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Doctoral Thesis in Electrical Engineering

and Telecommunications, 2018

Quantum transport

with Bohmian mechanics:

application to graphene devices

Author: Enrique Colomés Capón Supervisor: Prof. Xavier Oriols Pladevall





1

Quantum transport with Bohmian mechanics: application

to graphene devices

Abstract:

Moore’s law has been the milestone for electronics improvement, and the cause for the

exponential growth in our computational abilities and for reaching nanoscale electron

devices. At such dimensions, classical simulation tools must be substituted by quan-

tum ones. Such substitution implies to tackle new fundamental problems. First, the

many-body problem makes (almost) impossible the exact simulation of many particles

scenarios. Second, the measurement problem is especially relevant in high-frequency

scenarios where multi-time measurements are mandatory.

Alternatively to the orthodox theory, Bohmian mechanics emerges as a quantum theory

which is specially well-equipped for the simulation of high-frequency characteristic of

quantum electron devices. The Bohmian theory provides the conditional wave function

that guides particles with well-defined positions.

In this thesis, I explored quantum transport using Bohmian mechanics, putting special

emphasis to graphene, a 2D material with linear bandstructure, which is expected to

play an important role in the next future electronics. Differently from other materi-

als, graphene obeys the bispinor Dirac equation, electrons behave as massless particles,

exhibiting exotic behaviors, such as the Klein Tunneling effect.

During the thesis, the quantum BITLLES simulator has been improved to correctly

model electron nanodevices with either linear (by the inclusion of the complex bispinor

Dirac equation) or parabolic bandstructures in either ballistic or dissipative (by the

inclusion of the complete positive Bohmian scattering approach) systems. Thus, the

BITLLES has become the candidate for substituting the versatile semiclassical Monte

Carlo approach in the quantum regime, while keeping the versatility to predict DC, AC

and noise performances.

As practical applications, during the thesis, unexpected scattering probabilities in a

Hong-Ou-Mandel experiment were predicted. In addition, different current-voltage char-

acteristics were analyzed. Finally, a new limit (due to the discrete nature of charge) for

ultra-small logic applications working at THz frequencies was predicted.
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Transporte cuántico con mecánica Bohmiana: aplicación a

dispositivos de grafeno

Resumen: La ley de Moore ha sido una piedra fundamental en la mejora de la electónica

y la causa del aumento de nuestra capacidad computacional y de la existencia de la

electónica. En estas dimensiones, herramientas de simulación clásica deben ser susti-

tuidas por cuánticas. Dicha substitución implica enfrentarse a nuevos problemas fun-

damentales. Primero, el problema de muchos cuerpos imposibilita la exacta simulación

de sistemas con muchas part́ıculas. Por otra parte, el problema de la medida, que es

especialmente relevante en escenarios de alta frequencia donde se debe medir muchas

veces.

Alternativamente a la teoŕıa ortodoxa, la mecánica cuántica Bohmiana emerge como una

teoŕıa cuántica especialmente bien equipada para simular parámetros de alta frecuencia

en dispositivos electrónicos cuánticos, gracias a la función de onda condicional que gúıa

a las part́ıculas con posiciones bien definidas.

En esta tesis, el transporte cuántico fue explorado bajo la mecánica cuántica Bohmiana,

poniendo especial atención en grafeno, un novedoso material con estructura de bandas

lineal, del que se espera que ocupe una posición central en el futuro próximo de la

electrónica. Difiere de otros materiales en que obedece la ecuación biespinor de Dirac y

el electrón se comporta entonces como una part́ıcula sin masa, exhibiendo efectos como

el Klein tunneling.

Durante la tesis, el simulador cuántico BITLLES fue mejorado y ahora es capaz de sim-

ular correctamente nanodispositivos con materials de banda parabólica o linear (gracias

a la inclusión de la ecuación de Dirac) en sistemas baĺısticos o con disipación (gracias

a la inclusión del método completamente positivo de scattering Bohmiano). Por tanto,

el BITLLES se ha convertido en un excelente candidato a ocupar el lugar del versátil

método Monte Carlo en el régimen cuántico, manteniendo su versatibilidad para calcular

parámetros de DC, AC y ruido.

Como aplicaciones prácticas, durante la tesis se predijeron probabilidades (no esperadas)

de encontrar dos electrones en el mismo lugar. También se obtuvieron curvas IV en

diferentes escenarios. Finalmente, se encontró un nuevo ĺımite (debido a la naturaleza

discreta de los electrones) para nanodispositivos para aplicaciones lógicas trabajando a

altas frecuencias.
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Chapter 1

Introduction to electron devices

This first Chapter is dedicated to introduce electronics and which are the challenges for

new generation of devices. In this framework, trustful quantum simulators are needed to

model the new physics and effects that the new generation electron devices require. I will

focus on the simulation techniques developed until now, which are their requirements to

successfully model electron transport and which are their mathematical formalisms.

1.1 Electronics history

Electronics is the field in science that studies the flow of electrons in different materials

(gases, semiconductors, metals, etc.). It can be discussed when electronics was born as

a scientific discipline, but probably we can talk about the last years of the 19th cen-

tury, since many relevant events occurred. For instance, in 1883 Edison observed for

the first time the thermionic emission, named later “Edison effect”). He has different

experimental lamp bulbs, which have a filament as well as a metal plate inside the bulb.

He observed a certain blackening of the light bulbs. He was trying to understand this

phenomenon when he realized that, as soon as he applied a negative potential relative

to the filament in the metal plate -which acted as an electrode, a metallic material with

free electrons inside- there was not flow of current1, while current was able to flow when

it was positive. This was the first milestone to create a diode. Another relevant fact

happened in 1897, when Thomson showed that cathode rays were composed by a neg-

atively charged particle, named electron2. Later, in 1904, Fleming improved Edison’s

set-up and applied the thermionic emission to create the first vacuum diode. Next, De

Forest improved Fleming’s original invention by creating the triode with an additional

1At that time, electrons were not called as such.
2In fact, the name electron (elecktron) was first used by the Greeks to refer to amber, which acquires

the property of attracting other objects when rubbed. This process is called frictional electrification.
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Introduction to electron devices 14

third terminal, the grid. So, the flux of electrons from the filament to the electrode was

controlled by the voltage applied in the grid [1]. A particular voltage was used to define

an On state with a net current through the triode and another voltage for the Off state

without current.

Figure 1.1: Replica of the first transistor designed in the Bell labs by Bardeen, Brat-
tain and Shockley in 1947.

Definitively, electronics was born with the diode and triode vacuum tubes, and dur-

ing half a century spectacular electronic applications were developed. However, the

appearance of Alan Turing computation required more powerful and smaller electronic

devices. The short life and high power consumption of the vacuum tubes made the Bell

laboratories establish a research group focused on investigating the possibility of using

semiconductor solid-state electron devices. In 1947, Bardeen, Brattain and Shockley

created the first solid-state transistor at Bell laboratories3. Although the functionality

of the solid-state transistor was quite similar to that of the triode, the former was much

smaller, faster, cheaper and more reliable. Thus, it became the fundamental element of

the electronic technology in the second half of the 20th century. In the 60’s, the previous

solid-state transistor was improved by using a Metal-Oxide-Semiconductor (MOS) solid-

state capacitor. A third terminal, the (metal) gate, separated from the (semiconductor)

3In fact, they all three jointly shared the Nobel Prize in Physics in 1956 for this discovery.
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channel by an (oxide) dielectric, controlled the On and Off states of the transistor by

means of a simple electrostatic force between gate and channel electrons. Because of the

importance of the electric field in defining the behaviour of such MOS transistor, it was

also called Field-Effect-Transistor (FET)4. For years, transistor improvements occurred

but without any fundamental modification.

Regarding the improvement of transistors, in 1965 Gordon E. Moore stated that: “The

complexity for minimum component costs has increased at a rate of roughly a factor of

two per year. Certainly over the short term this rate can be expected to continue, if not

to increase. Over the longer term, the rate of increase is a bit more uncertain, although

there is no reason to believe it will not remain nearly constant for at least 10 years.”.

The truth is that this statement, known as “Moore’s law” has been fulfilled until now

(see Figure 1.2), and it is the milestone of electronics improvement and the cause for

the exponential growth in our computational abilities.

In the recent years, however, the future perspectives have changed and the miniaturiza-

tion of electronic devices has reached the quantum regime. For that reason a different

strategy should be followed. The ITRS (International Technology Roadmap for Semicon-

ductors [2]) established in 2013 that, until 2022, the best strategy was the so called “more

Moore” domain, which consists in a trade-off between the traditional CMOS scaling and

the introduction of new technological solutions (such as high-κ dielectric, multiple gate

transistors, strained silicon, metal gates, etc.). Notwithstanding, after 2022 Moore’s law

would require 4 nm channel length transistors, that in principle will be technologically

and economically unattainable. The scientific community is also searching for com-

pletely different alternatives to CMOS valid after this year, something which is known

as “Beyond CMOS”. In 2017, the ITRS morphed to the IRDS (International Roadmap

of Devices and Systems [3]). It emphasizes the necessity of “more Moore” and “Beyond

CMOS”.

In this sense, the “Beyond CMOS” domain explores emerging devices based on different

physical principles (spintronics, resonant tunnelling, band-to-band tunnelling, single-

electron, etc.) and on different materials (graphene, MoS2, etc.), which should improve

the power consumption, the performance and the scaling of current transistors. Al-

though it is unclear if any of these proposals may replace the conventional silicon MOS-

FET, what is unquestionable is that a proper treatment of the quantum phenomena is

a mandatory requirement to understand them, i.e., accounting for the particles wave

4It was also named MOSFET by combining both previous acronyms.
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Figure 1.2: Since 1970, Moore’s law predictions have been followed and the transistor
density has been growing according to it. Because of that, computing power goes up,

while costs and energy consumption go down.

nature is unavoidable. Furthermore, when device size is scaled down, approaching the

few-atom limit, electronic current modelling becomes more and more interwoven with

band-structure modelling, and the traditional distinction between these two fields starts

to fade.

As it will be show in next section, simulation techniques have always been highly de-

sirable. But, since “Beyond CMOS” devices explore new designs and different physic

effects (different from the used currently), before the realization of the devices, a good

comprehension of the devices that are wanted to build is needed. In that framework,

new trustful simulation techniques are completely mandatory. In this sense, the scien-

tific community involved in device simulation is, step by step, migrating from traditional

semi-classical tools, such as Monte Carlo (MC) based on the Boltzmann Transport Equa-

tion (BTE), towards new completely quantum ones.
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1.2 Simulator’s Evolution

1.2.1 What is a simulator?

Before explaining which has been the evolution of the simulator in the electron devices

field, I would like to answer the following question: What is a simulator? The definition

of “simulate” is the action of imitate the appearance or character of a system. Since old

times simulation tools were developed. The trial and error method is both costly and

time consuming. For that reasons, since the antiquity, simulate a system in order to get

information for future applications has been extremely useful. Simulators are instru-

ments which have improved our knowledge of the world and have allowed the developing

of new technologies.

From a current scientific point of view, mathematical models and theories have been

usually developed inspired by real experiments and observations. Since the last centuries,

new phenomena required mathematical models which were analytically not solvable.

Then, numerical simulators are completely needed to check the accuracy and the validity

of such mathematical models.

In that sense, it is a cyclic process. New phenomena requires the construction of new

mathematical model, which needs in turns to be tested through comparison between

numerical results performed with simulators and experiments. Once we trust the model

and the simulators, it allows us to go beyond the current set ups, and then explore and

imagine new and more sophisticated devices and experiments which could lead us to

improve the actual technologies.

1.2.2 Classical Simulators

The first reality which we (as human beings) are able to appreciate is what is called

“classical world”. It studies the movements of bodies, where relativity and quantum

laws have no role in it, and therefore their effects have no relevance, or at least we can-

not directly appreciate them.

Many different fields has used classical simulators.

It is very relevant the appearance of Monte Carlo methods. Nowadays, we understand

by Monte Carlo methods, a wide class of algorithms which obtain and predict results
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from random initial samplings 5. The first first appearance was due to Jon Von Neu-

mann and Stanislaw Ulam, who worked in the Manhattan Project during world war II

[4]. They used the first Monte Carlo method to study the neutron multiplication rates

in order to estimate the explosive behavior of fission weapons. Since then, Monte Carlo

methods has been widely used in all scientific fields, including physics, mathematics,

economics, chemistry or biology.

If we turn our mind to electron devices simulating tools, classical drift-diffusion model[5]

simulators have played an important role [6, 7]. Hydrodynamic models has also been

developed [8, 9] as well as energy transport models [10, 11]. The use of Monte Carlo

methods has also been successfully used for modeling electron transport phenomena in

semiconductors, the first appearance in the literature corresponds to 1966 [12]. For fu-

ture purposes, I will make a longer introduction to electronic Monte Carlo algorithms.

The basic Monte Carlo methods used random initial conditions to study electron trans-

port in different materials. Since the beginnings, more complex and sophisticated meth-

ods has been developed in order to incorporate more interactions, such as scattering,

lattice defects, impurities, many-body interactions, etc. [13, 14]. The main idea of the

method is as follows. Firstly, from a domain of possible inputs, an initial multi-electron

state is chosen, defined mainly by their positions and velocities. Then, electrons are

time evolved following a equation of motion. These electrons describes trajectories. Fi-

nally, the properties of the system we are interested are computed from the final state

of these trajectories. The experiment is repeated until the average of these properties

converge and therefore we are satisfied with the result obtained. An important point

is that semi classical Monte Carlo methods are time-dependent, allowing in a easy way

the computation of properties and scenarios where one cannot easily avoid time. This

is the case for example of AC scenarios. Interestingly, Monte Carlo methods are able

to obtain the electron probability distribution obtained from the Boltzmann transport

equation, but since there is a stochastic injection of electrons, more information about

the system can be obtained, such as fluctuations.

For years, Monte Carlo methods were widely used in both research and the industrial

electronic engineering, without significantly modifications. There was a clear necessity:

to model electron devices in several scenarios, both DC and AC, transients, and obtain

the expected transport properties such as currents, noise, cut-off frequencies... For that

5Curiously, the name of these methods, Monte Carlo is not by chance. It reflects the similarities with
gambling games, and since Monte Carlo casino in Monaco was the center of gambling at that times, this
name was given.
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purpose, Monte Carlo methods, where electrons were injected randomly following cer-

tain statistics (such as the Fermi distribution), allowed to compute electron trajectories

from classical laws, whereas interacting terms, such scattering rates, were obtained from

the Quantum Fermi Golden rule. For that reason, it was treated as a semi-classical

method. From these time-dependent methods, electron trajectories enabled to compute

all transport properties.

Nowadays, all these classical simulation tools are becoming obsoletes. when trying to

describe the small present electron devices. In the last decades, the miniaturization

of electronic devices (due to Moore’s law as stated in Section 1.1) has reached the

nanoscopic regime, quantum effects appear. Conventional (classical) models started to

fail and quantum corrections were needed to be incorporated, the wave nature of parti-

cles, cannot longer be neglected. Differently from classical mechanics, in the quantum

regime, particles are described by wave function ψ(~r, t), and the system under study by a

global wave function Ψ(~r, t) which is a combination of the former ψ(~r, t) wave functions6

and whose modulus square represent the probability of finding a particle at each spatial

point.

The first attempts were to introduce quantum corrections (such as the Wigner-based

correction or the Schrödinger-based correction). However, these corrections were unable

to account for all quantum effects (such as resonant tunnelling) or nowadays the Klein

Tunneling effect in 2D linear band structures materials (such as graphene), since these

effects are wave interference, and classical models fails. For that reason, fully quantum

methods are currently required [15].

1.2.3 Quantum simulators and their formalism

Apart from reflecting the quantum behaviour, the new quantum simulators must pre-

dict the realistic performance of electronic devices, for that reason they must include

dissipation effects, such as scattering with the atom lattice, described by the interaction

with (the quasi-particle) phonons.

The usual next step when constructing a quantum simulator is to analyze the different

available quantum formalisms (such as the Wigner function, density matrix... [16]) and

then develop the simulator. In the literature, we can find different quantum simulators

(from my knowledge, all of them based on formalisms which comes from the orthodox

6Depending on the nature of particles, fermions or bosons, this combinations must follow some rules,
such as being symmetric or antisymmetric.
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theory as we will see in Section 2.1). A quantum simulator must be able to analyse (in

a full quantum way) systems out of equilibrium, made by different material structures,

and obtain reasonably good results of transport properties (such as DC and AC current,

noise, transients, etc.). Here I refer to the main used ones:

1.2.3.1 Density matrix

The density matrix corresponding to a pure state of a system Ψ(~r, t) is ρ̂ = Ψ(~r, t)∗Ψ(~r, t).

The evolution for the density matrix is given by the quantum Liouville equation. It is

very interesting when studying statistics because its formulation allows to work eas-

ily with mixed states. A mixed state describe a system which we do not exactly its

composition, but we know with certain probability that it is in one certain state.

When one wants to include any additional interaction with the environment, such as

dissipation, one has to trace the density matrix of the full system, obtaining a reduced

density matrix, where there is an and extra term [17]. This term is usually added in

phenomenological way (such as the Boltzmann Collision operator which will be discussed

in Section 5.2.3) and the rates are governed by the Fermi Golden Rule. In principle, it

does not guarantee to obtain a positive dynamical way, unless it fulfills the Lindbland

equation (discussed in Chapter 5). Examples where the density matrix is used are

Refs.[18–20].

1.2.3.2 Wigner Function

The Wigner function is a phase space function. It is obtained by a Wigner-Weyl transfor-

mation of the Liouville equation for the density matrix, and the kinetic equation (Wigner

transport equation) which governs its dynamics is very similar to the classical Boltzmann

equation7. For that reason it is intuitively very insightful. It is quite simple to transfer

intuition and knowledge from the well known semiclassical Monte Carlo methods to this

quantum formalism [21, 22]. However, since it is based on the orthodox theory some

contradiction appears. If in the theory there is no space for defining simultaneously po-

sitions and momenta, how can you build a phase space map? The distribution function

in the Boltzmann equation describes the probability of finding electrons in a particular

point of the phase space, it is a probability function. However, in the Wigner function

negative values may appear. For that reason it is just considered as a quasi probability

function. This problem is enhanced when we include dissipation (via either a relaxation

time or a collision operator [23, 24]). I emphasize that this is a clear example where the

formalism is not in agreement with the quantum theory.

7In fact, if one takes the classical limit, the Boltzmann transport equation is obtained.
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Within this formalism, the Wigner–Boltzmann Monte Carlo device simulation is con-

structed and when coupled with the Poisson equation, successfully used in several

scenarios[25–27].

1.2.3.3 Non Equilibrium Green Functions

NEGF emerged as a good method to study non equilibrium problems. It was first used

by Schwinger [28], Kadanoff, and Baym [29] in the early 1960s. Since then, the method

has been adapted to the new necessities and new devices, as well as it incorporates many

interactions, such as phonon and impurity scattering[30, 31]. The Hamiltonian is split in

several parts, the one containing the device, the leads, the one coupling both parts and

the one which accounts for the different interactions. Thanks to the Keldysh formulas,

and solving the Dyson’s equation it obtains transport quantities. This Hamiltonian is

usually obtained with other transport models, such as DFT. NanoTCAD ViDES[32]

is an example of quantum simulator using NEGF which is able to solve many differ-

ent situations [33–35]. TranSIESTA [36] is another simulator which combines NEGF

with DFT by means of SIESTA(Simulation Environment for Semiconductor Technology

Analysis[37]).

1.2.3.4 Landauer-Büttiker formalism

A very useful formalism for quantum transport is the so called Landauer-Büttiker for-

malism. In this formalism the device is sandwiched between (at least) two reservoirs

(where there is no dissipation), connected to the device (where there may be dissipation)

through the leads. By taking some reasonable assumptions, such as reflectionless con-

tacts and thermodynamical equilibrium in the contacts, it can be shown [38] that most

quantum properties, such as conductance, are mainly deduced from the transmission

probability of one electron crossing the whole device and the number of transverse (left

and right) moving modes available in the reservoirs. Under this formalism, Landauer

proved that conductance is quantized. After that, Büttiker realized that when treating

with multichannel devices, the Landauer formula was still valid as far as the different

currents coming from each reservoir was considered[39, 40]. It was also Büttiker who

introduced the second quantization operators in this framework, where electrons are cre-

ated and annihilated[39, 41]. These operators were extremely useful to understand and

compute quantum noise. Quantum noise will be deeply discussed in Chapter 6, but I

anticipate that it is interesting and surprising how second quantization, a tool belonging

to quantum field theory, appears in a non-relativistic scenario. This is a consequence of

the understanding of the measurement problem in the orthodox quantum theory, which
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in turns I will discuss in Chapter 2. For computing current, we could just use the wave

nature of the electron, i.e., the wave function, but when computing noise, we need to

collapse, and then the orthodox theory suffers. For that reason, Büttiker introduced

in a elegant way this second quantization method (whose validity for predicting results

is completely out of doubt), which naturally collapses the electron by splitting the full

Hilbert space in two different ones.

1.2.3.5 Density Functional Theory

DFT beginnings were done in 1964 by Walter Kohn and Pierre Hohenberg with their

well known theorems Hohenberg–Kohn theorems[42]. These theorems demonstrates that

the ground state of a many-body electron system are determined by the three real space

coordinates of an electron density. Therefore, avoiding to work in the complex (3N

dimensional, being N the number of particles in the system) configuration space and

working in the (3D) real space. They also proof that there is a correct electron density

that minimizes an energy functional. Two problems appear immediately: this functional

is unknown and it only works for the ground state of a system. After the work of Kohn

and Hohenberg many other theorems and additional tools have developed inside DFT,

but the cornerstone are these theorems.

When applied to electronics, there are mainly two limitations. First, they are applicable

to finite or periodic systems and an electron device is definitively none of these cases,

since obviously it is not a finite object (unless we consider the whole device, cables,

something which is computationally impossible) and it is not periodic since there is no

translational symmetry. Secondly, DFT studies ground states and electron devices are

in a non equilibrium state. TranSIESTA (Simulation Environment for Semiconductor

Technology Analysis[37])is an example of TCAD software which uses DFT.

1.2.3.6 Bohmian formalism

Finally, I present the Bohmian formalism. Since it is the one used during the thesis,

Chapter 3 will be dedicated just to it. But let me explain me briefly the reasons why it

is very interesting to explore this path and how it can help the electronics field.

Previously, I have presented the main objectives and requirements of the electronics sim-

ulation field and the most used formalisms used and developed until now. I anticipate
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that these methods come from the orthodox quantum theory, while the Bohmian formal-

ism comes from the Bohmian theory, which allows the existence of definite particle posi-

tions and velocities simultaneously. Therefore, the Bohmian formalism is without doubts

one candidate to convert classical Monte Carlo method in a fully quantum method. The

similarities between both methods are undeniable. Both are time-dependent methods

where electrons describe trajectories and from them, transport properties are computed.

It is clear that time-independent methods have advantages, specially because these meth-

ods involve less computational burden and it simplifies many computations, however

time-dependent models are a convenient characteristic, specially when modeling trans-

port, whose definition involves the movement of something, and therefore time. This

fact allows to compute the total (not only particle, but also displacement) AC current.

The time-dependent injection model also allows to compute shot and thermal noise in

a simple way.

Another property which makes the Bohmian theory appropriate for studying quantum

transport is that (as it will be seen in Chapter 3 and contrarily to the standard theory)

it allows to study subsystems. This is a very important point, since the study of a full

electronic device (cables, leads, active region, atoms...) is computationally unapproach-

able (many-body problem). Therefore, one has just to focus on a simpler system, called

subsystem, which is affected by its environment.

Finally, apart from these practical considerations which make completely necessary to

explore the tools and facilities that the Bohmian formalism provide us, (and this is

my personal opinion), Bohmian mechanics also presents a more intuitive way of under-

standing the quantum world. As it will be shown in Chapter 3, collapse appears as a

consequence of the interaction between the measuring apparatus and the system and is

not an additional postulate. It also recuperates the concept of particles which describe

(following quantum laws) trajectories.

1.3 Thesis Structure

The thesis is structured in three different parts. In the first part is dedicated to make an

introduction to the thesis framework. In Chapter 1, I made an introduction to the state-

of-the-art of quantum electron devices simulators and the main available formalisms. In

Chapter 2, I will make a brief introduction to quantum mechanics. I will show that

quantum mechanics ontology is not as well established as it is in classical mechanics and

I will describe the main different theories of quantum mechanics. Since through the thesis
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the Bohmian formalism will be used, I will make an introduction to Bohmian mechanics

theory and its formalism in Chapter 3. I will present the useful conditional wave function

(unique for this formalism), how Bohmian mechanics faces the measurement problem

and also the BITLLES quantum simulator, which was developed as well as used to

obtain numerical results during the thesis. In the second part, present results obtained

during the thesis. In Chapter 4 it is presented how the Dirac equation was introduced

in the BITLLES simulator to be able of capturing the physics of the new 2D materials

with linear band structure, such as graphene. During this thesis, a scattering method

was developed and it will be presented in Chapter 5. It will be also discussed why it

is interesting to develop completely positive methods (as the one presented) and not

the opposite. In Chapter 6, I will show how the use of the Bohmian time dependent

formalism simplifies enormously the study of AC quantum current and its fluctuations

in different scenarios. A novel source of noise and the time dependent model injection

of the BITLLES will be showed. It will be also presented how the discreteness nature

of electrons leads to an intrinsic noise limit for the miniaturization of electron devices.

In part three, I present the conclusions.



Chapter 2

Different theories of the quantum

world

In this Chapter, I present different theories of the quantum world. In many physic

research fields, it is assumed that the only explanation of the quantum world is the

Copenhagen theory1, but it is not the only one. In this Chapter, I present other quantum

theories which are nowadays still being discussed by fundamental physicist and science

philosophers[43, 44]. They try to answer question such as: Is the wave function a real

object? Do we comprehend what is really happening in quantum systems? Regarding

the quantum measurement problem, does the observer have an important role? What

about the ontology of the theory? In this Chapter, firstly, I will introduce what are the

requirements and components of a theory. Afterwards, I will present briefly different

quantum theories. Nowadays, since there is not a feasible experiment which can reject

any of them, still they are just theories.

2.1 Realism and experiments

When trying to understand Nature, scientists constructs theories which tries to antici-

pate and predict experimental outcomes. When constructing a theory, we can distinguish

two different main branches: rationalism and empiricism. Rationalists believe that there

is an innate and fundamental knowledge. They believe that knowledge can be gained by

reasoning, independently of experiments. Experiments are just a manifestation and our

perception of this fundamental and deep reality, which is formed by (usually) abstract

1For that reason, when speaking about quantum theory or quantum mechanics, it is assumed that
we refer to the Copenhagen or orthodox theory. However, this is not true, and as I will shown, more
quantum theories also exist.
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objects and entities. On the other hand, empiricists believes that the only source of

knowledge is experience.

For rationalists, it is important to know what is beyond the perception. When con-

structing a theory, they care about the ontology of that theory, i.e., what is in it?, what

entities are there in the universe?. On the other hand, empiricists affirms that there

is nothing beyond our epistemic perception. One should just take care of reproducing

correctly experimental results, since there is nothing beyond this knowledge.

The formalisms2 that can be constructed from a theory will be different if they come

from a rationalist theory or an empirical theory (obviously, theories can be a mix, there

is not a sharp line defining empirical theories or rationalist ones), because they handle

different objects and entities.

It is interesting how some theories are constructed in a empirical way, and how after

some time, they are deeper understood and constructed in a more rationalist way, until

a consensus is achieved. A good example of how a theory develops is classical mechanics.

The ontology of classical mechanics was discussed during years, and there has always

been some minority groups which have tried to convince a majority that the understand-

ing of Nature is not as it was believed at this point. For instance, in the 5th century

B.C., when all realities were attributed to some God, Empedocles proposed that the

world was made by four ultimate elements, which he called “roofs”, fire, air, water and

earth. From these materials, all structures in the world were constructed. In the next

century, Democrito and Leucipo broke with this belief and proposed the atomistic the-

ory, where they proposed that the most basic structure of matter are small particles,

called atoms. Many centuries later, Kepler, Galileo, Descartes, and Newton among oth-

ers made a radical break between the intuitive and common sense ideas of the previous

Greek philosophers, with models based in experimental results and installed the essen-

tial pillars of what is currently understood as the scientific method. During this period,

some minor groups have always “transgressed” the establishment to propose novel alter-

natives to the current knowledge3. Nowadays, nobody discusses the primitive ontology

of classical mechanics which has been established through a long ripening time: matter

is described by particles, which evolves describing trajectories, defined by positions and

velocities, in a three dimensional space. Nobody denies that the classical ontology are

the particle positions, it is a special parameter, since it is the one we perceive.

2I understand a formalism as the mathematical tools that a theory can provide to predict experimental
outcomes

3For instance, notice all problems that Galileo Galilei had for supporting Nicolaus Copernicus helio-
centrism, even if this idea was already in the Greeks mind in 6th century B.C.
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Therefore, its validity is out of doubt in the classical regime, and different formalisms

have been constructed according to it. Classical laws were initially developed by New-

ton and Leibniz in the 17th century. In 1788 J. L. introduced the Lagrangian mechanics

formalism. Later, the Hamiltonian formalism, formulated by W. R. Hamilton in 1933.

These different formalisms has something in common: their ontology. Nowadays, when

exploring new regions in the classical world, nobody brings up the ontology of the theory.

A similar thing occurs in quantum mechanics. Several formalisms has been developed as

seen in Section 1.2.3, most of them under the orthodox theory. These models reproduce

without doubts experiments, and in that sense they are extremely useful and allows the

discovery of many new effects and the modeling of new devices which are improving

our daily life. Even if they have to deal with the quantum measurement problem which

will be described in the next Chapter 3, it is out of doubt that the different algorithms

have extremely contributed to the scientific progress, achieving numerical results very

accurate and close to real experiments.

However, some questions have been disregarded in some research communities: Is the

ontology of the quantum world as well established as in classical mechanics? Do we

really understand the quantum world? What are the different theories and ontologies of

quantum mechanics theories? Under which quantum theory do we construct the quantum

simulating methods?

These questions were already discussed in the beginning of the 20th century. In that

sense, when Einstein considered that the aim of physics is “the complete description

of any (individual) real situation (as it supposedly exists irrespective) of any act of

observation or substantiation)” [45] he was expressing that there must be a fundamental

reality, whereas when Bohr asserted that “It is wrong to think that the task of physics

is to find out how Nature is. Physics concerns what we say about Nature” [46], Bohr

was being more empiricist.

Since these times, it is commonly accepted that these question are meaningless, because

the orthodox version was accepted by majority and taught at the universities. However,

still many researchers are not convinced by the usual answers and try to explore another

alternatives[43, 44]. In fact, there do exist other quantum theories and they provide

additional tools which lead to different quantum formulations[16].

Even if these questions may seem useless from a practical point of view, they are not.

When constructing a formalism, it is very relevant under which theory is constructed.

Even if we have achieved a high knowledge from the techniques developed until now, still
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they could be improved. Different theories do not only provide different kind of intuition

and orientation, but they can help when solving different quantum problems (such as

the many-body problem), since they can contribute with different mathematical tools,

approximations and way of facing the same problem. Clearly, in order to be correct,

all theories must reproduce the experimental results, but as stated before, choosing one

theory or other will allow us to develop different formalisms on which different approxi-

mations can be done.

2.2 Different Quantum theories: the measurement prob-

lem

Measurements has always been determinant in the development of physics: a theory

cannot be accepted as true if it is not supported by experiments. In classical mechanics,

since we deal with massive particles, the act of measuring does not affect (or at least nor

crucially) the measured system, and this discussion does not appear. However, when

studying small and light particles, to measure implies to disturb the system under study.

This is the well known measurement problem - which will be deeply discussed in the

following Chapter- and this problem has a very narrow relationship with the appearance

of the different theories of the quantum world. Each theory faces and explains the

problem in a different way. In some of them, the observer plays no role, while in others

(such as the most used and known one, the orthodox theory) it plays and essential role.

In 1995, Maudlin [47] explained the measurement problem in the following way. Assume

these three assertions:

• a) “The wave-function specifies (directly or indirectly) all of the physical properties

of a system.

• b) The wave-function always evolves in accord with a linear dynamical equation

(e.g. the Schrödinger equation).

• c) Measurements of, e.g., the spin of an electron always (or at least usually) have

determinate outcomes, i.e., at the end of the measurement the measuring device

is either in a state which indicates spin up (and not down) or spin down (and not

up).”

Although these sentences seem to be true and consistent, they are not. One of them

must be rejected to develop a consistent theory. The Schrödinger cat paradox illus-

trates why the three cannot be true simultaneously [48]. If we assume that the wave
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function specifies the cat configuration, and we assume that it evolves according to the

Schrödinger equation, the wave function will consist in a superposition of a state where

the cat is alive and a state where the cat is dead. Since there is no additional laws,

when measuring we should obtain this entangled state, and not a projective measure-

ment where the cat is either alive or dead. Therefore, depending on which assertion we

choose to reject, we will reach a different quantum theory.

2.2.1 Removal of the linear dynamics equation

In this case, I will explain two different theories. One (the Copenhaguen) where the

observer has a relevant role in the theory, and another one which tries to remove this

importance.

Copenhagen (or orthodox) theory

In this theory, assertion b) does not hold anymore. There is a dynamical equation, such

as the Schrödinger or the Dirac equation. However, once the (strong or projective4)

measurement occurs, there is an extra law: the collapse. Once we measure the wave

function collapses to one of the possible eigenstates of the system, with a probability

given by Born’s rule.

This theory depends crucially on the measurement (for a more detailed discussion, see

Section 6.1.3). Particles behave differently if they are measured or not. When particles

are not measured, they are not longer point-particles, but a wave. When we measure, the

point-particle nature appears again. Many scientists have argues against this theories

which gives such a big power to the act of measuring.

One of them was Albert Einstein, when he said “Such an theory is certainly by no means

absurd from a purely logical standpoints; yet there is hardly likely to be anyone who

would consider it seriously.” [49]

Also Richard Feynmann “This is all very confusing, especially when we consider that

even tough we may consistently consider ourselves always to be the outside observer when

we look at the rest of the world, the rest of the world is at the same time observing us, and

that often we agree on what we see in each other. Does this mean that my observations

become real only when I observe an observer observing something as it happens? This

4Even if they are also usually ignored, weak measurements also exist. This kind of measurement
disturb softly the wave function. The price to pay is that one cannot obtain the same amount of
information of the system compared to strong measurements.
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is an horrible viewpoint. Do you seriously entertain the thought without the observer

there is no reality? Which observer? Any observer? Is a fly an observer? Is a star an

observer? Was there no reality in the universe before 109 B.C. when life began? Or are

you the observer? Then there is no reality to the world after you are dead? I know a

number of otherwise respectable physicists who have bought life insurance.” [50]

In my opinion, John Bell was one of the best who summarized the problem in his work

entitled “Against measurement” [51]. In it, he cited some Dirac assertions from Ref.[52]

and concludes:

“It would seem that the theory is exclusively concerned about ’results of measurement’,

and has nothing to say about anything else. What exactly qualifies some physical systems

to play the role of ’measurer’? Was the wavefunction of the world waiting to jump for

thousands of millions of years until a singlecelled living creature appeared? Or did it

have to wait a little longer, for some better qualified system ... with a PhD? If the theory

is to apply to anything but highly idealized laboratory operations, are we not obliged to

admit that more or less “measurement-like” processes are going on more or less all the

time, more or less everywhere? Do we not have jumping then all the time?”

GRW theory

The orthodox theory is not the only one abandoning b). In that path, the Ghirardi-

Rimini-Weber (GRW) theory [53, 54] adds an additional non-lineal term to the dynamic

equation. This extra term provokes that the wave function collapse spontaneously. The

probability of collapse for single particles is extremely low, for that reason spontaneous

collapse is not observed. However, when more particles are involved and entangled (as in

a measuring process), the collapse probability (given by the additional term) increases

enormously, and then the system collapses. It is important to emphasize that differently

to the the orthodox theory, in GRW there is not an extra collapse law. This theory tries

to get rid of the importance of the observer. Similarly to the orthodox theory, the collapse

of the wave function exists, but in a random way, not just when measuring. However,

how is this collapse term? In principle it is a universal term. Usually a Gaussian term

is a assumed with a certain dispersion, which follows a Poisson distribution in order

to obtain the occurrences of the mentioned random collapses. However, the Gaussian

and Poisson parameters have different constrains to reproduce correctly results, and

these constrains makes difficult to find compatible values. This theory predicts different

results from the Copenhaguen theory, but such results belong to experiments which are

nowadays technically inaccessible[55].
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2.2.2 Removal of determinate outcomes

Many-worlds (or Everett) theory

Many-worlds theories[56, 57] rejects c). It denies in any way the collapse of the wave

function. According to Everett there is not only a real world, but different story lines.

Every time a measurement is performed, a story line is split in different story lines,

each one corresponding to every possible output result of the performed experiment.

For instance, in the scenario where an electron wave function impinges on a potential

barrier and part of the electron wave function is reflected and part transmitted, if we

measure (at least) two different stories of line will appear: in one of them the electron

has been transmitted and in the other one the electron has been reflected. This theory

also gets rid of the importance of the observer. The wave function never collapses and

it just keeps branching. However, this quantum theory has also an inconvenient to

fulfill Born’s law, which is evident in the next example. Imagine a particle impinging

in a barrier, part of the wave function is transmitted (let’s say with probability 0.1 and

reflected with probability 0.9. Then, the world cannot split just in two different worlds,

but at least in 10 different ones, to reconstruct properly the outcomes probability.

2.2.3 Removal of the wave function

Bohmian mechanics (or the pilot-wave) theory

There are theories which abandon a) and state that there is some other parameters,

called hidden variables, apart from the wave function. Bohmian mechanics is one of

these non-local hidden variables theories and the most popular one. I anticipate that

this theory will be the one used along the thesis and that next chapter will be dedicated

just to explain the theory. For that reason, here I will just mention which are the main

characteristics of that theory. In the ontology of Bohmian mechanics, apart from the

wave function, there are the particle positions, which are the (non well called)hidden

variables of that theory5. In Bohmian mechanics when we say particles, we mean real

particles, similar to classical mechanics, but whose trajectories follows quantum laws,

instead of Newton law. These trajectories are guided by the wave function, and we

cannot measure them directly because of the system perturbation when measuring, also

called Heisenberg uncertainty principle[58]. Differently from the other previous theories,

it is the only one deterministic. If we knew the initial positions of all the particles, we

5Hidden in the sense that we cannot see them and measure them continuously, but the same occurs
with the wave function, which in an object which we cannot measure (only its square modulus after
many different measures). In fact, most scientist accept that positions are real, but non agreement has
been achieved about the reality or not of the wave function
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would be able to determine their future positions. However, the impossibility of knowing

this information, makes it empirically non deterministic, and then the typical quantum

randomness is obtained.

From all the theories I feel clearly more comfortable with any of the theories where

the observer has no role. My mind cannot conceive that nature gave us such a huge

power. Among the non-observers theories, from my point of view Bohmian offers the

most intuitive and understandable sight of quantum mechanics. I really appreciate how

the world is conceived in a elegant way, without totally abandoning the classical ontology

(particles are still particles describing trajectories) but describing totally the quantum

world (thanks to the wave function, since it guides the particles). Obviously, Bohmian

mechanics is not the last theory, in the sense that it has problems (similarly to the other

theories) when trying to include relativistic effects and then moving to quantum field

theory. But as said in Section 1.2, each theory has its own regime and limits. In that

sense, the physics of the world could be separated in different layers, each one containing

another one (similar to an onion), where classical mechanics would be the most internal

one. Obviously, the laws describing the most exterior one must fulfill the laws of the

inner ones. But not the opposite. A clear an correct understanding of the internal

layers are mandatory and necessary to move to the next one. In that sense, I believe

that quantum mechanics is still not completely understood, a clear example is that still

many researchers ask themselves and think about quantum mechanics ontology. So,

even if any of these theories are not the definitively theory since they do not include

relativistic effects, it is worth the effort to understand and put some clearance in quantum

mechanics.



Chapter 3

Introduction to Bohmian

mechanics

3.1 A bit of Bohmian History

Since the 5th Solvay conference in October 1927, the standard and most accepted quan-

tum theory is the orthodox one. This conference is usually presented as a key event in

the history of quantum mechanics. Many well known physicist participated in it1. The

well known phrase of Einstein, who disliked the Heisenber’s Uncertainty Principle “God

does not play dice” happened there, followed by Böhr answer, “Einstein, stop telling

God what to do”. According to Bacciagaluppi and Valentini [59], “the Broglie’s the-

ory was one of the sharply conflicting points of view presented at the meeting (matrix

mechanics, wave mechanics and pilot-wave theory)”. But, where was this discussion

coming from?

After some unexpected experimental results, such as the black-body radiation, where

Max Planck proposed that light is emitted in discrete quanta of energy [60], or the

photoelectric effect, where Einstein proposed that light is propagated and absorbed in

quanta[61], a new theory able to explain these non classical (and not continuous but

quantized) effects was required. In his thesis in 1924[62], De Broglie suggested that

matter, apart from its particle behaviour also behaves as a wave. It is what is known

currently as wave-particle duality. But he never abandoned the particle behaviour. After

that, in 1926 Schrödinger (following De-Broglie’s ideas) described [63] particles in terms

of a wave solution of the following (nowadays called Schrödinger) equation:

1Among others: P. Ehrenfest, E. Schrödinger, W. Pauli, W. Heisenberg, L. Brillouin, P. A. M. Dirac,
W. L. Bragg,M. Born, M. Planck, M. Curie, A. Einstein, V. de Broglie and N. Böhr.

33
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i~
∂Ψ(~x, t)

∂t
=

[
− ~2

2m
∇2 + V (~x, t)

]
ψ(~x, t) (3.1)

where V (~x, t) is the potential energy seen by the electron and m its mass. In the be-

ginning, |Ψ(~x, t)|2 was interpreted as the electron charge by Schrödinger. Later on Born

interpreted it as the probability density of finding the electron. There was no longer the

idea of particle as a point-particle describing a trajectory. This idea was replaced by the

idea of a particle behaving sometimes as a wave, and as a point-particle when measuring

it. The question about where is the particle is a nonsense without measuring. Related

to this point, Einstein did not like this point of view, as it reflects this affirmation: ”I

like to think the moon is there even if I am not looking at it.”. On the other hand, De

Broglie’s theory was the following: the particle behaves always as a particle, whose tra-

jectory is guided by the solution of Equation (3.1). The first theory deals with waves or

particles, i.e., the orthodox theory, and the latter is a theory about waves and particles,

i.e., Bohmian mechanics.

At this point, the Solvay conference occurred. There, De Broglie was alone to defend his

theory. The other scientists were strongly collaborating and his ideas were not received

strong acceptance in the conference. He did not keep defending his ideas and abandoned

this fight. Since then, the orthodox theory, where the observer has an enormous role in

the story, is the most popular theory and the one students learn. Since then, when a

student reads the double slit experiment and asks to the teacher if the electron passes

one slit or the other and why there is an interference pattern, the answer is “the electron

passes through both slits at the same time and then we see the interference pattern be-

cause of its own interference” (orthodox answer) and the answer is not “just by one, but

we do not know which one. The interference pattern occurs because the wave function,

which is the one guiding the particle has the information of the whole system (quantum

wholeness)” (bohmian answer).

Regarding this issue, let me quote the enlightening affirmation of Bell [64]:

“Is it not clear from the smallness of the scintillation on the screen that we have to

do with a particle? And is it not clear, the diffraction and interference patterns, that

the motion of the particle is directed by a wave? De Broglie showed in detail how the

motion of a particle, passing through just one of two holes in screen, could be influ-

enced by waves propagating through both holes. And so influenced that the particle

does not go where the waves cancel out, but is attracted to where they cooperate. This
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idea seems to me so natural and simple, to resolve the waveparticle dilemma in such a

clear and ordinary way, that it is a great mystery to me that it was so generally ignored.”

Afterwards, in the early 50’s, David Bohm was not very convinced about the orthodox

theory and, in his book [65], he tried to avoid the collapse and find a way to explain

the measurement just with the wave function. Later, in 1952 he published two works

[66, 67] where he proposed a theory with trajectories, Bohmian mechanics was again dug

up. Instead of using De Broglie’s formulation, he obtained the guidance and velocities

equations in a different way.

From Equation (3.1), it can be derived the following continuity equation by straightfor-

ward mathematical manipulations:

∂|Ψ(~x, t)|2

∂t
+ ~∇~j(~x, t) = 0 (3.2)

where~j(~x, t) = |Ψ(~x, t)|2 ~
m Im∇Ψ

Ψ is the particle current density and |Ψ(~x, t)|2 the particle

probability density. The particle current density can also be understood as ~j(~x, t) =

|Ψ(~x, t)|2~v(~x, t) where ~v(~x, t) is a velocity field. From here we can derive this velocity

field:

~v(~x, t) =
~j(~x, t)

|Ψ(~x, t)|2
=

~
m

Im
∇Ψ(~x, t)

Ψ(~x, t)
(3.3)

By integrating Equation (3.3) we can obtain a set of trajectories, each one having a

different initial position ~x(t0):

~x(t) = ~x(t0) +

∫ t

t0

~v(~x, t′)dt′ (3.4)

Therefore, in a very natural and easy way, electron trajectories can be obtained directly

from the Schrödinger Equation (3.1). Therefore, electrons recover a very fundamental

property, its positions. Perhaps they cannot be measured, but even that, particles have

definite positions. In that sense, Bohmian mechanics is deterministic. If we were able to

know the particle position ~x(t0) at time t0, we could know its future trajectory. However,
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because initial positions are not known, empirically it is not deterministic, and it can be

proved that it predicts the same outcomes as the orthodox theory due to the Quantum

Equilibrium Hypothesis2[68]. The trajectories from Equation (3.4) have information

from all other particles and the system, since their velocity (Equation (3.3)) depends

on the total wave function Ψ(~x, t). This is why the Bohmian theory is an holistic and

non-local theory (the parts of any whole cannot exist and cannot be understood except

in their relation to the whole).

Why has it been mostly ignored during these years? Probably because Bohm’s papers

appeared almost 25 years after the orthodox theory was established. Another reason is

that the orthodox theory predicts the same results, so why to care if in addition there

are more parameters (the trajectories)? In this thesis (as already stated in Chapter 2),

I argue and prove that apart from the intuitive insight, it can provide extra tools and

approximations which the orthodox theory cannot give. In section Section 3.3, one

of the main tools, the conditional wave function, is explained and used continuously

in Chapter 5 and Chapter 6. Finally, I want to remark that, as stated in Section 2.2,

Bohmian mechanics (as any other non relativistic theory) is not the ultimate theory able

to account for all physical levels. It accounts for classical as well as quantum outcomes,

but it does not include relativistic effects. In any case, understanding the quantum

regime and knowing which is its ontology and what is actually happening in quantum

systems is, at least, strongly recommended before moving to the following and larger

“onion layer”, i.e., quantum field theory.

3.2 Many Body Problem

Before presenting the conditional wave function and its dynamical evolution, I want to

briefly introduce the many-body problem, which is a technical problem in the sense that

it makes impossible to have analytic solution for many-particle problems and strongly

obstructs numerical results. For that reason, approximations are mandatory. In quan-

tum mechanics, the particle configuration is no longer described in a Rd (where d is the

dimension of the system) space, but in a RdN dimensional space, where N is the number

of particles in the system that we are interested in. This means that each particle we are

considering contributes with d degrees of freedom. Obviously, this exponential growth

2This hypothesis states that particles are distributed according to the modulus square of the wave
function since the initial time. When saying initial time, I mean the Big Bang. After that the evolution
of the total universe wave function evolved according to the Schrödinger equation and the distribution
of particles have always reproduced the modulus square of the wave function.
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has a direct impact in the computational cost of the system. This is the so called many-

body problem. There are many famous sentences related to this problem. For example,

in 1929 Dirac stated[69]:

“The general theory of quantum mechanics is now almost complete. The underlying

physical laws necessary for the mathematical theory of a large part of physics and the

entire chemistry are thus completely known, and the difficulty is only that the exact

application of these laws leads to equations much too complicated to be soluble.”

Another example is the next Born affirmation[70]:

“It would indeed be remarkable if Nature fortified herself against further advances in

knowledge behind the analytic difficulties of the many-body problem.”

Currently, with nowadays computers, it is impossible to simulate more than a few particle

systems. For example, in a 2 dimensional system with N = 10 particles of 10nm2,

discretized with a spatial step of ∆x = 1 nm, a grid of 102 points is obtained. Then, the

total number of points in the configuration space for the 10 particles is 10010. If we use 4

bytes to store the (complex) value of the wave function at each grid point, the information

would require more than 108 Terabytes. For that reason, approximations are necessary

in order to decrease the computational burden. As already mentioned, depending on the

theory we are using, it will provide us different mathematical objects, which allow us to

tackle this problem in different ways. For example, the orthodox theory, uses (among

other) the Hartree and Hartree-Fock methods, as well as Density Functional Theory or

Quantum Monte Carlo methods. In the case of Bohmian mechanics, this theory allows

to define the conditional wave function of a subsystem which is unique to study and face

many body problems, as it will be shown in next section.

3.3 The Conditional Wave Function

3.3.1 Definition of the Conditional Wave Function

As stated previously, in the ontology of Bohmian mechanics, in addition to the wave

function there is also the position of particles. Positions are very important and especial

in this theory. It is a property from all particles, even if one does not measure it, Bohmian

mechanics affirms that particles has definite positions. Other properties, such as spin,

does not have value unless being measured, but this is not the case of particle positions.
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This fact allows the appearance of trajectories (Equation (3.4)) and an object which

has not been discussed until now: the conditional wave function. It is a unique tool of

Bohmian mechanics. Since all particles in the world are entangled with others (many-

body problem), in principle, strictly speaking, there is only one wave function Ψ(x̃N, t)
3,

which corresponds to the wave function of the whole universe and that cannot be split.

