risk refers to the risk caused by the use of a misspecified
or inappropriate model for measuring the risk. Since the pioneering work of Harry Markowitz
in the 1950s [53] the field of risk management has experienced great developments, to the
extend that it is now considered a distinct sub-field of the theory of finance.

A bank regulator is a financial person in charge of measuring the risk exposure of a finan-
cial institution and determines the amount of capital that an institution has to hold in order
to cover against unexpected losses. The Basel Committee on Banking Supervision (BCBS) is a
committee of the world’s bank regulators that meets regularly in Basel, Switzerland. In 1988 it
published what is now known as Basel I. This is an agreement between the regulators on how
the capital a bank is required to hold for credit risk should be calculated. Later the Basel Com-
mittee published the 1996 Amendment which was implemented in 1998 and required banks
to hold capital for market risk as well as credit risk. That Amendment calculates capital for
the trading book using the Value-at-Risk measure with a horizon of 10 days and a confidence
level of 0.99%. Basel I has been followed by Basel II, Basel I1.5, and Basel III.

The BCBS states in the consultative documents [6, 7] that “the financial crisis exposed ma-
terial weaknesses in the overall design of the framework for capitalising trading activities. The
level of capital required against trading book exposure proved insufficient to absorb losses”. In
this document, the Basel Committee initiated a comprehensive review of the trading book
regime, starting with an assessment of what went wrong. They established a revised standard
for minimum capital requirements for market risk in [8].

The Committee has focused, amongst other things, on two key areas of moving from VaR
to ES and considering a comprehensive incorporation of the risk of market illiquidity. In re-
gard to the first issue, a number of weaknesses have been identified with using VaR for deter-
mining regulatory capital requirements, including its inability to capture the risk in the tail.
For this reason, the Committee has considered alternative risk metrics like, in particular, the
ES, which measures the riskiness of a position by considering both the size and the likelihood
of losses above a certain confidence level. The second issue relies on the importance of in-
corporating the risk of market illiquidity as a key consideration in banks’ regulatory capital
requirements for trading portfolios. The assumption that trading book risk positions were
liquid, i.e., that banks could exit or hedge these positions over a ten-day horizon proved to
be false during the recent crisis. As liquidity conditions deteriorated during the crisis, banks
were forced to hold risk positions for much longer than originally expected and incurred large
losses due to fluctuations in liquidity premia and associated changes in market prices.

In its deliberations on revising the prudential regime for trading activities, the Commit-
tee has drawn lessons both from the academic literature (see [5]) and banks’ current and
emerging risk management practices. One of the important messages from the academic lit-
erature on risk measurement in the trading book is that there are limitations of VaR models
that rely on the use of continuous stochastic processes with only deterministic volatility as-
sumptions. Introducing either stochastic volatility assumptions or stochastic jump process
into modelling of risk factors will help to overcome these shortcomings. Another message of
paramount importance is that the time it takes to liquidate a risk position varies, depending
on its transactions costs, the size of the risk position in the market, the trade execution strategy
and market conditions. Some studies suggest that, for some portfolios, this aspect of liquidity
risk could also be addressed by extending the VaR risk measurement horizon. These findings
are in accordance with those derived from a survey of industry practices in risk management
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for the trading book carried out by the Committee. As for the length of the holding period, that
poll reveals that for day-to-day risk management the use of one-day VaR is universal among
the banks surveyed. However, for internal capital adequacy and strategic risk management,
banks are generally moving beyond short-horizon models (e.g. one-day and 10-day VaR). It is
now acknowledged that, to determine the level of capital necessary to remain in business af-
ter sustaining a large loss, risk must be assessed over a longer period. Shorter horizons do not
address the liquidity risk for all exposures and do not capture tail events that are important for
capital adequacy. Further, almost all banks’ VaR models capture non-linearities at a local level
(i.e. small price changes) for much of their market risk exposure, but many banks’ VaR models
fail to capture non-linearity at a global level (i.e., large price changes). A common weakness
in the capture of non-linearity is the use of scaling of one-day VaR to estimate exposures at
longer holding periods. Such scaling only captures local non-linearity in the range of one-day
price changes and can underestimate non-linear exposure over longer horizons. The Com-
mittee has agreed that the differentiation of market liquidity across the trading book will be
based on the concept of liguidity horizons'. It proposes that banks’ trading book exposures be
assigned to a small number of liquidity horizon categories ranging from ten days to one year.
The shortest liquidity horizon (most liquid exposures) is in line with the current 10-day VaR
treatment in the trading book. The longest liquidity horizon (least liquid exposures) matches
the banking book horizon at one year.

The estimation of the ES for several trading desks and taking into account different liquid-
ity horizons is computationally very involved. In this chapter we present efficient and robust
numerical techniques to address the aforementioned challenges. We compute the VaR and
ES risk measures of a market portfolio and we assume that the holding period follows a cer-
tain positive stochastic process to account for liquidity risk. We will therefore measure the
risk in the situation where the holding period is the liquidity horizon, and we will use these
two terms interchangeably throughout the thesis. While the regulatory capital calculation
is based on a series of increasing deterministic liquidity horizons for different assets in the
trading book, our approach does not distinguish between asset classes and is therefore more
suitable for an internal risk management assessment. To our knowledge, this idea was first
introduced in [14] as a proposal to open a research effort in stochastic holding period mod-
els for risk measures. In that paper, the authors assume that the log-return on the portfolio
value is normally distributed, which facilitates the calculation of the risk measures. Within
this work, we go a step further by considering more realistic models for the log-value of the
portfolio. On the one hand, we propose the use of the delta-gamma approach [60], where it is
assumed that the change in portfolio value is a quadratic function of the changes in the risk
factors. On the other hand, we consider the Merton jump diffusion (MJD) model [58] and the
Kou model [48] to drive the log-return on the portfolio value. Under any of these scenarios,
the closed formulae to compute the risk measures within the Gaussian setting in [14] are not
available anymore. However, the characteristic function of the change in (log-)value of the
portfolio is known in closed form for most of the interesting processes in finance, in particu-
lar for the two models mentioned above. We therefore recover the density function from its
Fourier transform and then we calculate the VaR and the ES values. Among the methods avail-
able in the literature for Fourier inversion, we choose the SWIFT method (see Section 2.6.2 of

1 The definition of liquidity horizon given in [8] is: “the time required to exit or hedge a risk position without mate-
rially affecting market prices in stressed market conditions.”
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Chapter 2) originally developed in [67] for option pricing, where the density function is ap-
proximated by a finite combination of Shannon wavelets. A Haar wavelets-based procedure
as well as a cosine series expansion have been previously used in the literature, in [66], to re-
cover the density function within the delta-gamma approach with the multivariate Gaussian
model for the individual risk factors. The most important feature of the present method is that
the scale of approximation is estimated a priori by means of the characteristic function, and
this makes this method a real applicable one in practice, as opposed to the aforementioned
numerical methods based on trial and error.

The layout of the chapter is as follows. We define the basics in risk measurement such as
the risk measures and introduce the concept of stochastic liquidity horizon (SLH) in Section
4.2. Section 4.3 is devoted to explaining the methodology to calculate the VaR and ES risk
measures, together with a complete error analysis as well as the way to select the parameters
of the numerical method, and a wide variety of examples. Finally, brief conclusions are given
in Section 4.4.

4.2. BASIC CONCEPTS IN RISK MANAGEMENT

The uncertainty about future states of the world is represented as (Q, %,P), a probability
space on which the random variables we introduce throughout the chapter will be defined.
Consider a given portfolio such as a collection of stocks or bonds, a book of derivatives, a col-
lection of risky loans and so on. We denote the value of this portfolio at time ¢ by I1(¢). Given
a time horizon At, for example 1 day or 10 days, the change in value of the portfolio over the
period [t, £ + At] is given by,

AIT:=TI(¢t + At) - I1(1). (4.1)

Practitioners in risk management are often concerned with the so-called profit and-loss
(P&L) distribution; which is the distribution of the change in value, AIl. In market risk man-
agement we often work with financial models where the calendar time is measured in years,
and interest rates and volatilities are quoted on an annualized basis.

As it is standard in risk-management practice, the value I1(t) is modelled as a function of
time and a d-dimensional vector of risk factors. Depending on the model, different risk fac-
tors may be used, some common ones are logarithmic prices of financial assets, yields and
logarithmic exchange rates. In this work we consider two different approaches. The first one
is the well-known delta-gamma approximation [60], which assumes that the change in value
of the portfolio is a quadratic function of the change in value of the risk factors. The second
approach consists of assuming that the value of the portfolio follows a certain stochastic pro-
cess and we are therefore interested in measuring the change in the log-value of the portfolio
rather than in the value itself.

4.2.1. RISK MEASURES

There exist different approaches to measuring the risk of a financial position. One of them
is given by the risk measures. Most modern measures of the risk in a portfolio are statistical
quantiles describing the loss distribution of the portfolio over some predetermined horizon;
Value-at-Risk and Expected Shortfall are examples of them.

Definition 4.2.1. A risk measure g is a function mapping a distribution of losses (or gains) 4
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toR, thatis,
0:9—R. 4.2)

Definition 4.2.2. Arisk measure g is a coherent risk measure if it satisfies the properties of nor-
malization, monotonicity, sub-additivity, positive homogeneity, and translational invariance,
which are,

1. Normalization: p(0) = 0.

2. Monotonicity: For £, %> € G such that £, < %, almost surely we have p(£)) < p(Z»).
3. Sub-additivity: For all £, % € 4 we have p(£) + £») < p(&1) + p(&).

4. Positive homogeneity: For all £ € 4 and every A > 0 we have p(AL) = 1p(Z).

5. Translational invariance: For all £ € 4 and every l e R we havep(£ + 1) = p(£) + 1.

Note that normalization means that the risk of holding no assets is zero. Monotonicity im-
plies that positions that lead to higher losses in every state of the world require more risk cap-
ital. Sub-additivity implies that risk is reduced by diversification; the use of non-sub-additive
risk measures may lead to optimal portfolios that are very concentrated and this is considered
a high-risk practice in economics standards. Positive homogeneity exposes that the risk of a
position is proportional to its size. And translation invariance states that by adding or sub-
tracting a deterministic quantity to a position, we alter our capital requirements by exactly
that amount. In general risk measures do not need to satisfy all the conditions stated in co-
herence. Indeed, the notions of sub-additivity and positive homogeneity can be replaced by
the notion of convexity:

e Convexity: If £, % €9 and A€ [0,1] then p(A. L1+ (1 -1 %) < 1p(ZL1) + (1 — L) p(L).

We now present the two risk measures we are interested in.

VALUE-AT-RISK
Value-at-Risk is probably the most widely used risk measure in institutions and has also made
its way into the Basel II capital-adequacy framework. Its birth dates back to 1993, when at
JPMorgan the famous Weatherstone 4.15 report asked for a one-day, one-page summary of
the bank’s market risk to be delivered to the CEO in the late afternoon (hence the 4.15), and
that is when VaR came up.

Let fanm be the probability density function (PDF) of AIl and Fap its cumulative distri-
bution function (CDF). Assuming we short the portfolio, we have that the right tail of fan
represents losses.

Definition 4.2.3. Given some confidence level a € (0,1), the VaR measures the risk of holding
the portfolio during the period At is given by the smallest number | such that the probability
that the loss All exceeds | is no larger than 1 — «. Formally,

VaR(a) :=inf{leR:P(AIl > ) <1-a} =inf{le R: Fan(l) = a}. (4.3)
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In probabilistic terms, VaR is a quantile of the loss distribution. Note that by its very def-
inition the VaR at confidence level a does not provide any information about the severity of
the losses which occur with a probability less than 1 — a. Clearly, this is a drawback of VaR as
arisk measure.

VaR is an attractive measure because it is easy to understand. However, it is not a coherent
risk measure since it fails to satisfy the sub-additivity condition. Hence, it does not take into
account the benefits of diversification. Moreover, as pointed out above it does not give indi-
cation about the severity of losses beyond the computed quantile. A measure that deals with
these drawbacks is the ES. Whereas VaR answers the question “How bad can things get?”, the
ES answers “If things do get bad, how much can the company expect to lose?”. ES was sug-
gested by P. Artzner et al. (1999) in [4], where they define a coherent risk measure and show
that the standard VaR is not but ES is. Proof of these facts can be found in Chapter 6 of [57].

EXPECTED SHORTFALL
Definition 4.2.4. For a portfolio value change AIl with It [|AIl]] < co and distribution function
Fan, the Expected Shortfall at confidence level a € (0, 1) is defined as,

1 1
ES(a) := m[ qu(Fan) du, (4.4)

where q,,(Fan) is the quantile function of Far.
ES is related to VaR by,
ES(a) = L 1VaR(u) du. (4.5)
1-aJa

Instead of fixing a particular level a, we average VaR over all levels © = a and thus, as pointed
out in [57], we “look further into the tail" of the loss distribution. Obviously, ES(a) depends
only on the distribution of AII, and ES(a) = VaR(a). For continuous loss distributions a more
intuitive expression can be obtained that shows that ES can be interpreted as the expected loss
that is incurred in the event that VaR is exceeded. For an integrable loss AIIl with continuous
distribution function Fap and for any « € (0, 1) we have,

ES(a) = E[AIT | AIl = VaR(a)], (4.6)
or, in integral form,
1 +00
ES(a) = —— Xfan(x) dx. 4.7)
1-a Jvar()

Example 4.2.5 (VaR and ES for normal and ¢-distributions). Suppose that the portfolio change
distribution Fary is normal with mean y and variance o?. Fixa € (0,1). Then,

¢(e”1')

VaR(a) = p+0® () and ES(@)=pu+o0 =

, (4.8)

where ¢ is the density of the standard normal distribution and @ denotes the standard normal
distribution function, thus, @~ () is the a-quantile of .

Next, suppose that AIl is such that % =: L has a standard t-distribution with v degrees
of freedom. For v > 2, we get,

VaR(a) =pu+ Ut;l(a) and ES(a)=p+0ES;(a), (4.9)
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for ESi(a)=

-1 -1 2
(1, (a))(v+(tv () ) (4.10)

l1-a v—1
where t, denotes the distribution and g, the density of the standard t.
Proofs can be found in [57].

As we have seen, VaR and ES are comprised of two parameters: the time horizon (also
known by holding period) and the confidence level. Typical values for @ are @ = 0.95 or
a = 0.99. In market risk management the time horizon is usually 1 or 10 days. In this work,
however, we go further and consider the holding period stochastic; we build upon the work
in [14]: in order to take into account liquidity issues we assume that the time horizon follows
a certain stochastic process {H(t)} ;>0 where H(t) is a positive random variable associated to
the liquidity horizon at time ¢ = 0. Thus, we are interested in measuring the change in value
of the portfolio within the stochastic liquidity horizon framework.

4.2.2. STANDARD METHODS FOR MARKET RISKS

As pointed out before, the future increments in the value of the portfolio or loss function are
random from the perspective of the present. However, we need the probability distribution of
the loss function for a fixed, generally short, period of time, in order to evaluate its market risk
exposure. While its exact distribution is not available, a good approximation of it is essential
since a risk measure will only give us a valid result for the market risk if applied to a distri-
bution that is close to the real distribution of the loss function. There are several methods
to construct this approximation, the two most commonly used are historical simulation and
model building approach.

Historical simulation: It consists of using past data to estimate what will happen in the
future. Instead of estimating the loss distribution under some explicit parametric model, the
historical simulation method can be thought of as estimating the distribution of the loss un-
der the empirical distribution of data. It is easy to implement, nevertheless, the success of
the approach is highly dependent on the ability to collect sufficient quantiles of relevant, syn-
chronized data for all risk factors.

