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Abstract

High-throughput sequencing technologies are allowing the description
of genome-wide variation patterns for an ever-growing number of organ-
isms. However, we still lack a thorough comprehension of the relative
amount of different types of genetic variation, their phenotypic effects,
and the detection and quantification of distinct selection regimes act-
ing on genomes. The recent compilation of more than one thousand
of worldwide wild-derived Drosophila melanogaster genome sequences
reassembled using a standardized pipeline (Drosophila Genome Nezus,
DGN, Lack et al. 2015, 2016) provides a unique resource to test molec-
ular population genetics hypotheses, and ultimately understand the
evolutionary dynamics of genetic variation in the populations. Besides,
the increasing amount of genomic data available requires the continuous
development and optimization of bioinformatics tools able to handle and
analyze such information. Thus, the development and implementation
of new biologically-oriented software addressing several steps from data
acquisition, filtering, processing, display or analysis to the final reporting
step is a constantly growing need, especially in fields dealing with large
data sets, such as population genomics.

This thesis is conceived as a comprehensive bioinformatics and popula-
tion genomics project. It is centered in the development and application
of bioinformatics tools for the analysis and visualization of nucleotide
variation patterns and the detection of selective events in the genome of
D. melanogaster, using the DGN data. The main goal is accomplished
in three sequential steps: (i) capture the evolutionary properties of the
analyzed sequences (i.e., create a catalog of population genetics metrics)
and implement a tool for the graphical display of such information;
(ii) develop a statistical package for the computation of the diverse
selection regimes acting on genomes (positive and purifying selection),
and finally (iii) perform an initial population genomics analysis in D.
melanogaster using the previously developed tools. The common ap-
proach applied to process the data, starting at the assembly of genome
sequences and ending up at the estimates of population genetics metrics,
allows performing, for the first time, a comprehensive comparison and
interpretation of results using samples from five continents. Overall,
this work provides a global overview of the nucleotide variation and
adaptation patterns along the genome, and a general assessment of the
relative impact of the major genomic determinants of genetic variation,
in Drosophila meta-populations with different geographical origin.
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1. Introduction

1.1 Biological evolution and molecular

population genetics

The publication of Charles Darwin’s work The Origin of Species
(1859) supposed a revolutionary shifting in the way we understand
and explain biological diversity. In his book, Darwin first introduced
the concept of biological evolution, conceived as a population process
where variation among individuals within a population is converted,
through its magnification in time and space, in new populations, new
species and, by extension, all biological diversity present, or that ever
existed, on Earth (Lewontin 1974). Therefore, biological evolution
is just the result of the process of change in populations through
generations. There are two requirements for evolution to occur: (i)
there must be variation in the phenotypic traits between individuals
within a population and, (ii) this variation must be inheritable (at
least partially) among generations (Lewontin 1970, Endler 1986).

In other words, evolution can be defined as a process of statistical
transformation of groups of interbreeding individuals that share a
common genetic pool which defines their phenotypes (i.e., Mendelian
populations, the units of evolution). Thus, populations are defined
by the distribution of alleles and genotypes from all their individuals.

Phenotypic traits are determined by a combination of the underlying
genotypes and environmental pressures. DNA is the molecule that
carries the genetic (genotypic) information (Avery et al. 1944). One
of its most important properties is that it is intrinsically mutable,
meaning that it has the potential to originate new genetic variants
which can be accurately replicated and transmitted from generation
to generation, providing the substrate on which evolution can occur.

These new genetic variants can contribute differentially to the sur-
vival or reproductive success of individuals within the populations
(fitness differences). If they do so, then natural selection takes place.
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Natural selection can be defined as a key process shaping the dis-
tribution of genetic variants with fitness effects in any population.
Natural selection acts primary on the phenotype, the characteris-
tics of the organism which actually interact with the environment,
but the genetic (heritable) basis of any phenotype that gives that
phenotype a reproductive advantage tend to become more common
in a population. Over time, this process can result in populations
that specialize for particular ecological niches (micro-evolution) and
may eventually result in speciation (the emergence of new species,
macro-evolution). Thus, natural selection only accounts for a subset
of the evolutionary processes in which genetic variants differ in their
fitness effects, but it is neither a necessary nor a sufficient condition
for evolution to take place.

Population genetics provides the theoretical framework for explain-
ing biological evolution from the variational paradigm. In words
of Dobzhansky (1937): “The main aim of population genetics is
the description and interpretation of genetic variation within and
among populations”. Hence, over the last century, population ge-
neticists have developed an extensive theoretical framework which
describes the dynamics of genetic variation (alleles and genotypes)
in Mendelian populations and aims to ultimately understand the
main determinants of the evolutionary rate.

The first population genetics mathematical model was proposed by G.
H. Hardy and W. R. Weinberg in 1908 (the Hardy-Weinberg principle,
Hardy 1908). This can be defined as the zero-force state model and
served as a null model to explain the maintenance of genetic variation
in populations. The principle states that in an ideal population and
in the absence of any other evolutionary forces, allele frequencies
would remain unchanged generation after generation once they reach
the equilibrium state. The Hardy-Weinberg principle has the seven
following assumptions underlying H-W equilibrium: (i) organisms
are diploid, (ii) there is only sexual reproduction, (iii) generations
are non-overlapping, (iv) mating is random, (v) population size is
infinitely large, (vi) allele frequencies do not differ between sexes
and, (vii) there is not any external force (gene flux, mutation or
selection) affecting the population dynamics of new mutations.

Then, during the 30’s-50’s period, the population genetics theoretical
principles and the dynamics and fundamental forces of evolution were
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established (Fisher 1930, Wright 1931, Haldane 1932, Kimura 1955).
Hence, population genetics is conceived as a theory on which diverse
forces can affect the allele frequencies in a population: mutation,
migration, natural selection, recombination and genetic drift.

It was not until the late 60’ that the first measures of genetic variation
in the species Drosophila pseudoobscura (Lewontin & Hubby 1966)
and humans (Harris 1966) were provided, which finally initiated the
necessary dialog between data and theory. Since then, advances in
molecular evolutionary genetics have subsequently enriched the field
with many new concepts, terms, processes, molecular techniques,
and statistical and computational methods (Casillas & Barbadilla
2017). However, the fundamental evolutionary forces established
more than 50 years ago are still the essential explanatory factors
used for understanding the population genetic basis of evolutionary
change (Lynch & Walsh 2007, Charlesworth 2010).

1.1.1 Mutation as the ultimate source of genetic

variation

Genetic variation is the cornerstone of the evolutionary process. This
genetic variation is ultimately produced by mutations in the DNA
molecule of single individuals, which can be replicated and inherited
from generation to generation, producing the genetic and phenotypic
diversity observed in nature.

Mutations are random or undirected events. This means they oc-
cur independently of whether they help or harm the individual in
the environment in which it lives. Most mutations are lost in the
first generations, but occasionally, some of them may increase in
frequency through generations. This can be due to natural selection
processes (because mutations are associated with higher fitness in
the individuals that carry them) or just by random genetic drift.

Then, new mutations have three possible fates: (i) most are lost
in a very short period of time, (ii) some of them keep segregating
as polymorphisms (this is a genomic site which shows at least two
different alleles in a population) and contribute to intra-population
genetic variability, and finally, (iii) some of them reach fixation (one
of the segregating alleles increases in frequency and replaces all the
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other alleles for that locus in the population).

For many years during the 19th century and the start of the 20th
century, variation could only be studied for phenotypic traits due
to the lack of proper techniques to analyze direct genetic changes.
In general, the observed phenotypes are the final result of many
interactions among genotypes (which are heritable) and the specific
environment, but few cases are determined by discrete Mendelian
variants. Hence, it is not possible to discern the single effect of each
quantitative trait in the resulting phenotype, and few conclusions
can be obtained in such analyses.

However, the advances in sequencing technologies during the last
century provided ways to investigate the presence and effect of single
genetic variants, allowing to test, using empirical data, the bulk of
theoretical principles previously developed.

First studies of genetic variation were performed using gel elec-
trophoresis of proteins (Lewontin & Hubby 1966, Harris 1966), but
it was not until the milestone of sequencing technologies (Sanger
& Coulson 1975, Maxam & Gilbert 1977) that genetic variation
was estimated at the ultimate DNA sequence level (Kreitman 1983).
Then, the parallelization of the Sanger method provided the field with
dozens of sequenced genes in several species (Powell 1997). Nowadays,
high throughput second or next-generation sequencing (NGS) tech-
niques are providing big data samples of complete genome sequences
of many individuals from natural populations of many species, allow-
ing the development of catalogs of nearly all polymorphic variants
in certain model species. For instance, the current human single
nucleotide polymorphism (SNP) database lists 113,862,023 validated
SNP (dbSNP, March 2018; https://www.ncbi.nlm.nih.gov/SNP/)
and in D. melanogaster, >6,000,000 natural variants (SNPs and
indels) have been described to date (Huang et al. 2014, Lack et al.
2016). In the coming years, population genomic data will continue to
grow in both amounts of sequences and number of species (Ellegren
2014, Tyler-Smith et al. 2015), ensuring a constant progress of the
field and allowing the detection of more and rarer genetic variants.

Several types of alterations in the genetic material (mutations) con-
tribute to genetic diversity, from single nucleotide substitutions
(SNPs) to duplications of the whole genome. Table 1.1 lists the most
studied types of mutations so far.


https://www.ncbi.nlm.nih.gov/SNP/
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Table 1.1: Common types of DNA mutations. Brief description of
the most common types of alterations in the DNA classified in six major
categories. (Adapted from Casillas 2008)

Type of mutation Description

1. Single-nucleotide Base substitution involving only a single nucleotide. Can
polymorphisms be transitions or transversions. Coding-related mutations
(SNPs) can be missense, nonsense, silent or splice-site mutations.
a) Transition Substitution of one purine (A or G) by another, or one
pyrimidine (C or T) by another.
b) Transversion Substitution of a purine by a pyrimidine or vice-versa.
a) Missense The new nucleotide alters the codons and produces an

altered amino acid in the protein. Also called
noN-Synonymous.

b) Nonsense The new nucleotide changes a codon that specified an
amino acid to one that stops prematurely the
transcription, generating a truncated protein.

c) Silent Replacement of one nucleotide by another which does not
change the amino acid. Also called synonymous.
d) Splice-site Mutations that alter the splice-site signals so that the

intron cannot be removed from the RNA molecule, what
results in an altered protein product.

