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1) The engineering principle based on controlling the cationic load of the homing 

peptide at the amino terminal region allows fusion proteins to self-assemble in 

nanoparticles with predictable size.  

 

2) Protein´s self-assembling process is determined by a minimum number of 

positive charges as well as charge distribution in the amino terminus peptide.  

 

 

3) The stability of nanoparticles obtained by the enginnering tool should be 

further studied due to a probable instability and disassembling of nanoentities 

in the blood stream.  

 

4) The high cellular penetrability of protein nanoparticles in cultured cells in vitro 

does not guarantee efficient BBB crossing and brain targeting. Thus, the 

principles that rule the biodistribution of protein nanoparticles displaying BBB-

homing peptides when comparing with those that display tumor homing 

peptides may be different, questioning the convenience of using protein 

nanoparticulated materials for the treatment of CNS diseases. 

 

 

5) Cytotoxic proteins of different origins such as proapoptotic factors, 

antimicrobial peptides and catalytic domains of microbial toxins have been 

successfully engineered to self-assemble as chemically homogeneous protein-

only nanoparticles that act simultaneously as vehicle and drug, showing 

excellent biodistribution and local antitumoral effects in CXCR4+ colorectal 

cancer mouse model upon systemic administration.  Generic applicability of 

this protein oligomerization platform to generate protein only NPs with 

intrinsic cytotoxic activity has been demonstrated.  

 

 



CONCLUSIONS 

 136 

 

6) Toxin based protein only NPs effectively target, kill and overcome the 

resistance presented by colon CSCs to traditional therapy, being valuable 

therapeutics against colon CSCs. 

 

7) The proton sponge effect expected by His-rich peptide is inefficient promoting 

the release of the fusion protein into the cytosol and, may decrease the 

cytotoxic effect of therapeutic proteins. Thus, the exploration and suitable 

incorporation of endosomolytic domains into building blocks may favor the 

transfection of the fusion protein into the cytosol.  

 

8) The use of human scaffold proteins and/or deimmunization-oriented 

engineering of non-human building blocks forming the NPs may allow their 

evaluation in clinical trials. 

 

9) Cationic antimicrobial peptide GWH1 fused to GFP-H6 acts as an antimicrobial 

agent and as architectonic tag forming NPs with antimicrobial activity. This 

oligomerization platform shows promises for the generation of antimicrobial 

protein-only nanoparticles as alternatives to conventional antibiotics.  
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Abstract 

Current therapies fail to eradicate colorectal cancer stem cells (CSCs) and therefore 

selecting a resistant cell subset that is able to facilitate tumor recurrences and 

metastases. In this study, we have explored the potency of CXCR4-targeted self-

assembling toxin-based nanoparticles to target, kill and circumvent resistance 

presented by colon-CSCs to traditional therapy. For that, we used 3D spheroid colon-

CSCs cultures directly derived from patients with colorectal cancer. Results set the 

basis for further developement of more efficient therapies focused on CSCs targeting 

and represent a pre-clinical proof of concept for the use of toxins as protein drugs for 

colon-CSC therapy.   
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1 Introduction 

Cancer stem cells (CSCs) are the tumorigenic root of cancers due to their clonogenic 

and high self-renewal capacity [1-3]. CSCs are suggested to be selectively resistant to 

conventional therapy [4,5] and recent studies have highlighted their principal role in 

tumor recurrence, relapse and metastatic dissemination [4,6]. The development of 

treatment strategies that can specifically target and eliminate CSCs are therefore 

expected to enable a long-lasting clinical response controlling metastatic process [7-

10].   

Hepatic metastases are the principal reason of the mortality in colon cancer patients 

[11]. Nowadays, stage 3 patients are routinely treated with co-adjuvant chemotherapy 

(5-fluorourocil (5-FU), oxaliplatin and Irinotecan) after radical resection of the primary 

tumor. However, after a period of remission cancer recurs in nearly 35% of all cases 

[12-14], possibly because these drugs do not promote efficient destruction of colon-

CSCs. Thus we hypothesize that there is an urgent need to develop new drugs that can 

specifically target and kill colon-CSCs [7], which must be necessarily based on 

developing new concepts for advanced drug design. 

Tumor spheroids are one of the most versatile scaffold-free methods for three-

dimensional (3D) cell culture that have gained increasing interest in drug discovery for 

research [15,16]. These cultures provide highly relevant physiological information 

regarding cell-cell interactions, hypoxia, drug penetration, response and resistance, 

being a powerful tool for CSC therapy research [17]. The colon CSCs within colon 

carcinomas can be propagated in vitro as spheroid cultures retaining tumorigenic 

capacity under specific conditions. 

Recent identification of surface markers in colon cancer allows for the proper design of 

effective targeted drug treatments [1]. Colon-CSCs have been found to overexpress the 

chemokine receptor CXCR4, which plays a critical role in determining the metastatic 

destination to the liver, bone and lungs where its ligand SDF-1 is abundant [18-23]. 

Indeed, patients with high CXCR4-expressing tumors have increased risk of local 

recurrence and distant metastases [21,24], and also CXCR4 expression is higher in the 

metastases compared to primary tumors [25]. This offers preclinical evidence that 
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blockade of the SDF-1/CXCR4 and depletion of CXCR4+ cell population is a promising 

therapeutic strategy to achieve metastatic control in colon cancer [26-29]. 

The use of nanoparticles as vehicles for targeted drug delivery significantly increases 

efficiency of the delivery of payload drug to the target cells and mitigates side effects 

of conventional chemotherapy[30,31]. The architectonic control of nanoparticle size 

allows achieving an optimal structure in order to avoid renal clearance[32,33]. Self-

assembling protein domains such a cationic stretches offer unique opportunities to 

generate protein only- nanostructured materials that promote oligomerization of the 

whole polypeptide[34-36]. In this context, these self-assembling domains can be fused 

to cytotoxic proteins to generate protein-only, fully stable nanoparticles with intrinsic 

therapeutic activities[37]. Among cytotoxic peptides, toxins are highly bioactive 

molecules that inhibit protein synthesis on cells leading to cell death. Previously, we 

have engineered the catalytic site of the diphtheria toxin (DITOX) and the 

Pseudomonas aeruginosa exotoxin (PE24) as self-assembling therapeutic materials 

targeted to CXCR4 for the systemic treatment of CXCR4 over-expressing tumors such a 

breast, colon and pancreatic cancers[37]. The systemic administration of both 

nanostructured drugs in a primary colorectal cancer xenograft mouse model promotes 

specific local destruction of target tumor tissues. As conventional treatments, such as 

chemotherapy and radiation, can kill bulk tumor cells, but fail to induce durable clinical 

results potentially because they are not effective at eliminating CSCs, the cytotoxic 

effect of toxin based nanoparticles on colon CSCs should be further explored.  

In this study, we have explored whether CXCR4-targeted self-assembling toxin-based 

nanoparticles were able to circumvent resistance of colon CSCs and could be valuable 

tools for colon-CSC-specific therapy.  We used 3D spheroid colon-CSCs cultures directly 

derived from patients with colorectal cancer and a colon CSCs mouse model. Results 

set the basis for further developement of more efficient therapies focused on CSCs 

targeting. In addition it represents a pre-clinical proof of concept for the use of T22-

DITOX-H6 and T22-PE24-H6 as potential “all in one” drug and delivery platform.  
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2 Materials and Methods.  

2.1 Protein nanoparticles. 

The synthetic genes were designed in house inserted into the prokaryotic expression 

pET-22b vector and obtained from Genscript (Piscataway, USA). The encoded proteins 

were produced in Escherichia coli Origami B (BL21, OmpT- , Lon- , TrxB- , Gor- , 

Novagen) and purified by His-tag affinity chromatography as described before. Fusion 

proteins T22-DITOX-H6 and T22-PE24-H6 were named according to their modular 

organization. 

2.2 Cell lines and culture.  

Cancer stem cell cultures (CSC) were isolated from patients with colon cancer and 

classified based on gene expression data according to the consensus molecular 

stratification: Da13, RC511, Co147 (consensus molecular subtype (CMS) 4), GTG7 

(CMS2). Colon CSC cultures were maintained in serum-free medium supplemented 

with EGF (50 ng/ml) and FGF (4ng/ml) under low-adherent condition (Poly-HEMA 

coating, Sigma-Aldrich). Routine passaging implied enzymatic dissociation of spheres 

using accutase (Da13, RC511, Co147) or trypsin-EDTA (GTG7) solution.  

2.3 CXCR4 expression: Flow cytometry and qRT-PCR. 

Flow cytometry was performed on dissociated CSC cultures. Cell surface expression of 

CXCR4 in CSCs was determined with APC anti-human CD184 antibody clone 12G5 

(BioLegend). Dead cells were excluded using 7-AAD (BD Biosciences). 

For qRT-PCR, total RNA from CSC cultures was extracted according to the 

manufacturer’s protocol (NucleoSpin® RNA, Macherey Nagel) and reverse transcribed 

into cDNA. qRT–PCR was performed using SYBR Green (Roche) and a Roche Light 

Cycler 480 II. Primer sequences included CXCR4 (forward: 5’-

AGCATGACGGACAAGTACAGG-3’; reverse:  5’-GATGAAGTCGGGAATAGTCAGC-3’), 

CXCL12 - intron-spanning (forward: 5’-AGAGCCAACGTCAAGCATCT-3’; reverse:  5’-

CTTTAGCTTCGGGTCAATGC-3’). Levels of target genes are reported as relative values to 

GAPDH. 
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2.4 Clonogenic assay. 

To check the correlation between CXCR4 expression and clonogenic potential CSCs 

were stained with APC anti-human CD184 antibody and 10% cell fractions with highest 

and lowest expression of CXCR4 were used in clonogenic assay. Cells were seeded into 

96-well plates in density 1, 1, 2, 2, 4, 4, 8, 8, 12, 16, 32, 64 cells/well, dead cells were 

excluded using 7-AAD. Positive results for each dose were scored after 14 days. 

Estimation of clonogenic cell frequency was perfomed using ELDA webtool 

(http://bioinf.wehi.edu.au/software/elda/index.html).  

