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Abstract 

G-protein-coupled receptors (GPCRs) play very important roles in a great variety of biological 

processes. They are located in the membrane and mediate the signaling pathways in the cell. It 

is widely accepted that these receptors often form oligomers which may have significant 

physiological functions. In addition, one GPCR may act at several downstream signaling 

pathways, and these pathways can be differentially activated by the ligand of the receptor. The 

present thesis tries to provide new mathematical tools for the understanding of these 

phenomena. There are two new mathematical models for GPCR oligomerization and one novel 

framework for biased signaling in the present thesis.  

Firstly, a new mathematical model is proposed for the receptor heterodimer. This heterodimer 

model can be employed to dissect the impact of the two ligands which are respectively bound 

to the two protomers in the heterodimer on the downstream signaling pathways of the 

heterodimer. Secondly, a new mathematical model is presented for the receptor homodimer. 

This homodimer model can be utilized to analyze a wide range of dose-response curves of the 

ligands binding to the receptor homodimer and the biased signaling which is dependent on 

ligand concentration. Thirdly, a novel conceptual framework is put forward for the dissection of 

biased signaling. This framework provides new insights on biased signaling and novel 

quantitative scales for system bias, ligand bias, and signaling bias.  

To sum up, the new mathematical models and framework are based on some existing 

operational models for GPCR signaling which have been widely applied to the study of drug 

action. Therefore, it is feasible to use the rationale and computational tools shown in the 

present thesis to overcome the difficulties in data analysis which are caused by GPCR 

oligomerization and biased signaling.   
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1. Introduction  

 

In essence, the human body is composed of a great variety of molecules. Generally, they are 

divided into two categories, namely macromolecules and small molecules. Although this 

classification is not always suitable, it can help us to dissect an enormous number of molecular 

interactions. Of the macromolecules, proteins play very important roles in a wide range of 

biological processes in the human body. For example, some proteins can recognize ligands and 

then modulate various signaling pathways, causing remarkable changes in biological functions. 

These proteins are known as receptors. As a consequence, the ligand-receptor interactions 

have extraordinary implications in the normal physiological processes. Accordingly, it can be 

anticipated that the disturbance of normal ligand-receptor interactions contributes to a great 

variety of diseases.   

Due to the involvement of abnormal ligand-receptor interactions in plenty of diseases, both the 

academia and the pharmaceutical industry have paid great attention to the development of 

drugs which can modulate the abnormal ligand-receptor interactions and restore normal 

receptor functions. As a large group of receptors, G-protein-coupled receptors (GPCRs) 

primarily reside in the cell membrane. GPCRs are integral to the normal functions of the cell 

membrane and responsible for the recognition of extracellular ligands. They assist the cell in 

detecting external stimuli and sensing the outer world (Smith et al., 2018). In response to the 
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alterations in the surroundings, the cell subsequently adopts some strategies so as to get 

adapted to the ever-changing environment.  

In the signal transduction processes mediated by GPCRs, these receptors may act on some 

proteins, which can transduce the signal from the environment into the cell. These proteins 

downstream of GPCRs are referred to as the transducers. These transducers then interact with 

the effector molecules, which can further transmit the signal and exert effects on downstream 

signaling pathways.  Not only G proteins, but also β-arrestins or other molecules can transduce 

the signal mediated by GPCRs (Smith et al., 2018). Discrepant transducers implement their 

functions by means of different mechanisms of action, which lead to differing responses of the 

downstream signaling pathways. For some GPCRs, the same receptor can interact with several 

different transducers. When a particular ligand acts on the receptor, the resultant receptor 

conformations may interact with some transducers to distinct degrees, causing the differential 

activation of several downstream signaling pathways. This phenomenon is named “biased 

signaling”, which is a very hot topic in the domain of pharmacology (Kenakin and Christopoulos, 

2013; Smith et al., 2018). The research on biased signaling can help us to circumvent the 

adverse drug reactions and potentiate the therapeutic efficacy of the drugs.  

It is increasingly evident that GPCRs often form oligomers (Ferré et al., 2014; Gomes et al., 2016; 

González-Maeso, 2014). The oligomerization provides GPCRs with more opportunities to 

behavior differently from the monomer state (Ciruela et al., 2012). On one hand, a particular 

GPCR might form a homomer with the same receptor. On the other hand, it is possible that the 

GPCR can form a heteromer with different receptors. Both homomerization and 

heteromerization have been observed in experiments, which can assign new functions to GPCRs 

compared with monomers. GPCR oligomerization is believed to play important roles in normal 
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physiological processes and a variety of diseases (Borroto-Escuela et al., 2017; Ferré et al., 2014; 

Gaitonde and González-Maeso, 2017).  

Mathematical modeling assists in the analysis of GPCR functions (Roche et al., 2014). The 

mathematical models can depict how the receptor responds to extracellular ligands and elicits 

intracellular signal transduction. With the accumulation of evidence that GPCRs exert their 

functions by means of a range of new mechanisms, an increasing number of mathematical 

models were developed to address the new modes of action of GPCRs. For instance, the two-

state dimer receptor model was constructed to explain the behavior of GPCR homodimers 

(Franco et al., 2006). Subsequently, a three-state dimer model was built to dissect two different 

pathways mediated by the same receptor homodimer by assuming that the two active states of 

the homodimer act on two pathways, respectively (Brea et al., 2009). The 

asymmetric/symmetric three-state dimer model further presumed that the two active states 

are the asymmetric R*R state and the symmetric R*R* state, which mediate the G-protein-

dependent pathway and the G-protein-independent pathway, respectively (Rovira et al., 2010). 

This model explained how ligand concentration caused the switch from G-protein-dependent to 

G-protein-independent signaling for β2-adrenoceptors.  

In addition to the aforementioned models, some operational models were also proposed to 

account for the working mechanism of GPCR signaling. The Black & Leff model is the first 

operational model for GPCR signaling, which aims to analyze the agonism of a GPCR monomer 

(Black and Leff, 1983). Afterwards, the Slack & Hall model was proposed as an extension of the 

Black & Leff model by taking the constitutive receptor activity into consideration (Slack and Hall, 

2012). The addition of the constitutive receptor activity into the model enables the Slack & Hall 

model to dissect the behavior of inverse agonists. As a result, the Slack & Hall model has the 
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potential to be applied to the analysis of all types of ligands, including agonists, neutral 

antagonists, and inverse agonists. However, there were no operational models for GPCR 

oligomers before the doctoral study of the author of the present thesis.  

Some quantitative scales have been proposed to evaluate ligand bias in drug screening 

programs, which can help us to find the ligands with desirable properties in terms of biased 

agonism. In some cases, biased ligands are desired, whereas unbiased ligands are preferred 

under other circumstances. Our preference for biased or unbiased ligands is dependent on the 

specific situations. Most of the scales defined to date are just applicable to the signaling system 

without constitutive receptor activity, so they cannot be used for the analysis of inverse 

agonists (Burgueño et al., 2017; Kenakin and Christopoulos, 2013; Kenakin et al., 2012). A scale 

for ligand bias was recently proposed by Hall and Giraldo (Hall and Giraldo, 2018). This scale is 

based on the Slack & Hall model, which can depict the signaling system with constitutive 

receptor activity. This scale can be employed to analyze the ligand bias of inverse agonists when 

there is no significant discrepancy in the equilibrium dissociation constant of the ligand-

receptor complex between the different signaling pathways. Given the shortcomings of these 

previous scales, we tried to come up with a new scale which is able to describe the ligand bias 

of all classes of ligands, including agonists, neutral antagonists, and inverse agonists, without 

the requirement that the equilibrium dissociation constant of the ligand-receptor complex does 

not differ significantly between the studied signaling pathways.  

There are three studies in the present doctoral thesis. The first study aims at building a new 

mathematical model for the GPCR heterodimer. The second focuses on a new mathematical 

model for the GPCR homodimer. The third seeks to propose new quantitative scales for system 

bias, ligand bias, and signaling bias within a novel conceptual framework for biased signaling. 
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These three studies assist us in the mathematical modeling of GPCR oligomerization and biased 

signaling. These mathematical models provide key insights at the functional level on how the 

signaling systems involving GPCRs interact with the ligands of these receptors. Under some 

conditions, these models can be employed to fit the experimental data. In these cases, the 

values of some important parameters in the mathematical models, such as the intrinsic efficacy 

of the ligand and the cooperativity between ligands, have the potential to evaluate whether a 

particular ligand is suitable to be further developed in a drug discovery program.  
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2. Background 

 

2.1. GPCRs 

2.1.1. A brief introduction to the GPCRs 

GPCRs compose a superfamily of receptors in the biological membrane. The discovery of GPCRs 

was derived from the research which was done by Martín Rodbell and Alfred G. Gilman. The 

former investigated how the activity of glucagon peptide is associated with the guanosine 

triphosphate (GTP) (Rodbell et al., 1971a, 1971b). The latter made parallel observations in 

adrenergic receptors, and G protein became the name of the protein mediating the signal 

transduction (Gilman, 1987). Because of these findings, they were awarded the Nobel Prize in 

1994.  

Subsequently, an increasing number of GPCRs were discovered. Up to now, it is estimated that 

more than 800 GPCR sequences are located in the human genome (Fredriksson et al., 2003). 

GPCRs are characterized by seven transmembrane domains which are α-helices. The N-

terminus and the C-terminus of a GPCR in the cell membrane are outside and inside the cell, 

respectively. It has three extracellular loops and three intracellular loops. The ligand binds to 

the extracellular domain of the receptor and causes the changes in receptor conformations, 

which elicit alterations in the states of downstream transducers. GPCRs respond to many types 
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of ligands, such as small molecules and peptides, and the transducers could be G proteins, β-

arrestins, or other signaling molecules. The difference in ligands and transducers leads to the 

large diversity of biological processes influenced by GPCRs.  

2.1.2. The classification of the GPCR superfamily 

There are a great variety of proteins with a wide range of functions in the GPCR superfamily. In 

order to gain a better understanding of this superfamily, several classification systems were 

proposed for dividing the GPCRs into different groups. One of the classification systems uses 

clans (or classes) A, B, C, D, E, and F (Attwood and Findlay, 1994; Kolakowski, 1994). The A-F 

system is used for all GPCRs which exist in invertebrates and vertebrates. However, due to the 

remarkable difference in the types of GPCRs between distant species, this A-F system is not 

very suitable for the dissection of human GPCRs. Afterwards, the GRAFS classification system 

was come up with so as to investigate human GPCRs (Fredriksson et al., 2003). According to the 

GRAFS classification system, the GPCR superfamily in the human genome can be categorized 

into five primary families, that is, glutamate, rhodopsin, adhesion, frizzled/taste2, and secretin 

(Fredriksson et al., 2003). It was suggested that the human GPCRs stem from the same ancestor 

based on the analysis of some shared structural characteristics.  

The rhodopsin family contains the largest number of proteins among the five families. The 

rhodopsin family is consistent with clan A of the A-F classification system. It is worth 

mentioning that aminergic receptors are in the rhodopsin family, and the aminergic receptors 

contain some important neurotransmitter receptors, such as 5-hydroxytryptamine receptors, 

acetylcholine receptors (muscarinic), adrenoceptors, and dopamine receptors (Pándy-Szekeres 

et al., 2018).  
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2.1.3. The structures of the GPCRs 

The first crystal structure of a GPCR was reported in 2000, when Palczweski et al. determined 

the three-dimensional structure of rhodopsin from diffraction data (Bourne and Meng, 2000; 

Palczewski et al., 2000). After that, the crystal structure of the human β2 adrenergic receptor 

was published in 2007 (Cherezov et al., 2007; Ranganathan, 2007; Rasmussen et al., 2007; 

Sprang, 2007). Since then, a growing number of three-dimensional structures of GPCRs have 

been revealed.  

So far, the atomic structures of more than 200 GPCR structures have been determined (Thal et 

al., 2018). These structures belong to over 50 unique GPCRs and cover various conformational 

states. These conformations include inactive states, active states, and intermediate states. 

Some of the GPCRs are in combination with arrestins or G proteins. These GPCR structures 

provide great insights into the molecular mechanisms of GPCR activation by the extracellular 

ligands.  

2.1.4. GPCRs as drug targets  

GPCRs are very versatile in the normal physiological processes. As a consequence, GPCRs are 

involved in the genesis and development of a great variety of diseases. Additionally, most 

GPCRs are located in the cell membrane, so the ligands of GPCRs do not need to cross the cell 

membrane. This phenomenon makes it relatively easy to design drugs which target GPCRs. Due 
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to these factors, a large number of approved drugs in the market exert their effects by acting 

through GPCRs.  

Among all of the drugs which have been approved by the US Food and Drug Administration 

(FDA), approximately 34% (475 drugs) target GPCRs (Hauser et al., 2017). Moreover, now there 

are about 321 agents in clinical trials which have GPCRs as their targets (Hauser et al., 2017). 

Traditionally, GPCR-related drugs are used for the treatment of schizophrenia, allergy, 

depression, hypertension, analgesics, and so forth (Hauser et al., 2017). However, GPCR-related 

ligands are increasingly utilized in the domains of obesity, smoking cessation, Alzheimer disease, 

hypocalcaemia, multiple sclerosis, and so on.  

 

2.2. G proteins   

2.2.1. A brief introduction to G proteins   

 The full name of G proteins is guanine nucleotide-binding proteins, which belong to the class of 

enzymes named GTPases. They work as molecular switches inside the cell, whose activity is 

governed by the conversion between guanosine diphosphate (GDP) and guanosine 

triphosphate (GTP) bound to them. GTP activates the G protein, while GDP inactivates the G 

protein. There exist two categories of G proteins, that is, monomeric small GTPases and 

heterotrimeric G protein complexes. The heterotrimeric G protein complex is constituted by α, 

β, and γ subunits. The heterotrimeric G proteins can be activated by GPCRs. Depending on the 

sequence of the α subunit, the heterotrimeric G proteins can be categorized into four 
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subclasses, namely Gs, Gi/o, Gq/11, and G12/13. The four subclasses are responsible for mediating 

the signal from a very wide range of extracellular ligands. Figure 1 shows some examples of 

signaling mediated by G proteins.  