2. Insertions and Extra base pairs that may be added (insertions) or
deletions (indels) removed (deletions) from the DNA. Many large indels
result from the activity of transposable elements (TEs).

3. Variable number of A locus that contains a variable number of short (2-8 nt

tandem repeats for microsatellites, 7-100 nt for minisatellites) tandemly

(VNTR) repeated DNA sequences that vary in length and are
highly polymorphic. Microsatellites are also called short
sequence repeats (SSRs) or short tandem repeats (STRs).

4. Copy number A structural genomic variant that results in confined

variation (CNV) copy number changes of DNA segments > 1 kb (i.e.,
large duplications). They are usually generated by
unequal crossing over between similar sequences.

5. Inversions Change in the orientation of a piece of the chromosome,
without any gain or loss of genetic material.

6. Translocations Transfer of a piece of a chromosome to a non-homologous
chromosome. Can often be reciprocal.




1. INTRODUCTION

1.1.2 The (nearly) neutral theory of molecular

evolution

It was not until the time when the genetic diversity of populations
was beginning to be assessed by electrophoretic methods that the
diverse theories regarding the major forces determining patterns of
variation and the adaptive value of new mutations started to be
tested using empirical data.

The large amount of genetic variation uncovered in nature, together
with the previous observation that genetic differences accumulate
linearly with time (Zuckerkandl & Pauling 1965) revealed that none
of the formerly proposed hypothesis regarding the maintenance
of variability in populations was able to properly explain these
observations. Empirical studies showed that the rates of genetic
variability would either impose a segregating load too great to be
explained by balancing selection, as initially proposed by the balance
hypothesis (Dobzhansky 1970, Ford 1971); or an insurmountable
substitutional load in the case that directional positive selection
was the major force driving amino acid substitutions (Casillas &
Barbadilla 2017).

Motoo Kimura suggested a radical alternative explanation to account
for the patterns of protein variation and substitution, known as the
neutral theory of molecular evolution (Kimura 1968; Figure 1.1A).
This theory postulates that the bulk of segregating polymorphic sites
and fixed differences between species are selectively neutral (this is,
they have a fitness effect of 0 and hence, are not affected by natural
selection). The principal assertions and implications of Kimura’s
neutral theory of molecular evolution are (Kimura 1980, 1983) are:

1. Deleterious mutations are rapidly removed from the population,
and adaptive mutations are rapidly fixed; therefore, most of
the variation observed within species is the result of neutral
mutations.

2. A steady-state rate at which neutral mutations are fixed in
a population (k) equals the neutral mutation rate: k = py,
where pg is the neutral mutation rate, ug = freutraift, where
fneutral 18 the proportion of all mutations that are neutral and
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1 the intrinsic mutation rate by generation. If all mutations are
neutral, then pg = u, and the average time between consecutive
neutral substitutions is independent of population size (1/u).

3. The level of polymorphism in a population () is a function
of the neutral mutation rate and the effective population size
(Ne): @ =4Np.

4. Polymorphisms are transient (on their way to a rapid loss or
fixation) rather than balanced by selection. Larger populations
(higher N.) are expected to have a higher heterozygosity, as
reflected in the greater number of alleles segregating at any
time.

Under this model, the frequency dynamics of neutral variants in
the population is determined by the rate of mutation and random
genetic drift. Genetic drift is defined as the random sampling of
gametes at each generation in a finite population, which results in
a random fluctuation of allele frequencies across generations and
ultimately, in the loss of genetic variation (Kimura 1968).

Kimura’s neutral theory states that rates of protein evolution are
proportional to generation time. However, empirical observations
showed that they are proportional to absolute time in years instead
of generations.

In this regard, Tomoko Ohta redefined Kimura’s neutral theory by
introducing the concept of nearly neutral mutations (Ohta 1973).
Nearly neutral mutations are those which have slightly deleterious
or advantageous fitness effects (a selection coefficient, s, around 0).
This new class of mutations account for a major fraction of the
observed polymorphisms.

Ohta’s nearly neutral theory (1973) predicts that nearly neutral
mutations are mostly eliminated by natural selection in large popu-
lations (those with a large effective population size, N, ), but that
a substantial fraction of them behave as effectively neutral and are
randomly fixed in small populations. Moreover, population size is
generally inversely proportional to generation time. Because of this,
the strength of purifying selection acting on slightly deleterious mu-
tations and the generation time effect compensate and thus, protein
evolution under Ohta’s model is fairly insensitive to generation time.
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In the 1990s, Ohta improved once again the model by including both
slightly deleterious and slightly beneficial mutations (Ohta & Gille-
spie 1996; Figure 1.1B). This model has the following implications:

1. Mutations with fitness effects much smaller than 1/N, are
considered effectively neutral and their fate is directed mainly
by genetic drift.

2. Mutations that have fitness effects on the order of 1/N, are
nearly neutral (slightly deleterious if s is negative, or slightly
advantageous if s is positive), they have small effects on fitness,
and their fate depends on a combination of natural selection
and genetic drift.

3. Mutations with fitness effects > 1/10N, are strongly deleterious
(if s is negative) or strongly advantageous (if s is positive), and
their fates are mainly determined by natural selection.

The selection coefficient (s) is theoretically measured in the heterozy-
gous state with the wild type, in the case of a diploid, randomly
mating population. In a small population, the range between —1/N,
and 1/N, is larger than in a large population, and therefore there are
more effectively neutral mutations. In contrast, in a large population
most mutations are subject to some sort of natural selection. N,
is thus the key parameter determining the relative importance of
selection vs. genetic drift. The range |N.s| = 1 delimitates the
decisive borderline: if N.s < 1, genetic drift dominates, whereas if
Ns > 10, selection is the force which determines the fate of new
mutations.

10
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A - 1960s, Kimura's Neutral Theory B - 1970s, Ohta’s Nearly-Neutral Theory
: H
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Figure 1.1: The (nearly) neutral theory of molecular evolution.
Graphical representation of the distribution of fitness effects (DFE) for
mutations according to the (nearly) neutral theory of molecular evolution.
The fitness effect of new mutation is defined with the selection coefficient
(s). At s = 0 the allele is said to be selectively neutral; as s increases
so does its advantageous potential; in the same way, as s decreases so
does the negative effect of a mutation. Different selection coefficients of
mutations are colored in a gradient from maroon (strongly deleterious), red
(slightly deleterious), gray (neutral), light green (slightly advantageous),
and dark green (advantageous). (A) Kimura’s neutral theory. Under this
proposition, mutations are considered to be only neutral, advantageous
or deleterious; (B) Ohta’s nearly neutral theory. In this case, apart from
neutral, advantageous and deleterious classes, some mutations are not
completely neutral but either slightly advantageous or slightly deleterious.

1.1.3 Population dynamics of new mutations and the

distribution of fitness effects

According to Otha’s nearly neutral theory of molecular evolution
(Ohta 1973, Ohta & Gillespie 1996), mutations are classified based on
their individual fitness effects in five categories. However, classifying
mutations into these discrete groups may not reflect properly the real
fitness effects of mutations. In fact, there is a continuous distribution
of selective effects, the distribution of fitness effects (DFE) (Eyre-
Walker & Keightley 2007, Lanfear et al. 2014), such that the effects
of mutations range from lethal or very deleterious, through slightly
deleterious, neutral, slightly advantageous and strongly advantageous
(Piganeau & Eyre-Walker 2003, Keightley & Eyre-Walker 2010).

Ultimately, the substitution rate of new mutations in populations
is determined by both the distribution of fitness effects (DFE) of
these new mutations and the population dynamics of each mutation

11
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from the moment it appears through time (this is, the changes in
allele frequencies and their probability of fixation). This results
in a mutation-selection balance which determines the fates of new
variants (see above).

The DFE can be mathematically modeled as a function of the fitness
(measured by the coefficient of selection, s) of new mutations entering
in the population: f(s) (Figure 1.2A). The probability of fixation of
each mutation depends on the rate at which this class of mutations
appear (u per site per generation), the effective population size (N)
and its fitness (s), and can be expressed as: 2N, p(Ne,s) (Figure
1.2B).

Therefore, the rate of molecular evolution (K'), which refers to the
fixation rate averaged over all mutations entering a population,
can be inferred with the combination of the DFE and population
dynamics of new mutations (Figure 1.2). K informs about the
rhythm at which species diverge along evolutionary time.

In a diploid population, mutations appear at a rate 2N.u (Figure
1.2C). Each new mutation has a given selection coefficient (s) that is
determined by its fitness effect on the individual (Figure 1.2A), and
all mutations with this s, f(s), appearing in a population of size N,
have a probability of fixation u(Ne,s) (Kimura 1957; Figure 1.2B).
The selection coefficient (s) potentially ranges from —oo to +oo.
Thus, the overall molecular evolutionary rate (K) is determined by
the general expression (Figure 1.2C):

+oo
K = 2Neu/ u(Ne, s) f(s) ds

—00

Hence, genetic variants can be generally divided into two classes:
polymorphisms (the state in which multiple alleles exist for a same
locus within the population) and fixations (a single allele for the
same locus is shared by all the individuals within a population).
Divergence is defined as the accumulation of fixed differences (alleles)
among populations when two populations of the same species which
are reproductively isolated derive in two different species.

Polymorphism and divergence rates inform about different but com-
plementary stories about the past and present events of a population.
Polymorphism captures the variation dynamics of the population at

12
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the precise moment in time it is observed, and only allows inferring
events that have happened recently. Besides, divergence shows the
fixations between species. This process requires longer periods of
time and thus, provides information about more ancient events. The
combined analysis of polymorphism and divergence rates is then one
of the most powerful approaches to understand the influence of dif-
ferent population genetics forces modeling the patterns of molecular
evolutionary change.