2.5 Internalization assay. 

CXCR4+ Da13 and CXCR4- GTG7 spheroid cultures were used to study the performance 

of the toxin nanoparticles. GTG7 and Da13 spheroid cultures were dissociated with 0.1 

mg/ml trypsin-EDTA (Gibco) and 0.1 mg/ml accutase (Gibco) respectively and seeded 

as single cells on an adherent cell culture 24-well plate (Greiner). Cells were cultured 

overnight at 40.000 cells/well until reaching 70% confluence. Nanoparticles were 

added at 0.1uM to the cell culture during 24 h and additionally, specific internalization 

through CXCR4 receptor was measured adding specific antagonist AMD3100 1h prior 

nanoparticle incubation at a ratio of 1:10. Cell samples were analyzed on a FACSCanto 

system (BD biosciences) using a laser at 488 nm excitation. ATTO488 fluorescence 

emission was measured with a detector D (530/30 nm band pass filter) after treatment 

with 1 mg/ml trypsin-EDTA (Gibco) for 15 min.  Experiments were performed in 

duplicate.  

2.6 Cell viability assay. 

For the cytotoxicity analysis of T22-DITOX-H6 and T22-PE24-H6, the CellTiter-Blue 

Luminescent Cell Viability Assay (Promega) was used. Da13 and GTG7 spheroid 

cultures were dissociated as explained before and seeded as single cells on an 

adherent cell culture 96-well plate (Greiner) at 2000 cells/well overnight. Nanoparticle 

treatment was performed at different concentrations during 48h. Inhibition of cell 

death was analyzed by adding AMD3100 at a ratio of 1:10, 1h prior to nanoparticles 
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incubation at 0.1uM. After nanoparticle incubation, 20 μl/well of cell titer blue reagent 

(Promega) was add and subsequently, cells were incubated for 4 h and fluorescence 

was measured on a Biotek HT synergy plate reader (BioTek). 

2.7 Cell survival assay. 

Da13 cancer spheroid cultures were dissociated with accutase and seeded as single 

cells on an adherent cell culture 12-well plate (Greiner) overnight. Adherent cells were 

treated with chemotherapeutic drugs and nanoparticles during 24h. After treatment, 

cells were harvested and 2000 cells were transferred into ultra-low adherent 96-well 

plates (Corning). Cell survival was measured at different days (0, 2, 5 and 8 days) by 

adding 20 μl/well of cell titer blue reagent (Promega). Subsequently, cells were 

incubated for 4 h and fluorescence was measured on a Biotek HT synergy plate reader 

(BioTek). 

2.8 Apoptosis assay and FACS analysis. 

In colorectal cancer CSCs were identified by different markers, such as the cell surface 

molecule CD133, LGR5 expression and Wnt pathway activity. Wnt pathway has been 

demonstrated to be a stemness marker in GTG7 cell line and therefore, can be used to 

discriminate cancer stem cells from more differentiated progenity by employing a Wnt 

reporter construct (TOP-GFP) that directs the expression of green fluorescent protein.  

Thus, cells expressing high TOP-GFP levels (high TOP-GFP) are shown to be the CSCs 

and cells with low Wnt pathway activity (low TOP-GFP) correspond to more 

diffentiated cells. Using these TOP-GFP spheroid cultures we compared the effect of 

T22-DITOX-H6 to treatment with Oxaliplatin and 5-FU within the CSC population and 

compare it to the more differentiated tumor cells by the expression of the early 

apoptosis marker Annexin-V.  

GTG7 cancer spheroid cultures were dissociated with trypsin-EDTA (Gibco) and seeded 

as single cells on an adherent cell culture 12-well plate (Greiner) overnight. The next 

day, adherent cells were treated with 1uM of chemotherapeutic drugs and different 

concentrations of T22-DITOX-H6 (1, 0.5, 0.3 and 0.1uM). After 48h treatment, cell 

death was measured by Annexin-V staining and analyzed by flow cytometry 
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(FACSCanto, BD biosciences). In summary, spheroid cultured cells were stained with 

Annexin V-APC (BD biosciences) and 7-AAD (BD biosciences) for 15 min at RT. During 

FACS, the CSCs were identified by gating on the TOP-GFPhigh, whereas the 

differentiated cells were determinated simultaneously by gating on the TOP-GFPlow 

cells. 

 

3 Results. 

3.1 Analysis of CXCR4 in colon-CSC spheroid cultures.   

To explore the role of CXCR4 in colon CSC biology, we first determined the expression 

levels of this tumoral marker using flow cytometry. For that, we used four colon cancer 

spheroid cell lines directly derived from patients that contain stem-like features. 

Differential CXCR4 expression in CSC cultures was observed with the highest level in 

Da13 cell line and negative results for RC511 and GTG7 cell lines (Figure 1A). This 

differential expression was confirmed by qPCR (Figure 1B). For further analyses we 

decided to select CXCR4+ Da13 and CXCR4- GTG7 cell lines for comparative purposes.  

To check the association of CXCR4 marker expression with clonogenecity, CXCR4+ 

Da13 and CXCR4- GTG7 cells were sorted for population with highest and lowest 

expression of the receptor followed by limiting dilution assay to compare clonogenic 

capacity of these populations. Clonogenic assay revealed that Da13 cells with highest 

CXCR4 expression have more clonogenic potential (Figure 1C). These results suggest 

that CXCR4 is involved in stem cell function in Da13 spheroids. 

 

3.2 Nanoparticles are specific of CXCR4+ Colon CSCs.  

We tested the ability of protein nanoparticles to bind and penetrate, in a receptor-

dependent way, CXCR4+ cancer stem cells. The assembled T22-DITOX-H6 and T22-

PE24-H6, upon labelling with the fluorescent dye ATTO488 (named as T22-DITOX-H6* 

and T22-PE24-H6* respectively), efficiently entered CXCR4+ Da13 cells but were not 

able to internalize into CXCR4- GTG7 cell line. Moreover, the CXCR4-dependent uptake 

was demonstrated through the inhibition of T22-CXCR4 interaction by AMD3100 that 



ANNEXES 

 191 

strongly reduced the intracellular fluorescence in Da13 cells upon exposure (Figure 

2A).  

Once the internalization was evaluated, we explored toxin nanoparticles mediated 

cytotoxicity in both cell lines. Cytotoxicity was clearly detectable in CXCR4+ Da13 cell 

line but it was abolished upon treatment with AMD3100. In addition, toxicity was not 

observed in CXCR4- GTG7 cell line, revealing the role of the receptor and therapeutic 

domain in cell death (Figure 2B).   

Because of the potent cytotoxic activities of protein toxins, we also checked cell 

viability in healthy human colon organoids that were generated by culturing colon 

stem cells derived from a healthy patient submerged in Matrigel. First, we analyzed 

the CXCR4 expression in these cells. As expected, cells did not express the receptor 

(data not shown). More importantly, toxicity was not detected in cells treated with 

funcional nanoparticles (Figure 2B). 

  

3.3 Validation of toxin-based nanoparticles for colon-CSCs therapy.  

 

-Colon CSCs are very efficiently killed by targeted toxin nanoparticles when compared 

with chemotherapeutic compounds:  

Due to the better internalization and cytotoxicity of T22-DITOX-H6 over the spheroids 

than T22-PE24-H6, we selected this nanoparticle for the following in vitro experiments. 

When CXCR4+ Da13 spheroid cultures were treated with Oxaliplatin and 5-FU 

chemotherapeutic compounds and nanoparticles at the same concentration (1µM), we 

observed a strong initial decrease in cell viability in the first 2 days for all treatments. 

However, when we measured the growth of the cultures over time (up to 8 days), we 

detected that cells treated with chemotherapeutics regained proliferative potential in 

the days after, suggesting that clonogenic colon CSCs survived the therapy. In contrast, 

treatment with T22-DITOX-H6 inhibited this revival strongly (Figure 3A). Importantly, at 

100nM, at which receptor mediated internalization of the nanoparticles was observed 

(Figure 3A), T22-DITOX-H6 remained more effective than the other drugs (Figure 3A). 
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This indicates that targeting CXCR4+ CSCs with toxin protein fusions is a promising 

approach for colon-CSC therapy.  

 

-Treatment with toxin functional domains overcomes the resistance of colon-CSCs to 

chemotherapeutics:   

Resistance to chemotherapy induced apoptosis in colorectal cancer (CRC) tumors seem 

to be due to an increased block of the intrinsic apoptotic pathway in cancer stem cells. 

Toxins promote cell death by diverse mechanisms besides stimulation of apoptotic 

pathway. We wondered if they were able to circumvent this resistance, independently 

of the targeting moiety, for their translational application in the engineering of 

cytotoxic proteins against cancer stem cells. As these spheroid cultures do not only 

contain CSCs, but also more differentiated cells, as shown previously by our group, we 

decided to analyze cell death in the CSC population and compare it with the more 

differentiated tumor cells simultaneously and under the same conditions in CXCR4- cell 

line, GTG7.  

First, we tested the toxicity over GTG7 culture at different concentrations of 

nanoparticles to select the appropriate one for the comparative study with 

chemotherapeutics (Figure 3B). Of course, we assume that increasing dosage does 

result in death linked to a CXCR4 independent internalization of toxins.  We decided to 

select a concentration of 1µM at which nanoparticle mediated cell death was clear.   

As expected, treatment of 3D cultures with 5-FU and Oxaliplatin induced apoptosis in 

the more differentiated cells, whereas CSCs were resistant. In contrast, T22-DITOX-H6 

induces cell death in both population (Figure 3C), indicating that colon CSCs do not 

display any resistance to it.  

 

4 Discussion. 

First-line chemotherapeutic treatment of CRC comprises intravenous 5-FU in 

combination with oxaliplatin, increasing the response to therapy up to 50% compared 

with 15% for 5-FU monotherapy[13,14]. Unfortunately, traditional therapy induces 

tumor cell death and shrinkage but is suggested to grow back due to selective 
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resistance of a subset of cells that have CSC potential.  

There is evidence that CSCs are more resistant to current chemotherapy than other 

subpopulations of cells within the tumor[5,38]. Slow rate of division, high expression of 

drug-efflux pumps, an increased blockage of apoptotic pathways and high capacity for 

DNA repair are CSC specific properties involved in drug resistance. In colon-CSCs, the 

most relevant resistance mechanisms to oxaliplatin-based combinations are 

upregulation of GSTP1, a subclass of Glutathione S-transferases, which is involved in 

the detoxification process, also the autocrine response to the immune cytokine 

interleukin 4 (IL-4) that entails growth stimulation effects and a blocking of the 

apoptotic pathway. For instance, a decrease in BAK and BAX levels and an increase of 

some anti-apoptotic proteins such a Bcl-2 have been reported in colon-CSCs and low 

expression of BAX has been shown to correlate to 5-FU resistance[39].  Thus, 

compounds able to overcome these anti-apoptotic defenses makes such agents 

especially valuable for the effective death of colon CSC. 

