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Chapter 1

Introduction

In the traffic management field, mathematical models have been exploited to evaluate different engi-

neering alternatives. The outcome of such models is crucial in order to take decisions on how links in

the traffic network should be built or rebuilt, and furthermore, how a given city should be arranged with

new industrial, residential, and commercial areas. Except for estimating the utility of constructing new

roads, traffic models can be beneficial for measuring the effects of congestion, for instance, changing

speed limit and capacity (number of lanes), locating road tolls, or re-designing the intersections (traffic

signs, roundabouts, turning lanes, etc.). Another application of such models is to advance action plans

for dealing with traffic interruptions that are caused by incidents. In this thesis, a fundamental issue is

the mathematical modeling of route choices for vehicles in a congested traffic network, also known as

traffic assignment problem.

A first main distinction between traffic models is drawn with respect to their level of details. A macro-

scopic model uses fluid variables, such as density and flow, and does not model individual vehicles. A

microscopic model describes vehicles (and commonly even drivers) individually. A mesoscopic model is

in between, and merge the ideas from macroscopic and microscopic models. In fact, mesoscopic model

uses macroscopic flow-speed relations to represent the motions of individual vehicles.

Traditionally, macroscopic models have been implemented for planning in larger networks over a longer

time period. They can be used to investigate how the city network should be developed and built in

the coming years, with respect to some assumption of population growth in different subareas of the

city. In contrast, microscopic models are deployed for smaller networks, and the result is used for more

particular measurements, as for instance how to allocate the available space into lanes in the best way,

to handle a difficult intersection or sequence of intersections. Also, microscopic models usually take

data from a macroscopic model as input, for instance by stating an average situation. A mesoscopic

model can be applied to capture the overall changes in the traffic, induced by some detailed changes of

the infrastructure.

One can also classify traffic models as time-independent (static) or time-dependent (dynamic) models.
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6 CHAPTER 1. INTRODUCTION

A dynamic model reproduces the reaction of the traffic to a current situation, which indeed describes

how a traffic scenario is developed over time. A static model can be described as a steady state in a dy-

namic model, i.e. a situation, where reactions and contra-reactions are balanced. Static models display

average descriptions of the traffic situations, though the input data must provide more details on the

traffic situation and we must make assumptions on how the traffic flow propagates both in time and

space. Dynamic models are mostly based on simulation. Traditionally, macroscopic models are static,

whereas we need a smaller and more detailed network of microscopic type to analyze time-dependent

effects. We work both on the static and dynamic models.

The first issue in this thesis concerns the estimation of OD matrices in a network. An Origin-Destination

matrix, shown briefly by OD matrix, is a matrix with entries indicating number of trips (flow) between

each origin and destination in a network. In general, one has

[OD matrix] = [assignment matrix]× [traffic counts],

or symbolically

(gi)i = (pia)ia × (va)a.

Above, a traffic count va indicates the total flow through a link a ∈ A of the network, and A is the

set of links on the network. The assignment matrix has the mission of splitting each traffic count into

OD pairs, that is, the entries of the OD matrix.

In real life, a historical OD matrix is acquired through a combination of real data and mathemati-

cal models (see [22], [55], and [58]). By historical, we mean an a priori matrix, which comes from

historical data and information about OD flows during past time slots. The high costs of traffic mea-

surements makes it impossible to know real-life OD matrices in full precision, and here is where the

problem begins. Indeed, in reality, one can only measure the flow not on all of A, but on a small subset

Â ⊂ A of the network, by installing count loop detectors. This gives the set of observed traffic counts

{v̂a}a∈Â. After doing this, the rest of the OD matrix estimation process is carried out by the means of

some mathematical model.

Generally, since the historical OD matrix is often affected by substantial and unavoidable errors, fitting

closely the estimated OD matrix to the historical OD matrix might not be an indication of a good OD

estimation process (see [3]). The problem of finding an OD matrix which corresponds to some given

traffic counts observations {v̂a}a∈Â is highly under-determined in most cases. It can be seen as the

inverse of the traffic assignment problem, which is highly over-determined, and reversely distributes

the flow of a given historical OD matrix throughout a network and assign traffic counts to every link.

Concretely, we have

OD adjustment (or estimation) problem Traffic assignment problem

(v̂a) =⇒ (gi) (gi) =⇒ (va)

underdetermined overdetermined

(1.1)
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Still, if we were able to observe traffic counts on all the links, the data would most likely be neither

error-free nor consistent. Even if correct and error-free traffic counts observations would be available

for all links in the network, there are still many OD matrices, which may do the desired job, that is,

when assigned onto the network would induce the same observed traffic counts. The latter motivates

the usage of a historical OD matrix.

Another challenge regarding the OD matrices is that they are usually high dimensional objects, and

more often not all the OD flows are important to understand the underlying phenomena of interest.

Although certain computationally expensive methods can build highly accurate OD estimation models

with high dimensional OD matrices (as for instance [67]), in real-time applications it is still a matter of

interest to reduce the dimensionality of OD matrices prior to any modeling. Indeed, the specification

and estimation of the OD matrices is both methodologically and computationally complex for real time

applications, because the OD matrices are high dimensional multivariate data structures. Recently, to

tackle the high dimensional OD estimation problem, researchers have presented decomposition of net-

work into smaller sub-areas ([44], [52]). Nevertheless, the OD estimation problem stays computationally

rigorous, indeed these methods have to handle not only the high dimensionality of the OD matrix, but

also the complexity of the methods. In fact, there are three factors that increase the computation cost:

the size of the state vector, the complexity of model components (e.g. adjustment matrix, gradient

matrices, etc.), and the number of measurements to be processed. For instance, a standard method to

estimate OD matrices is Kalman’s algorithm ([4], [6]). The computational complexity of the Kalman

algorithm is of order O(n3), where n is the total number of the OD pairs in the network. This can stand

as a potential computational obstruction. Obviously, reducing the dimensionality of the state vector is

a way to improve computational efficiency without a significant loss of accuracy of the estimated OD

matrix. In this direction, a good method is the Principal Component Analysis (PCA) ([49]), which

has been widely used by researchers (see for instance [36]). In any case, there has been many research

activity focused on the OD matrix estimation, with more sophisticated and less time consuming algo-

rithms (for instance see [10], [51], and [67]).

Given the a priori OD matrix, there are many ways to assign traffic counts va on a set of links a ∈ Â.

For instance, Frank and Wolfe algorithm, which is an iterative first-order optimization algorithm for

constrained convex optimization. This algorithm was originally proposed by Marguerite Frank and

Philip Wolfe in 1956 ([43]), which in each iteration considers a linear approximation of the objective

function, and moves towards a minimizer of this linear function (taken over the same domain). In this

thesis, though, we focus on Wardrop assignment, whcih is a well-known equilibrium for trasportation

experts. John Glen Wardrop [65] considered the situation where a large number of vehicles have to go

from one origin to a destination, connected by a finite number of different routes. Each single vehicle

has to choose a path along the route in order to minimize some transportation cost which depends not

only on the chosen path, but also on the number of vehicles along it. According to Wardrop equilibrium,

the cost of every actually used path should be equal or less than that which would be experienced by
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a single vehicle on any other routes. In particular, all actually used paths have the same cost. In other

words, a Wardrop equilibrium is a situation where every traveler uses only shortest paths from his

origin to his destination, given the overall congestion pattern resulting from the individual strategies of

all the users of the network. This equilibrium was first introduced in finite-dimensional networks [65],

and is well known among geographical economists. In the present thesis, we analyze this concept both

for discrete and continuous networks.

The process of assigning traffic counts va for a set of links a ∈ Â using Wardrop’s equilibrium is

called Wardrop assignment. This particular assignment is carried out via a traffic simulator software.

Without loss of generality, in this thesis we use the Aimsun Next traffic simulator [63], but one can

use any other traffic simulator, including open-source software. Essentially, an important feature that

any simulator has to exhibit is the numerical stability of its results, i.e. small OD flow perturbations

should lead to small consistent variations in the simulated outputs, in order to have a fair comparison

among the results using different algorithms. One of the Aimsun Next most outstanding features is

its computation speed. The built-in microscopic simulator is the fastest on the market by far and the

finest micro-simulation tool available in the world for large-scale projects. Furthermore, dynamic user

equilibrium techniques and stochastic/discrete route choice models are both available in Aimsun Next

in combination with either mesoscopic or microscopic modeling.

The main objective of traffic analysts is to estimate an OD matrix in such a way that the corre-

sponding assigned traffic counts va are as close as possible to the observed traffic counts v̂a . In this

direction, transportation experts have been using least-squared differences between the observed and

the estimated traffic counts as the objective model,

Z(g) :=
1

2

∑
a∈Â

(va − v̂a)2, (1.2)

where va are the estimated traffic counts, and v̂a are the observed traffic counts.

In this thesis, three different objective models rather than the one in (1.2) are studied. The so-called

Ridge and Lasso shrinkage coefficients are used to estimate an OD demand. In one of the proposed

methods, the objective function is structured in such a way that the OD estimation process does not

only estimate an OD matrix, but also reduces the dimension of the estimated OD matrix, by converging

some of the OD flows to zero. A new solution approach is applied based on the well-known gradient

descent algorithm for the OD estimation process. The proposed methods are tested on a real-size net-

work, with a high dimensional historical OD matrix.

One of the goals of this thesis is to improve the objective function given in (1.2), in such a way

that minimizing it provides us not just the best fitted estimated traffic counts va to the observed ones

v̂a, but also an estimated OD matrix g on the network, whose distance to the historical OD matrix

remains under control. Indeed, one could naturally think of adding a penalty term, involving the es-

timated OD matrix in the objective function (1.2), and then minimizing it. This is where shrinkage
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methods, known as regularization, come in play. These methods add a penalty term to the objective

function used in the model, and minimizing the objective function maximizes the accuracy. Shrinking

the coefficient estimates reduces their variance considerably. In fact, shrinkage performance makes the

coefficient converge to zero, which leads to decrease the dimensionality of OD matrix. The latter is the

second goal of this part of the thesis.

The most well-known shrinking methods are Ridge regression and Lasso regression (see [48] for more

information). Ridge regression aims to minimize the residual sum of squares (RSS), but with a slight

change, which is adding a squared difference penalty term in order to predict an estimated OD matrix

g which is not so far from the historical OD matrix ĝ. In this case, the objective function becomes

ZRidge(g) =
1

2

∑
a∈Â

(va − v̂a)2 + γ
1

2

∑
i∈I

(gi − ĝi)2, (1.3)

where γ is a non-negative constant called tuning parameter (TP), showing how much we want to rely

on the historical OD matrix ĝ to fit the estimated OD matrix g.

The necessity of shrinkage methods and the value of tuning parameter TP appear due to the issues

of underfitting or overfitting the data. The bias-variance trade-off indicates the level of underfitting

or overfitting of the data. A high-bias, low-variance means the model is underfitted and a low-bias,

high-variance means that the model is overfitted. Minimizing mean squared error, needs optimized

bias-variance trade-off. Small quantity of tuning parameter TP causes underfitted model with respect

to the historical OD matrix, while large quantity for tuning parameter TP causes overerfitted model

with respect to the historical OD matrix. A balance to trade-off between the bias and the variance is

needed, in order to achieve the perfect combination for the minimum mean squared error. During this

thesis we consider a range of values for tuning parameter TP, in order to check the sensitivity of the

model to this parameter.

Ridge regression has some advantages. It capitalizes on the bias-variance trade-off. As tuning pa-

rameter γ increases, the coefficients shrink more towards zero. Another advantage of ridge regression is

its differentiability which indeed facilitates calculating the derivative, since later on in the next section,

the so-called gradient descent algorithm is being used to minimize the objective functions.

On the other hand, Ridge regression has a major disadvantage, that it includes all the OD pairs,

in the estimated OD matrix, regardless of their value which can be challenging for a big network with

large number of OD pairs. This disadvantage is overcome by Lasso regression, which performs OD

pairs selection. Lasso regression [62] uses L1 norm penalty as compared to L2 norm penalty used in

the Ridge. Depending on whether we want to rely on the historical OD matrix or not, the updated

objective function for the Lasso regression can be stated as two different models as follows

ZLasso1(g) =
1

2

∑
a∈Â

(va − v̂a)2 + γ
∑
i∈I
|gi − ĝi|, (1.4)
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ZLasso2(g) =
1

2

∑
a∈Â

(va − v̂a)2 + γ
∑
i∈I
|g| (1.5)

=
1

2

∑
a∈Â

(va − v̂a)2 + γ
∑
i∈I

gi,

where the last equality comes from the fact that number of trips in a network are always non-negative,

therefore |gi| = gi.

Ridge regression brings the value of OD pairs in gi − ĝi close to zero, whereas Lasso regression forces

some of the OD pairs in gi − ĝi to be exactly equal to zero.

From now on, depending on the choice of objective function, we denote (1.3), (1.4), and (1.5) by

ridge, lasso 1, and lasso 2 methods, respectively. In Chapter 3, a new solution approach based on

gradient descent algorithm is implemented, in order to find an estimated OD matrix which minimizes

the proposed objective functions in (1.3), (1.4), and (1.5).

While trying to extend the notion of Wardrop equilibrium to the continuous setting, Carlier, Jiménez

and Santambrogio proposed in [19] a continuous model for congested traffic equilibrium. Since then,

interest in the topic has grown, and connections have been found by researchers in partial differential

equations, calculus of variations and traffic engineering. In this thesis, we also explore these connections

from a mathematical point of view.

The construction of Wardrop equilibriums presented in [19] was improved later by Brasco, Carlier

and Santambrogio [15]. There it is described a more systematic way of constructing Wardrop equi-

libriums, also in an autonomous setting, as a natural continuation of the model presented in [19]. In

this model, the pointwise traffic cost depends only on the pointwise traffic intensity. However, it may

happen that the traffic intensity does not determine the traffic cost. For instance, two different loca-

tions with the same traffic intensity may have very different road conditions. This explains the need

for non-autonomous traffic optimizers, which have already been object of study (see for instance [16]

or [18]). Here we study a non autonomous counterpart, thus allowing for non-constant same-traffic cost.

The model described in [15] requires to understand the regularity theory for minimizers of certain

highly degenerate integral functionals. This is the second main issue in the present thesis. Following

their ideas, here we focus on optimals for minimizing problems

inf
u

(ˆ
F(x,∇u) dx+

ˆ
f(x)u dx

)
where f ∈ Lsloc(Ω) for some s > n, and F is a somewhat special Carathéodory function. In the gradient

variable, F is radial, and has growth p ≥ 2 away from a ball. As an example,

F(x, ξ) =
(|ξ| − 1)p+

p
,

where (·)+ denotes the positive part. This means that F is highly degenerate, as it can even vanish on
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the set of points where the gradient has small norm. This is in contrast with other classical minimization

problems, as for instance the classical p-energy

inf
u

(ˆ
|∇u|p

p
dx+

ˆ
f(x)u dx

)
in which the energy only vanishes when ∇u = 0. In the spatial variable, we will assume for F some de-

gree of Sobolev dependence W 1,s
loc . We will show that minimizers are locally Lipschitz, that is, ∇u ∈ L∞loc

(see Theorem 15). Moreover, in Theorem 22 we show that for smooth boundaries the local Lipschitz

estimates for minimizers are indeed global. Boundedness of the gradient certainly requires that s > n.

Indeed, the result is known to be false when s ≤ n, even in the easiest setting of uniformly elliptic

integral functionals F with growth p = 2.

The supercritical Sobolev smoothness s > n of F in the spatial variable is also used to show that

minimizers admit locally integrable distributional derivatives up to second order, away from the de-

generacy set, see Theorem 24. Although this may seem surprising, it fits with other previous results

in this direction. Among the most representative ones, let us mention a result by Colombo and Figalli

[26], which roughly asserts that the composition ϕ(∇u) is continuous whenever ϕ is continuous and

vanishes on the degeneracy set of F . Thus, on the set where F is uniformly elliptic, may things can be

said for u. Away from this set, though, nothing is known. In any case, Theorems 15 and 24 extend,

respectively, previous contributions to the L∞ bounds (for instance [42, Theorem 3.1]) and the Sobolev

bounds (for instance extending [16, Theorem 4.1]), in which Lipschitz regularity in the space variable

was assumed for the energy.

The apriori estimates described above have their own independent interest. Indeed, they extend the

well known theory for the p-laplace equation,

−div(|∇u|p−2∇u) = f

to the much more degenerate equation

−div

(
(|∇u| − 1)p−1

+

∇u
|∇u|

)
= f,

where (·)+ denotes the positive part. As we said before, in the p-laplace equation the degeneracy set

reduces to a singleton (the zero set, with respect to the gradient variable), while in the second case, as it

usually happens in traffic congestion problems, the equation degenerates even at non-vanishing gradient

points. These highly degenerate equations have already been object of study by many authors, see for

instance [14, 26, 57]. At this point, we refer again to Colombo and Figalli [26], where the following

example is presented,

divA(∇u) = 0, for A(w) = (|w| − 1)p−1
+

w

|w|
.

For u, nothing better than ∇u ∈ L∞ can be said, as it is obvious that every 1-Lipschitz function u

is a solution, and there are many 1-Lipschitz functions whose derivatives are just bounded functions.
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However, one can conclude from the results at [26] that σ = A(∇u) is continuous. To understand this,

just observe that on the set where |∇u| 6 1 one has σ = 0, while on the set where |∇u| > 1 the equation

becomes more elliptic.

The construction of Wardrop equilibriums from [15] is the third issue we pay attention to. Basically,

each Wardrop equilibrium is represented by a measure Q on the metric space of curves C([0, 1];Rn),

supported only on the absolutely continuous ones, fitting certain boundary data, and minimizing some

traffic cost function. This kind of measures appear in a natural way in the classical Monge-Kantorovich

optimal transport problem,

inf

ˆ
|x− y| dγ(x, y) (1.6)

where the infimum is taken over all probability measures γ with prescribed projections µ0, µ1 onto the

first and second components, respectively. It is well known that this problem always admits a solution

γ. Yet, it may be not so well known that the expression

Q =

ˆ
δ[x,y] dγ(x, y) (1.7)

defines a measure on C([0, 1];Rn), whose push-forward under the time evaulations at times t = 0 and

t = 1 fits with the given data µ0 and µ1, respectively. Moreover, among all possible probabilities Q

with this property, Q is the one that minimizes the total length integral functional,
ˆ
`(α) dQ(α)

where `(α) =
´ 1

0
|α′(t)| dt. Morally, the construction of Wardrop equilibriums presented in [15] ex-

tends this construction to other integral functionals different than the total length. As a consequence,

Wardrop equilibriums Q can be represented as product measures

Q = γ ⊗ px,y

where γ solves a Monge-Kantorovich problem like (1.6) but with a different distance cost (now depending

on the traffic cost), and px,y is a probability measure on C([0, 1];Rn), suported on rectifiable curves

joinning x and y, and describing what are the trajectories used by travellers in an ideal equilibrium

situation. For instance, in (1.7) one has

px,y = δ[x,y],

that is, px,y is the Dirac mass on the line segment joinning x and y. In general, though, much more

complicate situations can occur. In particular, each px,y may be supported on more than one sin-

gle curve, or, instead, on just one, depending on the situation. This connects to challenging problems

on the uniqueness of solutions to ordinary differential equations, which will also appear in the discussion.

As in the autonomous case presented in [15], one first needs to reduce the congested traffic prob-

lem to a question on very degenerate elliptic equations. Such reduction is possible because of the

non-autonomous duality result [18, Theorem 3.1]. After this reduction, as in [15], the construction of

equilibriums involves the implementation of the so-called Dacorogna-Moser scheme, for which, in turn,
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DiPerna-Lions theory of flows for weakly differentiable vector fields needs to be used. This is, in fact,

the reason why the above mentioned apriori L∞ and Sobolev estimates are needed. In their celebrated

paper [35], DiPerna and Lions established a systematic way to construct flows{
d
dtX(t, x) = b(t,X(t, x)),

X(0, x) = x,
(1.8)

of vector fields b : [0, T ] × Ω → Rn. The classical Cauchy-Lipschitz theory determines existence,

uniqueness and regularity of such flows when b is Lipschitz. In [35], DiPerna and Lions extended the

theory to vector fields b such that

b ∈ L1(0, T ;W 1,1
loc ) and div(b) ∈ L1(0, T ;L∞),

together with some growth condition on b. This theory relates the existence and uniqueness of a well-

defined flow X(t, ·) : Ω→ Rn of measurable maps solving the equation (1.8) to the solvability of linear

transport equations {
∂tu+ b · ∇u = cu,

u(0, ·) = u0,

for which the renormalization property was shown to be the key notion. As a corollary, flows solving

(1.8) are shown to exist and be unique, and moreover to be nice in a measure theory sense; indeed,

X(t, ·)#dx ≤ C(t) · dx,

with a constant C(t) that depends on ‖div(b)‖L1(0,t;L∞). This theory is needed for traffic issues in

the implementation of Dacorogna-Moser scheme. In particular, it allows us to provide a Wardrop

equilibrium of this form

Q = X#(µ0)

where µ0 is the given starting data, and X : Rn → C([0, 1];Rn) is the flow map.

Boundedness and Sobolev regularity of the gradient of minimizers guarantee the existence and unique-

ness of a DiPerna-Lions flow. By means of Dacorogna-Moser scheme, one proves this flow supports an

explicit traffic configuration that minimizes the traffic cost. Moreover, it turns out that this configura-

tion is indeed a Wardrop equilibrium, whose support consists of the set of rectifiable trajectories of a

reasonably nice velocity field in the sense of DiPerna and Lions. See Theorem 37 in Subsection 5.7 for

the precise statement of our result.

The thesis is structured as follows: Chapter 2 provides requisite preliminaries. Chapter 3 deals with

the OD matrix estimation process, and dimension reduction in the OD demand. Section 3.1, describes

proposed solution approach, based on the so-called gradient descent algorithm, in order to solve the

minimization problems presented in (1.3), (1.4), and (1.5). Section 3.2 presents experimental setup and

design. In section 3.3, results are presented. In Chapter 4 and section 4.4 we prove respectively, the

interior Lipschitz estimates and the interior second order Sobolev estimates for minimizers of certain
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very degenerate integral functionals. In Section 4.3 we show that the results in Chapter 4 and section

4.4 admit a global version, up to the boundary, under enough boundary regularity. This is needed in

the proof of the results at Chapter 5. In Chapter 5 we recall the fundamentals of congested traffic

theory, and prove our main results in this direction (we are using here the global estimates of Section

4.3). Finally Chapter 6 provides conclusions and future research directions.



Chapter 2

Preliminaries

2.1 Direct method in the calculus of variations

Let us start with some largely heuristic insights as to when the functional

F[w] =

ˆ

Ω

F(x,Dw(x)) dx,

defined for appropriate functions u : Ω→ R satisfying

w = g on ∂Ω,

should have a minimizer.

Coercivity. First of all, we note that even a smooth function f mapping R to R and bounded below

need not attain its infimum. Consider, for instance f = ex, or (1 + x2)−1. These examples suggest

that in general, we will need some hypothesis controlling F[w] for ”large” functions w. Certainly the

most effective way to ensure this would be to hypothesize that F[w] ”grows rapidly as |w| → ∞”. More

specifically, let us assume

1 < q <∞,

is fixed. We will then suppose there exists a constant α > 0, β > 0, such that F(x, ξ) > α|ξ|q − β for

all ξ ∈ Rn, x ∈ Ω.

Therefore

F[w] > α ‖Dw‖qLq(Ω) − γ, (2.1)

for γ := β|Ω|. Thus F[w]→∞ as ‖Dw‖Lq(Ω) →∞. It is customary to call (2.1) a coercivity condition

on F[·].

15
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Lower semi continuous function. On a metric space X, a functionf : X → R ∪ {+∞} is called

lower-semi-continuous (l.s.c. in short), if for every sequence xn → x we have f(x) 6 lim inf
n

f(xn).

Weak convergence. Let U denote an open, bounded, smooth subset of Rn with n > 2. We as-

sume 1 6 p <∞ and let p′ be the conjugate exponent, i.e., 1
p + 1

p′ = 1. A sequence {un}n>1 ⊂ Lp(U)

converges weakly to u ∈ Lp(U), in which case we write

un ⇀ u, in Lp(U),

if ˆ

U

unv dx→
ˆ

U

uv dx, ∀v ∈ Lp
′
(U).

Theorem 1. (Existence of minimizer). Assume that F is coercive and convex in the variable ξ.

Suppose also the admissible set A is nonempty. Then there exists at least one function u ∈ A solving

minw∈A F[w].

Theorem 2. (Uniqueness of minimizer). Suppose the mapping ξ 7→ F(x, ξ) is strictly convex for

every x. Then the minimizer u ∈ A for F[·] is unique.

Proof of Theorems 1 and 2 can be found in [39].

Euler-Lagrange equations. Let F : Ω × Ω → R, such that F = F(x, ξ), where We associate

with F the functional

F[w] :=

ˆ

Ω

F(x,Dw(x)) dx, (2.2)

defined for smooth functions w : Ω→ R, satisfying, let say, the boundary condition

w = g on ∂Ω, (2.3)

where g : ∂Ω→ R. Now, let us additionally suppose some particular smooth function u, satisfying the

boundary condition w = g on ∂Ω, to be a minimizer of F[·] among all functions w satisfying (2.3). We

will show that u is then automatically a solution of a certain nonlinear partial differential equation. To

confirm this, first choose any smooth function v ∈ C∞c and consider the real-valued function

F (τ) := F[u+ τv].

Since u is a minimizer of F[·] and u+ τv = u = g on ∂Ω, we observe that F (·) has a minimum at τ = 0.

Therefore

F ′(0) = 0.

We explicitly compute this derivative (called the first variation) by writing out

F (τ) =

ˆ

Ω

F(x,Du+ τDv) dx.
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Thus

0 = F ′(0) =

ˆ

Ω

DξF(x,Du+ τDv) ·Dv dx.

Finally, since v has compact support, we can integrate by parts and obtain

0 = −
ˆ

Ω

[
DxDξF(x,Du+ τDv)

]
v dx.

As this equality holds for all test functions v, we conclude u solves the nonlinear quasilinear PDE

−DxDξF(x,Du+ τDv) = 0 in Ω.

This is the Euler-Lagrange equation associated with the energy functional F[·] defined in (2.2).

2.2 Optimal transport

Monge problem. Given two probability measures µ0, µ1 ∈ P(Ω) and a cost function c : Ω × Ω →
[0,+∞], Gaspard Monge proposed the classical optimal transport problem in [54] as follows

(Monge Problem) inf

{ˆ
c

(
x, T (x)

)
dµ0;T#µ0 = µ1

}
,

where the measure denoted by T#µ0 means the push-forward of the measure µ0 through the map T ,

and it is defined by T#µ0(A) := µ0(T−1(A)) for every set A ⊂ Ω.