A B 1
g
. : - 0
-0 -1I/N, 0 LN +0 Polymorphism
Fitness (s) Time —
Distribution of Probability of
Fitness Effects fixation
[}
c
K =2 I u(N,,s) f(s)ds
—o0

New mutations per
site per generation

Figure 1.2: Population dynamics and the molecular evolutionary
rate. The molecular evolutionary rate (K) can be expressed as a function of
(A) the distribution of fitness effects (DFE), (B) the probability of fixation
of new mutations entering the population (new variants that appear in a
population start segregating and over time they can become fixed, frequency
= 1, or disappear from the population, frequency = 0), and (C) the rate at
which new mutations enter the population per site per generation. Different
selection coefficients of mutations are colored in a gradient from maroon
(strongly deleterious), red (slightly deleterious), gray (neutral), light green
(slightly advantageous), and dark green (advantageous). (Retrieved from
Casillas & Barbadilla 2017)

13
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1.2 Detecting the genomic footprint of

natural selection

1.2.1 Determinants of patterns of genetic variation

Recombination and linked selection

Recombination is a fundamental biological process in population ge-
netics. The crossing-over of homologous chromosomes during meiosis
results in the exchange of genetic material and the formation of new
haplotypes, which provides offspring with new allelic combinations.
Recombination rates are known to vary in magnitude and distribu-
tion among species (Ortiz-Barrientos et al. 2006, Auton et al. 2012),
between populations within species (Consortium et al. 2015, Kong
et al. 2010), between individuals within the same population (Kong
et al. 2010, Coop et al. 2008) and even in different regions of the
genome at different scales (Chan et al. 2012).

Therefore, the estimation of accurate rates of recombination along
the genome is needed to understand the molecular and evolutionary
mechanisms underlying recombination variation, allowing to assess
the relationships between recombination and population genetics
parameters to infer its relevance on genome evolution.

In this regard, diverse high-resolution recombination estimates have
been proposed in Drosophila melanogaster, the model species for
population genetics analyses (see 1.3. Drosophila as a model organ-
ism for population genetics). The first high resolution recombination
map was provided by Fiston-Lavier et al. (2010), and it is based
on comparing the genetic and physical maps to infer recombination
rates along the genome. Later, two more high-resolution maps in
this species were published:

e A statistical approach that infers the historical population
recombination parameter (p = 4N,r), from linkage disequilib-
rium patterns at multiple sites across the genome (Hudson
1987). Chan et al. (2012) developed a computationally inten-
sive method to estimate p from nucleotide variation and LD

14
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rates which accounts for Drosophila specific genome proper-
ties (high density of SNPs, many missing allele calls, back-
ground recombination and pervasive adaptive evolution along
the genome).

e An experimental-based approach developed by Comeron et al.
(2012), using a new technique that integrates the power of
classical genetics with NGS. First, recombinant advanced inter-
cross lines (RAIL) were generated from 8 crosses among 12 wild-
derived lines. Then, RAIL females were individually crossed
to D. simulans, and the D. melanogaster haploid genome
of single hybrid progeny was inferred. Thus, the authors
generated the first integrated high-resolution description of the
recombination patterns of both intra-genomic and population
variation, distinguishing between crossing over (CO) and gene
conversion (GC) events.

According to the neutral theory of molecular evolution, nucleotide
variability and recombination rates should not be correlated, since
the recombinational environment would not affect the number nor
the frequency of neutral polymorphisms unless there is a positive
correlation between recombination and the mutation rate (Lercher
& Hurst 2002).

However, empirical population genetics studies demonstrated that
there is a positive correlation between the local recombination rate
and the polymorphism level, at different types of sites and variants
(Begun & Aquadro 1992, Mackay et al. 2012), but no correlation was
found between recombination and the rates of divergence, at least
in Drosophila. These observations allowed discarding the hypothesis
of the mutagenic nature of recombination and highlighted that
recombination itself, rather than any other factor, seems to be
the main process modulating the nucleotide diversity patterns along
the genome. Since neutral theory cannot explain these observations,
a selectionist alternative was proposed: linked selection (Begun &
Aquadro 1992).

When genetic variants along a chromosome are in linkage disequi-
librium (LD) (Lewontin & Kojima 1960), they tend to segregate
together as a block because recombination has not been able to
reshuffle them. Hence, the selection unit is not anymore a single
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mutation but each LD genomic block. Linked selection could ex-
plain the correlation between recombination and genetic variability
because recombination can break the association between a selective
target and its linked neutral alleles (Begun & Aquadro 1992). In
addition, Birky & Walsh (1988) demonstrated that divergence is not
affected long-term by this reduction of polymorphism level, which
explains the lack of correlation between recombination and neutral
divergence.

In the last years, several evolutionary models of recurrent linked
selection have been applied to the genomic data available. These
models also predict a positive correlation between recombination and
polymorphism for all variants, including SNPs (Berry et al. 1991,
Begun & Aquadro 1992) and indels (Huang et al. 2014). In addition,
it has been observed that diversity increases with recombination
rate but decreases with the density of functional sites (Begun et al.
2007, Shapiro et al. 2007), pinpointing that recombination rate via
recurrent linked selection is the most likely explanation for the
observed patterns of nucleotide variation in Drosophila (Mackay
et al. 2012).

The Hill-Robertson interference

Analyses of genetic variation reveal that in species with a high N,
such as Drosophila, much of the genome is under purifying selection,
and thus of functional importance, and that a large fraction of coding
and non-coding differences between species are adaptive (Sella et al.
2009). In addition, genomes are populated by large numbers of
segregating sites undergoing weak deleterious selection (Casillas &
Barbadilla 2017). Therefore, purifying selection is pervasive in the
genomes of such species. Indeed, Andolfatto (2005) estimated that in
D. melanogaster the fraction of deleterious newly arising mutations
was ~ 94% at amino acid sites, ~ 81% in untranslated regions
(UTRs), ~ 56% in introns, and ~ 61% in intergenic regions. Later,
Mackay et al. (2012) showed that averaged over the entire genome,
39.6% of the segregating sites are strongly deleterious (d), 58.5% are
neutral or nearly neutral (f), and 1.9% are weakly deleterious (b).
Authors also estimated that for non-synonymous sites these fractions
were: d = 77.6%, b = 3.8%, and f = 18.6%. Finally, Castellano
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(2016) estimated, for the same class of sites: d = 81%, b = 3%,
and f = 15%. Altogether, these results reinforce the importance of
purifying selection in Drosophila. Besides, a considerable fraction
of amino acid substitutions are adaptive, with values ranging from
25% (Mackay et al. 2012), to 40 — 50% (Andolfatto 2005), or as high
as ~ 57% (Messer & Petrov 2013).

The combination of the large number of selected variants and linked
selection implies that at any time there are genetic variants in LD
simultaneously selected in the genome. These variants interfere with
each other, inducing a cost of linkage known as the Hill-Robertson
interference (HRi, Hill & Robertson 1966). HRi can be thus defined
as the evolutionary consequence of selection acting simultaneously
among multiple co-segregating sites in finite populations.

The effects of Hill-Robertson interference are illustrated in Figure
1.3. When two or more independent adaptive mutations occur in
separate haplotypes without recombination (Figure 1.3A top; with
HRi), only one of them can be fixed in the population and thus
mutations compete, lowering the average rate of adaptive fixation.
However, if recombination is high enough (Figure 1.3A bottom; in
the absence of HRi), the two haplotypes can recombine to generate
a new haplotype carrying both adaptive variants, which can be fixed.
If adaptive and deleterious variants coexist in the same genomic
block without recombination (Figure 1.3B top), some deleterious
variants are dragged to fixation by linked adaptive ones, while the
fixation rate of adaptive mutations is decreased due to the reduced
efficacy of selection caused by linked deleterious variants. However,
if recombination is high (Figure 1.3B bottom), deleterious alleles
can be removed from the population, resulting in the fixation of the
diverse adaptive variants and the elimination of the negative ones
by purifying selection.

If the cost of linkage is real, the number of selected variants un-
dergoing HRi will increase as recombination rate decreases. Thus,
regions with higher recombination rates will show higher rates of
adaptive fixation. Thereby, under this model, we expect higher rates
of adaptive fixation and lesser fixation rate of deleterious variants as
recombination rate increases.
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A — Adaptive variants B — Adaptive and deleterious variants
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Figure 1.3: Representation of the HRi on selected sites in link-
age disequilibrium. Arrows indicate adaptive (green) and deleterious
(red) mutations, while their length indicates the intensity of selection. (A)
Two or more adaptive mutations, segregating in separated low-recombining
haplotypes competing for fixation (top), and with recombination, segre-
gating independently and ultimately reaching both fixation (bottom). (B)
Deleterious and adaptive variants coexisting in a low-recombinant haplo-
type (top) and with recombination, freely segregating towards fixation or
lost (bottom). (Adapted from Barrén 2015).

In other words, the overall selection effectiveness is reduced (in-
creased) as recombination decreases (increases). Therefore, HRi
is predicted to be stronger in regions with lower recombination, a
larger number of selected sites, and more intense selection (Comeron
et al. 2008, Messer & Petrov 2013). In addition, the chromosome
length affected by HRi depends on the recombination rate and the
distribution of linked fitness variation along the chromosome.

Diverse population genomics studies performed in Drosophila confirm
and reinforce the importance of HRi (Langley et al. 2012, Mackay
et al. 2012, Campos et al. 2014, Castellano et al. 2016). Hence, if
the HRi is common (Comeron et al. 2008), a central question is its
magnitude. How much does HRi limit the molecular adaptation of
a genome?

Castellano et al. (2016) specifically addressed this question by an-
alyzing 6,141 autosomal protein-coding genes from the Drosophila
Genetic Reference Panel (DGRP, Mackay et al. 2012) genome data.
Results showed that the initially observed linear relationship be-
tween recombination and adaptation converged to an asymptotic
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threshold in recombination values around 2 ¢cM /Mb, the same recom-
bination threshold found by Mackay et al. (2012) when comparing
recombination and nucleotide diversity rates.

This asymptote indicates that the cost of linkage disappears above
a given recombination value and thus, mutations which appear in
regions with recombination above this value can be assumed to seg-
regate independently. This specific recombination threshold can be
interpreted as the optimal recombination () for the adaptation
rate of a genome. Then, the determination of r,,; allows the quan-
tification of the genome-wide impact of HRi on the adaptation rate,
which correspond to the adaptation lost below the recombination
threshold. Castellano et al. (2016) estimated that HRi reduces the
evolutionary adaptation rate of the D. melanogaster genome by an
average of 27%.