In this context, major therapeutic values of toxins rely on their ability to kill exposed 

cells through molecular events that are devoid, in general, of cell type specificity and 

also, on their incredible killing potency. Interestingly, the evolutionary analysis has 

revealed a modular architecture of many toxins that offers additional versatility in the 

engineering of these agents as multifunctional drugs.  

Recombinant T22-DITOX-H6 and T22-PE24-H6 proteins kill cells by binding to a CXCR4 

receptor, internalizing via a coated pit, translocating its active fragment into the 

cytosol, and enzymatically ADP-ribosylating elongation factor-2[37]. In turn, both 

inhibit protein synthesis and cells die by diverse mechanisms that include induction of 

apoptosis.  Remarkably, a single molecule of those toxins is lethal to a cell in some 

model systems. This cytotoxic potency together with the ability to trigger diverse cell 

death pathways upon inhibition of protein synthesis may minimize the emergence of 

specific resistance in cells.   

In addition to toxin driven cytotoxicity, T22 ligand has been shown to also induce cell 

death[36,40]. T22 is a peptide ligand that acts extracellularly by competing with SDF-

1α for binding to the CXCR4 receptor. This peptide triggers the inhibition of signal 
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transduction downstream of CXCR4 leading to proliferative blocking, apoptotic 

induction and tumor growth. 

The insufficient therapeutic effect of chemotherapeutic compounds such as 5-FU or 

Oxaliplatin is also related to their small molecular size, that being below renal filtration 

cut-off (around 7 nm) are excreted from the kidney, what result in short circulation 

time[8,32]. Moreover, those not targeted drugs are regularly systemically 

administered to patients leading to life-threatening side effects involving the damage 

of active, fast growing healthy cells such as bone marrow, gastrointestinal or liver cells. 

In this regard, toxin-based NPs are likely to provide higher circulation times, escape 

renal clearance and show multivalent display of a CXCR4 ligand, enhancing 

accumulation in tumor and therefore reducing the required doses.  

Importantly no toxicity was detected in cultures derived from healthy human colon 

tissue suggesting a quite specific action of the protein drug against malignant cells and 

thus reducing off-target deleterious effects. 

Nowadays, there are no available effective colon CSC-targeted therapies that prevent 

dissemination and metastasis. Therefore, it is important to develop new treatments 

able to target and efficiently kill this chemotherapy-refractory population in colon 

tumors[10]. Results obtained here show that CXCR4-targeted toxin nanoparticles not 

only target and effectively kill tumor colon CSCs, but also, they are able to overcome 

the resistance presented by colon-CSCs to traditional therapy.  

For a clinical point of view, it has been shown that differentiated cancer cells can re-

acquire stemness through factors secreted from fibroblasts. Shimokawa et al. propose 

that killing cancer stem cells would free the niche and allow differentiated tumor cells 

to fill the space to become cancer stem cells[41]. Importantly, this induced CSC state 

coincides with re-acquisition of resistance to chemotherapy. Interestingly, in contrast 

to cancer at the primary site, metastatic cells do not have the capacity to induce de 

novo cancer stem cells. Therefore, efficient cancer therapy which can target CSCs 

together with conventional chemotherapy seem to be the more intelligent treatment 

strategy to eradicate primary tumor and metastatic foci. 

In conclusion, toxin-based protein only-nanoparticles, alone or in combinatorial 
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therapy, are presented as especially valuable tools for the treatment of colon cancer 

overcoming issues of improve therapeutic efficacy, drug resistance and metastasis.   
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Figure 1: CXCR4 expression in CSC cultures. (A) FACS analysis of CXCR4 expression. (B) 

Expression of CXCR4 evaluated by quantitative RT-PCR, error bars represent s.d. (n = 

2). (C) Correlation of CXCR4 expression with clonogenic potential. 

 

Figure 2:  (A) Internalization of 100nM of T22-DITOX-H6* and T22-PE24-H6* upon 2h 

of exposure and uptake inhibition by AMD3100 in spheroid cultures. (B) Cell death 

induced by 100nM of toxin-based nanoparticles in CXCR4+/- colon CSCs spheroids and 

WT colon organoids 48 after exposure. Correlation of CXCR4 expression with 

clonogenic potential. Significan differences between relevant data pairs are indicated 

as * p<0.01.  
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Figure 3:  (A) Da13 spheroid cultures were treated with 1uM of chemotherapeutics 

and 1 and 0.1uM of T22-DITOX-H6 for 24h and cell numbers were measured at various 

time points. (B) Cell death induced by T22-DITOX-H6 at different concentrations over a 

CXCR4+ Da13 and CXCR4- GTG7 spheroids 48 after exposure. (C) GTG7 spheroids were 

treated for 48h with 1uM of chemotherapeutics and 1 and 0.1uM of T22-DITOX-H6. 

Next, early marker of apoptosis, Annexin-V staining was measured in differentiated 

cancer cells and CSCs. Significant differences between relevant data pairs are indicated 

as * p<0.01.  
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ANNEX 3: ARTICLE 5 

The fusogenic peptide HA2 impairs selectivity of CXCR4-
targeted protein nanoparticles. 
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Abstract 

The pore-forming activities of the antimicrobial peptide GWH1 have been evaluated in 

combination with the CXCR4-binding properties of the peptide T22, both displayed in 

self-assembling fusion proteins produced in recombinant bacteria. The resultin 

nanoparticles show a dramatically improved cell penetrability into CXCR4+ cells (more 

than 10-fold) and endosomal escape (from 90 % to 50 % degradation), comparing with 

the equivalent protein nanoparticles lacking GWH1. This proves that GWH1 retains its 

membrane activity in form of complex fusion proteins. However, CXCR4-specificity in 

the cell binding is subsequently minimized by the presence of the antimicrobial 

peptide, as the combination T22-GWH1 results in 30 % of the nanoparticles entering 

cells via CXCR4, versus 98 % in the case of T22 alone. Therefore, although GWH1 

results extremely valuable in promoting cell penetrability of modular polypeptides, this 

segment impairs, in contrast, the cell-surface receptor targeting imposed by a partner 

domain in the fusion protein. 
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1 Introduction 

Cell-targeted drug delivery requires appropriate nanoscale vehicles (usually 

nanoparticles) for the generation of nanoconjugates [1]. These carriers have to be 

functionalized with appropriate ligands (usually peptides or proteins) that selectively 

bind to cell surface receptors overexpressed in target cells. Selective delivery is 

specially desired in oncology, in which conventional therapy is majorly based on the 

systemic administration of untargeted chemotherapeutic drugs, what is associated to 

severe life threatening side toxicity [2-6]. A nanoscale size of the conjugate, ranging 

from 10 to 100 nm, allows exploiting the enhanced permeability and retention (EPR) 

effect (based on the higher blood vessel permeability in tumoral tissues) while 

avoiding renal clearance (with a cut-of around 6-8 nm) and undesired aggregation in 

lung capillaries [7]. A diversity of materials is explored as nanoscale drug carriers 

including polymers, ceramics, metals and carbon nanotubes. The xenobiotic nature 

and potential toxicity of most of them pose severe concerns about their biosafety, at 

both individual and environmental levels [1, 8-17]. Contrarily, self-assembling proteins 

are promising, fully biocompatible nanostructured materials for drug delivery [18, 19], 

which can perform complex activities such as precise cell targeting by the 

incorporation of peptide ligands in modular polypeptides [20]. In this context, T22 is a 

cationic ligand of the cytokine receptor CXCR4, that is overexpressed in about 20 

human neoplasias and that correlates with aggressiveness and metastasis [21-27]. T22 

promotes the endosomal-mediated internalization of self-assembling protein 

nanoparticles (T22- GFP-H6) with a high level of specificity both in vitro and in vivo [28-

30], showing an optimal biodistribution in tumor and metastatic foci in colorectal 

cancer animal models [31]. Functional recruitment by protein fusion technologies [32] 

might be useful to enhance the penetrability of this construct, which is now moderate, 

in order to improve its applicability as drug carrier. In this regard, poor endosomal 

escape may be a critical bottleneck for T22-GFP-H6 to efficiently deliver cytotoxic 

drugs into the cytoplasm. We have here studied the combined activity of T22 and that 

of a potent pore-forming protein, the antimicrobial peptide (AMP) GWH1, 

simultaneously displayed on the surface of protein nanoparticles. Although highly 

promising in nanomedicine, the combination of cell-targeting peptides and enhancers 

of cell penetrability has been so far poorly studied. The resulting data demonstrate 
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that GWH1 shows potent endosomolytic activity that increases transfection efficiently 

of functionalized protein nanoparticles into the cytoplasm. However, CXCR4 binding 

specificity is partially lost in these materials, being this functional divergence an issue 

to be considered in the design of functional drug carriers based on peptides in fusion 

proteins. 

 

2 Materials and methods 

 

2.1 Nanoparticle production and characterization 

Self-assembling modular proteins T22-GFP-H6 [28], T22-GWH1-GFP-H6 [33] and GWH1 

GFP-H6 [34] (Figure 1 A) have been described elsewhere. T22 is a powerful ligand of 

the cell surface cytokine receptor CXCR4 [28] and it mediates the endosomal 

internalization of fusion proteins that contain it, both in vitro and in vivo [28, 30]. 

These gene fusions were expressed from the plasmid pET22b in Escherichia coli 

Origami B (BL21, OmpT-, Lon-, TrxB-, Gor-, Novagen) under standard conditions [31]. 