Kantorovich problem. The main idea by Kantorovich is that of looking at Monge’s problem as

connected to linear programming. Given two probability measures µ0, µ1 ∈ P(Ω) and a cost function

c : Ω× Ω→ [0,+∞], Kantorovich in 1942 [50] proposed the following problem

(Kantorovich Problem) inf

{ ˆ
Ω×Ω

c(x, y) dγ(x, y); γ ∈ Π(µ0, µ1)

}
,

where Π(µ0, µ1) is the set of the so-called transport plans, i.e.

Π(µ0, µ1) := {γ ∈ P(Ω× Ω) : (e0)#γ = µ0, (e1)#γ = µ1},

where e0 and e1 are projection maps. The minimizers for this problem are called optimal transport

plans between µ0 and µ1.

Theorem 3. Let Ω be a complete and separable metric spaces, µ0, µ1 ∈ P(Ω), and c : Ω×Ω→ [0,+∞]

be lower-semi-continuous. Then Kantorovich Problem admits a solution.

The proof of above theorem can be found in [56], where the concept of tightness of product mea-

sure space Π(µ0, µ1) and Prokhrov’s theorem have been used. Here the direct method in calculus of

variations works.
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The consequence of all these continuity, semi-continuity, and compactness results is the existence,

under very mild assumptions on the cost c, and the space Ω, of an optimal transport plan γ. Then,

if one is interested in the Monge problem, the question may become: does this minimal γ come from

a transport map T? Should the answer to this question be yes, then Monge problem would have a

solution, which also solves a wider problem that of minimizing among transport plans, which is the

idea of the so-called Dual problem. The Kantorovich problem is a linear optimization under convex

constraints, given by linear equalities or inequalities. Hence, an important tool is duality theory, which

is typically implemented for convex problems.

Dual problem. Given two probability measures µ0, µ1 ∈ P(Ω) and a cost function c : Ω×Ω→ [0,+∞],

the dual formulation of Kantorovich problem is stated as follows

(Dual Problem) max

{ ˆ
Ω

ϕdµ0 + ψdµ1 : ϕ,ψ ∈ Cb(Ω) : ϕ⊕ ψ 6 c

}
.

We notice that sup(Dual problem) 6 min(Kantorovich problem). Yet, Dual problem does not admit a

straightforward existence result, since the class of admissible functions lacks compactness.

c-transform. Given a function χ : X → R we define its c-transform (also called c-conjugate function)

χc : Y → R by

χc(y) = inf
x∈X

c(x, y)− χ(x),

and furthermore, we also define the c-transform of ξ : Y → R by

ξc(x) = inf
y∈Y

c(x, y)− ξ(y).

Moreover, we say that a function ψ defined on Y is c-concave if there exists χ such that ψ = χc

(and, analogously, a function ϕ on X is said to be c-concave if there exists ξ : Y → R such that ϕ = ξc)

and we denote by cconc(X) and cconc(Y ) the sets of c- and c-concave functions, respectively (when

X = Y and c is symmetric this distinction between c and c will play no more any role and will be

dropped as soon as possible).

Theorem 4. We have min(Kantrovich problem) = max(Dual problem). More preciesly

min(Kantrovich problem) = maxϕ∈c−conc(Ω)

ˆ
Ω

ϕdµ0 + ϕcdµ1,

which also shows that the minimum value of the Kantorovich problem is a convex function of (µ0, µ1),

as it is a supremum of linear functionals.

A proof to the above Theorem can be found in [56].

2.3 Legendre-Fenchel transform

Legendre-Fenchel transform. For any given function f : Rd → R ∪ {+∞} its Legendre transform

is defined as f∗(y) := sup
x
x · y − f(x).
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Example 5. The Legendre transform of x 7→ 1
p |x|

p is x 7→ 1
q |x|

p where 1
p + 1

q = 1.

Example 6. As another example, if f(x) := ax +
xp

p
, such that a is constant, then the Legendre

transform of f is f∗(x) =
(|x| − a)q+

q
, where the plus subscript indicates the positive part, and 1

p+ 1
q = 1.

Proposition 7. A function f : Rd → R ∪ {+∞} is convex and l.s.c. if and only if f∗∗ = f .

Proof. The proof of this proposition, which is an application of the Hahn-Banach theorem, can be

found in [5].

2.4 DiPerna-Lions Theory

Given a vector field b : [0, 1]× Rn → Rn, and a measure µ0 ∈M(Rn), a measure valued map

µ : [0, 1]→M(Rn)

t 7→ µt

is said to be a weak solution of the Cauchy problem for the continuity equation d
dt u+ div(b u) = 0

u(0, ·) = µ0

(2.4)

if for any testing function ψ ∈ C∞c ([0, 1)× Rn;R) one has that

ˆ
ψ(0, x) dµ0(x) +

¨
∂ψ

∂t
dµt dt+

¨
b · ∇ψ dµt dt = 0

Equivalently, for each ϕ ∈ C∞b (Rn) the real-variable function t 7→
´
ϕdµt is absolutely continuous with

derivative
d

dt

ˆ
ϕdµt =

ˆ
b · ∇ϕdµt for a.e. t ∈ [0, 1].

Under enough smoothness, the problem (2.4) has as its unique solution u(t, ·) the image measure of the

initial datum µ0 throught the flow X(t, ·)at time t,

u(t, ·) = X(t, ·)#(µ0).

Above, X(t, ·) is obtained by solving the following ODEẊ(t, x) = b(t,X(t, x)),

X(0, x) = x.
(2.5)

It is well known, though, that such flow X need not be well defined in general. In their celebrated

thesis, DiPerna and Lions [35] developed a systematic way to understand transport and continuity

equations for non-smooth vector fields b. One of the main points in their theory was to establish a

relation between the notion of well-defined flow and the solvability of initial value problems for scalar



20 CHAPTER 2. PRELIMINARIES

conservation laws and the notion of renormalized solution. As in [15], we recall that when µt ∈ L1
loc

then µt is said to be a renormalized solution of (2.4) if, for every β ∈ C1(R), the equation

d

dt
β(µt) + b · ∇(β(µt)) + div(b)µt β

′(µt) = 0

is satisfied in (0, 1)×Ω in the sense of distributions. Clearly, renormalized solutions are weak solutions

(simply take β(u) = u) while the converse is false in general. Since the work of DiPerna and Lions, it is

known that if b is a Sobolev vector field then weak solutions to the continuity equation are renormalized.

The following result summarizes the main ideas of DiPerna - Lions theory.

Theorem 8. Let b ∈ L1([0, 1];W 1,1(Ω)) be such that div(b) ∈ L1([0, 1];L∞(Ω)). Then there is a unique

continuous map

X : [0, 1]2 → L1(Ω;Rn)

(t, s) 7→ X(t, s, ·)

that leaves Ω invariant, and such that the following holds:

(a) X(t, s, ·)#dx is absolutely continuous with respect to the Lebesgue measure dx, and

e−|A(t)−A(s)| ≤ d

dx
(X(t, s, ·)#dx) ≤ e|A(t)−A(s)|

where A(t) =
´ t

0
‖div(b)(s, ·)‖L∞(Ω) ds.

(b) If 0 ≤ r < s < t ≤ 1 then X(t, r, x) = X(t, s,X(s, r, x)) for almost every x ∈ Ω.

(c) For almost every x ∈ Ω, X(t, s, ·) is an absolutely continuous solution of (2.5), that is,

X(t, s, x) = x+

ˆ t

s

b(r,X(r, s, x)) dr.

(d) If µ0 ∈ Lp(Ω) and s ∈ [0, 1), then u(t, ·) = X(t, s, ·)#(µ0) is the unique renormalized solution

u ∈ C0([s, 1];Lp(Ω)) of the Cauchy problem (2.4) with initial condition u(s, ·) = µ0.

2.5 Superposition principle

We say that µt is a superposition solution of (2.4) if there exists a measure Q on the metric space

C([0, 1];Rn), supported on the subset of absolutely continuous trajectories of b, that is,
ˆ
C([0,1];Rn)

∣∣∣∣α(t)− α(0)−
ˆ t

0

b(s, α(s)) ds

∣∣∣∣ dQ(α) = 0 for every t ∈ [0, 1],

and such that µt = (πt)#Q for each t ∈ [0, 1], that is,ˆ
ϕ(x) dµt(x) =

ˆ
C([0,1];Rn)

ϕ(α(t)) dQ(α)

for each t ∈ [0, 1] and all ϕ ∈ Cc(Rn). It can be seen that superposition solutions to (2.4) are indeed

weak solutions. Superposition solutions are nicer in the sense that they can be represented as time

evaluations of a more intrinsic measure Q on the set of rectifiable trajectories of b. In particular,

this obviously allows for vector fields for which uniqueness of solutions in (2.5) may not be true. The

following result was proven in [2, Theorem 2].
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Theorem 9. If ˆ 1

0

ˆ
Rn

|b(t, x)|
1 + |x|

dµt(x) dt <∞ (2.6)

then non-negative measure valued weak solutions are superposition solutions.

As a corollary, the following result holds.

Corollary 10. If (2.6) holds, then for each Borel set A ⊂ Rn the following statements are equivalent:

(a) Solutions to (2.5) are unique for every x ∈ A.

(b) Non-negative measure valued weak solutions to (2.4) are unique whenever µ0 is supported on A.

Proof. Proving that (b) implies (a) is easy: given two solutions to (2.5) α(t) and α̃(t), it suffices to

see that δα(t) and δα̃(t) solve (2.4). For the converse, since each weak solution µt is a superposition

solution, one can write µt = (πt)#Q for some Q supported on absolutely continuous trajectories of

b. Thus, from (a) we can denote by X(t, x) the well defined solutions of (2.5). In this situation, Q

formally desintegrates as Q = δX(·,x) ⊗ µ0. It then follows that

µt = (πt)#Q = (πt)#(δX(·,x) ⊗ µ0) = X(t, ·)#(µ0),

or in other words
ˆ
ϕ(x) dµt(x) =

ˆ
ϕ(πt(α)) dQ(α) =

ˆ (ˆ
ϕ(α) dδX(t,x)(α)

)
dµ0(x) =

ˆ
ϕ(X(t, x)) dµ0(x).

In particular, the uniqueness of the trajectories X(t, x) implies uniqueness of the desintegration mea-

sures δX(·,x), which in turn gives uniqueness of µt.

As a consequence, positive measure-valued weak solutions to the continuity equation (2.4) are super-

position solutions only assuming (2.6). Let us mention that everything above can be reformulated on

bounded domains Ω ⊂ Rn, by adding boundary conditions on b of Neumann type.

2.6 OD matrices, and OD estimation problem

Assume I is the set of all Origin-Destination pairs, or briefly OD pairs, in a network. Then an OD

matrix, or OD demand g = gi, i ∈ I, is a matrix with entries indicating the number of trips between

each OD pair i. Without loss of generality, we use the term OD matrix for g, although, for a convenient

calculation, g has been used in vector format.

1

2

3

4 5

a1

a2

a3

a4

a5

a6

Figure 2.1: A simple network.
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Concretely, Figure 2.1 shows a network with 5 centroids, {1, 2, 3, 4, 5}, and 6 links, {a1, a2, a3, a4, a5, a6}.
For the OD pair {1, 5}, there are 3 paths {[a1a4a6], [a1a2a6], [a3a5a6]}.

Let A be the set of all links in the network, and Â ⊆ A be the set of all links a ∈ Â with a loop

detector on them. The traffic assignment of the OD matrix onto the links in the network induces an

adjustment matrix P = {pai}, i ∈ I, a ∈ A, with pai being the proportion of the OD demand gi that

passes the link a. The traffic counts v and the OD matrix g are related to each other via the following

formula

va :=
∑
i∈I

∑
k∈Ki

∑
a∈Â

δakgi,

where Ki is set of paths joining the OD pair i, and δak is defined as follows

δak :=

1, if path k includes the link a,

0, otherwise.

We will use the notation P = P (g) if needed, to emphasize that due to the congestion, these proportions

depend on the the traffic volumes, i.e. on the OD matrix.

When assigned onto the network, the OD matrix induces a flow v = {va}, a ∈ A, on the links in

the network. We assume that the set of observed traffic counts v̂ = {v̂a}, a ∈ Â is available, and that a

historical matrix ĝ is also available.

In reality, we are often concerned about the reverse problem. More precisely, given a set of observed

links Â ⊆ A, the OD matrix estimation problem is about finding an OD matrix which, when it is

assigned onto the network induces link flows {va}a∈Â close to those which have been observed, i.e.

{v̂a}a∈Â. From now on, we denote {va}a∈Â as the set of estimated traffic counts.

The OD matrix estimation problem is formulated as follows

ming,v F (g, v),

subject to
∑
i∈I

pai(g)gi = va, ∀a ∈ Â,

gi ≥ 0, ∀i ∈ I. (2.7)

In most of cases F (g, v) = F1(v, v̂) + γF2(g, ĝ), where F1(v, v̂) and F2(g, ĝ) are generalized distance

measures between the estimated traffic counts v and the observed traffic counts v̂, and between the

estimated OD matrix g and the given historical OD matrix ĝ, respectively. Also γ > 0 is called tuning

parameter, and reflects the relative belief or uncertainty in the information provided by ĝ. In one

extreme case, using γ = 0, the historical OD matrix will have no influence.

Many types of distance measures for F1(v, v̂) and F2(g, ĝ) have been considered by researchers during

the last decades, such as maximum entropy [64], [8], and maximum likelihood [59] and [61]. Among all,

the most common one, proposed in the in the models in the last decade is the least-square formulation.

The least-square is a well-known deviation measure used in many types of estimation problems and is
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given by

F1(v, v̂) :=
1

2

∑
a∈Â

(va − v̂a)2. (2.8)

The objective function in Eq.(2.8) has a tractable solution, i.e. it is differentiable, and it has been

traditionally used by many researchers ([60], [41], [53], and [37]).

Generally, there are many OD matrices which, when assigned onto the network, induce the same

traffic counts. It is crucial thing to know, if the assignment matrix P (g) is assumed to depend on g, i.e.

if route choices are made with respect to congestion or not. In the latter case, P (g) = P is a constant

assignment matrix, and the first set of constraints in the generic description (2.7) is formulated as

∑
i∈I

pai(g)gi = va, ∀a ∈ Â. (2.9)

This equation, i.e. Eq.(2.9) is underdetermined as long as the number of OD pairs |I| is greater

than the number of observed traffic counts |Â|. The problem (2.7) when the assignment matrix P is

constant during the minimization process is in fact a linear problem. On the other way around, when

P (g) depends on OD matrix g, and changes during the minimization process, the problem (2.7) turns

into a nonlinear problem. The latter is the proposed case in this thesis.

Considering constraint (2.9), equation (2.8) could be reformulated as follows

Z(g) :=
1

2

∑
a∈Â

(va − v̂a)2 =
1

2

∑
a∈Â

(∑
i∈I

giPia − v̂a
)2

. (2.10)

Many different terms as F2(g, ĝ) have been proposed by researchers. Among them, the first effort

was made by Tao, et.al. in [66], where they have used Maximum Likelihood method for the term

F2(g, ĝ). In Chapter 3, we will propose some distance measures for F2(g, ĝ), in order to improve the

objective function in Eq.(2.10).

2.7 Gradient descent method

Gradient descent method is an iterative way to find a local minimum of a function. It starts with an

initial guess of the solution. Then one takes the gradient of the function at that point. We step the

solution in the negative direction of the gradient and repeat the process (shown in Figure 2.2). The

algorithm will eventually converge where the gradient is zero (which correspond to a local minimum,

under convenient convexity conditions). Its brother, the gradient ascent, finds the local maximum

nearer the current solution by stepping it towards the positive direction of the gradient. They are both

first-order algorithms because they take only the first derivative of the function.
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Figure 2.2: Gradient descent method.

Let’s say we are trying to find the solution to the minimum of some function f(x). Given some

initial value x0 for x, we can change its value in many directions (proportional to the dimension of x:

with only one dimension, we can make it higher or lower). To figure out what is the best direction

to minimize f , we take the gradient ∇f (the derivative along every dimension of x). Intuitively, the

gradient will give the slope of the curve at that x and its direction will point to an increase in the

function. So we change x in the opposite direction to lower the function value:

xk+1 = xk − γ∇f(xk).

The γ > 0 is a small number that forces the algorithm to make small jumps. This keeps the algorithm

stable and its optimal value depends on the function. Given stable conditions (a certain choice of γ),

it is guaranteed that f(xk+1) 6 f(xk). A wrong step size γ may not reach convergence, so a careful

selection of the step size is important; too large it will diverge, too small it will take a long time to

converge. One option is to choose a fixed step size that will assure convergence wherever you start

gradient descent. Another option is to choose a different step size at each iteration (adaptive step size).

In this thesis, we use optimal step size by taking the gradient with respect to step size. Therefore, we

choose the best step length in each step of algorithm. This choice has two advantageous at the same

time: First, it converges, and second, the speed of convergence is fast.

2.8 Aimsun Next software

Aimsun Next is traffic modeling software that allows you to model anything from a single intersection to

an entire region. With thousands of licensed users in government agencies, consultancies and universities

all over the world, Aimsun Next stands out for the exceptionally high speed of its simulations and for

fusing travel demand modeling, static and dynamic traffic assignment with mesoscopic, microscopic

and hybrid simulation all within a single software application.

Without loss of generality, one can use any other traffic simulation software, such as open source

ones. In this thesis we use Aimsun Next simulator because it allows users to carry out traffic operations

assessments of any scale and complexity. Furthermore, Aimsun Next has more advantageous rather

than other simulation software, which are the following
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• Assessment and optimization of Transit Signal Priority (TSP) and Bus Rapid Transit (BRT)

schemes.

• Priority (TSP) and Bus Rapid Transit (BRT) schemes.

• Feasibility studies for High Occupancy Vehicle (HOV) and High Occupancy Toll (HOT) lanes.

• Impact analysis of infrastructure design such as highway corridor improvement/construction.

• Environmental impact analysis.

• Evaluation of travel demand management (TDM) strategies.

• Evaluation of Variable Speed policies and other Intelligent Transportation Systems (ITS).

Aimsun Next software is available for download at: https://www.aimsun.com.

https://www.aimsun.com/
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Chapter 3

Static OD matrix problem

In this chapter we propose a new solution approach base on the so-called gradient descent method,

in order to minimize the proposed Ridge, Lasso 1, and Lasso 2 models in (1.3), (1.4), and (1.5), with

respect to the OD matrix g.

3.1 New solution approach

In this section, the so-called gradient descent approach (steepest descent) is applied to solve OD esti-

mation problems defined in equations (1.3), (1.4) and (1.5). Specifically, solution algorithm based on

the gradient descent algorithm, proposed by Spiess (see [60] for more information), has been applied.

The idea of the steepest descent method is to calculate the gradient of the objective functions given in

equations (1.3), (1.4) and (1.5), with respect to g, and then move one step in the direction of negative

gradient to determine new estimated OD matrix. The objective functions given in the equations (1.3),

(1.4) and (1.5) are neither convex nor linear. Indeed, due to the change of OD matrix g, the assignment

matrix P (g) is not locally constant during the steepest descent algorithm, and is changing in each step

of iteration. Therefore traffic counts v are changing in each step of iteration. Thus minimizing the

objective functions given in the equations (1.3), (1.4) and (1.5), might not have a unique minimum.

Spiess in 1990 suggested a heuristic approach to solve the problem (2.10). It is an iterative procedure,

in which λ1 = 0, and ĝ is used as initial solution. In his approach, an approximate gradient of

the objective function with respect to the OD matrix is computed, under the assumption that the

assignment matrix P (g) is locally constant.

According to his paper [60], the new estimated OD matrix in each iteration step s, in the gradient

descent algorithm, has been defined as follows

gs+1 = gs(1− λs∇gsZ(gs)). (3.1)

However, to preserve zero OD flows in the estimated OD matrix, as given by starting point (i.e.,

historical OD matrix) we propose modification of the update step given in Eq.(3.1) in each iteration

27
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step as follows

gs+1 := gs − λs∇gsZ(gs). (3.2)

The advantage of the update step modification is twofold. Firstly, computation process is speed up

by omitting two matrix multiplication in each iteration step. Secondly, the zero flows in the historical

OD matrix are preserved in the estimated OD matrix. Next, we demonstrate gradient derivation for

OD estimation problems defined in Eq.(1.3), Eq.(1.4), and Eq.(1.5), based on the modified descent

gradient solution.

3.1.1 Ridge OD objective function

At every external iteration, the modified gradient descent method is selected to minimize the objective

function in Eq.(1.3), which uses the gradient of the objective function with respect to g as the search

direction

∇ZRidge(g) =
∂t
∂tg

[
1

2

∑
a∈Â

(gpa − v̂a)2 +
1

2
γ
∑
i∈I

(gi − ĝi)2

]
=
∑
a∈Â

Pa(va − v̂a) + γ
∑
i∈I

(gi − ĝi). (3.3)

The next step is to take the gradient of the Eq.(1.3), but this time with respect to λ and make

it equal to zero, in order to find the best optimal step length λ in each step of iteration. The main

advantage of choosing optimal step length over the choices like a fixed step length or line search is that,

it guarantees the convergence of algorithm. Therefore taking the gradient of (1.3) with respect to λ,

we get

∂t
∂tλ

[∑
i∈I

∑
a∈Â

1

2
((gi − λ∇ZRidge)Pa − v̂a)2 + γ

1

2
(gi − ĝi)2

]
= 0,

then calculating optimal step λ, within each step of iteration, using the gradient method, we obtain

λoptimal
Ridge =

∑
i∈I

∑
a∈Â

P∇ZRidge(va − v̂a) + γ∇ZRidge · gi − γ∇ZRidge · ĝi
(P∇ZRidge)2 + γ(∇ZRidge)2

. (3.4)

3.1.2 Lasso 2 OD objective function

Similarly, choosing (1.5) as the objective function and taking the gradients with respect to g and λ, we

get

∇ZLasso2(g) =
∂t
∂tg

[
1

2

∑
a∈Â

(gpa − v̂a)2 + γ
∑
i∈I

gi

]
=
∑
a∈Â

Pa(va − v̂a) + γ
∑
i∈I

Id, (3.5)

where Id indicates the identity matrix, and the step length λ will be obtained as follows

λoptimal
Lasso2

=
∑
i∈I

∑
a∈Â

P∇ZLasso2(va − v̂a) + γ∇ZLasso2
(P∇ZLasso2)2

. (3.6)
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3.1.3 Lasso 1 OD objective function

The last but not least is to apply proposed descent gradient solution algorithm on the objective function

in Eq.(1.4). The difficulty here is to derivate the objective function, due to the non-differentiability of

absolute value term |gi − ĝi| at zero. This issue is addressed by using three different strategies.

Strategy 1.

The non-differentiability issue can be tackled, by using the idea of the smoothing the L1 term. This

is carried out by convolution with the so-called Gaussian kernel. The Gaussian kernel is defined as

follows

G kernel(g) :=
σ√
2π

exp

(
−(g − ĝ)2

2σ2

)
,

where σ is an arbitrary positive constant (called width of Gaussian curve). Now, convolving the L1

term in Gaussian kernel, the corresponding objective function is updated as follows

Z
strategy1

Lasso1
(g) =

∑
a∈Â

1

2
(gpa − v̂a)2 + γ

∑
i∈I
|g − ĝ| ∗G kernel, (3.7)

then taking the gradient with respect to the OD matrix g, we get

∇Zstrategy1

Lasso1
(g) =

∂t
∂tg

[∑
a∈Â

1

2
(gpa − v̂a)2 + γ

∑
i∈I
|gi − ĝi| ∗G kernel

]
. (3.8)

By using the property of derivative of the convolution ( ∂tdx [f(x) ∗ h(x)] = f(x) ∗ ∂t
dxh(x)), equation

(3.8) becomes

∇Zstrategy1

Lasso1
(g) =

∑
a∈Â

Pa(va − v̂a) + γ
∑
i∈I

(
|gi − ĝi| ∗

−(gi − ĝi)
σ2

·G kernel

)
.

Respectively, taking the derivative of (3.8), but this time with respect to λ, results in

∂t
∂tλ

[∑
i∈I

∑
a∈Â

1

2

(
(gi − λ∇Zstrategy1

Lasso1
)Pa − v̂a

)2

+ γ|gi − λ∇Zstrategy1

Lasso1
− ĝi| ∗G kernel(gi − λ∇Zstrategy1

Lasso1
)

]
=
∑
a∈Â

∑
i∈I
−∇Zstrategy1

Lasso1
· Pa

(
(gi − λ∇Zstrategy1

Lasso1
)Pa − v̂a

)

+

(
γ|gi − λ∇Zstrategy1

Lasso1
− ĝi|

)
∗
(∇Zstrategy1

Lasso1
(gi − λ∇Zstrategy1

Lasso1
− ĝi)

σ2

·G kernel((gi − λ∇Zstrategy1

Lasso1
)

)
,

which can not be solved analytically (due to the existence of exponential term), but it can be solved

numerically by using methods such as Newton-Raphson interpolation (there are many other root-finding
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commands, such as Newton-Raphson interpolation, in most of language programs, including R language

program).

Strategy 2.

The second way is to use the definition of absolute value, meaning that the objective function can

be formulated as follows

Z
strategy2

Lasso1
(g) =


∑
i∈I

∑
a∈Â

1

2
(gpa − v̂a)2 + γgi − ĝi, if gi > ĝi,∑

i∈I

∑
a∈Â

1

2
(gipa − v̂a)2 − γgi + ĝi, if gi < ĝi,

(3.9)

hence, taking the derivative with respect to the OD matrix g, we get

[∇Zstrategy2

Lasso1
(g)]i,j =


∑
a∈Â

Pa(va − v̂a) + γ
∑
i∈I

Id, if gi > ĝi,∑
a∈Â

Pa(va − v̂a)− γ
∑
i∈I

Id, if gi < ĝi,
(3.10)

and for the optimal step length λ, we have

[λoptimal
Lasso1

]i,j =



∑
i∈I

∑
a∈Â

P∇Zstrategy2

Lasso1
(va − v̂a) + γ∇Zstrategy2

Lasso1

(P∇Zstrategy2

Lasso1
)2

, if gi > ĝi,

∑
i∈I

∑
a∈Â

P∇Zstrategy2

Lasso1
(va − v̂a)− γ∇Zstrategy2

Lasso1

(P∇Zstrategy2

Lasso1
)2

, if gi < ĝi.

(3.11)

Strategy 3.