Obviously, we do not know this wave function and we can just obtain information from a

subsystem formed by M particles when measuring it. However, if we assume the current

positions of the rest N − M particles, we can define the conditional wave function

ψ(x̃M, t) of that subsystem as:

ψ(x̃M, t) ≡ Ψ(x̃N, t)|~xi= ~Xi(t)
≡ Ψ(x̃M, ~Xi(t), t) where i 6∈ M (3.5)

It corresponds to the wave function of the mentioned M particle subsystem conditioned

to the actual positions ~X(t) of the N −M particles of the rest of the universe. In this

way, what we are really doing is to make slides of the total, complex and unknown uni-

verse wave function (see Figure 3.1). Since in the orthodox theory, the current positions

of particles is not in the ontology of theory, it is impossible to construct in any way the

wave function of a subsystem, which as we will see is extremely useful. For that reason,

strictly speaking, orthodox physicists cannot use the wave function of a subsystem and

use the reduced density matrix to study subsystems.

With the conditional wave function, the many-body problem can be tackled in a very

elegant way as we will see below. In fact, the measurement problem, which leads to the

orthodox collapse law, can be reinterpreted and easily understood.

In the orthodox theory, the dynamics of the wave function are given firstly by Equa-

tion (3.1), which is a deterministic and has a unitary evolution. Once we measure, an

additional postulate (the collapse postulate) is required, and then the wave function

collapses randomly in one of the eigenstates[71]. Let me give an example, an electron

impinges in a potential barrier. Part of the wave function is reflected and part is trans-

mitted. Once we measure, the electron collapses and appears in one side of the barrier.

At this time, the wave function belonging to the side where the electron is not is re-

moved. From here, a new evolution given again by Equation (3.1) begins.

3Hereafter I will use the following notation: x̃N corresponds to a point in the 3N (or 2N in 2D
materials) dimensional configuration space, x̃N = ( ~x1, ..., ~xN ). On the other hand, ~xi corresponds to the
3D space of the i− th particle, i.e ~xi = (xi, yi, zi) (or 2D when talking about 2D materials, ~xi = (xi, zi).
Finally, when considering a particular (conditioned) position of the i − th particle at time t in a 3D

material, ~Xi(t) = (Xi(t), Yi(t), Zi(t)) or ~Xi(t) = (Xi(t), Zi(t)) in a 2D material
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x1

x2

|Ψ(x1, x2, t)|
2

ᴪ|(X1(t), x2, t)|
2ᴪ|(x1, X2(t), t)|

2

Figure 3.1: The total wave function for two particles in a one dimensional system.
The space configuration x1x2 is plotted. Two different conditional wave functions (one
for each particle) are also shown. They correspond to slices of the total wave function.
By summing all possible conditional wave function, the total wave function can be

recovered.

In Bohmian mechanics, there is nothing special about measuring. The measuring appa-

ratus is composed by particles. As any other particles which are coupled to the system

under study, they must be included in the wave function of the system Ψ(x̃s, x̃a, t) where

x̃s refers to the degrees of freedom of the particles we are interested to measure and x̃a

the particles composing the macroscopic measuring apparatus. By evolving the wave

function of that system with Equation (3.1), we would see how the macroscopic pointer

selects one outcome or other. I emphasize that the final outcome depends on the initial

position configuration of the system, which is not known. Otherwise we could have

known the output before measuring.

The differences are clear, in the orthodox theory the observer has a big role, without it,

there would not be any collapse. Randomness appears exactly when measuring. This

is why the observer plays and important role, and where questions such as what is to

measure? appear. On the other hand, in Bohmian mechanics, to measure is just an-

other way of disturbing the system which should be taken into account, and therefore

measuring is just a kind of distortion of the system and the observer plays no role.

Randomness appears because our ignorance on the initial positions of the system, which

were determined in the Big Bang.

However, to include the apparatus (composed by contacts, leads, cables, pointer...) in

the wave function and make computations is clearly impossible, as I mentioned previ-

ously we are only able to solve numerically problems of a few particles. Here it is where
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the conditional wave function is very useful. We can obtain the wave function of the

subsystem without including the apparatus, and evolve it according to a similar equa-

tion as Equation (3.1), but now including two additional (in general non-linear) terms.

This what I call hereafter a pseudo-dynamical equation. For linear band structures it

corresponds to a pseudo-Dirac equation and in parabolic band structures it corresponds

to a pseudo-Schrödinger equation.

3.3.2 Wave equation for the Conditional Wave Function

The idea to obtain the dynamical equation for the conditional wave function is to find a

similar equation as the Schrödinger equation, but just for the few degrees of freedom that

we are interested in [72]. Here, for simplicity, I will consider that we are just interested

in one particle, the a− th one.

We start from the many particle Schrödinger equation:

i~
∂Ψ(x̃N, t)

∂t
=

[
−
∑
i

~2

2m∗i
∇i + V (x̃N, t)

]
Ψ(x̃N, t) (3.6)

where m∗i is the effective mass of the i− th electron, V (x̃N, t)) the many-body potential

and Ψ(x̃N, t) is the many body wave function. From here, if we put the wave function

in the polar form:

Ψ(x̃N, t) = R(x̃N, t)e
i
~S(x̃N,t) (3.7)

and I introduce this Equation (3.7) in Equation (3.6) and split it in the real and complex

part, I obtain the quantum Hamilton-Jacobi equation as well as a continuity equation:

∂S(x̃N, t)

∂t
+ U(x̃N, t) +

N∑
i

(
(∇iS(x̃N, t))

2

2m∗i
− ~2

2m∗i

Mi R(x̃N, t)

R(x̃N, t)

)
= 0 (3.8)

∂R2(x̃N, t)

∂t
+

N∑
i

∇i
(
R2(x̃N, t)

∇iS(x̃N, t)

m∗i

)
= 0 (3.9)
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From here, the velocity field of the i− th particle is identified as:

~vi(x̃N, t) =
∇iS(x̃N, t)

m∗i
(3.10)

Now, I will search similar equations as Equation (3.6), but this time corresponding for

the evolution of the conditional wave function of the a − th electron, i.e., ψ( ~xa, t) =

Ψ(x̃N, t)| ~x2= ~X2(t),..., ~xN= ~XN (t)
and then I will find similar equations as Equation (3.8) and

Equation (3.9). So, let me write:

i~
∂ψ( ~xa, t)

∂t
=

[
− ~2

2m∗a

∂

∂~xa
+ u( ~xa, t)

]
ψ( ~xa, t) (3.11)

where the only different term compared to Equation (3.6) is u( ~xa, t). This potential

term can be decomposed as:

u( ~xa, t) = V ( ~xa, t) +A( ~xa, t) + iB( ~xa, t) (3.12)

Let me explain a bit more this term. The A( ~xa, t) and B( ~xa, t) terms are some terms

whose shape I will determine below. The total many-body potential V (x̃N, t) has been

decomposed in two terms, one containing the degrees of freedom of the first particle,

and the other without it, i.e., V (x̃N, t) = V (xa, ~Xi(t), t)|i6=1 + V (x̃N−1, t) = V ( ~xa, t) +

V (x̃N−1, t). The term V (x̃N−1, t) is included in A( ~xa, t).

In a similar way as done for obtaining Equation (3.8) and Equation (3.9), i.e., writing

the conditional wave function in the polar form:

ψ( ~xa, t)=Ψ( ~xa, ~Xi(t), t)|i6=1=R(( ~xa, ~Xi(t), t)e
i
~S( ~xa, ~Xi(t),t)|i6=1 = r( ~xa, t)e

i
~S( ~xa,t) (3.13)

and substituting it in Equation (3.11) and splitting the real and complex part I can find

the two following equations:
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∂s( ~xa, t)

∂t
+

(
(∇as( ~xa, t), t))2

2m∗i
− ~2

2m∗i

Ma r( ~xa, t)
r( ~xa, t)

)
+ V ( ~xa, t) + V (x̃N−1, t)

+
N∑

i,i6=1

(
(∇iS(x̃N, t))

2

2m∗i
− ~2

2m∗i

Mi R(x̃N, t)

R(x̃N, t)
− (∇iS(x̃N, t))

2

m∗i

)
= 0 (3.14)

∂r2( ~xa, t), t)

∂t
+∇a

(
r2( ~xa, t), t)

∇as( ~xa, t), t)
m∗i

)
(3.15)

+
N∑
i6=1

[
∇i
(
R2(x̃N, t), t)

∇iS(x̃N, t)

m∗i

)
−∇i

(
R2(x̃N, t)

∇iS(x̃N, t)

m∗i

)]
= 0

From here, once again I can define a velocity field for the a− th electron:

~va(x̃N, t) =
∇as(~xa, t)

m∗a
(3.16)

The first requirement for Equation (3.11) is that it reproduces the same physics and

results as Equation (3.6). In Bohmian mechanics, this assertion is the same as saying

that both equations Equation (3.6) and Equation (3.11) reproduces the same particle

velocities. It is straightforward to notice that since the derivatives in Equation (3.16)

only depends on ~xa, the velocities obtained from Equation (3.6) and Equation (3.11) are

exactly the same ones.

In addition, from Equation (3.14) and Equation (3.16) and comparing them with Equa-

tion (3.8) and Equation (3.9), one can identify the exact shape of the u( ~xa, t) potential

terms in Equation (3.12):

A( ~xa, t)=V (x̃N−1, t)+

N∑
i,i6=1

(
(∇iS(x̃N, t))

2

2m∗i
− ~2

2m∗i

Mi R(x̃N, t)

R(x̃N, t)
− (∇iS(x̃N, t))

2

m∗i

)
(3.17)

B( ~xa, t)=
~2

m∗i

N∑
i6=1

[
∇i
(
R2(x̃N, t), t)

∇iS(x̃N, t)

m∗i

)
−∇i

(
R2(x̃N, t)

∇iS(x̃N, t)

m∗i

)]
(3.18)
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Obviously, we have just moved the many-body problem into the A( ~xa, t) and B( ~xa, t)

terms, but if we were able (something impossible in general) to know these two terms,

the Schrödinger equation (which has 3N degrees of freedom) would have been decom-

posed in 3N equations (with just one degree of freedom each one).

The existence of a dynamical equation for the conditional wave function is very im-

portant, even if in principle it is not possible to know its exact value. With educated

guesses, it is possible to estimate these terms, and then it allows to make approximations

which are not possible in the orthodox theory.

3.4 Measurement problem

As I showed in Chapter 2, there are several quantum theories available in the literature

that, by construction, are empirically equivalent when explaining all quantum phenom-

ena. Among others, the so-called Copenhagen or orthodox theory [73, 74], Bohmian

mechanics [66, 67, 75, 76] or the many-worlds theory [57]. I also discussed in Chapter 3

that different theories provide different formalisms, a set of mathematical rules (using

elements such as wave functions, operators, trajectories) that allow us to make practi-

cal computations that reproduce experimental results. Theories also provide different

interpretations about the reality. Interpretations try to provide a deep connection on

how the mathematical rules and its elements explain how nature works.

Many people argue that the only important part of a quantum theory (once we know it

is empirically valid) is its formalism because it is the only part we need to make com-

putations. Certainly, one can make computations using any of the available formalisms

without worrying about its interpretation. At the end of the day, by construction, each

theory should give the same predictions (otherwise it is not a correct theory). Other

people argue that even when one is only interested in computations, a correct under-

standing of the interpretation issues of each theory is fruitful because it provides an

enlarged vision about how correctly apply the theory in unsolved problems (abandoning

the shut up and calculate [77]).

In Section 3.4.1 I present the orthodox understanding of the measuring problem from

the orthodox and Bohmian point of view respectively. In 3.4.2 I discuss the Bohmian

understanding, and how the conditional wave function can help us. Since in Chapter 6 I

will discuss quantum fluctuations in electron devices, where consecutive measurements

occur, I will analyze the measurement problem with a noise example.
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3.4.1 Orthodox perspective: Multi-time measurement with operators

A common scenario when discussing quantum noise in electrical devices is a flux of elec-

trons impinging upon a partially transparent barrier (located in the middle of the active

region). Electron transport through the barrier takes place by tunnelling. Electron is

either transmitted or reflected, but not both! [78–80] The electron probability of being

transmitted is T , while being reflected is R = 1− T . To simplify the discussion, I con-

sider a constant injection of electrons (at zero temperature), one by one. Each electron,

after measurement at time t1, will appear randomly at the left or the right of the barrier.

The time averaged number of transmitted electrons will be proportional to T , but the

number of transmitted electrons fluctuates instantaneously because of the randomness

of the transmission. These fluctuations on the number of transmitted electrons (when

compared with the DC signal) are named partition noise [80–82]4.

I consider a very simple example, but with a detailed discussion of the role played by the

measuring apparatus (the ammeter). The Copenhagen interpretation associates a wave

function Ψ(x̃N, t) to a system of N particles. In principle, such wave function lives in

a 3N + 1 dimensional configuration space. Within the first non-relativistic quantization

language, the evolution of this wave function is defined by two laws [71]. The first law,

known as Schrödinger equation, states that (when the system is not measured) the wave

function evolves unitarily and deterministically according to the following equation

i~
∂Ψ(x̃N, t)

∂t
= HΨ(x̃N, t) (3.19)

where H =
[∑

i−
~2

2mi
∇2
i + U(~xN , t)

]
. With U(~xN , t) we denote a generic interaction

potential in the position representation, with mi the mass of the i-th particle and with

x̃N = (x1, x2, ..., xN ) the multidimensional vector in the configuration space.

To provide a simple discussion of the partition noise in a tunnelling barrier, let me assume

that each electron in the experiment can be described by a single-particle wave function

(I neglect the exchange and the Coulomb interaction among electrons). In Figure 3.2

the (unitary) evolution of such wave function solution of Equation (3.19) is plotted.

However, the (unitary) Schrödinger equation alone depicted in Figure 3.2 is not enough

to understand quantum noise. The orthodox theory has a second law, known as the

collapse of the wave function, that takes into account the effects of the interaction of a

measuring apparatus with the quantum (sub)system [71]. It requires a new non-unitary

operator A. This operator is different from the Hamiltonian seen below Equation (3.19)

4There are many other sources of noise in electrical devices, for example, the 1/f noise which become
very relevant at low frequencies [41, 81]. Here, I will only deal with partition noise due to a tunnelling
barrier.
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and it must be able to encapsulate all the interactions of the quantum systems with the

rest of the particles (including the ammeter, the cables, the environment, etc). This new

operator A is the only tool provided by the theory to determine the possible results of a

measurement. In principle we do not know anything about this operator except that it is

a (hermitian A = A†) function whose (real) eigenvalues an of its spectral decomposition

are the possible results of the measurement. Once the system in Figure 3.3 is measured

(and not before), the wave function is projected to one of the eigenstates of the mentioned

operator in a non-unitary evolution.5 After the collapse, the new wave packet evolves

again according to the time-dependent Schrödinger equation until a new measurement

is done.

For simplicity, in the present conceptual discussion let me assume a reasonable (but

ad-hoc) operator (why this operator is reasonable will be clarified in Section 3.4.2).

Such operator provides the following perturbation of the wave function. If the electron

is randomly measured as a reflected electron at t1, the transmitted part of the wave

function is eliminated. This measuring process corresponds to Figure 3.3 (c) and (d)

where only the reflected wave function survives after t1. Equivalently, the measurement

process associated to randomly getting a transmitted electron corresponds to eliminating

the reflected part, as seen in Figure 3.3 (g) and (h).

Now, by comparing the evolutions of the wave functions in Figure 3.2 and Figure 3.3,

it is obvious that the former is wrong. Consider that I make a two time measurement

(this is the case when measuring quantum fluctuations as it will be shown in Chapter 6).

By looking at Figure 3.2, it could be the case that an electron found at time t1 on the

right (transmitted) can be found in a later time t2 on the left as a reflected electron (see

the evolution of the probability density in Figure 3.2). This sequence of possibilities is

wrong. Experimental results confirm that once, say time t1, the electron is detected at

one side, in a later time t2 it is always found at the same side. Then, it is obtained a very

valuable lesson from the Copenhagen explanation: the (unitary) Schrödinger equation

alone is not able to explain completely quantum noise. It is necessary to include the

collapse of the wave function to understand properly what is quantum noise (temporal

correlations). The popular arguments that “Shot noise is a consequence of quantization

of charge” [41] or “This is the noise that arises from the graininess of the current” [80]

emphasize exactly this very point.

All mentioned orthodox formalisms dealing with quantum noise reproduce experimental

results successfully because they include the measurement process inside [78–83, 170].

Most of them do not discuss explicitly which is the operator associated with the ammeter.

5The measurement described in most textbooks is called “projective” (strong) measurement. There
exists, for example, another type of measurement known as weak measurement, which is useful to describe
situations where the effects of the apparatus on the measured system is just a small perturbation.
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Figure 3.2: Evolution of the squared modulus of the wave function of an electron
impinging on a tunneling barrier (green solid line). We plot four different times corre-
sponding to (a) initial time, (b) the moment when the wave function interacts with the
barrier, (c) the time t1 when it occurs the first measurement and (d) time t2 correspond-
ing to the second measurement. At time t1 and t2, because of the unitary evolution,

the electron can be detected at both sides of the barrier (Color figure online)

Over the years, physicists have identified the operators, by developing instincts on which

are the effects of measurements on the wave function. There are scenarios (as the one

depicted in Figure 3.3) where is quite obvious which operator is the right one. On

the contrary, for example, when measuring the total (conduction plus displacement)

current it is not at all obvious which are the relevant operators. Is this measurement

process continuous or instantaneous? Does it provide a strong or a weak perturbation

of the wave function? The answers to these questions are certainly not simple. The

Copenhagen theory itself does not answer these technical questions on how to find the

right operator. These questions will appear again in Chapter 6.
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Figure 3.3: (a), (b), (c) and (d) Non unitary evolution of the wave function for a
reflected electron detected at time t1 on the left side. (e), (f), (g) and (h) Non unitary
evolution of the wave function for a transmitted electron detected at time t1 on the

right side. Symbols are the same of Figure 3.2 (Color figure online)

3.4.2 Bohmian perspective: Multi-time measurement without opera-

tors

I have previously discussed how the Copenhagen theory can be used to understand

quantum noise in electrical devices. One technical difficulty with this theory is the

proper definition of the right operator that determines the collapse of the wave function

when, for example, the total (conduction plus displacement) current is measured.

In the Bohmian theory, the complete description of a quantum system of N particles is

given by the (same) wave function, x̃N mentioned in Section 3.4.1, and by the actual

positions of the point-like particles, ~XN (t) = (X1(t), X2(t), ..., XN (t)).
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A proper ensemble of the Bohmian trajectories (proper means that the initial position

of each trajectory of the ensemble is selected according to the initial squared modulus

of the wave function, see Chapter 3) reproduces the time-evolution of the many particle

wave function, at any later time.

In Section 3.4.1, I showed that in order to reproduce the experimental results, I have

used the notion of operators to describe how the wave function of a measured system

is modified under the measurement process. In the Bohmian theory, I simply consider

the apparatus as another (big and complex) quantum system interacting with our mea-

sured system. The interaction among them is then included in the Hamiltonian of

Equation (3.19) as any other interaction. Then from the unitary evolution of the many-

particle wave function (system plus apparatus) I can look at the behavior of the wave

function of the measured system (Equation (3.11)).

Let me provide a quite realistic (in particular, non-instantaneous, but in some ways

schematic) example in which I can numerically track the behavior of the conditional

wave function during the measurement process of the partition noise discussed in Sec-

tion 3.4.1. The quantum system is an electron labeled as X1 impinging on an external

tunneling barrier. Behind the barrier there is a measuring device, that I call “transmit-

ted charge detector” modeled as a single degree of freedom X2 (thought as the center of

mass of a complex system), which can detect the successful transmission of an electron6.

First, there is an interaction of the electron with the potential barrier and, subsequently,

an interaction with the transmitted charge detector. It is important to stress that both

interactions are regarded at the very same level within Bohmian mechanics. The mea-

surement interaction introduces a channeling of the wave function in the configuration

space such that the desired property of the “quantum system” (here, whether the elec-

tron is reflected or transmitted) can be read off from the final position X2 of a particle,

thought of as the pointer of the apparatus. The interaction between the electron and

the pointer can be modeled as:

Hint = λQ(x1)Px2 = −i~λQ(x1)
∂

∂x2
, (3.20)

where Px2 = −i~∂/∂x2 is the momentum operator of the detector and λ = 50 nm/ps is

the interaction constant. Q(x1) is a function that is equal to zero when the electron is

outside the detector, (x1 < 75 nm in Figure 3.4), and is equal to one when the particle

6Obviously, a pointer is not just a particle, but this fact has no relevance in this discussion.
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is inside the detector (x1 > 75 nm).7 In Figure 3.4 the region in the configuration

space in which this function is different from zero is represented by a rectangle. The

many-particle Schrödinger equation reads:

i~
∂Ψ(x1, x2, t)

∂t
=
(
− ~2

2m

∂2

∂x2
1

− ~2

2M

∂2

∂x2
2

+U(x1)−i~λQ(x1)
∂

∂x2

)
Ψ(x1, x2, t)(3.21)

where m is the effective mass of the electron, M is the mass of the apparatus pointer

and U(x1) is the external potential energy barrier.

The main feature of a transmitted charge detector is that the center of mass of the wave

function in the x2 direction has to move if the electron is transmitted and it has to

be at rest if the electron is reflected. I solved Equation (3.21) numerically considering

as initial wave function the products of two Gaussian wave packets, i.e., Ψ(x1, x2, 0) =

ψ(x1, 0)φ(x2, 0). In particular we are considering M = 75000 m. In Figure 3.4 the

numerical solution of the squared modulus of Ψ(x1, x2, t) is plotted at four different

times. At the initial time t = 0, Figure 3.4 (a), the entire wave function is at the

left of the barrier. At a later time t0 the wave function has split up into reflected and

transmitted parts due to the barrier, see Figure 3.4 (b). Then, because the electron has

not yet arrived at the transmitted charge detector, the wave function has the following

form:

Ψ(x1, x2, t0) = [ψT (x1, t0) + ψR(x1, t0)]φ(x2, t0) (3.22)

After that, Figure 3.4 (c) and (d), the interaction of the detector with the transmitted

part of the wave function appears. For time t > t0 the transmitted part of the wave

function is shifted up in the x2 direction while the reflected part does not move. The

interaction with the apparatus thus produces two channels in the configuration space,

one corresponding to the electron being transmitted and the other corresponding to the

electron being reflected, getting an entangled superposition among the electron and the

apparatus.

In Figure 3.4 I also plot the actual positions of the system and detector {X1(t), X2(t)}
for four different possible initial positions {X1(0), X2(0)}, corresponding (say) to four

distinct runs of the experiment (labelled by α = 1, ..., 4). Of the four possible evolutions

shown, three show the electron being transmitting (α = 2, 3, 4) and one being reflecting

(α = 1). While the pointer position X2(t) does not move for the reflected particle, its

evolution for the transmitted ones clearly shows a movement. In conclusion, looking at

7The transition of Q(x1), from zero to one, is done softly in order to minimize the perturbation of
the “quantum system” as explained in [84].
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Figure 3.4: Time evolution of the squared modulus of Ψ(x1, x2, t) at four different
times. The configuration space region where the transmitted charge detector is present
is indicated by a rectangle and the barrier by a solid line. The + line indicates the
modulus of the conditional wave function |ψR|2 = |Ψ(x1, X

α=1
2 (t), t)|2, while the �

line corresponds to |ψT |2 = |Ψ(x1, X
α=3
2 (t), t)|2. Four trajectories {Xα

1 (t), Xα
2 (t)} with

different initial positions are presented with �, ∗, × and +. The actual detector position
associated with the reflected trajectory (+) with α = 1 does not move because there is

no interaction between this trajectory and the detector
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1

Figure 3.5: The + line in (a), (b), (c) and (d) is the time evolution of the squared
modulus of the conditional wave function associated to the trajectory α = 1 in Fig-
ure 3.4, i.e., ψR = |Ψ(x1, X

α=1
2 (t), t)|. The � line in (e), (f), (g) and (h) is the squared

modulus of the conditional wave function associated to the trajectory α = 3 in Fig-
ure 3.4. i.e., ψT = |Ψ(x1, X

α=3
2 (t), t)|. The actual detector position X2(t) is plotted

at each time in order to compare these results with those in Figure 3.4 (Color figure
online)
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the detector position I can perfectly certify if the particle has been reflected (X1(t) <

−50 nm and X2(t) = 0 nm) or transmitted (X1(t) > −50 nm and X2(t) ≈ 15 nm). I

hope the reader will realize how trivially we have been able to explain the measurement,

using only a channelized (unitary) time-evolution of 2D wave function plus two Bohmian

trajectories, one for the system and another for the measuring apparatus.

Once the complete problem of the measurement has been solved in (2D) configuration

space, I can describe the same measurement in (1D) physical space with the help of the

conditional wave function. The key point illustrated here is that the collapse of the one-

particle wave function for the electron arises naturally and automatically in Bohmian

mechanics, opposite to the orthodox theory, where a second postulate is needed. It is

simply a consequence of slicing the unitary-evolving (2D) wave function Ψ along the

(moving) line x2 = X2(t), resulting ψ1(x1, t) = Ψ(x1, X2(t), t). In Figure 3.4 I have

plotted two solid horizontal lines corresponding to a slice of the wave function at two

different values of X2(t). In Figure 3.5 I report the evolution of these (time-dependent)

slices of the many-particle wave function, the conditional wave function for the electron,

for the trajectories α = 1 and α = 3 from Figure 3.4. We clearly see that if the particle

is reflected, as it is the case for α = 1, the position of the pointer does not change with

time and, after the interaction with the detector has been performed, the electron’s

conditional wave function includes only a reflected part. See Figs. 3.5 (c) and (d).

On the other hand, when the particle is transmitted (e.g., α = 3), it is the reflected

part of the conditional wave function which collapses away, leaving only the transmitted

packet. See Figure 3.5 (g) and (h). Note in particular that the evolution of ψ1(x1, t)

(the electron’s conditional wave function) is not unitary, even though the evolution of

Ψ is.

While a wave function formulation of quantum mechanics provides only statistical in-

formation about the experimental results, with the help of the Bohmian trajectories I

have been able to recover the individual result of each experiment. In fact for each

experiment the pointer of the detector is either moving (corresponding to a transmitted

electron) or not (reflected electron), while an ensemble of repeated experiments (where

the initial positions of the particles, both the electron X1(0) and the detector X2(0),

are selected according to the squared modulus of the wave function at the initial time

|Ψ(x1, x2, 0)|2) reproduce the same statistical results.

Thus with the previous numerical example I have reproduced the collapse-behaviour of

the wave function of a transmitted (or reflected) electron. This fact allows me to conclude

that the same results of standard formalism (I explained them in Section 3.4.1) are

obtained within Bohmian mechanics (see [75, 85] for a formal derivation of the empirical
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equivalence of the two theories). Apart from irrelevant technicalities (related to how we

define the measuring apparatus) the results in Figure 3.3 and Figure 3.5 are identical.

3.5 The BITLLES simulator

All the formalism explained previously has been introduced in the BITLLES. The sim-

ulator has been developed for years by Prof. Xavier Oriols and his research group, in

the University Autonoma of Barcelona. Its name is not a coincidence, The acronym

BITLLES is also, in the catalan language, the name of bowling pins, which are solid

pieces of plastic or wood situated in a periodic structure (similar to a solid-state struc-

ture), waiting for a ball (an electron) to impinge on them. It is the only electron device

simulator (from my knowledge) using the Bohmian formalism. In a natural way, it is

the Monte Carlo simulator heir in the quantum regime. As a brief description it works

in the following way: electrons (described initially by a Gaussian wave function and a

position) are continuously attempting to enter from the contacts in the electronic device

and they injected randomly following the Fermi-Dirac distribution (the injection model

will be deeply discussed in Chapter 6). Each electron that successfully enters in the

active region has its own pseudo-dynamical equation and evolves according to it while it

is inside the active region. Trajectories are obtained from this wave function evolution

and quantities such as total current (particle and displacement) or noise are computed

from these trajectories.

The most special and relevant characteristic of the BITLLES simulator which makes

it so unique is precisely the use of the conditional wave function. When facing the

many-body problem, if we have N electrons in the system, in principle we would have

to deal with a RNd dimensional configuration space and one dynamical equation with

Nd + 1 degrees of freedom. Instead, with the conditional wave function we are able

to split the problem (“divide and rule”) in N pseudo equations with d + 1 degrees

of freedom. These pseudo equations are coupled through the A and B terms explained

before in Section 3.3. This coupling is very important since it allows to introduce different

correlations, such as electron-electron interaction beyond mean field. The BITLLES

simulator also computes the Poisson equation, and both the Poisson equation and the

pseudo-dynamical equations are self-consistently solved.

One of the main goals during my thesis was to improve the simulator. Even if it was

highly developed, two important points to be completed and useful for real simulations

nowadays were missing. Firstly, it was just thought for ballistic transport. Dissipa-

tion was not considered in the simulator, and as it will be seen in Chapter 5, during

the thesis a completely positive[86] Bohmian method for scattering was developed and
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implemented in the BITLLES [87]. On the other hand, the BITLLES was only con-

ceived for parabolic band structures materials, i.e., the dynamical equation which was

solved was always a pseudo-Schrödinger one. During the thesis, the Dirac equation was

included, allowing the performance of simulations with linear band structures, such as

graphene (this point will be discussed in next Chapter 4. These two additional tools

convert nowadays the BITLLES in a extremely versatile and powerful simulator for cur-

rent electronic devices. Specifically, its time-dependent behaviour makes it an excellent

candidate to study all kind of AC properties and parameters.
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Chapter 4

Graphene with trajectories

In Chapter 1, it was described why graphene and other 2D materials are very important

for the electronic industry and why it is expected that they make a revolution in the

electronics field. In this Chapter I discuss more deeply what are the differences between

graphene and other materials (with some numerical examples), how Bohmian trajectories

are obtained and how the Dirac equation was introduced in the BITLLES simulator.

4.1 Graphene Structure

Graphene is a two dimensional material (its thickness is one atom) with a hexagonal

structure. It is made of carbon atoms, alternating single bonds with double bonds. It

exhibits sp2 hybridization, while pz orbitals are free and are the responsible for the elec-

tronic transport[88, 89].

The unit cell of graphene is the one seen in Figure 4.1. It consists of a triangular lattice

with a basis of two atoms, named A and B. The distance among two consecutive atoms is

aC = 1.42 Å and the vector which links two atoms of the same unit cell is ~τ = a (0,−1),

where a =
√

3aC = 2.46 Å.

The lattice vectors are the following:

~a1 = a

(
−
√

3

2
,
3

2

)
and ~a2 = a

(√
3

2
,
3

2

)
(4.1)

The first Brillouin zone is a primitive cell in the reciprocal lattice [90]. All the reciprocal

vectors are equivalent to one that lies in this zone by a combination of the reciprocal

lattice vectors, which are:

57
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~G1 =

(
2π

3a
,−2
√

3π

a

)
and ~G2 =

(
− 2π√

3a
,
2π

3a

)
(4.2)

There are two non-equivalent points in the reciprocal space, the so called K and K ′

points (also called Dirac points). As it will be seen after, these points are of extremely

importance because all the relevant electronic properties of graphene occurs at these

points. Their coordinates are:

~K =

(
4π

3
√

3a
, 0

)
and ~K ′ =

(
− 4π

3
√

3a
, 0

)
(4.3)
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Figure 4.1: Graphene structure. a) ~a1 and ~a2 are the lattice vectors. The vector that
links the two atoms of the same unit cell is ~τ . b) First Brillouin zone in graphene, the

well known Dirac cones lie in the corners (K and K ′ points).

This K and K ′ points in the momentum space are special, since at is it is well known,

electrons with similar momentum behave as massless relativistic carriers, exhibiting for

example the Klein Tunnelling effect. But how can this conclusion be reached? I explain

it in the following sections.

4.2 From a Graphene Tight Binding towards the Dirac

equation

4.2.1 Towards a Tight Binding equation

As mentioned before, graphene is a 2D periodic structure, with two atoms in its unit cell

(A and B). Then, the most general expression to write a time-dependent wave packet

is the following:
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ψ(~r, t) =
∑
~RA

u(~RA, t)φ(~r − ~RA) +
∑
~RB

v(~RB, t)φ(~r − ~RB) (4.4)

where φ(~r) are a set of “atomic orbitals” (in fact, I can chose any set of single particle

wave functions that form a base of the Hilbert space which are enough localized) in the

position representation, and therefore orthogonal between them:

∫ ∞
−∞

φ∗(~r − ~Ri)φ
∗(~r − ~Rj)d~r = δi,j (4.5)

The sums in Equation (4.4) runs over all atoms positions (~RA and ~RB). By construction,

u and v are defined as:

u(~RA, t) =

∫ ∞
−∞

φ∗(~r − ~RA)ψ(~r, t)d~r (4.6)

v(~RB, t) =

∫ ∞
−∞

φ∗(~r − ~RB)ψ(~r, t)d~r (4.7)

Next, I will consider the following Schrödinger equation:

i~
∂ψ(~r, t)

∂t
= (H0 + V (~r, t))ψ(~r, t) (4.8)

where H0 is the kinetic part of the Hamiltonian and V (~r, t) is a time-dependent potential

which includes the conditional potential terms from Equation (3.11).

Now, I can multiply Equation (4.8) multiplying by a specific atomic orbital φ∗(r − ~Ri),

where i = A,B and then I obtain:

i~
∫ ∞
−∞

φ∗(~r − ~Ri)
∂ψ(~r, t)

∂t
d~r =

∫ ∞
−∞

φ∗(~r − ~Ri) (H0 + V (~r, t))ψ(~r, t)d~r (4.9)
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Now, I will make the first neighbors tight-binding approximation, i.e., each atom will

just interact with itself and with its three nearest neighbors. Then, the terms appearing

in Equation (4.9) are the following:

∫ ∞
−∞

φ∗(~r − ~Ri)H0φ(~r − ~Ri)d~r = εi (4.10)

Since all atoms are identical, hereafter I will assume εi = 0, since it is just an energy

offset.

∫ ∞
−∞

φ∗(~r − ~Ri)H0φ(~r − ~Rj)d~r = −t (4.11)

where the − sign is used for convention.

∫ ∞
−∞

φ∗(~r − ~Ri)V (~r, t)φ(~r − ~Ri)d~r ≈ V (~Ri) (4.12)

∫ ∞
−∞

φ∗(~r − ~Ri)V (~r, t)φ(~r − ~Rj)d~r ≈ V (~Rj)

∫ ∞
−∞

φ∗(~r − ~Ri)φ(~r − ~Rj)d~r = 0 (4.13)

where i, j are always first neighbors atoms. The approximation performed in Equa-

tion (4.12) and Equation (4.13) means that the potential term is smooth (almost con-

stant) along a unit cell. With the above equations we can split Equation (4.9) in two

equations, one for u and the other for v:

i~
∂u(~RA, t)

∂t
= −t

(
v1(~RB, t) + v2(~RB, t) + v3(~RB, t)

)
+ V (~RA)u(~RA, t) (4.14)

i~
∂v(~RB, t)

∂t
= −t

(
u1(~RA, t) + u2(~RA, t) + u3(~RA, t)

)
+ V (~RB)v(~RB, t) (4.15)
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where the terms in the left hand side of Equation (4.14) (Equation (4.15)) v1, v2, v3 (u1,

u2, u3) correspond to the three neighbours of the A (B) atom chosen, see Figure 4.1a).

Now, I can define the following Fourier series for u(~RA, t) and v(~RB, t):

u(~RA, t) =
∑
~k

ei
~k ~RAau(~k, t) (4.16)

v(~RB, t) =
∑
~k

ei
~k ~RBav(~k, t) (4.17)

I mention that the ~k vectors appearing in the expressions above, are the same one

appearing in the graphene Bloch functions, since all expressions (Bloch function and

Equation (4.16) and Equation (4.17)) are Fourier series of the same system with the

same number of atoms and therefore the same discrete ~k values.

Then, the terms v1, v2, v3 (see Figure 4.1a)), u1, u2 and u3 appearing in Equation (4.14)

and Equation (4.15) are:

v1(~RB, t) =
∑
~k

ei
~k ~RBav(~k, t) (4.18)

v2(~RB, t) =
∑
~k

ei
~k(~RB−~a2)av(~k, t) (4.19)

v3(~RB, t) =
∑
~k

ei
~k(~RB−~a1)av(~k, t) (4.20)

u1(~RA, t) =
∑
~k

ei
~k ~RAau(~k, t) (4.21)

u2(~RA, t) =
∑
~k

ei
~k(~RA+~a2)au(~k, t) (4.22)

u3(~RA, t) =
∑
~k

ei
~k(~RA+~a1)au(~k, t) (4.23)

(4.24)

Then I can rewrite Equation (4.14) and Equation (4.15) as:
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i~
∂u(~RA, t)

∂t
= −t

∑
~k

(
1 + ei

~k~a1 + ei
~k~a2

)
ei
~k ~RBav(~k, t) + V (~RA)u(~RA, t)

= −t
∑
~k

f(~k)ei
~k ~RBav(~k, t) + V (~RA)u(~RA, t) (4.25)

i~
∂v(~RB, t)

∂t
= −t

∑
~k

(
1 + e−i

~k~a1 + e−i
~k~a2

)
ei
~k ~RAau(~k, t) + V (~RB)v(~RB, t)

= −t
∑
~k

f∗(~k)ei
~k ~RAau(~k, t) + V (~RB)v(~RB, t) (4.26)

where f(~k) =
(

1 + e−i
~k~a1 + e−i

~k~a2

)
. Equation (4.25) and Equation (4.26) can be written

in a matrix way:

i~
∂

∂t

(
u(~RA, t)

v(~RB, t)

)
=

(
V (~RA) −tf(~k)

−tf∗(~k) V (~RB)

)(
u(~RA, t)

v(~RB, t)

)
(4.27)

Equation (4.27) is all we could need in order to evolve a wave packet in graphene.

However, with this equation, we cannot directly understand why electrons in graphene

behaves (under some circumstances) as relativistic carriers.

4.2.2 Towards the Dirac equation

For that purpose, we can realize that f(~k) is equal to zero in the Brillouin corners, i.e.,

f(K) = f(K ′) = 0. By doing a Taylor expansion around momenta close to these points

(~k = ~Kα + ~q), we can obtain that (see Appendix A for a detailed derivation):

f( ~Kα + ~q) = −3a

2
(αqx − iqz) (4.28)

f∗( ~Kα + ~q) = −3a

2
(αqx + iqz) (4.29)

where α = ±1, being ~K1 = K and ~K−1 the K ′ point. Therefore, if the momentum of

our wave packet (Equation (4.4)) is close to one of these Dirac points, we can rewrite a
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new set of u′ and v′ functions, which are the old ones but translated to a momentum

close to the K or K ′ Dirac points.

u′(~RA, t) = e−iKα
~RAu(~RA, t) (4.30)

v′(~RB, t) = e−iKα
~RBv(~RB, t) (4.31)

Then, defining ~q = ~k − ~Kα and using the Fourier translation property, the new Fourier

transforms are:

u′(~RA, t) = e−iKα
~RA
∑
~k

ei
~k ~RAau(~k, t) =

∑
~q

ei~q
~RAau(~q, t) (4.32)

v′(~RB, t) = e−iKα
~RB
∑
~k

ei
~k ~RBav(~k, t) =

∑
~q

ei~q
~RBav(~q, t) (4.33)

With Equation (4.32) and Equation (4.33), I can rewrite Equation (4.25) and Equa-

tion (4.26) for momenta ~q close to the Dirac points as:

i~
∂u′(~RA, t)

∂t
= i

3at

2

∑
~q

(qx + iαqz)e
i~q ~RBav(~q, t) + V (~RA)u′(~RA, t)

= i~vf
∑
~q

(qx + iαqz)e
i~q ~RBav(~q, t) + V (~RA)u′(~RA, t) (4.34)

i~
∂v′(~RB, t)

∂t
= i

3at

2

∑
~q

(−qx + iαqz)e
i~q ~RAau(~q, t) + V (~RB)v′(~RB, t)

= i~vf
∑
~q

(−qx + iαqz)e
i~q ~RAau(~q, t) + V (~RB)v(~RB, t) (4.35)

where I have defined the Fermi velocity as vf = −3ta
2~ ≈ 106 m

s . Next step is to realize

that (see Appendix A for a detailed derivation):
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∂w(~Rj , t)

∂x
=

∂

∂x
w(~Rj , t) = i

∑
~k

qxe
i~k ~Rjaw(~k, t) (4.36)

∂w(~Rj , t)

∂z
=

∂

∂z
w(~Rj , t) = i

∑
~k

qze
i~k ~Rjaw(~k, t)

where (w, j) = (u′, A) or (w, j) = (v′, B). Then we can obtain from Equation (4.34) and

Equation (4.35):

i~
∂u(~RA, t)

∂t
= −i~vf (α

∂

∂x
− i ∂

∂z
)v(~RB, t) + V (~RA)u(~RA, t) (4.37)

i~
∂v(~RB, t)

∂t
= −i~vf (α

∂

∂x
+ iα

∂

∂z
)u(~RA, t) + V (~RB)v(~RB, t) (4.38)

Finally, Equation (4.37) and Equation (4.38) can be written with a matrix notation:

i~
∂

∂t

(
u(~RA, t)

v(~RB, t)

)
= −i~vf

(
V (~RA) α ∂

∂x − i
∂
∂z

∂
∂z

α ∂
∂x + i ∂∂z

∂
∂z V (~RB)

)(
u(~RA, t)

v(~RB, t)

)

≡ −i~vf
(
~σ · ~∇+ V

)( u(~RA, t)

v(~RB, t)

)
(4.39)

which is the bispinor Dirac equation. I remark that it acts differently in each valley

K or K ′ (because of α). Unless high momenta values appear, there are not intervalley

transitions.

In Equation (4.39), ~σ are the Pauli matrices1:

~σ = (σx, σz) =

((
0 1

1 0

)
,

(
0 −i
i 0

))
(4.40)

1Usually, in the literature, one finds σz as σy, however, since I defined the graphene plane as the XZ
one, the notation here is different.
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4.2.3 Graphene energy dispersion and eigenvectors

4.2.3.1 Energy dispersion

In order to obtain the energy dispersion, I will analyze the time-independent equation

version of Equation (4.27) when there is no potential (V = 0):

E

(
u(~RA)

v(~RB)

)
= ~vf

(
0 f(~k)

f∗(~k) 0

)(
u(~RA)

v(~RB)

)
(4.41)

From here, I can obtain the band structure by solving |H − EI| = 0 and I obtain:

E = ±t

[
3 + 2cos(akz) + 4cos(

kza

2
)cos(

√
3kxa

2
)

] 1

2
= ±t|f(~k)| (4.42)

This energy dispersion, which is shown in Figure 4.2a), is valid at any ~k-point for

graphene.

K point K' point

E
n
er

g
y

kx

kz

qx

qz

a) b)

Figure 4.2: a) Graphene energy dispersion. b) Graphene energy dispersion around
the K and K ′ points.

Again, if I do a Taylor expansion around the Dirac points, I will obtain the energy

dispersion for a massless relativistic particle:



Chapter 4. Graphene with trajectories 66

E(~q) = ±~vf |~q| (4.43)

It can be clearly seen from Equation (4.43) that we obtain a linear band (see Fig-

ure 4.2b)), opposite to the Schrödinger Hamiltonian where we get parabolic bands.

Positive energies in Equation (4.43) correspond to electrons in the conduction band,

whereas negative energies correspond to electrons in the valence band2. The same en-

ergy dispersion (Equation (4.43)) could have been also obtained directly by solving the

time-independent equation in Equation (4.39).

4.2.3.2 Eigenvectors

Now, let me finally calculate the corresponding eigenfunctions. From Equation (4.43)

and Equation (4.41) I get:

±~vf |~q|

(
u(~RA)

v(~RB)

)
= ~vf

(
0 f(~k)

f∗(~k) 0

)(
u(~RA)

v(~RB, )

)
(4.44)

By solving Equation (4.44), two set of eigenfunctions are obtained, one for positive

energies and other for negative ones. In the case of positive ones (electrons in the

conduction band) I obtain:

(
u(~RA)

v(~RB)

)
=

1√
2

e
−i
θ(~q)

2

e
i
θ(~q)

2

 eiqxxeiqzz (4.45)

while for electrons in the valence band (negative energies):

(
u(~RA)

v(~RB)

)
=

1√
2

e
−i
θ(~q)

2

−e
i
θ(~q)

2

 eiqxxeiqzz (4.46)

with θ(~q) defined as:

2Sometimes, in the literature, one finds that negative energies correspond to holes, but this is not
true[91].
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tg(θ(~q)) =
qz
qx

(4.47)

It is noticeable the similarities of these eigenfunctions with the Dirac spinor, but I em-

phasize that it does not have the same meaning as the Dirac spinor, but the contribution

of each sublattice A and B in the total wave function in Equation (4.4), because of this

similitude, it is called pseudospin. It is also very relevant, that Equation (4.39) is the

conditional pseudo-Dirac equation, since the potential term V includes the g and h po-

tential terms (see Equation (3.11)). Therefore, as it was expected, it is just required

to add to extra potential terms (one real and the other complex) to the original Dirac

equation.

4.3 Graphene electron trajectories

To obtain the current density, I must find out firstly which is the continuity equation

and then obtain the current. One must follow the same procedure as it is done with the

Schrödinger Hamiltonian but now using the Dirac Hamiltonian (Equation (4.48)).

i~
∂ψ(~r, t)

∂t
= −i~vf (~σ · ~O)ψ(~r, t) (4.48)

Now, I multiply the Hamiltonian by the conjugated wave function:

ψ(~r, t)†i~
∂ψ(~r, t)

∂t
= −iψ(~r, t)†~vf (~σ · ~O)ψ(~r, t) (4.49)

and I conjugate and transpose this last equation (Equation (4.49)):

ψ(~r, t)
∂ψ(~r, t)†

∂t
= −ψ(~r, t)vf (~σ · ~O)ψ(~r, t)† (4.50)

This last relationship is possible because the Pauli matrices are hermitian. If I now

subtract Equation (4.49) - Equation (4.50) I get:

ψ(~r, t)†
∂ψ(~r, t)

∂t
−ψ(~r, t)

∂ψ(~r, t)†

∂t
= −

[
ψ(~r, t)†vf (~σ · ~O)ψ(~r, t)− ψ(~r, t)vf (~σ · ~O)ψ(~r, t)†

]
(4.51)

which leads directly to the continuity equation:
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∂|ψ(~r, t)|2

∂t
+ ~O ·

(
vfψ(~r, t)†~σψ(~r, t)

)
= 0 (4.52)

where I can easily identify the density current as:

~J(~r, t) = vfψ(~r, t)†~σψ(~r, t) (4.53)

From here, I can also identify the Bohmian velocities, because (similarly as it was done

in Chapter 3) ~J( ~r, t) = ρ~v = |ψ(~r, t)|2~v:

~v(~r, t) =
J(~r, t)

|ψ(~r, t)|2
=
vfψ(~r, t)†~σψ(~r, t)

|ψ(~r, t)|2
(4.54)

In the case of dealing with the eigenfunctions shown in Equation (4.45) and Equa-

tion (4.46), the Bohmian velocities are:

vx(~r, t) =
Jx(~r, t)

|ψ(~r, t)|2
=
vfψ(~r, t)†σxψ(~r, t)

|ψ(~r, t)|2
= vfcos(θ(~q)) (4.55)

vz(~r, t) =
Jz(~r, t)

|ψ(~r, t)|2
=
vfψ(~r, t)†σzψ(~r, t)

|ψ(~r, t)|2
= vfsin(θ(~q)) (4.56)

Since Equation (4.55) and Equation (4.56) are independent of s, it it is noticeable that

independently if electrons are in the conduction or valence band, electron move in the

same direction. It is important to emphasize that this wave function corresponds to the

(plane waves) Hamiltonian eigenstates. Thus, the following Bohmian velocity are only

valid for such wave functions. In the case of any other wave function, Equation (4.54)

should be used to obtain the velocities.

4.4 Analytic evolution of a Gaussian wave packet in graphene

In this section, I will present an approximated solution for the evolution of a free particle

(when its potential energy is zero everywhere) described by a Gaussian wave packet in

graphene. With the Schrödinger equation, this problem is completely analytic, and we

can obtain a simple equation which describes the motion of a free particle[71]. The

initial Gaussian wave packet is:

ΨG(x, 0) =

(
2

πa2

)1/4

eik0xe−
x2

a2 (4.57)
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being a
2 the initial dispersion and the central momentum of the wave packet k0.

ΨG(x, t) =

(
2a2

π

)1/4
eiφeik0x(

a4 + 4~2t2

m2

)1/4
e
−

(
x− ~k0t

m

)2

a2+ 2i~t
m (4.58)

where m is the electron effective mass, φ = −θ − ~k2
0t

2m with tan(2θ) = 2~t
ma2 . Then, the

spreading of the wave packet is:

a(t) =
a

2

√
1 +

4~2t2

m2a4
(4.59)

When dealing with the bispinor Dirac equation, the analytic solution of a Gaussian wave

packet has no longer an analytic solution. The main problem occurs because the Dirac

energy dispersion is no longer separable, contrary to the parabolic dispersion obtained

with the Schrödinger equation. However, when making one approximation (which I will

discuss at the end of this section), one can reach an equation for its motion. Here, I

will just show the results, in order to see the complete derivation, see Appendix B. The

initial bispinor Gaussian wave packet is the following:

ΨG(x, z, 0) =

(
ψ1

ψ2

)
=

(
s1

s2

)
1

√
σxσzπ

e
− (x−x0)2

2σ2
x e

− (z−z0)2

2σ2
z eik0xeik0z (4.60)

where the central position of the wave packet is (x0, z0) and its initial momentum is

~k0 = (k0x , k0z). Hereafter, I will assume the same initial dispersion for the x and z

directions, i.e., σx = σz = a and

(
s1

s2

)
=

(
1

eiθk0

)
where θk0 = arctg(kz0/kx0). This last

assumption is to guaranteed that most of the eigenstates composing the Gaussian wave

packet belongs to the same (either positive or negative) band. Then, one can reach the

following analytic equation for the wave packet:

ΨG(x, z, t) = C4exp(−
σ2
z(t)

2
k2
z0)exp(−i(z − z0 − vf

kz0
|k0|

t))

√√√√ 2π

σ2
z(t) + v2

f

k2
x0
k2
z0
k2
z

4σ2
x(t)|k0|6 t

2

exp


(
−(x−x0−vf

kx0
|k0|

t−vf
kx0k

2
z0

2|k0|3
t)vfkx0kz0 t

2|k0|3σ2
x(t)

− i(z − z0 − vf
kz0
|k0| t)− kz0

σ2
z(t)
2

)2

2
(
v2
f

k2
x0
k2
z0
k2
z

4σ2
x(t)|k0|6 t

2 + σ2
z(t)

)
 (4.61)
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where C4 is a constant whose exact shape can be seen in Appendix B. Although es-

tablishing the dispersion as a function of time for the wave packet is not directly seen

in Equation (4.61), what I can see from Equation (B.17), Equation (B.18) and Equa-

tion (4.61) is that in the case where kx0 = 0 (kz0 = 0), the dispersion σx(t) = a

(σz(t) = a) and therefore there is no dispersion in the x (z) direction, only in the z

(x) direction. This fact is also understood from Equation (4.55) and Equation (4.56),

the velocity depends on the angle θ(~q), which in the case of propagation in the x (z)

direction θ(~q) = 0 (θ(~q) =
π

2
) and then vz = 0 (vx = 0). This is completely different

from the Schrödinger case, where its dispersion, given by Equation (4.59) is independent

of the initial values of the initial momentum, i.e., the wave packet will always spread.