Model-building approach: This is the main alternative to historical simulation. It consists
of assuming a certain relation between the loss function and its different risk factors (stocks,
bonds, derivatives that are part of the portfolio). A linear model may be used to approximate
this relation. For instance in a portfolio based entirely on stocks it is clear that there is a linear
relation between the increments in the price of its stocks and the increment in the value of the
portfolio. On the other hand, for more complex portfolios including derivatives, the relation
between the risk factors and the loss function is not linear anymore. A linear model could still
be used as an approximation, but a better approximation can be obtained including also a
quadratic term. These are called quadratic models, and the coefficients in this approximation
are usually determined by considering the quadratic model in terms of the Taylor expansion
of the loss function; more details on that are given in the examples section. Once the model
is set up, the loss function is a deterministic function of the risk factors, which is where the
randomness of the model comes from. While in the linear case, the distribution of the model
may be obtained analytically, in the quadratic case this will generally not be the case. The
distribution then needs to be approximated, and Monte Carlo is the most common method
to do that. Several realizations of the risk factors are done and the loss function is calculated
for each of them using the explicit model. With that we obtain an empirical approximation of
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the loss function. The main drawback of the model building approach is that any results that
are obtained will only be as good as the model we use, and the adequacy of a model may be
hard to evaluate a priori.

Since analytical expressions are generally not available, Monte Carlo simulation is what is
often used to compute the risk measures, the main drawback being the computational effort.
From this point of view, the situation worsens when we consider a stochastic liquidity horizon
H(1t), since an extra source of randomness is introduced and must be simulated as well. For
this reason, there is an increasing interest in looking for alternative and more efficient meth-
ods. Here we propose to use the SWIFT method introduced before in Section 2.6.2, because
as it has been shown for option pricing, that the SWIFT method gives us an accurate and
extremely fast recovery of the density function and we gave insight on how to select the pa-
rameters appearing in the numerical method. All these features make our proposal efficient,
robust and reliable for practical implementation. Note that an efficient numerical method to
compute the VaR and ES with a deterministic holding period based on Haar wavelets using
WA method of Section 2.6.1 was proposed in [66]. Since densities here are also regular, we ex-
pect to have better performance with SWIFT than with WA the same way as it happened with
option pricing. Let us mention that this method has been developed under the delta-gamma
approach.

In our work we consider two different approaches inside the model-building setting. The
first one is the well-known delta-gamma approximation [60], which assumes that the change
in value of the portfolio is a quadratic function of the change in value of the risk factors. Re-
cently, an efficient numerical method to compute the VaR and ES with a deterministic holding
period was proposed (see [66] for details). Within the present context of stochastic liquidity
horizon, the change in value of the portfolio under the delta-gamma approach is defined as
AIT :=TI(t + H(1)) - I1(#). To the best of our knowledge, this is the first time that the delta-
gamma approach is considered with a stochastic holding period. The second approach con-
sists of assuming that the value of the portfolio follows a certain stochastic process and we are
therefore interested in measuring the change in the log-value of the portfolio rather than in
the value itself. Then, we define X :=log (II(¢ + H(#))) —log (I1(#)). Let farr (respectively fx) be
the PDF of AII (respectively X) and Fayy (respectively Fy) its CDE If we assume that we short
the portfolio, then the right tail of fx represents losses.

Note that all definitions are exactly the same under a stochastic time horizon but At must
be replaced by the process H(t).

4.3. COMPUTATION OF MARKET RISK MEASURES BY SWIFT

4.3.1. RISK MEASURES BY SWIFT

In this section we present formulae to calculate the VaR and ES risk measures. The strategy
that we follow consists of recovering the density function of the change in value (or log-value)
of a certain portfolio from its Fourier transform, which is known in many situations of interest.
To simplify the notation, we assume in the present section that f is the unknown density
function while f is its known Fourier transform. Let us assume that f is well approximated
at scale of resolution m in a finite interval [a, b] € R. We define k; := [2™a] and k; := [2™ D],
where | x] denotes the greatest integer less than or equal to x, and [x] denotes the smallest
integer greater than or equal to x. In Section 4.3.2 we give an explanation on the selection
of the scale and the interval of approximation as well as the algorithm to get the VaR and ES
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values.

VALUE-AT-RISK
From the definition of VaR in (4.3) we have to compute the value I, := VaR(a), witha<l, < b
such that I,—q, where,

lo
I:=f fx)dx. 4.11)

We truncate the infinite integration domain (—oo, l,] in (4.11) into a finite domain [a, /,],

lo
I ::f fx)dx, (4.12)

and we replace f in (4.12) by its approximation f,,, (note that in order to make everything
clearer we avoid the superscript S in the notation because it is clear everything is from the
method SWIFT) in terms of Shannon scaling wavelets as in (2.101), this is,

lo

Iy ky lo
=f fr(x)dx = Z ch i (pm,k(x)dx=2m’2 Y cjnka sinc@™x-k)dx.  (4.13)
a k k1 kzk'l a

Now, if we make the change of variables y = 2" x — k and replace sinc by its approximation
sinc* in (2.105), we end up with the expression,

. 1 1 kg . 2 Zmla—k 2] —_ 1
I = c cos nyld
m(J) omi2 9j-1 ; m,kazlfzma_k ( 2J y) y

2] 1 .
27—
sin( J

ﬂzmlzz me 2]

_kl ] 1

ln(Z’”la - k)) - sin(zjz; 1n(2ma - k))] .
(4.14)

Finally, we use a root-finding method to determine the value [, such that I, (/) —a = 0 and we
call it VaR* (a).

Remark 4.3.1. In the following we show an interesting relation between the area underneath f
and the computation of the density coefficients c;‘n, i i (2.108). Using this relation we present an
alternative method to calculate the VaR. Although this method is extremely fast in terms of CPU
time, we decided to perform all the numerical experiments with the method presented above
since it is more accurate and keeps a good balance between CPU time and accuracy.

We define,

hi2m
Ii(m,h) ::/ fx)dx, (4.15)

(e, 0]
where h € Z, and we truncate the infinite integration domain (—oo, h/2™] into a finite domain
[kp/2™, h/2™M],

h
Li(m,h) = I(m,h) = X f)dx. (4.16)

If we apply the trapezoidal rule with step 1/2™, then we end up with the following formula,

2 & 1) () )

L(m,h) = S1(m,h) = —— (4.17)

2m+1
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From (2.101) we have that f (zim) ~2M2¢, |, forall | € Z, and therefore, applying this to the
expression (4.17) gives us,

h-1
S10m,h) = Sy(m, by : = ooy 2M2L N e+ 2™ 2 ek 2" 2 O
k_k1+1
. (4.18)
kal Z
=S ka+
2mi2 k=ki+1 2

Finally, the coefficients cy, . in (4.18) are approximated by c), | in expression (2.108). Then,

1 nk (= mh
Salm, ) = S3(m, h) = = ’"’;‘+ Y cmk+% (4.19)
k:k1+1

Then the VaR can be calculated just by adding density coefficients until the value of S3(m, h)
reaches (or is approximately equal to) the confidence level a. We add terms until the condition
S3(m, h*) < a < S3(m, h* +1) is satisfied for a certain h* € Z and we select the VaR value as the

midpoint of the interval [2,:,, L ;21] this is,

2h* +1

Wﬁ?(a) = W (4.20)

EXPECTED SHORTFALL
The ES can be determined once we obtain the VaR value as detailed in Section 4.3.1. From
(4.7), we have to compute the integral,

+00
ES(a) = ﬁfz xf (x)dx. (4.21)

We replace [, by the VaR computed in the previous section, and we define [, := VaR* (a). Now,
we focus on the calculation of the following integral,

+00
ES;(a) := ;f xf(x)dx, (4.22)
1-alJi

and truncate the infinite integration domain [/}, +o0) into the finite domain [y, b], this gives
us,

b
ES:(a) := Lf xf(x)dx. (4.23)
l-ali

The last step consists of replacing the function f in (4.23) by its approximation f,;, and making
the change of variables y = 2™ x — k, we obtain,

2m2 kZ Y Sin(@"x—kym
Conk s mx-k)n

1 b
ES;‘n(a):sz* xf,fl(x)dx—

2% ky 2"b-k sin(my)
_ +k)————d 4.24
(1 a)22m Z mk Zml;—k (y ) ny y ( )
1 kz 1 2"b—k p kfzmb_k p
=— ck | = sin (7 + sinc(y) .
T aaim & k| Ly (my)dy s SRy
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The first integral at the right hand side in (4.24) is solved analytically,

2"b-k
f siny) dt = — [cos (2" ~ k)) ~ cos (x (2"b - K], (4.25)
amis_k

while for the second integral .# := fzzf lg:’,i sinc(y)dy we use the formula in (2.105) to approxi-
mate the cardinal sine function and .# can be replaced by,

1 omp_f2/-1 2]'_1 1 2/-1 nomp_k 2]'_1
4 :=—f cos( T )d =— f cos( b4 )d
Y 2ml;;—ij:1 YRR ed 21‘1]; 2mis—k o )4

22 1
_;]Z

-1
(2] -1 (2] -1 x
. G- sm( 57 n(Zmb—k))—sm( 57 ﬂ(zmla—k))].

Finally, by (4.24), (4.25) and (4.26), the Expected Shortfall ES(a) can be calculated with the
formula,

1 ky

ES* (@) : =

i [% (cos (7 (2717 - k) = cos (x (2" b - K)))

A-a)2:™ i<t

+ %kji:i ﬁ (sin(zjz—;ln(zmb— k)) _Sin(zj:?; 171(2’"1; - k)))] .

(4.27)

Remark 4.3.2. Note that we can speed up the evaluation of (4.14) and (4.27) by means of a
discrete sine transform.

4.3.2. ERROR ANALYSIS AND SELECTION OF PARAMETERS

In this section we perform an error analysis on the SWIFT method when it is used to calculate
the risk measures, and explain how to determine the value of the parameters that play a role
in the numerical method.

ERROR ESTIMATION IN THE COMPUTATION OF VAR
Let us define & := |- I;;,,(N|, & :=|I - L, & := | — Il and &3 := |I;, — I;,(J)|. Then, the
overall error when approximating I in (4.11) by I;;,(J) in (4.14) can be bounded by,

E<&E +Er+E3. (4.28)

From (4.11) and (4.12) we have,
a
& < f f(x)dx. (4.29)

We can make this integral arbitrarily small by selecting a appropriately, since f is a density
function.
We define the projection error, denoted by €, as,

ep:=|f(X) =P fO] = 1f (0 = 3 cmp@mr(l. (4.30)
kez
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We also define the truncation error, denoted by €, as,

€ =Puf) = fm@I=1 Y, Cmr@mi()]. (4.31)
ke{ky,....ko}

We denote by €. the error arising from using approximated coefficients ¢} . instead of the
exact ones c;, ;. We have,

ko
€c:=fm(x) = fr ()] =1 Z (Cm,k — C;:q'k)(l’m,k(x”- (4.32)
kzkl
Then, we have,

lf(x) = frn®|<ep+er+ec, (4.33)

and, l
& < / ’ If(x) = f()dx < (Ig - a)lepter+e) < (b—a)lep+er+ec). (4.34)

a

First, we consider the projection error €. The projection 27, f can be written as [51],

2"

1 ~ .
= ifx 4.35
Fuf=5- | Foede. (4.35)

By definition of the inverse Fourier transform of f, we have,

1 (.
—_ 16X
=5 fR Forerde . (4.36)
Let, .
K@) = —f £ (©)1dé, 4.37
21 Jig1>v ! (4.37)
then,
ep< KQM). (4.38)

Next, we consider the truncation error €;. We observe that,

€= |Pnf(X) = fm(0=2™% Y oyl (4.39)
ke¢lky,....ko}

since |, 1 (x)] < 2”2, The following theorem allows us to give an estimate of the size of the
coefficients c,, ;. in terms of the rate of decay of the density function f.

Theorem 4.3.3 (Theorem 1.3.2 of [79]). Let f be defined onR, and let f be its Fourier transform
such that for some positive constant d,

Fwi=e(e ™), 1yl - oo, (4.40)

Then, as h — 0, )
Ef FOSG, W(BOdt— f(ih) =@>(e—%), (4.41)
R

where S(j, h) (1) := sinc(% -7j)
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If we consider h = sz, then by Theorem 4.3.3, the terms |c,;, | can be well approximated

by ZTI,Z f (2%) provided that | f| decays like in (4.40). As pointed out in [51], this rate of decay
is typically encountered in most of the interesting processes in finance, like for instance the
GBM, MJD and Kou models, to name just a few. Then, we can assume a certain rate of decay
for f to conclude that the series in (4.39) is a convergent series of terms which decrease very
fast in value when k goes to minus and plus infinity.

Finally, we consider e.. The coefficients c, ; are to be calculated by means of Vieta’s for-
mula and the numerical error can be estimated as,

k2 kZ
/2
€c = Z |Cm,k_0;nyk||(l’m,k(x)| <2™ Z |Cm,k_0:n,k| . (4.42)
k:k1 k:kl

The coefficients approximation error is studied in Theorem 1 of [67] and we stated it previ-
ously in Theorem 3.3.9. If we define o := max(|al,|b|) and assume that H(</) < €, then we can
apply Theorem 3.3.9 with j = log, (mM,,), where M, := maxy, <<k, Mpm, k. Finally,

<2mi2 f | o =2M ke — ki + 1) |2e + V2L f (e My)* (4.43)
€c < Cmi—C < - € . .
¢ o, e Ik 2 292040 — (1M, )2
Next we consider,
k> Iy
é°3:=|1;“n—lfn(])|52m/2 Z |C;*nk|f Isinc(2™x — k) —sinc* (2" x - k)|d x. (4.44)
k:kl a
If we make the change of variables y = 2" x — k, then,
1 ko 2miy—k
&3 < STz > |Cr*n,k|fm ) Isinc(y) —sinc* (y)|dy. (4.45)
k=k; 2Ma—k

We observe from (2.106) that Ic;"n k| <2™/2_ Byrther, we will use the following lemma to get an
upper bound of the integral in (4.45).

Lemma 4.3.4 (Lemma 2 of [67]). Define the absolute error &y (t) := sinc(t) — sinc* (t). Then,

(c)?

1BV D= 205D (reye

(4.46)

forte[—c,cl, whereceR,c>0and ] zlog,(rc).

Since 2"l —k<2"a-k<y=<2"l, -k <2™gof -k, then from (4.45) and Lemma 4.3.4
we have,
212 (My)®

2"~k M,
sinc(y) —sinc* (y)|d s/ sinc(y) —sinc* (y)|dy < . (447
fzma—k | Y yidy —Mml Y yidy 220+1) — (1 M,;,)?

Finally,
272 (M)®

E3<(kr—k1+1 .
3<(kp—k1+ )22(]+1)_(an)2

(4.48)
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ERROR ESTIMATION IN THE COMPUTATION OF ES
Let us define & := |ES; (@) — ES* ()|, & := |[ES1(a) — ESz(a)|, &2 := [ESz(a) — ES},(a)| and &3 :=
|ES;,(a) —ES™ (a)|. Then, the overall error when approximating ES; () in (4.22) by ES*(a) in
(4.27) is bounded by,

gﬁgl +(§)2 +6_‘>3_ (4.49)

The error & can be bounded following an analogous argument as in Section 4.3.2. Let us
study &, in detail,

_ 1 b
&> = |ESz (@) —ES;, (a)| = ’mfl x(f0) = f (x)dx

1 (P )
= _l—afl; x| () = f (x)| dx. (4.50)

Then, from (4.33) we have,

1 b
—f xdx
l1-alJr;

Regarding &3, we observe that the source of error is the replacement of sinc by sinc* in
S = fzzm llg :i sinc(y)dy. Thus, we can consider a similar argument as in the last part of Section
4.3.2 to get the same bound given in (4.47) for the error |.¥ — % |.

bz _ (l;)z
&y < (€p+€t+€c)=m(€p+et+ec). (4.51)

CHOICE OF m, ] AND THE TRUNCATION INTERVAL [a, b]

Looking at expressions (4.14) and (4.27) for computing the VaR and ES values respectively, we
can observe that the parameters m and J must be selected before we carry out the approxi-
mation. As we have shown in Section 4.3.2, the projection error (4.30) is bounded by,

ep < K2™Mm), (4.52)

where,

1 R
K = — dé. 4.53
)= fm>v|f(£)| ¢ (4.53)

In our setting, the characteristic function f is known in closed form and we can therefore
calculate the value of m that makes the projection error smaller than a certain tolerance €.
In general, the integral in (4.53) cannot be solved analytically and we compute the value of m
that satisfies,

1, . R
Py (If (=2™m)| +1f @™ m)]) < em. (4.54)

Note that a more accurate method can be used to compute the integral in (4.53) based on
numerical integration. Moreover, we can make a more conservative selection of the scale m,
when computing the ES, by considering the error amplifying factor 1/(1 — @) in (4.51), this is,

1 1, 4 N
—— - —(If 2"+ f 2" m)|) <€m. 4.55
o 2 (2" DI+ R m) <em (4.55)
By selecting m as in (4.55), we typically get a higher scale leading to more accurate results at
the cost of extra computational time. We therefore use (4.54) to compute only the VaR and
we use (4.55) when we desire both, the VaR and the ES values (since the computation of ES
implicitly involves the computation of VaR).
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Once the scale of approximation m is known, we provide a strategy to determine the in-
terval [a, b]. At the beginning of Section 4.3.1 we assumed that f is well approximated at scale
of resolution m in a finite interval [a, b] < R, and then we defined k; := [2™a] and k, := [2™D].
Thus, the determination of an appropriate truncation interval is an important issue. We use
the cumulants to determine an initial guess for the domain [a, b].