Cells were disrupted in a French Press (Thermo FA-078A) at 1200 psi to obtain the 

soluble fraction. Protein purification was carried out through the His-tag by 

Immobilized Metal Affinity Chromatography (IMAC) using a HiTrap Chelating HP 1 ml 

column (GE Healthcare) with an AKTA purifier FPLC (GE Healthcare) [35]. Proteins were 

finally dialyzed against sodium bicarbonate buffer with salt (166 mM NaHCO3 pH 8 + 

333 mM NaCl). Protein purity and integrity were checked by mass spectrometry 

(MALDI-TOF) and protein amounts by the Bradford assay. The volume size distribution 

of nanoparticles was determined by dynamic light scattering (DLS) at 633 nm (Zetasizer 

Nano ZS, Malvern Instruments Limited, Malvern) and size and shape of nanoparticles 

were evaluated with a Field emission scanning electron microscopy (FESEM) Zeiss 

Merlin (Zeiss, Oberkochen, Germany) operating at 1kV. Fluorescence of the 

nanoparticles was determined by a Varian Cary Eclipse fluorescence 

spectrophotometer (Agilent Technologies) at 523 nm using an excitation wavelength of 

488 nm. 
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2.2 Membrane preparation and Circular dichroism (CD) 

Multilamellar vesicles were prepared by evaporating, under a stream of nitrogen, 

chloroform:metanol (2:1 v/v) from a solution of pure egg phosphatidil choline (EPC) 

(Sigma Aldrich). The dry lipid was resuspended in buffer at 1 mg/mL by repeating six 

consecutive cycles of heating for 2 min at 21 ºC (a temperature above the phospholipid 

Tc) and vortexing for 1 min. In these conditions, EPC self-aggregates into multilamellar 

vesicles (MLVs) [36]. Small unilamellar vesicles (SUVs) were prepared using a high 

intensity sonicator Branson sonifier 450, with 3 mm-diameter titanium probe. 1 mL of 

MLVs dispersion containing 1 mg/ml of EPC maintained on ice was sonicated for six 

cycles of 20 s, each one with 50% pulses (0.5 s on and 0.5 s off) The last sample was 

centrifuged at 15000g x 15 min to discard big aggregates and titanium particles. Far-UV 

CD was measured at 25ºC in a Jasco J-715 spectropolarimeter to assess secondary 

structure information. T22-GWH1-GFP-H6 concentration was adjusted to 0.2 mg/mL in 

a buffer solution of 166 mM carbonate-bicarbonate at pH 8 and 333 mM NaCl. The 

protein spectrum was measured in the absence or the presence of small unillamellar 

vesicles (SUVs) (phosphatidil choline at 0.1 mg/ml). Samples were analysed with a 

1mm pathlength cuvette.CD spectra were obtained over a wavelength range of 190-

260 nm at a scan rate of 50 nm/min a response of 1 s and a bandwith of 1 nm. Six 

scans were accumulated. The magnitude of helix structures appearance was analyzed 

using the JASCO spectra-manager analysis software. 

 

2.3 Cell culture and cell viability assay 

The binding and uptake specificity of the recombinant proteins were studied in 

cultured CXCR4+ HeLa cells. Cells were cultured in MEM Alpha (Minimum Essential 

Medium α, Gibco) supplemented with 10 % foetal calf serum (Gibco) at 37 °C and 5 % 

CO2 in a humidified atmosphere. The CellTiter-Glo® Luminescent Cell Viability Assay 

(Promega) was used to determine the cytotoxicity of protein nanoparticles. For that, 

cells were plated in opaque-walled 96-well plates at 3,500 cells/well in DMEM 

supplemented with 10 % foetal calf serum for 24 h at 37 ºC until reaching 70 % 

confluence. Then, cells were incubated in presence of 2, 4, 8, 12 and 24 μM 

nanoparticles during 48 h at 37°C. Subsequently, 100 μl of the single reagent (CellTiter-
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Glo® Reagent) was added directly to cultured cells and the plates were measured in 

the Multilabel Plater Reader VICTOR3 (PerkinElmer). 

 

2.4 Internalization and endosomal degradation assays 

To explore internalization, culture media was exchanged for serum-free Optipro 

medium (Gibco) supplemented with L-glutamine prior to the addition of nanoparticles. 

T22-GWH1-GFP-H6 and control T22-GFP-H6 and GWH1-GFP-H6 nanoparticles were 

added at 0.5, 1, 2, 3 and 4 μM and left for 24h. Additionally, specific internalization 

through CXCR4 receptor was proved adding a specific antagonist of CXCR4, AMD3100 

[37, 38], that inhibits the interaction with T22. This chemical inhibitor was added 1 h 

prior protein incubation (to 25 nM) at a ratio of 1:10. For the determination of 

endosomal escape, cells were incubated in absence and in presence of 100 μM 

chloroquine for 4 h before the addition of the protein at 1, 2, 3 and 4 μM. 

The uptake kinetics were recorded by exposing cells to nanoparticles at 1 and 4 μM for 

10 min, 20 min, 30 min, 1 h, 2 h, 5.5 h and 24 h prior to fluorescence measurement. 

Again, chloroquine was used for the determination of endosomal escape. 

Internalization was analysed by detaching the cells with 1 mg/mL trypsin-EDTA 

(Gibco®) for 15 min to remove externally attached protein. The samples were analysed 

by a FACS-Canto system (Becton Dickinson) using a 15 mW air-cooled argon ion laser at 

488 nm excitation. All experiments were performed in duplicate. Fluorescence data 

recorded by cytometry was corrected by the specific fluorescence of the protein, 

previously determined by fluorescence spectrophotometry, to render comparative 

units in terms of protein amount. 

 

2.5 Confocal laser scanning microscopy 

For confocal microscopy HeLa cells were grown on Mat-Tek plates (MatTek 

Corporation). Upon exposure to nanoparticles at 4 μM for 24 h, cell nuclei were 

labelled with 5 μg/ml Hoechst 33342 (ThermoFischer) and the plasma membrane with 

2.5 μg/ml CellMaskTM Deep Red (ThermoFischer) for 10 min at room temperature. 

Cells were then washed in PBS buffer (Sigma-Aldrich Chemie GmbH). Live cells were 

recorded with a TCS-SP5 confocal laser scanning microscope (Leica Microsystems) 

using 63x (1.4 NA) oil immersion objective lenses. Hoechst 33342 labelled DNA was 
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excited with a blue diode (405 nm) and detected in the 415-460 nm range. 

GFPproteins were excited with an Ar laser (488 nm) and detected in the 525-545 nm 

range. 

CellMask was excited with a HeNe laser (633 nm) and detected in the 650-775 nm 

range. The confocal pinhole was set to 1 Airy unit and z-stacks acquisition intervals 

were selected to satisfy Nyquist sampling criteria. Three-dimensional images were 

processed using the Surpass Module in Imaris X64 v.7.2.1. software (Bitplane). 

 

3 Results 

T22-GWH1-GFP-H6 (Figure 1A) contains the AMP GWH1 inserted as an additional 

module between the N-terminal CXCR4 ligand T22, and the core GFP. We were 

interested in knowing if GWH1, a pore-forming peptide, might enhance the 

penetrability of the protein construct mediated by the specific interaction between 

T22 and CXCR4, upon endosomal membrane destabilization. GWH1 exerts its cytolytic 

activity by folding into an amphipathic helix upon selective binding and insertion into 

the target membrane. In order to investigate whether the addition of the T22 moiety 

and the nanoparticulated form itself might affect the GWH1 ability to form α-helical 

structures, we measured the peptide conformation by circular dichroism (CD) in the 

absence or the presence of small unillamellar vesicles (SUVs). The T22-GWH1-GFP-H6-

spectrum in the absence of SUVs shows the typical behavior of a β-strand pattern 

corresponding to the expected beta-barrel structure of the GFP (Figure 1B), with a 

minimum around 215 nm and a positive band around 198 nm [39]. By contrast, when 

these nanoparticles interact with SUVs a qualitative change is observed in the DC 

spectrum in which the maximum moves to 195 nm (Figure 1B) corresponding to the 

appearance (plus 10 %) of novel helical conformation. 

AMPs, as effective self-defence tools, exhibit a threshold concentration (called the 

lethal concentration) for their membrane activity on eukaryotic cells, below which no 

effect is observed [40]. This security level allows the antimicrobial activity at low 

concentrations, without harming own body cells. Since it had been previously 

described that GWH1 exhibits cytotoxic effects over cancer cells with a reported 

threshold ranging from 20 μM to 250 μM, we first determined the intrinsic cytotoxicity 

of T22- GWH1-GFP-H6 over CXCR4+ HeLa cells. As observed (Figure 1C), T22-GWH1-
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GFPH6 nanoparticles showed a dose-dependent cytotoxicity with a significant lethal 

concentration lower than the predicted for the GWH1 peptide alone. This cell killing 

effect, when properly targeted to tumoral tissues, has proved to be exploitable to 

design antitumoral drugs [33]. Under 8 μM, no cytotoxicity was observed in HeLa cells 

upon exposure to T22-GWH1-GFP-H6 nanoparticles, and further analysis of cell 

penetrability and specificity were performed in a safe margin, up to 4 μM. 

 
Then, endosomal escape promoted by GWH1 was evaluated by comparison between 

T22-GWH1-GFP-H6 and its parental T22-GFP-H6. As observed (Figure 2A), over 1.5 μM, 

T22-GWH1-GFP-H6 is dramatically more efficient than T22-GFP-H6 in escapin the 

endosome, suggesting a threshold concentration for endosomal membrane 

destabilization. This action cannot be performed by the control nanoparticle GWH1- 

GFP-H6, which lacks the cell surface ligand (T22) for internalization. Such endosomal 

escape protects the 40 % of the internalized protein nanoparticles from lysosomal 

degradation (Figure 2B), that is responsible for the destruction of most T22-GFP-H6. 

Interestingly, the presence of GWH1 impairs, contrarily, the CXCR4-dependence in the 

uptake of the protein materials (Figure 2C). Less than 2 % of T22-GFP-H6 enters target 

cells in the presence of the CXCR4 antagonist AMD3100, while almost 70 % of T22 

GWH1-GFP-H6 penetrates HeLa cells under the same conditions (Figure 2C). 