In order to obtain Equation (4.61), the only approximation I made was to assume θk ≈
θk0 . In Figure 4.3, where two different wave packets are plotted in the momentum space,

we can clearly see which are the implications of such approximation. Let me consider

two different situations. The first one (Figure 4.3 a)) wave packets, labelled 1 and 2, with

(in the momentum space) different momentum dispersion, where σk1 = 1
a1
> σk2 = 1

a2

and the same energy |k1| = |k2|. In that case, if we approximate in both wave packets

θk by θk0 , clearly there is more difference in the wave packet 2 between the maximum

value of θk and θk0 (∆θk1 < ∆θk2) and the approximation will be less accurate for that

wave packet. In the other scenario (Figure 4.3 b)), where both wave packets (labelled

by 1 and 3) have the same momentum dispersion (σk1 = 1
a1

= σk3 = 1
a3

) but different

energy (|k1| > |k3|), because of similar argument we see that ∆θk1 < ∆θk3 and the

approximation is less accurate for wave packet 3. As a summary, the approximation

works better for extended wave packets in real space (large dispersion are translated

into small momentum dispersions) and for higher energies than lower.

In Figure 4.4, we see the evolution of the same wave packet at two different times.

In Figure 4.4a), we see the analytic evolution, while in Figure 4.4b) it is plotted the

numerical evolution. The dispersion of the Gaussian wave packet is a = 40 nm. Its

energy is E = 0.08eV and its initial momentum in the z direction is kz0 = 0, and then

we expect according to Equation (B.17) we do not expect dispersion in the x direction.

Even if the energy is quite low (and then being close to the scenario plotted in Figure 4.3

b)), the evolution of both wave packets is extremely similar. As differences, we can barely

appreciate that the numerical wave packet velocity is a bit lower than the numerical one.

Also, the dispersion in the numerical one in the z direction is a bit different and it tends

to curve the wave packet, while the numerical one goes straight.

The conclusion here is that the analytic expression is very accurate, even in scenarios

where where in principle we are not very close to satisfy the θk ≈ θk0 approximation
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Figure 4.3: a) Two different wave packets (named 1 and 2) in momentum space with
the same energy, but with different initial momentum dispersion. b) Two different wave
packets (named 1 and 3) in momentum space with different energy, but with the same

initial momentum dispersion.
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Figure 4.4: Evolution of a electron wave packer a) analytically and b) numerically at
two different times (t0 = 0 ps, tf = 0.3 ps). The electron energy is E = 0.08eV and

dispersion a = 40 nm.

(as in Figure 4.4). In other more favourables numerical examples that I made, both

(analytical and numerical) evolutions match even better.

4.5 Graphene in the BITLLES simulator

In order to introduce linear band structures (such as grahene) in the BITLLES simulator,

it could be done through the tight-binding model (TB), Equation (4.27), or through the

Dirac equation, Equation (4.39). There advantages and inconveniences of introducing

the Dirac equation and not directly the tight-binding performed in Equation (4.27).

Next, I will present a comparison between both methods.
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• While the TB represents all the physics of graphene, the Dirac equation is just an

approximation for wave vectors close to the Dirac (K and K ′) points. One should

just consider energies below (approximately) 0.7 eV (see Figure 4.2).

• The notation in the TB is more intuitive, there are no bispinors and thus less

misunderstandings. The wave function is a scalar, as in other materials (without

considering real spin). In the Dirac model, pseudospin appears and the (pseudo)

bispinor wave function can be confused with a bispinor wave function (considering

spin).

• Equation (4.27) is less easy to handle, the hopping parameters t(~R, ~R′ differs if

they correspond to a A or a B atom, and therefore expression are more complex

than with the Dirac equation.

• The TB needs a grid separation around the separation between two carbon atoms,

aC = 1.42 Å. Since graphene is a 2D material, this fact implies a huge computa-

tional burden. On the other hand, there are methods to solve the Dirac equation

(which will be commented below), where one could even introduce a spatial grid

of dx = dz ≈ 1 nm and dt ≈ 10−16 s.

Considering these points, the TB model has many advantages, but the time-evolution of

a wave packet in this dense mesh would take too long. Just because the TB is computa-

tionally too expensive, it was chosen to implement the Dirac equation in the BITLLES

simulator.

There are several methods to include the time dependent Dirac equation through [92–96].

However, they badly suffer from the Fermion doubling problem[93, 97]. This problem

consists in the appearance of additional Dirac cones in the Brillouin zone due to the

space discretization.

The method introduced in the BITLLES is the leapfrog scheme on a staggered grid. All

details can be found in Refs.[98, 99]. This method still suffers from the fermion doubling

problem, but there is just one extra Dirac cone, located at the edges of the Brillouin

zone. For that reason, the wave vectors associated to that erroneous cone are never used

in practice. Therefore, the method allows a perfect implementation in the BITLLES to

solve the time-dependent Dirac equation. In addition, absorbing boundary conditions

were implemented using complex potential terms[100].

Next, I will show two different numerical examples performed with the Bitlles which

exemplifies both, its ability to tackle the many-body problem as well as the complexity
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and counter-intuitive behaviour of graphene, well represented by the Klein Tunnelling

effect.

4.5.1 Klein Tunnelling effect

Here I show an example of an electron, that suffers the relativistic effect called Klein

Tunnelling[101] to show the successful implementation of the method in the simulator.

To see more details about this effect, see Appendix C. In the Figure 4.5 it can be seen

how an initial electron impinges perpendicularly on a potential barrier, and (contrarily

as it is expected in a normal material following the Schrödinger equation) the wave

function is completely transmitted. In Figure 4.5, different Bohmian trajectories are

also plotted.
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Figure 4.5: Square modulus of the wave function at three different times, t0 = 0 ps,
t1 = 0.4 ps and t3 = 0.7 ps. An initial electron (whose energy is 0.2 eV) impinges on a
potential barrier (whose height is 0.4 eV and width 200 nm). It can be seen how the
electron wave packet suffers the Klein Tunnelling effect and the wave packet is fully
transmitted. In the inset, it is sketched the energy potential profile, with an arrow it

is indicated the kinetic energy of the electron.
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In fact, this effect is called Klein Tunneling effect, but it is not really what it is under-

stood by tunneling (where the wave function occupies forbidden states), but just a wave

interference (since the wave function does not occupy any forbidden state, the energy

dispersion is a continuum).

4.5.2 Coulomb interaction

Here I present a numerical many-body numerical example which can be made with the

BITLLES simulator, thanks to the conditional wave function. Usually, when one thinks

about two electrons which move towards each other in free space, one expect them to be

repulsed because of the Coulomb interaction. In fact, when one analyses this many-body

Coulomb problem with the Schroödinger equation beyond mean field [72, 102] the last

assertion is true.

However, things are different in graphene. Let me present the following example, two

different electrons moves toward each other with the same dispersion (a = 40 nm) and

different energy E1 = −0.1 eV and E2 = 0.1 eV. I choose different energies just because

I will not include explicitly the exchange interaction. The inclusion of the exchange

interaction would not modify the discussion presented here.

The two pseudo Dirac equations for both electrons in the small entanglement approxi-

mation [72] are the following:

i~
∂ψ( ~x1, t)

∂t
=

[
−i~vf~σ · ~51 + VC( ~x1, ~X2(t), t)

]
ψ( ~x1, t) (4.62)

i~
∂ψ( ~x2, t)

∂t
=

[
−i~vf~σ · ~52 + VC( ~X1(t), ~x2, t)

]
ψ( ~x2, t) (4.63)

where VC is the Coulomb interaction term. Importantly, as already mentioned along the

text, the use of the conditional wave function, allows to split the N many body problem

in N different single-particle equations (in this case, there is no advantage, since N = 2,

but in general it is a very relevant advantage. Each conditional electron wave function

has its own (different) Coulomb term VC , which depends on the position of the other

particle, and therefore it goes beyond the mean field approximation, which can be a

good approximation, specially when there are many electrons in the system, but not in

this two-particle system.
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When solving numerically this problem, surprisingly, one reaches the conclusion that

even with the Coulomb interaction, the electrons are not repulsed. The electron is not

affected with the Coulomb potential because of the Klein Tunnelling effect (which was

explained previously in Section 4.5.1). Both electrons do not modify substantially their

path, since they tunnel through the Coulomb potential. This result can be appreciated

in Figure 4.6, where two electrons are injected with opposite momentum (in the x

direction) from the drain and source, with energies E1 = 0.06eV (injection from the

conduction band) and E = −0.2eV (injection from the valence band) respectively. The

simulation is performed in the XZ plane, but the results are presented as a projection

in the transport (x) direction.
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Figure 4.6: a) Wave packet evolution (projected in the x transport direction) at three
different times (t0 = 0 ps, t1 = 0.2 ps, and t2 = 0.4 ps). The one injected from the
conduction band is plotted with dashed lines. The one injected from the valence band is
plotted looking down with solid lines. The Bohmian electron positions are also plotted
with a circle sign. b) Potential energy profile (projected in the x transport direction)
seen by the drain wave packet. It is also plotted the electron trajectory at its energy
level. We can see how it tunnels through the Coulomb potential, because of the Klein
Tunnelling effect. c) Same as b), but for the source wave packet. In this case, the
electron was initially in the valence band and is not affected by the Coulomb potential.

In Figure 4.6a) the projection in the x axis of the modulus square of the wave function

is plotted for both wave packets for three different times (t0 = 0 ps, t1 = 0.2 ps, and

t2 = 0.4 ps). In order to do more understandable the evolution of both wave packets,

I plotted looking down with solid lines the wave packet injected from the valence band

(with negative energy). In addition, the electron Bohmian position is also plotted with

a circle sign. We can appreciate how at the initial time t0, both are spatially separated

and how at time t1 both wave packets are at the same position. Finally, the one injected

from the source reaches the drain and vice versa, without being repelled. In Figure 4.6b)

and c), the energy potential profile is plotted, as well as the Bohmian trajectory for both

electrons at their corresponding energies. It can be seen in Figure 4.6b) how the electron

injected from the conduction band tunnels through the Coulomb potential due to the
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Klein Tunneling effect. This is opposite to what it would have happened in a typical

material, where the electron would not have been able to tunnel the Coulomb potential

and would have been reflected.

This is a clear example where we see how the BITLLES simulator is able to treat a many-

body in a reasonable and computationally efficient way, being able of going beyond the

mean field approximation.



Chapter 5

Quantum Dissipation

In this Chapter, a Bohmian approach to study dissipation is presented. Firstly, in

Section 5.1 I discuss what dissipation is, in which kind of systems it can be found, what

a completely positive method is and why these methods are desired. In Section 5.2, phase

space (quasi) distributions will be presented and it will be showed which problems could

arise when negative probabilities appear, giving the Boltzmann collision operator as an

example. After this, in Section 5.3 the Bohmian approach will be presented, providing

numerical results performed with the BITLLES simulator.

5.1 Dissipation and Completely Positive methods

5.1.1 What is Dissipation?

As stated in Chapter 3, in the Bohmian theory all existing particles in the universe

are entangled and it exists just one wave function, the one which describes the whole

universe and relates those particles (holistic theory). However, since this is scenario is

clearly intractable, one can usually assume that some systems are completely isolated

from their surroundings (or environment), i.e., there is no interaction or interchange of

particles or energy, this is what is called a closed system. Assuming that I have a closed

quantum system, the wave function dynamics of that system are given by either the

Schrödinger equation (for parabolic band structures) or the Dirac equation (for linear

band structures). Its evolution is unitary, linear and reversible. So far, dissipation still

did not appear, since energy as well as particles are conserved quantities in a closed

system.

77
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However, systems have so many degrees of freedom (remember the exponential growth

of the configuration space in quantum mechanics, leading to the many body problem

seen in Chapter 2) that it is technically impossible to deal with more than just a few

parameters. Therefore, from all the particles composing the system under consideration,

some of them (the ones that have especial interest for us) must be chosen. Then, what

is commonly done is to split the whole system in (at least) two parts: the subsystem of

interest and the environment. The subsystem and the environment are entangled, that

is they interact with each other and the evolution of the subsystem depends strongly

on the environment. This is what is called an open system [103]. I am interested in the

dynamics of that subsystem, that are not longer (in general) treated by a unitary, linear

and time reversible quantum equation of motion.

In electron transport, we always deal with open systems. The active region of a device is

connected to two leads, which are connected in turns to the reservoirs and usually there

is also at least one gate. Electrons are continuously injected and traversing the active

region of the device. Treating the dynamics of such a (open) quantum system implies

taking into account many complex processes. From all the parameters and degrees of

freedom, what it is usually considered as subsystem are the electrons going through

the active region of the electron device, which carry current. The other elements will

be considered as environment. This environment will impose many conditions on our

subsystems. For instance, the amount of electrons that are injected in the active region,

as it will be seen in Chapter 6. It will also determine the potential shape to be consid-

ered or the boundary conditions that should be applied. This constant energy exchange

between our subsystem and the environment will cause dissipation.

Dissipation is a very understandable process, where particles loose or gain energy because

of scattering with other electrons, phonons or other types of interactions. As stated

previously, if it were possible to consider all particles, dissipation would be obtained

in a natural way. In the same way, including the computations of atoms (with their

vibrations) would allow us to see how electrons loose or gain energy. However, since

this is not possible, these events are complex to introduce in the dynamical equations

of motion in a successful way, i.e., describing correctly the experimental dynamics of a

system. Starting from the unitary quantum equations of motion is not straightforward

at all, and many attempts in different directions has been done. One important and

desired requirement is that the evolution of the subsystem will never lead to unphysical

situations, such as obtaining negative presence probabilities. This point, which seems

to be naive and obvious, is not as common as it may seem. In Section 5.2, I present

why phase spaces are interesting, why they should be defined in a quantum theory
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which holds its existence, how the well known Boltzmann collision operator applied to

quantum transport introduces dissipation and how unphysical results may be obtained.

The appearance of such unphysical results in only one simple system is enough to warn

that such implementation of the collision operator can lead to unphysical results in more

complex or realistic simulations.

5.1.2 Completely positive dynamical maps

As stated before, the dynamics of a subsystem are always conditioned to the environment

state which in principle is unknown. To facilitate the understanding of the problem, let

me introduce how closed quantum systems are treated.

Assuming that we have a closed quantum system, the wave function dynamics of that

system are given by either the Schrödinger equation or the Dirac equation. Its evolu-

tion is unitary, linear and reversible. From an initial state at time t0 defined as |Ψ(0)〉,
we can obtain its time-evolved state as |Ψ(t)〉 = Û(t)|Ψ(0)〉, where Û(t) = is the uni-

tary evolution operator. From the initial state, we can define the density matrix as

ρ(0) = |Ψ(0)〉〈Ψ(0)|. The density matrix at time t0 has unit trace and is a semidefinite-

positive operator (meaning that the eigenvalues are equal or greater than zero). It can be

easily proven that the dynamics are described by the dynamical map βt,t0 , which trans-

forms the density matrix from t to t0. Then, the density matrix at time t is obtained

through the transformation ρ(t) = |Ψ(t)〉〈Ψ(t)| = βt,t0ρ(0) = Û(t)ρ(0)Û †(t). Since the

trace of ρ(t) is also one, and it is also a semidefinite-operator, this transformation is

called completely positive.

As I mentioned before, open quantum systems are the most general and usual sce-

nario in electron devices. In this kind of systems (called also as composited), we

can divide the whole system in a subsystem S and its environment E. We are in-

terested in the dynamics of the subsystem, which is interacting with the environment.

In that cases we can define the density matrix of the whole system as tensor product

ρs(0) = |ΨS(0)〉〈ΨS(0)|⊗ |ΨE(0)〉〈ΨE(0)| = ρs(0)⊗ρE(0). The information that we can

obtain from the subsystem is the reduced density matrix ρr(0), which is obtained by

tracing out the degrees of freedom from the environment, ρr(0) = TrE(ρ(0)) where Tr

is the trace of the density matrix.

A proper equation of motion of the reduced density matrix must lead to a dynamical

map that satisfies complete positivity [104–108], which guarantees that such a reduced

density matrix is always a positive operator. If I now want to obtain information from
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the dynamics of the subsystem (we cannot longer use the previous transformation βt,t0

since it involves information from the environment that we cannot access), we need a

dynamical map, which allow us to go from the state ρr(0) to the state ρr(0), here I call it

Ωt,t0 . We want this dynamical transformation to map the initial ρr(0) into ρr(t) at each

time, maintaining the property of still being semidefinite-positive, otherwise negative

eigenvalues could be obtained, leading to unphysical results.

There are several methods in the literature which describes the shape of this transfor-

mation in order to be completely positive. Three very popular ones are the following, the

Kraus representation[109], the process matrix[110] and the Lindbland superoperator[111].

It can be shown that these methods can be converted ones into the others[112]. In

Section 5.3 I will introduce another completely positive approach within the Bohmian

formalism. One of the advantages of that method is that, contrarily to other methods,

it can be easily applied in practical scenarios. In our case, we will use it to include

dissipation in electron devices.

Before that, in next Section 5.2, I will further discuss which are the consequences of not

having a completely positive method to account for the dynamics of subsystems, putting

as an example the well known Boltzmann Collision operator1S. It is out of doubt that

this Collision operator has been extremely useful to face many scenarios [114–118], but

one must be careful when using methods that are not completely positive, because even

if in simple cases they work and one does not obtain unreal results, problems can arise

in more complex and real scenarios.

5.2 Quantum Phase space distributions and the Boltzmann

Collision operator

Phase spaces are desirable maps when one tries to include dissipation. For example

in electronics, the interaction of atoms (which are vibrating around their equilibrium

position) with electrons leads to the appearance of a quasi-particle (called phonons)

which simplifies this interaction. Phonons are massless quasiparticles carrying momen-

tum. When they collide with an electron, phonons give or take momentum from the

electron. From that perspective, functions which depend on momentum and space are

interesting. The importance of choosing a good quantum theory where it is possible to

1Other techniques, such as the seminal Caldeira Leggett master equation [113] also violates the
completely positive condition.
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correctly introduce a phase space is usually ignored, but as it will be shown, it plays an

important role and carries surprising consequences.

5.2.1 Phase space in Classical mechanics

In classical mechanics, a particle has well-defined position x(t) and momentum p(t) (for

simplicity I consider a one dimensional single particle system). Then, when considering

a large number N of trajectories (for example, by repeating the same experiment with

different initial conditions), it is possible to define a classical phase space distribution

Fc(x, p, t) by counting the number of trajectories at each point {x, p} of the phase space:

Fc(x, p, t) =
1

N

N∑
i=1

δ(x− xi(t))δ(p− pi(t)) (5.1)

where xi(t) and pi(t) are the actual position and momentum of the i-th experiment at

time t with i = 1, ..., N . The evolution of this classical phase space distribution can

be found by directly solving the Newton laws of the N trajectories or by solving the

Boltzmann equation.

At this point, I want to clarify that the discussion will be focused on one-particle systems.

The function Fc(x, p, t) is constructed by repeating the experiment N → ∞ times (or

by dealing simultaneously with N independent particles). All conclusions elaborated

hereafter about one-particle phase space probability functions (called as distribution

functions) can be straightforwardly generalized for many-particle systems, but with a

large increment of notation complexity that would later become irrelevant for the con-

clusions2. For the same reason, only one spatial degree of freedom and one momentum

degree of freedom for each particle will be considered.

5.2.2 Phase space in Quantum mechanics

The proper definition of the phase space is not so obvious in quantum mechanics, at

least in those quantum theories that does not allow for a proper definition of position

and momentum simultaneously.

Let me start by discussing why there is no phase space in the Copenhagen (orthodox )

quantum theory. According to Dirac, the observables are represented by operators in

2Strictly speaking, the phase space of a system of 2 interacting particles is not {x, p} but
{x1, x2, p1, p2}.
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Hilbert space [52]. The commutator of these operators specifies which quantities can be

known simultaneously and which not [52] . In the case of position x̂ and momentum p̂,

I have:

[x̂, p̂]|ψ〉 = x̂p̂|ψ〉 − p̂x̂|ψ〉 = i~|ψ〉 (5.2)

Therefore the orthodox theory does not support the simultaneous knowledge of local

positions and momenta. Strictly speaking, there is no phase space in the orthodox theory

of quantum mechanics. Even worst, there are no properties of an electron when there is

not measurement. Nevertheless, several (quasi) probability distributions (in Appendix D

it is discussed which conditions are required for being a probability distribution) have

been constructed under the orthodox theory. Here, the Wigner and the Husimi quasi

probability distributions are presented (since they do not accomplish the condition given

in Equation (D.1), they are not truly phase space probability distributions). Both defines

a phase space with a well-defined value for the position and the momentum of particles,

through the use of the Wigner-Weyl transform under the orthodox theory. Finally, the

(not quasi) Bohmian probability distribution is presented.

5.2.2.1 Wigner Distribution

One quite common way of describing a quantum mechanical system in phase space is

by the so-called Wigner distribution (FW ). For a given state |ψ〉, one can construct

the density matrix operator ρ̂ = |ψ〉〈ψ| and express it in the position representation

〈x|ρ̂|x′〉=〈x|ψ〉〈ψ|x′〉 or in the momentum representation 〈p|ρ̂|p′〉=〈p|ψ〉〈ψ|p′〉. Therefore,

somehow, the Wigner distribution can be interpreted as an intermediate representation

between this two and it is given by a Wigner-Weyl transform of the density matrix:

FW (x, p) =
1

h

∫
ψ(x+

y

2
)ψ∗(x− y

2
)ei

py
~ dy (5.3)

where ψ(x) = 〈x|ψ〉. It is noticeable that the (mathematical) variable p in the Wigner

(quasi) phase space {x, p} appears due to a Fourier transform of a type of autocorrelation

function of the wave function. In the case of mixed states, the density matrix can be

written as ρ̂ =
∑

j cj |ψj〉〈ψj | where cj specifies the fraction of the ensemble in the pure

state |ψj〉. For the sake of simplicity we avoid the explicit time dependence of the wave
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function and cj . Therefore, the Wigner distribution function for a mixed state is the

following:

FW (x, p) =
1

h

∑
j

cj

∫
ψj(x+

y

2
)ψ∗j (x−

y

2
)eipy/~dy (5.4)

Being the extension to mixed states straightforwardly achieved without any modifica-

tion in the discussion [119], for simplicity, only pure states are considered in the next

discussion.

The Wigner distribution is just a quasi-probability distribution because it does not

satisfy, in general, the condition given in Equation (D.1). In Appendix D.3 we can see

why this distribution can be negative at some values. In addition, in Section 5.2.3.2 we

report a numerical example where the probability in the phase space is clearly negative.

We can calculate also the ensemble average of N experiments QW (x) and JW (x) directly

using Equation (D.3) and Equation (4.53). The results obtained (the derivation can be

seen at Appendix D) are:

QW (x) = |ψ(x)|2 (5.5)

JW (x) = |ψ(x)|2∂S(x)

∂x
(5.6)

being S(x) the angle of the polar representation of the wave function ψ(x, t) = R(x)exp(iS(x)/~)

(for a detailed explanation see Appendix D.2). The results (5.5) and (5.6) are the ones

that one will get by directly using |ψ〉. At this point, because of (5.5) and (5.6), not

because of the Wigner function itself, we see that FW (x, p) is a good candidate to study

quantum transport. However, we will see later that it is “dangerous” to take seriously the

Wigner (quasi) phase space when further developing the basic steps described here. For

example, when including transitions between the phase space points {x, p} and {x, p′}
due to the (Fermi Golden rule) scattering.
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5.2.2.2 Husimi distribution

The Husimi distribution (FH) is another possible phase space distribution built from

the Copenhagen school. In this case, it does satisfy the condition (D.1) by construction.

For this purpose, we use a set of minimum non-orthogonal uncertainty states localized

in phase space (|q, p〉) [119]. Using them, the Husimi distribution is the following:

FH(x, p) =
1

2π~
〈x, p|ρ̂|q, p〉 (5.7)

Since ρ̂ = |ψ〉〈ψ|, the following equation where it is reflected the positiveness of the

Husimi distribution is obtained:

FH(x, p) =
1

2π~
〈x, p|ψ〉〈ψ|x, p〉 =

1

2π~
|〈x, p|ψ〉|2 (5.8)

However, it is not also a true probability distribution because it does not fulfill the

marginal property (D.3). It can be also seen that the Husimi distribution is just a

Gaussian smoothed version of the Wigner distribution [119]:

FH(x, p) =
1

π~

∫
FW (x′, p′)e

−(x−x′)2

2s2 e
−(p−p′)22s2

~2 dx′dp′ (5.9)

Next, the ensemble average charge and current densities QH(x) and JH(x) will be com-

puted, similarly as done for the Wigner function (in order to see the complete derivation

see Appendix D.2):

QH(x) =
1√

2πs2

∫
|ψ(x′)|2e−

(x−x′)2

2s2 dx′ (5.10)

JH(x) =
1√

(2πs2)

∫
R2(x′)

∂S(x′)

∂x′
e−

(x−x′)2

2s2 dx′ (5.11)

These results are the ones obtained for the Wigner function, but smoothed by a Gaussian

function. From Equation (5.9) we can understand why the Husimi distribution does not
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accomplish Equation (D.3). The broadening of the probabilities changes the momentum

and position distributions. For these reasons it is considered also a quasi-probability

distribution. The difficulties in properly providing the current and charge densities are

a dramatic drawback for the correct simulation of quantum electronic devices with the

Husimi distribution.

5.2.2.3 Bohmian distribution

As it was already derived in Section 5.1.2, the local Bohmian velocity is:

v(x, t) =
~
m

Im
∇ψ
ψ

=
~
m

∂S(x1)

∂x1
(5.12)

Let me remember that, as it was seen in Chapter 3, particles mean point-like particles.

With Equation (5.12), particles can be described by trajectories which have a definite

position and momentum. Then, we can again compute the quantum Bohmian phase

space distribution3 similarly to the classical case:

FB(x, p, t) = lim
N→∞

1

N

N∑
i=1

δ(x− xi(t))δ(p− pi(t)) (5.13)

where N is the number of different trajectories of an ensemble of experiments, each

experiment has a different initial position4. In Equation (5.13), xi(t) is a position of the

trajectory at time t, while pi(t) = mv(xi(t), t) is the momentum of the particle related

to the velocity in Equation (5.12) with the electron mass m. Let us emphasize that,

by construction, the phase space distribution constructed with Bohmian mechanics is

always non-negative. The number of Bohmian trajectories with momentum pi at the

position xi must be positive (or zero if there are no particles).

From the Bohmian distribution, the ensemble average charge and current densities are:

QB(x) = |ψ(x)|2 (5.14)

3We notice that the variables x and p in the Bohmian phase space {x, p} are directly defined in the
theory itself. They are part of the ontology of Bohmian mechanics. For this reason, the Bohmian phase
space is a natural space, without mathematical tricks.

4Let me emphasize that the different xi(t) and pi(t) are not associated to different particles (as I
have said, for simplicity, here I only deal with single-particle one-degree-of-freedom problems), but to
different realizations of the same experiment. The probability obtained from the wave function ψ(x, t)
has exactly the same (ensemble) meaning.
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JB(x) = |ψ(x)|2∂S(x)

∂x
(5.15)

As it can be seen, these results are exactly the same as the ones obtained from the

Wigner distribution (and different from the ones obtained from the Hussimi distribu-

tion). Therefore, the Bohmian distribution is an excellent tool to study quantum electron

transport. Apart from obtaining the same ensemble results as in the Wigner case, it

does no provide negative values that as it will be seen below that may lead to unphysical

results.

5.2.2.4 Comparing Numerical Results for the different distributions

Here, I provide numerical examples for the three mentioned quantum phase space distri-

butions and the related charge density and current density. For simplicity, I consider a

simple one-dimensional Gaussian wave packet impinging in a symmetric double barrier.

At the initial time t0, the wave function of a Gaussian wave packet at the left of the

barrier is :

ψ(x, t0) = (
1

2πa2
0

)
1
4 eik0(x−x0)exp

(
−(x− x0)2

4a2
0

)
(5.16)

where a0 = 7.5 nm is the initial spatial variance of the wave packet, x0 = 100 nm is the

initial central position and k0 = 0.69 nm−1 is the central wave vector. In addition, for

the Husimi evolution, the same dispersion: s = 7.5 nm was used.

The time evolution of the initial wave packet is computed by numerically solving the

Schrödinger equation. Then, the three quantum phase space distributions at three

different times are computed. These times correspond to the initial time t0 = 0 ps, the

time t1 = 0.09 ps when the wave packet is interacting with the barrier and the time

t2 = 0.3 ps when the interaction is nearly finished and the initial wave packet is clearly

split into a transmitted and a reflected components. The information corresponding to

these three times are plotted in Figs. 5.1, 5.2 and 5.3, respectively.

Firstly, I compare the evolutions of the Wigner, Husimi and Bohmian distributions in

Figs. 5.1-5.3. It is clearly seen that the Bohmian and Husimi distributions have non-

negative values everywhere at any time, satisfying clearly the first probability axiom

(D.1). At the initial time, the Wigner distribution is also non-negative, however, in
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later times at t1 and t2, negative values appears in some regions of the phase space. I

will further discuss such unphysical feature and their consequences later. 5

Next, I compare the charge and current densities calculated, using Equation (D.3) and

Equation (4.53), for the three quantum distributions. Let me emphasize again that, as

discussed in Section 5.2.3.3, the values obtained from the Wigner and Bohmian distri-

butions are always exactly equal. However, the values of Equation (5.10) and Equa-

tion (5.11) for the Husimi distribution does not provide the correct charge and current

densities obtained from the wave function. It is clearly seen that the module squared of

the wave packet (blue lines) in Figure 5.1b, Figure 5.2b and Figure 5.3b are equivalent

to the charge density of the Wigner and Bohmian distributions, but not to the Husimi

one.

After confirming, from the numerical simulations, the main features that are expected

from the distributions (i.e. the negative values of the Wigner distribution, the mistaken

results for the charge and current densities for the Husimi distribution and the success in

both aspects of the Bohmian distribution) I discuss an important undesired characteristic

of the Wigner distribution. After the interaction with the double barrier, say at the time

t2, the initial wave packets ψ(x, t) splits into a reflected ψR(x, t) part and a transmitted

ψT (x, t) part.

5I also want to emphasize that the Bohmian distribution has only one value of the velocity at each
position (this is just a consequence that the wave function can take only a single-value at each position.).
In fact, a realistic example in quantum transport must deal with open systems. Then, the pure state
has to be substituted by a mixed state (a sum of conditional wave functions in the Bohmian language)
and the Bohmian distribution will provide a distribution of velocities (each conditional wave function
will have its own velocity) at each position in a very natural way. We just avoid the consideration of
mixed states to simplify the present discussion.
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(b) Wave packet impinging on a tunneling bar-
rier at t0.
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(f) Current density for the three quantum phase
space distributions at t0.

Figure 5.1: Simulation of the (a) Wigner distribution, (c) Husimi distribution and (e) Bohmian
distribution at the initial time t0. (b) simulation of the wave packet impinging on a double
barrier, the simulation parameters are: E = 0.09 eV , m∗=0.2m0, where m0 is the free-electron
mass, the barrier height is 0.2 eV , the barrier width is 0.8 nm and the well depth is 3.2 nm (d)
and (f) are the charge and current densities for the three phase space distributions, respectively.
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(b) Wave packet impinging on a tunneling bar-
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(c) Husimi distribution at t1.
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(d) Charge density for the three quantum phase
space distributions at t1.

-1

0

1

2

5

10

15

20

0
75

150
225

300

B
oh

m
ia

n 
Fu

nc
tio

n 
( a

.u
. )

Positio
n ( n

m )

Wave Vector ( 1/nm )

(e) Bohmian distribution at t1.
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(f) Current density for the three quantum phase
space distributions at t1.

Figure 5.2: Simulation of the (a) Wigner distribution, (c) Husimi distribution and (e) Bohmian
distribution at the time t1. (b) simulation of the wave packet impinging on a tunneling barrier
with the same parameters as in Figure 5.1. (d) and (f) are the charge density and current

density for the three phase space distributions, respectively.
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(a) Wigner distribution at t2.
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(b) Wave packet impinging on a tunneling bar-
rier at t2.
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(c) Husimi distribution at t2.
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(d) Charge density for the three quantum phase
space distributions at t2.
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(f) Current density for the three quantum phase
space distributions at t2.

Figure 5.3: Simulation of the (a) Wigner distribution, (c) Husimi distribution and (e) Bohmian
distribution at the time t2. (b) simulation of the wave packet impinging on a tunneling barrier
with the same parameters as in Figure 5.1. (d) and (f) are the charge density and current

density for the three phase space distributions, respectively.
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As it is seen in Figure 5.3b, the reflected part and transmitted parts of the wave function

are located at both sides of the barrier (not inside). Identically, in the Wigner distri-

bution in Figure 5.3a it is easily recognized the spatial locations of FW (x, p) from the

reflected ψR(x, t) and transmitted ψT (x, t) parts. However, in addition, there are large

non-zero values (negative and positive, because when integrating this region of the phase

space the result must be zero) of FW (x, p) in the middle of the barrier, x = 150 nm,

at places where no probability presence of the electron is supposed to be according to

Figure 5.3b. The reason of such spurious result is clear from the mathematical Wigner-

Weyl transform. At time t2, the spatially separated reflected ψR(x, t) and transmitted

ψT (x, t) of the wave function ψ(x, t) have to be spatially displaced to compute FW (x, p).

In particular, for the value of y = 2d, in Equation (5.4) I have the following terms:

ψR(x + d, t), ψT (x + d, t), ψ∗R(x − d, t) and ψ∗T (x − d, t). Finally, according to Equa-

tion (5.4), the FW (x, p) at time t2 at position xC = 150 nm for any value of the

momentum p is:

FW (xC , p) ∝
1

h
ψR(xC + d)ψ∗T (xC − d)ei

2pd
~ (5.17)

since d is the distance between barrier and the reflected part, which I consider equal

to the distance between the transmitted part and the barrier, the product ψR(xC +

d)ψ∗T (xC − d) in Equation (5.17) is different from zero at the barrier region xC .

Despite this unphysical feature described in Equation (5.17) (I know from the wave

function evolution that in that region there is no probability presence), I emphasize that

by integrating the positive and negative values of FW (x, p) around xC we will reproduce

correctly the charge density at this point.

In Figure 5.3d, there is no charge density at position xC = 150 nm. However, if one

tries to gives a physical meaning to FW (x, p) at these points in Figure 5.3a (as a true

physical probability distribution of the electron at the phase space) and deduce other

physical consequences, one must be very careful and one should notice that it may be a

source of unphysical results.

For example, introducing an ad-hoc scattering term (due to impurities, for example)

in the quantum equation of motion of the Wigner function (such as the Boltzmann

Collision operator as it will be seen in next Section 5.2.3), the negative values may

lead to unphysical results. If such ad-hoc term is introduced as a transition from an

old phase space point {xC , p} towards a new point {xC , p′} through the Fermi golden

rule probability Sp,p′ , we are moving probability presence of electrons from positions

(for example xC = 150 nm) where, in fact, there are no electrons. The mistake in the
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transition of probability from regions without electrons occurs because the scattering

mechanism is introduced by hand as an extra ad-hoc term in the quantum equation of

movement.

Obviously, this spurious effect will not be present if the scattering mechanism (with the

impurity) is introduced directly in the Hamiltonian inside the unitary quantum equa-

tion of motion (as done in Section 5.3). The mentioned undesired features will never

occur within the Bohmian distribution (even when using the conditional wave function),

because as it is seen in Figure 5.3e, only non-zero (positive) probabilities are seen at

locations where the electrons may be reflected or transmitted, but not in other regions.

5.2.3 The Boltzmann Collision operator

AS It was previously discussed, that the negative values of the Wigner function may lead

to unphysical results when including an ad-hoc scattering term such as the Boltzmann

collision operator. Here I show that, in general, adding ad-hoc terms may lead to

unphysical results, even in more general scenarios, where there are not negative values

in the Wigner function.

5.2.3.1 Wigner Function dynamics

The time evolution of the Wigner distribution function can be directly derived from

the Liouville equation. Therefore, the transport equation for the Wigner distribution

function in Equation (5.4) can be written as a sum of a term given by the operator

L̂W [FW (x, k, t)] plus a generic collision term ĈW [FW (x, k, t)] as:

∂FW (x, k, t)

∂t
= L̂W [FW (x, k, t)] + ĈW [FW (x, k, t)] (5.18)

The term L̂W [FW (x, k, t)] can be written as:

L̂W [FW (x, k, t)] = − ~k
m∗

∂FW (x, k, t)

∂x
− 2

π~

∫ ∞
−∞

dk′
∫ ∞

0
dx′e[−i(k−k′)2x′]

×[V (x+ x′)− V (x− x′)]FW (x, k, t) (5.19)

under the effective mass approximation. The other collision term ĈW [FW (x, k, t)] has

many different practical implementations (based on different approximations).
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5.2.3.2 The origin of problem: the Boltzmann collision operator

The classical Boltzmann collision operator

The Boltzmann collision operator was initially proposed for classical systems [120]. For

such systems, it has a very easy and understandable theory. The Boltzmann collision

operator is just a rule for counting the number of electrons in and out of a volume of the

phase space ∆V due to a collision. The total number of electrons at time t+ ∆t in ∆V

is equal to the previous number of electrons that were there at t, before the collision,

plus the number of electrons that arrive at ∆V from outside due to collision, minus the

number of electrons that leave ∆V due during the collision.

Imagine a classical electron at x0 with a velocity v0 that interacts with another particle

(for example, a phonon). Because of the interaction, the electron losses kinetic energy

and its final velocity is vf . For simplicity, I assume that the initial position remains

unchanged. Such collision process can be easily modelled in terms of the Boltzmann

collision operator. The initial classical distribution function in phase space before the

collision (apart from constant factors), at time t0, is:

Fc(x, k, t0) = δ(x− x0)δ(k − k0) (5.20)

being k0 the wave vector associated to v0. The Boltzmann collision operator generates

the effect of the collision by subtracting an electron with momentum k0 and adding a

new electron with momentum kf . The final classical distribution function in phase space

after the collision, at time t = t0 + ∆t, is:

Fc(x, k, t0 + ∆t) = δ(x− x0)δ(k − k0)− δ(x− x0)δ(k − k0) + δ(x− x0)δ(k − kf )

= δ(x− x0)δ(k − kf ) (5.21)

The final result is obviously Fc(x, k, t0 + ∆t) = δ(x − x0)δ(k − kf ). Up to here, the

discussion seems very trivial. However, let me emphasize that it has been relevant

that the negative part of the distribution function generated by the Boltzmann collision

operator −δ(x− x0)δ(k − k0) is exactly compensated by the original positive one δ(x−
x0)δ(k − k0). In this sense, the use of the Boltzmann collision operator in classical

systems will never be problematic.
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The quantum Boltzmann collision operator

However, the application of the quantum version of the Boltzmann collision operator can

be problematic because we have to add/subtract wave functions, not point particles. As

we will see below, the problem appears when we do not know the states that built the

density matrix of the open system.

If I consider an electron device as an open system with M electrons which are distributed

in N different states. Say, there are M1 electrons described by state |ψ1〉 where I define

p1 = M1/M . There are M2 electrons with probability p2 = M2/M described by the state

|ψ2〉 and so on. A mixed state through the density matrix that describes the system can

be constructed as:

ρ̂(t0) =
N∑
i=1

pi(t0)|ψi(t0)〉〈ψi(t0)| (5.22)

with the conditions
∑N

i=1 pi(t0) = 1 and
∑N

i=1Mi = M . Because of the interaction of

one electron with a phonon, the Boltzmann collision operator will add a new final state

of the electron |ψF 〉 and will subtract another state associated to the electron |ψO〉.
Then, the new density matrix after the scattering, at time tS = t0 + ∆t, is:

ρ̂(tS) = ρ̂(t0)− 1

M
|ψO〉〈ψO|+

1

M
|ψF 〉〈ψF | (5.23)

In next Section 5.2.3.3, I will show explicitly with the Wigner formalism how the effect

of collisions modelled by the Boltzmann collision operator can effectively be written as

Equation (5.23). The problem with the Boltzmann collision operator is that if I subtract

an state |ψO〉 = |ψ′2〉 that is not present in the density matrix before the collision, ρ̂(t0),

then I cannot simplify the density matrix to remove the negative sign that appears in the

second term of the right hand side of Equation (5.23). Then, by a simple computation,

the new expression of the charge density from Equation (5.23) is:

Q(x, t) =

N∑
i=1

pi|ψi(x, t)|2 −
1

M
|ψ′2(x, t)|2 +

1

M
|ψF (x, t)|2 (5.24)

The charge density is a sum of positive and negative terms. The dramatic problem with

Equation (5.24) is that, when the time-evolution of the negative term ψ′2(x, t) is not per-

fectly balanced by the positive term ψ2(x, t) (or by other states that build ρ̂(t)) at every
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time and position, the possibility of getting negative values Q(x, t) in Equation (5.24)

is opened. Negative pseudoprobabilities can be accepted, but not negative charges.

The solution of the unphysical result originated by a negative charge density is, in

principle, quite simple. If I subtract a state |ψO〉 which is present in the density matrix

ρ̂(t0), for example, |ψO〉 = |ψ2〉, then, I can write the density matrix in Equation (5.23)

at any time t after the scattering time tS as:

ρ̂(t) =

N∑
i=1;i6=2

pi(t)|ψi(t)〉〈ψi(t)|+
M2 − 1

M
|ψ2(t)〉〈ψ2(t)|+ 1

M
|ψF (t)〉〈ψF (t)|(5.25)

The relevant point now is that, by construction, the term (M2−1)/M will be positive at

any time t. Obviously, in the selection of the scattering process it has to be ensured that

M2 ≥ 1, because if not, I am subtracting a non existent state. Therefore, independently

of the time-evolution of all the states, the charge density computed from Equation (D.3)

(or Equation (5.25)) is just a sum of positive terms:

Q(x, t) =
N∑

i=1;i6=2

pi|ψi(x, t)|2 +
M2 − 1

M
|ψ2(x, t)|2 +

1

M
|ψF (x, t)|2 (5.26)

Let me mention, however, that this procedure requires a knowledge of the pure states

that build the density matrix (or the Wigner distribution function) of our open system.

This information is usually not available in most quantum transport simulations. An

exception being the BITLLES simulator, where each electron inside the device has its

own conditional wave function, see Chapter 3.

5.2.3.3 Numerical example of the problem

Here I will show with numerical results the potential drawbacks of the combination

of the Wigner distribution function and the Boltzmann collision operator discussed in

the previous section. In some scenarios, such combination can lead to negative values

of the charge density. Later, in Section 5.2.3.4, I will introduce a novel way of facing

the scattering problem (taking care of adding and subtracting states present in the

density matrix of an open system) where the previous unphysical feature disappears

by construction. This new way of introducing the scattering will lead to the Bohmian

Scattering approach explained in Section 5.3.
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Boltzmann collision operator for Hamiltonian eigenstates

The Boltzmann collision operator in the Wigner formalism is given in the literature

by[121]:

Ĉ [FW (x, k, t)] =
1

2π

∫ ∞
−∞
{Wkk′FW (x, k′, t)−Wk′kFW (x, k, t)}dk′ (5.27)

where Wkk′ is the rate of scattering from the (unperturbed Hamiltonian) eigenstate with

eigenvector k′ to the (unperturbed Hamiltonian) eigenstate with eigenvector k. The

transition probabilities Wkk′ are obtained from the Fermi Golden rule according to [122]

are:

W~k~k′
=

2π

~
|M~k~k′

|2δ(E~k − E~k′
∓ ~ω) (5.28)

where M~k~k′
are the matrix elements for the transitions from state ~k′ to ~k, and ω is the

frequency of the phonon for inelastic scattering. The bold symbols represents vectors

in the 3D space. For technical reasons, since only one dimension is considered here, the

3D scattering rates must be “projected ” onto the one-dimensional model to find Wkk′

defined in Equation (5.27):

Wkk′ =
λ2
T

(2π)3

∫ ∞
−∞

d2k′⊥

∫ ∞
−∞

d2k⊥W~k~k′
exp(−

λ2
Tk

2
⊥

2
) (5.29)

where k and k′ are now the one dimensional initial and final states respectively6. A very

relevant point in this discussion is that the Fermi Golden rule Equation (5.28) forces to

use Hamiltonian eigenstates (of the Hilbert space without the interacting potential).

Next I will show a simple example of the application of Equation (5.18) for a simple

initial state and scattering rates Wkk′ , that, surprisingly, gives unphysical results in the

form of negative charge density in Equation (5.5).

6Here I assume that the distribution of electrons is Maxwellian with respect to the transverse wave
vector k⊥ of the initial state, and λT is the spatial dimension factor given by:

λT =
~2

KTm∗
(5.30)

where K is the Boltzmann constant and T is the absolute temperature.
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Electron in a double barrier with a collision event

Here I am not focused on the simulation of realistic nanodevices, but only in showing with

a very simple example an unexpected result when combining the Boltzmann collision

operator and the Fermi Golden rule. The violation of the requirement Q(x, t) ≥ 0 in

only one simple system is enough to warn that such implementation of the collision

operator can lead to unphysical results in more complex or realistic simulations.

Now I consider here an electron impinging in a double barrier. Above, it was discussed

how negative values of the Wigner function could lead to problematic results when

including scattering terms that were able to move this negative values in the phase

space due to a scattering term.

In this case, I will consider a more general case. I will consider that the interaction will

occur before the interaction with the double barrier occurred. This is seen in the inset

of Figure 5.4. For simplicity, I consider a 1D Hilbert space with the following uniform

grid xj = j∆x, for j = 1, 2, . . .M with ∆x = 0.2 nm the spatial step and M = 3000

the number of grid points. The simulation box is large enough (it extends from 0 till

600 nm) to avoid any spurious interaction of the electron wave packet with the spatial

boundaries. In the simulation, the temporal step is ∆t = 3 fs.

At the initial time t0 I consider an arbitrary initial pure state 〈x|ψ〉 whose support fits

perfectly inside the simulation box. Since I am interested in describing such system

with the Wigner distribution function, the density matrix of this initial pure state is

given by ρ̂ = |ψ〉〈ψ|, and the Wigner distribution function just needs the Wigner-

Weyl transform given by Equation (5.3). The time-evolution of the Wigner distribution

function can be computed directly by solving the Schrödinger equation (plus a Wigner-

Weyl transform) or by solving the Wigner transport equation Equation (5.18) without

the collision operator. Then, at time tS , a scattering process takes place according to

the Boltzmann collision operator.

It is usually assumed in the literature that the scattering process is sufficiently instan-

taneous7 so it can be assumed that the evolution of the Wigner distribution function

from the tS till tS + ∆t is:

FW (x, k, tS + ∆t)− FW (x, k, tS)

∆t
= (5.31)

1

2π

∫
{Wkk′FW (x, k′, tS)−Wk′kFW (x, k, tS)}dk′

7As indicated in [123], such assumption is not always valid. In any case, the consideration of a larger
time will not significantly change the drawbacks of the Boltzmann collision operator mentioned here.
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Figure 5.4: Schematic representation of the two-step Hamiltonian eigenstates scatter-
ing process. (a) Simulation of a wave packet impinging on double barriers, the collision
is performed at time tS before the wave packet touches the barriers. (b) A simple

physical picture of the two-step Hamiltonian eigenstates scattering process.

A further elaboration of Equation (5.31) requires the specification of the scattering rates

Wkk′ and Wk′k. In this case, for simplicity, I will account just for one collision process of

one electron with one phonon. In particular, I will consider that, because of the collision,

the initial wave vector of the electron k0 changes to a final value kF . By using the Fermi

golden rule in Equation (5.29), such electron-phonon interaction can be associated to

the terms:

Wkk′ = αδ(k′ − k0) lim
σ→0

e−
(k−kF )2

σ2 (5.32a)

Wk′k = αδ(k′ − kF ) lim
σ→0

e−
(k−k0)2

σ2 (5.32b)

where the parameter α takes into account all (irrelevant for this simple example) details

of the specific computation of the Fermi Golden rule. The parameter σ → 0 means that

rates Wkk′ and Wk′k are localized closely to momentum k = kF and k = k0, respectively.
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For numerical reasons, I avoid writing explicitly delta functions in the right hand side

of Equation (5.32a) and Equation (5.32b). In simple words, Wkk′ is the transition rate

associated to an electron initially in k′ = k0 that appears finally at k = kF (see 2nd

term in Figure 5.4), and Wk′k is associated to an electron initially in k = k0 that finally

disappears from k0 (see 3rd term in Figure 5.4). The summary of this scattering process

described in Equation (5.31) (or in the sum in Figure 5.4) is just that an electron with

initial momentum ~k0 gets a final momentum to ~kF because of the interaction with a

phonon.