Next we set the parameter J. Although a different J can be selected for each k, we pre-
fer to consider a constant J, defined here by j := [log,(wMy,)] (in accordance with the error
analysis performed before), where M, := maxy, <x<k, Mm k. The reason is that, in practice,
the computationally most involved part in (2.108) is the evaluation of f at the grid points.
Those values can be computed only once and used by the FFT algorithm, as follows. From
expression (2.108),

2m/2 21 1

2] - l)nzm o _2’”’2§R 2 Z’Z“lf @2j+Dm2™) e
2]- 27

[f
=0
(4.56)

M) =0, from 2/7! to 2/ — 1, so that the last equality in (4.56)

Finally, we assume that f ( >

is equivalent to,

2M2 | g 220 (27 + D)A2™ 2wk
i = SR eF 2 f(—( ! 21) )eﬂ] : 4.57)
j=0

and therefore the FFT algorithm can be applied to compute the density coefficients c;' « The
error analysis reveals that the same j is used to compute the risk measures in (4.14) and (4.27).
As pointed out in Remark 4.3.2, this choice of J = j allows the acceleration of the evaluation
of these risk measures by means of a discrete sine transform.

As stated in Remark 4.3.1 and shown in Section 4.3.2, we have that f (Zim) ~2m ¢, 1, forall

I € Z provided that the modulus of the Fourier transform f of f decays sufficiently fast. We can
therefore control the quality of the truncated interval by evaluating the density f at a and b,
since f(a) ~ 2™2c,, 1, and f(b) =~ 2™2c,, \,. We summarize the overall process in Algorithm
1. Tt is worth remarking that with all the parameters fixed beforehand, this methodology is
reliable and directly applicable in practice.

Select the value m such that a certain accuracy €, is reached, according to (4.54);

Determine [a, b] by means of the cumulants;

Set k; = |a/2™] and k> = [b/2™];

Set J = j where j := [log, (TM) ], My, := maxy, <<k, Mom i

M,k :=max (|2 — k|, 12"/ + k|) and «f := max(|al,|b]);

5: Compute the density coefficients c,*n’ k with the inversion formula (2.108) (use FFT
optionally);

6: Given a tolerance €, use a root-finding method to determine the VaR value VaR* («)
such that I, (J) — « = 0, where I;,,(J) is taken from (4.14);

7: Calculate the ES value using (4.27) and the VaR value computed in the former step;

Algorithm 1: Algorithm to calculate VaR* (a) and ES* ().
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4.3.3. NUMERICAL EXAMPLES

In this section, we present a wide variety of numerical examples to illustrate the accuracy,
speed and robustness of SWIFT method when it is used to compute the risk measures VaR
and ES within the stochastic liquidity horizon framework. The programs in this chapter have
been coded in MATLAB and run under Linux OS on a laptop with Intel Core i7-5500U 2.40
GHz processor and 7.7 GB of memory.

We divide this section into five subsections. The first two are devoted to the delta-gamma
approach, where we measure the change in value of the portfolio as a quadratic function of
the change in value of the risk factors. We assume first that the change in risk factors follows
a Gaussian distribution and we move on to a more challenging problem by assuming that
these changes are driven by the heavy-tailed ¢-distribution. In next subsections we consider
the log-value change when the dynamics of the portfolio is driven by the Geometric Brown-
ian motion, the Merton jump diffusion model and the Kou model. The root-finding method
that we pick for all the numerical examples is the bisection algorithm with the stopping crite-
rion €, = 1.0e — 06. Regarding the liquidity horizon process, we consider the type of distribu-
tions used in [14]. We select the Bernoulli distribution for the delta-gamma approach under
the Gaussian model, the exponential distribution for the delta-gamma approach under the
t-distribution, the exponential distribution for the GBM, the generalised Pareto distribution
for the Merton jump diffusion model and the inverse gamma distribution for the Kou model.
See Table 4.1 and Figure 4.1 for a complete definition of the last three distributions and the
selection of parameters in each case. We run Monte Carlo simulations as a benchmark, with
one million scenarios for the risk factors and one hundred scenarios for the SLH. We consider
€m = 1.0e—02. The reason for this choice of ¢, is that we can expect, in the deterministic
case, at most two or three digits of accuracy due to the slow convergence of MC methods. The
stochastic case is less encouraging with MC simulation, since there is an additional source of
randomness when considering a stochastic holding period, and these two or three digits of
accuracy are not guaranteed any more.

l Distribution [ [ Parameters [ PDF ‘

Exponential A flx)=Ae Ax

(é) [1 + k%e)iliE , for6=xwhenk>0,

ag
Generalised Pareto k, 0,0 fx)= for6=x<6-7 when k <0.

ée 7, for 8 < x when k=0.

Inverse I
gamma a, B f)= NI e x

Table 4.1: Continuous distributions considered for the stochastic liquidity horizon.

DELTA-GAMMA WITH MULTIVARIATE GAUSSIAN MODEL FOR THE INDIVIDUAL RISK FACTORS
The delta-gamma method is a well-known approach used in market risk problems (see for
instance [60]). It is based on the assumption that the change in portfolio value is a quadratic
function of the changes in the risk factors, typically assumed normally distributed.

We therefore consider p risk factors S(¢) = (S;(¢),--- ,Sp(t))T at time t. We define AS =
S(t+ At) — S(t) as the change in value of the risk factors during the time interval [z, f + At].
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Figure 4.1: Exponential density with A = 10 (left plot), generalised Pareto with
k=0,0=0.1,0=0.1 (central plot) and inverse gamma with a =6, = 0.5 (right
plot).

Then, the change in value AIl := [1(z + H(t)) — I1(¢) defined in Section 4.2 is approximated by,

1
AIl = AIl, := @At + 8T AS + —ASTFAS, (4.58)
where © = %12, 0; = an andTl;; = ag 3S; are the Greeks evaluated at time ¢, and the random

variable H(t) is the constant At in the determlnlstlc case. If we assume that AS follows a nor-
mal distribution, then the following proposition gives us the characteristic function of AIl,.

Proposition 4.3.5 (Theorem 3.2a.2 of [55]). Assume that AS ~ A (0,X) for some positive def-
inite matrix X. Let Ay,---, A, be the eigenvalues of T, and let A be the diagonal matrix with
these eigenvalues on the diagonal. There is a matrix C satisfying CCT =X and C'TC = A. Let
d = CT5. Then, the characteristic function corresponding to far is given by,

2 p d2

u
—iu®At— —
2 Zl 1+1)L u

1

p
) [T(+iAju) 2, (4.59)

fan, () =E[e7 A = exp

where u e R.

Without loss of generality, we restrict ourselves to the univariate case p = 1, since the pro-
cedure to recover the density function from its characteristic function is the same. In that case
the characteristic function reads,

A . i uw? 1
fAny(u;At):exp —zu@At—E-m A+iduw) 2. (4.60)

Let us first perform a consistency check for the SWIFT method by taking a base portfolio
from [66] and considering three different deterministic holding periods At = 1/365, 10/365,
30/365. Note that we assume 365 days per year instead of trading days per year. Our portfolio
is made of one short European call and half a short European put with maturity 60 days. The
underlying asset at time ¢ is 100 with volatility level o = 0.3, interest rate 0.1 and strike price
101 for each option. Following similar steps as in [66] we select,

—_ 4.61)

2 no Gy v
= (swovar), T= Y ximg, C=SWoVAL 5= xiog
i=1 i=1
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where n represents the number of assets in the portfolio, x; is the amount of asset i and v; the
value of asset i. Finally,

[a,b] = [x1 — Ly/K2, k1 + Ly/K2), (4.62)

where x; and «, stand for the first and second cumulants” respectively,

1
k1 = —tr(I'Z) + OAf,
2 (4.63)
Ky = Etr((FZ)z) +6736.

The Greeks are computed using the Black-Scholes formula and L = 10 in all the numerical
examples hereinafter. As stated in Section 4.3.2, the coefficients |c,, x| can be well approxi-

mated by 2,,%,2 f (Zim) We can therefore assess the suitability of the selected interval [a, b] by
evaluating the value of the density at the extremes of the interval, this is, f (zk—,‘n) ~2M2¢c, 4

and f (zk—,%,) ~2m2c, k, since these two coefficients have been already calculated. As pointed
out in [66], when p = 1 we know the shape of the density and the number of modes (Corollary
1 of [66]). Further, from Corollary 1 and Corollary 2 of [66], we know that if I'; ; > 0 then the
density function is supported on [B, +c0), with %5 := —% +OAf, while whenT'; ; <0 then the
density function is supported on (—oo,‘B]. Thus, we select the interval [5,x; + L,/k2] in the
first case and [k; — Ly/x2,*B] in the second case.

We present the results of our numerical experiments in Table 4.2. The benchmark solution
is calculated by means of Partial Monte Carlo (PMC) simulation, which basically means that
we simulate AS and use the approximation in (4.58). For sake of completeness we give the
results corresponding to Full Monte Carlo (FMC) simulation where we evaluate the portfolio
with the Black-Scholes formula for each new value of the underlying risk factor. We show the
scale of approximation calculated with the error formula (4.54). We observe that the absolute
error reported is in accordance with €,,. It is worth remarking that for the cases At = 10/365
and At = 30/365 the VaR computation is somewhat more challenging than in the case At =
1/365, due to the asymptotic behaviour of the densities at ‘5 (see Figure 4.2 and the details
provided in Section 4.4 and Section 5 of [66]). In these two extreme cases the bisection method
does not work properly, since the condition g(a)-g(b) < 0with g(l,) = I;,,(J)—a is not satisfied.
When this situation occurs, we set VaR* () = B.

At PMC FMC SWIFT Absolute error
1/365 0.9024 0.8792 0.9038 1.4e—-03
10/365 || 1.7044 1.5430 1.7050 5.3e—-04
30/365 || 3.0434 2.8148 3.0439 5.0e-04

o o N B

Table 4.2: Absolute errors with respect to Partial Monte Carlo simulation,
corresponding to the computation of VaR with deterministic holding period At
and a = 0.99.

Next, we study the performance of the SWIFT method within the SLH framework. We
assume that H(¢) follows the Bernoulli distribution and we distinguish the three different

2Look at Theorem 3.3.2 of [55] for details.



4.3. COMPUTATION OF MARKET RISK MEASURES BY SWIFT 95

0.9 3 3

0.8
0.7
0.6 2 2
05
04

0.3 1 1

. J
05 0.5
0.1
||

-4 -3 -2 -1 0 1 2 -4 -3 -2 - 0 1 2 -4 -2 0 2

Figure 4.2: Density plots for At = 1/365 (left), At = 10/365 (central) and
At =30/365 (right).

cases represented in Table 4.3, where H(?) takes the value h; = 10/365 with probability p
and &y = 30/365 with probability 1 — p. The only different issue within the SLH framework
with respect to the deterministic case is the need for computing the appropriate characteris-
tic function to be used by the SWIFT method. Since we know the characteristic function in
the deterministic case, we apply the law of iterated expectations (Proposition 2.2.8),

fan, () =B | =B [B [e= A H(5)|| = pfan, @) + (0 - p) fan, (o). (4.64)
The interval of approximation in this case is calculated as,
la, b] = [min{ap, , an,}, max{by,, bp,}], (4.65)

where [ay,, by, ] and [ay,, by,] correspond to the intervals calculated in the deterministic case
with h; = 10/365 and h, = 30/365, respectively. We observe that again, the absolute error is in
accordance with €,, and the scale calculated with formula (4.54) is m = 5 in all three cases.

H(t) PMC SWIFT Absolute error
P(h) =0.25P(hy) =0.75 || 3.0430 3.0439 8.3e—-04
P(h;) =0.5,P(hy) =0.5 3.0415 3.0425 1.0e—-03
P(h) =0.75,P(hy) =0.25 || 3.0312 3.0327 1.5e—-03

oo al| B

Table 4.3: Absolute errors with respect to Partial Monte Carlo simulation,
corresponding to the computation of VaR with stochastic holding period driven by
a Bernoulli distribution and a = 0.99.

DELTA-GAMMA APPROACH WITH MULTIVARIATE £-DISTRIBUTION FOR THE RISK FACTORS

Next we consider the delta-gamma approach presented in [36] where the underlying risk fac-
tors are heavy-tailed distributed by means of the #-distribution. We build upon the work ex-
posed in [36] for the deterministic case and we extend that approach to the stochastic liquidity
horizon framework. A ¢-distribution is characterized by the number of degrees of freedom v.
The tails of its density decay at a polynomial rate of x™, so the parameter v determines the
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heaviness of the tail and the number of finite moments. Let ¢, be the univariate ¢-distribution
with v degrees of freedom, which has density,

—(v+1)/2
, —00< X <00, (4.66)

r(iv+1 2
ftv(x):(zL-‘r))(l x)

Vvar (%v) v
where I' (-) denotes the gamma function. The multivariate ¢-distribution has density,

I'(3(p+v)
(vm)P/2T (3v) 2|12

1, -3(p+v)
foz(x)= (1 +—x'2" x) , xeRP, (4.67)
v
where X is a symmetric, positive definite matrix. If v > 2, then vZ/(v —2) is the covariance
matrix of f, 5. The multivariate £, y density (4.67) belongs to the class of scale mixtures of nor-
mals. Thus, it has representation as the distribution of the product of a multivariate normal
random vector and a univariate random variable independent of the normal. If (Xp,--- » Xp)
has density f, 5, then,
€1,+4¢p)
(Xp,-++, Xp) ~ =22, (4.68)
Y/iv
where ¢ = (§1,+,¢p) ~ A(0,%), Y ~ )(% (chi-square with v degrees of freedom), and ¢ and Y
are independent.
If we assume within this section that AS in (4.58) follows the multivariate ¢-distribution in

¢
(4.67), then AS ~
vY/lv

elled as a scale mixture of normals. For the sake of simplicity in the exposition, we give a brief
summary of the methodology developed in [36], where the authors define the loss L = —AIl
and,

, thanks to the ratio representation (4.68), and AS is therefore mod-

L~ag+a’ AS+ASTAAS = ay+ 2, (4.69)

with ag = —©At, a= -8 and A= —3T.
By defining,

Y
Q= (7)(2—30, (4.70)

and observing that P(2 < x) = P(2, < 0) = Fy(0), we can compute P(2 < x) by finding the
characteristic function of £, and then we invert it to find P(2, < 0). The following theorem
gives us the characteristic function of 2.