In accordance to the obtained results, at a concentration (1 μM) in which GWH1 does 

not promote endosomal escape, the cell uptake of T22-GWH1-GFP-H6 is slightly higher 

than that of the parental T22-GFP-H6 (Figure 3A). The uptake slows down at about 5 h, 

reaching a steady constant intracellular concentration during 24 h. At a concentration 

above that threshold (4 μM), however, the penetration of T22-GWH1-GFP-H6 is 

extremely efficient. The amount of intracellular protein keeps increasing, without 

reaching any plateau at least during 24 h of exposure. During this experiment time, 

T22-GWH1-GFP-H6 is majorly degraded at 1 μM, but only 60 % of the material is 

destroyed at 24 h in the endosomes at 4 μM (Figure 3B). This observation confirms 

again, the endosomal escape of the nanoparticles promoted by GWH1. Under this 

situation, most of T22-GWH1-GFP-H6 is found homogenously distributed by the cell 

cytoplasm, while the parental T22-GFP-H6 is majorly concentrated in a perinuclear 

region (Figure 3C), as previously described [28]. 
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4. Discussion 

Protein-based drugs are of high interest in molecular medicines as they can be 

produced in microorganisms (among a limited spectrum of cell factories) by simple 

recombinant DNA technologies [43]. In cancer therapies, modular approaches based 

on fusion protein engineering [32] allow recruiting, in single chain polypeptides, 

diverse funcions required for efficient cell targeting, internalization and endosomal 

escape, that are encoded by proteins or protein domains [20, 44]. Self-assembling, that 

can be provided by short peptide stretches [19], allows the proteins being presented 

as regular oligomers within the nanoscale size, a presentation that enhances their 

tumoral accumulation by physical mechanisms linked to the EPR [7]. In a step further 

beyond the simple protein drug association principles (on which Abraxane® is based 

[45]), nanostructured, cell targeted proteins can be ideal vehicles for drug targeting in 

càncer therapy in form of drug nanoconjugates [2]. We have here tested the 

combination of the AMP GWH1 [46], a potent membrane pore former, with T22 [28], a 

potent CXCR4 ligand, in protein-only CXCR4-targeted nanoparticles, regarding 

efficiency and specificity of CXCR4+ cell binding and penetrability. GWH1 is a synthetic 

AMP designed to show enhanced antimicrobial activity while reduced cell killing 

activity on normal eukaryotic cells, such as 3T3 fibroblasts [47] or erythrocytes (low 

haemolytic activity) [48]. It also shows improved selectivity for surface binding and 

killing of cancer cells as compared to normal cells, because of similarly to bacteria their 

membrane is enriched in anionic components [49]. GWH1 exerts its cytolytic activity 

by folding into an amphipathic helix upon selectively binding and insertion into the 

target membrane, leading to breakdown of the membrane structure, thus causing 

leakage of cell contents, resulting finally in cell death. Being used as a synthetic 

peptide alone, GWH1 is fully functional in form of fusion proteins [34], what opens the 

door to consider its inclusion in multifunctional constructs. A combination of pore-

forming and cell-targeting agents, despite their obvious interest in cancer therapies, 

has been never explored. 

In this context, we have demonstrated here that the accommodation of GWH1 in 

longer modular polypeptides containing the cationic CXCR4 ligand T22 (Figure 1 A) 

does not affect neither the functionality of GWH1 nor the ability of the T22- and H6-
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empowered proteins to form regular nanoparticles (Figure 1A). Moreover, a clear 

membrane disrupting ability of T22-GWH1-GFP-H6 was shown over cancer cells with 

the expected threshold concentration (Figure 1B), showing the ability of GWH1 to 

create pores even in a nanoparticulated version. This fact, can be obviously exploited 

to construct therapeutic protein materials based on functional recruitment, through 

simple fusion technologies. Interestingly, at sub-lethal concentrations, the GWH1 

module guarantees rapid and effective translocation of T22-GWH1-GFP-H6 

nanoparticles from the endocytic vesicles into cytoplasm, when comparing with the 

parenteral T22-GFP-H6 (Figure 2). Notably, despite its observable endolytic activity, 

GWH1 does not promote release from vesicles into the cytoplasm except when 

administered at concentrations above 1.5 μM. This behaviour is compatible with 

molecular models currently proposed to explain the permeability properties of α-

helical antimicrobial sequences and the need of a threshold concentration for pore 

formation [40, 50, 51]. In this context, a punctuate fluorescence pattern was observed 

for internalized T22-GFP-H6  (Figure 3), indicating endosome permanence. In contrast, 

a different intracellular fluorescence pattern was shown by T22-GWH1-GFP-H6, 

characterized by a more homogeneous distribution of the material in the cytoplasm, 

consistent with the release of a significant fraction of the recombinant cargo (Figure 3). 

Despite such appealing properties, CXCR4 specificity is dramatically lost by the 

presence of GWH1 in the protein constructs (Figure 2C). This indicates that enhanced 

cell penetrability though pore formation cannot be gained simultaneously to a high cell 

specificity conferred by a cell-targeting peptide; that is, a gain in anticancer activity is 

accompanied by a loss in targeting capacity towards specific cancer cells. Similar data 

has been recently obtained by combining the fusogenic peptide HA2 from the 

influença virus hemagglutinin with the same targeting peptide T22 [52]. Both set of 

data, in combination, stress the strong value of membrane active peptides used as 

potential enhancers of drug penetrability (by the incorporation to a nanoscale vehicle) 

but the incapability to maintain a high selectivity in the penetration process when cell 

membranes are destabilized. In the current context of innovative drug design and the 

generation of smart nanoscale vehicles as delivery agents, the data presented in this 

study offer critical clues regarding the recruitment of appropriate functional agents 

based on proteins. 
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Figure 1. Features of GWH1-containing nanoparticles. A. Modular organization of the 

set of protein building blocks used in this study. All the shown polypeptides self-

assemble as fluorescent nanoparticles, whose hydrodynamic size (in nm, measured by 

DLS) and polydispersion index (pdi) are shown at the bottom of each cartoon. Sizes of 

the modules are only indicative. B. CD spectra at wavelength range of 190–260 nm. 

T22-GWH1-GFP-H6 in the absence of SUVs shows a spectra of proteins containing β- 

sheet conformation. The CD spectra in presence of membrane shows the appearance 

of the helical conformation. C. Intrinsic cytotoxicity on HeLa cells imposed by the AMP 

GWH1. Cells were incubated in presence of 2, 4, 8, 12 and 24 μM nanoparticles during 

48 h. 
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Figure 2. Internalization of GWH1-containing nanoparticles. A. Cell internalization of 

GWH1-carring nanoparticles measured through intracellular fluorescence, after a 

harsh trypsin treatment to remove external material [41]. A threshold in the 

endosomal escape properties is shown at 1.5 μM. FU are fluorescence units. B. 

Fraction of internalized protein degraded in the endosomes, as measured by 

chloroquine addition. Cells were incubated in the absence and in the presence of 100 

μM chloroquine for 4 h before the addition of the protein at 0.5, 1, 2, 3 and 4 μM 

during 24 h. C. Fraction of protein internalization (25 nM) that is inhibited by the 

CXCR4 antagonist, AMD3100 incubated 1h prior to protein treatment [37, 38, 42]. 
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Figure 3. Kinetics of cell penetration of GWH1-empowered nanoparticles. A. Relative 

amounts of intracellular nanoparticles penetrating HeLa cells at different times after 

exposure (at 2 different concentrations). FU are fluorescence units. B. Endosomal 

degradation of T22-GWH1-GFP-H6 under the same conditions. C. 3D confocal 

reconstructions of cultured HeLa cells exposed to GWH1-empowered nanoparticles. 

Blue label corresponds to the nucleus, red label to membranes and green label is the 

natural fluorescence of the nanoparticles. 
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ABSTRACT 

Arginine-rich protein motifs have been described as potent cell-penetrating peptides 

(CPPs) but also as rather specific ligands of the cell surface chemokine receptor CXCR4, 

involved in the infection by the human immunodeficiency virus (HIV). Polyarginines are 

commonly used to functionalize nanoscale vehicles for gene therapy and drug delivery, 

aimed to enhance cell penetrability of the therapeutic cargo. However, under which 

conditions these peptides do act as either unspecific or specific ligands is unknown. We 

have here explored the cell penetrability of differently charged polyarginines in two 

alternative presentations, namely as unassembled fusion proteins or assembled in 

multimeric protein nanoparticles. By this, we have observed that arginine-rich peptides 

switch between receptor-mediated and receptor-independent mechanisms of cell 

penetration. The relative weight of these activities is determined by the electrostatic 

charge of the construct and the oligomerization status of the nanoscale material, both 

regulatable by conventional protein engineering approaches. 

 

 

Keywords: Protein materials; protein engineering; self-assembling; CXCR4; tumour-

homing peptides 
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INTRODUCTION 

The cell surface chemokine receptor CXCR4 is of high clinical relevance, as it acts as a 

co-receptor during the cell infection by the human immunodeficiency virus (HIV) [1]. In 

addition, CXCR4 is a pivotal cancer marker over-expressed in the stem cells of more 

than 20 human neoplasias, including frequent ones such as colorectal and pancreatic 

cancers and lymphoma [2]. In colorectal cancer, over-expression of CXCR4 is correlated 

with aggressiveness and metastatic potential. This fact has attracted interest over this 

membrane protein as a potential target for drug delivery [3-5]. Polyarginines (like R9 

and others) are cell penetrating peptides (CPPs) that being cationic, efficiently 

condensate nucleic acids and promote nuclear localization of attached molecules [6]. 

Such pleiotropic profiling has empowered some members of the Rn series as valuable 

functionalizing agents in gene therapy and non-targeted drug delivery. However, under 

some experimental conditions, polyarginines such as R12 (but not R8), presented as 

free synthetic peptides, are endocyted by cultured cells in a CXCR4-dependent fashion 

[7]. In addition, it has been recently reported that a fraction of R9-displaying bacterial 

amyloids internalize cultured cells by direct binding to CXCR4 [8], while a part of the 

material penetrates by rather unspecific mechanisms. The possibility to specifically 

mediate the internalization of macromolecular complexes via CXCR4 is highly 

appealing in the context of drug delivery. Then, appropriate polyarginine candidates 

might represent novel and valuable peptidic ligands for CXCR4 that might offer 

innovative pharmacological opportunities over the currently explored peptide ligands 

of CXCR4, whose performance is highly variable [9]. In this context, it would be very 

convenient to define the optimal form and presentation of a given polyarginine 

domain to unbalance the alternative routes of cell penetration to favour the specific, 

CXCR4-dependent cell penetrability. This is of special interest when polyarginines are 

linked to high molecular weight cargos such as full-length recombinant proteins or 

different types of nanoparticles or other nanostructured entities. Then, we have 

explored here the dependence on CXCR4 in the internalization of four members of the 

Rn family when fused to a soluble functional GFP. The fluorescent protein acts as a 

convenient reporter for image-based monitoring and analysis and as an efficient 

building block for the generation of protein-based nanoparticles [10]. We have 
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specially focused our study on the length of the cationic segment (the n value) and on 

the multivalent versus monovalent display of the ligand on the surface of the protein 

material. By taking this approach, we have identified both parameters as determinants 

of the CXCR4 specificity in the cellular penetrability of Rn-empowered constructs. 
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METHODS 

Proteins and protein production 

Four GFP-derived fusion proteins, namely R3-GFP-H6, R6-GFP-H6, R7-GFP-H6 and R9-

GFP-H6 [11] were used in the present study upon recombinant production in bacteria. 