 

Figure 1. Modulation of systemic functions by four subclasses of G proteins. The extracellular stimuli 

include neurotransmitters, hormones, chemokines, and so forth.  These ligands interact with a variety of 

GPCRs and thus cause the functional changes in the four subclasses of G proteins. Of note, some ligands 

can act at more than one GPCR and regulate over one G protein. Subsequently, G proteins affect the 

functional state of some cellular machines. The cellular machines further modulate cellular functions, 

eventually resulting in the alteration of systemic functions. LH: luteinizing hormone; TSH: thyroid 

stimulating hormone; IL-8: interleukin-8; LPA: Lysophosphatidic acid. This picture has been taken from 

the article of Neves et al. (Neves et al., 2002).     
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2.2.2. Gαs and downstream signaling pathways  

Gαs can activate the adenylate cyclase, which turns the adenosine triphosphate (ATP) into the 

adenosine 3,5-monophosphate (cAMP) (Bourne, 1997; Tesmer et al., 1997). cAMP can 

stimulate cAMP-dependent protein kinases, thereby playing a role in the regulation of a vast 

array of cellular responses.  

2.2.3. Gαi/o and downstream signaling pathways 

By means of the inhibitory effect of this group of G protein subunits on the adenylate cyclase, 

the production of cAMP is reduced, which leads to the weaker function of cAMP-dependent 

protein kinases (Dessauer et al., 2002). In this manner, these G protein subunits can hinder the 

cAMP-dependent pathways.  

2.2.4. Gαq/11 and downstream signaling pathways 

This group of G protein subunits can activate the phospholipase C-β (PLC-β) (Neves et al., 2002). 

In the next step, PLC-β hydrolyzes the phosphatidylinositol 4,5-bisphosphate (PIP2) and thus 

generates the diacylglycerol (DAG) and the inositol 1,4,5-trisphosphate (IP3) (Kamato et al., 

2017). Subsequently, DAG stays on the membrane and activates the protein kinase C (PKC). At 

the same time, IP3 goes to interact with IP3 receptors in the endoplasmic reticulum, resulting in 

the accumulation of calcium in the cytosol. These processes elicit a variety of alterations in 

cellular functions.   
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2.2.5. Gα12/13 and downstream signaling pathways 

These G protein subunits can stimulate Rho guanine-nucleotide-exchange factors (RhoGEF), 

such as leukaemia-associated RhoGEF (LARG) in mammals (Worzfeld et al., 2008). This action 

will cause the activation of RhoA. In addition, this group of G protein subunits can also interact 

with other molecules. For instance, Gα12/13 can prevent cadherins from exerting adhesive 

effects and cause the β-catenin to be released (Meigs et al., 2001, 2002).  

 

2.3. β-arrestins  

2.3.1. A brief introduction to β-arrestins 

Arrestins constitute a small protein family playing crucial roles in the modulation of signal 

transduction (Lefkowitz and Shenoy, 2005; Moore et al., 2007). There are four subtypes of 

arrestins in mammals, namely arrestin-1 (visual arrestin), arrestin-2 (β-arrestin1), arrestin-3 (β-

arrestin2), and arrestin-4 (cone arrestin) (Smith and Rajagopal, 2016). Among them, arrestin-1 

and arrestin-4 are expressed in the eyes, whereas arrestin-2 and arrestin-3 are ubiquitously 

expressed (Smith and Rajagopal, 2016). Arrestin-2 and arrestin-3 belong to β-arrestins. At the 

beginning, β-arrestins were found to induce the desensitization of β2 adrenergic receptor after 

it was activated by the agonist, but until now it has been revealed that β-arrestins have a wide 

range of functions in the regulation of biological processes (Smith and Rajagopal, 2016).  
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2.3.2. β-arrestin-mediated signaling pathways 

 

Figure 2. Some examples of the biological functions of β-arrestins. EGFR: epidermal growth factor 

receptor; MAP Kinases: mitogen-activated protein kinases; PP2A: protein phosphatase 2A; PDEs: 

phosphodiesterases; PI3K: phosphatidylinositol-4,5-bisphosphate 3-kinase; TRP: transient receptor 

potential. This picture is from the article of Smith and Rajagopal (Smith and Rajagopal, 2016).  
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2.4. Mechanisms of signal transduction mediated by GPCRs 

2.4.1. The traditional model 

There are several models for GPCR functions. The traditional one is that the agonist-bound 

GPCR in the cell membrane attracts heterotrimeric G proteins and substitute a GTP for a GDP 

on the G proteins, resulting in the dissociation of their α-subunits from βγ-subunits and thus 

the activation of both α-subunits and βγ-subunits. The GTP-bound α-subunit then binds to the 

downstream effectors, causing signal transduction in the cell.  Sometimes the βγ-subunit can 

also bind to some effectors. After a period, the GTP binding to the α-subunit is converted into 

GDP by hydrolysis. Subsequently, the GDP-bound α-subunit associates with the βγ-subunit 

again, forming the GDP-bound G protein, which is inactive and waits to bind to a GPCR. This 

traditional view of GPCR activation is being challenged by numerous new experimental 

observations.  

2.4.2. Intracellular signaling 

At the beginning, GPCRs were thought to be located merely in the cell membrane and initiate 

the signaling cascades from there. Nevertheless, an increasing amount of evidence is showing 

that GPCRs can also perform their functions inside the cell in addition to working as the 

detectors of the extracellular ligands in the cell membrane (Luttrell et al., 1999; Schiaffino et al., 

1999). GPCRs off the cell membrane can be activated in several ways. One way to achieve 

activation is that GPCRs can be directly stimulated in some organelles, also known as the 

internalization-independent intracellular activation. Another way is that GPCRs can be activated 

after the internalization, which is termed the internalization-dependent activation.   



~ 26 ~ 
 

Besides the cell membrane, GPCRs were also reported to exist in the lysosome, the 

melanosome, the cell nucleus, the endoplasmic reticulum, and the mitochondrion (Bénard et al., 

2012; Oksche et al., 2000; Revankar et al., 2005; Rozenfeld and Devi, 2008; Schiaffino et al., 

1999; Sergin et al., 2017). As a consequence, the internalization-independent intracellular 

activation may occur for the GPCRs residing in these locations. For instance, ocular albinism 

type 1 protein is located in the melanosome rather than the plasma membrane, and it can 

stimulate G proteins on the cytoplasmic side (Schiaffino et al., 1999). In this way, it plays a role 

in the organelle biogenesis and maturation. One of other examples is the metabotropic 

glutamate receptor 5. The receptor can reside in the inner nuclear membrane and is 

responsible for causing the alterations in Ca2+ in the nucleoplasm (Sergin et al., 2017).  

The β-arrestin performs very important functions in the internalization-dependent activation. It 

enhances the endocytosis of GPCRs and acts on the MAP kinase pathway (Eichel et al., 2016). 

The internalization-dependent activation can be implemented in several ways. With respect to 

class A GPCRs, the β-arrestin can bind to the receptor in the cell membrane. Afterwards, the 

complex formed by the β-arrestin and the GPCR is internalized, which results in the activation 

of the extracellular signal–regulated kinase 1/2 (ERK1/2) (Luttrell, 2005).  

2.4.3. Pre-coupling of G proteins to GPCRs  

There is some evidence showing that G proteins are pre-coupled to inactive GPCRs (Weiss et al., 

1996). The binding of agonists affects the state of the macromolecular complex of the GPCR 

and the G protein, altering the conformations of the G protein. The G protein then becomes 

active and influences the state of the downstream effector molecules, thus eliciting the 

intracellular signal transduction.  
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2.4.4. Transactivation through other receptors 

Some GPCRs (such as serotonin receptors and chemokine receptors) are capable of 

transactivating other receptors (such as pattern recognition receptors and tyrosine kinase 

receptors) in the membrane (Abdulkhalek et al., 2012; Fischer et al., 2004; Itoh et al., 2005; 

Kruk et al., 2013). The phenomenon of transactivation makes GPCRs much more versatile in 

regulating the wide range of physiological processes. One of the well-known instances is that 

GPCRs can transactivate the epidermal growth factor receptor (EGFR). Figure 3 illustrates how 

GPCRs can activate the EGFR in three distinct manners.  
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Figure 3. Transactivation of the EGFR by the GPCR. There are three main approaches to accomplishing 

the transactivation of the EGFR. (A) The GPCR stimulates the src kinase, and the src kinase then 

promotes the production of the matrix metalloproteinase (MMP). Subsequently, the MMP causes the 

heparin-binding EGF-like growth factor (HB-EGF) to leave the membrane. In the next step, the HB-EGF 

activates the EGFR by the direct interaction. (B) The src kinase phosphorylates the EGFR straightly. (C) 

The GPCR elicits the stimulation of the EGFR by generating a molecular complex in combination with the 

EGFR. This figure comes from the article of Wang et al. (Wang et al., 2018).     

 

2.4.5. Biased signaling 

GPCRs can also transmit the extracellular signal into the cell through β-arrestins or other 

transducer molecules in addition to G proteins (Smith et al., 2018). The diversity of downstream 

transducers leads to a phenomenon referred to as “biased signaling”. Specifically, biased 

signaling occurs if the GPCR-ligand complex influences several downstream signaling pathways 

in different ways.  

It is thought that biased signaling has its roots in the multiplicity of active conformations of the 

receptor. The receptor is always in the equilibrium between these discrepant conformations. 

Some active conformations are relatively more amenable to a subset of the transducers, while 

other active conformations may prefer other transducers. Some ligands have the ability to alter 

the conformational equilibrium, selecting some dominant conformations. By doing so, some 

ligands are pushing the receptor to some of the transducers, leading to the preferential 

activation of the corresponding downstream signaling pathways. Provided that a ligand 
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differentially influences the distinct signaling pathways downstream of a receptor, this ligand is 

biased towards some of the pathways and it is called a biased ligand.  

In addition to biased ligands, biased signaling may also be caused by biased systems. A signaling 

system is made up of a receptor, some transducers, and some effectors. Owing to the 

difference in relative expression of these components in a signaling system, the system may be 

biased towards some of the signaling pathways even in the absence of the ligands. When the 

signaling system prefers some pathways to others without the addition of the ligands, this 

system can be thought of as a biased system.  

Biased ligands are the objectives of the research in many programs of drug discovery. This is 

due to the advantages which biased ligands may have in the potentiation of therapeutic effects 

and the reduction of adverse drug reactions. Traditional drugs possess remarkable side effects. 

One of the causes of these effects is that the drugs modulate too many signaling pathways in 

the human body, and some of the affected pathways are responsible for the adverse drug 

reactions. In order to reduce the adverse drug reactions, it is necessary to develop drugs which 

can selectively act on a subset of the signaling pathways. By being biased towards some 

particular pathways, the biased ligands have a more focused mechanism of action, which 

increases the possibility that the ligands will become approved drugs in the market. Some 

biased ligands have been discovered for a variety of receptors, such as the dopamine D2 

receptor and the µ-opioid receptor.  

Many antipsychotics are unbiased antagonists for the dopamine D2 receptor. Their unbiased 

action can produce extrapyramidal side effects in addition to the antipsychotic effects. Recently, 

some researchers found the D2 agonists which are biased towards the β-arrestin. These 
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agonists do not bear the extrapyramidal side effects, but they still retain the antipsychotic 

functions (Rankovic et al., 2016).  

Opioids, especially morphine, often work as analgesics for pain. Morphine acts as an agonist for 

the µ-opioid receptor and exerts its effects via the β-arrestin and the G protein. It was revealed 

that the β-arrestin mediates some side effects of morphine, while the G protein plays a role in 

pain relief (Rankovic et al., 2016). Given the differences in functions between the β-arrestin and 

the G protein, efforts are being made to develop the drugs which are biased towards the G-

protein-dependent pathway. PZM21 is a ligand which was discovered along this research 

direction (Manglik et al., 2016).  

2.5. Oligomerization of GPCRs  

The classical view of the GPCR signaling is that these receptors act as monomers to transmit the 

extracellular signal into the cell. In spite of that, a breakthrough was made by Maggio el al., who 

found that the ability in binding and signaling of pairs of GPCR fragments or chimeras were 

restored when they were expressed together and located in the same membrane, although 

they were in the inactive state if they were produced separately (Maggio et al., 1993, 1996). 

After that, another study reported that when the signaling-deficient luteinizing hormone 

receptor (LHR) and the binding-deficient LHR were generated together in the transgenic mice 

and there were no normal wild-type receptors, the mutant receptors could complement the 

capability of each other by the interaction between them and thus the luteinizing hormone 

could still exert its effects (Rivero-Müller et al., 2010; Vassart, 2010). This study revealed the 

existence of GPCR dimers which are functional in the mice and the influence of receptor 

dimerization on ligand binding and the coupling of transducers to GPCRs.  
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With the accumulation of experimental observations, there is growing evidence showing that 

plenty of GPCRs can also form functional oligomers, although numerous GPCRs can still work in 

the monomeric style. In the oligomer, each receptor is called a protomer. The oligomer may be 

a homomer or a heteromer depending on the identity of the protomers. Provided that the 

protomers are the same receptor, the oligomer is a homomer. On the contrary, the oligomer is 

a heteromer if the protomers are different.   