However, this study only focused on a North-American population
of D. melanogaster, known to have experienced a recent bottleneck
followed by a population expansion (Garud et al. 2015). Thus, the
extent to which this proportion is representative of the whole species
still remains unclear. The next logical step would be to quantify this
effect in diverse wild-derived populations with different demographic
and migratory histories in order to characterize which are the HRi
load dynamics operating in Drosophila and their impact on the
molecular evolutionary rate.

1.2.2 Genome-wide signatures of selection

Natural selection leaves signatures on the genome that can be now
identified by taking advantage of the increasing amount of genomic
information available.

During the process of fixation of an adaptive variant, closely linked
alleles can also become more common by genetic hitchhiking (Smith
& Haigh 1974), whether they are neutral or even slightly deleterious.
Overall, this causes a reduction of the levels of genetic diversity in the
region (Figure 1.4A). At the same time, new mutations appear and
accumulate. These mutations have a low initial frequency, resulting
in an excess of rare derived alleles in the selected area. In addition,
if the fixation process of the adaptive variant is faster than the
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reduction of linkage disequilibrium between this selected mutation
and linked variants by local recombination processes, the region will
present long-range LD signals (Nielsen 2005, Franssen et al. 2015,
Garud et al. 2015, Garud & Petrov 2016). In summary, selective
sweeps leave signatures in the genome that include: (i) a reduction
in the genetic diversity, (ii) a skew toward rare derived alleles and
(iii) an increase in the LD.

Besides, a different selective process that also reduces the levels of
genetic diversity in a genomic region is background selection (BGS)
(Charlesworth et al. 1993, Braverman et al. 1995, Charlesworth
et al. 1995). In this case, recurrent purifying selection eliminates
chromosomes (haplotypes) carrying strongly deleterious mutations,
producing a decrease genetic variation in that region due to the
reduction of the number of chromosomes that contribute to the next
generation (Figure 1.4B). In contrast to a hitchhiking event, it does
not skew the distribution of rare polymorphisms nor generates long-
range LD blocks. In this sense, the genomic footprint is identical to
that of a reduction in population size but focused only on a specific
linked genomic region (Charlesworth et al. 1993).

Finally, balancing selection and local adaptation leave other particu-
lar signatures of selection in the genome. These signatures include
haplotypes at an intermediate frequency, with strong population
differentiation; and a high level of LD with respect to variants at
surrounding sites (Charlesworth et al. 1997).

1.2.3 Tests of selection

Since direct genetic variation data became available on a regular
basis, one major issue in population genetics has been to detect
and measure the amount of positive selection in the genome from
polymorphism and/or divergence levels. Therefore, several tests have
been devised to address this challenge, allowing to investigate the
micro- and macro-evolutionary histories (i.e., within and between
species) of a broad range of organisms (Vitti et al. 2013). Table
1.2 includes a brief description of some of the most used tests of
neutrality developed and applied over the last years.
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Table 1.2: Tests of selection. Most used tests of neutrality classified
based on the type of selective events they are able to detect and the type

of genomic data that they use.

Based on Test Description Reference
Micro- The allele Tajima’s ~ Number of nucleotide polymorphisms Tajima (1989)
evolution frequency D with the mean pairwise difference

spectrum and between sequences

/or levels of Fu and Number of derived nucleotide Fu & Li

variability Li's D variants observed only once in a (1993)

sample with the total number of
derived nucleotide variants
Fu and Number of derived nucleotide Fu & Li
Li's F variants observed only once in a (1993)
sample with the mean pairwise
difference between sequences
Fay and Number of derived nucleotide Fay & Wu
Wu's H variants at low and high frequencies  (2000)
with the number of variants at
intermediate frequencies
Linkage EFHH Extended haplotype homozygosity: Sabeti et al.
disequilibrium measurement of the decay of LD (2002)
between loci with distance
LRH Long-range haplotype test, based on  Sabeti et al.
the frequency of alleles in regions of ~ (2002)
long-range LD
HHT Hudson haplotype test: detection of  Hudson et al.
derived and ancestral alleles on (1994)
unusually long haplotypes
iHS Integrated haplotype score, based on  Voight et al.
the frequency of alleles in regions of ~ (2006)
high LD
Population Gsr Analysis of gene diversity Nei (1973)
differentiation (heterozygosity) within and between
subpopulations
Fsr Average levels of gene flow based on  Hudson et al.
allele frequencies, under the (1992)
infinite-sites model
XP— Cross-population composite Chen et al.
CLR likelihood ratio test, based on allele  (2010)
frequency differentiation across
populations
Macro- Comparisons of Dy/Dg, Ratio of non-synonymous to Li et al.
evolution polymorphism  Ka/Kg synonymous nucleotide divergence (1985), Nei &
and / or (w) Gojobori

divergence (1986)

between HKA Degree of polymorphism within and ~ Hudson et al.

different classes between species at two or more loci  (1987)

of sites MKT Ratios of synonymous and McDonald &

non-synonymous nucleotide Kreitman
divergence and polymorphism (1991)
DoS Direction of selection Stoletzki &

Eyre-Walker
(2011)
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A — Positive hitchhiking (selective sweep) B- Negative hitchhiking (BGS)
Advantageous (Nearly) neutral ® Deleterious
—
Positive Negative
selection selection

Figure 1.4: Effects of positive and negative hitchhiking mod-
els without recombination. (A) Positive hitchhiking model (selective
sweep). In this case, an advantageous mutation (green) is positively selected
and increases in frequency, along with linked (nearly) neutral mutations
(grey). (B) Negative hitchhiking model (backgroud selection). Deleteri-
ous alleles (red) are removed from the population by puryfing selection,
together with linked neutral variants. Both models predict a reduction of
neutral variability. Note that without recombination, in the first scenario,
all individuals from a population will show the same single haplotype
containing the selected allele, whereas in the second one, several haplotypes
will remain. (Adapted from Nachman 2001).

Tests based on the allele frequency spectrum and/or

levels of variability

Several tests allow identifying regions in the genome which have been
under positive selection pressures by analyzing the site frequency
spectrum (SFS) of variants, looking for the surplus of rare derived
alleles caused by selective sweeps. These tests compare the number
of polymorphisms or derived singletons (variants observed only once)
with the mean nucleotide diversity (Tajima’s D and Fu and Li’s F),
the number of singletons with the total number of derived variants
(Fu and Li’s D) or the mutations at extreme low or high frequencies
with the ones at intermediate frequencies (Fay and Wu's H).
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Tests based on linkage disequilibrium

When an adaptive variant is positively selected, if its fixation process
is faster than the reduction of LD between this selected mutation
and linked variants by local recombination, the region will present
long-range LD signals (Nielsen 2005, Franssen et al. 2015, Garud
et al. 2015, Garud & Petrov 2016). Hence, certain unusually long
haplotype will increase in frequency in the population. In this
regard, several tests have been developed to detect the footprint
of natural selection based on linkage disequilibrium metrics. These
tests measure the decay of LD between loci with distance (EHH)
or the frequency of alleles in regions of high LD (LRH, Hudson
haplotype test, iHS), among others features.

Tests based on population differentiation

Selection acting on an allele in one population but not in another
creates a marked difference in the frequency of that allele between
the two populations. This effect of differentiation stands out against
the differentiation between populations with respect to neutral (i.e.,
non-selected) alleles. Therefore, some neutrality tests analyze the
alleles frequencies (XP-CLR), gene diversity (GST) or gene flow
(Fst) between subpopulations to identify putatively adaptive genome
regions.

Tests based on comparisons of polymorphism and/or

divergence between different classes of sites

The combined analysis of polymorphism and divergence rates is one
of the most powerful approaches to understand the influence of dif-
ferent population genetics forces modeling the patterns of molecular
evolutionary change, as they provide different but complementary
information about the past evens experienced by any genomic region.
In this regard, diverse tests that allow detecting positive selection
signals in the genome based on comparisons of polymorphism and/or
divergence between different classes of sites have been developed in
the lasts years. Here, we focus on the two metrics which have been
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most used in population genomic studies: the K 4/Kg ratio and the
McDonald and Kreitman test.

The K4/Kg ratio

The K4/Kg ratio, also known as w (Yang & Bielawski 2000), com-
pares the rate of non-synonymous divergence to the proportion of
neutral fixations. Hence, it assumes one class of sites to be putatively
adaptive while the other evolves under neutrality. This test was
developed as an extension of the Dy /Dg ratio, which compares the
total number of fixed sites (i.e., divergent) at the two same classes
(Li et al. 1985, Nei & Gojobori 1986).

If advantageous mutations have been frequent in non-synonymous
sites and have appeared at a higher frequency than do neutral ones,
the rate of non-synonymous substitutions (K 4) will be greater than
the rate of silent substitutions (Kg). Contrarily, if negative selection
is constantly removing non-synonymous changes, K 4 will be much
lower than Kg. Thus, this ratio is used to indicate the functional
constraint of any genomic region: K4/Kg = 1 under neutrality,
K4/Kg < 1 under functional constraint, and K4/Kg > 1 under
positive selection.

This test is conservative because most non-synonymous mutations
are expected to be deleterious. Thus, the proportion of adaptive
substitutions has to be high for adaptive evolution to be detectable
using this method.

The McDonald and Kreitman Test

The McDonald and Kreitman test (MKT, McDonald & Kre-
itman 1991) was developed as an extension of the Hud-
son-Kreitman-Aguadé test (Hudson et al. 1987) and is used to
detect the signature of selection at the molecular level. Since its
formulation, it has become one standard for testing adaptation in
different classes of sites and organisms (Egea et al. 2008). The MKT
compares the amount of variation within a species (polymorphism,
P) to the divergence (D) between species at two types of sites, one
of which is putatively neutral and used as the reference to detect
selection at the other type of site.
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In the standard MKT, these sites are synonymous (putatively neutral,
0) and non-synonymous sites (selected sites, i) in a coding region.
Under strict neutrality, the ratio of the number of selected and
neutral polymorphic sites (P;/Pp) is equal to the ratio of the number
of selected and neutral divergence sites (D;/Dg). The null hypothesis
of neutrality is rejected in a MKT when D;/Dg # P;/Py. The excess
of divergence relative to polymorphism for class ¢, is interpreted as
adaptive selection for a subset of sites i. The significance of the test
can be assessed with a Fisher exact test (Fisher 1922) using the 2x2
contingency table.

