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   Summary                                                                                                           

The main objectives of this Thesis were to investigate the genetic basis of fatness in 

pigs and to identify the genetic factors involved in the establishment of blond vs red 

pigmentation patterns in Mangalitza pigs by using genomic and transcriptomic tools. In the 

first study of the Thesis (Chapter 3), we compare the skeletal muscle expression patterns of 

two groups of Duroc pigs with different growth and fatness profiles (HIGH: high backfat 

thickness, intramuscular fat, saturated and unsaturated fatty acid content and serum lipids 

vs LOW: opposite phenotypes). By using a RNA-Seq technology, we identified 96 genes 

differentially expressed. Several of these genes are related to lipid metabolism (e.g. 

SLC27A4, SFRP5 and CES1) and the transcription factor PPARG appears to be a key 

regulator of porcine fatness. We have also observed that very few non-coding RNAs are 

differentially expressed in these two groups of pigs, suggesting that the non-coding 

transcriptome has a limited effect on the establishment of the HIGH and LOW phenotypes. 

In the second study of the Thesis, we demonstrate the differential  expression of specific 

mRNA isoforms of four genes with a known role in obesity (ITGA5, LITAF, TIMP1 and 

ANXA2) in HIGH vs LOW pigs. The differential expression of these isoforms may have 

effects on transcript structure as well as on the protein sequence. In the third study, we 

aimed to investigate the differential expression of mRNA encoding genes in response to 

food ingestion. This goal has been achieved by comparing the muscle mRNA expression 

patterns of Duroc sows before feeding (T0) and 5 h. (T1) and 7 h. (T2) after feeding.  

Besides genes with a well-known role in energy homeostasis (e.g. PFKFB3 and G0S2), we 

have identified several genes with a plausible but poorly characterized role in metabolism 

(e.g. MIGA2, SDC4, and CSRNP1). We have also observed that the set of genes 

differentially expressed before and after feeding is enriched in transcription factors and 

pathways related to oxidative stress, angiogenesis, and circadian rhythms. Considering 

these results, in the fourth study we use quantitative RT-qPCR technique to find out how 

the expression of 8 circadian genes (ARNTL, BHLHE40, CRY2, NPAS2, NR1D1, PER1, 

PER2 and SIK1) changes in response to food ingestion in five porcine tissues i.e. skeletal 

muscle, hypothalamus, liver, intestine and dorsal fat. Our results indicate that the 

expression of the Clock genes does not change in the hypothalamus, the tissue containing 

the central clock entrained by light, but in contrast, it is strongly modified in the other four 

tissues. This finding demonstrates that nutrition changes the expression of circadian genes 

integrated in peripheral clocks. Finally, in the fifth study, we have analysed, in 
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collaboration with researchers of the Research Institute for Animal Breeding and Nutrition 

(Hungary) and the University of Cluj-Napoca (Romania), the genetic basis of coat color 

(red vs blond) of Mangalitza pigs. By combining a selection scan and a genome-wide 

association study, we have found that the SLC45A2 gene is probably involved in the 

genetic determination of pigmentation in Mangalitza pigs, a result that agrees well with 

previous studies demonstrating the implication of this locus on the color patterns of 

multiple mammalian species including humans. More specifically, two missense SNPs 

c.806G>A (p.Gly269Glu) and c.956G>A (p.Arg319His) in the SLC45A2 locus appear to 

be strongly but not fully associated with the red and blond coat colors of Mangalitza pigs. 

This finding suggests the existence of addiitonal genetic factors regulating the 

pigmentation of Mangalitza pigs. 
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     Resumen                                                                                                 

Los principales objetivos de esta Tesis fueron investigar la base genética de la 

composición y deposito de la grasa en cerdos, e identificar los factores genéticos 

involucrados en el establecimiento de los patrones de pigmentación rubia vs roja en cerdos 

Mangalitza, mediante el uso de herramientas genómicas y transcriptómicas. En el primer 

estudio comparamos los patrones de expresión del músculo esquelético en dos grupos de 

cerdos Duroc, con diferentes perfiles de crecimiento y engrasamiento (HIGH: elevado 

espesor del tocino dorsal, grasa intramuscular, contenido de ácidos grasos saturados e 

insaturados y lípidos séricos vs LOW: fenotipos opuestos). Mediante el uso de la técnica 

RNA-Seq, hemos encontrado que 96 genes se expresan diferencialmente en el músculo 

gluteus medius de cerdos HIGH y LOW. Varios de estos genes están relacionados con el 

metabolismo lipídico (p.ej, SLC27A4, SFRP5, y CES1) y el factor de transcripción PPARG 

parece ser un regulador clave del engrasamiento en porcino. También hemos observado 

que muy pocos RNAs no codificantes se expresan diferencialmente en estos dos grupos de 

cerdos, lo que sugiere que el transcriptoma no codificante tiene un efecto limitado sobre el 

establecimiento de los fenotipos HIGH y LOW. En el segundo estudio, analizamos la 

expresión de isoformas de mRNA en cerdos  HIGH y  LOW y demostramos la expresión 

diferencial de isoformas específicas de cuatro genes muy relacionados con la obesidad 

(ITGA5, LITAF, TIMP1 y ANXA2). La expresión diferencial de estas isoformas podría 

tener efectos sobre la estructura del transcrito, así como sobre la secuencia de la proteína. 

En el tercer estudio, hemos analizado la expresión diferencial de genes que codifican 

mRNA en respuesta a la ingestión de alimentos. Este objetivo se ha logrado al comparar los 

patrones de expresión muscular de cerdas Duroc antes de comer (T0), 5 h. (T1) y 7 h. (T2) 

después de comer. Además de los genes con un papel bien conocido en la homeostasis 

energética (p.ej, PFKFB3 y G0S2), hemos identificado varios genes con un rol plausible 

pero mal caracterizado en el metabolismo (p.ej, MIGA2, SDC4 y CSRNP1). También 

hemos observado un enriquecimiento de un conjunto de genes expresados diferencialmente 

antes y después de comer que engloba diversos factores de transcripción así como  genes 

implicados en el estrés oxidativo, la angiogénesis y los ritmos circadianos. Teniendo en 

cuenta estos resultados, en el cuarto estudio hemos desarrollado un experimento basado en 

RT-qPCR para descubrir cómo la expresión de 8 genes circadianos (ARNTL, BHLHE40, 

CRY2, NPAS2, NR1D1, PER1, PER2 y SIK1) se modifica en respuesta a la ingestión de 

alimentos en cinco tejidos porcinos (músculo esquelético, hipotálamo, hígado, intestino y 
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grasa dorsal). Nuestros resultados indican que la expresión de los genes circadianos no 

cambia en el hipotálamo, el tejido que contiene el reloj central influenciado por la luz. Por 

el contrario, dicha expresión sí que presenta fuertes variaciones en los otros cuatro tejidos. 

Este hallazgo demuestra que la nutrición cambia la expresión de los genes circadianos 

integrados en los relojes periféricos. Finalmente, en el quinto estudio, hemos analizado, en 

colaboración con investigadores del Research Institute for Animal Breeding and Nutrition 

(Hungría) y la Universidad de Cluj-Napoca (Rumanía), la base genética del color de la 

capa (rojo vs rubio) en cerdos Mangalitza. Combinando un barrido de selección y un 

estudio de asociación del genoma completo, hemos encontrado que el gen SLC45A2 

probablemente esté involucrado en la determinación genética de la pigmentación roja y 

rubia de los cerdos Mangalitza, un resultado que concuerda bien con estudios previos que 

demuestran la implicación de este locus en los patrones de color de múltiples especies de 

mamíferos, incluyendo la especie humana. Más específicamente, dos SNP con efecto no-

sinónimo, c.806G>A (p.Gly269Glu) y c.956G>A (p.Arg319His), situados en el gen 

SLC45A2,  están fuertemente asociados con los colores rojo y rubio, no obstante dicha 

asociación no es completa por lo que cabe deducir la existencia de factores genéticos 

adicionales en la pigmentación de los cerdos Mangalitza.   
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   Resumo                                                                                                     

Os principais objetivos desta tese foram investigar a base genética do depósito de 

gordura em suínos e identificar os fatores genéticos envolvidos no estabelecimento de 

padrões de pigmentação loiro vs vermelho em suínos Mangalitza utilizando ferramentas 

genômicas e transcriptômicas. No primeiro estudo, comparamos os padrões de expressão 

em músculo esquelético de dois grupos de suínos Duroc (HIGH: alta espessura de gordura, 

gordura intramuscular, conteúdo de ácidos graxos saturados e insaturados e lipídios séricos 

vs LOW: fenótipos opostos) com diferentes perfis de crescimento e gordura. Usando uma 

abordagem de RNA-Seq, mostramos que 96 genes são diferencialmente expressos. Vários 

destes genes estão relacionados com o metabolismo lipídico (p. ex. SLC27A4, SFRP5 e 

CES1) e o fator de transcrição PPARG parece ser um regulador chave da gordura suína. 

Também observamos que poucos RNA não-codificantes são diferencialmente expressos 

nesses dois grupos de suínos, sugerindo que o transcriptoma não-codificante tem um efeito 

limitado sobre o estabelecimento dos fenótipos HIGH e LOW. No segundo estudo, 

analisamos a expressão de isoformas de mRNA comparando os mesmos animais HIGH e 

LOW, e demonstramos uma expressão diferencial de isoformas específicas de quatro genes 

com papel conhecido na obesidade (ITGA5, LITAF, TIMP1 e ANXA2). A expressão 

diferencial destas isoformas pode ter efeitos na estrutura do transcrito, bem como na 

sequência da proteína. No terceiro estudo, analisamos a expressão diferencial de mRNA 

codificando genes em resposta à ingestão de alimentos, através da comparação dos padrões 

de expressão de mRNA musculares de suínos Duroc antes da alimentação (T0) e 5 h (T1) e 

7 h (T2) após a alimentação. Identificamos genes diferencialmente expressos entre os 

grupos com um papel bem conhecido na homeostase energética (p. ex., PFKFB3 e G0S2), 

além de vários genes com um papel plausível, mas pouco caracterizado no metabolismo (p. 

ex., MIGA2, SDC4 e CSRNP1). Também observamos um enriquecimento de genes 

relacionados a fatores de transcrição e vias metabólicas relacionadas ao estresse oxidativo, 

angiogênese e ritmos circadianos diferencialmente expressados antes e após a alimentação. 

Considerando estes resultados, no quarto estudo usamos uma técnica quantitativa de RT-

qPCR para descobrir como a expressão de oito genes circadianos (ARNTL, BHLHE40, 

CRY2, NPAS2, NR1D1, PER1, PER2 e SIK1) muda em resposta à ingestão de alimentos 

em cinco tecidos suínos (músculo esquelético, hipotálamo, fígado, intestino e gordura 

dorsal). Nossos resultados indicam que a expressão dos genes Clock não se altera no 

hipotálamo (tecido contendo o relógio central e estimulado pela luz), mas em contraste, é 
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fortemente modificado nos outros quatro tecidos. Estes resultados demonstram que a 

nutrição altera a expressão de genes circadianos de forma integrada nos relógios 

periféricos. Finalmente, no quinto estudo, analisamos, em colaboração com pesquisadores 

do Research Institute for Animal Breeding and Nutrition (Hungria) e da Universidade de 

Cluj-Napoca (Romênia), a base genética da cor da pelagem (vermelho vs loiro) de suínos 

Mangalitza. Ao combinar uma varredura de seleção e um estudo de associação genômica, 

encontramos que o gene SLC45A2 está provavelmente envolvido na determinação genética 

da pigmentação, um resultado em concordância com estudos prévios que demonstram a 

participação desse locus nos padrões de cor de múltiplas espécies de mamíferos, incluindo 

em seres humanos. Mais especificamente, dois Single Nucleotide Polimorfism (SNP) com 

efeitos não sinônimos, c.806G> A (p.Gly269Glu) e c.956G> A (p.Arg319His) no gene 

SLC45A2 parecem estar fortemente, mas não totalmente, associados às cores vermelho e 

louro da pelagem dos suínos Mangalitza. 
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1.1  A brief history of pig breeds 

 

Pigs were independently domesticated in the Near East and China approximately 

10,000 years ago (Larson et al., 2007; Larson et al., 2005). From these two primary 

domestication sites, pigs spread across Europe, North Africa, and Asia (revised in Amills 

et al., 2010). The concept of breed is relatively recent because they were created around 

150-200 years ago in the United Kingdom. However, local types with specific 

morphological and productive features were developed in much more ancient times, being 

Europe and China the two main pig breeding centers in the Old World (Larson et al. 2005). 

The first herd book of the Large White breed was published in the United Kingdom in the 

end of the 19
th

 century and the first association of Duroc pig breeders (Duroc or Jersey Red 

Swine Club) was founded in the United States also in the end of the 19
th

 century (Jones, 

1998). It is difficult to estimate the current number of pig breeds might, but it might range 

between 200–300 (Jones, 1998; Porter, 1993). 

Many studies have aimed to reconstruct the history of pig breeds by using 

microsatellite and mitochondrial markers. By using such approaches, it has been 

established the existence of a strong genetic divergence between Western and Asian pigs, 

giving support to the existence of two primary domestication sites in the Near East and 

China  (Giuffra et al., 2000; Larson et al., 2005). It was also revealed that certain European 

breeds, that now have a cosmopolite distribution (e.g. Large White, Landrace, and 

Piétrain), carry Asian alleles at significant frequencies due to an introgression event that 

took place in the United Kingdom during the 18
th

-19
th

 centuries (Fang & Andersson, 

2006). Moreover, it has been shown that gene flow between domestic and wild pigs has 

been relatively frequent (Scandura et al., 2008). Ancient DNA studies also provided proof 

of the entry of Near Eastern pigs into Europe (Larson et al., 2007). In 2017, it was 

published a comprehensive study reporting the diversity of pig breeds around the world 

(Yang et al., 2017). Genome-wide single nucleotide polymorphism (SNP) data from more 

than 3,400 pigs were analyzed confirming that many breeds have mixed Western and 

Asian ancestries and that breeds from Southern Europe are genetically distinct from those 

of Middle and North Europe. Evidence was also provided that breeds from Africa and 

America have basically a European ancestry, a finding that is consistent with the process of 

colonization of these two continents. Moreover, Yang et al. (2017) studied the abundance 

and frequency of runs of homozygosity (ROH) (i.e. genomic regions displaying a series of 

consecutive homozygous genotypes) in pig breeds. Their results showed that 40 native pig 



General introduction                                                                                                        m  

30 

 

breeds have a large fraction of the genome (> 200 Mb) covered by ROH, indicating that 

they have undergone a history of intensive inbreeding. Such pattern was especially evident 

in Mangalitza and Romagnola pigs, implying that appropriate genetic conservation 

measures should be implemented in order to prevent a further loss of diversity.  

 

1.2  The search for causal mutations in pigs associated with economical 

traits 

Porcine meat production 

Pork is the most widely consumed meat around the world, representing 36.4% of total 

meat intake (Food and Agriculture Organization of the United Nations - FAO, 2013 - 

http://faostat3.fao.org/). In recent decades, improvement of the pig breeding technologies 

(modern production systems and genetic upgrading) made possible to raise worldwide 1 

billion pigs by 2014, more than 2-fold the number in the mid-1960s (FAO, 2013 - 

http://faostat3.fao.org/). Pig breeding is one of the fastest growing livestock subsectors 

(Figure 1.1) and the main producers are China, United States of America, Germany, Spain 

and Brazil (FAO, 2016 - http://faostat3.fao.org/).  

 

 

Figure 1.1 - World production of cattle, chicken goat, pig and sheep meat. Production of meat 

in the world from 2004 to 2016 (FAO, 2016 - http://faostat3.fao.org/). 
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However, the FAO predicts that the rate of meat consumption in the world will 

decelerate in the years to come, principally due to a slower population growth 

(Alexandratos & Bruinsma, 2012). Furthermore, environmental and health concerns may 

affect the consumption of meat. In recent years, an increased evidence for a positive 

association between red meat consumption and several chronic diseases, e.g. colorectal 

cancer, coronary heart disease and type 2 diabetes, has been reported in the media (De 

Smet & Vossen, 2016). Nevertheless, meat and its processed products contribute 

significantly to the intake of energy, protein and important micronutrients that support 

human growth and development (Leroy & Praet, 2015). Dickenson & Bailey (2002) and 

Lyford et al. (2010) reported that consumers are willing to pay more for high-quality meat. 

Thus, the pork industry should make an effort towards fulfilling consumer expectations in 

terms of healthier nutritional value with better eating quality.  

 

Relevant traits in the porcine industry 

Meat production and quality traits are complex phenotypes of considerable importance 

to the producers, consumers, and processing industry because they strongly influence meat 

acceptance and commercial safety (Listrat et al., 2016). The main determinants of meat 

quality, such as intramuscular fat (IMF), marbling, loin eye area, water-holding capacity, 

pH, glycolytic potential, color, tenderness, juiciness, and flavor (Davoli & Braglia, 2008), 

are influenced by a large number of interacting factors, e.g. environmental conditions, 

animal genetics and tissue characteristics (Figure 1.2). Importantly, these traits can be 

improved by traditional selection, management practices, and also by genomic selection. 

In the pork industry, ultimate pH and meat color are the most important indices of meat 

quality and they are significantly affected by pre and post-slaughter factors.  Stress and 

excessive energy expenditure in the pre-slaughter period cause the depletion of muscle 

glycogen stores and, the acidification of the pH, resulting in adverse changes of color, 

structure, taste, and tenderness of meat (Adzitey & Nurul, 2011). Pale Soft Exudative 

(PSE) and Dark Firm Dry (DFD) meats are two of the major meat quality defects and they 

have a strong impact on the pig industry. The PSE condition is characterized by a pale, soft 

and exudative meat, while DFD is the opposite condition, being characterized by a dark, 

firm and dry meat  (Adzitey & Nurul, 2011). These two types of defective meat are 

produced by an excessively low (PSE) or high (DFD) ultimate pH after slaughter (Adzitey 

& Nurul, 2011). Acute or short-term stress just before slaughtering leads to PSE,  



General introduction                                                                                                        m  

32 

 

Figure 1. 2 - Schematic representation of the main factors that affect relevant meat traits 

in pigs. 

 

stimulated by a rate of acidification faster than normal and lower ultimate pH values (< 6 at 

45 minutes after slaughter). This acidification combined with a raised carcass temperature 

(Przybylski & Hopkins, 2015) provokes protein denaturation and an increase in the 

extracellular space, thus causing a poor water holding capacity and a lighter color 

(Przybylski & Hopkins, 2015; Warriss, 2000). With regard to DFD meat, it occurs when 

animals are exposed to chronic or long-term stress before slaughtering, leading to the 

depletion of stored glycogen and an increase in the postmortem pH (measured 12 – 48 

hours after slaughter), which reaches values higher than 6 (Adzitey & Nurul, 2011). High 

pH results in a relatively little denaturation of proteins, as indicated by low solubility of 

sarcoplasmic and myofibrillar proteins, retaining more water during storage and darkening 

the color of meat (Warriss, 2000). 

Furthermore, IMF content and composition also affect the technological and nutritional 

properties of meat. It is generally accepted that IMF positively influences the overall 

consumer acceptability of meat by increasing flavor, juiciness, and tenderness (Hocquette 

et al., 2010). Fernandez et al. (1999) reported that flavor and juiciness were significantly 

enhanced when IMF levels increased above 2.5% in pig meat. However, during many 

years the pig industry devoted its efforts to improve leanness, which has an unfavorable 

correlated effect on IMF by decreasing it (Ciobanu et al., 2011). This unfavorable 

correlated response has led to the development of genetic lines with an IMF content that 

does not match the requirements of specialized markets (Hocquette et al., 2010; Wood et 

al., 2008). Another important aspect determining meat quality is IMF composition (Wood 
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et al., 2008) i.e. polyunsaturated fatty acids (FAs) are prone to become oxidized, worsening 

fat firmness and oiliness and leading to the development of rancidity as shelf-time 

increases. Moreover, FA composition affects meat flavor due to the production of volatile 

and odorous compounds during cooking (Hausman et al., 2009; Wood et al., 2008).   

Heritability values for IMF content and composition are moderate (from 0.27 to 0.47, 

Casellas et al., 2010; Torres-Vázquez & Spangler, 2016), while, meat quality traits, such as 

pH, cooking loss and color display a broad range of heritabilities going from 0.19 to 0.79 

(Cabling et al., 2015). This important genetic determinism demonstrates that these traits 

can be successfully modified by selection  (Casellas et al., 2010; Hernandez-Sanchez et al., 

2013). The development of molecular markers and genome maps, together with advances 

in molecular genetics and computational biology, enhanced by the recent availability of the 

swine genome sequence, has paved the way to increase the rate of genetic gain by 

identifying the genetic factors that modulate the variation of traits of economic interest. 

 

Performance of Genome-Wide Association Studies and Selection Scans in pigs 

The quest to identify genes and quantitative trait locus (QTLs) associated with traits of 

economic importance in pigs began several decades ago. Up to the first decade of the 21
th

 

century, the search of QTL involved the genotyping of microsatellite markers in resource 

populations with available phenotypic records (Dekkers, 2004). The advent of whole-

genome sequencing technologies and the availability of affordable genome-wide SNPs 

panels made possible to explore the genetic architecture of complex traits with a much 

higher resolution. In humans, the first successful genome-wide association study (GWAS) 

was published in 2005 by Klein et al., (2005). These authors made a genome-wide scan of 

polymorphisms associated with the age-related macular degeneration and found two SNPs 

which displayed altered allele frequencies when patients were compared with healthy 

controls. In pigs, the first GWAS for meat traits was published by Duijvesteijn et al. 

(2010),  who identified 37 SNPs on pig chromosomes SSC1 and SSC6 related to 

androstenone levels in a commercial Duroc-based sire line. Since then, many GWAS have 

been carried out to identify causal mutations in pigs (see Sharma et al. 2015 for a thorough 

review). Moreover, Ma et al. (2014) demonstrated that a point mutation in a splice site 

modifies the expression of the PHKG1 gene, thus producing an increase of 43% of the 

glycolytic potential and a negative effect on a broad array of pig meat quality traits. The 
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GWAS approach has also been used to elucidate the genetic basis of simple phenotypes 

such as coat color. For instance, Ren et al. (2011) performed a GWAS and identified a 

single locus variant (c.1484_1489del) in the TYRP1 gene as the causative mutation for the 

brown coloration in Chinese indigenous pigs. This information complements previous data 

indicating that the polymorphism of the KIT (Giuffra et al., 2002) and MC1R (Fang et al., 

2009) genes has a crucial role in the determination of pig pigmentation.     

On the other hand, the combination of gene expression data obtained with microarrays 

with high throughput SNP genotypic information has provided valuable options for 

identifying causal mutations. Expression QTL (eQTL) are polymorphisms associated with 

the transcript levels of one or more genes. Obviously, eQTL can have perceptible 

consequences on complex phenotypes, so their detection can be crucial in elucidating the 

genetic basis of complex traits. Ponsuksili et al. (2010) investigated the genome-wide 

transcriptional profiles of the longissimus dorsi muscle and detected 653 putative cis-

eQTL. Moreover, the mRNA levels of 262 transcripts encoded by the cis-regulated genes 

showed significant correlations with at least one meat quality trait. In this study, it was also 

observed that cis-eQTL were more consistently detected than trans-eQTL, possibly 

because they have larger effects and the correction for multiple testing is less stringent. 

These findings demonstrate that global microarray eQTL analysis can be used for 

exploring functional and regulatory gene networks and scanning cis-eQTL. Further studies 

have reported several candidate genes for muscle traits based on GWAS supported by 

eQTL-analysis (Cinar et al., 2012; Ponsuksili et al., 2014; González-Prendes et al., 2017).   

Genome-wide SNP data have also been used to detect the footprint of selection in the 

porcine genome (Vitti et al., 2013). Here, the basic assumption is that such footprint can be 

detected because positive selection sweeps beneficial alleles towards high frequencies or 

fixation. This causes a reduction in diversity around the selected locus and an increase in 

the magnitude of linkage disequilibrium because the frequencies of the variants near the 

selected allele are modified due to a hitchhiking effect (Vitti et al., 2013). Many studies 

have been carried out to detect the footprint of selective processes related to domestication 

(Rubin et al., 2012; Zhu et al., 2017), litter size (Trenhaile et al., 2016), and adaptation to 

high altitudes (Burgos-Paz et al., 2013), to mention a few. Recently, a selection scan 

investigating the genetic basis of the six-white-point pigmentation pattern of Diannan 

small-ear pigs showed that this color coat is strongly determined by three loci i.e. EDNRB, 

CNTLN, and PINK1 (Lü et al., 2016). 
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1.3 The generation of biological information is essential to identify 

potencial causal mutations   

One of the main drawbacks of GWAS studies is that genomic regions displaying 

significant associations with phenotypes may contain hundreds of genes and thousands of 

polymorphisms. In the absence of biological information, it is very difficult to distinguish 

the causal mutation from the set of “innocent bystander” polymorphisms linked with it. 

Indeed, the vast majority of genetic variants (> 80%) detected by GWAS lie in intronic or 

intergenic regions of unknown function, and it is unclear how these non-coding variants 

affect traits and diseases (Hindorff et al., 2009) This is why it is so important to 

characterize with enough detail and resolution the functional elements of the whole porcine 

genome or, at least, of regions displaying significant associations with quantitative traits. 

In human and mouse, a coordinated genome-wide effort towards the identification of 

functional elements has enabled to gain new insights into the molecular basis of gene 

expression and its potential phenotypic consequences  (The ENCODE Project Consortium, 

2012; The GTEx Consortium, 2015). Compared to human and mouse, the functional 

complexity of the transcriptomes in domesticated animals has been poorly characterized so 

far. Whilst approximately 70% to 90% of the coding elements can be readily identified, 

little information about non-coding genes and regulatory sequences underlying complex 

traits is available (Andersson et al., 2015). Recently, a Functional Annotation of ANimal 

Genomes (FAANG) international project began to be developed in order to produce 

comprehensive maps of functional elements in the genomes of domesticated animal 

species (Andersson et al., 2015). The results of this project should start to be published in 

the next few years, yielding valuable biological data about the genomic architecture of 

gene expression and production phenotypes, domestication, and evolution. Such 

information will be essential to interpret the results of GWAS and selection scans, making 

possible to identify which functional elements are present in genomic regions involved in 

the variation of phenotypic traits (Figure 1.3). Currently, many methodological approaches 

are being developed to identify functional elements (e.g. transcription factor binding sites 

and chromatin modifications) as well as the three-dimensional organization of the genome 

and other aspects that are essential to improve our understanding of the genomic 

architecture of complex traits - Figure 1.3 (Ritchie et al., 2015). 
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Figure 1.3 - Biological systems multi-omics from the genome, epigenome, transcriptome, 

proteome, and metabolome to the phenome (Ritchie et al., 2015).  

 

Transcriptomics analysis 

In eukaryotes, cell-cell differences are determined by the expression of different sets of 

genes. It is now clear that processing of primary transcripts as well as translational control 

opens a myriad of opportunities for regulating gene expression (Day & Tuite, 1998). 

Transcriptomic studies attempt to catalog and quantify the RNA content of a cell, tissue or 

an organism. In some cases, the goal is to target all transcripts, regardless of their 

complexity. Many transcripts can be generated from a single gene by alternative splicing 

(AS) and by the use of alternative promoters or polyadenylation sites. The GTEx 

Consortium (2015) described the landscape of gene expression across tissue in humans, 

demonstrating a similar number of expressed mRNA genes for most tissues (average of 

20,940). Moreover, they showed that tissue-specific transcription is typically dominated by 

a few highly expressed genes which vary from tissue to tissue e.g. casein genes in the 

mammary gland, loci encoding myofibrillar proteins in the skeletal muscle and heart etc. 

(Mele et al., 2015). Ferraz et al. (2008) and Freeman et al. (2012) made pioneering studies 
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about the pig transcriptome. In this way, Ferraz et al. (2008) conducted a microarray 

expression profiling of 16 different tissues from two males and two females from two pig 

breeds, Large White and Iberian, with highly divergent growth and fatness profiles. They 

found that tissue type accounted for ~11 times more variability than sex or breed. On the 

other hand, Freeman et al. (2012) built a gene expression atlas of the domestic pig and 

identified multiple large clusters of genes showing a tissue-restricted pattern of expression. 

Moreover, the analysis of genes expressed in the gastrointestinal tract showed marked 

regional differences. For instance, the SLC40A1 gene, which is involved in the export of 

iron, was only expressed in the duodenum, while SLC26A3 expression was restricted to the 

large bowel (Freeman et al. 2012). Many tissues were analyzed looking for candidate 

genes and metabolic routes related to complex characters, thus providing new clues about 

the molecular mechanisms that determine distinct phenotypes. In liver, genes associated 

with cholesterol metabolism, oxidation and reduction processes (e.g. CYP2E1, CYP2C9, 

and HPGD) were differentially expressed between animals displaying divergent fatness 

profiles (Ramayo-Caldas et al., 2012; Sodhi et al., 2014). In the porcine adipose tissue and 

skeletal muscle, individuals with higher polyunsaturated fatty acids (PUFAs) content 

showed a lower expression of lipogenic genes (Cánovas et al., 2010; Corominas et al., 

2013; Puig-Oliveras et al., 2014). Indeed, a higher PUFA content may enhance fatty acid 

oxidation, thus decreasing the intracellular accumulation of triglycerides. 

Transcriptome analysis has also revealed that genes producing non-coding RNAs can 

be involved in skeletal muscle growth and development in pigs. Zou et al. (2017) identified 

323 large intergenic non-coding RNAs (lincRNAs) that are expressed in the porcine leg 

muscle and they found that lincRNA gene expression is correlated with the methylation 

status of the respective promoters. In addition, lincRNA genes produced shorter transcripts 

with lower levels of expression than protein-coding genes. In another study, Jing et al. 

(2015) detected 15 differentially expressed microRNAs (miRNAs) when studying pigs 

with different residual feed intakes. Through a miRNA-targeted pathway analysis, 55 

KEGG pathways comprised genes potentially targeted by up or down-regulated miRNAs 

e.g. the TGF-beta signaling pathway, PI3K-Akt signaling pathway, mTOR signaling 

pathway and GnRH signaling pathway (Jing et al., 2015). 
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Epigenetics 

Initially, the term “epigenetics” defined changes in the phenotype without changes in 

the genotype (Triantaphyllopoulos et al., 2016) but the molecular basis of such 

phenomenon was poorly understood. Currently, we know that epigenetic mechanisms 

transduce the inheritance of gene expression patterns without altering the underlying DNA 

sequence but by modifying chromatin (Allis & Jenuwein, 2016). These chromatin changes 

are achieved through a broad variety of chemical modifications including DNA 

methylation as well as histone acetylation, methylation, sumoylation, phosphorylation, and 

ubiquitination. Technologies for epigenetics research such as ChIP–seq, MNase-seq, 

FAIRE–seq, DNase-seq, Hi-C, ChIA-PET and ATAC-seq (Meyer & Liu, 2014) can reveal 

different aspects of chromatin structure and are vital for deciphering interactions between 

specific proteins and DNA as well as for mapping transcription-factor binding sites and 

histone/chromatin modifications (Farnham, 2009). Recent studies suggest that the interplay 

between chromatin and transcriptional activity is dynamic, very complex and species-

specific (Schmidt et al., 2010). Indeed,  a variety of phenotypic changes important for the 

normal development as well as for the progression of diseases are temporally and spatially 

controlled by chromatin-coordinated gene expression programs (Robertson et al., 2007; 

Zhao et al., 2016).  

Epigenetic studies in pigs are scarce.  Fan et al. (2012) investigated the epigenetic 

effects of sulforaphane, a histone deacetylase inhibitor, in myostatin satellite cells. They 

demonstrated that the supplementation of sulforaphane not only acts as a histone 

deacetylase inhibitor but also as a DNA methyltransferase inhibitor in porcine satellite 

cells. Braunschweig et al. (2012) examined the transgenerational epigenetic effects of 

dietary methylating micronutrients on gene expression and DNA methylation in three 

generations of Large White pigs offspring. The boars which received a hypermethylating 

diet had a higher percentage of shoulder and were leaner compared to the offspring of the 

control group fed with a standard diet. 

DNA methylation is a common heritable epigenetic mark that cells use to lock genes in 

the "off" position, thus regulating gene expression (Jin et al., 2011). DNA methylation is 

essential for normal development, and it plays a very important role in numerous cellular 

processes, including embryonic development, genomic imprinting, X-chromosome 

inactivation, and preservation of chromosome stability. Differential methylation profiles 

can be associated with diseases (Toyota et al., 1999) and distinct phenotypes (Yoon et al., 



                                                                                                           General introduction       

  

39 

 

2017; Zhang et al., 2016). Li et al. (2012) generated a landscape of the DNA methylome 

of adipose and muscle tissues in three pig breeds differing in their fatness levels. They 

found that differentially methylated regions in promoters are highly associated with 

obesity development via expression-repression of known obesity-related genes and novel 

genes. Zhang et al. (2016) performed a DNA methylation analysis of adipose tissue and 

showed evidence of functionally relevant methylation differences in the backfat tissue of 

obese vs lean pigs. A total of 483 differentially methylated regions were located in 

promoter regions for genes involved in lipid transport and localization (e.g. PLIN1, 

BDKRB2, NSDHL, APOL1, and APOL4). 

 

1.4  The landscape of mammalian transcriptomes 

Understanding the biological significance of the genome sequence involves the 

functional characterization of its RNA products. The Encyclopedia of the DNA element 

(ENCODE) pilot project (The ENCODE Project Consortium, 2012) demonstrated that up 

to 80% of the human genome has some type of biological function, with just 2.9% of the 

genome covered by protein-coding genes. In the mouse, at least 46% of the genome is 

capable of producing polyadenylated messenger RNAs (mRNA) and the vast majority (87–

93%) of exonic nucleotides are transcribed (Yue et al., 2014). These studies provide 

evidence that the genome is largely transcribed, but a relevant fraction of the produced 

RNAs do not encode proteins (Carninci et al., 2005; Derrien et al., 2012; The ENCODE 

Project Consortium, 2012; Yue et al., 2014). 

The mammalian transcriptome mainly comprises ribosomal RNA (∼80-90%, rRNA), 

transfer RNA (∼10-15%, tRNA), mRNA (~3–7%) and a small proportion of non-coding 

RNA (< 0.2%, ncRNA) with regulatory functions (Palazzo & Lee, 2015). In recent years, 

the analysis of expression data sets from tissues and primary cells made possible to gather 

a huge amount of information about the nature and function of coding and non-coding 

transcripts and their isoforms. Such effort has been particularly fruitful in humans 

(Lappalainen et al., 2013; Mele et al., 2015; The GTEx Consortium, 2015, Iyer et al., 

2015) and mice (Barak et al., 2013; Russ et al., 2013; Li et al., 2016). In this way, the 

Genotype-Tissue Expression (GTEx) project (The GTEx Consortium, 2015) has collected 

and analyzed samples from 175 postmortem human donors, retrieving an average of 43 

tissue samples per donor, in order to examine the patterns of expression of transcribed 



General introduction                                                                                                        m  

40 

 

genes across tissues. An average of 20,940 genes are expressed in the majority of analyzed 

tissues (The GTEx Consortium, 2015). Moreover, between 919 (heart) and 2,244 (thyroid 

gland) were regulated by cis-eQTL, and more than 50% of all QTL were shared across the 

nine tissues under analysis.  Mele et al. (2015) showed that tissue-specific transcription is 

typically dominated by a small number of genes that vary from tissue to tissue. In the case 

of skeletal muscle, genes related to actin and other myofibrillar proteins were the main 

contributors to the overall transcriptome. Though there are thousands of genes that are 

differentially expressed across tissues, a few hundreds are exclusively expressed in a single 

tissue (Mele et al., 2015). The majority of such genes are expressed in the testis and 

encoded by lncRNAs. Moreover, variation of gene expression is much higher amongst 

tissues than amongst individuals, and a number of genes show sex-, population- or age-

biased patterns of expression (Mele et al., 2015).     

Transcripts from ncRNA genes are not translated into proteins and they are loosely 

grouped into classes based on transcript size and/or characteristics (Table 1.1). There are 

strong evidences that ncRNAs are key elements of cellular homeostasis by interacting with 

chromatin complexes, working as RNA enhancers, recruiting or assembling certain 

proteins and interacting with other RNAs at the post-transcriptional level (Beltrami et al., 

2014; Huarte & Marín-Béjar, 2015). Moreover, there are several ncRNAs with key roles in 

the maintenance of muscle function (Table 1.2).  

Due to their poor evolutionary conservation, it is unclear how many ncRNA genes are 

present in a typical mammalian genome (Palazzo & Lee, 2015). Currently, 22,521 and 

15,074 ncRNA genes have been annotated in the human (assembly GRCh38.p7) and mice 

(assembly GRCh38.p5) genomes. Mirbase  (http://www.mirbase.org) encompasses a total 

of 1,881 miRNA precursor genes that are processed into 2,588 mature miRNA sequences 

in human, and 1,193 precursors and 1,915 mature miRNA sequences in mouse. Recently, 

Iyer et al. (2015) curated 7,256 RNA-Seq libraries from normal tissues, cell lines and 

different types of tumors, identifying 58,648 lncRNA-encoding loci, of which 79% were 

previously unannotated. They observed that only 1% (597) of the lncRNAs harbored 

ultraconserved elements, whilst miRNAs are evolutionarily conserved from plants to 

mammals (Nie et al., 2015). However, the majority of these ncRNAs have yet to be 

biochemically characterized for clarifying their biological functions (Palazzo & Lee, 

2015).  
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Table  1.1 -Regulatory non-coding RNA types (adapted from Byron et al., 2016). 

RNA types Associated name Length (nt) Description 

miRNA Micro RNA ~ 18–24 
Represent the most extensively characterized group of small ncRNAs and they are 

mainly involved in gene repression. 

piRNA PIWI-interacting RNA ~ 26–32 Functions in transposon repression and maintenance of germline genome integrity. 

snRNA Small nuclear  RNA ~ 100–300 Localized to the nucleus, with functions in RNA processing and splicing. 

snoRNA Small nucleolar RNAs ~ 60–140 snoRNAs play a key role in ribosome biogenesis and rRNA modifications. 

lncRNA Long ncRNA > 200 Regulating gene expression through a broad variety of mechanisms. 

circRNA Circular RNA ~ 100–500 

Contain a covalent bond between the 5’ and 3’ ends, resulting in a continuous circular 

loop. CircRNAs can act as miRNA sponges and regulators of splicing and 

transcription. 

tRNA Transfer RNA ~ 75–90 
Help with translation of mRNA to protein. tRNAs are highly structured and have many 

modifications to bases, making them difficult to sequence through. 

Nt = nucleotide.  

 

Table 1.2 - miRNAs and lncRNAs implicated in the development of skeletal muscle (revised by Neguembor et al., 2014; Nie et al., 2015). 

*miRNA= microRNA; lnRNA = long non-coding RNA. 

 Function Effector molecule References 

miRNA 

miR-1 
Promotes differentiation HDAC4 Chen et al. (2006) 

Inhibits proliferation PAX7 Chen et al. (2010) 

miR-199a-3p Inhibits differentiation IGF-1, MTOR, and RPS6KA6 Jia et al. (2013) 

miR-31 Maintenance of quiescence/stemness MYF5 Crist et al. (2012) 

lncRNA 

Malat1 Epigenetic repression, pre-mRNA splicing CBX4 and SR family of splicing factors Watts et al. (2013) 

Neat1 Structural integrity of nuclear paraspeckles Various RNA-binding proteins Sunwoo et al. (2009) 

l2/Meg3 Epigenetic repression PRC2 Zhou et al. (2015) 
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Alternative mRNA splicing takes place when a primary transcript is processed in 

different ways, during the mRNA maturation process, thus yielding multiple mRNA 

isoforms. A global survey of mRNA splicing events showed that a total of 62.1% of the 

human genome is covered by processed transcripts (Djebali et al., 2012). The relative 

location of strong and weak splice sites may result, depending on the cellular context, in 

different AS events, as shown in Figure 1.4. Deep sequencing of 15 human tissues and cell 

lines was consistent with these findings, thus demonstrating that exon skipping was the 

most frequent AS event, followed by alternative 3’ splice site, alternative 5’ splice site and 

alternative first exon (Wang et al., 2008). Exon skipping accounts for nearly 40% of AS 

events in higher eukaryotes, while intron retention, in which an intron remains in the 

mature mRNA transcript, is the rarest AS event in vertebrates and invertebrates, 

accounting for less than 5% of known events (Alekseyenko et al., 2007).  

The GTEx Pilot project has revealed the existence of splicing QTL for 1,900 human 

genes and only 7-21% of them happened to be tissue-specific (The GTEx Consortium, 

2015). Moreover, a large fraction of splicing QTLs (20 - 48%) associated with changes in 

gene transcript isoforms was identified as eQTL. In mice, Giudice et al. (2016) suggested 

that AS in trafficking and membrane dynamics genes (SNAP23, TRIP10, CLTC, and 

TMED2) is involved in T-tubule maturation and possibly in mitochondria positioning 

during the postnatal phase of striated muscle development. Interestingly, a MICU1.1 splice 

variant confers high sensitivity to the mitochondrial Ca
2+

 uptake, a process required to 

increase ATP supply for skeletal muscle contraction (Reane et al., 2016). Another 

important source of transcript variation involves the alternative usage of promoters and 

polyadenylation sites. In a recent study, Reyes & Huber et al. (2017) investigated the cell 

type-dependent differences in exon usage of over 18,000 protein-coding genes in 23 cell 

types and found that alternative transcription start and termination sites, instead of AS, 

accounted for most of tissue-dependent exon usage. Their results also indicated that AS 

mostly affects untranslated exons and thus it has a limited impact on proteome complexity. 

In the light of this, alternative transcription start and termination sites would be the main 

drivers of transcript isoform diversity across tissues. Natural variation in gene expression is 

extensive in humans and other organisms, and variation in the baseline expression level of 

many genes has a heritable component (Cheung et al., 2003a; Cheung et al., 2003b). The 

tissue-specificity of eQTLs across different tissues and cell types is relevant to identify 

putative regulatory variants and linking them with phenotypes or diseases.  
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Figure  1.4 -Schematic representation of different types of alternative splicing events 

(Cartegni et al., 2002). The figure illustrates different types of alternative splicing events: exon 

inclusion or skipping, alternative splice-site selection, mutually exclusive exons, and intron 

retention for an individual pre-mRNA. 

 

Nica et al. (2011) explored in-depth the role of cis-regulatory variation in three human 

tissues: lymphoblastoid cell lines, skin, and fat. In doing so, they discovered that 4.7% of 

genes in each tissue are regulated by cis-eQTLs, whilst 29% of eQTLs happen to be tissue-

specific. Grundberg et al. (2012) showed that at least 40% of the total heritable cis effect 

on expression cannot be accounted for by common cis variants in twins, highlighting the 

importance of characterizing low frequency/rare regulatory variants which may have large 

effects. The GTEx project (The GTEx Consortium, 2013) investigated the patterns of 

eQTLs sharing across tissues by using a data set of 22,286 genes expressed in nine tissues. 

They observed that 50% of all detected eQTL were common to all nine tissues. The 

majority of the significant cis-eQTL clustered around the transcription start site of target 

genes. As a complementary approach, the GTEx project (The GTEx Consortium, 2015) 

investigated the allele-specific expression of genes in order to estimate the overall effect of 

cis-regulatory variants on the expression of nearby genes. Allele-specific expression ratios 
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and gene expression levels were highly correlated (r = 0.77), indicating that tissues with 

similar gene expression profiles share similar regulatory mechanisms.  

 

1.4 Methods to characterize the transcriptome  

The generation of global gene expression profiles is a common approach in basic and 

translational research. Different methods to comprehensively and systematically 

interrogate gene expression have been developed. The choice of the technology depends on 

the number of genes to be analyzed. Quantitative PCR is best suited for the analysis of 

limited numbers of genes; while microarrays and RNA-Seq make possible to characterize 

the transcript levels of thousands of genes in a single experiment. The microarray 

technology (Figure 1.5) has been extensively used in porcine transcriptomic studies but in 

the last five years, it has been progressively replaced by next-generation sequencing 

methods.  

While microarrays have been incredibly useful in a wide variety of applications, they 

have a number of limitations. First, arrays provide an indirect measure of relative transcript 

concentrations and the intensity of fluorescence is not linearly proportional to the 

concentration of the species hybridizing to the array. For example, the signal may become 

saturated in the case of highly expressed transcripts and, the sensitivity threshold is 

probably lower for cell types with a more-limited concentration range of transcripts 

(Bumgarner, 2013). Second, there is a cross-hybridization of sequences with high identity, 

a feature that is specially relevant for complex mammalian transcriptomes and can be 

particularly problematic for gene families and for genes with multiple splice variants 

(Koltai & Weingarten-Baror, 2008). Third, a DNA array can only detect probed transcripts. 

Finally, many problems related to chip to chip variation (e.g. unequal dye incorporation, 

sample preparation, hybridization conditions) and analysis and interpretation of data 

(image capture and processing) may influence the accuracy, sensitivity, and reproducibility 

of results (Daly et al., 2005; Koltai & Weingarten-Baror, 2008). 
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Figure  1.5 -Workflow summary of printed microarrays (Miller & Tang, 2009). Probes are 

usually oligonucleotides that are spotted onto a solid surface. In this example, RNA from two 

samples representing different conditions is used as template to synthesize cDNA which is 

differentially labeled. This cDNA is hybridized to the arrayed probes and fluorescent signals are 

recorded by confocal microscopy, providing information about which genes are expressed in each 

sample as well as their levels of expression.  

 

RNA-Seq, a sequencing technology to investigate gene expression 

RNA-Seq involves the sequencing of the whole transcriptome of a sample, thus making 

possible to characterize not only transcript abundance but also RNA splice events and 

edited RNAs (Piskol et al., 2013; Wolf, 2013; Korir & Seoighe, 2014). This technological 

development eliminated many challenges posed by microarrays (hybridization-based) and 

Sanger (sequencing-based) approaches that were previously used for measuring gene 

expression (Table 1.3). A typical RNA-Seq experiment implies purification of RNA, 

synthesis of cDNA, preparation of the library and its sequencing in a next-generation 

sequencing (NGS) platform. However, many experimental issues should be carefully 

considered before performing an RNA-Seq experiment (Kukurba & Montgomery, 2015). 

For example, the RNA extraction protocol needs to be adjusted having in mind the targeted 

RNA-species i.e. all RNAs, small or large RNAs etc. (Wolf, 2013). Another key 

consideration, concerning library construction, is whether or not to prepare strand-specific 

libraries. Strand-specific information about the orientation of transcripts is valuable for 

transcriptome annotation, especially for regions with overlapping transcription from 
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opposite directions (Borodina et al., 2011). Moreover, the amplified fragments can be 

sequenced either from one end (single-end) or from both ends (paired-end). Paired reads 

allow more accurate alignment to a reference genome, facilitating the discovery of novel 

transcripts, splice isoforms and the de novo assembly of the transcriptome (Berglund et al., 

2011). 

Several NGS platforms are commercially available and many more are under active 

development (Table 1.4). Each commercially available platform has similarities and 

differences relative to the others depending on the chemistries and detection methods used. 

Sequencing platforms can be generally classified on the basis of three features (Berglund et 

al., 2011; van Dijk et al., 2014; Levy & Myers, 2016). First, they may detect single 

molecules (Pacific Biosciences and Oxford Nanopore) or clonally amplified DNAs 

(Illumina, Ion Torrent, and Roche 454). Second, detection can be optical, e.g. fluorescence 

(Illumina and Pacific Biosciences) or light (Roche 454), or non-optical, e.g. IonTorrent 

(detection of the release of H
+
 during a polymerization reaction via a solid-state sensor) 

and Oxford Nanopore (measurement of the translocation of DNA through a nanopore 

sensor) platforms. Finally, the majority of sequencing technologies are based on 

sequencing-by-synthesis reactions, as performed by Illumina, Ion Torrent, Pacific 

Biosciences, and Roche 454 platforms, whereas the Applied Biosystems SOLiD and the 

Polonator platforms use a ligation-mediated synthesis approach. Direct analysis of DNA 

sequences is performed by the Oxford Nanopore platform (Berglund et al., 2011; Levy & 

Myers, 2016; van Dijk et al., 2014). A comparison of the different sequencing platforms in 

terms of read length, output and runtime can be found in Figure 1.6. The majority of 

platforms can generate reads of one or few hundreds of bp (Figure 1.6A). PacBio (Pacific 

Biosciences) can produce long reads, with maximum read lengths over 20 kb, making this 

technology an ideal tool to finish genome assemblies. Illumina currently offers the highest 

throughput per run and the lowest per-base cost (Figure 1.6B). These improvements have 

resulted in a substantial decrease in the costs of sequencing genomes (Figure 1.6C).  Ion 

Torrent PGM and PACBio are the fastest bench-top NGS platforms (Figure 1.6D). 

Nowadays, Illumina produces the most widely used family of sequencing platforms 

(GA/HiSeq/MiSeq/NextSeq) (Hodkinson & Grice, 2015) and, by this reason, a schematic 

presentation of the library preparation and sequencing processes is provided in Figure 1.7.  
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Table  1.3 - Advantages of RNA-Seq techonology compared with other transcriptomics 

methods (Wang et al., 2009). 

Technology Microarray 
cDNA or EST 

sequencing 
RNA-Seq 

Technology specifications 

Principle Hybridization Sanger sequencing 
High-throughput 

sequencing 

Resolution 
From several to 

100 bp 
Single base Single base 

Throughput High Low High 

Reliance on genomic 

sequence 
Yes No In some cases 

Background noise High Low Low 

Application 

Simultaneously map 

transcribed regions and 

gene expression 

Yes 
Limited for gene 

expression 
Yes 

Dynamic range to quantify 

gene expression level 

Up to a few-

hundredfold 
Not practical > 8,000-fold 

Ability to distinguish 

different isoforms 
Limited Yes Yes 

Ability to distinguish allelic 

expression 
Limited Yes Yes 

Practical issues 

Required amount of RNA High High Low 

Cost for mapping 

transcriptomes of large 

genomes 

High High Relatively low 
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Table  1.4 - Summary of next generation sequencing (NGS) technologies (adapted from Levy & Myers, 2016).  

Manufacturer Amplification Detection Chemistry URL 

Commercial 

Illumina Clonal Optical Sequencing by synthesis http://www.illumina.com 

Oxford Nanopore Single molecule Nanopore Nanopore http://www.nanoporetech.com 

Pacific Biosciences Single molecule Optical Sequencing by synthesis http://www.pacb.com 

ThermoFisher Ion Torrent Clonal Solid state Sequencing by synthesis 
http://www.thermofisher.com/us/ 

en/home/brands/ion-torrent.html 

QIAGEN (GeneReader) Clonal Optical Sequencing by synthesis http://www.qiagen.com 

Pre-commercial 

Quantum Biosystems Single molecule Nanogate Nanogate http://www.quantumbiosystems.com 

Base4 Single molecule Optical Pyrophosphorolysis http://base4.co.uk 

GenapSys (GENIUS) Clonal Solid state Sequencing by synthesis http://www.genapsys.com 

Roche Genia Single molecule Solid state Nanopore http://geniachip.com 

Post-commercial 

Roche 454 (GS FLX) Clonal Optical Sequencing by synthesis http://www.454.com 

Helicos BioSciences 

(Heliscope) 
Single molecule Optical Sequencing by synthesis — 

Dover (Polonator) Clonal Optical Sequencing by ligation — 

ThermoFisher Applied 

Biosystems (SOLiD) 
Clonal Optical Sequencing by ligation 

http://www.thermofisher.com/us/en/ 

home/brands/applied-biosystems. html 

Complete Genomics Clonal Optical Sequencing by ligation http://www.completegenomics.com 

*Dashes indicate that no URL or reference is available. Platforms listed as precommercial have been announced but at the time of writing have not 

been formally launched; platforms listed as post-commercial are no longer commercially available as new instrument sales.

http://www.quantumbiosystems.com/
http://base4.co.uk/
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Figure 1.6 -Evolution of high-throughput sequencing platforms (van Dijk et al., 2014) (A) Blue 

bars: maximum read length of the first commercially available sequencing instruments. Orange 

bars: maximum read length obtained today on the bench-top versions; brown bars: maximum read 

length obtained today for the large instruments. (B) Blue bars Maximum throughput of the first 

commercially available sequencing instruments. Brown bars: current maximum throughput. (C) 

Evolution of the cost of sequencing a human genome from 2001-2015. (D) Run times to complete a 

bacterial genome sequence using the sequencing platforms of various manufacturers. Brown: large 

instruments. Orange: bench-top machines  
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Figure  1.7 - Schematic presentation of the library preparation and sequencing processes 

associated with the Illumina Sequencing Platform. 