The third way is to use the gradient formula achieved in strategy 2, and then by using the formula

(3.4) as the optimal step length λ. Notice that due to the similarity of the objective functions ZRidge

and ZLasso1 when plotting, one can think of using optimal step length for the objective function ZRidge,

to be used as the one in ZLasso1 (at least, it is much more efficient than other non-optimized typically

used step lengths seeker algorithms, such as line search or the fixed step length).

Naturally, all OD flows (number of trips), in an estimated OD matrix are considered to be positive,

and if it is not the case, i.e. in each step of iteration, if there exists a negative OD flow in the estimated

OD matrix, it is replaced by a small positive constant less than 1 (for instance 0.1 is used in this thesis).

This technique is called projected gradient descent, which can be found in [9]. Substituting the negative

OD flows with small positive constants prevents stopping the iteration in the algorithm.

Remark 11. Notice that the optimal step length calculated in strategy 2 is not a constant, but a matrix.

Remark 12. Although, all 3 strategies above have been applied on the experimental samples, and it

turned out they all provide the same result, we arbitrarily use the third strategy in the experimental

section.
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3.2 Experimental setup

3.2.1 Experimental design

The benchmarking platform adopted in this thesis is based on a combination of Aimsun Next (2017)

as traffic simulator, and R (2017) and Python (2017) as programming languages for running the OD

matrix estimation algorithms, with the calls between these two programs are defined through Python.

The algorithm is executed on a computer with Intel core-i7 quad-core processor, and 6 gigabyte of

RAM. The static macroscopic network loading model and static user equilibrium (UE) route choice

model in Aimsun Next have been used in the experiments.

First of all, lets see how the estimation OD matrix algorithm works using interaction between

Aimsun Next and R:

• Aimsun Next receives an OD matrix generated by the estimation algorithm (or the historical OD

matrix in the first iteration) as input;

• Inside the R code, it calls Aimsun Next for a new traffic simulation run with the new OD matrix

and waits until the simulation ends. The outputs of this step are the vales of assigned traffic

counts v, and the assignment matrix P . The actual communication of the instructions for the

Aimsun Next call is done through Python;

• Next step is being carried out within the R language. The R code calculates gradient of the

objective functions obtained in (3.3), (3.11) and (3.10), and afterward, it evaluates the optimal

step lengths λoptimal obtained in (3.4) and (3.6). Then it calculates the new estimated OD matrix

using the gradient descent update rule (3.2) (recalling that, for the lasso 1 method we are following

the idea presented in the third strategy).

3.2.2 Network layout

The algorithms have been tested out on two different networks:

• The first network, which we call toy network, includes 7 centriods, 49 OD pairs, and 7 count

detectors. This small-sized network is used primarily for debugging and verification purposes.

• The second network, called Vitoria network (Vitoria city in Spain), shown in figure (3.1) is a

medium-sized urban network, with a highway stretch north of the city centre. This network

comprises 57 centroids, 3249 OD pairs, and a total road length of 631 km, corresponding to 5799

links. The network detection consists of 397 traffic loop detectors which are located both in the

urban center as on the highway stretch. The Vitoria network resembles a reasonable sized real-life

network, with representative congestion levels and route choice dimension, as found in many large

urban areas.
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Figure 3.1: The Vitoria network

3.2.3 Demand setup

In order to test the OD matrix estimation algorithms, a historical OD matrix should be provided as

input. In general, the quality of such a historical OD matrix, in terms of both demand level (number

of trips) and patterns, is a key element impacting the performance of the estimation algorithms, and

it is even more relevant for congested networks. Consequently, selecting proper perturbations of an

OD matrix coming from surveys, in order to derive the historical OD matrix as input for the OD

estimation algorithm, is a crucial task. Accordingly, three different historical OD matrix scenarios have

been chosen for the experiments in this thesis:

• Low-demand scenario (LD): This scenario deals with situations in which, for instance, his-

torical OD matrix results from out-of-date surveys. More precisely, the low-demand scenario is

defined as the 85% of the historical OD matrix coming from surveys, plus uniformly distributed

random fluctuations over each OD pair in the range of [−35%,+35%] of the historical OD matrix.

In another way, the model under-fitted the historical OD matrix coming from survey. Therefore

[ĝLD]i,j := [gsurvey]i,j · (0.5 + 0.7αi,j), α ∈ U(0, 1).

• Medium-demand scenario (MD): This scenario is defined as the 95% of the historical OD

matrix coming from surveys, plus uniformly distributed random fluctuations over each OD pair

in the range of [−15%,+15%] of the historical OD matrix. In another way, the model slightly

under-fitted the historical OD matrix coming from survey. Therefore

[ĝMD]i,j := [gsurvey]i,j · (0.8 + 0.3αi,j), α ∈ U(0, 1).

• High-demand scenario (HD): This scenario deals with situations in which, for instance, the

historical OD matrix reflects travel demand when congestion occurs on the network, in peak-

hours. More precisely, the High-demand scenario is defined as the 115% of the historical OD

matrix coming from surveys, plus uniformly distributed random fluctuations over each OD pair
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in the range of [−35%,+35%] of the historical OD matrix. In another way, the model over-fitted

the historical OD matrix coming from survey. Therefore

[ĝHD]i,j := [gsurvey]i,j · (0.8 + 0.7αi,j), α ∈ U(0, 1).

Remark 13. We execute the required analysis on the toy network, under all these three scenarios, i.e.

LD, MD, and HD. Without loss of generality, we just consider the LD scenario for the Vitoria network.

Remark 14. The criteria to stop the iteration in the OD estimation algorithm, described in subsection

3.2.3, are as follows:

• In the toy network experiment, the iteration is stopped once the difference between two consecutive

objective function values is less than 1.

• In the Vitoria network experiment, the iteration is stopped once the difference between two con-

secutive objective function values is less than 500.

3.2.4 Performance assessment

In order to assess the performance of all the three proposed OD matrix estimation methods, i.e.,

ridge, lasso 1 and lasso 2, to understand bounders of the proposed methods and identify which method

performs the best, the following statistics have been used:

• Root mean squared error (RMSE): The RMSE represents the sample standard deviation

of the differences between estimated and observed values. It is the square root of the average of

squared differences between estimated and actual observation, and is defined as follows

RMSE :=

√√√√ 1

n

n∑
j=1

(yj − ŷj)2,

where n is the number of samples, ŷj ’s are the observed values, and yj ’s are the estimated values.

• GEH index: The GEH Statistic is another measure, used to compare two sets of traffic counts.

It gets its name from Geoffrey E. Havers (UK Highways Agency, 1992). This index is commonly

used as validation criteria in many applications following the recommendations suggested in many

guidelines published by different road administrations, such as FHWA in USA, Highways Agency

in UK, or ARRB in Australia (for more instances and the definition of GEH index, see [34], [21],

and [33]). The GEH statistic of the estimated and observed traffic counts is formulated as follows

GEH :=

√
2(v − v̂)2

v + v̂
.

• Trip length distribution (TLD): Trip length distribution, indicated by TLD is another

measure of statistic, which has been commonly used in the traffic management field ([47], and

[23]). TLD is defined as follows

TLD :=
flow of the OD pair AB

distance of the shortest path between A and B
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3.3 Results

In this section, the results of two case-studies, toy and Vitoria network, are presented for three developed

OD matrix solution approaches, given the different scenarios that were described in the previous section.

3.3.1 Toy network

In order to examine sensitivity of the three proposed methods, using the toy network, four values as

the tuning parameter TP have been selected; TP ∈ {0, 0.1, 1, 100}.
The performance of the proposed OD matrix estimation methods, in terms of reducing dimension-

ality, is presented in Figure (3.2). We analyze the sensitivity of the results under three conditions;

the tuning parameters, demand scenarios, and the methods. From now on, in order to avoid eventual

confusions, when using the ridge and lasso 1 methods, by the term converged OD flows, we mean the

estimated OD flows which are converged to the corresponding historical OD flows. Furthermore, when

using lasso 2 method, by the term converged OD flows, we mean the estimated OD flows which are

converged to zero.

As the tuning parameter increases, number of OD flows converged to the corresponding historical

OD flows in the ridge and lasso 1, and number of OD flows converged to zero in the lasso 2, increase

too, using both demand scenarios. Indeed, when minimizing the objective functions (1.3), (1.4), and

(1.5), increasing the tuning parameter in terms γ(gi− ĝi)2, γ|gi− ĝi|, and γgi leads the terms (gi− ĝi)2,

|gi − ĝi|, and gi decrease more toward zero, and this results in converging higher number of OD flows.

Changing the demand scenario from the LD scenario to the HD scenario, leads in higher number

of converged OD flows. This is due to the fact that when the HD scenario is chosen, the perturbed

historical OD matrix is in fact overestimated. Consequently, the terms (gi− ĝi)2, |gi− ĝi|, and gi blow

up, and when minimizing the objective functions (1.3), (1.4), and (1.5), it results in higher number of

converged OD flows.

When minimizing the objective functions (1.3), (1.4), and (1.5), we have

βlasso 1 := |gi − ĝi| ≤ βridge := (gi − ĝi)2 ≤ βlasso 2 := gi, ∀gi, s.t. |gi − ĝi| ≥ 1, (3.12)

which indeed proves that switching between methods respectively, from the ridge to the lasso 1, and

then to the lasso 2, the number of converged OD flows increases. This is also shown in the figure (3.2).

Comparing the ridge with the lasso 1, number of converged OD flows using the lasso 1, is higher

than the number of converged OD flows using the ridge. Consequently βlasso 1 ≤ βridge, for coefficients

βlasso 1 and βridge defined in (3.12). Therefore in the OD estimation process with the objective functions

(1.3), (1.4), and (1.5), the dimensionality of the coefficient terms βlasso 1 and βridge reduces, and

accordingly the dimensionality of their gradient in the OD estimation process reduces too. Therefore

we expect to see that CPU running time using the lasso 1 method is less than CPU running time of the

ridge method. The same discussion satisfies for the lasso 2, which is expected to be the fastest among

the other methods, in terms of CPU running time of the OD estimation process.

The lasso 2 method reduces the dimensionality of the estimated OD matrix by removing the OD

flows that converged to zero from the state vector. Practically, the lasso 2 method can be employed
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when the network is large, and it consists of long highways with large volumes, while there are also

short-distance trips with small dispensable volumes, which can be discarded.

Speaking of reduction in dimensionality, the lasso 2 method performs the best. When the goal is to

have higher number of converged OD flows, the optimal value of tuning parameter is TP = 100, for all

the demand scenarios and all the methods.

Figure 3.2: Number of non-zero estimated OD flows which converged exactly to the corresponding

historical OD flows using the ridge and lasso 1 methods, and number of non-zero estimated OD flows

which converged exactly to zero using the lasso 2 method (the toy network).

Figure (3.3) shows the RMSE between the estimated and the historical OD demand per scenario

for tested OD matrix solution approaches. Increading the tuning parameter, lasso 2 method performs

better than the ridge and lasso 1 methods, when the model is supposed to not have overfitting to the

historical OD matrix. Furthermore, it is indicated that when the implemented methods are ridge and

lasso 1, increasing the tuning parameter, changes the estimated OD matrix to fit better to the historical

OD matrix.

Concerning demand scenarios, changing receptively from the LD scenario to the MD scenario and

then to the HD scenario, the OD estimation process changes from an under-fitted historical matrix

to a over-fitted historical matrix. Therefore indeed, coefficients βridge and βlasso1 are decreasing, and

consequently RMSE between the historical OD matrix and the estimated OD matrix is decreasing.

Figure 3.3: RMSE for the historical and the estimated OD matrix, for different methods, over all

scenarios (the toy network).

Table (3.1)(a) shows the CPU computation time for the low demand (LD) scenario. We can observe

in this table, significant CPU computation time reduction of the proposed lasso 2 method compared

to the other two methods, since in each iteration step simplifies the estimated OD matrix by reducing
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its dimensionality, by omitting the OD flows equal to zero. Consequently, computation time decreases

with the number of OD pairs to be estimated as iterations progress.

Recalling the definition of the trip length distribution (TLD) statistic, it is the proportion of the

each OD flow to the distance of the shortest path in the corresponding OD pair. Thus, decreasing the

OD flow will decrease the TLD. In another word, less congested OD pairs have less TLD, and using

the lasso 2 method, the corresponding OD flows are expected to converge to zero. This reduces the

dimensionality of the estimated OD matrix.

Table (3.1)(b) shows the percentage of the reduction in dimensionality of the estimated OD matrix,

using the lasso 2 method, and for the low demand (LD) scenario. As the tuning parameter increases,

the dimensionality of the estimated OD matrix reduces. Also, the table shows the maximum TLD

over all the estimated OD pairs, for every specific tuning parameter. Therefore every estimated OD

pair with TLD less than this maximum value, is omitted by converging its OD flow to zero. This

measurement gives a characterization of the estimated OD flows which converged to zero.

Table 3.1: CPU computation time (sec), for the all three proposed methods and the LD scenario, and

maximum TLD (veh/m) of the OD flows converged to zero, using the lasso 2 method and the LD

scenario (the toy network).

(a) Execution time, for the LD scenario (the toy

network).

Ridge Lasso 1 Lasso 2

TP = 0.1 234.11 125.88 117.5

TP = 1 296.78 67.2 60.56

TP = 100 33.81 29.22 25.61

(b) TLD, for the lasso 2 method, and by using the LD scenario

(the toy network).

OD dimension reduction TLD

TP = 0.1 30% 8.678234e-05

TP = 1 39% 2.437603e-07

TP = 100 57% 2.440518e-07

Next, it is important to investigate how these estimated OD demand once assigned to network

can produce traffic flows close to their real observations. Figure (3.4) provides a RMSE performance

overview of solution approaches in terms of relationship between the estimated and observed link traffic

counts. It appears clearly from Figure (3.4) that the lasso 2 method, in absence of the historical matrix

within its objective function, performs better than the ridge and lasso 1 methods. In this regard, the

ridge and lasso 1 have almost the same result. Optimal value of the tuning parameter when all the

proposed methods are considered, is TP = 0, but when the implemented method is just lasso 2, the

optimal tuning parameter can be any value between zero and one.

Concerning demand scenarios, changing receptively from the LD scenario to the MD scenario and

then to the HD scenario, the OD estimation process changes from an under-fitted historical matrix

to a over-fitted historical matrix. Therefore indeed, coefficients βridge and βlasso1 , defined in (3.12),

are decreasing, and consequently RMSE between the observed traffic counts and the estimated traffic

counts is increasing.
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Figure 3.4: RMSE for the observed and estimated traffic counts, for the different methods and scenarios

(the toy network).

GEH index is considered as additional performance indicator used by practitioners to evaluate

performance of proposed methods. GEH index less than 5 in a measurement point is considered a

good match between the estimated and the observed traffic counts. An indication for a good GEH

statistic is to examine whether 85% of the traffic counts have a GEH value less than 5. Figure (3.5)

shows that in the both ridge and lasso 1 methods, more than 85% of the traffic counts have the GEH

indices less than 5, when tuning parameter (TP) is less or equal than 1. The performance of the lasso 2

method is perfect, having 100% of the traffic counts with the GEH indices less than 5. Indeed, the

lasso 2 objective function is defined to fit the estimated and observed traffic counts. Similarly, the same

argument discussed about changing the tuning parameters and the scenarios in Figure (3.4), can be

used here too.

Figure 3.5: GEH statistic of the traffic counts, for the all scenarios and methods (the toy network).

3.3.2 Vitoria netwotk

In what follows, In order to examine sensitivity of the three proposed methods, but this time on the

Vitoria network, four values as the tuning parameter TP have been selected; TP ∈ {0, 0.1, 1, 1000}.
Without loss of generality, the low-demand (LD) scenario has been selected for the Vitoria network.

The performance of the proposed OD matrix estimation methods, in terms of reducing dimension-

ality, is presented in Figure (3.6). We analyze the sensitivity of the results under two conditions; the

tuning parameters, and the methods.

As the tuning parameter increases, number of OD flows converged to the corresponding historical

OD flows in the ridge and lasso 1, and number of OD flows converged to zero in the lasso 2, increase

too. Indeed, when minimizing the objective functions (1.3), (1.4), and (1.5), increasing the tuning
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parameter in terms γ(gi − ĝi)2, γ|gi − ĝi|, and γgi leads the terms (gi − ĝi)2, |gi − ĝi|, and gi decrease

more toward zero, and this results in converging higher number of OD flows.

Comparing the ridge with the lasso 1, number of converged OD flows using the lasso 1, is higher

than the number of converged OD flows using the ridge. Consequently βlasso 1 ≤ βridge, for coefficients

βlasso 1 and βridge defined in (3.12). Therefore in the OD estimation process with the objective functions

(1.3), (1.4), and (1.5), the dimensionality of the coefficient terms βlasso 1 and βridge reduces, and

accordingly the dimensionality of their gradient in the OD estimation process reduces too. Therefore

we expect to see that CPU running using the lasso 1 method is less than the CPU running time of the

ridge method. The same discussion satisfies for the lasso 2, which is expected to be the fastest among

the other methods, in terms of CPU running time of the OD estimation process.

The lasso 2 method reduces the dimensionality of the estimated OD matrix by removing the OD

flows that converged to zero from the state vector. Practically, the lasso 2 method can be employed

when the network is large, and it consists of long highways with large volumes, while there are also

short-distance trips with small dispensable volumes, which can be discarded.

Speaking of reduction in dimensionality, the lasso 2 method performs the best. When the goal is to

have higher number of converged OD flows, the optimal value of tuning parameter is TP = 1000, for

all the methods.

Figure 3.6: Number of non-zero estimated OD flows which converged exactly to the corresponding

historical OD flows using the ridge and lasso 1 methods, and number of non-zero estimated OD flows

which converged exactly to zero using the lasso 2 method (the Vitoria network).

Figure (3.7) shows the performance of objective functions defined in the equation (1.3), (1.4), and

(1.5). There are some small fluctuations in the objective graph over the iteration process, but overall

it decreases to its minimum. Since the minimum of objective functions for all the three methods are

achieved up to the iteration step 100, the algorithm has been stopped after 100 iterations. Increasing the

tuning parameter, the objective function converges faster to the minimum. Indeed, when minimizing

the objective functions, choosing higher tuning parameter, the coefficient terms βridge, βlasso 1, and

βlasso 2 have to minimize faster toward zero.
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Figure 3.7: Objective functions for different methods, using the LD scenario (the Vitoria network).

Table (3.2)(a) shows the CPU computation time for the low demand (LD) scenario. We can observe

in this table, significant CPU computation time reduction of the proposed lasso 2 method compared

to the other two methods, since in each iteration step simplifies the estimated OD matrix by reducing

its dimensionality, by omitting the OD flows equal to zero. Consequently, computation time decreases

with the number of OD pairs to be estimated as iterations progress.

Table (3.2)(b) shows the percentage of the reduction in dimensionality of the estimated OD matrix,

using the lasso 2 method, and for the low demand (LD) scenario. As the tuning parameter increases,

the dimensionality of the estimated OD matrix reduces. Also, the table shows the maximum TLD

over all the estimated OD pairs, for every specific tuning parameter. Therefore every estimated OD

pair with TLD less than this maximum value, is omitted by converging its OD flow to zero. This

measurement gives a characterization of the estimated OD flows which converged to zero.

Table 3.2: CPU computation time (sec), for the all three proposed methods and the LD scenario, and

maximum TLD (veh/m) of the OD flows converged to zero, using the lasso 2 method and the LD

scenario (the Vitoria network).

(a) Execution time, for the LD scenario (the Vitoria

network).

Ridge Lasso 1 Lasso 2

TP = 0.1 4720.43 3974.91 1560.54

TP = 1 2577.01 2090.39 1259.83

TP = 1000 1103.2 1004.19 930.22

(b) TLD, for the lasso 2 method, and by using the LD scenario

(the Vitoria network).

OD dimension reduction TLD

TP = 0.1 34% 1.678094e-05

TP = 1 34.5% 3.488646e-05

TP = 1000 37% 5.143583e-07

Figure (3.8)(a) shows the RMSE between the estimated and the historical OD demand for tested

OD matrix solution approaches. Increading the tuning parameter, lasso 2 method performs better than

the ridge and lasso 1 methods, when the model is supposed to not have overfitting to the historical

OD matrix. Furthermore, it is indicated that when the implemented methods are ridge and lasso 1,

increasing the tuning parameter, changes the estimated OD matrix to fit better to the historical OD

matrix.

Next, it is important to investigate how these estimated OD demand once assigned to network can

produce traffic flows close to their real observations. Figure (3.8)(b) provides a RMSE performance

overview of solution approaches in terms of relationship between the estimated and observed link traffic
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counts. It appears clearly from Figure (3.8)(b) that the lasso 2 method, in absence of the historical

matrix within its objective function, performs better than the ridge and lasso 1 methods. In this regard,

the ridge and lasso 1 have almost the same result. Optimal value of the tuning parameter when all the

proposed methods are considered, is TP = 0, but when the implemented method is just lasso 2, the

optimal tuning parameter can be any value between zero and one.

(a) RMSE for the historical and the esti-

mated OD matrix.

(b) RMSE for the observed and estimated

traffic counts.

Figure 3.8: RMSE between the historical and the estimated OD matrix, and RMSE between the

observed and the estimated traffic counts, for the different methods, and using the LD scenario (the

Vitoria network).

Figure (3.9) shows the GEH statistic of method, for the different tuning parameters, and by using

the low-demand (LD) scenario. The performance of the lasso 2 method is the best, among all the

methods. Indeed, the lasso 2 objective function (1.5) is defined to fit the estimated and observed

traffic counts. Similarly, the same argument discussed about changing the tuning parameters in Figure

(3.8)(b), can be used here too. The optimal tuning parameter is TP = 0, with GEH index equal to

50%.

Figure 3.9: GEH statistic of the traffic counts, using the LD scenario, and all the methods (the Vitoria

network).



Chapter 4

Regularity of minimizers for very

degenerate integral functionals

We will follow the usual convention and denote by c or C a general constant that may vary on different

occasions, even within the same line of estimates. Relevant dependencies on parameters and special

constants will be suitably emphasized using parentheses or subscripts. All the norms we use on will be

the standard Euclidean ones and denoted by | · | in all cases. In particular, for matrices ξ, η ∈ Rn×m we

write 〈ξ, η〉 := trace(ξT η) for the usual inner product of ξ and η, and |ξ| := 〈ξ, ξ〉 12 for the corresponding

euclidean norm. By Br(x) we will denote the ball in Rn centered at x of radius r. The integral mean

of a function u over a ball Br(x) will be denoted by ux,r, that is

ux,r :=
1

|Br(x)|

ˆ
Br(x)

u(y) dy,

where |Br(x)| is the Lebesgue measure of the ball in Rn. If no confusion may arise, we shall omit the

dependence on the center.

In this chapter, we are given a bounded domain Ω ⊂ Rn, a real number p ≥ 2, and an integer

N ≥ 1. We look at local minimizers u : Ω ⊂ Rn → RN of inhomogeneous functionals

F(u,Ω) =

ˆ
Ω

(
F(x,Du) + f(x) · u(x)

)
dx. (4.1)

Roughly speaking, F is a Carathéodory function with growth p, which is assumed to be only assimp-

totically convex with respect to the gradient variable, and f : Ω ⊂ Rn → RN is given. In this setting,

and for f ≡ 0, Fonseca, Fusco and Marcellini proved [42] that local minimizers are Lipschitz continuous

if

|Dx,ξF(x, ξ)| ≤ k(x) (1 + |ξ|)p−1 (x, ξ) ∈ Ω× Rn×N

for some function k ∈ L∞. More recently, in [28] this result was extended to k ∈ Lσloc (Ω) for some

σ > n. Local boundedness for the gradient in the inhomogeneous case was proven in [15, Theorem 5.2]

for f ∈ Cα and α > 0 , and in [14, Theorem 2.1] for f ∈ Lσ, σ > n. In both cases, though, the extra

41
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assumption that F(x, ξ) = F(ξ) was needed.

To be more precise, we have a Carathéodory function

F : Ω×Rn×N → R

(x, ξ)→ F(x, ξ)

This means that, for every fixed ξ ∈ Rn×N , x 7→ F(x, ξ) is measurable, and also that there is a null set

N ⊂ Ω so that ξ 7→ F(x, ξ) is continuous and convex in Rn×N , and C2 on Rn×N \ BR(0). It will be

assumed to satisfy the following properties:

F0 There exist positive constants `, L such that for a.e. x ∈ Ω and all ξ ∈ Rn×N

`|ξ|p ≤ F(x, ξ) ≤ L(|ξ|p + 1)

F1 F is radial at ∞: there is F : Ω× [R,∞)→ R such that

F(x, ξ) = F (x, |ξ|)

for a.e. x ∈ Ω and for all ξ ∈ Rn×N \BR(0)

F2 Uniform p-convexity at ∞: there exists ν > 0 such that if λ ∈ Rn×N then

〈DξξF(x, ξ)λ, λ〉 > ν(1 + |ξ|)p−2|λ|2,

for a.e. x ∈ Ω and all ξ ∈ RnN \BR(0).

F3 There exists L1 > 0, such that

|DξξF(x, ξ)| 6 L1(1 + |ξ|)p−2

for a.e. x ∈ Ω and all ξ ∈ RnN \BR(0).

F4 There exists σ > 0 and a non-negative function k ∈ Lσloc (Ω) such that

|DxξF(x, ξ)| 6 k(x)(1 + |ξ|)p−1,

for a.e. x ∈ Ω and for all ξ ∈ RnN \BR(0).

We can now state the main result of this section.

Theorem 15. Let u ∈W 1,p
loc (Ω) be a local minimizer of the functional F(u,Ω) in (4.1), and assume that

the energy density F(x, ξ) satisfies assumptions F0-F4. If f ∈ Lσ loc (Ω), then there exists a constant

c, such that

sup
Bρ

|Du| 6 c(1 + ||k||Lσ(Br) + ||f ||Lσ(Br))
τ

ˆ
Br

(1 + |Du|p) dx,

for all balls Bρ ⊂ Br b Ω.

The proof of this Theorem is split into two parts: an apriori L∞ estimate, and an approximation.
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4.1 The apriori estimates

We introduce some auxiliary notation. For each γ ∈ R, we will denote

Φ(t) = Φγ(t) =
t2

(1 + t)2−γ . (4.2)

For such Φ, one easily sees that

tΦ′(t) ≤ 2(1 + γ)Φ(t). (4.3)

We also introduce the following notation for the positive part of |Du| − 1,

P = (|Du| − 1)+

so that

DP = χ{|Du>1|} ·
Du

|Du|
·D2u (4.4)

The following lemma is an important application in the so called hole-filling method. Its proof can be

found for example in [46, Lemma 6.1] .