An extension of the test allows to estimate the proportion of non-
synonymous substitutions that have been fixed by positive selection
(i.e., the rate of adaptive evolution, «; Charlesworth 1994, Smith &
Eyre-Walker 2002). « values of 0 indicate that the region is under
neutrality, a > 1 is indicative of positive selection and finally, o < 0
indicates negative or purifying selection on that region.

Tests derived from the MKT

In the standard McDonald and Kreitman test, the estimate of adap-
tive evolution (a) can be easily biased by the segregation of slightly
deleterious non-synonymous substitutions (Eyre-Walker 2002) and
different demographic histories. Specifically, slightly deleterious mu-
tations contribute more to polymorphism than they do to divergence,
and thus, lead to an underestimation of « in the cases where the
population size has been relatively stable through time. On the con-
trary, if the population has experienced a process of expansion, some
slightly deleterious mutations that were fixed in the past population
with small N, by genetic drift now contribute to divergence, and
this produces an overestimation of o (Eyre-Walker 2002).

Several modifications to the standard MKT have been developed to
address the most common situation, in which slightly deleterious
mutations lead to an underestimation of the true level of adaptation.
Here we review three of them: FWW method (Fay et al. 2001),
DGRP correction (Mackay et al. 2012) and asymptotic MK method
(Messer & Petrov 2013).
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FWW correction method

Because slightly deleterious mutations tend to segregate at lower
frequencies than do neutral mutations, they can be partially con-
trolled by removing low frequency polymorphisms from the analysis.
This is known as the FWW method (Fay et al. 2001). In this case,
a is estimated considering only those polymorphic sites (for both
neutral and selected classes) with a frequency above the arbitrarily
established cutoff (z).

While this correction removes slightly deleterious mutations and
therefore leads to « estimates significantly higher than the standard
method, it also gets rid of all informative neutral polymorphism,
which may cause a lack of statistical power to perform the test due
to the low number of segregating sites remaining after trimming.

DGRP correction method

An alternative approach which also considers the presence of non-
synonymous slightly deleterious mutations is the DGRP methodology
(Mackay et al. 2012). Because adaptive mutations and weakly dele-
terious selection act in opposite directions on the MKT, « and the
fraction of substitutions that are slightly deleterious will be both
underestimated when both selection regimes occur. To take adaptive
and slightly deleterious mutations mutually into account, F;, the
count of segregating sites in class ¢, is separated into the number
of neutral variants and the number of weakly deleterious variants,
Pi = PZ neutral 1 1Dz weakly deleterious- Then7 « is estimated using
the standard MKT expression but substituting P; by the expected
number of neutral segregating sites, P; neutral-

This method also permits quantifying the fraction of sites within
the selected class under purifying selection. The excess of sites
segregating with a frequency below the cut-off with respect to the
neutral site class are considered to be weakly deleterious (b). Then,
the neutral fraction (f) of putatively selected sites is estimated
from the neutral class after correcting for weakly deleterious sites.
Finally, the fraction of new mutants which are strongly deleterious
and therefore not segregating (d) is estimated based on the previous
fractions.
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Asymptotic MK method

Messer & Petrov (2013) proposed a simple asymptotic extension
of the MKT that yields accurate estimates of «, as it also takes
slightly deleterious mutations presence into account (asymptotic MK
method, Figure 1.5). Briefly, this approach first estimates a for
each derived allele frequency (DAF) category using its specific P;
and Fy counts. Because a(,) depends only on the ratio Pi(x)/PO(x),
any biases affecting the SF'S at functional and synonymous sites
in the same way, regardless whether due to demography or genetic
draft, effectively cancel out. Then, the method fits an exponential
function to this values and finally, the asymptotic « estimate (aasym)
is obtained by extrapolating the value of this function to 1, where it
should converge close to the true o assuming that adaptive mutations
do not significantly contribute to polymorphism and that purifying
selection has been sufficiently stable over time.

While this test is able to properly overcome the presence of slightly
deleterious variants and provides the most accurate estimates of «
(Messer & Petrov 2013, Haller & Messer 2017), it has one major
restriction which limits its application. To obtain unbiased « values
the test requires a large amount of putatively selected segregating
sites spanning the complete derived allele frequency spectrum, which
is unrealistic for many Drosophila and human genes. Thus, this
method is adequate for analyzing large genome regions or sets com-
posed by multiple genes, but fails in the analysis of most single genes
and small genomic regions with low to moderate variability.
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Figure 1.5: Derived allele frequency (DAF) and estimation of «
by asymptotic MKT. (A) Number of non-synonymous and synonymous
(neutral) polymorphic sites for each derived allele frequency. (B) Graphical
representation of the estimation of a by the asymptotic MKT (Messer &
Petrov 2013), showing (i) the « values for each DAF category (black dots),
(ii) the model fitting (red line), and (iii) the aqsym and Qorigina; values.
Note that the estimate of o obtained with asymptotic MKT is substantially
higher than the standard MKT one. Polymorphism and divergence values
correspond to the complete chromosome arm 2R of a North American
population (RAL, Raleigh, NC) of D. melanogaster, using D. simulans as
outgroup species.
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1.3 Drosophila as a model organism for

population genetics

Fruit flies of the genus Drosophila have been an attractive and
effective genetic model organism since their introduction as a research
tool for biological studies in the early 20th century (Morgan 1915,
Muller 1927). Thus, during the last 100 years, Drosophila has played
a crucial role in the diverse fields of genetic analysis, such as ecology,
speciation, developmental biology or population genetics (Powell
1997, Hales et al. 2015).

In the late 30s, Dobhansky and colleagues performed the firsts
population genetic studies using Drosophila, focused on the analysis
of inversions polymorphisms (Dobzhansky 1937, Dobzhansky &
Sturtevant 1938). Few years later, Drosophila established as the
most extensively used organism for studying genetic variation in
natural populations (Lewontin & Hubby 1966, Ayala et al. 1974,
Singh & Rhomberg 1987) and its importance within the population
genetics field just increased more and more over time.

The complete D. melanogaster genome sequence was obtained in
the late 90s, as part of one of the pioneers sequencing projects using
whole-genome shotgun technologies in eukaryotic genomes (Rubin
1996, Adams et al. 2000). Specifically, it is around 180Mb, of which
120Mb is euchromatic genome and 75% of this fraction is intergenic
or intronic (i.e., non-coding) sequence (Misra et al. 2002). It is
divided in 5 chromosomes (X, Y, 2, 3, 4; Hoskins et al. 2002) and
the current genome version includes 17,753 annotated genes, of which
13,931 are protein-coding genes (FlyBase release 6.22, August 2018).

Then, dozens of complete genomes started to become available for
different species within the Drosophila genus (Clark et al. 2007).
Nowadays, thanks to high-throughput sequencing technologies, hun-
dreds of wild derived samples have been sequenced, and some of
the most important population genetics projects in the last 10 years
have been performed using D. melanogaster. Indeed, more than 1000
individual genome sequences of this species are available right now
(Lack et al. 2016). In addition, new studies focused on other species
of the genus Drosophila have been performed too. A great example
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is the recently published new panel of 170 inbred genotypes of a
North American population of D. simulans by Signor et al. (2018),
which will serve as a valuable complement to the DGRP and other
D. melanogaster panels.

Overall, all these population genomics projects provide the fly lineage
with a unique resource on which to test the molecular population
genetics hypotheses and eventually understand the evolutionary
dynamics of genetic variation in populations.

1.3.1 Population genomics projects in Drosophila

melanogaster

Population genomics is understood as the study of the whole genomes
of individuals instead of biased and fragmentary sequence samples.
The first population genomics study in a Drosophila species was
performed by Begun et al. (2007) in D. simulans. Authors analyzed
genome-wide patterns of polymorphism and divergence (with D.
melanogaster and D. yakuba) along the genome using 7 inbred lines
of diverse origin. In addition, they also found evidence of adaptive
protein evolution in the genome, showing for the first time that
natural selection is pervasive in Drosophila.

Regarding D. melanogaster, the first study of natural variation was
done by Sackton et al. (2009). In this work, nine strains from
African (n=3) and North American (n=6) populations were an-
alyzed and compared. After this preliminary study, two major
population genomics-oriented projects using D. melanogaster and
high-throughput sequencing technologies were developed:

o The Drosophila Genetic Reference Panel (DGRP). The DGRP,
a community resource for the analysis of population genomics
and quantitative traits, is a panel of > 200 inbred, mostly
homozygous lines of D. melanogaster derived from a North
American natural population (Raleigh, NC) (Mackay et al.
2012, Huang et al. 2014). This was the first population ge-
nomics study performed in D. melanogaster, and it allowed
the description of genome-wide patterns of nucleotide diversity
and divergence, and the mapping the diverse natural selection
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forces along the genome, as well as phenotypic analyses and
the identification of several eQTLs.

e The Drosophila Population Genomics Project (DPGP). The
DPGP (Langley et al. 2012) independently analyzed two natu-
ral populations of D. melanogaster: 37 DGRP lines and 6 lines
from an African population of Malawi. The second freeze of the
DPGP (DPGP2) sequenced the genomes of D. melanogaster
from populations in Sub-Saharan Africa and France (Pool et al.
2012). The latest version of DPGP (DPGP3) involved the
sequencing of around 200 individuals from a single population
in Zambia, the region presumed to be the ancestral range of
the species (Pool et al. 2012, Lack et al. 2015). These popula-
tion data allowed the study of D. melanogaster demographic
and migratory history (Pool et al. 2012), natural selection and
the genetic basis of local adaptation (Langley et al. 2012) or
chromosomal inversion polymorphism (Corbett-Detig & Hartl
2012) among others.

Besides, other population genetics projects in this species have been
carried out in the last few years, providing even more available
genome sequences: Campo et al. (2013), Kao et al. (2015), Bergman
& Haddrill (2015), or the Global Diversity Lines published in Grenier
et al. (2015).