Up to now, the three-dimensional structures of the homodimers of some GPCRs have been 

determined, such as the κ-opioid receptor, the μ-opioid receptor, and the CXCR4 chemokine 

receptor (Manglik et al., 2012; Wu et al., 2010, 2012). These structures provide the support for 

the existence of GPCR homodimers and assist in the understanding of the molecular 

mechanisms of GPCR homodimerization.  

Oligomerization enables the protomers within an oligomer to communicate with each other. In 

other words, a protomer can affect the functions of others in an oligomer. The interaction 

between individual protomers within an oligomer influences not only the binding of the ligands 

to the receptors but also the coupling of downstream transducers and effectors to the 

receptors.  

γ-aminobutyric acid (GABA) acts as the primary inhibitory neurotransmitter in the central 

nervous system of the mammals, and the GABA type B receptor (GABABR) works to mediate the 

signal from GABA. A good example of the communication between the protomers within an 

oligomer is the heterodimer consisting of GABABR1 and GABABR2 receptors. The heterodimer is 

fully functional and can respond to GABA, whereas each of the two components cannot 
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mediate the full signal transduction from the ligand individually in the absence of the other 

(Kaupmann et al., 1998; Kuner et al., 1999; White et al., 1998).   

The aforementioned instance displays the functional significance of the formation of the 

heteromer. In addition to heteromerization, homomerization also has biological functions. For 

example, metabotropic glutamate receptors (mGluRs) are constitutive homodimers, and 

homodimerization is necessary for the signal transduction which is mediated by these receptors.  

Owing to the important roles of GPCR oligomerization in a great variety of physiological 

processes, GPCR oligomers are potential drug targets for a wide range of disorders (Borroto-

Escuela et al., 2017). As a consequence, some researchers are trying to develop selective 

ligands for GPCR oligomers, such as the heterodimer which is composed of dopamine D2 

receptor and neurotensin NTS1 receptor (Hübner et al., 2016). The ligands which selectively 

target GPCR oligomers may be better drugs for some diseases.   

2.6. Allostery and cooperativity 

Allostery means the mutual influence between distinct sites. In pharmacology, allostery is 

widely used to describe the interaction between spatially separate sites of proteins which can 

impact the functions of the proteins. Since extracellular ligands can change the conformations 

of intracellular domains of GPCRs, allostery is an intrinsic property of GPCRs. In addition to the 

allosteric interactions between the extracellular and the intracellular domains, there is mutual 

influence between the orthosteric and the allosteric sites on the extracellular domains of GPCRs. 

According to the difference in binding sites, the ligands for GPCRs are classified into two 

categories, that is, orthosteric ligands and allosteric ligands.  
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The ligands binding to the orthosteric sites are referred to as orthosteric ligands. These ligands 

could be agonists, neutral antagonists, or inverse agonists depending on how they affect the 

functions of the receptor. Agonists and inverse agonists have positive and negative effects on 

the signaling mediated by the receptor, respectively. Neutral antagonists do not change the 

functions of the receptor. Under some circumstances, antagonists include both neutral 

antagonists and inverse agonists.  

The ligands bound to the allosteric sites are termed allosteric ligands. Some allosteric ligands 

cannot directly affect the function of the receptor, but can modulate the effect of orthosteric 

ligands on the receptor. These allosteric ligands are called allosteric modulators. There are 

three types of allosteric modulators, namely positive allosteric modulators (PAMs), silent 

allosteric modulators (SAMs), and negative allosteric modulators (NAMs). The PAMs can 

potentiate the impact of the orthosteric agonist on the receptor, while the NAMs decrease the 

effect of the orthosteric agonist. The SAMs just occupy the allosteric binding site and do not 

affect the function of the orthosteric agonist.  

In addition, there are also some allosteric ligands that can directly activate the receptor. These 

allosteric ligands are referred to as allosteric agonists. Allosteric agonists can perform their 

function even without the orthosteric ligand. By analogy, allosteric inverse agonists (AIAs) and 

allosteric neutral antagonists (ANAs) are respectively functionally similar to inverse agonists and 

neutral antagonists except that AIAs and ANAs are bound to the allosteric sites rather than the 

orthosteric sites.  

One frequently observed phenomenon is that there is cooperativity between the different 

ligands that bind to the GPCRs. In terms of the attribute of the cooperativity, there are two 
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types of cooperativities, namely the binding cooperativity and the activation cooperativity. On 

the one hand, provided that a ligand affects the binding of another ligand to the receptor, 

binding cooperativity exists between the two ligands. On the other hand, there is activation 

cooperativity between the two ligands which have already been bound to the receptor if a 

ligand influences the ability of the other ligand to activate or inhibit the receptor.  

The cooperativities between ligands originate from the phenomenon of allostery for GPCRs. For 

example, allosteric communications occur between the allosteric sites and the orthosteric sites 

of GPCRs, so there are binding and activation cooperativities between the allosteric ligands and 

the orthosteric ligands. As mentioned in the section of the oligomerization of GPCRs, these 

receptors often combine together to form oligomers. It was reported that there are also 

allosteric interactions between the protomers making up an oligomer. Accordingly, it can be 

anticipated that cooperativities also exist between the ligands which are bound to different 

protomers in an oligomer. In this way, a ligand can change the functional state of another 

receptor in addition to its direct target. The existence of cooperativities makes it more complex 

to regulate the activities of the collection of molecules in the human body. From another 

perspective of therapeutics, the cooperativities enable us to design the drugs which are capable 

of affecting the functions of a variety of proteins.  

It is widely accepted that the treatment of complex diseases possibly requires the simultaneous 

targeting of multiple proteins.  GPCR oligomerization and the resultant allostery between 

different GPCRs provide us with an approach to targeting more than one protein using one 

ligand. Under some conditions, the combination of several drugs which are respectively bound 

to the different proteins within a GPCR oligomer can be employed to treat a disease. In these 

cases, the binding and activation cooperativities between these drugs should be taken into 
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consideration so as to maximize the therapeutic effects and minimize the adverse drug 

reactions.  

2.7. Previous mathematical models of GPCR signaling 

2.7.1. An introduction to mathematical modeling of GPCR functions 

Mathematics is widely applied to the quantitative description of a great variety of phenomena. 

It can give us the equations for calculating the parameter values for the relevant properties of 

the system. Accordingly, mathematical models assist us in the understanding of almost all of 

the events which are happening. In the field of pharmacology, mathematical models are mainly 

intended to depict how drugs elicit the functional responses of various signaling systems. The 

correlation between the functional responses and the drug concentration can be displayed by 

some equations. According to the sources of the equations, the mathematical models of GPCR 

signaling can be categorized into three classes, namely mechanistic models, empirical models, 

and hybrid models.  

The parameters in mechanistic models are physicochemical constants which are used to 

delineate the physicochemical processes, such as the process of the binding of the ligand to the 

receptor. The empirical models aim at the description of the shapes of functional response 

curves and the quantitative association between the functional response and the concentration 

of the ligand. The parameters in the empirical models are just descriptors of the curves and do 

not have physicochemical meanings. Hybrid models are the combinations of mechanistic 

models and empirical models. Some of the parameters in the hybrid models are 

physicochemical constants, while other parameters are not. The present doctoral thesis focuses 
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on operational models (a type of hybrid models). In this Background section, some previously 

proposed mechanistic models and operational models are discussed. They provide the 

foundation for the development of the new mathematical models of GPCR signaling.  

2.7.2. The two-state model of receptor activation 

Figure 4 shows the two-state model of receptor activation (Leff, 1995). There are two states 

(one inactive state and one active state) for the receptor. R and AR are in the inactive state, 

while R* and AR* are in the active state.  A is the ligand which binds to the receptor. KA and KA* 

are the equilibrium dissociation constants for AR and AR*, respectively. L is the equilibrium 

transformation constant between R and R*. The three parameters are defined by the following 

equations.  

 KA = [A] [R] / [AR]     

KA* = [A] [R*] / [AR*]     

L = [R] / [R*]     

The total receptor concentration [R]total = [R] + [AR] + [R*] + [AR*]     

The fractional functional response f = E / Em, where E denotes the absolute functional response 

of the signaling system and Em represents the maximum possible functional response of the 

signaling system. It is assumed that the fractional functional response f is equal to the 

percentage of the active receptors among total receptors: f = ([R*] + [AR*]) / [R]total.   
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Figure 4. The two-state model of receptor activation.  

 

According to the model, the type of ligands depends on the comparison between KA and KA*. 

For the agonists, KA is greater than KA*. On the contrary, KA is less than KA* for the inverse 

agonists. Regarding the neutral antagonists, KA is equal to KA*. In other words, the agonists 

prefer R* to R, whereas the inverse agonists favor R relative to R*. The basal functional 

response of the system is determined by the parameter L.  

This model has some merits. For example, it can account for the constitutive receptor activity 

and distinguish between three types of ligands, namely agonists, neutral antagonists, and 

inverse agonists. Nevertheless, it is intended for the receptor monomer and takes into 

consideration only two states of the receptor. These limitations make this model unable to 

address some new problems, such as GPCR oligomerization. Therefore, the following 

mathematical models were subsequently proposed to depict the new phenomena of GPCR 

oligomerization and biased signaling.  
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2.7.3. The two-state dimer receptor model 

Figure 5 illustrates the two-state dimer receptor model (Franco et al., 2006). This model thinks 

of the receptor homodimer as an entire functional entity. This homodimer has two sites which 

can bind to the ligands. There are two states (one inactive state and one active state) for this 

entity. The active state can stimulate the downstream signaling pathway mediated by this 

homodimer. The ligand influences the percentage of active homodimers via conformation 

induction or selection. In this model, (R2) and (R2)* represent the inactive homodimer and the 

active homodimer, respectively. A symbolizes the ligand which is bound to the homodimer. L is 

the equilibrium transformation constant which describes the constitutive receptor activity of 

the homodimer. K is the equilibrium association constant for the binding of the ligand to the 

free homodimer. α and β mean the intrinsic efficacies of the first ligand and the second ligand 

for the receptor homodimer, respectively. Consequently, β/α is the activation cooperativity 

between the two ligands. In the circumstance where β/α = 1, the first ligand does not have the 

impact on the function of the second ligand. Under this condition, µ is the binding cooperativity 

between the two ligands.  



~ 39 ~ 
 

 

Figure 5. The two-state dimer receptor model.  

 

The two-state dimer receptor model takes the GPCR homodimerization into account and has 

the ability to explain the influence of the homodimerization on the ligand-receptor interactions. 

Nevertheless, the receptor homodimer in this model has just one inactive state and one active 

state. As a consequence, this model cannot calculate more than one fractional functional 

response at the same time. It means that this model cannot be used to analyze two or more 

signaling pathways which have different fractional functional responses. Given this drawback of 

the model, the three-state dimer model was put forward to account for the distinct fractional 

functional responses which may be achieved by several signaling pathways downstream of the 

receptor homodimer.    
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2.7.4. The three-state dimer receptor model 

The three-state dimer receptor model was proposed by Brea et al. to explain how distinct 

signaling pathways are mediated by the same receptor homodimers. This model can delineate 

the interactions between some ligands and the serotonin 2A receptor in a pathway-specific way. 

In this model, the receptor homodimer may be in one inactive state (R2) or two discrepant 

active states [(R2)* and (R2)**]. In the experimental observations, (R2)* may be related to the IP 

(inositol phosphate) accumulation pathway, while (R2)** may mediate the AA (arachidonic acid) 

release pathway. This model is an extended version of the two-state dimer receptor model 

which is mentioned before. Because there are two active states in the three-state dimer 

receptor model, the model can give the values of two fractional functional responses, and each 

response can be from one of the two downstream signaling pathways.  

 

Figure 6. The three-state dimer receptor model (Brea et al., 2009). X, X’, K7, K8, K9, and K10 are 

equilibrium transformation constants. K1, K2, K3, K4, K5, and K6 are equilibrium dissociation constants.  
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2.7.5. The asymmetric/symmetric three-state dimer model 

The aforementioned three-state dimer receptor model views the receptor homodimer as a 

global entity, whereas the asymmetric/symmetric three-state dimer model differentiates 

between the two protomers within a receptor homodimer. The latter model postulates how 

the three states of the receptor homodimer are determined by the states of the individual 

protomers. Specifically, when both protomers are inactive, the homodimer is in the inactive 

state. If one of the two protomers is inactive and the other is active, the homodimer is in the 

asymmetric active state. When both protomers are active, the homodimer is in the symmetric 

active state. According to the experimental observations, the asymmetric/symmetric three-

state dimer model infers that the asymmetric active state is correlated with the signaling 

pathways which are mediated by G proteins, while the symmetric active state is related to the 

signaling pathways which are mediated by other proteins.   
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Figure 7. The asymmetric/symmetric three-state dimer model (Rovira et al., 2010). The symbol A 

represents the ligand which can bind to the receptor. R and R* are the inactive and the active protomers, 

respectively. The parameters are the equilibrium constants for the corresponding processes.    

 

2.7.6. The operational model of agonism (the Black & Leff model) 

The operational model of agonism describes the receptor signaling as a two-step process (Black 

and Leff, 1983). The first step is that the ligand binds to the receptor. In the second step, the 
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ligand-receptor complex stimulates the downstream signaling pathways. An empirical function 

is proposed for the transduction of receptor occupancy into effect (see Figure 8A).  

2.7.7. The operational model of agonism with constitutive receptor activity 

(the Slack & Hall model) 

The Slack & Hall model is an extended version of the operational model of agonism by taking 

the constitutive receptor activity into account (Slack and Hall, 2012). In the Slack & Hall model, 

both the free receptor and the ligand-receptor complex can activate the downstream signaling 

pathways. Therefore, this model defines the new term stimulus. The stimulus is made up of two 

parts, one from the free receptor and the other from the ligand-receptor complex. Because the 

free receptor and the ligand-receptor complex may differ in the ability to generate the stimulus, 

distinct weights are assigned to the free receptor and the ligand-receptor complex in the 

composition of the stimulus. When the weight of the free receptor is 1, the weight of the 

ligand-receptor complex is the intrinsic efficacy of the ligand, which means the ability of the 

ligand to activate the downstream signaling pathways.  