As previously described, R9-GFP-H6 was modified by directed mutagenesis to generate 

the other constructions, replacing arginines by glycines and alanines, in order to 

maintain the same length of peptide tag with different charges [11]. All of the fusion 

proteins are based on the same modular scheme (Figure 1A), in which the cationic 

peptide is placed at the N-terminal end of a His-tagged GFP. For highly cationic peptide 

segments such arrangement promotes the self-assembling of GFP as highly stable 

protein nanoparticles, which act as multivalent materials usable as vehicles for cell-

targeted drug delivery [12-14]. Escherichia coli Rosetta (Novagen, Madison, WI, USA) 

was grown in shaker flask in Lysogenic broth (LB) medium containing 34 mg/ml 

chloramphenicol, 12.5 mg/ml tetracycline (strain resistance) and 100 mg/ml ampicillin 

(vector resistance) at 37 ºC 250 rpm, to reach an OD550 of ~0.6 units. Then, induction of 

gene expression was triggered by 0.1 mM isopropyl-b-D-thiogalactopyronaside (IPTG, 

Merck, Kenilworth, NJ, USA), and it was prolonged overnight at 20 ºC. Bacterial cells 

were collected by centrifugation and resuspended in Wash buffer (20 mM Tris , 500 

mM NaCl, 10 mM Imidazole; pH 8.0) in the presence of EDTA-Free protease inhibitor 

(Complete EDTA-Free; Roche, Manheim, Germany), to be disrupted at 1200 psi using a 

French Press (Thermo FA-078A, Thermo Electron Corporation, Needham Heights, MA, 

USA). The soluble fraction of lysed cells was loaded on a HiTrap Chelating HP 1 ml 

column (GE Healthcare, Chicago, IL, USA) to be purified by 6x His-tag affinity 

chromatography on an ÄKTA purifier (GE Healthcare, Chicago, IL, USA). Bound proteins 

were eluted with Elution Buffer (20 mM Tris , 500 mM NaCl, 500 mM Imidazole; pH 

8.0) in a linear gradient, and fractions containing the protein were then dialysed 

overnight at 4 ºC against Tris Dextrose buffer (20 mM Tris 5 % dextrose; pH 7.4, 

referred as Dextrose in the Figures) or Tris NaCl buffer (20 mM Tris, 500 mM NaCl; pH 

7.4, referred as NaCl in the Figures), depending on the solubility of each protein. The 

purity of the protein was determined by denaturing SDS-polyacrylamide gel 

electrophoresis (12 % polyacrylamide) and anti-6x-His-tag Western Blot. 
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Concentrations were determined by Bradford’s assay. R9-GFP-H6 had been extensively 

characterized regarding several of its physicochemical properties, including self-

assembling [15]. 

 

Fluorescence determination and dynamic light scattering (DLS) 

The specific fluorescence of protein variants was determined in a Varian Cary Eclipse 

Fluorescence Spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) with all 

proteins being diluted to the same concentration (0.1 mg/ml). For measurements, 

samples were excited at a wavelength of 488 nm and the emission collected in the 

range 500-548 nm, with maximum emission detected at 510 nm. Volume size 

distribution of nanoparticles and monomeric proteins were determined by dynamic 

light scattering at 633 nm (Zetasizer Nano ZS, Malvern Instruments Limited, Malvern, 

Worcestershire, UK). Measurements were performed in triplicate. For disassembling 

assays, SDS (to 0.1 % or 0.05 %, final) was added to proteins previously diluted at 1 

mg/ml, and the samples were incubated for 10 min and finally submitted to light 

scattering analysis. 

 

Ultrastructural characterization 

Morphometry (size and shape) of representative nanoparticles was evaluated 

quantitatively and qualitatively both with field emission scanning electron microscopy 

(FESEM) and transmission electron microscopy (TEM). Drops of 3 µl of R7-GFP-H6 in 

both Tris Dextrose and Tris NaCl buffers and R9-GFP-H6 in Tris Dextrose buffer were 

directly deposited on silicon wafers (Ted Pella Inc., Redding, CA, USA) for 1 min, excess 

blotted with Whatman filter paper number 1 (GE Healthcare, Little Chalfont, UK), air 

dried, and immediately observed without coating at a nearly native state in a FESEM 

Zeiss Merlin (Zeiss, Oberkochen, Germany) operating at 1 kV with a high resolution in-

lens secondary electron detector. Drops of 3 µl of the same three samples were 

directly deposited on 200 mesh carbon-coated copper grids (Electron Microscopy 

Sciences, Hatfield, PA, USA) for 1 min, excess blotted with Whatman filter paper 

number 1 (GE Healthcare), contrasted with 3 µl of 1 % uranyl acetate (Polysciences 
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Inc., Warrington, PA, USA) for 1 min, blotted again and observed in a TEM Jeol 1400 

(Jeol Ltd., Tokyo, Japan) operating at 80 kV with a Gatan Orius SC200 CCD camera 

(Gatan Inc. Abingdon, UK), For each sample and EM technique, the size of 50 randomly 

distributed particles was measured from TIFF and DM3 files with ImageJ software (NIH, 

Bethesda, MA,USA). 

 

Cell culture and internalization 

HeLa (ATCC-CCL-2, ATCC, Manassas, VA, USA) cells were cultured in MEM-alpha 

(GIBCO) supplemented with 10 % Foetal Calf Serum (GIBCO BRL, Grand Island, NY, 

USA) and incubated at 37ºC and 5 % CO2. For internalization assays, cells were grown 

in 24-well plates on complete medium, which was replaced by OptiPro supplemented 

with L-Glutamine before the addition of the proteins. After 2 or 24 h of incubation, 

cells were detached from the plate with Trypsin (GIBCO) 1 mg/ml for 15 min before 

being analysed by flow cytometry on a FACS Canto (Becton Dickinson, Franklin Lakes, 

NJ, USA). Protein fluorescence was excited using a 15 mW air-cooled argon ion laser at 

488 nm and detected by a 530/30 nm band pass filter D detector. In all internalization 

experiments the same concentration of protein was used (1 or 2 µM, as specified). The 

results were corrected with the fluorescence values obtained from fluorimeter to 

render data comparable in terms of protein mass. For competition assays, the specific 

CXCR4 antagonist AMD3100 [16] (octahydrochloride hydrate, Sigma-Aldrich) was 

added to fresh OptiPRO medium to a 1:10 (protein: AMD3100) molar ratio. 

Nanoparticles were added after a 1 h incubation with AMD3100. 

 

Confocal microscopy 

For confocal microscopy HeLa cells were grown on Mat-Tek plates (MatTek 

Corporation, Ashland, MA, USA). The nuclei were labelled with 10 µg/ml Hoechst 

33342 (Invitrogen, Waltham, MA, USA) and the plasma membrane with 2.5 µg/ml 

CellMaskTM Deep Red (Molecular Probes, Eugene, OR, USA) for 10 min at room 

temperature and then washed in PBS buffer (Sigma-Aldrich Chemie GmbH, 

Taufkirchen, Germany). Live cells were recorded by TCS-SP5 confocal laser microscopy 
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(Leica Microsystems, Wetzlar, Germany) using a Plan Apo 63x/1.4 (oil HC x PL APO 

lambda blue) objective. Hoechst 33342 DNA label was excited with a blue diode (405 

nm) and detected in the 415–460 nm range. GFP-proteins were excited with an Ar 

laser (488 nm) and detected in the 525–545 nm range. CellMask™ Deep Red was 

excited with a HeNe laser (633 nm) and detected in the 650–775 nm range. To 

determine the protein localization inside the cell, stacks of 20–30 sections were 

collected with 0.5 μm of thickness, and 3D models were generated using  the Leica LAS 

X software (Leica Microsystems, Wetzlar, Germany).  

 

Statistical analysis 

Values are expressed as mean data and standard error (x ̅± SD). Data were tested for 

normal distribution and for homogeneity of variance prior the use of parametric tests 

with Kolmogorov-Smirnov and Levene tests, respectively. Multiple comparisons were 

performed by one-way ANOVAs followed by Fisher's least significant difference (LSD, 

two tailed) and pairwise comparisons by two-tailed Student t-tests using Microsoft 

Excel 2011 and SPSS 15.0 softwares.  

 

Numerical modelling 

To model the penetration of protein nanoparticles in a kinetic way we selected the 

simplest model by assuming a constant rate of nanoparticle uptake m(t) as a function 

of time t, 

𝑑𝑚

𝑑𝑡
= −𝑘, 0 ≤  𝑘 <  1 

 
⇒  𝑚(𝑡) =  𝑀𝑒−𝑘𝑡  (1) 

 

The intracellular fluorescence emission f(t) is proportional to the amount of 

internalized protein,  

 

𝑓(𝑡) = 𝐿 (1 − 𝑒−𝑘𝑡)     (2) 
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and the initial entry rate of fluorescent materials is 

 

(
𝑑𝑓(𝑡)

𝑑𝑡
)

𝑡=0
  = 𝐿𝑘 ≡ 𝑣     (3) 

 

The value of k refers to the time τ= 𝑙𝑛2/𝑘 needed to reach one half of the maximum 

fluorescence L accumulated in target cells. The model depends on the parameter k and 

the integration constant L. To determine k and L, two couples of measurements (2 h 

and 24 h) were employed, namely t1, f1 = f(t1), and t2, f2 = f(t2). We assume t1 < t2; f1 < 

f2. Therefore, according to Eq. (2), 

 

𝑘 =  −
1

𝑡1
ln ( 1 −

𝑓1 

𝐿
) =  −

1

𝑡2
 ln (1 −

𝑓2

𝐿
)   (4) 

 

By defining x = f1/L < 1, μ = t2/t1 > 1, and α = f2/f1 > 1, the second equality in the above 

equation leads to the following non-linear equation 

 

(1 − x) μ + α x − 1 = 0      (5) 

 

If μ is an integer, the above equation is a polynomial. In a general case, a fixed point 

Newton-Raphson method will be applied to obtain the single root x0 satisfying 0 < x0 < 

1. Finally, we get k = −
1

𝑡1
 ln(1 − x0), L = 

𝑓1 

𝑥0 
 . 
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RESULTS  

R3-GFP-H6, R6-GFP-H6, R7-GFP-H6 and R9-GFP-H6 (Figure 1, A) were successfully bio-

produced in E. coli (Figure 1B) and stored in either Tris Dextrose buffer (named as 

Dextrose in the Figures) or Tris NaCl buffer (named as NaCl in the Figures), depending 

on their solubility. R3 and R6 derivatives were preferentially soluble in Tris NaCl buffer, 

R9 in Tris Dextrose buffer and R7 was found to be soluble in both (data not shown). All 

produced proteins were fluorescent, although with important variability between the 

checked species (Figure 1, C). This observation, strongly suggested a differential impact 