Substituting the scattering rates written in Equation (5.32a) and Equation (5.32b) into

Equation (5.31) and rearranging it, it is obtained:

FW (x, k, tS + ∆t) = FW (x, k, tS) +
α∆t

2π
FW (x, k0, tS)e−

(k−kF )2

σ2 − α∆t

2π
FW (x, k, tS)e−

(k−k0)2

σ2

(5.33)

Since there is a one-to-one correspondence between the Wigner distribution function

and the density matrix [124, 125], one can obtain the density matrix by the inverse

Wigner-Weyl transform of the Wigner distribution function as:

ρ̂(x, x′, t) =

∫ ∞
−∞

FW (
x+ x′

2
, k, t)eik(x−x′)dk (5.34)

As a consequence, I can rewrite Equation (5.33) as:

ρ̂(x, x′, tS + ∆t) = ρ̂(x, x′, tS) +
α∆t

2π
FW (

x+ x′

2
, k0, tS)eikF (x−x′)

− α∆t

2π
FW (

x+ x′

2
, k0, tS)eik0(x−x′) (5.35)

which can be rewritten in the form of positive and negative addends discussed in Equa-

tion (5.23) as:

ρ̂(tS + ∆t) = ρ̂(tS) + ρ̂P (t)− ρ̂N (t) = |ψ〉〈ψ|+ |ψP 〉〈ψP | − |ψN 〉〈ψN | (5.36)

where the first term in the right-hand side, ρ̂, describes the density matrix before the col-

lision, the second and third terms are the terms generated (by the Boltzmann Collision
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operator) due to the collisions. It is important to underline that I am selecting α small

enough to ensure that the charge density of the density matrix ρ̂(x, x′, tS +∆t) in Equa-

tion (5.35) is strictly non-negative everywhere just after the scattering. As commented

previously, it would be a nonsense to subtract more probability presence than what there

is in one specific location at tS . Even with this important requirement, the problem may

appear later when the time evolution of ρ̂(x, x′, tS) and −α∆t
2π FW (x+x′

2 , k0, tS)eik0(x−x′)

(or −|ψN 〉〈ψN |) becomes different.

I compute the charge probability distribution from Equation (D.3) at four different times

corresponding to the initial time t0 = 0 ps, just after the scattering time tS = 0.006 ps,

at t2 = 0.315 ps when the wave packets ψ and ψN are interacting with the barriers, and

at time t3 = 0.66 ps when the interaction is nearly finished and the initial wave packets

ψ and ψN are clearly split into transmitted and reflected components. The information

corresponding to these four times is plotted in Figure 5.5.

In order to enlarge the typical interference effects, at the initial time t0 I consider

the following initial state 〈x|ψ〉 = C〈x|ψ1 + ψ2 + ψ3〉 with C a normalization con-

stant. Each wave function ψj(x, t0) at the initial time t0 is a Gaussian wave packet

ψj(x, t0) = ( 2
πa2

0
)

1
4 eik0(x−x0j)exp

(
− (x−x0j)

2

a2
0

)
but with different initial central positions

x0j . In particular, the left wave packet ψ1 has x01 = 250 nm, the middle wave packet

ψ2 has x02 = 280 nm and the right wave packet is ψ3 has x03 = 310 nm. The initial

spatial variance of the three wave packets is a0 = 15 nm, their central wave vector

k0 = 0.69 nm−1 and the effective mass m∗ = 0.2 m with m being the free electron mass.

The center of the barriers is at x = 350 nm. Both barriers have a 0.8 nm width, the

energy height is 0.2 eV, and they are separated by 4 nm.

After the scattering process, the evolution of the whole density matrix in Equation (5.36)

requires the specification of the new term ψP with new momentum ~kF (associated

to the density matrix is ρ̂P in Equation (5.36)) and the new terms ψN with the old

momentum ~k0 (associated to the density matrix ρ̂N in Equation (5.36)). The two

additional wave packets ψN and ψP are Gaussian wave packets with the same very

large dispersion a0S = 2a0

(√
1 +

4~2t2S
m2
∗a

4
0

)
(to mimic a plane wave) and the same central

position x0S = x0 + ~k0
m∗
tS . The wave vectors for ψN and ψP are k0 and −k0 (here I

assume kF = −k0), respectively.

The results of the charge (or probability presence) densities in the right hand side of

Figure 5.5 are just Equation (D.3), that is the integral of the Wigner distribution function

in the left-hand side of the figure over all momenta (for a fixed position). The negative

values of the Wigner distribution function in the figures is not at all problematic as far

as the marginal integral in Equation (D.3) satisfies Q(x, t) ≥ 0. Before and just after the
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collision, there is not unphysical evolution of the charge. Just after the collision, the new

state |ψP 〉 gives only positive charge density and the negative contribution of the new

state |ψN 〉 is, obviously, smaller than the positive one provides by |ψ〉 at each location.

Figure 5.5(e) and (f) show the same information at the new time t2 = 0.315 ps when the

wave packets 〈x|ψ〉 and 〈x|ψN 〉 have evolved with time and interacting with the barriers.

At position x = 300 nm, negative charge (presence probability) appears. This result is

totally unphysical in the same sense that a wave function with a negative modulus

will be unphysical, i.e. inconsistent with the probabilistic (Born’s law) interpretation

of quantum mechanics. After the interaction is completed, at time t2 = 0.66 ps, the

spurious phenomenon becomes even worse. In this particular simple example, there are

more positions (for example x = 492 nm) with negative value probabilities.

I have also performed simulations (not shown here) where the scattering process is

strictly performed according to Equation (5.35) using −α∆t
2π FW (x+x′

2 , k0, tS)eik0(x−x′)

instead of |ψN 〉〈ψN |. The results are quite similar to the ones shown Figure 5.5, but

because of the own positive/negative oscillation of the FW (x+x′

2 , k0, t), the charge prob-

ability results are even worse than the ones plotted here. The amplitude where the

negative probability occurs is larger and such negative value appears in more positions,

which is affected by the factor α∆t
2π FW (x, k0, tS) presenting the scattering strength. It is

important to point out that the unphysical spurious behaviours become even worst with

longer time evolution (related to the device active region). The scattering strength are

relevant factors when the decoherence in nanodevices are investigated. See the works of

Dollfus and co-workers [121, 126, 127]. In conclusion, the presence of negative charge is

not because of the exact shape of the ρN and ρP , either pure states or mixed states, but

because the time-evolution of the states ρN is different from ρ because, at some times

t, their positive and negative contribution cannot be compensated (even if they were

compensated at t0).
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Figure 5.5: (Color online) Evolution of Gaussian wave packets coupled with the Hamilto-
nian eigenstates scattering approach moving towards barriers. (a), (c), (e), (g) are the Wigner
distribution function and (b), (d), (f), (h) are the corresponding probability (charge) density
at four different times: initial time t1 = 0 ps, scattering time tS = 0.006 ps before touching
the barriers, time t2 = 0.315 ps when wave packets are interacting with the barriers and time
t3 = 0.66 ps when the interaction is completely done. The simulation parameters are: E = 0.09
eV, m∗ = 0.2 m0, where m0 is the free electron mass, the barrier height is 0.2 eV, the barrier

width is 0.8 nm and the well depth is 4 nm.
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5.2.3.4 Numerical example of the solution

As indicated in Section 5.2.3.2 the solution to avoid these unphysical results of Figure 5.5,

while still using the simple ideas of the Boltzmann collision operator, is having an

exact knowledge of the states involved in the description of the density matrix. By

construction, this way of working will not provide any negative charge density.

Boltzmann collision operator for general states

Let me assume that I have a perfect knowledge of all the states, |ψi〉 with i = 1, ..., N ,

that are needed to build the density matrix of the open system. Firstly, I define

F iW (x, k, t) as the Wigner-Weyl transform with respect to the element of the density

matrices pi|ψi〉〈ψi| in Equation (5.22). Then, because of the linearity of the Wigner

distribution function with respect to the density matrix, before the collision, the whole

Wigner distribution function can be written as follows:

FW (x, k, t) =
N∑
i=1

F iW (x, k, t) (5.37)

Inspired in the classical application of the Boltzmann collision operator, a collision oper-

ator in Equation (5.27) that provides transitions between different states can be defined

as:

Ĉ [FW (x, k, t)] =
1

2π

N∗∑
i=1

N∗∑
j=1

{ZijF jW (x, k, t)− ZjiF iW (x, k, t)} (5.38)

where the terms Zij provides the scattering rate (for the general states used in each case)

from the j− state |ψj〉 to the i− state |ψi〉. The sums in Equation (5.38) are carried

out over the N∗ possible existent terms (which are in principle infinite, but I can limit

to a reasonable number of possible states in a practical application). We do not use

Wkk′ in Equation (5.38) because, in principle, they are computed only for Hamiltonian

eigenstates, while I define Zji using our general states |ψi〉8.

8As a reasonable approximation, if the general wave packet has (a more or less) well defined momen-
tum (for example, the mean momentum of the wave packet) the terms Wkk′ can be numerically used
instead of Zji in Equation (5.38)
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Example: Electron in a double barrier with a collision event

I discuss here the same numerical example presented in Section 5.2.3.3, but here with the

new general collision operator in Equation (5.38). I use the same initial density matrix

ρ̂(t0) = |ψ〉〈ψ| in Equation (5.22). I consider that there are two electrons with such

state, M1 = M = 2. Then, when the scattering take place, one of the two electrons with

initial state |ψ〉 changes its state, while the other remains unaffected. The new density

matrix in Equation (5.23) is ρ̂(tS) = ρ̂− (1/2)|ψ〉〈ψ|+ (1/2)|ψF 〉〈ψF |. The new density

matrix after scattering can be greatly simplified to ρ̂(tS) = (1/2)|ψ〉〈ψ|+ (1/2)|ψF 〉〈ψF |
because |ψN 〉 ≡ 1√

2
|ψ〉. This collision process is explained in Figure 5.6.

In this numerical example, the same initial wave packet |ψ〉 discussed in Figure 5.5 is

used. At the initial time t0 = 0 ps, the information of the Wigner function and the

charge probability distribution plotted in Figure 5.7 is identical to that in Figure 5.5.

Then, at time tS = 0.006 ps, the new collision operator in Equation (5.38) acts on

the Wigner distribution function. The final state is equal to half the initial state plus

half the initial state but with a opposite momentum. After the scattering, the system

state is ρ̂ = |ψ〉〈ψ| + |ψP 〉〈ψP | − |ψN 〉〈ψN | = 1
2 |ψ〉〈ψ| +

1
2 |ψF 〉〈ψF |. As a consequence,

the negative values disappear. Therefore, the unphysical results are removed. These

conclusions are perfectly corroborated and numerically visualized in Figure 5.7.

The argument against the Boltzmann collision operator is that it adds or subtracts states

(through the use of the terms Wkk′) to the old density matrix built by other different

states. On the other hand, this new application of the Boltzmann collision operator with

general states always adds or subtracts wave functions of electrons which are present

in the density matrix before collision. In simple words, if it is desired a collision model

without the possibility of negative charges, it must be ensured that the wave function

of the electron that we are removing when applying the Boltzmann collision operator is

effectively present in the density matrix or the Wigner distribution function.

I remark also that this new algorithm for collision explained here is relevant for the

time-dependent modelling of quantum transport. In addition, since it requires a perfect

knowledge of the states that built the density matrix, its practical implementation fits

perfectly with the BITLLES simulator developed with the conditional wave functions

[72, 75, 128, 129] explained in Chapter 3. Then, the mentioned algorithm for dissipative

quantum transport can be straightforwardly implemented for quantum transport by

directly including the interaction between electrons and phonons in the kinetic part of

the Hamiltonian that describes the wave function of each electron.
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Figure 5.6: Schematic representation of the two-step general states scattering process.
(a) Simulation of a wave packet impinging on double barriers, the collision is performed
at time tS before the wave packet touches the barriers. (b) A simple physical picture

of the two-step general states scattering process.
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Figure 5.7: (Color online) Evolution of Gaussian wave packets coupled with general states
scattering approach moving towards barriers. (a), (c), (e), (g) are Wigner distribution and
(b), (d), (f), (h) are corresponding probability density of state at for different times, which is
identical to the time in Figure 5.5: t1 = 0 ps, tS = 0.006 ps, t2 = 0.315 ps and t3 = 0.66 ps.
The simulation parameters are: E = 0.09 eV, m∗=0.2 m0, where m0 is the free electron mass,

the barrier height is 0.2 eV, the barrier width is 0.8 nm and the well depth is 4 nm.
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5.3 Bohmian Scattering Approach

Until now, I have shown some problematic features when using non completely positive

approaches and how the appearance of these problems can be avoided. In this section,

a completely positive approach based on the conditional wave function (see Chapter 3)

is presented.

But before that, let me also briefly introduce two kinds of open systems, Markovians

(which ultimately is an approximation) and non-Markovian ones.

5.3.1 Markovian and non-Markovian systems

Markovian systems are the ones where the correlation time between the subsystem and

the bath is considered to be infinitesimally small. In order to obtain the evolution at

t′ + dt, only information about time t′ is needed. In other words, it is a memoryless

system. On the other hand, non-Markovians systems are systems whose correlation time

is enough large enough, and then the evolution at time t′ + dt depends on times t < t′.

For Markovian evolutions, the Lindblad master equation [130–132] preserves complete

positivity, but its connection to realistic practical scenarios and its extension beyond

Markovian dynamics are still challenging [86, 133, 134].

Alternatively, inspired by the spontaneous collapse theories [54, 135], Diósi, Gisin, and

Strunz developed the stochastic Schrödinger equations (SSEs) to unravel the reduced

density matrix in non-Markovian systems [136–139]. Continuous measurement theory

allows the definition of a wave function of the open system conditioned on one monitored

value associated with the environment[140–145]. This approach preserves positivity

because the reduced density matrix is built from a sum of projectors associated with the

states solution of a Schrödinger-like equation[86, 103, 143, 144]. In practical applications,

the non-hermitian Hamiltonians can provoke states of the SSE to lose their norm and

therefore their statistical relevance[103].

In this framework, a discussion about the physical interpretation of the pure-state solu-

tion of the SSE is relevant. It is well recognized that the continuous measurement of an

open system with Markovian dynamics can be described by a SSE[103]. Therefore, the

pure-state solution of SSE can be interpreted as the state of the Markovian system while

the environment is under (continuous) observation. However, such a physical interpre-

tation cannot be given to the solutions of the SSE for non-Markovian systems[140–145].



Chapter 5. Quantum Dissipation 108

In such non-Markovian systems, a continuous measurement requires a non-trivial in-

teraction of the system with the environment so that the physical description of the

continuously measured open system needs to be done through the reduced density ma-

trix [103](not through the pure-state given by the non-Markovian SSE, which becomes

just a numerical tool). The physical interpretation that one can assign to the solution of

the non-Markovian SSE (conditioned to some environment value) is the following: the

state of the open system at a given time if a measurement is performed in the environ-

ment at that time, yielding the mentioned value for the environment. Linking SSE states

of the open system (or values of the environment) at different times is just a fiction.

However, within Bohmian mechanics, the conditional wave function is always a well-

defined physical state for Markovian and non-Markovian open systems, with continuous

or non-continuous measurements. The general expression of the equations of motion of

such a conditional wave function with or without dissipation was already discussed in

Section 3.5. I anticipate two important features of the Bohmian approach. First, since

our approach deals directly with wave functions, it provides a completely positive map

for either Markovian or non-Markovian dynamics with an unproblematic physical inter-

pretation of the wave function of the open system at different times. Secondly, contrary

to other completely positive methods, the numerical inclusion of different dissipative

phenomena in the equation of motion of the conditional wave function can be done

straightforwardly with a microscopic and realistic implementation. These properties

make the approach very relevant for many different research fields.

5.3.2 The approach

Consider an isolated, i.e. closed, quantum system described by a full many-body state

|Ψ〉 solution of the unitary, reversible, and linear Schrödinger equation. The total Hilbert

space of N particles can be decomposed as Ĥ = Ĥa ⊗ Ĥb, with ~r = {~ra, ~rb} being ~ra

the position of the a-particle and ~rb = {~r1, .., ~ra−1, ~ra+1, .., ~rN} the position of all other

particles.

5.3.2.1 Complete positivity

The expectation value 〈Oa〉 ≡ 〈Ψ|Ôa ⊗ 1b|Ψ〉 associated with an operator Ôa acting on

the a-particle, with 1b being the identity operator for Ĥb, can be computed as:

〈Oa〉 =

∫
d~raOaρ(~ra, ~r′a, t)|~r′a=~ra

(5.39)

where ρ(~ra, ~r′a, t) is the reduced density matrix:
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ρ(~ra, ~r′a, t) =

∫
d~rbΨ

∗(~r′a, ~rb, t)Ψ(~ra, ~rb, t) (5.40)

where Ψ(~ra, ~rb, t) ≡ 〈~ra, ~rb|Ψ〉 is the total wave function and Oa is the position represen-

tation of Ôa.

The same system can be described with the Bohmian theory [66, 67, 75] as follows. For

each experiment, labeled by j, a Bohmian quantum state is defined by the same wave

function Ψ(~ra, ~rb, t) plus a set of well-defined trajectories in physical space, {~rj1[t], ..., ~rjN [t]}.
The velocity of each trajectory is (see Chapter 3):

~vja[t] =
d~rja[t]

dt
=

~Ja(~r
j
a[t], ~r

j
b [t], t)

|Ψ(~rja[t], ~r
j
b [t], t)|2

(5.41)

where ~Ja = ~ Im(Ψ∗∇aΨ)/ma is the (ensemble value of the) current density with ma the

mass of the a-th particle. The set of N positions {~rj1[t], ..., ~rjN [t]} in different j = 1, ...,W

experiments is distributed (in quantum equilibrium [85]) as:

|Ψ(~ra, ~rb, t)|2 =
1

W

W∑
j=1

δ(~ra − ~rja[t])δ(~rb − ~r
j
b [t]) (5.42)

The identity in Equation (5.42) requires W → ∞. Numerically, it is just required a

large enough W .

The key element of our approach is the conditional wave functions associated with the

a-th particle in the open system during the j-th experiment. It was already explained

in Section 3.3 and it was defined as ψja(~ra, t) ≡ Ψ(~ra, ~r
j
b [t], t). I emphasize that ψja(~ra, t)

provides an unproblematic (Bohmian) definition of the wave function of an open system,

as seen in Section 3.3. A different conditional wave function for each simulated particle

of the open system and for each simulated experiment is computed.

Next, the reduced density matrix, Equation (5.40), can be constructed using the funda-

mental elements of the Bohmian theory to show that our approach based on conditional

wave functions is completely positive. I define the (tilde) conditional wave function of

the a-th particle in the j-th experiment as:

ψ̃ja(~ra, t) ≡
Ψ(~ra, ~r

j
b [t], t)

Ψ(~rja[t], ~r
j
b [t], t)

(5.43)
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Notice that the denominator Ψ(~rja[t], ~r
j
b [t], t) is just a pure time dependent term (with-

out spatial dependence) that has no net effect on the definition of the velocity in Equa-

tion (5.41). The Bohmian velocity of the a-particle computed from ψ̃ja(~ra, t) is ex-

actly the same value as the one it is got from ψja(~ra, t). Putting Equation (5.42) into

〈Oa〉 ≡ 〈Ψ|Ôa ⊗ 1b|Ψ〉, integrating all degrees of freedom and using the definition of the

(tilde) conditional wave function in Equation (5.43), it is obtained:

〈Oa〉 =

W∑
j=1

[
pjψ̃

j∗
a (~ra, t)Oaψ̃

j
a(~ra, t)

]
~ra=~rja[t]

(5.44)

where pj = 1/W . Equation (5.44) allows to compute 〈Oa〉 from Equation (5.39) as:

〈Oa〉 =

∫
d~ra

Oa W∑
j=1

pjψ̃
j∗
a (~r′a, t)ψ̃

j
a(~ra, t)


~r′a=~ra=~rja[t]

(5.45)

which directly allows the definition of the following density matrix [146]:

ρ(~ra, ~r′a, t) =

W∑
j=1

pjψ̃
j∗
a (~r′a, t)ψ̃

j
a(~ra, t) (5.46)

The generalization to conditional wave functions with an arbitrary number of particles

is straightforward. The time-evolution of Equation (5.46) ensures, trivially, that the

dynamical map associated with the Bohmian approach is completely positive. In the

position representation, the density operator ρ̂ =
∑W

j=1 pj |ψ̃
j∗
a (t)〉〈ψ̃ja(t)| gives 〈~ro|ρ̂|~ro〉 =∑W

j=1 pj |〈~ro|ψ̃
j
a(t)〉|2 ≥ 0 at any time9 and at any position ~ro. The last step to conclude

the CP demonstration is quite simple. If the density matrix in Equation (5.46) is positive,

then the diagonal elements of 〈~ro|ρ̂|~ro〉 evaluated only at ~ro = ~rja[t] and defined as

〈~ro|ρ̂|~ro〉B ≡
∑W

j=1 pj |〈~ro|ψ̃
j
a(t)〉|2δ(~ro − ~rja[t]) ≥ 0 are, by construction, also positive.

In fact, the term 〈~ro|ρ̂|~ro〉B has a very simple interpretation. For the j experiment, the

tilde conditional wave function in Equation (5.43) evaluated at ~ro = ~rja[t] is 〈~rja[t]|ψ̃ja(t)〉 =

ψ̃ja(~r
j
a[t], t) ≡ Ψ(~rja[t], ~r

j
b [t], t)/Ψ(~rja[t], ~r

j
b [t], t) = 1. Then, since pj = 1/W , I get 〈~ro|ρ̂|~ro〉B ≡∑WB

j=1 1/W = WB/W where WB is just the number of experiments where the position

9The fact that we deal with a CP definition, more than just a positive operator can be trivially demon-
strated here, coming from the fact that the same ψja(t) will be obtained if we enlarge the environment
with additional degrees of freedom.
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of the trajectory ~rja[t] coincides with ~ro. In conclusion, as far as dealing with conditional

wave functions and Bohmian trajectories in the dynamical description of the quantum

systems with dissipation, the completely positivity of the approach is always satisfied

(the number WB of trajectories with position ~ro = ~rja[t] can be zero, but it cannot be

negative).

5.3.2.2 Comparison with other techniques

Several techniques use Bohmian trajectories as a mathematical/computational tool to

solve some reduced equations of motion [147–150]. Here, on the contrary, Equation (5.42)

guarantees empirical equivalence between Bohmian and standard quantum (non-relativistic)

results in the whole closed system. This implies not only the correct description of any

smaller portion of the closed system, i.e. our open systems, but also empirical equiva-

lence in the measured values [68, 85]. It is important to emphasize that Gambetta and

Wiseman [143, 144] pointed out that the only physical continuous-in-time interpretation

of the wave functions solution of non-Markovian SSEs, i.e. with back-action from the

environment to the system, has to be based on the Bohmian theory. In other words, in

spite of its mathematical interest as a computational tool, the improper sum of wave

functions of an open system in Equation (5.46) has a problematic ontological meaning

within standard quantum mechanics, as indicated by D’Espagnat [151]10. On the con-

trary, the Bohmian theory allows a proper definition of a wave function of an open system

with or without continuous measurements, for both Markovian and non-Markovian dy-

namics. We can always interpret (part of) ~rjb [t] as the pointer of a measuring apparatus.

Therefore, the Bohmian conditional wave function ψja(~ra, t) can be thought as the wave

function of SSE conditioned to a continuous observation defined by the (part of) ~rjb [t]

as the pointer.

To the best of my knowledge, this is the first method that develops a practical SSE

algorithm using conditional wave functions solutions of Equation (3.11). In the Bohmian

framework, the ensemble values can be directly computed from the trajectories and not

from the conditional wave function. Therefore, the technical problems of SSE due to

norm degradation are avoided in the approach. It is a remarkable fact that the velocity of

~rja[t] computed from ψja(~ra, t) gives the exact same value as using Ψ(~ra, ~r
j
b [t], t). Thus, the

velocity, as seen in Equation (5.41), is totally independent of the norm of the conditional

10If we ignore what state is actually present in a closed system (all we know is that several states
|ψ1〉, |ψ2〉, ... are possible with several probabilities p1, p2, ...), the statistical operator ρ =

∑
w pw|ψw〉〈ψw|

is unproblematically defined as a proper mixture of states. However, the states |ψ1〉, |ψ2〉, ... for an open
(sub)system have no ontological meaning within standard quantum theory[151]. Then, the reduced
density matrix is an improper mixture of states because the states themselves are ontologically undefined
in the standard theory. Our ignorance plays a secondary role in an open system.
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wave functionBohm. This explains why Equation (3.11) deals with a non-normalized

wave function.

Since the approach deals with a realistic definition (i.e. with a clear ontological meaning,

see Section 3.3) of the wave function of an open system, ψja(~ra, t), a relevant advantage

is that it allows a realistic description of the stochastic sources of dissipation (beyond

the typical environmental noise sources introduced in SEE[103]), while maintaining com-

plete positivity. Below, as an example, I provide the stochastic conditioned potential

of Equation (3.11), which tackles the electron-lattice energy dissipation in tunnelling

devices.

5.3.3 Application to electron-lattice interaction

To analyse the electron-lattice interaction, here, the exact expression for Equation (3.11)

is developed for electrons interacting with the lattice. For that purpose, I consider Ne

electrons with positions ~r = {~r1, ..., ~rNe} and Nh ions located at ~R = {~R1, ..., ~RNh}.
Although not explicitly indicated, Nh includes also all additional particles required to

deal with a closed system with the many body wave function Ψ(~ra, ~rb, t) ≡ 〈~ra, ~rb|Ψ〉
mentioned in Section 5.3.2.1. To simplify the notation, hereafter, I define ~r = {~ra, ~za}
with ~za = {~r1, .., ~ra−1, ~ra+1, .., ~rNe}. These new variables are related to previous ones

through ~ra = ~ra and ~rb = {~za, ~R}, with ~r = {~ra, ~rb}.

I compute the evolution of the full wave function Ψ(~r, ~R, t) = Ψ(~r, t) under the ef-

fect of the full Hamiltonian Ĥ in Equation (3.11). The position representation of the

Hamiltonian Ĥ gives:

H(~r, ~R) = Ke(~r) +Kh(~R) + Vee(~r) + Vhh(~R) +Hep(~r, ~R) (5.47)

with Ke(~r) the electron kinetic energies, Kh(~R) the nucleus kinetic energies, Vee(~r) the

electron-electron interactions, Vhh(~R) the nucleus-nucleus interactions, andHep(~r, ~R) the

total electron-lattice interaction. The last term can be split into Hep = Hep, ~R0
+Hep,~u.

The first term, Hep, ~R0
, corresponds to the interaction of the electrons with the fixed

(equilibrium) positions of the ions ~R0. The second one, Hep,~u, includes the interaction

of the electrons with the displacement of the ions, ~u = ~R − ~R0 = {~u1, ..., ~uNh}, and it

is the only term that prevents the exact separation of the many-particle wave function.

Thus, I can rewrite Equation (5.47) as:

H(~r, ~R) = Hc(~r, ~R) +Hep,~u(~r, ~R) (5.48)
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with Hc(~r, ~R) = Ke(~r) +Kh(~R) + Vee(~r) + Vhh(~R) +Hep, ~R0
(~r, ~R0). Finally, the compu-

tation of Ha just requires the explicit evaluation of the terms:

〈~ra, ~za, ~R|Ĥep,~u|Ψ(t)〉|
~zja[t], ~Rj [t]

(5.49)

and

〈~ra, ~za, ~R|Ĥc|Ψ(t)〉|
~zja[t], ~Rj [t]

(5.50)

The relevant interaction of the (conditional) wave packet with the moving lattice, present

in Ĥep,~u, will be evaluated in Section 5.3.3.1 in the second-quantization formalism. The

less relevant interaction of the (conditional) wave packet with the fixed (equilibrium)

lattice due to Hc present in Equation (5.50) is discussed in Appendix E.2.

5.3.3.1 Electron-phonon stochastic potential

Assuming a small displacement of the ions ~uh = ~Rh − ~Rh,0 from their equilibrium

positions ~Rh,0, the electron-lattice Hamiltonian for small displacements of ions in the

position representation can be written as Hep,~u(~r, ~R) =
∑

e,h ~uh∂U(~re − ~Rh)/∂ ~Rh|~Rh,0 .

The (second-quantization) electron-lattice Hamiltonian is then:

Ĥep,~u =
∑
e,p

g
~qp
~ke
ĉ†~ke+~qp

ĉ~ke(b̂~qp + b̂†−~qp) (5.51)

with b̂~qp and b̂†~qp being the annihilation and creation operators of the atomic vibrational

eigenstate |~qp〉. Similarly, ĉ~ke and ĉ†~ke
are the corresponding operators of the (Bloch)

eigenstate 〈~re|ĉ†~ke |0〉 = 〈~re|~ke〉 = φ~ke(~re). The coupling constant g
~qp
~ke

specifies the transi-

tion between the eigenstates. The first-quantization explanation of the electron-lattice

interaction and the definition of g
~qp
~ke

are given in Appendix E.1. The initial many-body

(electron and lattice) quantum state is:

Ψ(~r, ~R, t0) =
∑
~k,~q

a(~k, ~q, t0)Φ~k(~r)Φ~q(~R) (5.52)

with a(~k, ~q, t0) accounting for an arbitrary superposition, Φ~k(~r) ≡ 〈~r|ĉ
†
~k1
...ĉ†~kNe

|0〉 the

Slater determinant with ~k = {~k1, ...,~kNe}, and Φ~q(~R) the atomic part with ~q = {~q1, ~q2, ...}
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representing a phonon base. The Slater determinant of electrons can be expanded in

minors giving:

Ψ(~ra, ~za, ~R, t) =
∑
~k,~q

a(~k, ~q, t)Φ~q(~R)
∑
~kw

φ~kw(~ra)sa,w〈~za|ĉ†~k1
..c†~kw−1

c†~kw+1
..ĉ†~kN

|0〉 (5.53)

with sa,w the sign of the (a,w) cofactor. Then, the term in Equation (5.51) acting on

Equation (5.53) is (for more details see Appendix E.1):

〈~ra, ~rb|Ĥep,~u|Ψ(t)〉 =
∑
e,p

g
~qp
~ke
〈~ra, ~rb|ĉ†~ke+~qp ĉ~ke(b̂~qp + b̂†−~qp)|Ψ(t)〉 (5.54)

=
∑
e,p

g
~qp
~ke

∑
~k,~q

a(~k, ~q, t)Φ′~q(
~R)
∑
~kw

φ~kw+~qp
(~ra)sa,w〈~za|ĉ†~k1

..c†~kw−1
c†~kw+1

..ĉ†~kN
|0〉

I use Φ′~q(
~R) to account for the effect of the electron-lattice interaction in the atomic

part.

When conditioning Equation (5.53) and Equation (5.54) to {~zja[t], ~Rj [t]}, the variable ~qjp

is also fixed to some particular values in this j-th experiment. The exact (deterministic)

description of the electron-lattice interaction would require perfect knowledge of all ions

dynamics through ~Rj [t]. However, since ions are considered here as the environment of

electrons (they are not explicitly simulated), their effect stochastically is introduced in

the equation of motion of electrons in Equation (3.11), ensuring that the probabilities

of different phonon modes satisfy some well-known precomputed probabilities[152]. It

is assumedd that only one (or none) phonon mode ~qjp becomes relevant at each time.

Then, the (envelope) conditional wave function before a collision t < tc is:

ψja(~ra, t) =
∑
~kw

f(~kw, t)φ~kw(~ra) (5.55)

Assuming that g
~qjp
~ka
≈ g

~qjp
~k0a

with ~k0a the central wave vector of the a wave packet, the

final (envelope) conditional wave function in Equation (5.54) after the collision t > tc2

is ψja(~ra, t) ≡ 〈~ra, ~rjb [t]|Ĥep,~u|Ψ(t)〉 which can be written as (see Appendix E.1):
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ψja(~ra, t) = g
~qjp
~k0a

∑
~kw

f(~kw, t)φ~kw+~qjp
(~ra) (5.56)

where the ~ra-dependence in Equation (5.55) and Equation (5.56) is given by φ~ka(~ra) and

φ~kw+~qp
(~ra) respectively, and f(~kw, t) includes all other terms evaluated at {~zja[t], ~Rj [t]}.

These results have a simple and intuitive explanation. During the collision, the (Bloch

state) quasi-momentum eigenstates that build the wave packet change from |~ka〉 to

|~ka + ~qjp〉, while its weight f(~kw, t) remains constant.

I remark that these collisions introduce not only stochastic dynamics in the evolution

of the conditional wave function, but also time-irreversibility in the whole simulation,

since, in general, g
~qp
~k0a

< g
−~qp
~k0a+~qp

, where positive (negative) ~qp means phonon absorption

(emission).
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Figure 5.8: (a) Current-voltage characteristic for a RTD with (solid red curve) and
without (blue dashed curve) dissipation due to acoustic and optical phonons and im-
purities. The barrier height and width are 0.5 eV and 1.6 nm and the well width is 2.4
nm. A n-type doping with a Fermi level of Ef = 0.15 eV above the conduction band is
considered. (b) Effective collision rate as a function of bias. The optical phonons lead

to an inelastic change of the electron energy of ±0.036 eV .

5.3.3.2 Dissipative transport in parabolic-band structures

Now, I apply the approach for the simulation of a typical GaAs/AlGaAs Resonant

Tunneling Device (RTD) when elastic (acoustic phonons and impurities) and inelas-

tic (optical phonons) collisions are considered. In particular it can be shown that

the required evolution of the conditional wave function ψa interacting with a phonon

~qp = {qpx, qpy, qpz} in a material with parabolic band structure can be obtained from

Equation (3.11):
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i~
∂ψa
∂t

=

[
1

2m∗

(
~pa + ~λaΘtc

)2
+ Va

]
ψa (5.57)

where ~pa = −i~~∇a, m∗ = 0.067me is the electron effective mass (me is the free electron

mass), ~λa = ~~qp and Θtc ≡ Θ(t−tc) is the Heaviside step function. In Appendix E.3 it is

proved that Equation (5.57) exactly reproduces the transition of ψa from Equation (5.55)

to Equation (5.56). Each electron a = {1, 2, .., Ne} has its own Equation (5.57) to com-

pute ψa and ~ra[t] by time-integrating its velocity in Equation (5.41). The term Va

provides the Coulomb correlation among all simulated electrons including the appropri-

ate boundaries. The injection model locates the initial conditional wave function outside

the simulation box and defines it from typical Gaussian wave packets with a dispersion

σ = 40 nm. The properties of the injected electrons are selected according to some

well-defined assumptions. For example, the energies of the injected electrons from one

contact (assumed in thermodynamical equilibrium) into the open system fulfill a Fermi-

Dirac distribution. This randomness in the injection of electrons introduces a source of

stochasticity in the description of the properties of the open system.

The current is computed as the net number of trajectories ~ra[t] transmitted from one side

to the other, divided by the total simulation time (5 ps). Identically the DC current is

also computed as the time average of the total (conduction plus displacement) current.

Both types of DC computations provide the same value at each bias point, showing

the accuracy of the simulation. Technically, the experiment is not repeated, but the

numerical simulation takes so long that electrons are entering and leaving the active

region many times, providing repeated scenarios. The number and type of collisions

are obtained from the Fermi Golden Rule for GaAs materials[152]. The collision in

Equation (3.11) does not introduce any artificial decoherence. The expected reduction

of the transmission[153, 154] seen in Figure 5.8(a) is because of the randomization of the

momentum due to acoustic phonons and to the energy dissipation due to the emission

of optical phonons.In Figure 5.8(b) it is seen that the number of collisions at resonance

is three times larger that out of resonance, showing that the ballisticity of tunnelling

devices also depends on the electron transit time that varies from one voltage to another,

due to different back-actions of our non-Markovian (phonon) environment [133, 134].

5.3.3.3 Dissipative transport in linear-band structures

Next, the Bohmian trajectories and the conditional wave function evolution of one elec-

tron during a collision with a phonon in graphene are presented, with a richer band struc-

ture than GaAs. By the use of the conditional bispinor wave function, Equation (4.39)
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the inclusion of the collision in a 2D bispinor ψa ≡ (ψa,1, ψa,2)T gives:

i~
∂ψa
∂t

= vf

(
Va/vf p−a + λ−a Θtc

(p+
a + λ+

a Θtc)χtc Vaχtc/vf

)
ψa (5.58)

where vf=106 m/s is the Fermi velocity. I define p±a =−i~∂xa±~∂ya and λ±a = λax±iλay
as the change in momentum ~λa = ~~qp due to the interaction with a phonon with wave

vector ~qp = {qpx, qpy}. When the interaction occurs, the term χtc = e
i(mπ+β~kfa

−β~k0a
)Λtc

makes sure that the final state is either in the conduction band (positive energy branch)

or in the valence band (negative energy states). If the electron changes from the con-

duction to the valence band (or vice versa), I use m = 1 and if there is no change

of band m = 0, with e
iβ~k0a = (k0ax + ik0ay)/|~k0a|, where ~k0a (~kfa) is the central ini-

tial (final) wave vector and e
iβ~kfa having the same definition. χtc is only relevant at

tc, i.e. Λtc ≡ Λtc(t) = 0 except Λtc(t = tc) = 1. In Appendix E.4 it is proved that

Equation (5.58) produces the transition of the 2D bispinor ψa from Equation (5.55) to

Equation (5.56).

Wave function evolution with a scattering event

In Figure 5.9 and Figure 5.10 I present numerical results for the electron-phonon colli-

sions in graphene, whose dynamics near the Dirac points are given by Equation (5.58).

The initial state in both examples is a Gaussian wave packet with dispersion σ = 40nm

and wave vector |~k0a| = 2.27 · 108 m−1, whose initial pseudospin lies in the conduction

band.

In both figures (Figure 5.9 and Figure 5.10), it can be seen how the inital electron is

deviated from its initial trajectory, because the collision event with a phonon.

Graphene current-voltage curves with dissipation

Here I present different current-voltage curves for a graphene transistor (GFET) for

both ballistic and dissipative quantum transport. The GFET simulated channel length

is Lx = 40 nm, its width Ly = 250 nm and the Fermi energy is 0.15 eV above the Dirac

point. It has a bottom and top gates, whose voltages are set equal to zero, Vbg = Vtg = 0

V. Electrons are injected described by conditional Gaussian wave packets, following

Fermi statistics at room temperature as indicated in Figure 5.11 (the injection model

will be further discussed in Chapter 6).
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Figure 5.9: a) Time evolution of the modulus squared of the conditional bispinor
for an electron initially at t0 in the conduction band, with wave vector (k0ax, k0ay) =

(0, |~k0a|), suffering an elastic collision at tc with a phonon that provides a final wave

vector (kfax, kfay) = (|~k0a|/
√

2, |~k0a|/
√

2). The associated Bohmian trajectories are
also shown. Inset: Electron energy conservation for the elastic collision. b) Same
change of wave vector as in a) but with an inelastic collision that produces a final

electron in the valence band (where velocity and momentum are opposite).

In Figure 5.12 (a), four different current-voltage characteristics are plotted. The dashed

lines correspond to ballistic transport, whereas the solid ones takes into account energy

dissipation. The insets of Figure 5.12(a) are related to the one plotted in Figure 5.11

indicating the relevant presence of electrons with energy above the Dirac point, con-

duction band, and below, valence band. In particular we consider acoustic and optical

phonons with emission and absorption from, both, zone edge and zone center with energy

interchange of ±0.160 and ±0.196 eV, respectively. The scattering rates are obtained

from [155]. Since typical graphene mean free path values are low, the dark blue (with-

out dissipation) and orange (with dissipation) lines are very similar. For that reason,

I added the red line where the scattering rates are enhanced. We see in Figure 5.12

(b) and (c) the effective collision rate as a function of the applied bias for the orange

and red lines respectively. In the treatment of scattering in graphene structures one

has to remind that graphene is gapless. Thus, in principle, there is no minimal value

of energy required for an electron to suffer phonon emission. However, in practice, the

Pauli principle avoids collision where the final energy of the electron is lower than the

Fermi energy11. For that reason, we observe in Figure 5.12 (b) that phonon emission is

11The Fermi energy is not well defined inside the device because it is a system outside of thermody-
namical equilibrium when an external bias is applied. However, a reasonable estimation of a quasi-Fermi
energy inside the device can be easily approximated to take into account such many-body (exchange
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Figure 5.10: Time evolution of the modulus squared of the conditional bispinor for
an electron which impinges on a 0.4 eV barrier with a width of 200 nm. The initial
t = t0 direction is β0 = π/6 so Klein tunneling should be minimal. At t = tc, an elastic
collision deviates the electron in a perpendicular direction to the barrier maximizing

the Klein tunneling.

only relevant for applied bias (Vds) higher than the optical phonon energy for zone edge

and zone center (±0.160 and ±0.196 eV respectively). In such situations, an electron

injected with an energy roughly equal to the Fermi energy will acquire enough kinetic

energy during its ballistic transport along the device to thermalize. If this condition is

fulfilled, emission is higher than absorption, obtaining current values smaller than in the

ballistic scenario. I also remind that forward scattering is prohibited and backscattering

is preferred for zone edge phonons and just the opposite for acoustic phonon scattering,

while the zone center phonons are isotropic [155].

To successfully explain the shape of the current-voltage characteristic of Figure 5.12 (a),

it is necessary to i) understand how electrons are injected in graphene and which ones

participate in the current and ii) the density of states of graphene. Since the injec-

tion model will be further discussed in Chapter 6, let me make just a brief summary.

Contrary to standard semiconductors with energy gap, apart from electrons in the con-

duction band, electrons belonging to the valence band also contribute to the current.

interaction) effect in a manageable way. I defined such quasi-Fermi energy so that the difference between
the electrostatic potential and the Fermi energy level in the reservoir is constant along the device.
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Figure 5.11: Schematic representation of an energy profile in the transport direction of
devices in BITLLES simulator. The applied drain-source bias, VDS , provides a different
source, Efs, and drain, Efd, Fermi levels, the Fermi-Dirac distribution function at each
contact are indicated. Relevant electrons for computing the quantum current are the

ones belonging to the blue shaded energy region.
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Figure 5.12: (a) Current-voltage characteristic for the GFET described in the text
for ballistic transport (dashed lines) and transport with dissipation (solid ones). The
dark blue (square) line corresponds to normal graphene injection (electrons injected
from the conduction and the valence band), while in the light blue (diamond) line only
electrons from the conduction band are injected. The orange (up triangle) line takes
into account dissipation due to acoustic and optical phonons. The red (down triangle)
line corresponds to enhanced dissipation. The insets sketch different energy profiles
for applied bias. Similarly to Figure 5.11, only electrons in the blue energy (above
and below the Dirac point) are relevant. (b) Effective collision rate as a function of the
applied bias for the orange (up triangle) line in (a) for acoustic and optical phonons. (c)
Same as (b) but for the red (down triangle) line in (a), where dissipation is enhanced.

As sketched in Figure 5.11, relevant electrons for transport are the ones whose energy is

in between the Fermi energies of the drain and source, i.e. electrons from the blue area



Chapter 5. Quantum Dissipation 121

in Figure 5.11 (strictly speaking, Fermi statistics are taken into account since we are at

room temperature). This means that, contrary to normal FETs, there is no saturation

current, since the more the voltage is applied between source and drain, the more num-

ber of electrons are transmitted from the source to the drain (from valence band in the

source to conduction band in the drain). In Figure 5.12 we can appreciate a saturation

region when the applied voltage is close to the Fermi energy level. To understand this

behaviour it is important to be aware that the density of states is proportional to the

energy, i.e. Dgr(E) ∝ E. Then, if due to the dynamics of the system, electrons in an

energy level E1 try to move to a lower energy level E2 not all electrons will be able

to arrive, since in this scenario Dgr(E2) < Dgr(E1). Thus, some of the electrons will

be rejected. This is sketched in the different insets of Figure 5.12 (a). In these insets,

similarly to Figure 5.11, the blue area depicts the relevant electrons contributing to the

current and explains the saturation when the voltage is close to the Fermi energy level.

The dark blue current-voltage characteristic behaviour can be easily understood with

the above considerations. When increasing the drain voltage, more electron flows from

the source to the drain and current increases. However, when the voltage corresponds

to the Fermi energy, the density of states vanishes in the drain and no more electrons

can reach the drain, thus current saturates. However, if the drain voltage keeps on

increasing, density of states again is non zero, and more electrons from the source in the

valence band can reach the drain in the conduction band. In the case of the light blue

curve, when no electrons are injected from the valence band, current saturates because

after the voltage reaches the Fermi energy value, the same amount of electrons from the

conduction band are injected independently of the applied voltage. This is similar to

typical FETs with semiconductors with energy gap where typically only electrons from

the conduction band (or only electrons from the valence band) are considered. Since

graphene mean free path is of the order of a micron and our device is much smaller,

when scattering is considered (orange line), the current-voltage line is very similar to

the ballistic one. On the contrary, if I increase the scattering rates (red line), dissipation

occurs and then current decreases compared to the ballistic case.

5.4 Conclusions

In this chapter I have presented which are the problems when dealing with no com-

pletely positive methods. I have presented an approach to analyze quantum dissipation

based on Bohmian conditional wave functions that preserves complete positivity. It

allows a realistic consideration of dissipative sources. Formally, the approach follows
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the SSE technique[136] for non-Markovian scenarios [86, 140–144], but allowing a phys-

ical interpretation of the output results under a continuous measurement. Other open

system techniques are rarely applied to the simulations of electron devices (with ex-

ceptions such as the Wigner-Boltzmann approach, which has unphysical problems as

mentioned in Section 5.2.3, or other density matrix approaches that have difficulties in

being adapted to spatially well-defined models respecting the different spatial regions

(with well-defined boundaries) typical in electron devices[156, 157]). Typically, dissipa-

tion in quantum electron transport is simulated through a partition of the full Hilbert

space into smaller spaces where sets of eigenstates are perfectly determined. Interac-

tions (dissipation) between different spaces are introduced through coupling constants

[31, 158, 159]. The solution of such models implicitly involves an improper mixture

of states [151] that, in spite of its computational interest, has no ontological definition

within standard quantum mechanics. The Bohmian conditional wave functions provide

a unproblematic way to define the wave function of an open system [143, 144], and it

allows a realistic simulation of quantum dissipation in electron devices with linear and

parabolic band structures.

With the accurate inclusion of quantum dissipation in the evolution of conditional wave

functions, the general and accurate quantum-trajectory approach presented here is an

excellent candidate to substitute the old Monte Carlo solution of the Boltzmann equa-

tion for semi-classical systems [152] in the new nanoelectronics/atomtronics quantum

scenarios.



Chapter 6

Time Dependent electrical

current and its fluctuations in

high frequency device

applications

In this chapter, I present results for the current and its fluctuations (noise) in different

quantum systems. I start in Section 6.1 by introducing how the measurement problem

appears when trying to model current and noise. There, I also explain how the total

(particle plus displacement) current can be computed from the Ramo-Shockley-Pellegrini

theorem and I introduce what is noise of the electrical current. After that, I discuss

some relevant features regarding noise which are included in the BITLLES simulator,

such as the importance of the injection model in Section 6.2 or a source of noise that

appears when considering time dependent wave packet models in Section 6.3. Finally,

in Section 6.4, an intrinsic limitation for the miniaturization of electron devices due to

the discrete nature of particles is presented.

6.1 Introduction to electrical current and noise

Classical and quantum measurement are different from a technological and ontological

point of view. The first difference between a classical and a quantum measurement is

that the latter provokes an unavoidable perturbation of the quantum system while being

measured. Even using the best technological means, it is impossible to develop a mea-

suring apparatus that ensures no perturbation for all quantum systems. Second, when

123
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I repeat a measurement in a quantum system, by preparing other quantum systems

exactly in the same way as the initial one, the measured values varies in a random way.

Again, such randomness cannot be avoided by technologically improving the measuring

apparatus. When modeling a quantum system, therefore I have two options, to ignore

the measurement perturbation of the system (something normal in classical modeling,

but that has to be considered in quantum systems as an approximation) or to take it

into account (something that is non trivial at all).

In quantum mechanics, the reality of the properties of a quantum object is not obvious.

Different quantum theories give different definitions of what is real. Orthodox quantum

mechanics do not say anything about the reality of the system properties when they

are not being measured. What is the position of a particle from a orthodox point of

view? Regarding this fact, Einstein said: “I like to think the moon is there even if I

am not looking at it.”. Particles behave as a wave, until the position is measured and

then we know its location. From this point of view, the unmeasured system properties

have no reality, and just when measuring it collapses to one of its possible eigenstates,

with an eigenvalue that specifies the reality of the measured property. On the other

hand, Bohmian mechanics accepts that, even if it is not being measured, systems have

they own (hidden) reality of the position at any time, such positions provide the particle

trajectories. The system particles have definite positions even when not being measured.

However, because of the act of measuring we disturb the unmeasured system and then

we can just extract information about the reality of our perturbed system, not from the

original (unmeasured) one.

So, in order to model correctly our system and its corresponding measured observables,

in Bohmian mechanics one has to model (somehow) the system plus the measuring ap-

paratus, and therefore the perturbation that it introduces in our system under study.

Because of the many-body problem (see Section 3.2), this issue is technically difficult

to solve, and then the conditional wave function is used to tackle the problem as it was

showed in Section 3.3. On the other hand, in the orthodox theory only the quantum

system is simulated and the measuring apparatus is substituted by a proper hermitian

operator. Such operators are mathematical entities relating eigenvalues and eigenstates.

The eigenvalues are all real (each one corresponding to a possible experiment outcome)

and whose eigenvectors are orthogonal (since different observable outcomes are exclu-

sive). The orthodox theory does not provide us which operator has to be used, apart

from the fact that it should provide us the same results (eigenvalues) as the experiments

provide us. When measuring some properties, such as energy, spin or momentum, the

explicit form of these operators is well known. However, when trying to measure more
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complex properties the explicit mathematical expression of this operator is not known,

this is the case of the displacement current, which will be interesting for me later.