The intrinsic efficacy is a very important parameter. It can be used to distinguish between 

different types of ligands, such as agonists, neutral antagonists, and inverse agonists. As a 

consequence, the Slack & Hall model can explain the behavior of the three types of ligands.  
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Figure 8. The operational model of ligand action. (A) The operational model of agonism (the Black & Leff 

model). (B) The operational model of agonism with constitutive receptor activity (the Slack & Hall 

model). In both models, A, R, and AR denote the ligand, the receptor, and the ligand-receptor complex, 

respectively. K is the equilibrium dissociation constant. E means the absolute functional response, 

whereas Em represents the maximum possible functional response of the signaling system. f symbolizes 

the fractional functional response. S is the stimulus which elicits the functional response. ε is the 

intrinsic efficacy of the ligand. When f = 0.5, KE is equal to [AR] in the Black & Leff model or S in the Slack 

& Hall model.    
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3. Objective 

The objective of the present thesis is to provide mathematical models and the framework for 

the understanding of some new concepts in the research on the signaling mediated by GPCRs, 

particularly GPCR oligomerization and biased signaling. There are three studies in the present 

thesis. The goals of the three studies are listed as follows.  

 Propose a quantitative mathematical model for GPCR heterodimers. 

 Come up with a new mathematical model for GPCR homodimers.  

 Build a new conceptual framework for biased signaling and put forward new 

quantitative scales for system bias, ligand bias, and signaling bias based on this 

framework.  
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Teaser: A mathematical model for a receptor heterodimer is presented which quantifies 

receptor crosstalk and the ligand-dependent dominance of one receptor over the other. The 

model can be useful for a mechanistic design of drug combinations 

 

Abstract 

G protein-coupled receptors are central to signal transduction and cell communication. The 

possibility that cells use receptor heteromerization as a way to modulate individual receptor 

pathways is a surmise that cannot be precluded. Given the complexity of these processes, 

mathematical models are of great help in understanding how receptors and their respective 

ligands regulate signaling. Here, a mathematical model is presented which quantifies the 

allosteric interactions within a receptor heterodimer. The model is based on the operational 

model of allosterism including constitutive receptor activity, which provides the 

pharmacological analysis of heteromerization with well-established and widely-used modeling 

and fitting procedures. 
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Introduction 

G protein-coupled receptors (GPCRs) are a superfamily of membrane receptors which mediate 

multiple signaling pathways in living organisms. They exist in the cell membrane and connect 

the signals outside the cell with the change in biological processes inside the cell. Due to the 

involvement of these proteins in many diseases, there has been much research on the 

mechanisms underlying GPCR function and on drugs targeting GPCRs [1]. However, it remains 

unclear how drugs impact the receptors and thus cause their functional effects.  

It was traditionally thought that GPCRs act as monomers, but now increasing evidence shows 

that they may interact with each other to form dimers and higher-order oligomers [2]. 

Heteromerization, i.e. the physical combination of different receptor proteins into a new 

receptor entity, establishes the foundation for direct crosstalk between signaling pathways 

respectively mediated by these proteins. In this manner, one single ligand can induce 

alterations in various cellular processes. GPCR heteromerization has been postulated for a wide 

range of receptors [3-6] and is thought to be related to various neurologic and neuropsychiatric 

disorders [2,7], including schizophrenia [8], tardive dyskinesia [9] and opioid use disorders [10] 

amongst others. Therefore, developing new treatments for these conditions would require a 

thorough understanding of heteromerization. Moreover, heteromerization has the potential to 

be exploited for the development of more potent therapies with fewer side effects by utilizing 
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synergistic drug combinations. Finally, while heteromerization enables the cell to make full use 

of GPCR signaling, the complexity in data analysis poses a great challenge to the scientific 

research into GPCR function and drug development. 

Mathematical modeling is more than just an alternative approach to understanding GPCR 

signaling and drug effects. Mathematical models quantify the GPCR system by offering a 

platform for numerical simulation of the interaction between receptors and ligands. In doing so, 

they can provide a quantitative description of both binding and function, as well as 

cooperativity factors between ligands. Existing mathematical models focus on the simulation of 

a single GPCR or its homomers, but scarcely address the issue of heteromerization. Therefore, a 

new model for GPCR heteromers is needed so as to quantitatively describe the influence of 

heteromerization on drug effects. Given that there are some features shared by GPCR 

monomers, homomers, and heteromers (such as allosteric interactions), it can be helpful to 

learn from previous mathematical models when constructing a new heteromer model.  

There are a variety of mathematical models to formulate how functional effects change with 

drug concentration [11-13]. In regards to this work, the operational models of agonism and 

allosterism [14-17] are of particular interest. Previously, our group has significantly contributed to 

both the development of mathematical models for homomers [18-21] and the analysis of 

operational models of agonism [22-24]. Here, taking advantage of previous models, especially the 

operational models of receptor activation including constitutive receptor activity formulated by 

David Hall [16,17], we develop a model for receptor heteromerization. The translation of the 
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operational parameters for allosteric cooperativity in a monomer to the crosstalk between 

protomers in a heterodimer brings the utility of the pharmacological concepts present in the 

operational models to the heterodimer model and facilitates the application of widely used 

modeling and fitting procedures. 

The model we present here is restricted to receptor heterodimers. Thus, it perfectly fits mGlu 

class C GPCRs, which are known to form strict dimers [25,26]. For class A GPCRs, a higher level of 

complexity is found in a number of cases and different equilibria between oligomers of varying 

degree of oligomerization have been described [2]. We view the present work as a first step in 

the mathematical modeling of receptor heteromerization by analyzing the simplest situation: a 

strict receptor heterodimer. This analysis sets up the basis for future work, which will include 

higher order hetero-oligomerization. 

 

An operational model for the crosstalk between protomers in a 

receptor heterodimer  

Figure 1 visualizes how the allosteric interactions between the orthosteric and allosteric sites in 

a monomer can qualitatively correspond to those between the orthosteric sites in a 

heterodimer. The quantitative formulation of this suggested correspondence is outlined in 

Figure 2. 
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Figure 1. Qualitative scheme showing the correspondence of binding and activation cooperativities (φ) 

between the orthosteric and allosteric sites in a monomer, R (left), and the orthosteric sites of the 

protomers in a heterodimer, R1R2 (right). In the monomer, ligands A and B modulate each other to yield 

a receptor effect, E. In the heteromer, two receptor effects (E1 and E2) associated to their respective 

protomers (R1 and R2) are separately produced.   

 

Figure 2 presents a mathematical model for a heterodimer consisting of two different receptors 

R1 and R2. R1 and R2 separately mediate pathway 1 and pathway 2. A and B are the ligands for 

R1 and R2, respectively. Owing to the conceptual correspondence between allosteric 

interactions in a monomer and in a heteromer shown in Figure 1, the rationale used in [17,22] for 
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the development of an operational model of allosterism for a receptor with constitutive activity 

was used here for a heterodimer. 

 

Figure 2. An operational model for a receptor heterodimer. Four receptor species (free, singly-bound 

and doubly-bound receptor molecules) are at equilibrium. Each of these receptor species has the ability 

to contribute to pathway stimulation. A rectangular hyperbolic function for the fractional effect on 

pathway n (fn=En/Emn) is proposed, with En being the effect; Emn, the maximum possible effect in the 

system; Sn, the stimulus; and KEn, the value of Sn for En/Emn=1/2. See main text and Table 1 for further 

description of the parameters. 

 

The parameters present in Figure 2 have the following definitions (Table 1): K and M are the 

dissociation constants for the binding of ligands A and B to protomers R1 and R2, respectively. α 
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represents the binding cooperativity between the two ligands in their corresponding receptors. 

n (1 or 2) is used to distinguish between the two pathways. fn denotes the fractional response 

of pathway n. Sn is the stimulus for functional response of pathway n. A rectangular hyperbolic 

function transduces stimulus Sn into fractional response fn. En represents the produced effect 

for pathway n and Emn denotes the maximum possible effect of the system for pathway n. KEn is 

the value of Sn for half of Emn, so it measures the efficiency of transducing stimulus into 

fractional response. There is a difference in the number of parameters between the present 

model and its parent formulation [17,22], originally designed to account for the allosteric 

interactions between two ligands in a single receptor (Figure 1, left). The term εn, with n equal 

to 1 (for pathway 1) or 2 (for pathway 2), is used here to define the ability of the free R1R2 

receptor to generate the functional response. In the original formulation a value of 1 was 

assumed for ε. Here, because of the possibility of two pathways, the term εn needs to be 

included. 

 

 

Table 1. Definitions of parameters included in Equation 1 

K Dissociation equilibrium constant for the binding of ligand A 

M Dissociation equilibrium constant for the binding of ligand B 

α Binding cooperativity between ligands A and B 

εn  Ability of R1R2 molecular entity to activate pathway n 

εAn  Ability of AR1R2 molecular entity to activate pathway n 
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εBn  Ability of R1R2B molecular entity to activate pathway n 

δn 
A measure of the functional interactions between ligands A and B for 
pathway n. δn is included in the definition of εABn = εAnεBnδn, where εABn is the 
ability of AR1R2B molecular entity to activate pathway n 

χn χn=[R1R2]T/KEn, with KEn defined in , where En is the effect, 

Emn, the maximum possible effect and Sn the stimulus for pathway n 

For pathway n, εAn/εn defines the intrinsic efficacy of ligand A; εBn/εn defines the intrinsic efficacy of 

ligand B; and δn*εn defines the activation cooperativity between ligands A and B. Intrinsic efficacies and 

cooperativities are considered positive, null and negative when they are greater than, equal to and 

lower than 1, respectively. 

 

 

K = [A] * [R1R2] / [AR1R2]  

M = [B] * [R1R2] / [R1R2B] 

M/α = [B] * [AR1R2] / [AR1R2B] 

K/α = [A] * [R1R2B] / [AR1R2B] 
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εABn, εAn, and εBn denote the ability of AR1R2B, AR1R2, and R1R2B to activate pathway n, 

respectively. 

Because εn is not necessarily 1, the intrinsic efficacies of A-B combination, A, and B for pathway 

n are the ratios εABn/εn, εAn/εn, and εBn/εn, respectively.  

δn is introduced to measure the functional interaction: εABn = εAn * εBn * δn 

The activation cooperativity between A and B in the AR1R2B complex for pathway n is (εABn/εn) / 

((εAn/εn) * (εBn /εn)) = δn * εn.  

χn is a parameter used to account for the basal response of pathway n.  

χn = [R1R2]T / KEn, with [R1R2]T = [R1R2] + [AR1R2] + [R1R2B] + [AR1R2B] 

Values greater than, equal to, and lower than one for the subsequent parameters or parameter 

combinations mean the following: (i) For α, positive, null, and negative binding cooperativities, 

respectively. (ii) For εAn/εn and εBn/εn, positive, null, and negative intrinsic efficacies of ligands A 

and B, respectively. (iii) For δn * εn, positive, null, and negative activation cooperativities, 

respectively.  

Based on the aforementioned relationships, Equation 1 for the fractional effect fn can be 

obtained (see Appendix 4b in [22] for the rationale followed).       
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    (1) 

The basal fractional response without ligands is  . It is worth noting that in basal 

conditions, the total receptor concentration is equal to the free receptor concentration ([R1R2]T 

= [R1R2]). 

By changing the values of the parameters in Equation 1, the model can be used to simulate 

different situations and test various hypotheses about the impact of ligand-receptor 

interactions on the signaling system. An example follows.  

Ligands may substantially alter the relative activity of a receptor 

heterodimer: changing dominance 

In order to explore how two ligands regulate the functional responses elicited by R1 or R2, we 

used two imaginary ligands with the parameter values set in Figure 3. A value of 10 for α shows 

that there is a positive binding cooperativity between the two ligands. Values for δ1 * ε1 of 5 

and δ2 * ε2 of 0.5 indicate the positive activation cooperativity between A and B for pathway 1 

and the negative activation cooperativity between A and B for pathway 2. The comparison 

between ε1 and ε2 shows the dominance of R1 and pathway 1 over R2 and pathway 2 when no 

ligands are bound to the heterodimer. 
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Figure 3. (A) and (B): Fractional effect for R1-mediated pathway varies with the concentrations of ligands 

A and B. (C) and (D): Fractional effect for R2-mediated pathway varies with the concentrations of ligands 

A and B. 

Parameter setting: 

Binding parameters Functional parameters: Pathway 1 Functional parameters: Pathway 2 

K M α χ1  δ1  ε1  εA1  εB1  χ2  δ2  ε2  εA2  εB2  

10-6 10-6 10 0.2 5 1 10 0.1 0.2 5 0.1 0.01 10 
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The state of dominance can be modulated by the ligands. According to the values of ε1, εA1, and 

εB1, ligand A promotes the activation of pathway 1, while B inhibits it. On the contrary, the 

values of ε2, εA2, and εB2 reveal that whereas A hampers the activation of pathway 2, B 

facilitates it. Here, ligand B changes the dominant protomer, increasing the efficacy of R2 with 

respect to R1. 

Using these parameter values, the fractional effects of two pathways can be obtained (Figure 3). 

Figure 3 displays how two different ligands with positive binding cooperativity and positive or 

negative activation cooperativity interact to affect the functional responses of pathways 1 and 

2. From Figures 3A and 3B it is shown that ligand A always increases the functional response of 

pathway 1, but the influence of ligand B on the pathway depends on the concentration of A. 

