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Chapter 1

Introduction

This thesis studies integrability and convergence properties of Fourier series/transforms
of monotone (general monotone) functions or functions whose Fourier coefficients/trans-

forms are monotone (general monotone).

1.1 Lorentz and weighted Lebesgue spaces

We start with the definitions of weighted Lebesgue and Lorentz spaces [9]. Let (€, u)

be a measure space.

Definition 1.1. Let f be a pu-measurable function on §2, then by f* we denote the

non-increasing rearrangement of f, i.e.,
ff(t) =inf{o: p{z € Q:|f(x)] > o} <t}

Definition 1.2. Let 0 < p < 00 and 0 < g < co. Then the Lorentz spaces Ly, 4(S2) is

the set of u-measurable functions f for which, the functional

MO,y g \7
J (tpf*(t)> a for 0 <p<ooand 0 < q< oo,
1 fllz,.q@) = 0 )
sup tr f*(t) for 0 <p<ooand q= o0,
0<t<p(Q)

is finite.

Definition 1.3. Let 0 < p < 00 and 0 < g < oco. Then the weighted Lebesgue spaces

Lq

wlp q}(Q) is the set of u-measurable functions f for which, the functional

1
11 q
(f tr qf(t)’ dt)q for 0 <p<ooand0 < q< oo,
1fllze, @)= 2 A
ess sup tr|f(t)] for 0 < p < oo and g = oo,
teQ
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1s finite.

Here wip, q](t) stands for weight function t777. We will denote by 1,4 and lfv[p g Similarly

defined Lorentz and weighted Lebesgue spaces of sequences, respectively.

Remark 1.1. Note that ||f||1, () = HfHLi[p, o = 1 flz,(0)- Moreover, Hardy’s rear-

rangement inequality implies

£y 0y 2 Ml @) for a<p;

1Ay a) < Mfllze @) forazp.

Throughout this thesis, we denote by C' a positive constant that may be different on
different occasions. In addition, 7" < S means that there exists C' > 0 such that T < CS.
Moreover, T' =< S means T < S < T. Throughout this thesis, p’ denotes the conjugate
index of p: %—k%:l.

1.2 General monotonicity

Here we introduce the notion of general monotonicity, which is the key concept in this
work. General monotone sequences (or functions) play an important role in many classi-
cal problems of harmonic analysis and approximation theory (see, for instance, [16], [17],
[18], [34], [42], [58], [01], [95]). The definition of the GM () sequences (see [59, [88] [91])
reads as follows.

Definition 1.4. Let a = {a,}52; and B = {B,}02, be two sequences of complex and
non-negative numbers, respectively. The couple (a,3) determines a general monotone

sequence a with magjorant 3, written a € GM (), if there exists C > 0 such that for all
n €N,

2n
S [Aa] < CBy. (1.1)

k=n

It will be the key observation in our further study that GM (3) sequences preserve some

monotonicity properties. This is given by the following result.

Lemma 1.1 ([59, Lemma 3.1]). Let a € GM(8), then for all n € N we have

lak| < CBy + |lam| for all k,m=mn,...,2n; (1.2)
1 2n

\ak\gCﬁn—i—E Z laj|  forall k=mn,...,2n; (1.3)
Jj=n+1

n—1 2n—1

C
jan| < — > B+ Y ol | (1.4)
j=n

3]
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2n

Note that the widest class of general monotone sequences is when 3, = > |ax|, since
k=n

in this case any sequence belongs to this class with C' = 2. Let us give some examples

of majorants B, which will be useful in study of trigonometric series.

1. ﬂ% = |anl;

1
2. Bn=y 2 lasl, 7> 1;
Py}
3. B;;’:%ma%( las|, ~v>1.
;

It is known that M C QM € GM(B') € GM(B?) € GM(B3) (see [34, O1], ©94]), where
M is the class of non-increasing sequences, and QM is the class of quasi-monotone
sequences. Recall that a sequence {a,}"2 is quasi-monotone if there exists 7 > 0
such that {Z—’;} is non-increasing. More details about the various subclasses of general

monotone sequences can be found in [59, [94].

Now we describe some classical problems that we study in this thesis.

1.3 Hardy-Littlewood’s theorem: periodic case

We start with integrability properties of Fourier series. Integrability properties of Fourier
series with monotone coefficients were first considered by Hardy and Littlewood ([43],

[105, Ch. XII, §6], [14, §6)).

[e.e]

Theorem 1.1. Let 1 < p < oo and f(z) ~ Y (apcosnz + by sinnx), where a =
n=1

{an}2q, b = {b,}22, are non-increasing non-negative sequences vanishing at infinity.

Then 1
£z, ((0,27]) = <Z nP~2(ab + bﬂ)) )

n=1

Generalizations of Theorem [1.1|for the Lorentz spaces Ly, 4([0, 27]) and weighted Lebesgue

spaces qu[p ([0, 27]) were proved by Sagher [76, Theorems 1 and 2].

q]
o0
Theorem 1.2. Let f(x) ~ > (an cosnx + b, sinnz), where a = {an}22,, b = {b,}52,;
n=1

are mon-increasing non-negative sequences vanishing at infinity. Then
112027 = Nl , + 1Bl 1T <p<oo, 0<g<oo, (1.5)

IFllze, ey =< Nallie A lblle 1 <p<oo, 1<gsoo. (1.6)
w(p w(p’,q] wp’,q]

1]
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Since for monotone sequence {a,}°° 1, a) = an, we obtain the following corollary.

[e.e]

Corollary 1.1. Let f(z) ~ Y (a, cosnz + by sinnzx), where a = {an}22,, b = {b,}22,;
n=1

are non-increasing non-negative sequences vanishing at infinity. Then, for any 1 < p <

o and 1 < q < oo,

1 ey atozy = 1z, oaly = Il + Bl

= |la + ||b .
lals 4+ Ibl

There are many generalizations of Theorem In particular, for weighted Lebesgue
spaces Theorem was generalized in papers [4, 27, 32} B33, 34, 54| [76], 011, [103].

Analogues of Theorem for the Lorentz spaces were proved in [16] 29, [31), 42} 68, [69)
76, B1].

1.4 Hardy-Littlewood’s theorem and Boas’ conjecture: non-

periodic case

One of the first results on the integrability properties of the Fourier transforms of mono-

tone functions is the well-known Hardy-Littlewood theorem [98] §4.12].

Theorem 1.3. Let 1 < p < 2 and f(x) be a non-increasing non-negative on (0, +00)
—~ +oo
function that vanishes at infinity, and f(t) = [ f(z)costzdx be a cosine transform of

0
f- Then
1
—~ 0 P
1l 0 < € ( [y dx)

In the paper [15], Boas stated the following

Conjecture. Let 1 < p < 0o and f be a non-increasing non-negative on (0,00) function

that vanishes at infinity. And put f is cosine or sine transform of f. Then x_7f(a:) €
2

L,(0,00) if and only if :L'HV_Pf(a?) € L,(0,00) provided —ﬁ <y < %.

In [77], Sagher solved this problem in the setting of the weighted Lebesgue spaces and

the Lorentz spaces.

By E we denote the set of non-negative, even on R, non-increasing to 0 on (0, +00)

functions.

oo

Theorem 1.4 ([77]). Let f(z) € E and f(y) = [ f(x)e™®¥dx be the Fourier transform

of f. Then
I, .@ =< 1fllz, @, 1<p<oo, 0<g<oo, (1.7)
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£z, o = Wflee @y 1<p<oo, 1<q<oc (1)

The equality f*(t) = f (%) for every f € E immediately implies the following corollary.

Corollary 1.2. Let f(z) € E, then

Illes,, @ =1l @, 1<p<oo, 1<g<co. (1.9)

There are several results related with Boas’ conjecture. In the paper [57] (see also
[60]), Liflyand and Tikhonov proved Boas’ conjecture for general monotone functions.
Moreover, in the case of the sine transform the range of v was enlarged. Later on
Gorbachev, Liflyand, and Tikhonov [40] obtained the multidimensional version for radial
functions. Also, Boas’ conjecture was proved [28] for the wider class of general monotone

functions than the one studied in [57].

Note that relation of Theorem was generalized in [67, 69] for weak monotone
functions in the case when 1 < p < 2. Later on, Kopezhanova, Nursultanov, and Persson
[49] generalized for weak monotone functions in the Lorentz spaces with general
weights.

In 100} T0T], Volosivets and Golubov proved the Boas’ conjecture for multiplicative
Fourier transforms of general monotone functions f, extending the results from [2§]

which deals with the trigonometric case.

1.5 Moduli of smoothness of Fourier series with monotone

coefficients

Let f be an integrable 27-periodic function. Denote by

wi(f,8)p = ﬁz@ HAéf(')Hp

the modulus of smoothness of function f € L, of order I > 1, where

AL f(z) = Ap(AF f(2),  Apf(z) = flz+h)— f(a).

The following relation between the modulus of the smoothness of the function f and its

Fourier coefficients was proved by Aljanci¢ [I] and Potapov-Berisha [72].

Theorem 1.5. Let 1 < p < oo, l € N. Let also f € Ly([0,27]),

flx) ~ Z(an cos nx + by, sinnz),

n=1
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and {an}22, {bn}52, be non-increasing sequences. Then

1 1 n B % o 3 %
" (f,n)pxnl<zk(’“)p 2<a§;+b£>> +<z % 2<aaz+bz>) .

k=1 k=n+1

The result of Theorem was generalized in many papers, in particular, [39] 41} 51 53]
70, [72], [85, [98], [T02]. Moreover, this result and its generalizations play important role to

study characterizations and embedding theorems for smooth function classes.

1.6 Uniform convergence of sine and cosine series

Here we start with the well-known Chaundy-Jolliffee’s result [20] on the sine series

Zan sin nx (1.10)
n=1

with monotone coefficients {a,}>2 ;.

Theorem 1.6 ([20]). Let {a,}>2, be a non-negative non-increasing sequence. Then

series (1.10) converges uniformly on [0,2x] if and only if na, — 0 as n — oo.

For the cosine series

o
Zan cos n, (1.11)
n=1

we highlight the following obvious fact.

Theorem 1.7. Let {a,}°, be a non-negative sequence. Then series converges
uniformly on [0, 2] if and only if i ayn converges.
n=1

Very recently, several generalizations of these theorems have been proved where different
extensions of monotonicity condition were considered (see, e.g., [33], [34], [53], [91], [94],
[104] and the references therein). Many generalizations involve consideration of general
monotone sequences. In particular, in the recent paper [37], the authors proved an
analogue of Theorem for {a,}22, € GM(B?) without an assumption that {a,}°°,

is a non-negative sequence.

1.7 Structure of thesis and main results

In Chapter |2, we generalize the Hardy-Littlewood-type theorem (Theorem for se-
quences from class GM = GM(3?). The main results of Chapter |2 are Theorems
and 2.4]
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n=1
numbers a = {an}22 o, b ={b,}°2, € GM. Then

o0
Theorem Let f(x) ~ 9 4+ > (ancosnx + bysinnz), and let sequences of real

12y qqo2n)y = lall, , +1bll,,, 1<p<oo, 1<g<occ. (1.12)

Theorem

o0
Let f(x) ~ @ 4+ > (apcosnx + bysinnx), and let sequences of real
1

numbers a = {an }72 o, b = {bp}22, € GM. Then

£l , o2y < llalls A llblle o 1 <p<oo, 1<g<oo. (1.13)
w w(p’,q] w(p’,q]

The main novelty of Theorems|[2.3|and[2.4]is that we do not assume that {a, }52, {bn }52;

are of constant sign. This allows us to consider a very rich class of sequences.

Section provide us some needed properties of GM (3%) and W M sequences, where
o laxl
k
WM =< {ap}o; : |an] SC’kEnk C>0 v>1

In Section [2.5] we prove the main results of this chapter.

In Chapter [3], we generalize Aljanc¢i¢’ and Potapov-Berisha’s result for sequences from
class GM = GM (B?), see [1, [72, 41, O1]. Our main result reads as follows.

Theorem Let f(z) € Ly([0,27]), 1 < p < o0,

o0

f(z) ~ Z(an cos nx + by, sinnz),

n=1

where {an}22 1, {bp}22, € GM. Then, for anyl € N,

1
1 1 [« »
2) = = 2 :klp+p—2 Py p|P
wi <f7n>p Tll ( (‘ak‘ +‘ k’ ))

k=1

+ <Z (L |bk|p)> y

k=n

In Sections[3.1]and [3.2] we give some historical remarks on relations between the smooth-
ness of a function and its Fourier coefficients. In Section we formulate the main re-

provides us some needed properties of GM (3?) sequences for this chap-

n
and we give upper estimates for the sums n%p S |ag Pkt D=2

sults. Section

ter. In Sections

and 3 Jap[Pk(HDP=2 respectively, which will be used in the proof of Theorem [3.50 In

Section we prove Theorem and show that assertion of Theorem is not true
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anymore for sequences from wider class WM, where

WA = {ad laal <03 %0 om0, 451

k=2
Y

In Section [3.8] we give some corollaries of Theorem [3.5] in particular, we give character-
izations of norms of such functions in Besov spaces. As in Chapter 2 we do not assume

non-negativity or non-positivity of the Fourier coefficients.

In Chapter [d we prove a multidimensional analogue of Boas-Sagher’s Theorem for
anisotropic Lorentz and weighted Lebesgue spaces. The main results of this chapter are

the following theorems.

Theorem 4.2} Let1 <p <oo,0<q<oo and f € E". Then

1 Lpqmmy < [IfllL,, (@)

Theorem [4.3] Let1 <p<oo,1<q<oo and f € E". Then

||f||L“)‘V[p7q](R") = ”fHL:}V[p,ﬂ](R")'

Here, p = (p1,p2,---,0n), 4 = (¢1,92, - - -, qn) are n-dimensional vectors, E™ is a set of
monotone in each variable functions on R". By Lp (R™) and L?V[p’q} (R™) we denote the
multidimensional anisotropic Lorentz and weighted Lebesgue spaces, respectively. The
definitions of these spaces can be found in Section In Section we formulate our
main results. Sections [4.4] and are devoted to some auxiliary results. In Section [4.6

we prove Theorems and Note that the main results of this chapter were proved
in [64].

In Chapter 5, we obtain generalizatons of Theorems [I.6] and We consider a class of

general monotone sequences GM (3) with

2n
where a = {a,}02 1, @ = > |ag|, and {F,}5°; is a sequence of admissible functionals

=n
defined on the set of sequences (see the definition in Section 5.1).

The main results of this chapter are the following theorems.

Theorem Let {F,}2°, be admissible. Let also {an}2>, € GM(B), where (B, =

%Fn(’é) and a is a bounded sequence. Then the following conditions are equivalent:

o
(1) the series Y ansinnz converges uniformly on [0, 27];
n=1
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(2) lim na, = 0;

n—oo

(3) Lm d, =0.

n—oo

Theorem Let {an}22, € GM(B), where B, = 2F,(a) with admissible {F,}5,

and bounded a. Then the series > a,cosnz converges uniformly on [0,2x] if and only
n=1
o0

if the series > a, converges.
n=1

Along with these problems, in Chapter 5, we study the rate of convergence of partial
sums of series ((1.10) and (1.11) in terms of growing properties of their coefficients.

Denote by g(z) and f(x) the sums of ((1.10) and (1.11]) series, respectively.

yn

Theorem Let {a,}52, € GM(B), where 3, = = Y |ag|. Then, for 0 <a <1,
k=2
n

Hf - Sn(f)HC[O,27T] =0 <nla> — anp =0 <noil+1> :

1 1
lg = Sn(9)llcro,2n =0 <n°‘> = n=0 <na+1> '

n

Theorem i Let {an}2, € GM(B), where B, = £ 3 |ag|. Then, for 0 < a <1,
k=1
n

I =50 Dllcoan =0 () = =0 (a5)-

1 1
lg = Sn(9)llcro2m = O <na> = =0 <na+1> :

As corollaries of Theorem we obtain necessary and sufficient conditions for function
to be in the Lipschitz space Lip « in terms of the rate of convergence of partial Fourier
sums. In Sections [5.2] and we formulate and prove the main results of Chapter 5,
respectively. In Section we give some examples of general monotone sequences. In
particular, it is shown that Theorem extends results from the paper [37]. In Section
we show that Theorem does not hold without assumption on the boundedness

of sequence {a,}2° ;. The main results of this chapter were proved in [30].






Chapter 2

Integrability theorems for the
trigonometric series with general

monotone coefficients

In this chapter, we consider the class of general monotone sequences GM (3) with

yn
ak
=Y s

k=2
n

For convenience, throughout this chapter, we denote this class by GM.

2.1 Historical remarks

Let f be an integrable 27-periodic function with the Fourier series

oo
Z(an cosnx + by sinnz).

n=1

Let us start with the following well-known Pitt’s inequality (see [71], [84]) written in the

setting of the weighted Lebesgue spaces qu[p g 2 follows

lalis  + Wbl S flzs, o)y

where

l<p<q<yp.