Furthermore, more problems arise, because depending of the type of measurement per-

formed, strong or weak [160–165], different outcomes are expected. Therefore, many

unknowns appear when looking for the correct operator.

Nevertheless, to our interests, Bohmian mechanics offers an attractive alternative, pre-

cisely because this theory contains definite positions for the particles of the system,

even when not being measured. All properties, included total (displacement plus par-

ticle) current can be obtained from the bohmian positions and trajectories. In fact,

I anticipate that a very desirable and manageable language in terms of velocities will

appear later in Section 6.1.1. These velocities correspond to the electron velocities and

reflect totally the quantum behavior of our system, since they are obtained from the

Schrödinger or the Dirac equation (see Chapter 3 for more details). In fact, as a first

approximation, we can neglect the effect of the apparatus, and just compute the system

without simulating the measuring apparatus. This is obviously a first approximation,

but extremely useful since it decreases enormously the computational burden.

Let me consider a particular scenario. I consider a device as the one showed in Fig-

ure 6.1, where I want to compute the current. As I will show in next Section 6.1.1, in

order to obtain the current in my device I need to compute the total current through the

Ramo-Shockley-Pellegrini theorem in the contacts. These contacts have an enormous

amount of electrons (≈ 1023 electrons) and in principle all of them should be simulated

in order to introduce correctly the measuring perturbation, something impossible from

a computational point of view. However, it was shown in [165, 166] this kind of mea-

surement is a weak measurement. The contacts just adds noise in frequency (because

of the time that electrons need to be screened by each other) and has nothing to do

with the (quantum) measurement problem. The relevant thing is that with the use of

the conditional wave function, the particle is computed either transmitted or reflected

without the need of the contacts. This fact cannot be performed by the orthodox theory

(without collapse). For that reason, some excellent models that work correctly for DC

computations, such as the Landauer formalism, cannot provide answer for some prop-

erties, such as transients, high frequency properties or partition noise (see Section 3.4

for more details) and then more complex and non intuitive tools have to be added, such

as the annihilation and creator operators introduced by Büttiker (to mimic the collapse

law). However, in the Bohmian framework, the electron is either transmitted or reflected

and then (among other properties) noise, AC and transients can be straightforwardly

computed.
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Figure 6.1: Common configuration for an electronic experimental set up. I am inter-
ested in measuring the current in S1, but current can only be measured experimentally

in SA.

The conclusion here is that, in this particular scenario, when modeling electron devices

through Bohmian trajectories, the simulation of the contacts (considered as part of the

measuring apparatus) does only introduce fluctuations in the values of the measured

current. If we are not interested in such very high frequency fluctuating noise (on the

order of the screening time of the contacts, higher than THz frequencies) one can elim-

inate the specific simulation of the contacts, which implies an enormous computational

simplification, without modifying substantially the results of the current that will be

obtained. I emphasize that the effective collapse in the Bohmian model (discussed in

Section 3.2) is introduced naturally as part of the dynamics of the wave and particle

system and it is independent of the contacts. This approximation, on the contrary,

cannot be done within the orthodox theory because the collapse law has to be explic-

itly modeled (taking active and crucial decisions about when the wave function collapse

occurs, with which frequency or about how much perturbation we should introduce), in

the simulated wave function of the systems. Thus, the bohmian approach, apart from

other reasons, becomes an excellent option to compute quantum transport current and

its fluctuations in nanoelectronic devices.

6.1.1 The importance of computing the displacement current in high

frequency electronics

6.1.1.1 Equivalence between computed and measured currents

In Figure 6.1 it is shown the common configuration for an electronic experimental set

up. The Ω volume is the active region, which is connected to the ammeter through a

wire. I want to know the current in surface S2, which is far from the ammeter. The

wire touches the active region (S2 is the same surface as SD), and I can just measure

the current obtained in surface SA. So, what is the relationship between both surfaces?

Let me start from the current conservation law:
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~∇ ·~jc(~r, t) +
∂ρ(~r, t)

∂t
= 0 (6.1)

The first term on the left hand side of Equation (6.1) is the particle current density,

ρ is the free electric charge density in the wire volume Λ enclosed by a larger surface

S = {SD, SA, SL} and it can be related to the electric field by using the Gauss’s law,

which is:

~∇
(
ε(~r) ~E(~r, t)

)
= ρ(~r, t) (6.2)

With the use of Equation (6.2), Equation (6.1) can be rewritten as:

~∇ ·~jc(~r, t) +
∂

∂t
~∇
(
ε(~r) ~E(~r, t)

)
= ~∇ ·~jc(~r, t) + ~∇ε(~r)∂

~E(~r, t)

∂t

= ~∇ ·
(
~jc(~r, t) + ε(~r)

∂ ~E(~r, t)

∂t

)
= 0 (6.3)

From Equation (6.3)), the total current density ~JT (~r, t) (a combination of the particle

current density ~Jc(~r, t) and the displacement current density ~Jd(~r, t)) can be defined as:

~JT (~r, t) = ~Jc(~r, t) + ~Jd(~r, t) = ~jc(~r, t) + ε(~r)
∂ ~E(~r, t)

∂t
(6.4)

Using the divergence theorem, Equation (6.3) can be rewritten as:

∫
Λ

~∇ · ~JT (~r, t)dv =

∫
SD+SL+SA

~JT (~r, t) · d~s = 0 (6.5)

For a cable, it can be assumed that
∫
SL

~JT (~r, t)d~s = 0. Therefore, from Equation (6.5)

it is obtained that:

∫
SD

~JT (~r, t)d~s = −
∫
SA

~JT (~r, t)d~s (6.6)

Thus, the relationship between currents in both surfaces (SA and SD) is not through

the particle current, but through the total (current plus displacement) current.

However, in DC transport the time-average of the displacement current Id(t) is zero,

and one just needs the computation of the particle current Ip(t). But, as it will show in

Section 6.1.1.2, when working in AC the displacement current is also needed.
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6.1.1.2 Particle Current Versus Displacement Current

When modeling current, the displacement current is usually ignored. This fact occurs

for many reasons. First, at very low frequencies, the displacement current becomes neg-

ligible in front of the particle current. This is the common working region of electronics.

But, at frequencies high enough, the displacement current becomes the only relevant

current. This is the common working scenario for electromagnetic applications. Next,

I will make a simple estimation to the frequency where both currents are relevant. A

direct expression of the typical drift (particle) current Ip(t) on surface S is:

Ip(t) =

∫
S

~Jc(~r, t) · d~s ≈ nq~vAS (6.7)

where n is the number of electrons crossed the surface S per unit volume, q is the electron

charge with sign, ~v is the drift velocity, AS is the cross-sectional area of surface S. The

particle current is related to the injection rate of electrons from the contact and it is

substantially not modified when the input signal frequency f of the device is increased.

Assuming that n ≈ 1020 m−3, q ≈ 1.6 × 10−19 C, ~v = 105 m/s and AS = 10−12 m2,

a common estimation of the particle current is Ip(t) ≈ 10−6 A, independent of the

frequency. The direct expression of the displacement current Id(t) on surface S is:

Id(t) =

∫
S
ε(~r)

d ~E(~r, t)

dt
· d~s (6.8)

where ε(~r) is the electric permittivity, ~E(~r, t) is the electric field. Imaging that the

electric permittivity is ε(~r) ≈ 10−12 F/m, the electric field is ~E(~r, t) ≈ E0 cos(ωt) being

E0 ≈ 106 V/m a constant and ω = 2πf the angular frequency, then Equation (6.8) is

rewritten as:

Id(t) ≈ AS · ε(~r)
d ~E(~r, t)

dt
≈ 2πASε(~r)E0f ≈ 10−18f (6.9)

which is linearly dependent on frequency f . In Figure 6.2 the comparison between

particle and displacement current as a function of frequency is plotted.

The frequency where both currents becomes equal is around f = 1 THz. Therefore, for

high frequency applications, the computation of the displacement current is completely

required.
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Figure 6.2: Frequency dependence of the particle and displacement current.

6.1.2 The Ramo-Shockley-Pellegrini Theorem

S. Ramo and W. Shockley were the first scientists who noticed the importance of the

displacement current. In 1938, Ramo wrote [167]: “In designing devices in which the

electron transit time is relatively long, it is necessary to discard the low-frequency concept

that the instantaneous current computed on a particular surface is proportional to the

number of electrons crossed this surface per second (i.e., the particle current, which

is also named as the conduction current), and a proper concept of current must also

consider the instantaneous change of electrostatic flux lines which end on the surface

(i.e., the displacement current)”. At the same time, Shockley also wrote [168]: “In

the scenario that the electron transit time is of comparable duration with the periods of

alternating circuits, it is consequently of interest to know the instantaneous value of the

current induced by the moving charge over its entire time of transit”.

Their work relating microscopic electron dynamics with macroscopic displacement cur-

rents is known now as the Ramo-Shockley theorem.

Here, I will not explain the Ramo-Shockley theorem, but the Ramo-Shockley-Pellegrini

theorem [169]). The latter is an extension of the former. Pellegrini included scenarios

where the dielectric properties of the electronic system are time and spatial dependent.

This fact is very relevant, now it can be used with whatever boundary condition and

conducting medium. In addition, and very importantly for the Bohmian formalism, this

theorem allows to (in Pellegrini’s words) “connect in a straightforward way the corpus-

cular nature and motion of the single carriers to the output currents and voltages, give

general and efficacious tools to study transport and noise phenomena of electrical sys-

tems and to solve open problems”.



Chapter 6. Time Dependent electrical current and its fluctuations in high frequency
device applications 130

 

x 

y 

z 

Graphene (2) 

 Dielectric (1) 

Dielectric (3) 

S  D 

 

Top Gate 

Bottom Gate 

Interface Y1 

Interface Y2 Lx´ Lx´ 
Lx 

 
S3´ S3´´ 

S
2
 

S
4
 

S
6
 

S
1
 

S
5
 

Figure 6.3: Schematic representation of a electronic device in BITLLES simulator.
The channel (in this case graphene) is sandwiched between two dielectrics. The active
region of the dual-gate 2D Fet is Ω = L× (H ′+H +H ′)×W , being L the gate length.

Consider the active region (volume Ω = Lx×Ly ×Lz in Figure 6.3) as the device active

region. The volume Ω is constrained by six closed surface Sj , where j runs from one to

six. The total time-dependent current on a surface Sj is defined by the Ramo-Shockley-

Pellegrini theorem as

Ij(t) = Γqj(t) + Γej(t) (6.10)

where Γqj(t) is [169]:

Γqj(t) = −
∫

Ω

~Fj(~r) · ~Jc(~r, t) dν = −
N∑
m=1

sign(~vm) q ~Fj(~rm) · ~vm(~rm) (6.11)

and Γej(t) is:

Γej(t) =

∫
Sj

ε(~r)
dV (~r, t)

dt
~Fj(~r) · d~s (6.12)

where ~Jc(~r, t) is the particle current density at the position ~r at time t, ~vm(~rm) is the

m-electron velocity, ~rm is the m-electron position, q is the electron charge without sign,

N is the total number of electrons in the simulation box, V (~r, t) is the scalar potential

at position ~r and time t. The function sign(~vm) is equal to 1 when one electron leaves

the volume Ω through the surface Sj , while sign(~vm) = −1 when the electron enters.

The vector function ~Fj(~r) is defined through:

~Fj(~r) = −∇φj(~r) (6.13)
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where φj(~r) is the solution of the Laplace equation −∇(ε(~r)~Fj(~r)) = 0, with the following

boundary conditions, φj(~r) = 1 when ~r ∈ Sj and φj(~r) = 0 when ~r 6∈ Sj .

Let me emphasize that the terms Γqj(t) and Γej(t) cannot be interpreted as particle

current and displacement current. The term Γqj(t) includes itself the particle current

and part of the displacement current altogether.

Ramo-Shockley-Pellegrini Theorem in a two terminal device

Equation (6.11) and Equation (6.12) have to be solved usually numerically. However,

there is a special geometry case that can be obtained analytically. Consider a two

terminal device (the one depicted in Figure 6.3, but without the top and bottom gates)

between two metallic contacts, where Lx << Ly, Lz. Transport is assumed fully ballistic.

Then, it is straightforward [167, 168] to obtain that ~Fj(~r) = 1
Lx

and then:

I(t) =
q

Lx

Ne∑
k=1

vkx(t) (6.14)

where Ne is the number of electron inside the active region and vkx(t) the k− th electron

instantaneous velocity in the transport direction (x).

6.1.3 Noise and its fundamental explanation

6.1.3.1 What is noise?

Historically, the definition of noise was related to the sound: A noise is an unwanted,

unpleasant and confusing type of sound.1 However, such definition is ambiguous. What

does it mean unwanted, unpleasant or confusing? An attempt to provide a more aca-

demic definition comes from music: Noise is a non-harmonious or discordant group of

sounds. Again, however, the definition is not free from ambiguities because one man’s

noise is another man’s music [170].

A more scientific definition closer to the electrical devices field comes from communica-

tions: A noise is an electric disturbance that interferes with or prevents reception of a

signal or of information. For example, the buzz in a telephone call. Thus, once I have

a precise definition of what is a signal, the meaning of what is noise becomes perfectly

clear: It is the difference between the measured value and the signal.

1In fact, the word noise is etymologically derived from the Latin word nausea, meaning seasickness.
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6.1.3.2 Quantum noise in electrical devices from an experimental point of

view

As discussed above, the answer to what is noise in electrical devices depends on the

definition of the electrical signal. For most DC applications, the signal is just a time

average value of the current. For frequency applications, the signal is equivalently defined

as a time average value, but using a shorter time interval (related to the inverse of the

operating frequency). In other applications, mainly digital applications, the signal is

related to a time average value of the voltage in a capacitor. Hereafter, I will assume

that the electrical signal is the DC value of the current, referenced by the symbol 〈I〉.
All fundamental and practical issues discussed here for the DC signal (and its noise) can

be straightforwardly extended to those other types of electrical signals.

What is measured in a laboratory for the DC signal is the time average value of the

instantaneous current I(t) in a unique device during a large period of time T :

〈I〉 = lim
T→∞

1

T

∫ T

0
I(t)dt (6.15)

Once the signal 〈I〉 is defined as the DC value, in principle, the noise can be quantified

by time averaging the difference between the measured value of the current I(t) and the

signal in a unique device:

4I2 = lim
T→∞

1

T

∫ T

0
(I(t)− 〈I〉)2dt (6.16)

The square of the difference avoids positive and negative cancellations. At this point,

it is very important to realize that I(t) presents very rapid fluctuations that cannot be

captured by standard laboratory apparatuses. Any experimental set up that measures

the current fluctuations behaves as a low-pass filter (i.e., the current fluctuations at

frequencies higher than the apparatus cut-off frequency are not measured). Therefore,

the experimentally accessible information about the current fluctuations is not given by

Equation (6.16), but by the power spectral density of the fluctuations S(w) (and its re-

lated magnitudes). From the Wiener-Khinchine relation, the power spectral density can

be defined as the Fourier transform of the time average definition of this autocorrelation

function 4R(τ) :

4R(τ) = lim
T→∞

1

T

∫ T

0
4I(t1)4I(t1 + τ)dt1 (6.17)
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where 4I(t) = I(t) − 〈I〉. A straightforward development shows that Equation (6.17)

can be rewritten as 4R(τ) = R(τ)− 〈I〉2 with:

R(τ) = lim
T→∞

1

T

∫ T

0
I(t1)I(t1 + τ)dt1 (6.18)

Then, the Fourier transform of Equation (6.17) gives the noise power spectral density

S(w):

S(w) =

∫ ∞
−∞
4R(τ)e−jwτdτ (6.19)

It is quite trivial to realize that the definition of the spectral density S(w) in Equa-

tion (6.19) and Equation (6.17) is consistent with the definition of the total noise2 in

Equation (6.16):

4I2 =

∫ ∞
−∞

S(w)dw (6.20)

where I have used the definition of a delta function δ(τ) =
∫∞
−∞ e

−jwτdw. It is very

relevant to realize that the measurement of S(w) through the function R(τ) defined

in Equation (6.18) requires the knowledge of the measured value of the current during

all t. Thus, predictions about the evolution of the electronic device have to be made

while being (continuously) measured. In a classical scenario, such discussion about

measurement is generally ignored. On the contrary, for quantum systems, it has very

relevant implications because the evolution of a system with or without measurement

can be dramatically different.

If the electronic device satisfies the ergodic theorem [171, 172], a continuous measurement

of the system can be avoided. Let us see in what sense ergodicity can simplify noise

computations. In general, the mathematical concept of a random process is used to deal

with noise. A random process requires a sample space. In this case, I can define an

2Technically, S(w) defined in Equation (6.19) is non-negative and symmetric with respect to w. Then,
since only positive frequencies w are measured in a laboratory, the measured density includes the S(w)
and S(−w), and the integral of the noise spectrum measured in a laboratory runs from 0 till ∞.
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ensemble of identical electrical devices3, each one labelled by the sample space variable

γ. Then, the (instantaneous) current is labelled by the random process Iγ(t). For a

fixed time, t1, the quantity Iγ(t1) is a random variable. For a fixed device γ1, the

function Iγ1(t) is a well-defined non-random function of time. Finally, Iγ1(t1) is just a

real number. Often the sample space variable γ is omitted in the notation. The DC

value of the current in Equation (6.15) can be alternatively defined for an ergodic system

as:

〈I〉 =
∑
i

Ii(t1)P (Ii(t1)) (6.21)

where P (Ii(t1)) is the probability of getting Ii at time t1. These probabilities are defined

as the ratio of the number of devices providing Ii divided by the total number of devices.

It is important to realize that the experimental evaluation of Equation (6.21) requires

only one measurement of the current at t1 in a large number of identical γ-devices.

Then, the theoretical predictions of Equation (6.21) do only need to determine the free

(without measuring apparatus) evolution of the electronic device from the initial time

t0 till t1. Obviously, I can compute the total noise represented in Equation (6.16) from

a unique measurement in ergodic systems:

4I2 =
∑
i

(Ii(t1)− 〈I〉)2P (Ii(t1)) (6.22)

However, the noise measured in a laboratory is not given by 4I2, but by S(w) in

Equation (6.19). I repeat the reason explained in Equation (6.16). The amount of

noise generated by an instantaneous current evolving for example from I(t1) = 5 mA

to I(t2) = 10 mA during a time interval of t2 − t1 = τ = 1 fs, is not captured from

state-of-the-art laboratory apparatuses (which already have difficulties to capture noise

at frequencies higher than a few of Terahertzs). From an experimental point of view, in

fact, it is easy to get S(w → 0), but impossible to get S(w →∞). I can compute the noise

power spectral density S(w) from the ensemble average version of the autocorrelation

defined in Equation (6.18) as:

R(t1, t2) =
∑
i

∑
j

Ij(t2)Ii(t1)P
(
Ij(t2), Ii(t1)

)
(6.23)

3At this point, the reader will wonder that, in typical laboratory experiments, only one electronic
device is available (not an ensemble of them). Then, as a practical definition of ensemble, I can define the
instantaneous current measured in different time-intervals: Iγ1(t) for the instantaneous current measured
during the first time interval, Iγ2(t) for the second interval, and so on.
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In general, it can be assumed that the instantaneous current in an electronic device

behaves as a wide-sense stationary random process. Then, 〈I〉 in Equation (6.21) is con-

stant and time-independent. Identically, the autocorrelation function in Equation (6.23)

depends only on the time difference 4R(t1, t1 + τ) = 4R(τ) with t2 = t1 + τ . Finally, I

use Equation (6.19) with 4R(τ) computed from Equation (6.23), to get the noise power

spectral density S(w).

It is important to emphasize (for a posterior discussion) that the probability P
(
Ij(t2), Ii(t1)

)
implies a two-measurement process for each electronic device. The system evolves freely

(without interaction with the measurement apparatus) from t0 till t1 when the current

is measured, giving the value Ii. Then, the system evolves freely again until time t2,

when the system is measured again giving Ij . In summary, even if the ergodicity argu-

ment is invoked, the noise computation through the autocorrelation function requires,

at least, two measurements at different times in a single device (and the average over all

γ-devices). I anticipate that the computations with Bohmian mechanics will not assume

ergodicity (which is not an obvious property for open systems out of equilibrium [171]),

but the prior expressions requiring a continuous measurement of the current.

Let me emphasize that the previous discussion is valid for either classical or quantum

devices. The adjective quantum emphasizes that the signal and the noise are computed

or measured in an electrical device governed by quantum laws [41, 78, 81, 173]. If the

electronic device is not ergodic, Equation (6.18) requires a continuous measurement of

the current I(t). On the contrary, for an ergodic electron device, Equation (6.21) requires

one unique measurement, while Equation (6.23) requires a two-times measurement when

dealing with the power spectral density S(w).

Up to here, the definition of quantum noise seems very trivial. Then, why does the

concept of quantum noise have a halo of mystery around it?

6.1.3.3 Quantum noise in electrical devices from a computational point of

view

The previous definition on what is quantum noise does not answer the question on

how it is computed. If I want to predict the values I(t) used in Equation (6.16) and

Equation (6.18) or the probabilities P (I) and P
(
Ij(t2), Ii(t1)

)
for Equation (6.21) and

Equation (6.23), a quantum theory is required.

At this point, I want to clarify why quantum noise is specially sensible to fundamental

quantum mechanical issues. Any electrical device (or any experiment) is connected to a

measuring apparatus. In our case, an ammeter to get the electrical current. Quantum
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noise is sensible to the (ammeter) measuring process. As stated in Equation (6.23), in

order to obtain the noise, the quantum system has to be measured, at least, twice. This

two-time measurement faces directly with one of the most complex issues in quantum

mechanics explained in Section 3.4, the measurement problem4. One more time, the

avalaible computational tools depends on the the election of the quantum theory.

6.2 Time-dependent BITLLES Model Injection

In this section I explain the BITLLES (see Chapter 3 for details about the BITLLES

simulator) model injection for linear band (like graphene) or parabolic band (like black

phosphorus) 2D materials, and why it is so important to obtain correct values of current

and its fluctuations. From a computational point of view, the open system is defined

as the simulation box that includes, at least, the device active region. The environ-

ment determines the boundary conditions at the borders of the simulation box through

thermodynamical arguments [174, 175]. Most electron device simulation approaches are

based on combining mechanical and thermodynamic arguments. An important part of

the boundary conditions at the contacts are the so-called electron injection models.

In general, there are strong practical arguments in favor of using time-independent

approaches for device simulation since they have less computational burden. In such

time-independent models, the electron injection model basically reduces to a discussion

on the density of states and the occupation function at the borders. However, time-

independent approaches have difficulties to properly describe properties related to the

dynamics of electrons (such as transient and AC performances [174, 176]) or to the

stochastic and discrete nature of electrons (such as shot and thermal noise [41, 82]).

The time-dependent electron injection model explained here can be applied to semi-

classical or quantum simulators. For semi-classical modeling [13, 177], electrons are

described as point-particles, while for quantum modeling, the wave nature of electrons

is accounted by time-dependent wave packets.

6.2.1 Local conditions of the injection model

In this section, I will discuss those spatial local (depending on the properties of only

one contact, not both) effects that are relevant in the discussion of the electron injection

model.
4I also mention that the fundamental understanding/computing of the measurement process can be

largely relaxed when dealing with DC predictions. They can be computed from an ensemble of devices
with only one measurement in each device, so the evolution of the quantum system after the measurement
can be ignored.
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There is no unique local argument to define a time-dependent electron injection model.

For example, when the boundary conditions are defined far from the device active re-

gion (for large simulation boxes), it is reasonable to assume that the electron injection

model has to satisfy charge neutrality. This local condition in the physical (real) space

determines how many electrons need to be injected at each time step of the whole sim-

ulation. However, in positions closer to the device active region (for small simulation

boxes) charge neutrality is not fully justified. Then, it is assumed that electrons entering

into the simulation box are in thermodynamic equilibrium (with an energy distribution

determined by a Fermi-Dirac function) with the rest of electrons in the contact [178].

The thermodynamic equilibrium in this second model is basically imposed on electrons

entering into the simulation box, not on those leaving it. This second model is the one

explained here for 2D materials.

6.2.1.1 Density of electrons in the phase-space

We consider a 2D material. The position of electrons in such material are defined with

the 2D vector {x, z} (as indicated later, for quantum description of the electron, the

mentioned position can be assigned to the central position of the wave packet describing

the electron). Electron transport (from source to drain) takes place in the x direc-

tion. Then, I define a phase-space cell, labeled by the position {x0, z0} and wave vector

{kx0, kz0} with a volume ∆x∆z∆kx∆kz, as the degrees of freedom {x0, z0, kx, kz} satisfy-

ing x0 < x < x0+∆x, z0 < z < z0+∆z, kx0 < kx < kx0+∆kx and kz0 < kz < kz0+∆kz.

As a consequence of the Pauli exclusion principle [178], the maximum number of avail-

able electrons n2D in this phase-space cell in the contact borders is:

n2D = gsgv
∆x∆z∆kx∆kz

(2π)2
(6.24)

where the gs and gv are the spin and valley degeneracies, respectively. See Appendix F

to specify the physical meaning of ∆x, ∆z, ∆kx, ∆kz in terms of the wave packet

nature of (fermions) electrons with exchange interaction. Equation (6.24) specifies that,

in average, each electron requires at least a partial volume 2π for each position × wave

vector product of the phase space. Each electron requires a volume (2π)2 of the whole

available phase space in a 2D material. Certainly, I can imagine a many-particle wave

function with more than n2D electrons inside the phase space cell. However, because of

the Pauli principle, such many-particle wave functions are not common.
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6.2.1.2 Minimum temporal separation t0 between electrons

At any particular time t, all electrons with wave vector kx ∈ [kx0, kx0 + ∆kx] inside the

phase cell will attempt to enter into the simulation box during the time-interval ∆t. I

define ∆t = ∆x/vx as the time needed for the electrons with velocity component in the

transport direction vx to move a distance ∆x. ∆t is always positive, because electrons

entering from the right contact with negative velocity move though a distance −∆x.

Notice that I have assumed that the phase space cell is so narrow in the wave vector

directions that all electrons have roughly the same velocity vx. Therefore, the minimum

temporal separation, t0 between injected electrons from that cell, defined as the time

step between the injection of two consecutive electrons into the system from the phase

space cell, can be computed as the time-interval ∆t divided by the number of available

carriers n2D in the phase-space cell:

t0 =
∆t

n2D
=

(2π)2

gsgv

1

|vx|∆z∆kx∆kz
(6.25)

As I have mentioned above, the injection model described here is valid for either classical

or quantum systems. For a quantum systems, electrons are described by wave packets.

Such wave packets in the contacts can be expected to be defined by wave functions, like

Gaussian wave packets or Gaussian bispinors, where a meaningful definition of its mean

(central) position and wave vector is given.

For materials with a parabolic band structure, the velocity in the transport direction

is vpx = 1
~
∂Ep

∂kx
= ~kx

m∗ , m∗ being the electron effective mass. Substituting vpx into Equa-

tion (6.25) I obtain:

tp0 =
(2π)2

gsgv

m∗

~kx∆z∆kx∆kz
(6.26)

From Equation (6.26), it is clear that the t0 is only affected by the wave vector kx, and

for instance an electron with higher kx needs less injection time t0 to enter in the system.

For materials with a linear band structure, the velocity of electrons in the transport

direction is vlx = svfkx/|~k|, being s the band index and vf the Fermi velocity. It is

important to emphasize that the x component electron velocity vlx is explicitly dependent

on both wave vector components kx and kz, which is different from the vpx whose velocity

is only determined by kx. Then the minimum temporal separation is written as:

tl0 =
(2π)2

gsgv

|~k|
svfkx∆z∆kx∆kz

(6.27)
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According to Equation (6.27), the temporal separation between two electrons with

smaller kz will be shorter than that with a larger kz. As a consequence, almost all

electrons in graphene are injected with a low kz (with kx ≈ |~k|) and with a velocity close

to the maximum value, i.e. vx ≈ vf .

6.2.1.3 Thermodynamic equilibrium

I assume that electrons inside the contacts are in thermodynamic equilibrium. For

electrons (fermions), the Fermi-Dirac distribution f(E) provides the probability that a

quantum state with energy E is occupied:

f(E) =
1

exp[(E − Ef )/(kBT )] + 1
(6.28)

where Ef is the quasi Fermi level (chemical potential) at the contact, kB is the Boltz-

mann constant and T is the temperature. The electron energy E is related to its wave

vector by the appropriate linear or parabolic energy dispersion. I emphasize that the as-

sumption of thermodynamic equilibrium is an approximation because the battery drives

the electron device outside of thermodynamic equilibrium (this approximation explains

why I define a quasi-Fermi level, not an exact Fermi level). I remark that there is no

need to anticipate the energy distribution or electrons leaving the simulation box (the

equations of motion of electrons implemented inside the simulation box will determine

when and how electrons leave the open system).

6.2.1.4 Probability of injecting N electrons during the time interval τ

At temperature T = 0, the mean number of electrons in the phase-space cell q〈N〉 is

equal to 〈N〉 ≡ n2D given by Equation (6.24), which means that electrons are injected

regularly at each time interval t0. At higher temperature T > 0, the mean number

of electrons in the cell 〈N〉 is lower than n2D. In fact, because of Equation (6.28), I

get 〈N〉 ≡ n2D · f(E). The statistical charge assigned to this cell is therefore equal to

〈Q2D〉 ≡ −q · n2D · f(E). Here q is the elementary charge without sign. The physical

meaning of 〈N〉 ≡ n2D ·f(E) is that the number of electrons N in the cell (all with charge

−q) varies with time. I cannot know the exact number N of electrons at each particular

time, but statistical arguments allow us to determine the probabilities of states with

different N . Such randomness in N implies a randomness in the number of electrons

injected from each cell. This temperature-dependent randomness is the origin of the

thermal noise [178, 179].
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It is known that the injection processes follow the Binomial distribution with a proba-

bility Prob(E) [178]. For example, for the local conditions discussed here I can assume

that the probability of successfully injecting electrons with energy E is given by the

Fermi-Dirac statistics discussed in Equation (6.28), i.e., Prob(E) ≡ f(E). The proba-

bility P i(N, τ) that N electrons are effectively injected into a particular cell i adjacent

to the contact during a time-interval τ is defined as:

P i(N, τ) =
Mτ !

N !(Mτ −N)!
Prob(E)N (1− Prob(E))Mτ−N (6.29)

where Mτ is the number of attempts of injecting carriers in a time-interval τ , defined

as a number rounds the quotient τ/t0 to the nearest integer number towards zero, i.e.

Mτ = floor(τ/t0). The number of injected electrons is N = 1, 2, . . . ,Mτ .

6.2.2 Non-local conditions of the injection model

I now discuss some non-trivial non-local effects that have to be considered in the practical

development of an electron injection model for 2D materials.

6.2.2.1 Transport, non-transport electrons and holes in parabolic bands

In order to simplify the computations, not all electrons present in an open system are

explicitly simulated. Only transport electrons, defined as those electrons whose move-

ments are relevant for the computation of the current, are explicitly simulated. The

contribution of the non-transport electrons to the current is negligible and their charge

is included as part of a fixed charge. What determines if an electron is a transport

electron or not? In principle, one erroneously argues that the quasi-Fermi level provides

a local rule to determine if an electron is a transport electron or not. Those electrons

with energies close to the quasi-Fermi level are transport electrons, while those electrons

with energies well below are irrelevant for transport. This local rule is not always valid

for all materials and scenarios.

When modeling traditional semiconductor devices usually the applied bias in the edges

of the active region is less than the energy band gap. See Figure 6.4(a) and (b). Then,

one can assume that transport electrons belong to just one band along the whole device,

either the valence or the conduction band. Then, one can consider, for example, that

all electrons in the CB are transport electrons. Electrons in the VB do not participate

in the transport because there are not available states. See blue regions for transport

electrons in CB and orange region in the VB of Figure 6.4(a) and (b). The important
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Figure 6.4: The energy profile for a device with parabolic CB and VB separated by a
energy bandgap Egap and with a gapless material with linear CB and VB. In the insets
(a) and (b), the selection of transport and non-transport electrons is independent of the
bias (same number of electrons are simulated that contribute to transport). The inset
(c) corresponds to the energy profile corresponding to a Zener diode where additional
transport electrons in the VB have to be considered. In the insets (d), (e) and (f) for a
gapless structure, the number of transport electrons is bias dependent. The electrons in
the energy range from E1 = Efs− 5kBT to E2 = Efs− 5kBT −VDS are the additional
transport electrons that have to be added at each bias point. Blue electrons and orange
electrons are transport and non-transport ones, respectively. (g) Representation of an
electron traveling from the source to the drain. Only electrons in the red solid line can

reach the drain contact due to the conservation of kz.

point is that the number of transport electrons is bias independent, meaning that the

number of transport electrons remains the same in Figure 6.4(a) and (b). I anticipate

that the division between transport and non-transport electrons in scenarios such as

Figure 6.4(c), which could correspond to a Zener diode[180] where a very large bias

(greater than the energy gap) is applied, cannot be treated in the same way as the

previous scenarios. Instead, this case which occurs rarely in devices with parabolic

bands and large energy gap, should be treated as I treat gapless materials below.

The distinction between transport and non-transport electrons does also apply when the

quasi-Fermi level is close to electrons in the VB. Then, there is no transport of electrons

in the CB because there is no electrons there. I can consider as transport electrons,

for example, those electrons in the valence band whose energy is no lower than αkBT

(generally, it is sufficient to define α = 5) below the quasi-Fermi level at the contact.

The rest of electrons in the VB with energies lower than Ef − 5kBT are non-transport

electrons. In order to simplify the computational burden of transport electrons in the

VB, traditionally, one simulates the absence of electrons in the VB, defined as holes,

instead of the transport electrons themselves. The total current I can be computed by

summing the current Ii of each transport electron in the VB, I =
∑n

i=1 Ii, where n

is the number of transport electrons in the VB (with positive and negative velocities).

However, if n is quite close to maximum number of allowed electrons in that region nmax,

then, by knowing that a VB full of electrons (equal number of electrons with positive

and negative energies) does not have net transport. i.e. Imax =
∑nmax

i=1 Ii = 0, I get:
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I =
n∑
i=1

Ii −
nmax∑
i=1

Ii =

nmax−n∑
j=1

(−Ij) (6.30)

Thus, instead of simulating i = 1, .., n transport electrons I can simulate j = 1, ..., n′

transport holes with n′ ≡ nmax − n, assuming that the current of the holes (−Ij) is the

opposite of the electron current Ii. This can be achieved by considering that holes have

positive charge +q.

Let me define the fixed charge (belonging to dopants or non-transport electrons below

E = Ef − 5kB∆T ) is Qfix in the VB. Then, the computation of the charge in the VB

of parabolic materials can be also done using electrons or holes. I also define Qmax =∑nmax
i=1 (−qi) as the charge belonging to transport electrons when the energy region above

E = Ef − 5kB∆T is full of electrons. Therefore the charge due to the n electrons in

that energy region when considering the transport of holes, is:

Q = Qfix +

n∑
i=1

(−qi) = Qfix +Qmax +

n′∑
j=1

qj (6.31)

I have to consider the holes as carriers with positive charge +q and consider a fixed

charge Qmax, in addition to Qfix, when dealing with device electrostatics through the

n′ holes. The use of holes can be useful in scenarios like the ones in Figure 6.4(a) and

(b), when it is true that n′ << n along the whole simulation box.

The problem with the simulation of holes (instead of transport electrons) in the VB

appears when electrons move from the VB to the CB in a band-to-band-tunneling pro-

cess. Then, there are regions of the simulation box with more holes than other regions,

see Figure 6.4(c). Within the language of holes, such electron transit from VB to CB

can be modeled as an electron-hole generation process inside the device [181]. During

the transition of the electron from the VB to the CB, I can assume that an electron is

effectively created in the CB, while a hole is also effectively created (an electron dis-

appears) in the VB. Such transition probability depends on the number of electrons

(number of holes) in a particular region of the phase space inside the device, which in

turn depends on the occupation probability. What is the occupation probability f(E)

inside the device? A fundamental simulation wants a mechanical description of the elec-

trons inside the device, not a statistical one. Therefore, no a priori assumption about

the occupation function inside the device is accessible in such simulations. Obviously, I

can assume some thermodynamic quasi-equilibrium occupation function in these regions
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of the phase space inside the device. This strategy implies an important reduction of

the computational burden, at the price of reducing the fundamental character of the

simulation [181, 182].

6.2.2.2 Transport, non-transport electrons and holes in linear bands

The utility of the holes and the uniformity of Qfix has to be revisited when dealing

with linear band materials (as well as in parabolic band structure materials when the

applied bias is greater than the energy bandgap as discussed in Figure 6.4(c)) because

the transition from VB to CB is unavoidable.

In Figure 6.4(d)-(f), I see those electrons depicted in blue (dark gray) whose energy is

well below the local quasi-Fermi level in the source Efs, but that effectively contribute

to current because such electrons in the VB in the source contact with negative kinetic

energy are able to travel through the device, cross the Dirac point via Klein tunneling

and arrive at the CB with positive kinetic energy in the drain contact. I define the zero

of total energy at the Dirac point. The same scenario for parabolic bands is depicted

in Figure 6.4(c). The argument saying that the VB is full of electrons in the source

giving zero current (Imax =
∑nmax

i=1 Ii = 0) is false here. Such argument is a local

argument that does not take into account the non-local relation between the source

and the drain contacts. How many transport electrons contribute to the current in

Figure 6.4(d)-(f)? I have seen that electrons with energies above E = Efd − 5kB∆T

in the drain are relevant for the transport. In addition, electrons with energies below

E = Efs − 5kB∆T in the source are also relevant for transport. In order to minimize

the number of transport electrons in the simulating box, it is very convenient to use a

different criteria for the selection of the transport electrons in the source than in the

drain contacts. In the source contact, the transport electrons are all electrons within

the energies in the range [Efd − 5kB∆T,Efs + 5kB∆T ] defined in Figure 6.4(d)-(f),

while the energy range [Efd − 5kB∆T,Efd + 5kB∆T ] is used for the drain. Since I can

consider that Efs = Efd + VDS with VDS the applied voltage, the number of transport

electrons selected with the overall criteria is bias-dependent and position-dependent.

Other criteria are also possible in the selection of the transport electrons 5. The criteria

specified here to select the transport electrons as explained in Figure 6.4(d)-(f) is the

one that minimizes the overall number of transport electrons.

The simulation of holes (instead of electrons) in the VB of graphene is also possible.

However, there are two important difficulties. First, as discussed at the end of Sec-

tion 6.2.2.1, the electron-hole generation to describe the band-to-band Klein tunneling

5We notice that considering more or less transport electrons in the simulation is not a physical
problem, but a computational problem because it increases the computational effort
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would requires some type of estimation for the thermodynamic quasi-equilibrium distri-

bution of holes inside the simulation box [181]. Second, such probability would require an

ad-hoc definition of Klein tunneling transmission coefficient. However, Klein tunneling

is a pure quantum interference phenomena depending on several items (energy, direction

of propagation, potential profile, etc.) implying important difficulties when attempting

to develop ad-hoc analytic expressions of the Klein tunneling transmission probability

6. None of the above two important difficulties (definition of the occupation function

inside the simulation box and the definition of an ad-hoc Klein tunneling transmission

probability) are present when only transport electrons, not holes, are considered in the

VB and simulated through the Dirac equation as I will shown in Section 6.2.4.2.

From Figure 6.4(e), I can rewrite the charge assigned to electrons in the CB and VB of

the drain contacts for a gapless material as follows:

Qdrain = Qfix +

ndrain∑
i=1

(−qi) (6.32)

The charge distribution in the source is not exactly the same as in Equation (6.32)

because, as discussed above, the number of transport electrons in the source nsource is

different from ndrain. Therefore, I get:

Qsource = Qfix +

nsource∑
i=1

(−qi)−Qadd(xsource) (6.33)

where Qadd(xsource) is just the additional charge assigned to the additional number of

transport electrons nsource − ndrain simulated in the source. In fact, as I will discuss at

the end of Section 6.2.2.3, in each point of the device, and each bias point, I have to

consider a different value of Qadd(x). In particular, I notice that Equation (6.32) can be

written as Equation (6.33) with the condition Qadd(xdrain) = 0. Finally, I notice again

that the consideration of this position dependent charge can be avoided by just using

the same number of transport electrons in the drain and in the source, but this would

imply an increment of the computational effort to transport electrons that, in fact, do

not provide any contribution to the current. In conclusion, minimizing the number of

transport electrons implies a positions and bias dependent definition of Qadd(x).

6For a full quantum time-dependent electron transport simulator, such electron-hole generation would
require a definition of the electron and hole wave packets in the middle of the simulation box. I can
assume a Gaussian type for the wave packet at the borders of the simulation box, however, the type
of wave packet generated in the middle of the simulation box, while doing Klein tunneling, is hardly
anticipated by ad-hoc models.
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6.2.2.3 Pauli principle between the source and drain contacts and conser-

vation laws

There is another strategy to further minimize the number of transport electrons in the

simulation box, by taking into account the Pauli exclusion principle between source and

drain contacts. This strategy is based on the following two assumptions. First, I con-

sider that electrons move quasi-ballistically inside the simulation box, so that the I can

reasonably predict which is the energy of an electron at the drain, initially injected from

the source, and vice-versa. The second assumption is that the occupation functions at

the drain and source do not only provide the energy distributions of electrons entering

into the simulation box, but also provide a reasonable prediction of the energy distribu-

tion of electrons leaving it. Under these two assumptions, the injection of electrons from

one side that will not be able to arrive to the other side in a later time because other

electrons are occupying that region of the phase-space (positions and wave vectors) can

be avoided. Let me notice that this new strategy can be removed if the many body Pauli

exclusion principle could be included somehow into the equation of motion of electrons

inside the simulation box (see Section 3.3 or [72, 183]).

Let me assume an electron moving ballistically inside the graphene channel with total

energy E satisfying the energy conservation law. If an electron with energy E is effec-

tively injected from the source contact, the probability that it will arrive to the drain

(in thermal equilibrium) with the same energy E is given by the probability that such

region of the phase space is empty of electrons, which is fsd(E) = (1− f(E)) with f(E)

given by Equation (6.28) and Ef ≡ Efd indicating the quasi-Fermi level at the drain

contact.

A similar argument can be invoked for momentum conservation. When considering

transport electrons incident on a potential barrier that is translationally invariant in the

z direction (perpendicular to the transport direction), i.e., V (x, z) = V (x), in addition

to the conservation of electron energy E, the conservation of the momentum projection

kz can also be taken into account. Let me give an example on how the conservation of

momentum projection kz affects our injection model in graphene. I consider one electron

with energy E injected successfully from the source contact into the system and that the

electron is transmitted (without being scattered) through a potential barrier and finally

arriving at the drain contact. According to the linear dispersion relation in graphene,

the maximum absolute value of momentum projection kz that the electron can obtain

is klim = |(E + qVDS)/(~vf )|, see the definition of klim in Figure 6.4(g).

In the source, all those electrons whose |kz| > klim will not be able to reach the drain,

i.e. only electrons whose kz belongs to the solid red arc circumference could reach the
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drain. Therefore, at the source contact, the probability Pkz that an injected electron

will satisfy the conservation of momentum is given by:

Pkz =

(
1−Θ

(
|kz| − klim

))
(6.34)

where Θ(|kz| − klim) is a Heaviside step function.

Up to now, I have mentioned three (one local and two non local) conditions to determine

the probability that an electron is effectively injected from the source. At the source

contact, the probability fsum(E) that the electron is effectively injected from the source

as a transport electron is:

fsum(E) = fs(E)fsd(E)Pkz =
1

exp[(E − Efs)/(kBT )] + 1
(6.35)

×

(
1− 1

exp[(E − Efd)/(kBT )] + 1

)
×

(
1−Θ

(
|kz| − |k|lim

))

The Fermi-Dirac distribution in Equation (6.28) is a general law used in most nanoscale

simulators. The other two additional laws are optional requirements of the injection

model that allow a reasonable reduction of the simulated number of transport electrons

without affecting the current computations, which could be eliminated if a many body

treatment of the equation of motion of electrons is present in the simulation box. How-

ever, in traditional single-particle treatment of the equation of motion, such requirements

tend to capture the role of the Pauli exclusion principle in the dynamics of the electrons

inside the simulation box.

The Figure 6.5 illustrates how the additional two laws (non-local conditions) affect the

energy distribution in the new injection model in the case of injected electrons have

ballistic transport in graphene transistors. In Figure 6.5(a), all the electrons in VB

are attempted to be injected into the system. However, in Figure 6.5(b), when the

non-local conditions are included, the energy distribution in VB is different from that

in Figure 6.5(a). In Figure 6.5(b), less electrons from VB attempt to be injected into

the system with an important reduction of the number of injected electrons, which in

case of being injected would not contribute to transport properties. The occupation

probability for the electrons in VB with kz > 0.5 nm−1 equals to 0, which is a result of

the kz conservation. The probability for the electrons in VB with energy E > 0.2 eV

(for |~k| > 0.5 nm−1) approximates to 0, which is a result of the correlation between the

source and drain contacts.
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(a) (b)

Figure 6.5: The energy distribution of the electrons with positive (in CB) and negative
energies injected from the source contact plotted in (a) which computed from equation
(6.28) and in (b) which computed from Equation (6.35). The absolute temperature
T = 300 K, Fermi-level at the source contact Efs = 0.1 eV, an voltage drop VDS = 0.3

V applied to the device and the Fermi velocity vf = 5× 105 m/s.

Finally, let me exemplify how I introduce the additional charge in Equation (6.32) and

Equation (6.33) in a graphene device. Our purpose here is to compute the charge of

electrons that will be injected in a non equilibrium scenario, but not injected in the

equilibrium scenario (Figure 6.4(c)). The density of states in 2D linear graphene is:

Dgr(E) =
gsgv|E|
2π~2v2

f

(6.36)

where the spin degeneracy gs = 2 and the valley degeneracy gv = 2. Regarding Fig-

ure 6.4(f), in principle the amount of charge Qadd would be computed from the integral

of Dgr(E) from E2 to E1. However, this is not fully true. Firstly, only electrons going

in the transport direction are simulated, so I just need half of this charge. In addi-

tion, as presented above I also have to account for the conservation of momentum kz

for all energy levels from E2 until E1. For that reason, for example not all electrons

from the energy level E2 will be able to arrive to the drain, and just a fraction of

them will be injected. This fraction is easily understood from Figure 6.4(g). Only

electrons belonging to the circumference arc will be injected and will be able to reach

the drain. The semi-circumference length is L = πE2 and the length of the mentioned

circumference arc is La = 2|E2|arcsin (E1/E2). Therefore, the ratio to be injected is

La/L = 2arcsin (E1/E2) /π. This calculus must be performed along the device. Then,

the amount of charge to be added (Qadd) in each point of the device is the following:

Qadd(x) = q

∫ Efs−5kBT−V (x)

Efs−5kBT−VDS

gsgv|E|
2π~2v2

f

FcorrdE (6.37)

where Fcorr is the correction factor and is equal to Fcorr = La/2L.



Chapter 6. Time Dependent electrical current and its fluctuations in high frequency
device applications 148

6.2.3 Practical implementation of the electron injection model in the

BITLLES simulator

In this part, I describe the procedure for implementing the electron injection model

described above in the time-dependent BITLLES simulator:

Step 1. Define a grid for the whole phase-space associated to the injecting

contact

We select the phase-space of the contacts. The spatial limits selected by the boundaries

of the contact surfaces. The limits of the reciprocal space {kx, kz} are selected indirectly

by the occupation function fsum(E) in Eq.(12) in the main text. That is, the maximum

value of the wave vector components, kx,max and kz,max, must be selected large enough

to be sure that fsum(E(kx,max)) = fsum(E(kz,max)) ≈ 0. The minimum value of the

wave vector components is assumed to be kx,min = −kx,max and kz,min = −kz,max.

In principle, the values ∆x, ∆z, ∆kx and ∆kz has to be selected according to the

development done in appendix A. See Equation (F.7) and Equation (F.8). However, if

I are interested only in studying dynamics of electrons at frequencies much lower than

1/to (with to defined in Eq. (2) in the text as the minimum temporal separation between

consecutive injected electrons), then I can use larger values of ∆x, ∆z, ∆kx and ∆kz to

speed up the computational burden of the injection algorithm. Then, the spatial step

∆z can be chosen as large as the contact surface (i.e. ∆z = Lz, Lz being the lateral

width). The spatial step ∆x is arbitrary and has no effect on the injection rate. The

wave-vector cell {∆kx,∆kz} has to ensure that all electrons have similar velocities in the

x direction. The selection of ∆kx needs to be small in either parabolic or linear band

structures. For parabolic bands, since the vx velocity is independent of kz, to speed

the computation, I can select ∆kz = 2 · kz,max. However, for the material with linear

band, due to the fact that vx is explicitly dependent on both wave vector components

kx and kz, the interval ∆kz should also be selected small enough to roughly maintain

the constant velocity vx for all electrons inside the cell. This grid has to be repeated

for all the contacts (source and drain) and all the energy bands (conduction band and

valence band) involved in the device simulation.

Step 2. Consider the charge of the non-simulated electrons for each bias

point

According to discussion in the main text, the charge inside the simulation box has two

different origins. First, the charge assigned to the explicitly simulated particles, i.e. the
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transport electrons (injected) in the simulation box. Second, the charge assigned to

non-simulated particles, i.e. the charge assigned to the doping and to the non-transport

electrons. From each bias condition, the charge assigned to non-transport electrons

varies. Therefore, at each bias point, I have to compute the charge Qadd(x) defined in

Eq.(14) in the text as part of the fixed charge in the simulation box when computing

device electrostatics.

Step 3. Select the minimum temporal separation t0 for each phase-space cell

At each time step ∆t of the simulation, the algorithm for the injection of electrons has

to be considered. For all the cells of the phase space (for all the contacts and all the

energy bands involved in the device simulation) defined in Step 1, a computation of the

minimal injection time t0 in Eq.(3) and Eq.(4) in the main text is required. When the

time of the simulation is equal to a multiple of t0, an attempt to inject an electron from

this particular phase-space cell into the simulation box happens.