(http://www.3402bioinformaticsgroup.com/service/; accessed in October 2017). Outline of 

Illumina genome analyzer sequencing process. (1) Adaptors are annealed to the ends of sequence 

fragments. (2) Fragments bind to primer-loaded flow cells and bridge PCR reactions amplify each 

bound fragment to produce clusters of fragments. (3) During each sequencing cycle, one 

fluorescent nucleotide is added to the growing strands. Laser excites the fluorophores in all the 

fragments that are being sequenced and an optic scanner collects the signals from each fragment 

cluster. Then the sequencing terminator is removed and the next sequencing cycle starts. 

 

Bioinformatic data processing 

A single run of any sequencing platform generates an appreciable amount of 

sequencing data, quickly reaching hundreds of gigabytes. Like other high-throughput 

sequencing technologies, RNA-Seq faces several informatics challenges. Different tools 

have been developed by bioinformaticians, using different algorithms and models, to 

analyze the data flood in order to make biological inferences. Routine RNA-Seq data 

analysis is shown in Figure 1.8, and consists of the following five steps: 1 - raw data 

quality control and processing; 2 - alignment of the reads and visualization of data; 3- 
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transcriptome reconstruction; 4 - expression quantification, and 5 - differential expression 

analysis. Some bioinformatic tools for NGS data processing are shown in Table 1.5. 

As an initial step, RNA-Seq data should be subjected to the quality control of the raw 

data, and an additional quality control procedure can be performed to evaluate the quality 

of the aligned reads after read alignment (Conesa et al., 2016). Depending on the RNA-Seq 

library construction strategy, it is recommended some form of read trimming prior to 

aligning the RNA-Seq data. Adapter and quality trimming aim to remove adapter 

sequences used during library construction and to eliminate poor quality bases (Conesa et 

al., 2016). When a reference sequence is available, two strategies can be used to align 

reads i.e. mapping to the genome or mapping to the annotated transcriptome (Yang & Kim, 

2015). If a transcriptome is used as a reference, only known exons and junctions are 

mapped. However, when the reference is the genome, spliced aligners should be employed 

because they allow a spliced-read placement and make possible the filling of a wide 

range of gaps. This approach facilitates the identification of novel transcripts generated by 

AS (Yang & Kim, 2015).  Transcriptome reconstruction is based on two strategies e.g. the 

reference-guided approach and the reference-independent approach. Reference-guided 

approach is advantageous when reference annotation information is complete and 

thorough. However, when a reference genome is not available or its annotation is deficient, 

RNA-Seq reads can be assembled de novo by building consensus transcripts from short 

reads with bioinformatic packages such as Trinity (Haas et al., 2013). 

The most common application of RNA-Seq is to estimate gene and transcript 

expression levels. This application is primarily based on inferring the number of reads that 

map to each transcript sequence. The simplest approach to quantification is to aggregate 

raw counts of mapped gene reads by using programs such as HTSeq-count (Anders et al., 

2014) or FeatureCounts (Liao et al., 2014). Algorithms that quantify expression from 

transcriptome mappings include RSEM (Li & Dewey, 2011), Cufflinks (Trapnell et al., 

2012), Sailfish (Patro et al., 2014) and Kallisto (Bray et al., 2016). Sequencing depths 

and/or library sizes may diverge across samples (implying that the observed counts are not 

directly comparable between samples). Complex normalization schemes have been 

proposed and are used by different softwares for quantification of transcripts, such as total 

counts (Vêncio et al., 2004); trimmed mean of M-values  - TMM (Robinson et al., 2010), 

counts normalization (Anders & Huber, 2010) and quantile normalization - Reads Per 

Kilobase Million (RPKM) (Mortazavi et al., 2008). Differential expression analysis takes 
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as input normalized read count data and performs statistical analysis to detect differences 

in the expression of loci across different treatments or conditions (Conesa et al., 2016). An 

extensive number of software packages and pipelines have been developed with such 

purpose (Table 1.5). In the methods explicitly developed for the analysis of differential 

expression based on count data, the Poisson [employed by DEGseq2 - Love et al. (2014)] 

and the Negative Binomial [adopted by edgeR - Robinson et al. (2010) and DESeq - 

Anders & Huber (2010)] distributions are the two most commonly used approaches to 

model RNA-Seq data. Alternatively, user-friendly tools such as CLC Bio 

(http://www.clcbio.com; CLC  inc, Aarhus, Denmark), Galaxy (Blankenberg et al., 2010; 

http://g2.bx.psu.edu), GeneSpring (http://genespring-support.com/; Silicon Genetics, 

Redwood, CA), BaseSpace Apps (https:// basespace.illumina.com/home/index; Illumina 

Inc., CA, USA) and  Partek (http://www.partek.com; Partek Inc, St Louis, MO, USA) can 

be employed to carry out  all the analysis detailed above in a single dedicated platform. 

There is not a broad consensus on how to approach an optimal study design in order to 

ensure the validity of the results in terms of reproducibility, accuracy, and robustness. 

Zhang et al. (2014) and Schurch et al. (2016) affirmed that each method has its own 

particular strengths and pitfalls making them suitable for specific RNA-Seq datasets. 

Therefore, a crucial prerequisite for a successful RNA-Seq study is a good experimental 

design and the selection of an appropriate bioinformatic pipeline. Other important 

decisions are the choice of library sizes, sequencing depth and the number of replicates 

under study. Moreover, it is also very important to take into account the heterogeneity of 

the samples in order to eliminate potential biases. 

The last step in a standard transcriptomics study is the characterization of the molecular 

functions or metabolic pathways in which differentially expressed (DE) genes are 

involved. A commonly used approach includes Gene Ontology (GO) and pathways 

enrichment analysis with the aim of determining if DE genes are associated with a certain 

biological process or molecular function. Popular softwares for gene set enrichment and 

metabolic pathway analysis are Panther, DAVID, STRING, Cytoscape and Reactome 

among others (Table 1.5). However, very little functional information is available for 

ncRNAs such as lncRNAs or miRNAs (Conesa et al., 2016). In some cases, functional 

annotation of predicted unknown genes and transcripts can be done by assessing their 

sequence similarity across orthologs, e.g. using approaches based on BLAST, with a 

success rate of 50-80% (Conesa et al., 2016). 
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Figure  1.8 - Typical workflow for RNA sequencing (RNA-Seq) data analysis (Conesa et al., 2016). 
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Table  1.5 - Summary of selected bioinformatics tools for NGS data processing.  

Workflow Package Reference 

Quality control and read processing FastQC, Qualimap 2, HTSeq 
Andrews  (2010), García-Alcalde et al. (2012),  

Anders et al. (2014) 

Read alignment Bowtie, BWA, SOAP, Tophat2, STAR 
Down et al. (2008), Li et al. (2008), Li & Durbin (2009), Kim 

et al. (2013), Dobin et al. (2013) 

Transcriptome reconstruction Cufflinks, Trinity Trapnell et al. (2010), Grabherr et al. (2011) 

Expression quantification 

ALEXA-seq, Cufflinks, RSEM, 

FeatureCounts, HTSeq-count,  Sailfish, 

Kallisto.  

Griffith et al. (2010), Trapnell et al. (2010), Li & Dewey 

(2011),  Liao et al. (2014),  Anders et al. (2014), Patro et al. 

(2015), Bray et al. (2016) 

Differential expression 
Limma, EdgeR, RSEM, Cuffdiff, DESeq2, 

Sailfish, NOIseq 

Smyth (2004), Robinson et al. (2010), Li & Dewey (2011), 

Trapnell et al. (2012), Love et al. (2014), Patro et al. (2014), 

Tarazona et al. (2015) 

Genomic variants 
Samtools mpileup, SOAPsnp, Comrad, 

FusionHunter, GATK 

Li et al. (2009b),  Li et al. (2009a), DePristo et al. (2011), Li et 

al., 2011),  McPherson et al. (2011) 

Gene function and interaction Cytoscape, KEGG, DAVID, GOSeq, STRING 
Shannon et al. (2003), Kanehisa & Goto (2000), Huang et al. 

(2007), Young et al. (2010), Szklarczyk et al. (2015) 
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1.5  Transcriptomic studies in pigs  

The characterization of the pig transcriptome is an essential step towards identifying 

the functional elements of the porcine genome and understanding the genetic architecture 

of complex traits such as fat deposition, metabolism, and growth. So far, the functional 

annotation of the pig genome is quite poor, particularly for lncRNAs displaying a limited 

evolutionary conservation. High-throughput techniques, such as cDNA, oligo-based arrays 

or RNA-Seq approaches, represent valuable tools to study the transcriptome and its 

regulatory mechanisms. Numerous cDNA-microarray (revised by Pena et al., 2014) and 

RNA-Seq studies aiming to characterize the expression of key tissues (e.g. liver, fat and 

skeletal muscle) in pigs with divergent phenotypes or subject to different experimental 

conditions have been reported. Published RNA-Seq experiments investigating gene 

expression in the porcine skeletal muscle are shown in Table 1.6.  

 

Differences in gene expression across different muscles 

Ayuso et al. (2016) investigated the differences in gene expression in two distinct 

skeletal muscles (longissimus dorsi and biceps femoris). Biceps femoris has a higher PUFA 

content than the longissimus dorsi muscle, and the set of DE genes showed an enrichment 

of pathways related with adipocyte differentiation and lipid metabolism (LXR/RXR 

activation, FXR/RXR activation, and biosynthesis of retinoids). These results suggest a 

more active lipid metabolism in biceps femoris than in longissimus dorsi.  In contrast, 

growth and proliferative processes were more prevalent in genes overexpressed in 

longissimus dorsi, with an enrichment of biological functions related to cell proliferation 

and body size. Zhu et al. (2016) compared differences in the transcriptome between 

extensor digitorum longus (white fiber) and soleus (red fiber) muscles of Large White pigs 

and identified a large number of DE genes and pathways implicated in muscle fiber type 

determination. Myofibril was the most significant gene ontology term in the muscle fiber 

type determination process.  Moreover, several collagen encoding genes (COL12A1, 

COL11A2, COL11A1, and COL13A1) display a higher expression in the soleus muscle 

suggesting differences in collagen composition between different types of myofibers. 
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Table  1.6 - Published RNA-Seq experiments interrogating pig muscle phenotypes or subject to different experimental conditions. 

Breed/phenotype of comparison Replicates Thresholds of significance Number of DEGs* Reference 

Differences in gene expression across tissues 

Longissimus dorsi  and Biceps femoris  24 p < 0.01 and FC  > 1.5 135 Ayuso et al. (2016) 

Extensor digitorum longus  and soleus  3 FDR < 0.001 and FC > 2 561 Zhu et al. (2016) 

Differences in gene expression amongst porcine breeds 

Indigenous Chinese pig and introduced pig breeds 8 p < 0.05 and FC > 2 315 Wang et al. (2015) 

Purebred and Duroc-crossbred Iberian pigs 9-10 p < 0.01 and FC > 1. 5 149 Ayuso et al. (2015) 

Jeju native pig and Berkshire piglets 5 FDR < 0.001 and FC > 2 56 Ghosh et al. (2015) 

Differences in gene expression amongst pigs with highly divergent phenotypes 

Intramuscular fat content and composition 6 p < 0.01 and FC > 1.2 131 Puig-Oliveras et al. (2014) 

Postweaning growth rates 9 p < 0.01 768 Pilcher et al. (2015) 

Drip loss  2 (pool) FDR < 0.005 and FC > 2 150 Li et al. (2016a) 

Developmental stage 

Eleven developmental stages in Tongcheng and 

Yorkshire pigs. 
~35 FC > 2 and prob >0.7 8,289 Zhao et al. (2015) 

Birth and growth 5-6 p < 0.01 and FC > 1.5 5.812 Ayuso et al. (2016) 

Four developmental stages in Laiwu pigs 3 FDR < 0.01 and FC > 4 - Wang et al. (2017) 

Diet induced differences in gene expression 
    

Fed with a supplemented diet 2 (pool) FDR < 0.001 and FC > 2 749 Ogłuszka et al. (2017) 

Expression of mRNA isoforms 

Global view of porcine transcriptome 2 - - Chen et al. (2011) 

Biceps femoris and Soleus. 3 - - Li et al. (2016b) 

Expression of non-coding RNA 

Domesticated pigs and wild boars 93 FDR < 0,01 30 Zhou et al. (2014) 

Global view of porcine transcriptome 2 - - Chen et al. (2011) 

Indigenous Chinese pig and introduced pig breeds 8 p < 0.05 and FC > 2 30 Wang et al. (2015b) 

Four developmental stages 6 p < 0.01 and FC > 1.2 8 Wang et al. (2017a) 

*DEGs = differentially expressed genes; FDR = false discovery rate; FC = fold-change
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Differences in gene expression amongst porcine breeds 

When comparing the muscle expression profiles of Chinese pigs vs introduced 

(European) swine, Wang et al. (2015b) identified 315 DE genes. The ryanodine receptor 3 

(RYR3) and mannose receptor C type 2 (MRC2) genes were 30-fold overexpressed in 

Chinese breeds when compared with the European ones, a finding that is relevant because 

these two genes have important roles in muscle growth. Moreover, several genes related to 

lipid deposition (e.g. ESR1, SCD, FASN, and LDLR) were overexpressed in Chinese pigs 

explaining their increased fatness. In another study, Ayuso et al. (2015) investigated gene 

expression differences between Iberian purebred and Duroc x Iberian crossbred pigs. They 

detected 149 DE genes and demonstrated an enrichment of genes involved in cellular and 

muscle growth in lean Duroc x Iberian crossbred pigs in contrast with Iberian purebred 

pigs. Genes overexpressed in Iberian purebred pigs showed an enrichment of functions and 

pathways related to lipid and glucose metabolism in accordance with the greater adipose 

accretion of this breed. Ghosh et al. (2015) carried out a study to investigate DE genes 

between Jeju native pigs (better taste, tenderness and marbling quality than from Western 

breeds) and Berkshire swine (better growth rate and meat palatability traits than do Jeju 

pigs). In doing so, they observed that 65% of genes in muscle had a higher expression in 

Jeju than in Berkshire pigs. However, an upregulation of DE genes related with body 

growth and skeletal system development (COL21A1, COL2A1, and POSTN) and immunity 

(IL7R, CRP, and CD) was detected in the Berkshire breed.  

 

Differences in gene expression amongst pigs with divergent phenotypes 

Puig-Oliveras et al. (2014) compared the muscle expression profile of sows from an 

Iberian x Landrace backcross displaying extreme phenotypes for fatty acid composition 

and found 131 DE genes, and an enrichment of genes related with lipid metabolism. Puig-

Oliveras et al. (2014) proposed that a high intramuscular PUFA content may influence FA 

metabolism and glucose uptake resulting in an inhibition of the lipogenesis and in the 

increase of the rate of FA oxidation. This interpretation agrees well with previous 

microarray studies (Cánovas et al., 2010; Corominas et al., 2013; Pena et al., 2013) 

suggesting that a higher PUFA content would enhance fatty acid oxidation and decrease 

the intracellular accumulation of triglycerides through the establishment of a cycle where 

triacylglycerols are synthesized and degraded continuously. In another study, Pilcher et al. 
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(2015) characterized gene expression in the skeletal muscle to investigate the metabolic 

basis of poor weaned-pig transition. The group of DE genes with decreased expression in 

the longissimus dorsi muscle of pigs with a poor transition was enriched in loci with 

functions related to muscle contraction, glucose metabolism, cytoskeleton organization, 

muscle development, and response to hormone stimulus, while genes related with protein 

catabolism displayed an increased expression. Li et al. (2016a) used a commercial pig 

population to perform a transcriptional study contrasting animals with high and low drip 

loss values. Drip loss is defined as weight loss (mainly consisting of water and proteins) of 

a fresh meat under gravity at 0–4 °C for 24 h and it has a low heritability (van Wijk et al., 

2005). This comparative analysis of gene expression levels made possible to detect 150 DE 

genes in the High group relative to the Low group. The authors also reported that the 

TRDN gene, which is involved in muscle contraction and fat deposition, and the MSTN 

gene, which has a role in muscle growth, can be critical candidate genes responsible for 

drip loss. 

 

Developmental stage 

Zhao et al. (2015a) analyzed the muscle transcriptome profiles across 11 developmental 

stages for Yorkshire and Tongcheng pigs. Yorkshire pigs are characterized by fast growth, 

low backfat and a high lean meat percentage.  Several genes with a key position in the 

muscle regulatory networks were overexpressed in the Yorkshire pigs, e.g. SGCD, ENG, 

THBD, AQP, and BTG2, whereas CXCL10, EIF2B5, PSMA6, FBXO32, and 

LOC100622249 were overexpressed in the Tongcheng breed. These genes showed breed-

specific and development-dependent differential expression patterns. Ayuso et al. (2016), 

analyzed ten litters at birth and 12 at growing stage and observed more than 5,800 DE 

genes between the two ages under comparison. Several genes overexpressed in newborn 

piglets were involved in the synthesis of cholesterol, triglycerides and other metabolites 

(e.g. ELOVL1, LSS and NSDHL). In growing pigs, an overexpression of genes associated 

with the immune response and related to catabolic processes (e.g. PGK1, GAPDH, PFKM, 

and ME1) was reported. Wang et al. (2017a) analyzed the evolution of IMF content in four 

developmental stages in the porcine longissimus dorsi muscle. They found three temporal 

expression profiles correlated with IMF variation, i.e. 15 DE genes with known functions 

in lipid metabolism (e.g. ACACA, SCD, ACLY, ELOVL1 and FAS), 4 DE genes encoding  
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desaturases (SCD, FADS1, FADS2, and FADS3) and 6 DE genes involved in the steroid 

biosynthesis pathway (CYP51, DHCR24, EBP, HSD17B7, SOAT1, and SQLE) . 

 

Diet induced differences in gene expression 

Next-generation sequencing was used by Ogłuszka et al. (2017) to compare animals 

subjected to either a control diet or a diet supplemented with linseed and rapeseed oil to 

increase polyunsaturated fatty acid content. In the group of pigs supplemented with omega-

3 and omega-6 fatty acids, the expression of 219 and 530 genes was upregulated and 

downregulated, respectively. In the light of these results, the authors proposed a role of 

fatty acids in the regulation of the expression of genes which are essential for muscle tissue 

development and functioning. Interestingly, the identified genes were important for diverse 

biological processes related to the inflammatory response, signaling, lipid metabolism, and 

homeostasis. 

 

Expression of mRNA isoforms 

Chen et al. (2011) used RNA-Seq to generate a high-resolution map of the porcine 

mRNA and miRNA transcriptome in liver, longissimus dorsi and abdominal fat from 

White Duroc × Erhualian pigs with divergent phenotypes for growth and fat deposition. 

They found that about 18.8% of the annotated genes showed AS isoforms, and alternative 

3' splicing was the most common type of AS events in pigs. In addition, they demonstrated 

that the majority of AS events showed a clear pattern of tissue specificity. These results 

highlighted the importance of AS in tissue-specific programs of gene expression and its 

major role in expanding functional complexity. Interestingly, the RYR1 gene presented the 

largest number of longissimus dorsi-specific AS events. According to Li et al., (2016b), 

exon skipping was the most common AS event and, accounted for more than 85% of all 

AS events in biceps femoris and soleus muscle. These results suggest that the frequencies 

of AS type events may vary across and even within tissues.  

Reyer et al. (2013) explored the structural diversity of the NR3C1 gene in pigs. This 

gene encodes the glucocorticoid receptor, and showed the highest proportion of transcripts 

containing the predominant exon 1C variant and only minor variability in the usage of 

other alternative first exons in tissues related to metabolism (skeletal muscle and fat), 

suggesting a major role of the promoter region of exon 1C in driving constitutive 
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expression and, at the same time, limited plasticity in the regulation of NR3C1 in metabolic 

tissues. In another study, five different isoforms of the glycogen synthase kinase 3 

(GSK3β) gene were identified in different porcine tissues (Wang et al., 2012). 

Interestingly, the GSK3β isoforms have different effects on glycogen synthase activity. In 

this way, an overexpression of GSK3b1, GSK3b2, and GSK3b3 isoforms, but not GSK3b5, 

decreased significantly glycogen synthase enzyme activity in PK-15 cells (Wang et al., 

2012). These results suggest that different GSK3β isoforms may have different roles in the 

insulin signaling pathway in pigs. Ma et al. (2014) described a mutation in a splice 

acceptor site of intron 9 (g.8283C>A) of the porcine phosphorylase kinase catalytic subunit 

gamma 1 (PHKG1) gene that drives the synthesis of an aberrant transcript subjected to 

nonsense-mediated decay. This polymorphism has causal effects on glycogen content and 

meat quality.  

 

Expression of non-coding RNAs 

Currently, there are 3,250 annotated porcine ncRNAs in the Ensembl database 

(http://www.ensembl.org/Sus_scrofa/Info/Annotation; Sscrofa v.11.1). The MiRBase 

database (http://www.mirbase.org) contains 382 miRNA precursor genes that are 

processed into 411 mature miRNA sequences. Very likely, the catalog of non-coding 

RNAs in pigs is much larger. Anthon et al. (2014) annotated 3,183 high confidence 

ncRNAs mapping to the pig genome. Zhou et al. (2014) identified 6,621 lincRNA 

transcripts from 4,515 genes loci using RNA-Seq data from 93 samples. The domestic-

animal lncRNA database (ALDB - Li et al., 2015) currently comprises 12,103 pig 

lincRNAs. In contrast, the NONCODE database recently made available the information of 

17,811 lncRNA genes encoding 29,585 lncRNA transcripts compiled from many different 

sources (Noncode database; http://www.bioinfo.org/NONCODE2016). Despite these 

advances, there is a pressing need to improve the genomic annotation of non-coding 

RNAs. Indeed, in human and mouse 90,062 and 79,940 ncRNAs have been annotated so 

far, respectively. 

Non-coding RNAs carry out a broad variety of biological functions, regulating gene 

expression at the levels of transcription, RNA processing, and translation (Cech & Steitz, 

2014). In consequence, they may play a fundamental role in the metabolism of the porcine 

skeletal muscle. However, only a few studies have catalogued and investigated muscle 
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ncRNAs in pigs. Zhou et al. (2014) compared the expression profile of lincRNAs in 

domesticated pigs and wild boars and found 30 lincRNAs that showed a differential 

expression between groups. Linc-sscg2561 displayed 1.4-fold higher expression in 

domesticated pigs compared with wild boars. Adjacent to this lincRNA, there is the 

DNMT3A gene which displayed a 1.4-fold higher expression in the domesticated pig. The 

DNMT3A gene is a DNA methyltransferase which regulates behavioral plasticity to 

emotional stimuli (LaPlant et al., 2010). Thus, together DNMT3A and Linc-sscg2561 could 

contribute to changes in behavior during the domestication of the pig  (Zhou et al. 2014).  

With regard to miRNAs, Chen et al. (2011) detected increased levels of miR-1/206 in 

the porcine muscle vs liver. Myostatin gene is a target-gene to miR-1/206 and can present a 

mutation that creates an illegitimate binding site for this miRNA leading to efficient 

translational inhibition of the myostatin gene and an increase in muscularity in Texel sheep 

(Clop et al., 2006).  Wang et al. (2015b) also compared miRNA sequences from 

longissimus dorsi muscle of the two indigenous Chinese pig breeds and two introduced pig 

breeds. They found 20 upregulated (e.g. ssc-miR-145-5p, -339 and 133a-5p) and 10 

downregulated (e.g. ssc-let-7c, ssc-miR-122 and -4332) miRNAs in the fat Chinese pig 

breeds. Through a miRNA target gene prediction and functional analysis, these authors 

anticipated that these miRNAs might target 2,393 genes, which are mainly involved in 

pathways associated with lipogenesis, metabolism, and adipocyte lineage commitment 

(e.g. insulin- signaling, mitogen-activated protein kinase 1 signaling and GnRH signaling 

pathways). Recently, Wang et al., (2017a) explored the relationship between the miRNA 

profile and the development of porcine muscle and adipose tissue. They found 17 core 

miRNAs that were differentially expressed in adipose tissue vs skeletal muscle at three 

development stages (30, 90, 240 days-old pigs). Amongst them, ssc-miR-128 and -133a-5p 

and -489 are muscle-related miRNAs differentially expressed at all four stages and they 

may have a major role in regulating the muscle differentiation and development of pigs. 

 

Epigenetic differences 

Schachtschneider et al. (2015) produced DNA methylome maps and gene transcription 

profiles of eight tissues, including muscle tissue, from one adult Duroc female. Analysis of 

over 500,000 CpG sites demonstrated patterns similar to those observed in humans, 

including a reduction of CpG and an increase of TpG density at transcription start sites of 
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lowly expressed genes, suggesting that DNA methylation can play a significant role in 

adaptive evolution by modulating gene expression. CpG methylation levels (defined as the 

ratio of methylated reads/total reads at a given site) were similar across tissues, with an 

average of 41.39% (Schachtschneider et al., 2015). Skeletal muscle presents a lower 

methylation level than other tissues (39.52 %, Schachtschneider et al., 2015). Choi et al. 

(2015) performed a correlation analysis between the levels of gene expression and tissue-

specific differentially methylated CpG sites in diverse pig tissues. In the muscle, 18 tissue-

specific differentially methylated CpG sites were associated with 11 genes which promote 

muscle development. As expected, a negative correlation between gene expression and 

methylation was observed.  Li et al. (2012) analyzed the genome-wide DNA methylation 

levels of three porcine breeds (Landrace, Rongchang, and Tibetan) which display different 

obesity and muscle-related phenotypes and two different muscles were analyzed 

(longissimus dorsi and red psoas major muscles). A total of 2,510 and 218,623 regions in 

the genome showed changes in their methylation rate across muscle types and breeds, 

respectively. Several of these differentially methylated regions (223) comprised genes 

orthologous to known human obesity-related loci, thus suggesting that changes in the 

methylation rates can be associated with fatness phenotypes in pigs. Zhou et al. (2015b) 

analyzed the same dataset used by Li et al. (2012) with the aim of characterizing the DNA 

methylation patterns of lincRNA genes in adipose and muscle tissues in pigs. They showed 

that 13.2% and 6.8% of differentially methylated regions overlap with lincRNA genes 

when comparing muscle types and breeds, respectively. 
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This Ph.D. thesis was done under the framework of the project Study of traits related to 

pigs lipid metabolism and pork quality by means of integral analyses of high density 

genotyping and gene expression data (grant number: AGL2010-22208-C02-02) and 

Genomic physiology of intramuscular fat storage in pigs (grant number: AGL2013-48742-

C2-1-R) awarded by the Spanish Ministry of Economy, Industry and Competitiveness. The 

main goal of these projects is to analyze the genetic basis of fatness in pigs by using next-

generation sequencing and high throughput genotyping approaches. More specifically, the 

objectives of the Thesis are: 

 

 To identify differentially expressed mRNA genes (and their isoforms) and non-

coding RNA genes in the skeletal muscle of pigs with distinct fatness profiles and to 

ascertain their potential roles on fat deposition (Chapters 1 and 2).  

 To investigate the effects of food ingestion on the mRNA expression patterns of the 

porcine muscle (Chapter 3) and to evaluate how food intake modulates the expression of 

eight circadian genes in five porcine tissues (Chapter 4). 

 

 In the framework of a collaborative study with the Research Institute for Animal 

Breeding and Nutrition (Hungary) and the University of Cluj-Napoca (Romania), the 

following objective was undertaken in the Thesis: 

 

 To identify the genetic factors involved in the segregation of blond vs red 

pigmentation patterns in Mangalitza pigs (Chapter 5).  
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Abstract 

We have used a RNA-Seq approach to investigate differential expression in the skeletal 

muscle of swine (N = 52) with divergent lipid profiles i.e. HIGH (increased intramuscular 

fat and muscle saturated and monounsaturated fatty acid contents, higher serum lipid 

concentrations and fatness) and LOW pigs (leaner and with an increased muscle 

polyunsaturated fatty acid content). The number of mRNAs and non-coding RNAs 

(ncRNAs) expressed in the porcine gluteus medius muscle were 18,104 and 1,558, 

respectively. At the nominal level of significance (P-value ≤ 0.05), we detected 1,430 

mRNA and 12 non-coding RNA (ncRNA) transcripts as differentially expressed (DE) in 

the gluteus medius muscle of HIGH vs LOW pigs. This smaller contribution of ncRNAs to 

differential expression may have biological and technical reasons. We performed a second 

analysis, that was more stringent (P-value ≤ 0.01and fold-change ≥ 1.5), and only 96 and 0 

mRNA-and ncRNA-encoding genes happened to be DE, respectively. The subset of DE 

mRNA genes was enriched in pathways related with lipid (lipogenesis and triacylglycerol 

degradation) and glucose metabolism. Moreover, HIGH pigs showed a more lipogenic 

profile than their LOW counterparts. 

 

Introduction 

Several RNA-Seq studies have been carried out on different pig breeds in order to 

identify genes involved in fat deposition and meat quality
1,2

. Besides analysing gene 

expression differences, these studies aimed to dissect the complex networks of pathways 

and genes that determine porcine phenotypes of economic interest. In this way, the 

expression patterns of porcine liver, longissimus dorsi and abdominal fat were examined in 

two full-sib hybrid pigs with extreme phenotypes for growth and fatness traits
3
. The 

proportion of tissue-specific mRNA transcripts happened to be quite modest (<10%) and 

several microRNAs (miRNAs) were differentially expressed (DE) across tissues. Other 

studies analysing differential gene expression in muscle, fat and liver tissues of Iberian x 

Landrace pigs with extreme phenotypes for muscle fatty acid (FA) composition revealed 

that DE loci are inte-grated in common pathways related with LXR/RXR activation, 

peroxisome proliferator-activated receptors (PPARs) and β-oxidation
1,4,5

. A recent analysis 

comparing Iberian and Iberian x Duroc pigs also identified LXR/ RXR activation and 
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cholesterol synthesis as enriched pathways in the set of DE genes
2
. In contrast, the 

potential role of ncRNAs in muscle fat deposition has been scarcely studied in pigs
4,6

. 

In a previous experiment, we demonstrated that genes involved in FA uptake, 

lipogenesis, triacylglycerol syn-thesis, lipolysis and insulin signalling are DE in the 

skeletal muscle of Duroc pigs with divergent lipid phenotypes
7
. One drawback of this 

study was that gene expression was measured with microarrays, which have a limited 

dynamic range, sensitivity (specially for low-abundance transcripts) and specificity. 

Moreover, the expression of non-coding RNAs could not be measured with Affymetrix 

porcine microarrays. In the current work, we aimed to circumvent all these limitations by 

analysing, through a RNA-Seq approach, the muscle transcriptome of a subset of these 

Duroc pigs. Our goal was to determine the relative contributions of protein-coding and 

non-coding RNAs to differential expression in the skeletal muscle of pigs with distinct 

lipid profiles. 

 

Results 

The RNA-Seq experiment allowed us generating an average of 133 million paired-end 

reads per sample and 72.8% of them were successfully mapped to the pig Sscrofa10.2 

genome assembly. The percentages of exonic and intronic reads were 91.4% and 8.6%, 

respectively. After quality control analysis, four samples were discarded. Thereby, we used 

a final dataset of 26 animals per group (HIGH and LOW) to identify DE genes. 

 

Differential expression of mRNA encoding genes.   

A total of 1,430 mRNA genes happened to be DE when considering exclusively a 

significance threshold of P-value ≤ 0.05 (Supplementary Table S1). Only 76 of these 1,430 

mRNA-encoding genes were identified as DE by Cánovas et al.
7
 when they compared the 

gene expression of HIGH and LOW pigs retrieved from the same population employed by 

us (Supplementary Figure 1, Supplementary Table S2). When we performed a more 

stringent analysis (P-value ≤0.01 and fold-change ≥1.5), 96 genes were DE 

(Supplementary Table S3). Moreover, twenty-one genes remained significant after 

correction for multiple testing (q-value ≤0.05 and fold-change ≥1.5) as shown in Table 1. 
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Table 1 - List of the most significant differentially expressed genes in HIGH and LOW pigs 

after correcting for multiple testing (q-value ≤ 0.05 and fold-change ≥ 1.5). A negative FC 

means that the affected gene is overexpressed in LOW pigs. 

 

We used the IPA package (QIAGEN Redwood City, www.qiagen.com/ingenuity) to 

identify pathways to which DE genes belong to as well as to explore the existence of 

signalling networks connecting DE genes. Forty four pathways were significantly enriched 

in the dataset of 96 DE genes (Supplementary Table S4). This information should be 

interpreted with caution because, in general, pathways were represented by a small number 

of genes and statistical significance was not very high. Amongst the enriched pathways, it 

is worth to mention TR/RXR activation, synthesis of palmitate and stearate, FA 

biosynthesis, triacylglycerol degradation, and the conversion of acetate into acetyl-CoA 

(Table 2, Supplementary Table S4). A complementary analysis with the ReactomeFIViz 

app
8
 revealed 50 significant pathways (Supplementary Table S5). Differentially expressed 

mRNA genes were also grouped in gene regulatory networks with the IPA software. As 

shown in Supplementary Table S6, we found eleven regulatory networks related with a 

variety of functions, and the top-scoring one was that of Cardiovascular Disease, 

Cardiovascular System Development and Function, Organismal Injury and Abnormalities 

(Fig. 1 and Supplementary Table S6). 

Ensembl ID Gene name Fold-change P-value q-value 

ENSSSCG00000005648 SLC27A4 1.66 1.32E-06 4.28E-03 

ENSSSCG00000027946 MVP 1.78 2.63E-06 5.97E-03 

ENSSSCG00000017232 SLC9A3R1 1.72 1.26E-05 1.36E-02 

ENSSSCG00000005935 AGO2 1.59 1.77E-05 1.43E-02 

ENSSSCG00000003379 KLHL21 1.79 1.61E-05 1.43E-02 

ENSSSCG00000011740 SERPINI1 −1.81 2.48E-05 1.72E-02 

ENSSSCG00000001931 GRAMD2 −1.58 2.74E-05 1.76E-02 

ENSSSCG00000011444 NT5DC2 1.54 3.26E-05 1.76E-02 

ENSSSCG00000007574 SDK1 1.58 2.97E-05 1.76E-02 

ENSSSCG00000007745 SUMF2 −1.54 4.21E-05 1.95E-02 

ENSSSCG00000000293 ITGA5 1.72 4.46E-05 1.96E-02 

ENSSSCG00000007133 ACSS1 1.51 5.18E-05 2.09E-02 

ENSSSCG00000028814 SOD3 1.97 5.37E-05 2.09E-02 

ENSSSCG00000006277 SPIDR 2.04 5.90E-05 2.19E-02 

ENSSSCG00000007554 ZFAND2A 2.54 1.01E-04 2.88E-02 

ENSSSCG00000003105 SLC1A5 1.67 1.17E-04 3.07E-02 

ENSSSCG00000010529 SFRP5 2.03 1.31E-04 3.11E-02 

ENSSSCG00000006245 SDR16C5 3.02 1.36E-04 3.15E-02 

ENSSSCG00000013579 CD209 1.95 1.50E-04 3.31E-02 

ENSSSCG00000008232 RNF181 −2.09 2.05E-04 3.57E-02 

ENSSSCG00000030165 MAFF 1.67 2.22E-04 3.72E-02 

http://www.qiagen.com/ingenuity
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The Regulator Effects tool of the IPA package was employed to identify potential 

transcriptional regulators that may explain the differential patterns of expression observed 

between HIGH and LOW pigs (Fig. 2). By doing so, two main transcriptional regulators 

were identified i.e. peroxisome proliferator-activated receptor γ (PPARG) and platelet-

derived growth factor BB (PDGFB). In the network shown in Fig. 2, these genes appear to 

be involved in an heterogeneous array of biological functions related with the quantity of 

carbohydrate, insulin sensitivity, necrosis of prostate cancer cell lines and apoptosis of 

lymphocytes. Indeed, the PPARG gene (P-value = 0.02 and FC = 1.36) is depicted as a key 

regulator of genes related with carbohydrate metabolism (CEBPA, CES1, CIDEC) and the 

inhibition of insulin sensitivity (CES1, CIDEC, FASN). 

 

Table 2 - IPA-based pathway analysis of the list of genes that are differentially expressed in 

HIGH and LOW pigs (P-value ≤ 0.01 and fold-change ≥ 1.5). Ratio: number of DE genes in a 

pathway divided by the number of genes comprised in the same pathway. 

 

Differential expression of non-coding RNAs.   

We identified 1,558 ncRNA transcripts expressed in the pig gluteus medius muscle, 

with sizes between 53 and 9,032 bp (Supplementary Table S7). Amongst these, 1,354 and 

204 transcripts were classified as small (sncRNA) and long (lncRNA) non-coding RNAs, 

respectively. It is important to emphasize that the annotation of porcine ncRNAs is still 

very preliminar and it should be taken with caution. In general, sncRNA had orthologous 

sequences in other mammalian species, while lncRNAs were much less conserved (Table 

3). We only detected 12 ncRNAs (11 lncRNAs and 1 sncRNA) that were DE at the 

Ingenuity Canonical Pathways 
−log(p-

value) 
Ratio Nodes 

Acute Myeloid Leukemia Signaling 3.22 4/91 
CEBPA, FLT3, RUNX1, 

STAT3 

Hematopoiesis from Pluripotent Stem Cells 2.98 3/47 CD3E, CD8E, CSF1 

Primary Immunodeficiency Signaling 2.96 3/48 CD3E, CD8E, ZAP70 

Hepatic Fibrosis/Hepatic Stellate Cell 

Activation 
2.12 4/183 CCR5, CSF1, IGFBP4, TIMP1 

TR/RXR Activation 2.08 3/98 BCL3, FASN, SYT2 

Palmitate Biosynthesis I (Animals) 2.07 1/2 FASN 

Fatty Acid Biosynthesis Initiation II 2.07 1/2 FASN 

CTLA4 Signaling in Cytotoxic T 

Lymphocytes 
2.07 3/99 CD3E, CD8A, ZAP70 

Retinoate Biosynthesis I 2.04 2/34 RDH5, SDR16C5 

Stearate Biosynthesis I (Animals) 2.02 2/35 FASN, SLC27A4 
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nominal level (P- value ≤ 0.05), while none of these ncRNAs remained significant after 

correction for multiple testing (in all cases the q-value was non-significant, Table 4). 

In addition, we identified 25 mRNA-encoding genes that mapped near (30 kb or less) to 

the subset of DE ncRNA loci (Table 5). This observation may have biological implications 

because ncRNAs often cis-regulate the expression of genes located in their vicinity. Within 

this list of neighbouring genes (Table 5), CU468594.8 (P-value =0.003 and FC =1.26) and 

MT-ND6 (P-value =0.038 and FC =−1.21) mRNAs are DE in HIGH vs LOW pigs (P-value 

< 0.05 and 1.2-fold change in expression). 

 

Discussion 

Divergent muscle mRNA expression profiles in pigs with extreme phenotypes for 

fatness traits.  

 After correcting for multiple testing, twenty-one genes, displaying a wide array of 

functional roles, showed a significant DE between HIGH and LOW pigs (Table 1). For 

instance, SLC27A4 is involved in the translocation of long-chain fatty acids across the 

plasma membrane
9
 while SFRP5 plays a role in anti-inflammatory and insulin-sensitizing 

processes
10

 and AGO2 and MVP contribute to RNA interference
11

 and signal transduction 

and transport
12

, respectively. Two of the genes listed in Table 1 might be related with meat 

quality i.e. RNF181, which encodes a E3 ubiquitin-protein ligase that participates in the 

degradation of muscle proteins through the ubiquitin-proteasome system
13

, and SDK1, 

which has been associated with intramuscular fat (IMF) content in Large White pigs
14

. 

The Spearman correlation between the microarray data reported by Canovas et al.
7
 in 

68 HIGH and LOW pigs and RNA-seq data generated in the current study (N = 52) was 

0.54. This value is comparable to what has been published in previous studies analysing 

gene expression in human brain cells (r = 0.61–0.67)
15

 and proliferating vs quiescent 

fibroblasts (r =0.18–0.42)
16

. We also compared our dataset of DE genes with those detected 

by Canovas et al.
7
. As shown in Suppl Figure 1 the level of concordance was quite low 

(only 76 genes were simultaneously identified by both platforms). A modest overlap 

between microarray and RNA-Seq data has been reported in previous studies. For instance, 

Trost et al.
16

 analysed the concordance between both types of data in fibroblasts cultured at 

two different developmental stages, and they just found an overlap of around 25% in the 
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two lists of DE genes. This value is higher than the one reported by us, but it is important 

to highlight that the analysis of Trost et al. 
16

 was based on a set of probes common to both 

platforms. Moreover, the microarray analysis performed by Canovas et al.
7
 was based on a 

dataset of around 68 pigs, while we used a subset of 52 individuals in our RNA-Seq 

analysis. Trost et al.
16

 used quantitative real-time PCR as a third approach to validate 

microarray and RNA-Seq data and they found that RNA-Seq outperforms the microarray 

technology. However, differences between both methods are not dramatic i.e. the 

Spearman correlations between microarray and RNA-Seq data vs qPCR validation results 

were 0.44 and 0.56, respectively. This means that both technologies detect different sets of 

DE expressed genes and, in consequence, they are complementary
17

. According to Wang et 

al. 
18

, the magnitude of the treatment effect has a strong impact on the level of concordance 

between microarray and RNA-Seq platforms i.e. large discrepancies can be anticipated 

when two similar biological conditions are compared. Low-abundance transcripts are 

another source of discrepancy between both methodological approaches
18

. 

We found some evidence that pathways related with lipid synthesis (stearate, palmitate 

and FA synthesis) and catabolism (triacylglycerol degradation), glucose metabolism 

(glucose synthesis and degradation) and hormonal response (growth hormone signalling) 

were enriched in the set of DE genes (Table 2 and Supplementary Table S4). Similar 

results were obtained by Cánovas et al.
7
 i.e. they detected an overexpression of pathways 

related with the synthesis of FA and insulin signaling in HIGH pigs. Puig-Oliveras et al.
1
 

compared the muscle mRNA expression of pigs with high saturated (SFA) and 

monounsaturated (MUFA) FA muscle contents against those with a high polyunsaturated 

FA (PUFA) content and also observed an enrichment of pathways related with fat 

deposition (PPAR and insulin signalling) in the set of DE genes. Insulin stimulates the 

absorption of glucose, which is a lipogenic substrate, and PPARG enhances triglyceride 

storage
19

. By using the same animal material employed by Puig-Oliveras et al.
1
, 

Corominas et al.
5
 observed an overexpression of genes belonging to the LXR/RXR 

activation pathway in the adipose tissue of pigs with high muscle SFA and MUFA 

contents. These results, which agree well with ours (Supplementary Table S4), make sense 

because liver X receptors are sterol-activated transcription factors that enhance 

lipogenesis
20

. 
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Figure 1 - The top-scoring regulatory network identified with the IPA software corresponded 

to Cardiovascular Disease, Cardiovascular System Development and Function, Organismal 

Injury and Abnormalities. Genes that are upregulated and downregulated in HIGH pigs (when 

compared with the LOW ones) are displayed within red and green nodes, respectively. Solid and 

dashed lines between genes represent known direct and indirect gene interactions, respectively. The 

shapes of the nodes reflect the functional class of each gene product: transcriptional regulator 

(horizontal ellipse), transmembrane receptor (vertical ellipse), enzyme (vertical rhombus), 

cytokine/ growth factor (square), kinase (inverted triangle) and complex/group/other (circle).  

 

Though not all studies comparing pigs with divergent lipid phenotypes identify the 

same sets of pathways, an outcome that partly depends on the software and databases used 

as well as on the targeted tissue and phenotype variability, the general trend that emerges is 

that biochemical routes that promote lipid deposition are overexpressed in the skeletal 

muscle of fat pigs with high muscle SFA and MUFA contents. In close concordance with a 

previous study
7
, we have also found that one gene that promotes the catabolism of 
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triglycerides, carboxylesterase 1 (CES1), is strongly upregulated in HIGH pigs (P -value = 

0.0006, FC = 2.4). The CES1 protein has hydrolase activity and its inactivation leads to 

hyperlipidemia and increased fat deposition in peripheral tissues, obesity, fatty liver, 

hyperinsulinemia and insulin insensitivity and a decreased energy expenditure
21

. 

According to Cánovas and coworkers
7
, the upregulation of lipolytic genes in HIGH pigs 

suggests the existence of a cycle where triacylglycerols are continuously synthesized and 

degraded. However, we have also detected the downregulation of lipolytic genes such as 

lipase C, hepatic type (LIPC, P-value =0.002, FC =−1.5)
22

, a feature that suggests that the 

mechanisms that promote an adequate balance between anabolic and catabolic lipid 

metabolism routes are highly complex. 

Analysis of the data with the IPA software (QIAGEN) showed that the top-scoring 

regulatory network was Cardiovascular Disease, Cardiovascular System Development and 

Function, Organismal Injury and Abnormalities, a result that it is not surprising given the 

tight relationship between lipoprotein metabolism and cardiovascular risk
23

. In the network 

shown in Fig. 1, the V-Akt murine thymoma viral oncogene homolog molecule (AKT) 

occupies a central position, having connections with several DE lipid-related genes (e.g., 

TRIB3, TIMP1 and ITGA5). Interestingly, AKT is one of the main regulators of glucose 

homeostasis
24

, a feature that is consistent with the existence of tight links between lipid 

and carbohydrate metabolism. 

When we used the Regulator Effects tool of IPA, the PPARG and PDGFB genes were 

predicted to be major transcriptional regulators of the set of 96 DE loci (Fig. 2). The 

PPARG transcription factor is critically required for adipogenesis, being a powerful 

modulator of whole-body lipid homeostasis and insulin sensitivity
25

. Polymorphism in the 

PPARG gene is associated with individual susceptibility to type 2 diabetes, obesity and 

body mass index
26

. In our study, PPARG is upregulated (P-value = 0.02 and FC = 1.36) in 

HIGH pigs and appears to regulate several genes, such as CEBPA (P-value = 0.009 and 

FC = 1.64), CES1 (P-value = 0.0004 and FC = 2.03), CIDEC (P-value = 0.0005 and 

FC = 2.46) and FASN (P-value = 0.0009 and FC = 2), that play distinct roles in lipid 

metabolism (http://www.genome.jp/kegg/pathway.html).  

 

www.nature.com/scientificreports/ 
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Figure 2 - The Regulator Effects tool of the IPA package was employed to identify two major 

upstream regulators (PPARG and PDGFB) of the networks of differentially expressed genes. 

This tool integrates Upstream Regulator results with Downstream Effects results to build causal 

hypotheses that help to interpret what may be occurring upstream to cause particular phenotypic or 

functional outcomes downstream (http://www. ingenuity.com/products/ipa/ipa-spring-release-

2014). In the upper tier, there are two upstream regulators (PPARG and PDGFB) predicted to be 

activated (orange color). In the middle tier, we can see the genes whose expression changes in 

response to the activation of upstream regulators (red = upregulation). The shapes of the nodes 

reflect the functional class of each gene product: enzyme (vertical rhombus), transcription regulator 

(vertical ellipse), cytokine/growth factor (square), ligand-dependent nuclear receptor (horizontal 

rectangle) and complex/group/ other (circle). In the lower tier, the expected phenotypic 

consequences of changes in gene expression are shown by considering the Ingenuity Knowledge 

Base (absolute z-score > 2 and P-value < 0.05). The octagonal symbol defines Function, while 

solid and dashed lines between genes represent known direct and indirect gene interactions, 

respectively. Orange leads to activation, while blue leads to inhibition predicted relationships. 

Orange (predicted to be activated) and blue (predicted to be inhibited) lines represent relationships 

with causal consistency. 

   

 

 

  

http://www.ingenuity.com/products/ipa/ipa-spring-release-2014
http://www.ingenuity.com/products/ipa/ipa-spring-release-2014
http://www.ingenuity.com/products/ipa/ipa-spring-release-2014
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Table 3 - Evolutionary conservation of non-coding RNAs transcribed in the porcine gluteus 

medius muscle. miRNA =microRNAs; misc_RNA=miscellaneous other RNA; Mt-

rRNA =Mitochondrial ribosomal RNA; Mt-tRNA =transfer RNA located in the mitochondrial 

genome; rRNA =ribosomal RNA; snoRNA =small nucleolar RNA; snRNA =small nuclear RNA; 

lincRNA =Long intergenic non-coding RNAs.  

 

 

Limited contribution of the non-coding RNA transcriptome to differential 

expression between HIGH and LOW pigs. 

 Non-coding RNAs have been shown to regulate gene expression by interacting with 

chromatin complexes, working as RNA enhancers, recruiting or assembling certain 

proteins and interacting with other RNAs at the post-transcriptional level
27

. In consequence 

they may play a fundamental role in the metabolism of the porcine skeletal muscle. In our 

study, we have identified 1,558 muscle-expressed ncRNA transcripts (Supplementary 

Table S7). The total number of ncRNAs in the pig genome is currently unknown, but Zhou 

et al.
28

 highlighted the existence of at least 6,621 long intergenic non-coding RNAs 

(lincRNA) transcripts encoded by 4,515 gene loci. In humans, 58,648 lncRNA encoding 

loci have been identified so far
29

. In our dataset (Table 3), the degree of evolutionary 

conservation of ncRNAs happened to be much higher than that of lncRNAS. Zhou et al.
28

 

characterized the porcine lincRNA transcriptome and found that only 40% of the 

transcripts had a detectable human lincRNA ortholog. This scarcity of orthologous 

sequences can be due, in part, to the poor annotation of ncRNAs in all investigated species. 

  

Transcript Transcript Type Number Conserved ncRNA 

Small ncRNA 

miRNA 433 137 

misc_RNA 95 82 

Mt-rRNA 2 0 

Mt-tRNA 22 0 

rRNA 57 52 

snoRNA 417 395 

snRNA 328 273 

Long ncRNA 

Non coding 4 0 

Processed transcript 143 0 

Antisense 15 0 

lincRNA 42 0 
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Table 4 - List of non-coding RNAs that are differentially expressed (at the nominal level, P-value ≤ 0.05) in the gluteus medius muscle of HIGH and 

LOW pigs. A negative FC means that the affected gene is overexpressed in LOW pigs; lincRNA = Long intergenic non-coding RNAs, Mt-tRNA = transfer 

RNA located in the mitochondrial genome.  

www.nature.com/  

  

Ensembl ID Gene ID Size (bp) Fold Change P-value Type of ncRNA 

ENSSSCG00000031004 CH242-227G20.3 1833 −1.44 0.002 lincRNA 

ENSSSCG00000031028 CH242-15C8.2 1495 −1.34 0.014 lincRNA 

ENSSSCG00000015579 PTGS2 3601 −1.47 0.016 Processed transcript 

ENSSSCG00000030904 CU468594.10 1083 −1.49 0.025 Non coding 

ENSSSCG00000001227 TMP-SLA-3 1767 −1.31 0.026 Processed transcript 

ENSSSCG00000030767 TMP-SLA-5 1147 −1.29 0.027 Processed transcript 

ENSSSCG00000015549 RNASEL 2716 −1.87 0.028 Processed transcript 

ENSSSCG00000018090 Unavailable 70 −2.05 0.036 Mt-tRNA 

ENSSSCG00000001397 TMP-CH242-74M17.4 1726 −1.27 0.038 Processed transcript 

ENSSSCG00000001227 TMP-SLA-3 1700 −1.30 0.043 Processed transcript 

ENSSSCG00000004334 MAP3K7-001 2818 −1.72 0.044 Processed transcript 

ENSSSCG00000015897 IFIH1 3720 −1.60 0.046 Processed transcript 
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Table 5 - Protein-encoding genes that map near (30 kb) to the subset of 12 differentially expressed ncRNAs (HIGH vs LOW pigs). Differentially 

expressed ncRNAs and mRNAs (HIGH vs LOW pigs) P-value ≤ 0.05, Fold Change ≥ 1.2) are shown in bold. A negative Fold Change means that the 

affected gene is overexpressed in LOW pigs. 

