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Abstract

Communication systems need algebraic and combinatorial techniques to re-
cover information in the presence of noise and interference. Hadamard codes
constitute an important family of error correcting codes and they have been
studied, since 20th century, by authors like Turyn. Although this codes
are nonlinear, in general, they possess optimal algebraic and combinatorial
properties which allow to encode, transmit and decode a message through a
noisy channel. The most powerful mechanisms to construct Hadamard codes
with a subjacent group structure are cocyclic Hadamard matrices, relative
difference sets, Hadamard groups and Hadamard propelinear codes.

The aim of this thesis is to explore the algebraic and combinatorial prop-
erties of a subfamily of the Hadamard propelinear codes which we term
Hadamard full propelinear codes. Firstly, we study the connections between
Hadamard groups and Hadamard full propelinear codes. Inside the class
of Hadamard full propelinear codes we find several group structures with
nonsymmetric Hadamard matrices. This is the case of the families with a
subjacent dicyclic group Qs, and a C,, x Qg group which belong to the class
of Tto Hadamard matrices and the classs of Williamson Hadamard matrices,
respectively. To help deciding whether two binary codes are nonequivalent we
make use of two invariants: the rank and the dimension of the kernel. These
parameters provide additional information about the code; for instance, they
measure how far is the code from being linear. Specifically, we study the rank
and the dimension of the kernel of the aforementioned families of Hadamard
full propelinear codes and we also give iterative techniques which allow us to
construct Hadamard full propelinear codes of higher orders.
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Resumen

Los sistemas de comunicacion se nutren de técnicas algebraicas y combi-
natoricas para recuperar la informacion en presencia de ruido e interferen-
cias. Los codigos Hadamard constituyen una familia relevante en la teoria de
codigos v ellos han sido objeto de estudio desde el siglo XX, por cientificos
como Turyn. Aunque estos cddigos no son lineales en general, ellos poseen
propiedades algebraicas y combinatoricas que permiten codificar, transmitir
y decodificar un mensaje a través de un canal ruidoso. Los mecanismos mas
potentes para construir codigos de Hadamard con una estructura de grupo
algebraico subyacente son: las matrices de Hadamard cociclicias, los conjun-
tos de diferencias relativas, los grupos de Hadamard y los c6digos Hadamard
properlineales.

El proposito de esta tesis es explorar las propiedades algebraicas y com-
binatoricas de una subfamilia de los c6digos Hadamard properlineales, que
denominamos codigos Hadamard full properlineales. Nuestro primer obje-
tivo es estudiar las relaciones existentes y las conexiones entre los grupos
de Hadamard y los codigos Hadamard full properlineales. Ademés, en esta
nueva subfamilia de c6digos encontramos estructuras full properlineales que
generan ciertas matrices de Hadamard no simétricas; en concreto, estamos
hablando de las familias que tienen asociado el grupo diciclico Qg,, ¥ el grupo
C, X Qg. Estas matrices de Hadamard son conocidas como las matrices de
Williamson y las matrices de Ito. Para ayudar a decidir cuando dos cédi-
gos son equivalentes usaremos dos invariantes de los cédigos: el rango y la
dimensién del nucleo. Estos pardmetros nos aportan informacion sobre los
c6digos no lineales; a modo de ejemplo, son un indicador para ver cuinto
dista un c6digo binario de ser lineal. Concretamente, estudiaremos el rango
y la dimensién del kernel de ambas familias y utilizaremos técnicas iteradas
que permiten crear codigos Hadamard full properlineales de mayor orden.
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Chapter 1

Introduction

Information is known as any message which involves a certain degree of
uncertainty. A communication system can be modelled by a scheme consist-
ing of a message source which transmits information to a receiver through
a channel. Coding theory is the discipline which studies optimal encoding
and decoding schemes for reliable error detection and/or correction of data
sent through a noisy transmission channel. A channel is said to be noisy
if the received information is not necessary equal to the information that
was sent. Figure provides an idea about the configuration in any general
communication channel.

In 1948, Claude Shannon [S48| gave birth to a new subject called “Infor-
mation Theory”, part of which is coding theory. Nowadays, we find that the
theory of error correcting codes has been developed for diverse applications,
intersecting mathematics and engineering, such as to minimise the noise from
compact disc recordings, the transmission across telephone and satellite lines,
data storage and information transmission from a distant source.

A finite alphabet coming from a finite field IF, of ¢ elements, ¢ a prime
power, is the common alphabet used in Coding Theory. Codewords are n-
tuples over the field F, and consider a code as a subset of ' that contains all
codewords. According to scheme the message m generated by the source
is first encoded. This process results in a codeword x, which is sent over the
channel, where noise in the form of vector e distorts it and produces a new
message y. The received vector y is then decoded, obtaining an estimate
m of the message m that hopefully agree. The process of correcting errors
and retrieving the message is called decoding. Since there is a one-to-one
correspondence between codewords and messages, decoding for us is to obtain
an estimate g of the received vector y for which § = x is expected. The key



2 Chapter 1. Introduction

[ source H encoder H channel | decoder H receiver]
1 1 1 1
1 1 1 1
1 1 1 1

m T Y m
message codeword received estimated
vector message

e
error from noise

Figure 1.1: Communication channel

of this scheme is the noise, for without it there would be no need for the
development of coding theory. The idea of error correcting codes is to add
redundant information to enable the detection and correction of errors after
transmission.

Hadamard codes are a subfamily of binary codes with good properties.
In advance, through the Hadamard codes the Mariner 9 was a space probe
whose mission was to fly by Mars and transmit pictures back to Earth.
Hadamard matrices, introduced by J. Hadamard |[H83], were used in that
mission for two reasons: first, error correction codes based on Hadamard
matrices have maximal error correction capability for a given length of code-
word and, second, the Hadamard matrices allow computer processing to be
accomplished using additions (which are very fast and easy to implement
in computer hardware) rather than multiplications (which are far slower).
However, these family of codes are not linear codes, in general.