11
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Note that the case ¢ = p’ corresponds to the Hausdorff-Young inequality (see [105, Ch.
XII, §2])

1
00 o
(Z (lanl?” + [on]? )) Sl ozmy, 1<p<2 (2.1)
n=1
Moreover, the case ¢ = p corresponds to the Hardy-Littlewood inequality (see [L05], Ch.
XII, §3]).

1
o0 »
<Z nP =2 (|an|? + |bn!p)> Sz, o2, 1<p<2. (2.2)
n=1

Recall that for monotone sequences {a,}5> , {b,}°2; Hardy and Littlewood ([43], [105,
Ch. XII, §6]) proved the equivalence

o0 ’
(Z nP~2 (lan P + Ibnlp)) < fllz,(02m), 1<p<oec. (2.3)
n=1

Results of these type are of great importance in analysis since they provide a simple way
to calculate the L, norm of a function. We only mention the papers [41], [76, [82], where
one can find applications of Hardy—Littlewood’s equivalence in approximation theory,

harmonic analysis, and functional analysis.

The equivalence ([2.3) was generalized in [34] for general monotone sequences. In [34],
Dyachenko and Tikhonov considered weighted Lebesgue spaces. We rewrite their results

in terms of weighted Lebesgue spaces Lz}[p a
o0
Theorem 2.1 (|34, Theorems 4.2 and 4.3]). Let f(z) ~ > (a, cosnx+by, sin nx), where

n=1
{an}2 1, {bn}22, € GM are non-negative sequences. Then

||f||L‘1[ ([0,2]) = lallz , +1bl  , 1<p<oo, 1<g<oo.
w(p,q] wp’,q] w(p’,q]

Various generalizations of Hardy-Littlewood theorem in the setting of the weighted
Lebesgue spaces can be found in [4, 27, 32], 33], (54, [89] 9T, 103].

Now we consider some results related to the Lorentz spaces. Note that the estimates
(2.1) and (2.2) in the case when 1 < p < 2 follows from the general Hausdorff-Young
inequality given by

||aHlp/’q + ||b||lp/7q 5 ||fHLp,q([0,27r])7 1<p<2, 0<g<oo; (24)

see, e.g., [75]. As was mentioned in Section 1.3, for monotone sequences {ay }2° 1, {bn}52 4

Sagher [76] proved the following equivalence

lalli, , + bl < [IfllL,(02s), 1<p<oo, 0<g<oo. (2.5)



Chapter 2 Integrability theorems for the trigonometric series with GM coefficients 13

Recently, Grigoriev, Sagher, and Savage [42] generalized equivalence ({2.5) for GM se-
quences. For given 0 < o < 27, 0 < 8 < 7, let us denote

Sag = {re' : |p —a| < B,r > 0}. (2.6)

=S -
Theorem 2.2 ([42]). Let h(xz) ~ > c,e™*, where sequence of complex numbers ¢ =
n=0

{en}2y € GM such that, for any n_z 0, ¢cn € S for some 0 < o < 2m,0< 8 < 3.
Then
|’hHLp7q([0,27r]) = HCHlp/,(ﬂ I<p<oo, 1<g<oo. (27)

Other generalizations of Hardy-Littlewood theorem in the setting of the Lorentz spaces
obtained in [16], 29, [3T], 42| 68 [69] 70, [&T].

2.2 Main results

The main results of this chapter are Hardy-Littlewood theorems for functions with gen-

eral monotone coefficients.

[e.e]
Theorem 2.3. Let f(z) ~ @ + > (apcosnz + bysinnz), and let sequences of real

n=1
numbers {an}52, {bn}o>, € GM. Then

1y atiozey = lalle, , + 1B, . 1<p<oo, 1<q<oc. (2.8)

&)
Theorem 2.4. Let f(xz) ~ % 4+ ) (a,cosnx + bysinnz), and let sequences of real
n=1

numbers {an}5> o, {bn}to>, € GM. Then

1Flze, oeny =< Nallie - lblle o 1<p<oo, 1<g<oco. (2.9)
w(p,q] wp’,q] wp’,q]

The main novelty of Theorems [2.3| and is that we do not assume additional condi-
tions on {an}22, {bn}e, except general monotonicity as in the previous study. This
allows us to consider a rich function class, for which the Hardy-Littlewood—Sagher type

equivalences are valid.
Theorems [2.3] and [2.4] along with Lemma [2.3] below imply the following corollary.

oo
Corollary 2.1. Let f(x) ~ % 4+ > (ancosnx + bysinnz), and let sequences of real
=1

n=
numbers {an}5> o, {bn o>y € GM. Then, for any 1 <p < 0o and 1 < g < oo,

1 £11 2,0 (10,27]) = Hf”LfU[p’q]([O,%r]) = ||a||zqw[p,yq] + ||b||zgu[p,yq]

(2.10)
= Jall,,., +Ibll,,.
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Remark 2.1. Note that, for any 0 < 3 < 7, the set Sy g (see Deﬁm’tz’on@) contains a
0 .

positive half-line Ry, i.e., relation (2.7)) holds for h(x) ~ > cpe™® with {cy,}02, € GM,

0

n=
cn > 0. On the other hand, for any 0 < a < 27 and 0 < 3 < §, the set S, g does not

cover a real line R.

Remark 2.2. Theorem [2.4 was proved for non-negative sequences {an}52q, {bn}or; €
GM in [103] for 1 < q < oo and in [5])] for 1 < g < oc.

Throughout this chapter, we fix constants C' > 0 and v > 1 from the definition of GM

sequences. All constants in this chapter may depend only on C, «, p, and q.

2.3 Pitt-type inequalities involving averages of Fourier co-

efficients

o0

Recall that Pitt’s inequality for a function f(x) ~ % + Zl(an cos nx + by, sinnx) in the
n=

setting of the weighted Lebesgue spaces Li[p d reads as follows

a b <
lalls  +Ibls S Iz

wip,q)’

where

l<p<qg<yph
see [711, [84].

The condition 1 < p < g < p’ is sharp, see, e.g., [34]. In this section we will extend
Pitt’s inequality for the case 1 < p < 0o and 1 < ¢ < oo with the help of averages of

Fourier coefficients. We start with the following known result.

Lemma 2.1 ([77, Theorem 2.4]). Let 1 < p < 00, 0 < g < oo and let {an}>>, be the

sequence of Fourier coefficients of an integrable function f with respect to {sinnx}2° |,
n

or {cosnx}32 . Then, for oy(a) =1 3" aj, we have

k=1
Im(oa@)ll, . S 11, (020 (2.11)

where m(oy,) := sup |og|.
k>n

Remark 2.3. A stronger inequality than (2.11) was proved by Nursultanov in [68, The-
orem 3] for p > 2 in setting of the net spaces [68, [69].

An analogue of Lemma for weighted Lebesgue spaces is written as follows.
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Lemma 2.2. Let 1 < p < o0, 1 <q<oo and let {an}>2, be Fourier coefficients of an
integrable function f with respect to {sinnx}° , or {cosnx}>® ;. Then, for o,(a) :=

n
% kzl ap, we have
lm(on(@)lhe S 1fllce ) co.2m); (2.12)
wlp’,q] wp,q]

where m(oy,) := sup |ok/.
k>n

We establish Lemma following ideas from [77, Theorems 2.4 and 3.1] and using
interpolation methods. Let us recall some notions. Let (Ag, A1) be a compatible couple

of quasi-normed spaces and

K(t,a) = K(t.a; Ao, A1) = _inf (laolla +tlarlla), a€ Ao+ A,

a=qa

be the Peetre K-functional ([11]).

The space (Ao, A1)gq, 0 < 6 < 1, consists of all elements a € Ay + Ay for which the

functional
o0 g
(f(teK(t, a))tht> ,  0<g< oo
HCLH(AO,Al)g,q = 0
sup tieK(u a)7 q = o0,
0<t<oo
is finite.

Recall that if (Ag, A1) and (By, B1) are compatible couples of quasi-normed spaces, and a
quasi-linear operator T': A; — B;, i = 0, 1 is bounded, then T" : (A, A1), — (Bo, B1)s.,q
is bounded for any 0 < 8 < 1 and 0 < ¢ < 0.

Proof of Lemma[2.9. We only present the proof for the sine series. For the cosine series
and, consequently for the general trigonometric series, Lemma [2.2] follows from the
boundedness of the Hilbert operator in the weighted Lebesgue spaces. We first establish

the weak inequality

lm(on(@)ll, o S 1Flley, o2r, 1 <s<oo, 1<7 <00 (2.13)

7]

Let 1 < s < co. Using simple calculations, we obtain

1 n 1 n 27 )
on(a) = gZak = nZ/O f(z) sin kzdx
k=1 k=1

2~ [7 . 9 [T no
:nkzzl/o f(x)smkxda::n/o f(x) (kzlsmk:x> dzx

_/’Tf(x)cosg—cos(n—k%)xdx
0

3 X
n Ssin 3

_ /n f(a) (cosg(l — cosnx) N sinnw) .
0

nsin% n

(2.14)
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Assume first that 1 < 7 < co. Then Holder’s inequality yields

T .
cos (1 —cosnz) sinnz
. + dzr

fa T
nsm§

s
= [Cat H@lar
0

( ke
T _1‘7_1
wls,7] /0

Now we estimate the integral on the right-hand side as follows
nsin £ n

vy 7_/
I::/ gt
0 2
/ T 1—cosnz\" 1\"
<271 T —— — dx
<o [ () (2))

! !
/ ’ T iy ’ T
18 2 (1 i [ 1 — cosnzx
S 27— 1*/7['3, - + 2T 1 x s 1 - .z d:L“
T n 0 nsin g

Using the inequality sin § > £, = € [0, 7], and substituting nz on y in the last integral,

cos (1 —cosnz) sinnx
2
d
nsin g * n ’x (2.15)

T %
dx .

cos $(1 — cosnx) N sin nx

in T
nsin § n

7_/

x .
cos £(1 — cosnz)  sinnx
2 + dx

we obtain

/

!
T T o 4 (1—=cosnz\"
+ T’ —F | dx
0 nsin §

< 4 (1—cosnz ™
po1(lzcosnay (2.16)

nx

0 n Y n’

It follows from estimates (2.15)) and (2.16]) that

~
N
7N

SlIl— 3l 3=

(VAN
N
q
+
3
\1\
h
8

I
A/~

" nToaNT1 (1 —cosy\" dy )~
|an<a>|5(() O Y g,
n 0 \n Y n ’
1 1 ®©  ,[1—cosy ™ 7 (2.17)
S B (/ Y 1<> dy) Il
n ns’ 0 y ’

_ L
S | flle

~ wls,r]’

Let now 7 = 1. Taking into account (2.14)), we have
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™ cos £(1 — cosnx)  sinnz
oata)| < [ 1@ |2 dr
0 nsin g n
” 1 |cos (1 — cosnx sin nx
:/ xiil‘f(l‘)‘xsl 2( T )+ dux
0 n Sin 3 n
1 |cos%(1 —cosnz) sinnz
<fllp:, . sup a¥ | —2—— -
w(s,1] -’EG[O,TI’] TN Sin D) n
Consider the function -
1 cos §(1 — cosnx)
H(z) =¥ —
nsin J
If0<a:§%,then
1 |2sin? % 1 2% 1
H@) < |2 E o L2
ns | nsing ny N
If%<x<7r,then
2 1 1
|H(ac)|<x% = < v x:E 5 <Iplv =man v,
nsin 5 n: n =% n
The last two estimates immediately imply that
sup |H(x)|+ sup ol )
" (2.18)

om(@)] < [If[| 2
wls 1] z€[0,m] z€[0,m]

_1 1 4 _1
< Ul , (7077 +77n™t) < 2mn7 | fllpy, |

Using (2.17)) and (2.18) and the monotonicity of {m(o,(a))}>2 , we arrive at (2.13). In

other words, the operator T'f = m(o,,) satisfies

T:L7 ]—>ls/,oo, l<s<oo, 1 <7 <00

w(s,T

—1=0 p%. Above arguments yield that

Let now 1 < p < oo and 1 < g < co. Then there exist pg, p1 such that pg < p < p; and

therefore, there exists 6 € (0,1) such that % m

.74
T: Lw[Po#ﬂ - lplovoo’

T:L92

— .
w(p1,9] lpll ,00

Interpolating we obtain that
(T4 q
T (Lw[po,q]’Lw[m,q])evq = (Ip} 00+ by} 00) 010+



18 Chapter 2 Integrability theorems for the trigonometric series with GM coefficients

It remains to apply Stein-Weiss’ and Marcinkiewicz’ interpolation theorems(see [11), Ch.
V). O

2.4 Properties of general and weak monotone sequences

Let us start with the following definition of weak monotone sequences (see [61], 9] ).

Definition 2.1. A sequence of complex numbers {a, }5>; is called weak monotone, writ-
ten {an}22, € WM, if there exist constants C' > 0 and X\ > 1 such that, for any n > 1,

An
|ak|
J<o S e 2.1
la |_C’k_ﬂ - (2.19)

It is easy to see that the inequality (1.3) imply that GM C WM. We will use the

following property of the weak monotone sequences.
Lemma 2.3 ([I7, Theorem 3|, [42, Theorem 3.11]). Let {a,}:>, € WM. Then, for all
l<p<oo,1<qg< o0 and for p=q= o0, we have

lalle, , = llalls . (2.20)

v[p,q]

Now we discuss several important notions related to GM sequences obtained in [35].
Without loss of generality, in the definition of general monotone sequences we may

assume that v = 2¥, where v is a natural number. Let {a,}5°; € GM. Denote for any

n > 2v
Ap = max |ag
2n<f<ontl
and
B, = max lak]|.

2n—2u§kg2n+2u
The following concept was introduced in [35].
Definition 2.2. Let {a,}32, € GM. We say that a non-negative integer number n is

good, if either n < 2v or
B, < 2% A,.

The rest of non-negative integer numbers we call bad.

Remark 2.4. For given C > 0 and v € N, there exists sequence {an}5>, € GM =
GM (C,v) such that the set of good numbers of {a,}52 is finite. For example, for the
sequence {27190 | the inequality By, < 24 A, does not hold for any n > 4v.

We set
M, = {k € [277Y, 2] ¢ Jay| > 771}
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M :={k € M, :a; >0} and M, :=M,\ M, .

Lemma 2.4 ([35, Lemma 2.2]). Let a vanishing sequence {a,}>2, € GM. Denote
Ny := [logy(C321%+8)] + 1. Then, for any good n such that n > Ny, there exists an

interval [l,, my] C [2"7Y,2"Y] such that at least one of the following condition holds:

(i)  for any k € [ln, my), we have ar, > 0 and

2?’L

| My 0 I, mn]| > 39518

(ii)  for any k € [ln, my], we have a, <0 and

_ 2"

Lemma 2.5. Let a vanishing sequence {a,}52 ; be such that {a,}o>, € GM. Then, for

any bad number r € N, there exists either a set of integer numbers

r=§ > >8> ... > =65

or

7’:£O<§1<§2<"‘<£s::£r75

such that £1,&2,...,&—1 are bad, & s is good and
A <27 A <27 A, <L < 27 AL

& — & <2v, ©1=0,...,5s—1.

(2.21)

(2.22)

The claim of Lemma [2.5| was proved in [35, Theorem 2.1]. For convenience, we sketch

the proof.

Proof of Lemma[2.5. Let r be a bad number. Then A, < 2% B,.. Note that there exists

an integer number £ such that B, = A¢ and —2v < —r < 2v — 1. Set

Si=min{f: 2w <E—r<2v—-1,B, = A¢}.

Assume first that £ < r. Then either & is a good number or there exists an integer

number £ such that —2v < & —§&; < 2v — 1 and
A& < 2_4VB§1 = 2_4VA§.

Set
E=min{{: —2v <& <20 —1,Bg = A¢}.

Since & < r, it follows that

[251’ 2£1+2v] C [21”721/’ 2T+2u].
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Therefore, for any k € [251,25+2] N Z, we have |ay| < A¢, = B,. If & > &, then
[2¢2 282H N7 C [261,2572Y) N Z. On the other hand, we have A¢, > A¢, = B, arriving

at contradiction. Hence, & can not be greater than &7, i.e., & < &;.

Continuing this procedure, we arrive at a finite sequence (since {;} is the decreasing

sequence)
r=&>& >...> & 1>¢&,

where the numbers &y,&1,...,&—1 are bad, and the number &, is good. Moreover,
§ —&+1 < 2vand Ag; < 2’4"14&.+1 forany 0 < j <s—1.