Finally, the Drosophila Genome Nezus (DGN) is a recent compi-
lation of each of these population genomic sequences assembled
against a single common reference genome assembly. This project
alms to increase the comparability of population genomic data sets,
facilitating direct comparisons among them (Lack et al. 2015). In
detail, DGN re-aligned genome sequences from: DPGP1 (Langley
et al. 2012): 27 genomes from Malawi; DPGP2 (Pool et al. 2012):
139 genomes from 22 populations, mainly from Africa; DPGP3 (Lack
et al. 2015): 197 genomes from Zambia; DGRP (Mackay et al. 2012,
Huang et al. 2014): 205 genomes from Raleigh, USA; the global
diversity lines (Grenier et al. 2015): 85 genomes from Australia,
China, the Netherlands, the USA and Zimbabwe; Bergman & Had-
drill (2015): 50 genomes from France, Ghana and the USA; Campo
et al. (2013): 35 genomes from California; Kao et al. (2015): 23
genomes from 12 New World locations; and 306 new sequenced
genomes from Ethiopia, South Africa, Egypt and France; resulting
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in a dataset of 1,067 complete sequence genomes which cover almost
the complete geographical range of this species.

1.3.2 The Drosophila Genome Nexus sequence data

The Drosophila Genome Nexus project (DGN, Lack et al. 2015,
2016) provides the genome sequences of over 1,100 worldwide wild-
derived Drosophila melanogaster individuals from 58 populations
out of 23 countries spanning 5 continents (all but Antarctica).

DGN sequences were obtained following a two round assembly
pipeline that combines two different aligners (Figure 1.6). Briefly,
short reads were first mapped to the reference genome (version 5.57
from FlyBase) using BWA v0.5.9 (Li & Durbin 2010) and then
the remaining unmapped reads were mapped using Stampy v1.0.20
(Lunter & Goodson 2011). All reads with mapping quality scores
below the standard threshold were excluded. Then, optical dupli-
cates were removed and assemblies were realigned around indels.
After that, variants were called using GATK Unified Genotyper
(DePristo et al. 2011), and the called SNPs and indels were inserted
into the reference genome. This modified genome was used for the
second round of mapping. Finally, base coordinates were shifted
back to the original reference genome ones, in order to obtain aligned
consensus sequences for all samples. Sites within 3’ bp of a called
indel and deletions were coded as “N”. Insertions do not appear in
the sequences. Therefore, DGN sequence data is highly appropriate
for nucleotide variation analyses, but not for structural variation.

Moreover, there are some genomic regions which are especially prob-
lematic to analyze and must be taken with care and in some cases
discarded when inferring major population genomics conclusions:
regions that are classified as identical by descent (IBD), regions
with genetic admixture, heterozygous regions that persist after many
generations of full-sibling mating, or pseudo-heterozygous regions.

A genomic segment can be classified as IBD if two or more individuals
have inherited it from a common ancestor without recombination;
i.e., the segment has the same ancestral origin in these individuals
(Thompson 1975). Since most population genetic analyses assume
that unrelated individuals have been sampled, it is important to
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Figure 1.6: Drosophila Genome Nexus assembly pipeline. The
pipeline consisting of two rounds of read mapping (using two different
aligners), read filtering, indel realignment and calling of variants. Briefly,
it takes sequencing reads as input and returns as output a consensus
sequence for each sample, whose coordinates are shifted and aligned to the
D. melanogaster reference version 5.57 (FlyBase). (Adapted from Lack
et al. 2015)

take into account which regions are influenced by the effects of close
relatedness among genomes. Besides, genetic admixture occurs when
two or more isolated populations begin to interbreed. This ultimately
causes the homogenization of such populations and the loss of the
“unique” variation of each of them. The presence of admixture in
both African and non-African populations has been documented in
Pool et al. (2012).

Finally, heterozygosity can persist in fly stocks even after many
generations of full-sibling mating, probably due to the presence of
recessive lethal or infertile mutations, which are commonly found
on wild-derived Drosophila chromosomes. In addition, while haploid
embryo genomes are not expected to contain any true heterozygosity,
repetitive and/or duplicated regions can cause mis-mapping that
results in tracts of “pseudo-heterozygosity”.
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Thus, the genome sequences resulting from the DGN assembly
pipeline were then filtered to remove the problematic regions from
the alignments. Specifically, these regions were re-encoded as “N”
in individual samples sequences (Lack et al. 2016), becoming non-
informative for population genetics analyses.

1.4 Bioinformatics of genetics diversity

High-throughput sequencing technologies are allowing the decipher-
ing of an explosive number of nucleotide sequences in a large number
of genes and species, making available complete genome sequences
of hundreds or even thousands of individuals for certain species (e.g.,
Lack et al. 2016 for D. melanogaster; Consortium et al. 2015 for
human). Indeed, the rate at which genomes for new species and
within species individuals are being sequenced continues to accelerate
thanks to the advance in sequencing technologies which lower the
cost of obtaining these data. This is clearly observable in two of the
main portals of genetic data storage (GenBank and The Genomes
Online Database, Figure 1.7).

The GenBank portal, the US National Institute of Health (NIH)
genetic sequence database, stores all publicly available DNA se-
quences (Benson et al. 2013; https://www.ncbi.nlm.nih.gov/
genbank/). From 1982 to the present, the number of bases in
GenBank has doubled approximately every 18 months. In its last
statistics release (February 2018), this database reported to store
253,630,708,098 bp and 207,040,555 sequences for GenBank projects
and 2,608,532,210,351 bp and 564,286,852 sequences regarding whole-
genome sequencing (WGS) projects (Figure 1.7A). Besides, the
Genomes Online Database (GOLD, https://gold. jgi.doe.gov/)
tracks genome sequencing projects. At the current date (February
2018) it includes 148,641 sequenced genomes of organisms, of which
1,627 are archaeal, 99,973 bacterial, 38,145 eukaryal and 8,896 virus
(Figure 1.7B).
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Figure 1.7: GenBank and GOLD storage metrics charts. (A):
GenBank base pairs (left) and sequences (right) stored from 1985 to date
(2018). The pattern follows a continuous increase along time even though
it seems to accelerate at a lower rate in the last years. Note that values
in the y axis increment by one order of magnitude and not linearly. In
addition, the plot also shows the explosion of WGS projects from 2005,
whose number of both bp and sequences is also increasing very quickly.
(Retrieved from https://www.ncbi.nlm.nih.gov/genbank/statistics/
in February 2018) (B) Genome Online Database (GOLD) complete genome
projects (left) and number of projects classified by phylogenetic domains
(right) from 1997 to 2018. The amount of complete sequenced genomes is
also increasing exponentially over time. (Retrieved from https://gold.
jgi.doe.gov/statistics in February 2018)
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Bioinformatics, understood as he computational analysis of biological
data in which biology, computer science and information technology
merge into a single discipline, has become essential in order to
facilitate the handling and analysis of such a huge amount of genetic
information. Therefore, the development and implementation of
bioinformatic tools addressing the scientific needs of all the steps
from data acquisition, quality checking, and analysis, as well as
storage and representation, has experienced an exponential increase
in the last two decades; and this tendency does not seem to decelerate
(Li et al. 2016).

1.4.1 Genome browsers: graphical biological

databases

The initial major requirement arising from the explosion of genomic
data is the development and establishment of molecular databases
to store, organize and index these complex datasets.

A biological database is a large, organized body of persistent data,
usually associated with computerized software designed to update,
query and retrieve components of the data stored within the system.
Two major requirements are necessary for researchers to benefit from
the data stored in a database: (i) easy access to the information,
and (ii) a method for extracting only that information needed to
answer a specific biological question (Casillas 2008).

Biological databases were classically grouped into broad subject
categories, such as: (i) nucleic acid sequence and structure, and
transcriptional regulation; (ii) protein sequence and structure; (iii)
metabolic and signaling pathways, enzymes and networks; (iv) ge-
nomics of viruses, bacteria, protozoa and fungi; (v) genomics of
human and model organisms plus comparative genomics; (vi) human
genomic variation, diseases and drugs; (vii) plants and (viii) other
topics, such as proteomics databases. However, as the scientific
progress is moving towards an era of increasingly interdisciplinary
research, the content of many databases may span multiple categories
so that resources do not fill only within one specific category, but
several at once, leaving obsolete the original classification schema.
Overall, the number of new biological databases developed is con-
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stantly increasing over time, with more and more sites available
on-line (Rigden & Ferndndez 2017).

Some initiatives are trying to integrate the major number of
databases into general portals to facilitate the search of infor-
mation in the current bioinformatics era. The most relevant ex-
amples are the European Bioinformatics Institute - EBI portal
(http://www.ebi.ac.uk), and the National Center for Biotechnol-
ogy Information - NCBI (http://ncbi.nlm.nih.gov).

Genome databases are a sub-category of molecular databases, spe-
cialized in storing and rendering genome-based data. Specifically,
genome databases can be defined as data repositories, generally
implemented via relational databases, that include the available
genomic sequence data of one or more organisms, together with
additional information, referred as annotations (Ramia 2015). Thus,
genome databases enable researches to formulate biological queries
involving data originated from diverse sources (Schattner 2008) as
they aggregate and integrate data from multiple databases in a
uniform and standardized manner. This class of databases are also
referred as secondary databases.

Within the genome databases category, one very specialized type are
genome browsers. In general, these can be defined as visual secondary
databases which provide a graphical interface for users to browse,
search, retrieve and analyze genomic sequence and annotation data
(Wang et al. 2013). Thus, usually they act as a central starting point
for genomic research (Furey 2006).

Genome browsers are based on a reference genome, used as a coordi-
nate system on which diverse tracks (i.e., non-overlapping layers of
information covering any specific region of the genome) are graph-
ically displayed. The essence of a genome browser is to pile up
multiple tracks under the same genomic coordinates along the Y-
axis, thus users could easily examine the consistency or difference of
the annotation data and make their judgments of the functions or
other features of the genomic region (Wang et al. 2013).

In general, genome browsers can be divided into: (i) stand-alone
(or desktop) applications and (ii) web-based browsers. Stand-alone
applications (such as IGV, Thorvaldsdottir et al. 2013) provide an
empty browser structure which has to be filled by the user. They
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include all the default functionalities of genome browsers to search,
navigate and display diverse types of annotations, but no data at all.
These applications are usually devoted to provide a fast and easy
way to visualize specific projects’ heterogeneous data in a unified
manner, but do not allow sharing information through the web.
On the other hand, web-based genome browsers are useful tools in
promoting biological research due to their flexible (and often free)
on-line accessibility and high performance.