(direct or indirect) of the differently charged amino terminal Rn tails on the folding 

status of the GFP variants. Since the buffer is not expected to affect fluorescence by 

itself, oligomerization and associated conformational changes might affect the 

emission capacity of the fluorophore or quench it. When analysing by DLS the potential 

of these constructs to form nanoparticles, linked to the nature of the cationic terminal 

domain, we confirmed the inability of R3 and R6 to promote self-assembling (Figure 2), 

in agreement with a previous preliminary screening [11]. Interestingly, R7-GFP-H6 

showed self-assembling properties in Tris Dextrose resulting in nanoparticles of about 

30 nm, but not in Tris NaCl in which the protein remained unassembled (Figure 2,  and 

Figure 3, A and B). The higher salt content in the latest buffer might interfere with the 

electrostatic interactions needed between building blocks to start the oligomerization 

process [11], thus preventing nanoparticle formation. As previously described [15], R9-

GFP-H6 efficiently assembled as regular, toroid-shaped materials of about 30 nm  

(Figure 2). The size measurements of nanoparticles obtained from FESEM and TEM 

images were in deep agreement with the values obtained by DLS (Figures 2, 3). In 

Dextrose-containing buffer, the R9-GFP-H6 nanomaterial appeared larger than in 

conventional buffers [15], as the sugar probably stabilizes protein-protein cross-

interactions. Interestingly, the protein versions that self-organize as oligomers 

rendered lower fluorescence emission levels than those that remained as building 

blocks (Figure 1, C). This fact indicated that the architectonic organization of the whole 

material has an impact on the fluorescent emission of the core GFP, either by a 

perturbation on the individual building block conformation, as suggested by previous 

analyses of related self-assembling fluorescent proteins [10, 17], or by fluorophore 
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quenching due to specific protein-protein cross interactions [18]. Irrespective of these 

differences, the fluorescence emission was, in all cases, high enough to monitor fast 

and accurately the cell internalization process upon exposure, and for the evaluation 

of the potential mediation of CXCR4 in the uptake process. 

 

Cell penetrability of all these constructs was explored by the accumulation of 

intracellular fluorescence in cultured HeLa cells exposed to them, after a harsh trypsin 

treatment to remove externally associated protein. As observed (Figure 4A), all 

proteins penetrate cells since early contact times in a dose-dependent manner, with 

efficacies that clearly depend on the number of arginines composing the tag at the 

protein amino terminus. Previous studies showed that 6-12 arginine residues are 

necessary to promote unspecific entry, with guanidino groups forming hydrogen bonds 

and ion-pairs with lipid head groups and hydrophobic tails to assist in membrane 

binding [19]. Here we observed that differences between  proteins  were  largely  

amplified  at  long  exposure  times  (24  h), especially  in  the  case  of  R9-GFP-H6,  

that  was  clearly  superior  than  the  related polypeptides in the uptake.  

 

Although the number of arginine residues had been implicated in membrane 

permeability [20], there was a lack of systematic comparisons to clearly understand 

the role of oligomerization in promoting internalization and how the entry mechanism 

is affected by these factors. At 24 h, a penetrability of the assembled R7-GFP-H6 (in 

Tris Dextrose) higher than the unassembled version (in Tris NaCl) was evidenced, 

pointing out the assembled form and the multivalent display of R7 as favouring agents 

of cell uptake. Although the number of arginine residues was a parameter that 

positively affected internalization, multimerization appeared to have an additive and 

more potent weight. Confocal imaging of the penetration process (Figure 4 B and C) 

revealed clustering of fluorescent materials in the perinuclear region essentially in the 

case of the R9-based construct, with an intracellular distribution that might be 

compatible with both endosomal uptake and transmembrane penetration. In this 

regard, it must be stressed that endocytic vesicles engulfing fluorescent material were 
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hardly identified during the penetration of R9-GFP-H6, while they were more apparent 

in the penetration of the assembled R7-GFP-H6. In this regard, it must be noted the 

merging yellow signal (co-localization between red membrane and green protein, 

arrows) revealed in confocal images of cells exposed to R7-GFP-H6 nanoparticles 

(Figure 4 B). 

 

It has been reported that CXCR4 is involved in internalization of R12 through 

macropinocytosis, while R8 and TAT seemed to follow a CXCR4-independent route [7]. 

To determine the involvement of CXCR4 as mediator of internalization of R7 and R9, 

we monitored this event in presence of AMD3100, a chemical ligand of CXCR4 that 

inhibits the binding of CXCR4-reactive proteins [16, 21]. As observed (Figure 5, A), at 

early times after exposure the CXCR4 specificity of the uptake of monomeric versions 

increases with the number or arginine residues in a linear way. However, the 

multivalent presentation of polyarginines seemed to promote receptor-independent 

penetrability, probably linked to the CPP nature of Rn, since the intracellular 

accumulation of fluorescence is poorly prevented by AMD3100 in the case of the 

oligomers. However, after 24 h of exposure, the inhibitory effect of AMD3100 was 

clearly more evident in the case of R9-GFP-H6 (and also R7-GFP-H6) than in the rest of 

the materials. In this context, it must be noted that the assembled R7 and R9 versions 

of GFP are indistinguishable regarding stability, as both are equally dissociated by 

different concentrations of SDS (Figure 5, B). Therefore, dissociation for R7 and R9 

constructs (and differential dissociation) was not expected under these experimental 

conditions. Since both the number of N-terminal arginine residues and the 

oligomerization process might influence efficiency and specificity of protein 

penetration is highly relevant for the design of cell-targeted nanoparticle, we 

presented the obtained data (from Figure 5, A) in a more visual way for further 

analysis.  

 

As observed (Figure 6, A), the number of arginine residues positively influenced the 

amount of internalized fluorescence both 2 h and 24 h upon exposure. 
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Oligomerization, affecting only R7- and R9-based materials, showed a moderate 

impact on the global uptake process that was dissimilar when comparing short and 

long times. On the other hand, the % of uptake inhibition mediated by AMD3100 also 

increased along the number of arginine residues, at 24 h but not from the 

determinations done 2 h upon exposure. While the specificity for CXCR4 appears as 

being globally gained by the accumulation of cationic residues, that progressively 

convert Rn-based CPPs into CXCR4 ligands, data also suggested a differential uptake 

mechanisms acting at short and long incubation times. To better analyze this 

possibility, we modelled the penetration of protein nanoparticles in a kinetic way. For 

that, we explored the factors L, k, τ and v as defined in the materials and methods 

section. When these parameters were determined versus the number of arginine 

residues at the N terminus of the proteins (Rn) for exposures in absence and in 

presence of the inhibitor AMD3100, we obtained graphical determinations of their 

behaviour (Figure 6, B). Importantly, the global amount of internalized protein L 

increased with the Rn value, confirming the positive impact that the number of 

arginines has in the global penetrability of proteins, that appears as being further (but 

slightly) enhanced by the oligomerization of the building blocks.  

 

Irrespective of the precise mechanism of entrance, this can be accounted by the 

increase in the positive charge, but also by the multivalent exposure of Rn versus a 

monovalent display in unassembled proteins [3]. On the other hand, the initial 

penetration velocity of proteins (v) increased with Rn values for unassembled proteins 

but it was inversely proportional to the number of arginines in the nanoparticles. In 

presence of AMD3100, that blocks CXCR4-specific penetration and only unspecific CPP-

based uptake is allowed, v tends to be constant. This is indicative that the number or 

arginines impacts only (or majorly) on the receptor-dependent penetration of the 

proteins, which starts very fast upon protein-cell contact. In addition, the comparative 

behaviour of v in absence and in presence of AMD3100 also indicates that 

oligomerization globally enhances the CPP properties of proteins, a fact that promotes 

a fast and early entrance into the cells upon exposure. Inversely, oligomerization, and 

the increase of the number of arginine residues in the oligomers minimized specificity 
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in early penetration stages. By analyzing k, which can be also interpreted in terms of 

the half time (τ) to reach the maximal intracellular accumulation of protein, we 

determined that the jump from R7 to R9 (but not oligomerization itself) expands the 

time period in which the penetration process does occur. However, when AMD3100 is 

present, the duration of the penetration process is also expanded depending on the Rn 

value. Therefore, the unspecific penetrability of Rn-based nanoconstructs sustained by 

their CPP properties is a time-prolonged process that is favoured when the CXCR4-

dependent endosomal penetration is not available.  
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DISCUSSION 

The delivery of therapeutic molecules into cells requires the smart engineering of 

fusogenic agents, mainly lipids [22, 23] and proteins [24, 25], that act as unspecific but 

highly efficient cell penetrating agents. Alternatively, cell-targeting tools, such as 

antibodies or peptidic ligands, provide selectivity in the cell binding of drug vehicles 

[26, 27], although they are generically less competent than unspecific CPP tools in 

promoting internalization [28, 29]. The still poorly explored combination of both 

agents in the same vehicle, namely the incorporation of a CPP and a peptidic ligand of 

a target cell surface receptor has so far resulted in very high cell penetration levels but 

at expenses of specificity [30].  

 

Among the CPPs recognized as useful and with potential for realistic development and 

applicability in biomedicine, arginine-rich peptides are indeed being translated from 

bench to bedside in several pre-clinical and clinical trials [31]. Even though the 

internalization mechanisms of polyarginines are not completely understood, they are 

being combined to different formulations due to their penetration enhancing 

properties, being applied even in highly challenging conditions such as oral 

administration [32]. Interestingly, it has been separately suggested that polyarginines 

exhibit either unspecific (CPP) or specific (receptor-dependent) cell penetration 

activities [7, 8]. Receptor-dependent internalization of polyarginines can be seen as an 

entangled scenario affected by multiple factors. For instance, the contribution of 

Syndecan-4, a receptor known to be involved in R8 internalization, was also reported 

to depend on parameters such as the extracellular concentration of the peptide but 

not affected by the presence of a protein fused to R8 [33].  

 

This unusual pleiotropic profile might be highly relevant when designing new 

generation protein-based vehicles for cell-targeted drug delivery, especially regarding 

efficiency and when looking for selectivity in a drug delivery process. Therefore, the 

highly versatile mechanism of entry of polyarginines has been dissected here through 

the use of several Rn constructs, showing or not self-assembling properties that affect 
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the multivalent display of the peptide to exposed cells. In this context, the obtained 

data indicate the coexistence of two different mechanism of penetrability of Rn-

empowered proteins, namely CXCR4-dependent uptake and unspecific CPP-based 

internalization, which act differentially during the time of contact between cells and 

materials. In presence of free CXCR4 on the cell surface, proteins probably remain 

attached to the receptor and initiate a fast process of penetration. When CXCR4 is 

blocked by AMD3100, or CXCR4 paratopes are saturated by earlier contacts, cell 

penetrability is unspecific and takes place much slower (Figure 5). The relative 

prevalence of both mechanisms is also largely influenced by the value of Rn and by the 

oligomerization status of the protein. The specificity in the cell penetration is reduced 

by oligomerization and by the Rn value of the oligomers at short times upon exposure 

(Figure 6). However, globally, the increase of Rn length and the formation of 

multivalent structures increase the total amount of intracellular material and its 

receptor-depended uptake.  