Non-coding RNA Neighboring mRNA gene Fold Change P-value RPKM-means LOW RPKM-means HIGH 

CH242-15C8.2 USP9X −1.02 0.500 10.70 10.50 

CH242-227G20.3 
PDK3 −1.03 0.435 8.97 8.69 

PCYT1B −1.07 0.461 0.35 0.33 

CU468594.10 

CU468594.8 1.26 0.003 1.40 1.77 

CPSF1 1.10 0.020 12.60 13.90 

SLC39A4 1.24 0.316 0.09 0.11 

FBXL6 −1.03 0.777 1.88 1.84 

ADCK5 −1.04 0.865 2.82 2.72 

TMEM249 1.07 0.587 0.08 0.08 

ENSSSCG00000018090 

MT-ND2 −1.15 0.024 5019.58 4372.26 

MT-ATP6 −1.13 0.033 25335.60 22504.43 

MT-ND6 −1.21 0.038 5199.05 4287.84 

MT-COX2 −1.12 0.051 20299.35 18062.05 

MT-ND5 −1.16 0.051 3264.12 2809.24 

MT-COX1 −1.13 0.064 24826.52 21886.25 

MT-ND3 −1.10 0.086 4413.22 4010.71 

MT-CYTB −1.10 0.123 10033.49 9149.34 

MT-ATP8 −1.07 0.162 6421.54 5974.98 

MT-COX3 −1.08 0.164 31328.03 28896.14 

MT-ND1 −1.06 0.197 8412.34 7957.73 

MT-ND4 −1.04 0.243 5784.35 5564.63 

MT-ND4L −1.03 0.289 2042.94 1980.50 

IFIH1 FAP −1.10 0.665 2.56 2.33 

RNASEL RGS8 2.22 0.300 0.11 0.24 

TMP-SLA-5 and TMP-CH242-74M17.4 SLA-1 −1.17 0.123 79.31 67.50 
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There is growing evidence that there might be a positive correlation between the 

expression of ncRNAs and nearby mRNA encoding genes, suggesting that the former may 

regulate the expression of the latter 
30

. We investigated this issue by analysing if there are 

DE protein-coding genes in the vicinity of any of the 12 DE ncRNAs identified in our 

work (P-value ≤ 0.05, Tables 4 and 5). Two protein-coding genes, i.e. mitochondrially 

encoded NADH:ubiquinone oxidoreductase core subunit 6 (MT-ND6) and CU468594.8, 

fulfilled this condition (P-value ≤ 0.05 and FC ≥ 1.2, Table 5). The MT-ND6 gene encodes 

a NADH dehydrogenase that catalyses the oxidation of NADH by ubiquinone, an essential 

step in the mitochondrial electron transport chain
31

. The CU468594.8 locus is orthologous 

to human solute carrier family 52-riboflavin transporter, member 2 (SLC52A2). Riboflavin 

is the precursor of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), 

two essential cofactors that participate in a wide range of redox reactions
32,33

. 

We aimed to ascertain if differences amongst HIGH and LOW pigs, in terms of IMF 

content and composition, are mainly due to the DE of either mRNA or ncRNA encoding 

genes. When considering a nominal P-value of 0.05 as a threshold of significance, the 

number of DE ncRNAs (12 loci) was much smaller than that of DE mRNAs (1,430 loci), 

even if we take into account that the number of expressed mRNAs (18,104) was also 

higher than that of ncRNAs (1,558). Moreover, none of the DE ncRNAs remained 

significant after correction for multiple testing. In a recent experiment, the transcriptome of 

pig endometrial samples collected at different pregnancy stages was characterized, and 

2,376 transcripts were identified as DE in pairwise comparisons
34

. Only 12% of these 

transcripts corresponded to lncRNAs indicating that changes in the endometrial 

transcriptome associated with pregnancy mainly affect the expression of protein-coding 

genes. However, studies performed in humans indicate a much more balanced contribution 

of mRNAs and ncRNAs to differential expression. For instance, Wang et al.
35

 investigated 

the expression patterns of peripheral leukocytes of healthy and autistic individuals and 

identified 3,929 and 2,591 DE lncRNAs and mRNAs, respectively. Similarly, Zhou et al.
36

 

identified 891 and 576 DE mRNAs and lncRNAS, respectively, when comparing the 

expression patterns of ectopic and eutopic endometrial tissue. These differences between 

humans and pigs are probably the consequence of technical rather than biological causes, 
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evidencing the pressing need of improving the genomic and functional annotation of 

porcine ncRNAs. 

 

Conclusions 

By comparing the mRNA expression of HIGH and LOW pigs by RNA-Seq, we have 

identified 96 loci displaying differential expression (P- value ≤ 0.01 and FC ≥ 1.5). Many 

of these loci were not detected in a previous microarray-based experiment, suggesting that 

distinct platforms detect different sets of DE genes. Lipid biosynthetic pathways were 

enriched in DE genes and upregulated in HIGH pigs, a result that is consistent with 

previous reports. We have also undertaken the analysis of non-coding RNAs, a feature that 

has been neglected in previous studies investigating the differential expression of porcine 

genes. Our results indicate that the number of DE non-coding RNAs is much lower than 

that of mRNAs, an outcome that might be partly explained by the poor annotation of 

porcine ncRNAs. 

 

Material and Methods 

Ethics statement.   

All experiments were performed in accordance with the ARRIVE guidelines (https:// 

www.nc3rs.org.uk/arrive-guidelines). Animal care and management procedures were 

approved by the Ethical Committee of the Institut de Recerca i Tecnologia 

Agroalimentàries, IRTA. 

 

Animal Material.   

One population of 350 Duroc barrows belonging to 5 half-sib families, and distributed 

in 4 fattening batches was generated in 2003. All animals were kept under the same 

feeding and man-agement conditions
37

. A wide array of growth, fatness, feed efficiency 

and carcass and meat quality traits were recorded in these animals, including weight, daily 

https://www.nc3rs.org.uk/arrive-guidelines
https://www.nc3rs.org.uk/arrive-guidelines
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food intake, fat deposition, and IMF content and composition (C:12-C:22 interval) of the 

gluteus medius muscle
7
. By using a principal component analysis based on 13 lipid-related 

traits, we selected two groups of pigs, i.e. HIGH and LOW, displaying distinct phenotypic 

profiles
7
 (Supplementary Table S8). Compared with their LOW counterparts, HIGH pigs 

were fatter and they had a higher IMF, SFA and MUFA muscle contents as well as 

elevated serum lipid concentrations
7
. LOW pigs, in contrast, had a higher muscle PUFA 

content
7
. 

 

RNA isolation and library construction and sequencing.   

Total RNA was isolated from 56 porcine gluteus medius muscle samples (28 HIGH and 

28 LOW) by using the acid phenol method implemented in the RiboPure kit (Ambion, 

Austin, TX). Total RNA was quantified in a Nanodrop ND -1000 spectrophotometer, 

checked for purity and integrity in a Bioanalyzer-2100 device (Agilent Technologies, Inc., 

Santa Clara, CA) and submitted to the Centre Nacional d’Anàlisi Genòmica (CNAG, 

http://www.cnag.cat) for sequencing. Libraries were prepared using the TruSeq RNA 

Sample Preparation Kit (Illumina Inc) according to the protocols recommended by the 

manufacturer. Each library was paired-end sequenced (2 × 75 bp) by using the TruSeq SBS 

Kit v3-HS, in a HiSeq2000 platform. 

 

Bioinformatic analyses.   

All bioinformatic analyses were performed with the CLC Bio Workbench software 

(CLC Bio, Aarhus, Denmark). Quality control was carried out with the NGS Core Tools, 

considering several parameters based on the FastQC-project 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). We carried out per-sequence 

and per-base analyses to filter reads according to the following criteria: sequence-read 

distribution =75 bp, 100% coverage in all bases, GC -content ~50%, ~25% of A, T, G and 

C nucleotide contribu-tions, ambiguous base-content <0.1% and a Phred score higher than 

30 (i.e. base-calling accuracy larger than 99.9%). Short sequence reads were assembled, 

mapped and annotated by using as template the pig reference genome version 10.2 

http://www.cnag.cat/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


 

 Papers and Studies                                                                                                          s   

86 

 

(Sscrofa10.2-http://www.ensembl.org/info/data/ ftp/index.html). For mapping purposes, 

we just considered alignments with a length fraction of 0.7 and a similarity fraction of 0.8. 

Besides, two mismatches and three insertions and deletions per read were allowed.  

Gene expression data were normalized by calculating the reads per kilobase per million 

mapped reads (RPKM)
38

. Using scales of abundance estimates by exon length and millions 

of mapped reads, original expression values were transformed and normalized. More 

specifically, data were transformed on a decimal logarithmic scale and a scaling algorithm 

was utilized for the normalization of average scores
39

. For the statistical analysis of differ-

ential expression, we used a two- tailed t-test that assumes a Gaussian distribution and 

homogeneous variances. This statistical test compares the mean expression levels in the 

two experimental groups (HIGH vs LOW) and evaluates the significance of the difference 

relative to the variance of the data within the groups. Multiple testing correction was 

performed by using a false-discovery rate approach (cut-off =0.05) implemented in the 

QVALUE R package
40

. Fold-Change was computed as the ratio of HIGH vs LOW gene 

expressions (a negative FC means that the affected gene is upregulated in LOW pigs). 

Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, 

www.qiagen.com/ingenuity) was used to identify gene ontologies, pathways, and 

regulatory networks to which DE genes belong to, as well as upstream regulators. 

Ingenuity Pathway Analysis can transform a set of genes into a number of relevant 

networks based on comprehensive records maintained in the Ingenuity Pathways 

Knowledge Base. Networks are presented as graphs depicting the biological relationships 

between genes/gene products. Genes are shown as nodes, and the molecular relationship 

between two nodes is represented with either a solid (direct interactions) or a dashed 

(indirect interactions) line. The analysis of upstream regulators considers every possible 

transcription factor and upstream regulator contained in the Ingenuity Knowledge Base 

repository as well as their predicted effects on gene expression (inferred from the scientific 

literature). Then, this tool analyses if the patterns of expression observed in the DE genes 

can be explained by the activation/inhibition of any of these regulators through the 

calculation of a z-score i.e. a statistical measure of the match between expected 

relationship direction between the regulator and its targets and observed gene expression
41

. 

http://www.ensembl.org/info/data/
http://www.qiagen.com/ingenuity
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A parallel analysis was performed with the Cytoscape software
42

 by using the 

ReactomeFIViz app
8
. IPA and Cytoscape analyses were performed on a subset of DE 

genes, with P-value ≤0.01 and a FC ≥1.5. Transcript classification and the search of 

homologs of porcine ncRNAs in other mammalian species were carried out with tools 

implemented in the BioMart web interface (http://www.ensembl. org/biomart/martview). 
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Abstract 

The identification of genes differentially expressed in the skeletal muscle of pigs 

displaying distinct growth and fatness profiles might contribute to identify the genetic 

factors that influence the phenotypic variation of such traits. So far, the majority of 

porcine transcriptomic studies have investigated differences in gene expression at a 

global scale rather than at the mRNA isoform level. In the current work, we have 

investigated the differential expression of mRNA isoforms in the gluteus medius (GM) 

muscle of 52 Duroc HIGH (increased backfat thickness, intramuscular fat and saturated 

and monounsaturated fatty acids contents) and LOW pigs (opposite phenotype, with an 

increased polyunsaturated fatty acids content). Our analysis revealed that 10.9% of genes 

expressed in the GM muscle generate alternative mRNA isoforms, with an average of 2.9 

transcripts per gene. By using two different pipelines, one based on the CLC Genomics 

Workbench and another one on the STAR, RSEM and DESeq2 softwares, we have 

identified 10 mRNA isoforms that both pipelines categorize as differentially expressed in 

HIGH vs LOW pigs (P-value < 0.01 and ±0.6 log2fold-change). Only five mRNA 

isoforms, produced by the ITGA5, SEMA4D, LITAF, TIMP1 and ANXA2 genes, remain 

significant after correction for multiple testing (q-value < 0.05 and ±0.6 log2fold-change), 

being upregulated in HIGH pigs. The increased levels of specific ITGA5, LITAF, TIMP1 

and ANXA2 mRNA isoforms in HIGH pigs is consistent with reports indicating that the 

overexpression of these four genes is associated with obesity and metabolic disorders in 

humans. A broader knowledge about the functional attributes of these mRNA variants 

would be fundamental to elucidate the consequences of transcript diversity on the 

determinism of porcine phenotypes of economic interest. 

 

Keywords: Alternative splicing, mRNA isoform, Swine, Differential expression 
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Background 

Recent estimates indicate that in mammals, at least 70% of genes have multiple 

polyadenylation sites, > 50% of genes have alternative transcription start sites and nearly 

95% of genes undergo alternative splicing (AS) yielding multiple messenger ribonucleic 

acid (mRNA) isoforms [1, 2]. The use of alternative transcriptional initiation and/or 

termination sites can produce diverse pre-mRNAs, which can further be subjected to AS 

yielding a broad array of mRNA isoforms that are derived from a single gene. A recent 

study indicated that alternative transcription start and termination sites, rather than AS, 

encompasses most of tissue-dependent exon usage [1]. Transcripts produced by any of the 

mechanisms mentioned above might contribute to differences between tissues or cells by 

modifying protein structure and expression [3–5]. Indeed, the differential expression of 

mRNA isoforms has been associated with a broad array of physiological and pathological 

conditions in humans [3, 4] and domestic species [5, 6]. 

The important consequences of transcript diversity on porcine phenotypes of economic 

interest have been recently evidenced in a couple of studies. In White Duroc × Erhualian 

F2 intercross pigs, a mutation in a splice acceptor site of intron 9 (g.8283C > A) of the 

porcine phosphorylase kinase catalytic subunit gamma 1 (PHKG1) gene has been shown to 

drive the synthesis of an aberrant transcript subjected to nonsense-mediated decay [7]. 

This results in the inactivation of this enzyme, which plays a key role in the degradation of 

glycogen, and in the production of a low quality meat with a poor water-holding capacity 

[7]. Moreover, Koltes et al. [8], identified a mutation located in the pig guanylate binding 

protein 5 (GBP5) gene that introduces a new splice acceptor site that results in the 

insertion of five additional nucleotides, thus altering the open reading frame and 

introducing a premature stop-codon. This mutation has a major effect on the host response 

to the porcine respiratory and reproductive syndrome virus [8]. 

Transcript diversity of the porcine muscle has been poorly characterized so far and the 

majority of studies comparing the transcriptomes of pigs with distinct phenotypic attributes 

have just focused on global differences in gene expression, rather than identifying the 

specific transcripts that are differentially expressed (DE) [9–12]. The goals of the current 
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experiment were to provide a first picture of transcript diversity in the gluteus medius 

(GM) muscle of pigs as well as to identify mRNA isoforms that are DE in the GM muscle 

of Duroc swine with distinct growth and fatness profiles. 

 

Methods 

Animal material 

The muscle transcriptomes of 56 Duroc pigs, retrieved from a population of 350 

individuals distributed in 5 half-sib families, were analyzed using RNA-Sequencing (RNA-

Seq) (Additional file 1: Table S1). As previously reported by Gallardo et al. [13], barrows 

were transferred to the IRTA-CCP experimental test station after weaning (3–4 weeks of 

age) and bred under normal intensive conditions. In the first stage of fattening (up to 90 kg 

of live weight, around 150 days of age) barrows were fed ad libitum a standard diet with 

18% protein, 3.8% fiber, 7.0% fat, 1.0% lysine, and 0.3% methionine (net energy 

concentration: 2450 kcal/kg). In the last period of fattening (i.e. 30–40 days before 

slaughter) animals were fed ad libitum a standard diet with 15.9% protein, 4.5% fiber, 

5.2% fat, 0.7% lysine, and 0.2% methionine (net energy concentration: 2375 kcal/kg). Pigs 

were slaughtered when they reached ≈ 122 kg live weight (i.e. at an age of 180–200 days 

approximately). Backfat and ham fat thickness were measured with a ruler in the cutting 

room 24 h after slaughtering. Lean meat content was estimated on the basis of fat and 

muscle thickness data measured with an Autofom ultrasound device. Samples of the GM 

muscle were retrieved, snap frozen in liquid nitrogen and stored at − 80 °C. A near infrared 

transmittance device (NIT, Infratec 1625, Tecator Hoganas, Sweden) was employed to 

determine intramuscular fat content. The determination of fatty acid composition was 

achieved with a technique based on the gas chromatography of methyl esters [14]. As 

reported by Gallardo and coworkers [13], blood samples were obtained at 190 days and a 

variety of enzymatic methods were used to determine cholesterol (cholesterol oxidase-

based method), high-density lipoprotein (immunoinhibition method) and triglyceride 

concentrations (glycerol kinase reaction). Low density lipoprotein concentration was 

calculated according to the equation of Friedewald et al. [15]. 
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Principal component analysis based on the 13 traits listed in Table 1 was performed in 

order to select pigs with distinct growth and fatness phenotypes (HIGH and LOW pigs) 

[10]. When compared with LOW pigs, the HIGH (n = 28) ones showed a higher live 

weight, backfat thickness and intramuscular fat content and also displayed increased serum 

lipid concentrations and muscle saturated (SFA) and monounsaturated (MUFA) fatty acids 

contents (Table 1). On the other hand, LOW pigs (n = 28), were lighter, leaner and had a 

higher muscle polyunsaturated fatty acids (PUFA) content than HIGH pigs. 

 

RNA isolation, library construction and sequencing 

Each muscle sample (N = 56, 28 HIGH and 28 LOW) was individually submerged in 

liquid nitrogen and grinded with a mortar and a pestle to produce a homogenous powder. 

This powder was submerged in TRIzol reagent (Thermo Fisher Scientific, Barcelona, 

Spain) and homogenized with a Polytron device (IKA, Staufen, Germany). Total RNA was 

purified with the Ambion RiboPure kit (Thermo Fisher Scientific, Barcelona, Spain) by 

following the instructions of the manufacturer. RNA samples were resuspended in a buffer 

solution provided in the kit and kept at − 80 °C until use. RNA quantification and purity 

were assessed with a Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific, 

Barcelona, Spain), while integrity was checked with a Bioanalyzer-2100 equipment 

(Agilent Technologies, Santa Clara, CA). All samples showed an RNA integrity number 

above 7.5. Sequencing libraries were prepared with the TruSeq RNA Sample Preparation 

Kit (Illumina, San Diego, CA) and sequenced in a paired-end mode (2 × 75 bp), 

multiplexing two samples in each sequencing lane, on a HiSeq2000 Sequencing System 

(Illumina, San Diego, CA). Library preparation and sequencing were developed according 

to the protocols recommended by the manufacturer. 

 

Differential expression analyses of mRNA isoforms between HIGH and LOW pigs 

Adaptors and low quality bases were trimmed from sequences by using Trimmomatic 

[16] with default parameters. Quality control of sequences in FASTQ and BAM format 

was assessed with the FASTQC software (Babraham Bioinfomatics, 
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http://www.bioinformatics.-babraham.ac.uk/projects/fastqc/). Sequence quality was 

measured by taking into account sequence-read lengths and base-coverage (distribution = 

75 bp, 100% coverage in all bases), nucleotide contributions and base ambiguities (GC-

content ~ 50%, ~ 25% of A, T, G and C nucleotide contributions and an ambiguous base-

content < 0.1%) and a Phred score higher than (i.e. base-calling accuracy larger than 

99.9%). All samples, except four, passed the quality control parameters, so our final data 

set consisted of 52 animals. With the aim of minimizing the rate of false positives, we used 

two different pipelines in the analysis of differential expression. In the first pipeline, read 

mapping and counting were carried out with CLC Genomics Workbench 8.5 (CLC Bio, 

Aarhus, Denmark, https://www.qiagenbioinformatics.com/). In the second pipeline, reads 

were mapped with Spliced Transcripts Alignment to a Reference (STAR) v. 2.4 [17], 

counted with the RNA-Seq by Expectation Maximization (RSEM) software v. 1.3 [18] and 

differential expression was analysed with DESeq2 [19]. We considered as DE mRNA 

isoforms those simultaneously identified with the two pipelines. 

 

Pipeline 1 (CLC genomics workbench) 

The Large Gap Mapper (LGM) tool of CLC Genomics Workbench 8.5 was used to 

map the reads. This tool can map sequence reads that span introns without requiring prior 

transcript annotations. In this way, the LGM tool finds the best match for a given read. If 

there is an unaligned end which is long enough for the mapper to handle (17 bp for 

standard mapping) this segment of the read is re-mapped with the standard read mapper of 

the CLC Genomics Workbench. This process is repeated until no reads have unaligned 

ends that are longer than 17/18 bp. In our study, short sequence reads were mapped and 

annotated by using as template the pig reference genome version 10.2 (Sscrofa 10.2 - 

http:// www.ensembl.org/info/data/ftp/index.html). Additional details can be found in 

http://resources.qiagenbioinformatics./com/manuals/transcriptdiscovery/208/index.php?ma

nual=-Large_gap_mapper.html. For mapping purposes, we considered alignments with a 

length fraction of 0.7 and a similarity fraction of 0.8. Two mismatches and three insertions 

and deletions per read were allowed. The quantification of mRNA isoform levels by the 

CLC Genomics Workbench follows a count-based model, where reads are counted on 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.qiagenbioinformatics.com/
http://www.ensembl.org/info/data/ftp/index.html
http://www.ensembl.org/info/data/ftp/index.html
http://resources.qiagenbioinformatics.com/manuals/transcriptdiscovery/208/index.php?manual=Large_gap_mapper.html
http://resources.qiagenbioinformatics.com/manuals/transcriptdiscovery/208/index.php?manual=Large_gap_mapper.html
http://resources.qiagenbioinformatics.com/manuals/transcriptdiscovery/208/index.php?manual=Large_gap_mapper.html
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small counting units (exons), instead of the whole transcript unit, and the two possible 

splicing out-comes (inclusion and/or exclusion) are tested for each counting unit. 

Normalized count values are transformed on a decimal logarithmic scale. Statistical 

analysis of differential expression of splicing variants is based on an empirical analysis of 

digital gene expression [20] that implements an ‘Exact Test’ for two-group comparisons, 

assuming a negative binomial distribution and an overdispersion caused by biological 

variability estimated at 5%. 

 

Table   1  - Mean values ± standard deviation (SD) for 13 phenotypes recorded in HIGH and 

LOW Duroc pigs 

Phenotypes 

HIGH group 

(N=28) 

 Mean ±  SD 

LOW group 

(N=28)  

Mean ±  SD 

Carcass traits 

LW - Live weight (kg) 130.90 ± 9.46 
a
 110.75 ± 16.62 

b
 

BFTiv - Backfat thickness in vivo (mm) 28.74 ± 3.47 
a
 18.76 ± 3.90 

b
 

BFT - Backfat thickness 3
rd

-4
th

 ribs (mm) 47.07 ± 11.94
 a
 33.89 ± 10.03 

b
 

HFT - Ham fat thickness (mm) 28.02 ± 2.70 
a
 20.97 ± 3.56 

b
 

LEAN - Lean content (%) 39.17 ± 5.15
 a
 45.48 ± 4.21 

b
 

Meat quality traits (gluteus medius) 

IMF - Intramuscular fat content (%) 7.27 ± 1.70 
a
 3.69 ± 0.93 

b
 

SFA - Saturated fatty acids content (%) 38.70 ± 1.41
 a
 34.76 ± 1.30 

b
 

PUFA - Polyunsaturated fatty acids content (%) 14.71 ± 3.08
 a
 27.82 ± 4.40 

b
 

MUFA - Monounsaturated fatty acids content (%) 46.58 ± 2.67
 a
 37.4 ± 4.30 

b
 

Serum lipid levels - 190 days 

CHOL - Total cholesterol (mg/dL) 161.11 ± 30.32
 a
 104.17 ± 16.40

 b
 

HDL - HDL-cholesterol (mg/dL) 61.12 ± 8.58
 a
 42.92 ± 9.19 

b
 

LDL - LDL-cholesterol (mg/dL) 86.34 ± 29.32
 a
 50.57 ± 15.12 

b
 

TG - Triacylglycerides (mg/dL) 68.07 ± 26.28
 a
 50.71 ± 29.7 

b
 

Means with different letters are significantly different (P-value < 0.05), t-test for: LW, IMF, 

MUFA, CHOL and LDL; Wilcoxon test for: BFTiv, BFT, LEAN, SFA, PUFA, HDL and TG 
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Pipeline 2 (STAR/RSEM/DESeq2) 

The STAR software v. 2.4 [17] was employed to map the reads generated in the RNA-

Seq experiment. The STAR algorithm comprises two main steps. First, a sequential 

maximum mappable seed search is carried out. For instance, if a read contains a single 

splice junction, a first seed is mapped to a donor splice site and the unmapped portion of 

the read is mapped again (in this case to an acceptor splice site). Subsequently, STAR 

builds alignments of the entire read sequence by stitching together all the seeds that were 

aligned to the genome in the first step [17]. In our study, the parameters employed in 

STAR mapping were those reported by Zhang et al. [21] and the pig reference genome v. 

10.2 (Sscrofa 10.2) was used as template. 

Once reads were mapped, they were counted with the RSEM v. 1.3 [18] software by 

using default parameters with the option “–paired-end” and considering the porcine gene 

annotation file and the pig Sscrofa 10.2 genome sequence. RSEM generates a set of 

reference transcript sequences and subsequently a set of RNA-Seq reads are aligned to 

these reference transcripts [18]. Alignments generated with this procedure are used to infer 

transcript abundances by computing maximum likelihood abundance estimates with the 

Expectation-Maximization algorithm [18]. Credibility intervals at 95% are built with a 

Bayesian approach implemented in RSEM. Additional details can be found in Li et al. 

[18]. Read counts associated with each specific mRNA isoform were employed to carry 

out analysis of differential expression with DESeq2 [19]. DESeq2 assumes that read counts 

follow a negative binomial distribution, for each gene i and for each sample j, with a mean 

μij and a dispersion value αi. Means are proportional to the amounts of complementary 

deoxyribonucleic acid (cDNA) fragments corresponding to each gene scaled by a 

normalization factor. Gene-wise dispersion values are calculated with a maximum 

likelihood approach and subsequently they are shrunk towards a set of predicted dispersion 

values with an empirical Bayes approach. Subsequently, DESeq2 shrinks log2 fold-change 

(FC) estimates, with an empirical Bayes procedure [19], to reduce variance due to 

noisiness issues of genes that are poorly expressed. Finally, a Wald test is used to infer if 

shrunk log2FC estimates (and their standard errors) are significantly different from zero. In 
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the Wald test, the shrunken estimate of the log2FC is divided by its standard error, 

generating a z-statistic that can be compared to a standard normal distribution [19]. 

 

Transcript annotation 

To classify splicing events with the SUPPA [22] and Splicing Express [23] softwares, 

genome BAM files were generated with the STAR software [17], by using the same 

parameters described above. These BAM files were employed to assemble transcripts with 

Cufflinks [24], taking as a reference the Sscrofa 10.2 genome, and a master transcriptome 

was generated with Cuffmerge. The SUPPA software annotates AS events from a general 

input annotation file generated with Cuffmerge. The AS event types considered by SUPPA 

are: exon skipping, alternative 5′ and 3′ splice sites, and intron retention. For each event, 

SUPPA calculates the inclusion parameter Ψ, which is defined as the ratio of the 

abundance of transcripts that include one form of the event over the abundance of the 

transcripts that contain either form of the event. On the other hand, the Splicing Express 

software uses a well-annotated set of reference sequences to detect different AS events 

from a transcriptome data (GTF file) input file i.e. exon skipping, intron retention and 

alternative 5′ and 3′ splicing borders. Splicing Express clusters expressed transcripts to 

identify their gene of origin and identifies AS events by using an algorithm based on the 

pairwise comparison. Besides, expressed sequences are represented as binary sequences 

(exons = 1, introns = 0) that are pairwisely compared thus generating numerical patterns 

which reflect their splicing differences. Finally, a graphic representation of the expression 

level is created for each gene and for each identified AS event [23]. 

Transcript type annotation of porcine GM mRNA isoforms was retrieved from the 

BioMart database, available in the Ensembl database (http://www.ensembl.org/bio-

mart/martview/). Gene Ontology (GO) Enrichment Analysis was performed by using the 

Panther database v. 12.0 (http://www.pantherdb.org/) with the data set of 87 genes 

simultaneously detected by both pipelines (P-value < 0.05) as producing mRNA isoforms 

DE in HIGH vs LOW pigs. 

 

http://www.ensembl.org/biomart/martview/
http://www.ensembl.org/biomart/martview/
http://www.ensembl.org/biomart/martview/
http://www.pantherdb.org/
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Validation of differentially expressed mRNA isoforms by RT-qPCR 

Differential expression of mRNA isoforms was validated for the MAF BZIP 

transcription factor F (MAFF), stearoyl-CoA desaturase (SCD), retinoic acid receptor γ 

(RXRG) and integrin α5 (ITGA5) genes by reverse transcription-quantitative polymerase 

chain reaction (RT-qPCR). Primers spanning exon-exon boundaries, or alternatively 

binding at different exons (in order to avoid the amplification of residual contaminating 

genomic DNA), and complementary to exonic regions that define specific isoforms were 

designed with the Primer Express software (Applied Biosystems) (Additional file 2: Table 

S2). One μg of total RNA from 14 pigs (7 from each group - HIGH and LOW), selected at 

random from the global population of 52 pigs, was used as template for cDNA synthesis. 

The reverse transcription reaction was carried out with the High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Foster City, CA) in a final volume of 20 μl. 

Quantitative PCR reactions included 7.5 μl of SYBR Select Master Mix, 300 nM of each 

primer and 3.75 μl of a 1:25 dilution of the cDNA in a final volume reaction of 15 μl. 

Three genes e.g. β-actin (ACTB), TATA-Box binding protein (TBP) and hypoxanthine 

phosphoribosyltransferase 1 (HPRT1) were used as endogenous controls. The PCR thermal 

cycle involved one denaturing step at 95 °C for 10 min plus 40 cycles of 15 s at 95 °C and 

1 min at 60 °C. Reactions were run in a QuantStudio 12 K Flex Real-Time PCR System 

(Applied Biosystems, Foster City, CA). A melting curve analysis i.e. 95 °C for 15 s, 60 °C 

for 15 s and a gradual increase in temperature, with a ramp rate of 1% up to 95 °C, 

followed by a final step of 95 °C for 15 s, was performed after the thermal cycling protocol 

to ensure the specificity of the amplification. We made sure that housekeeping and target 

genes had comparable amplification efficiencies (90–110%) by performing standard curve 

assays with serial 1:5 dilutions. Gene expression levels were quantified relative to the 

expression of endogenous controls by employing an optimized com-parative Ct (2
- Ct

 

method) value approach [25] implemented in the Thermo Fisher Cloud (Thermo Fisher 

Scientific, Barcelona, Spain). Each sample was analysed in triplicate. All results were 

evaluated using RT-qPCR data analysis software (Thermo Fisher Cloud, Thermo Fisher 

Scientific, Barcelona, Spain). The sample displaying the lowest expression was used as 

calibrator. Differential expression was assessed with a Student’s t-test. 

https://www.lifetechnologies.com/order/catalog/product/4472908?ICID=cvc-qpcr-sybr-c2t1
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Results 

After quality control analysis, we used a final dataset of 52 GM muscle samples 

equally distributed between the HIGH (N = 26) and LOW (N = 26) groups. RNA-

Sequencing of these samples generated an average of 66 million paired-end reads per 

sample. The majority of reads (72.8%, CLC Bio; 89% STAR software) were successfully 

mapped to the pig Sscrofa 10.2 genome assembly. The mean mapping proportions 

obtained with CLC Bio were 91.4% and 8.6% for reads corresponding to exonic and 

intronic regions, respectively. When using STAR, 79.3% of the mapped reads were located 

in exons and 6.5% in introns. The remaining (14.2%) reads mapped to intergenic regions. 

In the CLC Bio analysis, we found evidence of the existence of alternative transcripts 

in 2066 genes (11.7% of protein-coding genes expressed in the GM muscle of HIGH and 

LOW swine) which produced 5835 mRNA isoforms (2.8 transcripts per gene). In contrast, 

the STAR software detected 1430 genes (10.2% of expressed protein-coding genes) 

yielding 4391 different transcripts (3.0 transcripts per gene). Only 5.0% of alternative 

transcript variants were potentially subject to nonsense-mediated decay (Additional file 3: 

Table S3). Interestingly, 93% of the genes identified by STAR/ RSEM/DESeq2 as 

displaying alternative transcripts were also detected with CLC Bio. Analysis of 

transcriptomic data with the SUPPA software [22] evidenced that exon skipping is the 

most prevalent AS event, while intron retention is the rarest one, i.e. they comprise 36.7% 

and 12.2% of all GM AS events, respectively (Additional file 4: Table S4). Similar results 

were obtained with the Splicing Express software [23] (Additional file 4: Table S4), i.e. 

exon skipping was the most prevalent AS event (41.1%) and intron retention the least 

favoured one (12.7%). 

We used two different pipelines (CLC Bio and STAR/RSEM/DESeq2) to detect DE 

mRNA isoforms in HIGH vs LOW pigs. Combination of such data sets made possible to 

identify 104 alternative transcripts and 87 genes that were simultaneously detected by both 

pipelines (P-value < 0.05) (Additional file 5: Table S5). A more stringent analysis (P-value 

< 0.01 and ±0.6 log2FC) ascertained 10 DE transcripts (corresponding to 10 genes) 

concurrently discovered by both pipelines (Table 2). Five of these transcripts remained 
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significant after correction for multiple testing (q-value < 0.05 and ±0.6 log2FC; Table 2). 

In general, differential expression only affected one isoform and, more particularly, that 

showing a predominant pattern of expression (Tables 2, 3 and Additional file 6: Table S6). 

In order to validate the accuracy of our RNA-Seq approach, we measured the expression of 

four DE mRNA isoforms (ITGA5, SCD, RXRG and MAFF) by RT-qPCR analysis 

(Additional file 7: Figure S1). A significant differential expression was confirmed for two 

splicing variants e.g. ITGA5 (4445 bp) and SCD (5585 bp) genes (P-value < 0.04). 

Besides, a strong statistical tendency was observed for the RXRG (544 bp) gene (P-value = 

0.06). In contrast, the MAFF (2145 bp, P-value = 0.23) did not show a statistically 

significant differential expression, though RT-qPCR data reflected the same trends (FC 

and raw abundance estimates) detected by RNA-Seq. We carried out a GO analysis of the 

data set of 87 genes producing alternative transcripts (P-value < 0.05). We did not analyse 

the two other data sets (10 genes, P-value < 0.01 and ±0.6 log2FC; 5 genes, q-value < 0.05 

and ±0.6 log2FC) because they are too small. The main molecular functions identified in 

the data set of 87 genes were Binding and Catalytic activity (Fig. 1a). These results are 

consistent with those of Lindholm et al. [26], who found that the main functions of mRNA 

encoding genes expressed in the human skeletal muscle are also related with binding and 

catalytic activity. The top GO terms of the cellular component GO category were 

Membrane and Cell part (Fig. 1b), while Metabolism and Cellular process were the most 

common biological processes amongst genes producing alternative transcripts (Fig. 1c). 

These results agree well with previous data obtained in humans, mouse and cow [23]. 

These functional processes are remarkably unspecific, thus probably reflecting the 

heterogeneous biological roles of genes expressing alternative transcripts. 

 

Discussion 

About 10.9% (average of CLC Bio and STAR results) of pig genes expressed in the 

GM muscle produced alternative transcripts, as opposed to 95% of genes detected in a 

broad array of human tissues [2]. Besides, the average number of mRNA isoforms per 

gene in the porcine skeletal muscle was 2.9 (average of CLC Bio and STAR results). The 
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analysis of transcript diversity in the human skeletal muscle revealed a similar pattern, 

with an average of 2 isoforms per gene [26], a figure that is clearly below the average 

transcript diversity (5.4 isoforms/gene) found in other human tissues [27]. Such feature 

might be due to the fact that in the skeletal muscle there is a reduced number of transcripts 

(e.g. myofibrillar proteins) that encompass a disproportionate fraction of the total 

transcriptome [26]. Besides that, Taneri et al. [28] predicted a lower quantity of transcripts 

per gene in primary tissues e.g. skeletal muscle. In cattle, Chacko et al. [29] observed that 

21% of genes are alternatively spliced, and similar percentages were observed by Kim et 

al. [30] in cows (26%) and dogs (14%). 

The types of splicing events detected in the porcine muscle have been compiled in 

Additional file 4: Table S4. Exon skipping was the most frequent AS event predicted by 

SUPPA and Splicing Express softwares, followed by the use of alternative 5′ splice 

(SUPPA) and 3′ splice (Splicing Express) sites. Deep sequencing of 15 human tissues and 

cell lines was consistent with these findings, thus demonstrating that exon skipping was the 

most frequent AS event, followed by the use of alternative 3′ splice and 5′ splice sites [31]. 

In accordance with results obtained in humans [31], the less frequent event was intron 

retention (Additional file 4: Table S4). Besides, only 5.0% of produced transcripts were 

predicted to undergo nonsense-mediated decay. In humans, nonsense-mediated decay and 

nuclear sequestration and turnover of intron-retention transcripts have been involved in the 

downregulation of genes in tissues where they do not have a relevant physiological role 

[32]. 

Though SUPPA and Splicing Express yielded consistent results about the relative 

importance of distinct AS event categories in the porcine skeletal muscle, the sets of genes 

identified by these two softwares as yielding alternative transcripts were quite different. 

The proportions of genes overlapping the SUPPA and Splicing Express data sets classified 

according to the type of AS event were: exon skipping = 27%, alternative 5′ =24%, 3′ 

splice sites = 20% and intron retention = 14%. Though we do not have a straightforward 

explanation for these discrepancies, we hypothesize that they might be due to the existence 

of relevant differences in the assumptions and algorithms on which these two softwares are 

based. 



                                                                                                                                                                                                                                                 

                                                                                                              Papers and Studies       

 

107 

 

Estimating isoform mRNA abundance is a challenging task and results may vary 

depending on the bioinformatics approach employed in differential expression analysis 

[33]. One of the main factors influencing the outcome of differential mRNA isoform 

expression is the quality and completeness of the transcript assembly [33]. The mRNA 

isoform annotation of the pig genome is still incomplete and obviously this might affect 

the results of our analysis, but we have not attempted to re-construct transcripts because 

bioinformatic and statistical approaches to do so are not very robust and they may lead to 

inaccurate transcript quantitations [34]. 

In order to obtain results as much precise as possible, we have used two different 

pipelines to identify DE mRNA isoforms and we have considered as genuine differential 

expression events those identified by both approaches. This combined analysis highlighted 

the existence of five genes with DE mRNA isoforms that remained significant after 

correction for multiple testing (q-value < 0.05, ± 0.6 log2FC). It is worth to highlight that 

the DE isoform (487 bp) of the pig semaphorin 4D (SEMA4D) gene is annotated, in the 

Ensembl database (Sscrofa 10.2 assembly; https://www.ensembl.org), as truncated in its 

3’end. In the human SEMA4D gene, there are 13 protein-encoding mRNA isoforms and 

five of them are also truncated in their 3’ends (GRCh38.p10 assembly; 

https://www.ensembl.org). The existence of truncated transcripts is due to the inability of 

conventional RNA-Seq experiments to define the ends of genes with high precision [35]. 

Moreover, automated gene prediction is a difficult task and, in consequence, first-pass 

annotations can be quite inaccurate [35]. Obviously, the analysis of the differential 

expression of mRNA isoforms strongly depends on the accuracy of transcript annotation, 

so the results presented in the current work need to be interpreted with this caveat in mind. 

https://www.ensembl.org/
https://www.ensembl.org/
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Table   2 - Splicing variants that are differentially expressed (P-value < 0.01 and ±0.6 log2Fold-Change) in the gluteus medius muscle of 

HIGH (N = 26) vs LOW pigs (N = 26)
1
 

Feature ID Feature transcript ID Transcript ID 

Lengt

h  

(bp) 

Relative 

expression 

mean (%) 

CLC Bio STAR/RSEM/DESeq2 

Log2 

(FC) 
P-value q-value 

Log2 

(FC) 
P-value q-value

2
 

ENSSSCG00000000293 ENSSSCT00000000314 ITGA5-201 4445 99.00 0.85 2.64E-05 2.56E-02 0.85 2.54E-06 1.21E-03 

ENSSSCG00000001252 ENSSSCT00000001367 UBD-201 1281 75.81 -0.72 1.37E-03 2.29E-01 -0.83 7.73E-04 NA 

ENSSSCG00000003079 ENSSSCT00000003416 PVR-202 1167 48.41 0.77 7.76E-03 5.94E-01 0.66 9.27E-03 1.27E-01 

ENSSSCG00000004578 ENSSSCT00000005057 ANXA2-202 1455 99.36 0.70 3.32E-06 6.56E-03 0.69 4.56E-06 1.58E-03 

ENSSSCG00000012277 ENSSSCT00000013426 TIMP1-001 931 97.85 2.57 4.61E-07 1.68E-03 0.79 2.01E-04 1.32E-02 

ENSSSCG00000012653 ENSSSCT00000013834 ZDHHC9-209 2967 17.79 0.77 3.29E-03 3.75E-01 0.77 2.56E-03 6.11E-02 

ENSSSCG00000013579 ENSSSCT00000014831 CD209-001 1042 95.10 1.04 7.84E-05 4.18E-02 1.01 2.09E-05 NA 

ENSSSCG00000006328 ENSSSCT00000033501 RXRG-202 544 17.68 -0.70 4.09E-04 1.18E-01 -0.76 9.31E-05 8.98E-03 

ENSSSCG00000009584 ENSSSCT00000034286 SEMA4D-208 487 8.57 1.40 2.75E-06 6.53E-03 1.09 5.87E-05 6.59E-03 

ENSSSCG00000024982 ENSSSCT00000036552 LITAF-201 2190 88.44 1.01 1.02E-04 4.38E-02 0.79 1.21E-04 1.04E-02 

1
Differentially expressed mRNA isoforms that remained significant after correction for multiple testing (q-value < 0.05 and ±0.6 log2Fold-

Change) are shown in bold. A positive log2FC means that the gene is upregulated in HIGH pigs. 

2
For multiple testing correction, DESeq2 carries out a filtering step based on the average expression strength of each gene across all samples 

with the aim of discarding genes which are likely to loose significance after correcting for multiple testing. The purpose of this filtering 

step is to increase statistical power by reducing the list of candidate genes to be tested. The q-values of the genes which do not pass the 

filtering step are set to NA.  
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Table   3 - Relative expression of the set of isoforms of four loci (TIMP1, ITGA5, ANXA2 and LITAF) in HIGH (N=26) vs LOW (N=26) 

pigs
1
.  

Feature ID Feature transcript ID 
Transcript 

ID 

Length 

(bp) 
Type2 

Relative 

expression 

mean (%) 

CLC Bio STAR/RSEM/DESeq2 

Log2 

(FC) 
P-value q-value 

Log2 

(FC) 
P-value q-value3 

ENSSSCG00000004578 ENSSSCT00000034155 ANXA2-201 1609 Protein coding 0.64 0.21 6.77E-01 1.00E+00 0.07 9.20E-01 NA 

ENSSSCG00000004578 ENSSSCT00000005057 ANXA2-202 1455 Protein coding 99.36 0.70 3.32E-06 7.23E-03 0.69 4.56E-06 1.58E-03 

ENSSSCG00000000293 ENSSSCT00000000314 ITGA5-201 4445 Protein coding 99.00 0.85 2.64E-05 2.82E-02 0.85 2.54E-06 1.21E-03 

ENSSSCG00000000293 ENSSSCT00000035821 ITGA5-203 1255 NMD 0.34 -0.03 9.18E-01 1.00E+00 - - - 

ENSSSCG00000000293 ENSSSCT00000034427 ITGA5-204 1013 NMD 0.71 -0.08 1.00E+00 1.00E+00 - - - 

ENSSSCG00000000293 ENSSSCT00000033141 ITGA5-205 766 NMD 0.48 -0.29 1.00E+00 1.00E+00 -0.01 9.97E-01 NA 

ENSSSCG00000012277 ENSSSCT00000013426 TIMP1-001 931 Protein coding 97.86 2.57 4.61E-07 1.85E-03 0.79 2.01E-04 1.32E-02 

ENSSSCG00000012277 ENSSSCT00000033796 TIMP1-002 598 Protein coding 0.38 1.12 5.56E-01 1.00E+00 0.38 8.98E-01 NA 

ENSSSCG00000012277 ENSSSCT00000034602 TIMP1-003 641 Protein coding 1.57 1.19 8.47E-01 1.00E+00 -0.19 7.39E-01 NA 

ENSSSCG00000012277 ENSSSCT00000036308 TIMP1-004 173 Protein coding 0.19 3.05 4.21E-01 1.00E+00 0.18 9.52E-01 NA 

ENSSSCG00000024982 ENSSSCT00000036552 LITAF-201 2190 Protein coding 88,45 1,01 1,02E-04 4,82E-02 0,79 1,21E-04 1,04E-02 

ENSSSCG00000024982 ENSSSCT00000025103 LITAF-202 2370 Protein coding 11,55 -0,04 1,00E+00 1,00E+00 0,49 7,52E-01 NA 

1 
Differentially expressed mRNA isoforms that remained significant after correction for multiple testing (q-value < 0.05 and ± 0.6 log2Fold-Change) are 

shown in bold. A positive log2FC means that the gene is upregulated in HIGH pigs. 
 

2 
NMD= Nonsense-mediated mRNA decay.  

3 
For multiple testing correction, DESeq2 carries out a filtering step based on the average expression strength of each gene across all samples with the aim of 

discarding genes which are likely to loose significance after correcting for multiple testing. The purpose of this filtering step is to increase statistical power 

by reducing the list of candidate genes to be tested. The q-values of the genes which do not pass the filtering step are set to NA. 
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Figure 1 - Functional classification of genes with differentially expressed (P-value < 0.05) 

mRNA isoforms identified with the CLC Genomics Workbench and STAR/RSEM/DESeq2 

pipelines in the gluteus medius muscle of HIGH vs LOW pigs.  a) molecular function, b) 

cellular components and c) biological processes. Categorizations were based on information 

provided by the online resource PANTHER classification system (http://www.pantherdb.org).  

 

By examining Tables 2 and 3, we have noticed that the differential expression of 

mRNA isoforms might have different functional consequences depending on the gene 

under consideration. For instance, in the case of the ITGA5 and TIMP metallopeptidase 

inhibitor 1 (TIMP1) genes the DE mRNA isoform encodes a protein that is longer than the 

proteins encoded by the remaining mRNA isoforms recorded in the Ensembl database 

(Sscrofa 10.2 assembly; https://www.ensembl.org). With regard to ITGA5, the DE isoform 

(4445 bp) encodes a full length protein of 1057 amino acids (aa) and it has a predominant 

pattern of expression (99%), while the remaining porcine ITGA5 isoforms reported in the 

Ensembl database correspond to processed transcripts or transcripts subject to nonsense-

mediated decay. Similarly, in humans there is one major ITGA5 isoform (4444 bp), another 

one that might encode a protein but it is truncated in its 5’end, and eleven isoforms that 

correspond to processed transcripts, retained introns and transcripts subject to nonsense-

http://www.pantherdb.org/
https://www.ensembl.org/
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mediated decay (https:// www.ensembl.org). Concerning the TIMP1 gene, the DE isoform 

(931 bp) encodes a full length protein of 207 aa that is longer than the proteins encoded by 

other isoforms (Sscrofa 10.2 assembly; https://www.ensembl.org): 195 aa (but incomplete 

5’end), 123 aa and 38 aa (but incomplete 3’end). If we compare the 207 aa (931 bp 

transcript) and the 123 aa (598 bp transcript) TIMP1 isoforms, the latter lacks a central part 

of the protein (from aa site 68 to 151), a feature that involves the loss of four of the six 

disulfide bridges which stabilize the fold of the molecule and of two aa residues (sites 68 

and 69) which bind to the catalytic zinc [36, 37]. These observations imply that the two 

207 aa and 123 aa porcine protein isoforms are expected to be very different at the 

functional level. 

A different case is represented by the annexin A2 (ANXA2) and lipopolysaccharide-

induced TNF-alpha factor (LITAF) genes in which the DE mRNA isoform (ANXA2: 1455 

bp, LITAF: 2190 bp) is shorter than the longest annotated transcript (ANXA2: 1609 bp, 

LITAF: 2370 bp, Table 3) but both encode proteins of identical length (ANXA2: 339 aa, 

LITAF: 161 aa, Sscrofa 10.2 assembly; https://www.ensembl.org). This situation is 

comparable to what has been reported in humans for the ANXA2 (1676 bp, 1444 bp and 

1435 bp isoforms encoding a protein of 339 aa) and LITAF (six different isoforms e.g. 

2632 bp, 2467 bp, 2356 bp, 1118 bp, 717 bp and 603 bp mRNAs encoding a protein of 161 

aa) genes (GRCh38.p10 assembly; http://www.ensembl.org). Though proteins with an 

identical length and sequence composition should be functionally equivalent, differences in 

transcript length might affect mRNA translatability (e.g. presence of short upstream open 

reading frames in the 5’UTR), stability (e.g. formation of stable stem-loops, presence of 

microRNA binding sites and of AU-rich elements) and cell localization [38]. 

The upregulation of certain mRNA isoforms of the ITGA5, TIMP1, ANXA2 and LITAF 

genes in HIGH pigs is relevant because these four genes have been implicated in human 

obesity and diabetes. For instance, high glucose concentrations induce the overexpression 

of the fibronectin receptor, an heterodimer whose α-chain is encoded by the ITGA5 gene 

[39]. Moreover, TIMP1 expression is increased in the serum and adipose tissue of obese 

mouse models [40]. There is also evidence that the knockout of the ANXA2 gene in mice 

involves an hypotrophy of the white adipose tissue due to reduced fatty acid uptake [41], 

https://www.ensembl.org/
https://www.ensembl.org/
https://www.ensembl.org/
https://www.ensembl.org/
http://www.ensembl.org/
http://www.ensembl.org/
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and LITAF mRNA is overexpressed in overweight and obese humans [42]. In summary, 

the upregulation of these four genes in HIGH swine is consistent with the increased fatness 

and live weight of these pigs and suggests that the differential expression of specific 

mRNA isoforms might contribute to the phenotypic differences observed in HIGH vs 

LOW pigs. 