Historically, the most important codes were linear codes but it does not
mean that they are the most appropriate. For instance, we find several binary
nonlinear codes having twice as many codewords as any linear code with the
same length and minimum distance which is, for example, the case of the
Preparata and Kerdock codes [N91, [HK™94|. In the case of binary nonlinear
codes we are interested in those which have an algebraic or combinatorial
structure in order to encode, transmit and decode messages efficiently.

Hadamard codes with a subjacent algebraic structure have been deeply
studied as well as the links with other topics in algebraic combinatorics



IB62, 194, BHI5, [F97]. It is well-known that the problem of finding Hadamard
codes is equivalent to the problem of finding Hadamard matrices. Nowa-
days, the most powerful techniques to construct Hadamard codes with a
subjacent group structure are cocyles, relative difference sets and Hadamard
groups. Horadam and de Launey [HL93a] conjectured that there are cocyclic
Hadamard matrices of length 4n, for every natural n. Throughout computa-
tion of cocyclic Hadamard matrices over dihedral groups and over the Zy X Z,,
(n odd) group, they were able to construct most of Hadamard matrices up to
the length 252 [BH95, [HT.94b, IAAT16, IART15]. Tto [I81] defined the concept
of a Hadamard group through relative difference sets and, in 1994 Ito [194]
conjectured that there are Hadamard groups of order 8n for every natural n.
Schmidt [S99] verifies Ito’s conjecture by constructing Hadamard matrices
up to the length 184. Flannery et al [F97, [LFT00] proved the equivalence be-
tween Hadamard groups, cocyclic Hadamard matrices and relative difference
sets.

On the other hand, one subfamily of Hadamard codes with a subjacent
group structure are Hadamard propelinear codes [RBT89|. Propelinear codes
emerged from the idea of dealing with the relationship between completely
regular codes and regular graphs and they become more interesting due to
their associated group structure. Hadamard propelinear codes are nonlinear
in general and, whenever a code is nonlinear, there are two invariants which
provide information about the code: the rank and dimension of the kernel.
For instance, in [RR13, MR15] BET14] Hadamard propelinear codes with
the translation invariant condition (meaning Hadamard propelinear codes
preservering the Hamming metric up to translation) have been characterized
as the image, by a suitable Gray map, of a subgroup of a direct product of
Zo, Z4 and Qg; the rank and the dimension of the kernel are also studied.

In this dissertation we introduce a subclass of the Hadamard propelinear
codes that we term Hadamard full propelinear codes, or, HFP-codes for short.
We study their algebraic and combinatorial properties and we compute the
rank and dimension of the kernel for those families of HFP-codes with a
subjacent dicyclic group structure Qg, and with a C, x Qg (n odd) group
structure, where C,, and Qg are the cyclic group of order n and the quaternion
group, respectively.

The overview of the dissertation is the following:

e Chapter [2| depicts an introduction to coding theory which helps this
dissertation to be as self contained as possible. Firstly, we review ba-
sic definitions and results related to binary propelinear codes as well
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as the concept of isomorphic and equivalent binary codes. As an ex-
emplification we discuss about Zs-linear, Z,-linear, Z,Z,-linear and
ZoZ4Qs-codes |[BET14, RR13, MR15|. Furthermore, we review the
theory of Hadamard matrices starting from the classical constructions
and concluding with cocycles, relative difference sets and Hadamard
groups. Finally, we show the main results on the equivalences between
Hadamard groups, relative different sets and cocyclic Hadamard ma-
trices [LFT00, 194, [F97, [HOO].

Chapter [3] aims to introduce HFP-codes. Starting from Hadamard
propelinear codes we define the class of HFP-codes and we study their
general algebraic and combinatorial properties. At the same time, we
define the transpose code of any Hadamard code and we prove that the
transpose code CT of any HFP-code C' is HFP; moreover, we show that
C and CT are isomorphic as groups. Furthermore, we study the equiv-
alences between HFP-codes and Hadamard groups, which also allow to
connect them with cocyclic Hadamard matrices and relative difference
sets. Lastly, we deal with the available groups realising HFP-codes and
we show some examples in which we compare the family of HFP-codes
with the family of Hadamard translation invariant propelinear codes.

Chapter | is devoted to study the algebraic and combinatorial proper-
ties of HFP-codes of type Q (meaning those HFP-codes with a subja-
cent dicyclic group structure of 8n elements) and length 4n. Ito [I97]
studied Hadamard groups of type Q and we focused on classifying them
attending to the rank and dimension of the kernel. Furthermore, we
deal with the transpose code of a HFP-code of type Q and we also
provide an iterative construction that enables to duplicate some HFP-
code of type Q preserving its full propelinearity. The transpose HFP-
structure and the iterative constructions help to determine HFP-codes
of type Q with optimal parameters. Finally, we discuss about the com-
putational results on HFP-codes of type Q.

Chapter [5|is dedicated to study the algebraic and combinatorial prop-
erties of HFP-codes of type C'QQ (meaning those HFP-codes with a
subjacent C,, x Qg group structure of 8n elements) and length 4n, n
odd. Additionally, based on Kronecker tensor products, we present an
equivalent concept for HFP-codes that we call Kronecker sums. As
last result of this dissertation, using Kronecker sums, we show how to
duplicate and quadruplicate HFP-codes of type C'Q), preserving its full



propelinear structure, for which we compute the rank and the dimen-
sion of the kernel. Finally, we comment on the computational results
on HFP-codes of type C'Q.

e Chapter [0 presents our conclusions and proposes future lines of research
on this topic.

We must mention that part of the research included in this disserta-
tion was presented at several conferences and published in their proceedings
|IRS14. RS15]:

|RS14| J. Rifa and E. Suarez-Canedo, “About a class of Hadamard pro-
pelinear codes” FElectron. Note Discr. Math., vol. 46, pp. 289-
296, 2014. Proc. of the IX Jornadas de Matemdtica Discreta y
Algoritmica, Tarragona, 7-9 July 2014.

|RS15] J. Rifa and E. Suarez-Canedo, “Kronecker sums to construct
Hadamard full propelinear codes” in Proc. of the 21-st Confer-
ence on applications of Computer Algebra (ACA15), Kalamata,
Greece, pp. 135-139, 20-23 July 2015.