Figures 3C and 3D show that ligand A constantly decreases the functional response of pathway 

2, while ligand B has the opposite effect.  

It is worth noting that the functional responses obtained in Figure 3 result from the particular 

set of parameters we have chosen. A different set of parameters would lead to different plots 

and many combinations of positive and negative intrinsic efficacies and cooperativities are 

possible. In this regard, we have chosen a positive binding cooperativity (α=10). However, for 

many GPCR dimers, a negative cooperativity for ligand binding has been reported [2]. 

Decreasing the binding cooperativity has as main effects a reduction in the apparent affinity 

and potency of the compounds, which results in a displacement of the concentration-effect 

(E/[A]) curves to the right. It is also interesting to comment on the intrinsic efficacy values. As 
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an example, for pathway 2, we have εB2/ε2=10/0.1=100 as the intrinsic efficacy value of ligand B. 

As ε2=0.1, lowering εB2 to 1 still results in an agonist ligand: εB2/ε2=1/0.1=10. However, making 

εB2=0.1 would make ligand B a neutral antagonist. Finally, making εB2<0.1 would convert ligand 

B into an inverse agonist. 

 

 

Concluding remarks 

Proteins usually act together to regulate biological activities [27]. As proteins, GPCRs often form 

homomers and heteromers under physiological conditions, providing new opportunities for 

drug design based on allosteric interactions between different receptors. 

Life is a quantitatively observable process in principle. In this era of quantitative biology, 

mathematical modeling can greatly enhance our understanding of life and its processes. Efforts 

in this direction include not only genome-scale constructions but also the models of particular 

pathways or ligand-receptor systems. GPCR monomers and homomers have been modeled, but 

the heteromers have been scarcely addressed. In this study, we propose a mathematical model 

for the allosteric interactions within a GPCR heterodimer. This model quantifies the functional 

effects of ligands with different properties on GPCR-mediated signaling pathways. Our model 

for a receptor heterodimer is based on a previous operational model for the allosteric effects 
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between two binding sites in a single monomeric receptor. The resulting E/[A] equation can be 

used for simulation and fitting purposes. For the former case, an example has been given. For 

the latter case, it must be said that it is known that operational models cannot fit a single E/[A] 

curve [28]. Because of this, some conditions, such as those included in the irreversible 

inactivation method [29], need to be established. These conditions keep some of the parameters 

constant, thus enabling fitting [28]. With proper experimental data, the applicability of the 

present model of a receptor heterodimer for fitting purposes can be tested. 

An example is given to illustrate the dominance of one protomer over the other within the 

heterodimer. In this example, the dominance appears because the two receptors differ in the 

ability to activate signaling pathways. However, the dominance may also be caused by their 

discrepancy in ligand binding. Provided that one receptor prevents another from binding to the 

agonist, the former becomes the dominant protomer by inhibiting the activation of the latter. 

This phenomenon occurs in the heterodimer consisting of serotonin 2C and one of serotonin 2A 

and 2B [30]. This level of dominance can also be described using our model by adjusting the 

dissociation constants of ligand-receptor pairs.  

Overall, our receptor heterodimer model can be employed to quantify the ligand-receptor 

system. With more GPCR heterodimers being discovered and their functionality assessed, our 

model can only be of greater utility. Finally, functional data of complex receptor composition 

might be attributed to heterodimers if their related experimental results agree with the present 

model.  
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Teaser: An operational model for GPCR homodimers including constitutive receptor activity is 

presented. The model explains typical pharmacological profiles associated with cooperativity in 

the framework of the operational model of agonism, thus taking advantage of the widespread 

use of this type of modeling. The operational homodimer model can also explain the biased 

signaling dependent on ligand concentration. 
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Abstract 

G protein-coupled receptors are among the most important protein superfamilies as drug 

targets in drug discovery programs. Their interactions with ligands are influenced by their 

homomerization. In this study, we propose an operational model for receptor homodimers, 

which includes constitutive receptor activity. Distinct functional response curves can be 

obtained from this model, which can satisfactorily depict typical complex experimental data as 

biphasic and bell-shaped curves. Operational parameters in the model may provide mechanistic 

explanations for observed functional complexity associated with the cooperativity and intrinsic 

efficacy of ligands. Because the herein presented model is derived within the conceptual 

framework of operational models, it takes advantage of the body of knowledge coming from 

the widespread use of this type of modeling. The operational homodimer model can also 

explain the biased signaling dependent on ligand concentration. In conclusion, this operational 

homodimer model has a wide range of applications in pharmacological research. 
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Introduction  

G protein-coupled receptors (GPCRs) are integral cell membrane proteins responsible for many 

biological processes. Extracellular agonists bind to these receptors and influence their 

conformations, thus altering the propensity of receptors to bind to G proteins, β-arrestins, or 

other transducer proteins and promoting signal transduction within the cell. In this way, GPCRs 

respond to extracellular stimuli and help to direct the information flow from outside to inside 

the cell [1]. The analysis of drug-GPCR interactions is fundamental in both academia and 

pharmaceutical industry. Because of the involvement of GPCRs in many physiological processes, 

their malfunctioning is the cause of many diseases. As a consequence, research on GPCRs is 

central to drug discovery programs. Of note, as of November 2017, GPCRs are the primary 

targets of approximately 35% of approved drugs in the United States or European Union [2].  

It is widely accepted that GPCRs often form oligomers which may be physiologically relevant [3]. 

The formation of oligomers affects the binding of extracellular ligands to GPCRs and enables the 

ligands to produce a wider and more complex range of functional responses [4].  

Homodimerization is the simplest case of receptor oligomerization. The allosteric interactions 

between the bound ligands in the respective protomers may lead to cooperativity effects which 

can affect the binding and the function of the receptor [5,6]. Ligand binding cooperativity in a 

receptor dimer context has been the subject of modeling approaches [7,8]. Durroux considered 

the possibility of two different receptor dimer states, one in which receptor protomers are able 



~ 77 ~ 
 

to crosstalk and the other in which they are not [7]. Casadó et al. comprehensively compared 

procedures to fit binding data from both saturation isotherms and competition assays within a 

receptor dimer model with the traditional way of fitting data [8]. The issue of fitting of binding 

data was reviewed by Giraldo [9], who analyzed various empirical and mechanistic models. 

Moreover, the functional response induced by ligands can also be assessed by mathematical 

models. There have been some mathematical models for signaling mediated by GPCR 

homodimers [10-12]. However, no operational model has been proposed for this purpose. The 

operational model of agonism was presented in 1983, but it considered the receptor as a 

monomer [13]. This model describes the receptor signaling as a two-step process, one for 

ligand binding and the other for transducing the ligand-receptor complex into the functional 

response. This model has been widely used to analyze the functional effects of ligands and, 

remarkably, the issue of biased agonism [14,15]. Nevertheless, it cannot explain the behavior of 

inverse agonists. This is because the constitutive activity of the receptor is not integrated into 

the model. Subsequently, there have been extensions of the operational model by 

incorporating constitutive receptor activity, but they are still intended for the monomer [16,17]. 

Therefore, here we aim to propose an operational model for GPCR homodimers. This new 

model considers constitutive receptor activity and thus is intended to describe the function of 

inverse agonists.     

One GPCR may perform its functions through a variety of pathways. The same ligand is likely to 

generate different effects on different pathways. When distinct ligands bind to the receptor, it 

is possible that different sets of downstream pathways will be affected. Biased signaling occurs 
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for many ligands binding to GPCRs in the human body and has great significance in biological 

functions [1]. Therefore, we have applied the herein developed operational homodimer model 

to the dissection of biased signaling by considering different pathways which are associated 

with one receptor homodimer. Remarkably, the model assists in the understanding of 

concentration-dependent effects of a ligand on different pathways.  

 

An operational model for GPCR homodimers  

Figure 1 illustrates an operational model for a GPCR homodimer consisting of two protomers R. 

The combination of the two protomers in the homodimer mediates the functional response. A 

is a ligand for each of the protomers. ARR and RRA are equivalent.  
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Figure 1. An operational homodimer model.  

K = [A] * [RR] / [ARR]  

K = [A] * [RR] / [RRA] 

K/α = [A] * [ARR] / [ARRA] 

K/α = [A] * [RRA] / [ARRA] 

K is the equilibrium dissociation constant for the singly-bound receptor dimer. α is the constant for 

binding cooperativity. f denotes the fractional functional response (f=E/Em), with E and Em being the 

absolute functional response and the maximum possible functional response of the system, respectively. 

S is the stimulus for the functional response. KE is the value of S for half of Em and thus represents the 

efficiency of transducing stimulus into fractional response. εAA and εA are the intrinsic efficacies of A-A 

combination and A, respectively. 

 

 

The parameters in this model have the following definitions. K is the equilibrium dissociation 

constant for the binding of ligand A to the free homodimer. α represents the binding 

cooperativity between the two ligands. For α, values less than, equal to, and greater than 1 

mean negative, neutral, and positive binding cooperativities, respectively. E denotes the 

absolute functional response and Em is the maximum possible functional response of the 

system. f denotes the fractional functional response (f = E/Em). S is the stimulus for the 

functional response. A rectangular hyperbolic function converts stimulus S into fractional 

response f. KE is the value of S for half of Em and thus represents the efficiency of transducing 
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stimulus into fractional response. εAA and εA are the intrinsic efficacies of A-A combination and 

A, respectively. δ is introduced to measure the functional interaction: εAA = εA * εA * δ; meaning 

that δ is the activation cooperativity between A and A in the ARRA complex. χ is a parameter 

used to account for the basal fractional response. χ = [RR]T / KE, with [RR]T = [RR] + [ARR] + [RRA] 

+ [ARRA]. Given that the constitutive activity of the receptor is considered here, this model can 

be used to analyze the functional effects of inverse agonists.  This feature distinguishes our 

model from many other models.  

Based on above relationships, Equation 1 for the fractional response f of the homodimer model 

depicted in Figure 1 can be obtained.  

    
       22
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The asymptotic response when [A]→∞ (f∞) is calculated as  

  1χδε
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flimf
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A
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A
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The basal fractional response of the system (fbasal = f for [A]=0) is  

1χ

χ
f basal


   (3) 
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As displayed by Equation 3, fbasal is determined by χ and rises as χ increases. Therefore, χ is 

associated with the intrinsic ability of a signaling system without ligands to generate the 

functional response. Equation 2 shows that f∞ is positively correlated with χ, δ, and εA. It is very 

interesting to note that both fbasal and f∞ are influenced by χ. This means that fbasal and f∞ are 

interrelated and highlights the importance of the measurement of basal response in the 

analysis of ligand intrinsic efficacy.   

 

Different parameter values lead to functional response curves with 

different shapes  

According to the model for the receptor homodimer (Figure 1 and Equation 1), a variety of 

curves with differing shapes can be obtained when different values are assigned to the 

parameters. In order to better understand how the parameter values affect the functional 

response curves, we conducted some simulations using the following values and special 

attention was paid to the comparison between εAA, εA, and 1.  

The nine curves in Figure 2 share the values for χ, K, and α: χ = 0.5, K = 10-8, and α = 0.001, so 

there is a negative binding cooperativity between the two ligands binding to the homodimer. 

The following nine curves have distinct values of εAA and εA: (1) εAA=100, εA=10; (2) εAA=10, 

εA=10; (3) εAA=1, εA=10; (4) εAA=10, εA=1; (5) εAA=1, εA=1; (6) εAA=0.4, εA=1; (7) εAA=1, εA=0.4; (8) 
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εAA=0.4, εA=0.4; (9) εAA=0.1, εA=0.4. The basal fractional response depends exclusively on the χ 

parameter, which reflects the constitutive receptor activity.  Because χ is constant in all the 

simulations depicted in Figure 2, the basal fractional response is also constant, and equal to 

0.33. 

 

Figure 2. Simulated functional response curves obtained through Equation 1. χ = 0.5, K = 10-8, and α = 

0.001. Various conditions of intrinsic efficacy are considered: (a) εA = 10; (b) εA = 1; (c) εA = 0.4.  

 

Figure 2 shows the curves with distinct shapes. (1) When εAA > εA > 1, the curve is biphasic; (2) 

When εAA = εA > 1, the curve is monophasic; (3) When εAA < εA > 1, the curve displays an 

inverted U-shape pattern; (4) When εAA > εA = 1, the curve is monophasic; (5) When εAA = εA = 1, 

ligand A is a neutral antagonist, and the curve is a horizontal straight line; (6) When εAA < εA = 1, 

the curve is monophasic; (7) When εAA > εA < 1, the curve is U-shaped; (8) When εAA = εA < 1, the 

curve is monophasic; (9) When εAA < εA < 1, the curve is biphasic. These functional response 

curves illustrate how ligands influence receptor function. If an experimental result agrees with 
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one of these curves, this operational homodimer model can serve as a possible explanation for 

the observation.  

 

Understanding intrinsic efficacy and cooperativity by comparing our 

model with the two-state dimer model 

Ligand intrinsic efficacy and cooperativity are key concepts in mechanistic pharmacology. 

However, different mathematical models may address them from distinct perspectives. In order 

to gain a better understanding of intrinsic efficacy and cooperativity, we have made an attempt 

to compare the present operational homodimer model with the two-state dimer receptor 

model [10].  

The two-state dimer receptor model (Figure 3) regards the homodimer as a global functional 

entity. This entity has one active state and one inactive state. The active state is responsible for 

the downstream functional response. The homodimer has two ligand binding sites. The ligand 

affects the proportion of active homodimers by means of conformation selection or induction. 

In this model, (R2) and (R2)* denote the inactive and active receptor homodimers, respectively. 