Finally, we would like to discuss a third case in which DE mRNA isoforms encode 

proteins that are shorter than the canonical full-length protein. We have observed that a 

3155 bp transcript corresponding to the porcine ubiquitin specific peptidase 2 (USP2) gene 

and encoding a 396 aa protein is upregulated in HIGH pigs (Additional file 5: Table S5). In 

the Ensembl database (http://www.ensembl.org, Sscrofa 10.2), a second mRNA isoform 

that encodes a 606 aa protein has been annotated. In humans, two USP2 protein isoforms 

of 605 aa (USP2–69) and 396 aa (USP2–45) have been reported and that there are 

evidences that both are able to prevent the degradation of the low density lipoprotein 

(LDL) receptor. The upregulation of the 396 aa USP2 isoform in HIGH swine might 

constitute a mechanism to cope with the elevated serum LDL concentrations observed in 

this group of pigs (Table 1). It is also worth to highlight that the USP2–69 and USP2–45 

isoforms might not be functionally equivalent. In Xenopus, for instance, USP2–45 can 

deubiquitylate epithelial Na
+
 channels in oocytes, while USP2–69 cannot perform such 

function due to differences in their N-terminal domains. In humans, functional differences 

have been also observed with regard to the implication of USP2 isoforms in cell cycle 

progression and antiviral response [43], but unfortunately no such data are currently 

available for pigs. 

 

Conclusions 

We have demonstrated that around 10.9% of genes expressed in the porcine skeletal 

muscle produce alternative transcripts, thus generating an average of 2.9 different mRNA 

isoforms per gene. Exon skipping is the most frequent splicing event, followed by the use 

of alternative 5′ splice sites (SUPPA) and 3′ splice sites (Splicing Express). By analysing 

the differential expression of mRNA isoforms in HIGH vs LOW pigs, we have 

demonstrated that in the GM muscle of HIGH pigs, which display an increased fatness, 

http://www.ensembl.org/
http://www.ensembl.org/
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specific ITGA5, ANXA2, LITAF and TIMP1 mRNA isoforms are upregulated. This finding 

is biologically meaningful because these four genes have been implicated in human obesity 

and metabolism [39–42]. A deeper functional characterization of these mRNA isoforms, 

through initiatives such as the Functional Annotation of Farm Animal Genomes project 

[44], will be essential to infer the consequences of their differential expression on porcine 

growth and fatness. 
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Abstract 

The genetic basis of muscle fat deposition in pigs is not well known. So far, we have 

only identified a limited number of genes involved in the absorption, transport, storage 

and catabolism of lipids. Such information is crucial to interpret, from a biological 

perspective, the results of genome-wide association analyses for intramuscular fat content 

and composition traits. Herewith, we have investigated how the ingestion of food changes 

gene expression in the gluteus medius muscle of Duroc pigs. By comparing the muscle 

mRNA expression of fasted pigs (T0) with that of pigs sampled 5 h (T1) and 7 h (T2) 

after food intake, we have detected differential expression (DE) for 148 (T0-T1), 520 

(T0-T2) and 135 (T1-T2) genes (q-value <0.05 and a |FC| > of 1.5). Many of these DE 

genes were transcription factors, suggesting that we have detected the coordinated 

response of the skeletal muscle to nutrient supply. We also found DE genes with a dual 

role in oxidative stress and angiogenesis (THBS1, THBS2 and TXNIP), two biological 

processes that are probably activated in the post-prandial state. Finally, we have 

identified several loci playing a key role in the modulation of circadian rhythms (ARNTL, 

PER1, PER2, BHLHE40, NR1D1, SIK1, CIART and CRY2), a result that indicates that the 

porcine muscle circadian clock is modulated by nutrition. We have shown that hundreds 

of genes change their expression in the porcine skeletal muscle in response to nutrient 

intake. Many of these loci do not have a known metabolic role, a result that suggests that 

our knowledge about the genetic basis of muscle energy homeostasis is still incomplete. 

 

Keywords: Pig, RNA-Seq, Oxidative stress, Transcription factor, Circadian rhythm, 

Angiogenesis 

 

Background 

 Physiological genomics aims to understand the molecular basis of highly complex 

biological processes by applying high-throughput technologies to the large-scale analysis 

of genomes, transcriptomes and proteomes [1]. We have a very limited understanding of 

the physiological genomics of intramuscular fat (IMF) content and composition traits in 
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pigs. Several RNA-Seq studies comparing the muscle transcriptomes of pigs with 

divergent lipid profiles have been performed, demonstrating the differential expression of a 

number of genes related with carbohydrate and lipid metabolism [2–4]. Noteworthy, 

genome-wide association studies (GWAS) of blood lipid traits in humans have uncovered 

the existence of a large number of genes strongly associated with plasma lipid 

concentrations whose involvement in lipoprotein metabolism had never been reported 

before [5]. For instance, Teslovich et al. [6] performed a GWAS for lipid traits in 100,000 

individuals and identified several associated loci (e.g. GALNT2, PPP1R3B, and TTC39B) 

whose participation in lipid metabolism had not been described previously. Similarly, the 

Global Lipids Genetics Consortium reported 62 novel loci displaying significant 

associations with blood lipid levels, and 30 of them had never been previously connected 

to lipid metabolism [7]. In the light of these results, we can infer that many genes 

contributing to muscle fat deposition remain to be identified. 

The skeletal muscle compartment encompasses a substantial fraction of the body 

weight and accounts for ≈75% of total insulin-stimulated glucose uptake [8]. Moreover, 

adipose and muscle tissues absorb most of the chylomicrons generated after a meal 

consumption [9]. Fat deposition in the porcine muscle may depend, at least in part, on the 

activation of genes that regulate the uptake, transport, storage, synthesis and degradation of 

fatty acids (FA) and carbohydrates. As a first step to identify such genes, we have 

investigated how the profile of pig muscle mRNA expression changes in response to 

nutrient supply. 

 

Methods 

Animal material and metabolic profile 

A group of 36 female piglets belonging to a commercial Duroc line were brought, after 

weaning (age = 3–4 weeks), to the IRTA-Pig Experimental Farm at Monells (Girona, 

Spain). They were fed with a transition feed for 40 days, and, at an approximate age of 2 

months, they entered the fattening period. Gilts were housed individually and fed ad 

libitum with a commercial feeding diet (13% and 5.5% of crude protein and crude fat 
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respectively) until they reached an average live weight of 73 ± 1.2 kg (161 ± 1.1 days). The 

post-prandial time-points at which muscle gene expression should be analysed were chosen 

on the basis of the following experiment (experiment 1): we selected at random eight 

Duroc gilts (out of the 36), with an approximate age of 100 days, and blood samples were 

taken with citrate Vacutainer tubes before feeding and 2, 4, 6 h. after feeding. These 32 

samples were submitted to the Veterinary Clinical Biochemistry Service of the Universitat 

Autònoma de Barcelona (http://sct.uab.cat/sbcv). The following metabolites were 

measured using standard protocols: plasma glucose, triglycerides, cholesterol and non-

esterified fatty acids.  

In experiment 2, we analysed the transcriptomic changes associated with food intake by 

sequencing the muscle transcriptomes of the 36 Duroc gilts mentioned in the previous 

paragraph. These gilts were slaughtered at the IRTA-Experimental slaughterhouse in 

Monells (Girona, Spain) in controlled conditions and complying all national welfare 

regulations. These 36 sows fasted 12 h prior slaughtering and then 12 of them were 

stunned, with high concentrations of CO2 to minimize pain, and bled (T0, fasting). The 

remaining 24 gilts were supplied with a standard feed ad libitum, and slaughtered 5 h (T1, 

N = 12) and 7 h (T2, N = 12) after T0, following the same procedure reported above. 

Before slaughter, we took blood samples from these sows and triglyceride and plasma free 

FA were measured at the Veterinary Clinical Biochemistry Service of the Universitat 

Autònoma de Barcelona (http://sct.uab.cat/sbcv). After slaughtering, samples of the gluteus 

medius muscle were collected and submerged in RNAlater (Ambion), being stored at −80 

°C until use. 

 

RNA isolation and library construction and sequencing 

Each muscle sample was individually submerged in liquid nitrogen and pulverized with 

a mortar and a pestle. This powder was homogenized with a polytron device in 1 mL of 

TRI Reagent (Thermo Fisher Scientific, Barcelona, Spain). Total RNA was extracted from 

gluteus medius muscle samples by using the acid phenol method implemented in the 

RiboPure kit (Ambion, Austin, TX). Total RNA concentration and purity were assessed 

with a Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Barcelona, 
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Spain), while integrity was checked with a Bioanalyzer-2100 equipment (Agilent 

Technologies, Inc., Santa Clara, CA). Total RNA samples were submitted to the Centre 

Nacional d’Anàlisi Genòmica (CNAG, http://www.cnag.cat) for sequencing. Individual 

libraries for each one of the analysed pigs (N = 36) were prepared using the TruSeq 

Stranded mRNA Library Preparation Kit (Illumina Inc., CA) according to the protocols 

recommended by the manufacturer. This level of replication is 4-fold higher than the 

minimum required (3 individuals/group) in standard RNA-Seq studies. Each library was 

paired-end sequenced (2 × 75 bp) in a HiSeq 2000 platform (Illumina Inc., CA) by using 

the TruSeq SBS Kit v3-HS (Illumina Inc., CA). 

 

Bioinformatic analyses  

Quality control of sequence reads was carried out with the FASTQC software 

(Babraham Bioinformatics, http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

We made per-sequence and per-base analyses to filter reads according to the following 

criteria: sequence-read distribution = 75 bp, 100% coverage in all bases, GC-content 

~50%, ~25% of A, T, G and C nucleotide contributions, ambiguous base-content <0.1% 

and a Phred score higher than 30 (i.e. base-calling accuracy larger than 99.9%). 

Subsequently, sequences were trimmed for any remaining sequencing adapter by using 

Trimmomatic v.0.22 [10]. Raw reads were mapped to the pig reference genome (version 

10.2) with the STAR Alignment v.2.5. software [11] by using default parameters and 

STAR 2-pass alignment steps. The FeatureCounts tool [12] was used to summarize counts 

of unambiguously mapped reads. The expression of each mRNA was estimated with 

DESeq2 [13]. This software builds a count matrix Kij (with one row for each gene i and 

one column for each sample j) encompassing the number of sequencing reads that have 

been unambiguously mapped to a gene in a sample [13]. The main assumption of this 

method is that read counts follow a negative binomial distribution with mean μij and 

dispersion αi [13]. A second important assumption is that genes of similar average 

expression levels are expected to have a similar dispersion αi value. DESeq2 calculates 

final dispersion values by using an empirical Bayes approach that shrinks dispersion 

estimates towards a set of predicted αi values. When dealing with genes that are poorly 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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expressed, log2 fold-change (FC) estimates can have a high variance due to noisiness 

issues. To avoid this potential problem, DESeq2 shrinks log2FC estimates, with an 

empirical Bayes procedure [13]. Finally, a Wald test is used to infer if shrunken log2FC 

estimates (and their standard errors) are significantly different from zero. In the Wald test, 

the shrunken estimate of the log2FC is divided by its standard error, generating a z-statistic 

that can be compared to a standard normal distribution [13]. Correction for multiple testing 

is achieved by using a false discovery rate approach [14]. We considered as differentially 

expressed (DE) those mRNAs displaying a |FC| > 1.5 and a q-value <0.05. 

Advaita Bio’s iPathwayGuide (http://www.advaitabio.com/ipathwayguide) and the 

Cytoscape software [15] combined with the ReactomeFIViz app [16] were used to infer if 

certain gene ontology terms and pathways are enriched across the sets of DE genes as well 

as to build biological networks. In order to detect the GO categories that are over- or 

under-represented in the condition under study, Advaita Bio’s iPathwayGuide uses an 

impact analysis method that relies on classical statistics but also takes into account other 

key factors such as the magnitude of each gene’s expression change, their type and 

position in the given pathways, their interactions, etc. [17]. The ReactomeFIViz 

application can access the Reactome pathways database in order to do pathway enrichment 

analysis for a set of genes and visualize hit pathways with the aid of Cytoscape [16]. This 

application can also access the Reactome Functional Interaction (FI) network to construct a 

FI sub-network based on a set of genes [16]. In our study, the standard ReactomeFIViz 

“Gene Set/Mutation Analysis” application was employed to build gene functional 

interaction networks on the basis of a list of DE genes (q-value <0.05 and a |FC| > of 1.5) 

and curated pathway information contained in the Reactome database. The functional 

enrichment analyses for pathways and GO annotations were based on a binomial test [16]. 

 

Results 

In Experiment 1, measurement of the concentrations of plasma glucose, cholesterol, 

triglycerides and non-esterified fatty acids revealed that glycaemia and lipidemia peaks 

took place 2 and 4 h after the 8 Duroc gilts began to eat, a result that was very consistent 

across individuals (Fig. 1). Eating was also accompanied by a marked decrease of plasma 

http://www.advaitabio.com/ipathwayguide
http://www.advaitabio.com/ipathwayguide
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free FA (Fig. 1), a finding that agrees well with the role of these metabolites as a source of 

energy during fasting. We chose 5 and 7 h post-ingestion as time-points to carry out the 

analysis of differential expression. Our expectation was that T1 would reflect the process 

of lipid absorption, while T2 would correspond to a posterior phase in which lipids are 

stored as triglycerides or catabolized in the β-oxidation pathway to generate ATP. 

Nevertheless, when we measured the concentrations of triglycerides and plasma free fatty 

acids in the slaughtered sows forming part of Experiment 2 (Additional file 1: Figure S1), 

we observed that feeding is associated with an increase in the concentration of triglycerides 

and a decrease of circulating free FA levels, a result that matches the metabolic profile 

observed in Experiment 1. However, the kinetics of these two metabolites were not 

identical to those observed in Experiment 1 because 7 h after feeding triglyceride levels 

were still peaking. Despite this circumstance, our main comparison (fasting vs fed pigs) 

remains completely valid. 

The RNA-Seq experiment generated an average of 45 million paired-end reads per 

sample and 69.8% of them were unambiguously mapped to the pig Sscrofa10.2 genome 

assembly. Analysis of the data with DESeq2 highlighted 148 (T0 vs T1), 520 (T0 vs T2) 

and 135 (T1 vs T2) differentially expressed mRNA-encoding genes (Additional file 2: 

Table S1). Moreover, 85 genes showed DE both in the T0-T1 and T0-T2 comparisons, a 

result that evidences the high consistency of our results. The analyses of pathways and 

signalling networks enriched in DE genes with Advaita iPathwayGuide 

(http://www.advaitabio.com/ ipathwayguide) revealed 18 (T0-T1), 18 (T0-T2) and 14 (T1-

T2) enriched pathways (Table 1). Similarly, the ReactomeFIViz app identified 34 (T0-T1), 

18 (T0-T2) and 15 (T1-T2) pathways (Additional file 3: Table S2). In both analyses, we 

identified pathways related with (1) T0-T1: circadian clock system, muscle contraction and 

signaling in cardiomyocytes; (2) T0-T2: circadian rhythm and ribosome pathway; and (3) 

T1-T2: oxidative phosphorylation, metabolic process and ribosome pathways. 

Differentially expressed mRNA-encoding genes were also grouped in gene regulatory 

networks with the ReactomeFIViz app. We found 6 (T0-T1), 20 (T0-T2) and 4 (T1-T2) 

functional interaction networks which are displayed in Figs. 2, 3 and 4. Several enriched 

pathways (q-value <0.05) such as Wnt signaling pathway (T0-T2), TNF signalling (T0-

T1), ATF-2 transcription factor network (T0-T2) and oxidative phosphorylation (T0-T2, 

http://www.advaitabio.com/ipathwayguide
http://www.advaitabio.com/ipathwayguide
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T1-T2) are tightly linked to metabolism and energy homeostasis. We also found pathways 

related with striated muscle contraction (T0-T1) and myogenesis (T0-T2), a result that 

could be anticipated given the predominance of myofibrilar proteins in the muscle 

proteome. Other pathways of interest were circadian clock and rhythm (T0-T1, T0-T2), 

oxidative stress induced gene expression via Nrf2 (T0-T2) and SRP-dependent 

cotranslational protein targeting to membrane (T1-T2) and eukaryotic translation 

termination (T1-T2). 

 

 

 

 

  

 

 

  

 

 

 

 

Figure  1 - Kinetics of the average concentrations of plasma glucose, cholesterol, triglycerides 

and non-esterified fatty acids (FA) in 8 Duroc pigs at four time points: before eating and 2, 4 

and 6 h post-ingestion (p.i).  

 

Considering gene ontology (GO) cellular component, biological process and molecular 

function related to network functions, the top-scoring networks were (1) T0-T1: 

transcription factor complex, circadian regulation of gene expression and E-box binding; 

(2) T0-T2: nucleo-plasm, negative regulation of transcription from RNA polymerase II 

promoter and structural constituent of ribosome and (3) T1-T2: cytosolic small ribosomal 
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subunit, translation and structural constituent of ribosome (Additional file 4: Table S3). 

We have an established role in metabolism, while for others evidence reported in the 

literature is more tenuous or even absent. For instance, the 6-phosphofructo-2-

kinase/fructose-2,6-biphosphatase 3 (PFKFB3, T0-T1: FC = −3.01, q-value = 1.91E-07) 

gene can modulate glucose homeostasis by regulating the levels of fructose-2,6-

biphosphate [18], and there are substantial evidences that the G0/G1 switch 2 (G0S2, T0-

T1: FC = 1.84, q-value = 4.03E-02; T0-T2: FC = 2.06, q-value = 9.35E-04) protein is 

involved in the regulation of the rate-limiting lipolytic enzyme adipose triglyceride lipase 

[19]. 

 

Discussion 

Post-prandial activation of genes with and without known roles in muscle energy 

homeostasis 

Several of the genes that show the most significant DE between fasted and fed animals 

(Additional file 2: Table S1), have an established role in metabolism, while for others 

evidence reported in the literature is more tenuous or even absent. For instance, the 6-

phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3, T0-T1: FC = −3.01, q-

value = 1.91E-07) gene can modulate glucose homeostasis by regulating the levels of 

fructose-2,6-biphosphate [18], and there are substantial evidences that the G0/G1 switch 2 

(G0S2, T0-T1: FC = 1.84, q-value = 4.03E-02; T0-T2: FC = 2.06, q-value = 9.35E-04) 

protein is involved in the regulation of the rate-limiting lipolytic enzyme adipose 

triglyceride lipase [19]. 

 The analysis of Additional file 2: Table S1 also evidences the existence of DE for 

several genes with a plausible but poorly characterized role in metabolism. A good 

example is the mitoguardin 2 (MIGA2, T0-T1: FC = 1.62, q-value = 1.86E-02; T0-T2: FC 

= 2.22, q-value = 2.10E-05) gene, which shows a dramatic increase in its expression after 

food intake i.e. MIGA2 is 1.62 and 2.22 times more expressed at 5 and 7 h post-ingestion, 

respectively. This gene encodes a protein that regulates mitochondrial [20]. Noteworthy, 

mitochondrial dynamics is highly inter-connected with the energy status of the cell, and it 
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has been demonstrated that starvation promotes an acute inhibition of mitochondrial 

fission [21]. Another gene of interest is syndecan 4 (SDC4, T0-T1: FC = −1.80, q-value = 

3.88E-04; T0-T2: FC = −1.82, q-value = 9.59E-04), whose expression levels decreased at 

5 h and 7 h after ingestion. In mammals, this gene has been mostly related with cell-matrix 

adhesion, migration, neuronal development, and inflammation, but studies performed in 

Drosophila have revealed that it may also have broad effects on the regulation of energy 

homeostasis [22]. A third example would be the cysteine- serine-rich nuclear protein 1 

(CSRNP1, T0-T1: FC = −1.67, q-value = 5.37E-03; T0-T2: FC = −1.75, q-value = 1.07E-

02), a molecule that has been mostly related with T-cell immunity and cephalic neural 

progenitor proliferation [24]. Interestingly, the expression of this molecule is induced by 

axin, which appears to promote glucose uptake by enhancing the translocation of GLUT4 

[25]. 

Finally, there is a third category of genes, exemplified by the family with sequence 

similarity 212, member B (FAM212B, T0-T1: FC = 2.04, q-value = 3.36E-02; T0-T2: FC = 

2.68, q-value = 1.13E-06), transmembrane protein 169 (TMEM169, T0-T2: FC = 2.83, q-

value = 6.81E-07) and matrix metallopeptidase 25 (MMP25, T0-T2: FC = −2.41, q-value = 

7.97E-04) loci, that, to the best of our knowledge, have never been reported to participate 

in the regulation of energy homeostasis. 

 

The ingestion of food involves changes in the muscle expression of many 

transcription factors 

As shown in Additional file 2: Table S1, we did not detect significant changes in the 

expression of several genes with a well-established role in lipid uptake (e.g. CD36, 

lipoprotein lipase), synthesis (e.g. acetyl-CoA carboxylase, fatty acid synthase, 

diacylglycerol O-acyl-transferase 1), transportation (e.g. FA binding proteins) and 

catabolism (e.g. genes of the β-oxidation pathway). One of the few exceptions to this 

general trend was the lipase G locus (LIPG, T0-T1: FC = −1.80, q-value = 4.10E-02), 

which encodes and endothelial lipase modulating lipoprotein metabolism [26]. This gene 

shows an important drop in its expression levels (1.8 times) 5 h after food intake, a feature 

that would result in an inhibition of high-density lipoprotein catabolism [26].   
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We observed DE for many genes encoding transcription factors (Figs. 2 and 3, 

Additional file 2: Table S1) e.g. the AT-rich interactive domain 5B (ARID5B, T0-T2: FC = 

−2.31, q-value = 5.98E-04) gene, which influences adipogenesis and also the accumulation 

of postnatal lipid storage [27]; Kruppel-like factor 5 (KLF5, T0-T2: FC = −1.96, q-value = 

1.25E-02), that regulates the expression of genes involved in the β-oxidation of FA [28]; 

NR4A2, (T0-T1: FC = −2.16, q-value = 8.93E-04), a nuclear orphan receptor that controls 

the expression of genes related with glucose metabolism [29]; CCAAT/Enhancer Binding 

Protein δ (CEBPD, T0-T1: FC = −2.33, q-value = 6.37E-05; T0-T2: FC = −1.84, q-value = 

1.71E-02) that plays an essential role in adipogenesis [30]; and forkhead box O1 (FOXO1, 

T0-T1: FC = −1.55, q-value = 2.12E-02; T0-T2: FC = −1.66, q-value = 2.7E-02), which 

integrates glucose utilization and lipogenesis [31]. In the T0-T2 comparison we found a 

similar pattern, with DE of genes encoding the nuclear receptor NR4A3 (FC = −2.28, q-

value = 1.99E-03), SRY-box 9 (SOX9, FC = −2.28, q-value = 6.84E-05) and BTB and 

CNC Homology 1, Basic Leucine Zipper (BACH2, FC = −2.45, q-value = 4.61E-05) 

transcription factors, to mention a few (Figs. 2 and 3, Additional file 2: Table S1). In the 

T0-T2 comparison (Fig. 3, Additional file 2: Table S1), we also detected an increase in the 

expression levels of the meteorin (METRNL, FC = 1.77, q-value = 7.33E-03) mRNA that 

encodes an hormone that promotes energy expenditure and glucose tolerance [32]. 

 

Feeding elicits strong changes in the expression of ribosomal protein genes  

Mammalian ribosomes contain 79 different proteins, all of them being encoded by 

single-copy genes expressed in all tissues [33]. Interestingly, we have detected significant 

changes in the expression of several ribosomal protein genes (Additional file 2: Table S1). 

Ribosomal protein genes formed part of the Reactome functional networks shown in Figs. 

3 and 4. Moreover, pathways related with ribosomal biogenesis appeared as significant in 

Table 1 and Additional file 3: Table S2. When nutrients are available, cells tend to activate 

energy-consuming anabolic pathways whilst under stress or starvation catabolic processes 

are predominant [33]. Ribosomal biogenesis consumes 60% of cellular energy and this is 

the key reason why this process is tightly coupled with nutrient supply [34]. The 

rapamycin (TOR) signalling pathway is deeply involved in coupling ribosome biogenesis 
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with the energy status of the cell by regulating the expression of ribosomal proteins and 

RNAs [35]. The fundamental role of ribosomal proteins in skeletal muscle metabolism has 

been illustrated by generating mice where the ribosomal protein S6 cannot be 

phosphorylated i.e. these mice are viable and fertile but they show muscle weakness and 

energy deficit [36]. According to our data, these strong changes in the expression of 

ribosomal protein genes are observed in the T0-T2 and T1-T2 comparisons, but not in T0-

T1. Another intriguing observation of our study is that several of these DE ribosomal 

protein genes are consistently downregulated (e.g. RPS6KA1,RPL35A, RPS23, RPS21, 

RPL9 and RPL39), a result that is counterintuitive and hard to explain. 

 

Differential expression of genes related with angiogenesis and oxidative stress.  

The thrombospondin 1 (THBS1, T0-T1: FC = −1.99, q-value = 8.00E-03) and 2 

(THBS2, T0-T2: FC = 2.45, q-value = 5.18E-04) and thioredoxin interacting protein 

(TXNIP, T0-T1: FC = −1.78, q-value = 1.34E-02; T0-T2: FC = −1.79, q-value = 1.13E-02) 

genes showed significant DE before and after eating (Additional file 2: Table S1). 

Moreover, they were integrated in the Reactome functional networks depicted in Figs. 2 

and 3. These loci have a dual biological role, regulating both angiogenesis and response to 

oxidative stress. For instance, THBS1 and THBS2 are negative regulators of angiogenesis 

[37, 38] and their expression is down- and upregulated by oxidative stress, respectively 

[39, 40]. This feature agrees well with our study, since we found a post-prandial (both at 

T1 and T2) decreased and increased expression of THBS1 and THBS2, respectively. The 

TXNIP protein is one of the main regulators of redox homeostasis [41] and also an 

angiogenic factor [42]. We have observed a diminished expression of this gene after food 

ingestion, a finding that agrees well with its function as a promoter of oxidative stress and 

apoptosis [41]. 
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 Table 1 - Results of the Advaita Bio’s iPathwayGuide pathway analysis based on the list of genes that are differentially expressed (q-

value <0.05 and |fold-change| > 1.5) in the porcine gluteus medius muscle before (T0) vs 5 h (T1) and 7 h (T2) after eating.  
a
the P-value 

corresponding to the pathway was computed using only over-representation analysis. 

T0 vs T1 T0 vs T2 T1 vs T2 

Pathway P-value Pathway P-value Pathway P-value 

Circadian rhythm 1.00E-03 Ribosome * 4.97E-06 Ribosome * 2.84E-13 

Circadian entrainment 4.00E-03 Circadian rhythm 8.48E-04 Huntington's disease 2.84E-04 

Cholinergic synapse 4.00E-03 Huntington's disease 1.00E-03 Parkinson's disease 7.33E-04 

Adrenergic signaling in 

cardiomyocytes 
4.00E-03 Legionellosis 5.00E-03 Oxidative phosphorylation *  8.74E-04 

Transcriptional misregulation in 

cancer 
7.00E-03 Parkinson's disease 6.00E-03 Alzheimer's disease 1.00E-03 

TGF-beta signaling pathway 1.30E-02 Viral myocarditis 7.00E-03 Tight junction 1.30E-02 

GABAergic synapse 1.50E-02 Malaria 7.00E-03 Metabolic pathways * 1.80E-02 

Malaria 1.60E-02 p53 signaling pathway 1.00E-02 Herpes simplex infection 1.80E-02 

Cardiac muscle contraction * 2.40E-02 Alzheimer's disease 1.10E-02 p53 signaling pathway 2.50E-02 

Herpes simplex infection 2.70E-02 Mineral absorption 1.30E-02 Viral myocarditis 2.90E-02 

Fructose and mannose metabolism * 3.20E-02 Toxoplasmosis 1.50E-02 Legionellosis 3.20E-02 

Neuroactive ligand-receptor 

interaction 
3.20E-02 PPAR signaling pathway 1.90E-02 

Amyotrophic lateral sclerosis 

(ALS) 

3.20E-02 

Dopaminergic synapse 3.30E-02 
Amyotrophic lateral sclerosis 

(ALS) 

2.20E-02 Sulfur metabolism *  3.60E-02 

Alanine, aspartate and glutamate 

metabolism * 
3.50E-02 Sulfur metabolism *  2.40E-02 

Arrhythmogenic right 

ventricular cardiomyopathy 

(ARVC) 

5.00E-02 

Glutamatergic synapse 3.60E-02 African trypanosomiasis 2.50E-02 
  

Estrogen signaling pathway 3.70E-02 
Transcriptional misregulation in 

cancer 

2.90E-02 
  

Bladder cancer 4.10E-02 Cardiac muscle contraction *  3.30E-02 
  

Dilated cardiomyopathy 4.90E-02 Tight junction 4.90E-02 
  

https://ipathwayguide.advaitabio.com/report/21060/contrast/25404/pathways/6376
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6469
https://ipathwayguide.advaitabio.com/report/21060/contrast/25404/pathways/6525
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6525
https://ipathwayguide.advaitabio.com/report/21060/contrast/25404/pathways/6523
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6539
https://ipathwayguide.advaitabio.com/report/21060/contrast/25404/pathways/6294
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6523
https://ipathwayguide.advaitabio.com/report/21060/contrast/25404/pathways/6522
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6589
https://ipathwayguide.advaitabio.com/report/21060/contrast/25404/pathways/6445
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6543
https://ipathwayguide.advaitabio.com/report/21060/contrast/25404/pathways/6365
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6411
https://ipathwayguide.advaitabio.com/report/21060/contrast/25404/pathways/6553
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6522
https://ipathwayguide.advaitabio.com/report/21060/contrast/25404/pathways/6411
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6521
https://ipathwayguide.advaitabio.com/report/21060/contrast/25404/pathways/6589
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6544
https://ipathwayguide.advaitabio.com/report/21060/contrast/25404/pathways/6539
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6386
https://ipathwayguide.advaitabio.com/report/21060/contrast/25404/pathways/6524
https://ipathwayguide.advaitabio.com/report/21060/contrast/25404/pathways/6524
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6524
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6524
https://ipathwayguide.advaitabio.com/report/21060/contrast/25404/pathways/6359
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6359
https://ipathwayguide.advaitabio.com/report/21060/contrast/25404/pathways/6587
https://ipathwayguide.advaitabio.com/report/21060/contrast/25404/pathways/6587
https://ipathwayguide.advaitabio.com/report/21060/contrast/25404/pathways/6587
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6542
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6556
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6556
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6428
https://ipathwayguide.advaitabio.com/report/21059/contrast/25403/pathways/6445
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In the mitochondria, oxidative phosphorylation, by which ATP is synthesized as a 

source of energy, involves the generation of reactive oxygen species (e.g. superoxide, 

hydrogen peroxide, hydroxyl radical) as a byproduct [43]. This may promote a state of 

oxidative stress, i.e. an imbalance between oxidants and antioxidants, resulting in cell and 

tissue damage. Indeed, a single high-fat meal can temporarily impair endothelial function 

in healthy individuals and this effect is inhibited by antioxidants [44]. Moreover, lipid 

peroxidation by reactive oxygen species has been suggested as one of the main 

mechanisms leading to the development of mitochondrial dysfunction and insulin 

resistance [45]. On the other hand, it is well known that insulin, which is secreted by the 

pancreas in response to food ingestion, promotes vasodilation and capillary recruitment in 

the skeletal muscle, an effect mediated by nitric oxide [46]. These actions on the muscle 

vasculature are fundamental for the maintenance of glucose homeostasis [47]. As a matter 

of fact, oxidative stress and neovascularization are two tightly linked biological processes 

i.e. there are evidences that end products of lipid oxidation can bind the Toll-like receptor 

2 promoting an angiogenic response [48]. As a whole, DE of THBS1, THBS2 and TXNIP 

between pre- and post-prandial states probably reflects the combined redox and vascular 

response of the porcine skeletal muscle to nutrient availability.  
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Figure 2 - Reactome functional interaction network corresponding to 148 genes that show 

differential expression in the T0 (fasting) vs T1 (5 h after eating) comparison. Nodes in 

different network modules are displayed in different colors. Letters in parentheses represent the 

source database as follows: R – Reactome, K – KEGG, and B – BioCarta. Enriched pathways (q-

value <0.05) in each one of the individual network modules are: 1: Proteoglycans in cancer (K); 2: 

TNF signaling (R); 3: Circadian clock (R); 4: Bone remodeling (B); 5: Striated muscle contraction 

(R) and 6: Transcriptional regulation of pluripotent stem cells (R) 



                                                                                                                                                                                                                                                 

                                                                                                              Papers and Studies       

 

135 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 - Reactome functional interaction network corresponding to 520 genes showing 

differential expression in the T0 (fasting) vs T2 (7 h after eating) comparisons. Nodes in 

different network modules are displayed in different colors. Letters in parentheses represent the 

source database as follows: R – Reactome, K – KEGG, N – NCI PID, P - Panther, and B – 

BioCarta. Enriched pathways (q-value <0.05) in each one of the individual network modules are: 1: 

Mitotic G1-G1/S phases (R); 2: Nicotinic acetylcholine receptor signaling pathway (P); 3: SRP-

dependent co-translational protein targeting to membrane (R); 4: Senescence-associated secretory 

phenotype (SASP) (R); 5: Signaling events mediated by HDAC Class II (N); 6: Circadian rhythm 

pathway (N), 7: Oxidative stress induced gene expression via Nrf2 (B); 8: ABC-family proteins 

mediated transport (R); 9: Toll-like receptors cascades (R); 11: Proximal tubule bicarbonate 

reclamation (K); 12: Wnt signaling pathway (K); 13: Nucleotide-binding domain, leucine rich 

repeat containing receptor (NLR) signaling pathways (R); 14: ATF-2 transcription factor network 

(N); 15: ECM-receptor interaction (K); 16: GPCR ligand binding (R); 17: Oxidative 

phosphorylation (K); 18: Integrin signalling pathway (P); 19: Myogenesis (R); 20: Transcriptional 

regulation of white adipocyte differentiation (R) 
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Figure 4 - Reactome functional interaction network corresponding to 135 genes showing 

differential expression in the T1 (5 h after eating) vs T2 (7 h after eating) comparison. Nodes 

in different network modules are displayed in different colors. Letters in parentheses represent the 

source database as follows: R – Reactome and K – KEGG. Enriched pathways (q-value <0.05) in 

each one of the individual network modules are: 1: SRP-dependent cotranslational protein targeting 

to membrane (R); 2: Eukaryotic Translation Termination (R); 3: Oxidative phosphorylation (K) and 

4: Parkinson’s disease (K).  

 

A close relationship between nutritional status and the expression of genes 

integrated in the muscle circadian clock.  

One of the main results of our experiment was the detection of DE for a set of genes 

that form part of the peripheral clock that determines the maintenance of circadian rhythms 

in the skeletal muscle (Figs. 2 and 3, and Additional file 2: Tables S1, Additional file 3: 

Tables S2 and Additional file 4: Tables S3). Patterns of DE in the two available 

comparisons (T0-T1 and T0-T2) were consistent i.e. there was an upregulation of ARNTL 

(T0-T1: FC = 1.87, q-value = 193E-0.4; T0-T2: FC = 2.43, q-value = 2.99E-13) and 

NR1D1 (T0-T1: FC = 1.61, q-value = 8.30E-03; T0-T2: FC = 1.87, q-value = 9.52E-04), 

and a downregulation of PER1 (T0-T1: FC = −2.85, q-value = 3.95E-11; T0-T2: FC = 

−1.83, q-value = 1.12E-0.2), PER2 (T0-T1: FC = −1.67, q-value = 4.33E-04, T0-T2: FC = 

−2.48, q-value = 7.03E-14), BHLHE40 (T0-T2: FC = −1.77, q-value = 7.87E-0.5), SIK1 

(T0-T1: FC = −2.62, q-value = 1.91E-07), CIART (T0-T1: FC = −2.16, q-value = 5.79E-
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05; T0-T2: FC = −2.35, q- value = 4.52E-06) and CRY2 (T0-T2: FC = −1.60, q-value = 

1.28E-0.2). In mammals, the circadian clock is regulated by either the CLOCK-ARNTL or 

the NPAS2-ARNTL heterodimers depending on the tissue under consideration [49]. These 

heterodimers activate the transcription of the Period (PER1 and PER2) and Cryptochrome 

(CRY1 and CRY2) genes [49]. In diurnal species, the PER and CRY complexes accumulate 

in the cytoplasm during daytime and they are translocated to the nucleus in the evening, 

thus repressing their own expression through the interaction with CLOCK/ARNTL [49]. 

The BHLHE40 molecule is a negative regulator of the ARNTL-CLOCK complex [50]. 

Other clock genes of interest are SIK1, that regulates the entrainment of the circadian clock 

[51], CIART, whose inactivation increases the circadian period of locomotor activity in 

mice [52] and NR1D1, a critical regulator of the circadian clock with strong effects on lipid 

homeostasis [53]. Our data indicate that food ingestion modulates the expression of 

circadian genes in the porcine skeletal muscle. It might be argued that this DE is just the 

obvious consequence of slaughtering pigs at different time-points (T0 = 0 h., T1 = + 5 h. 

and T2 = + 7 h.). However, studies performed in model species have revealed that the 

feeding/fasting cycle is one of the main zeitgebers (time cues) synchronizing the skeletal 

muscle clock [54]. Noteworthy, this clock plays a key role in muscle physiology by 

regulating the expression of more than one thousand genes mainly involved in metabolic 

processes [55]. Muscle lipid deposition in pigs could be affected by the expression of these 

genes because their inactivation in mouse has evidenced numerous metabolic abnormalities 

including ectopic fat in the muscle, reduced circulating levels of triglycerides and free fatty 

acids, obesity, hyperlipidemia and severe hepatic steatosis [49]. Besides, SNPs in the 

human clock genes have been related with abdominal obesity, increase in carbohydrate 

intake, higher body mass index and metabolic syndrome [56]. 

 

Conclusions 

Our results indicate that the ingestion of food affects the expression of many 

transcription factors that are essential for coordinating the metabolic response triggered by 

the availability of nutrients. Amongst these, clock genes could be particularly important 

due to their key role in the adequate synchronization of this response as well as because of 

their broad effects on muscle metabolism. We have also shown that several genes without 

an evident link with muscle metabolism change their expression in response to nutrient 
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inflow, an observation that suggests that our knowledge about the genetic basis of energy 

homeostasis in the porcine muscle is still quite limited. Given the close physiological 

similarity between pigs and humans, data presented in the current study could be also of 

interest to understand the consequences of food intake on gene expression in this latter 

species. 
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Additional file 1: Figure S1. Kinetics of triglyceride and non-esterified fatty acids (FA) 

concentrations in 36 Duroc pigs at three time points: before eating and 5 and 7 h post-

ingestion.  

Additional file 2: Table S1. Differentially expressed genes (q-value <0.05 and |fold-

change| > 1.5) in the pig gluteus medius muscle at fasting (T0) vs 5 h (T1) vs 7 h (T2) 

after eating.  

Additional file 3: Table S2. Pathways identified by ReactomeFIViz as enriched in 

differentially expressed genes (q-value <0.05 and |fold-change| > 1 .5). Three conditions 

were compared: fasting (T0), 5 h after eating (T1) and 7 h after eating (T2).  

Additional file 4: Table S3 Gene regulatory networks identified with the ReactomeFIViz 

app, considering GO biological process, molecular function and cellular component (q-

value<0.05).  
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Abstract 

In a previous study, we demonstrated that the expression of circadian clock genes in the 

porcine skeletal muscle changes in response to nutrient supply. The goal of the current 

work was to investigate if such changes also take place in tissues containing peripheral 

(duodenum, dorsal fat, muscle, and liver) and central (hypothalamus) clocks. As animal 

material, we used 12 sows that fasted 12 h before slaughtering (T0) and 12 sows that were 

fed ad libitum 7 h. prior slaughtering (T2). Tissue samples were collected immediately 

after slaughter and total RNA was subsequently extracted. The expression of the ARNTL, 

BHLHE40, CRY2, NPAS2, NR1D1, PER1, PER2 and SIK1 genes was measured by 

quantitative reverse transcription PCR. Our results show that four (dorsal fat and 

duodenum), six (skeletal muscle) and seven (liver) genes integrated into or modulating 

peripheral clocks are differentially expressed before and after feeding. In contrast, none of 

the eight analysed genes shows a significant differential expression in hypothalamus, the 

tissue where the central clock resides. This result indicates that the differential expression 

of clock genes in the four tissues mentioned before is induced by nutrition and not by the 

central clock entrained by light. Moreover, we have observed that the NPAS2 and ARNTL 

genes display positive log2(Rq) values in the five tissues under analysis, whilst the CRY2, 

PER1 (except dorsal fat) and PER2 (except hypothalamus) genes generally show negative 

log2(Rq) values. Such result might be explained by the existence of a negative feedback 

loop between the ARNTL/NPAS2 and CRY/PER genes. Collectively, these results indicate 

that porcine peripheral circadian clocks are modulated by nutrition and that such regulation 

could be essential for coordinating the subsequent metabolic response. 

 

Introduction 

Circadian clocks are highly conserved endogenous oscillators controlling a wide 

repertoire of physiological events, including metabolism and behavior (Bellet & Sassone-

Corsi, 2010). At the molecular level, the rhythmicity of circadian clocks is modulated by 

several transcriptional feedback loops composed by positive and negative regulators 

(Eckel-Mahan & Sassone-Corsi, 2013; Partch, Green, & Takahashi, 2014). The aryl 

hydrocarbon receptor nuclear translocator-like (ARNTL) transcription factor 

heterodimerizes with either the clock circadian regulator (CLOCK) or its paralogue, the 
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neuronal PAS domain protein 2 (NPAS2), thus activating the expression of the period 

(PER) and cryptochrome (CRY) genes. Upon reaching a critical concentration threshold, 

PER and CRY translocate to the nucleus where they inhibit the activity of the 

(CLOCK/NPAS2):ARNTL heterodimer, thus establishing a negative feedback loop 

(Menet et al., 2014; Peek et al., 2012). Cyclical oscillations in the expression of 

(CLOCK/NPAS2):ARNTL and PER:CRY genes modulated by this and other feedback 

loops promote the establishment of circadian patterns modulating the transcriptional 

activity of thousands of genes (Partch et al., 2014; Takahashi, 2017). This core mechanism 

is further refined by the action of additional genes, such as nuclear receptor subfamily 1 

group D member 1 (NR1D1), basic helix-loop-helix family member E40 (BHLHE40), and 

salt-inducible kinase 1 (SIK1) which cooperate to finely tune the rhythmicity of 

mammalian circadian clocks (Bugge et al., 2012; Honma et al., 2002; Oike et al., 2014).  

In mammals, the central circadian clock is located in the hypothalamus, and more 

specifically in the suprachiasmatic nucleus (Partch et al., 2014). This central clock is 

fundamentally entrained by the light/dark cycle (Partch et al., 2014). Circadian clocks are 

also present in peripheral tissues, but they are mainly entrained by feeding/fasting cycles, 

glucose metabolism, insulin secretion and temperature (Hastings et al., 2008; Oike et al., 

2014; Richards & Gumz, 2012). Circadian clocks have a profound effect on metabolism 

and gene expression. For instance, a third of the genes in the mouse genome show 

circadian patterns of expression (Gooley & Chua, 2014). The knockout of specific 

circadian genes in mice is associated with a broad variety of abnormal metabolic 

phenotypes including obesity, hyperglycemia, hepatic steatosis, hypertriglyceridemia, 

hypotriglyceridemia, glucose intolerance, hypoinsulinemia and cholesterolemia (Gooley & 

Chua, 2014). The analysis of the murine skeletal muscle transcriptome has shown that 

genes related with fatty acid uptake and ß-oxidation peak in the inactive phase, whilst 

genes related with carbohydrate catabolism, carbohydrate storage and lipogenesis peak in 

the early, middle and late active phases, respectively (Hodge et al., 2015). 

Whereas circadian clocks have been intensively studied in humans and mouse, little is 

known about the mechanisms by which these clocks respond to food intake in domestic 

species. Zhou et al. (2017) showed that long-chain polyunsaturated fatty acid levels in 

plasma and liver as well as the hepatic mRNA levels of lipid genes (i.e. FADS1, FADS2, 

ELOVL2, and ELOVL5) exhibit diurnal rhythms in pigs. Recently, we compared the 
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patterns of skeletal muscle expression of sows that fasted 12 h before slaughtering (T0) vs 

sows that were fed 5 h (T1) and 7 h (T2) before slaughtering (Cardoso et al., 2017). Our 

results demonstrated that nutrient supply affects the mRNA expression of circadian clock 

genes in the pig skeletal muscle, and such differences were particularly significant in the 

T0 vs T2 comparison  (Cardoso et al., 2017).  The main goal of the current work was to 

extend this analysis of differential expression (DE) to a broader array of tissues containing 

central (hypothalamus) and peripheral clocks (liver, duodenum, muscle, and dorsal fat). 

Our working hypothesis is that food intake promotes changes in the mRNA expression of 

porcine clock genes not only in the skeletal muscle but also in other tissues of metabolic 

importance. 

 

Materials and Methods 

RNA isolation 

Sample tissues were retrieved from 12 sows that fasted 12 h before slaughtering (T0) 

and 12 sows that were fed ad libitum 7 h prior slaughtering (T2). The weight and age of the 

sows at slaughtering were 73 ± 1.2 kg and 161 ± 1.1 days, respectively. Additional details 

about how these sows were bred and fed can be found in Cardoso et al. (2017). Tissue 

samples (liver, dorsal fat, gluteus medius muscle, duodenum, and hypothalamus) were 

collected immediately after slaughter, submerged in RNAlater (Ambion, Austin, TX, 

USA), and stored at −80 °C until RNA extraction. Muscle tissue samples were individually 

pulverized using a pre-chilled mortar and a pestle. Powdered samples were homogenized 

in 1 ml TRIzol Reagent (Invitrogen Corp., Carlsbad, CA). Liver, dorsal fat, duodenum, and 

hypothalamus tissues were directly homogenized in TRIzol Reagent (1 ml). All samples 

(n = 120) were homogenized with a polytron device (IKA, Denmark). Total RNA was 

extracted according to the protocol recommended by Chomzynski and Sacchi (1987). In 

brief, homogenates were centrifuged and visible fat and cell debris were removed. 

Chloroform (200 μl) was added and samples were centrifuged to separate the nucleic acid 

and protein phases. Total RNA was precipitated using 500 μl isopropanol and washed with 

ethanol (75%). Finally, RNA was resuspended with RNase-free water and stored at 

−80 °C. RNA concentration and purity were measured using a NanoDrop ND-1000 

spectrophotometer (NanoDrop Technologies, Wilmington, USA). 
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Synthesis of complementary DNA 

Complementary DNA synthesis was carried out with the High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Foster City, CA, USA) by using 10 μl (100 ng/μl) 

of total RNA as template in a final reaction volume of 20 μl. One μl of MultiScribe 

Reverse Transcriptase (50 U/µl), 2 μl of 10x random primers, 2 μl of 10x buffer, 0.8 μl of 

25x dNTP Mix (100 mM) and 4.2 μl of water were added to the reaction. Tubes were 

incubated for 10 min at 25 °C, 2 h at 37 °C and 5 min at 85 °C to inactivate the reverse 

transcriptase according to the manufacturer instructions (Applied Biosystems, Foster City, 

CA, USA). A negative control was made for each tissue with no reverse transcriptase 

added (−RT control).  Complementary DNAs were stored at −80 °C until use. 

 

Primer design 

The eight genes included in this study were selected based on previous results obtained 

by Cardoso et al. (2017) as well as by performing a literature search (Gnocchi et al., 2015; 

Tahara & Shibata, 2013). Primers spanning exon-exon boundaries, or alternatively binding 

at different exons (in order to avoid the amplification of residual contaminating genomic 

DNA) were designed with the Primer 3 software (Untergasser et al., 2012). Primers 

employed in the amplification of the β-actin (ACTB), TATA-Box Binding Protein (TBP), 

and hypoxanthine phosphoribosyltransferase 1 (HPRT1) were reported by Ballester et al. 

(2017). Primer sequences and gene names are available in Supplementary file 1.  

 

RT-qPCR 

The quantification of mRNA expression by quantitative reverse transcription PCR (RT-

qPCR) was performed by using the QuantStudio 12K Flex Real-Time PCR System 

(Applied Biosystems, Foster City, CA, USA). Four genes i.e.  ACTB, TBP, HPRT1, and ß2-

microglobulin (B2M) were used as endogenous controls (Supplementary file 2). Standard 

curves with serial dilutions from a pool of cDNA from each tissue were made to evaluate 

the performance of our RT-qPCR assays. Efficiencies from 90 to 110 were obtained. In 

short, 3.75 µl of cDNA (1/25 diluted for samples, or 1/5-1/15,625 diluted for standard 

points), 7.5 µl of SYBR Select Master Mix (Applied Biosystems, Foster City, CA, USA), 

and 300 nM of each primer were mixed in a final volume of 15 μl. All reactions were done 

https://www.lifetechnologies.com/order/catalog/product/4472908?ICID=cvc-qpcr-sybr-c2t1
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in triplicate Thermal profile was 10 min at 95 °C and 40 cycles of 15 sec at 95 °C and 1 

min at 60 °C. A  melting curve step  (95 ºC for 15 sec, 60 ºC for 1 min and a gradual 

increase in temperature with a ramp rate of 0.05ºC/s up to 95 ºC and a final step of 95 ºC 

for 15 sec) was carried out to confirm the specificity of the assays. 

 

Data analysis 

Clock gene expression data were normalized taking as a reference the mRNA levels of 

four reference genes (ACTB, TBP, HPRT1, and B2M), according to the stability of the gene 

expression for each assay. Genes selected as reference controls can be found in 

Supplementary file 2. Relative quantification of gene expression differences between T0 

and T2 for each tissue was calculated with the 2
−ΔΔCT

 method (Livak & Schmittgen, 2001) 

by using the following formulae: 

 

ΔΔCT = ΔCT(T2) – ΔCT(T0) (calibrator) 

ΔCT(T2)  = (CT target gene T2 – CT reference gene T2) averaged across all T2 samples in each tissue 

ΔCT(T0)  = (CT target gene T0 – CT reference gene T0) averaged across all T0 samples in each tissue 

 

Relative quantification of gene expression differences across tissues was also 

calculated with the 2
−ΔΔCT

 method. Hypothalamus samples were used as calibrator. For 

instance, in the case of liver samples at T0: 

 

ΔΔCT(liver T0)  = ΔCT (liver T0) – ΔCT(hypothalamus T0) (calibrator) 

ΔCT(liver T0) = [CT(target gene liver T0) – CT(reference genes liver T0)] averaged across all T0 liver 

samples. 

ΔCT(hypothalamus) = [CT(target gene hypothalamus T0) – CT(reference genes hypothalamus T0)] averaged across all 

T0 hypothalamus samples. 

 

In T2, the procedure would be the same but T0 should be replaced by T2 in the above 

formulae.  
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Data were evaluated with the RT-qPCR data analysis software available in the Thermo 

Fisher Cloud (Thermo Fisher Scientific, Barcelona, Spain). The statistical significance of 

the mRNA expression differences between T0 and T2 was assessed with a Student t-test 

and relative quantification (Rq) was expressed in a logarithmic scale (Log2). We 

considered that gene expression between T0 and T2 was significantly different when two 

conditions were met i.e. |log2Rq| > 0.58 and q-value < 0.05. A principal component 

analysis (PCA) of the 120 tissue samples was carried out based on the measured ΔCT 

values without correcting for any calibrator.  All figures were made with the R software 

(https://www.r-project.org/). 

 

Results 

We have examined how the expression of eight clock genes changes in response to 

food ingestion across five tissues. In this study, we did not analyse the CLOCK gene 

because it was not annotated in the Sus scrofa genome v.10.2 (Sscrofa 10.2 assembly; 

https://www.ensembl.org). In Figure 1, we have plotted a PCA of the ΔCT values for eight 

genes and two timepoints (T0 and T2) of all samples from five tissues. It can be seen that 

in general samples cluster according to their tissue of origin (Figure 1A) rather than to the 

T0/T2 timepoints under consideration (Figure 1B), evidencing that tissue is the main factor 

that defines the patterns of clock gene expression. Moreover, the analysis of Figure 1A 

shows that hypothalamus and duodenum samples cluster apart from those of dorsal fat, 

liver, and muscle samples.  