There are two types of web-based genome browsers (Table 1.3). The
first type is the multiple-species genome browsers, which integrate se-
quence and annotations for dozens of organisms and further promote
cross-species comparative analysis. Most of them contain abundant
annotations, covering gene model, transcript evidence, expression
profiles, regulatory data, etc. The other type is the species-specific
genome browsers which mainly focus on one model organism and
may have more annotations for a particular species. The diverse
species-specific genome browsers are powered by the Generic Model
Organism Database project (GMOD, http://www.gmod.org). The
GMOD Community is a bioinformatics initiative which aims to clar-
ify and standardize genomic data analysis procedures, and provides
a collection of open source software tools for managing, visualizing,
storing, and disseminating genetic and genomic data. One of the
most used tools from GMOD is the GBrowse framework (Stein et al.
2002). Indeed, most of the species-specific genome browsers are
originally implemented using the GBrowse software, although since
2017 some of them are shifting to the newest browser framework
developed by GMOD, named JBrowse (Skinner et al. 2009, Buels
et al. 2016).

Thus, besides the implementation of curated web-based genome
browsers, several genome browser frameworks have been developed
in the last years (Table 1.4). These genome browser frameworks are
empty architectures which have to be installed locally, configured
and customized by users with their own genome annotation data.
Then, they are shared through the web to make all data accessible
and freely available. The use of well-designed genome browser
frameworks allowed the development of specific genome browsers
focused in certain areas within the broad genetics/genomics field.
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Table 1.3: Web-based genome browsers. List of web-based genome
browsers classified in multiple-species and species-specific platforms. All
species-specific genome browsers listed here except MGI were initially based
on the GBrowse framework developed by GMOD and now are shifting to

JBrowse.
Name URL Description Reference
Multi-  NCBI https: Genome Data Viewer: major Coordinators
species  GDV //www.ncbi.nlm.nih.  species with completed genome  (2016)
gov/genome/gdv/ sequences including vertebrates,
invertebrates, protozoa, plants
and fungi, as well as dozens of
uncompleted plant genomes
UCsc http: Major species with completed Karolchik
//genome .ucsc.edu/ genome sequences including et al. (2003)
vertebrates, deuterostomes,
insects and nematodes. No plant
species
Ensmbl http://www.ensembl.  Major species with completed Hubbard
org/index.html genome sequences providing et al. (2002)
lineage-specific web portals for
vertebrates, metazoa, plants,
fungi, protists and bacteria
VISTA http: ‘Whole genome alignment Poliakov

//pipeline.1bl.gov/
cgi-bin/gateway2

presentation, including
vertebrates, insects, nematodes,
deuterostomes, plants, fungi,
alga, annelids, stramenopiles and
metazoa

et al. (2014)

Species- FlyBase

specific

WormBase

MGI

ZFIN

http://flybase.org/
jbrowse/?data=data/
json/dmel

http://www.wormbase.

org/tools/genome/
jbrowse-simple/
?data=data/c_
elegans_PRJNA13758
http://jbrouse.
informatics.jax.
org/?data=data/
mouse

http://zfin.org/
action/gbrowse/

Drosophila (Fruit fly) genes and
genomes information, including
gene expression, mutations,
microarray features, non-coding
information, etc.

Caenorhaditus elegans (Worm)
complete genome information
regarding genes, variation,
genome structure, modENCODE
data, and so on.

Mus musculus (Mouse) genes
and genome sequence data, with
a complete catalog of
genotype-phenotype known
associations

Danio rareo (Zebrafish) genes,
transcripts, phenotype,
expression, knockdown reagent
and mutation project
information. Based on GBrowse.

Gramates
et al. (2016)

Harris et al.
(2009)

Smith et al.
(2017)

Howe et al.
(2012)
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Table 1.4: Genome browser frameworks. List of the currently
available genome browser frameworks on which most specialized genome
browsers are based. (Adapted from Wang et al. 2013)

Name URL Description

Ensembl http://wuw.ensembl.org An extensible software architecture with
powerful API support

UCSC http://genome.ucsc.edu A freely downloadable package for local
browser installation

GBrowse http://gmod.org/wiki/ The most popular genome viewer for multi-

GBrowse ple genome annotation visualization, espe-

cially for model organism database projects

JBrowse http://jbrowse.org A JavaScript-based genome browser, pro-

viding Google-map like browsing experi-
ence

ABrowse http://www.abrowse.org A new-generation customizable genome
browser framework
Anno-J http://www.annoj.org An interactive application designed for vi-

sualizing genome annotation data and deep
sequencing data
SViewer http://www.ncbi.nlm.nih. NCBI’s new sequence viewer
gov/projects/sviewer

Some clear examples of population genetics-oriented genome browsers
are PopDrowser (Ramia et al. 2011), The 1000 genomes selection
browser 1.0 (Pybus et al. 2013) and the Drosophila buzzati genome
project browser (Guillén et al. 2014).

JBrowse software

The GBrowse genome browser framework developed by the GMOD
community rapidly became the most powerful and used tool for
custom-browsers development. However, this platform has become
outdated in terms of performance and data display. Thus, GMOD
developers presented a new generation genome browser framework
named JBrowse. The first version was released in 2009 (Skinner et al.
2009), but it was not until 2016 that the stable software release was
presented (Buels et al. 2016).

JBrowse can be defined as a fast, embeddable genome browser frame-
work built completely with JavaScript and HTML5, with optional
run-once data formatting tools written in Perl, that can be used
to navigate genome annotations over the web. Compared to other
existing genome browser frameworks (including GBrowse), JBrowse
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presents two clear advantages: (i) it helps preserve the user’s sense
of location by avoiding discontinuous transitions, instead offering
smoothly animated panning, zooming, navigation, and track selec-
tion; and (ii) it distributes work between the server and the client,
and most tracks are directly loaded on the client side (without using
pre-rendered images), offering a better user experience and speeding
up the browser performance (Skinner et al. 2009).

When a web browser loads a page containing JBrowse and creates a
Browser object (the main controlling object for a JBrowse instance),
the first thing the Browser does is to read the configuration informa-
tion. Then, based on the configuration information, Jbrowse client
decides (i) the reference sequence providing the coordinate system
and sequence data for a given dataset and, (ii) the set of available
annotation tracks which may be rendered alongside these reference
sequences to display (Buels et al. 2016).

The core visual elements of a JBrowse track are sequence data, feature
glyphs, and quantitative data. Specifically, JBrowse supports the
following major types of tracks:

e Sequence (FASTA) tracks. The Sequence track displays for-
ward and reverse strands of the reference sequences and six
conceptual translation frames. JBrowse can load sequence data
from FASTA files, indexed FASTA files, and pre-processed se-
quence data converted into JSON files.

o Feature (GFF, BED, GenBank) tracks. The two types of
tracks currently available for displaying annotations from
GFF or BED files are HTMLFeatures and CanvasFeatures.
These tracks can display features with optional structured sub-
features and are ideal for displaying gene models (with com-
ponent exons, introns, UTRs), transcript alignments, single-
nucleotide polymorphisms (SNPs), transposons, repeats, etc.
Each type of tracks has its own customization options.

e Quantitative (Wiggle, BigWig) tracks. Numerical data stored
in Wiggle and BigWig files can be plotted using histograms
(the Wiggle/XYPlot track) or heat maps (the Wiggle/Density
track). JBrowse can load quantitative data directly from Big-
Wig files stored on the server, with no need for preprocessing.
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o Alignment (BAM) tracks. Three types of track are avail-
able for rendering the data in BAM files (reference-aligned
reads): Alignments (a highly configurable track with customiz-
able click behavior which renders reads as individual HTML
elements), Alignments2 (a faster track, optimized for deep-
coverage datasets, which renders reads directly onto an HTML
Canvas element), and SNPCoverage (a track which dynamically
calculates and visually highlights SNPs from BAM data, in-
cluding nucleotide frequencies). BAM files used with JBrowse
must be compressed and coordinate-sorted.

e Variant (VCF) tracks. VCF can be rendered using the HTM-
LVariants and CanvasVariants track classes, derivatives of
HTMLFeatures and CanvasFeatures that are optimized for
displaying the potential large amounts of detailed data that go
along with each variant. The VCF files must be compressed
and indexed.

In summary, JBrowse is a fully-featured genome browser that is
capable of visualizing diverse types of genome-located data, kept in
a variety of different data stores, and of interfacing to other client
and server applications. In addition, it is highly cross-platform;
releases are tested on Mozilla-based browsers (e.g., Firefox), WebKit
browsers (e.g., Safari, Chrome) and Microsoft Internet Explorer, and
on desktop and mobile platforms with touchscreen support (Buels
et al. 2016).

PopDrowser: the population Drosophila browser

One major issue in population genetics studies is how to properly
visualize the diverse parameters estimated all together in their ge-
nomic context. In this regard, a key technological contribution from
the Freeze 1 of the DGRP project (Mackay et al. 2012) was the devel-
opment and implementation of a population genomics web browser,
named PopDrowser, to make all genetic information available to the
scientific community.

Thus, PopDrowser (the Population Drosophila Browser, Ramia et al.
2011, http://popdrowser.uab.cat, Figure 1.8) is a genome browser
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Figure 1.8: PopDrowser snapshot. PopDrowser snapshot showing the
region 2L:8,391,931..8,472,930 with the following tracks activated: mRNA
annotations, and nucleotide diversity (), divergence with D. simulans (k)
and 72 metrics estimated in non-overlapping windows of 10 kb.

specially designed for the automatic analysis and representation of
genetic variation metrics estimated from the DGRP data. Briefly, it
allows reporting precomputed estimates of several DNA variation
measures (polymorphism and divergence summary statistics, linkage
disequilibrium parameters and several neutrality tests) along each
chromosome arm through the combined implementation of the pro-
grams PDA2 (Casillas & Barbadilla 2006), MKT (Egea et al. 2008)
and VariScan2 (Hutter et al. 2006) on a web-based user interface
built on GBrowse software (Stein et al. 2002).