The results included in Chapter [3] and in Chapters [4] have already been
submitted to a journal [RS17| and they have been accepted:

[RS17] J. Rifa and E. Suarez-Canedo, “Hadamard full propelinear codes
of type Q. Rank and Kernel”, Designs, Codes and Cryptography.
arXiv:1709.02465v2, 2017.

This work was partially supported by the Spanish MINECO under Grant
TIN2013-40524-P, and by the Catalan AGAUR under Grant 2014SGR-691.

In the course of this doctoral thesis, I visited the Department of Math-
ematics at Ghent University in Ghent, Belgium, from 1 September to 30
November 2014 with the objective of learning the main topics of the COST
Action IC1104 project titled Random Network Coding and Designs over F,,.
An introduction on Random Network Coding can be seen in |[L82]. Most
recent advances in the area of Network Coding are based on codes whose
codewords are vector subspaces of a given vector space Fy. Hence, random
network coding changes the conception of codes based on classical coding
theory in which codewords are vectors.

Firstly, we deliberate about new geometric properties for the family of
constant dimension codes. A constant dimension code is a code fulfilling that
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each codeword has the same dimension k. Among constant dimension codes,
we focused on those subfamilies in which all codewords intersect pairwise in
a subspace of dimension £ —t. We found an upper bound for which we could
find families of nontrivial constant dimension codes ([BET99, [E02, [ER14]) of
this type, avoiding those which are known as sunflowers. Furthermore, we
give a characterization of the families of maximal nontrivial constant dimen-
sion codes. On the other hand, some iterative constructions were provided
on nontrivial constant dimension codes intersecting in a (k — t)-dimensional
subspace, for all ¢ > 3. The work done during this stay has been presented
at several international conferences [BBT15, BBT16| and has been already
submitted to a journal [BST16|, and it has been accepted after minor revi-
sions:

[BBT15]  R.D. Barrolleta, M. De Boeck, L. Storme, E. Suarez Canedo, and
P. Vandendriessche, “A geometrical bound for the sunflower prop-
erty,” in Proc. of Design and Application of Random Network
Codes (DARNEC ’15), Istanbul, Turkey, pp. 39, 4-6 November
2015.

[BBT16] R. D. Barrolleta, M. De Boeck, L. Storme, E. Suarez Canedo,
and P. Vandendriessche, “On constant distance random network
codes,” in Proc. of Network Coding and Designs, Dubrovnik,
Croatia, pp. 4849, 4-8 April 2016.

[IBST16]  R. D. Barrolleta, L. Storme, E. Suarez Canedo, and P. Vanden-
driessche, “On primitive constant dimension codes and a geomet-
rical sunflower bound,” submitted to Adv. in Math. of Commun.,
2016.



Chapter 2

Preliminaries

The aim of Chapter [2|is to provide an introduction on some topics of Cod-
ing Theory from the different mathematical disciplines which will be helpful
along the whole dissertation. We review the state of the art on combinato-
rial and algebraic Coding Theory and thus, definitions and basic results are
gradually presented. Section [2.1]and Section [2.2]consist of a survey on binary
linear and nonlinear codes; we introduce propelinear codes and we deal with
the classical Hadamard codes; examples of propelinear codes and classical
Hadamard constructions are presented. Section is dedicated to exhibit
relative difference sets and designs as efficent combinatorial methods for con-
structing Hadamard matrices. Constructions of Hadamard matrices from co-
cycles are studied in Section Section [2.5]is devoted to Hadamard groups;
Hadamard groups are presented as a mechanism to construct Hadamard ma-
trices from difference sets. In Section we show the results about the
equivalences between cocyclic Hadamard matrices, Hadamard groups and
relative difference sets.

For an in-depth introduction to binary codes, propelinear codes and
Hadamard matrices, presented in Section [2.1and Section [2.2] the reader is re-
ferred to [RB789, [RP97, BM™12, .82, MS77, [H98, [HP03|; on designs and rel-
ative difference sets, concerning to Section [2.3} to [LH93, [S03, W88, BJ"99];
on cocyclic Hadamard matrices, of Section [2.4} to [H00, [HO7, [LH93| [HL.93a]
and, on Hadamard groups, concerning to Section [2.5, to [[94, 1954l 197].

2.1 Propelinear codes

Let Z be the ring of integers, Z, the ring of integers modulo s and IF, the finite
field of g elements, with ¢ a power prime. Let ZJ the n-dimensional vector

7
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space over Zy. Any nonempty subset C' of F is a g-ary code of length n and,
in the case of ¢ = 2 then F, = Zy and C is called a binary code. Computers
store all characters as numbers stored as binary data. Binary code uses the
digits 0 and 1 (binary numbers) to represent computer instructions or text.
From now on, denote by O or e the all-zero vector and denote by 1 or u the
all-one vector. The elements of a code are called codewords.

The Hamming weight of a vector v € Z%, wt(v), is defined as the number
of nonzero coordinates in v, while the Hamming distance d(u,v) between two
vectors u,v € ZY, is the number of coordinates in which v and v differ. The
minimum Hamming weight wt(C'), of a binary code C is the minimum value
of wt(v) for all v € C\{0}. The minimum Hamming distance d = d(C') of
a binary code C, is the minimum value of d(u,v), for all u,v € C, u # v.
The minimum Hamming distance d determines the number of errors that
the code can correct. The code C' is said to be a t-error-correcting code,
where t = |(d —1)/2] is the error-correcting capability. Hence, the higher
the minimum distance, the more errors the code can correct.

A binary code C' of length n is said to be a linear code if C' is a linear
subspace of Z5. When C'is a linear code, then it is known that d(C) = wt(C).

A binary (n, M, d)-code is a code with length n, M codewords and min-
imum distance d. A coset of a binary code C' by v € Z} is the set v+ C =
{v+ ulu € C}. The covering radius p of a binary code C' is the smallest
integer such that Z% is the union of the spheres of radius p centered at the
codewords of C'. When C' is linear the covering radius p coincides with the
weight of the coset of largest weight. A binary code C satisfying that for some
integer ¢, t > 0, every v € Z} is within distance ¢ from exactly one codeword
of C, is called a t-perfect code. Any binary (2™ — 1,22 ~™~1 3)-code, for a
given integer m, is called binary 1-perfect code. Moreover, if perfect codes
are linear then they are termed Hamming codes.