Theorem 4.3.6 (Theorem 3.1 of [36]). LetA; = Az =--- = A, be the eigenvalues of ZA and let A
be the diagonal matrix with these eigenvalues on the diagonal. There is a matrix C satisfying
CCT =% and CTAC =A. Letb=a’C. ThenP(2 < x) = F,(0), where the distribution F, has
moment generating function,

L 1
[ —. (4.71)
j=1 1—2911'

20x L 022w |
G @) =[1+—-

i1 1-207;

The characteristic function of 2 is given by f;ogx =Elexp(—iwZy)] = ¢ (—iw).
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We can easily obtain a closed-form expression for the Fourier transform Fg_ of Fo_ from
fa, by integrating by parts. If we use the SWIFT method to recover Fg_ from Fg_, and we take
into account that,

Fan(y)=1-Fi(-y)=1-Fa(-y—-ap) =1-Fo_, , 0), (4.72)
then we can compute the VaR value by applying a bisection method to find ! such that,
l-a-Fg ,,,0)=0. (4.73)

Whilst in Section 4.3.3 only one Fourier inversion was performed, it is worth remarking that,
in this case, each step in the bisection method involves a Fourier inversion by means of the
SWIFT method. This is clearly a challenge in terms of computation and we can tackle this
problem only with a very efficient numerical method to avoid the propagation of the error.
As in the previous example section and without loss of generality, we restrict ourselves to
the univariate case p = 1. We use first a deterministic holding period At = 1/365. Our portfolio
is the same as before, made of one short European call and half a short European put with
maturity 60 days. The underlying asset at time ¢ is 100 with volatility level o = 0.3, interest
rate 0.1 and strike price 101 for each option. Note that the scale parameter m is recalculated
at each bisection step following the tolerance error €,, = 1.0e — 02 set at the beginning. We
present the results of the numerical experiments in Table 4.4 for values of v € {3,5,7}. The
benchmark solution is calculated by means of PMC with one million scenarios as mentioned
previously. To show the accuracy of the proposed numerical method, we have added some
extra numerical experiments in Table 4.5 with ten million scenarios for PMC to be used as a
benchmark for the SWIFT method with €, = 1.0e — 03 and €;,, = 1.0e — 04, respectively.

| v || PMC (10°) SWIFT Absolute error (€, = 1072 |
3 0.9438 1.0201 7.6e—-02
5 0.9562 1.0119 5.6e—02
7 0.9456 0.9678 2.2e—-02

Table 4.4: Absolute errors with respect to Partial Monte Carlo simulation,
corresponding to the computation of VaR with deterministic holding period
At=1/365,a=0.99and v =3,5,7.

] v H PMC (10°) Absolute error (¢, = 1073)  Absolute error (€,, = 10™%) \
3 0.9438 5.2e—-03 2.7¢e—04
5 0.9548 2.9e—-03 1.6e—04
7 0.9447 3.8e—03 2.6e—04

Table 4.5: Absolute errors with respect to Partial Monte Carlo simulation,
corresponding to the computation of VaR with deterministic holding period
At=1/365,a=0.99and v =3,5,7.

Next we study the performance of the SWIFT method within the SLH framework. We con-
sider the same portfolio as in the deterministic case and we assume that H(t) follows an ex-
ponential distribution with parameter A = 10. Since the holding period is not deterministic,
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we cannot apply directly the bisection method in (4.73). To circumvent this problem, we con-
dition on a realization of H and use the law of iterated expectations (Proposition 2.2.8),

Fo_ om0 =P(_1_oHn =0) = I [1]{9—(1+@Hm)50}] =B [E[ﬂ{e@—(ueﬂm)fo} | H(1) = h”

(4.74)
= fRE [H{Q—(H@h)ﬁo}] fuhdh= fRFQ—(Hem 0) fa(h)dh,
where fy(h) = 10exp(—10h) is the probability density function of the stochastic holding pe-
riod. Now we can apply the bisection method to find / such that,

1-a—Fo_y om0 =0. (4.75)

The integral at the right hand side of (4.74) must be calculated at each iteration of the bisection
method. The integral is evaluated by means of the trapezoidal rule and the infinite integra-
tion domain is replaced by the finite domain [0, #*], where h* is such that Fy(h*) < 1.e— 06,
being Fy the CDF of H(¢). Note that for each quadrature point h, we calculate Fg_ ., (0)
as in the deterministic case. The results are shown in Table 4.6. We run one hundred times
the PMC method and we consider the average as the benchmark solution, giving also a 95%
confidence interval. It is worth remarking that Monte Carlo simulation is extremely demand-
ing in terms of computing due to the heavy-tailed distribution combined with the stochastic
holding period.

’ v H PMC 95% CI SWIFT Absolute error
3 || 10.1776 [8.0220,13.5035] 10.0803 9.7¢e—02
5 9.8275 [7.4039,13.2777] 9.5490 2.8e—-01
7 9.7135 [7.6791,12.5971] 9.5047 2.1e—-01

Table 4.6: Absolute errors with respect to Partial Monte Carlo simulation,
corresponding to the computation of VaR with stochastic holding period driven by
an exponential distribution with A =10 and a = 0.99.

GEOMETRIC BROWNIAN MOTION
In this section we consider that our portfolio I1(¢) follows GBM dynamics,

dari(t) = pll(t) dt + oll(t) dWy, (4.76)

where, as usual, u represents the drift and o the volatility. As it was stated in Section 4.2, we are
interested in measuring the change in the log-value of the portfolio rather than in the value
itself. Thus, we consider X = log(I1(¢+ H(t))) —log (I1(¢)), where H(¢) is the constant value
At in the deterministic case. It is well known that X follows a normal distribution with mean
(u - "72) At and variance o?At, its characteristic function reads,

« ) g’
fx(w;Ar) = exp(—z (p— ?)Atu—

u

a?At 2)
. (4.77)
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The first two cumulants are x; = (u— ‘772) At and x, = 02At, and we determine the interval
of approximation [a, b] following the rule-of-thumb (4.62). In this particular case there are
closed form solutions for VaR and ES values (see Example 4.2.5),

2 -1
o )AH_U\/A_HP(@ (a))

2
VaR(q) = (u—%)mw\/ﬁ@‘l(m, ES(a) = (u—; - . (4.78)

where ¢ stands for the PDF of a normal standard and @ is its CDE and we use them as the
benchmark solution. We present the numerical experiments in Table 4.7. We consider three
different confidence levels a, where a = 0.99 is the traditional regulatory confidence level to
measure the VaR while @ = 0.975 has become the new regulatory confidence level to measure
the ES. Since we aim at computing both risk measures, we use the error formula (4.55) to
estimate the parameter m. We see again that the ES error is in accordance with the fixed
tolerance €;,. We observe that the VaR error is extremely small due to the fact that formula
(4.55) is equivalent to use formula (4.54) with a tolerance error of (1 — a)e;,,. To show the
power of approximation of SWIFT method, we note that when €, = 1.e— 05 and a = 0.99 then
m =7 and the ES error is 5.1e — 06.

] I VaR ES

m || Exact SWIFT Absolute Error | Exact SWIFT Absolute error
0.95 6 || 0.0430 0.0430 1.5e—-07 0.0539 0.0594 5.4e-03
6
6

0.975 0.5012 0.0512 2.8e-07 0.0611 0.0720 1.1e-02
0.99 0.0608 0.0608 1.9e-07 0.0697 0.0969 2.7¢-02

Table 4.7: Absolute errors for VaR and ES values with respect to the exact formula
(4.78) when II() follows a GBM dynamics with 4 =0.1, 0 = 0.5 and Az =1/365.

Next we consider the GBM dynamics in combination with an exponential random variable
to drive the SHL. In this case,

fx(u) - [e—iuX] - [IE}[ o iuX

H@)|| = B[ fxw ) =fw fxtsh) fu(hydh,  @4.79)

where fy(h) = Aexp(—Ah). The integral in (4.79) can be solved analytically yielding,

A -1

fx(u) = (4.80)

. 2 ’
/1+l(,u—”7)u+%02uz

We use the expression (4.80) to calculate the scale of approximation m. We can also use the
same expression to compute the cumulants. However, if we observe the cumulants in the
deterministic case, we realize that they are increasing functions of At. We therefore consider
the union of the two intervals corresponding to the minimum (k; = 0) and maximum holding
period, where the maximum is determined by h; such that Fy(hy) < 1.e— 06, and Fy stands
for the CDF of H(?),

la, b] = [min{ap,, ap,}, max{by,, by,}], (4.81)
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where ay, = by, =0, ap, = (u— %z) hy — Lo/ hy and by, = (p— %Z) hy + La+/hy. We consider
two benchmark solutions in this case. First of all, we run MC simulations like previously with
the initial value of the portfolio V5 = 100. The results are presented in Table 4.8, where in
general the absolute error is of order 1.e — 02.

| VaR ES

m MC SWIFT Absolute Error MC SWIFT Absolute error
0.95 7 0.2331 0.2533 2.0e—-02 0.3378 0.3638 2.6e—02

7

8

0.975 0.3064 0.3300 2.4e—-02 0.4103 0.4404 3.0e—-02
0.99 0.4005 0.4313 3.1e-02 0.5049 0.5418 3.7¢e—-02

Table 4.8: Absolute errors for VaR and ES values with respect to MC simulation
when I1(#) follows a GBM dynamics with ¢ = 0.1, o = 0.5. The SLH is driven by an
exponential distribution with A = 10.

However, in order to really assess the accuracy of the SWIFT method, we use a second
benchmark solution. We consider the numerical formulae employed in [14] for the VaR value,

o (VaR(@)-(u-%)n
f fa(hdh=a, (4.82)
0

O]
oVh

and ES value,

2 2
L opof( g2 (1-%)n-VaR@) VaR(a) - (4 % |

ES(@) = —— - || —L |+ oV —————— mdh. (483

@ l—dfo ((IJ 2 ( ovh rovhe ovh fa(® (4:69)

We use the MATLAB function integral to numerically solve the integrals in (4.82) and (4.83),
and the MATLAB function fzero as a root-finding method in (4.82). The results are presented
in Table 4.9, where we can observe very accurate results for VaR as well as for ES values.

| VaR \ ES |
a m || Reference SWIFT Absolute Error | Reference SWIFT Absolute error
0.95 7 0.2533 0.2533 1.2e—-06 0.3639 0.3638 6.2e—-05
0975 7 0.3300 0.3300 3.2e—-06 0.4405 0.4404 1.3e—04
0.99 8 0.4313 0.4313 8.5e—-06 0.5418 0.5418 5.5e—-05

Table 4.9: Absolute errors for VaR and ES values with respect to the formulae (4.82)
and (4.83) when I1(#) follows a GBM dynamics with ¢ = 0.1, 6 = 0.5. The SLH is
driven by an exponential distribution with A = 10.

MERTON JUMP-DIFFUSION MODEL

As pointed out in [23], jump-diffusion models assume that the evolution of prices is given by
a diffusion process, punctuated by jumps at random intervals. Here the jumps represent rare
events like crashes and large drawdowns. Such an evolution can be represented by modelling
the log-price as a Lévy process with a nonzero Gaussian component and a jump part, which
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is a compound Poisson process with finitely many jumps in every time interval. Examples of
such models are the MJD model with Gaussian jumps [58] and the Kou model with double
exponential jumps [48]. In this section we consider the MJD model for driving the dynamics
of the value of the portfolio I1(#), whilst the next section is devoted to the Kou model.

The process I1(¢) is assumed to follow the stochastic differential equation,

ari(e) = (u— A de + oll(t) dW; + e/ - DI dgqy, (4.84)

where g, represents a Poisson process with mean arrival rate A, J has normally distributed
jumps with mean y; and standard deviation o, k = IE [e] —1] and W, is a standard Brownian
motion process. The characteristic function of X = log (I1(¢ + H(?))) —log(I1(¢#)) in the deter-
ministic case when H(t) is At reads,

. 2 2Nt
fx(u;At) = exp(—i (,u—/lK— %)Atu— g

O'ZM

2
U2 +7LAt(e_i“’”_]2 - 1)) (4.85)

and we use the cumulants,

o2
K1 = ujAAL+ (M—AK— 7) At,
K2 = (0° + A (5 +09)) At (4.86)
x4 = (U] +60715 +307) AL

To be more precise, the initial guess that we use for the MJD and Kou models to determine the

truncation interval is,
K1 —L\/ K2 +vK4,K1 +L\/ K2 +vKg

The benchmark solution method is the MC method with I1(0) = 100, since there are not closed
form solutions in this case to compute the risk measures. We present the results in Table 4.10,
where we illustrate both, the deterministic case with A¢ = 5/365, and the stochastic case with
the SLH driven by a generalised Pareto distribution. We chose the regulatory level @ = 0.975.
The characteristic function within the stochastic case is obtained numerically by solving the
integral in (4.79) by means of the trapezoidal rule. The truncation of the integration domain
and the determination of the interval [a, b] follows an entirely analogous process as in the
GBM example. We observe that the SWIFT method performs well working at alow scale m =3
in the challenging stochastic case. We measure the CPU time in seconds of the overall process,
including the VaR as well as the ES computation. This measurement reveals the efficiency of
the methodology capable to accurately estimate the risk measures in less than 0.1 second. We
note that the stochastic case is more involved, since in this case, the characteristic function is
obtained numerically.

la,b] = . (4.87)

Kou MODEL

Finally, we consider that the portfolio I1(¢) follows the dynamics of the Kou model. This model
is also called the double exponential jump-diffusion model and it can reproduce the leptokur-
tic feature of the return distribution, which has semi-heavy (exponential) tails. Given a pro-
cess II(1), it is modelled as,

dri(n) = (u—- A dt +oll(HdW; + (¢/ — 1) dg;, (4.88)
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| | VaR ES
H(t) m MC SWIFT Abs. Error MC SWIFT Abs. error | CPU time
5/365 5 || 0.1171 0.1172 8.2e—05 | 0.1601 0.1555 4.6e—03 0.02
SLH 3 0.4726 0.4730 3.7¢—04 | 0.6081 0.5557 5.2¢—02 0.08

Table 4.10: Absolute errors for VaR and ES values with respect to MC simulation
when I1(#) follows a MJD dynamics with £ =0.1,0 =0.5,1=0.6, uy=0.1,0;=0.2.
In the deterministic case At = 5/365. The SLH is driven by a generalised Pareto
distribution with k=0, 0 = 0.1, 6 = 0.1. The confidence level is ¢ = 0.975. The CPU
time is expressed in seconds.

where ¢; is a Poisson process with mean arrival rate A and J has double exponentially dis-
tributed jumps with density,

fr(¥) = pme MV yz0 + gn2e™V 1 <, (4.89)

with 1 > 1, 02 > 0 governing the decay of the tails and p, g =0, p + g = 1, with p representing
the probability of an upward jump, and x = E[e/ —1]. The characteristic function of X =
log (V(¢t+ H(1))) —log(V (1)) in the deterministic case when H(t) is Af reads,

» a2 o>At p q
= —i|lp—Ak - —|Atu— —— 2—'/1( + )At ) 4.90
fxw exp( l(u K 2) u-——u i mtin  ma-iu u (4.90)
and the cumulants are,
o? P _q
Ky = H—AK—? At + —+—)AAI,
m 12
Ky = %—%)AAL‘+02AI, (4.91)
n m
Kgq = %—%)AAt
n 1,

In Table 4.11 we present the VaR and ES values computed at the regulatory level a = 0.975. In
the deterministic case, we consider At = 5/365 and the inverse gamma distribution is used for
governing the SLH dynamics. The benchmark solution is by the MC technique and V, = 100.
We observe that the absolute errors are in line with those obtained in the former sections
when comparing with MC.