Let now & > r. Then either &; is a good number, or there exists a number & > &; such
that §&o — & < 2v —1 and Ag, < 2_4”A52. Continuing this procedure and taking into
account the fact that the sequence {a,}5° ; converges to 0, we obtain a finite sequence

of numbers

r:£0<£1<...<5371<58>

where the numbers &y, &1,...,&—1 are bad, and the number £; is good. Moreover, for
any 0 < j < s — 1 the inequalities {11 — §; < 2v hold and A¢; < 2_4"A5j+1 . O

Remark 2.5. From the proof of Lemma it follows that, for any bad number r, we
can construct a sequence of numbers like (2.21) or (2.22)) uniquely. In particular, for

any bad number r, the good number &, s from (2.21)) or (2.22)) may be chosen uniquely.
Therefore, for any good number n we can construct two sets of bad numbers QL and Q?

as follows.

e QL is a set of bad numbers v such that (2.21)) holds with &5 = n;

e Q2 is a set of bad numbers r such that (2.22) holds with &, 5 = n.

The number s will be called the length of the bad number r. Note that Q% N an =0 for
any good numbers n # m and for any i,j = 1,2. Denote by G the set of good numbers

of sequence {an}22 . Then we have

NO:G|_|<|_| Q;>|_|<|_| Qg>. (2.23)

neG neG

Remark 2.6. Let us discuss the case when a sequence {a,}52  is such that the set of
good numbers is finite. In this case, for any bad number r greater than the last good
number, only the case ([2.21)) is possible. Moreover, the set Q> is finite for any good

number n (in particular, Q% might be empty).

Remark 2.7. We note that

1. for any number n € G, each of the sets QL and Q? contain not more than 2v bad

numbers of length 1, not more than (2v)? bad numbers of length 2, etc;
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2. for any r € QL of length s, the inequalities
n<r<n+2sv and A, <27%A,
hold;
3. for any r € Q2 of length s, the inequalities
n—2sv<r<n and A, <27%VA,

hold.

2.5 Proofs of main results
Proof of Theorem [2.3. We give the proof for functions

o
f(z) ~ Z ap, COSN.
n=1

The general case follows from the boundedness of the Hilbert operator in the Lorentz

spaces.

Part 7 > 7. First, we consider the case of the sequence {ay}%; such that there exist
good numbers n > Ny, where Ny is given by Lemma We divide the proof into two

cases: ¢ < oo and g = o0.

A. Let ¢ < 0co. By Lemma [2.3] it is sufficient to prove the inequality

£y 2 Nl

Applying Lemma 2.1} we obtain

q

00 k
a_q 1
I£18,., 2 Im(oa(@)lf, =3 n# " (s |30,
n=1 =7 =1
q q
%) k [e's) k
q 1 (n—=Nog)q 1
xz2n;’ sup -— Zaj = Z 27 sup — Zaj (2.24)
k>2n k|4 p>on-No K |4
n=0 = j=1 n=Np = J=1
q
00 ng 1 k 00
= Z 27 sup z Zaj =: Z P,.
n=No k>2n=No M5 n=No
Let us denote
antl_g

41
Wy, = Z kv ag|
k=27
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Taking into account (2.23), we have

oo 2ntl_q
Iall Zm’ Hanlt=>" > K Iaqu—ZW
n=0 k=27
<ZW+ZW+ZZW+ZZW (2.25)
n<Np neG neGve@l neGveQ?

n>Ng

= J1+ Jo+ J3+ Js.

Now we show the estimates J; < HfH%pq, i=1,23,4.

Step 1ao. The estimate of J;. Let n be a good number such that n > Ny. Without
loss of generality, we can assume that condition (i) of Lemma is valid. Since for
integers l,,, m,, from Lemma [2.4] the inequalities 2"t > m,, > [, —1 > 2"V —1 > 27~ No

hold, we derive

q
a 1
P, =2"" sup - Zaj
=1

k22"7N0

; ln—1 a ; 1 mMn a
> 9"y ! Z gl | +27 7D g
—1 M <=
]:

B I,—1 q q

mn
nd—1 1
=2 2n+1/ Z a; + on-tv Zaj
j=1

—(v+1) q+n
> 2 2n Z aj

q

J=ln
Lemma [2.4] implies
. q q
Pn 2 2n§ 2% Z Qj > 217,& 2% Z aj
j=ln G€[ln,mn]NM;F

wo (1 A, 2¢ \¢
227\ 5 309 CByIsR

antl_g 2ntl—1
> 1 gnpl S ojaltz Y B et =W
= (CAgo(ITr+1l)g on k" < ak|” = Wn
k=2 k=2n

Hence, using ([2.24)), we obtain

Bo= > WuS Y Pu<|fl . (2.26)

neG neG
n>No n>Ng
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Step 2a. The estimate of J;. Using Holder’s inequality, we estimate

ontl_1 2No—1

Ji=30 > R el = 3 0
n=1

n<Ngo k=27

2No—1 27 q
P 2.27
> n ( /0 | f(x)|dw> (2.27)

2No—1 .
< _1
DR F S T

n=1

N

Note that in the last inequality inequality depend only on p, ¢, C, and v.

Step 35. The estimate of J3. Let n € G and let » € QL be a bad number of length
s. Then, by the definition of the set QL (see Remark [2.7) we have r < n + 2sv and
A, <274V A, Therefore,

ortl_q
l/

We= 3 ki Maglt S ALY < 27t g0y <o -saqaomy . (2.28)
k=27

Assume that n > Ny and condition (i) of Lemma [2.4]is valid. Then Lemma [2.4] yields

q

r a 8C2%
W, 5 2—23qu%2”p/ < 2—2suq2np/ — Z aj
[[Tny mp] N M|
FE€[ln,ma]NM;F
q
q 04217114-11 Mn
< 2723”(]2“?/ T a;
J=ln
. 1 Mn 1 ln—1 K
—2svqon 7 . . o .
e A IR AP
i=1 j=1

Taking into account that 2" >m, > 1, —1>2"" -1 > 2”_N0, we derive

. 1 Mn ln—1 g
—92 n-
Wy g 27t | Zaj + o Zaj
7j=1 7j=1
; 1 My, g 1 ln—1 g
< oWHba—lg=2svagnyr | [ _—_ : : 2.29
< o 2_3 + ln_li_jlaj (2.29)
J= J=
E q
< 2(u+1)q2723uq2”§ sup l Zaj — 2(V+1)QQ*25V¢ZPn'
k>27—No k j=

Let now n < Ny. Then from ([2.28]) by using Holder’s inequality, we establish

W, 5 2—25VqA%2nl/ 5 2—2syq2nﬁ||f”quq‘ (230)
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Recall that for any good number n the set Q! contains not more than 2v bad numbers
of length 1, not more than (2v)? bad numbers of length 2, etc. It follows that (2.29)

and imply
=2 2 W=, 3 Wik 3 D W

neG reQl n<€G reQl neG reQl
< q l/ —2sv, — 25
SUAIE,, D2 | D2+ D P | D27
neG reQl neG reQl
n<Np n>Ng
q o0
I —2svq so—4svq
<Iflg,, S 2 (Zzu )52 >+ZP (Z(Qu)2 )
neG =1 neG s=1
n<No n>No
Hence, using (2.24)), we obtain
L oNo 7
Js S, S 2+ > s (2% +1) 1£19,, S IFI9,, -
neG neG ’ ’ ( ’ )
n<Ng n>No

Step 4a. The estimate of J4. Using the same arguments as in the previous step, we

estimate
Ja S I, (2.32)

Combining estimates (2.26)), (2.27)), (2.31)) and (2.32), we finally obtain

lallp ST+ T+ S+ Ja SIS,

wp’,q

B. Let ¢ = co. Recall that Ny is given by Lemma Lemma implies

k
1
115y Z s s0p 23 = sup  sup kmwfz%

k>n =1 n>02n<g<ont+l 1 1>k j=1
k k
% 1 (n—No) = 1
= sup2"? sup — E aj| = sup 2 »”  sup — E a;
n>0 k>2n k|4 n>No kom0 K |
1 1 i ~
Uw,
= sup 2 sup — E aj| =: sup Fp.
n=>No k>2n—No k =1 n>No
Setting
~ 1
Wy, = max k¥ |ag|,

an<f<ont+l_1

we obtain
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1 —~
l[al[zee = supnp ?lap| =sup  max k¢ |ay| =sup W,
w(p’,00) n>02n<k<2ntl-1 n>0

= sup | max Wn, sup Wn,sup sup Vh,sup sup W
<No neG neG reQl neGreQ?
n>No

As in case A we divide the proof into four steps.

Step 1g. The estimate of sup Wn Let n > Ny be a good number. Without loss of

neG
n>N0

generality, we can assume that condition (i) of Lemma [2.4 n is valid. Since 2"*” > m,, >

l, —1>2""V 1> 2" NU,Wehave

k
~ 1 1
P,=2"V sup - Zaj
kZZn_NO kj ]:1
1 ln—1 1 Mn
S = IR
L —1 my, |
N In—1 1 M
n-r— n_-r /
>2"r 2n+y Zaj +27p 2n+y ZG“J RQP—nZaj.
J=ln
Using Lemma we derive
nt 1 nt 1 ni 1 A, on
By 22 on Z a; 22" on >, =2 9n RC22v (1315v+8
FEMn,mn]NM,;T
n ey
220 A, 2 W,
Therefore,
sup Wy, < sup P, < sup P, <|fllL o 00" (2.33)
neG neG
n>No n>No

Step 2. The estimate of max Wn It is easy to see that
n<Nog

= 1 (Not+1) L [T
max W, = max  max ki |ag| < 280FD7 / 1 (2)|da
n<Ng n<Np 2n<k<2nt+l_1 0

Not) L [T .
2 Z Vo |f(2)|da (2.34)
0

2T
No+1)%
<, [T S 1,
0
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Step 3g. The estimate of sup sup fW;. Let n € G and let € Q) be a bad number
neGreQl

of length s. By Remark we have r < n + 2sv and A, < 2714, and therefore

W, = max kY |a| < 420D < gdsr g o2 (2.35)
or <g<2r+1_1

Suppose that n > Ny. The last inequality and Lemma [2.4] give

Mn
—~ 1 1 1
Wr 5 2—45VAn2np/ S 2—451/2np/ Z aj
n,y Mn

(2.36)
k
1 1 ~
S, 27451/271;,/ sup - Zaj — 274511Pn < HfHLpoo‘
k22n7N0 k i ’
If n < Ny, then (2.35)) yields
—_— 1
Wr S 279 452" S 2742 | {1y S 1y (2.37)
Inequalities (2.36) and (2.37) imply
sup sup W, < Iz - (2.38)

neG reQl

Step 4. The estimate of sup sup Wr. Similarly to the argument in step 3g we
neGreQ?
estimate

sup sup W, < Iz oo (2.39)
neGreQ?

Combining inequalities (2.33)), (2.34)), (2.38]), and (2.39), we derive that

HaHlZOp/oo < sup { max I/Vn7 sup Wn,sup sup Wr,sup sup W Sl poe -

10) n<No neq@ neGreQl neGreQ?
TL>N0

Thus, in both case ¢ < oo and ¢ = oo the inequality ”2>” has been proved when the
sequence {ay}o2; contains good numbers n > Np. In the case when all good numbers

of {an}22 are less than Ny we can repeat the proof skipping Steps 14 and 1g.
Part 7 <”. It is known [37, Theorem 2.1] that for any {a,}2>; € GM there exists B > 0
n
such that the sequences ¢ b, = % Z lag| p and {¢, = Bb, — a,} are non-negative and
k="
s

belong to GM.
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Let {an};2; € ly 4- Then by Hardy’s inequality and by [42, Theorem 8.1} we obtain

> >
lall,, % lalls 2Bl el
2 Wbl +llell, . 2 gl + 1Al 2 1l
o0 o0
where g(z) = ) by cosnz and h(xz) = Y ¢, cosnx. O
n=1 n=1

Proof of Theorem [2.4. The proof of the estimate ” > 7 is similar to the proof of part
727 of Theorem using Lemma in place of Lemma [2.1

Regarding the estimate ”<”, if ¢ < oo, this part follows from [34]. Here we remark
that in spite of the fact that Theorems 4.2 and 4.3 in [34] were proved for non-negative
Fourier coefficients the proof of this part is also valid for general sequences. If ¢ = oo,

the estimate ”<” was proved in [35, Theorem 5.1].

Remark 2.8. Under conditions of Theorem we have

1
1 epatoas = W1, qoaep = (Z? : Ag> |
n=0






Chapter 3

Smoothness of functions and the

Fourier coefficients

3.1 Behaviour of the Fourier coefficients of functions from

L,. The general case

Let f be an integrable 27-periodic function with the Fourier series

o0

Z(an cos nx + by, sinnx). (3.1)

n=1

Recall that (see, e.g., [25])

wi(£,0)p = sup [ 8410

Ih|<6 P

is the modulus of smoothness of the function f € L, of order [ > 1, where

AL f(2) = Ap(A f(2),  Apflx) = flz +h) — f(2).

First we write simple estimates for the modulus of smoothness of the function f € L,

1 < p < oo in terms of its Fourier coefficients:

n

1 1
anl + bal Swr( =) S = >k (laxl + [be])
n’/p n 1

oo
+ Z (Jax| + |bkl)-
k=n-+1
The left-hand side inequality is the well-known Lebesgue estimate for p = 1 (see [5]),
the right-hand side inequality follows from the Fourier representation of Aﬁl f in the case

of p = oo (see, for example, [90]).

29
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By Lip (o, p) we denote the Lipschitz class:

Lip (a, p) := {f € Lp([0,27]) : w(f, ), = O(6%)},

where

w(f;0)p = wi(f,0)p = sup [[Anf()llp
|h|<é

is the Ly-modulus of continuity of f. In the middle of the last century, there were found
necessary and sufficient conditions for belonging of a function f to the Lipschitz class.

In particular, Lorentz [62] showed that for 2 < p < co and 0 < a < 1 the condition

i (|ak|p, + Ibklp’) =0 <nip’) , (3.2)

k=n

implies f € Lip (a,p). Note that condition (3.2)) for any positive « is equivalent to the

S (ja¥ + ) =0 (o)

k=n

For 1 < p < 2, condition ([3.2)) is necessary for f € Lip («a,p), see [97].

condition

Gorbachev and Tikhonov [41, Theorem 2.1] obtained a more detailed relationship be-

tween the modulus of smoothness of a function f € L, and its Fourier coefficients.

Theorem 3.1. Let (3.1) be the Fourier series of a function f € Ly([0,27]).

(A) Let 1 < p < 2. Then, forp<q<p, we have
1
q

. (3-3)

nl (Zk (415309 o ¢ |bk!q)>
( > G |ak|q+|bk’q)> S wi (f,i)p-

k=n+1

(B) Let 2 < p < o0 and

1
q

(Zn (Jan|®+ [bn !")) < oo,
n=1

where p' < q < p. Then

l
ol (Zk ) el + |bk|q>>
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The part (A) of this theorem recently was generalized in [24]. Note that Theorem
is sharp with respect to conditions on p and g. Moreover, for 0 < o < [, Theorem
implies the following fact. The condition w; (f, ), = O(6?) is sufficient (in case of p < 2)
and necessary (in case of p > 2), for condition . In other words, in this case the
choice of the parameter ¢ = p’ is the best possible. However, in some cases this is not

true anymore. For instance, if
— — / —
lan| = |bn| <0~ Up in=pp,

then, for ¢ = p, Theorem gives

1 Inlnn)/»
(12 g tuie
P

nl

in case of p > 2 and the inverse inequality in case of p < 2. For other values of ¢ the

esimates are weaker.

3.2 Behaviour of the Fourier coefficients of functions from

L, with additional conditions

Assuming some additional conditions (monotonicity, general monotonicity) on the co-
efficients of series it is possible to fully obtain interrelation between smoothness
of a function and behaviour of its Fourier coefficients. In particular, Konyushkov [4§],
showed that for functions with monotone Fourier coefficients condition is equivalent

to the condition f € Lip («, p).

Theorem 3.2. Let 1 < p < 0o and 0 < a < 1. Let also (3.1) be the Fourier series of
function f € Ly([0,27]), and {an}>2, {bn}o>, be non-increasing sequences. Then the

following conditions are equivalent:

(i) f € Lip (a,p);

(i) |an, ba] = O (n%—a—l);

(i) 3 (ol + bu) = O (n=r").

k=n

Later on it was shown that it is possible to characterize the behaviour of the modulus

of smothness in terms of the Fourier coefficients of the function.

Theorem 3.3 ([1,[72]). Under conditions of Theorem[3.9 the following equivalence

3=

w; (f, ;) = % (Z =2k 4 bﬁ)) + ( > KR d) + bi))
p k=1

k=n+1
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holds.

Similar problems were considered in the papers [2, [3]. Such results are very important
to characterize some smooth function spaces, see, e.g., [41], (73], 80, 86, 87, O1], 92] ©93]. In
particular, Askey [3] proved the following result.

o0

Theorem 3.4. Let 0 < a < 2,1 <p < oo, 1 <q<oo. Let also Y a,cosnx be the
n=1

Fourier series of a function f € Ly([0,2x]), and {a,}52; be a non-increasing sequence.