The comparison of the patterns of expression before and after feeding (T0 vs T2 

comparison) indicates that the expression of four (dorsal fat and duodenum), six (skeletal 

muscle) and seven (liver) genes integrated into or modulating peripheral clocks changes in 

response to food ingestion (Table 1). In contrast, none of the eight analysed genes shows 

significant variations of expression in hypothalamus, the tissue where the central clock 

resides (Table 1). Another interesting observation is that in the four tissues containing 

peripheral clocks, the sets of genes showing a significant DE are not the same. For 

instance, in duodenum and muscle, there are four and six genes displaying DE between T0 

and T2, but only two of them (NPAS2 and SIK1) are shared by both tissues (Table 1). In 

contrast, the comparison of genes displaying DE in muscle (6 genes) and liver (7 genes) 

demonstrates the existence of a much higher level of overlap i.e. five genes (BHLHE40, 
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NPAS2, PER1, PER2, and SIK1) are shared by both tissues (Table 1). The Rq values 

(Table 1) do not allow comparing the magnitude of the changes in gene expression across 

tissues because a different calibrator sample has been used in each tissue (e.g. average of 

T0 liver samples for the liver and so on). In order to facilitate the comparison across 

tissues, we have made a second analysis in which the Rq of four tissues (muscle, liver, 

duodenum, and dorsal fat) and two timepoints (T0 and T2) are referred to a calibrator 

based on the average of T0 or T2 hypothalamus samples (Table 2). This analysis evidences 

that the mRNA levels of the eight clock genes are substantially different across tissues. 

Such result explains why in Figure 1 samples are clustered according to their tissue of 

origin whilst the timepoint (T0/T2) would have a much lower effect on sample clustering.      

About the direction (positive = increased mRNA levels in T2, or negative = decreased 

mRNA levels in T2) of the change in expression before and after feeding, there are genes 

that show consistent patterns across tissues whilst others do not. For instance, the NPAS2 

and ARNTL genes display positive log2(Rq) values in the five tissues under analysis (Table 

1), whilst CRY2, PER1 (except dorsal fat) and PER2 (except hypothalamus) generally 

show negative log2(Rq) values (Table 1). In contrast, the direction of the expression 

changes for the BHLHE40 and SIK1 genes is quite variable depending on the tissue under 

consideration. For instance, mRNA levels of the BHLHE40 gene are decreased in liver and 

muscle (log2Rq = -0.94, q-value = 0.01 and log2Rq = -1.11, q-value = 0.00, respectively; 

Table 1), but they are increased in dorsal fat (log2Rq = 1.18, q-value = 0.02, Table 1). The 

expression of the Sik1 gene also presents some degree of tissue specificity, decreasing its 

mRNA levels in liver and muscle (log2Rq = -1.84, q-value = 0.00, and log2Rq = -2.60, q-

value = 0.00, respectively; Table 1), but increasing in duodenum (log2Rq = 1.57, q-value = 

0.04; Table 1).  

 

Discussion 

Clock genes play an essential role in the regulation of metabolic genes in order to 

coordinate their expression across tissues and organs (Jagannath et al, 2017; Patel et al., 

2016; Ribas-Latre & Eckel-Mahan, 2016). We have measured the mRNA expression of 

eight genes that modulate circadian rhythms. The analysis of Figures 1A and 1B evidences 

that tissue, rather than the nutritional status, is the main factor explaining the clustering of 

samples. We observed that hypothalamus and duodenum samples clustered apart from 
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liver, muscle, and dorsal fat samples. Such groupment did not have a clear relationship 

with the embryonic origin of each tissue (hypothalamus: ectoderm, muscle and fat: 

mesoderm, liver and duodenum: endoderm) despite the fact that Ferraz et al. (2008) 

demonstrated, through the analysis of porcine microarray data, that tissues with similar 

developmental origin tend to cluster together indicating that embryonic development 

leaves an enduring footprint on the transcriptome. However, the importance of tissue origin 

in determining the mRNA levels of clock genes is also evidenced by data showing large 

differences in the magnitude of gene expression across tissues (Table 2). 

After feeding, the expression of four (duodenum and dorsal fat) to seven (liver) clock 

genes changed in tissues regulated by peripheral clocks. In strong contrast, the 

hypothalamus, which contains the suprachiasmatic nucleus where the central clock resides, 

did not show any significant change in the mRNA levels of the eight analysed genes (Table 

1). It is well known that food is the main entraining cue (zeitgeber) of peripheral clocks. 

Many studies suggest that feeding conditions can modify the phase of circadian gene 

expression in peripheral tissues while leaving the phase of cyclic gene expression in the 

suprachiasmatic nucleus unaffected (Damiola et al., 2000; Hirota & Fukada, 2004). 

Indeed, the central clock in the suprachiasmatic nucleus is entrained by the 24 h light-

dark cycle and not by feeding. Importantly, the lack of mRNA expression changes in the 

hypothalamus that we have observed when comparing T0 and T2 sows indicates that the 

expression changes that we have observed in the four remaining tissues are not induced by 

the central clock i.e. they are not due to variations in the amount of light between the T0 

and T2 timepoints but to nutrient supply. In order to reach a definitive conclusion, 

however, it would be necessary to specifically characterize the mRNA expression pattern 

of the suprachiasmatic nucleus because the hypothalamus is a very complex tissue 

containing different anatomical areas with specialized functions. In summary, our results 

are consistent with the notion that food intake acts as a dominant “timer” to peripheral 

clocks by delivering nutrients and hormonal signals, and that it does so in a 

suprachiasmatic nucleus-independent manner (Hirota and Fukada, 2004).  

We have observed that the effects of food intake on mRNA expression patterns show 

marked differences across tissues i.e. different sets of genes display changes in their 

mRNA levels, and sometimes the direction of these changes varies across tissues (Table 1). 

These observations might be due to the fact that the timing of nutrient absorption varies 



                                                                                                                                                                                                                                                 

                                                                                                              Papers and Studies       

 

155 

 

from tissue to tissue. After food ingestion, the majority of nutrients are absorbed in the 

intestine and the first organ that glucose and amino acids reach, through the portal system 

which drains blood from the gastrointestinal tract and other organs, is the liver (Frayn, 

2010). Afterwards, glucose and amino acids reach the general circulation and they are 

absorbed in the skeletal muscle and adipose tissue (Frayn, 2010). On the other hand, the 

absorption and distribution of lipids are delayed, if compared with that of soluble nutrients, 

because they are packaged as chylomicrons in the intestine (Frayn, 2010). Thus, the 

expression of clock genes in distinct tissues may reflect to some extent the specific timing 

of nutrient absorption in each organ. Paradoxically, and despite the sequence of events 

outlined above, the overlap between the sets of DE genes is much higher in the liver vs 

muscle comparison than in the dorsal fat vs muscle comparison. This apparent 

contradiction might be explained by additional factors related to tissue function and 

environmental cues operating at a tissue-specific level. For instance, one fundamental 

difference between skeletal muscle and adipose depots is that the latter not only absorbs 

nutrients but also releases non-esterified fatty acids that are used as a source of energy 

during fasting  (Frayn, 2010). The rhythmic release of free fatty acids and glycerol from 

adipocytes is locally regulated by clock genes (Shostak et al , 2013; Yoshino & Klein, 

2013). In the case of the intestine, an additional key regulatory factor that modulates 

circadian rhythms is the microbiome. In this regard, Mukherji et al. (2013) have shown that 

the absence of intestinal microbiota alters drastically circadian gene expression and the 

cyclic production of corticosterone by the ileum, causing hyperglycemia, 

hypertrigliceridemia and insulin resistance (Henao-Mejia et al., 2013; Mukherji et al., 

2013). Additionally, specific microbial metabolites, as short-chain fatty acids, may directly 

modulate circadian clock gene promoting diet-induced obesity by modification of the 

central and hepatic circadian rhythm (Leone et al., 2015). Another distinctive feature of the 

gastrointestinal tract is the secretion of large amounts of extrapineal melatonin, an 

hormone that can contribute to the synchronization of the peripheral clocks (Liu et al., 

1997). Finally, the timing and phasing of clock gene expression differ across tissues 

because they are subject to distinct regulatory cues and, moreover, they serve distinct 

metabolic roles. Such organ-specific differences were recently reported in a study 

analysing the expression of clock genes in mouse liver and stomach and demonstrating that 

the acrophase of several clock genes was delayed in the stomach (Mazzoccoli et al., 2012). 

Storch et al. (2002) also showed that the distributions of circadian phases in the liver and 
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heart are substantially different and that a reduced number of genes show circadian 

regulation in both tissues. Importantly, Storch et al. (2002), highlighted that this specificity 

of circadian regulation is not explained by the tissue-specific patterns of gene expression.  

When comparing the mRNA expression patterns of T0 and T2 sows, we have observed 

that the NPAS2 and ARNTL genes display positive log2(Rq) values in the five tissues under 

analysis (Table 1), whilst CRY2, PER1 (except dorsal fat) and PER2 (except 

hypothalamus) generally show negative log2(Rq) values (Table 1). These observations 

could be explained by the existence of a negative feedback loop regulating the expression 

of the NPAS2/ARNTL and CRY and PER genes. In this way, the NPAS2/ARNTL 

heterodimers stimulate the transcription of PER and CRY genes. When PER and CRY 

reach a certain concentration threshold in the cytosol, they translocate to the nucleus and 

repress the expression of the NPAS2/ARNTL genes (Partch et al., 2014). In consequence, a 

certain degree of antagonism in the expression of NPAS2/ARNTL and PER/CRY genes 

could be anticipated. With regard to NR1D1 (also known as REV-ERBα), it is known that 

this nuclear receptor binds ROR-specific response elements in the promoter of the ARNTL 

gene, thus hindering the binding of the positive transcription regulator RORα (Mazzoccoli 

et al., 2012; Nakashima et al., 2008). This inhibitory role of NR1D1 on ARNTL mRNA 

expression agrees well with the fact that most of log2(Rq) values of this gene are negative 

(except in the skeletal muscle).  
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Figure  1 - Principal component analysis of the ΔCT values of clock genes in five tissues (hypothalamus, liver, duodenum, muscle and dorsal fat) 

and two timepoints (T0 = fasting sows, T2 = fed sows). A) comparison between time-points; B) comparison between tissues. The ΔCT values 

are defined as: CT(targeted gene) – CT(reference gene). 
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  Table 1 - Differential clock gene expression at fasting (T0) and 7 h after eating (T2) in five porcine tissues
1.  

  Dorsal Fat Duodenum Hypothalamus Liver Muscle 

  q-value log2(Rq) q-value log2(Rq) q-value log2(Rq) q-value log2(Rq) q-value log2(Rq) 

ARNTL 0.00 2.12 0.02 1.16 0.41 0.36 0.00 1.40 0.27 0.56 

BHLHE40 0.02 1.18 1.00 0.55 0.75 -0.17 0.01 -0.94 0.00 -1.11 

CRY2 0.74 -0.24 1.00 -0.41 0.72 -0.19 0.17 -0.47 0.01 -1.32 

NPAS2 0.02 0.68 0.02 1.05 0.12 0.71 0.00 2.07 0.00 1.02 

NR1D1 0.02 -1.08 0.03 -1.48 1.00 -0.15 0.00 -1.93 1.00 0.29 

PER1 1.00 0.16 1.00 -0.05 0.50 -0.48 0.01 -1.05 0.00 -1.22 

PER2 1.00 -0.14 1.00 -0.48 1.00 0.10 0.03 -1.06 0.00 -1.46 

SIK1 1.00 0.00 0.04 1.57 1.00 0.10 0.00 -1.84 0.00 -2.60 

1
 Genes showing a significant DE are indicated in bold. A positive log2(Rq) indicates up-regulation in the T2 timepoint and a negative log2(Rq) 

indicates down-regulation in the T2 timepoint. 
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  Table 2 - Differential clock gene expression in different tissues at fasting (T0) and 7 h after eating (T2) in comparison to hypothalamus 
1
.  

1
Differentially expressed genes are shown in bold. A positive log2(Rq) indicates up-regulation in the targeted tissue when compared with the 

hypothalamus and a negative log2(Rq) indicates down-regulation in the analysed tissue in comparison to hypothalamus. 

 

  

T0 timepoint 

  Dorsal Fat Duodenum Liver Muscle 

  q-value log2(Rq) q-value log2(Rq) q-value log2(Rq) q-value log2(Rq) 

ARNTL 0.03 -1.02 0.00 -1.93 0.98 0.12 0.82 0.23 

BHLHE40 0.00 1.51 0.08 -0.93 0.00 1.50 0.00 3.58 

CRY2 0.71 0.22 0.46 0.45 0.00 -1.53 0.00 2.38 

NPAS2 0.00 -2.53 0.00 -1.67 0.00 -4.88 0.00 -3.66 

NR1D1 0.14 0.54 0.12 0.75 0.03 -0.92 0.56 -0.34 

PER1 0.00 2.37 0.00 -2.57 0.02 1.01 0.00 1.36 

PER2 0.00 1.08 0.00 -2.36 0.00 1.84 0.00 2.01 

SIK1 0.00 3.18 0.01 1.21 0.00 2.35 0.00 2.27 

T2 Timepoint 

  Dorsal Fat Duodenum Liver Muscle 

  q-value log2(Rq) q-value log2(Rq) q-value log2(Rq) q-value log2(Rq) 

ARNTL 0.00 1.38 0.93 0.18 0.00 1.34 0.00 1.09 

BHLHE40 0.00 3.50 0.36 0.51 0.00 1.32 0.00 3.27 

CRY2 0.01 0.75 0.02 0.90 0.00 -1.51 0.00 1.90 

NPAS2 0.00 -2.04 0.06 -0.71 0.00 -3.38 0.00 -2.81 

NR1D1 0.54 0.31 0.88 -0.16 0.00 -2.56 0.10 0.89 

PER1 0.00 3.64 0.00 -1.43 0.11 0.75 0.01 1.27 

PER2 0.00 1.49 0.00 -2.34 0.03 0.91 0.00 1.08 

SIK1 0.00 3.63 0.00 2.88 0.14 0.63 0.99 0.12 
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The BHLHE40 gene displays positive log2(Rq) values in dorsal fat and duodenum, and 

negative values in hypothalamus, liver, and muscle (Table 1). On the other hand, the SIK1 

gene displays positive log2(Rq) values in duodenum and negative values in liver and 

muscle (Table 1), a pattern of expression that resembles that of BHLHE40. Interestingly, 

the functional analysis of the SIK1 gene has shown that it is expressed in the 

suprachiasmatic nucleus and that it modulates the entrainment of the central circadian 

clock by light (Jagannath et al., 2013). Our results indicate that SIK1 mRNA levels in  

liver, muscle and duodenum are also influenced by nutrition, thus suggesting that SIK1 

could also play a role in the fine tuning of peripheral clocks. The general picture that 

emerges from our results is that the sign of the log2(Rq) values of BHLHE40 and SIK1 can 

be positive or negative depending on the tissue under consideration (Table 1). Indeed, 

these genes are not only involved in the maintenance of circadian rhythms but also in many 

other biological processes, so their mRNA levels are determined by a multiplicity of 

factors and complex interactions. For instance, BHLHE40 proteins repress the 

NPAS2/ARNTL transactivation of the PER1 gene promoter by competing for E-box 

binding and interacting with ARNTL (Honma et al. 2002). In addition, this transcription 

factor regulates cell proliferation and differentiation (Shen et al., 1997), adipogenesis 

(Ozaki et al., 2012), cytokine production by T cells (Lin et al., 2014), apoptosis (Qian et al, 

2012) and cellular senescence (Yingjuan et al, 2008). Similarly, the SIK1 gene performs a 

broad variety of functions related with inflammation (Lombardi et al, 2016), 

steroidogenesis (Hu et al, 2015), renal function (Taub et al., 2015), vascular remodeling 

(Bertorello et al., 2015) and glucose metabolism (Patel et al., 2014), to mention a few, so 

its biological role goes far beyond the modulation of circadian rhythms and this is reflected 

in its variable pattern of expression across porcine tissues.  

In a previous work, we demonstrated, by using an RNA-Seq approach, that the 

expression of clock genes in the porcine skeletal muscle changes in response to food 

ingestion (Cardoso et al., 2017). Here, we have confirmed this result by using a RT-qPCR 

approach and we have also provided evidence that the expression of clock genes is affected 

by nutrient supply in three additional tissues regulated by peripheral clocks (duodenum, 

liver, and dorsal fat), but not in the hypothalamus, which contains the central master clock 

entrained by light. We also show that the pattern of expression of these clock genes differs 

across tissues, suggesting a differential modulation of circadian rhythms not only in time 

but also in space.  
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Abstract 

The Mangalitza pig breed has suffered strong demographic reductions due to 

competition with more productive cosmopolitan breeds. Four main varieties were created 

one century ago by artificial selection and admixture i.e. Red Mangalitza, Black 

Mangalitza (extinct), Blond Mangalitza and Swallow Belly Mangalitza, which has a black 

coat combined with yellow blond throat and underbelly. In the current work, we aimed to 

test two hypotheses: (1) that population recession has resulted in the contraction of the 

genetic diversity of Mangalitza pigs, and (2) that the red and blond colorations of 

Mangalitza pigs are genetically determined by one or a few loci. The analysis of BeadChip 

SNP60 genotypes of 45 Red (N = 20 from Hungary and N = 25 from Romania) and 37 

Blond Mangalitza pigs and 191 pigs from the Hampshire, Duroc, Landrace, Large White, 

Piétrain breeds plus 46 wild boars from Romania and Hungary revealed that Hungarian 

and Romanian Red Mangalitza pigs and Romanian wild boars display an increased 

frequency of very long ROH (> 30 Mb), evidencing the occurrence of a recent and strong 

inbreeding. We also observed that Blond Mangalitza, Red Mangalitza from Hungary, wild 

boar from Hungary and Romania and Hampshire pigs display lower levels of 

heterozygosity than cosmopolitan breeds such as Landrace, Large White and Piétrain. 

Performance of a selection scan with hapFLK and of a GWAS for coat color in Red and 

Blond Mangalitza pigs highlighted the existence of one region on SSC16 (20 Mb) with 

potential effects on pigmentation. The analysis of the gene content of this region allowed 

us to detect the solute carrier family 45 member 2 (SLC45A2) gene, whose polymorphism 

has been associated with reduced levels or absence of melanin in many mammalian species. 

The genotyping of three missense polymorphisms in the porcine SLC45A2 gene evidenced 

that c.806G>A (p.Gly269Glu) and c.956G>A (p.Arg319His) SNPs are strongly but not 

fully associated with the red and blond coat colors of Mangalitza pigs. Alternative 

genotypes were nearly fixed in Red and Mangalitza pigs illustrating the consequences of 

divergent directional selection for coat color in a domestic species.   

 

Keywords: SNPs, Mangalitza, color coat, population 
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Introduction 

Many European local pig breeds have experienced a sustained demographic recession 

due to indiscriminate crossbreeding, competition with more productive breeds, decline of 

traditional production systems, progressive abandonment of rural activities and loss of 

grazing land (FAO, 2015).  In Europe and the Caucasus, at least 90 breeds have 

disappeared and many others are endangered or face extinction (FAO, 2015). One 

appropriate model to investigate the genetic consequences of such strong demographic 

contractions is the Mangalitza breed, which is distributed in Hungary and, with a much 

lower population census, in Romania, Germany, Austria and Switzerland (Egerszegi, 

Rátky, Solti, & Brüssow, 2003). In 1927-1930, there were 1,000-1,920 Mangalitza pigs in 

Hungary, and this number peaked to 17,691 individuals in 1955. However, this breed 

experienced a very serious demographic decline during the two subsequent decades, 

mainly due to competition with more productive breeds. Noteworthy, only 34 breeding 

sows were registered in the herd-book in 1975 (Egerszegi et al., 2003). Fortunately, the 

establishment of conservation genetic plans allowed the demographic recovery of this 

breed (Egerszegi et al., 2003). In Romania, the Mangalitza breed accounted for 500 

individuals in 1983, but only 34 pigs remained in 1996 and nowadays this population faces 

extinction (Egerszegi et al., 2003) and it has a low diversity (Manunza et al., 2016). In 

principle, this sustained demographic decline is expected to reduce genetic variation and to 

increase the levels of inbreeding of Mangalitza pigs, two features that might threaten the 

genetic conservation of this ancient traditional breed.  

The Mangalitza breed also constitutes an appropriate genetic model for investigating 

the inheritance of color in European pigs because several varieties with distinct 

pigmentation patterns have been created through artificial selection (Egerszegi et al., 

2003). The Blond variety was probably obtained in the 19
th

 century by crossing small 

ancient Alföldi pigs with Serbian Sumadia swine, and one of its main features is a dense 

and curly hair with a coloration that might go from grey-yellow to ruddy (Egerszegi et al., 

2003). The Black variety, which became extinct in the 20
th

 century, was crossed with the 

Blond one to yield Swallow Belly Mangalitza. These pigs have a black coat combined with 

yellow blond throat and underbelly (Egerszegi et al., 2003). Finally, the Red variety is the 

result of crossing Blond Mangalitza with Szalontai pigs and arose during the second half of 

the 19
th

 century (Egerszegi et al., 2003). The hypothesis that we wanted to test in the 

current work were: (1) that the strong population reduction that the Mangalitza breed has 
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experienced during the second half of the 20
th

 century has severely constrained the genetic 

diversity of this breed, and (2) that the blond vs red pigmentation patterns that were 

established in the Mangalitza breed by artificial selection one century ago are genetically 

determined by one or few loci.  

 

Materials and Methods 

Sample collection, DNA extraction and genotyping 

Blood from Blond Mangalitza (N = 37) and Red Mangalitza from Hungary (N = 20) 

and Red Mangalitza from Romania (N = 25) was collected in EDTA coated vacutainer 

tubes. For comparative purposes, several reference populations were included in this study: 

Blond Mangalitza x Duroc crossed pigs (N = 48), Bazna (N = 5), Duroc (N = 56), 

Hampshire (N = 11), Landrace (N = 29), Large White (N = 27), Piétrain (N = 20) and wild 

boar from Hungary (N = 28) and Romania (N = 25). DNA was isolated from the samples 

using a simple protocol (Zsolnai et al., 2003). In case of samples genotyped with the 

Illumina Infinium HD Porcine SNP60 BeadChip (Illumina, San Diego, CA) or GGP 

50K Porcine SNP chip (Neogen, Scotland, UK), the service provider performed the DNA 

preparation from blood. A series of quality control procedures were conducted on the raw 

data using SVS SNP & Variation Suite 8.8.1. software (Golden Helix, Bozeman, MT, 

USA). Linkage disequilibrium (LD; r
2
 > 0.5) pruning was applied to the whole dataset. 

Linkage disequilibrium between adjacent SNPs was calculated with the genotype 

correlation coefficient (r
2
). In addition, monomorphic markers and unmapped SNPs, as 

well as those with a call rate < 95%, were eliminated from the dataset. In addition, we 

removed SNPs with a minor allele frequency (MAF) lower than 0.05. Duplicated samples 

(IBD > 0.95) and individuals with a genotype call rate < 95% were removed. After filtering 

steps, the final dataset included 324 animals and 30,121 SNPs (Table 1).  

 

Population genetics analyses 

The proportion of mixed ancestry and population structure were evaluated with the 

ADMIXTURE software v.1.3 (Alexander et al., 2009) by using default parameters. 

ADMIXTURE calculates maximum likelihood estimates of individual ancestries based on 

data provided by multiple loci. We evaluated different numbers of clusters (K-value, from 
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2 to 12) by considering the mixed ancestry model. The optimal K-value was determined by 

taking into account the estimates of the cross-validation errors (Alexander & Lange, 2011). 

PLINK software v1.7 (Purcell et al., 2007) was used to calculate observed (Ho) and 

expected (He) heterozygosities. This software was also used to build a multidimensional 

scaling (MDS) plot by using a genome-wide identity-by-state pairwise distances matrix (--

mds-plot 2 and --cluster options). The analysis of runs of homozygosity (ROH) was also 

carried out with PLINK v1.7 (Purcell et al., 2007).  We defined ROH as homozygous 

genomic stretches with a length of at least 1 Mb containing a minimum number of 15 SNP 

markers with adjusted parameters (--homozyg-density 1000, --homozyg-window-threshold 

0.001, --homozyg-window-missing 5 and --homozyg-window-het 1). The inbreeding 

coefficient derived from ROHs (FROH) was calculated by dividing total ROH length per 

individual by total genome length across all 18 autosomes (2,502 Mb). 

 

Selection scan and genome-wide association analysis 

In order to investigate the genetic basis of red vs blond pigmentation in Mangalitza 

pigs, we carried out a selection scan and a genome-wide association analysis (GWAS). 

Selection signatures were detected with the hapFLK statistic (Fariello et al., 2013). In the 

hapFLK analysis, the number of haplotype clusters was set to 20 and the hapFLK statistic 

was calculated as the average of 30 expectation maximization iterations. Multiple testing 

correction was done by using a false discovery rate approach (Storey & Tibshirani, 2003).  

The GWAS was performed by employing a multivariate likelihood ratio test 

implemented in the GEMMA software (Zhou & Stephens, 2014). Briefly, a single-SNP 

association analysis was performed under an additive genetic model that included the 

genomic kinship matrix to account for relatedness. We used the following statistical model 

to analyze coat color traits: 

 

y = Wα + xβ + u + ε, 

 

where y is the vector of phenotypes (red or blond in this case) for all individuals; W is a 

matrix of covariates, i.e. country of origin (Hungary or Romania); α is a vector of the 

corresponding coefficients including the intercept; x is a vector of genotypes of a marker; β 
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is the effect size of the marker; u is a vector of random individual effects with an n-

dimensional multivariate normal distribution MVNn (0, λ τ
−1

 K), where τ
−1

 is the variance 

of the residual errors, λ is the ratio between the two variance components and K is a known 

relatedness matrix derived from SNPs; Z is an n × m loading matrix and ε is a vector of 

errors with an n-dimensional multivariate normal distribution MVNn (0,   τ
−1

 In), where In 

is an n × n identity matrix. Correction for multiple testing was implemented with a false 

discovery rate approach (Benjamini & Hochberg, 1995), and SNPs with a q-value < 0.05 

were considered as significantly associated with pigmentation. 

 

Genotyping of the SLC45A2 gene. 

The selection of SLC45A2 polymorphisms to be typed in our animal material was based 

on a set of whole-genome sequences (SRA access: SRP039012) from Mangalitza Blond 

and Red pigs reported by Molnár et al. (2014). Variant discovery procedures followed the 

GATK Best Practices workflow for SNP calling on DNA-seq data 

(https://gatkforums.broadinstitute.org /gatk/discussion/3238/best-practices-for-variant-

discovery-in-dnaseq).  Briefly, sequence reads were mapped to the porcine reference 

genome (Sscrofa 10.2, https://www.ensembl.org/) and duplicate reads were removed. 

Variant calling was carried out by running the HaplotypeCaller for the BAM files 

corresponding to each sample. The potential effects and impact of SNPs were predicted 

with the SnpEff software v4.3s (Cingolani et al., 2012). We used SIFT (Sorting Intolerant 

from Tolerant; Kumar et al., 2009) and PANTHER (Protein ANalysis THrough 

Evolutionary Relationships; Thomas et al., 2003) as in silico tools to identify the functional 

impact of missense mutations. SIFT prediction is based on the sequence homology and the 

physico-chemical properties of amino acids which are dictated by the substituted amino 

acid (Kumar et al., 2009). PANTHER program is a protein family and subfamily database 

which predicts the frequency of the occurrence of certain amino acid at a particular 

position in evolutionarily related protein sequences (Thomas et al., 2003). On the basis of 

such analyses, we selected three missense SNPs that had a differential distribution in Red 

and Blond Mangalitza pigs i.e. rs341599992 (c.806G>A, p.Gly269Glu), rs327001340 

(c.829A>G, p.Ser277Gly) and rs693695020 (c.956G>A, p.Arg319His). These SNPs were 

typed in an independent sample of 209 pigs from the Blond Mangalitza (N = 55), Red 

Mangalitza (N = 65), Swallow Belly Mangalitza (N = 30), Piétrain (N = 15), Large white 

https://gatkforums.broadinstitute.org/
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(N = 15), Landrace (N = 15) and Duroc (N = 14) breeds. Genotyping tasks were carried out 

by the Molecular Genetics Veterinary Service from the Universitat Autonoma de 

Barcelona (http://sct.uab.cat/svgm/en) by using a QuantStudio 12K Flex Real-Time PCR 

System (ThermoFisher Scientific,  Waltham, Massachusetts, USA). The association 

analysis between SLC45A2 SNPs and coat color in Red and Blond Mangalitza pigs was 

based on a chi-square test, and the effect of SLC45A2 gene variants was calculated as odds 

ratios by using the R software (https://www.r-project.org/). 

 

Results 

Autosomal diversity and population structure 

To investigate the genetic relationships between Red and Blond Mangalitza and other 

pig and wild boar populations, we built an MDS plot based on genome-wide identity-by-

state pairwise distances calculated with PLINK (Figure 1). The first principal component 

separated Duroc pigs from the remaining breeds (Figure 1). As expected, Blonde 

Mangalitza x Duroc crossed pigs occupied an intermediate position between both parental 

populations. In the second component, the cosmopolitan breeds Landrace, Large White and 

Piétrain clustered independently from Mangalitza pigs and Romanian and Hungarian wild 

boars. The Hampshire and Bazna pigs occupied an intermediate position between these 

two clusters. We also observed that Blond, Hungarian Red, and Romanian Red Mangalitza 

formed three different subclusters, highlighting that these populations are genetically 

differentiated. Moreover, we detected a close relationship between Mangalitza pigs and 

Romanian and Hungarian wild boars. Descriptive statistics of genetic diversity are shown 

in Table 1. Expected and observed heterozygosities were higher in Landrace, Large White 

and Piétrain pigs (Ho = 0.35-0.36, He = 0.35) than in Blond Mangalitza, Red Mangalitza 

from Hungary, wild boar from Hungary and Romania and Hampshire pigs (Ho = 0.27-0.29, 

He = 0.24-0.31). Surprisingly, the diversity of Red Mangalitza pigs from Romania (Ho = He 

= 0.35) was more similar to that of cosmopolitan breeds than to the Romanian and 

Hungarian domestic and wild pig populations. Finally, Blond Mangalitza x Duroc swine 

showed high levels of heterozygosity because of their hybrid origin (Ho = 0.40, He = 0.32)     

The results of the Admixture analysis at K = 12 (Figure 2), the K-value with the lowest 

cross-validation error, provided evidence of genetic admixture for Blond Mangalitza x 

Duroc crossbreds, a result that was clearly expectable due to their hybrid origin, and also 
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for Bazna pigs. We observed that Romanian Red, Hungarian Red, and Blond Mangalitza 

pigs have distinct genetic backgrounds and that Hungarian wild boars share part of their 

genetic background with Red Mangalitza from Hungary and Blond Mangalitza (also from 

Hungary), but not with the four cosmopolitan breeds (Duroc, Large White, Landrace, and 

Piétrain). In contrast, and as previously published by Manunza et al. (2016), two Romanian 

wild boars had been clearly introgressed with cosmopolitan breeds (probably Large 

White). At K = 3, Duroc, the three remaining cosmopolitan breeds (Large White, 

Landrace, Piétrain) and Romanian and Hungarian populations formed three distinct groups 

(Additional file 1),  and at K >= 4 we observed that Red Mangalitza from Hungary and 

Romania shared the same background which was different from the one displayed by 

Blond Mangalitza pigs (Additional file 1). From K=8 the common background of Reds of 

Hungary and Romania splits. Giving hints for looking at descendants of Romanian Red 

Mangalitza line(s) which are not present today in Hungary. 

 

 

Figure 1 - Multidimensional scaling plot (MDS) depicting the relationships between 

Mangalitza pigs and other wild boar and pig populations. Abbreviations are defined in Table 1. 
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 Table  1 - Summary statistics calculated over the whole set of pig populations.  

Code Breed (place of collection) 
Number of 

animals 
FROH 

Observed (Ho) 

heterozygosities 

Expected (He) 

heterozygosities 

BAZNA Bazna (Hungary) 5 - - - 

BLODU 
Blond Mangalitza x Duroc 

(Hungary) 
48 0.01 0.40 0.32 

BLOMA Blond Mangalitza (Hungary) 37 0.13 0.28 0.28 

DUROC Duroc (Hungary) 56 0.20 0.30 0.30 

HAMPS Hampshire (Hungary) 11 0.18 0.28 0.24 

HUNWB Wild boar (Hungary) 28 0.15 0.27 0.29 

LANDR Landrace (Hungary) 29 0.11 0.35 0.35 

LWHITE Large White (Hungary) 27 0.10 0.36 0.35 

PIÉTRAIN Piétrain (Hungary) 20 0.13 0.36 0.35 

REDMAH Red Mangalitza (Hungary) 20 0.18 0.29 0.28 

REDMAR Red Mangalitza (Romania) 25 0.11 0.35 0.35 

ROMWB Wild boar (Romania) 18 0.12 0.27 0.31 
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Figure 2-  Admixture analysis of Mangalitza pigs and additional wild boar and pig 

populations for the K-value with the lowest cross-validation error (K = 12). Each individual is 

represented by a single column divided into K colored segments, where K is the number of 

assumed clusters. Populations are separated by black lines. Abbreviations are defined in Table 1. 

 

Analysis of runs of homozygosity 

We have characterized the length, distribution, and frequency of ROH in the 12 

populations under analysis. In general, short and medium ROH (5-15 Mb) were much 

more frequent than long (15-30 Mb) or very long (> 30 Mb) ROH (Figure 3). The 

relatively low frequency of very short ROH (1-5 Mb) might have technical reasons i.e. 

with low-resolution SNP chips short ROH are more difficult to detect than the long ones. A 

comparative analysis of ROH classes revealed that Bazna, Red Mangalitza from Romania 

and Hungary and Romanian wild boars had the highest frequencies of very long ROH (> 

30 Mb), while the levels of homozygosity in Blond Mangalitza x Duroc crossbred pigs 

were negligible. The number of ROH (but not the ROH coverage) was particularly high in 

Duroc pigs (Figure 4), while the individuals displaying the highest total ROH length (> 

600 Mb) belonged to the Hungarian and Romanian wild boar, Duroc and Red Mangalitza 

populations (Figure 4). The FROH coefficients (Table 1) were higher in Blond Mangalitza, 

Red Mangalitza from Hungary, wild boar from Hungary and Romania and Hampshire pigs 

(FROH = 0.12-0.18) than in the Landrace, Large White and Piétrain breeds (FROH = 0.11-

0.13). 
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Figure 3  - Classification of the runs of homozygosity identified in Mangalitza pigs and 

additional wild boar and pig populations based on their size. Abbreviations are defined in Table 

1.  

 

 

Figure 4 - Number and total length of runs of homozygosity (ROH) in Mangalitza pigs 

and additional wild boar and pig populations.  The number of ROH estimated in each individual 

genome (y-axis) is plotted against total ROH total size (i.e. the number of Mb covered by ROH in 

each genome, x-axis). Abbreviations are defined in Table 1. 
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Selection scan and genome-wide association study for coat coloration in 

Mangalitza pigs  

To identify the genes responsible for the coat coloration in Mangalitza pigs, we 

performed a selection scan by using the hapFLK software (Fariello et al., 2013). We only 

detected three putative selective sweeps on SSC7 (65.9-65.9 and 68.0-68.4 Mb), SSC13 

(24.5-67.0 Mb) and SSC15 (129.5-133.9 Mb) that remained significant after correction for 

multiple testing (Figure 5 and Table 2). At the nominal level of significance (Table 2), 

twelve additional putative selective sweeps were detected on SSC2 (152.1-152.2 Mb), 

SSC3 (4.9-5.4 Mb), SSC6 (27.9-28.1 Mb), SSC7 (50.9-51.7 Mb), SSC11 (22.3-25.6 Mb), 

SSC12 (2.4-8.6 Mb), SSC15 (35.7-53.1 Mb), SSC16 (19.3-28.4, 35.0-52.4, 60.5-60.7 and 

70.6-71.7 Mb) and SSC17 (60.5-65.8 Mb). As a complementary approach, we carried out a 

GWAS for red vs blond coloration by using the GEMMA (Xiang Zhou & Stephens, 2014) 

software (Additional file 2 and Table 3). This analysis indicated that the SSC16 (20 Mb) 

region is the one displaying the most significant associations with coat color. In addition, 

we found five regions on SSC11, SSC13, SSC15, and SSC16 that were associated with 

coat color in the GEMMA analysis and that showed evidence of containing selective 

sweeps in the hapFLK study (Tables 2 and 3). A detailed analysis of the gene content of 

regions identified by both the GWAS and the hapFLK analysis made possible to identify 

the SLC45A2 gene as potential candidate locus for pigmentation. Importantly, this gene 

maps to the region identified in the GWAS as showing the strongest evidence of being 

involved in the coloration of Mangalitza pigs. 

  

Figure  5 - Genome scan for selection in Red and Blond Mangalitza pigs using the hapFLK 

test. Genomic coordinates and statistical significance (−log10 P-values) are plotted in the x- and y-

axis, respectively.  Blue and red lines indicate the thresholds of significance set at 0.05 before 

(nominal P-value) and after (q-value) correction for multiple testing, respectively. 
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    Table 2 - Putative selective sweeps identified in the hapFLK-based analysis. 

CHR Regions (Mb) Flanking SNPs Number of SNPs Raw P-value q-value 

2 152.1-152.2 ASGA0012708 - ASGA0103431 2 0.041 0.285 

3 4.9-5.4 ALGA0107454 - M1GA0003719 15 0.041 0.284 

6 27.9-28.1 ASGA0082257 - ASGA0085552 4 0.047 0.324 

7 

50.9-51.7 ASGA0033485 - H3GA0021430 13 0.041 0.284 

65.9-65.9 H3GA0021970 - ALGA0042379 2 0.005 0.049 

68.0 - 68.4 INRA0026293 - ALGA0042379 1 0.005 0.048 

11 22.3-25.6 ALGA0116830 - ALGA0061566 69 0.023 0.172 

12 2.4-8.6 MARC0063986 - ALGA0064723 138 0.013 0.112 

13 24.5-67.7 MARC0001222 -ALGA0070577 475 0.000 0.001 

15 
35.7-53.1 ALGA0112215 - ALGA0085228 192 0.006 0.052 

129.5-133.9 ALGA0112215 - ALGA0085228 68 0.002 0.013 

16 

19.3-28.4 H3GA0053033 - ASGA0096846 141 0.008 0.069 

35.0-52.4 ASGA0099845 - ASGA0073361 180 0.009 0.080 

60.5-60.7 ASGA0073624 - ASGA0073630 4 0.046 0.313 

70.6-71.7 ALGA0091290 - ALGA0091354 17 0.041 0.284 

17 60.5 - 65.8 ALGA0095912 - INRA0054882 97 0.006 0.051 

Those sweeps consistently found with GWAS analysis are shown in bold. CHR = chromosome, Mb = Megabase.  
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 Table 3 - Markers associated with the coat pigmentation of Red vs Blond Mangalitza pigs.  

Chr SNP Region (Mb) A1 MAF δ ± SE P-value q-value 

1 H3GA0004085 268.57 T 0.201 1.59E-01 ± 3.81E-02 5.51E-05 4.95E-02 

3 MARC0076501 13.16 T 0.463 -1.87E-01 ± 4.16E-02 1.58E-05 2.20E-02 

4 ALGA0023180 11.95 C 0.305 1.77E-01 ± 3.66E-02 4.07E-06 8.10E-03 

6 
ALGA0104612 10.07 C 0.287 1.65E-01 ± 3.90E-02 4.18E-05 4.02E-02 

ASGA0084188 84.01 G 0.012 4.81E-01 ± 1.09E-01 2.09E-05 2.49E-02 

8 ALGA0049975 141.98 A 0.378 -1.42E-01 ± 3.11E-02 1.19E-05 1.84E-02 

9 ALGA0106913 152.71 C 0.259 2.04E-01 ± 4.63E-02 2.14E-05 2.49E-02 

11 ALGA0061440 24.06 T 0.195 2.28E-01 ± 4.50E-02 1.52E-06 4.06E-03 

12 

ASGA0100764 13.47 A 0.36 -1.57E-01 ± 3.35E-02 7.73E-06 1.33E-02 

ALGA0065183 14.21 T 0.329 1.93E-01 ± 3.82E-02 1.60E-06 4.06E-03 

ASGA0083985 15.00 A 0.396 1.36E-01 ± 3.18E-02 3.70E-05 3.68E-02 

MARC0040976 15.89 G 0.037 3.58E-01 ± 7.26E-02 2.67E-06 6.21E-03 

H3GA0053469 46.59 G 0.238 2.51E-01 ± 4.86E-02 1.08E-06 4.06E-03 

13 

ALGA0123031 25.91 T 0.439 -1.52E-01 ± 3.51E-02 3.02E-05 3.23E-02 

ALGA0069677 40.63 G 0.061 2.23E-01 ± 5.28E-02 4.33E-05 4.02E-02 

ALGA0073466 199.92 T 0.47 -1.78E-01 ± 3.47E-02 1.27E-06 4.06E-03 

14 ALGA0081626 133.51 T 0.396 -1.92E-01 ± 3.38E-02 1.17E-07 1.09E-03 

15 

MARC0003646 38.89 C 0.329 1.51E-01 ± 3.41E-02 1.88E-05 2.49E-02 

MARC0084849 52.27 T 0.25 1.68E-01 ± 3.28E-02 1.24E-06 4.06E-03 

ASGA0070586 133.16 T 0.366 1.35E-01 ± 3.06E-02 2.14E-05 2.49E-02 

16 

H3GA0053033 19.38 A 0.488 1.81E-01 ± 3.56E-02 1.44E-06 4.06E-03 

ASGA0097489 19.77 A 0.494 1.96E-01 ± 3.37E-02 6.44E-08 8.97E-04 

MARC0032767 20.30 G 0.427 -2.42E-01 ± 3.67E-02 2.00E-09 5.58E-05 

MARC0010290 20.67 A 0.494 -1.64E-01 ± 3.53E-02 8.12E-06 1.33E-02 

H3GA0046337 26.74 C 0.39 1.46E-01 ± 3.21E-02 1.33E-05 1.95E-02 

ALGA0090377 39.05 A 0.482 -1.34E-01 ± 3.09E-02 2.94E-05 3.23E-02 

ALGA0090577 48.09 T 0.439 1.65E-01 ± 3.51E-02 7.27E-06 1.33E-02 

ASGA0073624 60.52 G 0.378 1.71E-01 ± 3.53E-02 3.76E-06 8.06E-03 

17 ALGA0093727 24.01 G 0.494 1.42E-01 ± 3.31E-02 3.30E-05 3.41E-02 

18 ALGA0118541 0.12 G 0.262 2.62E-01 ± 5.01E-02 8.09E-07 4.06E-03 

SSC: porcine chromosome, SNP: SNP displaying the significant association with the trait under study, Region (Mb): region containing SNPs significantly associated 

with the trait under study in megabase, A1: minority allele, MAF: frequency of the minority allele, δ: allelic effect and its standard error (SE), P-value: nominal P-value, 

q-value: q-value calculated with a false discovery rate approach. 
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Analysis of the segregation of three SLC45A2 missense polymorphisms in 

Mangalitza pigs with distinct coat coloration. 

The analysis of the gene content of the SSC16 (20 Mb) region, which was based on the 

annotation of the Ensembl database (https://www.ensembl.org), highlighted the solute 

carrier family 45 member 2 (SLC45A2) locus as a potential candidate gene to explain the 

segregation of coat color. The comparison of whole-genome sequences from one Red, one 

Swallow Belly and two Blond Mangalitza pigs (SRA access: SRP039012) reported by 

Molnar et al. (2014) made possible to detect 394 SNPs mapping to the SLC45A2 gene 

(Additional file 3). Amongst this set of polymorphisms, we identified three missense 

SNPs, i.e. rs341599992 (c.806G>A, p.Gly269Glu, in exon 3), rs327001340 (c.829A>G, 

p.Ser277Gly, in exon 3) and rs693695020 (c.956G>A, p.Arg319His, in exon 4), that were 

genotyped in an independent sample of 209 pigs including Red, Blond and Swallow Belly 

Mangalitza as well as other breeds (i.e. these pigs were different than the ones typed with 

the SNP chip). We also used the Mangalitza whole genome sequences reported by Molnar 

et al. (2014) to examine the non-synonymous variability of the melanocortin receptor 1 

gene (MC1R), which plays a key role in porcine coat color (Fang et al., 2009b). We 

identified two missense SNPs, i.e. rs45435032 (c.491T>C, Val164Ala) and rs321432333 

(c.727A>G, Thr243Ala), segregating in Mangalitza pigs. This analysis showed that both 

Blond and Red Mangalitza pigs were homozygous for the MC1R-0401 allele which confers 

a red pigmentation, i.e. their genotypes were TT and AA for the two above mutations.  

The results of the SLC45A2 genotyping experiment are shown in Table 4. We observed 

the existence of strong differences in the genotype and allele frequencies of the c.806G>A 

and the c.956G>A SNPs between Red and Blond Mangalitza pigs. The majority of Blond 

Mangalitza pigs were AA (c.806G>A) and GG (c.956G>A), while most of Red Mangalitza 

pigs displayed the alternative genotypes i.e. GG or GA (c.806G>A) and AA or GA 

(c.956G>A). The association between c.806G>A and c.956G>A genotypes and red and 

blond coloration was very high (p = 0.001E10
-23

) but not complete. The Swallow Belly 

Mangalitza pigs, which have a black coat combined with yellow blond throat and 

underbelly (Egerszegi et al., 2003), had a high frequency of the A-allele of the c.806G>A 

SNP. This allele is relatively rare in Red Mangalitza as well as in the remaining breeds. 

The A-allele of the c.956G>A SNP only segregated at significant frequencies in Red 

Mangalitza, being very rare (Swallow Belly) or absent in the remaining populations. The 
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SIFT software (Kumar et al., 2009) predicted that the c.806G>A SNP is deleterious (SIFT 

score: 0.05), while the Panther software (Thomas et al., 2003) predicted that both 

c.806G>A and c.956G>A SNPs have pathogenic effects on protein function.  The 

c.829A>G SNP was classified by both softwares as a non-deleterious mutation and it did 

not show any obvious association with coat color. Associations were much stronger for the 

c.806G>A (χ
 2

 = 88.6, p-value < 2.2E-16) and the c.956G>A SNPs (χ
 2

 = 78.2, p-value < 

2.2E-16 ) than for the c.829A>G SNP (χ
 2

 = 5.27, P-value = 0.021). Our results indicate 

that the A-allele of the c.806G>A SNP significantly increases the chances of having a 

blond coat colour (OR = 14.08), while the G-allele of the c.956G>A SNP would decrease 

such chance (OR = 0.10). The c.829A>G SNP had an OR of 1.18, evidencing that this 

polymorphism is not involved in Mangalitza pigmentation. 

 

Discussion 

One of the main goals of our study was to investigate if the strong population recession 

experienced by Mangalitza pigs has resulted in a severe contraction of their genetic 

diversity. The observed and expected heterozygosities of Hungarian Red and Blond 

Mangalitza were lower than those estimated in cosmopolitan breeds as Large White, 

Landrace and Piétrain. However, this result is expectable because cosmopolitan breeds, 

and especially Large White swine, carry Asian alleles at high frequencies due to their 

introgression with Chinese sows during the 18
th

-19
th

 centuries. In contrast, the origin of 

Mangalitza pigs is exclusively European (Manunza et al., 2016). Moreover, the observed 

and expected heterozygosities were quite high in Romanian Red Mangalitza pigs and 

relatively low in Hungarian and Romanian wild boars. As reported by Manunza et al. 

(2016), the low variation of East European wild boars might be due to a process of 

demographic reduction caused by excessive hunting, epidemic diseases, and habitat 

destruction. The analysis of ROH also evidenced that Bazna, Red Mangalitza from 

Romania and Hungary and Romanian wild boars have the highest frequencies of very long 

ROH (> 30 Mb), reflecting a history of strong and recent inbreeding. Similar patterns of 

homozygosity have been reported in Hungarian Mangalitza pigs (Yang et al., 2017). The 

strong reduction in population size combined with matings between related individuals 

might be the main cause of the high frequency of very long ROH in Hungarian Red 

Mangalitza. In contrast, such pattern was not obvious in Blond or Romanian Red 
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Mangalitza, evidencing that the three Mangalitza populations analysed in the current work 

underwent different demographic histories. Indeed, the MDS plot (Figure 1) and the 

Admixture results (Figure 2) indicated the existence of genetic differentiation between 

Blond and Red Mangalitza. As previously explained, Red Mangalitza was produced by 

crossing, approximately one century ago, Blond Mangalitza with Szalontai pigs, a high, 

bulky, robust and red-coated Hungarian aboriginal race devoted to produce meat (Hankó, 

1940).  

One of the sources of genetic variability in Mangalitza pigs could be their introgression 

with wild boars. Indeed, the genome-wide analysis of the diversity of Mangalitza pigs 

indicated the existence of a close genetic affinity between this breed and wild boars 

(HUNWB and ROMWB, Figure 1). In the Admixture analysis (Figure 2), Hungarian Red 

and Blond Mangalitza shared a common genetic background with Hungarian wild boars. 

Similar results have been obtained when comparing Iberian pigs and Spanish wild boars 

(Manunza et al., 2016), a finding that might be explained by the occurrence of ancient and 

recent genetic exchanges between wild and domestic pigs. Indeed, it is well known that 

Szalontai sows, which intervened in the formation of the Red Mangalitza variety, produce 

stripped piglets, a strong indication of their ancient and extensive introgression with local 

wild boars (Egerszegi et al., 2003). Moreover, as many as 25% pigs of the commune of 

Bârzava (Arad County, Romania) have been introgressed with wild boars (Matiuti et al., 

2010). This high level of introgression could be due to the extensive regime of pastoral 

management that has been traditionally performed in certain areas of Romania, where pigs 

are allowed to roam free providing a window of opportunity for the occurrence of 

unintentional matings with wild boars (Matiuti et al., 2010). We also detected that in the 

MDS plot the five Bazna pigs lie at an intermediate position between Mangalitza pigs and 

cosmopolitan breeds and close to Hampshire pigs (Figure 1). Moreover, in the Admixture 

analysis (Figure 2) the Bazna pigs showed evidence of introgression with cosmopolitan 

breeds. This finding is consistent with the composite origin of this breed i.e. it was created 

in 1872 by crossing Mangalitza and Berkshire pigs, being subsequently introgressed with 

blood from Sattelschwein, Large White and Berkshire pigs (Ciobanu et al., 2001).   
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 Table 4 - The genotype and allele frequency of SLC45A2 polymorphisms in 209 pigs from different populations.  

 

 

  

Breed Number of animals 

SLC45A2:c.829A>G SLC45A2:c.806G>A SLC45A2:c.956G>A 

Genotype 

Frequencies 

Allele 

Frequencies 

Genotype 

Frequencies 

Allele 

frequencies 

Genotype 

frequencies 

Allele 

frequencies 

AA GA GG A G GG GA AA G A GG GA AA G A 

Blond Mangalitza 55 0.96 0.04 0.00 0.98 0.02 0.00 0.04 0.96 0.02 0.98 1.00 0.00 0.00 1.00 0.00 

Swallow Belly Mangalitza 30 0.63 0.30 0.07 0.78 0.22 0.13 0.23 0.63 0.25 0.75 0.93 0.07 0.00 0.97 0.03 

Red Mangalitza 65 0.79 0.20 0.02 0.89 0.11 0.84 0.10 0.05 0.90 0.10 0.15 0.17 0.68 0.24 0.76 

Piétrain 15 0.40 0.50 0.10 0.65 0.35 0.22 0.56 0.22 0.50 0.50 1.00 0.00 0.00 1.00 0.00 

Large White 15 0.20 0.60 0.20 0.50 0.50 0.22 0.67 0.11 0.56 0.44 1.00 0.00 0.00 1.00 0.00 

Landrace 15 0.00 0.07 0.93 0.03 0.97 0.88 0.13 0.00 0.94 0.06 1.00 0.00 0.00 1.00 0.00 

Duroc 14 0.00 0.07 0.93 0.03 0.96 0.93 0.07 0.00 0.96 0.04 1.00 0.00 0.00 1.00 0.00 
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Several pigmentation loci have been identified in pigs, but the genetic basis of coat 

color remains to be fully elucidated. It is well known that the increase in the number of 

copies of the KIT proto-oncogene receptor tyrosine kinase (KIT) gene, which is essential 

for the survival, proliferation and migration of melanocytes, is the main causal factor of the 

white coat characteristic of certain cosmopolitan breeds such as Large White and Landrace 

(Giuffra et al., 2002). The polymorphism of the melanocortin receptor 1 (MC1R) gene is 

another main determinant of pig pigmentation, being associated with red, black and black 

spotted coat colors (Fang et al., 2009). More recently, several potential pigmentation loci, 

such as TYRP1, MITF, EDNRB, CNTLN, and PINK1 have been reported in Chinese 

porcine breeds (Lü et al., 2016; Ren et al., 2011; Chao Wang et al., 2015; Wu et al., 2016).  