Lemma 16. Let h : [r,R0] → R be a nonnegative bounded function and 0 < ϑ < 1, A,B ≥ 0 and

β > 0. Assume that

h(s) ≤ ϑh(t) +
A

(t− s)β
+B,

for all r ≤ s < t ≤ R0. Then

h(r) ≤ cA

(R0 − r)β
+ cB,

where c = c(ϑ, β) > 0.

In this subsection, we prove an apriori estimate that will be used later in the approximation step (see

Subsection 4.2) for proving Theorem 15. The precise statement is the following one. Recall that F is

the one defined in (4.1).

Theorem 17. Assume F0–F4 hold, and let f ∈ Lσloc(Ω), where σ is the exponent appearing in as-

sumption F4. Fix a ball Br(x0) b Ω and two functions u, ū ∈W 1,p(Br(x0);RN ), and define

F̃(v;Br(x0)) := F(v;Br(x0)) +

ˆ
Br(x0)

arctan(|v − ū(x)|2) dx.

Let v ∈ u+W 1,p
0 (Br(x0);RN ) be a minimizer of F̃, satisfying

v ∈W 2,2
loc (Br(x0);RN ) ∩W 1,∞

loc (Br(x0);RN ) and (1 + |Dv|2)
p−2
2 |D2v|2 ∈ L1

loc(Br(x0)).

Then, for every Br̄(x̄) b Br(x0), every 0 < ρ < r′ ≤ r̄

sup
Bρ

|Du| 6 C(1 + ||k||Lσ(Br′ )
+ ||f ||Lσ(Br′ )

)τ
[ ˆ

Br′ (x0)

(1 + |Du|)pdx
] 1
p

,

for some constant C = C(n,N, p, L1, ν,diam Ω). Moreover, one has
ˆ
Bρ(x0)

((|Du| − 1)+)2

(1 + (|Du| − 1)+)2
|Du|p−2|D2u|2 dx ≤ C(1+||k||Lσ(Br′ )

+||f ||Lσ(Br′ )
)τ
ˆ
Br′ (x0)

(1 + |Du|p)) dx,

(4.5)

for some C = C(n,N, p, L, L1, ν, ρ, r
′.
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In the above result, we are assuming without loss of generality that R = 1 in F0–F4. For the proof of

the above result, the integral
´
Br(x0)

arctan(|v− ū|2) dx is a perturbation of F(v;Br(x0)) that provides

no difficulties. Indeed, denoting g(x, v) := arctan(|v − ū(x)|2), we have that g and its derivatives gvα ,

α = 1, . . . ,m, are bounded. Thus, for the sake of clarity, we prefer to drop this perturbation term, and

to state, and prove an a priori estimate for local minimizers of F(·; Ω) only, see Theorem 18 below.

Theorem 18. Let F(x, ξ) satisfy conditions F0–F4, and let f ∈ Lσloc(Ω), where σ is the exponent

appearing in assumption F4. Assume that u ∈W 2,2
loc (Ω,RN )∩W 1,∞

loc (Ω,RN ) is a local minimizer of the

functional F(·; Ω), and that (1 + |Du|2)
p−2
2 |D2u|2 ∈ L1

loc(Ω). Then the estimate

sup
Bρ

|Du| 6 C(1 + ||k||Lσ(B2R) + ||f ||Lσ(B2R))
τ

[ ˆ
BR

(1 + |Du|)pdx
] 1
p

, (4.6)

holds for every concentric balls Bρ ⊂ BR b Ω. Moreover, the following Caccioppoli inequality holds,

ˆ
Bρ

(|Du| − 1)2
+

(1 + (|Du| − 1)+)2
|Du|p−2|D2u|2 dx ≤ C(1 + ||k||Lσ(B2R) + ||f ||Lσ(B2R))

τ

ˆ
B2R

(1 + |Du|p) dx,

(4.7)

for some C = C(n,N, p, L, L1, ν, σ, ρ,R,diam Ω), an exponent τ = τ(n, σ) > 0 and for every concentric

balls Bρ ⊂ BR ⊂ B2R b Ω.

Proof. We will prove the theorem in 3 steps.

Step 1. The first step is to prove that if γ > 0 and if η ∈ C∞0 (Ω) is a non-negative cutoff function,

then one has ˆ
Ω

η2Φ(P ) |Du|p−2|D2u|2 dx ≤ C(γ + 1)2

ˆ
Ω

η2k2(1 + P )γ+p dx

+ C

ˆ
Ω

|Dη|2(1 + P )γ+p dx+ C

ˆ
Ω

η2|f |2(1 + P )γ−p+2 dx

(4.8)

with C = C(n,N, ν, L, L1). Since u is a local minimizer of F(·; Ω), it satisfies the following integral

identity ˆ
Ω

〈DξF(x,Du), Dψ〉 =

ˆ
Ω

f · ψ ∀ψ ∈ C∞0 (Ω,RN ).

By our assumption on u and a standard approximation argument, we can choose

ψ ≡
∑
s

Dxs

(
η2 · Φ(P ) ·Dxsu

)
,

where η ∈ C∞0 (Ω). Such a choice, together with an integration by parts in the left hand side of previous

identity, yields

−
∑
s

ˆ
Ω

〈
DxsξF(x,Du) +DξξF(x,Du) ·DxsDu,D

(
η2 · Φ(P ) ·Dxsu

)〉
=

ˆ
Ω

f · ψ (4.9)

We now use the product rule to calculate the derivatives of η2 · Φ(P ) ·Dxsu. This converts (4.9) into

I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9 = 0,

where

I1 = 2
∑
s

ˆ
Ω

〈DξξF(x,Du) ·DxsDu,Dη ·Dxsu〉 ηΦ(P ) dx,
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I2 =
∑
s

ˆ
Ω

〈DξξF(x,Du) ·DxsDu,DxsDu〉 η2 Φ(P ) dx,

I3 =
∑
s

ˆ
Ω

〈DξξF(x,Du) ·DxsDu,Φ
′(P )DP ·Dxsu〉 η2 dx,

I4 = 2
∑
s

ˆ
Ω

〈DxsξF(x,Du), Dη ·Dxsu〉 ηΦ(P ) dx,

I5 =
∑
s

ˆ
Ω

〈DxsξF(x,Du), DxsDu〉 η2 Φ(P ) dx,

I6 =
∑
s

ˆ
Ω

〈DxsξF(x,Du),Φ′(P )DP ·Dxsu〉 η2 dx,

I7 = 2
∑
s

ˆ
Ω

f ηΦ(P )Dxsη ·Dxsu dx

I8 =
∑
s

ˆ
Ω

f η2 Φ(P )Dxsxsu dx

I9 =
∑
s

ˆ
Ω

f η2 Φ′(P )Dxsu ·DxsP dx

We will estimate each term separately. It is worth pointing out that the integrals Ii, with i = 1, . . . , 6

will be estimate as done in [38] ,[27]. We will report here for the sake of completeness.

For the estimate of I1 we use assumption F3 and Young’s inequality as follows

|I1| 62L1

∑
s

ˆ
Ω

η(1 + |Du|)p−2 |DxsDu| |Dη| |Dxsu|Φ(P ) dx

6ε
∑
s

ˆ
Ω

η2(1 + |Du|)p−2|D(Dxsu)|2Φ(P ) dx+ C(ε, L1)

ˆ
Ω

|Dη|2(1 + |Du|)pΦ(P ) dx. (4.10)

In order to estimate I4,we use assumption F4 as follows,

|I4| 6
ˆ

Ω

η |Dη| k (1 + |Du|)p Φ(P ) dx

6 C

ˆ
Ω

η2 k2 (1 + |Du|)p Φ(P ) dx+ C

ˆ
Ω

|Dη|2 (1 + |Du|)p Φ(P ) dx.

(4.11)

We estimate I5 arguing as we did before, again using F4. Indeed

|I5| 6
ˆ

Ω

η2k (1 + |Du|)p−1 |DxsDu|Φ(P ) dx

6 ε

ˆ
Ω

η2 (1 + |Du|)p−2 |D2u|2 Φ(P ) dx+ C(ε)

ˆ
Ω

η2 k2 (1 + |Du|)p Φ(P ) dx.

(4.12)

For the estimate of I6, again by virtue of assumption F4, we have

|I6| 6
∑
s

ˆ
Ω

η2 k (1 + |Du|)p−1 |Dxsu|Φ′(P ) |DP | dx

6 C

ˆ
Ω

η2 k (1 + |Du|)p Φ′(P ) |DP | dx

6 C

ˆ
Ω

η2 k (1 + |Du|)p Φ′(P )|D2u|,

(4.13)
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where we used the second equality in (4.4). After setting Cγ = 2(1 + γ) > 0, we multiply and divide

the last integrand in (4.13) by
(
δ+P
Cγ

)1/2

with 0 < δ < 1, and use Young’s inequality, and obtain

|I6| 6 C

ˆ
Ω

η2 Φ′(P )

{
δ + P

Cγ
(1 + |Du|)p−2 |D2u|2

} 1
2

×
{

Cγ
δ + P

k2 (1 + |Du|)p+2

} 1
2

dx

6 ε

ˆ
Ω

η2 Φ′(P )
δ + P

Cγ
(1 + |Du|)p−2 |D2u|2 dx+ C(ε)

ˆ
Ω

η2 Φ′(P )
Cγ
δ + P

k2 (1 + |Du|)p+2 dx

(4.14)

Using that

δ + P 6 2P on the set {|Du| > 2}

and that, by the definition of Cγ and by (4.3),

tΦ′(t) ≤ CγΦ(t),

we can estimate the first integral in the left hand side of (4.14) as follows,

ε

Cγ

ˆ
Ω

η2 · Φ′(P ) · (δ + P )(1 + |Du|)p−2|D2u|2 dx

=
ε

Cγ

ˆ
{|Du|>2}

η2 Φ′(P ) (δ + P ) (1 + |Du|)p−2 |D2u|2dx

+
ε

Cγ

ˆ
{16|Du|62}

η2 Φ′(P ) (δ + P ) (1 + |Du|)p−2 |D2u|2 dx

6
2ε

Cγ

ˆ
Ω∩{|Du|>2}

η2 Φ′(P )P (1 + |Du|)p−2 |D2u|2 dx

+
ε

Cγ

ˆ
Ω∩{16|Du|62}

η2 Φ′(P )P (1 + |Du|)p−2 |D2u|2 dx

+
εδ

Cγ

ˆ
Ω∩{16|Du|62}

η2 Φ′(P ) (1 + |Du|)p−2 |D2u|2 dx

6 2ε

ˆ
Ω∩{|Du|>2}

η2 Φ(P ) (1 + |Du|)p−2 |D2u|2 dx

+ε

ˆ
Ω∩{16|Du|62}

η2Φ(P )(1 + |Du|)p−2|D2u|2 dx

+
εδ

Cγ

ˆ
Ω∩{16|Du|62}

η2 · Φ′(1)(1 + |Du|)p−2|D2u|2 dx

6 3ε

ˆ
Ω

η2Φ(P )(1 + |Du|)p−2|D2u|2 dx

+
εδ

2

ˆ
{1≤|Du|≤2}

η2 · Φ′(1)(1 + |Du|)p−2|D2u|2 dx, (4.15)

where, in the last line we used that Φ′(t) is increasing and that P ≤ 1 on the set {1 6 |Du| 6 2}.
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Plugging (4.15) into (4.14), we get

|I6| 6 3ε

ˆ
Ω

η2Φ(P )(1 + |Du|)p−2|D2u|2 dx+
εδ

2

ˆ
{1≤|Du|≤2}

η2Φ′(1)(1 + |Du|)p−2|D2u|2 dx

+ C(ε, γ)

ˆ
Ω

η2Φ′(P )k2(x)(δ + P )−1(1 + |Du|)p+2 dx

6 3ε

ˆ
Ω

η2Φ(P )(1 + |Du|)p−2|D2u|2 dx+ CpεδΦ′(1)

ˆ
{1≤|Du|≤2}

η2|D2u|2 dx

+ C(ε)Cγ

ˆ
Ω

η2Φ′(P )k2(x)(δ + P )−1(1 + |Du|)p+2 dx.

Using the definition of Φ, and the fact that
P

δ + P
6 1, we have

(δ + P )−1Φ′(P ) = Φ′(P ) · P

δ + P
· P−1

6 CγΦ(P ) · P−2 = Cγ (1 + P )γ−2

(4.16)

Therefore inserting (4.16) into the last integral on the right hand side of previous estimate, and using

the definition of Φ(P )

|I6| 6 3ε

ˆ
Ω

η2Φ(P )(1 + |Du|)p−2|D2u|2 dx+ CpεδΦ′(1)

ˆ
{1≤|Du|≤2}

η2|D2u|2 dx

+ C(ε)C2
γ

ˆ
Ω

η2k2(x)(1 + |Du|)p+γ dx.

By virtue of the assumption |D2u| ∈ L2
loc(Ω), we can let δ → 0 in previous estimate thus getting

|I6| ≤ 3ε

ˆ
Ω

η2Φ(P )(1 + |Du|)p−2|D2u|2 dx

+ C(ε)(γ + 1)2

ˆ
Ω

η2k2(x)(1 + |Du|)p+γ dx, (4.17)

where we used that Cγ ∼ (γ + 1). For I7, using Young’s inequality, we get

|I7| ≤ 2

ˆ
Ω

η|f ||Dη||Du|Φ(P ) = 2

ˆ
Ω

η|f ||Dη||Du|(1 + |Du|)
p−2
2 (1 + |Du|)

2−p
2 Φ(P )

≤ C
ˆ

Ω

η2|f |2(1 + |Du|)2−pΦ(P ) + C

ˆ
Ω

|Dη|2(1 + |Du|)pΦ(P ). (4.18)

Concerning I8 and I9, we have

|I8|+ |I9| ≤
ˆ

Ω

η2|f ||D2u|Φ(P ) +

ˆ
Ω

η2|f ||Du||D2u|Φ′(P ). (4.19)

The first integral in the right hand side of (4.19) can be estimated by Young’s inequality as follows

ˆ
Ω

η2 |f | |D2u|Φ(P ) =

ˆ
Ω

η2|f | (1 + |Du|)
p−2
2

(1 + |Du|) p−2
2

|D2u|Φ(P )

≤ ε
ˆ

Ω

η2(1 + |Du|)p−2|D2u|2Φ(P ) + C(ε)

ˆ
Ω

η2(1 + |Du|)2−p|f |2Φ(P ).

(4.20)
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To estimate the second integral in (4.19) we argue as we did for I6 multiplying and dividing for

C
1
2
γ (δ + P )

1
2 with 0 < δ < 1 and we use Young’s inequality, thus getting

ˆ
Ω

η2|f ||Du||D2u|Φ′(P ) =

ˆ
Ω

η2|f ||Du||D2u|C
1
2
γ (δ + P )

1
2 (1 + |Du|)

p−2
2

C
1
2
γ (δ + P )

1
2 (1 + |Du|) p−2

2

Φ′(P )

≤ ε

Cγ

ˆ
Ω

η2(1 + |Du|)p−2(δ + P )|D2u|2Φ′(P )

+C(ε)Cγ

ˆ
Ω

η2 |Du|2|f |2

(δ + P )(1 + |Du|)p−2
Φ′(P )

=
ε

Cγ

ˆ
Ω∩{|Du|>2}

η2(1 + |Du|)p−2(δ + P )|D2u|2Φ′(P )

+
ε

Cγ

ˆ
Ω∩{1<|Du|≤2}

η2(1 + |Du|)p−2(δ + P )|D2u|2Φ′(P )

+C(ε)Cγ

ˆ
Ω

η2 |Du|2|f |2

(δ + P )(1 + |Du|)p−2
Φ′(P )

≤ 2
ε

Cγ

ˆ
Ω∩{|Du|>2}

η2(1 + |Du|)p−2P |D2u|2Φ′(P )

+
ε

Cγ

ˆ
Ω∩{1<|Du|≤2}

η2(1 + |Du|)p−2P |D2u|2Φ′(P )

+
ε

Cγ
δ

ˆ
Ω∩{1<|Du|≤2}

η2(1 + |Du|)p−2|D2u|2Φ′(1)

+C(ε)Cγ

ˆ
Ω

η2 |Du|2|f |2

(δ + P )(1 + |Du|)p−2
Φ′(P )

≤ 3
ε

Cγ

ˆ
Ω

η2(1 + |Du|)p−2P |D2u|2Φ′(P )

+
ε

Cγ
δ

ˆ
Ω∩{1<|Du|≤2}

η2(1 + |Du|)p−2|D2u|2Φ′(1)

+C(ε)Cγ

ˆ
Ω

η2 |Du|2|f |2

(δ + P )(1 + |Du|)p−2
Φ′(P ),

where we used that δ+P ≤ 2P in the set {|Du| > 2} and that Φ′(t) is increasing and that P ≤ 1 in the

set {1 < |Du| ≤ 2}. Using the inequalities tΦ′(t) ≤ CγΦ(t) and (4.16) in previous estimate, we obtain

ˆ
Ω

η2|f ||Du||D2u|Φ′(P )≤ 3ε

ˆ
Ω

η2(1 + |Du|)p−2|D2u|2Φ(P )

+C
ε

Cγ
δ

ˆ
Ω∩{1<|Du|≤2}

η2|D2u|2Φ′(1)

+C(ε)Cγ

ˆ
Ω

η2(1 + |Du|)2−p+γ |f |2. (4.21)

Combining (4.21) and (4.20) and letting δ → 0, we get

|I8|+ |I9| ≤ 4ε

ˆ
Ω

η2(1 + |Du|)p−2|D2u|2Φ(P )
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+C(ε)Cγ

ˆ
Ω

η2(1 + |Du|)2−p+γ |f |2. (4.22)

We remind that

I2 + I3 = −I1 − I4 − I5 − I6 − I7 − I8 − I9. (4.23)

We now ellaborate on the precise form of DξξF(x, ξ) to estimate I3. To do this, we abbuse of notation

and for every scalar t we denote F ′(x, t) = ∂tF (x, t) and F ′′(x, t) = ∂ttF (x, t). By F1, for every

ξ ∈ Rn×N \ {0} one has

DξξF(x, ξ) =

(
F ′′(x, |ξ|)
|ξ|2

− F ′(x, |ξ|)
|ξ|3

)
ξ ⊗ ξ +

F ′(x, |ξ|)
|ξ|

IdRn×N

Componentwise,

Dξβj ,ξ
α
i
F(x, ξ) =Dξβj

(
F ′(x, |ξ|) ξ

α
i

|ξ|

)
=

(
F ′′(x, |ξ|)
|ξ|2

− F ′(x, |ξ|)
|ξ|3

)
ξαi ξ

β
j +

F ′(x, |ξ|)
|ξ|

δξαi ξ
β
j

Recalling the second equality in (4.4), for a.e. x ∈ {|Du| ≥ 1}, we have∑
s

〈DξξF(x,Du) ·DxsDu,DP ·Dxsu〉 =
∑

s,i,j,α,β

Dξβj ,ξ
α
i
F(x,Du)uαxsu

β
xsxjPxi =

=

(
F ′′(x, |Du|)
|Du|2

− F ′(x, |Du|)
|Du|3

) ∑
s,i,j,α,β

uαxsu
β
xsxju

α
xiu

β
xjPxi +

F ′(x, |Du|)
|Du|

∑
s,i,α

uαxsu
α
xsxiPxi

=

(
F ′′(x, |Du|)
|Du|

− F ′(x, |Du|)
|Du|2

)∑
s,i,α

uαxs(|Du|)xsu
α
xi(|Du|)xi +

F ′(x, |Du|)
|Du|

∑
s,i,α

uαxsu
α
xsxi(|Du|)xi

=

(
F ′′(x, |Du|)
|Du|

− F ′(x, |Du|)
|Du|2

)∑
α

(∑
i

uαxi(|Du|)xi

)2

+ F ′(x, |Du|)|D(|Du|)|2.

(4.24)

Thus,

I3 =

ˆ
Ω

η2Φ′(P )
F ′′(x, |Du|)
|Du|

∑
α

(∑
i

uαxi(|Du|)xi

)2

dx

+

ˆ
Ω

η2Φ′(P )F ′(x, |Du|)

(
|D(|Du|)|2 −

∑
α

(∑
i u

α
xi(|Du|)xi

)2
|Du|2

)
dx.

Now, if we use the Cauchy-Schwartz inequality, we have

∑
α

(∑
i

uαxi(|Du|)xi

)2

≤ |Du|2|D(|Du|)|2.

Since

Φ′(t) = (1 + t)γ−3t(γt+ 2) (4.25)

is nonnegative for every t ≥ 0 and, by F2, F ′(x, |Du|) ≥ 0, then we conclude that

I3 ≥
ˆ

Ω

η2Φ′(P )
F ′′(x, |Du|)
|Du|

∑
α

(∑
i

uαxi(|Du|)xi

)2

dx ≥ 0. (4.26)
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Therefore, using I3 > 0 together with (4.23) we have

I2 6 |I1|+ |I4|+ |I5|+ |I6|+ |I7|+ |I8|+ |I9|. (4.27)

On the other hand, the ellipticity assumption F2 gives us that

I2 > ν

ˆ
Ω

η2 · Φ(P ) · (1 + |Du|)p−2 · |D2u|2 dx. (4.28)

Inserting estimates (4.10), (4.11), (4.12), (4.17), (4.18), (4.20), (4.28) into (4.27), we obtain

ν

ˆ
Ω

η2 · Φ(P ) (1 + |Du|)p−2 |D2u|2 dx

≤ 6 ε

ˆ
Ω

η2Φ(P ) (1 + |Du|)p−2 |D2u|2 dx+ C(ε, L1)

ˆ
Ω

|Dη|2| (1 + |Du|)pΦ(P ) dx

+ C

ˆ
Ω

η2Φ(P )k2(x) (1 + |Du|)p dx+ C(ε)(γ + 1)2

ˆ
Ω

η2k2(x) (1 + |Du|)p+γ dx

+ C(γ + 1)2

ˆ
Ω

η2|f |2Φ(P )|(1 + |Du|)2−p dx. (4.29)

We now choose ε = ν
12 , and reabsorb the first integral in the right hand side by the left hand side. We

obtain ˆ
Ω

η2 · Φ(P ) (1 + |Du|)p−2 |D2u|2 dx

≤ C
ˆ

Ω

|Dη|2| (1 + |Du|)p Φ(P ) dx+ C

ˆ
Ω

η2Φ(P )k2(x) (1 + |Du|)p dx

+ C(γ + 1)2

ˆ
Ω

η2k2(x) (1 + |Du|)p+γ dx+ C(γ + 1)2

ˆ
Ω

η2|f |2Φ(P )|(1 + |Du|)2−p dx

Inequality (4.8) follows taking into account the definition of Φ(P ), and recalling P = (|Du| − 1)+.

Step 2. Fix a ball BR(x0) b Ω and radii 0 < ρ < s < t < R. Due to the local nature of our results,

without loss of generality we may suppose R < 1. Let η ∈ C∞0 (Bt) be a cut off function such that

η ≡ 1 on Bs and |Dη| 6 C

t− s
. Inequality (4.8) can be written as follows

ˆ
Ω

η2Φ(P ) |Du|p−2|D2u|2 dx ≤ J1 + J2 + J3, (4.30)

where we used the notations

J1 := C

ˆ
|Dη|2(1 + P )γ+p dx,

J2 := C(γ + 1)2

ˆ
η2k2 (1 + P )γ+p dx,

J3 := C(γ + 1)2

ˆ
η2|f |2(1 + P )γ−p+2 dx.

We estimate Ji, i = 1, 2, 3 using the assumptions k, f ∈ Lσloc(Ω), Hölder’s inequality and the properties

of η. Setting b = σ
σ−2 , we get

J1 6 C
|BR|2/σ

(t− s)2

(ˆ
Bt

(1 + P )b(γ+p) dx

) 1
b

(4.31)
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and

J2 6 C(γ + 1)2

(ˆ
Bt

kσ dx

) 2
σ

·
(ˆ

Bt

(1 + P )b(γ+p) dx

) 1
b

, (4.32)

and

J3 ≤ (γ + 1)2

ˆ
Bt

|f |2(1 + P )−2p+2(1 + P )γ+p dx

6 (γ + 1)2

(ˆ
Bt

|f |σ dx
) 2
σ

·
(ˆ

Bt

(1 + P )b(γ+p) dx

) 1
b

, (4.33)

where we used that (1 + P )2−2p 6 1. Let us now define the constant ER as follows

E2
R := ‖k‖2Lσ(BR) + ‖f‖2Lσ(BR) . (4.34)

Inserting (4.31), (4.32) and (4.33) into (4.30), and using (4.34), we get

ˆ
Ω

η2 Φ(P ) |Du|p−2|D2u|2 dx 6 C(γ + 1)2 1 + E2
R

(t− s)2

(ˆ
BR

(1 + P )b(γ+p) dx

) 1
b

, (4.35)

Following [?], we now introduce the auxilliary function

G(t) = 1 +

ˆ t

0

(1 + s)
γ+p−4

2 s ds.

It is easy to see that

1

2(γ + p)
(1 + t)

γ+p
2 ≤ G(t) ≤ 2(1 + t)

γ+p
2 , G′(t) = t(1 + t)

γ+p−4
2 . (4.36)

We now observe that 2 ≤ n < σ <∞ implies 1 < b < n
n−2 ≤ ∞ and so there exists m such that

b < m ≤ n

n− 2
.

For such a choice of m, one has by the Sobolev embedding that

W 1,2
loc ↪→ L2∗

loc ↪→ L2m
loc .

Indeed, for n > 2 this is clear, while for n = 2 one simply abbuses of notation and replace L2∗ by

BMO. Thus(ˆ
Ω

∣∣∣η G(P )
∣∣∣2m dx) 1

m

≤ C
ˆ

Ω

∣∣∣D(η G(P ))
∣∣∣2 dx ≤ C ˆ

Ω

|Dη|2G(P )2 dx+ C

ˆ
Ω

η2G′(P )2|DP |2 dx.