A classical form to describe a linear code is through generator and parity
check matrices. A generator matriz of a linear code C' is a matrix G whose
rows form a basis of C'. To define the parity check matrix is necessary to
define, firstly, the inner product. The inner product of two vectors u,v € Z%
is the bilinear form defined as

n
(u,v) = Zuivi € Zs.
i=1

Two vectors u and v are said to be orthogonal if (u,v) = 0. The set of vectors
which are orthogonal to all codewords of C, denoted by C*, is

Ct={xecZy:(ru)=0, forallu c C}.
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If C is a binary linear code then C* is called the dual code of C' and, if
C = C* then C is called self-dual. Otherwise, C* is said to be orthogonal to
C. Any binary code C' with C*+ C C is called self-orthogonal.

A parity check matriz H, for a binary linear code C is a generator matrix
of C*. Parity check matrices are used to determine whether a vector belongs
to the code; hence, v € C if and only if HvT = 0, where ()T denotes the
transpose. The expression Hv? computes the syndrome of a vector v € Z3,
and the codewords are characterized by having syndrome 0. All vectors lying
in the same coset v+C have the same syndrome. The minimum weight vector
of a coset is said to be the coset leader.

Example 1. The (7,16,3) Hamming code has the following generator matriz

and parity check matrix, respectively

000 110 L1010
, H=1 101 1 0 1 0

0L 00l 0111001

001111

o O O =

The dual code of a Hamming code of length 2™~ is called binary simplex code

of length 2™ Y and is denoted by S,,. The matriz H is the generator matriz
of the binary simplex code of length 7.

It is possible to create larger codes by adding a coordinate. One and the
most common way to do it consists of choosing the appropriate extension, it
means that it must satisfy that the sum of all coordinates is 0. Let C be a

binary linear code of length n and minimum distance d. The extended code
C, is defined as

n+1

C={(x1,...,0ns1) €ZI" ¢ (2,...,0p1) € C with Zm, = 0}.

=1

The extended code C is also linear; furthermore, it is of length n + 1 and
minimum distance (Z where d = d or d + 1. Let G and H be generator and
parity check matrices for C, respectively. A generator matrix G for C can
be obtained from G by addmg an extra column to G so that the sum of the
coordinates of each row of G is 0. Moreover, a parity check matrix H for C

’ Er:((l) é) (2.1)
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For example, extending a binary 1-perfect code of length 2™ — 1 by , an
1-perfect code of length 2™ and minimum distance 4 is obtained.

Now we establish a criterion to decide whether two binary codes are
equal. In the case of binary linear codes they are said to be equivalent
if there is an isomorphism of vector spaces. However, the concept of the
weight is lost, meaning, codewords of a fixed weight are sent to codewords
of different weight by the isomorphism of vector spaces. Since we are in-
terested in the equivalences preserving Hamming distances through isomor-
phism then the concepts of isomorphism (or, permutation equivalent) and
equivalence appears as follows. Firstly, denote by S, the symmetric group
of permutations of the set {1,2,... , n}. For any 7 € S,, and v € F}, the
image 7(v) of the vector v = (vy,v9,...,v,) via permutation 7 is denoted
by (Vr-1(1); Vr-1(2)s - - s Ur-1(ny). Two binary codes C} and Cj, of the same
length n, are said to be isomorphic (or permutation equivalent) if one can
be obtained from the other by permuting the coordinates. The set of all
permutations keeping the code invariant is called the automorphism group of
C, Aut (C) = {r € S, : 7(C) = C}. Two binary codes C; and Cs, of the
same length n, are said to be equivalent if there is a permutation o € S,, and
a vector v € ZY such that Cy = {v+ o(c) : ¢ € C1}. We denote by Iso (C)
the set of all isometries in Z5 which keeps the code C' set-wise invariant.

The weight distribution of a binary code allows to determine the probabil-
ity of a receiver vector to be decoded. Moreover, this distribution describes
the codes through the Hamming weight of its codewords. The weight dis-
tribution of binary code is a set {Ay,...,A,} where A; is the number of
codeword of Hamming weight 1.

Definition 2. [MS77] The weight enumerator of C is given by the homoge-
neous polynomial We(x,y) = > 7 A" y"

Given a binary linear code MacWilliams [MS77| was able to write the
enumerator polynomial of the corresponding binary dual linear code.

Theorem 3. [MS77, MacWilliams identity, Ch.5] Let C be a linear code and
Wel(z,y) its weight enumerator polynomial. Then the enumerator polynomial
of CT is

1
Wel(x,y) = WWC(I +y,z—y)

Dealing with binary nonlinear codes requires accuracy techniques since
they lose the algebraic structure and, as a consequence, they can rarely be
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represented by generator matrices or/and parity check matrices. For in-
stance, the dual concept on the nonlinear case is understood as follows; any
two binary nonlinear codes satisfying the MacWilliams identity are said to
be formally dual codes. In order to deal with binary nonlinear codes we make
use of two structural invariants: the rank and the dimension of the kernel.

Definition 4. The rank r = r(C) of a binary code C' is the dimension of the
span (C) of C.

Definition 5. The kernel K(C) of a binary code C, is the set of vectors that
leave C' invariant under translation, K(C) = {z € Z§ : x + C = C}. We
denote by k the dimension of the kernel.

If C' contains the 0 vector, then K(C) is a linear subspace of Zj. Fur-
thermore, it is well-known that any binary linear code C' satisfies r = k. In
case of nonlinear codes, the rank and the dimension of the kernel measure
how far is the code from being linear. Ranks and kernels are also used to
determine whether two binary codes are not equivalent.

Coding theorists are interested on finding families of binary nonlinear
codes with algebraic and combinatorial structures enabling information to
be coded, transmitted, and decoded through a noisy channel.