In the current work, we aimed to elucidate the genetic basis of the blond vs red color in 

Mangalitza pigs by using a combination of selection scan and GWAS approaches. One of 

the main advantages of our experimental design is that the two populations under analysis 

are closely related, thus minimizing the presence of regions that are highly differentiated as 

a consequence of drift (instead of artificial selection). The selection scan with the hapFLK 

software in Red vs Blond Mangalitza pigs revealed a very strong selective sweep on 

SSC13 SSC13 (24.5-67.7.0 Mb) which attained its maximum significance in the 27.1-47.2 

Mb interval (q-value < 5.5E-04). Other significant selective sweeps were located on SSC2 

(152.1-152.2 Mb), SSC3 (4.9-5.4 Mb), SSC6 (27.9-28.1 Mb), SSC7 (65.9-65.9, 50.9-51.7, 

and 68.0-68.4 Mb), SSC11 (22.3-25.6 Mb), SSC12 (2.4-8.6 Mb), SSC15 (35.7-53.1 and 

129.5-133.9 Mb), SSC16 (19.3-28.4, 35.0-52.4, 60.5-60.7, and 70.6-71.7 Mb) and SSC17 

(60.5-65.8 Mb). As a complementary approach, we carried out a GWAS by using the 

GEMMA software which confirmed that the SSC16 (20Mb) region is the one displaying 

the most significant association with coat color (Additional file 2 and Table 3). 

We examined the gene content of this SSC16 region and we detected the presence of 

the SLC45A2 gene, also known as membrane-associated transporter protein (MATP). 

Interestingly this protein is a key regulator of the melanosomal pH and tyrosinase activity 

(Bin et al., 2015). In humans, mutations in the SLC45A2 gene have causal effects on 

oculocutaneous albinism type 4 (Tóth et al., 2017) and the variability of this gene has been 

associated with olive skin (Graf et al., 2005; Graf et al., 2007), blond/red hair, pale skin 

and freckles (Fracasso et al., 2017)  and black hair (Branicki et al., 2008). The cream color 

of horses has also been linked to a missense substitution in the SLC45A2 gene (Mariat et 

al., 2003). Moreover, there is compelling evidence that certain SLC45A2 polymorphisms 
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lead to reduced levels or absence of melanin in tigers, mice, medaka fish, chicken, 

Japanese quails, gorillas, dogs and cattle (Rothammer et al., 2017).  These evidences 

resulted in the selection of the SLC45A2 locus as the most probable causal factor of the red 

vs blond pigmentation in Mangalitza pigs. 

The genotyping of three missense mutations in the porcine SLC45A2 locus evidenced 

the existence of strong associations between c.806G>A and c.956G>A SNPs and coat 

color (P-value < 2.2E-16). In contrast, the c.829A>G SNP showed a weak association with 

pigmentation. The A-allele of c.806G>A was almost fixed in Blond Mangalitza and nearly 

absent from Red Mangalitza. The A-allele was also present in Large White and Landrace 

pigs, two breeds that are white due to the epistatic effect of the KIT duplication, which 

suppresses any pigmentation. The A-allele of the c.956G>A SNP has a high frequency in 

Red Mangalitza pigs being absent from the remaining breeds. The most probable cause for 

the near-fixation of alternative SLC45A2 genotypes in Blond and Red Mangalitza pigs is 

divergent directional selection for color. These two missense substitutions are predicted to 

be deleterious by Panther and they are located in a cytoplasmic domain (Uniprot: 

Q4LE88). According to Loganathan et al. (2016), the cytoplasmic domain plays a 

fundamental role in the transport function of the integral membrane transport protein 

SLC4A11. Although the associations between SLC45A2 genotypes and coat color are very 

strong, they are not complete suggesting the existence of additional factors regulating 

pigmentation in Mangalitza pigs. This conclusion is supported by the simultaneous 

identification, with GEMMA and hapFLK, of several regions on SSC11, SSC13, SSC15 

and SSC16 as associated with color and containing selective sweeps.  

The knowledge about the genetic basis of pigmentation in pigs is still poorly 

understood. Our study adds a new gene, the SLC45A2 locus, to the catalogue of loci with a 

well established or probable role in the genetic determination of porcine coat color. Further 

studies will be needed to finely map the causal mutation as well as to elucidate the 

existence of genetic interactions between SLC45A2 and other genes. Our study also 

illustrates the power of dissecting the genomic basis of simple phenotypes by employing 

sets of closely related lines or populations and combining different statistical approaches.  
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LEGENDS TO ADDITIONAL FILES 

Additional file 1. Admixture analysis of Mangalitza pigs and additional wild boar and pig 

populations for a range of K-values (K = 2-11). Each individual is represented by a 

single column divided into K colored segments, where K is the number of assumed 

clusters. Populations are separated by black lines. 

Additional file 2. Manhattan plot corresponding to the genome-wide association analysis 

performed for coat color in Red and Blond Mangalitza pigs. In the y-axis, statistical 

significance is expressed as a –log10 (q-value) whilst genomic coordinates are displayed 

in the x-axis. The red and blue lines indicate the thresholds of genome-wide significance 

corresponding to q-values of 0.01 and 0.05.  

Additional file 3.  List of SLC45A2 SNPs identified through the comparison of whole-

genome sequences corresponding to Red, Blond and Swallow Belly Mangalitza pigs 

and reported by Molnar et al. (2014). 
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4. Chaper 4: General Discussion 

Chapter 4  
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One of the main goals of this Thesis was to investigate the molecular basis of fat 

deposition in pigs. Such biological knowledge is necessary for understanding the functions 

of genes and their interactions as well as to interpret correctly the results of genome-wide 

association analyses. In this regard, studies performed in humans have demonstrated that 

many genes involved in carbohydrate and lipid metabolism remain to be identified 

(Khetarpal & Rader, 2014; Teslovich et al., 2010; Willer et al., 2013). For instance, 48% of 

novel loci displaying significant associations with blood lipid levels described by Willer et 

al. (2013) had never been previously connected to lipid metabolism. 

To gain new insights into the genetic basis of meat quality and muscle metabolism, we 

have analysed skeletal muscle mRNA expression in two different biological models: (1) 

Two groups of pigs with distinct fatness profiles, and (2) Three groups of pigs with 

different nutritional status (i.e. fasting, and 5 h. and 7 h. after feeding). In the next sections, 

we will discuss the main results obtained through transcriptomics analysis of these two 

different models using RNA-Seq technology 

 

4.1 Differential expression of metabolic genes in the skeletal muscle of 

Duroc pigs with different fatness profiles  

The biological model employed in the first chapter of the Thesis consisted of 52 Duroc 

pigs retrieved from an experimental population denominated as Lipgen (Gallardo et al. 

2008). These 52 pigs represented two different metabolic patterns defined by a subset of 13 

fatness and growth-related traits (Figure 4.1). HIGH pigs were fatter and they had a higher 

IMF, SFA and MUFA contents as well as elevated serum lipid concentrations when 

compared to LOW pigs. In contrast, LOW pigs had a higher muscle PUFA content and 

were leaner than HIGH pigs. 

Even though the initial analysis of RNA-Seq data made possible to identify 1,430 DE 

mRNAs genes when considering a significance threshold of P-value < 0.05, this list of DE 

genes suffered a strong reduction (96 genes) when we applied a more stringent threshold 

(P-value < 0.01 and FC > 1.5). Moreover, only 21 genes showed a significant DE after 

correcting for multiple testing (q-value < 0.05). The level of concordance between our 

analysis and a previous study carried out by Cánovas et al (2010) using microarray 

techlogy was quite modest, although the Spearman correlation between RNA-Seq and 

microarray expression values was 0.54. A modest overlap between microarray and RNA-
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Seq data has been reported in previous studies (Trost et al., 2015; Wang et al., 2014). 

Moreover, the study of Cánovas et al (2010) was based on 104 individuals and the 

estimation of highly and lowly expressed genes with microarrays is difficult  (Black et al., 

2014). In addition, the gene annotation of the porcine microarray is considerably poor 

(Tsai et al., 2006). Seyednasrollah and coworkers (2015) performed a systematic 

comparison of different pipelines for detecting differential expression by using RNA-Seq 

data. They demonstrated that there are large differences across pipelines, and this can lead 

to considerable variability in the reported results. 

 

 

Figure 4.1  - Graphical plot of the first and second principal components summarising 

phenotypic variation in the Duroc population. Summary of phenotypic variation of serum lipid, 

growth and fatness parameters in the Duroc pig resource population. The distribution of the 

individuals selected as HIGh and LOW is shown in the graph. PUFA = % Polyunsaturated fatty 

acids; LEAN = %Lean; TG = Triacylglycerides (mg/dl); LDL = LDL-cholesterol (mg/dl); HDL = 

HDL-cholesterol (mg/dl); CHOL = Total cholesterol (mg/dl); LW = Live weight (Kg); BFTiv = 

Backfat thickness (in vivo) (mm); BFT = Backfat thickness 3
rd

-4t
h
 ribs (mm); HFT = Ham fat 

thickness (mm); IMF = % Intramuscular fat; SFA = % Saturated fatty acids; MUFA = % 

Monounsaturated fatty acids (Cánovas et al., 2010). 

 

 The functions of the most significant DE loci between HIGH and LOW pigs are quite 

heterogeneous. We have detected genes that have a well-known role in the development of 

obesity and lipid metabolism. For instance, the long-chain fatty acid transport protein 4 
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(SLC27A4) is the principal fatty acid transporter in small intestinal enterocytes and its 

expression is correlated with adipose differentiation and the development of insulin 

resistance (Yu et al., 2018). The acyl-CoA synthetase short-chain family member 1 

(ACSS1) gene has also a key role in lipid metabolism because it converts acetate to acetyl-

CoA, a lipogenic substrate (Schwer et al., 2006). Moreover,  overexpression of the SOD3 

gene blocks high-fat diet-induced obesity, fatty liver, and insulin resistance (Cui et al., 

2014). In an experiment of differential gene expression, it is difficult to evaluate if 

differential expression is the cause or the consequence of obesity. The altered expression of 

several genes might contribute to establishing a phenotype of increased fatness, and such 

phenotype might have downstream effects on the expression of other genes with 

heterogeneous and unrelated functions. For instance, in obesity, to avert systemic 

lipotoxicity from chronic overfeeding, adipocytes promote the activation of several 

inflammatory pathways. This activation of macrophages/immune system genes culminates 

in  the development of insulin-resistant adipocytes that release excessive amounts of free 

fatty acids and cause insulin resistance and lipoapoptosis in other tissues, e.g. liver and 

muscle (Cusi, 2012) 

To facilitate the interpretation of the data generated in the RNA-Seq experiment, we 

explored the biological pathways enriched in the set of DE genes (96 genes, P-value < 0.01 

and a FC > 1.5) and we also built networks connecting DE genes. In this way, we 

identified pathways related with lipid synthesis (stearate, palmitate and γ-linolenate 

synthesis, FA activation, CDP-diacylglycerol biosynthesis), catabolism (triacylglycerol 

degradation), glucose metabolism (glucose synthesis and degradation) and hormonal 

response (insulin-like growth factor-1, growth hormone, and hepatocyte growth factor). 

Similar results were obtained by Cánovas et al. (2010), when analyzing the same 

population with microarrays, as well as by other authors. For instance, a higher muscle 

PUFA content in pigs has been related with the enrichment of pathways involved in 

adipocyte differentiation and lipid metabolism (LXR/RXR activation, FXR/RXR 

activation, and biosynthesis of retinoids) (Ayuso et al., 2016 and Puig-Oliveras et al., 

2014). The overexpression of carbohydrate (e.g. insulin) and lipogenic-related pathways 

(e.g. PPAR signaling) in HIGH pigs has been also observed by Puig-Oliveras et al. (2014) 

when comparing the muscle mRNA expression of pigs with high muscle SFA and MUFA 

contents against those with a high PUFA content.  In the case of HIGH and LOW pigs, we 

have detected pathways involved in acute myeloid leukemia signaling and CTLA4 



 Papers and Studies                                                                 s                                                                                                                             

s   

198 

 

signaling in cytotoxic T lymphocytes. One of the potential interpretations of this finding is 

that the metabolic stress,  caused by lipotoxicity causes an activation of the immune system 

(Andersen et al., 2016). However, it is also necessary to take into account the intrinsic 

limitations of over-representation analyses (Simillion et al, 2017). For instance, the same 

gene can be present in multiple pathways confusing the biological interpretation of the 

results and complicating the correction for multiple testing (the assumption of 

independence is violated when there are overlapped genes amongst pathways). Converting 

long lists of genes into long lists of pathways does not contribute much to solve the 

original biological problem (Simillion et al., 2017) and enrichment analyses are prone to 

yield false positive results (Pavlidis et al, 2012). This means that over-representation 

analyses should be considered as an exploratory tool rather than as a conclusive analysis 

upon which biological inferences are made. Recently, bioinformatic tools as SetRank have 

been implemented to deal with the problems highlighted above  (Simillion et al., 2017). 

One of the genes that has often emerged in differential expression studies analysing 

different pig fatness conditions is PPARG (Puig-Oliveras et al., 2014; Ramayo-Caldas et 

al., 2014; Wei et al., 2017). In the experiment outlined in the first chapter of the thesis, we 

detected that the PPARG gene, one of the major players in PPAR signaling, is upregulated 

in HIGH pigs (P-value = 0.02 and FC = 1.36). In addition, PPARG was predicted to be a 

major transcriptional regulator (together with PDGFB) of several DE genes related with 

carbohydrate metabolism (CEBPA, CES1, and CIDEC) and the inhibition of insulin 

sensitivity (CES1, CIDEC, and FASN).  This finding suggests that the DE of PPARG has 

consequences on carbohydrate metabolism since CES1 is one of the main regulators of 

glucose homeostasis (Xu et al., 2014). Insulin stimulates the absorption of glucose, which 

is a lipogenic substrate, and PPARG also enhances triglyceride storage (Ferré 2004). The 

identification of PPARG as a key transcriptional regulator is relevant because genome-

wide association analysis revealed a close association between SNPs mapping close to the 

PPARG locus and insulin sensitivity and obesity in pigs (Puig-Oliveras et al., 2016; Qiao et 

al., 2015).  

In summary, our results in concordance with previues studies performed in pigs point 

to PPARG gene as a key factor determining porcine fatness. Activation of PPARG is 

directly linked to improving glucose tolerance by enhancing insulin sensitivity and 

restoring the function of β-cells in diabetic subjects (Sharma & Staels, 2007). Upregulation 

of PPARG increases the expression of genes involved in fatty acid metabolism and 
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triglyceride storage in adipose tissue (Sharma & Staels, 2007) and secondary effects can be 

seen in liver and muscle lipid metabolism pathways (Figure 4.2). The effects of PPARG 

also extend to macrophages (Figure 4.2), where this transcription factor suppresses the 

production of inflammatory mediators, improving the relationship between the macrophage 

and adipocyte that is distorted in obesity (Fuentes et al., 2013; Sharma and Staels, 2007). 

 

Figure 4.2- Mechanism by which PPARG activation regulates the metabolism and 

inflammation. 

 

4.2   Limited contribution of the non-coding RNA transcriptome to 

differential expression between HIGH and LOW pigs. 

In general, the majority of differential gene expression analyses in pigs have been 

focused on protein-encoding genes and only recently the analysis of microRNAs and 

lncRNAs has been undertaken (Ayuso et al., 2016; Wang et al., 2017a; Wang et al., 2015b; 

Zhou et al., 2014c). The general picture that emerges from the study reported in chapter 1 

is that the DE of non-coding RNAs plays a minor role in the establishment of the HIGH 

and LOW phenotypes. In this way, we have identified a total of 1,558 muscle-expressed 

ncRNA transcripts, largely represented by small ncRNA. We only detected 12 ncRNAs (11 

lncRNAs and 1 sncRNA) that were DE at the nominal level (P-value ≤ 0.05), while none 

of these ncRNAs remained significant after correction for multiple testing. Recent studies 
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in cattle with different IMF profiles indicate a small participation of miRNAs in the 

determination of this trait (Oliveira et al., 2018; Zhang et al., 2017). Cesar et al. (2015) 

compared the muscle expression profiles of Nellore steers displaying extreme genomic 

estimated breeding values for IMF and found 42 DE mRNA genes (FDR < 0.05), while 

Oliveira et al. (2018) using the same population found only one DE miRNA. Similarly, the 

gene expression analysis of the subcutaneous adipose tissue of Laiwu and Large White 

pigs made possible to identify 482 and 54 DE mRNAs and lncRNAs, respectively.  

This apparent minor contribution of non-coding RNAs to phenotypes of economic 

interest in livestock may be attributed to several factors. In general, ncRNAs are expressed 

at lower levels than protein-coding transcripts (Palazzo & Lee, 2015). In addition, in the 

skeletal muscle is difficult to measure ncRNA expression accurately because myofibrillar 

and mitochondrial mRNA genes are highly expressed thus “masking” the expression of 

other genes (Mele et al., 2015). In addition, the ncRNA sequences of the porcine genome 

are poorly annotated. Iyer et al. (2015) performed a genome-wide lncRNA expression 

analysis in humans and found that 79% of genes (43,331 loci) classified as lncRNAs had 

not been previously annotated. This poor annotation of porcine ncRNAs becomes obvious 

if the current porcine Ensembl release (Sscrofa11.1, 3,250 ncRNAs) is compared with the 

22,521 and 15,074 ncRNAs annotated in the human and mice genomes, respectively. 

Finally, another complicating factor is that the functions of the majority of ncRNAs are 

unknown (Palazzo & Lee, 2015).  

There is growing evidence that lncRNAs may play a key role in the recruitment of 

regulatory complexes through RNA–protein interactions to influence the expression of 

nearby genes, and, in this way, they may act as local regulators. Engreitz et al. (2016) 

analysed 12 lncRNA loci in mouse embryonic stem cells and found that 5 of these loci 

influenced the expression of neighbouring mRNA genes in cis. In chapter 1, we have 

detected 25 mRNA-encoding genes that map near (30 kb or less) to the subset of DE 

ncRNA loci. Amongst these, 2 mRNAs are DE in HIGH vs LOW pigs (P-value < 0.05 and 

FC > 1.2) i.e. (1) CU468594.8 (P-value = 0.003 and FC = 1.26), which is orthologous to 

human solute carrier family 52-riboflavin transporter, member 2 (SLC52A2), a 

transmembrane protein that mediates the cellular uptake of riboflavin, a cofactor of certain 

redox reactions (Ghisla & Massey 1989; Powers 2003); and (2) MT-ND6 (P-value = 0.038 

and FC = −1.21) which encodes a NADH dehydrogenase that catalyzes the oxidation of 

NADH by ubiquinone, an essential step in the mitochondrial electron transport chain 
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(Vartak et al. 2015). However, the co-localization of DE mRNA and ncRNA genes should 

not be considered as sufficient evidence of the latter regulating the former or vice versa. 

Further molecular studies would be needed to establish such relationship. 

 

4.3 Differential expression of mRNA isoforms in the skeletal muscle of 

Duroc pigs with different fatness profiles 

We aimed to take a further step in the analysis of gene expression differences in the 

skeletal muscle of HIGH and LOW pigs by studying the differential expression of mRNA 

isoforms generated by alternative splicing and other mechanisms. It is well established that 

genes undergo alternative splicing (Eswaran et al., 2013; Yao et al., 2016), and that 

changes in the abundance of mRNA isoforms affect metabolism regulation. For instance, 

Beneit et al. (2018) observed a significant relationship between insulin receptor isoforms 

ratios and plaque growth in early stages of atherosclerosis. Moreover, Montori-Grau et al. 

(2018) showed that the glycogenin-interacting protein (GNIP) isoform 1 is the most 

abundant isoform in human skeletal muscle,  having a markedly glycogenic effect. An 

overexpression of GNIP1 isoform decreased blood glucose levels, lactate levels and body 

weight (Montori-Grau et al., 2018).   

In chapter 2, we describe one of the first characterizations of the mRNA isoform 

landscape in the skeletal muscle of pigs. The splicing landscape analysis of the porcine 

gluteus medius muscle revealed that 10.9% of the expressed protein-encoding genes 

generate alternative mRNA isoforms, with an average of 2.9 transcripts per gene. Exon 

skipping was the most prevalent AS event (41.1%) and intron retention the least favored 

one (12.7%). These results agree well with other studies performed in livestock species 

(Chacko & Ranganathan, 2009; Kim et al., 2007; Reyes & Huber, 2017). However, in 

humans 95% of genes can generate multiple isoforms (Barash et al., 2010). Differences in 

the abundance of spliced genes between humans and pigs highlights the shortcomings of 

pig genomic annotation, a limitation that may have a strong impact on the results of our 

analysis.  

As the accurate quantitation of isoform mRNA abundance may vary depending on the 

bioinformatics pipeline employed in the analysis of the data (Hartley & Mullikin, 2016), 

we have used two different pipelines with the aim of minimizing the rate of false positives 

i.e. (1) STAR/RSEM/DESeq2 pipeline and (2) CLC Bio pipeline. The two differential 
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expression analyses made possible to identify 104 alternative transcripts and 87 genes 

simultaneously detected by both pipelines (P-value < 0.05). Moreover, 10 mRNA isoforms 

were categorized as differentially expressed in HIGH vs LOW pigs with a P-value < 0.01 

and ± 0.6 log2FC and only five of these transcripts remained significant after correcting for 

multiple testing (q-value < 0.05 and ± 0.6 log2FC). Interestingly, if we consider the set of 

10 mRNA DE isoforms (P-value < 0.01 and ± 0.6 log2FC) only four of these genes were 

identified in the global analysis of DE detailed in Chapter 1. 

Upregulation of specific ITGA5, TIMP1, ANXA2, and LITAF mRNA isoforms in the 

skeletal muscle of HIGH group is consistent with their increased fatness and live weight 

and suggests that differential expression of specific mRNA isoforms might be important in 

the determination of lipid phenotypes. It is important to emphasize the existence of 

substantial differences in the isoform annotation of the Sscrofa genome 10.2 and 11.1 

versions (Table 4.1). The ITGA5 and TIMP1 genes in the Sscrofa v. 10.2 have 4 and 5 

mRNA isoforms, respectively. However, in the new updated version, only 1 isoform is 

described for each gene. In humans, 13 and 38 isoforms are reported for the ITGA5 and 

ANXA2 genes, respectively. While, isoform number increased on ANXA2 gene from two 

mRNA isoforms (Sscrofa v. 10.2) to 5 mRNA isoforms using the Sscrofa v. 11.1. If we 

compare the principal isoforms discussed in this Thesis between porcine genome versions 

(e.g. ITGA5 = 4445 bp, ANXA2= 1455 bp, version 10.2; and ITGA5 = 9021 bp, ANXA2 = 

1618/1380 pb, version 11.1), we can see differences in length and sequence composition 

but they encode the same full length protein (e.g. ITGA5 = 1057 aa, ANXA2 = 339 aa) 

(Table 4.1). As shown in Table 4.1, the annotation of the pig ITGA5, LITAF, ANXA 2 and 

TIMP1 mRNA isoforms reported in Sscrofa v. 10.2 is more similar to that described in 

humans than the annotation found in Sscrofa v. 11.1. 

Complete understanding of the functional implications of alternative splicing is still a 

long way off. However, Tress et al. (2007) analyzed alternatively spliced gene products 

annotated in the ENCODE pilot project and they found marked structural and functional 

differences between isoforms generated by the same gene. Importantly, they described 

substantial changes in relation to protein folding and activity sites.  

Our results highlight the convenience of combining global and mRNA isoform analyses 

of gene expression (31% of genes with DE isoforms were not identified in the DE gene 

analysis, P-value < 0.05). Recently, Dapas et al. (2016) performed transcript abundance 

estimation on raw RNA-Seq and exon-array expression glioblastoma cancer samples using 
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different analysis pipelines and compared both the isoform- and gene-level expression 

estimates. They found that a third of genes with at least one DE isoform in the RNA-Seq or 

exon-array results were not likewise classified as DE in global analyses of gene expression. 

 

4.4 The ingestion of food influences the expression of multiple 

transcription factors in the skeletal muscle 

The second biological model that we have explored in this Thesis focuses on the effects 

of food ingestion on the mRNA expression patterns of the skeletal muscle. Our hypothesis 

was that genes that play a role in nutrient absorption and metabolism might influence the 

phenotypic variation of fatness and meat quality traits. The reason for choosing skeletal 

muscle as a target tissue is that the majority of glucose and lipid absorption after a meal 

consumption is featured by this tissue (Shulman et al., 1990). The postprandial kinetics of 

blood glucose and lipid levels in the pig had not been well characterized, so we made a 

pilot experiment in which we measured plasma glucose, triglycerides, cholesterol and non-

esterified fatty acids in eight Duroc gilts before feeding and 2, 4, 6 h. after feeding. These 

results revealed that glycaemia and lipidemia peaks are reached at 2 and 4 h. after eating. 

We also observed a marked decrease of plasma free FA at 2 h. after feed, since nutrition 

abolishes the release of fatty acids by the adipose tissue.  

Based on such results, the differential expression analysis comprised three different 

time-points: T0 (fasting), T1 (5h after eating) and T2 (7h after eating). We assumed that at 

5 h after eating, lipid absorption would be at its maximum, allowing us to detect genes 

involved in such process, and that 7 h. after eating (i.e. 2 h. after absorption) the processes 

of triglyceride synthesis (lipid storage) and ß-oxidation of FA (lipid burning) would be also 

at their maxima. However, when we have analyzed triglycerides and plasma free fatty 

acids concentrations in T0, T1 and T2 slaughtered sows, the kinetics of these two 

metabolites were not identical to those observed in the pilot experiment. We found an 

increase in the concentration of triglycerides and a decrease of circulating free FA levels, 

but 7 hours after feeding triglyceride levels were still peaking. Nevertheless, our 

comparison between fasting and fed state remains valid (Figure 4.3). 
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Table  4.1 - Comparison between isoform annotation for the Itga5, Timp1, Anxa2 and Litaf genes available in the Sus scrofa genome version 10.2 

and 11.1, and the Homo sapiens genome.  

Isoforms differentially expressed found in this Thesis are shown in bold.  

*Additional isoforms have been described, but  they do not encode proteins. 

Aa =  Amino acids; Bp = Base pairs 

  Sus scrofa 10.2 Sus scrofa 11.1 Homo sapiens GRCh38.p10 

Gene 

Number 

isoforms Bp Protein (aa) 

Number 

isoforms Bp 

Protein 

(aa) 

Number 

isoforms Bp Protein (aa) 

ITGA5 5 

1013,766, 

4445,1255* 

109,162, 

1 9021 1057 13 4444,757,1240,1013 *  1,049,119,137,120 1057,93 

TIMP1 4 

931,641, 207,195, 

1 1061 207 5 8,921,095,626,595,340 207,136,143,165,95 598,173 123,38 

ANXA2 2 14,551,609 339,339 5 

2702,1618, 322,339, 

38 

1676,1444,1444,1435, 339,357,339,399, 

1380,1245, 339,414, 878,812,802,780, 256,176,146,142, 

938 179 777,755,744,733, 227,119,248,4, 

    718,669,665,663, 176,149,139,110, 

    594,580,564,561, 176,175,59,45, 

    560,558 * 133,119 

LITAF 2 2370, 2190 161,161 2 5396, 512 161,161 21 

2632,2467,2356,2292, 161,161,161,152, 

1118,717,692,603, 161,161,152,161, 

1527,677,593,587, 228,75,137,39, 

579,556,554,553, 153,33,88,136, 

548,516,486,773,582 126,68,105,81,10 
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The analysis of the expression data obtained by RNA-Seq highlighted 148 (T0 vs T1), 

520 (T0 vs T2) and 135 (T1 vs T2) DE mRNA genes. Moreover, 85 genes showed DE both 

in the T0-T1 and T0-T2 comparisons, a result that evidences the high consistency of our 

results. Our data demonstrated a post-prandial activation of genes with a well-known role 

in energy homeostasis (e.g. PFKFB3 and G0S2). Interestingly, we also detected the DE of 

several genes with a plausible but poorly characterized role in metabolism (e.g. MIGA2, 

SDC4, and CSRNP1). One of the main results of our study is that nutrition modulates the 

expression multiple transcription factors e.g. ARID5B, KLF5, CEBPD, and FOXO1, 

possibly mediating the integration of metabolic processes via PPAR (Figure 4.4). PPARA 

mRNA is induced during fasting and plays a pivotal role in the management of energy 

stores by enhancing hepatic fatty acid oxidation to supply substrates that can be 

metabolized by other tissues (Kersten et al., 1999). Recently, Liu et al. (2017) 

demonstrated that the knockdown of the ARID5B gene resulted in a reduced expression of 

genes involved in atherosclerosis-related inflammatory and lipid metabolism pathways. 

Overexpression of CCAAT/enhancer-binding protein delta (CEBPD) gene enhances lipid 

accumulation and specifically activates PPARG transcription in HepG2 cells (Lai et al., 

2008). Armoni et al. (2006) suggested that the Forkhead box protein O1 (FOXO1) gene 

represses PPARG in primary rat adipocytes. In a different experiment, we have evaluated 

the DE of microRNAs in T0, T1, and T2 (Emilio Mármol, personal communication). 

Differences in the expression of microRNAs were very slight and we were unable to 

confirm them by quantitative PCR. The general picture that emerges from these results is 

that the regulation of gene expression in response to food intake is mainly featured by 

transcription factors.  
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Figure 4.3 - Kinetics of the average concentrations of triglycerides and non-esterified fatty 

acids (FA) in 36 Duroc pigs at three-time points: before eating and 5 and 7 hours post-

ingestion. 

 

 

Figure 4.4 - Interaction of transcription factors modulated by nutrition with PPAR-mediated 

pathways.  

 



                                                                                                              General discussion                                                                                                                                                                                                                                                                  

 

207 

 

4.5  Food intake promotes changes in the expression of genes related to 

oxidative stress and angiogenesis 

The thrombospondin 1 (THBS1, T0-T1: FC = -1.99, q-value = 8.00E-03) and 2 

(THBS2, T0-T2: FC = 2.45, q-value = 5.18E-04) and thioredoxin interacting protein 

(TXNIP, T0-T1: FC = -1.78, q-value = 1.34E-04; T0-T2: FC = -1.79, q-value = 1.13E-02) 

genes showed significant DE at T0-T1 and T0-T2 reflecting the combined redox and 

vascular response of the porcine skeletal muscle to nutrient availability. In a fed status, 

mitochondria produce a huge amount of free oxygen radicals as a byproduct of oxidative 

phosphorylation. Increased oxidative stress appears to be a determinant factor leading to 

insulin resistance, β-cell dysfunction, and impaired glucose tolerance, so an adequate 

balance between free oxygen radicals and antioxidants is necessary (Lobo et al, 2010). 

THBS1 and THBS2 are down- and upregulated by oxidative stress, respectively (Bae et al., 

2013; Chen et al. 2011) and they are involved in the production of adaptive stress response 

factors regulating NO, H2S, and superoxide production (Roberts et al., 2017). An 

upregulation of TXNIP has been implicated in hyperglycemia-induced β-cell dysfunction 

and apoptosis (Shah et al., 2013) and the thioredoxin/TXNIP system plays a major role in 

the regulation of redox homeostasis ( Zhou & Chng, 2013). In addition, these genes have a 

dual biological role, also being involved in angiogenesis. Insulin, secreted by the pancreas 

in response to food ingestion, promotes vasodilatation and capillary recruitment in the 

skeletal muscle to ensure the maintenance of glucose homeostasis (Manrique & Sowers, 

2014). Dunn et al. (2014) reported that overexpression of TXNIP mediated by high glucose 

levels may play a role in the pathogenesis of diabetes by impairing angiogenesis. 

Moreover, THBS1 and THBS2 has been shown to be powerful inhibitors of angiogenesis 

(Lawler & Lawler, 2012). This dual role  complicates the physiological interpretation of 

changes in the expression of thrombospondin-related genes,  To make things even more 

complicated, the THBS1 and THBS2 genes have been reported to be endogenous diet-

induced weight gain and adipocyte hypertrophy repressors (Inoue et al., 2013; Shitaye et 

al., 2010; Soto-Pantoja et al., 2016). Inoue et al. (2013) demonstrated that THBS1-null 

mice have an insulin-sensitive phenotype. Moreover, these knockout mice display a well-

controlled circadian rhythm in their energy expenditure, with higher amplitude of O2 

consumption. 
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4.6 Existence of a close relationship between nutritional status and the 

expression of genes regulating circadian rhythms.  

One of the main results of our experiment was the demonstration that the nutritional 

status (fasting vs feeding) influences the expression of genes integrated into the muscle 

circadian clock. In the experiment reported in Chapter 3, we have observed that nutrient 

availability elicits an overexpression of ARNTL and NR1D1 genes in the gluteus medius 

muscle, whilst PER1, PER2, SIK1, CRY2, and BHLHE40 are down-regulated (Table 4.2). 

Mammals synchronize their circadian activity primarily under the influence of the 

light/dark cycles which entrain the central clock located in the suprachiasmatic nucleus of 

the hypothalamus (Partch et al., 2014). In addition, circadian clocks are also present in 

peripheral tissues, but they are mainly synchronized by nutrition, humoral signals, 

metabolic factors, and body temperature (Hastings et al., 2008; Oike et al., 2014; Richards 

& Gumz, 2012). Some of the circadian genes and the proteins they produce form a series 

of interacting molecular pathways that then loop back on one another (Eckel-Mahan & 

Sassone-Corsi, 2013; Partch et al., 2014).  In this way, CLOCK/NPAS2 and ARNTL 

promote the transcription of PER and CRY genes which ultimately feedback and inhibit 

CLOCK/NPAS2 and ARNTL transcriptional activity (Figure 4.5 ). 

 

  Table  4.2 - Differentially expressed Clock genes (q-value < 0.05 and |fold-change| > 1.5) in 

the pig gluteus medius muscle at fasting (T0) vs 5 h (T1) and 7 h (T2) after eating. 

  

Gene 

  

Gene ID 

T0 vs T1  T0 vs T2  

Log2(FC) q - value Log2(FC) q - value 

ENSSSCG00000013396 ARNTL 0.90 1.93E-04 1.30 2.99E-13 

ENSSSCG00000011534 BHLHE40 - - -0.82 7.87E-05 

ENSSSCG00000013270 CRY2 - - -0.68 1.28E-02 

ENSSSCG00000017481 NR1D1 0.69 8.30E-03 0.90 9.52E-04 

ENSSSCG00000017983 PER1 -1.51 3.95E-11 -0.87 1.12E-02 

ENSSSCG00000016338 PER2 -0.74 4.33E-04 -1.31 7.03E-14 

ENSSSCG00000023854 PER2 -0.73 1.59E-03 -1.20 4.32E-10 

ENSSSCG00000028137 SIK1 -1.39 1.91E-07 - - 
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Figure 4.5 - The circadian Clock system is regulated by a self-oscillating transcriptional loop. 

 

The demonstration that the expression of Clock genes in the porcine skeletal muscle is 

affected by nutrition has important metabolic implications Clock genes play a key role in 

muscle physiology by regulating the expression of more than one thousand genes mainly 

involved in metabolic processes (Hodge et al., 2015). In mice, Rudic et al. (2004) found 

that the absence of ARNTL impaired glucose metabolism and was associated with insulin 

hypersensitivity. PER1 and PER2 -deficient mice showed impaired glucose tolerance and 

enhanced hypoglycemia (Lamia et al., 2008) and an increased adipogenesis was also 

described in PER2
−/−

 mice (Grimaldi et al., 2010). In addition, natural genetic variations in 

Clock genes can result in profound differences in the functioning of circadian clocks. In 

humans, three variants of the CLOCK gene have been associated with energy intake 

(Valladares et al., 2015). Moreover, PER2 polymorphism has been associated with 

abdominal obesity (Garaulet et al., 2010). These results suggest that the altered expression 

of Clock genes may cause the development of metabolic disorders, such as obesity and 

diabetes, and influence traits related to lipid metabolism.  

Given the biological relevance of the results reported in Chapter 3, we decided to 

extend our analysis to four additional tissues: hypothalamus (which contains the central 

biological clock modulated by light), liver, intestine and dorsal fat. We selected eight 
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Clock genes based on our previous results (Cardoso et al. 2017) as well a by performing a 

literature search (Gnocchi et al., 2015; Tahara & Shibata, 2013). Our goal was to analyze 

the effect of food intake on the mRNA expression of Clock genes in tissues with distinct 

metabolic roles.  The results obtained in the experiment reported in Chapter 3 indicated 

that differences in the expression of Clock genes were particularly significant in the T0 vs 

T2 comparison  (Cardoso et al., 2017). In the multissue study described in Chapter 4, we 

have used these two-time points to carry out the analysis of differential expression by using 

an RT-qPCR approach. 

One of the main observations of the multissue study is that the expression of Clock 

genes changes in four tissues containing peripheral clocks (liver, muscle, duodenum, and 

dorsal fat) but not in the hypothalamus, which contains the central clock entrained by light. 

This observation supports the idea that the changes of expression that we observe in the 

four tissues mentioned before are not due to the passing of time (T0 and T2 are separated 

by 7 hours) but to nutrient availability. Other studies suggest that feeding conditions can 

modify, in a short time, the phase of circadian gene expression in peripheral tissues 

possibly by delivering nutrients and hormonal signals, in an SCN-independent manner 

(Damiola et al., 2000; Hirota & Fukada, 2004).  The expression of Clock genes can have 

important consequences on fat deposition and composition. For instance, Paschos et al. 

(2012) suppressed the expression of the ARNTL gene in the adipose tissue of mice and 

observed changes in the abundance of hypothalamic peptides that regulate appetite as well 

as a decreased PUFA concentration in adipocytes and in the hypothalamic neurons 

regulating food intake.  

In addition, we have observed that the patterns of differential expression of Clock 

genes differ across tissues i.e. we identified DE for four (dorsal fat and duodenum), six 

(skeletal muscle) and seven (liver) genes. Of the four and six genes displaying DE between 

T0 and T2 in duodenum and the muscle, respectively, only two of them (NPAS2 and SIK1) 

were shared by both tissues. In contrast, muscle (6 genes) and liver (7 genes) have a higher 

level of overlap i.e. five genes (BHLHE40, NPAS2, PER1, PER2, and SIK1) are shared by 

both tissues. Moreover, not only the sets of DE genes vary across tissues but also there are 

differences in the magnitude and direction of changes in gene expression i.e. the mRNA 

levels of the BHLHE40 gene decreased in the liver and muscle (log2Rq = -0.94, q-value = 

0.01 and log2Rq = -1.11, q-value = 0.00, respectively), but they increased in dorsal fat 

(log2Rq = 1.18, q = 0.02). Another example would be featured by the Sik1 gene, whose 
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expression decreased in the liver and muscle (log2Rq = -1.84, q-value = 0.00, and log2Rq = 

-2.60, q-value = 0.00, respectively), but increased in the duodenum (log2Rq = 1.57, q-value 

= 0.04). These results indicate the existence of important tisular differences in the 

modulation of peripheral clocks by nutrition. Activation of distinct metabolic pathways 

within a cell/tissue type is largely dependent on the cycling availability, sensitivity, and 

transport of specific substrates, as well as of released hormones such as melatonin or 

glucocorticoids (Gerber et al., 2013; Mühlbauer et al., 2009). In addition, differences in the 

circadian timing of each tissue may also be controlled by the autonomic nervous system 

and perhaps by other tissue clocks (Oster et al., 2006), and it could also be influenced by 

the function of the tissue, environmental cues (e.g. the microbiome in the case of the 

intestine) and the specific timing of nutrient availability.  

 

4.7 The polymorphism of the SLC45A2 gene  is associated with the red 

and blond pigmentation of Mangalitza pigs 

In Chapter 5, we have analyzed the genetic diversity of Mangalitza pigs and other 

breeds and we have also investigated the genetic factors involved in the establishment of 

blond vs red pigmentation patterns in this breed. In general, we have found results 

consistent with occurrence of past population bottlenecks and recent inbreeding in 

Mangalitza pigs breeds and Romanian and Hungarian wild boars. Observed and expected 

heterozygosities were moderately high in Romanian Red Mangalitza (Ho = 0.35, He = 

0.35) pigs and relatively low in Hungarian (Ho = 0.27, He = 0.29) and Romanian wild 

boars (Ho = 0.27, He = 0.31 ), while Hungarian Red (Ho = 0.29, He = 0.28 ) and Blond 

Mangalitza (Ho = 0.28, He = 0.28) displayed lower heterozygosities than those estimated 

in cosmopolitan breeds such as Large White, Landrace, and Piétrain (mean Ho = 0.34, He 

= 0.34). Admixture analysis demonstrated the existence of genetic differences between 

Blond Mangalitza, Hungarian Red Mangalitza, and Romanian Red Mangalitza pigs, thus 

evidencing that these populations underwent different demographic and/or selective 

histories.  

Coat colour is an important phenotype in the establishment of breed standards and it 

was subjected to artificial selection in ancient times, dating back to about 5,000 years ago 

(Fang et al., 2009). Despite the broad range of coat pigmentation patterns in pigs and that 

several pigmentation loci have been identified (Table 4.3), the genetic basis of coat colour 
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remains to be fully elucidated. Red and Blond Mangalitza are closely related populations 

that diverged a short time ago (100-150 years),  a feature that diminishes the presence of 

regions that are highly differentiated as a consequence of genetic drift and other neutral 

processes (Gregory, 2009).  

We have investigated the genetic basis of the blond vs red coat in Mangalitza by using 

two approaches i.e. a selection scan and a GWAS. The selection scan with the hapFLK 

software revealed a very strong selective sweep on SSC13 (24.5-67.7.0 Mb, q-value < 

5.5E-04). Other significant selective sweeps (P-value < 0.05) were located on SSC2 

(152.1-152.2 Mb), SSC3 (4.9-5.4 Mb), SSC6 (27.9-28.1 Mb), SSC7 (65.9-65.9, 50.9-51.7, 

and 68.0-68.4 Mb), SSC11 (22.3-25.6 Mb), SSC12 (2.4-8.6 Mb), SSC15 (35.7-53.1 and 

129.5-133.9 Mb), SSC16 (19.3-28.4, 35.0-52.4, 60.5-60.7, and 70.6-71.7 Mb) and SSC17 

(60.5-65.8 Mb). These putative selective sweeps might be due to factors unrelated to 

pigmentation, so we carried out a GWAS with the GEMMA software. In this way, 6 

regions identified in the selection scan were also identified as associated with coat color in 

the GWAS. We investigated the gene content of the overlapping regions identified by 

HapFLK and GEMMA.  In doing so, we detected that the position of the SLC45A2 gene 

(SSC16, 20 Mb) coincides with one of the regions (SSC16, 19-20 Mb) simultaneously 

identified in the selection scan and the GWAS. The SLC45A2 gene is a key regulator of the 

melanosomal pH and tyrosinase activity, and mutations in SLC45A2 are associated with 

changes of melanin synthesis (implying a dilution of the pigmentation) in different species, 

e.g  in humans (Tóth et al., 2017), horses (Mariat et al., 2003) and cattle (Rothammer et al., 

2017).   

By using whole-genome sequences from one Red, one Swallow Belly and two Blond 

Mangalitza pigs (SRA access: SRP039012) reported by Molnar et al. (2014) we identified 

three missense SNPs with a differential segregation in Red and Blond Mangalitzas, i.e. 

rs341599992 (c.806G>A, p.Gly269Glu), rs327001340 (c.829A>G, p.Ser277Gly) and 

rs693695020 (c.956G>A, p.Arg319His) The genotyping of these three missense 

polymorphisms in the porcine SLC45A2 gene in Red, Blond and Swallow Belly 

Mangalitza and other breeds evidenced that the c.806G>A (p.Gly269Glu) and c.956G>A 

(p.Arg319His) SNPs are strongly but not fully associated with the red and blond coat 

colours of Mangalitza pigs. Although the inheritance of pigmentation phenotypes is usually 

simpler than that of complex traits, such as growth and fatness, it is rarely monogenic. 

Recently, Crawford et al. (2017) performed a GWAS study and identified a list of genes, 
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which clustered in four genomic regions that together accounted for almost 30% of the 

phenotypic variation of pigmentation. The most significantly associated SNP were located 

in the SLC24A gene that represents a 12.8% of the variability of human skin colour. These 

results suggest that the genetic architecture of skin pigmentation in humans is a complex 

trait determined by a set of few genes of strong effect (Crawford et al., 2017). In this way, 

further studies will be needed to finely map the causal mutations of coat color in 

Mangalitza pigs as well as to elucidate the existence of genetic interactions between 

SLC45A2 and other color genes. 

 

  Table  4.3 - List of genes with known associations with coat colour in pigs.  

Gene SSC Pigmentation Reference 

KIT 8 White  Giuffra et al. (2002) 

MITF  13 Two‐end black Wang et al. (2015a) 

TYRP1 1 Blond and Brown Wu et al. (2016) Ren et al. (2011) 

MC1R 6 Black and red Fang et al. (2009) 

PINK1, and CNTLN 1 and 6 Two-end-black  Lü et al. (2016) 

EDNRB 1 Black 
Wang et al. (2015a) 

Lü et al. (2016) 
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1. By using an RNA-Seq technology we identified a total of  18,104 mRNAs expressed in 

the porcine gluteus medius muscle of 52 Duroc pigs. The differential expression 

analysis of pigs with distinct  growth and fatness profiles (HIGH: high backfat 

thickness,  intramuscular fat, saturated and unsaturated fatty acid content and serum 

lipids  vs LOW: opposite phenotypes), made possible to identify 1,430 mRNA 

transcripts that are differentially expressed at the nominal level of significance (P-value 

< 0.05). Ninety-six mRNAs were differentially expressed using more stringent 

parameters (P-value < 0.01 and fold-change > 1.5). We conclude that the differential 

expression of genes involved in lipid biosynthesis may explain the higher fat deposition 

of HIGH pigs. Moreover, in our and previus studies PPARG appears to be a key 

regulator of the genes differentially expressed in the skeletal muscle of pigs with 

distinct lipid profiles 

2. We have identified a total of 1,558 non-coding RNAs (ncRNAs) expressed in the 

porcine gluteus medius muscle of HIGH and LOW pigs,  however only 12 ncRNA 

transcripts show differential expression when considering a P-value < 0.05, and none 

when a more stringent threshold is used (P-value < 0.01 and fold-change > 1.5). These 

results indicate that the different fatness profiles of HIGH and LOW pigs might be 

mostly explained by the differential expression of protein-encoding genes.   

3. We have found that 10.9% of genes expressed in the gluteus medius muscle generate 

alternative mRNA isoforms, with an average of 2.9 transcripts per gene. This is 

probably an underestimate caused by the poor annotation of the porcine mRNA 

isoforms. The analysis of transcriptomic data with two prediction software (SUPPA and 

Splicing Express) evidenced that exon skipping is the most prevalent splicing event, 

while intron retention is the rarest one. These results are consistent with what has been 

found in humans, where exon skipping has a predominant role in the generation of 

splicing mRNA isoforms. A total of 10 mRNA isoforms were identified by CLC Bio 

and DESeq2 software as differentially expressed when comparing HIGH vs LOW pigs 

(P-value < 0.01 and ± 0.6 log2fold-change). Five mRNA isoforms, produced by the 

ITGA5, SEMA4D, LITAF, TIMP1 and ANXA2 genes, remained significant after 

correction for multiple testing (q-value < 0.05 and ± 0.6 log2fold-change), being 

upregulated in HIGH pigs. An overexpression of ITGA5, LITAF, TIMP1 and ANXA2 

mRNA is associated with obesity and metabolic disorders in humans. These findings 

indicate that fat deposition in pigs could be affected not only by global differences of 
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gene expression but also by the abundance of specific mRNA isoforms. 

4. By comparing the muscle expression of fasted pigs (T0) vs pigs sampled 5 h (T1) and 7 

h (T2) after feeding, we have detected the differential expression of 148 (T0 vs T1), 520 

(T0 vs T2) and 135 (T1 vs T2) mRNA-encoding genes.  We can conclude that food 

intake elicits changes in the expression of genes encoding transcription factors  (e.g. 

ARID5B, KLF5, CEBPD, and SOX9)  as well as of loci regulating oxidative stress and 

angiogenesis (THBS1, THBS2, and TXNIP) and circadian rhythms (i.e. ARNTL, PER1, 

PER2, BHLHE40, NR1D1, SIK1, CIART, and CRY2). 

5. The analysis of the expression of eight porcine Clock genes in five tissues has shown 

that four (dorsal fat and duodenum), six (skeletal muscle) and seven (liver) genes 

integrated into or modulating peripheral clocks are differentially expressed before and 

after feeding. In contrast, none of the eight analysed genes shows a significant 

differential expression in hypothalamus, the tissue where the central clock resides. From 

these data, we infer that the differential expression of Clock genes in muscle, 

duodenum, dorsal fat and liver tissue is induced by nutrition and not by the central clock 

entrained by light. In addition, we have observed that the magnitude and direction of the 

differential expression of Clock genes differ across tissues, thus indicating that the 

ticking of peripheral clocks is modulated by tissue-specific factors. 

6. Population analysis revealed that Blond Mangalitza, Red Mangalitza from Hungary, 

wild boar from Hungary and Romania and Hampshire pigs display a lower diversity 

than cosmopolitan breeds such as Landrace, Large White and Piétrain. In addition, 

Hungarian and Romanian Red Mangalitza pigs and Romanian wild boars display an 

increased frequency of very long ROH ( > 30 Mb), evidencing the occurrence of a 

recent and strong inbreeding.  

7. Performance of a selection scan with hapFLK and of a genome-wide association study 

for coat color in Red and Blond Mangalitza pigs highlighted the existence of one region 

on SSC16 (20 Mb) with potential effects on pigmentation. The analysis of the gene 

content of this region allowed us to detect the solute carrier family 45 member 2 

(SLC45A2) gene, which has a known role in color dilution. Genotyping of three 

missense polymorphisms in the porcine SLC45A2 gene evidenced that c.806G>A 

(p.Gly269Glu) and c.956G>A (p.Arg319His) SNPs are strongly but not fully associated 

with the red and blond coat colors of Mangalitza pigs. Alternative SLC45A2 genotypes 
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are almost fixed in Red and Blond Mangalitza pigs, a result that is probably explained 

by the performance of artificial selection for coat color.   
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Supplemental material Paper I: "RNA-Seq based detection of differentially 

expressed genes in the skeletal muscle of Duroc pigs with distinct lipid profiles" 

 

Annex 1 - Table S1 - Differentially expressed genes in the gluteus medius muscle of HIGH and 

LOW pigs (P-value ≤ 0.05). (The complete table is included in the CD-Rom). 