Using the properties of G(t) at (4.36) in the previous inequality, we obtain

1

(γ + p)2

(ˆ
Ω

η2m (1 + P )
m(γ+p)

dx

) 1
m

≤ c
ˆ

Ω

|Dη|2 (1 + P )
γ+p

dx+ c

ˆ
Ω

η2 (1 + P )
γ+p−4

P 2 |DP |2 dx

≤ c

(t− s)2

ˆ
Bt

(1 + P )
γ+p

dx+ c

ˆ
Ω

η2Φ(P ) |Du|p−2|D2u|2 dx

≤ c

(t− s)2

(ˆ
Bt

(1 + P )
b(γ+p)

dx

) 1
b

+ c

ˆ
Ω

η2Φ(P ) |Du|p−2|D2u|2 dx ,

(4.37)
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where we also used the properties of the function η and Hölder’s inequality. Combining estimates

(4.42) and (4.37), using that η ≡ 1 on Bs and recalling that P = (|Du| − 1)+, we get(ˆ
Bs

(1 + P )m(γ+p) dx

) 1
m

6 C(γ + p)4 1 + E2
R

(t− s)2

(ˆ
Bt

(1 + P )b(γ+p) dx

) 1
b

(4.38)

Using now that 1 < b < m, and setting θ = 1−1/b
1−1/m , one has 0 < θ < 1 and moreover

1

b(γ + p)
=

1− θ
γ + p

+
θ

m(γ + p)

and so, the use of the interpolation inequality in the right hand side (4.38) yields(ˆ
Bs

(1 + P )m(γ+p) dx

) 1
m

≤ C(γ + p)4 1 + E2
R

(t− s)2

(ˆ
Bt

(1 + P )γ+p dx

)1−θ(ˆ
Bt

(1 + P )m(γ+p) dx

) θ
m

(4.39)

We now use Young’s inequality with exponents 1
θ and 1

1−θ in the right hand side of (4.39) thus getting(ˆ
Bs

(1 + P )m(γ+p) dx

) 1
m

6
1

2

(ˆ
Bt

(1 + P )m(γ+p) dx

) 1
m

+ C

(
(γ + p)4 1 + E2

R

(t− s)2

) 1
1−θ
ˆ
BR

(1 + P )γ+p dx (4.40)

The iteration Lemma 16 now gives that(ˆ
Bρ

(1 + P )m(γ+p) dx

) 1
m

6 C

(
(γ + p)4 1 + E2

R

(R− ρ)2

) 1
1−θ
ˆ
BR

(1 + P )γ+p dx. (4.41)

It is important to notice that here γ ≥ 0 can take any value.

Step 3. Let us define the decreasing sequence of radii ρj , j ∈ N, by setting

ρj := ρ+
R− ρ

2j
,

and the increasing sequence of exponents

pj = (γ + p) mj .

Estimate (4.41) can be written on every ball Bρj as follows(ˆ
Bρj+1

(1 + P )pj+1 dx

) 1
pj+1

6

[
C
p2
j (1 + ER)

(ρj − ρj+1)

] 2m
pj

1
1−θ(ˆ

Bρj

(1 + P )pj dx

) 1
pj

. (4.42)

Iterating estimate (4.42) we obtain(ˆ
Bρj+1

(1 + P )pj+1 dx

) 1
pj+1

6
+∞∏
j=0

[
C
p2
j (1 + ER)

(ρj − ρj+1)

] 2m
pj

1
1−θ(ˆ

Bρ0

(1 + P )p0 dx

) 1
p0

=

+∞∏
j=0

[
C

2j+1p2
j (1 + ER)

(R− ρ)

] 2m
pj

1
1−θ(ˆ

Bρ0

(1 + P )p0 dx

) 1
p0

,
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where we used the definition of ρj . It is easy to prove that

+∞∏
j=0

[
C

2j+1p2
j (1 + ER)

(R− ρ)

] 2m
pj

1
1−θ

≤ Ĉ
(

(1 + ER)

(R− ρ)

)τ

for τ = 4m3

σ(m−1)2 , and a constant Ĉ = Ĉ(n,N, p, σ, ν, L, L1,m). Therefore

( ˆ
Bρj+1

(1 + P )pj+1 dx

) 1
pj+1

6 Ĉ
(1 + ER)τ

(R− ρ)τ

(ˆ
Bt

(1 + P )γ+p dx

) 1
γ+p

,

for every j ∈ N. Now, letting j →∞, and recalling that ρj ≥ ρ, for every j ∈ N, we end up with

sup
Bρ

|Du| ≤ sup
Bρ

(1 + P )

= lim
j→∞

(ˆ
Bρ

(1 + P )pj

) 1
pj

≤ Ĉ (1 + ER)τ

(R− ρ)τ

(ˆ
BR

(1 + |Du|)(γ+p)

) 1
γ+p

,

that, choosing γ = 0, gives (4.6).

Step 4. In this Step we are going to establish estimate (4.7). To this aim we write (4.8) for γ = 0,

ˆ
Ω

η2Φ(P ) |Du|p−2 |D2u|2 dx ≤ C
ˆ

Ω

η2k2 (1 + P )p dx

+ C

ˆ
Ω

|Dη|2 (1 + P )p dx+ C

ˆ
Ω

η2|f |2 (1 + P )−p+2 dx,

(4.43)

for every η ∈ C∞0 (Ω). Choosing radii 0 < ρ < R, η a cut off function between Bρ and BR and using

estimate (4.6), we obtain

ˆ
Bρ

Φ(P ) |Du|p−2|D2u|2 dx ≤ C sup
BR

|Du|p
ˆ
BR

k2 dx+
C|BR|

(R− ρ)2
sup
BR

|Du|p + C

ˆ
BR

|f |2 dx

≤ C(1 + E2R)τ
′
ˆ
B2R

(1 + |Du|p) dx,
(4.44)

for a constant C = C(n,N, p, L, L1, ν) and an exponent τ ′ = τ ′(σ, p, n). The proof is finished.

4.2 Proof of Theorem 15

In this section, we use the apriori estimate of Theorem 17 to prove Theorem 15. In particular, we show

that local minimizers u ∈W 1,p
loc (Ω;RN ) of the functional in (4.1),

F(u,Ω) =

ˆ
Ω

F(x,Du) + f(x) · u dx

are locally Lipschitz.

To this end, we state first the following approximation result, which we take from [27]. It shows

that one can find a sequence of uniformly elliptic integrands Fm that approximate the given F . The
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approximants can be chosen to be Lipschitz in the x variable, and also to have ellipticity bounds on

all the domain of the ξ variable, although these bounds may depend on m (see conditions F̃m2-F̃m4

below). Furthermore, these ellipticity conditions may be assumed uniform in m away from a ball of the

ξ variable (see conditions F̃0-F̃4 below). We recall that, without loss of generality, we assumed that

the radius R appearing in the assumptions F0–F4 is equal to 1.

Proposition 19. Let F : Ω×Rn×N → [0,+∞) be a Carathéodory function, convex and C2 with respect

to the second variable, and satisfying assumptions F0–F4. Fixed an open set Ω′ b Ω, there exists a

sequence Fm : Ω′×Rn×N → [0,+∞) of Carathéodory functions, C2 and convex in the second variable,

such that Fm converges to F pointwise a.e. on Ω′ and everywhere in Rn×N . Moreover, each Fm can

be chosen so that the following properties are satisfied:

F̃0 there exist constants L̃, c̃1, c̃2 > 0 such that for all (x, ξ) ∈ Ω′ × Rn×N

c̃1|ξ|p − c̃2 ≤ Fm(x, ξ) ≤ L̃(1 + |ξ|)p,

F̃1 for every x ∈ Ω′ and ξ ∈ RnN \B2(0) one has Fm(x, ξ) = Fm(x, |ξ|),

F̃2 there exists ν̃ = ν̃(ν, p) such that for every x ∈ Ω′, ξ ∈ Rn×N \B2(0) and λ ∈ Rn×N

ν̃(1 + |ξ|)p−2|λ|2 ≤ 〈DξξFm(x, ξ)λ, λ〉,

F̃3 there exists L̃1 > 0 such that for all (x, ξ) ∈ Ω′ × RnN \B2(0)

|DξξFm(x, ξ)| ≤ L̃1(1 + |ξ|)p−2,

F̃4 for every x ∈ Ω′ and ξ ∈ RnN \B2(0),

|DξxFm(x, ξ)| ≤ 2p−1km(x)(1 + |ξ|)p−1,

where km ∈ C∞(Ω′) is a non-negative function, such that km → k in Lσ(Ω′),

Moreover, the above properties can be extended to all ξ ∈ Rn×N in the following way:

F̃m2 There is µm > 0 such that for all (x, ξ) ∈ Ω′ × Rn×N and for all λ ∈ Rn×N

µm(1 + |ξ|)p−2|λ|2 ≤ 〈DξξFm(x, ξ)λ, λ〉.

F̃m3 there exists σm > 0 such that for all (x, ξ) ∈ Ω′ × RnN

|DξξFm(x, ξ)| ≤ σm(1 + |ξ|)p−2.

F̃m4 There is Λm > 0 such that for every x ∈ Ω′ and ξ ∈ B2(0)

|DξxFm(x, ξ)| ≤ Λm(1 + |ξ|)p−1.
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We now recall a regularity result for minimizers of functionals of the form

inf
w

ˆ
Ω

F(x,Dw) + arctan(|w − ū|2) dx

where F has standard growth conditions and smooth dependence on the x-variable, and ū is fixed. In

absence of the perturbation term arctan(|w− ū|2), this regularity result is well known. We refer to [45]

for the higher differentiability result, and to [29, Theorem 1.1] as far as the Lipschitz continuity of the

local minimizers is concerned. In presence of the perturbation term, the proofs can be easily adapted

because of the boundedness of its integrand and of its derivative with respect to the variable w. More

precisely, we have the following.

Theorem 20. Let F : Ω× RnN → [0,+∞), F ∈ C2(Ω× RnN ), and define the functional

ˆ
Ω

F(x,Dw) + arctan(|w − ū|2) dx (4.45)

with ū ∈ C2(Ω;RN ). Assume that there exists p ≥ 2 such that for every x ∈ Ω and every ξ, λ ∈ RnN ,

c1|ξ|p − c2 ≤ g(x, ξ) ≤ L(1 + |ξ|)p,

ν (1 + |ξ|)p−2|λ|2 ≤ 〈Dξξg(x, ξ)λ, λ〉,

|Dξξg(x, ξ)| ≤ L1 (1 + |ξ|)p−2,

|Dξxg(x, ξ)| ≤ K(1 + |ξ|)p−1,

with positive constants c1, c2, L, L1, ν,K. Then any local minimizer v of (4.45) is in W 2,2
loc (Ω;RN ) and

(1 + |Dv|2)
p−2
2 |D2v|2 ∈ L1

loc(Ω).

Moreover, if there exists F : Ω × [0,+∞) → [0,+∞) such that F(x, ξ) = F (x, |ξ|) , then one also has

v ∈W 1,∞
loc (Ω;RN ).

We are now ready for proving Theorem 15.

Proof of Theorem 15. Let u ∈W 1,p
loc (Ω) be a local minimizer of the functional F(u,Ω), and letBr ⊂ Ω be

a fixed ball. We consider the sequence of energy densities Fm(x, ξ) obtained after applying Proposition

19 to the integrand F . For a standard sequence of mollifiers ρε, we set uε = u ∗ ρε, fε = f ∗ ρε. We

define

Fε,m(w,Br) :=

ˆ
Br

Fm(x,Dw) + fε(x)w + arctan |w − uε|2 dx.

The lower semi-continuity and strict convexity of Fε,m ensures that the minimization problem

min

{
Fε,m(w;Br) : w ∈ u+W 1,p

0 (Br,RN )

}
(4.46)
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has a unique solution vε,m ∈ u+W 1,p
0 (Br,RN ). By the growth of Fm (Proposition 19 , condition (A0))

and the minimality of vε,m, there exists a constant C independent of m and such that

ˆ
Br

|Dvε,m|p dx ≤ C
ˆ
Br

1 + Fm(x,Dvε,m) dx

≤ C Fε,m(vε,m, Br)−
ˆ
Br

fε(x)vε,m dx

≤ C Fε,m(u,Br)−
ˆ
Br

fε(x)vε,m dx

= C

ˆ
Br

(
1 + Fm(x,Du) + arctan |u− uε|2

)
dx−

ˆ
Br

fε(x)(vε,m − u) dx

≤ C
ˆ
Br

(
1 + |Du|p +

(π
2

)2
)
dx+

ˆ
Br

|fε(x)|vε,m − u| dx.

We now use Young’s inequality, and Poincaré inequality, and the previous estimate yields
ˆ
Br

|Dvε,m|p dx ≤ C
ˆ
Br

1 + |Du|p dx+ cα

ˆ
Br

|fε(x)|p
′
dx+ α

ˆ
Br

|vε,m − u|p dx

≤ C
ˆ
Br

1 + |Du|p dx+ cα

ˆ
Br

|fε(x)|p
′
dx+ cn,p,rα

ˆ
Br

|Dvε,m −Du|p dx,

≤ C
ˆ
Br

1 + |Du|p dx+ cα

ˆ
Br

|fε(x)|p
′
dx+ cn,p,rα

ˆ
Br

|Du|p dx+ cn,p,rα

ˆ
Br

|Dvε,m|p dx,

We now choose α = 1
2cn,p,r

, and the above inequality becomes

ˆ
Br

|Dvε,m|p dx ≤ C
ˆ
Br

1 + |Du|p dx+ cn,p,r

ˆ
Br

|fε(x)|p
′
dx

for a constant C independent of ε and m. By weak compactness, we deduce that {vε,m}m weakly

converges to a function vε ∈ u + W 1,p
0 (Br;RN ) as m → +∞, up to a subsequence mj = mj(ε) . Set

now

Fε(w,Br) :=

ˆ
Br

F(x,Dw) + fε(x)w + arctan |w − uε|2 dx.

For every fixed ε > 0, one can see that Fε,m Γ-converges to Fε as m → ∞ (see Theorem 5.14 and

Corollary 7.20 in [30]). As a consequence, vε is a minimizer of Fε. Now, the lower semicontinuity of the

Lp norm implies thatˆ
Br

|Dvε|p dx ≤ lim inf
m→∞

ˆ
Br

|Dvε,m|p dx ≤ C
ˆ
Br

1 + |Du|p dx+ cn,p,r

ˆ
Br

|fε(x)|p
′
dx

From p′ < 2 < σ, it turns out that
´
Br
|fε(x)|p′ dx 6 C, with C is independent of ε and so

ˆ
Br

|Dvε|p dx ≤ lim inf
m→∞

ˆ
Br

|Dvε,m|p dx 6 C. (4.47)

As before, by compactness there exists v ∈ u+W 1,p
0 (Br;RN ) such that vε converges to v in the weak

W 1,p
0 (Br,RN ) topology. Also, again by the lower semicontinuity of the norm,

ˆ
Br

|Dv|p dx ≤ lim
ε→0

ˆ
Br

|Dvε|p dx 6 C. (4.48)
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Observe that, as ε→ 0, the functionals Fε Γ-converge to

F0(w,Br) :=

ˆ
Br

F(x,Dw) + f(x) · w + arctan |w − u|2 dx,

whence v is a minimizer of F0, and therefore F0(v,Br) ≤ F0(u,Br). This, together with the minimality

of u, implies that

F(u,Br) ≤ F(v,Br)

≤ F0(v,Br) ≤ F0(u,Br) = F(u,Br)

Hence the above inequalities are an equality, and as a consequenceˆ
Br

arctan |u− v|2 dx = 0, ⇒ u = v a.e. in Br,

The functionals Gε,m, for every ε and m, satisfy the assumptions of Theorem 20. Therefore their

minimizers vε,m belong to W 2,2
loc ∩W 1,∞, and so we are legitimate to use the a priori estimate (4.6) of

Theorem 17, thus getting

sup
Bρ

|Dvε,m| 6 C(1 + ||kε||Lσ(Br) + ||fε||Lσ(Br))
τ

(ˆ
Bρ′

(1 + |Dvε,m|p dx
) 1
p

,

for every Bρ ⊂ Bρ′ b Br and for a constant C independent of ε and m. By virtue of (4.47) and (4.48),

and since kε → k and fε → f strongly in Lσ, passing to the limit, first as m→ +∞, and then as ε→ 0,

we conclude that

sup
Bρ

|Du| 6 C(1 + ||k||Lσ(Br) + ||f ||Lσ(Br))
τ

(ˆ
Bρ′

(1 + |Du|p + |f |σ) dx

)γ
.

This finishes the proof.

4.3 Boundary Lipschitz estimates

In this section we show that a typical reflection method extends the previous interior estimates up

to the boundary. To this end, we will proceed as in [15]. We will start with the following auxilliary

standard result.

Lemma 21. Let B ⊂ Rn be a ball centered at the origin. Set B+ = B∩{xn > 0} and B− = B∩{xn <
0}, and let f : B −→ R be such that f ∈ W 1,p(B+) and f ∈ W 1,p(B−). If f is continuous on B, then

f ∈W 1,p(B).

This result is classical, and we omit its proof. Our first main result states that Theorem 15 gives global

bounds when Ω has nice boundary.

Theorem 22. Suppose Ω is a bounded domain with ∂Ω ∈ C3,1. Let F be as in Theorem 15, and let

u ∈W 1,p
loc (Ω) be a weak solution of following Neumann boundary problem−div(DξF(x,∇u(x))) = f, in Ω,

DξF(x,∇u(x)).ν = 0, on ∂Ω,
(4.49)

for some f ∈ Lσ(Ω), and σ > n. Then Du ∈ L∞(Ω).
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Proof. Let x0 ∈ ∂Ω, and let V be a neighborhood of x0 in Rn. We write x = (x′, xn) with x′ ∈ Rn−1.

We denote B = {|x| < 1}, B+ = {x ∈ B;xn > 0}. Since Ω is C3,1, there exist a diffeomorphism

ψ : B+ → V ∩ Ω

which is onto, and which extends to ∂B+ in a C1-smooth way, with Dψ(y) 6= 0 for y ∈ ∂B+. In

particular, we can assume that ψ(∂B+) = ∂Ω ∩ V . Set R to be reflection in Rn with respect to the

hyperplane {xn = 0}, and B− = RB+, B = B+ ∪B−. We also set L = ∂B+ ∩ ∂B−. Define

Ψ(y) =:

ψ(y), if y ∈ B+,

ψ ◦ R(y), if y ∈ B−,

By construction, Ψ is continuous on B, and smooth on B \ L, with

DΨ(y) =:

Dψ(y), if y ∈ B+,

Dψ(R(y)) · R, if y ∈ B−,

In particular, the jacobian J(y,Ψ) = detDΨ(y) is well defined on B \ L. Let us set

û(y) = u(Ψ(y)), f̂(y) = f(Ψ(y)) · |J(y,Ψ)|. (4.50)

Let ϕ be a smooth testing function with supp(ϕ) ⊂ (Ω∩V ). Without loss of generality, we can assume

that ϕ vanishes on ∂(V ∩ Ω) \ ∂Ω. Using that u solves the problem (4.49),

ˆ
Ω

〈A(x,∇u),∇ϕ〉 dx =

ˆ
Ω

f ϕ dx,

where A(x, ξ) = DξF(x, ξ). After the change of variables x = ψ(y), this reads

ˆ
B+

〈A(ψ,∇u(ψ)),∇ϕ(ψ)〉 · |Jψ| dx =

ˆ
B+

f(ψ)ϕ(ψ) · |Jψ| dx, (4.51)

and similarly, with the change of variable x = ψ(Ry),

ˆ
B−
〈A(ψ(R),∇u(ψ(R))),∇ϕ(ψ(R))〉 · |Jψ(R)| dx =

ˆ
B−

f(ψ(R))ϕ(ψ(R)) · |Jψ(R)| dx. (4.52)

Using the chain rule, (4.51) becomes

ˆ
B+

〈A
(
Ψ,∇(u ◦Ψ) · (DΨ)−1

)
,∇(ϕ ◦Ψ) · (DΨ)−1〉 · |JΨ| dx =

ˆ
B+

f(Ψ)ϕ(Ψ) · |JΨ| dx, (4.53)

while for (4.52) we get

ˆ
B−
〈A
(
Ψ,∇(u ◦Ψ) · (DΨ)−1

)
,∇(ϕ ◦Ψ) · (DΨ)−1〉 · |JΨ| dx =

ˆ
B−

f(Ψ)ϕ(Ψ) · |JΨ| dx. (4.54)

Putting things together, we get
ˆ
B+∪B−

〈B(y,∇û),∇ϕ̂〉 dx =

ˆ
B+∪B−

f̂ · ϕ̂ dx, (4.55)
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where we have defined

B(y, ξ) := A
(

Ψ(y), ξ · M(y)

)
· Mt(y) · J (y), ∀x ∈ B, (4.56)

as well as ϕ̂(y) := ϕ(Ψ(y)), M(y) = (DΨ(y))−1 and J (x) = |J(y,Ψ)|. It is clear that (4.55) holds not

only for functions of the form ϕ̂ = ϕ(Ψ), but also for any function ϕ̂ ∈W 1,p
0 (B).

Arguing as in [15], we now claim that texist a matrix function x 7→ O(x), such that

O ∈ C1,1(B), Ot · O = I, (4.57)

and moreover

[Dψ(x′)]−1 = R[Dψ(x′)]−1O(x′), ∀x′ ∈ ∂B+ ∩ ∂B−. (4.58)

Since Dψ has positive determinant, we can write Dψ = OU , with O orthogonal and U symmetric and

positive definite. To see this, note that O = DψU−1 and [Dψ]tDψ = U2, therefore it suffices to choose

O = Dψ([Dψ]tDψ)−
1
2 . Such a choice certainly gives an O wich is orthogonal,(

Dψ([Dψ]tDψ)−
1
2

)t
=

(
([Dψ]tDψ)−

1
2

)t
(Dψ)t =

(
([Dψ]tDψ)−

1
2

)
(Dψ)t,

so that O is indeed orthogonal. Let us then set O to be the matrix O in the decompositon Dψ =

OU . Proving that (4.58) holds deserves some more effort, as it depends on the precise choice of the

parametrization ψ. Let us choose ψ having the following form,

ψ(x′, xn) = (x′, g(x′))− xn (∇g(x′),−1) (4.59)

where g ∈ C3,1(Rn−1) is restricted to L. With this choice, we obtain

Dψ(x) =

(
Idn−1 − xn ·D2g(x′) −∇g(x′)t

∇g(x′) 1

)

Especially, detDψ(x′, 0) = 1− |∇g(x′)|2. As a consequence, we have the equality

[Dψ]tDψ = ((Dψ)R)2 at points x = (x′, 0) ∈ L. (4.60)

Therefore, using our choice for matrix O, together with (4.60), we get

R(Dψ)−1O = R(Dψ)−1 ·Dψ · ((Dψ)tDψ)−
1
2 = R(((Dψ)R)2)−

1
2 = (Dψ)−1

as claimed.

We now observe that
B(x, ξ) = DξF(Ψ(x), ξ · M(x))M(x)t J (x)

= ∇ξ
(
F(Ψ(x),M(x)t ξ)J (x)

)
= ∇ξG(x, ξ)
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where G(x, ξ) = F(Ψ(x),M(x)t ξ)J (x) = F (Ψ(x), |M(x)tξ|)J (x). We now justify that G satisfies the

assumptions F0–F4 of Theorem 15. Condition F0 is clear, since

1

c
≤J (x) ≤ c

1

c
|ξ| ≤ |M(x)tξ| ≤ c |ξ|

(4.61)

where c = ‖M‖∞ = max{‖(Dψ)−1‖∞, ‖J(·, ψ)‖∞}. Concerning F1, even though one cannot say that

G is genuinely radial, we can certainly say that G(x, ξ) = G(x, |M(x)tξ|). Having in mind that

Dξ(|M(x)tξ|) =
M(x) · M(x)tξ

|M(x)tξ|

and the bounds (4.61), one can show that Theorem 15 still holds (with a similar proof) if one replaces

F1 by G(x, ξ) = G(x, |M(x)tξ|). With respect to F2 and F3, one only needs to recall (4.61). Finally,

we prove F4. First, at points x /∈ L, we can clearly differentiate DξG in x and use the chain rule to

obtain

|DxξG(x, ξ)| ≤ k(Ψ(x)) |M(x)tξ|p−1|M(x)t|J (x) + |DξF(Ψ(x),M(x)tξ)Dx(M(x)J (x))

Thus, arguing separately for x ∈ B+ and x ∈ B−, on which Ψ is separately bilipschitz, one sees that

|Dx,ξG(x, ξ)| ≤ k̃(x)|ξ|p−1

for a function k̃ ∈ Lσ. Concerning the points x0 ∈ L, we recall that Dψ is continuous in B+ up to ∂B+.

Having in mind also that DξF(x, ξO) = A(x, ξ) · O, we get at points x0 = (x′0, 0) ∈ L the following

equality

lim
x→x0,x∈B+

DξG(x, ξ) = lim
x→x0,x∈B+

DξF (ψ(x), ξ · M(x)) · M(x)t · |J (x)|

= DξF (ψ(x0), ξ · M(x0)) · M(x0)t · |J (x0)|

= DξF (ψ(x0), ξ · M(x0)) · (RM(x0)O(x0))t · |J (x0)|

= DξF (ψ(x0), ξ · M(x0)) · O(x0)tRM(x0))t · |J (x0)|

= DξF
(
ψ(x0), ξ · M(x0) · O(x0)t

)
RM(x0))t · |J (x0)|

= DξF (ψ(x0), ξ · RM(x0)) RM(x0))t · |J (x0)|

= DξF (ψ(Rx0), ξ · RM(Rx0)) RM(Rx0))t · |J (Rx0)|

= lim
y→x0,x∈B−

DξG(y, ξ),

and so y 7→ DξG(y, ξ) is continuous on L. It then follows from Lemma 21 that x 7→ DξG(x, ξ) is W 1,σ

on B. Thus F4 follows.

We have just shown that G is in the assumptions of Theorem 15. Now, since f ∈ Lσ(Ω) implies f̂ ∈ Lσ

we can deduce from Theorem 15 that |Dû| ∈ L∞( 1
2B). But using again the bilipschitz caracter of ψ

we obtain that |Du| ∈ L∞(ψ( 1
2B

+)). In particular, Du is bounded up to ∂Ω. The claim follows.
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4.4 The regularity of D2u

In this section, we establish the integrability of second order distributional derivatives of the local

minimizers of the functional F(·,Ω). For this, we will need the following Proposition, in which we

denote

G(t) :=

ˆ t

0

s(s+ 1)
p−4
2 ds (4.62)

This proposition is inspired by a result in [27], but the result we present here goes a bit further, as it

states convergence on the set {|Df | > 1}, and not only on {|Df | > λ} for each λ > 1. This has also

consequences in Theorem 24. The precise statement is as follows.

Proposition 23. Let p ≥ 2, N ≥ 1, and let fk, f ∈ W 1,p(Ω;RN ) be given, and denote Pk = (|Dfk| −
1)+. Assume that:

(a) fk ⇀ f in W 1,p(Ω;RN ),

(b) Pk ∈ L∞ and

‖Pk‖L∞(Ω) ≤M (4.63)

for some M independent of k.

(c) Assume that ˆ
Ω

P pk
(1 + Pk)2

|DPk|2 dx ≤ N (4.64)

for some N independent of k.