4.4. CONCLUSIONS

In this chapter we presented a numerical method to efficiently calculate VaR and ES values
within a stochastic liquidity horizon framework. We therefore focus on two aspects under-
lined as key regulatory changes by the Basel Committee of Banking Supervision, like mov-
ing from VaR to ES and considering the incorporation of the risk of market illiquidity. The
estimation of the risk measures with a stochastic holding period appears to be particularly
challenging in terms of computational power.
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| | VaR ES

H() m MC SWIFT Absolute Error MC SWIFT Absolute error
5/365 5 0.1109 0.1110 1.3e—04 0.2225 0.1670 5.6e—-02
SLH 4 0.3262 0.3335 7.4e—03 0.8129 0.8058 7.1e—03

Table 4.11: Absolute errors for VaR and ES values with respect to MC simulation
when I1(#) follows a Kou dynamics with ¢ =0.1,0 =0.5, 1 =0.6,1 =1.5,172 = 1.8,
p = 0.5. In the deterministic case At = 5/365. The SLH is driven by an inverse
gamma distribution with @ =6, § = 0.5. The confidence level is @ = 0.975.

For the aforementioned reasons, we employ the SWIFT method, which recovers the den-
sity function of the change in value of a certain portfolio from its characteristic function. The
density function is approximated by a finite expansion in terms of Shannon wavelets and
the coefficients of the approximation are readily obtained by a Fourier transform inversion.
This method relies on the availability of the characteristic function, which is known in closed
form for many interesting processes in finance. We consider the well-known delta-gamma
approach for modelling the change in value of the portfolio under normal and ¢-distributed
risk factors, as well as the GBM, MJD and Kou models for the log-value change of the portfo-
lio, where these two last models incorporate a jump component in the dynamics. As for the
dynamics of the SLH, we consider the Bernoulli distribution, the exponential, the generalised
Pareto and the inverse gamma distributions in combination with the delta-gamma approach,
and the GBM, MJD and Kou dynamics. We carry out a detailed error analysis and we provide a
prescription on how to select the parameters of the numerical method, making this technique
more robust, reliable and applicable in practice.






CHAPTER 5

Quantifying Credit Portfolio Losses under
Multi-Factor Models

Credit risk refers to the risk coming from a borrower who may not repay a loan and that the
lender may lose the principal of the loan or the interest associated with it.

In this chapter, we investigate the challenges of estimating credit risk measures of portfolios
with exposure concentration under the multi-factor Gaussian and multi-factor t-copula mod-
els. We present efficient and robust numerical techniques based on the Haar wavelets theory
for recovering the cumulative distribution function of the loss variable from its characteristic
function.

This chapter is based on the article [21].

5.1. INTRODUCTION

Financial institutions need to evaluate and manage the risk arising from its business activities.
Credit risk is the risk of lose from the obligor’s failure to honour the contractual agreements.
It is usually the main source of risk in a commercial bank. Banks are subject to regulatory
capital requirements under Basel Accords and they are forced to keep aside a cushion to ab-
sorb potential losses in the future. The capital needed in order to remain solvent at a certain
confidence level is called economic capital. The basic regulatory risk measure in credit risk is
Value-at-Risk (VaR) and it is a quantile of the loss distribution computed at 99.9% confidence
level with a one-year time horizon. Although it is still the regulatory measure, the VaR value
has mainly two drawbacks that may impede a robust credit risk measurement. One of these
two disadvantages is that VaR is not sub-additive and contradicts the idea of diversification
(see Section 4.2.1 in Chapter 4). The second is that VaR gives no indication about the severity
of losses beyond the computed quantile. This is the reason why the Expected Shortfall (ES)
might be used in place of the VaR value for internal risk capital assessment (i.e., for economic
capital calculation) as well as what happens with market risk.

The Vasicek model forms the basis of the Basel II approach. It is a Gaussian one-factor
model where default events are driven by a latent common factor that is assumed to follow a
Gaussian distribution, also called the Asymptotic Single Risk Factor (ASRF) model. Under this
model, loss only occurs when an obligor defaults in a fixed time horizon. If we assume certain
homogeneity conditions, this one factor model leads to a simple analytical asymptotic ap-
proximation for the loss distribution and VaR value. This approximation works well for a large
number of small exposures but can underestimate risks in the presence of exposure concen-
trations (see [63]). Concentration risks in credit portfolios arise from an unequal distribution
ofloans to single borrowers (exposure or name concentration) or different industry or regional
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sectors (sector or country concentration). While regulatory capital is estimated by means of
the ASRF model under Pillar I, economic capital takes into account concentration risks and is
calculated under Pillar II.

Monte Carlo simulation either with one-factor or multi-factor models (to account for sec-
tor concentration or for modelling complicated correlation structures) is a standard method
for measuring the risk of a credit portfolio. However, this method is time-consuming when
the size of the portfolio increases. Computations can become unworkable in many situations,
taking also into account that financial companies have to rebalance their credit portfolios fre-
quently. On top of that, when using MC methods the variance is always an issue when estimat-
ing the risk measures at high confidence levels. For the aforementioned reasons, numerical
methods are appealing in this field. Different techniques can be found in the literature for es-
timating the risk with multi-factor Gaussian copula models, like MC methods in [37], Hermite
approximations in [68], where the main application is for large loan or mortgage portfolios
(3000 loans), a hierarchical factor model in [30] where closed-form solutions are derived un-
der the assumption that the number of sectors in the portfolio is large, and an extension of
the granularity adjustment technique to a new dimension is developed in [70].

As pointed out in [45], some works suggested that default events driven by ¢-distributed
random variables provide better empirical fit to the observed data. This is the called ¢-copula
model, where default events are expressed as the ratio of a normal and a scaled chi-square
random variable. The bivariate version of this last type of models is tackled with simulation
in [17, 75] and a complicated multi-factor version in [45].

In this chapter, we develop numerical techniques to contribute to the efficient measure-
ment of VaR and ES values for small or big portfolios in the presence of exposure concen-
tration under high-dimensional models. It is worth remarking that small and/or concen-
trated portfolios are particularly challenging cases, since asymptotic methods usually work
out well for large and diversified portfolios. We model the dependence among obligors by
means of multi-factor Gaussian copula and multi-factor t-copula models. To the best of our
knowledge, this is the first time that multi-factor #-copula models are considered outside the
MC framework. We estimate the risk measures in a procedure composed of two main parts.
The first part is the numerical computation of the characteristic function associated to the
portfolio loss variable. We tackle this part with different techniques depending on the un-
derlying model. For the (bivariate) ¢-copula model we perform a double integration with
Gauss-Hermite and generalized Gauss-Laguerre quadrature, while the multi-factor Gaussian
model is treated with the quadratic transform approximation (QTA) method put forward in
[39], where the authors calculate the price of a collateralized debt obligation. We derive the
characteristic function for the most challenging model, this is, the multi-factor z-copula, by
conditioning on the chi-square random variable of the model and applying the QTA method
at each discretization point of the resulting one-dimensional integral. This last model is by
far the most involved in terms of computing effort. Once the characteristic function for the
loss variable has been obtained, then the second part of the procedure consists of a Fourier
inversion to recover its CDE For this purpose, we use the WA method in Section 2.6.1 based
on Haar wavelets developed in [54] for the one-factor Gaussian copula model. We also use
the SWIFT method from Section 2.6.2 but, as expected we see a better performance with WA
because the functions to approximate are piecewise constant. Furthermore, we have shown
that this method outperforms the well-known numerical Laplace transform inversion method
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[1, 2] used in risk management in [38, 39] in terms of efficiency and robustness. The numerical
experiments carried out in this work show the high accuracy and speed of the method. An-
other point of importance is the robustness of the wavelet approach. We show how the scale
of approximation (this is, the number of terms used to approximate the CDF) is related to the
absolute error of the method. All these features make the proposed methodology an efficient
and reliable machinery to be used in practice.

The outline of this chapter is as follows. We start with the basics of credit risk management
in Section 5.2 where we present the credit risk portfolio problem and its formulation and we
give a brief overview on Gaussian and ¢-copula models for dependence among obligors. Sec-
tion 5.3 is made of three subsections which include methodology for the efficient evaluation
of characteristic functions, the formulae for risk measures computation by the WA method
and numerical examples to see the behaviour of the methods. Finally, in Section 5.4 a short
conclusion is given.

5.2. THE BASICS OF CREDIT RISK MANAGEMENT

This section is devoted to present the credit portfolio losses problem on the one hand, and
on the other hand the models we use to drive the dependence along with their characteristic
functions.

5.2.1. CREDIT PORTFOLIO LOSSES
To represent the uncertainty about future events, we specify a probability space (2, &, IP) with
sample space ), o-algebra &, probability measure IP and with filtration (%;) ;> satisfying the
usual conditions. We fix a time horizon T > 0, where T usually equals one year.

Consider a credit portfolio consisting of NV obligors. Every obligor n can be characterized
by three parameters: the exposure at default E,,, the loss given default LGD,, and the probabil-
ity of default P,. The loss function is then defined as,

N
L=) Ly (5.1)
n=1

with L, being the individual credit loss of every obligor given by L,, = E;,- LGD, - 1p,.

The best way to explain each of these parameters is by looking at them via a simple exam-
ple. Assume a bank lends a certain amount of money (say 10 million Euro) to a company. Also
suppose that the company has already taken the full amount and is not supposed to start re-
turning the money before the time horizon 7. Then 10 million would be the bank’s E,;,. On the
other hand, the loss given default LGD,, is the percentage of the E,, that the bank would lose
in case of default. This quantity takes into account that the bank may be able to recover some
of the money, even in the case of default, via collaterals included in the loan (in the contract
it may be written that in case of default the bank will get some of the assets of the company
which account for a part of the total money lend). Finally the probability of default P, is the
probability that default will happen during the time horizon and is defined as P, = P(D,),
where D, is the event of default taking the value 1 in case of default or 0 otherwise. Note
that E,,, LGDy, P, and all quantities derived from those three are measured with respect to a
specified time horizon. Changing the time horizon would imply a change of those values as
well.



108 5. QUANTIFYING CREDIT PORTFOLIO LOSSES UNDER MULTI-FACTOR MODELS

We will assume, without loss of generality that LGD,, = 1 for all ni.e., the loss given default
is 100%. We assume that these three parameters are estimated from empirical default data.
If the reader is interested in learning more about how to estimate these values, we refer to
the first chapter of [11]. Note that, for instance, in order to estimate the probability of default
we can use the scores provided by the rating agencies. Also, regulatory frameworks force the
banks to use their calibration methods to approximate the three quantities, so the assumption
that we have the values for the three quantities already given is reasonable.

Even assuming known Ej,, P, and LGD,, for all n, depending on the correlation struc-
tures between different obligors, evaluating the loss distribution can become computation-
ally expensive. However, for financial institutions, it is essential having an accurate, and fast
approximation of the loss function in order to be able to compute accurate risk measures so
they know the amount of capital they need to hold as a cushion in case of losses.

5.2.2. FACTOR MODELS AND THEIR CHARACTERISTIC FUNCTIONS

To evaluate the portfolio loss distribution, a key issue is to model the various dependency
effects. Direct modelling of the pairwise correlations is impractical since a bank’s credit port-
folio can easily contain tens of thousands of obligors. Common practice to reduce the com-
putational complexity is therefore to use a so-called factor model of asset correlations. In a
factor model different being the individual credit loss, L; and L j, are independent conditional
on some common factors, which can represent the state of the economy, different industries,
geographical regions and so on.

Firstly, we build upon the work in [54] where the one-factor Gaussian copula model was
considered as the model framework. After that, we move a step forward by considering, on the
one hand, multi-factor models to account for sector concentration and, on the other hand,
by selecting different copula models like the #-copula, which is capable of introducing tail de-
pendence in credit portfolios. As a result, we compute the risk measures by means of both, the
multi-factor Gaussian copula model as well as the multi-factor t-copula model. Copulas are
simply the joint distribution functions of random vectors with standard uniform marginal dis-
tributions. Their value in statistics is that they provide a way of understanding how marginal
distributions of single risks are coupled together to form joint distributions of groups of risks,
that is, they provide a way of understanding the idea of statistical dependence. For the sake
of completeness, we give in Remark 5.2.1 a review of the dependence structure given by the
Gaussian and ¢-copula models. For further details on dependence and copulas see [57, 75].

As mentioned in Section 5.1, one of the two steps involved in the estimation of risk mea-
sures is the efficient computation of the characteristic function associated to the loss random
variable L in (5.1). We consider the one-factor Gaussian copula model treated in [54, 63], the
multi-factor Gaussian copula model, which is the extension from one factor to several factors,
the t-copula and multi-factor #-copula models. We tackle the one-factor and multi-factor
models separately for methodological reasons that will be explained later on.

THE ONE-FACTOR GAUSSIAN COPULA MODEL

The one-factor Gaussian copula model (also known as Vasicek model) belongs to the class of
structural models and it is a one period default model, i.e., loss only occurs when an obligor
defaults in a fixed time horizon. Based on Merton’s firm-value model (1974), to describe the
obligor’s default and its correlation structure, we assign to each obligor a random variable
called firm-value. The firm-value (or, more precisely, the asset value log-return) W, of obligor
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n at time T is represented by a common, standard normally distributed factor Y component
(the state of the world or business cycle, usually called systematic factor) and an idiosyncratic
noise component Z,

Wy=vponY +/1-pnZy, (5.2)

where Y and Z,,, Vn < N are i.i.d. standard normally distributed and p;,---,pn € (0,1) are
correlation parameters calibrated to market data. In case that p, = p for all n, the parameter
p is called the common asset correlation. Using the factor structure (5.2), obligors become
independent conditional on Y.

In the Merton’s model, obligor n defaults when its firm-value falls below the threshold
level ¢, defined by ¢, := ®~!(P,,), where ®~!(x) denotes the inverse of the standard normal
CDE We can therefore define D, := {W,, < ¢} and the probability of default of obligor n con-
ditional to a realization Y = y is given by,

pn():=P(DylY=y)=® (5.3)

cn—\/p_ny).
vV1-pn

Consequently, the conditional probability of default depends on the systematic factor, reflect-
ing the fact that the business cycle affects the possibility of an obligor’s default.

By the law of iterated expectations (Proposition 2.2.8), the characteristic function ¥ of L
is therefore given by,

¥ () =E E[e—i‘”L| Y”
N
=E|E exp (—ia) Z Enﬂ{Wn<cn}) Y
n=1
A iwE,1
_ —lWER iwy<cp
=E| [ E|ebia | v] (5.4)
n=1
N
=E|[]9:,»
n=1
N
=/ Fr W [] Onlw, y)dy,
R n=1
where
On(@,y):= P pu(y) +1 - pa(y), (5.5)
and fy is the standard normal probability density function of Y,
1 -y%12
fr(y)=——e . (5.6)

V2n

MULTI-FACTOR GAUSSIAN COPULA
We start this section by focussing our attention to the concept of copulas and then the intro-
duction of the multi-factor model is straightforward.
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Remark 5.2.1 (Gaussian and ¢-copula models). Let us give attention to the case in which de-
fault dependence is modelled as a multivariate Gaussian process. With the same notation as in
Section 5.2.1, the unconditional probability of default P,, of obligor n becomes,

P(D,) =P (W, <@~ '(Py),
and the joint default probability is given by,
P(lp, =1,...,Tp, = 1) =P (W, <@~} (Py),..., Wy < @' (Py)). (5.7)

Let (uy,...,un) = (Py,..., PN) be a vector in [0,11V, choose a dependence structure described by
correlation matrixI'. Then, the unique Gaussian copula Cr associated with (W1, ..., Wy) is,

Cr(u,...,un) = @r (@7 (), ..., @ (un)) =P (W <@ ' (w),..., Wy <@ ' (up)),  (5.8)

forany (uy,...,uy) €10,1] N where ®r is the multivariate standard Gaussian distribution func-
tion with correlation matrixT.

In the same way, we can extract a copula from the multivariate normal distribution, we can
extract an implicit copula from any other distribution with continuous marginal distribution
functions. For example, the (N -dimensional) t-copula takes the form,

Cyr(U,...,uy) = @y () (u), ..., 0, (un)) =P (W < @,  (w), ..., Wy <@, (un), (5.9)

forany (uy,...,uyn) €0,1] N where @, 1 is the multivariate t-distribution function with correla-
tion matrixT, and ®,' denotes the inverse of the distribution function of a standard univariate
t-distribution with v degrees of freedom.