Then
(i a%nq(aH*%) 1) < 00

n=1

=

if and only if

flz+1) =2f(x) + flx - 1)
tOé

1
p 1 dt E
dw] ’ t> < 0. (3.5)

Al

Note that the condition (3.5)) is equivalent to the condition f € By , where the Besov

space By, is defined as follows.

Definition 3.1. Let 1 < p < oo and 7,7 > 0. The Besov space By, .([0,27]) is a set of
functions f € L,([0,2n]) such that

1 T v
I, = 0h+ ([ (25%) F) <o

where | > r.

Note that Theorems and were generalized in various papers (see [39, 41l [51], [55]
70, [72, 85, O], 102]), where the authors weaken the monotonicity condition on Fourier

coefficients.

3.3 Main results

In this chapter we consider the class of general monotone sequences GM (3) with
S
_ k
611—;_” p o 1>l

For convenience, throughout this chapter, we denote this class by GM. The main result

of this chapter is the following theorem.
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Theorem 3.5. Let f(x) € Ly([0,27]), 1 < p < oo,

o0

flx) ~ Z(an cos nx + by, sinnz),

n=1

and {an}5° 1, {bn}>, € GM. Then, for anyl € N,

3=

l vl - lp+p—2 P p
a () = (Zk (sl + IeP)

k=1
1
o P
T <Z kP72 (Jag [P + |bk|p)> :
k=n

Remark 3.1. [t is sufficient to prove relation (@ for the functions

o0
f(z) ~ Z ay, COSNT.
n=1

All auxiliary lemmas will be proved for the cosine Fourier series. The key estimates for
the proof of Theorem will be obtained in Lemmas [3.6) and [3.7, For non-negative
general monotone sequences Theoremfollows from [/1], [97).

Remark 3.2. All constants in the proof of Theorem[3.9 depend on p, I, C, and ~.

Remark 3.3. Note that similar results in Lo, were studied in [34), (92, [97).

It is natural to ask if one can further extend the monotonicity condition in order that
the results of Theorem still hold. In this respect, we will show that if the sequences

{an}22 1, {bn}22, belong to the wider class of weak monotone sequences WM, where

WM = {an}zo:13’an|ﬁcz|a]:| C>0,v>1,,

k=2
vy

then Theorem is not true any more. Note that GM C WM C WM. The fol-
lowing result, in particular, shows that relation (3.6) does not hold for weak monotone
sequences, and the best possible estimates are given by Theorem

Theorem 3.6. Let | € N.

(A) Let p > 2, then there exists a continuous function

o0

fz) ~ Z(an cos nx + by, sinnx),

n=1

where {an}22 1, {bn}72, € WM, such that inequality does not hold for any q > 0.
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(B) Let 1 < p <2, then there exists a continuous function

o0

f(z) ~ Z(an cosnx + by, sinnz),

n=1

where {an}22 1, {bn}72, € WM, such that inequality does not hold for any q > 0.

Note that all results of the chapter are valid for moduli of smoothness of fractional order
(I > 0). The importance of this remark follows, in particular, from consideration of

sharp Ul’yanov inequalities [82].

3.4 Auxiliary results for general monotone sequences

In the proof of the main results of this chapter we will use the same technique and
notation as in Chapter 2. Without loss of generality, we can assume in the definition of
the class GM that v = 2¥, where v is a natural number. For a given sequence {a,}2 4,

let us denote:

Ay = 202X |a|;
B, = max lak|;

27»—2u§k§2n+2u
A
My = {k € 27, 2] s ay| > 2o s

M,f :=={k € M, :ap >0}, and M, = M,\ M, .

Here we slightly modify the concepts of good and bad numbers (cf. Definition .

Definition 3.2. Let {a,}22, € GM. We say that a non-negative integer number n is
good, if either n < 2v or
B, <24,

The rest of non-negative integer numbers we call bad.

The following result is a modified version of Lemma

Lemma 3.1 ([35, Lemma 2.2]). Let a vanishing sequence {ay }22 be such that {a,}2>, €
GM. Let Ny := [logy(C321+8)| 1. Then, for any good n > Ny, there exists a segment
of integer numbers [l,, my] C [2"7Y, 2" "] such that one of the following two conditions
holds:

(i) for any k € [ln, my), we have ax, > 0 and

27”L

+ .
| My N [y, mn]| > 3921618
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(ii) for any k € [l,, my], we have a, <0 and

27”L

M7 OV byl 2 s

Let us denote

Then

25+l

l
IO (z Z klay, cos </<:x—i— ;)

k=25

Lemma 3.2. Let {a,}32, € GM and n > Ny be a good number, where Ny is given by
Lemmal31. Then

n+v p ontv
-2
E Is Z E kP ]ak ’p'
s=n—v D k=2n—v

Proof. Let n > Ny be a good number. Without loss of generality, we can assume that

condition (i) of Lemma [3.1| holds, and we consider the sum

Mn
= Z ay cos kx.
k=ln

Note that for any 0 < z < zn% all terms of @, (z) are non-negative. Using the inequality
cost > %t for any t € [0, %] and Lemma we obtain, for any 0 <z < % 2n+y,

Mn Mn
Qn(z) = Z apcoskx > —x Z ark
kfln k:ln

IV
S

o

&

k€[ln,mn]NM;T

3 A 2n

3 oy _An
Z 5 w2 8022V (39(12146)r+8
>9MA, .

Using the last inequality and the fact that ||[Sa(f, ) — Sn(f,)llp S | fllp, we derive

1

> 1Qull /0 T (@) da

22 |
0

2n+u

Z kp_Qlak]p.

k=2n—v

n+v

ZI

sS=n—v

1
on+v

w3

xPdx 2 2(p*1)”AfL
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O]

Using the fact that {a;k’} € GM whenever {a;} € GM, see [59], similarly to Lemma
[3:2] one can obtain the following result.

Lemma 3.3. Let n > Ny be a good number, where Ny is given by Lemma[3.1. Then

n+v p ontv

l +1)p—2
E Is() > E EU+1)p |ag|?.
s=n—v P k=2n—v

The following lemma is a slightly modified version of Lemma from Chapter 2.

Lemma 3.4. Let a vanishing sequence {a,}°, be such that {a,}°, € GM. Then, for

any bad number r € N, there exists either a set of integer numbers

T:fo<£1<§2<...<£s::£ns (3.7)
or
r=%&&>8>8>...>8&=1&; (3'8)

such that §1,&2,...,&—1 are bad, &5 is good and
Ay <27 A <27 A, < <274,

& — & <2v, i=0,...,5s—1.

Remark 3.4. Recall that the sets and from Lemma are constructed for
any bad number r uniquely. In sequel, we say that sets and are increasing
and decreasing chains, respectively, of the number r. Recall that the number s is called
the length of the bad number r. Moreover, in this case, we will say that bad number r

transforms into the good number &, ;.

We set
2n+1_1 2n+u
—2 -2
P, = E kP %|ag|P, Pn, = g kP~ ag|?,

k=2n k:2n711

2n+171 2n+l/

P, = E EHADP=21g, 0P P, = E KUADP=2)q, 1P
k=2n fe=on—v

Lemma 3.5. Let n > Ny be a good number and R, be a set of bad numbers transforming

into n. Then

> P S Pa (3.9)

TERn
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Moreover, if A is a subset of the set of good numbers such that miﬁln > Ny, and B is

ne
a set of bad numbers transforming only into the numbers from A. Then

> PSD Paw (3.10)

reB meA

Ezxpressions P, and Py, in the estimates (3.9) and (3.10) we can replace by P, and

Py, ., respectively.

Proof. First we prove inequality (3.9). Divide the set R,, into two disjoint parts:
R, =Q,| |Q2,

where Q! is the set of bad numbers which transform into n with decreasing chain, and

Q? is the set of bad numbers which transform into n with increasing chain.

Consider the set QL. Let r € QL be a bad number of length s. Then, by Lemma
r<mn+2svand A, <274V A, Therefore,

or+l_1

P, = Z |ak|pk,p—2 < A£27‘(p—1) < 2—4lsypA£2(n+25u)(p—1)
2 (3.11)

S 2—2psuA22n(p—1)‘

On the other hand, by Lemma [3.1}, we derive

ontv Mn
Poy= Y |axlk"? =" |apPk~?
k=2n—v k=ln
> Y aPeizan Y W (3.12)
ke€(ln,mn]NMy k€ln,mn]NMy

> AP |1, m,) N M,,| 2 AP,
Combining (3.11]) and (3.12) for the bad number r € QL of length s = s,., we get
P, <27%svp, .

Note that the set Q) consists no more than 2v bad numbers of length 1, no more than

(2v)? bad numbers of length 2, etc. Hence,

[e.9]

2 B S By 3 270 S By 3 ()2 S Py (3.13)
reQl reQh s=1

o0
since Y (2v)%27 %% < oo.
s=1
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Similarly, we have that

<
ZQ 1% fhe (3.14)

From and we obtain
> P=>Y P+ > PSP

r€Rn reQl reQ?

Second, we show inequality (3.10). We enumerate the elements of the set A: A =
{m1,ma,...,myu}, where |A| denotes the cardinalityﬂ of set A. We divide the set B

into the following disjoint sets:

B =Ry | | R | |- | | Ry

where R,,, is a subset of bad numbers of the set B which transform into m;, i =
1,2,...,]A]. Then from inequality (3.9) it follows that

14| 14|

ZPT:Z Z Prfszpmi,uz ZPm,V-

reB i=1 r€Rm, i=1 meA

n
3.5 Upper estimate for n=? " |a;[PE(+DP~2
k=1

Lemma 3.6. Let p > 2, f(x) € Ly([0,27]), f(x) ~ > ancosnz, and {a,}2>, € GM.

n=1
Then
1
)

Z |ag|[PRU+DP—2 < S HS§V)+2n

p
AN - Spenally (319)

k
where Sk(x) := Y ascos sz is the k-th partial sum of Fourier series of the function f.
s=1

Proof. Choose N such that 2V~1 < n < 2V, Then

N
1 n - 1 20N —1 -
WE |ay,[PEHDP=2 < SN ) laglPrTHP2
k=1 k=1

3.16

1 N 2rtl_1 1 N ( )
< - prL.+)p—2 _ _— D
~ 9 Ip ; ]{JZQ:T |ak| k 2Nlp ;PT

!We admit cases when |A| = oo.
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A. Let first N > Ny. Let us denote by G the set of good numbers. Divide segment

[0, N] N Z into six parts:

0,NINZ = ([0,No) N Z)| |Gn| |Bx| |B¥| | BY| | BY.

where

1. Gy := G N[Ny, N] is a set of good numbers r € [Ny, NJ;

2. B}V is a set of bad numbers r € [Ny, N] with increasing chain such that &. 3 < N
(see the definition of &, ¢ in Remark, and, hence, the following inequality holds:

NOST<£T‘,SSN;

3. B?V is a set of bad numbers r € [Ny, N| with increasing chain such that &, > N,

and, hence, the following inequality holds:

NO§T§N<£T‘,S;

4. B?V is a set of bad numbers r € [Ny, N| with decreasing chain such that & s > Np,

and, hence, the following inequality holds:

N0§§738<7’§N;

5. le\, is a set of bad numbers r € [Ny, N| with decreasing chain such that &, < No,

and, hence, the following inequality holds:

fr,s<N0§T§N~

Therefore,

I - 1 -1 _
WZPTZW Z PT+W Z P,

r=0 re[0,No—1]uBY, reGyUBLUBY,

1 ~
tonp D Br=it ht s

T‘GB]QV
Step 1. The estimate of J;.

Take r € B?V. There exists a good number §, s such that
AT < 2—4[51/14&75

and
§rs S No <1 < & s+ 250

(3.17)
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Then
2rtl_1
P = Z RHDP=2| g, P < Apor((H+1p=1)
k=2r
< 2 U AP pErs k2 ((Hp=1) < 9200 4P (1P
< 2_25VA§ 2NO((l+1)P—1) < 2—281/14157 )
o0
Repeating arguments from the proof of Lemma since the series Y (20)¥272%" con-
s=1

verges, we get

P < AP < N, max l|aplP <Ny max |Ka.lP.
TEXB:“ - 5622: £ 01Sk§2N0+1’ o < 01s1<:§2N0+1‘ . (3.18)
N
§<No

Consider now 7 € [0, Ny — 1]. It is easy to obtain that

2rtl—q
P = Z e DP=2) 1p
k=2r
2No -1

< max |klak\p2 72 <  max |KaglP.
1<k<2No+1 1 1<k<2No+1

Therefore,

No—1

P, < max  |KlaglP. (3.19)

- 1<k<2No+1

Note that, for any k& < 2Nl the expression |k'ay| is an absolute value of the k-
th Fourier coefficient of the function Sélu)ﬁn(m). Using inequalities (3.18)), (3.19), and

Hoélder inequality, we obtain

1 ~
h=5 2. B
r€[0,No—1]UB%, (3.20)

1 l p
‘klak‘p S nip Hsé”)“n

= max
~ 2NIP | cp<aNo+1 P

Step 2. The estimate of J,. Since all bad numbers r € B}V U B?V transform only into
good numbers m € [Ny, N], then, by Lemma we get

1 ~ 1 ~ 1 ~
JZ:WZPT_'—W Z PT‘SWZPWL,V'

reGn reBLUBY, meGn
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Using Lemma [3.3] we derive

1 1 my P
5 l
J252sz Z Pm?’/SQNlp Z Z ILS)
meG N meGy lls=m—v P
(3.21)
1 N m+v p
l
< 9NIp Is( )
m=v S=m—v D

Step 3. The estimate of J;. Let r € BJQV, then there exists a good number &, s such
that
A, <27 A, (3.22)

and
r<&.s<r+2sv <N+ 2sv. (3.23)

Then (3.22) and r < &, s imply

or+l_q

1 5 1 I4+1)p—2 1 I+1)p—1
i b = ovi > JagPriTHP 5WA1;27~(< )p—1)
k=27 (3.24)

2—4[81/]71422 2£r,s((l+1)p_1)‘

= 9Nlp

To be definite, assume that condition (i) of Lemma [3.1]is valid. Using Lemma[3.1] from
inequality (3.24]) we get
1

= L tsupoe o ((141)p-1) 4
WPT S WQ 3 p2 ' P A&r,s
2v
S oNlp U ] N MS
£7>,s7m§?ﬂ$ Er,s ke[lér,s’m§r,s]mM§ts
) 1 928r,s+v
< 72—4lsup257-,s((l+1)13—1)7 p
~ ONIp 2%r.s >l (3.25)
k:257‘,s—1’
2§r,s+l’
_ %2—4%1/]92&,31]72&,3(17—2) Z |ak|p
2N ip
kzng,s*V
1 2§r,5+’/

k:2§7‘,5 —v
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Combining inequality (3.25]) with the inequality &, < N + 2sv, we derive that

28r,stv
274lsz/p2§nslp § : |ak|pk_p72
k:2§r,s —-v

1 5 < 1
9NIp™ " ~ 9Nlp

257",.94—1/
_ 2(§T757N72su)lp272lsup § : ‘ak‘pkpr
k:2§7',s—’/
28r,s+v
< 2—2lsr/p § : ‘ak‘pkp—Q — 2—2lst/pp€
kzgfr,s—’/

r,s V"

Thus, for any bad number r € BJQV, we have

1 ~
——p.<

—2lsvp
ontp Pr S 27 P

rys VY

o0
Since > (2v)*2725"P < o0, using similar arguments to those given in the proof of Lemma

s=1
[3-5] we get
1 ~
Z QNZpPT S Z Pe-
reB%; e
E>N

Hence, by Lemma |3.2

1 -~
Js= Y b D Pew

reB? e
ESN
- p - Etv p (3.26)
SO W= X | X b
£eG ||k=&—v E=N+1 ||k=£—v
ESN p p

N
Now we prove the estimate for the sum 21\%@ > P.. Applying (3.20), (3.21f), and (3.26)),
r=0

we write

N

1 ~

WE Pr:J]_+J2+J3
r=0

(3.27)

p

[ele] 14 1
I —HS(’)
555l b>p) RENEY
p
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Using Jensen’s inequality and the Littlewood-Paley theorem, we obtain that

N m+v m4v p
)3l Do) | / DI
N m-+v 2\ 2
<[] | ) @
m=v |k=m—v
) (3.28)
N+v 2
<[ <2y+1 Z\z“ )) &
p
< (Sr) <t
. p
P
In a similar way, we get
i &tv 2r §+V P
SIS n / S L) de
E=N+1||k=¢t—v E=N+1 |k=¢—v
P
2 0 §+v 2\ 2
g/ Z Z Ii(x) dx (3.29)
O \é=N+1 |k=¢t—v
1P
oo 2
2
S < > \Ik|> S = Sp—v-2nllp-
k=N+1—v »

Combining inequalities (3.27)—(3.29)), we complete the proof of Lemma in the case

when N > Nj.
B. Suppose now that N < Ny. Then

1 N N 27tl 1
2Nlpz T 2Nlpz Z k(l+1p 2’CL ’p
r=0 r=0 k=27
1
‘k ak\p

<
~ 9Nip 1<k;<2N+1

Since for any 1 < k < 2V*1 the expression |k'a| is an absolute value of the k-th Fourier
O (), applying Holder’s inequality, we derive

coefficient of the function S,,/.,
2vt2n

HS%Q” Z . (3.30)

al 1
E T max |klag|P < —
—t P 1<k<2aN+1
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oo

3.6 Upper estimate for > |a; [Pk~
k=n

Lemma 3.7. Let p > 2, f(x) € Ly([0,27]), f(x) ~ > ancosnz, and {a,}2>, € GM.
n=1
Then

[e'¢) B 1 . p
> 1ok S o S5 ||) 1S~ Sia-vza (3.31)
k=n

Proof. Let n € N. Choose N such that 2V < n < 2N*! Then

- ’ak’pkp—2§ = ‘ak‘pkp—Q
>
k=n k=2N
o g1 - (3.32)
=30 3 b=
r=N k=27 r=N

A. Suppose that N < Ny. Divide the set [N, 00) NZ into six sets as follows.

[N,00) NZ = (IN,No) NZ)| |Tw| | K| | KR | |3 | | K,
where

1. Tx := G N[Ny, 00) is a set of good numbers r € [Ny, 0);

2. K}V is a set of bad numbers r € [Ny, 00) with increasing chain, and, hence, the
following inequality holds:
N<NOST<£T,S;

3. KJQV is a set of bad numbers r € [Ny, 00) with decreasing chain such that &, s > Ny,
and, hence, the following inequality holds:

N<N0S£T‘,S<T;

4. K% is a set of bad numbers r € [Ny, 00) with decreasing chain such that N <
&rs < Np, and, hence, the following inequality holds:

N <& s < No<r;

5. Kﬁ, is a set of bad numbers r € [Ny, 0o) with decreasing chain such that &, < N,
and, hence, the following inequality holds:

ﬁr,s§N<NO§T-
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Therefore,

iP,: > PR+ Y PR+ >Y P

r=N r€[N,No—1]UK3, reTNUKNUKZ, reKy

=: 01+ O3 + O3.