One interesting family of binary codes with a subjacent group structure
is termed propelinear codes. The starting point on propelinear codes was the
study about the relationship of completely regular codes and distance regular
graphs [BCT89|. Further, completely regular codes in Hamming metric have
been introduced in [D73a] and they have been of interest to coding theorists
and also to graph theorists [SZT71, [GT) IN92]. These substructures were
defined as a generalisation of perfect codes [D73Dh], and they include many
codes having small minimum distance which were fundamental on the study
of distance-regular graphs [RB789|. For instance, Hamming, Golay and some
Hadamard codes belong to this family. In addition, their structures allow to
establish relations between completely regular codes and other combinatorial
structures like the distance regular graph [BCT89|. From the distance regular
graph theory in [BM™12| is introduced the class of propelinear codes.

Definition 6. [RBT89] A binary code C of length n has a propelinear
structure if for each codeword x € C' there exists a subset Il = {m, : © €
C} C S, satisfying the following conditions:

1. Forall x,y € C
r+m.(y) € C, (2.2)
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2. For all x,y € C,

Ty = Ty, where z=x+ m,(y). (2.3)

For all z € C and for all y € Z%, denote by - the binary operation such
that x -y = = + m,(y). Assume that the zero-vector e is always a codeword
and 7, is the identity permutation. In [RBT89| is proved that 2! = 7 (),
for all x € (', and that e is the identity element in C. This fact implies that
(C,-) is a group and that Il is a subgroup of S,,. In [RR13]| it was proved that
propelinear codes preserve the Hamming distance by the left multiplication.
This means,

d(u,v) =d(z-u,z-v), YreC and Yu,v € Zj.

Not all propelinear codes preserve the right multiplication, but there is a
subfamily of propelinear codes satisfying this condition. They are termed
translation invariant propelinear codes.

Definition 7. [RP97] Let (C,-) be a propelinear code. The code C' is said to
be translation invariant if for all u,v € C' and, for all v € Z}

du,v) =d(u-z,v-x).

It is not easy, in general, to decide whether a given binary code is prope-
linear or not. There is a characterization to decide whether any binary code
can be provided with a propelinear structure.

Proposition 8. [PR02] Let C be a binary code. Then C is a propelinear
code if and only if Aut(C) contains a subgroup acting regularly on C.

For instance, a binary 1-perfect code is propelinear if and only if the
minimal distance graph (the graph with vertices the codewords and edges
given by vertices at distance three) is a Cayley graph. On the other hand, a
close related family to propelinear codes is the family of transitive codes.

Definition 9. [BM™ 12/ A binary code C' is said to be transitive if for every
x € C there exists a permutation 7, such that v + m,(C) = C.

In other words, a binary code C'is said to be transitive if Iso (C') acts
transitively in C. Let ® be the set {¢, = (z,7) : © € C} that defines the
operation xxy = x4+, (y) € C, for all z, y € C. The main difference between
transitive and propelinear codes is that ® is not a group in general; more
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concretely, they may not satisfy the associative property (2.3). In [BM™12)
it was proved that they are equivalent if and only if the set ® is a subgroup
of Iso (C).

The class of translation invariant propelinear codes contains families of
binary codes with optimal parameters. As an example, in the family of

translation invariant propelinear codes we find the families of ZyZ4-linear,
Zy-linear and the Zy7Z,(Q)g-codes.

2.1.1 ZsZ4-linear codes

The additive ZyZ4-code spring as a generalisation of linear codes over a finite
field alphabet in a Hamming scheme. Delsarte [D73al defined these codes
as a subgroups of the underlying abelian group in a translation association
scheme. In the special case of the binary Hamming scheme, the underlying
abelian group is of size 2". In [RP97] it can be seen that the unique structures
for abelian groups in any Hamming translation association scheme are of the
form Z§ + Zf, with a + 28 = n. A subgroup C of Z§ x Zf is called ZoyZ,-
additive code.

The Lee weight function over the elements of Z, is defined as the shortest
path on the cycle from an arbitrary element to 0. Hence, the elements 0, 1, 2, 3
in Z4 have the following Lee weights: wtz(0) = 0, wt.(1) = wt;(3) = 1 and
wtz(2) = 2. Furthermore, the Lee weight of any element in Z7 is the sum of
the Lee weights in each coordinate meanwhile the Lee distance of a pair of
vectors u,v € Zj is defined as dp(u,v) = wtr(u + v).

The Gray map over Z, is a map ® : Zy — Z3 where ®(0) = 00, (1) =
01,®(2) = 11, ®(3) = 10 and, note that ® can be extended coordinate-wise
to Z}. Hence, some binary codes can be constructed from the quaternary co-
ordinates. The Gray map is nonlinear but it is an isometry which transforms
Lee distances in Z} into Hamming distances in Z2".

Any binary code C' is called a ZyZ4-linear code if C' is the image ®(C)
through the Gray map, where C is a subgroup of Z§ x Zf . The extended
Gray map is the map which acts over the binary coordinates as the identity,
concatenated with the Gray map acting over the quaternary coordinates. The
generator and parity check matrices, the dual codes and the automorphism
group of a ZyZ,-additive codes can be found in [BFT10, BFT14, KV15];
the rank and the dimension of the kernel of ZsZ,-linear codes can be found
in [FP*10].
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Z,~linear codes

A code C is said to be a quaternary code of length n if C is a nonempty set
of Z}, while C is said to be quaternary linear if C is a subgroup of Z}. If C
is a quaternary linear code then C' = ®(C) is said to be Z4-linear code. The
usual inner product for any two words u,v € Z} is (u,v) = u - I, - vT, where
I, is the identity matrix of length n and v” is the transpose vector of v. The
quaternary dual code of C is defined as C+ = {u € Z} : (u,v) = 0,v € C}
while C| = ®(C*) is called the Z4-dual code of C. In [N91, [HKT94, BPT03b]
it was proved that there exists an important family of Zy-linear codes with
better parameters that any linear code of the same length. Two of the most
important families of Z,-linear codes are the Preparata and Kerdock codes,
|K'72]. Preparata and Kerdock codes were proved to be formally dual to each
other; their parameters and some constructions are studied in [BP703b), [Z00].
Other families of Zy-linear codes can be found in [K01, [FPT08|. In [KW™16!
KZ13]| a list of optimal Zs-linear codes with their associated parameters can
be found. Furhtermore, in [BP™03al it is given a classification attending to
the rank and the dimension of the kernel of the extended 1-perfect Z,-linear
codes, that consists of a subfamily of the Z,-linear codes, termed Z4-linear
Hadamard codes. Note that the family of Z,Z4-linear codes generalised the
Z,-linear and binary linear codes by considering o = 0 or § = 0, respectively.