Multi-factor models aim at modelling complicated correlation structures. The d-factor
Gaussian copula model assumes that the correlation among W, is introduced by a d x 1 vec-
torY =[Y1, Yo,..., Yyl T of independent standard normal random variables, representing the
systematic risk factors,

W,=alY+b,Z, n=1,---,N. (5.10)

Here, a,, = (a1, ang,...,and]T is a d x 1 vector of real constants satisfying a,ian < 1; it rep-
resents the vector of factor loading coefficients of the common factors, and Z,, are .47(0,1)
random variables representing the idiosyncratic risks, independent of each other and inde-
pendent of Y. The constant b, being the factor loading of the idiosyncratic risk factor, is

chosen so that W), has unit variance, i.e., b,, = \/1 — (a3, + a2, +---+a’ ), which ensures that
w,, are A4(0,1).

The incentive for considering the multi-factor version of the Gaussian copula model be-
comes clear when one rewrites it in matrix form,

Wi an ar aiq b1 7,
Ws as as azq by 7,

= . i+ ) Yo+---+ ) Yq+ . . (5.11)
Wi ant an? and bnZn

While each Z, represents the idiosyncratic factor affecting only obligor n, each Y}, for j =
1,...,d, may affect all (or a certain group of) obligors. Although the factors Y; are sometimes
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given economic interpretations (as industry or regional risk factors, for example), the key role
of the factors Y; is that they allow us to model a complicated correlation structure in a non-
homogeneous portfolio. More detailed information is available in [39].

Here, the probability of default of obligor n conditional on the realization y € R? of sys-
tematic risk factor Y is defined as,

_ o '(P,)-al
pn(y):=P(W, <® 1(Pn)|Y:y)=<1>(Z—"y). (5.12)
n
Given a realization of the systematic risk factor Y, defaults are independent. Then,
. N ) N .
Ele k| | = [[Ble @it | v] =[] (1+pa) (7B -1)),  G.13)
n=1 n=1

where ¢, = ®~1(P,) and ®~!(-) denotes, as usual, the inverse of the standard normal CDE By
the law of iterated expectations, the characteristic function Wy of L is therefore given by,

Wy =E[e | =B [ | v]| =B [ T

N
=fRd fr [1 9w, y)dy, (5.14)
n=1

—iwE,

where 9, (w,y) :=1+p,(y)(e —1) and fy is the d-dimensional standard Gaussian density.
ONE-FACTOR f-COPULA WITH v DEGREES OF FREEDOM AND {-DISTRIBUTED MARGINS

As pointed out in [75], while Gaussian copulas do not exhibit tail dependence, this is, the
defaults do not occur simultaneously, ¢-copula models admit tail dependence, with fewer
degrees of freedom producing stronger dependence. We assume that latent random variables
Wi, .-, Wy are generated by,

W, = \/g(\/EY+\/1—ann), (5.15)

where Zy,---,Zn, Y ~ A (0,1), V ~ ¥>(v) and Z;,---, Zy, Y and V are mutually independent.
Again, p;,---,pn € (0,1) are correlation parameters calibrated to market data. Systematic risk
factor Y may be interpreted as an underlying risk driver or economic factor, with each re-
alization describing a scenario of the economy. Random variables Z3,---, Zy represent id-
iosyncratic, or obligor specific, risk. Scaling the model in (5.2) by the factor v/v/V transforms
standard Gaussian random variables into z-distributed random variables with v degrees of
freedom.
The probability of default of obligor n conditional on Y = y and V = v is then given by,

pn(y,0) =P (W, <@, (Py)| Y =y,V=10)

:]P(ﬁ(\/EY+ \/l—ann) <! (P)lY =y, V= u)

_IP(Z . \/v/vCD;l(Pn)—\/p_ny)_q) \/v/vq);l(Pn)—\/p_ny)
" V1-pn V1-pn '

(5.16)
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As pointed out in [76] and because of the conditional independence, the characteristic func-
tion of the loss L now reads,

. . N .
\PL((U) — ]E [e—le] — ]E []E[e—le ' Y, V]] — ]E H ]E[ e—lenﬂ{Wn<cn} Y, V]

n=t (5.17)

N N

=E|[] 9w y,v) =f W [] 9n, yv)dydy,
n=1 Rx[0,+00) n=1
where the threshold level is defined by ¢,, = ®;, L(p,) and,

9n(@,¥,0) =1+ pp(y, v) (e “En - 1), (5.18)

fv is the standard normal probability density function of Y, and fy is the chi-square PDF with
v degrees of freedom, i.e.,

1 .
W)= et 619

Note that we have replaced the joint density of Y and V in (5.17) by the product of the marginal
densities because they are independent random variables.

MULTI-FACTOR £-COPULA MODEL
In this section, we consider a multi-factor model with dependence among obligors driven by
a t-copula. We assume that latent random variables Wi, - -, Wy are generated by,

w, :,/% (alY +byZy), (5.20)

where Y, Z,, a,, and b,, are defined and follow the same hypothesis as in Section 5.2.2, with
V ~ x%(v) as in Section 5.2.2. Here the probability of default of obligor n conditional on Y =y
and V = v is given by,

Vulive,(P,) —al
pu(y,v) = 0| L ) a”y), (5.21)
bn
the conditional expectation reads,
. N .
]E[e‘”“L) v,v| =] (1+paty,v) (7)), (5.22)
n=1
and thus,
N
Yi(w) = f W v [] Onlw,y, v)dydv, (5.23)
R4 x[0,+00) n=1

where 9,(@,y,v) := 1+ pu(y, v) (e7“En — 1), fy is the d-dimensional standard Gaussian den-
sity and fy is the chi-square PDF with v degrees of freedom.
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5.3. QUANTIFYING CREDIT PORTFOLIO LOSSES BY WA METHOD

5.3.1. EFFICIENT COMPUTATION OF CHARACTERISTIC FUNCTIONS

The evaluation of the characteristic function (5.4), which is a particular case of (5.14) ford = 1,
involves the computation of an integral that we solve efficiently as in [63] by means of numer-
ical quadrature in the d = 1 case. The evaluation of the characteristic function (5.17) in a
certain point w, which is a particular case of (5.23) for d = 1, involves the computation of a
double integral that we solve efficiently in this section 5.3.1 by means of numerical quadra-
ture for d = 1. However, looking at the expressions of the characteristic functions (5.14) and
(5.23), corresponding to the multi-factor Gaussian and z-copula models respectively, we re-
alize that a direct attempt of solving the d- and (d + 1)-dimensional integrals, respectively, at
fixed points w is not affordable with numerical integration. For these challenging tasks, we
rely on the QTA method put forward in [39] for computing the Laplace transform of the port-
folio loss within the multi-factor Gaussian copula model. We introduce the QTA method and
use it to calculate the characteristic function (5.14), and we will show how we can benefit from
the QTA approach for the challenging case of the multi-factor z-copula by conditioning on the
V factor.

ONE-FACTOR GAUSSIAN COPULA

If we replace 9, and fy in expression (5.4) by their corresponding expressions (5.5) and (5.6)
we obtain the integral,

2 N
Y () = \/_f y?]‘[ _””E"—l)pn(y)+1) (5.24)

The one-factor Gaussian copula model was already treated in [54, 63] and the character-
istic function integral is solved by a Gauss-Hermite quadrature. Alternatively, it can also be
considered the QTA method presented for the multi-factor Gaussian copula for dimension
d =11in a similar way as it is presented for the one-factor ¢-copula model later.

We thus solve the integral (5.24) by Gauss-Hermite quadrature. For sake of complete-
ness we briefly review the method. Gauss-Hermite quadrature is a particular type of Gaussian
quadrature for approximating the value of integrals of the form,

f e f(x)dx. (5.25)
R
In this case,
2 W
fR e " fdx= ) w;f(x), (5.26)
i=1
where nj, is the number of sample points used. The x;,i = 1,2,---, ny, are the roots of the

Hermite polynomial of degree nj,, Hy, (x), and the associated weights w; are given by

2”"_171;1!\/5
Wi=—F——"""-. (5.27)
1y [Hpy,—1(x;)]
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Using this quadrature,

ml
RI\)
=

Yi(w) = ((e_i‘”E” - I)Pn(\/(Z)x) + l)dx

n=1

e 9(x)dx (5.28)

Z5— 5

- 5l-5l-

w;(x;),
1

Yz i
where 9(x) = ]_[fyzl ((e7™@En —1)p,(v/(2)x) +1) and ny, is the number of sample points of the
quadrature.

MULTI-FACTOR GAUSSIAN COPULA

We start this section by enunciating the proposition which forms the basis of the QTA method.

Proposition 5.3.1 (Proposition 1 of [39]). Let Z be a d x 1 vector of independent standard nor-
mal variables. For any scalar ¢ € C, vector g € C?, and matrix H € C%*4 for which R (H) is
negative-semidefinite, it follows that,

vdet(I-2H)

E|eors 22 z) L esTuemer (5.29)

where R (z) denotes the real part of z.

First of all, let us define the mapping s — g,(s),forn=1,---,N, as,

o~1(P,) +s\/ala,

gn(w,s):=1+ (e_i“'E” - 1) @ . seER. (5.30)
by
Thus, one can rewrite the conditional expectation (5.13) as follows,
N T
. Y
]E[e‘“”L‘ Y] =[] gn(w,Sn) = ezgﬂlogg"(“”s"), where S;, ;= — On__ (5.31)
n=1 \ /az;an
If we approximate log g, (w, S;;) by a quadratic function of S,
1088y (w, Sp) = an (W) + Br(w) Sy +ys(w) S, (5.32)

where the scalars a,(w), 8,(w) and y,(w) are complex-valued, then one can use Proposition
5.3.1to (5.31) and obtain a closed-form approximation for ¥ in (5.14),

Y, (w)=FE [ezﬁzlloggn(w,sn)] ~F [erLl(an(w)+ﬁn(w)sn+yn(w)s§l)] K [ec(w)+gT(w)Y+YTH(w)Y .

(5.33)
The last equality follows from the fact that the S;,’s are linear in Y. The scalar c, vector g, and
matrix H are given explicitly by,

N
y Prw)an (5.34)

n=1 |, /az;an

In order to obtain the coefficients (a,(w), B, (w),y,(w)) we make use of the weighted least-
squares method. We will go into the details in the numerical examples section.

N N anaT
cw)=) an(w), gw)=- , and H(w) = ) yn(w)——
n=1 n=1

a,a,
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ONE-FACTOR t-COPULA WITH v DEGREES OF FREEDOM AND ¢-DISTRIBUTED MARGINS
Ifwe replace 9y, fy and fy in expression (5.17) by their corresponding expressions (5.18), (5.6)
and (5.19), we obtain the iterated integral,

1 +00 v v 1.2 N ;
L7 (w):—vf pzlez fe‘iy e 10 _ 1 “yvv)+1|dyldv. (5.35)
L T (7)o (R [T ) Pty |y

We propose in this section a numerical integration method to evaluate ¥ (w) in (5.35) at
a fixed point w. Later we show how the one-dimensional version of the QTA method can be
applied by conditioning on the V factor. We will compare the efficiency of both methods in the
numerical experiments section and show that in this case, numerical integration is superior
to the QTA method.

Numerical integration

We solve the inner integral in (5.35) by Gauss-Hermite quadrature and the outer integral by
generalized Gauss-Laguerre quadrature. For sake of completeness we review the generalized
Gauss-Laguerre method here, Gauss-Hermite is already introduced in (5.26). Generalized
Gauss-Laguerre quadrature is an extension of the Gauss-Laguerre quadrature method for ap-
proximating the value of integrals over R™ with integrands of the form x%e™* f(x) for some
real number a > —1. Precisely,

+00
f x%e *f(x)dx. (5.36)
0

This allows us to efficiently evaluate such integrals for polynomial or smooth f(x) even when
a is not an integer. In this case,

n;

+00
f x%e T fx)dx= ) wif(xi), (5.37)
0

i=1

where x; is the i-th root of Laguerre polynomial of degree n;, L, (x), and the weight w; is given

by w; = m Finally, if we perform the change of variables y = v2x in (5.35), and
Vll+ 1

apply the quadrature rules (5.26) to the inner integral and (5.36) to the outer integral, then,

+0o v v 2 N
Yi(w) = ﬁzZ;r()fo vz le2 (fRe‘x Elﬂn(w, V2x, v)dx)dv

N

(5.38)

where 9(w, x, v) = Hﬁ)’:l 9,(w,v2x,v),and w?, x;’ are the weights and sample points in Gauss-

Hermite quadrature and wf , vf are the weights and sample points in the generalized Gauss-

Laguerre quadrature. We observe that the computational complexity of evaluating the nu-
merical formula (5.38) for a fixed value w is @ (n; - ny,).

One-dimensional QTA method
Let us start by presenting the one-dimensional version of formula (5.29) in Proposition 5.3.1.
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Corollary 5.3.2. Let Z be a standard normal random variable. For any scalars c,g,h € C, for
which R(h) <0, we have,

P 1 g2
E ec+gZ+hZ‘ - oCtmam, (5.39)
] V(1 -2h)
Proof. Follows immediately from Proposition 5.3.1 by considering d = 1. O

The key idea in this section is conditioning on the factor V in (5.15) and applying Corollary
5.3.2 for each fixed value v of V. Looking at expression (5.17),

N
Yi(w) = f W) [] 9nlw,y,v)dydy, (5.40)
Rx [0,+00) n=1
we observe that we can write,

+00 )
¥ (w) :f fV(U)E [E[ e—le(v)
0

+00 N
Y] ] dv = f frE [eznﬂ“’gg"(w’y’”) dv,  (5.41)
0
where L(v) emphasizes the fact that V takes a fixed value v and,

o \/%Jl(Pn) ~\/Pny
1=pn

gn(w,7,v) :=1+(e—iw’5n—1) , for (j,v) R [0,400).  (5.42)

N . o L .
We can compute It [eznzllogg"(“”y’”)] using a similar approximation as previously,

loggn(w,Y,v) = ap(w,v) + Bp(w, V)Y +y,(w,v) Y2, (5.43)
and applying Corollary 5.3.2,

E [ezleloggn(w,Y,u)] ~T [ec(w,v)+g(w,v)Y+h(w,y)y2

IS SR T 549
V1-2h(w,v)
for R (h(w, v)) <0and,
N N N
cw,v)= ) ap(w,v), gw,v)=) Pp(w,v), and h(w,v)=)_ yp(w,v). (5.45)
n=1 n=1 n=1
Hence, from (5.41) and (5.44) we end up with,
gz(w,u) gz(w,v)
+00 e W) * 30 30w, 1 ooy 1 Ly e (V) a2k m
Y (w) :f fv(v) dv=— f v e 2 —————dv. (5.46)
0 V1-2h(w,v) 22T () Jo V1=2h(w,v)

We solve the integral in (5.46) by means of generalized Gauss-Laguerre quadrature. It is worth
remarking the dependence on v for the coefficients c(w, v), g(w, v) and h(w,v). As a con-
sequence, this method involves N quadratic approximations of the type in (5.43) for each
discretization point considered in the quadrature rule.
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MULTI-FACTOR ¢-COPULA MODEL
In a similar manner as previously, we define,

o \/%QD;l(Pn) +x\/ala,

by,

gn(w,x,v) =1+ (e‘i”En - 1) , for (x,v) R x [0, +00).  (5.47)

With this notation we can rewrite,

N N N aTY
[1 9, ¥,0) = ] gnw, Xy, 0)) = eXnmt 108800500 for X = - —H— (5.48)
n=1 n=1 \ /aﬂun
For each n, we approximate log g, (w, X;,, v) by a quadratic function in X,
10g g (10, X, V) = an(w, V) + B (10, 0) Xy +yn(w, V) X7, (5.49)
and then,
N N N N
Y loggn(w, Xp, ) = Y. an(w,v)+ Y. fu(w, ) Xn+ Y yulw, )X,
n=1 n=1 n=1 n=1 (5.50)
=c(w,v) +gT(w, VY +Y Hw, Y,
where,
N N N T
c(w,v)=) ay(wv), gwrv) =- Z M, and H(w,v) = Z Yn(w, v) a,;an. (5.51)
n=1 n=1 /az;an n=1 a,an

If we follow a similar procedure as before and we apply Proposition 5.3.1, then the character-
istic function in (5.23) can be approximated as,

e r Y+YTH Y
‘PL(w)=f fv(v)E[ec(w"’”g (w)Y+Y Hw,v)Y | 1,
0

1 too v 1 T -1
_ / yo1 -4 et ) +g" W, I-2Hw,v) ™' gw,v)/2 5,
2:T (%) Jo vdet(I -2H(w,v))

(5.52)

where c(w,v) €C, g(w,v) € C? is a vector, H(w, v) € C%*4 is a matrix, I is the d-dimensional
identity matrix and fi (v) is the PDF of a chi-square distribution with v degrees of freedom.
We want to underline that in order to apply Proposition 5.3.1 we need % (H) to be negative-
semidefinite. In the numerical examples section, we will explain how to proceed when this
condition is not satisfied. We compute the integral in expression (5.52) by generalized Gauss-
Laguerre quadrature.