Step 1a. The estimate of ©;. Let r» € K3, then there exists a good number &r s such
that
Ar < 274ZSZ/A£T7S

and
r < &+ 250
The last inequalities yield
2rtl_1
P, = Z lag|PkP~2 < Ap2r(—1) < Ag@2_415117]2(&’3”8”)(73_1)
k=2r

< A;g 272151/p2N0(p71) < Alg 272lsz/p.
Combining this with arguments from the proof of Lemma [3.5] we write

Z P. < Z AP <Ny max |apP < max |’

rer, = 2V <p<2Not! 2V <kp<2Nott (3.33)
On the other hand, it is easy to get
No—1 No—127+1-1
TZN P = TZN k;T |ag|PkP~2 < 2Ng}ca§X2No lag|P. (3.34)
From estimates and we have
No—1
©1=» P+ > PZ e 28X anl? S f = Spp-rzm - (3.35)
r=N reks -

Step 25. The estimate of O;. Since all bad numbers r € K}V U K]2V transform only
into good m € [Ny, 00), according to Lemma we have

=Y Pt > PS5 P

reln reKLUK? meTy
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Now, by Lemma [3.2]

m+v m-+v
05 > PunS Y. | D2 Ik < Z > Ik (3.36)
meT N meTN |k=m—v k=m—v

p

Step 3a. The estimate of ©3. Let r € K%, then there exists a good number &rs
such that
A'r < 2—4[81/14&7S

and
r < &+ 250

Then, using the last inequalities, we get

2rtl_1
P = Z lag|PkP—2 < AP2 (=1 < Agys2—4lsvp2(£1~,s+2s1/)(p—1)
k=27

<AP 2 2lsup2N0(p 1) <AI§) 92— 2lsvp

Nolp p —2lsvp
< 2 2NlpA€r 52

1 p 2= 2lsvp < 2= 2lsvp 1 | lak|p
~ QNIp*Ers 2NIp 2£r5<k<2§r s+1

Repeating the arguments from the proof of Lemma we obtain

1
< P
Z e 5%: 2Nt 2€<k<zs+1 K

TGK?\, e

No

< —— max |KapP <
2NIp | cp<oN+1 | |

P
~ 9oNlp 1<k<2N+1 ‘k axl”

Since, for any 1 < k < 2V*1 the expression |k'a;| is an absolute value of the k-th
O]

Fourier coefficient of the function Sy, (x), we have

1 1 o P
— § P.< — p < H
reKy

(3.37)

o0
Now we estimate the sum ) P,. From inequalities (3.35)—(3.37)), we obtain that
r=N

ZPT:@1+@2+63

o0

D

m=N

m—+v

S

k=m—v

P
1 1 p
+ If = Sig-v—2pllh + b Hséu)mn )

p

AN
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In the same way as in the proof of inequality (3.28]), we derive

m—+v

S )

o0

2l

S = Sp—v-2nllp-

This completes the proof of Lemma in this case.

B. Suppose now that N > Ny. Divide set [N, 00) N Z into five sets:
[N,o0) NZ =Ty | |Kx| | KX | K| | KN,

where

1. Ty := GN[N,00) is a set of good numbers r € [N, c0);

2. K} is a set of bad numbers r € [N, o00) with increasing chain, and, hence, the
following inequality holds:
N0§N§T<§r,s§

3. KJQV is a set of bad numbers r € [N, c0) with decreasing chain such that &. 4 > N,
and, hence, the following inequality holds:

No <N <& <y

4. K% is a set of bad numbers r € [N, o00) with decreasing chain such that Ny <
&rs < N, and, hence, the following inequality holds:

No <& s <N <;

D. Kj‘{, is a set of bad numbers r € [N, 00) with decreasing chain such that &, 3 < Ny,
and, hence, the following inequality holds:

§T,SSNO§NST-

Therefore,

o
= Y P+ > P+ > Po=L+Ly+Ls

r=N reTNUK UK2 reKy reKy,

Step 1. The estimate of L;. Similarly to the estimate of ©9 from above (see Step

24) we get
o] r4+v
Ly=Y P+ > P<Y, Z Ik (3.38)
reTy reKLUKZ, r=N |lk=

p
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Step 25. The estimate of Ly. Let r € K3, then there exists a good number &r,s such
that
A, <27 A (3.39)

and
r<&s+2sv <N+ 2sv. (3.40)

Then (3.39) and the inequality r < &, s + 2sv yield

or+tl_1

Pr= 3 lanhr™? £ AR < gritrAp plent oo (3.41)
k=27

To be definite, suppose that condition (i) of Lemma is valid. By Lemma and
inequality (3.41)), we obtain

Pr < 274lsup2(£hs+231/)(pfl)Ap

8

2
< 9—4lsvpg(&r,s+2sv)(p—1) (8C2%)P . Z |ag|P
‘[lgr,s7msr,s] N Mgr,s ke[l&r,wmfr,s}mMg‘S
1 2§T,5+V
5 2—4lSVp2(E’,-‘S+2SV)(p—1) 2&73 Z |ak|p
kzzfr,s*l’
2§r,s+l’
< 2—2lsup2—25V2—5r,slp Z |ak|Pk(l+1)P—2.
k:2§r,s*l’
Since N < &, 5 + 2sv, it follows that
1 2§T,s+l’
_9 I4+1)p—2 -2
P. <2 SVW Z |ak|pk(+ =2 _ 2 SVWP&’S’V.
kzzfr,s*l’
Therefore, for any bad number r € K]?Q,
P. < 9-2sv 1 ﬁ
T oNlp ErsyVt

In similar manner as in the proof of Lemma |3.5] we derive

1 _
Z PTSWZP&V

TGKISV §eGq
E<N
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Hence, by Lemma [3.2]

L= Y PSoum S oo

reK3; £eG
EXN
. v " P N | etw " P (3.42)
N SNp Z Z I < 2Nlp Z Z Iy
EeG ||k=E—v E=v ||k=£—v
E<N p p

Step 3. The estimate of L3. Let r € Kﬁ,, then there exists a good number &, 5 such
that
Ar < 2_4ZSVA§r,s

and
N <r <&s+2sv.

Last two inequalities imply

2rtl_q
P, = Z ‘ak‘Pkp—Q SA%ZQT(p_l) SAg,s2—4lsup2(§r,s+2$u)(p—1)
k=27
SA§TS2—2lsup2—23V2No(p—l) §A§TS2—2lsup2—25u
1

—2lsvpo—2sv
5 2 2 ﬁ max
26r,stp 28r,s <f<28r,st1

\klak\p

1

2sv l
<27 ax aglP.
2Nlp 2§r5<k<2€7 s+1 | k|

Using arguments from the proof of Lemma we arrive at

P, < E max  |klag|P
Z T~ 2Nlp = 25§kS2§+1’ k’

r€K4
E<Ny
No (3.43)
< 20 P < p
— 2Nl <km<%}16+1 [Ka ~ oNip 1<k<2N+1 [Ka
1 P
S 5 520
From inequalities (3.38]), (3.42), and (3.43) it follows that
ZPT—L1+L2+L3
r=N
oo r+v p N E+v 1 " »
l
9 ORIEE pof 1 RE Lo
r=N |lk=r—v p E=v ||k=¢—v

It remains to apply the Jensen inequality and the Littlewood-Paley theorem to first two
terms from the right-hand side of the last inequality. O
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3.7 The proof of Theorems [3.5| and 3.6

Here we use the following realization theorem for the modulus of smoothness [26, [80]:

1 1
o (f’ n) = i }
p

Proof of Theorem [3.5. Upper estimate <. The upper estimate follows from [41l, Theo-
rem 6.1], where periodic functions with Fourier coefficients from a wider class GM; D
GM, where

S0

n

p
p+\|f—Sn||§, 1<p<oo.

CS) > = ag
GM, = {an}n:12;‘ak—ak+1‘§(j;‘k| C>0,v>1,,

~

were considered. In spite of the fact that Theorem 6.1 from [4I] is formulated for
non-negative Fourier coefficients, the proof of this part of the theorem is also true for

non-constant sign sequences.

Lower estimate 2. Let p < 2, then from the realization theorem for the modulus of
smoothness and the Hardy-Littlewood theorem on Fourier coefficients given by (2.2), we

obtain
1 1
P -
“i (f’ n> T oplp ’
P
n

1 _ SN
2 i K+ 3
k=1 k=n

s

p
"0 - Sl

Note that here we can also apply Theorem [3.1] in case of ¢ = p.

Consider the case p > 2. By properties of the modulus of smoothness and Lemmas
and we have

1 1 1
4(03), = () = (o),

1 P
2 o |58+ 17 = S-osu]

p

1 n o
2 b Z P2 g P 4 Z kP2 ag[P.
k=1 k=n
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Remark 3.5. In Theorem [3.5 we can assume that we deal with a trigonometric series
o0

> (an cosnzx + by sinnx) such that {an}o2 1, {bn}22, € GM, and

n=1

1
0 »
(Z K72 (Jagl? + Ibk!”)) < o0.

k=n

In this case, the function f can be defined as corresponding an Ly-limit of the trigono-

metric polynomials.

Proof of Theorem[3.6 (A). We follow to proof of Theorem 4.2 from [35]. Let {e,} 7,

be Rudin-Shapiro’s sequence, for which the inequality

<OVN +1

N
2 :5neznt
n=0

holds for any ¢t € [0,2x] and N =0,1,---.

In the paper [35] (see the proof of Theorem 4.2), it was proved that if an increasing on

(0,1) function ¢ satisfies the condition

[e0F =06w) s w0,
0

then the function

fo(z) = Z M sin nx
n=1 nz

satisfies the condition

[1/0]
wilfor6)0 S p(0) + 0" K p(1/k).
k=1

Let us consider ¢g(x) = 2'. Then the corresponding function

o0

€ .
foo@) = 3~ sinna

12

n—=

1 Inn
wi <fs007 ”)c S Tl

On the other hand, for p > 2, the Fourier coefficients of the function f,, satisfy

is continuous and it satisfies
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(e m) (3

k=n+1

_1_ a néii
> k(=3 ka = .

This shows that inequality (3.3) does not hold for any ¢ > 0

(B). Let us define a continuous function

o Tin . _ ﬂl .
g(z) = nz::l el <cos <nx 5 ) + sin (

5 > )
nc——||,
2
where the sequence 7, = %1 is such that the series

>

1\3

— (cosnzx + sin n:z:)

(3.44)

is not the Fourier series (see [105, Ch. V, (8.14)]). Note that the Fourier coefficients of
the function g, for 1 < p < 2 and any g > 0, satisfy the condition

Q=

% < y plrH5a)s (Jak] + be])? )
k=1

k=n+1
Therefore, inequality 1) implies w; (f,0), = O(d").
l .
P

This relation is equivalent to
f () € L,. This contradicts the fact that series 1| is not the Fourier series. Hence
inequality (3.4)) is not true for any ¢ > 0

~

—~

_1_ i 1
(Zk ' |ak|+|bkr>> =
O
3.8 Applications

[25, p. 210))

In approximation theory, the following direct and inverse estimates are well known (see
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where f € L,y(]0,27]), 1 < p < o0, l,n € N, ¢ = min(2,p), 7 = max(2,p), and E,(f),
is the best approximation in L, of function f by trigonometric polynomials of degree n.
Note that inequalities (3.45)) are equivalent (see [22]) to the relations

1
1 -
# </t u_TZ_lwlTH(f, u)p du) Swi(fit)p

1 :
S t! (/ “7qlilwzq+1(f, u)p d“)
t

The following theorem provides a sharp relation between moduli of smoothness w;(f,t),
and w1 (f,t)p, and modulus of smoothness w;(f,t), and the best approximations Ej(f),

for functions with general monotone Fourier coefficients.

Theorem 3.7. Let f € Ly([0,27]), 1 < p < oo,

o

flx) ~ Z(an cos nx + by, sinnz),

n=1

and {an}o2 1, {bn}72, € GM. Then

1
Lo du\ »
wl(fa t)p = tl (/t U lpwf+1(fa u)pu>

1
[1/1] Z )
< ) (k+D)PTENf), | . 0<t< 5
k=0

Remark 3.6. The proof of Theorem 18 similar to the proofs of Theorems 7.1 and
7.2 from [{1] by using Theorem [3.5

From Theorem 3.5|it is possible to get the following description of Besov spaces By . ([0, 27]),
cf. Definition Bl

Theorem 3.8. Let 1 <7 <o00,1<p<7. Let also f € Ly([0,2n]),

f(z) ~ Z(an cos nx + by, sinnx)

n=1

and {an 521, {bn}pzy € GM. Then f € B} ([0,2x]) if and only if

o0
Zn”+77%71(lanr +|bn]") <00, if 1<T<o0
n=1

and

1
supn T8 (Jap| + |bp]) < 00, if T=00, 1 <p< oo
n
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Corollary 3.1. Let 1 <p < g < co. Let also f € L,([0,27]),

f(z) ~ Z(an cos nx + by, sinnx)

n=1

and {a,}5° 1, {bn}52, € GM. Then for r = ]% = %

feBr(0,2n]) < feLy(0,2n).

Theorem and Corollary can be proved similarly to Theorem 7.3 and Corollary
7.2 from [41], respectively.

Remark 3.7. 1. If we consider a more restrictive condition in the definition of general

monotone sequences (see [91])

2n

> lak = agga] < Clanl,
k=n

then Theorem [3.8 holds for any 1 < p < oo and 0 < 7 < 0.

2. Theorem[3.8 for 1 =2, 0 <r <2, and 1 < 1 < oo implies Theorem[3.4 In the case
when 7 =00,1=1,0<r <1, and 1 < p < oo, Theorem 3.8 implies Theorem[3.3

3. Note that results similar to Theorem for different function classes (under more

restrictive monotonicity condition) were studied in [86, 87).



Chapter 4

Boas’ conjecture in anisotropic

spaces

4.1 Historical remarks

Let us start with some Fourier inequalities. For the Fourier transform given by
fo) = [ s v,
R
the Hausdorff-Young-Riesz inequality reads as follows (see [LI, Ch. I}, [75]):

1Al ) S Iflamy, 1<p<2 1<q<o. (4.1)

This inequality is a partial case of weighted Fourier inequalities, which has a long history
(see [7], [19], [23], [44], [46], [47], [63]). In particular, for the weighted Lorentz spaces
such problems were studied in [8, 19, 83]. In [69], Nursultanov and Tikhonov proved the

following estimates:

VEf iy S 102, ) S If iy 1<p<2 0<g<oo,  (42)

||
where H f(z) = |71\ [ f(t)dt. Note that for a function f satisfying the condition

|z
(@) < CIH f(x)],

inequality (4.2)) implies the relation

I, & = flL, @, 1<p<2, 0<g<oo.