Then one has (|Df | − 1)
p
2 +1
+ ∈ W 1,2(Ω). Moreover, there exists a not relabeled subsequence fk such

that

lim
k→∞

|Dfk| = |Df | strongly in Lp+2(Ω ∩ {|Df | > 1}) ,

and

lim
k→∞

|Dfk| = |Df | a.e. in Ω ∩ {|Df | > 1}.

Proof. First, it is immediate to see thatˆ
|D(P

p+2
2

k )|2 = c(p)

ˆ
P pk |DPk|

2

≤ c(p,M)

ˆ
P pk

(1 + Pk)2
|DPk|2 ≤ c(p,M,N)

By compactness, there exist ϕ ∈ W 1,2 such that P
p+2
2

k ⇀ ϕ in W 1,2. In particular, the convergence is

strong in L2. As a consequence, ϕ ≥ 0 almost everywhere. Using also that r 7→ r
2

2+p is 2
2+p -Hölder

continuous on [0,∞), we can deduce that
ˆ
|Pk − ϕ

2
p+2 |p+2 ≤ c(p)

ˆ
|P

p+2
2

k − ϕ|2

and therefore Pk → ϕ
2
p+2 strongly in Lp+2. From now on, let us denote P = ϕ

2
p+2 . We now denote, for

each t ≥ 0,

A(t) = {P > t}
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The integrability of P guarantees that t 7→ |A(t)| is a right-continuous functions on [0,∞). Moreover,

since ‖Pk − P‖p+2 → 0 as k → ∞, the convengence also occurs in measure. Therefore, recalling the

definition of Pk

lim
k→+∞

ˆ
|Pk − P |p+2

= lim
k→+∞

ˆ
{|Dfk|≤1}

|P |p+2 + lim
k→+∞

ˆ
{|Dfk|>1}

||Dfk| − 1− P |p+2 = 0

that, in particular, implies

lim
k→+∞

ˆ
{|Dfk|>1}

||Dfk| − 1− P |p+2 = 0. (4.65)

Moreover by the convergence in measure of Pk to P , for every t > 0, we have

0 = lim
k→+∞

|{x ∈ Ω :
∣∣(|Dfk| − 1

)
+
− P | ≥ t}

∣∣
= lim
k→+∞

|{x ∈ Ω : |Dfk| ≤ 1 and
∣∣P | ≥ t}∣∣

+ lim
k→+∞

|{x ∈ Ω : |Dfk| > 1 and
∣∣|Dfk| − 1− P | ≥ t}

∣∣

that, in particular, yields

0 = lim
k→+∞

|{x ∈ Ω : |Dfk| ≤ 1 and
∣∣P | ≥ t}∣∣ (4.66)

For t > 0, we write
ˆ
{P≥t}

∣∣|Dfk| − 1− P
∣∣p+2

=

ˆ
{|Dfk|≤1 and P≥t}

∣∣|Dfk| − 1− P
∣∣p+2

+

ˆ
{|Dfk|>1 and P≥t}

∣∣|Dfk| − 1− P
∣∣p+2

= I1,k + I2,k (4.67)

By (4.80) we have that

lim
k→+∞

I2,k ≤ lim
k→+∞

ˆ
{|Dfk|>1}

||Dfk| − 1− P |p+2 = 0 (4.68)

Since by virtue of the assumption (b), we have ||P ||∞ ≤ c(M), we get

lim
k→+∞

I1,k = lim
k→+∞

ˆ
{|Dfk|≤1 and P≥t}

||Dfk| − 1− P |p+2

≤ lim
k→+∞

ˆ
{|Dfk|≤1 and P≥t}

(2 + |P |)p+2

≤ c(M,p) lim
k→+∞

|{|Dfk| ≤ 1 and P ≥ t}| = 0, (4.69)
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by the equality in (4.66). Inserting (4.69) and (4.68) in (4.67), we conclude

lim
k→+∞

ˆ
{P≥t}

∣∣|Dfk| − 1− P
∣∣p+2

= 0 (4.70)

for every t > 0 . Note now that

B(0) := {x ∈ Ω : P > 0} =
⋃
n∈N

{
x ∈ Ω : P >

1

n

}
=:
⋃
n∈N

B

(
1

n

)
and

|{x ∈ Ω : P > 0}| = lim
n→+∞

∣∣∣∣{x ∈ Ω : P >
1

n

}∣∣∣∣ .
Since B

(
1
n

)
⊂ B(0), for every n ∈ N,

‖χB(0) − χB(1/n)‖L1(Ω) = ‖χB(0)\B(1/n)‖L1(Ω) = |B(0)−B(1/n)| → 0.

Therefore
ˆ
{P>0}

∣∣|Dfk| − 1− P
∣∣p+2

=

ˆ
{P>0}

∣∣|Dfk| − 1− P
∣∣p+2 −

ˆ
{P>1/n}

∣∣|Dfk| − 1− P
∣∣p+2

+

ˆ
{P>1/n}

∣∣|Dfk| − 1− P
∣∣p+2

+

ˆ
{P>1/n}

∣∣|Dfk| − 1− P
∣∣p+2

=

ˆ ∣∣|Dfk| − 1− P
∣∣p+2

(χB(0) − χB(1/n))

+

ˆ
{P>1/n}

∣∣|Dfk| − 1− P
∣∣p+2

≤C(M)‖χB(0) − χB(1/n)‖L1(Ω) +

ˆ
{P>1/n}

∣∣|Dfk| − 1− P
∣∣p+2

(4.71)

Passing to the limit first as k → ∞ and using (4.70) with t = 1/n, and then as n → ∞ in (4.71), we

conclude that

lim
k→∞

ˆ
{P>0}

∣∣|Dfk| − 1− P
∣∣p+2

= 0 (4.72)

From previous equality we deduce that

|Dfk| → P + 1 strongly in Lp+2({P > 0}) (4.73)

and, of course, modulo subsequences, also weakly and almost everywhere. By assumption, (fk) is

weakly convergent in W 1,p(Ω;RN ) to f , so, by the essential uniqueness of the weak limit we conclude

that

|Df | = P + 1 a.e. in {P > 0}. (4.74)
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Therefore

{P > 0} = {x ∈ Ω : |Df | > 1}.

By (4.73) and (4.74) and the equality above, there exists a subsequence (not relabeled) of fk such that

|Dfk| →k→∞ |Df | strongly in Lp+2({x ∈ Ω : |Df | > 1}). (4.75)

The other assertions follows easily.

We can now proceed with the main result in this section.

Theorem 24. Let u ∈ W 1,p(Ω;Rn×N be a local minimizer of the functional F(·,Ω) in (4.1), and so

that assumptions (F0)-(F4) are satisfied with R = 1. If f ∈ Lsloc (Ω), then

G((|Du| − 1)+) ∈W 1,2
loc (Ω) (4.76)

and the following Caccioppoli type inequality holds,ˆ
Bρ(x0)

|D(G((|Du| − 1)+))|2 ≤ C(1 + ‖k‖Ls + ‖f‖Ls)τ
ˆ
Br(x0)

(1 + |Du|p) dx, (4.77)

for every ball Br(x0) b Ω, every 0 < ρ < r, for some C = C(n,N, p, s, c1, c2, L, L1, ν, ρ, r) and for some

τ = τ(s, n) > 0.

Let us mention that in (4.77) the term on the left hand side is equivalent to

ˆ
Bρ(x0)

|D(G((|Du| − 1)+))|2 =

ˆ
Bρ(x0)

(|Du| − 1)2
+ |Du|p−4 |D2u|2 dx

so that the above result is, in fact, a weighted bound for D2u with the weight (|Du| − 1)2
+ |Du|p−4.

Proof. Let vε,m be the solution of the problem (4.46). The functionals Fε,m, for every ε and m, satisfy

the assumptions of Theorem 20. Therefore their minimizers vε,m belong to W 2,2
loc

⋂
W 1,∞ and are such

that |Dvε,m|p−2|D2vε,m|2 ∈ L1. As a consequence, we are legitimate to use the a priori estimate (4.7)

of Theorem 17, thus getting

ˆ
Bρ(x0)

P 2
ε,m

(1 + Pε,m)2
|Dvε,m|p−2|D2vε,m|2 dx ≤ C(1 + ||kε||Ls + ||fε||Ls)τ

ˆ
B2R(x0)

(1 + |Dvε,m|p) dx,

with a constant C independent of m and of ε. As usually, Pε,m = (|Dvε,m| − 1)+. Now using estimate

(4.47) and the fact that ||kε||Ls + ||fε||Ls → ||k||Ls + ||f ||Ls , we obtain

ˆ
Bρ(x0)

|D(G(Pε,m))|2 dx =

ˆ
Bρ(x0)

P 2
ε,m

(1 + Pε,m)2
|Dvε,m|p−2|D2vε,m|2 dx ≤ C (4.78)

with a constant C independent of m and of ε. Furthermore, we have that

‖Pε,m‖L∞(Bρ) ≤ sup
Bρ

|Dvε,m| ≤ C,

with a constant C independent of m and ε. By Proposition 23,

|Dvε,m| → |Dvε| strongly in Lp(Bρ ∩ {|Dvε| > 1}), (4.79)
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and

|Dvε,m| → |Dvε| a.e. in Bρ ∩ {|Dvε| > 1}. (4.80)

If we now set wε,m = G(Pε,m), then from (4.78) we deduce that (up to a subsequence) one has wε,m → wε

as m→∞ for some wε ∈W 1,2(Bρ), with weak convergence in W 1,2(Bρ), strong convergence in L2(Bρ),

and a.e. convergence in Bρ. The latter, together with (4.80), implies that wε = G((|Dvε|− 1)+) almost

everywhere on Bρ ∩ {|Dvε| > 1}. But then the lower semicontinuity of the norm implies that

ˆ
Bρ(x0)

|D(G((|Dvε| − 1)+))|2 ≤ C, (4.81)

with a constant C independent of ε. We now argue for the sequence vε as we did for vε,m, and the

theorem follows .
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Chapter 5

Congested traffic minimization

problems

We first summarize the models and results in [15, 19] for the reader’s convenience.

5.1 Traffic strategies

Let Ω ⊂ Rn be a bounded domain with smooth boundary, and µ0 and µ1 be two probability measures,

representing both sources and destinations of travellers on a urban network. We denote by Γ(Ω) =

C([0, 1]; Ω) the metric space of all paths in Ω, together with the uniform norm, and let

πt : Γ(Ω)→ Ω,

α 7→ πt(α) = α(t),

denote the evaluation at time t. One calls traffic strategy to any measure Q on the set of paths Γ(Ω),

concentrated on absolutely continuous curves, and such that

(πt)#Q = µt, t ∈ {0, 1}.

The set of all such traffic strategies is denoted by Q(µ0, µ1).

Example 25. Let us assume that φ : [0, 1]× Ω→ Ω is a flow of diffeomorphisms φ(t, x) = φt(x) of a

reasonably smooth vector field b : [0, 1]× Ω → Rn, and such that at time t = 1 one has (φ1)#µ0 = µ1.

Also, set Φ : Ω→ Γ(Ω) to be the flow map, so that Φ(x) = φ(·, x) is the trajectory that passes through

the point x at time 0. One then sets Q = Qφ to be the image measure of µ0 under Φ,

Q = Φ#(µ0).

Equivalently, on each set G ⊂ Γ(Ω),

Q(G) = µ0{x ∈ Ω : φ(., x) ∈ G}.

67
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By construction,

(π0)#Q(E) = Q(π−1
0 (E)) = µ0(Φ−1(π−1

0 (E))) = µ0((π0 ◦ Φ)−1(E)) = µ0(E),

(π1)#Q(E) = Q(π−1
1 (E)) = µ0(Φ−1(π−1

1 (E))) = µ0((π1 ◦ Φ)−1(E)) = µ0(φ−1
1 (E)) = µ1(E).

This shows that Q is a traffic strategy between µ0 and µ1, and moreover Q is supported on the trajectories

of φ.

Example 26. There is a trivial way to construct traffic strategies from classical optimal transport.

More precisely, if γ ∈ P(Ω×Ω) is a transport plan between µ0 and µ1, then one can construct a traffic

strategy Q = Qγ associated to γ as follows,

Qγ(G) = γ{(x, y) ∈ Ω× Ω : [x, y] ∈ G} ∀G ⊂ Γ(Ω).

Roughly, it corresponds to choose as px,y a Dirac delta on the line segment [x, y]. It is an exercise to

see that Qγ is certainly a traffic strategy.

In general, the above example can be generalized. By means of a disintegration result, one can always

decompose any traffic strategy Q as

dQ = dγ ⊗ dpx,y

where γ ∈ Π(µ0, µ1) is a transport plan between µ0 and µ1, and (px,y)x,y∈Ω is a set of probability

measures on Γ(Ω) whose support is contained on the set of curves joining x to y. In Example 26 we

obviously had px,y = δ[x,y], the Dirac delta on the line segment. In general, though, the situation is

much more complicated and px,y may even not reduce to a single curve.

To each traffic strategy Q, one can associate a scalar measure i = iQ ∈ M(Ω), called the traffic

intensity, and defined as follows,

〈iQ, ϕ〉 :=

ˆ
Γ(Ω)

(ˆ
α

ϕ

)
dQ(α).

Above, ˆ
α

ϕ =

ˆ 1

0

ϕ(α(t)) |α′(t)| dt.

As equivalent definition, one may say that on nice sets A ⊂ Ω the traffic intensity is the amount of flow

(counted in terms of Q) that passes through the set,

iQ(A) =

ˆ
Γ(Ω)

H1(A ∩ α) dQ(α),

where H1 denotes the 1-dimensional Hausdorff measure. This quantity makes sense, since all traffic

strategies concentrate (by definition) on absolutely continuous curves α.

Example 27. If Q is the strategy defined by the flow Φ of a smooth vector field b, as in example 25,
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then

〈iQ, ϕ〉 =

ˆ
Γ(Ω)

(ˆ
α

ϕ

)
dQ(α)

=

ˆ
Ω

(ˆ
Φ(x)

ϕ

)
dµ0(x)

=

ˆ
Ω

(ˆ 1

0

ϕ(φ(t, x)) |b(t, φ(t, x))| dt
)
dµ0(x)

=

ˆ 1

0

ˆ
Ω

ϕ(φ(t, x)) |b(t, φ(t, x))| dµ0(x) dt

=

ˆ 1

0

ˆ
Ω

ϕ(y) |b(t, y)| d((φt)#µ0)(y) dt

whence

iQ =

ˆ 1

0

|b(t, y)| d((φt)#µ0) dt

in other words, iQ is the measure obtained after superposing (continuously in time) the measures

|b(t, ·)| dµt, where µt = (φt)#µ0.

Example 28. If Q is as in Example 26, then it is easy to see that the corresponding traffic intensity

takes the form

iQ(A) =

ˆ
Ω×Ω

H1(A ∩ [x, y]) dγ(x, y).

It turns out that this quantity had already been introduced by Feldmann-McCann [40] and Ambrosio

[1] in the optimal transport setting, and named transport density. This fact will be essential later on

when we see later on in the next sectin, some equivalent forms of transport equation, with usage of

concept of duality.

5.2 Optimal transport and congested traffic problems

Traffic strategies appear in a natural way in the classical optimal transport problem. To see this,

we now recall four equivalent formulations of the same question. Let us remember that the classical

Monge-Kantorovich problem

inf

{ˆ
Ω×Ω

|x− y| dγ(x, y); (πi)#γ = µi

}
(5.1)

always does admit at least one solution γ. Above, πi : Ω× Ω is the componentwise projection. In this

setting, the expression

Q =

ˆ
δ[x,y] dγ(x, y)

defines a measure on the set of curves C([0, 1],Ω), and whose support is precisely the set of transport rays

of the optimal transport plan γ. Moreover, the measure Q defined above is, indeed, a traffic strategy.

To see this, just note that Q is clearly supported on absolutely continuous curves, and moreover

(πi)#Q = µi, i = 0, 1
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where (abbusing of notation) now πt : C([0, 1; Ω) → Ω is the evaluation at time t. In fact, it can be

shown that Q is optimal for the following total length minimization problem,

inf

{ˆ
C([0,1];Ω)

`(α) dQ(α);Q ∈ Q(µ0, µ1)

}
(5.2)

where `(α) =
´ 1

0
|α′(t)| dt for any absolutely continuous α ∈ C([0, 1]; Ω). One further equivalent

formulation is given by the classical Kantorovich problem,

sup

{ˆ
ϕd(µ0 − µ1); ‖∇ϕ‖∞ ≤ 1

}
(5.3)

whose equivalence with (5.1) is the classical Kantorovich duality. It was first shown in [?] that (5.3) is

also equivalent to

inf

{ˆ
Ω

d|V |;−div V = µ0 − µ1, V · ~n|∂Ω = 0

}
(5.4)

where V are vector valued Radon measures solving a divergence equation with Neumann boundary

values.

The last problem pertains to a wide family of problems, introduced by Beckmann in [7], in which

instead of the total variation
´

Ω
d|V | one minimizes an integral functional with the same divergence

constraint,

inf

{ˆ
Ω

H(V );−div V = µ0 − µ1, V · ~n|∂Ω = 0

}
(5.5)

for a given convex function H. Finding equivalent formulations for (5.5) with the spirit of (5.1), (5.2)

or (5.3) was the main issue in [18]. It turns out that these equivalent formulations can be easily proven

between (5.5) and a sort ofH-counterpart for (5.3) (see Lemma 34 below), even under greater generality.

However, the situation changes when the equivalence between (5.5) and an H-counterpart for (5.2) is

investigated. This was already noticed in [15], and was used there as a starting point for developping

a congested traffic model which we recall below.

5.3 The scalar problem

In traffic analysis, one usually models the total traffic cost of a given urban traffic configuration as an

integral functional of the traffic intensity, ˆ
H(iQ(x)) dx

That is, each traffic strategy Q induces a traffic intensity iQ which fully determines the total traffic

cost, by means of a given cost function H = H(i) that depends on the traffic intensity. This principle

was used in [19] to establish the traffic model that has inspired this part of this thesis. If two traffic

strategies Q1 and Q2 have the same traffic intensity iQ1 = iQ2 , then the induced traffic cost does not

change. This assumption has the restriction that points x with the same traffic intensity generate the

same cost, which may well not be the case in real life. Indeed, the same traffic intensity at two points

with different road conditions may provide significantly different costs. This was already noticed in
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[18], and is one of the motivations to include in H the dependence on the x variable.

In general, we will be given a function

H : Ω× [0,∞)→ [0,∞)

(x, i)→ H(x, i)

such that:

(H0) H(x, 0) = 0.

(H1) For every fixed x ∈ Ω, i 7→ H(x, i) is non-decreasing and convex.

(H2) If (x, i) ∈ Ω× [0,∞) then

a iq 6 H(x, i) 6 b (iq + 1) (5.6)

(H3) If (x, i) ∈ Ω× [0,∞) and g(x, i) = ∂iH(x, i) then

0 6 g(x, i) 6 c(iq−1 + 1). (5.7)

Then, we will call optimal traffic strategy to any traffic strategy Q that solves the following variational

problem,

inf
Q∈Qq(µ0,µ1)

ˆ
Ω

H(x, iQ(x)) dx. (5.8)

Above, Qq(µ0, µ1) denotes the set of all possible measures Q such that

(π0)#Q = µ0,

(π1)#Q = µ1,

and, at the same time, induce a traffic intensity iQ ∈ Lq(Ω). The following result concerns the non-

emptiness of Qq(µ0, µ1) under rather general assumptions.

Theorem 29. If µ0, µ1 ∈ Lq(Ω), then Qq(µ0, µ1) is non-empty.

The above Theorem is a consequence of works by De Pascale, Evans and Pratelli. For a proof, one only

needs to construct for the given datum µ0 and µ1 the trivial traffic strategy

Q = γ ⊗ δ[x,y]

where dγ(x, y) is an optimal transport plan between µ0 and µ1 for the Monge problem, and δ[x,y] is the

Dirac delta on the line segment [x, y], understood as a measure on C([0, 1]; Ω). For this particular Q,

one easily sees that iQ is precisely the transport density associated to γ (see Example 28 for the defini-

tion of transport density). Now, one just needs to remind that De Pascale, Evans and Pratelli proved

that the transport density inherits the Lebesgue integrability of µ0, µ1. In particular, if µ0, µ1 ∈ Lq

then the transport density also belongs to Lq (see [32] for 1 < q < 2, and [31] for 2 ≤ q ≤ ∞), as claimed.

At this point, it is worth mentioning that Brasco and Petrache proved that Qq(µ0, µ1) is non-empty if
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and only if µ0 − µ1 ∈W−1,q. See [18, Proposition 4.4] for details. As an example, one can look at the

case of two Dirac masses, µi = δxi , i = 0, 1. In this particular case, one has µ0 − µ1 ∈ W−1,q if and

only if 1 ≤ q < n
n−1 .

The non-emptiness of Qq(µ0, µ1) guarantees the existence of minimizing sequences. It turns out that

much more is true.

Theorem 30. The minimization problem (5.8) admits a solution if Qq(µ0, µ1) 6= ∅.

The above result was proven in [19, Theorem 2.10] when n = 2 and 1 < q <∞, in the autonomous set-

ting, that is, with the extra assumption that H(x, i) = H(i) (see [20, Theorem 2] for a non-autonomous

counterpart). The proof comes together with a precise description of the relation between the mini-

mizers and Wardrop’s equilibrium, see Subsection 5.5 for details. Moreover, if H(x, ·) is strictly convex

and Q1, Q2 are equilibriums one can see that iQ1
= iQ2

, althoug it is false in general that Q1 = Q2,

see [19]. Concerning the non-emptiness of Qq(µ0, µ1), we refer to [18, Theorem 4.4] as well as to the

following result (see also [19, Remarks 2.5 and 2.6]).

It is because of Theorem 29 that, from now on, we will assume that µ0, µ1 are absolutely continu-

ous with respect to the Lebesgue measure. Abusing of notation, we will also denote by µ0, µ1 their

Radon-Nikodym derivatives, so that dµj(x) = µj(x) dx.

5.4 The vector problem

There is though a different way to prove existence of minimizers at (5.8), with the advantage of being

more explicit. The basic idea (see [15] for details) is to compare (5.8) with the following variational

problem,

inf
σ∈Σq(µ0,µ1)

ˆ
Ω

H(x, σ(x)) dx (5.9)

whereH(x, ξ) = H(x, |ξ|) for each ξ ∈ Rn, and H satisfies (H0), (H1), (H2) and (H3). Also, Σq(µ0, µ1)

denotes the set of all Lq(Ω) weak solutions of the following Neumann problemdiv σ = µ0 − µ1 Ω,

σ · ~n = 0 ∂Ω.
(5.10)

Lemma 31. We have that (5.9) 6 (5.8).

Proof. Let Q ∈ Qp(µ0, µ1). Define a vector measure σQ as follows,

〈σQ, F 〉 =

ˆ
C([0,1];Ω)

(ˆ 1

0

〈F (α(t)), α′(t)〉 dt
)
dQ(α), ∀F ∈ C(Ω,Rn), (5.11)

where 〈·, ·〉 denotes the inner product in Rn. It is clear that σQ defines a vector measure, with total
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variation |σQ| ≤ iQ ∈ Lq(Ω). Also, for any testing function ϕ ∈ C1(Ω,R)

〈σQ,∇ϕ〉 =

ˆ
C([0,1];Ω)

(ˆ 1

0

∇ϕ(α(t)) · α′(t) dt
)
dQ(α)

=

ˆ
C([0,1];Ω)

ϕ(α(1)) dQ(α)−
ˆ
C([0,1];Ω)

ϕ(α(0)) dQ(α)

=

ˆ
C([0,1];Ω)

ϕ(π1(α)) dQ(α)−
ˆ
C([0,1];Ω)

ϕ(π0(α)) dQ(α)

=

ˆ
Ω

ϕ(x) dµ1(x)−
ˆ

Ω

ϕ(x) dµ0(x) = 〈ϕ, µ1 − µ0〉

It then follows that σQ ∈ Σq(µ0, µ1). Moreover, since by definition H(x, σ) = H(x, |σ|), we have

ˆ
H(x, σQ(x)) dx =

ˆ
H(x, |σQ(x)|) dx ≤

ˆ
H(x, iQ(x)) dx,

from which one infers that (5.9) 6 (5.8).

According to the above proof, to each traffic strategy Q one can associate a sort of vector valued traffic

intensity σ = σQ ∈ Σq(µ0, µ1) whose total variation |σQ| satisfies that

|σQ| ≤ iQ.

It is a question of interest to determine to which extent this vector strategy σQ can be constructed in

such a way that it concentrates the overall traffic intensity, that is, σQ = iQ. The appropiate tool to do

this is the so-called Dacorogna-Moser scheme. In this context, the following result was proven in [15,

Theorem 3.2] in the autonomous setting (see also [20, Section 5] for a non-autonomous counterpart).

We include below a proof for the reader’s convenience.

Theorem 32. If µ0, µ1 ∈ Lq, and 1
µ0
, 1
µ1
∈ L∞, then the infimums at (5.8) and (5.9) are equal.

Proof. The easy inequality follows from Lemma 31 and holds under greater generality. To prove that

(5.8) 6 (5.9), we implement Dacorogna-Moser scheme as follows. Given σ ∈ Σq(µ0, µ1), we know that

ˆ
σ(x) · ∇ψ(x) dx =

ˆ
ψ(x) d(µ1 − µ0)(x) (5.12)

for any ψ = ψ(x) ∈ C∞c (Rn). Setting µt = (1− t)µ0 + tµ1 and using that 1
µj
∈ L∞, the vector field

σ̂(t, x) =
σ(x)

(1− t)µ0(x) + t µ1(x)
, (t, x) ∈ [0, 1]× Ω,

is well defined, and equation (5.12) is equivalent to

ˆ
σ̂(t, x) · ∇ψ(x) dµt(x) =

ˆ
ψ(x) d(µ1 − µ0)(x).

We now take any ϕ = ϕ(t) of class C∞c ([0,∞)). Then, we multiply both sides in (5.12) by ϕ and

integrate in time on [0,∞), and obtain

¨
σ̂ · ∇(ϕψ) dµt(x) dt =

¨
ϕψ d(µ1 − µ0)(x) dt (5.13)
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Now, we use Fubini’s theorem, and integrate by parts in time on the right hand side, and get that

¨
ϕ(t)ψ(x) d(µ1 − µ0)(x) dt =

ˆ
ψ(x)

(ˆ
ϕ(t) (µ1 − µ0)(x) dt

)
dx

=

ˆ
ψ(x)

(ˆ
ϕ(t)

dµt(x)

dt
dt

)
dx

=

ˆ
ψ(x)

(
−ϕ(0)µ0(x)−

ˆ
dϕ(t)

dt
µt(x) dt

)
dx

= −
ˆ
ψ(x)ϕ(0)µ0(x) dx−

¨
ψ(x)

dϕ(t)

dt
µt(x) dt dx.