A represents the ligand binding to the homodimer. K is the equilibrium association constant 

between A and (R2). L explains the constitutive activity of the homodimer. α and β denote the 

intrinsic efficacies of the first and the second ligands binding to the homodimer, respectively. As 
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a result, β/α is the activation cooperativity between the two ligands. When β/α = 1, the first 

ligand does not affect the function of the second ligand. In this case, µ is the binding 

cooperativity between the two ligands.  

 

Figure 3. The two-state dimer receptor model [10].  

 

Table 1 shows the parameter comparison between our model and the two-state dimer receptor 

model [10]. As displayed in the table, there is good agreement in the concepts of intrinsic 

efficacy and cooperativity between the two models.  Interestingly, the two models have similar 

definitions of ligand intrinsic efficacy. Specifically, both models use the free homodimer as the 

reference to assess ligand function. In the operational homodimer model, the ability of the free 
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homodimer has a value of 1, so the relative ability of the first ligand to activate the pathway is 

εA, which is its intrinsic efficacy. In the two-state dimer model, the transformation constant is L 

for free homodimer and αL for singly occupied homodimer, so the intrinsic efficacy of the first 

ligand is α, the ratio of αL to L. It is necessary to use this reference when evaluating ligand 

intrinsic efficacy because the reference enables us to eliminate the impact of non-ligand factors. 

In this way, it is feasible to compare the intrinsic efficacies of ligands from different 

experiments.  

 

Table 1. Correspondence between parameters in the operational homodimer model and the two-state 

dimer receptor model [10]. 

Meaning of the parameter Operational 
homodimer model 

Two-state dimer 
receptor model 

Constant related to constitutive receptor activity χ L 

Intrinsic efficacy of the first ligand εA α 

Intrinsic efficacy of the second ligand εAA/εA = εA δ β 

Activation cooperativity δ β/α 

Binding cooperativity α µ (when β/α = 1) 
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The operational homodimer model can be used for the analysis of 

biased signaling and concentration-dependent ligand bias 

A ligand may differentially impact multiple cellular pathways by binding to the same receptor. 

Provided that the receptor exists in the form of homodimers, our operational homodimer 

model can help to explain the biased signaling of the ligand. The receptor interacts with 

different downstream proteins for different pathways, so the parameters in this model may 

have varying values for these pathways, and each pathway can be represented by a set of 

parameter values.  

Ligand bias may be affected by ligand concentration. At lower concentrations, the ligand may 

prefer pathway A to pathway B. Nevertheless, the same ligand may preferentially activate 

pathway B at higher concentrations. This phenomenon can be explained by assuming the ligand 

stabilizes different receptor conformations at different concentrations. A plausible explanation 

is that the receptor can bind to more than one ligand and receptors with different numbers of 

bound ligands may differ in their conformational ensembles. The discovery of receptor 

homomerization supports this explanation. For example, a singly occupied homodimer may 

have different preferential conformations from a doubly occupied one. Ligand bias may vary 

with the number of ligands binding to the homodimer.  

In an experimental study, Sun et al. [18] found that the signaling mediated by β2-AR changed 

from G-protein-dependent to G-protein-independent with the increase in ligand concentration. 
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Biphasic dose-response curves were obtained [18]. In a previous paper, our laboratory 

explained this finding using the asymmetric/symmetric three-state dimer model [12]. We 

inferred that the asymmetric active state of the receptor dimer functions by G-protein-

dependent pathway, whereas its symmetric active state acts on G-protein-independent 

pathway. This assumption led to functional response curves in agreement with the 

experimental results of Sun et al. [18]. The herein presented operational homodimer model can 

describe these results from another perspective. It can be assumed that the singly occupied 

dimer and the doubly occupied dimer favor G-protein-dependent pathway and G-protein-

independent pathway, respectively. Under this presumption, our model provides functional 

response curves (Figure 4) similar to those given by Rovira et al. [12]. Figure 4 illustrates how 

two different pathways are influenced by the same ligand with varying concentrations. At low 

concentrations, the ligand prefers the G-protein-dependent pathway to the G-protein-

independent pathway. However, the preference is inverted when ligand concentration exceeds 

a threshold. This concentration-dependent ligand bias is in accordance with the observation for 

the β2 adrenergic receptor made by Sun et al. [18]. 
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Figure 4. Ligand bias changes with ligand concentration. The two curves share three parameter values: K 

= 10-7, χ = 0.1, and α = 1. G-protein-dependent pathway: εAA = 1, and εA = 50. G-protein-independent 

pathway: εAA = 100, and εA = 1. The setting of εAA and εA for the two pathways is based on the 

assumption that singly-bound dimers and doubly-bound dimers favor G-protein-dependent pathway 

and G-protein-independent pathway, respectively. As ligand concentration increases, the initially 

formed singly-bound dimers convert into doubly-bound dimers. Accordingly, with the intrinsic efficacy 

parameters used, the G-protein-dependent signaling curve is of an inverted U-shape, whereas the G-

protein-independent signaling increases monotonically. The combination of the two curves in the figure 

provides a mechanistic interpretation for the biphasic dose–response curve reported by Sun et al. [18]. 

 

Concluding remarks  
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Receptor oligomerization, particularly receptor homodimerization, provides complexity and 

flexibility for the signal transduction processes mediated by GPCRs. The formation of receptor 

homodimers influences ligand-GPCR interactions and consequently GPCR function. For instance, 

there may be binding and activation cooperativities between the first and the second bound 

ligands. The impact of the cooperativities on the effects of the ligand can be quantified by 

mathematical models, such as the present operational homodimer model and the two-state 

dimer receptor model. The herein presented operational homodimer model is an extension of 

previous operational models including constitutive receptor activity [16,17], which, in turn, are 

extensions of the seminal operational model of agonism [13]. All of the previous models were 

defined for monomeric receptors. Operational models have proved instrumental for the 

analysis of the functional response of pharmacological receptors. The model presented herein 

is intended particularly for those cases where receptor dimerization is suspected as the 

explanation for biphasic or bell-shaped curves. 

Given that the same ligand may influence distinct pathways mediated by one receptor, it is 

necessary to take biased signaling into account in the analysis of functional effects of the ligand.  

Since the conformations of singly occupied receptors may be different from those of doubly 

occupied receptors and these conformations may be associated with different signaling 

pathways, the preference of the ligand for some pathways may vary with its concentration. The 

operational homodimer model can satisfactorily depict this concentration-dependent ligand 

bias. We consider that a signaling pathway is determined by the values of the set of parameters 

in the model (Equation 1). Thus, a particular set of parameter values represents a particular 
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pathway. In the example we have used for concentration-dependent ligand bias, we applied 

two sets of parameter values, so just two pathways were analyzed. If an additional set of 

parameter values is included, a third signaling pathway can be examined. In this way, the model 

can compare multiple pathways if their parameter values are known. Therefore, it may be 

concluded that the model provides a suitable platform for the analysis of biased signaling in a 

receptor homodimer context.  
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Appendix 

Development of Equation 1 

The fractional functional response f is defined as 

SK

S

E

E
f

Em 
  (A1) 

with E and Em being the absolute functional response and the maximum possible functional 

response of the system, respectively. S is the stimulus for the functional response. KE is the 

value of S for half of Em.  

The stimulus S results from the sum of stimuli of the components of the system 

S = SRR + SARR + SRRA + SARRA (A2) 

SRR = [RR] 

SARR = εA[ARR]  

SRRA = εA[RRA] 

SARRA = εAA[ARRA] 
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With εA and εAA being the intrinsic efficacies of A and A-A combination, respectively. 

 

The relative populations of ligand and receptor species are regulated by the dissociation 

equilibrium constants 

  
 

  
 RRA

RRA

ARR

RRA
K   (A3) 

  
 

  
 ARRA

RRAA

ARRA

ARRA

α

K
   (A4) 

With α being the binding cooperativity. 

We replace the stimulus S in Equation A1 with its definition given in Equation A2 and 

subsequently put all the receptor species in terms of [RR]. Equation A5 is obtained. 
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2

2

AAA

T

K

Aαε

K

A2ε
1
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K

K

Aαε

K

A2ε
1

RR
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f   (A5) 

With [RRT] = [RR] + [ARR] + [RRA] + [ARRA] 
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We define 
 

E

T

K

RR
χ   and δεε

2

AAA  , and take into account that 
 
     

2

2

T

K

Aα

K

A2
1

1

RR

RR



  

After some algebra, Equation A5 is transformed into Equation A6, which is the same as 

Equation 1 in the main text. 

    
       22

AA

2

22

AA

2

A1χδεαA1χε2K1χK

AαδεA2KεKχ
f




   (A6) 
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Abstract 

Biased signaling is at the center of current pharmacological research in both academia and 

industry. The distinct and often opposed effects that a medication can exert by acting through 

different pathways mediated by the same receptor drive medicinal chemists to design 

molecules which interact with a specific pathway downstream of the receptor in order to 

improve therapeutic index. Efficient drug discovery is underpinned by rigorous quantitative 

pharmacology. Thus, reliable optimization of biased ligands requires robust scales of 

quantification applicable to the entire pharmacological ligand space: agonists, neutral 

antagonists and inverse agonists. To this aim, new scales for the quantification of system bias, 

ligand bias, and signaling bias are proposed here based on a novel unified framework of biased 

signaling. Importantly, the present article provides a new perspective for the origins of biased 

signaling. 

 

On the quest of a pharmacological property to quantify GPCR biased 

signaling 

G protein-coupled receptors (GPCRs) share a common structure of 7 transmembrane helices 

connected by extracellular and intracellular loops. These proteins are inserted in the cellular 

membrane and transmit the signals embodied in the structure of ligands from outside to inside 
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the cell [1]. There are a variety of endogenous ligands for GPCRs, including some hormones and 

neurotransmitters. GPCRs are allosteric machines by their nature [2, 3]. The endogenous 

agonists bind in the orthosteric site and then favor the binding of the G protein to the receptor 

at the intracellular site. There, the G protein is activated and its trimeric αβγ structure is broken 

into α and βγ subunits, which can transmit the signal to the effector and yield the physiological 

response [1]. 

GPCRs signal not only through the G protein pathway but also through other pathways, such as 

the β-arrestin pathway [4-6]. Engagement of this multiplicity of signaling pathways may have 

therapeutic implications [7-9]. For instance, typical opioid analgesics (such as morphine) 

directed to the µ-opioid receptor yield beneficial effects through the G protein pathway but 

unwanted side effects through the β-arrestin pathway [10]. Because of this, drug discovery 

efforts were focused on the G protein pathway mediated by this receptor [11], leading to the 

development of TRV130 [12] and PZM21 [13]. Similarly to the µ-opioid receptor, the 

implications of the dopamine D2 receptor biased signaling on schizophrenia [14, 15] and of the 

β-adrenergic receptors and of the angiotensin type I receptor for cardiovascular indications [7] 

have been reported.  

Accurate quantification of drug effects is of primary importance [16]. This is of special relevance 

in biased signaling assays, because the rapid growing of the investigations on biased 

pharmacological agents and specific targeted therapeutics makes the potential appearance of 

systematic errors not negligible [17]. Thus, a scale is needed to quantify the biased agonism of 

ligands so that we can identify the quantitative preference of ligands for some signaling 

pathways. To this end, a relevant pharmacological property (X) should be identified. We can 

consider two possibilities: either this property is independent of receptor density or it is 
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proportional to receptor density (Figure 1). In the former case, comparisons can be made 

directly between pathways without use of a reference standard whilst, in the latter case, the 

property will require normalization to a reference compound. In both cases, the difference in 

the value of this property between two ligands must be unrelated to receptor density. We 

could use the potency of the ligand, expressed as the negative logarithm of EC50, as a scale for 

the quantification of biased agonism. However, this scale is not appropriate as it provides a 

nonlinear plot in terms of the density of the receptor. The differences between two ligands 

depend on the level of receptor concentration and this happens regardless of the steepness of 

the concentration-effect curves (see Glossary) of the ligands [17]. Although the activity ratio 

(the ratio of the maximum response of an agonist to EC50) works for rectangular hyperbola 

curves, that is, concentration-effect curves following the Hill equation with slope of 1, this scale 

is not appropriate either for steep curves or for flat curves [17]. Fortunately, the Black and Leff 

operational model of agonism provides an opportunity to solve this problem [17-19]. 
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Figure 1. A. The pharmacological property X for a particular ligand-receptor complex does not change 

with receptor density, but there can be differences in X between ligands. B. The pharmacological 

property X for a particular ligand-receptor complex depends on receptor density but the difference in X 

value between two ligands is constant along receptor density.  

 

The Black and Leff operational model of agonism (Box 1. Model 1) considers two steps for the 

generation of a pharmacological effect by a receptor [20]: the binding of the agonist to the 

receptor, which follows the law of mass action, and a logistic function for the transduction of 

binding into effect. In this equation, Em is the maximum effect of the system and KE is the 

concentration of agonist:receptor complex that induces a response equal to 0.5 Em (Box 1. 

Equation 2). 

The final concentration-effect equation (Box 1. Equation 3) contains the following parameters: 

Em, KA (the equilibrium dissociation constant), n (a parameter related to the slope of the curves), 

and . But, what is the meaning of ? This parameter is the ratio of the total receptor 

concentration to KE, the parameter determining the transduction of receptor binding into effect. 

Therefore,  is proportional to receptor density.  is the operational efficacy and determines the 

maximum response of a particular agonist and also affects the potency of the ligand. 

Accordingly,  serves as a potential scale for biased agonism [21]. 

However, the concentration-effect curve is also greatly influenced by KA in addition to . 

Consequently, the combination of the operational efficacy  and the dissociation constant KA 

has been proposed to quantify biased agonism [17]. Because  is proportional to receptor 
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density, log(/KA) is independent of  receptor density and would be an appropriate property to 

quantify the differences between the agonist of interest and the reference ligand (Figure 1B). 