118 5. QUANTIFYING CREDIT PORTFOLIO LOSSES UNDER MULTI-FACTOR MODELS

5.3.2. RISK MEASURES COMPUTATION BY WA

Central to the methodology presented in this work is an efficient method to carry out the in-
version of characteristic functions. We have seen in Section 5.3.1 that characteristic functions
of the loss L are known (numerically) for multi-factor Gaussian and ¢-copula models. We de-
vote the present section to the numerical method selected to perform the inversion step. Let
f1 and F; be the PDF and CDF of L, respectively. Without loss of generality we assume that
the sum of the exposures Ej equals one, this is, Zﬁ:’zl E,, =1. Then,

F(x), ifosx<1,

0, ifx>1, (5:53)

Fr(x) = {

for a certain F¢ defined in [0, 1]. Recall that ¥ is the Fourier transform of the density f; and
then,

\PL(w)=fe"'wlfL(l)dl=f e"lF (dl, (5.54)
R R

where F; is the derivative of distribution function Fy in the context of generalized functions.
If we integrate by parts,

. r .
Y () =e '+ iwf e lEe(hdl, (5.55)
0
and then the Fourier transform of F¢ is given by,

¥ (w)—e @
iw '

Fo(w) = (5.56)
We aim at recovering F¢ from its Fourier transform F¢. For this purpose, we use the metod
initially developed in [54] for Laplace transform inversion and further extended in [64] for
Fourier transform inversion, where numerical errors are studied in detail as well. The method
used is the WA presented in Section 2.6.1 and based on Haar wavelets. Here we do not need a
truncation range because we are in the interval [0, 1]. We recall in Section 5.3.2 how to calcu-
late the VaR (as in [54]) and the ES (as in [63]).

In the numerical examples Section 5.3.3, we show the popular method [1, 2] for numerical
Laplace transform inversion (NLTI), since it is used in our main reference paper [39] and it was
also used in [38] for credit portfolio losses. We make a comparison against the WA method in
terms of accuracy and speed.

The choice of Haar basis seems natural since the CDF of L is a piecewise constant func-
tion. In [65] the authors show how the WA method compares to the COS method [28] for
Fourier inversion in the framework of credit portfolio losses. It is shown that COS produces
oscillations in the tail leading to non-reliable risk measures. We also show in the numerical
examples Section 5.3.3, the similar oscillating behaviour of SWIFT method.

COMPUTATION OF CREDIT RISK MEASURES BY WA
Let a € (0,1) be a given confidence level (usually the a of interest is close to 1). The a-quantile
of the loss distribution of L in this context is the VaR value,

VaR;(a) =inflleR:P(L<})=za=inf{leR: F.(]) = a}. (5.57)
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A bank that manages its risks according to Basel II must reserve capital by an amount of
VaRy(a) to cover potential extreme losses. According to [54], the coefficients ¢, ;. of the WA
approximation of FC satisfy,

0<cpr<2™2 k=0,---,2"~1, (5.58)

and,
0< Cmo0=Cm1="""=Cm2m-1. (5.59)

Then, looking at (2.91), we conclude that,

k
F155)=2mmcmb (5.60)

for k = 0,---,2™ — 1. Since F¢(VaRr(a)) = a we therefore look for k such that VaR;(a) €
& k1| and 2,%,2 € [c . Thus, we can simply start searching for the VaR value by

2my gm mk’ Cm k+1

means of the following iterative procedure. First we compute Fr, ( z ) If F}, ( z ) > a then

- _zm
om

we compute Fy, ( >

) otherwise we compute F;, ( ) and so on. This algorithm

finishes after (at most) m steps storing the k value such that F&, ( ) is the closest value to «

in our m resolution approximation that satisfies F ”( ) = a. Subsequently, we approximate

k+1

the VaR value by the midpoint of the interval [ 5r» o |, this is,

_2k+1

~ M-
VaRy (@) = I =

(5.61)

By definition, the ES at confidence level « is given by,

+00

ES;(a) = L xfr(x)dx, (5.62)
l1-alJ,

where [, := VaRy(a). From [63], if we integrate by parts the integral in (5.62) and we use the
expansion in (2.91), we obtain the following formula for computing the ES,

1 1 1 24t
E&ﬂnzitz 1-aly,— oz STk Y emk] (5.63)
k=k+1

where [, is replaced by the VaR value ! calculated at scale m in (5.61).

Remark 5.3.3. The VaR value can be obtained by calculating (at most) m coefficients cy, i fol-
lowing the algorithm explained in Section 5.3.2. Taking into account that the computation of
each coefficient in (2.99) involves M = 2™ terms, the overall complexity for obtaining the VaR is
(at most) 2™ - m operations. If we apply the FFT algorithm, as explained in Section 2.6.1, we get
all the coefficients c,, i at once (ranging from k =0 until k =2" -1) with2"-log,(2™) =2"-m
operations, and we therefore need the same computational effort. The computational savings
when using the FFT comes into play when we desire to compute the ES as well, since in that case
we need to compute many more extra coefficients (fork+1<k<2™—1).
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5.3.3. NUMERICAL EXAMPLES

In this section, we show the performance of the WA method for a wide variety of portfolios
when the firm-value is driven by the three different models presented in Section 5.2.2. The
test portfolios are described in Table 5.1. The matrix A = (a;;) fori=1,...,N,j=1,...,d con-
tains the factor loadings associated to the models (5.10) and (5.20), that have been generated
by simulation following a uniform distribution % (a, b). As pointed out in [39], the approxi-
mation of Proposition 5.3.1 works out well for moderate correlation among obligors, this is,
when [|A] is small, where || Al := max;} i|ajk|. A remedy for the case of strong correlation
is presented in [39]. The correlation parameter p in (5.15) is assumed to be constant for all
the obligors in the portfolio. The dimension d = 1 refers to the model in (5.15). Observe
that all test portfolios considered show name concentration and C is computed such that
Zﬁyzl E, = 1. In all experiments of this section, we run the MC simulation with 10° scenar-
ios for the systematic risk factors to estimate the VaR and ES risk measures at the regulatory
99.9% confidence level and write down those results as a reference. In regard to this point, we
underline that for the reasons mentioned in the previous section, this is not a robust reference
to compare with. A robust benchmark is to consider the average of a large sample of VaR and
ES estimates with (for instance) 108 scenarios each rather than a unique estimate. We dis-
miss this last strategy because the computation time is in general unaffordable for the models
presented in this work applied to portfolios P2 and P4. The wavelet-based approximation Ff,
in (2.91) converges to the true distribution function F¢ with the L2-norm when m increases,
since F¢ belongs to I2([0,1]). We therefore assume that the true solution is given by the WA
method at scale m = 10 and use it as our benchmark. The programs in this chapter have been
coded in MATLAB and run under macOS Sierra on a laptop with processor 2 GHz intel core i5
and memory 8 GB 1867 MHz LPDDRS3.

The QTA approximation presented in Section 5.3.1 relies on the quadratic approxima-
tion of function g in (5.30) as well as on Proposition 5.3.1. This proposition can be applied
when R (H) is negative-semidefinite and, as pointed out in [39], this is accomplished when
Yrn(w) in (5.34) satisfies R(y,(w)) < 0 for all n = 1,..., N. We carry out the computation of
an(w), Br(w),yn(w) by means of weighted least-squares and perform a linear approximation
when R(y,(w)) is strictly positive. We look for a,(w), B,(w) and y,(w) that solve the mini-
mization problem,

min 3" w() [log (g, (w, 1)) = @n(w) = Br(w)A -y (w)A2|*
AeA

, Rlyn(w)) =0. (5.64)

The summands represent the approximation errors at certain grid points A € A, where w(A)
represents the penalty weight for the errors. We assume that A and w are the same for all n
and that ) 35 w(A) = 1. The set of grid points A and the weight w should be chosen to reflect
the fact that variable S, in (5.32) is a Gaussian distribution. For our numerical examples, we
choose w(A) as exponentially decreasing in A2, specifically, we choose w to be the probabil-
ity density function of a standard Gaussian normalized over A. While the grid points in [39]
are chosen evenly between —3 and 3, we select the range —7 and 7, since our numerical ex-
periments are more accurate within this interval. The advantage of using the least-squares
method to determine a,(v), B,(v) and y,(v) is that the optimization problem has a unique
closed-form solution.



5.3. QUANTIFYING CREDIT PORTFOLIO LOSSES BY WA METHOD 121

Portfolio | N | Pu(%) | E, | plA | d|
P1 100 [ 021 [C/n] 015 |1
P2 1000 | 1.00 | C/n| 015 |1
P3 100 | 021 | C/n | %(0,0.2) | 8
P4 1000 | 1.00 | C/n | %(0,0.1) | 6
P5 100 | 021 | C/n | %(0,0.1) | 5

Table 5.1: Test portfolios.

ONE-FACTOR GAUSSIAN COPULA

In this first section of the examples, we test the WA method against other two possible com-
petitors. These two methods are on one hand the numerical Laplace transform inversion
(NLTD), and on the other hand the SWIFT method from Section 2.6.2.

A popular method for Laplace transform inversion was presented in [1, 2] and used in the
context of credit portfolio losses in [38, 39]. We provide a brief description of the method and
compare it with the WA method.

Let f be a density function and f its Laplace transform, given by,

+00
fls)= f et f(p)dt. (5.65)
0

According to the Bromwich inversion theorem (see for instance Appendix B of [38]),
1 b+ioco oz
H=— e s)ds, 5.66
f Zﬂifb—ioo f(s) ( )

where b is a real number to the right of the singularities of f. By performing numerical in-
tegration, applying a change of variables and using the technique of Euler summation (as in
[1]) to accelerate the convergence of the approximation (see Appendix B of [38]) the integral
in (5.66) is approximated by the partial sum,

m m _
E(m,n) =sp(t)+ ) ‘ 27 M stk (D), (5.67)
k=1
where,
j
sij(0 =Y. D¥ap(®), i<j, sp(t)=so:n(D), (5.68)
k=i
with,
Al2l
)= br(t), k=0, 5.69
ai(1) T, k(D), k= (5.69)
where,
A A d A ijm\
bot)=f|l—|+2Y R — 4= ”””], 5.70
o(?) f(zlt)+ ]; e[f(21t+ lt)e (5.70)
and

l .. .
bk(t)=22Re[f(i+ﬂ lk_ﬂ
=

+ "f””], k=>1. 5.71
: 20t " It t)e ®.71)
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The parameters [, m and A are chosen to control the round-off and discretization errors of
the approximation. Usually [/ is chosen equal to 1, so we consider / = 1. The parameter m
controls the round-off error in an inversely proportional way because the functions by (t) in
(5.71) are computed with a round-off error of 10~"%, In our examples we take /7 = 8 to achieve
a round-off error of no more than 1078, The parameter A controls the discretization error of
the approximation and according to [38] the following relation provides efficient control of
the parameters,

21 Y\, .
A= (m) (mlog(10) +log(211)). (5.72)

The remaining parameter 7 is the size of the partial sums.

We compare the WA approximation presented in Section 2.6.1 with the NLTT method.
For this purpose, we plot the tail probabilities computed by both methods and we perform
a MC simulation with 107 scenarios for the systematic factor to get our benchmark distri-
bution. The model considered is the simple one-factor Gaussian copula model (5.2) since
this comparison is related only to the inversion step. The test portfolio has N = 50 oblig-
ors and shows severe exposure concentration E; = E; =50,E, =1,n=3,..., N. We consider
P,=0.21%,p,=0.15,n=1,...,N. The corresponding characteristic function is calculated as
in [54], this is, following expression (5.14) for the one-dimensional case and solving the inte-
gral by means of Gauss-Hermite quadrature with 20 nodes. We plot the results in Figure 5.1.
The left side plot of Figure 5.1 shows the tail probabilities obtained with the WA, NLTI and MC

10° ‘ 10° ‘ ‘ ‘
— WA ——NLTI-n350
——NLTI ——NLTI-n1000
—MC —MC
102 k 1 102
£ z
3 3
5 g
";110’4 510'4
© ©
[ [
10 ¢ 10
0 o.‘1 012 0.‘3 o.‘4 0.5 0.3 0 35 o.‘4 0.4‘15 0.5
Loss level Loss level
(a) WA (m = 10), NLTI (n = 350) and MC. (b) NLTI (n =350), NLTI (n = 1000) and MC.

Figure 5.1: Tail probabilities.

methods. The number of terms employed in NLTT is n = 350, while WA has been run at scale
of approximation m = 10. We have made this choice of n in order to compare the accuracy of
both methods at the same cost of CPU time. We observe that while WA is capable to accurately
approximate the benchmark solution, the NLTI method shows an oscillatory behaviour fur-
ther in the tail, which may have an important negative impact in the computation of the ES.
We zoom in to show in the right side plot of Figure 5.1 the approximation carried out by the
NLTT method when considering more terms in the expansion. In particular, we represent the
approximation with zn = 1000 and observe that heavy oscillations remain in the tail. In addi-
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tion to these oscillations, we underline the fact that there is not a prescription on the selection
of the suitable parameter n, and adjusting its value may become a matter of trial and error.
Regarding the selection made of the scale parameter m = 10 for the WA method it is worth
remarking that, if we assume that coefficients ¢, ; in (2.98) were computed exactly, the true

VaR value VaRy (a) would lie within the interval [2%, %

+1

2m+1

and would differ at most 2"1% from

the computed VaR value )} = following the algorithm explained in Section 5.3.2, since

[VaRp(a) - IJ'| < ﬁ For m = 10 we have zm_1+1 ~5-107%, and we therefore expect (at most)
three digits accuracy in terms of absolute error with respect to the true solution. We take as a
reference in this case a MC simulation with 107 scenarios. The error is roughly proportional
to —= =~ 3-107%, since this error is affected by the variance v/a(l — a) and the true density f;

V107
. . Va(l-a)
evaluated at the true quantile (see [34] for details), VAR, VI

Clearly, SWIFT can be used in an analogous way as WA recovering the CDF F. We show
the performance of both wavelet inversion methods in Figure 5.2. There, we show tail proba-
bility plots for portfolio P1 using WA, SWIFT and MC. We can appreciate that SWIFT method
is not as accurate as WA; it oscillates quite a lot further in the tail; this is a similar behaviour
observed with the COS method, see Section 5.4 of [65]. Perceptibly, SWIFT as well as COS
are really accurate methods when working with continuous functions, however, in the port-
folio credit risk problem the recovered function is piecewise constant and this feature is what
makes Haar wavelets to perform much better.

— SWIFT
—WA

Tail probability

0 0.05 0.1 0.15 0.2 0.25
Loss level

Figure 5.2: Tail probabilities for portfolio P1.