We end up getting from (5.13) that

¨
σ̂ · ∇(ϕψ) dµt(x) dt+

ˆ
ψϕ(0)µ0 dx+

¨
ψ
dϕ

dt
µt dt dx = 0

It then follows that µt is a weak solution of the following continuity equation

∂tµt + div(σ̂µt) = 0,

with initial datum µ0. Moreover, using that |Ω| <∞, we see that

ˆ 1

0

ˆ
Ω

|σ̂(t, x)| dµt(x) dt =

ˆ 1

0

ˆ
Ω

|σ(x)| dx dt ≤ ‖σ‖Lq(Ω) |Ω|1−
1
q < +∞.

Thus we are legitimate to use the Superposition Principle (i.e. Theorem 9) and deduce that µt is indeed

a superposition solution. In particular, there exists a probability measure Q ∈ P(C([0, 1]; Ω)) with the

property that µt = (πt)#Q, that is

ˆ
Ω

ϕ(x) dµt(x) =

ˆ
C([0,1];Ω)

ϕ(α(t)) dQ(α), ∀ϕ ∈ C(Ω).

It turns out that Q ∈ Qq(µ0, µ1). Indeed, by construction µt = (πt)#Q at times t = 0 and t = 1. On

the other hand, concerning its traffic intensity iQ we have

〈iQ, ϕ〉 =

ˆ
C([0,1];Ω)

ˆ 1

0

ϕ(α(t))|α′(t)| dt dQ(α)

=

ˆ 1

0

ˆ
C([0,1];Ω)

ϕ(α(t))|σ̂(t, α(t))| dQ(α) dt

=

ˆ 1

0

ˆ
Ω

ϕ(x)|σ̂(t, x)| dµt(x) dt

=

ˆ 1

0

ˆ
Ω

ϕ(x)|σ(x)| dx dt =

ˆ
Ω

ϕ(x)|σ(x)| dx,

thus iQ is absolutely continuous with density |σ| ∈ Lq. Therefore Q ∈ Qq(µ0, µ1) as claimed. Now it

just remains to note that
ˆ
H(x, iQ(x)) dx =

ˆ
H(x, |σ(x)|) dx =

ˆ
H(x, σ(x)) dx,

so we get (5.8) 6 (5.9).
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It is worth mentioning here that if H(x, ·) is strictly convex then (5.9) has a unique minimizer. Indeed,

it consists of minimizing a strictly convex and coercive functional on Lq, subject to a closed constraint.

Thus, applying the above proof to the optimizer σ0 one obtains an traffic strategy Q0 which optimizes

(5.8). It may be, though, that (5.8) has other optimizers Q, but they all must have the same traffic

intensity iQ, see [19, Section 2.3].

5.5 Wardrop equilibriums

As mentioned in [19] (see also [20]), the congestion effects in a given traffic strategy Q ∈ Qq(µ0, µq) are

captured by the traffic intensity iQ through the function g(x, i) = ∂iH(x, i). Namely, one thinks the

function g(x, iQ(x)) as the density of a Riemannian metric

dQ(x, y) = inf
α∈Cx,y

ˆ
α

g(z, iQ(z)) |dz| = inf
α∈Cx,y

ˆ 1

0

g(α(t), iQ(α(t))) |α′(t)| dt

where Cx,y denotes the subset of C([0, 1]; Ω) of rectifiable curves such that α(0) = x and α(1) = y. In

this context, a curve α0 ∈ Cx,y is called a Q-geodesic if

dQ(x, y) =

ˆ
α0

g(z, iQ(z)) |dz| (5.14)

With this terminology, a Wardrop equilibrium is a traffic strategy Q ∈ Q(µ0, µ1) that satisfies the

following two properties:

(a) Q is supported on Q-geodesics, that is,

Q

({
α ∈ C([0, 1]; Ω) : dQ(α(0), α(1)) =

ˆ
α

g(z, iQ(z)) |dz|
})

= 1

(b) The transport plan γQ = (π0, π1)#Q solves the following Monge problem

inf
γ∈Π(µ0,µ1)

ˆ
Ω×Ω

dQ(x, y) dγ(x, y)

The following result was given in [19, Theorem 4.2] in the autonomous case (see [20, Theorem 2] for

the non-autonomous counterpart).

Theorem 33. A traffic strategy Q ∈ Q(µ0, µ1) is a minimizer of (5.8) if and only if Q is a Wardrop

equilibrium.

This result was proven in [19] in the autonomous case. A sketch for a non-autonomous counterpart

was given in [20]. In boths cases, the proof is quite involved, as regularity issues need to be handled in

detail. Indeed, already at the very beginning, the definition dQ may have problems, since iQ ∈ Lq only

implies g(x, iQ(x)) ∈ L
q
q−1 and this may not be enough to define line integrals.
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5.6 Duality and Regularity Theory

The transition from congested traffic problems to the classical regularity theory for elliptic PDE relies

on the following duality result. It was proven by Brasco and Petrache in [18, Theorem 3.1], but we

remind it here for the reader’s convenience. By W 1,r
∗ (Ω) we denote the class of functions ϕ ∈W 1,r(Ω)

such that
´

Ω
ϕ = 0.

Lemma 34. Let T ∈W−1,q(Ω), 1 < q <∞, and p = q
q−1 . Let H : Ω×Rn → [0,∞) be a Carathéodory

function, such that

a |ξ|q ≤ H(x, ξ) ≤ b(|ξ|q + 1), (x, ξ) ∈ Ω× Rn.

Assume also that ξ 7→ H(x, ξ) is convex, for each fixed x. Then

inf
σ∈Σq(T )

ˆ
Ω

H(x, σ(x)) dx = sup
ϕ∈W 1,p

∗ (Ω)

(
〈T, ϕ〉 −

ˆ
Ω

H∗(x,∇ϕ(x)) dx

)
(5.15)

where H∗(x, ·) is the Legendre transform of H(x, ·). Moreover, one has

σ(x) ∈ ∂H∗(x,∇ϕ(x)) for a.e.x ∈ Ω,

where ∂H∗(x, ξ) denotes the subdifferential ∂H∗(x, ξ) = {z ∈ Rn;H∗(x, ξ) +H(x, z) = ξ · z}.

For the traffic applications of the present thesis, one is left to see if the distribution T = µ0−µ1 belongs

to W−1,q. In this direction, if both µ0 and µ1 are Lq functions, one can choose for any ϕ ∈ W 1,q′

∗ an

appropiate constant ϕΩ so that the Poincaré inequality applies, and one gets∣∣∣∣ˆ ϕd(µ0 − µ1)

∣∣∣∣ =

∣∣∣∣ˆ (ϕ− ϕΩ) d(µ0 − µ1)

∣∣∣∣
≤ ‖ϕ− ϕΩ‖Lq′ ‖µ0 − µ1‖Lq

≤ C(Ω, q) ‖Dϕ‖Lq′ ‖µ0 − µ1‖Lq ,

and therefore T ∈ W−1,q. Another interesting example is that of the point masses, that is, µj = δxj

for j = 0, 1. In this case, µ0 − µ1 ∈W−1,q if and only if 1 ≤ q < n
n−1 , see [18, Example 2.4].

As explained in [18] (see also [15, Theorem 2.1]), when ξ 7→ H(x, ξ) is strictly convex the Legen-

dre transform ξ 7→ H∗(x, ξ) becomes C1-smooth, and therefore the subdifferential ∂H∗(x, ξ) reduces to

a singleton

∂H∗(x, ξ) = {∇ξH∗(x, ξ)},

whence the optimals σ and ϕ must necessarily be related by

σ(x) = ∇ξH∗(x,∇ϕ(x)).

In particular, in that strictly convex setting the optimizer σ ∈ Σp(T ) is unique. Moreover, ϕ can be

found by solving the following Neumann problem−div∇ξH∗(x,∇ϕ) = T Ω

∇ξH∗(x,∇ϕ) · ~n = 0 ∂Ω

The following examples explain a bit better the situation.
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Example 35. If H(x, i) = iq

q , then H∗(x, ξ) = |ξ|p
p with 1

p + 1
q = 1. In particular, H∗ is strictly convex,

and ∇H∗(x, ξ) = |ξ|p−2ξ degenerates at just one point. The relation between optimals σ = |ϕ|p−2ϕ also

says that ϕ is a solution of an inhomogeneous Neumann problem for the p-Laplace operator,∆pϕ = µ0 − µ1

∇ϕ · ~n = 0

On the other hand, since g(x, 0) = ∂iH(x, 0) = 0, according to (5.14) and Theorem 33, this example

gives zero cost to zero traffic. This is not completely realistic, as a positive cost must be expected even

in absence of traffic.

Example 36. If H(x, i) = iq

q + λi one gets g(x, 0) = ∂iH(x, 0) = λ, and so for λ > 0 this model is

more realistic. At the same time, though, H∗(x, ξ) =
(|ξ|−λ)p+

p is not strictly convex, and therefore

∇H∗(x, ξ) = (|ξ| − λ)p−1 ξ

|ξ|

degenerates not only when |ξ| = 0 but on the whole ball {|ξ| ≤ λ} of the gradient variable. Still, H∗

is C1 in the second variable, and so one gets a Neumann boundary value problem for the following

Euler-Lagrange equation

−div

(
(|∇ϕ| − λ)p−1 ∇ϕ

|∇ϕ|

)
= µ0 − µ1

although it signifficantly differs from the p-Laplace equation.

5.7 Traffic applications of the Main Theorem

One of the fundamental results of [15] consists of proving that at least one of the optimal strategies

Q0 in 5.8 is supported on the flow of a reasonably nice vector field. In the present thesis, we want

extend this result from its original autonomous formulation to certain non-autonomous situations. To

this end, some regularity needs to be assumed in the spatial x variable. We have in mind the following

model,

H(x, i) = a(x)
iq

q
+ b i (5.16)

where in principle one can have 1 < q < ∞, b > 0, and a > 0 is a measurable function, with

a, 1
a ∈ L

∞(Ω), and more importantly a ∈ W 1,s(Ω) for some s > n. Of course, other models may fit

into the discussion. Here Ω is a domain in Rn with nice boundary. This is our main result.

Theorem 37. Let 1 < q ≤ 3/2. If x 7→ H(x, i) is as in (5.16), and µ0, µ1 are probability densities

such that 1
µ0
, 1
µ1
∈W 1,∞, then (5.8) admits an equilibrium strategy Q ∈ Qq(µ0, µ1) of the form

Q = X#(µ0)

for some DiPerna - Lions flow map X.

The proof of this theorem repeats the structure of [15]. This means that optimal traffic strategies will

be constructed by means of the classical Dacorogna-Moser scheme. Such structures will be proven to
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have support on the trajectories of a DiPerna-Lions velocity field. This obviously will require the uses

of DiPerna-Lions theory (see Subsection 2.4 for the definition of DiPerna - Lions flow), for which L∞

and Sobolev estimates are essential, and here is where the results from Sections 4, 4.4 and 4.3 will enter

the game.

Let us start by observing that if H is as in (5.16) then

H∗(x, ξ) =
a(x)

p

(
|ξ| − b
a(x)

)p
+

so that

DξH∗(x, ξ) =

(
|ξ| − b
a(x)

)p−1

+

ξ

|ξ|

DξξH∗(x, ξ) =
p− 1

a(x)

(
|ξ| − b
a(x)

)p−2

+

ξ ⊗ ξ
|ξ|2

+

(
|ξ| − b
a(x)

)p−1

+

(
1

|ξ|
Id− ξ ⊗ ξ

|ξ|3

)
This immediately gives the following bounds

〈DξξH∗(x, ξ)λ, λ〉 ≥ c (|ξ| − b)p−1
+ |ξ|−1 |λ|2

|DξξH∗(x, ξ)| ≤ C (|ξ| − b)p−2
+

|DxξH∗(x, ξ)| ≤ k(x) (|ξ| − b)p−1
+

(5.17)

for all ξ ∈ Rn, x ∈ Ω and λ ∈ Rn, and some function k ∈ Ls(Ω). In particular, for H as in (5.16),

equations (5.17) guarantee that F = H∗ satisfies the assumptions (F0)–(F4) from Section 4.

Towards the proof of Theorem 37, we start with the following regularity result. It is a direct con-

sequence of Theorem 15 and its global version from Theorem 22.

Proposition 38. Let Ω ⊂ Rn be a bounded domain, with C3-smooth boundary. Suppose also that

µ0, µ1 ∈ Ls for some s > n. If H is as in (5.16), q ≤ 2, and σ is a minimizer in (5.9), then σ ∈ L∞.

Proof. Since H is strictly convex in the second variable, the remarks after Lemma 34 apply. So if σ is

a minimizer then

σ = ∇ξH∗(x,∇u) (5.18)

where u is necessarily a minimizer of

inf
u∈W 1,p(Ω;R)

ˆ
H∗(x,∇u) + (µ0 − µ1)u dx.

Since F = H∗ satisfies conditions (F0)–(F4) of Section 4, we are legitimate to use Theorem 15. As a

consequence, and since µ0, µ1 ∈ Ls for some s > n, we deduce that u ∈W 1,∞
loc . The global boundedness

of ∇u is a consequence of the boundary reflection result, see Theorem 22. So the claim follows.

It is worth mentioning that the essential condition on H here is that F = H∗ satisfies (F0)-(F4). Now,

we continue with the Sobolev estimates for σ.

Proposition 39. Let Ω ⊂ Rn be a bounded domain, with C3-smooth boundary. Suppose also that

µ0, µ1 ∈ Ls for some s > n. If σ is a minimizer in (5.9), H is as in (5.16), and q ≤ 3/2, then

σ ∈W 1,1
loc (Ω).
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Proof. We start as in the proof of Proposition 38. So we have

σ = ∇ξH∗(x,∇u) (5.19)

where u is necessarily a minimizer of

inf
u∈W 1,p(Ω;R)

ˆ
H∗(x,∇u) + (µ0 − µ1)u dx.

Now, we have for F(x, ξ) = H∗(x, ξ) the bounds in (5.17). In particular, this means that

|Dσ| ≤ |Dx,ξH∗(x,Du)|+ |Dξ,ξH∗(x,Du)D2u|

≤ k(x) (|Du| − b)p−1
+ + C (|Du| − b)p−2

+ |D2u|

Using now Theorem 15 together with the fact that k ∈ Ls, we see that the first term on the right hand

side above belongs to Ls, and so in particular it is locally integrable. Concerning the second, we use

Theorem 24 to deduce that if 1 < q ≤ 3
2 then p ≥ 3 and so

ˆ
(|Du| − b)p−2

+ |D2u| ≤
(ˆ

(|Du| − b)2
+ |D2u|2

) 1
2
(ˆ

(|Du| − b)2(p−3)
+

) 1
2

, (5.20)

which is easily seen to be finite as a consequence of Theorems 15 and 24. The claim follows.

We can now prove Theorem 37.

Proof of Theorem 37. For the reader’s convenience, we sketch the proof of existence of optimal traffic

strategiesQ (see [20, Theorem 2] or [19, Theorem 2.10] for the precise proofs). Let us take σ ∈ Σq(µ0, µ1)

to be the unique optimizer at (5.9), and call

σ̂(t, x) =
σ(x)

(1− t)µ0(x) + t µ1(x)
.

Then, u(t, ·) = (1− t)µ0 + t µ1 is a weak solution of the Cauchy problem∂tu+ div(σ̂ u) = 0,

u(0, ·) = µ0.
(5.21)

Moreover, using thaty σ ∈ Lq(Ω) and Ω is bounded, one actually deduces from the superposition

principle (see Subsection 2.5) that (1− t)µ0 + t µ1 is indeed a superpositon solution. Thus, there exists

a measure Q on C([0, 1]; Ω) such that

(1− t)µ0 + t µ1 = (πt)#Q (5.22)

and in particular Q ∈ Q(µ0, µ1) can be chosen so that iQ = |σ|, whence Q ∈ Qq(µ0, µ1). As a

consequence, one also has ˆ
H(x, σ(x)) dx =

ˆ
H(x, iQ(x)) dx.

The optimality of σ in (5.9) forcesQ to be an optimal for (5.8). It just remains to prove thatQ = X#(µ0)

for some DiPerna-Lions flow X. To this end, we need to see that σ̂ admits such a flow. But this is a

consequence of Theorem 8. Indeed,
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• σ̂ ∈ L∞(Ω), because σ ∈ L∞ (by Proposition 38) and 1
µj
∈ L∞ (by assumption).

• σ̂ ∈ W 1,1(Ω), because σ ∈ W 1,1 (by Proposition 39), σ ∈ L∞ (by Proposition 38) and 1
µj
∈

L∞ ∩W 1,1 (by assumption).

• div σ̂ ∈ L∞, because by assumption D(µ0 − µ1) ∈ L∞.

By Theorem 8, σ̂ induces a well-defined DiPerna-Lions flow X, and u(t, ·) = X(t, ·)#(µ0) must nec-

essarily be a weak solution of (5.21). However, the fact that σ̂ ∈ L1([0, 1];L1(Ω)) allows us to use

the Superposition Principle (Theorem 9), and hence all non-negative measure valued weak solutions to

(5.21) are superposition solutions. Moreover, Corollary 10 also applies to (5.21), and so there is only

one superposition solution. As a consequence,

(1− t)µ0 + t µ1 = (Xt)#(µ0)

for each t ∈ [0, 1]. As a consequence, one gets that (πt)#Q = (Xt)#(µ0) for each time t ∈ [0, 1]. Thus

Q = X#(µ0), and the theorem is proved.

Although there is little room for improvement in DiPerna - Lions theory, recent investigations allow to

relax the assumption D(1/µj) ∈ L∞ in Theorem 37 by the weaker Orlicz-type one

D(1/µj) ∈ LP , P (t) = exp

(
t

log(t) log log(t) . . .

)
,

allowing in particular for non-Lipschitz data. The interested reader is adressed to see the references

[25, 24] for details.



Chapter 6

Conclusions and future lines

6.1 Conclusions

The OD matrix estimation problem is one of the major concerns in modern traffic controlling systems.

OD matrices are very volatile, being affected by a number of intentional and unintentional parameters,

such as weather conditions. In addition, OD matrices are not observable. In this thesis, regarding the

static traffic problem, we explore new OD demand problem formulation that allows the modeller to

define structural similarity between the historical and estimated OD matrix while ensuring computa-

tionally fast and tractable solution. Furthermore, an OD estimation model based on Lasso shrinkage

method has been introduced to reduce dimensionality of the OD demand vector.

The experiment setup is defined in such a way that sensitivity of the proposed OD estimation methods

is evaluated for a range of user-pre-defined tuning parameters. A new solution approach is applied

based on the well-known gradient descent algorithm for the OD estimation process, both to estimate

the OD demand and step length in the gradient method, in each step of algorithm. In this respect,

non-differentiability issues in the Lasso 1 method with respect to the OD demand are addressed by

using three different strategies, including smoothening the non-differentiable term by mollification with

the Gaussian kernel.

In order to test the applicability of the proposed methods, in terms of running-time of the estimation

process, they are tested on Vitoria city in Spain, with high dimensional historical OD demand. Increas-

ing the tuning parameter value, increases the number of OD flows which are converging to zero, and

therefore reduces the dimensionality of the estimated OD demand vector. The Lasso 2 and Lasso 1

methods, increase the iterpretability of OD demand, and reduce the computational time of the OD es-

timation process significantly, in comparison to the Ridge method. This is done indeed, by preserving

the structure and sparsity of the historical OD matrix, and reduction in dimensionality of OD demand.

In chapter 4 we investigated on L∞ bounds for minimizers of a certain type of functional with a large

81
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degeneracy set. In this respect, weighted Sobolev bounds are a delicate issue. Giaquinta and Modica

[45] have shown for ∆pu = f that we have |∇u|p−2∇2u ∈ L1
loc , provided that f ∈ Lsloc , s > n. Along

with this result, Brasco, Carlier and Santambrogio have shown that if div(|∇u − 1|p−1
+

∇u
|∇u| ) = f the

we get (|∇u| − 1)p−2
+ D2u ∈ L1

loc . At the first glance, we would expect the same result, but, instead, in

the non-autonomous setting, we got a different regularity result as follows

(|∇u| − 1)+D
2u ∈ L2

loc ,

and the reason is that a different method has been used.

Indeed, as discussed in Chapter 4, we show that G(P ) ∈ W 1,2, for G′(t) = t(t + 1)
p−4
2 and P =

(|Du| − 1)+. As a consequence

D

(
G(P )

)
= G′(P ) ·DP = P · (P + 1)

p−4
2 ·DP = (|∇u| − 1)+ ·D2u · |Du|

p−4
2 ∈ L2. (6.1)

This has been proven by testing the PDE against an appropriately chosen testing function ϕ. This

contrasts with Brasco, Carlier and Santambrogio [15], who used difference quotient method. Unfortu-

nately, this method does not work for the non-autonomous case, because an extra term appears which

is impossible to be controlled without global ellipticity.

Concerning the dynamic congested traffic problem, one of the fundamental results of [15] consists of

proving that at least one of the optimal strategies Q0 in (5.8) is supported on the flow of a reasonably

nice vector field. In the present thesis, we found a solution consisting of an optimal traffic strategy with

support on the trajectories of a DiPerna-Lions flow, for a non-autonomous congested traffic problem.

The original autonomous scheme was introduced in [15]. We presented a non-autonomous counterpart,

in which the spatial variable is supercritically Sobolev dependent. As in [15], it requires both Lipschitz

and Sobolev W 2,1 apriori bounds for minimizers of integral functionals whose ellipticity bounds are

satisfied only away from a ball of the gradient variable.

We showed that the construction of Wardrop equilibriums in [15] can be extended to non-autonomous,

Sobolev-dependent counterparts with growth 1 < q ≤ 3/2. The reason behind this growth limitation is

that our Sobolev estimates (6.1) do not provide enough integrability. As a consequence, when applying

Dacorogna-Moser scheme, the vector field σ = ∇H∗(x,∇u) can only be proven to meet DiPerna-Lions

requirements when p > 3, as

|Dσ| 6 |DxDξH∗(x,Du)|+ |DξξH∗(x,Du)| · |D2u|

6 L∞ + (|Du| − 1)p−2
+ · |D2u|,

which is L1
loc for p > 3. Further research is due to fill the missing range 3/2 < q ≤ 2 at the traffic side.

6.2 Future lines

A question arises here, whether if there is any chance to modify testing function ϕ in order to get the

desired (p− 2) exponent? This is an open problem which we are trying to solve.
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By the moment, it is known that ∇u ∈ L∞ may fail for s = n = 2, even when f ≡ 0 in the linear,

uniform elliptic setting, and so other arguments are needed if one wants to find such nice strategies, as

the lack of boundedness forbids us to implement Dacorogna-Moser scheme. In practice, specifically for

the sake of application, It would be desirable to understand what is the situation when the x dependence

is not continuous, and if there is any chance to find such nice strategies in that case.

As another interesting idea, one can think of a different definition for the function H(x, i), such that

H(x, i) = a(x)
iq

q
+ b(x) · i.

Thus, the model PDE becomes

div

(
(|∇u| − b(x))p−2

+

∇u
|∇u|

)
= f,

which is very difficult to carry out, as b is variable, which seems to make the argument significantly

tougher.

It was shown that under sufficient assumptions we get σ̂ ∈ L∞, now one can ask if there is any chance

to get the same regularity without having σ ∈ L∞, and 1
µt
∈ L∞. For instance, recent developments

[24, 25] show that there is some room for DiPerna-Lions theory with unbounded div(b). We would like

to see what consequences does this have in traffic analysis.

Recently, researchers have been investigating on the regularity of minimizers of different functionals

with a wide degree of degeneracy and orthotropic structure (see [11], [12], [13], and [17]). It is desirable

to extend our results to a non-autonomous orthotropic setting.

The static OD estimation problem has been considered typically as an initial step towards online real-

time OD estimation. Thus, as a potential research idea, one can think of employing the presented

methodology in this thesis in the online real-time OD estimation settings.
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Appendix A

R and Python codes

This part provides the explicit codes required for the OD estimation process in Chapter 3. We have

used two language programs: R (2017), and Python (2017).

A.1 Implemented R code in the Vitoria network

1 # Main file

2 #source(’Lasso.R’)

3 source(’Gradient.R’)

4 source(’Step_length.R’)

5 source(’Update_matrix.R’)

6 source(’Results.R’)

7 source(’Sparsity.R’)

8 # Inputs

9 s <- read.table(file = "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/Data/Results/Current_matrix

_and_flows/states_Lasso_without_original_matrix_1000. csv", sep = ",", header = FALSE)[,1]

10 penalization_coefficient_seq <- c(1)

11 for(penalization_coefficient in penalization_coefficient_seq){

12 #penalization_coefficient <- 100

13 number_of_iteration <- 31

14 flow_floor <- 0.0001

15

16 Aimsun_install_location <- "C:\\ apps\\ Aimsun"

17 # aconsole -project path to your ANG file -cmd execute -target scriptId

18 project_path_to_ang_file <- ’aconsole -project "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/

Data/vitoria2.ang" -cmd execute -target 15058686 ’

19 #project_path_to_ang_file <- ’aconsole -project "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/

Data/vitoria2.ang" -cmd execute -target 15058688 ’

20 volumes <- "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/Data/volumes.txt"

21

22 length(which(historical_matrix ==0))

23 length(historical_matrix)

24 # Matrices

25 centroidsN <- sqrt(length(read.table(file = "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/Data

/original/states.txt", sep = ",", header = FALSE)[ ,1]))

26 real_matrix <- matrix(data = read.table(file = "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/

Data/original/states.txt", sep = ",", header = FALSE)[ ,1],nrow = centroidsN , ncol =

centroidsN , byrow = TRUE)

27 historical_matrix <- as.matrix(read.table(file = "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria

/Data/historical_matrix.csv", sep =",", header = FALSE))
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28 original_matrix <- historical_matrix

29 current_matrix <- original_matrix

30

31 # Flows

32 volumes_with_the_same_separator <- read.table(textConnection(gsub(":", ",", readLines("E:/Google

Drive/TSS/MatrixAdjustment/Codevitoria/Data/original/volumes.txt"))))

33 write.table(volumes_with_the_same_separator , ’E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/

Data/volumes_with_the_same_separator.txt’, col.names = FALSE , row.names = FALSE , quote =

FALSE)

34 detectors_id <- read.table(file = "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/Data/volumes_

with_the_same_separator.txt", sep = ",", header = FALSE)[ ,1]

35 observed_flows <- read.table(file = "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/Data/volumes

_with_the_same_separator.txt", sep = ",", header = FALSE)[ ,2]

36 observed_flows <- observed_flows[order(detectors_id)]

37 detectorsN <- length(observed_flows)

38

39 # Probability matrix

40 assigned_prob_col_pos <- read.table(file = "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/Data/

original/matrix.txt", sep = ";", header = FALSE)[,1]+1

41 assigned_prob_row_pos <- read.table(file = "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/Data/

original/matrix.txt", sep = ";", header = FALSE)[,2]+1

42 assigned_prob_entry <- read.table(file = "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/Data/

original/matrix.txt", sep = ";", header = FALSE)[,3]

43 assigned_probabilities <- matrix(data = 0, nrow = (centroidsN * centroidsN), ncol = detectorsN)

44 for (i in 1: length(assigned_prob_entry)) {

45 assigned_probabilities[assigned_prob_row_pos[i] , assigned_prob_col_pos[i]] <- assigned_prob_

entry[i]

46 }

47 row_name <- read.table(file = "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/Data/original/

origins.txt", sep = "\n", header = FALSE , stringsAsFactors=FALSE)

48 row_name <- as.vector(row_name)

49 col_name <- read.table(file = "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/Data/original/

destinations.txt", sep = "\n", header = FALSE , stringsAsFactors=FALSE)

50 col_name <- as.vector(col_name)

51 col_name <- c(’id’,t(col_name))

52

53 # Required objects for Lasso

54 width_gaussian <- 0.01

55 height_gaussian <- width_gaussian / sqrt(2 * pi)

56 center_gaussian <- original_matrix

57 # Choose which method you want to utilize to calculate assignment matrix;

58 # "Modified_Spiess" : sum(assigned_flows - observed_flows)^2,

59

60 # "Ridge" : sum(assigned_flows - observed_flows)^2,

61 # + (penalization_coefficient * sum(current_matrix - original_

matrix)^2),

62

63 # "Lasso_without_original_matrix" : sum(assigned_flows - observed_flows)^2

64 # + (penalization_coefficient * sum(current_matrix)),

65

66 # "Lasso" : sum(assigned_flows - observed_flows)^2

67 # + (penalization_coefficient * sum(| current_matrix - original_

matrix |).