The reference ligand is used here to cancel systematic differences in the sensitivity of the 

different signaling pathways to activated receptors. Finally, log(/KA)  measures biased 

agonism between pathways for the particular agonist (Box 1). 

The classical operational model of agonism [20] does not account for constitutive receptor 

activity and thus inverse agonists are excluded from the analysis of biased agonism. In a recent 

paper [22] we used a model which includes constitutive receptor activity in its definition (Box 1. 

Model 2). Both the free receptor and the ligand-bound receptor produce a stimulus (Box 1. 

Equation 8).  is the intrinsic efficacy of the ligand. Depending on the value of , the ligands may 

be agonists, neutral antagonists, or inverse agonists. It was proposed [22] that log(/KA) can 

work as a scale for biased agonism. Importantly, this scale does not depend on receptor density 

and thus it is not necessary to use a reference compound to cancel the system effect (Figure 

1A).  

 

A new conceptual framework for biased signaling 

We have constructed a conceptual framework for biased signaling (Figure 2) which includes the 

constitutive receptor activity [23] and a new scale for biased agonism [22]. In this framework, 

we consider first the inherent bias of the signaling system (when the ligands are not present) 
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with respect to different pathways which we refer to as ‘system bias’ and then how the ligands 

introduce extra bias through their impact on the system. 

R + AR
Signaling bias is related to system bias, 
ligand bias, and ligand concentration

Almost AR

R

Signaling bias is related to system bias 
and ligand bias

Adding  
ligands

Adding  
ligands

Signaling bias = system bias

 

Figure 2. A conceptual framework for biased signaling. Top of the chart: in the absence of ligands, the 

free receptor may show a preference for a particular signaling pathway. Signaling bias is equal to system 

bias. Middle of the chart: after adding a certain amount of ligand, two receptor species (R and AR) are in 

equilibrium in the medium. Signaling bias depends on system bias, ligand bias and ligand concentration. 

Bottom of the chart: after adding a sufficient amount of ligand, almost all the receptor is in the form of 

AR complex. Signaling bias depends on system bias and ligand bias. Top, middle and bottom of the chart 

are consistent with, respectively, the left, middle and right parts of concentration-effect curves of 

constitutively active receptors on different pathways.  
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System bias 

A signaling system (see Glossary) is composed of a receptor, various transducers, and various 

effectors participating in a particular biological assay. A pathway can be viewed as a sequence 

of biochemical events from the receptor to one functional endpoint in the signaling system. 

Several pathways can be examined in a signaling system if two or more functional endpoints 

are measured. A ligand has functional effects only after it is added into a signaling system. 

Because ligand effects are dependent on the composition of the signaling system, it is 

necessary to discuss the bias of the system before the analysis of ligand bias. Many signaling 

systems have detectable basal functional responses [24]. In other words, the pathway can be 

activated without ligand binding. If a signaling system has different levels of basal functional 

responses (also termed constitutive receptor activity) for two distinct pathways, this system can 

be thought to be biased towards the pathway with a higher basal response. Since it is not 

meaningful to directly compare the absolute functional responses of two different pathways, 

we need to standardize the functional responses and then compare their relative values. A 

natural reference for standardization is Em and the relative values are then the fractional basal 

responses. Em is defined as the maximal response of the signaling system for a specific pathway, 

so it represents the maximal potential of the system under consideration to generate a 

functional response for the pathway.  

In this manner, the system bias (see Glossary) can be calculated as Δlog(Ebasal/Em) or Δlog(fbasal), 

where Ebasal denotes the basal response of this system for a particular pathway and fbasal the 

corresponding fractional functional response. The system bias is influenced by the components 

of this system. For example, the expression of the receptor and transducers can affect the basal 
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responses of different pathways. The system bias can be viewed as a combination of receptor 

bias, transducer bias, and effector bias. In the Slack & Hall operational model of agonism (with 

unit slope), fbasal is equal to χ/(1 + χ), where  χ is the ratio of [RT] (the total receptor 

concentration) to KE (the  total receptor concentration that results in a basal response of 0.5 x 

Em). Therefore, system bias is determined by χ [23] (see also [25] for review).  

 

Ligand bias 

In the Slack & Hall operational model [23], the receptor R can be taken to represent a 

conformational ensemble of many conformations in equilibrium [22]. Different conformations 

may differentially interact with downstream signaling proteins. The impact of the ensemble on 

different pathways determines the constitutive receptor activity. The ligand L may change the 

influence of the receptor on downstream pathways by affecting the state of the ensemble [26]. 

In other words, the probability of occurrence (or, in other words, the stability) of each 

conformation in the ensemble when the receptor has a ligand bound may be different from 

that of unoccupied receptor. In this way, R and RL differ in influencing downstream pathways.  

When analyzing the ligand bias (see Glossary) regarding different pathways, Kenakin et al. [17] 

used a reference ligand to remove system bias. However, the selection of the reference ligand 

is somewhat arbitrary. Although using the endogenous ligand seems to be a good choice, there 

are many receptors which there is more than one endogenous ligand. Under these conditions, 

it is an issue how to choose the reference ligand. Therefore, a better solution to this problem 
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could be to use a combination of the effects of the set of all potential ligands for a specific 

receptor as the reference for the function of this receptor. According to the conformational 

selection theory, receptors are always in equilibrium between various conformations. A ligand 

preferentially binds to some of them, making these conformations dominant over others. 

Therefore, a reasonable approximation for the average effect of the set of all potential ligands 

for a particular receptor is the conformational ensemble of the free receptor. It follows that the 

free receptor is a good surrogate of the potential ligand set and can serve as the reference 

against which ligand bias is assessed. By evaluating the difference between R and RL in their 

abilities to activate different pathways, we can know the intrinsic efficacies of the ligand for 

these pathways. The ligand may be an agonist, a neutral antagonist, or an inverse agonist 

according to its intrinsic efficacy.  

As ligand effect is influenced by both intrinsic efficacy and affinity, we propose the concept of 

“ligand power” (pow) to measure the impact of the ligand on a pathway. Taking the Slack & Hall 

operational model [23] as a framework, we define ligand power (pow) as pow = log(ε)log(1/KA), 

where ε is the intrinsic efficacy of the ligand for the pathway and KA is the equilibrium 

dissociation constant of the ligand-receptor complex. Therefore, ligand power reveals the 

relationship between ligands and pathways. Assuming KA < 1, the powers of agonists (ε > 1), 

neutral antagonists (ε = 1), and inverse agonists (ε < 1) are positive, zero, and negative, 

respectively. The absolute value of ligand power indicates the strength of the ligand’s influence 

on a pathway, and the sign indicates the direction of change. In other words, a ligand of a 

positive power activates the pathway, while a ligand of a negative power inhibits it. The 

absolute value of ligand power displays the extent to which the ligand activates or inhibits the 

pathway. When the ligand power is zero, the ligand is a neutral antagonist and does not affect 

the pathway directly. According to its quantification, ligand power is positively correlated with 
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affinity (1/KA) for agonists but negatively correlated with affinity for inverse agonists. Given the 

sign of ligand power, these correlations are expected because a higher affinity leads to a 

greater absolute value of ligand power except for neutral antagonists. For neutral antagonists, 

the affinity does not influence ligand power, which is always zero. To sum up, ligand power can 

satisfactorily describe the pharmacological behavior of all kinds of ligands.  

Since ligand bias is used to evaluate the differential impact of a ligand on several pathways, a 

ligand is unbiased if the ligand has the same power on all of the pathways affected by the 

receptor. Thereby, ligand bias can be quantified as Δpow or Δ(log(ε)log(1/KA)). A recent article 

[22] demonstrated that it is feasible to quantify ligand bias by using Δlog(ε/KA). This approach 

represents a significant advance in the quantification of biased agonism because it considers 

the constitutive receptor activity and eliminates the need to select a reference ligand.  

However, the scale of Δlog(ε/KA) can produce counter-intuitive results in some circumstances. 

As stated in [22], log(ε/KA) cannot differentiate between the two facets of a ligand which is an 

inverse agonist for pathway 1 (ε1 = 0.01 and KA1 = 10-6) and a neutral antagonist for pathway 2 

(ε2 = 1 and KA2 = 10-4). Based on this scale, the bias of this ligand would be zero with respect to 

pathway 1 and pathway 2, yet it can be argued that this is not the case since the ligand clearly 

has differential effects. Δ(log(ε)log(1/KA)) can be viewed as an extension of this scale since it is 

also composed of the parameters ε and KA in the Slack & Hall operational model [23]. Of note, 

Δ(log(ε)log(1/KA)) is the first scale consisting of a combination of intrinsic efficacy and affinity 

which can quantify the bias of all types of ligands, including agonists, neutral antagonists, and 

inverse agonists. This is owing to the ability of the Slack & Hall operational model [23] to 

consider constitutive receptor activity. By the definition of ligand bias here, a ligand is biased 

towards pathway 1 if its power on pathway 1 is above that on pathway 2. There are two 
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possibilities for this situation. Firstly, if its power on pathway 1 is positive, the ligand prefers 

pathway 1 to pathway 2. Secondly, if its power on pathway 1 is zero or negative, the ligand 

does not dislike pathway 1 as much as pathway 2. For the hypothetical ligand mentioned earlier 

in the paragraph for which Δlog(ε/KA) could not adequately quantify the bias, Δpow provides an 

intuitive analysis of ligand bias. Its powers on pathway 1 and pathway 2 are -12 and 0, 

respectively, which shows that it is an inverse agonist for pathway 1 and a neutral antagonist 

for pathway 2. Accordingly, Δpow correctly tells us that this hypothetical ligand is biased 

towards pathway 2.  

 

Combining system bias and ligand bias 

It is important to note that ligand bias should be assessed within the context of a particular 

signaling system: a receptor, various transducers, and various effectors (see above). For a 

different signaling system, the same ligand may have a different ligand bias. Therefore, we 

should compare the ligand-receptor complex with the free receptor in light of their functions in 

distinct pathways in the same signaling system so as to judge whether the ligand is biased or 

not with regard to these pathways.  

By combining system bias with ligand bias, we can derive signaling bias (see Glossary) for 

different pathways. Signaling bias can be deemed as the preference of the combination of the 

signaling system and the ligand over some of the pathways. As a consequence, the signaling 

bias should be dependent on the system and the ligand. One way to evaluate signaling bias is to 
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compare the fractional functional responses for different pathways. It follows that signaling 

bias can be quantified as Δlog(f), where f=E/Em denotes the fractional functional response for 

the pathway. Given the dependence of functional responses on ligand concentration, a more 

feasible approach is to quantify signaling bias separately for three situations, namely when the 

ligand is at very low, intermediate, or very high concentrations. When the ligand is at very low 

concentrations, f is approximately fbasal and signaling bias very similar to system bias. When 

there is a very high concentration of ligands, the equilibrium dissociation constant of ligand-

receptor complex almost does not affect the functional responses for the pathways, and 

signaling bias is roughly Δlog(εχ/(1 + εχ)) based on the Slack & Hall operational model (with unit 

slope) [23]. For the ligand at an intermediate concentration, signaling bias is also influenced by 

ligand concentration and equilibrium dissociation constant in addition to ε and χ.  

Provided that a particular signaling system is unbiased regarding two pathways, the total 

signaling bias will be determined by ligand bias and ligand concentration. In another scenario, it 

is also possible that ligand bias counteracts system bias and thus the resultant signaling bias is 

zero for some concentrations of ligands. Figure 3 illustrates how system bias and ligand bias 

contribute to signaling bias in some circumstances. The system bias is zero in Figure 3a, Figure 

3b, and Figure 3c, so the signaling bias is dependent on ligand bias and ligand concentration. 

These graphs display how the concentration-effect curves are influenced by ligand power. In 

Figure 3d, Figure 3e, and Figure 3f, the system bias is not zero between the pathways with 

different basal fractional responses, but the signaling bias is zero when the different curves 

cross or merge. For example, in Figure 3d, the basal fractional response of Pathway 2 is higher 

than that of Pathway 5, showing that the system is biased towards Pathway 2 relative to 

Pathway 5. Nevertheless, the ligand is a neutral antagonist for Pathway 2 (ligand power = 0) and 

an agonist for Pathway 5 (ligand power = 8). According to the values of ligand power, this ligand 
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is biased towards Pathway 5 relative to Pathway 2. In this case, as the ligand concentration 

increases, the ligand bias eventually counteracts the system bias, so the two concentration-

effect curves finally converge, showing that the signaling bias is zero at a sufficiently high 

concentration of the ligand.  

 

Figure 3. A selection of concentration-effect curves for the interaction between the ligand and the 

signaling system. (a), (b), and (c) show how the concentration-effect curves vary with ligand power. (a) 

all of five lines: χ = 1, KA = 10-8. For ε, black line: 10, red line: 2, blue line: 1, green line: 0.5, purple line: 

0.1. (b) all of five lines: χ = 0.01. For KA and ε, black line: 10-9 and 1000, red line: 10-8 and 1000, blue line: 

10-6 and 1000, green line: 10-9 and 100, purple line: 10-6 and 100. (c) all of five lines: χ = 100. For KA and ε, 

black line: 10-9 and 0.001, red line: 10-8 and 0.001, blue line: 10-6 and 0.001, green line: 10-9 and 0.01, 

purple line: 10-6 and 0.01. (d), (e), and (f) display how ligand bias counteracts system bias at some ligand 

concentrations. KA = 10-8 for all lines in (d), (e), and (f). (d) For χ and ε, black line: 1 and 10, red line: 1 and 
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1, blue line: 0.1 and 1000, green line: 0.1 and 100, purple line: 0.1 and 10. (e) For χ and ε, black line: 10 

and 0.1, red line: 10 and 0.01, blue line: 10 and 0.001, green line: 1 and 1, purple line: 1 and 0.1. (f) For χ 

and ε, black line: 3 and 0.1, red line: 3 and 0.01, blue line: 0.3 and 100, green line: 0.3 and 10.  