Step 4. Decide if the electron is effectively injected or not

For each electron trying to be injected according to Step 3, a random number r uni-

formly distributed between zero and one is generated. The electron is considered to be

successfully injected only if r < fsum(E), being E the kinetic energy the electron taken.

This stochastic procedure reproduces the binomial probability described in Eq.(6) with

the probability Prob(E) ≡ fsum(E) given by Eq.(12) in the main text. Since fsum(E)

depends on the temperature, the Step 4 not only provide the correct average value of

the number of injected electrons in a particular energy, but also the physical fluctuations

responsible for the thermal noise of the contacts.

Step 5. Select the other properties of the effective injected electron

Once the electron is effectively injected, some additional effort to define its physical

properties is required. The information about the momentum, velocity and x position

for the electron are specified from the selection of the injection cell in Step 1 and Step

4. Since I consider confinement in the y direction of the 2D materials, the y position is

fixed. On the contrary, the z position of the electron is selected with a uniform random

distribution along the lateral width of the spatial cell ∆z. If I deal with quantum

particles, the previous properties of position and momentum refers to the central values
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of the position and momentum of the wave packet (conditional wave function) that is

associated to the electron7.

Step 6. Repeat the complete injection procedure during all the simulation

The Step 3 is repeated at each step ∆t of the simulation time. In addition, Step 4 and

Step 5 are repeated for all attempts to inject an electron.

6.2.4 Numerical results

In Section 6.2.4.1, I provide a discussion on how the local conditions studied in Sec-

tion 6.2.1 provide some important differences in the injection from linear or parabolic

2D materials. Then, in Section 6.2.4.2, I will discuss the results of the local and non-local

conditions on the electron injection model when applied to graphene transistors.

6.2.4.1 Local conditions on the electron injection from parabolic or linear

2D materials

The effect of the material energy spectrum on the number of attempts of injecting

electrons into the system is plotted in Figure 6.6. As it can be seen in Figure 6.6(b),

only electrons with large kx are injected into the system. However, in the case of

materials with linear dispersion relations, as shown in Figure 6.6(a), the majority of

injected electrons have smaller kz. As a consequence, most injected electrons move in

the transport direction at the saturation velocity vx ≈ vf (with |kx| ≈ |~k|).

This difference in the type of injection can imply relevant differences between the electri-

cal properties of electrons devices fabricated with 2D materials with linear or parabolic

bands. As a simple estimation, I assume ballistic transport in the electronic device and

compute the (instantaneous) total current I from each electron inside the simulation

box. The current I is computed by using the (Ramo-Shockley-Pellegrini) expression

I = qvx/Lx being Lx the source-drain distance. As plotted in Figure 6.7(a), almost all

electrons injected from a contact with linear band structure have the same velocity and

carry the same instantaneous current I. On the contrary, in Figure 6.7(b), electrons in-

jected from a parabolic band structure material has large dispersion in both the velocity

and instantaneous current I. The current dispersion (noise) of both types of band struc-

tures are dramatically different, which can have relevant effects in the intrinsic behavior

of AC and noise performances.

7If the Bohmian approach for the quantum transport is taken into account, as done in the BITLLES,
the initial position of the Bohmian particle has to be defined according to quantum equilibrium [75].
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(a) Linear band structure
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(b) Parabolic band structure

Figure 6.6: Number of attempts of injecting electrons computed from Equation (6.27)
plotted in (a) and from Equation (6.26) in (b) for a cell ∆x∆z∆kx∆kz during a simu-
lation time ∆t = 0.1 ns at zero temperature. The parameter m∗ = 0.2m0 being m0 the
free electron mass, gs = 2, gv = 2, Fermi velocity vf = 5 × 105m/s, the dimensions of
the phase-space cell are selected as ∆x = ∆z = 1× 10−7 m, ∆kx = ∆kz = 3× 107m−1.
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(a) The linear band structure
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(b) The parabolic band structure

Figure 6.7: Number of electrons as a function of instantaneous current I for mate-
rials with (a) a linear and (b) a parabolic band structure during τ = 0.1 ns at zero
temperature. The simulation conditions are the same as in Figure 6.6 and with Fermi

level Ef = 0.32 eV.

6.2.4.2 Simulation of graphene transistors

I present numerical results for two different graphene transistors (GFET) performed

with the BITLLES simulator following the injection model presented here including the

additional charge.

Current-voltage characteristic

The first GFET simulated has the following parameters: channel length is Lx = 40nm

, width Lz = 250nm and Fermi energy is 0.15 eV above the Dirac point. It has bottom

and top gates, whose voltages are set equal to zero, Vbg = Vtg = 0 V. In Figure 6.8,
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Figure 6.8: Current-voltage characteristic for the GFET. The red solid (square) line
corresponds to normal graphene injection (electrons injected from both the CB and
VB) current-voltage characteristic, while in the blue dashed (circle) line only electrons
from the CB are injected. The insets sketch different energy profiles for applied bias.

I see two different current-voltage characteristics of a ballistic GFET. The insets are

related to the one plotted in Figure 6.4 indicating the relevant presence of electrons

with energy above the Dirac point (CB), and below (VB). The solid curve corresponds

to the scenario where electrons are injected from both CB and VB. Contrary to normal

FETs, there is no saturation current, since the more the voltage is applied between

source and drain, the more number of electrons are transmitted from the source to

the drain (from valence band in the source to conduction band in the drain). On the

other hand, in the dashed curve, I allow only injection from the CB. Then, current

saturates because after the voltage reaches the Fermi energy value, the same amount of

electrons from the conduction band are injected independently of the applied voltage.

This is similar to typical FETs with semiconductors have energy gap large enough that

typically only electrons from the conduction band (or only electrons from the valence

band) are considered.

Transient

In this other example, I present (see Figure 6.9) the instantaneous current after a tran-

sient perturbation in the gates. This scenario is required to study high-frequency effects



Chapter 6. Time Dependent electrical current and its fluctuations in high frequency
device applications 153

0 1 2

-60

-40

-20

0

20

40

60

V
oltage (V

)

Time (ps)

C
ur

re
nt

 (µ
A

)

 Source    Drain  Gate    Voltage

-0,2

-0,1

0,0

0,1

0,2

Figure 6.9: The transient current in a GFET. Initially both (top and bottom) gates
voltage values are set to Vbg = Vtg = −0.15, at time t = 1 ps this values is changed to

Vbg = Vtg = 0.15.

[184]. I used another GFET with the same parameters, except for the channel length,

which is Lx = 400nm. In Figure 6.9, I see with solid thick lines the mean current in the

drain, source and gate as function of time, and with thinner lines their instantaneous

current. After time t = 1 ps, the current in the drain increases, opposite to the source,

that decreases after the gate voltage perturbation. I notice that the total (particle plus

displacement) current has computed for each contact. At each time step, the sum of

the three currents is zero satisfying current conservation law. I see in Figure 6.9 the

transient dynamics related to the electron dwell time (with Klein tunneling) and the

noise induced by the randomness in the electron injection process.

6.3 Time dependence wave packet consequences: two par-

ticles at the same place

As explained in the previous section, the BITLLES simulator injects wave packets

through the contacts and evolve each of them according to its own pseudodynamical

equation. Different electrons have a conditional wave function, this fact makes that in

some scenarios, two different electrons can be located at the same place, because their

conditional wave function are orthogonal. This effect which appears naturally in the
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BITLLES simulator, is a source of noise which can be just reproduced with time depen-

dent discrete injection simulators, as it will be seen in this section.

Most time-independent models developed for quantum transport are based on the rea-

sonable assumption that the energy width of the wave packet is small enough so that

the transmission coefficient is essentially constant on the wave packet energy range.

However, when this is no longer true, time dependent models are desired to analyze this

scenarios [185]. Here, I analyze a type of Hong-Ou-Mandel (HOM) experiment [186, 187]

with tunneling and exchange. Two identical electrons are injected simultaneously from

two different inputs and after scattering on an electron beam splitter they are measured

at two different outputs. The correlation between the detection of the two outputs is

measured depending on the injection delay. From these correlation values one can di-

rectly obtain quantum noise, i.e., the fluctuations in the number of detected electrons.

In particular, I focus on a situation quite close to the experiment mentioned above, but

where the scattering region is a double barrier potential with an oscillatory quantum

well in a 1D system, see Figure 6.10. In particular, I focus on the case where there is no

delay in the injection among both electrons. Then, in principle it is expected that quan-

tum noise is suppressed due to Pauli principle, which states that two electrons cannot

be at the same place with the same state [188]. As a consequence, it is expected that

each electron will be located at a different output with no (zero frequency) fluctuations.

However, our numerical results and the experiment in this type of HOM system show

that, even if quantum noise is reduced it is not completely suppressed, indicating the

non-zero probability of detecting simultaneously two electrons at the same side. At the

end of this section, an experiment is also presented which could test these non expected

non zero probabilities.

6.3.1 Two-particle probabilities

I consider two particles injected from two different sources, impinging upon a tunneling

barrier as indicated in Figure 6.10. In order to simplify the discussion, I consider elec-

trons with identical spin orientations. Each one is individually defined in a 1D physical

space. The two-particle quantum system can be defined by the (orbital) wave function

Φ ≡ Φ(x1, x2, t) in the 2D configuration space. Such wave function is the solution of the

many-particle (non-relativistic) Schrödinger equation:

i~
∂Φ

∂t
=

[
− ~2

2m

∂2

∂x2
1

− ~2

2m

∂2

∂x2
2

+ V (x1, x2)

]
Φ (6.38)
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Figure 6.10: Double barrier with a time-dependent oscillatory quantum well Vw(t),
whose shape is depicted in the inset figure. Two wave packets (φa(x) and φb(x)) are
located at each side of the barrier at the same distance (xb = −xa) describing each one
an electron with the same energy but with opposite momentum (kb = −ka). With this

experiment, the reliability of the predictions explained in the text can be proven.

where m is the electron mass and V (x1, x2) takes into account the two-particle Coulomb

interaction between the electrons and also the one-particle interaction between one elec-

tron and a tunneling barrier. The exchange interaction is introduced in the shape of the

initial wave function Φ(x1, x2, t0). The anti-symmetrical/symmetrical (orbital) many-

particle wave function for Fermions/Bosons is:

Φ(x1, x2, t0) =
φa(x1, t0)φb(x2, t0)∓ φa(x2, t0)φb(x1, t0)√

2
(6.39)

The above expression can be interpreted as the determinant/permanent of a 2×2 matrix

constructed from the one-particle wave function φa(x, t0) and φb(x, t0) [71]. Hereafter,

upper/lower signs correspond to (non-relativistic) massive Fermions/Bosons. Although

I mainly deal with electrons (fermions), I will also compute probabilities for (massive)

Bosons. The initial one-particle wave functions φa(x, t0) and φb(x, t0) in expression

Equation (6.39) are completely general. The only relevant condition for φa(x, t0) is that

its modulus square is normalized to unity and it is totally located at the left of the barrier

at time t = t0. Identical conditions for φb(x, t0) which is localized at the right. Addition-

ally, according to the type of HOM experiment discussed here, both wave packets have

opposite (central) momentum so that they impinge upon the barrier after a while, as

depicted in Figure 6.10. By construction, the time evolution of Φ(x1, x2, t) using Equa-

tion (6.38) preserves the initial norm and the initial (anti)symmetry of the wave function.
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Let me argue why it is reasonable to expect non-zero probability for finding both elec-

trons at the same side of the barrier. The reason is quite simple and intuitive. Pauli

principle forbids two fermions being at the same position with the same state [188]. How-

ever, a pertinent question appears: When is reasonable the assumption that the reflected

and transmitted states are exactly identical? Certainly, both transmitted and reflected

states are identical when only one state is available in the spatial region where they

coincide. This restriction on the available states is evident when the initial state has a

unique (well-defined) energy Ek i.e., a mono-energetic state. Then, because of the elastic

nature of the interaction with the barrier (i.e., energy conservation), only one state at

the right of the barrier and one at the left with the same energy Ek (and the pertinent

momentum going outside from the barrier) are available at the final time. Neverthe-

less, as stated previously, I require a superposition of mono-energetic eigenstates (i.e., a

wave packet) to describe an initial state with a spatially localized support outside of the

barrier region. Then, in principle, there is the possibility of different time-evolution for

the transmitted and reflected components. In such time-dependent scenarios, one can

expect probabilities different from zero as mentioned before and indicated in Figure 6.14

and Figure 6.15. Notice the different shapes of the reflected and transmitted wave packet

in Figure 6.12.

I consider a particular time t1 large enough so that the interaction with the barrier

is almost finished, i.e., the probability presence inside the barrier region is negligible.

Then, using Born’s rule [71] 8 in the 2D configuration space, {x1, x2}, the probability

of detecting one electron at each side of the barrier (on regions SLR or SRL of the

configuration space depicted in Figure 6.11) at this t = t1 is:

PLR =

∫
SLR
|Φ|2dx1dx2 +

∫
SRL
|Φ|2dx1dx2 = 2

∫
SLR
|Φ|2dx1dx2 (6.40)

Due to the exchange symmetry, the wave function on SLR is identical to that on SRL,

as seen in Figure 6.11. The two integral in the left hand side of Equation (6.40) are

exactly equal, so the total contribution of finding one electron at each side of the barrier

is twice one of the integrals. Equivalently, the probability of detecting the two electrons

at the left of the barrier (on the region SLL of the configuration space) is:

8The detection of the two electrons is a measurement of the wave function that implies a non-unitary
evolution (not accessible from the unitary Schrödinger evolution). As usual, it is assumed that particle
detectors provide a collapse of wave function only in those positions {x1, x2} of the configuration space
where the measurement is present. Notice that only reflected or transmitted components are plotted for
each wave packet in Figure 6.10.
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PLL =

∫
SLL
|Φ|2dx1dx2 (6.41)

Finally, the probability of two electrons at the right of the barrier (on the region SRR)

is:

PRR =

∫
SRR
|Φ|2dx1dx2 (6.42)

I define PLR, PLL and PRR as two-particle probabilities. In Figure 6.11(a) I plot

the probability presence of the initial two-particle state in the 2D configuration space.

According to Equation (6.39), the wave packet φa(x1, t0)φb(x2, t0) has its support on

SLR, while the wave packet φa(x2, t0)φb(x1, t0) on SRL. There is no initial probability

presence in the other regions. The first relevant issue seen on the regions SLL and SRR
of Figure 6.11(b) is that PLL 6= 0 and PRR 6= 0. I explain the reason of these non-zero

probabilities in next section. In general, there is no reason to expect that the probability

of detecting two electrons at the left of the barrier is equal to the probability of detecting

them at the right, PRR 6= PLL as seen in Figure 6.11(b).

Figure 6.11: a) Modulus square of the wave function Φ(x1, x2, t0) at the initial time t0
in the configuration space {x1, x2}. With black solid line is represented the scattering
barrier. Along the axes the single particle wave packet φa(x, t0) (red solid line) and
φb(x, t0) (green solid line) are reported for both variables (x1 and x2). The dotted line
visualizes how the anti-symmetrical wave function is constructed. The different region
of configuration space SLL,SLR,SRL and SRR are explicitly indicated. b) Modulus
square of the wave function Φ(x1, x2, t1) at the final time t1 (such that the interaction
with the barrier is already accomplished). Along the axes φa(x, t1) (red solid line) and
φb(x, t1) (green solid line) for both variables {x1, x2} are reported . With dashed dotted
blue line the anti-symmetry line for Fermions is indicated. As asserted in the text the

probabilities PRR 6= PLL 6= 0.

To certify the unavoidable fundamental (not spurious) origin of the non-zero probabilities

for PLL and PRR, hereafter, I consider exactly the same idealized conditions used in
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[41, 79, 82] when they discuss the two-particle probabilities. I take the two wave packets

φa(x, t0) and φb(x, t0) as identical as possible. In particular, I impose the following three

conditions:

• Condition (i): A separable potential V (x1, x2) in Equation (6.38) without Coulomb

interaction:

V (x1, x2) = VB(x1) + VB(x2) (6.43)

where VB(x) is the symmetrical potential energy of a tunneling barrier, i.e., VB(x) =

VB(−x), with x = 0 at the center of the barrier region. See Figure 6.12(a).

• Condition (ii): All parameters of the initial wave packet a and b are identical,

except for the initial central momentum which accomplishes kb = −ka and central

positions xb = −xa. See Figure 6.12(a).

• Condition (iii): Electrons are injected exactly at the same time.

Because of these conditions, as discussed in Appendix G, the two initial wave packets are

defined with (almost) identical parameters. In particular, I have ga(k) = gb(−k) where

ga(k) = 〈φa(x, t0)| ψk(x)〉 is the complex value that weights the superposition of the

scattering states to build the wave packet φa(x, t0). See Equation (G.4) in Appendix G.

Identical definition for gb(k).

Under these conditions, I can anticipate the evolution of Φ(x1, x2, t) and also the origin

of the non-zero probabilities for arbitrary wave packets. I consider the initial (anti-

symmetrical) wave function of two electrons Φ(x1, x2, 0) defined by Equation (6.39).

Since the time-evolution of Schrödinger equation satisfies the superposition principle,

I can discuss the time-evolution of φa(x1, t0)φb(x2, t0) and φa(x2, t0)φb(x1, t0) indepen-

dently. Then, since I are dealing with a separable Hamiltonian, the evolution of φa(x, t)

and φb(x, t) can be computed from two simpler single particle Schrödinger equations.

At a time t = t1, after the interaction with the barrier, each wave packet splits into two

(non-overlapping) components:

φa(x, t1) = φra(x, t1) + φta(x, t1) (6.44)

φb(x, t1) = φrb(x, t1) + φtb(x, t1) (6.45)

where the upperindices r and t refer to the reflected and transmitted component of each

wave packet (φa and φb), respectively. Then, the two particle wave function in the region

of the configuration space SLL at t = t1 is:

Φ(x1, x2, t1)
∣∣
SLL

=
φra(x1, t1)φtb(x2, t1)− φra(x2, t1)φtb(x1, t1)√

2
(6.46)
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Figure 6.12: a) Schematic representation of the initial wave packets in the physical
space under the conditions (i), (ii) and (iii). With black solid line the double barrier
structure is depicted. With orange dashed line the Left-Right symmetry of the problem
is depicted. With red solid line wave packet φa(x) centered in xa and with momentum
ka is depicted. With green dashed dotted line the wave packet φb(x) centered in xb =
−xa and momentum kb = −ka is reported . b) Modulus square of the wave function
Φ(x1, x2, t1) at the final time t1 at the configuration points {x1, x2}. With dashed
dotted blue line the anti-symmetry line for Fermions is indicated and with orange dashed
lines the Left-Right symmetry for each degree of freedom (x1 and x2) is reported. Along
the axes, the modulus square of the φa (red line) and φb (green line) wave functions
are plotted for each degree of freedom (x1 and x2). The upperindices r or t indicate

reflected or transmitted components, respectively.

Let me notice that the region SLL was initially empty of probability, as seen in Fig-

ure 6.11(a). The initial wave packet φa(x1, t0) on SLR (which is identical to the one

plotted in Figure 6.11(a)) evolves into the part φra(x1, t1) on SLL in Figure 6.12(b).

Equivalently, the initial wave packet φb(x2, t0) in Figure 6.11(a) evolves into the part

φtb(x2, t1) on SLL in Figure 6.12(b). Identical explanations for the presence of φtb(x1, t1)

and φra(x2, t1) on SLL. Clearly, since PLL in Equation (6.41) is computed from an inte-

gral of non-negative real numbers, the requirement for obtaining the result PLL = 0

in Equation (6.46) is that φra(x1, t1)φtb(x2, t1) = φra(x2, t1)φtb(x1, t1) at all positions

{x1, x2} ∈ SLL 9. This last condition can only be obtained when φtb(x, t1) = φra(x, t1)

and φta(x, t1) = φrb(x, t1). On the contrary, if the transmitted and reflected wave packet

components differ, i.e., if the time-evolution giving the transmitted component φta(x, t1)

is different from φrb(x, t1), then I get Φ(x1, x2, t1) 6= 0, which implies PLL 6= 0. Analogous

consideration can be done for the configuration space region SRR.

After discussing the origin of the non-zero probabilities, I present a technical question

that I will test numerically later. The conditions (i), (ii) and (iii) impose an additional

symmetry on the problem. Apart from the intrinsic anti-symmetry of the wave function

9By construction, only in the configuration space points {x1, x2} ∈ SLL such that x1 = x2, the wave
function is always strictly zero (see anti-symmetry line in the Figure 6.12 b).
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implicit in Equation (6.39), there is an additional Left-Right symmetry. This means

that, being x = 0 the center of the barrier region as depicted in Figure 6.12(a), the wave

function under the separable Hamiltonian of Equation (6.43) has to satisfy Φ(x1, x2, t) =

−Φ(−x1,−x2, t) at all times. This additional symmetry implies that the probability of

detecting two electrons on the left is exactly equal to detect them on the right, i.e.,

PLL = PRR as depicted in Figure 6.12(b). However, let us notice that, in general,

when conditions (i), (ii) and (iii) are not satisfied, I have PLL 6= PRR as depicted in the

preceding Figure 6.11(b).

The exact values of PLR, PLL and PRR depend on the effective overlapping between

φta(x, t1) and φrb(x, t1). In Appendix G I develop analytic calculations of the range of

values that the probabilities seen in Equation (6.40)-Equation (6.42) can take when

conditions (i), (ii) and (iii) are assumed. When reflected and transmitted wave packets

are identical, then Equation (6.40)-Equation (6.42) can be rewritten as:

PMLL = PMRR = RT ∓RTPMLR = (R± T )2 (6.47)

which corresponds to the well-known result PMLL = PSLL = 0, PMRR = PSRR = 0 and

PMLR = PSLR = 1. For bosons, I obtain PMLL = PMRR = 2RT and PMLR = (R − T )2.

Let us notice that the sum of the three probabilities is equal to one (for Fermions or

Bosons) because I deal with a unitary evolution. I use the upperindex M denoting that

the overlapping between the transmitted and reflected components is maximum. In

summary, I have tested that our general definitions of the two-particle probabilities in

Equation (6.40)-Equation (6.42) exactly reproduce, as a particular example, the results

found in the literature for scattering states in [79, 82, 170, 173].

For other scenarios, for example a double barriers with wave packets with resonant

energies, I show in Appendix G that the transmitted and reflected components become

orthogonal. Then, the probabilities seen in Equation (6.40) - Equation (6.42) in this

type of experiments at resonances can be written as:

PmLL = PmRR = RT (6.48)

PmLR = R2 + T 2 (6.49)

where the upperindex m here indicates that the overlapping between transmitted and

reflected components is zero (minimum). Again, the sum of the probabilities is one

because of the unitary evolution. These last probabilities PmLL,PmRR and PmLR show no



Chapter 6. Time Dependent electrical current and its fluctuations in high frequency
device applications 161

difference between Fermions or Bosons. In fact, these results are identical to the prob-

ability of distinguishable particles. In conclusion, even with both electrons at the same

position at the same time, the Pauli principle has no effect in these HOM scenarios be-

cause the wave nature of electrons is described by different (orthogonal) wave functions.

I emphasize that, in general, the two-particle probabilities in equations (6.40)-(6.42)

can take any value between the limits imposed by Equation (6.47)-Equation (6.47) and

Equation (6.48)-Equation (6.49). I emphasize that all the previous results are valid for

any shape of quasi-particle wave packets.

6.3.2 Quantum noise with the new probabilities

In this section, after having developed the new two-particle scattering probabilities PRR,

PLL and PLR, I compute the quantum noise formula with the new possibilities (Fig-

ure 6.11 c) and d)) described above. Noise will be computed under the following ap-

proximations:

• I assume that the noise contribution comes from one- and two-particle processes.

In detail, I consider (i) one electron injected from the left and none from the right,

(ii) one from the right and none from the left and (iii) one from left and one

from right. These restrictions are reasonable for standard devices working at room

temperature.

• I treat classically the interaction between electrons and the quasi-electrostatic po-

tential barrier. In other words, I neglect the photon nature of the electromagnetic

field because the frequencies and the electric field I deal with are such that the

number of available photons is large enough [189].

• In order to simplify the final noise expression, I consider a symmetric system,

therefore I will assume that Ta = Tb, Ra = Rb and PRR = PLL. The generalization

to non-symmetrical scenarios can be done straightforwardly.

• I assume that the measurement of the current is done at zero or low frequencies,

where displacement currents can be neglected because their contributions are zero

after time averaging.

Under this approximations, noise can be computed from the knowledge of the number

N of transmitted particles through the barrier during the time td as:

〈S〉 = limtd→∞2q2 〈N
2〉td − 〈N〉2td

td
(6.50)
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We define 〈N〉td =
∑N=∞

N=−∞ P (N)N and 〈N2〉td =
∑N=∞

N=−∞ P (N)N2, where P (N) is

the probability of N particles being transmitted from the left to the right reservoir. The

probabilities P (N) are computed from the direct solution of the two-particle Schrödinger

equation including exchange interaction and summarized in Figure 6.13.

Figure 6.13: Probability (upper) that N (lower) electrons are transmitted from the
left to right reservoir during the time interval td. fi is the Fermi distribution (i = a, b)
and Ti and Ri the i-wave packet single particle transmission and reflection coefficients.

Now, one can determine the noise 〈S〉, which due to the new P (N), is related to PLL
and PRR:

〈S〉 =
4q2

h
(T [fa(1− fa) + fb(1− fb)] + T (1− T )(fa − fb)2 + 2PLLfafb) (6.51)

Equation (6.51) contains the usual Landauer-Büttiker formalism noise expression in the

case where PRR = PLL = 0. However, I have showed that generally, PLL 6= 0 and quan-

tum noise is increased. In the limit of the distinguishable particles behavior, the classical

noise results (understood as a noise due to tunneling of electrons without considering

exchange interaction among them) are recovered PLL = RT and electrons behave like

classical particles. In general, the results predicted by Equation (6.51) lie among the

Landauer-Büttiker formalism and the classical results.

Regarding Equation (6.51), one may wonder if the fluctuation-dissipation theorem [190,

191] is not fulfilled, but I emphasize that this expression is obtained under the assumption

that I work at high temperatures, with only one- and two-particle scattering processes.

At lower temperatures more electrons should be taking into account.
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6.3.3 Numerical results for a two-particle scenario with a separable

and symmetrical double barrier potential

I consider the double barrier plotted in Figure 6.12(a) and also in the inset of Figure 6.14.

The potential profile is built by two barriers of 0.4 eV of height and 0.8 nm of width

between a quantum well of 5.6 nm. This potential profile has Left-Right symmetry.

The x = 0 is situated at the center of the quantum well. The (effective) mass of

the electrons (m) is 0.067 times the free electron mass. The first resonant energy of

such structure is ER = 0.069 eV . At the initial time t0, the initial state is defined

for numerical convenience by two Gaussian wave packets (other choices are possible),

φa(x, t0) and φb(x, t0) [71] whose spatial support is located at the left and right of the

barrier, respectively. Let us notice that such Gaussian wave packets have point-localized

or fully-extended mono-energetic states as two limiting cases. Both wave packets have

the same central energy Ea = Eb, but opposite central wave vectors kb = −ka and

central positions xa = −xb. In Figure 6.14 the time evolution of Equation (6.40))-

Equation (6.42) are depicted. First, I see that for a wave packet whose energy is far

from the resonant energy ER, I obtain PSLR ≡ PMLR = 1, PSLL ≡ PMLL = 0 and PSRR ≡
PMRR = 0, at t1 = 0.7 ps. However, for the resonant energy Ea = Eb = ER I get

the results PLR ≡ PmLR = 1 − 2RT , PLL ≡ PmLL = RT and PRR ≡ PmRR = RT that

correspond to the values of indistinguishable particles predicted by Equation (6.48)-

Equation (6.49). To test these last expressions numerically, I notice that this potential

profile and wave packets give T = 0.806 and R = 0.194, where R and T are the single

particle reflection and transmission coefficients. As explained (see Appendix G), the

latter set of probabilities correspond to a scenario in which the transmitted and reflected

components are orthogonal. In other words, the transmitted wave packet is basically

built by a superposition of resonant scattering states, while the reflected one by mainly

non-resonant scattering states.

As mentioned in the beginning of the section, dealing with the time-dependent Schrödinger

equation implies that the results depend also on the initial wave packet shape. In Fig-

ure 6.15, I study the dependence of the two-particle probabilities of Figure 6.14 on the

size of the initial wave packet. I define the size of the initial wave packet as the double

of the full width at half maximum (FWHM) of the probability presence of the Gaussian

wave packet at t = t0. Such size can be related with the spatial dispersion σx of the

initial wave packet from 2 × FWHM = 4
√

ln(2)σx. In the limit of σx → ∞, a wave

packet approaches to a scattering state.

The maximum wave packet dimensions considered in Figure 6.15 are much larger than

typical reservoir sizes in quantum transport with semiconductors [192] and I still clearly

see PLL = PRR 6= 0. In addition, if I consider barriers much higher than 0.4 eV,
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Figure 6.14: Time evolution of PLR (upper lines) and PLL = PRR (lower lines) from
Φ(x1, x2, t) built by two initial wave packets located at xa = −175 nm and xb = 175 nm
with opposite momenta and equal spatial dispersion σa = σb = 35 nm. The energies
are Ea = Eb = 0.12 eV (red dashed line), Ea = Eb = 0.075 eV (green dot line),
Ea = Eb = ER = 0.069 eV (blue solid line), Ea = Eb = 0.06 eV (dash dot violet line)
and Ea = Eb = 0.05 eV (dash dot dot purple). The inset shows the potential profile.

the resonance becomes much sharper and wave packets with σx ≈ 1 µm still show

PLL = PRR 6= 0.

6.3.4 Numerical results for an oscillatory proposed experiment

There is a HOM experiment [186] where two identical electrons are injected simultane-

ously from two inputs and measured in two outputs. In the experiment, it is found out

that the possibility of measuring both electrons at the same side is not zero, as usually

expected. Apart from [193, 194] that explain this result because of the interaction among

different Landau levels in the inner channels, other explanations appeal for decoherence

[195], spurious results [196] and time delay in the injection [197].

With the approach explained previously in Section 6.3.1 and Section 6.3.2, alternatively,

a fundamental (non-spurious) reason for the experimental results can be given. Due to

the time and energy dependence evolution of the electron wave packet, after the interac-

tion with the barrier, the reflected and transmitted components of the wave packets do
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Figure 6.15: The probabilities of PLR (upper lines) and PLL = PRR (lower lines)
from Φ(x1, x2, t1) at time t1 = 0.7 ps with the same initial wave packets and energies
of Figure 6.14 but with variable spatial dispersion σx = σa = σb. The inset shows the

potential profile.

not overlap completely. Thus, there is no reason to expect that they cannot be detected

at the same place because their states are different and then the exclusion Pauli principle

does not apply.

In this section, an experiment with oscillating potentials which would be able to test

the reliability of the explanation for the unexpected noise results is presented. I analyze

the case where two electrons are injected simultaneously with the same energy from

both sides of a double barrier at the same distance from the barrier. This double

barrier system has a time-dependent well (see Figure 6.10), which oscillates periodically

according to expression Vw = Vb
2 sin(wt). In order to increase the visualization of these

new probabilities, I will consider the injection of electrons whose energies are close to

the (first) resonant energy of the double barrier. For these energies, the transmission

coefficient has a sharp energy-dependence so that the reflected and transmitted wave

packets become almost orthogonal, |Ir,ta,b|
2 ≈ 0. This resonant scenario is selected to

maximize the condition that the transmission coefficient is not constant in the wave

packet energy range [E −∆E/2, E + ∆E/2]. Then, the new probabilities become more

relevant.
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It can be reasonably expected that, by changing the potential level of the well inside

the barrier, the resonant energy of the double barrier will change accordingly, while the

electron approaches the barrier region. This will cause that for some electrons that in

the time-independent case were not resonant, and therefore their probability of finding

both at same place was low, will be resonant, increasing enormously the probabilities of

finding both of them at the same side of the barrier.

In our proposed experiment two electrons are artificially injected, one from each side

of the barrier simultaneously. Artificially means that the standard injection from the

mesoscopic contacts at thermal equilibrium is not pertinent in this experiment. Then,

in Equation (6.51), the temperature is not relevant and fa = fb = 1. No thermal noise

has to be considered in this type of experiments with artificial injection. Under these

considerations, the only term which survives in Equation (6.51) is the last one, which

contains the new probability PLL of finding both particles at the same side. Therefore, in

this particular scenario, the computation of PLL provides directly, apart from a constant

factor, the quantum noise in Equation (6.51).
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Figure 6.16: The overlapping term |Ir,ta,b|2 is plotted as a function of the frequency of
the oscillation well and also as a function of the central energy of the injected electrons. I
see that for certain values, the overlapping is almost zero, corresponding to the resonant

energies.

I performed simulations for the experiment, as a function of the energy of the injected

electrons and also of the frequency of the oscillation of the bottom potential of the quan-

tum well. I chose as initial state for the electron wave functions φa(x, t0) and φb(x, t0)

a Gaussian function φi = [2/(σ2π)]1/4eik0(x−x0)e−(x−x0)2/σ2
, whose initial position is
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Figure 6.17: Noise is plotted as a function of the frequency of the oscillation well
and also as a function of the central energy of the injected electrons. I appreciate how
there is are a line where maximum values are achieved. In the blue solid line, I see the
maximum values expected for the noise from Equation (6.56), the data fit accurately.

x0 = 175 nm far from the center of the barrier, dispersion σ = 50 nm and initial central

momentum is k0 =
√

2m∗E/~. The barrier is 0.4 eV high, its thickness is 1.0 nm and

the quantum well length is 5.2 nm. I emphasize that any other localized wave func-

tion can be chosen without modifying qualitatively the results discussed here, as far

as the transmission coefficient is not constant on the energy range of the wave packet

[E −∆E/2, E + ∆E/2].

This result is seen in Figure 6.16 and Figure 6.17, where I plot the overlapping term

Ir,ta,b and noise 〈S〉 respectively, as a function of the energy of the electrons and also of

the oscillatory frequency of the well. The results corresponding to the static case (no

oscillatory well) are seen at frequency equal to zero. In this static situation, the resonant

energy is Er = 0.073 eV , and I appreciate in Figure 6.16 that at this energy value, the

overlapping is minimum, and in Figure 6.17 that noise achieves its maximum value.

In Figure 6.16 ( Figure 6.17), I observe that when I switch on the oscillation, the mini-

mum (maximum in Figure 6.17) value for the overlapping Ir,ta,b (noise 〈S〉 in Figure 6.17)

moves. Therefore, as I expected, resonant energies could be found for other energies

even if in the static case they were not. Moreover, the position of the maximum values

of 〈S〉 in Figure 6.17 for different frequencies and energies can be easily understood. In

our scenario, the applied potential energy at the well is:
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Vw(t) =
Vb
2
sin(ωt) =

Vb
2
sin(ωtb + ω(t− tb)) (6.52)

where I have defined tb as the time that the electron takes to arrive at the double barrier.

I consider that the electron transit time τt, i.e., the time spent by the electron in the

double barrier, is much shorter than the inverse of the frequencies I are dealing with.

Taking that ω(t − tb) � 1 for tb < t < tb + τt I can provide a Taylor approximation to

expand Equation (6.52) as:

Vw(t) =
Vb
2

[sin(ωtb)cos(ω(t− tb)) + cos(ωtb)sin(ω(t− tb))] ≈

Vb
2

[
sin(ωtb)

(
1− ω2(t− tb)2

2

)
+ cos(ωtb)ω(t− tb)

]
≈ Vb

2
sin(ωtb) (6.53)

Therefore, the electron perceives a “static” potential when it is inside the barrier and no

harmonics should be taken into account [198]. Finally, a valid approximation to compute

the resonant energy is:

Er = Er0 +
Vb
2
sin(wtb) (6.54)

where Er0 is the resonant energy when there is no oscillation in the well and tb the time

that the electron takes to arrive to the barrier. This time tb is the ratio between the

distance (x0) from the place where the injection takes place until the barrier, and the

velocity of the electron (ve):

tb =
x0

ve
=

x0m
∗√

(2m∗Er)
(6.55)

From Equation (6.54) and Equation (6.55) one realizes that the frequency for the max-

imum probabilities as a function of the resonant energy is:

w(Er) =

√
(2m∗Er)

x0m∗
arcsin

(2(Er − Er0)

Vb

)
(6.56)
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which is in perfect agreement with the results observed in Figure 6.17. There, I see that

the peak values for noise at each energy, move accordingly to Equation (6.56), which is

plotted in the frequency-energy plane with a blue solid line.

Therefore, the simulations performed with sinusoidal potentials provide a clear behavior:

when I move to higher frequencies, quantum noise will be increased as I move to higher

energies and will achieve a maximum at the new resonant energy. The experiment

can be modified and include other behaviors when changing the potential according to

another expression. For instance, Vw = −Vb
2 sin(wt), in this case the resonant energy

will decrease as frequency increases (mathematically, the negative sign in front of the

sinusoidal signal can also be introduced as a negative frequency in Figure 6.17). Here, I

propose that this very particular behavior of the maximum of the quantum noise 〈S〉max
in the frequency-energy plane can be use as a test of our novel physical explanation

of non-zero correlations in this type of HOM experiments with exchange and tunneling.

The experimental confirmation of such predictions will, in fact, give support for the need

of using time-dependent states when modeling quantum noise in such experiments even

for static (DC) conditions.

6.4 Charge discreteness as ultimate limit for THz opera-

tion electronic devices

The main interests for decreasing electron devices towards nanoscale dimensions are pro-

viding large scale transistor integration, lower power dissipation and high speed commu-

tation. The drawbacks and solutions of such scaling strategy for the usual GHz frequency

performance of ultra-small devices are well established (high-K dielectrics avoid spurious

gate tunneling, multi-gate structures avoid short-channel effects, etc.). Therefore, typi-

cal structures like Fin-FETs, Gate-All-Around FETs, Silicon nanowires or graphene (or

other 2D materials) nanoribbons are the typical ultra-small devices expected to play an

important role in next-future electronics. All previous structures have very small active

regions. Not only channel lengths below 10 nm or lower are being considered for such

state-of-the-art devices, but also lengths as small as 2 nm for the lateral dimensions.

Such ultra-small devices are said to allow logic application working at THz frequencies.

In this section, I show that, due to the discrete nature of electrons, the noise in small

electron devices at high frequencies make the fast logic operation unpractical. I antici-

pate that when the number of electrons in the active device region is very small, then,
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the intrinsic uncertainties in the dynamics of electrons imply important variations in the

number of electrons inside the active region and in its dynamical behavior. Such uncer-

tainties are directly translated in the instantaneous current as fluctuations of THz noise

over the mean value, understood as the signal. This high frequency noise disappears if

the information about the current is obtained by averaging the instantaneous current

over times much larger than the typical electron transit time (as the problem of discrete

dopants would easily disappear if an ensemble over different devices were allowed). This

fact also explains why the dramatic conclusions explained here are relevant at frequen-

cies comparable to the inverse of the transit time. Therefore, there is an intrinsic limit

in the nanoscale scaling of electron devices imposed by the discreteness of the charge

and its noise.

As stated in Section 6.1.1, the study of high-frequency scenarios in the quantum do-

main is one field which needs to deal with multi-time measurements. In the same way,

that there was a first simulation revolution when changing from semiclassical tools to

quantum tools (and then mixing band structure and electron transport) when quantum

effects could not be longer neglected in (small) electron devices, nowadays a second rev-

olution from static quantum tools to dynamic quantum tools needs to be made in order

to account properly for high frequency effects. In this second revolution, not only the

quantum evolution (given by the many-body Schrödinger law) is needed, but also the

non-unitary collapse law will be required. In that sense, the Bohmian theory provides

a natural language and tools to lead this second revolution (for a longer discussion, see

Section 6.1.1).

6.4.1 Current, noise and signal to noise ratio for different frequency

operation regimes

Any electron device is expected to work at some clock frequency. I define the (clock)

frequency of operation of the electron device as 1/T , where T is the time interval (named

as clock time) that correctly the device spends in connecting correctly the input and

output signals. Therefore, I do not need to deal with the instantaneous current Ij(t)

defined in Equation (6.10), but I can assume a time-averaged value of the instantaneous

current in the surface Sj (see Figure 6.1) during the time interval [t− T, t], defined as:

IT,j =

∫ t
t−T Ij(t

′)dt′

T
(6.57)
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The standard deviation σT,j of the averaged current quantifies the noise of such a device,

in Equation (6.20)10,

σT,j =
√
4I2 = var(IT,j) (6.58)

Let me notice that the noise is suppressed when T → ∞ in Equation (6.57). Thus,

Equation (6.57) can be considered as a low pass filter process. The signal to noise ratio

is a very important parameter when characterizing a device, since it tell us how strong

is the signal compared to the noise, and how much noise we can accept in our system.

We can now write the signal-to-noise ratio, for each particular value of T, as:

SNRT,j =
〈IDCj 〉
σT,j

(6.59)

where 〈IDCj 〉 is the DC value of the current (which is independent of T ), i.e., IDCj ≡ IT,j
when T →∞.

To study analytically how the discreteness of charge affects the noise in an electronic

device, I will consider a two terminal device, with a volume Ω = L · W · H, where

L >> W,H. In that case (for a device having two metallic contacts of infinite lateral

size separated by a distance L), the Ramo-Shockley-Pellegrini theorem provides and

alternative expression for Equation (6.57) (see Section 6.1.2):

IT (t) =

q

L

∑Ne
k=1 ∆xk(t)

T
(6.60)

where ∆xk(t) is the distance completed by the electron during the time interval t−T ≤
t′ ≤ t inside the spatial limits of the device 0 ≤ rxk(t′) ≤ L. We get 0 ≤ ∆xk(t) ≤ L.

For simplicity I will consider a uniform velocity vxk(t) ≈ ve (in fact, this approxima-

tion is obviously valid for linear bands structure materials such as graphene). Then,

Equation (6.60) can be rewritten as:

IT (t) =
q

TL
Ne∆x (6.61)

10Remember the discussion in Section 6.1.3 about the experimental problems to measure infinite
frequencies, i.e., T → 0.



Chapter 6. Time Dependent electrical current and its fluctuations in high frequency
device applications 172

where Ne is the number of electrons inside the volume Ω. Two different frequency

operations regimes can be distinguished here, when T is much shorter than the typical

electron transit times (scenario “a”) and when it is much larger (scenario “b”).

6.4.2 The limit T much shorter than the transit time τ (T << τ)

The first corresponds to the case where T is much shorter than the transit time τ of

most of the electrons crossing the device, T << τ . In that case, electrons are not able

to cross the volume Ω during the time T . Since ∆x = ve · T , Equation (6.61) can be

rewritten as:

ITa(t) =
q

L
veNTa(t) (6.62)

where NTa(t) is the number of electrons inside the device during the time interval T .

From Equation (6.58), the noise then is:

σTa(t) =
qve
L

√
var(NTa(t)) (6.63)

In order to understand better Equation (6.62) and Equation (6.63), let us take two

different devices, the one we are interested in (with length L) and an arbitrary one

(La). Since electrons have no time to cross the device, different length devices implies

a difference in the number of particles inside the device. Because, under our ballistic

assumption, there is no correlation between the electrons in the device, var(NTa(t)) =
L
La
var(Na(t)). Then, the ratio between the noise of both devices is:

σTa(t)

σa(t)
=

qve
L

√
var(NTa(t))

qve
La

√
var(Na(t))

=

√
La
L

(6.64)

From Equation (6.64) we can then obtain that the noise of our device is:

σTa(t) =

√
La
L
σa(t) =

qve√
La

√
var(Na(t))

1

L
=
ctea√
L

(6.65)

Equation (6.65) implies that when T << τ , the noise is inversely proportional to the

root square of the length in the transport direction. The device with smaller L provides

more noise. The reason why an electron inside the active region (without reaching

the contacts), still provides current and charge fluctuations on the contact is because

the original Equation (6.61) includes the displacement current. Without the explicit
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consideration of such displacement current, this limit cannot be established. We remind

that the limit of noise at the transit time is also valid in classical or quantum regimes,

without fixing any geometry factor of the device expect the length L.

6.4.3 The limit T much larger than the transit time τ (T >> τ)

When the averaging time is much larger than the transit time, electrons completes the

distance L during the time interval T , so ∆x = L in Equation (6.61) and then the

current is:

ITb(t) =
q

T · L
NTb(t)L =

q

T
NTb(t) (6.66)

where now NTb(t) is the number of electrons crossing the device during the time interval

T . From Equation (6.66), the noise is:

σTb(t) =
q

T

√
var(NTb(t)) (6.67)

Now, we will do a similar procedure as in Section 6.4.2. But, let me remark that

the situation now is different to the previous one. In this case, electrons cross the

device during time T, and then the number of particles NTb(t) is independent of the

device length. So, let us take an arbitrary time T0 . Then, we can establish that

var(NTb(t)) = Tb
T0
var(N0(t)). If we compute the ratio between the noise in this two

different averaging times:

σTb(t)

σT0(t)
=

q
T

√
var(NTb(t))

q
T0

√
var(NT0(t))

=

√
T0

T
(6.68)

And then, the noise of our device is:

σTb(t) =

√
T0

T
σT0(t) =

q√
T0

√
var(NT0(t))

1

Ta
=
cteb√
T

(6.69)

From Equation (6.69), we see that effectively, in this limit, noise is independent of the

device length.
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6.4.4 Numerical simulations

In this section I present different simulations, which certifies that, independently of

the classical or quantum regime, the previous predictions presented in last section are

completely valid.

6.4.4.1 Classical numerical simulations

Firstly, I present semiclassical Monte Carlo simulations. The mean velocity ve inside

the active region is defined through the Silicon band-dispersion. The variations in the

number of particles come from the randomness of the injection of electrons into the

active region (see Section 6.2 for more details): the thermal noise. In Figure 6.18, the

value of σT computed from Monte Carlo simulations using Equation (6.58) are plotted.

Numerical results were provided by Tomás González research group, from the University

of Salamanca. Three different device lengths are studied. For simplicity, injection from

one of the contacts is just considered without bias applied. The limits σTa and σTb are

clearly reproduced in Figure 6.18. Notice the dependence on 1/
√
T for T >> τ and the

dependence on 1/
√
L for T << τ , as indicated in Equation (6.65) and Equation (6.69),

respectively.
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Figure 6.18: Noise as a function of the averaging time T for three different Silicon
devices, when there is no bias applied. Simulation were performed with the semiclassical
Monte Carlo approach. I accept as tolerable noise a signal to noise ratio equal to 11

[199].

Let me now imagine that I design a device with Lx = 100 nm for very high-frequency

applications with an expected operating time of T = τ = 1 ps (i.e., an operating
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Figure 6.19: Noise as a function of the averaging time T for the same device as
in Figure 6.18, when different bias are applied. Simulation were performed with the

semiclassical Monte Carlo approach.

frequency of 1 THz). For example, the design has a signal current value of 〈I〉DC = 1

µA (horizontal dashed line in Figure 6.18) and that our particular application requires

a typical factor 10 for the signal-to-noise ratio (see tolerable noise in the horizontal

dashed line in Figure 6.18). Thus, I conclude, that the expected length L = 100 nm

and operating time T = 1 ps are incompatible with the required level of noise σT = 0.1

µA. Such noise level can only be obtained working at T = 500 ps (see vertical line in

Figure 6.18) where the three different lengths provide the same noise level. In conclusion,

at the end of the day, there is no reason to prefer the shorter device. The larger one

is equally valid. Let me remind that increasing the value of the current signal is not

a generally acceptable solution because low power consumption is also a mandatory

requirement for ultra-small devices.

Equation (6.64) also give us the ratio between different noises when T is much shorter

than the transit time, which can be compared with the numerical data presented in

Figure 6.18. For instance, we see that according to Equation (6.64), the ratio between

device with L1 = 0, 1 µm and L2 = 1 µm should be

√
L2

L1
= 3.16. According to the

numerical results, the ratio is 3.05. Therefore, analytic and numerical results fit perfectly,

showing the success of the results presented. The same calculus can be done with the

other device (L3 = 10 µm), showing the same accuracy.

In Figure 6.19, I plot the same information as in Figure 6.18 for several applied bias.

The consideration of far from equilibrium conditions does not change the previous overall
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Figure 6.20: Noise as a function of the averaging time T for the same device, when
different bias are applied. Simulations were performed with the fully quantum BITLLES

simulator. I accept as tolerable noise a signal to noise ratio equal to 11 [199].

conclusion (the bias conditions only modifies the quantitative values). I notice in Fig-

ure 6.19 that, for small averaging times T << τ , the value of σTa grows when larger bias

is considered because the (mean) velocity of electrons, ve, present in Equation (6.65),

increases with bias. For the same reason, for large averaging times T >> τ , the value

of σTb decreases when large bias are considered because the faster electrons spent less

time in the active region and var(NTb(t)) decreases, decreasing the its noise in Equa-

tion (6.69).

6.4.4.2 Quantum numerical simulations

Now, I will present similar numerical results as the ones showed previously, but using all

the work performed during the thesis, i.e., I will simulate a graphene transistor (instead

of a Silicon transistor) with the use of all the formalism developed in Chapter 4 and the

model injection developed in Section 6.2. Thus, I will perform similar simulations as the

ones presented in Figure 6.18 (injecting just from one side without applying any bias),

but this time instead of using the semiclassical Monte Carlo approach, I will use the full

quantum BITLLES simulator.

In Figure 6.20, differences appear regarding the values of the current and noise. This

is because graphene is a linear band structure material, and therefore it has a constant

velocity (independently of the electrons energy) whose value (vf = 106m/s) is high

compared to the typical ones in Silicon. Since the particles velocity is proportional
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to the current, as it can be seen from Equation (6.14), current values in graphene are

higher than the usual ones in the typical semiconductor devices. In addition, we see

that the averaging times T are much shorter, this fact occurs because the transit times

τ are much shorter because the devices are smaller and the carriers velocity is higher.

This fact makes that the operating time for these graphene transistors is much smaller,

T ≈ 0.5 ps, with a clock frequencies around f ≈ 2 THz.