55
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Recall that, for even monotone on R, functions, Sagher obtained the following equiva-

lences:
1Ly = 1z, @, 1<p<oo, 0<q<o0, (4.3)
1fles, @ = IFlcz, @, 1<p<oo, 1<q<oo, (4.4)
1Fles, @ = llL, @, 1<p<oo, 1<q<oo, (4.5)

see Theorem Note that the equivalence (4.4]) proves Boas’ conjecture stated in [I5].

In [57], Liflyand and Tikhonov proved Boas conjecture in the setting of the weighted

Lebesgue spaces for general monotone functions. Let us denote

2x YT
GMF:{heBVlOC(RQ:/ |dh(:c)|§C/ |h(j)‘du C>0,7>1},
z z/y

where BV),.(R4) is a set of locally of bounded variation on R, functions vanishing at

infinity.

Theorem 4.1 ([57, Corollary 1]). Let f be a non-negative function on Ry such that
feGMF. Then

1Flzs, oy = IFls gy 1<p<oo, 1<q<oo (46)

Later on, this result was generalized in [28, [50]. Moreover, Gorbachev, Liflyand and
Tikhonov [40] obtained the multidimensional version of (4.4)) for radial functions.

4.2 Anisotropic weighted Lebesgue and Lorentz spaces

First we define multidimensional analogues of the Lorentz and weighted Lebesgue spaces.
We will need the following notion. Let f(z1,...,x,) be a measurable function on R".
By f*(t1,z2,...,2,) we denote the rearrangement of f(z1,x2,...,z,) with respect
to 1, i.e., f**(t1,x2,...,2y) is a non-increasing function on ¢; and the functions
f(ty,...,zn) and |f(x1,...,2,)| are equimeasurable as functions of one variable for
almost all zo,...,x,. By rearranging f*'(t1,z2,...,z,) with respect to other vari-
ables we obtain the function f*1*2*n (¢ to,...,t,) non-increasing in each variable and

equimeasurable with f.

Throughout this chapter, by bold letters we denote vectors. And all operations on
vectors are performed componentwisely. Let p = (p1,p2,...,pn) and q = (q1,92,- -, qn)

be n-dimensional vectors such that if 0 < ¢; < oo, then 0 < p; < 00, and if ¢; = oo, then
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0 < p; < oo. We define the functionals ®p, 4 and <I>;§7q by

1
a2 -_—
o0 o L 2 @ dty o dt, |\
(I)p,q(ip): </ </ <|t1|171 |tn‘Pn|(,0(t1,,tn>|) t1> t”)
—0o0 —00 n

and

1

D) —
[e%¢} oo | 1 1 q1 dt a1 dt an

ol () = / (/ ttE oty ) 1) =1 .
0 0 t1 tn

o0 i o0 a
q
In the case ¢ = 0o, the expressions <0f(F(t))‘1 Cff) and ( / (F(t))qcff> are considered

as sup F'(t) and sup F(t), respectively.
t>0 teR

—00

Definition 4.1. The anisotropic Lorentz space ([6], [13], [65], [66]) Lp (R™) is the set

of measurable functions f, for which

11l o= Bhg(f772) < o0,

Definition 4.2. The anisotropic weighted Lebesque space L?V[p dl (R™) is the set of mea-

surable functions f, for which

£z, = Ppalf) < .

Here, w[p, q|(t1,...,t,) stands for the weight function

11 11
wp,q|(ti, ..., tn) = |t1]|Pr @ ... |ty|Pn .

Note that some interpolation properties of the spaces Ly q(R™) were considered in [65].

4.3 The main results

Definition 4.3. We say that a function f(xy1,z9,...,x,) belongs to the class E™ if

1. f is non-negative on R™;

2. f(err1,e922, ... enxn) = f(x1,22,...,20) for all x = (x1,22,...,2,) and € =

(€1,€9,...,6n), where g; € {1, -1}, i=1,2,...,n;

3. f(x1,29,...,2,) is decreasing in each variable on Ry, that is

f(xl,...,mi_l,x},...,a:n) < f(xl,...,xi_l,x?,...,xn)
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for()gxfga:l,lgign;

i

4. f(x1,22,...,2n) — 0 as |z1| + |x2| + ... + |2p] — 0.

The main results of this chapter are the following Boas-Sagher-type theorems for the

Fourier transform

~

fiy)= [ f(x)e™dx, n>1.

Rn
Theorem 4.2. Let 1l <p <oo,0<q<o0, and f € E™. Then
1Flzpa = IFllz,, .,

Theorem 4.3. Let 1 <p <oo,1<q<o0, and f € E™. Then
Ifllza, =W flla
w(p,q] w(p’,q]

Corollary 4.1. Let 1 <p<oo,1<q< o0, and f € E". Then
17y q = 17,

Remark 4.1. For convenience, we prove Theorems [{.9 and[{.3 in the case n = 2. In

the general case the arguments are similar. For functions f in E?, we have

~ ~

[ee] o0
T, y2) = 4fe(y1,y2) = 4/ / f(x1,z2) cos x1y1 cos xays dxy dxs.
o Jo

4.4 Auxiliary results

The following Hardy’s inequality [9 p. 124] and Minkowski’s inequality [56, p. 47] are

often needed.

Lemma 4.1 (Hardy). Let ¢ be a non-negative measurable function on (0,00) and sup-

pose —00o < A< 1,1<qg<o0. Then
I 1 [ Tq\a < adt\a

Lemma 4.2 (Minkowski). Let (X, u) and (Y,v) be measurable spaces. Let 1 < p < oo,
and f(z,y) be a measurable function on (X, p) x (Y,v). Then

([ ([ 1@ ww) < [ ([ veoraw) we. o
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Remark 4.2. Note that for 0 < q < 1 inequality (4.7)) holds for monotone functions on
R.4. Moreover this inequality holds for quasi-monotone functions (see [10], [96]).

We will need the following Hardy lemma for decreasing rearrangements [9, p. 44].

Lemma 4.3. Let p be Lebesgue measure on R, and f, g be p-measurable functions on

R. Then o ~
/ 1 (@)g(x)] da < / £ (u)g" (u) du
—00 0

Also we will use the following [10, Lemma 2.1].

Lemma 4.4. Let f be a non-negative non-increasing function on (0,00), and let A > 0,

0 < g < 1. Then the following inequality holds

</OA f(q:)da;)q < C/OA(ﬂx))%qldw (49)

Lemma 4.5. Suppose f € E?. Then

ISR T
f(yl, yg) S 36/|y2 o f(l'l, xg) d:Cl dxg (4.10)
0 0
for all (y1,12) € R2.

Proof. From condition (2) of Definition for E? it suffices to prove inequality (4.10)
fory > 0. Let y = (y1,¥2), ¥;: > 0, ¢ = 1,2. We have

+oo +<>o
Fly,y2) = 4 / f(x1,22) cos x1y1 cos xays dxy das
0

1 1
o vy
f(x1,x9) cos 1y cos woys drq das

Il
W

o\o\

0
+oo oL
Y1
/ f(x1,x2) cos 1Yy cos xoy2 dry dxo

1 0
y2

4

+

—

L itoo
Y2
/ f(xl, .’Eg) COS X1Y1 COST2Y2 d.’El d.’Eg
1

+
i
S

Y1

—+o00 —+o00

+4 f(x1,x2) cos x1y1 cos xoy2 dxy dxo
1 1
Y2 Y1

:Il+IQ+Ig—|-I4.

Applying the second mean value theorem with respect to the second variable in I, we

get
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1T ,heo
Ih=14 f(z1,x2) cos xays dxy | cosxiy) dry
1
0 e
.-

7 1 ¢

= f T1, — COS X2Y2 dJJQ COS X1Y1 da:l
Y2 1
L Y2

w [ 1\ sinys€ —sinl
= flx, — | —————| cosz1y1 dx.
0o L Y2 Y2

Hence,

1 1 1

1 . PN

[I2] < 8/“ f (a:l, ) dry < 8/” " f(wy, 20) day daso.
Y2 Jo Y2 0 0

In the same way, we get

1

11
|I3| < 8/?!2 B f(z1, x2) dxy dzo.
0 0

Using twice the second value mean theorem for I, we have

+o0 1 ¢

= 4/ f <,£L’2> / cos x1Yy1 dxy | cos zays dxa
a1 Y1 1
Y2 Y1

toor iny, ¢ —sinl
L Y1 Y1

_4 <1 1 ) siny;( — sin1sinysa — sin 1
Y1’ y2 vi Y2 ’

Hence,

1 1

16 1 1 v [v1

Lyl < —f () < 16/” " Fay, 20) day dao.
Y1y2 Y1 Y2 0 0

Therefore, we obtain

~

|f(y1,92)| < [T + [I2| + [13] + [14]

1
< 36/y2 " f@y, o) day .
o Jo

Corollary 4.2. Let f € E%. Then

1 1
(i, ty) < o/” /“ F(z1, 22) dy das
0 0

for all (t1,t2) € R%.
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4.5 Applications of interpolation results for Lorentz spaces

to Fourier inequalities

Let p = (p1,p2), 4 = (q1,¢2). According to [13], we say that a measurable function f

belongs to the mixed norm Lorentz space Ly, g,[Lp;.q](R?) if

0o 42 _q oo 91 _q *2 % é
AN Ly Ly ] = /0 ty? K/O " (f*l(tlw))qldtl) (tz)] dty | < oo.

Now we need a special case of Corollary 2 in [65, p. 258]. For the reader’s convenience,

we state it in the following form.

Theorem 4.4. Let 0 < p',r' < oo be two-dimensional vectors, i = 0,1. And let

p? # pjl-, 7“? # le-, J=12. If T s a linear operator such that

T Lyg 1 [Ly0 1] = Lr0 1) (00,00

then
T:Lpqg— Lrg,
where
1 1-96 0 1_1—0+0
p p° pl” r 10 1’

and 0 < q<o00,0<0<1.

Let S = S(R?) denote the Schwartz space of rapidly decreasing functions on R2.

Let f € Lpq and ¢ € S. Define
To(f)(6) = (f,0¢) = /OO /OO f(w1, 22)0¢(21, 22) doy da,

where t = (t1,t2) and @¢(uy,ug) = tll © <1t‘—11, ?—j) Note that

1t2

ot(u1,u2) = signty signty @(tiuy, tausg).

m%-!—ar%

Put p(x1,22) = e~ 2 . Note that p = @, p € SN E?, and p(x1,22) = ¢1(21)p2(22),

»

Ty

where p;(z;) =e 2 ,i=1,2.
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- 2
Theorem 4.5. Let 1 < p < 00, 0 < q<oo. Let also p(z1,22) =€~ 2 . Then
1Tofllz, o < COOSllLpq-

Proof. Let 1 < p < oo and suppose f € Ly, 1[Lp, 1] N'S. Using Lemma twice, we

obtain

|T, f( t)| = \(f i)l = |(f, @)l </ / (x1,x2) Pt (21, x2)| dx1 de
- / / (@1, 22)@1es (1) Pty (22)] dery
h /0 " 1 s 22) B, (1) B (2) dun it

*2

([ it dun ) ), () de
— OO oo *1 RY2) ﬂ " A @
—/0 (/0 f (u, )P < 5 ) dul) (u2)Pat, ( > ) dus
> > o tiu " —r tou
-, (/ oo, Tl (1) C““) ()12 0 (152 )
0 0

< i’l tiug i [ taus
sup u;' @1 | —— ) sup uy® oo | ——
u1>0 2 ) w>o0 2

x/ (/ F(ur, - )ugt du1> (ug)uy?  dug
0 0

4 1 _1 1 1
< Cuptuy? ([trun]) ™1 (t2uzl) P21 FllLy, izp,0) < CUF Ly aiie, alt1l "1lt2] 7.

w\"‘

Hence,
”TgofHLp/’ < C”fHLp2 1] pl,l]

for all f € Ly, 1[Lp, 1] NS. By density of S in Ly, 1[Ly, 1], we derive

ITofllLy .. <ClIflL

p/,o0 — P2, 1[L 1,1]
for all f € Ly, 1[Lp, 1], that is, the operator T,,0 F is bounded from Ly, 1[Lp, 1] t0 Ly co-

Now let 1 < p < oo and 0 < q < oo, then we can define vectors 1 < p° < p < p! < oo,

0 < 6 <1 such that % = 1p;09 + p—el. From the above we get

To o F : LigalLyg 1] = Ly 9y

00,00)?
TooF s Ly g [Lpga] = Ly, (pd))(oo,00)
TooF Lpg,l[Lp%,l] = Li(p1y,(p3)) (00,00)

Tpo F : Ly 1Lyt 1] = Lty (ph))(c0,00)-
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By Theorem [4.4] we get
TpoF :Lpq— Lp g

4.6 Proofs of main results

4.6.1 Proof of Theorem (4.2]

We begin with the upper estimate of | f||z,,. Let (t1,t2) € R? and ¢ be as above.

Then by non-negativity and monotonicity of f, we obtain

Ul U
signty signta(f, o) = |t1Ht2|/ / < 1 2) f(u1,u2) duy dusg

uy u2
|751’ [ta] / / < ) f(u1; uz) duy dus
u1p U
> f(t1,t2) |t1] \t2| / / ( > duq dug

= f(tr, t2)lloll Ly -1,1725

1 1
lell 2y [=1,12 :/1/1\<p(u1,u2)]du1 dug

Ty f(t1,t2).

where

Therefore,

0< f(tr,t2) < 7
lellz,

Hence, by Theorem and the lattice property of anisotropic Lorentz spaces, we obtain

1 ~
fllzpa < 7= N Tofllipq < CpellfliL,
el ., i

Now we derive the lower estimate for f. Let t1,%2 > 0, then by Corollary we have

1 1
f*l’*Q(tl,tQ) S C/ : ! f(l’l,.’Eg) d[L‘l dCCQ.
0 0

Hence,

o (e o ra (a T\ dty
Pz [ ([ e [ rene | T)
0 0 o Jo t1 ta

q
-, a2

1
oo oo v rd o d q1 2
7 t dt
=¢ / / b ! o(x1,to) doy | — = ,
0 0 0 t1 to
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where

o(r1,t2) = ty° / f(z1, z2) dxa.

Substituting + for z; and applying Hardy’s inequality (4.7) to the inner integral we get
t1

e\ ar
90(5617752)61561] 1) T;

1

Flpaze{ [ (] ] ]
P 0 0 " Jo
e’e] [e'e} 1 _9q 21 q1 d - dt é
L q
0 0 0 21 t2
1
a2 —_—
oo oo 1 q1 d o dt a2
C </ (/ [Zflsf?(m,tz)] Zl) " 2)
0 0 21 t2
1
q2 —_—
o0 a q1 72
d dt
= / (/ [ ltp2 / f 21,2 d:Uz] Zl) 72 .
0 z1 to
Let g1 > 1. Then, by Minkowski’s inequality (4.8) we have
00 @ a1
-~ le dtg
p P
H'][‘HLP,’q S C [) (/ [ 1t 2 / f 217.’E2 dl’g] 2’1) g
[e'¢) . L o) 11 q1 L q2 d 92
/ 1L t
<C / t;Q /t2 [/ <zf1 a f(zl,x2)> dzl] " dxo -2
0 0 0 to
1

ty

IN

where

0 s 1_ 1 a1 o
w(mz)Z[/O (zfl qlf(zl,x2)> dzl} )

Again by changing variables zo = = and by Hardy’s inequality, we get

1
R (e} pi_l 29 q2 dZQ a5
Flga=c ([ (7 [ vntn) 22)
1
] 1 q2 .
o[ (#4)" )’
0 22
00 1 o) 11 q1 L a2
= (/ (7552 [/ (Zfl qlf(21722)> d21]q1> dzz>
0 0 22
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Now, let 0 < g1 < 1. Then by inequality (4.9) we arrive at

a2 P

o0 oo qu a1 t 2
7l <(C 1tp2 d wel 2
liga<c|f (/0 [ F [ s x] ) :

a P

o (b e m [ g T
<C / tgpz/ 24 / (f(21,m2)) ™ Ydas | dzy —
0 0 0 to

a2 £

o (b [ e B ity
=C / t22/ / 20 (f(z1,2) M dz1 dxo —
0 o Jo to

We substitute % for 2z

ﬁ&

a 1

—~ ——1 B Uz 2
< n "z d =
e, , <C /0 < / / f (21, 22)25" " dz1 :1:2> -
a1
q2 41

o0 771 +1 1 ‘11 d
=C / <z;h<p2 / &(x2) d@) 4= ,
0 z2

§($2):/Ooozfq)i_1(f(zl,$2))ql 871z

. . . . —(qi—1
is a quasi-monotone function, (since &(z2)z, (@1=1)

where

is a non-increasing function). Apply-

ing Hardy’s inequality given by Lemma we obtain

a1
q2 91
- < [ a(E-1)+11 Tz
Al | [ (22 > et de) =
a1
2 a2 a1
<[ a5-1)+1 “dz
<C / <221(:v2 ) 5(22)> “<2
0 22
o0 q L _1)+1 oo 41 -1 q1 d
_c / <Z21(p2 ) / lel (f(Z]_,ZQ))ql q1— dz) az2
0 0 z2