Every Zg-linear code C' has a propelinear structure. If 0,1,2,3 are the
elements in Z4, we can make the following assignation, m; = m = (1,2) and
Ty = mg = Id. In Z4 we have that 1 + 3 = 0 and in its binary propelinear
representation it would be 1-3 = (0,1) + m(1,0) = (0,0). As well as the
Gray map is extended coordinate wise to Z} the propelinear structure can
be extended to Z3" by concatenating the associated permutations in each
quaternary coordinate.

Remark 10. Furthermore, every codeword in a ZoZ4-linear code have associ-
ated the identity permutation on the binary coordinates and the concatenation
of the permutations assigned to each quaternary coordinate.

2.1.2 ZyZ,(Qs-codes

Let Qs be the quaternion group of eight elements, presented by Qs = (a,b :
a* = e,a’® = b ab = ba™'), where e is the identity element.

Definition 11. [RR13]/ A quaternionic code is defined as any subgroup of
Qs-
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Likewise in Z4-linear and ZyZ,4-linear codes, it is defined a suitable Gray
map for the quaternion group. Quaternionic codes can be seen as binary
codes through the Gray map ¢ : Qg — Zi, defined by

90(6) = (0707070)’ 90<b) = (07 L, 170)a

90(61> = (07 L0, 1)’ gO(CLb) = (1’ L, 70)7
o(a®) =(1,1,1,1), ¢(a®b) = (1,0,0,1),
o(a®) = (1,0,1,0), ¢(a®b) = (0,0,1,1).

The map ¢ can be extended coordinate-wise to Q5. If C is a quaternionic
code, then we will say that C' = ¢(C) is a Qg-code of binary length 4n.
In [RR13] it is proved a quaternionic code can be provided with a propelinear
structure by considering 7, = (1,2)(3,4) and m = (1, 3)(2,4).

Denote by ® the extended Gray map formed by the concatenation of the
Gray maps on the binary, quaternary and quaternionic coordinates. Fur-
thermore, if C is a subgroup of Z$ x Z5 x QF then C = ®(C) is called a
Lo Z.4Qg-code. The propelinear structure of a ZyZ,Qs-code is reached by
concatenating the permutations associated to the binary, quaternary and
quaternionic coordinates. Note that this family of codes generalises ZyZ,4-
linear codes by considering v = 0, and therefore, the Z-linear and the binary
linear codes. The following result shows a characterization which decides
whether a propelinear code is translation invariant.

Proposition 12. [RP97] Let C be a binary propelinear code. Then C' is a
translation invariant code if and only if C is a ZoZ4Qg-codes.

In [RR13] it is proved that the family of Z;Z,Qs-codes enlarges the fam-
ily of those ZyZs-linear codes. Although Hadamard codes are introduced
in the following section, it is worth mentioning that Hadamard Z,Z,Qs-
codes constitutes an important subfamily of the ZyZ4Qs-codes. In [RR13|
Hadamard Z,Z4Qs-codes are described attending to five different shapes for
which bounds on the rank and the dimension of the kernel are established.
Furthermore, in [MR15] Hadamard Z,Z,Qs-codes are completely classified
attending to the values of the rank and the dimension of the kernel.

2.2 Binary Hadamard matrices

The study of Hadamard matrices becomes an important target on several
applied mathematical disciplines since the early 20th century. Through
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Hadamard matrices, Hadamard codes come to life. These codes have op-
timal parameters in order to modulate and transmit information through a
noisy channel. To emphasize their relevance, they were used in early satellite
transmissions in the 1972 Mariner mission to Mars. Modern CDMA cell-
phones use Hadamard matrices (Walsh covers) to modulate transmission on
the uplink and minimise interference with other transmissions to the base
station. The Walsh-Hadamard Transform is in common use as a fast discrete
transform. New applications are pattern recognition, neuroscience, optical
communication, cryptography and stenography|HO07].

Definition 13. [H83] A Hadamard matriz H of order n is a matriz of size
n x n with entries {1}, such that HH" = nl.

In other words, any Hadamard matrix is a square matrix of order n such
any two different rows or columns agree in precisely § entries. Tt is well
known that if a Hadamard matrix exists then n is 1,2 or multiple of 4,
IMS77, [AK92]. The smallest trivial examples of Hadamard matrices

1 1 1 1

1 1 1 -1 1 -1

Hl—(l)’ H2—<1 _1>a Hy = 1 -1 -1 1
1

1 -1 -1

At the end of the 19th century, Jacques Hadamard |H83| enunciated sev-
eral problems concerning Hadamard matrices, such as the general construc-
tions for Hadamard matrices. Several decades later, Paley studied some of
the Hadamard problems and conjectured the next statement known as the
“Hadamard conjecture”.

Conjecture 1. [P33, Hadamard’s conjecture] There are Hadamard matrices
of length 4n, for every natural number n.

It is said that two Hadamard matrices H; and Hy are equivalent if one
can be obtained from the other by performing a finite sequence of:

1. permutations of the rows or/and columns,
2. multiplications by -1 rows or/and columns.

Optimal advances were reached since 1970 and lots of inequivalent Hadamard
matrices have been constructed; a complete list of nonequivalent Hadamard
matrices for small orders can be seen in [GKO05].



2.2. Binary Hadamard matrices 17

From the operations of equivalence, the first row and column of H can
be changed into +1’s and then we say that H is normalized. Any Hadamard
matrix H is a Hadamard binary matriz if +1’s are replaced by 0’s and —1’s
by 1’s.