Apart from this difference, the shape of Figure 6.18 and Figure 6.20 are very similar.

We see that in both of them, for averaging times smaller than the transit time, noise

scales as σTa = ctea√
L

. Whereas for averaging times larger than the transit time, σTb = cteb√
T

.

Therefore, even when accounting for quantum effects, it can be seen that Equation (6.65)

and Equation (6.69) are completely valid. In addition, if we compute the ratio between

the noise for different device lengths, when the T is much shorter than the transit time,

we can see again the success of our predictions. According to Equation (6.64), the ratio

of the noise of the devices is

√
L2

L1
=

√
100

40
= 1.58 and regarding the simulations, this

ratio is 1.74, showing again an very good accuracy.

6.4.5 On/Off switching time

In this section, I went one step further and I focused on observing how the previous dis-

cussion affects the On/Off switching times in a graphene double gate transistor (source,

drain, bottom and top gates), as the one depicted in Figure 6.3. I remark that this sce-

nario is a realistic device simulation (injection is performed from both sides and there are

two gates) and it goes beyond the analytic description of Section 6.4.2 and Section 6.4.3,

but the physics does not change, and then I expect the same qualitative results.

For that purpose, I will analyze a transient, i.e., I will establish a constant bias between

the drain and source and I will change the gate voltage bias. Then I will obtain the

switching time by time averaging the instantaneous total (particle plus displacement)

current (obtained with the most general expression of the Ramo-Shockley-Pellegrini

theorem explained in Section 6.1.2) through Equation (6.57).

In order to establish the best value of the drain-source bias (Vds) and the top and

bottom gate values (Vt = Vb ≡ Vg) to perform the transient, I made different current-

voltage characteristic curves for different gate values and I will look for the values that

maximizes the differences between the current that I will consider as the ON state and

the one that I consider the OFF state. According to Figure 6.3, the transistor volume Ω

is Ω = 20× (5+1+5)×250 nm3 and the total device length L = L′x+Lx+L′x = 40 nm.
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Figure 6.21: Current-voltage characteristics for the four terminal transistor whose
active region volume is Omega = 20× (5 + 1 + 5)× 250 nm3. The optimum values for

maximizing the ON and OFF currents are VDS = 0.12 and Vg = ±0.15.

Results are plotted in Figure 6.2111. There we see that the maximum difference between

current is achieved for a value of VDS = 0.12 V and Vg = ±0.15 V. Therefore, the ON

state corresponds to Vg = 0.15 V, while the OFF state corresponds to Vg = −0.15 V.

Next, I will make a simulation where a transient is performed and I will analyze the

switching times obtained. Initially, the gates value is Vg = −0.15 V. After four ps, the

gate value is changed to Vg = −0.15, as shown in Figure 6.22. The main value of the

current during both interval times is 〈IDC1 〉 and 〈IDC2 〉 respectively.

Here, numerical results for two different devices (labeled by A and B) are presented.

The Ω volume of device A is ΩA = 20 × (5 + 1 + 5) × 250 nm3, its total channel

length is LA = 40 nm and its transit time is τA = LA
vf

= 0.04 ps. On the other hand,

ΩB = 50× (5+1+5)×250 nm3, its total channel length is LB = 100 nm and the transit

time is τB = 0.1 ps.

The instantaneous current for the two different devices is plotted in Figure 6.22. We can

see there the instantaneous current as a function of time, as well as the gate voltage as

a function of time. Current increases when switching the gate voltage. Clearly, without

time averaging the current (with the use of Equation (6.57)), noise does not allow us to

11The Fermi energy is Ef = 0.15 eV. The shape of these curve characteristics was explained in
Section 5.3.3.3.
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Figure 6.22: a) Instantaneous current and its mean value as a function of time for
device A. b) Same information as in a), but for device B.
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Figure 6.23: a) Current and noise as a function of the averaging time T for the first
time interval for device A and device B. I accept as tolerable noise a signal to noise

ratio equal to 11 [199]. b) Same information as in a), but for the time interval 2.

differentiate the ON and OFF states. The question now is from which T , we can affirm

that we are able to distinguish both states.

I remark that the results presented will not be obtained from an average of different

experiments, since when a device is working, there is no interest in mean values of dif-

ferent experiments, we are just interested on the time where the device “decides” that

it is on the ON state and when it is in the OFF state.

With this information, we can obtain the time averaged current and its associated noise

(in the same way as it was done in Section 6.4.4) for both time intervals (before and

after switching the gate voltage). Results are plotted in Figure 6.2312.

12Differently from Figure 6.20, results are noisier for large averaging times. This is because in Fig-
ure 6.20 I averaged the results through different simulations in order to see very clearly the noise values.
In this case, since I am interested just in what occurs in one experiment, I did not make the averaging
between different simulations and results are noisier.
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squares, it is plotted the data obtained from simulations. The operation time are the

ones seen in Figure 6.23. b) Same information of a), but for the device B.

Regarding Figure 6.23, even if this scenario is very different from the one studied in

Section 6.4.4 (there was no applied bias and there were no gates), we can still recognize

the two different limits, when T << τ (see that in both intervals, noise due to device

A is greater that the one of device B) and when T >> τ (noise becomes independent

of device channel length). Therefore, as expected, all our predictions are still present in

the system. This fact will make that incorrect switching times will be obtained for small

averaging times. This is is seen in Figure 6.24. There, it can be clearly seen that just for

large averaging times T , the numerical results approach to the case when the discrete

nature of charge is not taken into account. So the one determining the frequency at

which a device can work is not the transit time τ , but T .

The switching time from numerical results (circle red points in Figure 6.24) ∆T is defined

as the time needed after applying the switch for going from the current value 〈IDC1 〉 until

〈IDC1 〉+ 〈I
DC
2 〉
2

, i.e., to increase the current a quantity equal to
〈IDC2 〉 − 〈IDC1 〉

2
. On the

other hand, without taking into account the noise induced by the discrete nature of

charge (square black points in Figure 6.24), the switching time is either ∆T0 = τ
2 when

T < τ or ∆T0 = T
2 when T > τ .

6.4.6 Intrinsic noise limit in the nanoscaling of electron devices

During decades, the relation between the clock frequency f and the channel length L

has been determined by the transit time limit [200]. The clock frequency of a CPU is

usually 1/3 of the cut-off frequency. Thus, neglecting parasitic effects, f is inversely

proportional to the electron transit time τ :
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f ≤ 1

3τ
=

v

3L
(6.70)

Since 2005, as seen in Table 6.26, the clock frequency has stagnated around f=5 GHz

independently of the channel length to keep acceptable values of the heat dissipated

by the 109 − 1010 transistors present in a CPU (see orange line in Figure 6.25). This

heat is a global CPU limit, not a limit on each individual transistor as in Equation (6.70).

Here, I discuss that apart from this transit time limit, there is another intrinsic limit for

the clock frequency of transistors because of the discrete nature of electrons. It is clear

that, from Equation (6.70), one can never work at higher frequencies than the one given

by the inverse of the transit time. But let me analyze analytically what is the noise limit

imposed by Equation (6.67).

I assume a binomial probability distribution injection, being p the probability of success.

I consider Nτ electron that attempt to be injected during the time τ , then 〈Nτ 〉 = pNτ

and var(Nτ ) = 〈Nτ 〉(1 − p). If I compute the number of electrons inside a 3D active

region from the phase-space density, Nτ = gLLyLzk
3
f/π

3, I get from Equation (6.67):

f ≤
gLWHk3

f

π3SNR2

p

(1− p)
(6.71)

where g is the (spin or valley) degeneracy 13.

In Figure 6.25, I plot the clock frequency f as a function of the typical size of the Si

MOSFETs obtained from the data of CPUs in Table 6.26. The clock frequencies of all

transistors follow the trend associated with the transit time limit, plotted with a solid

blue curve from Equation (6.70) (with v obtained from [201]). On the other hand, the

red dashed line corresponds to the noise limit given by Equation (6.71) and obtained

with Ef = 0.026 eV, p = 0.5, g = 2, W = H given by the feature size from Table

6.26 and SNR ≈ 11 [199]. Additionally, nowadays there is also a limit concerned to

power dissipation. One of the great advantages of CMOS technology is that it lacks of

dissipation, except when it switches among the ON and OFF state. The dissipation is

proportional to the number of switches, i.e., the higher frequency we want to work, the

more dissipation will occur. For that reason, I also plotted with a orange horizontal

13For 2D material devices, a similar expression can be found, but introducing the phase-space density
for a two dimensional material.
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Figure 6.25: Clock frequency f from a set of commercial transistors available in last
decades as a function of the typical size. Future nanoscale transistors have to work in
the triangle given by the transit time (solid blue line) and the noise (dashed red line)

limits, above the power (orange line) limit for improved cooling strategies.

solid line the actual power limit. I want to emphasize that this limit is not an intrinsic

limit, and it may be overcome with new strategies and improvements.

Regarding Figure 6.25, the conclusion is that there are two intrinsic and different limits

for the clock frequency at which a device can work. On the one hand, for low frequen-

cies, the transit time limit (solid blue line) is the one that limits the clock frequency.

At higher frequencies, due to the device miniaturization and because of the discreteness

of the few electrons of the system, the noise limit (red dashed line) cannot longer be

neglected and it competes with the transit time. At enough high frequencies it can even

overcome the transit time limit, and then it will represent the true and unavoidable

fundamental limitation to reach THz transistors.

Let me notice that typical quantum devices simulators are unable to capture the discus-

sions done here. They work with the time-independent models that finally try to solve

the many-body time dependent Schrödinger equation. However, the Schrödinger equa-

tion is just a valid law for part of the quantum systems, this which are not measured.

For high frequency electronics (and not just static scenarios where the DC information

is enough), the valid way to analyze quantum systems is to collapse it. It is in this sense
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Figure 6.26: Characteristics of some commercial transistors in last four decades. Data
obtained from http://cpudb.stanford.edu

that we talk about a second revolution for the electronic simulations, and in this frame-

work the BITLLES simulator is an excellent simulator to study such high-frequency

scenarios.
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Chapter 7

Conclusions

In this thesis, an improvement of the electron BITLLES simulator was performed and

used to obtain quantum transport properties in different scenarios. This simulator mod-

els electron nanodevices with the use of Bohmian mechanics, a quantum theory which

in its ontology -apart from the wave function- particles have always definite positions

and describe trajectories.

In Chapter 1 I introduced the electron device simulators state-of-the-art. Because of

“Moore’s law”, electron devices have reached the nanoscale regime. Quantum effects

appear and then, classical simulators are unable to reproduce these effects. For that

reason, new full quantum simulators are needed. I presented the most popular and used

ones.

In Chapter 2 I explained which are the different quantum theories that tries to explain

and construct a reality for all the quantum effects observed in experiments. Apart from

the well known Copenhagen theory, the GRW theory, the many-worlds theory and the

Bohmian theory are explained.

In Chapter 3 Bohmian mechanics is deeply discussed. It is shown how it faces the

measurement problem in a very elegant way, without the need of collapse. In addition,

the conditional wave function (a unique tool of Bohmian mechanics which corresponds

to the wave function of a subsystem) is explained. I also presented the BITLLES simu-

lator and how it works.
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In Chapter 4 I introduced the importance of graphene (which has a linear band struc-

ture) in nowadays electron devices, making its inclusion in current electron device simu-

lators mandatory. In this Chapter I showed how linear band structures can be modeled

by the the bispinor Dirac equation, and I showed how implemented it in the BITLLES

simulator, with its associated Bohmian trajectories. I also presented an analytic evolu-

tion of a bispinor Gaussian wave packet in graphene.

In Chapter 5 I presented what are the problems of phase spaces in quantum theories

where one cannot define simultaneously positions and momenta when including scatter-

ing. I made emphasis in the well known Boltzmann Collision operator and showed why

it is not a completely positive method. In this Chapter, I showed a new completely pos-

itive method for Markovian and non-Markovian systems based on the Bohmian theory.

In Chapter 6 I explained why the BITLLES simulator is so suitable for computing

AC currents, transients and high-frequency scenarios. I presented the time dependent

model injection, as well as a source noise which cannot be captured by time independent

models. In addition, I showed a limitation for the miniaturization of electron devices

due to the discrete nature of electrons.

Certainly, this thesis is unusual in the sense that it merges concepts belonging to foun-

dations of quantum mechanics and practical issues about state-of-the-art nanoelectronic

devices. The reader can wounder why such mixing of concepts. However, as showed

during the thesis, Bohmian mechanics provides excellent tools to model high frequency

electron nanodevices and its fluctuations, because in its ontology, apart from the wave

function, particles have definite positions. Therefore, this theory deserves to be explored

and exploited. The fact that Bohmian mechanics is not a well established theory as the

orthodox one is not a scientific reason to reject it and not to use it in the electron device

simulator framework, specially when it offers so many advantages.

One of the typical criticisms done to the Bohmian theory is that it is not useful for com-

putations and then, it is worst than the orthodox one. In this thesis, I developed several

computations where I showed that this is not true. At a minimum it can provide differ-

ent approaches with different approximations. Even more,it can provide advantages over

the orthodox one. Specifically, the (bohmian) BITLLES simulator was adapted to the

necessities for modeling nowadays electron nanodevices, i.e., dissipation was included

(through a new Bohmian scattering approach) as well as the possibility of modeling

materials with linear band structures, such as graphene (by solving the time-dependent
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bispinor Dirac equation). With these new two ingredients, the simulator becomes an

excellent candidate to extend the successful (semiclassical) Monte Carlo approach into

the quantum regime. Some examples that reflect the versatility of the simulator can be

found in Chapter 5 and Chapter 6, but many other time dependent scenarios can be

envisioned and will be performed in the near future.

I hope that this thesis can contribute to the quantum community to better appreciate

the capabilities and opportunities that the Bohmian theory offers, and somehow, also

to help the Bohmian theory to occupy the rightful position that it deserves.
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Appendix A

Calculus for obtaining the Dirac

equation

A.1 Taylor approximations for computing f( ~K(′) + ~q)

The aim is this section is to obtain the following equations (Equation (A.2)):

f( ~K(′) + ~q) = −3a

2
(αqx + iqz) (A.1)

f∗( ~K(′) + ~q) = −3a

2
(αqx − iqz)

We start from:

f(~k) =
(

1 + e−i
~k~a1 + e−i

~k~a2

)
=
(

1 + e−i(
~K(′)+~q)~a1 + e−i(

~K(′)+~q)~a2

)
(A.2)

f∗(~k) =
(

1 + ei
~k~a1 + ei

~k~a2

)
=
(

1 + ei(
~K(′)+~q)~a1 + ei(

~K(′)+~q)~a2

)

Next, we consider the following relations according to Equation (4.1) and Equation (4.3):
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~q~a1 = −
√

3aqx
2

+
3qza

2
(A.3)

~q~a2 =

√
3aqx
2

+
3qza

2

~K~a1 = −2π

3
~K ′~a1 =

2π

3

~K~a2 =
2π

3
~K ′~a2 = −2π

3

Then, the exponential terms appearing in Equation (A.3) are (doing a Taylor expansion

where ex ≈ 1 + x):

ei~q~a1 ≈ 1− i
√

3aqx
2

+ i
3qza

2
(A.4)

e~q~a2 ≈ 1 + i

√
3aqx
2

+ i
3qza

2

e
~K(′)~a1 = −1

2
+ iα

√
3

2

e
~K(′)~a2 = −1

2
− iα

√
3

2

where α = 1 close to the K point and α = −1 close to the K ′ point. By introducing

Equation (A.5) in Equation (A.3), it is directly obtained:

f( ~K(′) + ~q) = −3a

2
(αqx − iqz) (A.5)

f∗( ~K(′) + ~q) = −3a

2
(αqx + iqz)

A.2 Spatial Derivatives in Equation (4.37)

The aim of this sections is to achieve the results seen in Equation (4.37):

∂w(~Rj , t)

∂x
= δxw(~Rj , t) = i

∑
~q

qxe
i~q ~Rjaw(~q, t) (A.6)

∂w(~Rj , t)

∂z
= δzw(~Rj , t) = i

∑
~q

qze
i~q ~Rjaw(~q, t)
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where (w, j) = (u′, A) or (w, j) = (v′, B). In order to simplify the notation I will consider

w(~Rj , t) ≡ w and ~Rj ≡ ~R and m = x, z. Then, Equation (A.7) can be rewritten as:

δmw ≡
w(~R+ ∆m)− w(~R)

∆m
= i
∑
~q

qme
i~q ~Raw(~q, t) (A.7)

I begin by introducing the Fourier series w =
∑

~q e
i~q ~Raw(~q, t) (same as in Equation (4.32)

and Equation (4.33)) in Equation (A.7):

δmw =

∑
~q e

i~q(~R+∆m)aw(~q, t)−
∑

~q e
i~q ~Raw(~q, t)

∆m
=

∑
~q(e

iqm∆m − 1)ei~q
~Raw(~q, t)

∆m
(A.8)

which, if I consider small values of qm (something which is totally valid, since ~q are small

values close to ~K(′)) becomes doing a Taylor expansion:

δmw ≈
∑

~q(1 + iqm∆m− 1)ei~q
~Raw(~q, t)

∆m
= i
∑
~q

qme
i~q ~Raw(~q, t) (A.9)

which is Equation (A.7).
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Analytical evolution of a

Gaussian wave packet

B.1 Initial bispinor Gaussian wave packet

The initial bispinor Gaussian wave packet that I consider is the following one:

ΨG(x, z, 0) =

(
Ψ1

Ψ2

)
=

(
s1

s2

)
1

√
σxσzπ

e
− (x−x0)2

2σ2
x e

− (z−z0)2

2σ2
z eik0xeik̄0z (B.1)

where the central position of the wave packet is (x0, z0) and its initial momentum is

k̄0 = (k0x, k0z). Hereafter, I will assume the same initial dispersions for the x and z

directions, i.e. σx = σz = a and

(
s1

s2

)
=

(
1

seiθk̄0

)
where θk̄0

= arctg(kz0/kx0). This

last assumption is to guaranteed that most of the eigenstates composing the Gaussian

wave packet belongs to the same band (s = 1 for the positive one and s = −1 to the

negative one. To simplify the notation I will choose an initial positive energy, i.e. s = 1.

Then, the Equation (B.1) can be rewritten as:

ΨG(x, z, 0) =

(
Ψ1

Ψ2

)
=

(
1

eiθk̄0

)
1√
a2π

e−
(x−x0)2

2a2 e−
(z−z0)2

2a2 eik0xeik0z (B.2)

In order to obtain the evolution of the wave packet, I will project the initial Gaussian

wave packet ΨG(x, z, 0) in the graphene eigenfunctions φk(x, z, t):
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ΨG(x, z, t) =

∫ ∞
−∞

(∫ ∞
−∞

φ∗k(x, z, 0)ΨG(x, z, 0)dxdz

)
φk(x, z, t)dk̄ (B.3)

=

∫ ∞
−∞

ggraph(k̄)φk(x, z, t)dk̄

The mentioned set of eigenfunctions φk(x, z, t) are:

φk(x, z, t) =
1√
2

(
1

eiθk

)
eik̄r̄e−iEkt/~ (B.4)

where θk = arctg(kz/kx). The main complication appears here, the linear energy disper-

sion Ek is no longer separable Ek
~ = vf

√
k2
x + k2

z = vf |k̄|, as it occurs in the case of the

parabolic energy dispersion. Then, the integral in Equation (B.4) is not analytical. For

that reason, I will expand Ek with a second order Taylor expansion around the initial

momentum k̄0 = (k0x, k0z).

B.2 Taylor approximation around k̄0

Hereafter, I write the terms need to make the Taylor expansion around k̄0 = (kx0 , kz0)

in Ek
~ = vf

√
k2
x + k2

z = vf |k|.

∂Ek
~∂kx

= vf
kx√
k2
x + k2

z

(B.5)

∂2Ek
~∂k2

x

= vf
k2
z√

k2
x + k2

z
3 (B.6)

∂Ek
~∂kz

= vf
kz√
k2
x + k2

z

(B.7)

∂2Ek
~∂k2

z

= vf
k2
x√

k2
x + k2

z
3 (B.8)

∂2Ek
~∂kz∂kx

= −vf
kxkz√
k2
x + k2

z
3 (B.9)

Then, finally, the Taylor expansion of the energy dispersion around k̄0 is:
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Ek
~

= vf
√
k2
x + k2

z ≈ vf
√
k2
x0

+ k2
z0 + vf

kx0

|k̄0|
(kx − kx0) + vf

kz0
|k̄0|

(kz − kz0) (B.10)

+ vf
k2
z0

2|k̄0|3
(kx − kx0)2 + vf

k2
x0

2|k̄0|3
(kz − kz0)2 − vf

kx0kz0
2|k̄0|3

(kx − kx0)(kz − kz0)

B.3 Time evolution

I begin by analysing the function agraph in Equation (B.4)1:

ggraph(k̄) =

∫ ∞
−∞

φ∗k(x, z, 0)ΨG(x, z, 0)dxdz (B.11)

=

∫ ∞
−∞

1

2

(
1 e−iθk

)
e−ik̄r̄

(
1

eiθk̄0

)
1

a
√
π
e−

(x−x0)2

2a2 e−
(z−z0)2

2a2 eik̄0r̄dxdz

=
1

2a
√
π

(
1 + ei(θk̄0

−θk)
)∫ ∞
−∞

∫ ∞
−∞

e−ix(kx−kx0 )e−iz(kz−kz0 )e−
(x−x0)2

2a2 e−
(z−z0)2

2a2 dxdy

=
1

2a
√
π

(
1 + ei(θk̄0

−θk)
)
g(k̄)

where g(k̄) is the usual Fourier Transform of a Gaussian wave packet (which I do not

obtain here explicitly since it is a well known result, see [71] for a detailed derivation):

g(k̄) = 2πa2e−ix0(kx−kx0 )e−iz0(kz−kz0 )e
− (kx−kx0 )2

2σ2
k e

− (kz−kz0 )2

2σ2
k (B.12)

where σk = 1/a.

Finally, I obtain:

ggraph(k̄) = a
√
π
(

1 + ei(θk̄0
−θk)

)
e−ix0(kx−kx0 )e−iz0(kz−kz0 )e

− (kx−kx0 )2

2σ2
k e

− (kz−kz0 )2

2σ2
k (B.13)

Then, by introducing Equation (B.13) and Equation (B.11) in Equation (B.4) I obtain:

1Along the computations, I will use several times the following integral:
∫∞
−∞ e

−αx2e−βxdx =
√
π
α
e

β2

4α

where Re(α) > 0.
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ΨG(x, z, t) =

∫ ∞
−∞

a
√
π
(

1 + ei(θk̄0
−θk)

)
e−ix0(kx−kx0 )e−iz0(ky−kz0 )e

− (kx−kx0 )2

2σ2
k (B.14)

e
− (kz−kz0 )2

2σ2
k

1√
2

(
1

eiθk

)
eik̄r̄e−iEkt/~dk̄

= a
√
π

∫ ∞
−∞

∫ ∞
−∞

(
1 + ei(θk̄0

−θk)
)( 1

eiθk

)
e−ix0(kx−kx0 )e−iz0(kz−kz0 )e

− (kx−kx0 )2

2σ2
k e

− (kz−kz0 )2

2σ2
k

eikxxeikzze−ivf |k̄0|te
−ivf

kx0
|k̄0|

(kx−kx0 )t
e
−ivf

kz0
|k̄0|

(kz−kz0 )t
e
−ivf

k2
x

2|k̄0|3
(kz−kz0 )2t

e
−ivf

k2
z

2|k̄0|3
(kx−kx0 )2t

e
ivf

kx0kz0
2|k̄0|3

(kx−kx0 )(kz−kz0 )
dkxdkz

= a
√
π

∫ ∞
−∞

∫ ∞
−∞

(1 + ei(θk̄0
−θk)

)(
eiθk + eiθk̄0

)  e−ix0(kx−kx0 )e−iz0(kz−kz0 )e
− (kx−kx0 )2

2σ2
k e

− (kz−kz0 )2

2σ2
k

eikxxeikzze−ivf |k̄0|te
−ivf

kx0
|k̄0|

(kx−kx0 )t
e
−ivf

kz0
|k̄0|

(kz−kz0 )t
e
−ivf

k2
x0

2|k̄0|3
(kz−kz0 )2t

e
−ivf

k2
z0

2|k̄0|3
(kx−kx0 )2t

e
ivf

kx0kz0
2|k̄0|3

(kx−kx0 )(kz−kz0 )
dkxdkz

≈ C1

∫ ∞
−∞

∫ ∞
−∞

e−ix0(kx−kx0 )e−iz0(kz−kz0 )e
− (kx−kx0 )2

2σ2
k e

− (kz−kz0 )2

2σ2
k

eikxxeikzze−ivf |k̄0|te
−ivf

kx0
|k̄0|

(kx−kx0 )t
e
−ivf

kz0
|k̄0|

(kz−kz0 )t
e
−ivf

k2
z0

2|k̄0|3
(kx−kx0 )2t

e
−ivf

k2
x0

2|k̄0|3
(kz−kz0 )2t

e
ivf

kx0kz0
2|k̄0|3

(kx−kx0 )(kz−kz0 )t
dkxdkz

In order to obtain the last equality in Equation (B.15) I have done the approximation

θk ≈ θk̄0
. The implications of this approximation is performed in the main text, Sec-

tion 4.4. Then, C1 appearing in Equation (B.15) is C1 = 2a
√
π

(
1

1

)
. Then, I can rewrite

Equation (B.15) as:

ΨG(x, z, t) = C1e
−ivf |k̄0|t

∫ ∞
−∞

∫ ∞
−∞

e
−i(kx−kx0 )(x0+vf

kx0
|k̄0|

t)
eikxxe

−i(kz−kz0 )(z0+vf
kz0
|k̄0|

t)
eikzz (B.15)

e
−(kx−kx0 )2(

1

2σ2
k

+ivf
k2
z0

2|k̄0|3
t)

e
−(kz−kz0 )2(

1

2σ2
k

+ivf
k2
x0

2|k̄0|3
t)

e
ivf

kx0kz0
2|k̄0|3

(kxkz−kx0kz−kxkz0+kx0kz0 )t
dkxdkz

= C2e
ikx0xeikz0z

∫ ∞
−∞

∫ ∞
−∞

e
i(kx−kx0 )(x−x0−vf

kx0
|k̄0|

t)
e
i(kz−kz0 )(z−z0−vf

kz0
|k̄0|

t)
e
−(kx−kx0 )2(

1

2σ2
k

+ivf
k2
z0

2|k̄0|3
t)

e
−(kz−kz0 )2(

1

2σ2
k

+ivf
k2
x0

2|k̄0|3
t)

e
ivf

kx0kz0kz

2|k̄0|3
(kx−kx0 )t

e
−ivf

kx0k
2
z0

2|k̄0|3
(kx−kx0 )t

dkxdkz
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where C2 = C1e
−ivf |k̄0|te

ivf

k
x2
0
k
z20

2|k̄0|3
t
. Then, by rearranging some terms and integrating

over kx I obtain:

ΨG(x, z, t) = C2e
ikx0xeikz0z

∫ ∞
−∞

(∫ ∞
−∞

e
i(kx−kx0 )(x−x0−vf

kx0
|k̄0|

t−vf
kx0k

2
z0

2|k̄0|3
t+vf

kx0kz0kz

2|k̄0|3
t)

(B.16)

e
−(kx−kx0 )2(

1

2σ2
k

+ivf
k2
z0

2|k̄0|3
t))

dkxe
i(kz−kz0 )(z−z0−vf

kz0
|k̄0|

t)
e
−(kz−kz0 )2(

1

2σ2
k

+ivf
k2
x0

2|k̄0|3
t)

dkz

= C2e
ikx0xeikz0z

∫ ∞
−∞

√
2π

σ2
x(t)

e

x−x0−vf
kx0
|k̄0|

t−vf
kx0k

2
z0

2|k̄0|3
t+vf

kx0kz0kz

2|k̄0|3
t

2

2σ2
x(t)

e
i(kz−kz0 )(z−z0−vf

kz0
|k̄0|

t)
e
−(kz−kz0 )2(

1

2σ2
k

+ivf
k2
x0

2|k̄0|3
t)

dkz

= C3e
ikx0xeikz0ze

x−x0−vf
kx0
|k̄0|

t−vf
kx0k

2
z0

2|k̄0|3
t

2

2σ2
x(t)

∫ ∞
−∞

e
v2
f

k2
x0
k2
z0
k2
z

8σ2
x(t)|k̄0|6

t2

e

x−x0−vf
kx0
|k̄0|

t−vf
kx0k

2
z0

2|k̄0|3
t

vf kx0kz0kz

2|k̄0|3
t

σ2
x(t)

e
i(kz−kz0 )(z−z0−vf

kz0
|k̄0|

t)
e
−(kz−kz0 )2(

1

2σ2
k

+ivf
k2
x0

2|k̄0|3
t)

dkz

where C3 = C2 ∗
√

2π

σ2
x(t)

and

ax(t) = σ2
x(t) =

1

σ2
k

+ ivf
k2
z0

|k̄0|3
t = a2 + ivf

k2
z0

|k̄0|3
t (B.17)

σ2
z(t) =

1

σ2
k

+ ivf
k2
x0

|k̄0|3
t = a2 + ivf

k2
x0

|k̄0|3
t (B.18)

Then, I can rewrite Equation (B.17) as:
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ΨG(x, z, t) = C4

∫ ∞
−∞

e
v2
f

k2
x0
k2
z0
k2
z

8σ2
x(t)|k̄0|6

t2

e

x−x0−vf
kx0
|k̄0|

t−vf
kx0k

2
z0

2|k̄0|3
t

vf kx0kz0kz

2|k̄0|3
t

σ2
x(t) (B.19)

e
i(kz−kz0 )(z−z0−vf

kz0
|k̄0|

t)
e
−(kz−kz0 )2(

1

2σ2
k

+ivf
k2
x0

2|k̄0|3
t)

dkz

= C4

∫ ∞
−∞

e
−
(
v2
f

k2
x0
k2
z0
k2
z

8σ2
x(t)|k̄0|6

t2+
σ2
z(t)

2

)
k2
z

e
−

(
−(x−x0−vf

kx0
|k̄0|

t−vf
kx0k

2
z0

2|k̄0|3
t)vf kx0kz0 t

2|k̄0|3σ2
x(t)

−i(z−z0−vf
kz0
|k̄0|

t)−kz0
σ2
z(t)

2

)
kz

e−
σ2
z(t)

2
k2
z0e
−i(z−z0−vf

kz0
|k̄0|

t)
dkz

where C4 = C3χ(x, y) and χ(x, y) is χ(x, y) = eikx0xeikz0ze

x−x0−vf
kx0
|k̄0|

t−vf
kx0k

2
z0

2|k̄0|3
t

2

2σ2
x(t) .

Finally, integrating over kz I obtain the analytic formula for a Gaussian bispinor wave

packet in graphene:

ΨG(x, z, t) = C4e
−σ

2
z(t)

2
k2
z0e
−i(z−z0−vf

kz0
|k̄0|

t)

√√√√ 2π

σ2
z(t) + v2

f

k2
x0
k2
z0
k2
z

4σ2
x(t)|k̄0|6

t2
(B.20)

e

(
−(x−x0−vf

kx0
|k̄0|

t−vf
kx0k

2
z0

2|k̄0|3
t)vfkx0kz0 t

2|k̄0|3σ2
x(t)

− i(z − z0 − vf
kz0
|k̄0|

t)− kz0
σ2
z(t)
2

)2

2
(
v2
f

k2
x0
k2
z0
k2
z

4σ2
x(t)|k̄0|6

t2 + σ2
z(t)

)

Although establishing the dispersion as a function of time for the wave packet is not

directly seen in Equation (B.21), what I can see from Equation (B.17), Equation (B.18)

and Equation (B.21) is that in the case where kx0 = 0 (kz0 = 0), the dispersion σx(t) = a

(σz(t) = a) and therefore there is no dispersion in the x (z) direction, only in the z (x)

direction. This is completely different from the Schrödinger case, where the dispersion

(see Equation (4.59)) is independent of the initial values of the initial momentum, i.e.

the wave packet will always spread. In graphene, the wave packet will not spread in a

certain direction if its initial momentum was zero.



Appendix C

Klein Tunneling effect

Here I consider the case where there is a potential barrier in graphene as shown in

Figure C.1. We can assume that the scattering does not mix the momenta around

K and K ′ points because the potential changes are smooth on the lattice scale [91].

Using the eigenfunctions obtained in Section 4.2.3.2 (fulfilling the Dirac Equation H =

−i~σ̄ · 5̄ψ = Eψ) we can establish the following relationships in order to calculate the

wave function in any position of the space:

Figure C.1: Scheme of the potential barrier.

ψI =
1√
2

(
1

eiφ(q)

)
ei(qxx+qzz) +

r√
2

(
1

ei(π−φ(q))

)
ei(−qxx+qzz) (C.1)

ψII =
a√
2

(
1

−eiθ(q′)

)
ei(q

′
xx+qzz) +

b√
2

(
1

−ei(π−θ(q′))

)
ei(−q

′
xx+qzz) (C.2)
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ψIII =
t√
2

(
1

eiφ(q)

)
ei(qxx+qzz) (C.3)

In these equations, I have assumed that the potential (V0) is higher than the energy of

the incident electron (E). Then,

q′x =

√
(E − V0)2

~2v2
f

− q2
z (C.4)

The minus that appears in ψII is because the incident electron is converted into a hole

inside the barrier and the eigenfunction is different for holes (Equation (4.46)). The

tangential component (qz) is conserved due to boundary conditions.

We must notice, that it exists a critical angle (φc). For angles higher than φc, the plane

wave will be completely reflected. The existence of this critical angle can be derived

from Equation (C.4). If the potential V is close to E then the first term is almost zero

and thus q′x becomes purely imaginary and the resulting plane wave is evanescent. The

value of the critical angle is obtained just equalling the right term of Eq.C.4 to zero.

The result obtained is the following:

φc = arcsin

(
|E − V0|

E

)
(C.5)

Our goal is to calculate the transmission coefficient (t) and using it, to find the trans-

mission probability. I will show here the calculus just for normal incidence (φ = 0).

Firstly, we enforce continuity (in contrast with the Schrödinger equation, we only need

to enforce continuity and not continuity in the derivative because in the Dirac equation

appears only the first derivative) in both sides of the barrier:

ψI(x = 0, z) = ψII(x = 0, z) (C.6)

ψII(x = D, z) = ψIII(x = D, z) (C.7)

we get:

(
1 + r

1 + r

)
=

(
−a− b
−a+ b

)
(C.8)
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(
−aei(q′xD) − bei(−q′xD)

−aei(q′xD) + bei(−q
′
xD)

)
=

(
t

t

)
ei(qxD) (C.9)

From here, we can straightforward obtain:

a = r = 0 (C.10)

b = t = 1 (C.11)

Therefore T (φ = 0) = tt∗ = 1, Klein Tunneling effect (no reflection at normal incidence,

conservation of the pseudo-spin) appears as a consequence, and not as an imposition

in order to obtain T=1. It is also noticeable that when there is full transmission, the

incident state in zone I matches with the the b term in zone II, reversing its momentum.

A more general expression for any angle can be obtained if one make the calculations

more carefully[101]:

T (φ) =
cos2(θ)cos2(φ)

(cos(Dq′x)cos(φ)cos(θ))2 + sin2(Dq′x)(1 + sin(φ)sin(θ))2
(C.12)

It is remarkable that there are other angles where transmission is also 1, but they depend

on the potential (V0), the energy of the carrier and the width of the potential (D).

In conclusion, the pseudospin (which indicates the sublattice we are dealing with) is

always conserved. This fact is not an imposition, but a consequence of the full trans-

mission.





Appendix D

Probability distributions

D.1 Definition of a probability distribution

Let me specify what it is understood by a well-defined probability distribution in the

phase space, say FQ(x, p), for a quantum (or classical) system. One desires that this

probability distribution fulfils the probabilities axioms1:

FQ(x, p) ≥ 0, (D.1)∫ ∫
FQ(x, p)dxdp = 1 (D.2)

In addition, its marginal distribution should give the usual position or charge probability

distributions2:

Q(x) =

∫
FQ(x, p)dp (D.3)

Equation (D.3) is an important quantity in quantum transport because it is related to

the charge density, which is a very relevant magnitude in any self-consistent solution of

the electron transport. Another important quantity built from this distribution is the

current density, which can be expressed as:

1All the integration limits are from −∞ to ∞ and thus I will not write them explicitly.
2For simplicity, I avoid the explicitly consideration of the charge q of an electron in Equation (D.3)

and Equation (D.4). I notice also that the words charge or current densities can be misleading when
a wave packet is partially transmitted or reflected, and the charge is in fact either fully transmitted or
fully reflected, not both, when measured.
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J(x) =

∫
pFQ(x, p)dp. (D.4)

D.2 Q(x) and J(x) derivations

In this appendix, I will develop the calculus in order to obtain the charge and current

densities (Equation (D.3) and Equation (D.4)) for each of the three analyzed distribu-

tions.

D.2.1 Wigner distribution

The charge distribution is straightforwardly found out:

QW (x, p) =
1

h

∫
dp

∫
ψ(x+

y

2
)ψ∗(x− y

2
)ei

py
~ dy =

=

∫
δ(y)ψ(x+

y

2
)ψ∗(x− y

2
)ei

py
~ dy = |ψ(x)|2 (D.5)

J̄W (x) =

∫
pFW (x, p)dp =

1

h

∫
p

∫
ψ(x+

y

2
)ψ∗(x− y

2
)ei

py
~ dydp (D.6)

Using the chain rule for a function F (x, y) derivable and zero-valued at y → ±∞, I can

use the following relation:

∫
dye−ipy/~

∂

∂y
F (x, y) =

i

~
p

∫
dye−ipy/~F (x, y) (D.7)

and using the polar form of the wave function (ψ(x) = R(x)eiS(x)), then rewrite Equa-

tion (D.6) as:

J̄W (x) =
−i
2π

∫
dp

∫
dye−ipy/~ ·

[
R(x+

y

2
)R(x− y

2
)· e

i
~ [S(x+ y

2
)−S(x− y

2
)] i

~

(∂S(x+ y
2 )

∂y
−
∂S(x− y

2 )

∂y

)
+

+ e
i
~ [S(x+ y

2
)−S(x− y

2
)] ∂

∂y

(
R(x+

y

2
)R(x− y

2
)
)]

(D.8)



Appendix Probability distributions 211

To proceed, let me focus on the following term:

∂S(x+ y
2 )

∂y
−
∂S(x−y2 )

∂y
= lim

t→0

[S(x+ y+t
2 )−S(x+ y

2 )

t
−
S(x− y+t

2 )−S(x− y
2 )

t

]
=

1

2
lim
t→0

[S(x+ t
2 + y

2 )−S(x+ y
2 )

t/2
+
S(x−y2 )−S(x− t

2 −
y
2 )

t/2

]
=

1

2

[
∂S(x+ y

2 )

∂x
+
∂S(x− y

2 )

∂x

]
(D.9)

which can be used to rewrite Equation (D.8) as:

JW (x)=

∫
dyδ(y)

[
R(x+

y

2
)R(x−y

2
)e

i
~ [S(x+ y

2
)−S(x− y

2
)] ·1

2

(∂S(x+ y
2 )

∂x
+
∂S(x− y

2 )

∂x

)
− i~e

i
~ [S(x+ y

2
)−S(x− y

2
)] · ∂

∂y

(
R(x+

y

2
)R(x− y

2
)
)]

= R2(x)
∂S(x)

∂x
(D.10)

Equation (D.10) is the expression for the current density distribution for the Wigner

function. In Equation (D.10) I have used the following property:∫
dpe−ipy/~ = 2π~δ(y) (D.11)

and the fact that the second term within the integral in Equation (D.10) is zero:

∂

∂y

(
R(x+

y

2
)R(x− y

2
)
)∣∣∣
y=0

(D.12)

=
1

2

[
∂R(x+ y

2 )

∂x
R(x− y

2
)−R(x+

y

2
)
∂R(x− y

2 )

∂x

] ∣∣∣
y=0

= 0

D.2.2 Husimi distribution

The derivation of the Husimi charge and current density distributions is quite similar to

the derivation realized for the Wigner distribution, with the only difference that now,

the Wigner distributions are smoothed with a Gaussian function. In first place, I derive

the charge distribution:
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QH(x, p)=
1

π~

∫ ∫ ∫
1

h

∫
ψ(x′− y

2
)ψ∗(x′+

y

2
)ei

p′y
~ dy ·e−

(x−x′)2

2s2 e−
(p−p′)22s2

~2 dx′dp′dp

=
1

π~
1√

(2πs2)
·
∫ ∫ ∫

ψ(x′− y
2

)ψ∗(x′+
y

2
)ei

p′y
~ dye−

(x−x′)2

2s2 dx′dp′

=
1√

(2πs2)

∫ ∫
ψ(x′− y

2
)ψ∗(x′+

y

2
)δ(y)dye−

(x−x′)2

2s2 dx′

=
1√

(2πs2)

∫
|ψ(x′)|2e−

(x−x′)2

2s2 dx′ (D.13)

After that, I derive the current density distribution. For that purpose, Equation (D.7)),

Equation (D.9), Equation (D.11) and Equation (D.13) will be also used.

JH(x)=
1

π~

∫ ∫ ∫
pFH(x′, p′)e−

(x−x′)2

2s2 e
− (p−p′)2

2σ2
p dx′dp′dp

=
1

π~

∫ ∫ ∫
p

1

h

∫
ψ(x′ − y

2
)ψ∗(x′ +

y

2
)ei

p′y
~ dye−

(x−x′)2

2s2 · e−
(p−p′)22s2

~2 dx′dp′dp

=
1

h

1√
(2πs2)

∫
p′ψ(x′ − y

2
) · ψ∗(x′ + y

2
)ei

p′y
~ dye−

(x−x′)2

2s2 dx′dp′

=
1√

(2πs2)

∫
R2(x′)

∂S(x′)

∂x′
e−

(x−x′)2

2s2 dx′ (D.14)

Therefore, it can clearly be seen that these results are different from the Wigner results.

D.2.3 Bohmian distribution

The charge distribution is the following:

QB(x, t) =

∫
lim
N→∞

1

N

N∑
i=1

δ(x− xi(t))δ(p− pi(t))dp =

= lim
N→∞

1

N

N∑
i=1

δ(x− xi(t)) = |ψ(x, t)|2 (D.15)

The last equality in Equation (D.15) is due to the quantum equilibrium hypothesis,

which states that the charge distribution at time t is equal to the modulus squared of

the wave function. In a single-particle scenario it can be written as follows:
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|ψ(x, 0)|2 = lim
Mα→∞

1

Mα

Mα∑
α=1

δ(x− xi(0)) (D.16)

where as commented before, Mα is the number of different trajectories of the ensemble.

In order to calculate the current density, I need to express the wave function in the

polar form (in the same way as done for the Wigner distribution) and I proceed in the

following way:

JB(x, t) = lim
N→∞

1

N

N∑
i=1

pδ(x− xi(t))δ(p− pi(t))dp =

= lim
N→∞

1

N

N∑
i=1

piδ(x− xi(t)) = R2(x)
∂S(x)

∂x
(D.17)

Apart from using again the quantum equilibrium hypothesis, I have also used that the

momentum in Bohmian mechanics in a single-particle case is:

p(x, t) = Im
∇ψ
ψ
≡ ∂S(x)

∂x
(D.18)

D.3 Negative values of the Wigner distribution

If I manipulate the Wigner distribution (applying a change of variable), it is seen that

it can be thought as a correlation function:

FW (x, p) =
1

h

∫
dp

∫
ψ(x+

y

2
)ψ∗(x− y

2
)ei

py
~ dy (D.19)

= 2

∫
ψ(r)ψ∗(2x− r)ei

py
~ ei

2p(r−2x)
~ dr = 2

∫
ψ(r)ei

pr
~ ·
(
ψ(2x− r)e−i

2p(r−2x)
~

)∗
dr

= 2

∫
φ(r)φ∗(2x− r)dr

The change of variable realized is the following: x + y
2 = r. In addition, I have defined

φ(r) = ψ(r)ei
pr
~ .
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With these considerations, I can prove that the Wigner function is real and can be

negative:

∫ (
φ(r) + φ(2x− r)

)
·
(
φ(r)∗ + φ∗(2x− r)

)
dr =

∫
|φ(r) + φ(2x− r)|2dr

=

∫ (
|φ(r)|2 + |φ(2x− r)|2 + φ(r)φ∗(2x− r) + φ(r)∗φ(2x− r)

)
dr ≥ 0 (D.20)

By observing one of the last two terms in the right hand side (that we can rapidly

identify with our Wigner function) and making a change of variable r′ = 2x− r:

∫
φ(r)∗φ(2x− r)dr = −

∫ −∞
∞

φ(r′)∗φ(2x− r′)dr′

=

∫
φ(r′)∗φ(2x− r′)dr′ (D.21)

Therefore, both terms are exactly equal. Thus Equation (D.20) becomes:

∫
|φ(r) + φ(2x− r)|2dr =

∫
|φ(r)|2dr +

+

∫
|φ(2x− r)|2dr + 2

∫
φ(r)φ∗(2x− r)dr ≥ 0 (D.22)

Obviously, Equation (D.20) is positive because is the integral of a modulus squared

quantity. The first two terms of the right side of Equation (D.20) are also positive for

the same reason. Therefore, the value of the last term (Wigner function) must be real,

but depending of the value of φ(r) and φ(2x− r) can be either positive or negative. In

this way, it is proved that the Wigner function is a quasiprobability distribution, but

not a true one.



Appendix E

Bohmian Scattering Approach

calculus

E.1 Evaluation of the term 〈~ra, ~za, ~R|Ĥep,~u|Ψ(t)〉|~zja[t], ~Rj [t] in Equa-

tion (5.49):

I first evaluate the effect of the Ĥep,~u on the wave packet Ψ(~ra, ~za, ~R, t). For that purpose,

I develop the explicit expression of Ĥep,~u and then I define an initial many-body wave

packet Ψ(~ra, ~za, ~R, t).

E.1.1 Definition of the Electron-Phonon Hamiltonian:

The term Hep in Equation (5.47) can be written as Hep = Hep, ~R0
+Hep,~u =

∑
e,h Vep(~re−

~Rh). I decompose Vep(~re − ~Rh) in a Taylor expansion around the equilibrium position

of the h ions ~Rh,0 as:

∑
e,h

Vep(~re − ~Rh) ≈
∑
e,h

Vep(~re − ~Rh,0) + (~Rh − ~Rh,0) · ∇hVep(~re − ~Rh)|~Rh=~Rh,0

=
∑
e,h

Vep(~re − ~Rh,0) + ~uh · ∇hVep(~re − ~Rh)|~Rh=~Rh,0
= Hep, ~R0

+Hep,~u (E.1)

The term Vep(~re − ~Rh,0) will become later relevant for the electronic band structure,

while ~uh · ∇Vep(~re − ~Rh)|~Rh=~Rh,0
provides the interaction of the electron ~re with the

ion ~Rh (neglecting second order Taylor terms in the atomic displacements expansion).
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Instead of dealing with individual displacements ~uh, I consider the normal coordinate

~Q~qp defined from the Fourier transform:

~uh =
∑
~qp

~Q~qpe
i~qp ~Rh,0 (E.2)

where ~qp is a wave vector in the reciprocal space that labels each of the possible collective

solutions of the movement of ions. Then, by performing the Fourier transform of the

potential Vep(~re − ~Rh):

Vep(~re − ~Rh) =
∑
~v

ei~v(~re−~Rh)U~v (E.3)

where ~v is another wave vector in the reciprocal space and U~v is the Fourier coefficients

of the potential. I remark that
∑

h Vep(~re− ~Rh) is a periodic potential, while Vep(~re− ~Rh)

alone is essentially a Coulomb potential with corrections due to screening. Then, the

gradient of the potential in Equation (E.1) can be written as:

∇hVep(~re−~Rh)|~Rh=~Rh,0
=
∑
~v

(−i~v)ei~v(~re−~Rh,0)U~v (E.4)

Putting Equation (E.4) and Equation (E.2) altogether for all electrons and ions, finally

I obtain:

Hep,~u =
∑
e

Hep,~u,~re =
∑
e

∑
h

~uh · ∇hVep(~re − ~Rh)|~Rh,0

=
∑
e

∑
h

∑
~qp

ei~qp
~Rh,0 ~Q~qp

∑
~v

(−i~v)ei~v(~re−~Rh,0)U~v (E.5)

Before discussing the interaction through the term Hep,~u, let me define the initial

electron-lattice wave packet.
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E.1.2 Definition of the many body wave packet Ψ(~r, ~R, t):

The many body wave packet Ψ(~r, ~R, t) = 〈~ra, ~za, ~R|Ψ(t)〉 can be written as:

Ψ(~r, ~R, t)=
∑
~k,~q

a(~k, ~q, t)Φ~k(~r)Φ~q(~R) (E.6)

with a(~k, ~q, t) accounting for an arbitrary superposition of the many-body electron base

Φ~k(~r) and many-body phonon base Φ~q(~R). The vector ~k = {~k1,~k2, ..,~kNe} represents the

many body index of the electronic (Bloch states) base and ~q = {~q1, ~q2, ...} the index of the

ionic base. I define Φ~k(~r) ≡
∑Ne!

n=1

∏Ne
i=1 φ~ki(~rp(n)i)sn, with ~p(n) = {p(n)1, ..., p(n)Ne}

the n-permutation vector, and sn its sign. I have also used the single particle Bloch

eigenstate:

φ~ke(~re) = 〈~re|~ke〉 = ei
~ke~reu~ke(~re) (E.7)

where u~ke(~re) is periodic with respect to lattice translations (which includes the appro-

priate normalizing constant) and ~ke is the electron (quasi) wave vector related to the

quasi (or crystal) momentum ~pe = ~~ke.