 

Concluding remarks 

Given the importance of constitutive receptor activity in the elucidation of ligand bias, we 

should try to measure the basal functional response of the signaling system for the pathways. 

When the basal response is too small to observe directly, it can be deduced by fitting the 

concentration-effect curves to the operational model [23]. Basal response tells us the original 

state of the signaling system before ligands are added. Only by comparing basal response with 

the functional response of the system with ligands can we really understand the functions of 

the ligands.  

Signaling bias is a property of the signaling system in combination with the ligand, and it is 

influenced by system bias, ligand bias, and ligand concentration. System bias is an attribute of 

the signaling system, and it is determined by the components of the system, including the 

receptor, transducers, and effector molecules. Ligand bias is a property of the ligand within the 

context of the signaling system. With Em being the reference, the system bias can be obtained 

by comparing fbasal of different pathways. With free receptor being the reference, we can 

calculate the powers of the ligand for different pathways. Ligand bias is the difference between 

these powers. If a ligand has the same power for these pathways, this ligand is unbiased with 

respect to these pathways. The proposed framework of signaling bias eliminates the need to 
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select another ligand as the reference, thus being applicable in a more general scope and in 

particular to inverse agonists.  
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Box 1 

1. The Black and Leff operational model of agonism [20] 

A+R AR
KA KE

E
 

The binding of the ligand to the receptor: 
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K A   and      ARRR T   

A logistic equation is proposed for the transduction of receptor occupancy into effect: 
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The concentration-effect equation (3) results from the substitution of Equation 1 into 2. 
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Constitutive receptor activity is not included in the model: The basal response is 0. 

   0E 0A    (4) 

The response at saturating concentration of the ligand: 
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The potency of the ligand: 
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The transduction coefficient for biased agonism 

 , a single parameter combining efficacy and affinity values, was proposed as the 

transduction coefficient for biased agonism [17]. To cancel out system bias in a particular 
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signaling pathway, a reference compound is needed and is introduced. Finally,  

measures the bias of a ligand between two path)ways [17][19].  

 

2. The Slack and Hall operational model of agonism [23] 

R AR
KA

[AR][R]
Stimulus 

(S)
 

 

The binding of the ligand to the receptor: 

 
   
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  (7) 

With 
  
 AR

RA
K A   and      ARRR T  . 

Both, the free receptor and the ligand-receptor complex produce a stimulus: 

   ARεRS   (8) 
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A logistic equation is proposed for the transduction of stimulus into effect: 
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   (9) 

The concentration-effect equation (10) results from the combination of Equations 7 to 9. 
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With 
 

E
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K

R
χ  . 

Constitutive receptor activity is included in the model: The basal response is not 0. 
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The response at saturating concentration of the ligand: 
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The potency of the ligand: 
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The scale for biased agonism 

 , a single parameter combining intrinsic efficacy and affinity values, was proposed as the 

scale for biased agonism [22]. No reference compound is needed to cancel out system bias in a 

particular signaling pathway. Finally,  measures the bias of a ligand between two 

pathways  [22].  
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Glossary 

 

Concentration-effect curve: the curve in an x-y plot of concentration-effect data where the x 

axis generally represents the logarithm of ligand concentration and the y axis shows the 

functional response of the signaling pathway. 

Ligand bias: the difference in the ability of a ligand to activate the pathways in the signaling 

system. 

Signaling bias: the difference in the activity level between different pathways in the signaling 

system without or with the ligand. 

Signaling system: the receptor along with the transducer proteins it can interact with and the 

effector proteins downstream of those transducers. 

System bias: the difference in the activity level between different pathways in the signaling 

system in the absence of the ligand. 
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5. Discussion  

Receptors play vital roles in normal physiological processes in humans. They respond to a wide 

range of ligands and subsequently elicit downstream signal transduction. GPCRs make up a 

large superfamily of receptors in the membrane. For the GPCRs which reside in the cell 

membrane, their main function is to work as the bridge between the extracellular environment 

and the intracellular signaling machines. Because these GPCRs are located on the cell surface, it 

is more straightforward to design the drugs which can interact with them. Due to the important 

functions and localization of GPCRs, they are very attractive drug targets for the treatment of 

various diseases.  

Mathematical models are very appropriate for the analysis of the correlation between drugs 

and their functional effects. The models can give some descriptors of how the drug interacts 

with the receptor in the context of the whole signaling system, such as the equilibrium 

dissociation constant of the ligand-receptor complex and the intrinsic efficacy of the ligand. 

Provided that there are two or more sites for ligand binding on the receptor, mathematical 

models can also tell us how the cooperativity between ligands quantitatively influences the 

function of the receptor.  

Mathematical models are used for the description and explanation of experimental 

observations. Therefore, with the discovery of new phenomena with respect to GPCR function, 

the mathematical models of GPCR signaling need updating so as to reflect the up-to-date 

knowledge of drug-GPCR interactions. To the end, two new mathematical models of GPCR 
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function are proposed in the present thesis in order to account for the new finding concerning 

GPCR signaling, that is, GPCR oligomerization.   

The oligomerization has been found for numerous GPCRs. It provides the GPCRs with other 

ways to perform their functions by affecting many aspects of GPCR signaling. For instance, 

there may be cooperativity between ligands which bind to different sites of one oligomer. 

Especially when the oligomer is composed of two distinct receptors, the oligomerization 

facilitates the crosstalk between the downstream signaling pathways which are respectively 

mediated by the two receptors. Under this circumstance, the ligand for one receptor can 

change the state of the signaling pathways downstream of the other receptor. Given that GPCR 

oligomerization has such a huge impact on the effects of GPCR-targeting drugs, the new 

mathematical models which are presented in the present thesis have great potential for the 

practical applications in the programs of drug development.  

The heterodimer model in the present thesis is the first mathematical model which can 

quantitatively depict how the ligands alter the functional responses of the downstream 

signaling pathways mediated by a GPCR heterodimer. This model predicts the associations 

between the functional responses of two classes of pathways and the concentrations of two 

ligands which interact with the two different protomers of the GPCR heterodimer, respectively. 

This heterodimer model is derived from an existing operational model for the allosteric 

communications between two sites for ligand binding in a monomeric receptor.  

An interesting experimental observation is that there may be a dominant receptor in the GPCR 

heterodimer. Specifically, of the two receptors in the heterodimer, one may produce stronger 

functional responses than the other. Our heterodimer model can delineate these phenomena 
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by assigning corresponding values to the parameters in the model. For instance, it is possible 

that within a heterodimer, one receptor is dominant over the other when no ligand is bound to 

the heterodimer. However, some ligands may reverse this functional dominance. By assigning 

the suitable values to the parameters of intrinsic efficacies, affinities, and so on in the 

heterodimer model, we can reproduce the same change in the functional dominance within the 

heterodimer by means of theoretical simulations. Given the huge complexity of the signal 

transduction mediated by heterodimers, this mathematical model can promote the 

comprehension of the functions of GPCR heterodimers.  

A new mathematical model for GPCR homodimers is also proposed in the present thesis. This is 

an operational model for GPCR signaling with constitutive receptor activity. Because of the 

presence of constitutive receptor activity, this model can depict the actions of inverse agonists, 

neutral antagonists, and agonists. Moreover, the homodimer which this model is intended for 

has two binding sites for the ligands. Taking all of these factors into consideration, it can be 

expected that this model can produce a great variety of dose-response curves. Based on some 

possible values for the parameters in the model, theoretical simulations indeed generate 

multiple functional response curves with distinct shapes. This agrees with the complexity of 

experimental observations and shows that this homodimer model has the potential to be 

applied to the dissection of various experimental results.  

This operational homodimer model can also assist in the understanding of some fundamental 

pharmacological concepts, such as the intrinsic efficacy of the ligand and the cooperativity 

between ligands. By comparing this operational homodimer model with the two-state dimer 

receptor model, we are able to identify the agreement between these two mathematical 

models in the explanation of the concepts of the intrinsic efficacy and the cooperativity. 
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Elucidating these pharmacological concepts from two different perspectives can help us to 

think about the real meanings of the intrinsic efficacy and the cooperativity. For example, these 

two models reveal the importance of the comparison between the free homodimer and the 

ligand-occupied homodimer in the determination of the intrinsic efficacy of the ligand.  

This operational homodimer model can also delineate the concentration-dependent ligand 

preference with respect to several signaling pathways. As experimental observations suggested, 

the signaling pathways downstream of the β2 adrenergic receptor varied from G-protein-

dependent to G-protein-independent as the concentration of the ligand went up. In this 

operational homodimer model, the homodimer may be occupied by zero, one, or two ligands. 

The reasonable setting of the values of the parameters can enable the homodimer with 

different numbers of bound ligands to have discrepant preference regarding the G-protein-

dependent and G-protein-independent pathways. In this manner, the operational homodimer 

model can give the dose-response curves which agree with the experimental results.  

A new framework of biased signaling is built in the present thesis. This framework elucidates 

the relationships between system bias, ligand bias, and signaling bias. According to this 

framework, any signaling system has the basal response, although sometimes it is difficult to 

measure the basal response directly in the assays. The presence of constitutive receptor activity 

is an essential part of this framework since the basal condition tells us the state of the signaling 

system before the addition of the ligand. After the ligand is added to the signaling system, the 

ligand interacts with the system and alters the signaling output of the system. Therefore, the 

final functional response of the signaling system with the ligand is determined by the properties 

of the signaling system and the ligand. This provides the foundation for the construction of the 

framework of biased signaling.   
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The dissection of biased signaling can be illustrated using dose-response curves. The signaling 

bias can be calculated by means of the comparison between the fractional functional responses 

of different signaling pathways. When the concentration of the ligand is very low, the value of 

the dose-response curve is approximately the basal response of the signaling system. Under 

this condition, the signaling bias is almost equal to the system bias. As the concentration of the 

ligand increases, the signaling bias begins to be influenced by the ligand bias and the ligand 

concentration in addition to the system bias. After the ligand concentration becomes 

sufficiently high so that nearly all of the receptors are occupied by the ligand, the signaling bias 

is almost determined by the system bias and the ligand bias.  

This framework of biased signaling not only provides a new insight into the contributing factors 

of biased signaling, but also gives the quantitative scales for system bias, ligand bias, and 

signaling bias. The concepts of system bias and signaling bias are straightforward to understand 

since they can be easily visualized by means of dose-response curves. However, the concept of 

ligand bias may be not so easy to comprehend. The quantitative scale for ligand bias is based on 

the intrinsic efficacy of the ligand and the equilibrium dissociation constant of the ligand-

receptor complex. Therefore, it is possible that different combinations of the intrinsic efficacy 

and the equilibrium dissociation constant produce the same value of ligand power. In these 

cases, the ligand is unbiased according to the scale for ligand bias, although there are 

discrepant dose-response curves for different signaling pathways.  

The effects of the ligand are determined by many factors, such as the intrinsic efficacy of the 

ligand and the affinity of the ligand for the receptor. Accordingly, the scale for ligand bias with 

respect to different signaling pathways must take these parameters into account. As a 

consequence, it is reasonable that a ligand with a ligand bias of zero may generate distinct 
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dose-response curves for different signaling pathways since the dose-response curves are 

influenced by these parameters.  

The present thesis is made up of the three pieces of work mentioned above. These studies aim 

at providing new mathematical models or quantitative scales for the understanding of GPCR 

signaling. The heterodimer model and the homodimer model assist in the analysis of the 

functions of GPCR oligomers. Moreover, the quantitative scales for system bias, ligand bias, and 

signaling bias help us to dissect the biased signaling which is mediated by the GPCR. With the 

development of more advanced experimental techniques, the values of the parameters in these 

mathematical models will be increasingly accessible. It is expected that the models and scales in 

the present thesis will have a wide range of applications in pharmacology.   
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6. Conclusions   

A mathematical model for GPCR heterodimers is proposed in the present thesis. This model 

quantifies the allosteric interactions between the two different protomers and the 

cooperativites between the ligands which are respectively bound to the two protomers within a 

GPCR heterodimer. The heterodimer model is derived from the operational model of allostery 

including constitutive receptor activity. The heterodimer model provides a good platform for 

the analysis of the functional crosstalk between distinct receptors which make up a 

heterodimer.  

A mathematical model for GPCR homodimers is presented in the present thesis. A great variety 

of dose-response curves can be generated by assigning various values to the parameters in the 

model. These dose-response curves are consistent with a wide range of experimental 

observations. The definitions of some pharmacological concepts, such as the cooperativities 

between ligands and the intrinsic efficacy of the ligand, agree with those in the two-state dimer 

receptor model. The comparison between the two models assists in the understanding of these 

important pharmacological concepts. The operational homodimer model also explains the 

concentration-dependent ligand bias with respect to different signaling pathways.  

A new conceptual framework for biased signaling is put forward in the present thesis. This 

framework clearly elucidates the definitions of system bias, ligand bias, and signaling bias for a 

signaling system and a ligand. In the absence of the ligand, the signaling bias is determined by 

the system bias. By contrast, the signaling bias is influenced by both the system bias and the 
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ligand bias after the ligand is added into the signaling system. Based on the framework, new 

quantitative scales for system bias, ligand bias, and signaling bias are proposed. The framework 

and the scales can help us to search for the unbiased or biased ligands with better therapeutic 

properties.    

All of the three studies in the present thesis utilize operational models as the foundation for the 

analysis of GPCR signaling. Since there have been some well-established protocols for the 

investigations based on operational models, the new mathematical models for the receptor 

heterodimer and the receptor homodimer and the novel framework for biased signaling will 

have a wide range of applications in the pharmacological research.    
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