Feature ID Gene ID Fold Change q- value  P-value LOW - Means HIGH - Means 

ENSSSCG00000002041 SLC7A7 -1.20 1.36E-03 1.36E-07 6.02 5.03 

ENSSSCG00000007705   1.26 4.28E-03 9.78E-07 2.00 2.52 

ENSSSCG00000005648 SLC27A4 1.66 4.28E-03 1.32E-06 1.03 1.71 

ENSSSCG00000027946 MVP 1.78 5.97E-03 2.63E-06 14.75 26.30 

ENSSSCG00000010514 RRP12 1.25 5.97E-03 3.07E-06 9.14 11.45 

ENSSSCG00000002042 OXA1L -1.18 1.36E-02 1.20E-05 62.43 52.69 

ENSSSCG00000001435 AGPAT1 1.28 1.36E-02 1.23E-05 7.15 9.19 

ENSSSCG00000012914 RAD9A 1.35 1.36E-02 1.24E-05 0.65 0.88 

ENSSSCG00000017232 SLC9A3R1 1.72 1.36E-02 1.26E-05 4.84 8.33 

ENSSSCG00000003379 KLHL21 1.79 1.43E-02 1.61E-05 6.11 10.93 

ENSSSCG00000024814 MAGEB5 -1.41 1.43E-02 1.74E-05 3.81 2.71 

ENSSSCG00000005935 AGO2 1.59 1.43E-02 1.77E-05 3.34 5.32 

ENSSSCG00000020963 EPDR1 -1.30 1.48E-02 1.98E-05 25.34 19.42 

ENSSSCG00000011740 SERPINI1 -1.81 1.72E-02 2.48E-05 0.34   

ENSSSCG00000001931 GRAMD2 -1.58 1.76E-02 2.74E-05 2.75 1.74 

ENSSSCG00000007574 SDK1 1.58 1.76E-02 2.97E-05   0.24 

ENSSSCG00000022373 JMJD6 1.38 1.76E-02 3.18E-05 12.98 17.96 

ENSSSCG00000011444 NT5DC2 1.54 1.76E-02 3.26E-05 3.12 4.81 

ENSSSCG00000011398 SEMA3F 1.41 1.82E-02 3.56E-05 2.66 3.76 

ENSSSCG00000001679   1.41 1.84E-02 3.77E-05 6.25 8.80 

ENSSSCG00000007745 SUMF2 -1.54 1.95E-02 4.21E-05 7.38 4.80 

ENSSSCG00000000293 ITGA5 1.72 1.96E-02 4.46E-05 4.56 7.82 

ENSSSCG00000023043 BCL2L13 1.16 1.96E-02 4.65E-05 19.45 22.58 

ENSSSCG00000007133 ACSS1 1.51 2.09E-02 5.18E-05 7.25 10.96 

ENSSSCG00000028814 SOD3 1.97 2.09E-02 5.37E-05 0.89 1.75 

ENSSSCG00000006277 SPIDR 2.04 2.19E-02 5.90E-05 6.94 14.18 

ENSSSCG00000003000 ITPKC 1.49 2.19E-02 6.07E-05 1.41 2.10 

ENSSSCG00000003267 MBOAT7 1.27 2.23E-02 6.44E-05 3.35 4.25 

ENSSSCG00000024295 SIAH2 1.43 2.46E-02 7.35E-05 3.57 5.12 

ENSSSCG00000026817 ZNF646 1.26 2.55E-02 7.91E-05 1.29 1.62 

ENSSSCG00000010986   1.26 2.55E-02 8.13E-05 8.39 10.61 

ENSSSCG00000003134 GRWD1 1.26 2.88E-02 9.84E-05 10.53 13.26 

ENSSSCG00000028197 PFKL 1.42 2.88E-02 1.01E-04 2.96 4.22 

ENSSSCG00000007554 ZFAND2A 2.54 2.88E-02 1.01E-04 11.81 29.98 

ENSSSCG00000000431   1.24 2.91E-02 1.06E-04 2.49 3.08 

ENSSSCG00000010070 SMARCB1 1.19 2.91E-02 1.08E-04 9.58 11.39 

ENSSSCG00000003105 SLC1A5 1.67 3.07E-02 1.17E-04 3.21 5.37 

ENSSSCG00000006635 SEMA6C -1.38 3.10E-02 1.21E-04 28.68 20.80 

ENSSSCG00000012655 BCORL1 1.44 3.11E-02 1.26E-04 0.54 0.78 
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ENSSSCG00000012886   1.18 3.11E-02 1.28E-04 2.65 3.12 

ENSSSCG00000010529 SFRP5 2.03 3.11E-02 1.31E-04 1.98 4.02 

ENSSSCG00000006245 SDR16C5 3.02 3.15E-02 1.36E-04 0.58 1.77 

ENSSSCG00000001701 HSP90AB1 1.35 3.31E-02 1.47E-04 83.96 113.70 

ENSSSCG00000013579 CD209 1.95 3.31E-02 1.50E-04 1.32 2.57 

ENSSSCG00000004388 ARMC2 -1.43 3.35E-02 1.55E-04 0.30 0.21 

ENSSSCG00000024235 NPLOC4 1.19 3.40E-02 1.63E-04 45.12 53.82 

ENSSSCG00000010107 MED15 1.24 3.40E-02 1.65E-04 11.94 14.82 

ENSSSCG00000022227 BRD4 1.22 3.40E-02 1.71E-04 8.56 10.45 

ENSSSCG00000017882 MYBBP1A 1.21 3.40E-02 1.72E-04 16.87 20.36 

ENSSSCG00000016207 FAM134A 1.16 3.46E-02 1.79E-04 18.18 21.05 

ENSSSCG00000017479 WIPF2 1.22 3.46E-02 1.82E-04 1.97 2.40 

ENSSSCG00000027689 SRM 1.36 3.46E-02 1.85E-04 3.33 4.52 

ENSSSCG00000017774 FAM222B 1.20 3.46E-02 1.89E-04 2.07 2.49 

ENSSSCG00000016775 ZNF777 1.16 3.46E-02 1.94E-04 7.80 9.04 

ENSSSCG00000017835 CLUH 1.34 3.46E-02 1.96E-04 18.74 25.07 

ENSSSCG00000008232 RNF181 -2.09 3.57E-02 2.05E-04 20.92 9.99 

ENSSSCG00000030165 MAFF 1.67 3.72E-02 2.22E-04 12.50 20.89 

ENSSSCG00000027779 TMEM259 1.17 3.72E-02 2.22E-04 28.80 33.63 

ENSSSCG00000005943 ST3GAL1 1.42 3.75E-02 2.27E-04 2.58 3.67 

ENSSSCG00000006496 LMNA 1.28 3.87E-02 2.39E-04 47.69 60.85 

ENSSSCG00000001004 SLC22A23 1.42 4.30E-02 2.70E-04 4.34 6.15 

ENSSSCG00000014084 POC5 -1.39 4.33E-02 2.76E-04 2.34 1.69 

ENSSSCG00000013475 NCLN 1.16 4.47E-02 2.90E-04 8.75 10.19 

ENSSSCG00000022528 DAZAP1 1.21 4.57E-02 3.03E-04 20.96 25.42 

ENSSSCG00000008550 SLC5A6 1.47 4.57E-02 3.05E-04 7.49 11.02 

ENSSSCG00000024437 AP2M1 1.25 4.92E-02 3.34E-04 70.29 87.59 

ENSSSCG00000024577   1.23 5.05E-02 3.48E-04 427.48 523.91 

ENSSSCG00000013303 ABTB2 1.95 5.05E-02 3.53E-04 0.38 0.74 

ENSSSCG00000003138 HSD17B14 1.24 5.08E-02 3.62E-04 2.94 3.65 

ENSSSCG00000016648   -1.45 5.08E-02 3.67E-04 1.27 0.88 

ENSSSCG00000008040 TSC2 1.13 5.08E-02 3.71E-04 5.86 6.65 

ENSSSCG00000002824   1.93 5.21E-02 3.88E-04 1.10 2.12 

ENSSSCG00000023044 FASN 2.06 5.21E-02 3.91E-04 11.85 24.45 

ENSSSCG00000005664 LRRC8A 1.26 5.56E-02 4.36E-04 2.87 3.61 

ENSSSCG00000001398 SLA-6 -1.40 5.56E-02 4.46E-04 4.00 2.85 

ENSSSCG00000006518 HCN3 1.26 5.56E-02 4.53E-04 0.75 0.94 

ENSSSCG00000014859 SERPINH1 1.48 5.56E-02 4.53E-04 30.63 45.18 

ENSSSCG00000001700 SLC29A1 1.21 5.56E-02 4.62E-04 10.07 12.18 

ENSSSCG00000004367 POPDC3 1.20 5.56E-02 4.67E-04 49.18 58.92 

ENSSSCG00000002826 CES1* 2.03 5.56E-02 4.68E-04 1.14 2.31 

ENSSSCG00000030182 DEDD2 1.42 5.56E-02 4.69E-04 3.90 5.54 

ENSSSCG00000005315 CA9 -1.25 5.56E-02 4.71E-04 3.21 2.57 

ENSSSCG00000016191   1.29 5.56E-02 4.79E-04 2.05 2.65 

ENSSSCG00000009545 COL4A2 1.31 5.56E-02 4.81E-04 21.20 27.73 

ENSSSCG00000013745 FARSA 1.24 5.63E-02 4.93E-04 8.33 10.33 
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Annex 2 - Table S2 - List of DE genes (P-value ≤ 0.05) detected simultaneously with RNA-Seq 

(current work) and microarrays (Cánovas et al. 2010. BMC Genomics 11, 372).  

 

List of Microarray RNA-Seq 

common genes Fold-change P-value Fold-change P-value 

MVP -1.54 1.00E-07 -1.25 8.15E-04 

ZFAND2A -1.62 1.00E-06 -1.23 1.30E-03 

MAFF 2.49 1.80E-06 1.90 1.49E-03 

SLC5A6 3.09 2.30E-06 1.55 2.14E-02 

PRKRA 2.22 2.90E-06 1.67 1.09E-02 

TKT 1.92 3.00E-06 1.35 2.99E-03 

PBX3 2.12 5.00E-06 1.86 1.89E-02 

COL4A1 -2.54 7.30E-06 -1.42 1.68E-02 

PGM3 -1.88 8.40E-06 -1.26 3.95E-03 

PTX3 -1.53 1.01E-05 -1.20 1.24E-02 

PPARD 2.57 3.22E-05 7.92 9.17E-04 

TXNRD1 1.55 3.84E-05 1.59 2.16E-02 

BAG3 1.70 5.14E-05 1.42 3.21E-02 

ORAI1 1.40 5.63E-05 1.34 5.08E-03 

ITIH3 1.37 5.88E-05 -1.29 3.76E-02 

SNTB1 1.59 1.31E-04 1.41 1.14E-03 

PPP1R3B 1.39 1.43E-04 1.25 3.26E-02 

NPC2 2.33 1.47E-04 3.27 5.33E-03 

SLC25A17 1.72 1.77E-04 2.54 1.01E-04 

AQP3 1.69 1.86E-04 1.51 2.76E-02 

SHISA2 1.43 2.15E-04 1.34 5.07E-03 

CABLES2 -1.56 2.45E-04 -1.30 4.37E-02 

MLF1 -1.37 3.09E-04 -1.11 3.98E-02 

AVL9 1.33 3.18E-04 1.38 5.24E-03 

NPC1 1.56 3.29E-04 1.46 1.27E-03 

SQRDL 1.65 3.56E-04 1.42 6.32E-04 

AMPD3 1.34 3.69E-04 1.45 2.60E-03 

CHCHD4 1.60 3.70E-04 1.44 1.39E-02 

HSPB1 2.30 4.02E-04 1.20 4.39E-03 

RXRG 1.32 5.18E-04 -1.24 1.95E-02 

TLR1 1.47 5.25E-04 1.66 1.04E-02 

CIDEA -1.41 5.32E-04 -1.36 6.38E-04 

ANXA2 1.33 5.43E-04 1.54 1.04E-02 

SFRP1 1.56 6.20E-04 1.35 5.82E-03 

NQO1 1.42 6.60E-04 1.33 3.96E-02 

B4GALT5 -1.49 6.76E-04 -1.34 1.90E-02 

TMEM38A -1.39 7.58E-04 -1.12 1.40E-02 

SCD 1.28 7.88E-04 1.25 3.48E-02 

SH3GL1 1.33 1.32E-03 1.42 4.21E-02 

MS4A2 1.49 1.35E-03 1.33 1.67E-02 

PPP1R15A -1.51 1.36E-03 -1.10 2.45E-02 

GMPR -1.29 1.51E-03 -1.28 4.30E-03 

AQP4 -1.30 1.59E-03 -1.14 2.91E-02 

SEC31A -1.39 1.64E-03 -1.27 8.72E-03 

CHORDC1 1.64 1.68E-03 1.45 3.38E-02 

HSPH1 1.67 1.73E-03 -1.45 9.34E-03 

IGFBP5 -1.29 1.74E-03 1.17 3.55E-02 

FAM35A -1.50 1.74E-03 -1.26 6.03E-04 

PPARG -1.30 1.82E-03 -1.24 4.84E-02 
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LIPE -1.31 2.30E-03 -1.69 1.62E-02 

ACACA 1.25 2.61E-03 1.22 2.69E-02 

BMP1 -1.38 2.71E-03 -1.15 4.23E-02 

TBC1D20 1.27 2.73E-03 1.78 2.63E-06 

YWHAH 1.38 2.76E-03 1.42 1.51E-02 

GPD1 1.26 2.90E-03 1.47 3.05E-04 

IGF1R 1.56 3.14E-03 1.32 2.15E-02 

CCDC86 1.48 3.20E-03 1.68 3.38E-02 

HSPA2 1.39 3.42E-03 1.12 1.80E-02 

HOXB6 1.25 3.44E-03 1.25 2.29E-02 

LRP11 -1.30 3.56E-03 -1.27 4.80E-03 

RETSAT 3.17 3.88E-03 1.96 1.50E-02 

TTC9 1.28 4.01E-03 1.27 7.28E-04 

ICMT -1.44 4.06E-03 1.22 4.19E-02 

FAM73B 1.26 4.41E-03 1.16 2.23E-02 

ADAMTS1 1.39 4.84E-03 1.29 2.61E-02 

SH3PXD2A 1.37 5.24E-03 1.67 2.22E-04 

UHRF1BP1 1.31 5.25E-03 1.36 2.00E-02 

BMP5 -1.57 5.78E-03 -1.56 2.01E-03 

GPM6B -1.36 6.06E-03 -1.23 1.68E-02 

RAMP2 -1.44 6.32E-03 -1.29 4.06E-02 

ITGB3 -1.30 6.38E-03 -1.27 1.93E-03 

FOXN3 1.55 8.06E-03 1.45 1.80E-02 

METRNL 1.26 8.10E-03 1.61 5.95E-03 

PDGFRL -1.36 8.15E-03 -1.29 2.91E-02 

MAN2A1 1.23 8.48E-03 1.30 9.21E-04 

TES 1.24 9.84E-03 1.18 3.34E-02 

 

 

 

Annex 3 - Table S3 - Differentially expressed genes in the gluteus medius muscle of HIGH 

and LOW pigs (P-value ≤ 0.01 and fold-change ≥ 1.5). 

 

Feature ID Gene ID Fold Change q- value P-value LOW - Means  HIGH - Means 

ENSSSCG00000005648 SLC27A4 1.66 4.28E-03 1.32E-06 1.03 1.71 

ENSSSCG00000027946 MVP 1.78 5.97E-03 2.63E-06 14.75 26.30 

ENSSSCG00000017232 SLC9A3R1 1.72 1.36E-02 1.26E-05 4.84 8.33 

ENSSSCG00000003379 KLHL21 1.79 1.43E-02 1.61E-05 6.11 10.93 

ENSSSCG00000005935 AGO2 1.59 1.43E-02 1.77E-05 3.34 5.32 

ENSSSCG00000011740 SERPINI1 -1.81 1.72E-02 2.48E-05 0.34   

ENSSSCG00000001931 GRAMD2 -1.58 1.76E-02 2.74E-05 2.75 1.74 

ENSSSCG00000007574 SDK1 1.58 1.76E-02 2.97E-05   0.24 

ENSSSCG00000011444 NT5DC2 1.54 1.76E-02 3.26E-05 3.12 4.81 

ENSSSCG00000007745 SUMF2 -1.54 1.95E-02 4.21E-05 7.38 4.80 

ENSSSCG00000000293 ITGA5 1.72 1.96E-02 4.46E-05 4.56 7.82 

ENSSSCG00000007133 ACSS1 1.51 2.09E-02 5.18E-05 7.25 10.96 

ENSSSCG00000028814 SOD3 1.97 2.09E-02 5.37E-05 0.89 1.75 

ENSSSCG00000006277 SPIDR 2.04 2.19E-02 5.90E-05 6.94 14.18 

ENSSSCG00000007554 ZFAND2A 2.54 2.88E-02 1.01E-04 11.81 29.98 

ENSSSCG00000003105 SLC1A5 1.67 3.07E-02 1.17E-04 3.21 5.37 
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ENSSSCG00000010529 SFRP5 2.03 3.11E-02 1.31E-04 1.98 4.02 

ENSSSCG00000006245 SDR16C5 3.02 3.15E-02 1.36E-04 0.58 1.77 

ENSSSCG00000013579 CD209 1.95 3.31E-02 1.50E-04 1.32 2.57 

ENSSSCG00000008232 RNF181 -2.09 3.57E-02 2.05E-04 20.92 9.99 

ENSSSCG00000030165 MAFF 1.67 3.72E-02 2.22E-04 12.50 20.89 

ENSSSCG00000013303 ABTB2 1.95 5.05E-02 3.53E-04 0.38 0.74 

ENSSSCG00000002824   1.93 5.21E-02 3.88E-04 1.10 2.12 

ENSSSCG00000023044 FASN 2.06 5.21E-02 3.91E-04 11.85 24.45 

ENSSSCG00000002826 CES1 2.03 5.56E-02 4.68E-04 1.14 2.31 

ENSSSCG00000012051 RUNX1 1.99 5.63E-02 5.01E-04 4.16 8.27 

ENSSSCG00000027426 BCL3 1.74 5.63E-02 5.17E-04 1.82 3.16 

ENSSSCG00000030995 PRAF2 1.84 5.64E-02 5.34E-04 0.93 1.71 

ENSSSCG00000011557 CIDEC 2.46 5.77E-02 5.64E-04 3.90 9.58 

ENSSSCG00000010046 GNAZ 1.56 5.94E-02 6.05E-04 0.22 0.35 

ENSSSCG00000010253 HK1 1.55 5.94E-02 6.37E-04 3.07 4.75 

ENSSSCG00000013637 QTRT1 1.53 5.94E-02 6.37E-04 1.63 2.50 

ENSSSCG00000003951 C1orf210 -1.66 5.94E-02 6.42E-04 0.27   

ENSSSCG00000029533 SEMA4G 1.52 6.12E-02 6.86E-04 0.44 0.67 

ENSSSCG00000002825 CES1 2.41 6.17E-02 6.98E-04 1.24 2.98 

ENSSSCG00000017403 STAT3 1.62 6.25E-02 7.20E-04 21.42 34.61 

ENSSSCG00000017168 SEPT9 1.82 6.50E-02 7.99E-04 6.10 11.08 

ENSSSCG00000027969 AHNAK 1.61 6.50E-02 8.03E-04 30.56 49.19 

ENSSSCG00000012970 CTSW -1.88 6.50E-02 8.13E-04 0.88 0.47 

ENSSSCG00000007208 TRIB3 2.86 6.71E-02 8.69E-04 0.41 1.16 

ENSSSCG00000011727 PTX3 7.92 6.79E-02 9.17E-04 1.74 13.76 

ENSSSCG00000029944 FASN 2.00 6.79E-02 9.21E-04 5.04 10.07 

ENSSSCG00000017767 TLCD1 1.71 7.21E-02 1.09E-03 0.62 1.07 

ENSSSCG00000013292 PRR5L 1.69 7.68E-02 1.27E-03 0.43 0.72 

ENSSSCG00000003458 EFHD2 1.57 7.68E-02 1.30E-03 6.73 10.58 

ENSSSCG00000008121 GPAT2 -1.58 7.83E-02 1.34E-03 0.22   

ENSSSCG00000011451 ITIH3 1.90 8.39E-02 1.49E-03 1.48 2.82 

ENSSSCG00000010974 CNTFR 1.57 8.39E-02 1.49E-03 10.27 16.08 

ENSSSCG00000001844 PLIN1 2.23 8.78E-02 1.61E-03 4.15 9.24 

ENSSSCG00000005465 SUSD1 -1.76 9.27E-02 1.88E-03 1.51 0.86 

ENSSSCG00000022797 PPP1R3B -1.56 9.60E-02 2.01E-03 14.82 9.48 

ENSSSCG00000030018 ZNF396 -1.54 9.89E-02 2.10E-03     

ENSSSCG00000010926 SYT2 1.84 1.01E-01 2.16E-03   0.29 

ENSSSCG00000016381 SNED1 1.75 1.02E-01 2.20E-03 0.64 1.12 

ENSSSCG00000000362 RDH5 1.83 1.03E-01 2.28E-03 0.35 0.64 

ENSSSCG00000013432 MIDN 1.52 1.07E-01 2.40E-03 13.43 20.36 

ENSSSCG00000021143 LIPC -1.52 1.10E-01 2.54E-03 0.57 0.37 

ENSSSCG00000024982 LITAF 1.61 1.10E-01 2.57E-03 3.38 5.46 

ENSSSCG00000024108 SLC43A2 1.51 1.12E-01 2.62E-03 40.71 61.60 

ENSSSCG00000014012 GFPT2 1.75 1.14E-01 2.74E-03 1.39 2.43 

ENSSSCG00000008985 SOWAHB 2.01 1.15E-01 2.88E-03 0.65 1.30 

ENSSSCG00000022004 SH3BP2 1.62 1.16E-01 2.94E-03 0.77 1.25 
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ENSSSCG00000015089 JAML -1.52 1.16E-01 2.96E-03 0.43 0.28 

ENSSSCG00000008193 ZAP70 -1.89 1.20E-01 3.12E-03     

ENSSSCG00000023038   -3.22 1.23E-01 3.25E-03 1.49 0.46 

ENSSSCG00000026832 CSF1 1.61 1.25E-01 3.34E-03 0.92 1.48 

ENSSSCG00000015092 CD3E -1.70 1.26E-01 3.46E-03 0.53 0.31 

ENSSSCG00000000672 CLSTN3 1.58 1.26E-01 3.53E-03     

ENSSSCG00000028056 ZFP36 1.81 1.26E-01 3.59E-03 44.78 80.95 

ENSSSCG00000017472 IGFBP4 1.65 1.27E-01 3.68E-03 4.81 7.91 

ENSSSCG00000003699 GREB1L -1.52 1.30E-01 3.78E-03 1.28 0.84 

ENSSSCG00000027684 TRIM63 1.61 1.42E-01 4.57E-03 454.79 730.90 

ENSSSCG00000015522 ANGPTL1 -1.83 1.46E-01 5.07E-03 0.88 0.48 

ENSSSCG00000022492 AMPD3 3.27 1.50E-01 5.33E-03 8.24 26.95 

ENSSSCG00000028568 HSPB1 1.61 1.54E-01 5.65E-03 470.31 757.67 

ENSSSCG00000013263 CREB3L1 1.50 1.56E-01 5.91E-03 1.55 2.34 

ENSSSCG00000024482 HSPB1 1.61 1.56E-01 5.95E-03 470.75 757.42 

ENSSSCG00000011286 KLHL40 1.86 1.58E-01 6.10E-03 154.69 288.09 

ENSSSCG00000018047 FAM83G 1.79 1.59E-01 6.19E-03 0.79 1.41 

ENSSSCG00000008217 CD8A -2.03 1.61E-01 6.42E-03 0.28   

ENSSSCG00000023176 TROAP -1.56 1.62E-01 6.54E-03     

ENSSSCG00000013669 PIN1 -1.68 1.67E-01 6.92E-03 4.52 2.68 

ENSSSCG00000011934 PLCXD2 1.76 1.69E-01 7.13E-03 1.01 1.77 

ENSSSCG00000009314 FLT3 -1.79 1.72E-01 7.36E-03     

ENSSSCG00000012277 TIMP1 5.35 1.74E-01 7.64E-03 6.29 33.63 

ENSSSCG00000000641 KLRK1 -2.07 1.74E-01 7.65E-03 0.63 0.31 

ENSSSCG00000006416 ACKR1 1.59 1.75E-01 7.69E-03 5.11 8.13 

ENSSSCG00000012844 SLC25A22 1.51 1.75E-01 7.91E-03 1.58 2.38 

ENSSSCG00000013735 JUNB 1.72 1.80E-01 8.32E-03 22.87 39.30 

ENSSSCG00000013144 MPEG1 -1.54 1.81E-01 8.47E-03 0.95 0.61 

ENSSSCG00000021651 SCN2B -1.95 1.83E-01 8.67E-03     

ENSSSCG00000030369 KIAA1522 1.55 1.84E-01 8.87E-03 0.31 0.48 

ENSSSCG00000024344 CCR5 -1.82 1.86E-01 9.19E-03 0.40 0.22 

ENSSSCG00000004092   1.58 1.86E-01 9.19E-03 0.30 0.48 

ENSSSCG00000002866 CEBPA 1.64 1.86E-01 9.30E-03 0.71 1.17 

ENSSSCG00000010479 RBP4 1.69 1.86E-01 9.42E-03 0.86 1.45 
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Annex 4 - Table S4 - Enriched pathways identified by IPA when using the data set of 96 

differentially expressed genes (P-value ≤ 0.01 and fold-change ≥ 1.5). Ratio: number of DE 

genes in a pathway divided by the number of genes comprised in the same pathway. 

Ingenuity Canonical Pathways  -log(P-value) Ratio Nodes 

Acute Myeloid Leukemia Signaling 3.22 4/91 
CEBPA, FLT3, RUNX1, 

STAT3 

Hematopoiesis from Pluripotent Stem Cells 2.98 3/47 CD3E, CD8E, CSF1 

Primary Immunodeficiency Signaling 2.96 3/48 CD3E, CD8E, ZAP70 

Hepatic Fibrosis / Hepatic Stellate Cell Activation 2.12 4/183 
CCR5, CSF1, IGFBP4, 

TIMP1 

TR/RXR Activation 2.08 3/98 BCL3, FASN, SYT2 

Palmitate Biosynthesis I (Animals) 2.07 1/2 FASN 

Fatty Acid Biosynthesis Initiation II 2.07 1/2 FASN 

CTLA4 Signaling in Cytotoxic T Lymphocytes 2.07 3/99 CD3E, CD8A, ZAP70 

Retinoate Biosynthesis I 2.04 2/34 RDH5, SDR16C5 

Stearate Biosynthesis I (Animals) 2.02 2/35 FASN, SLC27A4 

T Cell Receptor Signaling 1.95 1/109 CD3E, CD8A, ZAP70 

Retinol Biosynthesis 1.9 2/40 CES1, LIPC 

Natural Killer Cell Signaling 1.82 2/122 
KLRK1, SH3BP2, 

ZAP70 

IL-9 Signaling 1.81 2/45 BCL3, STAT3 

Triacylglycerol Degradation 1.81 2/45 CES1, LIPC 

FXR/RXR Activation 1.78 3/126 FASN, LIPC, RBP4 

Acetate Conversion to Acetyl-CoA 1.77 1/4 ACSS1 

Phospholipase C Signaling 1.74 4/237 
AHNAK, CD3E, ITGA5, 

ZAP70 

Trehalose Degradation II (Trehalase) 1.68 1/5 HK1 

UDP-N-acetyl-D-glucosamine Biosynthesis II 1.6 1/6 GFPT2 

CNTF Signaling 1.53 2/63 CNTFR, STAT3 

PCP pathway 1.53 2/63 HSPB1, JUNB 

Calcium-induced T Lymphocyte Apoptosis 1.5 2/66 CD3E, ZAP70 

Superoxide Radicals Degradation 1.47 1/8 SOD8 

IL-10 Signaling 1.47 2/68 CCR5, STAT3 

CCR5 Signaling in Macrophages 1.46 2/69 CCR5, CD3E 

Acute Phase Response Signaling 1.46 3/169 ITIH3, RBP4, STAT3 

Tec Kinase Signaling 1.45 3/170 GNAZ, ITGA5, STAT3 

Pathogenesis of Multiple Sclerosis 1.43 1/9 CCR5 

GDP-glucose Biosynthesis 1.42 1/9 HK1 

Ephrin Receptor Signaling 1.42 3/174 GNAZ, ITGA5, STAT3 

GM-CSF Signaling 1.42 2/73 RUNX1, STAT3 
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TREM1 Signaling 1.39 2/75 ITGA5, STAT3 

Glucose and Glucose-1-phosphate Degradation 1.38 1/10 HK1 

Role of Macrophages, Fibroblasts and Endothelial Cells in 

Rheumatoid Arthritis 
1.37 4/309 

CEBPA, CSFA1, SFRP5, 

STAT3 

Role of NFAT in Regulation of the Immune Response 1.36 3/185 CD3E, GNAZ, ZAP70 

Regulation of IL-2 Expression in Activated and Anergic T 

Lymphocytes 
1.35 2/79 CD3E, ZAP70 

UDP-N-acetyl-D-galactosamine Biosynthesis II 1.34 1/11 HK1 

Growth Hormone Signaling 1.33 2/81 CEBPA, STAT3 

Macropinocytosis Signaling 1.33 2/81 CSF1, ITGA5 

RAR Activation 1.33 3/190 RBP4, RDH5, SDR16C5 

NRF2-mediated Oxidative Stress Response 1.31 3/193 JUNB, MAFF, SOD3 

Hematopoiesis from Multipotente Stem Cells 1.3 1/12 CSF1, ITGA5 

FLT3 Signaling in Hematopoietic Progenitor Cells 1.3 2/85 FLT3, STAT3 

 

 

Annex 5 - Table S5 - Pathways identified by Reactome as enriched in differentially expressed 

genes (P-value ≤ 0.01 and fold-change ≥ 1.5) 

GeneSet Ratio P-value Q-value Nodes 

Hematopoietic cell lineage(K) 5/87 3.50E-07 5.99E-05 
CD8A, FLT3, CD3E, CSF1, 

ITGA5 

Acute myeloid leukemia(K) 4/57 2.79E-06 2.37E-04 
CEBPA, FLT3, STAT3, 

RUNX1 

Primary immunodeficiency(K) 3/36 3.43E-05 1.96E-03 CD8A, CD3E, ZAP70 

IL6-mediated signaling events(N) 3/47 7.55E-05 3.17E-03 JUNB, STAT3, TIMP1 

TCR signaling in naive CD8+ T cells(N) 3/54 1.14E-04 3.86E-03 CD8A, CD3E, ZAP70 

IL12-mediated signaling events(N) 3/61 1.63E-04 4.49E-03 CD8A, CD3E, STAT3 

Downstream signaling in naive CD8+ T 

cells(N) 
3/64 1.87E-04 4.49E-03 CD8A, CD3E, JUNB 

TCR signaling in naive CD4+ T cells(N) 3/67 2.14E-04 4.49E-03 CD3E, ZAP70, SH3BP2 

CXCR4-mediated signaling events(N) 3/80 3.59E-04 6.82E-03 GNAZ, CD3E, STAT3 

T cell receptor signaling pathway(K) 3/104 7.68E-04 0.0131 CD8A, CD3E, ZAP70 

TNF signaling pathway(K) 3/110 9.03E-04 0.0135 CSF1, JUNB, BCL3 

IL12 signaling mediated by STAT4(N) 2/31 1.36E-03 0.0191 CD3E, STAT3 

Signaling events mediated by TCPTP(N) 2/35 1.73E-03 0.022 CSF1, STAT3 

IL23-mediated signaling events(N) 2/36 1.83E-03 0.022 CD3E, STAT3 

Transcriptional misregulation in cancer(K) 3/179 3.61E-03 0.0376 CEBPA, FLT3, RUNX1 

Signaling events mediated by PTP1B(N) 2/52 3.76E-03 0.0376 CSF1, STAT3 

Pathways in cancer(K) 4/397 4.51E-03 0.0451 
CEBPA, FLT3, STAT3, 

RUNX1 

Costimulation by the CD28 family(R) 2/63 5.45E-03 0.0491 CD3E, TRIB3 
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AP-1 transcription factor network(N) 2/70 6.68E-03 0.0601 JUNB, TIMP1 

T cell activation(P) 2/81 8.85E-03 0.0708 CD3E, ZAP70 

HIF-1 signaling pathway(K) 2/103 0.014 0.0974 STAT3, TIMP1 

S1P5 pathway(N) 1/8 0.014 0.0974 GNAZ 

Insulin resistance(K) 2/109 0.0156 0.0974 TRIB3, STAT3 

TCR signaling(R) 2/120 0.0186 0.0974 CD3E, ZAP70 

lck and fyn tyrosine kinases in initiation of 

tcr activation(B) 
1/11 0.0192 0.0974 CD3E 

Osteoclast differentiation(K) 2/131 0.022 0.0974 CSF1, JUNB 

Measles(K) 2/134 0.0229 0.0974 CD3E, STAT3 

Natural killer cell mediated cytotoxicity(K) 2/134 0.0229 0.0974 ZAP70, SH3BP2 

Atypical NF-kappaB pathway(N) 1/14 0.0244 0.0974 BCL3 

Stress induction of hsp regulation(B) 1/14 0.0244 0.0974 HSPB1 

Oxidative stress induced gene expression via 

nrf2(B) 
1/14 0.0244 0.0974 MAFF 

S1P4 pathway(N) 1/14 0.0244 0.0974 GNAZ 

Downregulated of mta-3 in er-negative 

breast tumors(B) 
1/18 0.0313 0.0974 HSPB1 

Mets affect on macrophage 

differentiation(B) 
1/18 0.0313 0.0974 CSF1 

Gata3 participate in activating the th2 

cytokine genes expression(B) 
1/18 0.0313 0.0974 JUNB 

S1P1 pathway(N) 1/19 0.033 0.0974 GNAZ 

The co-stimulatory signal during t-cell 

activation(B) 
1/20 0.0347 0.0974 CD3E 

Sphingosine 1-phosphate (S1P) pathway(N) 1/21 0.0364 0.0974 GNAZ 

p38 signaling mediated by MAPKAP 

kinases(N) 
1/21 0.0364 0.0974 HSPB1 

Growth hormone receptor signaling(R) 1/24 0.0415 0.0974 STAT3 

Role of mef2d in t-cell apoptosis(B) 1/25 0.0432 0.0974 CD3E 

S1P3 pathway(N) 1/25 0.0432 0.0974 GNAZ 

Nongenotropic Androgen signaling(N) 1/25 0.0432 0.0974 GNAZ 

VEGFR3 signaling in lymphatic 

endothelium(N) 
1/25 0.0432 0.0974 ITGA5 

S1P2 pathway(N) 1/26 0.0448 0.0974 GNAZ 

IL27-mediated signaling events(N) 1/26 0.0448 0.0974 STAT3 

Calcium signaling in the CD4+ TCR 

pathway(N) 
1/27 0.0465 0.0974 JUNB 

Epstein-Barr virus infection(K) 2/200 0.0477 0.0974 STAT3, HSPB1 

Proteoglycans in cancer(K) 2/203 0.049 0.0974 STAT3, ITGA5 

EGF receptor (ErbB1) signaling pathway(N) 1/29 0.0499 0.0974 STAT3 
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Annex 6 - Table S6: Regulatory networks of genes that are differentially expressed (P-value ≤ 

0.01 and fold-change ≥  1.5) in HIGH and LOW pigs 

Top Diseases and Functions Molecules DE in the Network Score 
Focus 

Molecules 

Cardiovascular Disease, Cardiovascular System 

Development and Function, Organismal Injury and 

Abnormalities 

ANGTL1, BLC3, CD209, CREB3L1, 

CSF1, GFPT2, HK1, ITGA5, JUNB, 

KLHL21, MAFF, MPEG1, MVP, 

PIN1, SEPT9, SL9A3R1, TIMP1, 

TRIB3 

36 18 

Hereditary Disorder, Immunological Disease, 

Organismal Injury and Abnormalities 

CD3E, CD8A, CES1, CIDEC, 

EFHD2, FASN, GNAZ, IGFBP4, 

KLRC4-KLRK1/KLRK1, LIPC, 

LITAF, PTX3, RBP4, SH3BP2, 

ZAP70 

31 15 

Cell-To-Cell Signaling and Interaction, Small 

Molecule Biochemistry, Cell Death and Survival 

ABTB2, AMPD3, CLSTN3, FAM83G, 

GREB1L, QTRT1, RNF181, SDK1, 

SEMA4G, SLC43A2, SNED1, SYT2, 

ZNF396 

24 13 

Cellular Development, Cellular Growth and 

Proliferation, Hematological System Development and 

Function 

CCR5, CNTFR, CTSW, FLT3, 

HSPB1, PRAF2, PRR5L, RUNX1, 

SOD3, STAT3, ZFAND2A, ZFP36 

22 12 

Cell Cycle, Cell-To-Cell Signaling and Interation, 

Cellular Growth and Proliferation 

ACKR1, ACSS1, AHNAK, ITIH3, 

JAML, KIAA1522, KLHL40, PP1R3B, 

PTX3, SCN2B, SLC25A22, SPIDR 

22 12 

Tissue Development, Hematological System 

Development and Function, Hematopoiesis 

AGO2, CEBPA, MIDN, RDH5, 

SERPINI1, SFRP5, SLC27A4, 

TRIMP63 

13 8 

Cellular Function nd Maintenance, Inflammatory 

Responder, Organismal Injury and Abnormalities 

NT5DC2, SLC1A5, SUMF2, SUSD1, 

TROAP 
7 5 

Behavior, Cancer, Cardiovascular Disease PLCXD2 2 1 

Lipids Metabolism, Small Molecule Biochemistry, 

Cancer 
GPAT2 2 1 

Developmental Disorder, Hereditary Disorder, 

Neurogical Disease 
TLCD1 2 1 

Connective Tissue Development and Function, 

Lymphoid Tissue Structure and Development, Skeletal 

and Muscular System Development and Function 

SDR16C5 2 1 
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Annex 7 - Table S7 - Non-coding transcripts expressed in the gluteus medius muscle of HIGH 

and LOW pigs. (The complete table is included in the CD-Rom). 

Feature ID Gene ID Size FC P-value 
LOW - 

Means 

HIGH - 

Means 

Transcript 

type 

ENSSSCG00000031004 
CH242-

227G20.3 
1833 -1.44 

2.46E-

03 
1879.03 1302.25 lincRNA 

ENSSSCG00000031028 
CH242-

15C8.2 
1495 -1.34 0.01 1987.17 1484.83 lincRNA 

ENSSSCG00000015579 PTGS2 3601 -1.47 0.02 36.29 24.67 
processed_ 

transcript 

ENSSSCG00000030904 CU468594.10 1083 -1.49 0.03 1058.89 711.39 non_coding 

ENSSSCG00000001227 TMP-SLA-3 1767 -1.31 0.03 32900.06 25085.39 
processed_ 

transcript 

ENSSSCG00000030767 TMP-SLA-5 1147 -1.29 0.03 10275.63 7958.96 
processed_ 

transcript 

ENSSSCG00000015549 RNASEL 2716 -1.87 0.03 21.05 11.24 
processed_ 

transcript 

ENSSSCG00000018090   70 -2.05 0.04 1850.59 900.54 Mt_tRNA 

ENSSSCG00000001397 
TMP-CH242-

74M17.4 
1726 -1.27 0.04 11706.02 9186.74 

processed_ 

transcript 

ENSSSCG00000001227 TMP-SLA-3 1700 -1.30 0.04 3777.12 2906.70 
processed_ 

anscript 

ENSSSCG00000004334 MAP3K7 2818 -1.72 0.04 326.60 189.72 
processed_ 

transcript 

ENSSSCG00000015897 IFIH1 3720 -1.60 0.05 168.63 105.27 
processed_ 

transcript 

ENSSSCG00000030790 
TMP-CH242-

74M17.6 
309 -1.25 0.05 25040.66 20022.19 

processed_ 

transcript 

ENSSSCG00000030936 
CH242-

154K8.2 
392 -1.48 0.05 531.81 360.18 

processed_ 

transcript 

ENSSSCG00000031041 CU466547.1 347 1.34 0.06 403.45 539.30 
processed_ 

transcript 

ENSSSCG00000031015 
CH242-

33O21.2 
2138 -1.27 0.06 1071.44 845.32 lincRNA 

ENSSSCG00000030846 
CH242-

358M12.6 
474 -1.17 0.06 6460.16 5501.10 antisense 

ENSSSCG00000030923 
SBAB-

554F3.8 
585 -1.26 0.07 321.55 254.22 

processed_ 

transcript 

ENSSSCG00000030892 CU302278.1 431 -1.23 0.07 1228.62 1000.86 lincRNA 

ENSSSCG00000031025 
CH242-

236E18.2 
541 -1.44 0.09 100.90 70.23 lincRNA 

ENSSSCG00000008841 PDGFRA 2859 -1.31 0.10 115.17 87.69 
processed_ 

transcript 

ENSSSCG00000030844 
CH242-

100L3.3 
766 -1.25 0.10 7239.06 5775.51 

processed_ 

transcript 

ENSSSCG00000030916 
CH242-

136A20.1 
1238 -1.26 0.10 588.78 467.07 lincRNA 

ENSSSCG00000001727 TNFRSF21 3489 -1.36 0.10 638.39 469.72 
processed_ 

transcript 

ENSSSCG00000001228 
TMP-CH242-

74M17.5 
1303 -1.24 0.10 3941.47 3168.52 

processed_ 

transcript 

ENSSSCG00000010709 PLEKHG2 3630 -1.63 0.11 22.40 13.73 
processed_ 

transcript 

ENSSSCG00000024809 CLCN4 4337 -1.87 0.11 203.81 109.18 
processed_ 

transcript 

ENSSSCG00000018079   67 -1.24 0.13 70343.42 56715.47 Mt_tRNA 

ENSSSCG00000030758 DEFB-104L 564 -1.34 0.14 314.00 233.63 
processed_ 

transcript 

ENSSSCG00000001227 TMP-SLA-3 1733 -1.79 0.15 256.54 143.69 
processed_ 

transcript 

ENSSSCG00000030773 
CH242-

77E21.3 
631 -1.29 0.17 941.24 728.98 non_coding 
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ENSSSCG00000026838 IFN-ALPHA-8 901 -1.47 0.18 173.66 117.95 
processed_ 

transcript 

ENSSSCG00000030935 CU302278.4 778 -1.13 0.18 25168.39 22345.07 lincRNA 

ENSSSCG00000004334 MAP3K7 1740 -1.23 0.20 1302.05 1060.49 
processed_ 

transcript 

ENSSSCG00000030939 
CH242-

124P4.2 
453 -1.13 0.20 13371.03 11795.44 

processed_ 

transcript 

ENSSSCG00000007280 ITCH 3517 -1.32 0.21 1707.52 1290.22 
processed_ 

transcript 

ENSSSCG00000004600 
CH242-

58J12.2 
997 -1.41 0.21 54.20 38.55 

processed_ 

transcript 

ENSSSCG00000004943 MAP2K1 1423 -1.16 0.21 8488.64 7340.93 
processed_ 

transcript 

ENSSSCG00000001396 SLA-8 1305 -1.30 0.21 1614.73 1237.39 
processed_ 

transcript 

ENSSSCG00000018096   64 -1.65 0.22 5814.49 3514.84 Mt_tRNA 

ENSSSCG00000020977 SH3BGRL 627 -1.17 0.24 1747.69 1498.53 
processed_ 

transcript 

ENSSSCG00000001241 ZFP57 1830 -1.58 0.25 138.01 87.60 
processed_ 

transcript 

ENSSSCG00000020977 SH3BGRL 352 -1.74 0.26 464.66 266.61 
processed_ 

transcript 

ENSSSCG00000020462 SCARNA13 276 -1.36 0.28 248.38 182.28 snoRNA 

ENSSSCG00000030436   96 -1.12 0.29 26464.63 23683.55 miRNA 

ENSSSCG00000030729 CU468856.1 208 -1.04 0.30 2320.51 2230.78 lincRNA 

ENSSSCG00000004600 
CH242-

58J12.2 
5982 -1.15 0.31 1436.90 1246.19 

processed_ 

transcript 

ENSSSCG00000004334 MAP3K7 2737 -1.23 0.32 451.30 367.78 
processed_ 

transcript 

ENSSSCG00000010709 PLEKHG2 4268 -1.25 0.32 186.19 148.76 
processed_ 

transcript 

ENSSSCG00000026919 snoU89 255 1.19 0.34 351.63 418.10 snoRNA 

ENSSSCG00000004334 MAP3K7 1821 -1.53 0.34 140.72 91.91 
processed_ 

transcript 

ENSSSCG00000003617 TXLNA 1367 1.45 0.34 437.52 634.85 
processed_ 

transcript 

ENSSSCG00000012298 CACNA1F 6038 -1.13 0.35 2486.42 2205.10 
processed_ 

transcript 

ENSSSCG00000010709 PLEKHG2 4062 -1.39 0.35 18.64 13.38 
processed_ 

transcript 

ENSSSCG00000030871 CU582909.1 1382 -1.04 0.36 91730.05 88401.20 
processed_ 

transcript 
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Annex 8 - Table S8: HIGH and LOW group mean values ± standard deviation (SD) for 13 

lipid-related traits 

  HIGH group (N=28) LOW group (N=28) 

  Mean SD Mean SD 

Carcass traits 

LW - Live weight (Kg) 131.21 9.45 115.5 16.63 

BFTiv - Backfat thickness (in vivo) (mm)  27.05 2.41 21.07 2.98 

BFT - Backfat thickness 3rd-4th ribs (mm)  46.18 12.14 35.15 10.7 

HFT - Ham fat thickness (mm)  29.09 3.37 20.02 3.67 

LEAN - Lean % 39.56 5.35 45.5 3.83 

Meat quality traits (gluteus medius) 

IMF - % Intramuscular fat 7.21 1.71 3.76 0.95 

SFA - % Saturated fatty acids 38.72 1.31 34.65 1.13 

PUFA - % Polyunsaturated fatty acids 14.61 2.98 27.75 4.06 

MUFA - % Monounsaturated fatty acids 46.67 2.66 37.61 3.97 

Serum lipid levels - 190 days 

CHOL - Total cholesterol (mg/dl) 167.25 37.23 103.18 16.68 

HDL - HDL-cholesterol (mg/dl) 60.43 8.55 44.12 9.12 

LDL - LDL-cholesterol (mg/dl) 92.69 36.82 48.95 15.03 

TG - Triacylglycerides (mg/dl 70.54 26.06 48.3 27.74 
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Annex 9 - Supplementary Figure S1. Venn diagram indicating the overlap between the set of 

differentially expressed genes (P-value ≤ 0.05) detected in the current work (RNA-Seq) and 

those identified by Cánovas et al. 
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Supplemental material Paper II: "Differential expression of mRNA isoforms in 

the skeletal muscle of pigs with distinct growth and fatness profiles " 

 

Annex 10 - Table S1: Distribution of the 56 animals sequenced by RNA-Seq in the 5 half-sib 

families reported by Gallardo et al. (2008). 

Sire Sequenced offspring - HIGH group Sequenced offspring - LOW group 

BL12441 5 8 

BL12445 2 7 

BR112290 14 6 

BR18035 6 6 

BR22311 1 1 

 

 

Annex 11 - Table S2. Primers employed in the validation of four differentially expressed 

mRNA isoforms by RT-qPCR. 

Primer Sequence 5' to 3'  

PIG_ITGA5-001_F_E22 AGTGGCCTTCGGTTCACAGT 

PIG_ITGA5-001_R_E22/E23 GAGATTCTTGCTGAGGATTTGGA 

PIG_MAFF-001_F_E2 CGGGAGGGCACCTTTTG 

PIG_MAFF-001_R_E2/E3 GCTCGCGCTTGATCTTCAG 

PIG_RXRG-002_F_E1 TGGGAAACATGCTCCTTCTGT 

PIG_RXRG-002_R_E1/E2 GGTTTGATGTCCTCTGAAATGCT 

PIG_SCD-001_F_E5 GCCCTTATGACAAGACTATTAGCCC 

PIG_SCD-001_R_E6 AAGGTGTGGTGGTAGTTGTGGAA 

PIG_TBP_F CAGAATGATCAAACCGAGAATTGT 

PIG_TBP_RV CTGCTCTGACTTTAGCACCTGTTAA 

PIG_HPRT1_F TCATTATGCCGAGGATTTGGA 

PIG_HPRT1_RV CTCTTTCATCACATCTCGAGCAA 

PIG_ACTB_F CAAGGACCTCTACGCCAACAC 

PIG_ACTB_RV TGGAGGCGCGATGATCTT 
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Annex 12 - Table S3: Alternatively spliced mRNA isoforms identified in the porcine gluteus medius muscle of Duroc pigs by CLC Bio and/or 

STAR/RSEM/DESEq2. (The complete table is included in the CD-Rom). 