68 cat("\014")

69 #method <- readline (" Choose a method ( Modified_Spiess , Ridge , Lasso , Lasso_without_original_

matrix , Lasso ) : ")

70 method <- "Ridge"

71 assignment_loop <- 0

72 cost <- as.vector (0)

73 step_length <- as.numeric (0)
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74 ptm <- proc.time()

75

76 #for(iter in c(1: number_of_iteration)){

77 while(assignment_loop >= 0) {

78 if(( assignment_loop > 1) && (abs(cost[assignment_loop] - cost[assignment_loop - 1]) < 500)){

79 break

80 }

81

82 if(assignment_loop != 0){

83 gradient <- calculate_gradient ()

84 step_length <- calculate_step_length ()

85 last_step_matrix <- current_matrix

86 current_matrix <- update_matrix ()

87 }

88

89 #if(assignment_loop != 0 && method == "Lasso"){

90 # current_matrix <- calculate_lasso()

91 #}

92

93 wrt_current_matrix <- rbind(t(row_name), current_matrix)

94 wrt_current_matrix <- cbind(col_name , wrt_current_matrix)

95 wrt_current_matrix <- wrt_current_matrix[rowSums(wrt_current_matrix[,-1] != 0) != 0, ]

96 write.table(wrt_current_matrix , ’E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/Data/current_

matrix.txt’, sep =’\t’, col.names = FALSE , row.names = FALSE , quote = FALSE)

97 Sys.setenv(PATH = paste(Sys.getenv("PATH"), Aimsun_install_location , sep = ";"))

98 shell(project_path_to_ang_file , wait = TRUE)

99

100 assigned_flows <- read.table(file = volumes , sep = ",", header = FALSE)[ ,2]

101 assigned_flows <- assigned_flows[order(detectors_id)]

102 if(assignment_loop == 0){

103 assigned_flows_historical <- assigned_flows

104 }

105

106 assigned_prob_col_pos <- read.table(file = "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/

Data/matrix.txt", sep = ";", header = FALSE)[,1]+1

107 assigned_prob_row_pos <- read.table(file = "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/

Data/matrix.txt", sep = ";", header = FALSE)[,2]+1

108 assigned_prob_entry <- read.table(file = "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/Data/

matrix.txt", sep = ";", header = FALSE)[,3]

109 assigned_probabilities <- matrix(data = 0, nrow = (centroidsN * centroidsN), ncol = detectorsN)

110 for (i in 1: length(assigned_prob_entry)) {

111 assigned_probabilities[assigned_prob_row_pos[i] , assigned_prob_col_pos[i]] <- assigned_prob_

entry[i]

112 }

113

114 assignment_loop <- assignment_loop + 1

115 cat("\014")

116 cat("cost =", cost)

117 cat(sep = "\n")

118 cat(sep = "\n")

119 if(assignment_loop > 9){

120 cat("Latest 10 costs =", cost[( assignment_loop -9):assignment_loop])

121 cat(sep = "\n")

122 }

123 # Calculating cost (objective) function

124 if (method == "Modified_Spiess") {

125 cost[assignment_loop] <- 1/2 * sum(( assigned_flows - observed_flows) ^ 2)

126

127 }else if(method == "Ridge"){
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128 cost[assignment_loop] <- (1/2 * sum(( assigned_flows - observed_flows) ^ 2)) + (penalization_

coefficient * (1/2 * sum(( current_matrix - original_matrix) ^ 2)))

129

130 }else if (method == "Lasso_without_original_matrix"){

131 cost[assignment_loop] <- (1/2 * sum(( assigned_flows - observed_flows) ^ 2)) + (penalization_

coefficient * (sum(current_matrix)))

132

133 }else if (method == "Lasso"){

134 cost[assignment_loop] <- (1/2 * sum(( assigned_flows - observed_flows) ^ 2)) + (penalization_

coefficient * sum(abs(current_matrix - original_matrix))) }

135 }

136 # Results

137 run_time <- proc.time()-ptm

138 print(penalization_coefficient)

139 print(current_matrix)

140 degree_of_sparsity <- calculate_sparsity(matrix = if(method == "Lasso" || method == "Ridge"){abs(

current_matrix - original_matrix)}else{current_matrix })

141 sum_of_cells_of_current_matrix <- sum(current_matrix)

142 results <- calculate_results ()

143 }

Listing A.1: R code for OD estimation process in the Vitoria network; Main scrip.R

1 # calculating gradient

2

3 calculate_gradient <- function (){

4 identity_matrix <- matrix (data = 1, nrow = centroidsN*centroidsN , ncol = 1)

5 if (method == "Modified_Spiess") {

6 gradient <- gradient <- matrix (data = assigned_probabilities %*% (assigned_flows - observed_

flows),

7 nrow = centroidsN , ncol = centroidsN , byrow = TRUE)

8 }else if(method == "Ridge"){

9 gradient <- (matrix (data = assigned_probabilities %*% (assigned_flows - observed_flows), nrow =

centroidsN , ncol = centroidsN , byrow = TRUE)) + (penalization_coefficient * (current_

matrix - original_matrix))

10 }else if (method == "Lasso_without_original_matrix"){

11 gradient <- (matrix (data = assigned_probabilities %*% (assigned_flows - observed_flows), nrow =

centroidsN , ncol = centroidsN , byrow = TRUE)) + penalization_coefficient

12 }else if (method == "Lasso"){

13 for( rowN in 1:nrow(original_matrix) ){

14 for(colN in 1:ncol(original_matrix) ){

15

16 if(current_matrix[rowN , colN] - original_matrix[rowN , colN] >= 0 ){

17 gradient[rowN , colN] <- (( matrix (data = assigned_probabilities %*% (assigned_flows -

observed_flows), nrow = centroidsN , ncol = centroidsN , byrow = TRUE)) + penalization_

coefficient)[rowN , colN]

18 }

19 if(current_matrix[rowN , colN] - original_matrix[rowN , colN] < 0 ){

20 gradient[rowN , colN] <- (( matrix (data = assigned_probabilities %*% (assigned_flows -

observed_flows), nrow = centroidsN , ncol = centroidsN , byrow = TRUE)) - penalization_

coefficient)[rowN , colN]

21 }

22 }

23 }

24

25 #gradient <- (matrix (data = assigned_probabilities %*% (assigned_flows - observed_flows), nrow

= centroidsN , ncol = centroidsN , byrow = TRUE)) + convolve (( penalization_coefficient * (

current_matrix - original_matrix)), ((-( height_gaussian * (current_matrix - center_gaussian

)) / (width_gaussian ^ 2)) %*% (exp(-(( current_matrix - center_gaussian) ^ 2) / (2 * (width

_gaussian ^ 2))))))
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26 }

27 return(gradient)

28 }

Listing A.2: R code for OD estimation process in the Vitoria network; Gradient.R

1 # calculating step length "lambda"

2 calculate_step_length <- function () {

3 flows_derivative <- as.vector(t(assigned_probabilities) %*% as.vector(t(gradient)))

4 if (method == "Modified_Spiess") {

5 step_length <- sum(flows_derivative * (assigned_flows - observed_flows)) / sum(flows_derivative

^ 2)

6 }else if(method == "Ridge"){

7 step_length_nominator <- sum(flows_derivative * (assigned_flows - observed_flows)) + sum(

penalization_coefficient * c(gradient) * c(current_matrix)) - sum(penalization_coefficient

* c(gradient) * c(original_matrix))

8

9 step_length_denominator <- sum(flows_derivative ^ 2) + sum(penalization_coefficient * (c(

gradient) ^ 2))

10

11 step_length <- (step_length_nominator / step_length_denominator)

12 }else if (method == "Lasso_without_original_matrix"){

13

14 step_length_nominator <- sum(flows_derivative * (assigned_flows - observed_flows)) + sum(

penalization_coefficient * c(gradient))

15

16 step_length_denominator <- sum(flows_derivative ^ 2)

17

18 step_length <- step_length_nominator / step_length_denominator

19

20 }else if (method == "Lasso"){

21

22 step_length_nominator <- sum(flows_derivative * (assigned_flows - observed_flows)) + sum(

penalization_coefficient * c(gradient) * c(current_matrix)) - sum(penalization_coefficient

* c(gradient) * c(original_matrix))

23

24 step_length_denominator <- sum(flows_derivative ^ 2) + sum(penalization_coefficient * (c(

gradient) ^ 2))

25

26 step_length <- (step_length_nominator / step_length_denominator)

27

28 #positive_indices_in_gradient <- which(gradient >= 0)

29

30 #b1 <- penalization_coefficient * (c(gradient)[positive_indices_in_gradient] ^ 0.0001)

31 #b2 <- penalization_coefficient * -(abs(c(gradient)[-positive_indices_in_gradient ]) ^ 0.0001)

32 #b <- sum(b1 + b2)

33

34 #step_length_nominator <- sum(flows_derivative * (assigned_flows - observed_flows))

35 #+ sum(penalization_coefficient * c(gradient) * c(( current_matrix ^ 0.0001))) + b

36 #+ sum(penalization_coefficient * c(( original_matrix ^ 0.0001)))

37

38 #step_length_denominator <- sum(flows_derivative ^ 2)

39

40 #step_length <- step_length_nominator / step_length_denominator

41

42 #step_length_nominator <- sum(flows_derivative %*% (observed_flows - assigned_flows)) + sum(

penalization_coefficient * (c(current_matrix) ^ 2) * c(gradient)) - sum(penalization_

coefficient * c(current_matrix) * c(original_matrix) * c(gradient))

43

44 #step_length_denominator <- sum(flows_derivative %*% t(flows_derivative)) + sum(penalization_
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coefficient * c(current_matrix) * (c(gradient) ^ 2))

45

46 #step_length <- (step_length_nominator / step_length_denominator)

47

48 #step_length <- matrix(data = 0, nrow = centroidsN , ncol = centroidsN)

49 #for(rowN in 1:nrow(original_matrix) ){

50 # for(colN in 1:ncol(original_matrix) ){

51 # if(current_matrix[rowN , colN] - original_matrix[rowN , colN] >= 0 ){

52 # step_length_nominator <- sum(flows_derivative * (assigned_flows - observed_flows)) + sum(

penalization_coefficient * c(gradient))

53 # step_length_denominator <- sum(flows_derivative ^ 2)

54 # step_length[rowN , colN] <- step_length_nominator / step_length_denominator

55 # }

56 # if(current_matrix[rowN , colN] - original_matrix[rowN , colN] < 0 ){

57 # step_length_nominator <- sum(flows_derivative %*% (observed_flows - assigned_flows)) -

sum(penalization_coefficient * c(gradient))

58 # step_length_denominator <- sum(flows_derivative %*% t(flows_derivative))

59 # step_length[rowN , colN] <- -step_length_nominator / step_length_denominator

60 # }

61 # }

62 #}

63

64 }

65 #if(method == "Lasso_without_original_matrix "){

66 # pos <-1

67 #for(step in c(step_length)){

68 # positive_indices_in_current_matrix <- c(current_matrix > 0)

69 #positive_indices_in_gradient <- c(gradient > 0)

70 #identity_matrix <- matrix (data = 1, ncol = centroidsN * centroidsN , byrow = TRUE )

71

72 # is_step_length_Correct <- all(step * c(gradient)[positive_indices_in_current_matrix] <= c(

current_matrix)[positive_indices_in_current_matrix ])

73

74 # if (!is_step_length_Correct) {

75 # step_length[pos] <- min(c(current_matrix)[positive_indices_in_current_matrix & positive_

indices_in_gradient] / c(gradient)[positive_indices_in_current_matrix & positive_indices_in_

gradient ])

76

77 #for(rowN in 1:nrow(original_matrix) ){

78 # for(colN in 1:ncol(original_matrix) ){

79 # if(is.na(step_length[rowN , colN]) || is.infinite(step_length[rowN , colN])){

80 # step_length[rowN , colN] <- 0

81 # }

82 # }

83 #}

84

85 #}

86 #pos <-pos+1

87 # }

88 #}

89 print(step_length)

90 return(step_length)

91 }

Listing A.3: R code for OD estimation process in the Vitoria network; Step length.R

1 calculate_results <- function (){

2

3 RMSE_current_historical <- sqrt((sum((( current_matrix - historical_matrix) ^ 2))) / (centroidsN ^

2))
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4 U_current_historical <- (RMSE_current_historical)/((sqrt((sum(( current_matrix ^ 2))) / (centroidsN

^ 2)))+(sqrt((sum(( historical_matrix ^ 2))) / (centroidsN ^ 2))))

5 MAE_current_historical <- (1/(centroidsN ^ 2))*sum(abs(current_matrix - historical_matrix))

6 SE_current_historical <- sum ((( current_matrix - historical_matrix)^2))

7 ME_current_historical <- (1/(centroidsN ^ 2))*sum(( current_matrix - historical_matrix))

8 R2_current_historical <- sum ((( historical_matrix - current_matrix)^2))/sum((( historical_matrix -

(((1/centroidsN ^2)*sum(historical_matrix))))^2))

9 GEH_current_historical <- sqrt ((2*(( current_matrix - historical_matrix)^2))/(current_matrix +

historical_matrix))

10 GEH_percent_current_historical <- (100*length(GEH_current_historical[GEH_current_historical <5]))/(

centroidsN ^ 2)

11

12 RMSE_flow_current_real <- sqrt((sum((( assigned_flows - observed_flows) ^ 2))) / (length(assigned_

flows)))

13 RMSE_flow_historical_real <- sqrt((sum ((( assigned_flows_historical - observed_flows) ^ 2))) / (

length(assigned_flows_historical)))

14 RMSE_flow_current_historical <- sqrt((sum((( assigned_flows - assigned_flows_historical) ^ 2))) / (

length(assigned_flows)))

15

16 U_flow_current_real <- (RMSE_flow_current_real)/((sqrt((sum(( assigned_flows ^ 2))) / (length(

assigned_flows))))+(sqrt((sum(( observed_flows ^ 2))) / (length(assigned_flows)))))

17 MAE_flow_current_real <- (1/(length(assigned_flows)))*sum(abs(assigned_flows - observed_flows))

18 SE_flow_current_real <- sum((( assigned_flows - observed_flows)^2))

19 ME_flow_current_real <- (1/(length(assigned_flows)))*sum(( assigned_flows - observed_flows))

20 R2_flow_current_real <- sum((( observed_flows - assigned_flows)^2))/sum((( observed_flows - ((((

length(assigned_flows))^2)*sum(observed_flows))))^2))

21 GEH_flow_current_real <- sqrt ((2*(( assigned_flows - observed_flows)^2))/(assigned_flows + observed

_flows))

22 GEH_percent_flow_current_real <- (100*length(GEH_flow_current_real[GEH_flow_current_real <5]))/

length(observed_flows)

23

24 results_header <- c(’Lambda ’,

25 ’RMSE (estimated and historical OD matrices)’,

26 ’U (estimated and historical OD matrices)’,

27 ’MAE (estimated and historical OD matrices)’,

28 ’SE (estimated and historical OD matrices)’,

29 ’ME (estimated and historical OD matrices)’,

30 ’R^2 (estimated and historical OD matrices)’,

31 ’%GEH < 5 (estimated and historical OD matrices)’,

32 ’RMSE (estimated and real traffic counts)’,

33 ’RMSE (historical and real traffic counts)’,

34 ’RMSE (estimated and historical traffic counts)’,

35 ’U (estimated and real traffic counts)’,

36 ’MAE (estimated and real traffic counts)’,

37 ’SE (estimated and real traffic counts)’,

38 ’ME (estimated and real traffic counts)’,

39 ’R^2 (estimated and real traffic counts)’,

40 ’%GEH < 5 (estimated and real traffic counts)’,

41 ’Number of OD pairs which converge to zero’,

42 ’Total demand ’,

43 ’Computational time’)

44

45 results_data <- c(penalization_coefficient ,

46 RMSE_current_historical ,

47 U_current_historical ,

48 MAE_current_historical ,

49 SE_current_historical ,

50 ME_current_historical ,

51 R2_current_historical ,

52 GEH_percent_current_historical ,
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53 RMSE_flow_current_real ,

54 RMSE_flow_historical_real ,

55 RMSE_flow_current_historical ,

56 U_flow_current_real ,

57 MAE_flow_current_real ,

58 SE_flow_current_real ,

59 ME_flow_current_real ,

60 R2_flow_current_real ,

61 GEH_percent_flow_current_real ,

62 degree_of_sparsity ,

63 sum_of_cells_of_current_matrix ,

64 as.numeric(run_time [3]))

65

66 results_data_frame <- data.frame(results_header , results_data)

67 existence_of_results <- file.exists(file = file.path(’E:/Google Drive/TSS/MatrixAdjustment/

Codevitoria/Data/Results ’, paste0(’Results_’,method ,’.csv’)))

68

69 if(existence_of_results == FALSE){

70 write.table(results_data_frame , file = file.path(’E:/Google Drive/TSS/MatrixAdjustment/

Codevitoria/Data/Results ’, paste0(’Results_’,method ,’.csv’)), sep =",", col.names = FALSE ,

row.names = FALSE , quote = FALSE)

71 }

72

73 new_data_frame <- read.table(file = file.path(’E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/

Data/Results ’, paste0(’Results_’,method ,’.csv’)), sep =",", header = FALSE)

74 new_data_frame <- new_data_frame[,-1]

75

76 if(is.vector(new_data_frame)){

77 test_existence_lambda <- new_data_frame [1]

78 }else{

79 test_existence_lambda <- new_data_frame[1,]

80 }

81

82 if(!any(test_existence_lambda == penalization_coefficient)){

83 new_data_frame <- cbind(new_data_frame , results_data)

84 new_data_frame_sorted <- new_data_frame[,order(new_data_frame [1,])]

85 new_data_frame_sorted <- cbind(results_header , new_data_frame_sorted)

86 write.table(new_data_frame_sorted , file= file.path(’E:/Google Drive/TSS/MatrixAdjustment/

Codevitoria/Data/Results ’, paste0(’Results_’,method ,’.csv’)), sep =",", col.names = FALSE ,

row.names = FALSE , quote = FALSE)

87 }

88 # saving current_matrix and current_flows

89 #file.copy("E:/Google Drive/TSS/MatrixAdjustment/Code/Data/states.txt", "E:/Google Drive/TSS/

MatrixAdjustment/Code/Data/Results/Current_matrix_and_flows ")

90 # rename the file

91 new_states <- read.table(file = "E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/Data/states.txt"

, sep = ",", header = FALSE)

92 new_states <- cbind(as.vector(t(historical_matrix)),new_states)

93 new_states <- rbind(c("historical OD matrix","estimated OD matrix"),new_states)

94 write.table(new_states , file= file.path(’E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/Data/

Results/Current_matrix_and_flows’, paste0(’states_’,method ,’_’,penalization_coefficient ,’.csv

’)), sep =",", col.names = FALSE , row.names = FALSE , quote = FALSE)

95 #file.rename(from = file.path(’E:/Google Drive/TSS/MatrixAdjustment/Code/Data/Results/Current_

matrix_and_flows ’, ’states.txt ’), to = file.path(’E:/Google Drive/TSS/MatrixAdjustment/Code/

Data/Results/Current_matrix_and_flows ’, paste0(’states_’,method ,’_’,penalization_coefficient

,’.txt ’)))

96 # saving current flows

97 write.table(assigned_flows , file = file.path(’E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/

Data/Results/Current_matrix_and_flows’, paste0(’flows_’,method ,’_’,penalization_coefficient ,’

.txt’)), sep ="\t", col.names = FALSE , row.names = FALSE , quote = FALSE)
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98 # saving cost function

99 new_cost <- cbind(c(1: length(cost)), cost)

100 new_cost <- rbind(c("iteration","objective function"), new_cost)

101 write.table(new_cost , file= file.path(’E:/Google Drive/TSS/MatrixAdjustment/Codevitoria/Data/

Results/Current_matrix_and_flows’, paste0(’objective_function_’,method ,’_’,penalization_

coefficient ,’.csv’)), sep =",", col.names = FALSE , row.names = FALSE , quote = FALSE)

102

103 cat("RMSE (estimated and historical OD matrix) = ", RMSE_current_historical)

104 cat(sep = "\n")

105 cat("RMSE (estimated and real traffic counts) = ", RMSE_flow_current_real)

106 cat(sep = "\n")

107 cat("RMSE (historical and real traffic counts) = ", RMSE_flow_historical_real)

108 cat(sep = "\n")

109 cat("RMSE (estimated and historical traffic counts) = ", RMSE_flow_current_historical)

110 }

Listing A.4: R code for OD estimation process in the Vitoria network; Results.R

1 calculate_sparsity <- function(matrix){

2 degree_of_sparsity <- 0

3 positive_indices_of_original_matrix <- which(c(original_matrix) > 0)

4 for(i in c(positive_indices_of_original_matrix)){

5 if(c(matrix)[i] <=0.1){

6 degree_of_sparsity <- degree_of_sparsity + 1

7 }

8 }

9 cat("\n")

10 if(method == "Lasso"){

11 cat("Number of additional zero cells (in (current_matrix - original_matrix)) =", degree_of_

sparsity)

12 }else{

13 cat("Number of additional zero cells (in current_matrix) =", degree_of_sparsity)

14 }

15 return(degree_of_sparsity)

16 }

Listing A.5: R code for OD estimation process in the Vitoria network; Sparsity.R

A.2 Python script to call the R code from Aimsun Next

In what follows, the Python code, in which Aimsun Next simulator software is called to run the

assignment, is represented.

1 experiment = model.getCatalog ().find( 15058688 )

2 path = str( QFileInfo( model.getDocumentFileName () ).absolutePath () )

3 def observations ():

4 res = []

5 for detector in GK.GetObjectsOfType( model.getType( "GKDetector" ) ):

6 section = detector.getSection ()

7 res.append( section.getId() )

8 return res

9 def getAssignedVolume( id ):

10 section = model.getCatalog ().find( id )

11 column = model.getColumn( "MACRO ::" + str( experiment.getId() ) + "_GKSection_

macroAssignedVolume_15058284" )

12 ts = section.getDataValueTS( column )

13 if ts != None:
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14 return ts.getValue( GKTimeSerieIndex( 0 ) )[0]

15 return 0.0

16 def getDetector( sectionId ):

17 section = model.getCatalog ().find( sectionId )

18 for topObject in section.getTopObjects ():

19 if topObject.getType () == model.getType( "GKDetector" ):

20 return topObject

21 def getObservedVolume( sectionId ):

22 detector = getDetector( sectionId )

23 column = model.getColumn( "GKRealData ::RD_GKDetector_count_" +str( experiment.getScenario ().

getRealDataSet ().getId() )+ "_0" )

24 ts = detector.getDataValueTS( column )

25 if ts != None:

26 return ts.getValue( GKTimeSerieIndex( 0 ) )[0]

27 return 0.0

28 def getDemand( originId , destinationId ):

29 origin = model.getCatalog ().find( originId )

30 destination = model.getCatalog ().find( destinationId )

31 return experiment.getScenario ().getDemand ().getTrips( origin , destination , None , None )

32 def states ():

33 res = []

34 centroids = experiment.getScenario ().getDemand ().getCentroidConfigurations ()[0]. getCentroids ()

35 for origin in centroids:

36 for destination in centroids:

37 res.append( ( origin.getId(), destination.getId() ) )

38 return res

39 def main():

40 rds = experiment.getScenario ().getRealDataSet ()

41 rds.restoreData ()

42 GKSystem.getSystem ().executeAction( "execute", experiment , [], "" )

43 forest = experiment.getForest ()

44 matrix = forest.getAssignmentMatrix( model , observations (), states () )

45 matrix.writeToFile( path + "/matrix.txt" )

46 f = open( path + "/meta_info.txt", ’w’ )

47 f.write( "states: [" + ",".join( [ "({} ,{})".format(origin , dest) for origin , dest in states () ] )

+ "]\n" )

48 f.write( "observations: [" + ",".join(["{}".format(i) for i in observations ()]) + "]\n" )

49 f.close()

50 f = open( path + "/volumes.txt", ’w’ )

51 for section in observations ():

52 f.write( str( section ) + ": " + str( getObservedVolume(section) ) + "," + str(

getAssignedVolume(section) ) + "\n" )

53 f.close()

54 f = open( path + "/states.txt", ’w’ )

55 for state in states ():

56 f.write( str( getDemand( state[0], state [1] ) ) + "\n" )

57 f.close()

58 main()

Listing A.6: Python code to call Aimsun Next to run the assignment, in the Vitoria network;

Python script.py
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