In the language of the second quantization, the Slater determinant of the electrons can

be written as Φ~k(~r) ≡ 〈~r|ĉ
†
~k1
...ĉ†~kNe

|0〉. To explicitly write the dependence of Φ~k(~r)

on ~re, I expand the Slater determinant of electrons by minors as 〈~re, ~ze|ĉ†~k1
...ĉ†~kNe

|0〉 =∑Ne
w=1 φ~kw(~re)se,w〈~ze|ĉ†~k1

...c†~kw−1
c†~kw+1

...ĉ†~kNe
|0〉, with se,w the sign of the (e, w) cofactor.

Then:

Ψ(~re, ~ze, ~R, t)=
∑
~k,~q

a(~k, ~q, t)Φ~q(~R)
∑
~kw

φ~kw(~re)se,w〈~ze|ĉ†~k1
..c†~kw−1

c†~kw+1
..ĉ†~kN

|0〉(E.8)

E.1.3 Evaluation of Hep,~u(~r, ~R, t)Ψ(~r, ~R, t):

The term Hep,~u =
∑

eHep,~u,~re in Equation (E.5) is a sum over terms that depend on a

unique ~re, so that when conditioning Hep,~u(~r, ~R, t)Ψ(~r, ~R, t) to {~zja[t], ~Rj [t]} all, except

one term, do not depend on ~ra. Therefore, it is obtained:
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Hep,~u(~r, ~R, t)Ψ(~ra, ~za, ~R, t)
∣∣∣
~zja[t], ~Rj [t]

=

(∑
e

Hep,~u,~re(~re,
~R, t)

)
Ψ(~ra, ~za, ~R, t)

∣∣∣
~zja[t], ~Rj [t]

(E.9)

=

∑
e6=a

Hep,~u,~re(~r
j
e[t], ~R

j [t], t)

Ψ(~ra, ~z
j
a[t], ~R

j [t], t) +Hep,~u,~ra(~ra, ~R
j [t], t)Ψ(~ra, ~z

j
a[t], ~R

j [t], t)

The term
∑

e6=aHep,~u,~re(~r
j
e[t], ~Rj [t], t) is a constant value without dependence on ~ra.

This pure time-dependent term only provides a global phase on the conditional wave

function that can be omitted without any effect [72]. The only term that I have to com-

pute explicitly is Hep,~u,~ra(~ra, ~R, t)Ψ(~r, ~R, t) = 〈~r, ~R|Ĥep,~u,~ra |Ψ(t)〉. Using the identities∫
~r d~r|~r〉〈~r| = 1 and

∫
~R d

~R|~R〉〈~R| = 1, the fact that Ĥep,~u,~ra is diagonal in the position

representation, and the identity
∑

~ka
|~ka〉〈~ka| = 1, I can write:

〈~r, ~R|Ĥep,~u,~ra |Ψ(t)〉 = 〈~r, ~R|Ĥep,~u,~ra |~r, ~R〉〈~r, ~R|Ψ(t)〉

=
∑
~ka

∑
~k′′a

〈~ra|~k′′a〉〈~k′′a , ~za, ~R|Ĥep,~u,~ra |~ka, ~za, ~R〉〈~ka, ~za, ~R|Ψ(t)〉

=
∑
~ka

∑
~k′′a

T (~k′′a , Ĥep,~u,~ra ,~ka)〈~ra|~k
′′
a〉〈~ka, ~za, ~R|Ψ(t)〉 (E.10)

where I have defined T (~k′′a , Ĥep,~u,~ra ,~ka) ≡ 〈~k′′a , ~za, ~R|Ĥep,~u,~ra |~ka, ~za, ~R〉 as the electron-

phonon Hamiltonian in the momentum (Bloch state) representation. This term can be

rewritten as:

T (~k′′a , Ĥep,~u,~ra ,~ka) =

∫
~ra

d~ra〈~k′′a |~ra〉〈~ra, ~za, ~R|Ĥep,~u,~ra |~ra, ~za, ~R〉〈~ra|~ka〉 (E.11)

and using the final expression of the electron-phonon Hamiltonian in the position rep-

resentation, Equation (E.5), I get:

T (~k′′a , Ĥep,~u,~ra ,~ka) =

∫
~ra

d~rae
−i~k′′a~rau~k′′a

(~ra)e
i~ka~rau~ka(~ra)〈~ra, ~za, ~R|Ĥep,~u,~ra |~ra, ~za, ~R〉 =∫

~ra

d~rae
−i~k′′a~rau~k′′a

(~ra)e
i~ka~rau~ka(~ra)

∑
h

∑
~qp

ei~qp
~Rh,0 ~Q~qp

∑
~v

(−i~v)ei~v(~ra−~Rh,0)U~v (E.12)

I take away from the integral those elements that do not depend on ~ra:
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T (~k′′a , Ĥep,~u,~ra ,~ka) =
∑
h

∑
~qp

ei~qp
~Rh,0 ~Q~qp (E.13)

∑
~v

(−i~v)e−i~v
~Rh,0U~v

∫
~ra

d~rae
−i~k′′a~rau~k′′a

(~ra)e
i~ka~rau~ka(~ra)e

i~v~ra

Due to the periodicity of u~ka(~ra) I can use the change of variable ~ra = ~r′a + ~Rm,0 where

~r′a integrates only inside the first Brillouin zone. I get:

T (~k′′a , Ĥep,~u,~ra ,~ka) =
∑
h

∑
~qp

~Q~qp
∑
~v

(−i~v)ei
~Rh,0(~qp−~v)U~v

(∑
m

ei
~Rm,0(−~k′′a+~v+~ka)

)
∫
~r′a

d~r′ae
−i~k′′a ~r′au~k′′a

(~r′a)e
i~ka~r′au~ka(~r′a)e

i~v~r′a (E.14)

The sum over ~Rh,0 in
∑

h e
i ~Rh,0(~qp−~v) imposes the condition ~G = ~qp − ~v and the sum

over ~Rm,0 in
∑

m e
i ~Rm,0(−~k′′a+~v+~ka) imposes that ~G′ = −~k′′a + ~v + ~ka, with ~G and ~G′ two

vectors of the reciprocal lattice. For simplicity, although Umklapp scattering can also be

considered, I assume that all momentum vectors can be considered in the first Brillouin

zone, ~G = 0 and ~G′ = 0, so that ~k′′a = ~qp + ~ka. Therefore:

T (~k′′a , Ĥep,~u,~ra ,~ka) =
∑
~qp

δ(~k′′a − ~qp − ~ka)g
~qp
~ka

(E.15)

All other terms in Equation (E.14) are included into the coupling constant g
~qp
~ka

defined

as:

g
~qp
~ka

= −i ~Q~qp ~qp U~qp
∫
~r′a

d~r′ae
−i(~ka+~qp)~r′au~ka+~qp

(~r′a)e
i~ka~r′au~ka(~r′a)e

i~v~r′a (E.16)

I emphasize that I did not include any dependence on the n band I are dealing with, since

usually phonon energies are smaller than band gaps and then phonons cannot make band

transitions. However, for materials with small band gaps these multi band transitions

can be included straightforwardly. In fact, when dealing with graphene bispinors, I will

include the dependence of the coupling constant on the energy branches. I introduce

Equation (E.15) into Equation (E.10) and I conclude:
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Hep,~u,~ra(~ra, ~za, ~R, t)Ψ(~ra, ~za, ~R, t) =
∑
~ka

∑
~k′′a

〈~ra|~k′′a〉T (~k′′a , Ĥep,~u,~ra ,~ka)〈~ka, ~z
j
a[t], ~R

j [t]|Ψ(t)〉

=
∑
~qp

∑
~ka

g
~qp
~ka
〈~ra|~ka + ~qp〉〈~ka, ~za, ~R|Ψ(t)〉 (E.17)

E.1.4 Conditional (envelope) wave packet before the collision:

The conditional wave packet before the collision can be obtained from Equation (E.8)

by fixing ~za = ~zja[t] and ~R = ~Rj [t] where these positions correspond to one j experiment.

Then:

Ψ(~ra, ~z
j
e [t], ~R

j [t], t) (E.18)

=
∑
~k,~q

a(~k, ~q, t)Φ~q(~R
j [t])

∑
~kw

φ~kw(~ra)sa,w〈~zja[t]|ĉ
†
~k1
..c†~kw−1

c†~kw+1
..ĉ†~kN

|0〉

The dependence on ~ra of the conditional wave packet in Equation (E.18) appears because

of the Bloch state φ~kw(~ra) ≡ 〈~ra|~kw〉. Therefore, it can be compactly rewritten as:

ψa(~ra, t) ≡ Ψ(~ra, ~z
j
a[t], ~R

j [t], t) (E.19)

=
∑
~kw

fa(~kw, ~z
j
a[t], ~R

j [t], t)φ~kw(~ra) =
∑
~kw

fa(~kw, t)φ~kw(~ra)

where fa(~kw, t) ≡ fa(~kw, ~zja[t], ~Rj [t], t) ≡ 〈~kw, ~zja[t], ~Rj [t]|Ψ(t)〉, appearing in Equation (5.55)

and Equation (5.56) in the text, is defined here as:

fa(~kw, t) =
∑
~q

∑
~k,~ke 6=~kw

a(~k, ~q, t)Φ~q(~R
j [t])sa,w〈~zja[t]|ĉ

†
~k1
..c†~kw−1

c†~kw+1
..ĉ†~kN

|0〉 (E.20)

Under the standard envelope approximation in which the wave packet is centred around

~ka ≈ ~k0a, I can rewrite the Bloch states as 〈~ra|~ka〉 = φ~ka(~ra) ≈ ei
~ka~rau~k0a

(~ra) and rewrite

Equation (E.19) as:
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ψa(~ra, t) = u~k0a
(~ra)

∑
~kw

ei
~kw~ra〈~kw, ~zja[t], ~Rj [t]|Ψ(t)〉

= u~k0a
(~ra)

∑
~kw

ei
~kw~rafa(~kw, t) (E.21)

I remark that f(~ka, t) includes now an (irrelevant) normalization constant. Finally, I

notice that I will use the same symbol ψa(~ra, t) to refer to the conditional wave packet

and to the envelope conditional wave function defined, by ignoring the atomic periodicity

u~k0a
(~ra), as:

ψa(~ra, t) =
∑
~kw

ei
~kw~ra〈~kw, ~zja[t], ~Rj [t]|Ψ(t)〉 =

∑
~kw

ei
~kw~rafa(~kw, t) (E.22)

The ensemble momentum of the initial envelope wave packet ψa(~ra, t) in Equation (E.22),

at t = tc1 before the collision, can be written as:

〈~pa〉tc1 =
∑
~kw

~~kw|fa(~kw, t)|2 (E.23)

E.1.5 Conditional (envelope) wave packet after the collision:

Conditioning the many-body wave function Ψ(~ra, ~ze, ~R, t) to the particular values of ~zja[t]

and ~Rj [t] belonging to the j experiment means that I am considering only one event of

the many available in the wave function. In particular, from all phonon modes present

in Equation (E.17), I consider that, in a particular j experiment, only one ~qjp[t] (or none)

is relevant at each time t (if more than one phonon mode is relevant simultaneously then

I can assume two single-phonon collisions simultaneously, each one with only one type

of phonon mode). In addition, I consider that the involved wave packets are narrow

enough in momentum space so that g
~qp,j
~ka

[t] ≈ g
~qp,j
~k0a

[t], with ~k0a the central wave vector

of the a wave packet. Then, Equation (E.17) conditioned to the value of ~zja[t] and ~Rj [t]

can be written as:
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Hep,~u,~ra(~ra, ~za, ~R, t)Ψ(~ra, ~za, ~R, t)
∣∣
~zja[t]~Rj [t]

(E.24)

= g
~qjp
~k0a

[t]
∑
~kw

〈~ra|~kw + ~qp〉〈~kw, ~zja[t], ~Rj [t]|Ψ(t)〉

The coupling constant g
~qjp
~k0a

[t] in the j experiment will imply an interaction of the ~ra

electron with the phonon mode ~qp during a collision time interval, starting at tc1 and

ending at tc2. In a later time g
~qjp
~k0a

[t] will indicate a collision with another phonon mode.

The exact (deterministic) description of g
~qjp
~k0a

[t] would require perfect knowledge of the

dynamics of ~Rj [t]. Since I do not explicitly simulate the dynamics of the ions (which

are understood as the environment of the electrons), I can only introduce their effects

in a stochastic way ensuring that the probabilities of different phonon modes given

by g
~qjp
~k0a

[t] satisfy some precomputed values. This is the origin of the stochasticity in

Equation (3.11) due to the environment.

In one particular j experiment, during one collision, the term g
~qq
~k0a

[t] becomes irrelevant

(the Bohmian velocity does only depends on the dependence of the phase on ~ra, not

on the norm) and the final wave packet in Equation (E.24), at time t > tc2 after the

collision, can be written as:

ψa(~ra, t) ≡ Ψ(~ra, ~z
j
a[t], ~R

j [t], t) =
∑
~kw

fa(~kw, ~z
j
a[t], ~R

j [t], t)φ~kw+~qp
(~ra)

=
∑
~kw

fa(~kw, t)φ~kw+~qp
(~ra) (E.25)

where fa(~kw, t) = 〈~kw, ~zja[t], ~Rj [t]|Ψ(t)〉 remains equal to the value in Equation (E.20)

before the collision.

After the collision at t = tc2, the (pseudo) momentum base changes from |~ke〉 to |~ke +

~qjp〉, so that the final ensemble momentum of the envelope conditional wave packet in

Equation (E.25) is:

〈~pa〉tc2 =
∑
~kw

~(~kw + ~qjp)|fa(~kw, t)|2 = 〈~pa〉tc1 + ~~qjp (E.26)
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Let me emphasize that Equation (E.23) and Equation (E.26) provide the expected role

of the electron-phonon interaction: Such collision generates a change of momentum ~~qjp
in the conditional wave packet during a time interval tc2 − tc1. I remark that I am

considering a collision with a finite duration. As it will be later explained, for simplicity

in practical applications, I have considered instantaneous collisions in the text.

E.2 Evaluation of the term 〈~ra, ~za, ~R|Ĥc|Ψ(t)〉|~zja[t], ~Rj [t] in Equa-

tion (5.50):

The term 〈~ra, ~za, ~R|Ĥc|Ψ(t)〉|
~zja[t], ~Rj [t]

= 〈~ra, ~za, ~R|Ke(~r) + Kh(~R) + Vee(~r) + Vhh(~R) +

Hep, ~R0
(~r, ~R0)|Ψ(t)〉|

~zja[t], ~Rj [t]
can be evaluated as follows. First, I divide Vee(~r) = Vee,~ra(~ra)+

Vee,~za(~za) as the terms with an explicit dependence on ~ra, plus the terms without it. Sim-

ilarly, Hep, ~R0
(~r, ~R0) = Hep, ~R0,~ra

(~ra, ~R0) +Hep, ~R0,~za
(~za, ~R0).

E.2.1 Evaluation of 〈~ra, ~za, ~R|V̂hh + V̂ee,~za + Ĥep, ~R0,~za
|Ψ(t)〉|~zja[t], ~Rj [t]:

I have:

〈~ra, ~za, ~R|V̂hh + V̂ee,~za + Ĥep, ~R0,~za
|Ψ(t)〉|

~zja[t], ~Rj [t]
= (E.27)(

Vhh(~Rj [t]) + Vee,~za(~zja[t]) +Hep, ~R0,~za
(~zja[t], ~R0)

)
Ψ(~ra, ~z

j
a[t], ~R

j [t], t)

where Vhh(~Rj [t]) + Vee,~za(~zja[t]) + Hep, ~R0,~za
(~zja[t], ~R0) are pure time-dependent terms,

without ~ra dependence and then it only contributes to an arbitrary pure time-dependent

angle that can be directly ignored, see [72].

E.2.2 Evaluation of 〈~ra, ~za, ~R|V̂ee,~ra |Ψ(t)〉|~zja[t], ~Rj [t]:

Similarly, I write:

〈~ra, ~za, ~R|V̂ee,~raΨ(t)〉|
~zja[t], ~Rj [t]

= Vee,~ra(~ra, ~z
j
a[t])|Ψ(~ra, ~z

j
a[t],

~Rj [t], t)

= u~k0a
(~ra)Vee,~ra(~ra, ~z

j
a[t])ψa(~ra, t) (E.28)

where Vee,~ra(~ra, ~z
j
a[t]) can be easily known once the set of ~rj [t] trajectories are known.

Later I will use Va ≡ Vee,~ra(~ra, ~z
j
a[t]).
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E.2.3 Evaluation of 〈~ra, ~za, ~R|K̂e,~za + K̂h|Ψ(t)〉|~zja[t], ~Rj [t]:

The kinetic energy of ions K̂h and the kinetic energy of the rest of electrons, different

from ~ra, defined as K̂e,~za with K̂e = K̂e,~ra + K̂e,~za , can be written as:

〈~ra, ~za, ~R|K̂e,~za + K̂h|Ψ(t)〉|
~zja[t], ~Rj [t]

(E.29)

=

Ne∑
e=1,e6=a

Ke,~raΨ(~ra, ~za, ~R, t)
∣∣
~zja[t], ~Rj [t]

+

Nh∑
h=1

−~2

2mh

~∇2
hΨ(~ra, ~za, ~R, t)

∣∣
~zja[t], ~Rj [t]

= A(~ra, ~z
j
a[t], ~R

j [t], t)Ψ(~ra, ~z
j
a[t], ~R

j [t], t) = u~k0a
(~ra)Aa(~ra, ~z

j
a[t],

~Rj [t], t)ψa(~ra, t)

where Ke,~ra is the kinetic energy of each ~za electron and where I have introduced the

real potential Aa as:

Aa ≡ Aa(~ra, ~zja[t], ~Rj [t], t) (E.30)

=

∑Ne
e=1,e6=aKe,~raΨ(~ra, ~za, ~R, t)

∣∣
~zja[t], ~Rj [t]

Ψ(~ra, ~z
j
a[t], ~Rj [t], t)

+

∑Nh
h=1

−~2

2mh
~∇2
hΨ(~ra, ~za, ~R, t)

∣∣
~zja[t], ~Rj [t]

Ψ(~ra, ~z
j
a[t], ~Rj [t], t)

This constant Aa includes other correlations (different from the electron-lattice correla-

tions that I treat exactly apart from the stochastic approximation for ions dynamics)

and will be approximated later according to Ref.[72].

E.2.4 Evaluation of 〈~ra, ~za, ~R|K̂e,~ra + Ĥep, ~R0,~ra
|Ψ(t)〉|~zja[t], ~Rj [t]:

The last terms that have to be evaluated from Ĥc in Equation (5.49) are K̂e,~ra+Ĥep, ~R0,~ra
.

They determine the electronic band structure:

〈~ra, ~za, ~R|K̂e,~ra + Ĥep, ~R0,~ra
|Ψ(t)〉|

~zja[t], ~Rj [t]
(E.31)

=

(
Ke,~ra +

∑
h

Vep(~ra − ~Rh,0)

)
Ψ(~ra, ~z

j
a[t],

~Rj [t], t)

whereKe,~ra corresponds to the kinetic energy of the conditioned a electron andHep, ~R0,~ra
=∑

h Vep(~ra− ~Rh,0) is the periodic potential seen by this a electron. From here, and after

a tight binding and the approximation for low energy excitations (small ~k), depending
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on the system I will end up with a band structure E(~p) either with linear or parabolic

shape. Therefore:

〈~ra, ~za, ~R|K̂e,~ra + Ĥep, ~R0,~ra
|Ψ(t)〉|

~zja[t], ~Rj [t]
≈ u~k0a

(~ra)E(~p)ψa(~ra, t) (E.32)

where ψa(~ra, t) is the (conditional) envelope wave packet already defined in Equa-

tion (E.21).

E.3 Schrödinger (parabolic band) equation

In the parabolic case, E(~pa) appearing in Equation (E.32) is E(~pa) = |~pa|2
2m∗ with m∗

an isotropic effective mass. After the collision, t = tc2, regarding Equation (E.25) the

state |~ke〉 changes to |~ke + ~qjp〉. Under the mentioned envelope approximation, the Bloch

states are 〈~ra|~ka〉 = φ~ka(~ra) ≈ ei
~ka~rau~k0a

(~ra). Then, the conditional wave packet at tc2 in

Equation (E.25) can be related to the initial wave packet at tc1 given by Equation (E.22)

as:

ψa(~ra, tc2) =
∑
~kw

ei(
~kw+~qp)~ra〈~kw, ~zja[tc2], ~Rj [tc2]|Ψ(tc2)〉

=
∑
~kw

ei(
~kw+~qp)~rafa(~kw, tc2) = ei~qp~raψa(~ra, tc1) (E.33)

Therefore, since Bloch states are energy eigenstates, the ensemble energy before the col-

lision 〈E(~ka)〉tc1 changes to the value 〈E(~ka+~qp)〉tc2 after the collision. Putting together

Equation (E.28), Equation (E.30) and Equation (E.32) into the original Equation (5.49),

and removing u~k0a
(~ra), I get:

i~
∂ψa(~ra, t)

∂t
=

[
1

2m∗
(~pa)

2 + Va +Aa + iBa

]
ψa(~ra, t) (E.34)

where the terms Aa and Ba in Equation (E.31) are approximated by a zero order Taylor

expansion (i.e. no dependence on ~ra) so that they can be neglected when computing

Bohmian velocities. See in [72] the discussion of such approximation. Therefore, the

time evolution operator (propagator) from the initial time t0 until a time before the
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collision t < tc1 is just Ûa(t, t0) = e
− i

~
∫ t
t0
Ĥca(t′)dt′

, with Hca = 1
2m∗ (~pa)

2 + Va, being Hc

conditioned at ~zja[t].

The time-evolution of the wave packet due to the collision with the phonon has to repro-

duce the condition given by Equation (E.33). The time evolution operator (propagator)

from t = t0 until a time t > tc2 after the collision is then:

Ûa(t, t0) = e
− i

~
∫ t
tc2
Ĥca(t′)dt′

e−
i
~
∫ tc2
tc1
Ĥepa(t′)dt′ (E.35)

e−
i
~
∫ tc1
t0
Ĥca(t′)dt′ = e

− i
~
∫ t
tc2
Ĥca(t′)dt′

ei
~λa~ra

~ e−
i
~
∫ tc1
t0
Ĥca(t′)dt′

where Ĥepa = −~~λa~raδ(t− tc) is the previously mentioned total electron-lattice interac-

tion Ĥep conditioned at ~zja[t].

For a small time interval, ∆t, I have Ûa(t + ∆t, t) = (1 − i
~∆tĤca). Then, it can

be proven that (1− i
~∆tHca)e

i
~λa~ra

~ ψa(~ra, tc1) = ei
~λa~ra

~ (1− i
~∆tHca+λ)ψa(~ra, tc1), where

Hca+λ = (~pa+~λa)2

2m∗ + Va. The demonstration of this result just requires to show that:

(~p)2ei
~λa~ra

~ ψa(~ra, t) = −~2~∇2e−i
~λa~ra

~ ψa(~ra, t) (E.36)

= ~λ2
ae
i
~λa~ra

~ ψa(~ra, t)− 2i~~λaei
~λa~ra

~ ~∇ψa(~ra, t)− ~2ei
~λa~ra

~ ~∇2ψa(~ra, t) = ei
~λa~ra

~ (~p+ ~λa)
2ψa(~ra, t)

Therefore, the time evolution of the conditional wave packet at any time t = tc2 + n∆t

can be computed by applying the previous property n times and then:

(1− i

~
∆tHca)...(1−

i

~
∆tHca)e

i
~λa~ra

~ ψa(~ra, tc1) (E.37)

= ei
~λa~ra

~ (1− i

~
∆tHca+λ)...(1− i

~
∆tHca+λ)ψa(~ra, tc1)

Finally, I can combine the time evolution of the envelope conditional wave packet

ψa(~ra, t) before and after the collision in a unique equation of motion as:

i~
∂ψa
∂t

=

[
1

2m∗

(
~pa + ~λaΘt

)2
+ Va

]
ψa (E.38)
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where Θt(t) can be any function which accomplishes that Θt(t) = 0 before the collision

(t < tc1) and Θt(t) = 1 after the collision (t > tc2). For practical purposes and to

facilitate computations, in the numerical results I consider Θt ≡ Θtc to be the Heaviside

step function, t = tc the time when the interaction occurs and tc2 a time infinitely small

after tc and tc1 a time infinitely small before tc. Time interval tc2 − tc1 can be roughly

estimated from time-energy uncertainty relations and it gives a value on the order of

few fs. If a more slow/adiabatic evolution of the collision is required in some practical

implementations, the equation of motion in Equation (E.38) can be easily adapted to

a slower or more adiabatic collision processes by just splitting the whole momentum

exchange taking place during one time step of the simulation into more steps but with

smaller momentum exchange. This equation of motion of the conditional wave function

reproduces Equation (5.57) for the conditional wave packet suffering an electron-lattice

interaction with parabolic energy bands. I emphasize that the stochasticity is introduced

into Equation (E.38) because the exact (Bohmian) path of the ions ~Rj [t] is not explicitly

simulated. Their effect is introduced into the dynamics of the electron ~rja[t] through

the random selection of collision times and phonon modes satisfying some well-known

probability distributions.

By construction, the time evolution of ψ(~ra, t) before and after the collision is fully co-

herent. The main and important difference is the change of momentum. For example, in

a double barrier, a collision adding and subtracting the momentum ~λa = ~~qp in the wave

function ψ(~ra, t) can convert a non resonant state into a resonant one or vice versa. Until

here, only collisions within a unique band have been considered. The implementation in

electron-phonon multibands models (already indicated below Equation (E.16)) or other

types of collision could be straightforwardly done.

E.4 Dirac (linear band) equation

In the linear case, E(~pa) = ±vf |~pa|, with vf the Fermi velocity. The same development

done for the Schrödinger equation can be followed here for the evolution of the 2D

bispinor solution of the Dirac equation, with a slight difference appearing because the

wave function is a bispinor wave function Equation (4.39). The Bloch energy eigenstates

|~ka〉 defined in Equation (E.7) have to be substituted by |~ka, sa〉 defined as:

φ~ka,sa = 〈~ra|~ka, sa〉 =
u~kae

i~ka~ra

√
2

(
1

sae
iβ~ka

)
(E.39)
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where sa indicates if the electron is in the conduction (sa = 1) or valence (sa = −1)

band, with positive or negative energies, respectively. I have defined e
iβ~ki =

kix+ikiy√
k2
ix+k2

iy

and β~ki the angle of the ~ki wave vector.

All developments done previously for a parabolic band can be reproduced here by just

introducing the appropriate index sa and the bispinor. In particular, the initial con-

ditional envelope wave packet before the collision in Equation (E.22) is rewritten here

as:

ψa(~ra, t) =

(
ψa,1(~ra, t)

ψa,2(~ra, t)

)
=
∑
~kw

(
1

sae
iβ~kw

)
fa(~kw, t)e

i~kw~ra

≈

(
1

s0ae
iβ~k0a

)∑
~kw

fa(~kw, t)e
i~kw~ra (E.40)

where I have assumed again that ~kw ≈ ~k0a and sa ≈ s0a with s0a indicating that the

initial wave packet belongs to the conduction (s0a = 1) or valence (s0a = −1) band.

Identically, the coupling constant defined in Equation (E.16) has to be substituted by

the new one:

g
~qp
~ka,sa,s′a

=−i ~Q~qp ~qp U~qp
∫
~r′a

d~r′ae
−i(~ka+~qp)~r′a (E.41)

u~ka+~qp
(~r′a)e

i~ka~r′au~ka(~r′a)e
i~v~r′a

(
1 + sa s

′
a e

i(β~ka
−β~ka+~qp

)

2

)

which contains the information of the transition from the initial energy branch sa to the

final branch s′a. It is assumed again that, in a particular experiment j, only one ~qp[t] (or

none) is relevant at each time and that g
~qp,j
~ka,sa,s′a

[t] ≈ g~qp,j~k0a,s0a,sfa
[t] where sfa indicates that

the final wave packet is in the conduction (sfa = 1) or valence (sfa = −1) band (more

exotic collisions with final presence of the wave packet at both energy branches can be

considered by two collisions with the one final-branch-collision process mentioned here).

Then, the condition given in Equation (E.33) between the envelope conditional wave

packet before and after the collision with parabolic energy bands can be straightforwardly

rewritten here as:
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ψa(~ra, tc2) =
∑
~kw

(
1

sfa e
iβ~kw+~qp

)
fa(~kw, tc1)ei

~kw~raei~qp~ra

=ei
~λa~ra

~
∑
~kw

(
1

sfas0ae
i(β~kw+~qp

−β~kw )
s0ae

iβ~kw

)
fa(~kw, tc1)ei

~kw~ra

≈ ei
~λa~ra

~

(
1 0

0 eiαa

)(
1

s0ae
iβ~kw

)∑
~kw

fa(~kw, tc1)ei
~kw~ra (E.42)

where I have introduced s0a s0a = 1 and e−iβ~kw eiβ~kw = 1. I define sfa s0a = eimπ where

mπ reflects the changing from one branch to the other due to the absorption/emission

of the phonon (m = 1) or the collision without changing (m = 0). I have finally defined

αa = mπ + β~kfa
− β~k0a

. I can then rewrite compactly Equation (E.42) as:

ψa(~ra, tc2) =

(
ψa,1(~ra, tc2)

ψa,2(~ra, tc2)

)
≈ ei

~λa~ra
~

(
ψa,1(~ra, tc1)

eiαaψa,2(~ra, tc1)

)
(E.43)

With the same development done for the parabolic band, I know that the time-evolution

of ψa(~ra, t) before the collision is given by the 2D Dirac equation as:

i~
∂ψa
∂t

=
(
vf σ̂xpax + vf σ̂ypay + (Va +Aa + iBa)Î

)
ψa

=

(
Va +Aa + iBa vfp

−
a

vfp
+
a Va +Aa + iBa

)
ψa (E.44)

with σ̂x =

(
0 1

1 0

)
and σ̂y =

(
0 −i
i 0

)
the Pauli matrices, Î =

(
1 0

0 1

)
the identity

matrix, ~p = {pax, pay} = {−i~∂x,−i~∂y} and p±a = −i~∂xa ± ~∂ya . With the same

approximations used in Equation (E.34) for Aa and Ba based on Ref. [72], I get the

following time evolution operator (propagator) from the initial time t = t0 until a time

before the collision t < tc1 as Ûa(t, t0) = e
− i

~
∫ t
t0
Ĥca(t′)dt′

with Hca = vf (σ̂xpax + σ̂ypay) +

VaÎ. Again I can define the time evolution operator for any time larger than the collision

t > tc2 as:

Ûa(t, t0)=e
− i

~
∫ t
tc2
Ĥca(t′)dt′

e−
i
~
∫ tc2
tc1
Ĥepa(t′)dt′e−

i
~
∫ tc2
tc1
Ĥsa(t′)dt′e−

i
~
∫ tc1
t0
Ĥca(t′)dt′(E.45)
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with the interacting Hamiltonian given by Hepa = −~~λa~raδ(t− tc)Î and Hsa = −~δ(t−

tc)

(
1 0

0 αa

)
. With this time-dependent Hamiltonian, it can be easily demonstrated that

Equation (E.43) is satisfied:

ψa(~ra, tc2) =

 ei
~λa~ra

~ ψa,1(~ra, tc1)

ei
~λa~ra

~ eiαaψa,2(~ra, tc1)

 (E.46)

= e−
i
~
∫ tc2
tc1
Ĥepa(t′)dt′e−

i
~
∫ tc2
tc1
Ĥsa(t′)dt′ψa(~ra, tc1)

It can also be demonstrated that (p+
a )ei

~λa~ra
~ ψa,1(~ra, t) = ei

~λa~ra
~ (p+

a +λ+
a )ψa,1(~ra, t). Iden-

tically, (p−a )ei
~λa~ra

~ ψa,2(~ra, t) = ei
~λa~ra

~ (p−a + λ−a )ψa,2(~ra, t), where I have defined λ±a =

λax ± iλay. Therefore, I have proved for the bispinor:

(1− i

~
∆tĤca)....(1−

i

~
∆tĤca)ei

~λa~ra
~ ψa(~ra, tc1) (E.47)

= ei
~λa~ra

~ (1− i

~
∆tĤca+λ)...(1− i

~
∆tĤca+λ)ψa(~ra, tc1)

with Ĥca+λ = vf (σ̂x(pax + λax) + σ̂y(pay + λay)) + VaÎ. Notice that I have still not

considered the effect of the term e−
i
~
∫ tc2
tc1
Ĥsa(t′)dt′ . It includes an angle eiαa in the

second element of the bispinor at time t = tc1. As discussed in Appendix C, in most

practical applications, for simplicity, I assume an instantaneous collision. A slower or

more adiabatic collision process is also easily implementable. Finally, the global equation

of motion of the conditional bispinor that includes all mentioned dynamics and is valid

for any time, either before or after the collision, is:

i~
∂ψa(~ra, t)

∂t
= vf

(
Va/vf p−a + λ−a Θtc

(p+
a + λ+

a Θtc)χtc Vaχtc/vf

)
ψa(~ra, t)

(E.48)

As I explained below the term χtc = exp(i(mπ + β~kfa
− β~k0a

)Λtc) projects the general

bispinor into positive or negative energy states, and for practical purposes in the numeri-

cal results I chose Θtc to be the Heaviside step function. This equation of motion exactly

reproduces Equation (5.58). I emphasize again that the stochasticity is introduced into

Equation (E.44) because the exact (Bohmian) path of the ions ~Rj [t] is not explicitly
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simulated. Their effect is introduced into the dynamics of the electron ~rja[t] through

the random selection of collision times and phonon modes satisfying some well-known

probability distributions.

I achieve the same conclusion as in the Schrödinger case: the time evolution of ψ(~ra, t)

before and after the collision is fully coherent. For example, as it is shown in Section 5.3,

if a collision occurs with an initial electron whose direction was not perpendicular to a

potential barrier (and therefore will not suffer Klein tunneling) and that collision changes

the electron direction appropriately, the electron can experience the full Klein tunnelling

effect.





Appendix F

Number of electrons in a region

of the phase space

F.1 Number of electrons in a region of the phase space

To simplify the discussion, I use a 1D phase-space and consider electrons (fermions)

without spin. The spatial borders of the phase space are selected, arbitrarily, as x =

0 and x = L. The common argument used in the literature counts the number of

Hamiltonian eigenstates fitting inside in the phase-space, when applying the well-known

Born-von Karman periodic boundary conditions [90]. The result is that each electron

requires a partial volume of 2π of the phase space, as indicated in Equation (6.24) in

the text. After discussing the limitations of this procedure, the same result by imposing

the exchange interaction among electrons associated to time-dependent wave packets is

obtained.

F.1.1 Limitations of the Born-von Karman periodic boundary condi-

tions

The single-particle Hamiltonian eigenstates of a semiconductor can be written as Bloch

states Ψ(x) ∝ eikxx so that, by imposing the Born-von Karman periodic boundary

conditions on the spatial borders of the phase space, Ψ(x+ L) = Ψ(x), we require that

eikxL = 1. Thus, I conclude that the allowed wave vectors kx have to take the discrete

values:

kx = 2π
j

L
= ∆kx · j (F.1)

233
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for j = 0,±1,±2, . . . with ∆kx = 2π/L. Because of the Pauli exclusion principle, two

electrons can not be associated to the same state Ψ(x) ∝ eikxx, i.e., to the same kx.

Therefore, the number of electrons in the 1D phase space, at zero temperature, is just

n1D = kf/∆kx = kf · L/(2π) with kf the wave vector associated to the Fermi energy.

Thus, the well-known density of states in the 1D phase space (without spin or valley

degeneracies) gives that each electron requires a volume of 2π of the phase space, in

agreement with Equation (6.24) in the text.

In the above procedure, we give an unphysical definition of the values ∆kx and ∆x

mentioned in Eq.(1) in the manuscript. We assume that each electron described by

Ψ(x) ∝ eikxx has a spatial extension ∆x = L, then, using ∆x · ∆kx = 2π we get

∆kx = 2π/L. We argue here that a time dependent modeling of transport cannot

be based on time-independent energy eigenstates Ψ(x) ∝ eikxx. We are interested in

electrons moving from the left contact (i.e. with an initial probability located at the

left), traveling along the active region, until the electron reach the right contact (i.e. with

a final probability located at the right). Next, we discuss how the number of electrons

in the phase space can be counted with time-dependent wave packets.

F.1.2 Exchange interaction among electrons in free space

I remark the wave nature of electrons in our 1D system using, for example, a Gaussian

wave packet:

ψj(x) =
1

(πσ2
x)1/4

exp (ikoj (x− xoj)) exp

(
−(x− xoj)2

2σ2
x

)
(F.2)

where the electron wave function is located around the central position xoj and central

wave vector koj . The spatial dispersion in the position space is σx, and in the wave vector

space σk = 1/σx. Strictly speaking, Equation (F.2) is the envelop of a wave function

that varies smoothly in the atomistic resolution of a semiconductor. The normalization

condition can be written as
∫∞
−∞ dx|ψj(x)|2 = 1.

I consider a first wave packet ψ1(x) located somewhere in the phase space and a second

wave packet ψ2(x), initially far from the first wave packet, that approaches the first one,

for example, because of the interaction with all other electrons. I simplify the many body

dynamics by considering that the first wave packet has fixed the central position x01 and

central wave vector ko1 and that the second one keeps the shape given by Equation (F.2)

with values of the central position x02 and central wave vector ko2 varying to approach

the location of the first wave packet in the phase space. Thus, I compute the probability
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P of the antisymmetrical state Φ(x1, x2) of the two electrons from the Slater determinant,

built from the single-particle wave packets in Equation (F.2), as:

P (Φ) =

∫ ∞
−∞

∫ ∞
−∞

dx1 dx2
1

2
|ψ1(x1)ψ2(x2)− ψ1(x2)ψ2(x1)|2 (F.3)

=

∫ ∞
−∞

∫ ∞
−∞

dx1 dx2|ψ1(x1)|2|ψ2(x2)|2 −
∫ ∞
−∞

∫ ∞
−∞

dx1 dx2ψ
∗
1(x1)ψ2(x1)ψ∗2(x2)ψ1(x2)

A straightforward computation of Equation (F.4), using Equation (F.2), gives [183]:

P (Φ) = 1− exp(−d2
1,2) (F.4)

where we have defined the distance d1,2 between the wave packet 1 and 2 in the phase

space as:

d2
1,2 =

(ko1 − ko2)2

2σ2
k

+
(xo1 − xo2)2

2σ2
x

(F.5)

The interpretation of Equation (F.4) is simple. When the wave packets are far away

from each other in the phase space, i.e. |xo1 − xo2| >> σx or |ko1 − ko2| >> σk,

the norm of the two-electron wave function is equal to the unity. However, when the

wave packets are approaching each other, the probability in Equation (F.4) decreases.

In particular, for xo1 = xo2 and ko1 = ko2, we get ψ1(x) = ψ2(x) and Φ(x1, x2) =

ψ1(x1)ψ1(x2) − ψ1(x2)ψ1(x1) = 0 with P (Φ) = 0 in Equation (F.4). This is the time-

dependent wave packet version of the Pauli exclusion principle (or exchange interaction)

mentioned above for time-independent Hamiltonian eigenstates.

In Figure F.1, 1 − P (Φ) is plotted as a function of ko2 and x02. For large values of

d1,2, the probability of finding the second electron is equal to the unity, P (Φ) = 1 (or

1− P (Φ) = 0). However, for small d1,2, the probability P (Φ) decreases. I now compute

the area of the phase space forbidden for the second electron due to the presence of the

first one. Not all points xo2 and ko2 are equally forbidden. The closer to xo1 and ko1,

the less probable such second electron. Thus, the computation of this forbidden Area

has to be weighted by the probability 1− P (Φ) given by Equation (F.4) as:

Area =

∫ ∞
−∞

dko2

∫ ∞
−∞

dxo2(1− P (Φ)) =

∫ ∞
−∞

dko2

∫ ∞
−∞

dxo2 exp(−d2
1,2)

=

∫ ∞
−∞

dxo2 e
− (xo1−xo2)2

2σ2
x

∫ ∞
−∞

dko2 e
− (ko1−ko2)2

2σ2
k = 2π (F.6)
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Figure F.1: (a) Probability of not finding a second electron in the central positions
xo2 = x2 and central wave vector ko2 = k2 due to the presence of another electron in
xo1 = 2 µm y ko1 = 8 µm−1. (b) Contour plot of figure (a). The line 0.31 corresponds
to an ellipse (inside a rectangle with sides are

√
8σx and

√
8σk) whose area is 2π. This

surface corresponds to the volume of the phase-space needed for each electron. See the
exact computation in Equation (F.6) in this appendix.

This Area = 2π is universal and independent of the parameters of the Gaussian wave

packets [183]. This result can also be extended to a many-particle wave function with a

large number of particles. Again, we obtain that each electron requires a volume of 2π

of the phase space, in agreement with Equation (6.24). The new important result that

we get from this last wave-packet procedure is that the physical interpretation of ∆x

and ∆kx mentioned along the text can be defined as:

∆x = σx
√

2π (F.7)

∆kx = σk
√

2π (F.8)

I remark that the condition σx · σk = 1 implies the desired condition ∆x ·∆kx = 2π as

mentioned in Figure F.1.



Appendix G

Analytical two-particle

probabilities for arbitrary wave

packets

A general expression for the probabilities PLR, PLL and PRR in Equation (6.40)-

Equation (6.42) for an arbitrary normalized wave packet is developed in this appendix.

I explicitly assume the conditions (i), (ii) and (iii) mentioned in Section 6.3. The so-

lution of the time dependent Schrödinger equation with separable potentials can be

found from two decoupled single-particle Schrödinger equations. After impinging with

the barrier, at the time t1 mentioned in the text, each initial one-particle wave function

splits into (non-overlapping) transmitted (t) and reflected (r) components defined in

Equation (6.44) and Equation (6.45).

From the set of four available reflected and transmitted components, I define the set of

sixteen complex integrals:

Ic,de,f =

∫ h

g
dx φce(x, t1) φ∗df (x, t1) (G.1)

where the upperindexes c and d are related to transmitted (t) and reflected (r) com-

ponents, while the subindexes e and f to the initial position of the one-particle wave

packets (a left and b right). The limits of the spatial integration, not explicitly indicated

in Ic,de,f , are g = −∞, h = 0 when both components are present at the left of the barrier,

while g = 0, h = ∞ at the right. With the definitions of Equation (G.1), the trans-

mission and reflection coefficients of the a-wave packet are rewritten as Ta = It,ta,a and

237
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Ra = Ir,ra,a, respectively. Identically, I define Tb = It,tb,b and Rb = Ir,rb,b . By construction,

Ic,de,f = (Id,cf,e)
∗.

Using the definitions in Equation (6.44)-Equation (6.45) and Equation (G.1), I get the

property:

Ir,ta,b + It,ra,b =

∫ ∞
−∞

dx φa φ
∗
b =

∫ ∞
−∞

dkga(k)g∗b (k) (G.2)

where I have defined

ga(k) = 〈φa(x, t0)| ψk(x)〉 =

∫ ∞
−∞

φa(x, t0)ψ∗k(x)dx (G.3)

being ψk(x) the scattering state (with k its wave vector). Accordingly, the wave packet

φa(x, t) can be written by superposition as:

φa(x, t) =
1√
2π

∫ ∞
−∞

ga(k)∆e−
iEk∆t

~ ψk(x)dk (G.4)

Identical definition for gb(k). Let me notice that the scenario depicted in Figure 6.10

implies that there is no overlapping between ga(k) and gb(k) because they have opposite

momenta at the initial time. This no overlapping condition is true initially and it also

remains valid at any later time because ψk(x) are Hamiltonian eigenstates. Then, I get

Ir,ta,b + It,ra,b = 0.

Using Ic,de,f = (Id,cf,e)
∗, the probability of detecting two particles at the left of the barrier

in equation Equation (6.41), at t = t1, can be straightforwardly developed as:

PLL =

∫ 0

−∞
dx1

∫ 0

−∞
dx2 |Φ|2 = RaTb ∓ |Ir,ta,b|

2 (G.5)

Identically, the probability of detecting two particles at the right of the barrier is:

PRR = TaRb ∓ |Ir,ta,b|
2 (G.6)

Finally, using also the previous identity Ir,ta,b = −It,ra,b, the probability of one particle at

each side is:
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PLR =
RaRb + TaTb

2
± |Ir,ta,b|

2 +
RaRb + TaTb

2
± |Ir,ta,b|

2 =

= RaRb + TaTb ± 2|Ir,ta,b|
2 (G.7)

Notice that the term ±|Ir,ta,b| accounts for the difference between fermions and bosons. For

these general conditions, one can check that PLL+PRR+PLR = RaRb+TaTb+ 2TaRb.

Since 1 = Ra + Ta and 1 = Rb + Tb, I finally get PLL + PRR + PLR = 1, for either

fermions or bosons.

Under the conditions (i), (ii) and (iii) mentioned in Section 6.3, the expression of Ir,ta,b

can be further developed. I define a new wave packet Υa(x, t1) as follows: Υa(x, t1) =

φra(x, t1) for all x ∈ (−∞, 0] and Υa(x, t1) = 0 elsewhere. This new wave packet can be

written at t1 as:

Υa(x, t1) =
1√
2π

∫ ∞
−∞

ga(k)∆e−
iEk∆t1

~ r(k)e−ikxdk (G.8)

where r(k) is the reflection (complex) amplitude of the scattering state ψk(x). Notice

that Υa(x, t1) does not contain the incident plane wave exp(ikx) included in ψk(x).

The reason is because, at time t1, the superposition of these incident terms exp(ikx)

does not contribute to the wave function at the left of the barrier. Identically, I define

Υb(x, t1) = φtb(x, t1) for all x ∈ (−∞, 0] and Υb(x, t1) = 0 elsewhere. At t1:

Υb(x, t1) =
1√
2π

∫ ∞
−∞

gb(k)∆e−
iEk∆t1

~ t(k)e−ikxdk (G.9)

where t(k) is the transmission (complex) amplitude of the scattering state ψk(x). Be-

cause of conditions (i), (ii) and (iii), I can consider g(k) ≡ ga(k) = gb(−k). Then, using

Equation (G.8) and Equation (G.9) I get:

Ir,ta,b =

∫ ∞
−∞

dxΥaΥ
∗
b =

∫ ∞
−∞

dk|g(k)|2r(k)t∗(k) (G.10)

where the spatial integral in Equation (G.10) extends from −∞ to ∞ because, by con-

struction, Υa(x, t1) and Υ∗b(x, t1) are zero at x ∈ (0,∞). I have also used the property of

the scattering states t(k) = t(−k). It is interesting to compare equation Equation (G.10)
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with the well-known expression for the computation of the (one-particle) transmission

coefficient:

T = Tb = Ta = It,ta,a =

∫ ∞
−∞

dk|g(k)|2|t(k)|2 (G.11)

and (one-particle) reflection coefficient:

R = Rb = Ra = Ir,ra,b =

∫ ∞
−∞

dk|g(k)|2|r(k)|2 (G.12)

Notice that, under the conditions (i), (ii) and (iii), the transmission T = Tb = Ta and

reflection R = Rb = Ra coefficients are equal for the a and b wave packets. I notice that

T and R take real values, while Ir,ta,b take complex ones.

From Equation (G.10), it is a straightforward procedure to deduce the maximum allowed

value for |Ir,ta,b|
2. The maximum value is |Ir,ta,b|

2 = RT . It corresponds to an scenario where

r(k) and t(k) are (almost) constant in the support of g(k). Then, from Equation (G.10),

I obtain Ir,ta,b ≈ r(k
c)t∗(kc) with kc defined as the central wave vector of the wave packet.

It can be straightforwardly demonstrated that this value implies that the shapes of

the a-reflected φar(x, t) and b-transmitted φbt(x, t) wave packets are identical up to an

arbitrary (complex) constant:

φra(x, t1) = φtb(x, t1)eα+iβ (G.13)

being α and β two real position-independent constants. For such scenarios, Equa-

tion (G.5)-Equation (G.7) can be rewritten as PMLL, PMRR and PMRR in Equation (6.47)

and Equation (6.47). I use the upperindex M in Equation (6.47) and Equation (6.47)

to indicate that the probabilities correspond to the maximum value of |Ir,ta,b|
2. I repeat

that Equation (6.47) and Equation (6.47) exactly reproduce the results found in the

literature for scattering states in [79, 82, 170, 173].

However, the possibility of a minimum value |Ir,ta,b|
2 = 0 in Equation (G.10) is in general

ignored in the literature. This corresponds to an scenario where r(k) and t(k) vary

very rapidly between 1 and 0 on the support of g(k). For example, in a sharp reso-

nance. Then, from Equation (G.10), I get Ir,ta,b ≈ 0. This value means that φar(x, t)



Appendix Analytic two-particle probabilities for arbitrary wave packets 241

and φbt(x, t) in Equation (G.1) are orthogonal. In fact, the different schematic symbols

of the wave packets in Figure 6.10 emphasize this point. When |Ir,ta,b|
2 = 0, Equa-

tion (G.5)-Equation (G.7) can be rewritten as PmLL,PmRR and PmLR in Equation (6.48)

and Equation (6.49). I use the upperindex m in Equation (6.48) and Equation (6.49) to

indicate that these probabilities correspond to the minimum value of |Ir,ta,b|
2. The proba-

bilities in Equation (6.48)-Equation (6.49) show no difference between indistinguishable

(fermions or bosons) or distinguishable particles.
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[41] Y. M. Blanter and M. Büttiker, Shot noise in mesoscopic conductors. Phys. Rep.

336, 1 (2000).



Bibliography 246

[42] P. Hohenberg and W. Kohn Inhomogeneous electron gas Phys. Rev. 136, 864

(1964).

[43] Z. Merali, What is really real?, Nature 521, 278 (2015).

[44] M. F. Pusey, J. Barrett and T. Rudolph, On the reality of the quantum state, Nat.

Phys. 8, 475 (2012).

[45] A. Einstein, Autobiographical Notes, Albert Einstein: Philosopher-Scientist, Illi-

nois, Open Court Publishing (1949).

[46] P. McEvoy, Niels Bohr: Reflections on Subject and Object, MicroAnalytix (2001).

[47] T. Maudlin, Three measurement problems, Topoi 14, 7 (1995).
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