Feature ID Feature transcript ID Gene ID 
Transcript 

ID 

Length 

(bp) 

Relative expression 

CLC Bio(%) 

Relative expression 

STAR/RSEM/DESeq2 

(%) 

Type 

ENSSSCG00000000031 ENSSSCT00000034350 MCAT MCAT-202 1119 2.84 0.56 Protein Coding 

ENSSSCG00000000031 ENSSSCT00000035501 MCAT MCAT-203 850 12.73 8.40 
Nonsense mediated 

decay 

ENSSSCG00000000031 ENSSSCT00000000033 MCAT MCAT-201 1396 84.42 90.75 Protein Coding 

ENSSSCG00000000031 ENSSSCT00000033405 MCAT MCAT-205 679 - 0.29 Retained intron 

ENSSSCG00000000058 ENSSSCT00000023171 SNU13 SNU13-202 1476 13.12 11.60 Protein Coding 

ENSSSCG00000000058 ENSSSCT00000000064 SNU13 SNU13-201 1460 86.88 88.40 Protein Coding 

ENSSSCG00000000068 ENSSSCT00000000074 EP300 EP300-202 8181 0.67 - Protein Coding 

ENSSSCG00000000068 ENSSSCT00000026332 EP300 EP300-201 8364 99.33 100.00 Protein Coding 

ENSSSCG00000000076 ENSSSCT00000031184 SGSM3 SGSM3-201 2568 6.44 0.17 Protein Coding 

ENSSSCG00000000076 ENSSSCT00000000082 SGSM3 SGSM3-202 2562 93.56 99.83 Protein Coding 

ENSSSCG00000000087 ENSSSCT00000000093 TAB1 TAB1-201 2006 0.58 0.18 Protein Coding 

ENSSSCG00000000087 ENSSSCT00000035948 TAB1 TAB1-001 2433 99.42 87.23 Protein Coding 

ENSSSCG00000000087 ENSSSCT00000033099 TAB1 TAB1-002 591 - 12.59 Retained intron 

ENSSSCG00000000095 ENSSSCT00000029543 GTPBP1 GTPBP1-201 3510 3.22 - Protein Coding 

ENSSSCG00000000095 ENSSSCT00000000101 GTPBP1 GTPBP1-202 3486 96.78 100.00 Protein Coding 

ENSSSCG00000000107 ENSSSCT00000022980 CSNK1E - 1595 7.78 12.70 Protein Coding 

ENSSSCG00000000107 ENSSSCT00000000113 CSNK1E - 2686 92.22 87.30 Protein Coding 

ENSSSCG00000000110 ENSSSCT00000000116 PLA2G6 PLA2G6-201 2695 8.09 - Protein Coding 

ENSSSCG00000000110 ENSSSCT00000022302 PLA2G6 PLA2G6-202 2524 91.91 100.00 Protein Coding 

ENSSSCG00000000137 ENSSSCT00000034941 NCF4 NCF4-202 1429 23.69 94.31 Protein Coding 

ENSSSCG00000000137 ENSSSCT00000036476 NCF4 NCF4-201 1569 29.56 5.69 Protein Coding 

ENSSSCG00000000137 ENSSSCT00000000143 NCF4 NCF4-203 5020 46.75 - Protein Coding 

ENSSSCG00000000138 ENSSSCT00000000144 PVALB PVALB-203 558 0.57 5.43 Protein Coding 

ENSSSCG00000000138 ENSSSCT00000032626 PVALB PVALB-202 599 0.58 0.44 Protein Coding 
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ENSSSCG00000000138 ENSSSCT00000035876 PVALB PVALB-201 585 98.85 94.13 Protein Coding 

ENSSSCG00000000157 ENSSSCT00000000165 BPIFC BPIFC-202 2004 46.45 - Protein Coding 

ENSSSCG00000000157 ENSSSCT00000036153 BPIFC BPIFC-201 2168 53.55 - Protein Coding 

ENSSSCG00000000191 ENSSSCT00000000204 KMT2D KMT2D-202 18097 9.44 - Protein Coding 

ENSSSCG00000000191 ENSSSCT00000031953 KMT2D KMT2D-201 18199 90.56 100.00 Protein Coding 

ENSSSCG00000000232 ENSSSCT00000000251 ACVRL1 ACVRL1-203 3787 26.21 59.75 Protein Coding 

ENSSSCG00000000232 ENSSSCT00000033395 ACVRL1 ACVRL1-201 4044 73.79 19.96 Protein Coding 

ENSSSCG00000000232 ENSSSCT00000036596 ACVRL1 ACVRL1-202 764 - 20.29 Processed transcript 

ENSSSCG00000000242 ENSSSCT00000000261 
CH242-

185F9.2 

CH242-

185F9.2-201 
346 5.77 14.19 Protein Coding 

ENSSSCG00000000242 ENSSSCT00000033904 
CH242-

185F9.2 

CH242-

185F9.2-001 
944 94.23 85.81 Protein Coding 

ENSSSCG00000000275 ENSSSCT00000000295 MAP3K12 
MAP3K12-

202 
2580 30.21 67.39 Protein Coding 

ENSSSCG00000000275 ENSSSCT00000024918 MAP3K12 
MAP3K12-

201 
2983 69.79 32.61 Protein Coding 

ENSSSCG00000000278 ENSSSCT00000023450 ATF7 ATF7-201 1652 4.34 0.40 Protein Coding 

ENSSSCG00000000278 ENSSSCT00000000299 ATF7 ATF7-202 1619 95.66 99.60 Protein Coding 

ENSSSCG00000000293 ENSSSCT00000035821 ITGA5 ITGA5-203 1255 0.34 - 
Nonsense mediated 

decay 

ENSSSCG00000000293 ENSSSCT00000033141 ITGA5 ITGA5-205 766 0.59 0.36 
Nonsense mediated 

decay 

ENSSSCG00000000293 ENSSSCT00000034427 ITGA5 ITGA5-204 1013 0.71 - 
Nonsense mediated 

decay 

ENSSSCG00000000293 ENSSSCT00000000314 ITGA5 ITGA5-201 4445 98.36 99.64 Protein Coding 

ENSSSCG00000000361 ENSSSCT00000032827 CD63 CD63-204 679 0.40 - Protein Coding 

ENSSSCG00000000361 ENSSSCT00000032682 CD63 CD63-207 597 0.74 21.91 Protein Coding 

ENSSSCG00000000361 ENSSSCT00000035463 CD63 CD63-209 461 0.91 1.94 Protein Coding 

ENSSSCG00000000361 ENSSSCT00000000383 CD63 CD63-201 901 5.36 49.05 Protein Coding 

ENSSSCG00000000361 ENSSSCT00000033233 CD63 CD63-202 1370 92.60 1.61 Protein Coding 

ENSSSCG00000000361 ENSSSCT00000036432 CD63 CD63-211 437 - 0.19 Retained intron 

ENSSSCG00000000361 ENSSSCT00000034338 CD63 CD63-203 390 - 0.23 Retained intron 

ENSSSCG00000000361 ENSSSCT00000036425 CD63 CD63-205 544 - 0.29 Retained intron 
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ENSSSCG00000000361 ENSSSCT00000036614 CD63 CD63-206 310 - 0.37 Retained intron 

ENSSSCG00000000361 ENSSSCT00000035947 CD63 CD63-208 691 - 0.73 Retained intron 

ENSSSCG00000000361 ENSSSCT00000034881 CD63 CD63-210 394 - 23.67 Processed transcript 

ENSSSCG00000000403 ENSSSCT00000032195 BAZ2A BAZ2A-202 8208 6.08 7.57 Protein Coding 

ENSSSCG00000000403 ENSSSCT00000000436 BAZ2A BAZ2A-201 8727 93.92 92.43 Protein Coding 

ENSSSCG00000000405 ENSSSCT00000033906 ATP5B ATP5B-201 1565 0.62 1.88 Protein Coding 

ENSSSCG00000000405 ENSSSCT00000000438 ATP5B ATP5B-202 1767 99.38 98.12 Protein Coding 

ENSSSCG00000000444 ENSSSCT00000000464 DCTN2 - 1411 0.68 - Protein Coding 

ENSSSCG00000000444 ENSSSCT00000000479 DCTN2 - 1384 99.32 100.00 Protein Coding 

ENSSSCG00000000462 ENSSSCT00000034992 TMEM5 TMEM5-201 450 2.18 6.12 Protein Coding 

ENSSSCG00000000462 ENSSSCT00000000500 TMEM5 TMEM5-202 1632 97.82 93.88 Protein Coding 

ENSSSCG00000000464 ENSSSCT00000000502 C12orf56 C12orf56-202 1638 44.40 - Protein Coding 

ENSSSCG00000000464 ENSSSCT00000030713 C12orf56 C12orf56-201 1644 55.60 - Protein Coding 

ENSSSCG00000000472 ENSSSCT00000000510 LLPH LLPH-202 581 0.88 43.38 Protein Coding 

ENSSSCG00000000472 ENSSSCT00000025545 LLPH LLPH-201 1621 99.12 56.62 Protein Coding 

ENSSSCG00000000475 ENSSSCT00000032082 IRAK3 IRAK3-202 490 11.10 - Protein Coding 

ENSSSCG00000000475 ENSSSCT00000031580 IRAK3 IRAK3-203 256 13.93 86.13 Protein Coding 

ENSSSCG00000000475 ENSSSCT00000000513 IRAK3 IRAK3-204 948 33.53 13.87 Protein Coding 

ENSSSCG00000000475 ENSSSCT00000035165 IRAK3 IRAK3-201 2155 41.45 - Protein Coding 

ENSSSCG00000000478 ENSSSCT00000033391 GRIP1 GRIP1-201 2174 44.04 - Protein Coding 

ENSSSCG00000000478 ENSSSCT00000000516 GRIP1 GRIP1-202 3408 55.96 - Protein Coding 

ENSSSCG00000000492 ENSSSCT00000033585 LYZ LYZ-003 762 3.52 1.63 Protein Coding 

ENSSSCG00000000492 ENSSSCT00000034939 LYZ LYZ-002 858 5.33 3.16 Protein Coding 

ENSSSCG00000000492 ENSSSCT00000000530 LYZ LYZ-001 1287 91.15 95.21 Protein Coding 



                                                                                                                            Annexes   

 

259 

 

Annex 13 - Table S4. Classification of alternative splicing (AS) events detected in the porcine 

gluteus medius muscle with the SUPPA and Splicing Express softwares. 

SUPPA software 

Event type Genes Total Events Events / Gene % total 

Exon Skipping 3907 7651 1.96 36.75 

Alternative 3' Splice Site 2692 4344 1.61 20.86 

Alternative 5' Splice Site 3284 6279 1.91 30.16 

Intron Retention 1490 2547 1.71 12.23 

Splicing Express software 

Event type Genes Total Events Events / Gene % total 

Exon Skipping 2624 14543 5.54 41.02 

Alternative 3' Splice Site 2386 8656 3.63 24.41 

Alternative 5' Splice Site 2286 7756 3.36 21.87 

Intron Retention 1745 4502 2.58 12.70 
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Annex 14 - Table S5: Differentially expressed  (P-value < 0.05) mRNA isoforms (HIGH vs LOW pigs) found with CLC Bio and 

STAR/RSEM/DESeq2 softwares (those identified by both pipelines are shown in bold). (The complete table is included in the CD-Rom). 

Feature ID Feature transcript ID Gene ID 
Transcript 

ID 

Length 

(bp) 
Type 

CLC Bio STAR/RSEM/DESeq2 

log2(FC) P-value q-value 

Relative 

expres- 

sion (%) 

log2 

(FC) 
P-value q-value* 

Relative 

expres- 

sion (%) 

ENSSSCG00000016893 ENSSSCT00000018398 NDUFS4 - 567 
Protein 

Coding 
-0.22 1.55E-05 2.07E-02 99.85 -0.29 9.49E-08 1.25E-04 99.51 

ENSSSCG00000010313 ENSSSCT00000011289 VCL VCL-201 5378 
Protein 

Coding 
-0.49 2.33E-07 1.25E-03 52.73 -0.63 1.18E-07 1.25E-04 37.61 

ENSSSCG00000000293 ENSSSCT00000000314 ITGA5 ITGA5-201 4445 
Protein 
Coding 

0.85 2.64E-05 2.56E-02 98.36 0.85 2.54E-06 1.21E-03 99.64 

ENSSSCG00000004578 ENSSSCT00000005057 ANXA2 ANXA2-202 1455 
Protein 

Coding 
0.70 3.32E-06 6.56E-03 98.90 0.69 4.56E-06 1.58E-03 99.82 

ENSSSCG00000012440 ENSSSCT00000032952 PGK1 PGK1-005 401 
Protein 
Coding 

-0.24 5.55E-04 1.33E-01 12.77 -0.51 4.61E-06 1.58E-03 3.82 

ENSSSCG00000006549 ENSSSCT00000036394 IL6R IL6R-001 460 
Protein 

Coding 
1.25 1.89E-02 9.33E-01 71.98 1.41 6.89E-06 NA 83.85 

ENSSSCG00000012440 ENSSSCT00000034653 PGK1 PGK1-001 1561 
Protein 
Coding 

-0.26 8.53E-03 6.29E-01 3.39 -0.30 1.78E-05 2.75E-03 89.72 

ENSSSCG00000013579 ENSSSCT00000014831 CD209 CD209-001 1042 
Protein 

Coding 
1.03 7.84E-05 4.18E-02 93.21 1.01 2.09E-05 NA 97.00 

ENSSSCG00000012448 ENSSSCT00000033853 ITM2A ITM2A-201 1626 
Protein 

Coding 
-0.45 2.43E-04 8.65E-02 76.96 -0.55 3.16E-05 4.24E-03 68.73 

ENSSSCG00000009584 ENSSSCT00000034286 SEMA4D 
SEMA4D-

208 
487 

Protein 
Coding 

1.40 2.75E-06 6.53E-03 7.90 1.09 5.87E-05 6.59E-03 9.25 

ENSSSCG00000006328 ENSSSCT00000033501 RXRG RXRG-202 544 
Protein 

Coding 
-0.70 4.09E-04 1.18E-01 14.61 -0.76 9.31E-05 8.98E-03 20.75 

ENSSSCG00000030970 ENSSSCT00000035366 COX7B COX7B-001 439 
Protein 
Coding 

-0.23 5.46E-04 1.33E-01 87.12 -0.29 1.07E-04 9.61E-03 96.53 

ENSSSCG00000024982 ENSSSCT00000036552 LITAF LITAF-201 2190 
Protein 

Coding 
1.01 1.02E-04 4.38E-02 78.56 0.79 1.21E-04 1.04E-02 98.33 

ENSSSCG00000010184 ENSSSCT00000011150 AGT - 2242 
Protein 

Coding 
0.57 3.74E-04 1.09E-01 98.48 0.65 1.32E-04 1.08E-02 25.49 

ENSSSCG00000013242 ENSSSCT00000014462 ACP2 ACP2-001 2107 
Protein 

Coding 
0.52 1.69E-03 2.56E-01 79.46 0.46 1.62E-04 1.28E-02 88.07 

ENSSSCG00000012277 ENSSSCT00000013426 TIMP1 TIMP1-001 931 
Protein 

Coding 
2.57 4.61E-07 1.68E-03 98.97 0.79 2.01E-04 1.32E-02 96.74 

ENSSSCG00000006610 ENSSSCT00000035044 S100A11 S100A11-001 546 
Protein 
Coding 

0.55 1.46E-03 2.36E-01 70.33 0.63 2.04E-04 1.33E-02 85.52 

ENSSSCG00000015310 ENSSSCT00000023446 AKAP9 AKAP9-202 13006 
Protein 

Coding 
-0.34 1.77E-02 9.09E-01 55.41 -0.55 2.15E-04 1.36E-02 63.58 

ENSSSCG00000026914 ENSSSCT00000035582 PLA2G16 
PLA2G16-

201 
800 

Protein 
Coding 

0.36 4.57E-02 
1.00E+0

0 
63.04 0.32 3.67E-04 1.89E-02 78.13 
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ENSSSCG00000017983 ENSSSCT00000032848 PER1 PER1-201 4590 
Protein 

Coding 
0.43 2.76E-03 3.57E-01 76.76 0.42 5.13E-04 2.40E-02 77.16 

ENSSSCG00000001252 ENSSSCT00000001367 UBD UBD-201 1281 
Protein 
Coding 

-0.72 1.37E-03 2.29E-01 96.35 -0.83 7.73E-04 NA 55.28 

ENSSSCG00000006612 ENSSSCT00000007246 S100A10 S100A10-201 1512 
Protein 

Coding 
0.57 1.22E-03 2.23E-01 88.28 0.51 8.47E-04 3.31E-02 26.43 

ENSSSCG00000010107 ENSSSCT00000011068 MED15 MED15-201 2913 
Protein 
Coding 

0.37 5.83E-03 4.97E-01 98.60 0.30 1.19E-03 3.92E-02 99.89 

ENSSSCG00000000657 ENSSSCT00000034328 CLEC2D 
CLEC2D-

002 
1688 

Protein 

Coding 
-0.48 3.28E-02 

1.00E+0

0 
43.46 -0.70 1.24E-03 NA 51.21 

ENSSSCG00000012345 ENSSSCT00000033201 PFKFB1 PFKFB1-203 471 
Protein 

Coding 
-0.33 3.11E-03 3.75E-01 25.63 -0.37 1.49E-03 4.47E-02 25.98 

ENSSSCG00000000657 ENSSSCT00000033596 CLEC2D 
CLEC2D-

001 
1673 

Protein 
Coding 

-0.57 7.04E-03 5.52E-01 56.30 -0.70 1.54E-03 NA 47.76 

ENSSSCG00000014013 ENSSSCT00000034792 RNF130 - 650 
Protein 

Coding 
-0.16 2.96E-02 

1.00E+0

0 
14.03 -0.28 1.65E-03 4.79E-02 11.31 

ENSSSCG00000012133 ENSSSCT00000032369 ASB11 ASB11-001 1464 
Protein 
Coding 

-0.14 3.98E-02 
1.00E+0

0 
81.39 -0.24 1.67E-03 4.81E-02 67.35 

ENSSSCG00000011848 ENSSSCT00000012960 TFRC TFRC-201 5030 
Protein 

Coding 
-0.55 1.29E-03 2.24E-01 50.32 -0.79 1.83E-03 5.02E-02 49.80 

ENSSSCG00000012411 ENSSSCT00000025272 PHKA1 - 5491 
Protein 
Coding 

-0.21 2.21E-03 3.05E-01 89.03 -0.27 1.98E-03 5.28E-02 98.63 

ENSSSCG00000001398 ENSSSCT00000001327 SLA-6 SLA-6-201 1153 
Protein 

Coding 
-0.53 1.29E-02 7.67E-01 59.78 -0.85 2.19E-03 NA 36.38 

ENSSSCG00000001468 ENSSSCT00000032605 PSMB9 PSMB9-001 959 
Protein 

Coding 
-0.63 4.04E-02 

1.00E+0

0 
74.08 -0.91 2.25E-03 NA 86.41 

ENSSSCG00000029471 ENSSSCT00000032244 STAC3 STAC3-202 1629 
Protein 

Coding 
-0.12 3.93E-02 

1.00E+0

0 
99.94 -0.21 2.28E-03 5.69E-02 99.94 

ENSSSCG00000014920 ENSSSCT00000033976 FZD4 FZD4-201 6963 
Protein 

Coding 
0.38 2.98E-02 

1.00E+0

0 
99.58 0.41 2.54E-03 6.09E-02 99.68 

ENSSSCG00000012653 ENSSSCT00000013834 ZDHHC9 
ZDHHC9-

209 
2967 

Protein 
Coding 

0.78 3.29E-03 3.75E-01 17.33 0.77 2.56E-03 6.11E-02 18.26 

ENSSSCG00000004687 ENSSSCT00000005176 B2M - 1197 
Protein 

Coding 
-0.32 1.13E-03 2.11E-01 49.95 -0.35 2.92E-03 6.61E-02 49.59 

ENSSSCG00000016186 ENSSSCT00000026123 TMBIM1 - 2030 
Protein 
Coding 

0.44 4.91E-04 1.25E-01 73.00 0.38 2.97E-03 6.65E-02 56.74 

ENSSSCG00000012591 ENSSSCT00000033097 AMOT AMOT-201 6928 
Protein 

Coding 
-0.15 2.38E-02 

1.00E+0

0 
73.57 -0.38 3.23E-03 7.00E-02 15.48 
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Annex 15 - Table S6: Relative transcript levels of a set of isoforms corresponding to five genes expressed in the gluteus medius muscle of HIGH 

and LOW pigs identified with the CLC Bio and STAR/RSEM/DESeq2 pipelines (those showing differential expression are indicated in bold, q-

value < 0.05,|log2(fold-change)| > 0.6). 

Feature transcript ID 

  

Gene ID 

  

Transcript ID 

  

Length 

(bp) 

  

Type 

  

CLC Bio STAR/RSEM/DESeq2 

log2 

(FC) 
 P-value q-value 

Relative 

expres- 

sion (%) 

log2 

(FC) 
 P-value q-value* 

Relative 

expres-sion 

(%) 

ENSSSCT00000034155 ANXA2 ANXA2-201 1609 Protein coding 0.22 6.77E-01 1.00E+00 1.1 0.07 9.20E-01 NA 0.18 

ENSSSCT00000005057 ANXA2 ANXA2-202 1455 Protein coding 0.7 3.32E-06 7.23E-03 98.9 0.69 4.56E-06 1.58E-03 99.82 

ENSSSCT00000000314 ITGA5 ITGA5-201 4445 Protein coding 0.85 2.64E-05 2.82E-02 98.36 0.85 2.54E-06 1.21E-03 99.64 

ENSSSCT00000035821 ITGA5 ITGA5-203 1255 
Nonsense 

mediated decay 
-0.03 9.18E-01 1.00E+00 0.34 - - - 0.34 

ENSSSCT00000034427 ITGA5 ITGA5-204 1013 
Nonsense 

mediated decay 
-0.08 1.00E+00 1.00E+00 0.71 - - - 0.71 

ENSSSCT00000033141 ITGA5 ITGA5-205 766 
Nonsense 

mediated decay 
-0.29 1.00E+00 1.00E+00 0.59 -0.01 9.97E-01 NA 0.36 

ENSSSCT00000036552 LITAF LITAF-201 2190 Protein coding 1.01 1.02E-04 4.82E-02 78.56 0.79 1.21E-04 1.04E-02 98.33 

ENSSSCT00000025103 LITAF LITAF-202 2370 Protein coding -0.04 1.00E+00 1.00E+00 21.44 0.49 7.52E-01 NA 1.67 

ENSSSCT00000033039 SEMA4D SEMA4D-201 3625 Protein coding 0.33 3.22E-02 1.00E+00 67.7 0.24 3.94E-02 2.75E-01 58.28 

ENSSSCT00000033344 SEMA4D SEMA4D-202 2108 Protein coding -0.29 1.00E+00 1.00E+00 0.06 - - - 0.06 

ENSSSCT00000033105 SEMA4D SEMA4D-203 4704 Protein coding 0.86 1.72E-02 9.86E-01 3.28 -0.21 8.34E-01 NA 0.29 

ENSSSCT00000034118 SEMA4D SEMA4D-204 594 Protein coding 0.71 1.53E-01 1.00E+00 1.7 - - - 1.7 

ENSSSCT00000034311 SEMA4D SEMA4D-205 823 Protein coding 0.21 2.40E-01 1.00E+00 16.3 0.24 9.34E-02 4.14E-01 23.88 

ENSSSCT00000033153 SEMA4D SEMA4D-206 794 Protein coding 0.42 8.00E-01 1.00E+00 0.3 0.77 6.15E-01 NA 0.15 

ENSSSCT00000036138 SEMA4D SEMA4D-207 1178 Protein coding 0.27 1.00E+00 1.00E+00 0.17 -0.11 9.70E-01 NA 0.02 

ENSSSCT00000034286 SEMA4D SEMA4D-208 487 Protein coding 1.4 2.75E-06 7.19E-03 7.9 1.09 5.87E-05 6.59E-03 9.25 

ENSSSCT00000010505 SEMA4D SEMA4D-209 4409 Protein coding 0.64 1.29E-01 1.00E+00 2.59 0.65 1.94E-03 5.25E-02 8.13 

ENSSSCT00000013426 TIMP1 TIMP1-001 931 Protein coding 2.57 4.61E-07 1.85E-03 98.97 0.79 2.01E-04 1.32E-02 96.74 

ENSSSCT00000033796 TIMP1 TIMP1-002 598 Protein coding 1.12 5.56E-01 1.00E+00 0.48 0.38 8.98E-01 NA 0.27 

ENSSSCT00000034602 TIMP1 TIMP1-003 641 Protein coding 1.19 8.47E-01 1.00E+00 0.34 -0.19 7.39E-01 NA 2.81 

ENSSSCT00000036308 TIMP1 TIMP1-004 173 Protein coding 3.05 4.21E-01 1.00E+00 0.21 0.18 9.52E-01 NA 0.18 
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Annex 16 - Figure S1. Validation by RT-qPCR of the differential expression of mRNA 

isoforms corresponding to the RXRG, SCD, MAFF and ITGA5 genes in HIGH vs LOW pigs. 
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Supplemental material Paper III: "Nutrient supply affects the mRNA 

expression profile of the porcine skeletal muscle " 

 

Annex 17 - Additional file 1: Figure 1 - Kinetics of the average concentrations of triglycerides 

and non-esterified fatty acids (FA) in 36 Duroc pigs at three time points: before eating and 5 

and 7 hours post-ingestion.  
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Annex 18 - Table S1. Differentially expressed genes (q-value < 0.05 and |fold-change| > 1.5) in the pig gluteus medius muscle at fasting (T0) vs 5 h 

(T1) and 7 h (T2) after eating, and 5 h (T1) vs 7 h (T2) after eating . (The complete table is included in the CD-Rom). 

  
T0T1 T0T2 T1T2 

Gene Gene ID FC 
Log2 

(FC) 
P -value 

q - 

value 
FC 

Log2 

(FC) 
P -value q - value FC 

Log2 

(FC) 
P -value q - value 

ENSSSCG00000016386 
 

- - - - 60.97 5.93 2.12E-234 5.94E-231 46.85 5.55 7.57E-300 1.09E-295 

ENSSSCG00000008767 RPS18 - - - - 28.84 4.85 1.84E-78 8.88E-76 45.89 5.52 8.18E-261 5.91E-257 

ENSSSCG00000005274 
 

- - - - 56.49 5.82 3.52E-167 4.93E-164 46.53 5.54 6.61E-248 3.18E-244 

ENSSSCG00000002045 
 

- - - - 60.13 5.91 0.00E+00 0.00E+00 34.78 5.12 1.90E-244 6.85E-241 

ENSSSCG00000002261 
 

- - - - 81.57 6.35 1.87E-243 6.57E-240 48.50 5.60 1.26E-240 3.64E-237 

ENSSSCG00000016735 
 

- - - - 38.05 5.25 7.19E-147 9.17E-144 32.67 5.03 2.25E-216 5.41E-213 

ENSSSCG00000016538 
 

- - - - 46.53 5.54 2.38E-198 5.57E-195 32.67 5.03 1.71E-210 3.54E-207 

ENSSSCG00000030628 CH242-203F13.1 - - - - 31.34 4.97 5.28E-186 1.06E-182 25.63 4.68 1.89E-202 3.41E-199 

ENSSSCG00000016571 RPS20 - - - - 19.84 4.31 4.95E-90 2.67E-87 24.93 4.64 8.34E-197 1.34E-193 

ENSSSCG00000005172 
 

- - - - 54.95 5.78 1.72E-173 3.02E-170 32.90 5.04 3.04E-181 4.39E-178 

ENSSSCG00000029003 RPL14 - - - - 42.22 5.40 4.88E-267 3.42E-263 24.93 4.64 7.84E-180 1.03E-176 

ENSSSCG00000014910 RPL35A - - - - 30.06 4.91 2.38E-255 1.11E-251 19.84 4.31 1.51E-176 1.82E-173 

ENSSSCG00000024660 
 

- - - - 30.91 4.95 5.68E-112 4.69E-109 26.72 4.74 3.47E-167 3.85E-164 

ENSSSCG00000025403 RPS19 - - - - 11.63 3.54 1.09E-37 2.84E-35 28.25 4.82 4.88E-162 5.04E-159 

ENSSSCG00000011910 
 

- - - - 23.26 4.54 8.54E-112 6.65E-109 20.82 4.38 6.18E-144 5.95E-141 

ENSSSCG00000007500 CH242-266P8.1 - - - - 8.94 3.16 1.83E-125 1.83E-122 8.88 3.15 3.61E-140 3.26E-137 

ENSSSCG00000012578 COPE - - - - 58.49 5.87 2.28E-173 3.56E-170 21.86 4.45 1.04E-116 8.82E-114 

ENSSSCG00000004575 
 

- - - - 9.78 3.29 5.92E-105 3.77E-102 8.82 3.14 5.45E-113 4.37E-110 

ENSSSCG00000021825 RPS21 - - - - -14.52 -3.86 3.33E-107 2.22E-104 -12.21 -3.61 5.96E-112 4.53E-109 

ENSSSCG00000011667 
 

- - - - 32.90 5.04 5.80E-129 6.78E-126 17.51 4.13 2.00E-105 1.44E-102 
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ENSSSCG00000030093 
 

- - - - 22.32 4.48 5.30E-100 3.10E-97 14.62 3.87 6.64E-100 4.57E-97 

ENSSSCG00000016791 
 

- - - - 51.63 5.69 3.48E-120 3.26E-117 18.25 4.19 4.95E-98 3.25E-95 

ENSSSCG00000002529 
 

- - - - 16.00 4.00 1.31E-52 4.36E-50 15.78 3.98 5.35E-97 3.36E-94 

ENSSSCG00000000744 
 

- - - - 18.00 4.17 1.27E-79 6.36E-77 13.64 3.77 1.18E-92 7.11E-90 

ENSSSCG00000027329 
 

- - - - 27.67 4.79 3.78E-91 2.12E-88 15.24 3.93 3.06E-91 1.77E-88 

ENSSSCG00000009133 
 

- - - - 15.56 3.96 2.11E-126 2.28E-123 10.56 3.40 4.75E-85 2.64E-82 

ENSSSCG00000016886 
 

- - - - 9.25 3.21 5.32E-33 1.26E-30 11.39 3.51 9.63E-80 5.15E-77 

ENSSSCG00000009848 
 

- - - - 15.78 3.98 1.39E-71 6.07E-69 11.55 3.53 1.99E-79 1.03E-76 

ENSSSCG00000026049 CYCS - - - - 44.32 5.47 3.87E-114 3.39E-111 13.64 3.77 8.30E-78 4.14E-75 

ENSSSCG00000009677 
 

- - - - 15.56 3.96 6.10E-71 2.59E-68 11.08 3.47 1.54E-71 7.42E-69 

ENSSSCG00000014974 ENY2 - - - - 13.00 3.70 8.84E-109 6.20E-106 8.46 3.08 4.58E-68 2.13E-65 

ENSSSCG00000028670 
 

- - - - 11.71 3.55 2.97E-46 8.87E-44 10.41 3.38 8.28E-66 3.74E-63 

ENSSSCG00000017077 
 

- - - - 18.64 4.22 1.07E-79 5.53E-77 10.48 3.39 7.81E-65 3.42E-62 

ENSSSCG00000009126 
 

- - - - 19.56 4.29 1.26E-61 4.79E-59 10.93 3.45 2.96E-63 1.26E-60 

ENSSSCG00000015620 TIAL1 - - - - 21.26 4.41 2.04E-64 8.19E-62 9.65 3.27 8.75E-59 3.61E-56 

ENSSSCG00000011945 
 

- - - - 5.54 2.47 4.91E-31 1.13E-28 6.23 2.64 2.38E-56 9.54E-54 

ENSSSCG00000024384 DCAF12 - - - - 6.54 2.71 2.61E-44 7.18E-42 5.28 2.40 6.76E-54 2.64E-51 

ENSSSCG00000004527 
 

- - - - 16.56 4.05 7.07E-53 2.42E-50 9.25 3.21 1.63E-53 6.21E-51 

ENSSSCG00000027246 NDUFA2 - - - - 12.04 3.59 6.11E-48 1.90E-45 8.00 3.00 3.47E-49 1.29E-46 

ENSSSCG00000002850 RPLP2 - - - - 18.51 4.21 9.38E-59 3.37E-56 8.69 3.12 5.40E-49 1.95E-46 

ENSSSCG00000010221 
 

- - - - 3.61 1.85 3.27E-59 1.21E-56 3.78 1.92 6.07E-49 2.14E-46 

ENSSSCG00000029019 
 

- - - - 12.64 3.66 2.01E-52 6.54E-50 7.94 2.99 1.05E-48 3.60E-46 
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Annex 19 - Table S2 - Pathways identified by ReactomeFIViz as enriched in differentially 

expressed genes (q -value < 0.05 and |fold-change| > 1 .5) between at fasting (T0) vs 5 h (T1) 

and 7 h (T2) after eating, and 5 h (T1) 

T0 vs T1 

GeneSet P-value q-value Nodes 

Circadian Clock(R) 1.53E-08 4.52E-06 NR1D1, PER2, PER1, SIK1, ARNTL, UBB 

Circadian rhythm pathway(N) 1.20E-07 1.77E-05 NR1D1, PER2, PER1, ARNTL 

Circadian clock system(P) 1.55E-06 1.21E-04 PER2, PER1, ARNTL 

Circadian rhythm(K) 1.64E-06 1.21E-04 NR1D1, PER2, PER1, ARNTL 

AP-1 transcription factor network(N) 3.96E-05 2.34E-03 FOSL2, FOS, MYC, BCL2L11 

Regulation of nuclear SMAD2/3 

signaling(N) 
5.72E-05 2.80E-03 FOXO1, FOS, GATA3, MYC 

Striated Muscle Contraction(R) 8.66E-05 3.54E-03 MYL4, ACTN3, TNNT2 

MAPK6/MAPK4 signaling(R) 9.57E-05 3.54E-03 FOXO1, TNRC6B, MYC, UBB 

Glucagon signaling pathway(K) 1.62E-04 5.18E-03 PGAM1, FOXO1, SIK1, CREB5 

Calcineurin-regulated NFAT-dependent 

transcription in lymphocytes(N) 
2.75E-04 7.62E-03 FOS, GATA3, EGR2 

IL6-mediated signaling events(N) 2.93E-04 7.62E-03 FOXO1, FOS, MYC 

Hepatitis B(K) 6.50E-04 1.50E-02 FOS, MYC, EGR2, CREB5 

Adrenergic signaling in 

cardiomyocytes(K) 
6.84E-04 1.50E-02 MYL4, ACTC1, CREB5, TNNT2 

Oxidative Stress Induced Senescence(R) 7.17E-04 1.51E-02 FOS, TNRC6B, UBB 

cadmium induces dna synthesis and 

proliferation in macrophages(B) 
7.95E-04 1.51E-02 FOS, MYC 

bone remodeling(B) 9.03E-04 1.63E-02 FOSL2, FOS 

Cardiac muscle contraction(K) 1.27E-03 1.93E-02 MYL4, ACTC1, TNNT2 

Glucocorticoid receptor regulatory 

network(N) 
1.27E-03 1.93E-02 FOS, GATA3, PBX1 

Regulation of nuclear beta catenin 

signaling and target gene transcription(N) 
1.36E-03 1.93E-02 MYOG, MYC, KLF4 

Transcriptional misregulation in 

cancer(K) 
1.38E-03 1.93E-02 FOXO1, PER2, MYC, PBX1 

Herpes simplex infection(K) 1.53E-03 2.14E-02 FOS, PER2, PER1, ARNTL 

inhibition of cellular proliferation by 

gleevec(B) 
2.00E-03 2.61E-02 FOS, MYC 

Circadian entrainment(K) 2.22E-03 2.66E-02 FOS, PER2, PER1 

CD40/CD40L signaling(N) 2.90E-03 3.35E-02 MYC, TNFAIP3 

Oncogene Induced Senescence(R) 3.10E-03 3.35E-02 TNRC6B, UBB 

role of egf receptor transactivation by 

gpcrs in cardiac hypertrophy(B) 
3.30E-03 3.35E-02 FOS, MYC 

TNF signaling pathway(K) 3.35E-03 3.35E-02 FOS, CREB5, TNFAIP3 

Syndecan-4-mediated signaling 

events(N) 
3.52E-03 3.52E-02 SDC4, THBS1 

Transcriptional regulation of pluripotent 

stem cells(R) 
4.18E-03 3.98E-02 PBX1, KLF4 

TNF signaling(R) 4.42E-03 3.98E-02 UBB, TNFAIP3 

Dopaminergic synapse(K) 5.21E-03 4.55E-02 FOS, CREB5, ARNTL 

Bladder cancer(K) 5.68E-03 4.55E-02 THBS1, MYC 

FOXM1 transcription factor network(N) 5.68E-03 4.55E-02 FOS, MYC 

LKB1 signaling events(N) 6.23E-03 4.98E-02 SIK1, MYC 
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T0 vs T2 

GeneSet P-value q-value Nodes 

Eukaryotic Translation Termination(R) 4.63E-11 1.08E-08 

RPL14, RPLP2, RPL35A, RPS18, RPS19, 

RPS16, RPL9, RPS20, RPS21, RPS23, RPS24, 

RPL39, RPL22 

Nonsense-Mediated Decay (NMD)(R) 6.29E-11 1.08E-08 

RPL14, RPLP2, RPL35A, RPS18, RPS19, 

RPS16, RPL9, RPS20, RPS21, RPS23, RPS24, 

CASC3, RPL39, RPL22 

Eukaryotic Translation Elongation(R) 7.08E-11 1.08E-08 

RPL14, RPLP2, RPL35A, RPS18, RPS19, 

RPS16, RPL9, RPS20, RPS21, RPS23, RPS24, 

RPL39, RPL22 

SRP-dependent cotranslational protein 

targeting to membrane(R) 
6.80E-10 6.93E-08 

RPL14, RPLP2, RPL35A, RPS18, RPS19, 

RPS16, RPL9, RPS20, RPS21, RPS23, RPS24, 

RPL39, RPL22 

Selenoamino acid metabolism(R) 7.62E-10 6.93E-08 

RPL14, RPLP2, RPL35A, RPS18, RPS19, 

RPS16, RPL9, RPS20, RPS21, RPS23, RPS24, 

RPL39, RPL22 

Ribosome(K) 1.67E-09 1.18E-07 

RPL14, RPLP2, RPL35A, RPS18, RPS19, 

RPS16, RPL9, RPS20, RPS21, RPS23, RPS24, 

MRPS21, RPL39, RPL22 

Eukaryotic Translation Initiation(R) 1.81E-09 1.18E-07 

RPL14, RPLP2, RPL35A, RPS18, RPS19, 

RPS16, RPL9, RPS20, RPS21, RPS23, RPS24, 

RPL39, RPL22 

Circadian rhythm pathway(N) 5.64E-08 3.21E-06 
CRY2, ARNTL, BHLHE40, NR1D1, PER2, 

PER1 

Circadian Clock(R) 9.64E-07 4.82E-05 
CRY2, ARNTL, BHLHE40, UBB, NR1D1, 

PER2, PER1, DBP 

Circadian rhythm(K) 2.57E-06 1.16E-04 
CRY2, ARNTL, BHLHE40, NR1D1, PER2, 

PER1 

Circadian clock system(P) 3.28E-06 1.34E-04 CRY2, ARNTL, PER2, PER1 

Signaling by NOTCH1(R) 9.27E-05 3.52E-03 HDAC10, HDAC5, HDAC9, MYC, TLE4, UBB 

Myogenesis(R) 2.29E-04 8.00E-03 MYOD1, BOC, NEO1, MYOG 

Regulation of nuclear SMAD2/3 

signaling(N) 
3.84E-04 1.23E-02 

MYOD1, FOXO1, GATA3, RUNX1, MYC, 

KAT2A 

Senescence-Associated Secretory 

Phenotype (SASP)(R) 
4.66E-04 1.40E-02 ANAPC5, H3F3A, UBE2E1, UBB, RPS6KA1 

p38 mapk signaling pathway(B) 5.96E-04 1.67E-02 HMGN1, HSPB1, H3F3A, MYC 

MAPK6/MAPK4 signaling(R) 7.68E-04 2.00E-02 FOXO1, MAPK4, HSPB1, PAK1, MYC, UBB 

Signaling events mediated by HDAC 

Class II(N) 
1.26E-03 3.15E-02 HDAC10, BCOR, HDAC5, HDAC9 

T1 vs T2 

GeneSet P-value q-value Nodes 

Eukaryotic Translation Termination(R) 1.11E-16 1.11E-15 

RPL35A, RPL14, RPLP2, RPL39, RPS18, 

RPS19, RPS16, RPL9, RPS20, RPS21, RPS23, 

RPS24 

Eukaryotic Translation Initiation(R) 1.11E-16 1.11E-15 

RPL35A, RPL14, RPLP2, RPL39, RPS18, 

RPS19, RPS16, RPL9, RPS20, RPS21, RPS23, 

RPS24 

SRP-dependent cotranslational protein 

targeting to membrane(R) 
1.11E-16 1.11E-15 

RPL35A, RPL14, RPLP2, RPL39, RPS18, 

RPS19, RPS16, RPL9, RPS20, RPS21, RPS23, 

RPS24 

Ribosome(K) 1.11E-16 1.11E-15 

RPL35A, RPL14, RPLP2, RPL39, RPS18, 

RPS19, RPS16, RPL9, RPS20, RPS21, RPS23, 

RPS24 

Nonsense-Mediated Decay (NMD)(R) 1.11E-16 1.11E-15 
RPL35A, RPL14, RPLP2, RPL39, RPS18, 

RPS19, RPS16, RPL9, RPS20, RPS21, RPS23, 
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RPS24 

Eukaryotic Translation Elongation(R) 1.11E-16 1.11E-15 

RPL35A, RPL14, RPLP2, RPL39, RPS18, 

RPS19, RPS16, RPL9, RPS20, RPS21, RPS23, 

RPS24 

Selenoamino acid metabolism(R) 1.11E-16 1.11E-15 

RPL35A, RPL14, RPLP2, RPL39, RPS18, 

RPS19, RPS16, RPL9, RPS20, RPS21, RPS23, 

RPS24 

The citric acid (TCA) cycle and 

respiratory electron transport(R) 
1.89E-04 1.70E-03 CYCS, ATP5G2, COX6B1, ATP5I 

p38 mapk signaling pathway(B) 1.52E-03 1.22E-02 H3F3A, HSPB1 

Oxidative phosphorylation(K) 1.83E-03 1.28E-02 ATP5G2, COX6B1, ATP5I 

Parkinson's disease(K) 2.20E-03 1.32E-02 CYCS, ATP5G2, COX6B1 

Alzheimer's disease(K) 3.54E-03 2.12E-02 CYCS, ATP5G2, COX6B1 

Huntington's disease(K) 5.21E-03 2.61E-02 CYCS, ATP5G2, COX6B1 

Aurora C signaling(N) 7.42E-03 3.71E-02 H3F3A 

the prc2 complex sets long-term gene 

silencing through modification of histone 

tails(B) 

1.11E-02 4.44E-02 H3F3A 

 

 

 

Annex 20 - Table S3: Gene regulatory networks with the ReactomeFIViz app, considering 

GO biological process, molecular function and cellular component (q -value < 0.05). (The 

complete table is included in the CD-Rom). 

 T0 vs T1 

 
GeneSet P-value q-value Nodes 

Cellular 

component 

transcription 

factor complex 
1.32E-03 4.14E-02 FOS, GATA3, MYOG, ARNTL 

BIM-BCL-2 

complex 
2.86E-03 4.14E-02 BCL2L11 

BIM-BCL-xl 

complex 
2.86E-03 4.14E-02 BCL2L11 

Biological 

Process 

circadian 

regulation of gene 

expression 

1.89E-07 1.10E-04 CIART, NR1D1, PER2, PER1, ARNTL 

negative 

regulation of 

transcription. 

DNA-dependent 

1.59E-06 4.65E-04 
CIART, FOXO1, NR1D1, GATA3, PER2, PER1, 

ARNTL, ZNF217, KLF4 

circadian rhythm 2.43E-06 4.72E-04 NR1D1, PER2, PER1, ARNTL, UBB 

Molecular 

function 

E-box binding 5.45E-10 5.72E-08 CIART, GATA3, PER1, MYOG, MYC, ARNTL 

sequence-specific 

DNA binding 

transcription 

factor activity 

1.00E-06 5.20E-05 
FOSL2, FOS, GATA3, MYOG, MYC, EGR2, CREB5, 

ZNF217, CSRNP1, HOXB6, PBX1, KLF4 

transcription 

factor binding 

transcription 

factor activity 

8.13E-06 2.85E-04 FOXO1, PER2, PER1 

 
T0 vs T2 

 
GeneSet P-value q-value Nodes 
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Cellular 

component 

nucleoplasm 9.50E-06 1.08E-03 

HMGN1, MYOD1, HIRA, TIRAP, FOXO1, GATA3, 

EED, ORC1, RBFOX2, ANAPC5, HNRNPA2B1, 

HDAC10, SKP2, ARNTL, KEAP1, SOX9, RUNX1, 

KLF5, MAFF, NR4A3, HDAC5, PPIE, ATF3, RNF4, 

IRF2BPL, H3F3A, FBXO32, HDAC9, UBE2E1, FGF1, 

MYC, CDC7, TLE4, SMN1, ZFPM2, UBB, NEO1, 

NR1D1, PER2, MYOG, SCO2, NFATC1, KAT2A, 

CDC25A 

cytosol 1.37E-05 1.08E-03 

RPL14, TIRAP, PGAM1, FOXO1, RPLP2, ORC1, 

RPL35A, C5AR1, ANAPC5, NCF2, CHAC1, MYH2, 

SOCS1, SKP2, ACTN3, TANK, BCL2L11, RPS18, 

RPS19, RND1, HSPB1, TNFAIP3, MYL5, AMER1, 

PPP1R3C, RPS20, RPS21, RPS24, CASC3, HDAC5, 

PPIA, FABP3, UBE2E1, HECW1, SYNJ2, FGF1, MYC, 

PIK3C2B, CYCS, NLRP3, SMN1, ARHGAP26, UBB, 

CCR1, RPL39, NFATC1, TXNIP, ACTC1, CDC25A, 

RPL22 

cytosolic small 

ribosomal subunit 
2.07E-05 1.08E-03 RPS18, RPS19, RPS20, RPS21, RPS24 

Biological 

Process 

negative 

regulation of 

transcription from 

RNA polymerase 

II promoter 

1.11E-10 1.22E-07 

FOXO1, CRY2, GATA3, EED, TWIST2, HNRNPA2B1, 

HDAC10, NFE2L3, SOX9, BHLHE40, BCOR, KLF5, 

NR4A3, HDAC5, ATF3, IRF2BPL, HDAC9, BACH2, 

BARX2, MYC, HIST1H1D, TLE4, ZFPM2, UBB, 

NR1D1, PER2, PER1, TXNIP 

translational 

termination 
4.01E-09 2.22E-06 

RPL14, RPLP2, RPL35A, RPS18, RPS19, RPS20, 

RPS21, RPS24, RPL39, RPL22 

nuclear-

transcribed 

mRNA catabolic 

process. 

nonsense-

mediated decay 

1.19E-08 3.80E-06 
RPL14, RPLP2, RPL35A, RPS18, RPS19, RPS20, 

RPS21, RPS24, CASC3, RPL39, RPL22 

Molecular 

function 

structural 

constituent of 

ribosome 

2.73E-09 5.25E-07 

RPL14, RPLP2, RPL35A, RPS18, RPS19, RPS16, RPL9, 

RPS20, RPS21, RPS23, RPS24, MRPS21, RPL39, 

RPL22 

E-box binding 4.45E-09 5.25E-07 
MYOD1, GATA3, ARNTL, CIART, BHLHE40, MYC, 

PER1, MYOG 

transcription 

factor binding 
5.52E-07 4.36E-05 

MYOD1, FOXO1, GATA3, RBFOX2, KEAP1, BCOR, 

HDAC5, RNF4, HDAC9, MYC, NLRP3, ZFPM2, PER1, 

KAT2A 

 
T1 vs T2 

 
GeneSet P-value q-value Nodes 

Cellular 

component 

cytosolic small 

ribosomal subunit 
9.80E-10 3.72E-08 RPS18, RPS19, RPS20, RPS21, RPS24 

ribosome 1.95E-08 3.71E-07 RPS18, RPS19, RPS16, RPL9, RPS23 

cytosolic large 

ribosomal subunit 
7.62E-07 9.15E-06 RPL35A, RPL14, RPLP2, RPL39 

Biological 

Process 

translation 1.11E-16 9.99E-15 
RPL35A, RPL14, RPLP2, RPL39, RPS18, RPS19, 

RPS16, RPL9, RPS20, RPS21, RPS23, RPS24 

translational 

termination 
3.33E-16 1.50E-14 

RPL35A, RPL14, RPLP2, RPL39, RPS18, RPS19, 

RPS20, RPS21, RPS24 

translational 

elongation 
1.78E-15 5.33E-14 

RPL35A, RPL14, RPLP2, RPL39, RPS18, RPS19, 

RPS20, RPS21, RPS24 

Molecular 

function 

structural 

constituent of 

ribosome 

1.11E-16 3.44E-15 
RPL35A, RPL14, RPLP2, RPL39, RPS18, RPS19, 

RPS16, RPL9, RPS20, RPS21, RPS23, RPS24 

hydrogen ion 

transmembrane 

transporter 

3.18E-04 3.18E-03 ATP5G2, ATP5I 
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activity 

rRNA binding 6.53E-04 4.57E-03 RPS18, RPL9 
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Supplemental material Paper IV: "The ingestion of food promotes changes in the 

expression of genes regulating circadian rhythms in four porcine tissues 

containing peripheral clocks" 

 

Annex 21 - Supplementary file 1. Description of primers used in the RT-qPCR analysis of 

gene expression. 

Gene Type 
Primer sequence 

Forward (5'> 3') Reverse (5'> 3') 

ARNT Target AGAGGCGTCGGGATAAGATG GTGGCACCTCGTAACGTTTT 

PER1 Target ATCCACAGGTGACCTTCCAG AGTCTTGGCCTTGAATGTGC 

PER2 Target GTCTCCCTGCCACCATTACT TTCCAAGATGAGTCCACCCC 

BHLHE40 Target CAAGTGTACAAGTCGAGGCG GCACTCGTTAATCCGGTCAC 

NR1D1 Target GGCCTCGGGTTTCCACTAT GGTTACGATTGATGCGGACG 

SIK1 Target CTCCCTGCTCAGCTACAACT AGGAGGTAATAGATGGCCGC 

CRY2 Target TGACGTGTTCCCAAGGCTAT ATGCGAGTTCTCAGTCACCA 

NPAS2 Target CTCAGCTTCCAGGCCAAATG TGTTCCCCTGCATCATCTGT 

B2M Reference CCGAGCTCTCATTCCACCG GGCGTGAGTAAACCTGAACC 

TBP Reference CAGAATGATCAAACCGAGAATTGT CTGCTCTGACTTTAGCACCTGTTAA 

HPRT1 Reference TCATTATGCCGAGGATTTGGA CTCTTTCATCACATCTCGAGCAA 

ACTB Reference CAAGGACCTCTACGCCAACAC TGGAGGCGCGATGATCTT 

 

 

Annex 22 -  Supplementary file 2. Reference genes used as a reference in distinct RT-qPCR 

assays 

 

 

  Reference gene 

Assay B2M TBP HPRT1 ACTB 

Liver (T0/T2) X X X   

Duodenum (T0/T2) X X   X 

Dorsal fat (T0/T2) X   X X 

Muscle (T0/T2) X   X X 

Hypothalamus (T0/T2) X X X   

Different tissues  in comparison to hypothalamus  X     X 

 
1
The selection of the reference genes in each assay was based on the stability of their expression in 

each specific tissue 
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Supplemental material Paper V: " The red and blond pigmentation of Mangalitza 

pigs is strongly associated with the variability of the Solute Carrier Family 45 

Member 2 (Slc45a2) gene" 

 

Annex 23 - Additional file 1. Admixture analysis of Mangalitza pigs and additional wild boar 

and pig populations for a range of K-values (K = 2-11). Each individual is represented by a 

single column divided into K colored segments, where K is the number of assumed clusters. 

Populations are separated by black lines. 
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Annex 24 - Additional file 2. Manhattan plot corresponding to the genome-wide association 

analysis performed for coat color in Red and Blond Mangalitza pigs. In the y-axis, statistical 

significance is expressed as a –log10 (q-value) whilst genomic coordinates are displayed in the x-

axis. The red and blue lines indicate the thresholds of genome-wide significance corresponding to 

q-values of 0.01 and 0.05.  
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 Annex 25 - Additional file 3.  List of SLC45A2 SNPs identified through the comparison of whole-genome sequences corresponding to Red, Blond 

and Swallow Belly Mangalitza pigs and reported by Molnar et al. (2014). (The complete table is included in the CD-Rom). 

 

CHR BP SNP REF ALT Swallown Belly Blond Blond Red Variant Impact 

16 20758558 . C G - - - 0/1 synonymous_variant LOW 

16 20727710 . A G - - - 1/1 synonymous_variant LOW 

16 20758657 . C T - - - 0/1 synonymous_variant LOW 

16 20731696 . C T 1/1 1/1 1/1 - missense_variant MODERATE 

16 20731673 . T C - - - 0/1 missense_variant MODERATE 

16 20727744 . C T - - - 0/1 missense_variant MODERATE 

16 20745602 . C A 1/1 1/1 1/1 1/1 intron_variant MODIFIER 

16 20749109 . C A - 1/1 0/1 - intron_variant MODIFIER 

16 20719572 . G A - 1/1 - - intron_variant MODIFIER 

16 20744979 . T C - 1/1 - - intron_variant MODIFIER 

16 20726872 . T C 1/1 1/1 1/1 1/1 intron_variant MODIFIER 

16 20719576 . G C - 1/1 - - intron_variant MODIFIER 

16 20762353 . T C 0/1 1/1 1/1 - upstream_gene_variant MODIFIER 

16 20745635 . C G 1/1 1/1 1/1 1/1 intron_variant MODIFIER 

16 20726773 . C G 1/1 1/1 1/1 1/1 intron_variant MODIFIER 

16 20744338 . G T 1/1 1/1 1/1 1/1 intron_variant MODIFIER 

16 20734564 . G T 1/1 1/1 1/1 - intron_variant MODIFIER 

16 20741102 . G T 1/1 1/1 1/1 - intron_variant MODIFIER 

16 20741104 . C T 1/1 1/1 1/1 1/1 intron_variant MODIFIER 

CHR = chromosome; BP = base pairs; SNP = Single Nucleotide Polymorphism; REF = reference; ALT = alternative
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