With the evidences of this section, the quality of the WA method becomes clear. Let us
now see how it behaves under the different models and when computing the risk measures.

MULTI-FACTOR GAUSSIAN COPULA

In this section we select portfolios P3 and P4 from Table 5.1 for the experiments. Figure 5.3
shows the tail probabilities compared to MC simulation. We name WA-QTA the numerical
method employed, where WA stands for the inversion methodology based on wavelets and
QTA refers to the quadratic transform approximation for obtaining the characteristic function,
as explained in Section 5.3.1. We present the VaR and ES values obtained in Table 5.2 and the
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corresponding CPU times in Table 5.3. The risk measures can be obtained within less than
1% relative error at scale m = 9 in about one second for P3 and in about seven seconds for P4,
where the dimensions are 8 and 6 respectively. We can get the risk measures in half of those
CPU times at scale m = 8 keeping accurate results for VaR, although the accuracy worsens for

ES.

(a) Portfolio P3.

Figure 5.3: Tail probabilities.

(b) Portfolio P4.

Portfolio P3 Portfolio P4
Method VaR | ES VaR | ES
MC 0.1928 0.2029 0.1540 0.1718
WA-QTA (m =10) 0.1948 0.2034 0.1558 0.1720
WA-QTA (m =9) 0.1963 (0.8%) | 0.1990 (2.2%) || 0.1572 (0.9%) | 0.1781 (3.6%)
WA-QTA (m =8) 0.2012 (3.3%) | 0.2212 (8.7%) || 0.1582 (1.6%) | 0.2383 (38.5%)

Table 5.2: VaR and ES values at 99.9% confidence level for portfolios P3 and P4.
The relative errors at scales m = 8,9 with respect to the WA-QTA method at scale
m = 10 are shown in parenthesis.

|

Method

H Portfolio P3 | Portfolio P4

WA-QTA (m = 10)
WA-QTA (m =9)
WA-QTA (m = 8)

1.4
0.7
0.4

16.2
7.2
3.6

Table 5.3: CPU time measured in seconds for obtaining the VaR and ES values at
99.9% confidence level for portfolios P3 and P4.

ONE-FACTOR f-COPULA WITH v DEGRES OF FREEDOM AND #-DISTRIBUTED MARGINS

In this section we select portfolios P1 and P2 from Table 5.1 for the experiments. We use the
name WA-HLXX for the numerical method presented in Section 5.3.1, where H stands for Her-
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mite, L stands for Laguerre and XX specifies the number of nodes considered for the general-
ized Gauss-Laguerre quadrature (n;). The number of nodes for the Gauss-Hermite quadrature
is fixed to ny = 20 for all experiments, as in [54, 63] for the one-factor Gaussian copula model.
Figure 5.4 shows the tail probabilities of portfolio P1 compared to MC simulation. We observe
that the accuracy at high loss levels depends on the parameter v, where a small v requires a
large n; and conversely. We present in Table 5.4 results for portfolios P1 and P2 for v =5 and

10° ‘ 10° ‘
—MC —MC
—— WA-HL25 —— WA-HL25
—— WA-HL50 —— WA-HL50
i WA-HL100 | | 4l WA-HL100 | |
10 —— WA-HL200 10
= =
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8 8
S 10? S
[e% Qo
K G
[ [

10,4 L L h L L L 10,4 L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5
Loss level Loss level
(a) v=3. (b) v=>5.

—MC
—— WA-HL25
—— WA-HL50
WA-HL100

Tail probability

S
0 005 01 015 02 025 03 035 04
Loss level

(c) v="1.

Figure 5.4: Tail probabilities for portfolio P1.

n; =50, and the corresponding CPU time is shown in Table 5.5. It is worth remarking that, as
mentioned previously, the theoretical absolute error estimate when computing the VaR value
I™ at scale m is 1/2"1, We observe that the theoretical error is in good agreement with the
order of the empirical error at scale m = 9 when we compare with the benchmark at scale
m = 10 since,

1 1
1120 — 12| < [VaRy (@) — I}°| + [VaR(a) — D] < 21T + 516 = 0-001, (5.73)
yielding a relative error of 0.001/26.81 = 0.4% for P1 and 0.001/0.3970 = 0.3% for P2. The CPU
time is very competitive also for big portfolios like P2. Portfolios of this size are particularly
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difficult to handle by MC simulation.

Portfolio P1 Portfolio P2
Method VaR | ES VaR | ES
MC 0.2666 0.3562 0.3971 0.4817
WA-HL50 (m = 10) 0.2681 0.3569 0.3970 0.4913
WA-HL50 (m =9) 0.2686 (0.2%) | 0.3559 (0.3%) || 0.3994 (0.6%) | 0.5040 (2.6%)
WA-HL50 (m = 8) 0.2715 (1.3%) | 0.3596 (0.8%) || 0.4004 (0.9%) | 0.5305 (8.0%)

Table 5.4: VaR and ES values at 99.9% confidence level for portfolios P1 and P2.
The relative errors at scales m = 8,9 with respect to the WA-HL50 method at scale
m = 10 are shown in parenthesis.

Method H Portfolio P1 | Portfolio P2
WA-HL50 (m = 10) 3.1 24.1
WA-HL50 (m =9) 1.8 13.5
WA-HL50 (m = 8) 0.7 4.6

Table 5.5: CPU time measured in seconds for obtaining the VaR and ES values at
99.9% confidence level for portfolios P1 and P2.

In order to check the accuracy of the QTA method, we run this approximation at scale m =
10 for portfolio P1 using 50 nodes of generalized Gauss-Laguerre quadrature for the integral in
(5.46). The results obtained are 0.2671 for the VaR and 0.3540 for the ES. The CPU time is 85.2
seconds. We get accurate results in comparison with the WA-HL50 method at the same scale
of approximation, although the computational effort in this case is almost 30 times higher.

MULTI-FACTOR £-COPULA MODEL

We consider in this last section the most challenging case among the three models presented
in this work. We perform our experiments with portfolio P5 of dimension 5, we assume that
v =7 and consider 25 nodes of integration for the generalized Gauss-Laguerre quadrature in
(5.52). We plot tail probabilities in Figure 5.5, where WAm-QTALj stands for WA-QTA method
at scale of approximation m and using j nodes of generalized Gauss-Laguerre quadrature. We
plot as usual the MC results as a reference and we observe highly accurate VaR values at scales
m = 8,9 with respect to the benchmark scale m = 10 both at 99.9% and 99.99% levels. These
results are confirmed looking at VaR values in Table 5.6. The ES values are very accurate at the
regulatory level 99.9% and less accurate (but still competitive) values are obtained further in
the tail at level 99.99%. It is worth mentioning that this high confidence level is particularly
very demanding when computed by MC simulation. The CPU times are presented in Table
5.7. We highlight the impressive CPU times (measured in seconds) in particular at scales m =
8,9.

5.4. CONCLUSIONS
In this chapter we have investigated two highly efficient numerical methods to obtain the VaR
and ES values for portfolios with exposure concentration under multi-factor Gaussian and
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Figure 5.5: Tail probabilities for portfolio P5.

WA-QTA (m = 9)
WA-QTA (m = 8)

0.2139 (1.2%)
0.2168 (2.5%)

0.2579 (0.6%)

0.2651 (2.1%)

0.3271 (0.2%)
0.3301 (1.1%)

a=0.999 a =0.9999

Method VaR | ES VaR | ES
MC 0.2105 0.2613 0.3359 0.3886
WA-QTA (m = 10) 0.2114 0.2595 0.3267 0.3697

0.3513 (5.0%)
0.4177 (13.0%)

Table 5.6: VaR and ES values for portfolio P5. The relative errors at scales m = 8,9
with respect to the WA-QTA method at scale m = 10 are shown in parenthesis.

] Method | @=0.999 | a=0.9999
WA-QTA (m=10) || 253 23.9
WA-QTA (m =9) 8.6 8.1
WA-QTA (m = 8) 5.5 4.0

Table 5.7: CPU time measured in seconds for obtaining the VaR and ES values for
portfolio P5.

t-copula models. It is well-known that MC methods are highly demanding from the com-
putational point of view when dealing with big sized and high-dimensional models for the
estimation of VaR and ES values at high confidence levels.

These two methods are called WA-HL and WA-QTA and they are composed of two main
parts. The first part is the numerical computation of the characteristic function associated to
the portfolio loss variable. We tackle this part by different techniques depending on the under-
lying model. For the (bivariate) ¢-copula model we perform a double integration with Gauss-
Hermite and generalized Gauss-Laguerre quadrature and call this method WA-HL, while the
multi-factor Gaussian model is treated with the QTA method put forward in [39] and called
WA-QTA. The characteristic function for the most challenging model, this is, the multi-factor
t-copula model, is derived by conditioning on the chi-square random variable of the model
and computed by applying the QTA method at each discretization point of the resulting one-
dimensional integral. This last model is by far the most involved in terms of computing effort.
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Once the characteristic function for the loss variable has been obtained then the second part
of the procedure comes into play. This second step is the Fourier inversion method called
WA, which is based on Haar wavelets and it was developed in [54, 63] to recover the CDF of
the loss variable. We have improved the efficiency of the WA method by computing the coef-
ficients of the expansion by means of an FFT algorithm and we have shown that this method
outperforms the NLTI inversion method in terms of efficiency and robustness.

The overall CPU time of the numerical methods employed is impressive taking into ac-
count their size and dimension as well as the confidence levels considered. This may be the
first time that a multi-factor ¢-copula model is considered outside the MC framework.



CHAPTER 6

Conclusions and Outlook

6.1. CONCLUSIONS

In this dissertation we have presented wavelets based numerical methods to deal with some
multi-factorial problems in the computational finance area. The work is based on two wavelet
methods: WA proposed in [54] and SWIFT from [67]. On one hand, we have multidimension-
ally extended SWIFT for option pricing. Moreover, we have applied it in the market risk area to
get risk measures when featuring the liquidity problem. On the other hand, we have extended
WA in the credit risk measurement to work under challenging models. We also evaluated the
performance of Chebyshev wavelets [3]. In the following paragraphs we briefly summarize
the most important findings in the thesis.

In Chapter 2 a mathematical background is presented to support the research in the fol-
lowing chapters. Using functional analysis theory, we have justified how wavelet methods can
be used to approximate functions in L%(R). An overview on the wavelet families used through-
out the thesis (Haar, Shannon and Chebyshev) is given together with their respective inversion
methods.

Chapter 3 is devoted to option pricing. On one hand, it has been attempted to obtain a
successful Chebyshev wavelet inversion method for pricing simple vanilla options. We could
not get the payoff coefficient into a simple, hence neither competitive, expression. Since we
were not satisfied with the complexity behind approximating both density and payoff coef-
ficients using these wavelets, we decided to give up this approach considering that this type
of wavelets do not seem to present any clear benefit when compared to other methods in the
literature.

On the other hand, the most important contribution of the chapter is the presentation
of the 2D-SWIFT method motivated by two-dimensional option pricing of European rain-
bow options. We have derived the corresponding pricing formulas for European options
in two and higher dimensions using a more convenient approximation than the one previ-
ously followed in the literature for the cardinal sine function. A complete error analysis of
the new method together with a prescription on how to select the parameters appearing in
the method according to the precision required is provided. The efficiency of the method in
the two-dimensional case has been tested for different types of European rainbow options of
assets driven by different dynamics like GBM or JD. Basket options, spread options, options
on the minimum or the maximum of two risky assets and correlation options are considered.
We compared 2D-SWIFT results with the 2D-COS method, with closed-form solutions when
available, with Monte Carlo simulation or with 2D-SWIFT with a large scale of approximation.
The strengths of the 2D-SWIFT machinery include the domain truncation issue, the calcula-
tion of the scale of approximation and the number of coefficients used as well as the results
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when dealing with extreme maturities. However, extending the method to higher dimensions,
more than 4 or 5 depending on the specific kind of product, will not be useful because the
curse of dimensionality appears. We have shown that 2D-SWIFT inherits the strengths of the
one-dimensional technique presented in [67] for European-style options, like for instance,
the a-priori knowledge of the approximation scale.

In Chapter 4 we have presented a numerical method to efficiently calculate VaR and ES
values within a stochastic liquidity horizon framework. We have focussed on two aspects un-
derlined as key regulatory changes by the Basel Committee of Banking Supervision, which are
moving from VaR to ES and considering the incorporation of the risk of market illiquidity. The
estimation of the risk measures with a stochastic holding period appears to be particularly
challenging in terms of computational power. For the aforementioned reasons, we employ
the SWIFT method, which recovers the density function of the change in value of a certain
portfolio from its characteristic function. We have considered the well-known delta-gamma
approach for modelling the change in value of the portfolio under normal and ¢-distributed
risk factors, as well as the GBM, MJD and Kou models for the log-value change of the portfo-
lio, where these two last models incorporate a jump component in the dynamics. As for the
dynamics of the SLH, we considered the Bernoulli distribution, the exponential, the gener-
alised Pareto and the inverse gamma in combination with the delta-gamma approach, and
the GBM, MJD and Kou dynamics. We have carried out a detailed error analysis and we have
provided a prescription on how to select the parameters of the numerical method, making
this technique more robust, reliable and applicable in practice.

In Chapter 5 highly efficient numerical methods based on Haar wavelets to obtain the VaR
and ES values for credit risk portfolios with exposure concentration under multi-factor Gaus-
sian and z-copula models have been investigated. These methods are composed of two main
parts. The first part is the numerical computation of the characteristic function associated to
the portfolio loss variable; this part has been tackled by different techniques depending on the
underlying model. For the (bivariate) ¢-copula model we have performed a double integra-
tion with Gauss-Hermite and generalized Gauss-Laguerre quadrature and called this method
WA-HL, while the multi-factor Gaussian model has been treated with the QTA method put for-
ward in [39] and called WA-QTA. The characteristic function for the most challenging model,
this is, the multi-factor ¢-copula, has been derived by conditioning on the chi-square random
variable of the model and computed by applying the QTA method at each discretization point
of the resulting one-dimensional integral. This last model is by far the most involved in terms
of computing effort. The second part is the Fourier inversion method where we have mainly
used WA, from [54, 63], in order to recover the CDF of the loss variable. We have improved
the efficiency of the WA method with respect to the original version [54] by computing the
coefficients of the expansion by means of an FFT algorithm. We have seen that SWIFT in this
situation is not as appropriate as WA and we have shown that this method outperforms the
NLTT inversion method in terms of efficiency and robustness. The overall CPU time employed
by WA is impressive taking into account the size of the portfolios and the dimension of the
models as well as the confidence levels considered. This may be the first time that multi-
factor t-copula model is considered outside the MC framework.
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6.2. OUTLOOK
Research is a never-ending activity, and natural extensions of what has been presented can
easily be approached.

After extending the SWIFT method, the fact that 2D-SWIFT inherits the strengths of the
one-dimensional technique, opens the door to future applications of 2D-SWIFT to other fi-
nancial contracts in two dimensions. For instance, previous work in [51] shows the valuation
of one-dimensional barrier and early-exercise options using SWIFT, addressing important is-
sues like boundary errors within the recursion backwards in time. Similar benefits are ex-
pected in two dimensions as well. Further, either multidimensional path dependent options
pricing or Heston’s stochastic volatility dynamics seem plausible to be considered.

When using SWIFT for market risk measurement, the calibration of the parameters of the
models employed, as well as the stochastic liquidity horizon, with real market data would be
interesting further work. Another extension of the market risk work would be the considera-
tion of different risk factors having different liquidity horizons in line with the regulatory rules
of the Basel Committee on Banking Supervision. The modelling of dependence between the
stochastic holding period and log-returns of assets is a topic of interest in practice for future
developments.

The credit risk research opens the door to calculate the risk contributions to the VaR and
ES risk measures under the same model assumptions. Risk contributions are really time con-
suming when approached with MC, the standard methodology used, thus the benefit that we
could gain by using WA could be really notorious.
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