= CHf”Lp,q

4.6.2 Proof of Theorem (4.3

Proof. The inequality

[fllza , < ClfllLa
w(p’,q] w(p,q]
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is proved in the same way as in the Theorem by using Lemma We will prove
the reverse inequality. Let z = (21, 22) > 0, then

22 21 u2 A
H(Z) = /0 / /O /0 f T, .1:2) dx1 dzo duy dus
22
- / / / / / / f(t1,t2) cosz1ty cos wata dt1dts dridrs duydus
0 0 0 0
z2 00 [e's)
- / / / / f(t1,t2) / / cos T1t1 cos Tato dridrs dtidts duidus
0 0 0

0

z2 Z1 oo o t t

= / / / M sin t1u1 sin tQUQ dtl dtg du1 dUQ
o Jo Jo Jo lito

) z2 z1
= EE— / / sin t1u1 sin t2U2 du1 dUQ dtl dtQ
0 0

o0 f(ty, t t
- 2/ / i ta) g 2 o222 gy gy 5
o Jo o 1t3 2 2

Hence,

)

~

(y1, y2)‘ dy1 dyo duy duy

% 2x1 u2 UL
> / / / / (y1, y2) dy1 dys duy dus
0 0 0 0
[P f(tte) ot (4.11)
:2/ / fute) gomh o mls gy g
o Jo tit5 4dzq 420
25’:2 2.131 2 2
>C/ f(”)dtdt > of By, 222)
t1t5 T1ds
Denote h(u,u2) = [4* [¢' H y2)( dy1 dys. Then (@IT) implies

1
a2 o
o0 o0 R adt;\ o dtg |
1Fles, = (/ ([ [l )] " 52" 2)
w(p,q] o o t1 to
1
a2 —
1 [e'e] ] 11 q1 o q2
_ 254-* / </ |:tf1 t52 f(tl,tg):| dt1> a dty
0 0 131 t2
1
o0 o0 1 1 1+1 q1 dt E dt q
S C / / 1 / / ul,uQ dulduQ 71 72 .
0 0 i to

us

Further, we change variables z = ¥ and apply Hardy’s inequality to get
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172,
w(p,q]

1

oo oo [ S I z2 kal q1 le Z% dZQ a2
C 21 2y P2 h(u1, ug)duidus | — —
1 2
0 0 0 0 21 22
1
o o0 1 _1 4 z2 q1 d o2 d a2
C (/ </ [21 P1 29 P2 / h(Zl,UQ)dU2:| Zl) “ ﬁ
0 0 0 21 z2
a2 -
oo (1 _ 4 o0 Zz2 _ 1 _ 1 a1 a d 92
= / 22( P2 )q2 </ |:/ Zl P11 Q1 h(Zl,UQ)dU2:| d2’1> " ﬂ .
0 0 0 Z2

Applying Minkowski’s inequality, we estimate

IA

IN

Ifllzs,
p.q]

q

1
1 2 —_—
o0 1 9 29 [e’e] 11 q1 o d q2
c / 22( " >QQ / {/ (Zl pLoa h(21,uQ)> dzl] ' duy a2l
0 0 0 Z2
1
1 q2 -
S _1_1 [z 0 11 a1 rm d 92
C / 2o P2 / [/ <zl noa h(zl,uz)> dzl] " dus @z .
0 0 0 Z2

By Hardy’s inequality, we get

IN

q

1
00 1 0o _1_ 1 a1 a\ 7 d a2
171z §C</ @fﬂ/ Gﬁl“M%@0<mrj Zﬂ
wp,q] 0 0 2
1
_ o /oo |:/oo (121171122]012 /z2 /zl a d21:| % dZQ 2 ‘
0 0 0 0

f(yl,y2)‘ dy dy2> —
21
Using Hardy’s inequality twice and Minkowski’s inequality to the last expression, we

<2

arrive at the required estimate. ]






Chapter 5

Uniform convergence of the
trigonometric series with general

monotone coefficients

We will study the trigonometric series

oo
Zan sin nz, (5.1)
n=1
o
Zan cosnx, (5.2)
n=1

oo

Z(an cosnx + by sinnz), (5.3)

n=1

with some conditions of their coeflicients.

5.1 Several important classes of general monotone sequences

In this chapter, we consider the GM (3) sequences with majorants 3 having the form
described below. Let S be the set of numerical sequences. Denote by x = {4 }7°, any

element of S.

We will say that a sequence of functionals on S, that is, F,, : § — Ry, n € N, is

admissible if

(i) Fn(x) — 0 as n — oo for any x = {x}}°, vanishing at infinity,
(ii) {Fn(x)}s2, is bounded whenever x = {x}}72; is bounded.

69
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The examples of such F' = {F,}2° ;| are

(a) Fp(x) = |2n|®, a>0;

n

(b) F2(x) = > 28l > 1,

oo
(e) F2(x) =" ank|zk|, where {an;}2°,_; is a regular matrix (see [105, Ch. III, §1]);
k=1 ’

(f) The composition FF = G o H, F,(x) := G,(Hg(x)), of admissible sequences
{H,}02 1, {Gn}22, is also admissible.

A typical example of non-admissible {F},} is

where a positive sequence {A\,}°°; is such that \,/n — co. Note also that conditions

(i) and (ii) in the definition of admissible functionals are independent; take for example

n2
Fo(x) = |2p|% + ¢ with a, ¢ > 0 and F,(x) = > k%2
k=n

For a given sequence a = {a, }> ;, denote by a the following sequence:

2n
Ay = Z |ag|.
k=n

Recall that a sequence {a,}; belongs to the class of general monotone sequences
GM (B) if there exists C' > 0 such that, for all n € N,

2n

> |Aak| < CBy.

k=n

Let us recall some important examples of majorants 3:

1. ﬁ'rlL = |anl;
n

.
2. ﬁ%:%Z las|, v >1;

s:%
3 1 2k
3. = = max a > 1.
B nkZ%S:k‘ sh
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We study a class of general monotone sequences GM (3) with

Bn:

Note that the class GM (8%) is the class GM (B) with 8, = L F3(a). Moreover, GM (3?)
N

coincides with GM (8) with 3, = 1 F2(a). Indeed, considering the sum > %, where
k=M

N > 2M, we note that

N2k 2M

> 32 la I—Zlaslz Ly lasIZ £y |as\Z*

k=M s=k s=2M+1 2 s=N+1
and therefore,

N N -
oY <Y —<022|as|
s=2M k=M

5.2 The main results

5.2.1 Historical remarks

The goal of this chapter is to study of uniform convergence of sine series. Recall that,
according to Chaundy-Jolliffee, the series with monotone coefficients {a,, }5° ; con-
verges uniformly if and only if na, — 0 as n — oco. This result was generalized, in
particular, in [91] for non-negative sequences {a,}°; € GM(B'). In its turn, this was
extended in [94} [104] for non-negative sequences {a, }°2; € GM(3?) and in [34] for non-
negative sequences {a,}>°; € GM(B3). Various generalizations of Chaundy-Jolliffe’s
criterion can be found in the papers [34], 91, [104]. In the recent paper [37], the authors

proved the following theorem.

Theorem 5.1. Let {a,}5,; € GM(B?). Then series (5.1) converges uniformly on

[0,27] if and only if na, — 0 as n — co.

Note that in Theorem the authors do not assume non-negativity or non-positivity

of sequence {a,}5°,

5.2.2 Uniform convergence of the trigonometric series

Theorem 5.2. Let {F,}5°, be admissible. Let also {an}52, € GM(3), where (3, =

%Fn(’é) and a is a bounded sequence. Then the following conditions are equivalent:

(1) the series (5.1) converges uniformly on [0, 27];
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(2) lim na, = 0;

n—oo

(3) lLim d, =0.

n—oo

Remark 5.1. (i) It is clear that the condition of boundedness of a is needed only to
show the implication (1) = (2).

(ii)  Generally speaking, the statement of Theorem 18 not true without assuming that
the sequence {an 52, is bounded. The corresponding counterexample is constructed in
Theorem[5.9 below. More precisely, there exists the uniformly converging sine series with

coefficients satisfying {a,}°°; € GM(B?) such that na, —» 0 and @, » 0 as n — oc.

(i) It is easy to see that dealing with admissible {F,,}2° , allows us to expect that F,,(a)
is bounded for a bounded sequence a. In light of the previous remark, this property is
essential in the proof. In general, Theorem[5.3 is not valid for non-admissible sequnces.
In particular, the corresponding example can be given using lacunary sequences. Take

the non-admissible functional F,(x) = nxz,, and the lacunary sequence

m=2 k=2m,

ap =
0 k #£2m.
[ee]
Then lim a, = 0, the series ) apsinkx converges uniformly, but {kay}?, is not
bounded.
A Jay
Another example can be giwen for non-admissible functional Fo(x) = Y S with
k=n

An/n — 00 using Rudin-Shapiro construction; see Remark (ii).

(iv) Regarding the fact that GM(B?) C GM(B33), we note that there exists a sequence
a € GM(B3) \ GM(B?%) such that a is bounded (see Section . This shows that
Theorem [5.2 extends Theorem [5.1]

A counterpart for the cosine series reads as follows.

Theorem 5.3. Let {a,}52, € GM(B), where 3, = 2F,(a) with admissible {F,}5%,
and bounded a. Then series (5.2]) converges uniformly on [0,27] if and only if the series

o0
> a, converges.
n=1

Remark 5.2. The condition of boundedness of a in Theorem|[5.3 is needed only to prove
the “only if” part.

The following can be seen as the main result of this section.

Corollary 5.1. Let {F,}22, and {G,}52, be admissble. Let {an}2>, € GM(B) with
B = 1P, (@) and {b,}22, € GM(B) with B, = 1G,(b).

T n
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Suppose that a and b are bounded sequences. Then for the series (5.3) the following

conditions are equivalent:
(1) the series (5.3) is the Fourier series of a continuous function;

(2) the series (5.3|) converges uniformly on [0, 27];

o0
(3) > an converges and nb, — 0 as n — oo.
n=1

5.2.3 Approximation by partial sums of Fourier series.

Here, we study the convergence rate of ||h— Sy, (h)||c[0,2+], Where Sy, (k) is the n-th partial
sum of the Fourier series of h. In [52] (see also [105, Ch. II, §10]), Lebesgue proved that

for a function A from the Lipschitz space Lip «, given by
Lip a = {f € C[0,27] : w(f,8)c = O(5")},

one has
Inn

I = Su(low2m = O(—)- (5.4)

Recall that w(f,d)c is the modulus of continuity of f, i.e.,

w(f,8)c = sup [Anf()llc and  Apf(z) = f(z+h) — f().
<
Salem and Zygmund [78] showed that the logarithm cannot be suppressed even if, in
addition to the hypotesis h € Lip a, we suppose that h is of bounded variation. However,
they demonstrated that if a function h € Lip « is of monotonic type, then the logarithm
can be omitted in (5.4).

Theorem 5.4 ([78, Theorem I]). Let h be a continuous function of monotonic type;
that is, there exists a real constant K such that the function h(x) + Kx is either non-

decreasing or non-increasing on (—oo,00). Let h € Lip «, where 0 < a < 1. Then

I = Sa(llciozn = Oz ). 55)

We will show (see Corollaries below) that estimate ([5.5) holds for functions from
Lip a having the Fourier series with coefficients from the GM (3?) class. Denote by g(z)
and f(x) the sums of (5.1)) and (5.2)) series, respectively. Here our main results read as

follows.

n
Theorem 5.5. Let {a,}52, € GM(B), where B, = 2 > |ag|. Then, for 0 < a <1,
k=1

~

17 = Sulavan =0 () = an=o(samr)- (5.6
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1 1
lo=S,@lewsn =0 () = an=o( ) (5.7
n
Theorem 5.6. Let {a,}22, € GM(B), where B, = 2 > |ag|. Then, for 0 < a <1,
)
=
1 1
1f = Sn(Hllc.2n = O o — apn=0 ot ) (5.8)
1 1
lg — Sn(Q)HC[O,zﬂ =0 o <~ Qn = ol ) (5.9)
Remark 5.3. (i) Note that the condition || f — Sn(f)llcjo,2«) = O (n%) implies that the

sum f is a continuous function and {an}2, is the sequence of Fourier coefficients of f.

(i) For a =0, Theorem also holds in the case of the sine series, which gives an

alternative proof of the main result in [37] (see Theorem 5.1).

Moreover, Theorem along with [35, Theorem 2.2 and Corollary 3.4] imply the fol-

lowing results.

yn
Corollary 5.2. Let {a,}22, € GM(B), where 3, = = Y |ag|. Also let (5.2) be the
k="
n

Fourier series of a continuous function f. Then, for 0 < a < 1, the following conditions

are equivalent:

(i) fe€Lipa,

(i) If = Su(Hlle = 0().

(i) En(f)o=0(%):

Here, E,(f)c is the best approximation of a function f by trigonometric polynomials

of degree n in C10, 27].

n

Corollary 5.3. Let {a,}22, € GM(B), where 8, = € 3 |ay|. Let also (5.1) be the
k="
n

Fourier series of a continuous function g. Then, for 0 < a < 1, the following conditions

are equivalent:

(i) ge€lLipa,

(i) llg = Sulg)llc = O3,

(i) Enlg)o = O(%).

Moreover, for a =1, conditions (ii), (iii), and
(iv) an = o(%)

are pairwise equivalent, but the condition g € Lip 1 is not equivalent to any of them.
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Remark 5.4. Regarding the case « = 1 in Corollaries [5.4 and [5.3, we first note that

the direct and inverse theorems of trigonometric approximation [25]; namely,

Eawe < Cu(v, 7)<

immediately tmply that

Y € Lip a if and only if E,(¢)c = O <1a> for 0<a<l.
n

We see that dealing with series with general monotone coefficients allows one to extend
this result for the limiting case « = 1 when ¢ = f. A similar result does not hold for sine
series (¢ = g), because of the following reason. For series with monotone coefficients,
a necessary and sufficient condition for g € Lip 1 is already given by ), kap < oo.
This fact was first observed by Boas [1])], and in turn is related to the behavior of the
derivative of g at the origin. In particular, the function g(x) = >, Si’;é"’x is such that
En(9)c < llg = Su(9)llc = O(%), but g ¢ Lip 1. See [92, 93, (9]|] for the related results

regarding series with non-negative GM coefficients.

5.3 Proofs of main results

Remark 5.5. Without loss of generality, we may assume in Theorems[5.9 and[5.3 that
the inequality
an < Fy(a) (5.10)

is valid for all sequences a = {an}2> and for all n € N. Indeed, if it is not the case,

that we can consider the majorant:
Gn(a) = max{a,, F,(a)}

which satisfies (5.10)). It is clear that conditions (i)—(ii) hold for the sequence {Gp}22 ;.
Moreover, instead of the class GM(B) with 3, = Fnéa

GM(B*) 2 GM(B), where 3} = G”T(a) Throughout this chapter, we will assume that
{F,}52, satisfies ((5.10).

Ny

we can consider the class

Lemma 5.1. Let a € GM(3), where (3, = 210y Then, for alln € N,

n

F.(a)

lag| < C forall k=mn,...,2n. (5.11)

Proof. The proof follows from (5.10)) and inequality ([1.3)). O
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5.3.1 Proof of Theorem [5.2

Here we need the following general result.

Theorem 5.7 ([33, Theorem 2.1, part (C)]). Let B8 = {3,}5°; be a majorant such that
nB, — 0 as n — oo. Then series (5.1]) converges uniformly on [0, 27].

Proof. We will prove Theorem [5.2] as follows: (2) = (3) = (1) = (2).

The implication (2) = (3) is clear.

(3) = (1). Let a, — 0 as n — co. Then from the property (i) of F,,, we get
F.(a) -0 as n— oo.

Finally, we use Theorem [5.7| with 3, = F,,(a)/n.

(1) = (2). From Lemma [5.1] and property (ii) on {F,}5°, it follows that it is sufficient

to prove lim a, = 0. Let ¢ > 0, then by Cauchy’s criterion, we can choose N € N such
n—oo

that for all N <k <]
l
din <e 5.12
IS i, < o

Let n > N and a, # 0. By (5.10), note that Fj,(a) # 0. We put

A, = {k: x| Zﬁ,nngQn}. (5.13)

Note that A, is not empty set. Let us obtain a lower estimate for the cardinality of A,
denoted by |A,|. By (5-11)), we have |ay| < €F,(a), n <k < 2n, and therefore,

2n
an:Z‘GS‘: Z |as| + Z |as|
s=n

s€n,2n]\An SEAR

> 2y Y@

s€[n,2n]\An s€EAp

IN

2na,, C_ an C_
A, |=F,(@) = =+ |A,|=F,(a).
A R@) = 2 4 |4 R @)

4n

IN

Hence,

n  ap
Z— . .