 

In summary, despite polyarginines have been generically observed as highly potent 

CPPs useful as an internalization tag in cell therapy and drug delivery [6], their known 

residual specificity for the cell surface cytokine receptor CXCR4 can be enhanced by a 

proper presentation of the cationic stretch. As shown here, this can be achieved by 

extending the number of arginine residues and, with a milder impact, of the 

multimeric presentation on the surface of targeting vehicles. Since polyarginines are 

highly cationic and they act also as oligomerization domains [9], R9 and related species 

can confer to fusion proteins both self-assembling and cell-targeting properties. Being 

CXCR4 an appealing target in innovative cancer therapies and in antiretroviral 

treatments [2, 4, 5, 7, 16, 21, 34-37], R9 and related peptides might represent an 

additional instrument for the design of improved vehicles for intracellular drug 

delivery. Albeit the CXCR4 specificity of polyarginines might not be absolute, even in 

their optimal presentation (Figure 5, A), their use in combination with other CXCR4 

ligands might allow the generation of new-generation bi-paratopic vehicles, that are 

extremely appealing for enhanced specificities and cell surface avidity in receptor-

mediated drug delivery [38-42]. In vehicles with such combined functional agents, the 
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residual CPP activities of polyarginines might enhance penetrability and endosomal 

escape more efficiently than completely unspecific fusogenic peptides that such as 

HA2, tend to impair selectivity of the accompanying cell ligands [30].  

 

Acknowledgments: Protein production has been partially performed by the ICTS 

“NANBIOSIS”, more specifically by the Protein Production Platform of CIBER-BBN/ IBB, 

at the UAB SepBioES scientific-technical service (http://www.nanbiosis.es/unit/u1-

protein-production-platform-ppp/). Nanoparticle size determination was performed at 

the NANBIOSIS Biomaterial Processing and Nanostructuring Unit of CIBER-BBN 

(http://www.nanbiosis.es/portfolio/u6-biomaterial-processing-and-nanostructuring-

unit).  

  

http://www.nanbiosis.es/unit/u1-protein-production-platform-ppp/
http://www.nanbiosis.es/unit/u1-protein-production-platform-ppp/
http://www.nanbiosis.es/portfolio/u6-biomaterial-processing-and-nanostructuring-unit
http://www.nanbiosis.es/portfolio/u6-biomaterial-processing-and-nanostructuring-unit


ANNEXES 

 248 

 

Figure 1 

 

Figure 2 

 

 

 



ANNEXES 

 249 

 

Figure 3 

 

Figure 4 
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Figure 5 

 

 

 

Figure 6 
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Legends 

Figure 1. Production and preliminary characterization of Rn-containing GFP protein 

versions. A. Generic scheme of the modular protein construction. The linker sequence 

is GGGNS, and the precise amino acid sequence of the Rn peptides is indicated in the 

box. B Coomassie blue-stained PAGE-SDS gel showing the integrity and purity of Rn-

GFP-H6 recombinant proteins upon affinity chromatography (left). Proteolytic stability 

was confirmed by Western blot (right). The type of buffer used is indicated at the top, 

as well as the number of amino-terminal arginine residues in each protein. The 

molecular mass of relevant markers (M) is indicated in kDa. C. Fluorescence emission 

spectra of equal amounts of each protein. 

Figure 2. Assembling of Rn-containing GFP proteins. DLS size determination of protein 

self-assembling. The size of unassembled proteins (6-8 nm) might correspond to GFP 

dimers acting as building blocks. In the inset, peak (expressed in nm) and PDI as mean 

values and standard deviation (x ̅± SD) for each protein sample obtained by DLS. 

Figure 3. Ultrastructural analysis of Rn-containing GFP proteins.  FESEM and TEM 

imaging of protein nanoparticles formed in Dextrose buffer. Representative fields of 

R7-GFP-H6 samples in NaCl buffer are also shown as negative controls. Bars size is 20 

nm. The  size of the nanomaterials (in nm) determined from images is indicated  as 

mean values and standard deviation (x ̅ ± SD)  for each protein sample and EM 

technique (nd indicates that the material has not been detected). 

Figure 4. Cell penetrability of Rn-containing GFP proteins. A. Intracellular fluorescence 

accumulated in CXCR4+ HeLa cells upon exposure to unassembled and assembled Rn-

based proteins, for different times and protein doses. Symbols are ** p< 0.01; * p < 
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0.05. B. Conventional confocal images of target HeLa cells exposed for 24 h to 2 µM of 

either R7 or R9-based proteins. The green signal results from the protein fluorescence, 

while red signals label membranes and blue signals the cell nuclei. Arrows indicate 

yellow merging signals. C. 3D reconstructions based on stacks of 20–30 sections of 

protein-exposed HeLa cells. In the insets, orthogonal sections of 3D confocal images  

Bars indicate 5 µm. 

Figure 5. CXCR4-dependence in the internalization of Rn-based protein materials. A. 

Accumulation of intracellular fluorescence into CXCR4+ HeLa cells associated to 

different Rn-based materials, and AMD3100-mediated inhibition of the process. The 

signals were recorded at two different times after exposure. Symbols are ** p< 0.01; * 

p < 0.05. B. DLS size measurements of R7 and R9-based proteins upon incubation with 

SDS for 10 min.  

Figure 6. Internalization of Rn-based protein materials. A. Intracellular florescence in 

HeLa cells and percentage of AMD3100-mediated uptake inhibition upon 2 h and 24 h 

of exposure to Rn-based nanoparticles. B. Plotting of main kinetic parameters of 

protein uptake, namely L, τ, , k and v (see Eq 1-3) versus the number of arginine 

residues at the N-terminus of proteins (Rn). Uptake experiments in presence of 

AMD3100 are indicated (+AMD).  
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ANNEX 7: EUROPEAN PATENT 

Nanostructured proteins and uses thereof. 
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FIELD OF THE INVENTION 

 

The present invention relates to the field of nanostructured protein materials, more 

specifically to fusion proteins which can be used for therapy. 

 

BACKGROUND OF THE INVENTION 

 

The systemic administration of drugs in form of nanoconjugates benefits from enhanced 

drug stability when compared to free molecules. Valuable additional properties such as 

cell targeting might be also merged into a given hybrid composite through the chemical 

incorporation of functional groups in nanoscale vehicles, taking profit from the high 

surface/volume ratio of nanomaterials. When administered systemically, the resulting 

drug loaded conjugates sizing between ~8 and 100 nm escape from renal filtration in 

absence of aggregation in lung or other highly vascularized organs. This fact, combined 

with appropriate physicochemical properties of the material might result in extended 

circulation time and prolonged drug exposure to target organs, thus enhancing the 

therapeutic impact and benefits for the patient.  

 

Among the diversity of materials under investigation as drug carriers, that includes 

metals, ceramics, polymers and carbon nanotubes, proteins offer unique properties 

regarding biocompatibility and degradability that, in the context of rising 

nanotoxicological concerns, make them especially appealing. 

 

However, many protein species are themselves, efficient drugs usable in human therapy, 

as attested by more than 400 protein-based products approved by main medicines 

agencies. Therefore, the engineering of protein drugs as self-organizing building blocks, 

that exhibit intrinsic therapeutic activities upon self-assembling as nanoparticles, 

constitutes an advantageous concept. Thus, this methodology excludes the need of 

further activation and drug conjugation, as the nanomaterial itself acts as a nanoscale 

drug (desirably between 8 and 100 nm). In that way, chemically homogenous protein 

nanoparticles, showing intrinsic therapeutic activities (like the current plain protein 

species used in human medicine -e.g, hormones, growth factors, vaccines etc.) can be 

biologically produced in a single step (as nanoscale assembled entities). Since the 

material itself acts as a drug, the possibility of drug leakage during circulation, an 
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undesired possibility especially worrying in the case of cytotoxic agents, can be 

completely abolished, which becomes a significant advantage with respect to the state 

of the art. 

 

The inventors previously probed into the field by applying a nanoarchitectonic principle 

based on the addition, to a core protein, of a cationic N-terminal domain plus a C-

terminal poly-histidine. [Serna, N. et al. 2016. Nanomedicine, 12:1241-51]. It has been 

described in the art that these end-terminal tags and the resulting charge balance in the 

whole fusion promote self-assembling and oligomerization of monomeric proteins as 

robust toroid nanoparticles, stable in plasma [Cespedes, M. V. et al. 2014. ACS Nano., 

8:4166-4176] and with high cellular penetrability if empowered with cell-targeting 

peptides. [Xu, Z. K. et al. 2015. Materials Letters, 154:140-3] Nonetheless, the building 

blocks of these protein protein structures might also contain functional peptides such as 

cell-targeting agents, endosomolytic agents or nuclear localization signals, in form of 

fused stretches with modular organization. 

 

Therefore, to take advantage of such easy protein engineering will be highly beneficial, 

since a need persists in the art for drug delivery systems with enhanced selectivity and 

biodisponibility. 

 

SUMMARY OF THE INVENTION 

In a first aspect, the invention relates to a fusion protein comprising 

(i) a polycationic peptide,  

(ii) an intervening polypeptide region and 

(iii) a positively charged amino acid-rich region, 

wherein wherein the intervening polypeptide region is not a fluorescent protein alone or 

human p53. 

 

In a second aspect, the invention relates to a method to prepare nanoparticles 

comprising multiple copies of the fusion protein according to the first aspect of the 

invention comprising placing a preparation of said fusion protein in a low salt buffer. 
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In further aspects, the invention relates to a polynucleotide encoding a fusion protein 

according to the first aspect of the invention, a vector comprising said polynucleotide, 

and a host cell comprising either said polynucleotide or said vector. 

 

In an additional aspect, the invention relates to a nanoparticle comprising multiple 

copies of the fusion protein of the invention or a nanoparticle which has been obtained 

by the method of the invention to prepare nanoparticles. 

 

In yet another additional aspect, the invention relates to a fusion protein, a 

polynucleotide, a vector, a host cell or a nanoparticle according to the invention for use 

in medicine. 
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