A Hadamard code C consists of the rows of a binary Hadamard matrix
H and their complementaries. In other words, a binary Hadamard code is
a binary (4n,8n,2n)-code. Hadamard codes are not linear in general, but it
is well-known that there is a unique binary linear Hadamard code of length
n = 2™, for any m > 2. Further, this code is the dual of the extended
Hamming code of length 2™ [MS77, Chapter 2|.

Example 14. [MS77] The binary linear Hadamard code of length 16 with
generator matriz

Gy

Il
OO OO =
[ e ell
O O = O =
O = O O =
_— o O O =
e e =
e e e
_ = O = =
_— O O = =

11
10
11
01
0 0

—_ =0 O
—_ O = =
O R O R

1
0
1
0
1

O = = =

is constructed as in . Hence, G4 is the generator matriz for the simplex
code Sy, of length 15.

Several constructions of binary Hadamard codes attending to the values
of the rank and dimension of the kernel can be found in [PR*05a, [PR*06¢].

Remark 15. Further than the lineal Hamming code, the dual of the Z4-
Hammang code and the ZoZ4-Hamming code are the Hadamard Zy-code and
Hadamard ZoZ.4-code, respectively.

The recent advances on combinatorics, complex analysis and algebra
made easier to determine new tools for constructing Hadamard matrices of
higher orders. In order to develop a broad perspective on Hadamard matrices
it is convenient to present an overview on classical and modern constructions.

Classical and modern constructions

Since the beginning of the 20th century, various mathematicians have been
trying to give a solution to the Hadamard’s conjecture. While a general proof
for the Hadamard conjecture seems unreachable, some mathematicians deal
with methods for constructing Hadamard matrices of high orders.
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2.2.1 Hadamard matrices of Sylvester Type

One of the forefathers on Hadamard matrices was James Joseph Sylvester,
[S67]. Around 1860, Sylvester had realised that given a Hadamard matrix
H, then the expanded matrix

H H

H —-H

is a Hadamard matrix. Let us go over the general case. Let A and B,
respectively, be m x n and p x ¢ matrices with A = (a;;)1<i<n,1<j<m and

B = (bij)1<i<p,1<j<q-

Definition 16. The Kronecker product (or tensor product) A ® B of two
matrices A and B is the resultant matriz obtained by replacing each a; j in

A by amB.

Now, let H,, and H,, be Hadamard matrices of orders n and m, respec-
tively. Then the Kronecker product H,, ® H,, is a Hadamard matrix of order
nm. Hence, any Hadamard matrix H is said to be of Sylvester type, if H

. . . 1 1
consists of n iterated tensor products of the matrix S = ( 1 1 ) :

2.2.2 Hadamard matrices of Paley type

Paley |P33| showed the existence of a new family of Hadamard matrices
for which he gave several constructions. It is necessary to introduce the
quadratic residues over finite fields I, of ¢ elements, with ¢ a prime power,
to understand the Hadamard matrices of Paley type. For more details, the
reader is referred to [RM™99|.

An element g; € F, is a quadratic residue if g; = g? has a solution in F,.
The Legendre character is the map

X:Fq%{_Loul}u

where x(0) =0, x(z) = —1 if z is a nonsquare, and y = 1 otherwise.

For any g;,9; € F, we denote by Q) the Jacobsthal matriz defined by Yy,
Qij = x(gi—9;), 0<i,j < q. When ¢ =3 (mod 4), since Q;; = x(9;: — g;) =
x(—1)x(g; — g;) = —Qji, then the matrix Q is skew-symmetric (—Q = Q).
Furthermore, if ¢ = 1 (mod 4) then —1 is a square in F, and then @ is
symmetric (Q = Q7).
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Definition 17. [H0O0] Let I, be the identity matriz of order ¢ + 1 and let
Q) be the matriz defined by the Legendre character over F,, x(9; — gj)o<i j<q-

Consider S = ( 10T 612 )
(¢+1)x(g+1)

1. If g =3 (mod 4) then the Py is said to be of type Paley I, where

1 —1
Pl_(lT Q+Iq)

2. If ¢ = 1 (mod 4) then the matriz Py is said to be of type Paley 11,

where
732:(5+]q+1 S =1l )
S—Ipn —S—14

The matrices P; and P, are Hadamard matrices [MS77, Chapter2, Lemma
7|[HO7]. Combining these constructions with the Sylvester expanded matrices
yields a large number of Hadamard matrices. To illustrate the above theory,
we show an example of a Paley type I Hadamard matrix.

Example 18. [H00] Let P, be the matriz defined from the set {1,2,4} of
quadratic residues (mod 7). Then,

B,

-

I
N
Ry -

|
QO L
~—
|
e e e e e
|
—_ =
(.
— =
[
— =
|
—_ =
—_ =
|
— =
|
— =

Paley |[P33| provided the following results on the existence of Hadamard
matrices.

Theorem 19. [P35/

1. Let n be divisible by 4, with n = 2*(p"+1), where p is an odd prime and
natural numbers k and h. Then we can construct a Hadamard matriz
of order n.
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2. Let n be divisible by 4, with n = 2*p(p+1), where p =3 (mod 4), p an
odd prime and natural number k. Then we can construct a Hadamard
matriz of order n.

These methods enabled Paley to find Hadamard matrices of small orders.
However, there exists some orders n, n < 200, for which Paley constructions
could not provide Hadamard matrices; in particular, these gaps are n €
{92,116, 156, 172, 184, 188}.

2.2.3 Williamson Matrices

Williamson [W84] gave another method to construct Hadamard matrices.
This method generalises the Paley type I construction and complete some
of the aforementioned gaps, like n = 172. Afterwards, more developed tech-
niques allow researchers to compute Williamson matrices more efficiently
but, even nowadays, it is still a hard problem. Likewise in Paley construc-
tions, Williamson matrices have a specific internal structure; this structure
has different block circulant matrices satisfying the following conditions.