Following [37], we construct disjoint subsets Si,..., Sk, of [n,2n]. Put m; = min 4,,,

and select 11 according to the following procedure:

(a) If there exists jo > 1 such that for j = 0,1,...,jo, n < my + j < 2n the numbers

an

@m, +j have the same sign, and for j = 0,1,...,j0—1, [am,+5] > §=,

and ‘ Amy+jo | <

a .
g, then we set 11 = jo.
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(b) If such jo does not exist, then let v = lp such that m; + Iy € [n, 2n] and an, 11, 1S

the first element to become zero or of opposite sign than a,, .

(c) If neither (a) nor (b) happens, then simply v; = ly, for which mj + [y is the first

number greater than 2n.

Define a set
S| = {ml,ml—l—l,...,ml—i—ul — 1}

Next, if the set A, \ S; is not empty, we put my = min(A4,, \ S1). Using the same

procedure as above, we select 15 and define
So ={mao,ma+1,...,mg+ 1y — 1}.
We continue this procedure until we reach an Sy, for which
A\ (S1U...US,,)=0.

Now we obtain the upper estimate for k,,. If k,, > 1, we note first that for all 1 < j < &y,

we have
a.
Z |Aak| > |am; — am;v;| > 8n‘
keS;
From the definition of GM(8), B, =
2n
c_ -
> |Aas| < = F,(3)
n
S=n
Hence,
Kn—1 Kn—1 ~ Ei
n
) > Z|Aas| > Al > Z o = (= 1)
j=1 keS;
Therefore,
8CF,(a 9CF,(a
o < SCE@) |y OFE) (5.15)
Gnp, G,
If Ky, = 1, then (5.15)) also holds. Let x = 7~ and n < k < 2n. Then
. 2k S 1
sinkx > —— > =
T rmdn T 2
Since all ay, k € Sj have the same sign, we derive
1 k
5 Ol <> aksinZ—n <e (5.16)

keS; keS;
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for all n > N. Hence,

> Jal < z”: > lakl < 5186;?@-

keA, J=1 keS;
From the definition (5.13)) of the set A,, and estimate (5.14)), we arrive at

1 a2 <€180Fn(5)

8C F,(a) — an
Hence,
5% 0 a
—r - — S n — oo.
Fp(a)?

Since {Fj,(a)}°

o° , is bounded, we obtain that a, — 0 as n — oo. Hence Fj,(a) — 0 as

n — oo. OJ

5.3.2 Proof of Theorem [5.3]

Here we need the following result.

Theorem 5.8 ([33, Theorem 2.1, part (B)]). Let a € GM(8). If nB3, = o(1) as
n — oo, then series (5.2)) converges uniformly on [0,2x] if and only if the series Y ay,

n
CONveErges.

Proof. The ”only if” part is clear.

To show the ”if” part, as in the proof of Theorem [5.2] it is enough to show that

lim @, = 0. (5.17)

n—oo

For € > 0, we choose NV € N such that for all l > k> N
l
‘ Zaj) <E.
=k

Relation ([5.17)) is proved in the same way and with the same notation as in Theorem
using the inequality

1 1
§Z|ak|:§‘2ak‘<s, S; C[n,2n], n>N (5.18)
keS; keS;

instead of inequality (5.16)). Then since {F,}°2  is admissible, we obtain that Fy,(a) — 0
asn — oo. Thus, a € GM(B) with n8, = o(1) and Theorem 5.8|concludes the proof. [
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5.3.3 Proof of Corollary

We divide the proof into two parts: (1) < (2) and (2) < (3).

(1) = (2). Let series (5.3) be the Fourier series of a continuous function h(x). Note that
for a sequence {a,}%; € GM(B) with 8, = 1 F,(a), the boundedness of the sequence
{na,}22, is equivalent to boundedness of the sequence {a@,} - ;. From boundedness of
{na,}52; it follows that a, > —% for all n > 1 and some C' > 0. The last inequality

with the Paley—Fekete theorem (see [36, Theorem C]) implies the uniform convergence

of series (j5.3]).
(2) = (1). This part is clear.

(2) = (3). Let series (5.3) converge uniformly. Denote by h(z) the sum of series ([5.3]).
o0 o0

Note that the series > a, cosnz and Y b, sin nx are the Fourier series of the continuous
n=1 n=1

ha) +h=z) (o)~ h(-a)
2 2
respectively. Since both series converge uniformly, Theorems and imply (3).

functions

(3) = (2). This part follows from Theorems and

5.3.4 Proof of Theorems [5.5] and [5.6]

Here as in the proof of main results of Chapter I 2| we follow the proof of [35]. In the
definition of GM (B) with 3, = - Z lag| we assume that v = 2, where v is an integer
" k=

number. We use the notations 1ntroduced in Section [2.4]

A, =
"7 gnkantt o]
Bn - 2n—2u21]?§2n+2u |ak|7
and 4
_ —v gntv . n
M, = {k: € 2777, 2" 1 ay| > W}’
M, :={k € M, :a; >0} and M, =M, \ M,
where C' and v are constants from the definition of GM (3) class with 3, = = Z lag|.

21/

Recall that a natural number n is called good if either n < 2v or B,, < 2% A,,. The rest

of all natural numbers consists of bad numbers.

We need Lemma [2.4] mentioned in Section 2.4l For convenience we write this lemma

here with the same number.
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Lemma 2.4l Let a vanishing sequence {a,}3>, € GM. Denote Ny := [log,(C321%/+8)]+
1. Then for any good n such that n > Ny there exists an interval [l,, m,] C [2"7Y, 27V]

such that at least one of the following condition holds:

(i)  for any k € [ln, my), we have ar, > 0 and

2n
| M0 [l min]| > 315078
(ii)  for any k € [ln, my], we have ap, <0 and
_ 2"
|My, O [, mn]| > 31518

Proof of Theorems and[5.6. We will prove only the case of the sine series of Theorem
5.5l For the case of the cosine series in Theorem [5.5| and for both cases in Theorem [5.6

the proof is similar.

First, we prove the part "=". Let € > 0, then there exists N € N such that for all

n > N, we have
€
g — Sn(9)llcp,2m < v
Let n be a good number and 2" > max{C32!%+11 2 N}, Assume Lemma (1) is valid

and consider
Mn

Qn(t) = Z a sin kt.

k=l,+1

Then |Q,(t)] < Wﬁ%)a for all ¢ € [0,27]. Setting t = 575, we obtain

2e Mn . k 21 An on
2An-2)e - k;&-l WS onty = 7 22V 8C22 (03215u+8 B 1)
= 920 8022 CRIv T . (gl AIE
Therefore,
L1€
A, < PGS
Then .
2&
An S Sarm

holds for all good numbers, where Lo > L is another constant.
Let n be a bad number. Then A, < B,2~%. Note that B, = Ay, where |s; — n| < 2v.

Assume first that s; < n. Then either s; is a good number or there exists so such that
|s1 — so| < 2v and Ay, < 44,274, Also, we have

[251, 251 T2V y 7 C [2" % 2" U Z. (5.19)
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Then there is no ay, k € [2°1,2%172¥] U Z, such that |aj| > As,. Hence, the case sg > 51

is not possible.

Repeating the process, since s; is a decreasing sequence, we arrive at a finite sequence
n==sy>8 >...>S_1 > S, where numbers sg, s1,...,5;—1 are bad, and s; is good.

Moreover, s; — s;—1 < 2v and A;; < A 2=% for any j. Since s; is a good number,

Sj+1

using the proof above we have A, < ﬁ, which implies
A51 L2€
Now, since n < s; + 2iv, we have
(a+1)n
A LQE LQE 2 1 L3€ (5‘21)

n S 24vi9(a+1)s; - 92(a+1)n 9(1+a)(2vits;) 92vi(l—a) < 9(a+1)n "

Let now s; > n. Then either s; is a good number or there exists sa > s; such that
sy —s1 < 2v and Ay, < A,,27%. Continuing this process and taking into account
that the sequence of the Fourier coefficients vanishes at infinity, we arrive at the finite
sequence n = sg < §1 < ... < S;—1 < 8;, where the numbers sq, s1,...,s;—1 are bad, and

s; is good. Then A, < Q(Dﬁizf)sz implies

Loce Loe
Ay < AS1 < ASQ < --'Asz' < 2(a+1)s; = 2(a+1)n”

Then we have I
3&
An < 9(1+a)n
for any n. Let k € N such that k € [2!,2/*1] and 2! > N. Then

L26 LQS L36
o(l+a)l = 9(l+a)l = flta’

lag| < A; <

We would like to remark that for certain sequences {ay} the number of good points is
finite. In this case the proof of the ”=—" part follows the same lines as above for all
n being bad numbers. We repeat the procedure for s; < n; see (5.19)—(5.21)), since the

case s1 > n is impossible.
Now we prove the part 7<=". Let € > 0, then the inequality

) o 1 1
Hg - Sn(g)HC[O,2TI'] < Z |ak’ <e Z Lo+l < gﬁ
k=n+1 k=n+1

holds for all n > N, where N is sufficiently large integer number depending on &. O

Remark 5.6. Regarding the Lebesque and Salem-Zygmund estimates stated in Subsec-
tion see (5.4) and (5.5)) respectively, it is worth mentioning that if a function h
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belongs to the Lipschitz space Lip «, then

1
|h(2) = ou(h,)llcam = O( o5 ) a <1, (5.22)
Inn
Ih(2) = ou(h )l cpam = O ), a=1, (5.23)

where op(h,x) is the first arithmetic mean of the Fourier series of h. These results were
obtained by Bernstein [12]. Note that (5.22|) implies that E,(h)c = O( 1 ), which is

no

&S
equivalent to the condition h € Lip « for a < 1. Moreover, the function f(x) = > 3¢
n=1

belongs to Lip 1, but
Inn

1f (@) = on(f,2)llco,2m = T

It is important to note that there is a crucial difference between the results f
and f which becomes apparent only when we consider these relations for a
particular value of x. Indeed, the relation h(z) —on(h,z) = O(n%) depends only on the
behaviour of x in the neighborhood of the particular point x concerned but the relation
h(z) — Sp(h,x) = O(n%) depends on the behaviour of x in the entire interval [0, 27];

see the discussion in [38].

5.4 Several examples of general monotone sequences

To compare Theorem and Theorem we construct several examples of sequences
{ag}se, € GM(B3) \ GM(B?). First, for convenience, we recall the definitions of
GM(B?) and GM(B3?) classes.

A sequence {ay}3°, € GM(3?), if there exist C' > 0, v > 1 such that for all n € N,

2n C m
D Aa < -~ D . (5.24)
k=n s=2

u

A sequence {ay}3°, € GM(3?), if there exist C' > 0, v > 1 such that for all n € N,

2n C 2k
|Aay| < —max » las|. (5.25)
l;z kg Zk

We set,
lel, Nj+1:Nj+2Mj,
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where M; > N; and {M; } ° | is an increasing sequence of integers. Consider the sequence

_1)k

o, Nj §k<2Nj;
ak =g, 2N; <k <2Nj+ Mj; (5.26)
0, 2Nj+Mj§k‘<Nj+1,

where {C;}72, is an increasing sequence.

1. We show that a ¢ GM(3?). Let k = Nj, then

2k 2N]' 2Nj 2 N

— - Y
)DIAED SIVEES
s=k s=N; s=Nj

On the other hand, we have

2
=

L L 11
C; Ny YC Gy

M

*Z|as|§ﬁ

|
2 LZ

Therefore, condition ((5.24)) does not hold.

2. Now we obtain sufficient conditions on {1/} };’il for the sequence a to belong to the
class GM(B3). It is clear that it is enough to verify condition (5.25) for k = N;. We

have

2N, + M,
fmaXZ|aZ|——maXZ\al| >— Z ;]
_’Y i=s s> '71 N]—‘,-MJ/Q
M.
11 1+ 35
= —— (N;+M,;/2) = L.
M.
. . 1+2N7'
Comparing the expressions o Z and =L, we obtain that if
Nj2 =O0(M;) as j— o0,
then (5.25)) holds, i.e., {ax}2, € GM(B).
2k
3. Now we study the uniform boundedness of the sums ) |as|. Let 2k = 2N; + M,
s=k
then _—
Shad= 3 jal= Mt
s| = sl —~ Cj .
S:kJ S:Nj+Mj/2

Hence, the following hold:
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(a) the condition
Nj +Mj = O(C]) as ] — OQ.

2k

implies the uniform boundedness of the sums ) |as|. In particular, the sequence
s=k

a = {a;}?2, belongs to GM(B3), where

—1)k
S Ny <k <2Nj;
— 1 j .
ag = m’ 2Nj§]€<2Nj+Nj2NJ,
0, 2Nj+Nj2Nj §k<Nj+1,

k=n k=1
uniformly convergent, since kag — 0.

2n 00
and > |ag] < 2, n > 1. But by Theorem the series Y ajsinkz is not

(b) the condition
Nj+ M; =0(C;) as j— oo.

2k 00

implies Y |as| — 0 as k — oo. In particular, the series ) ajsinkz with coeffi-
s=k k=1

cients a = {ay}72, , where

(_]\1,)k Nj §k<2Nj;

jo2VIN;’
— 1 Nj.
0, 2Nj—|—Nj2Nj §k<Nj+1,

and a > 0, converges uniformly. Notice that {a;}?°, € GM(8%)\ GM(B?).

o0
4. Note that if {C;}32, increases fast enough, then uniform convergence of ) ay sinkz
k=1
o0
simply follows from the absolute convergence of > ay, since
k=1
%) NJ+1 1 %) 2Nj+Mj
Sl =3 Y =Y 3l
k=1 j=1 k=N; j=1 k=N;

— 1
:ZE(NJ-+MJ-+1).

j=1 "7

In particular, the condition

JU(N;j + M;) =0(C;) as j— oo,

o0
where o > 1, implies convergence of the series Y ay sinkz.
k=1
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5.5 Counterexample to Theorem

[e.9]
Theorem 5.9. There exists a uniformly convergent sine series Y, axsinkx such that
k=1

2m "
i) > |al=227'dn, n>1,
k=2n—1

(i)  klag| > 2" Vagn-1| =227, 2" 1<k <2, n>1,

where {d, }>°, is arbitrary positive sequence such that

(a) § d, < o0;

n=1

(b)  22d, — 0o asn — co.

Note that formally speaking, the constructed sequence {a,}°%; is in GM(3?). We will
use the Rudin-Shapiro sequence, see [74, Theorem 1] and [79].

Lemma 5.2 (Rudin-Shapiro). There exists a sequence {ex}7, ex = £1, k > 0 such
that

Hl<5VN+1 (5.27)

for allt € [0,27] and N =0,1,...

Proof of Theorem[5.9. Let {d,,}5° be a positive sequence satisfying conditions (a) and
(b). Let also {e1}32, be the Rudin-Shapiro sequence. Consider the series

ch Z e, (5.28)

with ¢, € R such that |c,| = 2-3d,, n € N. By using the Rudin-Shapiro theorem, we

obtain
0 2n—1 00 2n—1 on—1_1
E Cn E eret™| < E len] E eret®| + E Ere
n=1 k=9on—1 n=1 k=0

< cz len|227 < chn.
n=1 n=1

o0
Hence, the convergence of the series ) d, implies the uniform convergence of series

n=1
(5.28). Then the series
Sen Y exsinkt (5.29)
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converges uniformly. Denote by f its sum and by ax(f) the Fourier coefficients of f.
Then

2" 2" —1
ST olaN)z Y leal = lea2r =257,
k=2n-1 k=9on—1
Condition (ii) is clear. O

Remark 5.7. (i) As mentioned above in Section the widest class of general

2n
monotone sequences satisfying condition (1.1) is when (B, = > |ag|. All sequences of
k=n
the form
aj = Cnéls 2l <k<on neNl,

where ¢, € R and {e}32, is the Rudin-Shapiro sequence (see the example in Theorem
, belong to this extreme class. Moreover, such sequences do not belong to any smaller

class since we always have

2n 2n
D Aa <C> laxl, n>6.
k=n k=n

This follows from the fact that for any k, the sequence e, €11, k12, Ek13, Ekra changes
its sign at least once. Therefore, for any integer s > 6 such that 2"~ ! < s < 2" n €N,

2s 2™ 2s
Siaal = (X+ > )aal
k=s k=s k=2"+1
2" — s 41 2s — 2™
> T e+ Z o el + e & ol
2n 2s+1 2s+1
>

C(Z+ 3 )]ak]:Z]ak].

k=s k=241

(i)  Taking d,, = 2_%, n € N, in Theorem and following the construction, we see

that |c,| = |ag| < 277, 2771 < k < 2". In other words, there is a uniformly convergent
oo

series Y ajsinkx such that
k=1

2m
mlag| =< Y ag < 1.
k=m

Moreover, in view of part (i) of this remark, {ay} satisfies the following condition
Cym+Am

2m
Z|Aak|x1x— Z lak|, Am = m2™,
k=m m k=m

In other words, {a,}%, € GM(B), where B, = *F,(a) with non-admissible functionals

n

m-+Am
F,(x) = kz % This shows that Theorem does not hold for non-admissible
=m
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functionals.
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