Definition 20. [R52] Any square matriz M of length n is said to be a cir-
culant matriz if M can be written as,

V1 V2 ... Un

Up VU1 ... Up—1
M =

Vg V3 ... (%1

Definition 21. [W8J] A Hadamard matriz H is of Williamson type if H
can be written up to equivalence as

A B C D
-B A -D (C
- D A -B
-D -C B A

H =

where A, B,C, D are circulant and symmetric matrices such that
AAT + BBT + 0CT + DD” = 4nI (2.4)

The most difficult step on the construction of Williamson matrices, relies
in finding those circulant matrices satisfying condition (2.4]).
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Example 22. Consider the matrices

111 1 -1 -1
A=(111]|,B=c=D=[ -1 1 -1
111 -1 -1 1

Since A, B are symmetric matrices then it is clear that A* + B>+ C?+ D? =
12 I1s.

Thus, combining appropriate circulant matrices, the Williamson method
produces Hadamard matrices of higher orders. One can think that if there
were additional Hadamard circulant matrices, then the Williamson construc-
tion would produce new Hadamard matrices. Nevertheless, this problem is
one of the classical conjectures in the area of Hadamard matrices.

Conjecture 2. [R63] There is no Hadamard circulant matriz of order n,
unlessn =1 and n = 4.

Example 23. The unique nontrivial circulant Hadamard matriz is

1 1 1 1

1 -1 1 -1
H= 1 -1 -1 1

1 1 -1 -1

Williamson matrices are introduced in [W84| quite early in the develop-
ment of the theory of orthogonal matrices; most of Williamson matrices are
those of order (¢ + 1)/2, where ¢ =1 (mod 4) is a prime power, [W84].

The most significant advancements on the Williamson method were prin-
cipally conducted by Baumert, Golomb and Hall (1962), [BGT62| which con-
structed Hadamard matrices of order 92, 116 and 156 and, from Sylvester
method, the Hadamard matrix of order 184, [BGT65, [B66]. Around 1970 the
main contributions were essentially done by Turyn [T69, [T72]; Turyn proved
that a matrix of Paley Type Il is equivalent to a Williamson Hadamard ma-
trix with symmetric circulant components. Concurrently in 1970, Cooper
and J. Wallis were be able to construct Hadamard matrices of new orders,
such as the case of a Hadamard matrix of order 836 [CWT2].

2.2.4 Ito Hadamard matrices

Alternatively to the Turyn’s construction, Goethal and Seidel [GS67, (GS70]
provided Hadamard matrices related to the Williamson type although the
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conditions that they require for the circulant matrices are less restrictive
than on the Williamson case. Around 1990, Ito [194] proposed a general
construction for Hadamard matrices employing circulant matrices which is
not as restrictive as Williamson’s but more restrictive than Goethals and
Seidel’s matrices. In [I81] these matrices are termed Hadamard matrices of

type Q.
Definition 24. [I81] A matriz H is said to be of type Q if it can be written

as
A B C D

-B A -D (C
—CT DT AT _BT
_DT —CT BT AT
where A, B,C, D and are circulant matrices satisfying condition and

AB" + CD" = BAT + DC"

H= (2.5)

Schmidt [S99] realised that Williamson type matrices are included in the
Hadamard matrices of type Q, and this fact brought Williamson matrices
back to light. Ito designed an algebraic structure for these matrices that he
called Hadamard groups but, it will not be until Section where we give
an explanation on Hadamard groups.

2.2.5 Generalised quaternion Hadamard matrices

Yamada [Y91] generalised Ito Hadamard matrices by introducing 2* x 2¢ block
back negacyclic (2.6) matrices (¢ possitive integer) with circulant components
of order n, instead of 2 x 2 back negacyclic matrices ) These new
matrices are termed generalised quaternion Hadamard matrices.

Definition 25. [Y91] A matriz M is said to be back negacyclic if M can be

written as
vl U2 o o o UTL
_vn Ul “ .. Unfl
M = —Up—1 —Up - Up—2 s (26)
_/l)2 —/l)g .« o . /l)l

Definition 26. [Y91] A Hadamard matriz H of order 4nN is said to be a
generalised quaternion matriz of order 4nN if H can be written as

H=( g 4 ) 2.7
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where A and B are the following back negacyclic matrices

Ay Ay oo Aoy By By -+ Ban
Aoy A e Aoy —Bay  Bi -+ Bayoa
A= —Aww —Ay - Ao | B=| —Ban1 —Bn -+ Banoo
—Ay  —As - A —By —Bs - B,
and, where A; and B; are n X n circulant matrices, i € {1,2,...,2N}.

2.3 Relative difference sets

Design theory evolved in the last century as an important mathematical
discipline with diverse applications in computer sciences. Design theory pro-
duces useful combinatorial devices for constructing Hadamard matrices. It
was realised very early that some Hadamard matrices are equivalent to cer-
tain block designs; as an example, Paley type I Hadamard matrices can
be constructed directly from square block designs [BJT99|. Hence, it is
reasonable and convenient to introduce the available combinatorial struc-
tures that are used to construct Hadamard matrices. The following defini-

tions are fairly standard and, for more information, the reader is referred to
[AK92] [S03, RM™99, W88, B.J799).

Definition 27. [S03] Let v, k, A and t be positive integers such thatv > k > t.
A t-(v,k, \) design is pair D = (P, B), where P := {p1,pa,...,pv} is a set of
points and B := {By, By, ..., By} is a set of blocks, such that the following
properties are satisfied:

1. |P|=wv, |B|=b
2. each block contains exactly k points, and

3. every set of t distinct points is contained in exactly \ blocks.

FEvery element of P is incident with exactly r = ’\gf__ll) elements of B. We
say that a t-(v,k, \) design is nontrivial when v —1 >k > X >t > 0. The

term t-design is used to indicate any t-(v, k, \) design.

Note that any ¢-design might contain repeated blocks. If A = 1, then the
correspondent design is called a simple design and it can not contain any
repeated block. Finding tools to construct t-designs becomes more difficult
when A > 1.
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Example 28. [MS77, [AK92] Let B := {123,145, 167, 246, 257,347,356} and
suppose that P :={1,2,3,4,5,6,7}. Then D = (P, B) is a 2—(7,3,1) design.
This design is a projective plane, known as Fano plane, satisfies that for any
two distinct points there exists exactly one line such that both points belong to
the line, and that any two lines intersect in exactly one point. Any projective
plane P of or