This browser was a pioneer tool in the field, becoming the first
population genomics-oriented genome browser and storing the most
extensive catalog of D. melanogaster population genetics metrics at
that time (Mackay et al. 2012). In addition, it served for a variety
of future studies in this model species (Koh et al. 2014, Reeves et al.
2014, Matute et al. 2014, Castellano et al. 2016, Salvador-Martinez
et al. 2017).
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1.4.2 The R project, an standard for statistical

genetics analyses

Apart from the need for storing resources, another major requirement
in the genomics era is to develop precise and specific statistical
tools able to manage and analyze all this information. Over the
last years, the open-source environment R (Thaka & Gentleman
1996) has established as the most popular environment for statistical
computing and data analysis across many fields of research, including
genetics (Mair et al. 2015).

R can be defined as both, a language and an environment for sta-
tistical computing analysis (Team et al. 2013) that provides a wide
variety of statistical (linear and nonlinear modeling, classical statis-
tical tests, time-series analysis, classification, clustering, etc.) and
graphical techniques, while it also allows users to easily add addi-
tional functionality by defining new functions.

In addition, it also includes a suite of software facilities for data
manipulation, calculation and graphical display, which include: (i) an
effective data handling and storage facility, (ii) a suite of operators for
calculations on arrays, in particular matrices, (iii) a large, coherent,
integrated collection of intermediate tools for data analysis, (iv)
graphical facilities for data analysis and display either on-screen
or on hard-copy, and (v) a well-developed, simple and effective
programming language which includes conditionals, loops, user-
defined recursive functions and input and output facilities (Team
et al. 2013).

R is available as Free Software under the terms of the Free Software
Foundation’s GNU General Public License (https://www.gnu.org/
licenses) in source code form. It compiles and runs on the majority
of operating systems, including UNIX, Windows and MacOS.

One of the cornerstones of the R system for statistical computing is
the multitude of packages contributed by numerous package authors,
which makes an extremely broad range of statistical techniques
and other quantitative methods freely available (Mair et al. 2015).
There are eight packages supplied with the R distribution and many
more are available through communities like the Comprehensive
R Archive Network (CRAN; CRAN.R-project.org/), Bioconductor
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(Gentleman et al. 2004, www.Bioconductor.org/), R-Forge (Theufl
& Zeileis 2009, R-Forge.R-project.org/), and GitHub (https:
//github.com/). The majority of R packages are released under
open-source licenses, thereby placing no restrictions on users and
guaranteeing that these packages can become public goods (Hippel
& Krogh 2003).

In this regard, many R packages focused on genetics analyses have
been developed over the last years. Some examples are: diveRsity
(Keenan et al. 2013) and PopGenome (Pfeifer et al. 2014) for popu-
lation genetics analyses; phylotools (Revell 2012) for phylogenetic
comparative biology; or gtz (https://cran.r-project.org/web/
packages/gtx/, 2013) for genetic association studies.
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1.5. OBJECTIVES

1.5 Objectives

This thesis is conceived as a comprehensive bioinformatics and pop-
ulation genetics project. It is centered in the development and
application of bioinformatics tools for the analysis and visualiza-
tion of nucleotide variation patterns and the detection of selective
pressures in worldwide wild-derived D. melanogaster populations.

The main goal is accomplished in three sequential steps: (i) create
a catalog of population genetics metrics and implement a tool for
the graphical display of such information; (ii)develop a statistical
package for the computation of the diverse selection regimes acting
on genomes, and finally (iii) perform a global population genomics
analysis in D. melanogaster using the previously developed tools.

Catalog of population genetics metrics and genome browser

First, create a complete inventory of population genetics parameters
estimated both (i) in non-overlapping windows of varying size cover-
ing the complete euchromatic D. melanogaster genome and (ii) for
each protein-coding gene, from the DGN sequence data (Lack et al.
2015, 2016). Then, implement a web-based genome browser open
and freely available to allow the graphical visualization and retrieval
of such information.

Statistical package for the computation of the diverse se-
lection regimens acting on genomes

Second, develop an R package able to compute the McDonald and
Kreitman test (McDonald & Kreitman 1991) and four tests derived
from the MKT, using custom polymorphism and divergence genomic
data. Provide ways to quantify both the rate of adaptive evolution
(o) as well as the fraction of sites under purifying selection (d:
strongly deleterious, b: weakly deleterious, f: neutral).
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Population genomics analysis in D. melanogaster

Third, use the previously developed tools to perform an initial
population genomics comparative analysis using populations of D.
melanogaster of different geographical origin. Compare genome-
wide polymorphism, divergence and historical recombination rates
between populations; and quantify the fraction of sites under adaptive
and purifying selection. Finally, identify and characterize the impact
of recombination and coding density on the levels of nucleotide
variation and adaptation along the Drosophila genome.
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2. Materials and Methods

2.1 Data description

2.1.1 D. melanogaster genome sequences

D. melanogaster genome sequences from the Drosophila Genome
Nexus project (DGN, Lack et al. 2015, 2016) were retrieved
from http://johnpool.net/genomes.html. These sequences were
aligned to the reference genome sequence version 5.57.

The initial set of DGN sequences (1,067 samples from 58 populations)
were filtered by identity by descent, admixture, and heterozygos-
ity (as described in Lack et al. 2016) and the problematic regions
were encoded as “N”. Only populations with at least 4 sampled
genome sequences with > 80% of called alleles (non-“N") were con-
sidered for the analyses. The sequences for the selected populations
were grouped in multiFASTA format files (see Box 2.1 for details)
according to the population they belong to. The analyzed data com-
prises 966 genome sequences from 30 populations out of 18 countries
spanning 5 continents (Table 2.1).

2.1.2 Geographic units of analysis

We performed a phylogenetic tree reconstruction which reveals the D.
melanogaster populations structure using population differentiation
metrics (Fsp values) which were estimated between pairs of 15 dif-
ferent populations by Lack et al. (2016). Fgp values were averaged
across chromosome arms X, 2L, 2R, 3L and 3R, each of which was
analyzed using inversion-free chromosomes only. The tree reconstruc-
tion was performed with the tree inference web-server T-rex (Boc
et al. 2012, http://www.trex.uqam.ca/) using Neighbor-Joining
reconstruction method (Saitou & Nei 1987) and the graphical display
was done using MEGA6 (Molecular Evolutionary Genetics Analysis
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Table 2.1: Analyzed Drosophila melanogaster populations. Infor-
mation retrieved from Lack et al. 2016. Elevation values are in meters and
n refers to the number of samples analyzed.

ID Country Locality Continent Date Latitude Longitude Elevation n
AUS  Australia Sorell TAS Oceania 2004 -42.77 147.56 18 18
CHB  China Beijin Asia 9/1992  39.91 116.41 52 15
CO Cameroon Oku Africa 4/2004  6.25 10.43 2169 10
EA Ethiopia Gambella Africa 12/2011 8.25 34.59 525 24
EB Ethiopia Bonga Africa 12/2011 7.26 36.25 1725 5
ED Ethiopia Dodola Africa 12/2008 6.98 39.18 2492 5
EF Ethiopia Fiche Africa 12/2011 9.81 38.63 3070 69
EG Egypt Cairo Africa 1/2011  30.1 31.32 25 32
ER Ethiopia D. Birhan Africa 12/2011 9.68 39.53 2840 5
EZ Ethiopia Ziway Africa 12/2008 7.93 38.72 1642 4
FR France Lyon Europe 7/2010  45.77 4.86 175 96
GA  Gabon Franceville  Africa 3/2002  -1.65 13.6 332 10
GU  Guinea Dondé Africa 6/2005  10.7 -12.25 801 5
KN Kenya Nyahururu Africa 1/2009  0.04 36.36 2303 5
KR Kenya Marigat Africa 1/2009  0.47 35.98 1062 4
MW  Malawi - Africa 2001 - - - 9
NG Nigeria Maiduguri Africa 9/2004  11.85 13.16 295 6
NTH Netherlands Houten Europe 1998 52.02 5.1 4 19
RAL USA Raleigh, NC  America 2003 35.76 -78.66 91 205
RG Rwanda Gikongoro Africa 12/2008 -2.49 28.92 1927 27
SB South Africa Barkly East  Africa 12/2011 -30.97 27.59 1800 5
SD South Africa Dullstroom  Africa 12/2011 -25.42 30.1 2000 81
SF South Africa Fouriesburg  Africa 12/2011 -28.6 28.05 1800 5
SP South Africa Phalaborwa  Africa 7/2010  -23.94 31.14 350 37
UG Uganda Namulonge  Africa 4/2005  0.53 32.6 1134 4
UK Uganda Kisoro Africa 1/2012  -1.28 29.69 1925 5
USI USA Ithaca, NY America 2004 42.35 -76.57 344 19
USW USA Winters, CA  America 1998 38.53 -121.97 41 35
71 Zambia Siavonga Africa 7/2010 -16.54 28.72 530 197
ZS Zimbabwe Sengwa Africa 9/1990  -18.16 28.22 865 5

Version 6.0) software (Tamura et al. 2013).

In order to provide a general view of nucleotide variation patterns
along the whole genome and to facilitate the handling of such a
heterogeneous dataset when performing population genetics anal-
yses, we have analyzed not only single wild-derived populations
but also Drosophila meta-populations, which are aggregations of
geographically-related populations (Table 2.2).

Specifically, we considered 6 meta-populations: Asia, Oceania, Amer-
ica, Europe/North Africa, Equatorial Africa and Southern Africa.
Asia and Oceania meta-populations correspond to the single sampled
population from that continent (CHB, China, with 18 samples, and
AUS, Australia, with 15 samples, respectively). The remaining four
meta-populations include samples from 3 to 5 populations for which
subsets of 10 individuals were sampled to build the corresponding
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Table 2.2: Analyzed meta-populations of D. melanogaster.

ID Name n  Populations included (n)

CHB Asia 15 CHB(15)

AUS  Oceania 18 AUS(18)

AM  America 30 RAL(10), USI(10), USW(10)

ENA Europe/North Africa 30 EG(10), FR(10), NTH(10)

EQA Equatorial Africa 50 CO(10), EA(10), EF(10), GA(10), RG(10)

SA Southern Africa 30 SD(10), SP(10), ZI(10)

meta-population (e.g., the American meta-population -AM- contains
10 RAL, 10 USI, and 10 USW samples). Note that we considered
European (FR, France, and NTH, The Netherlands) and Northern
African (EG, Egypt) populations in the same meta-population, as
suggested by Lack et al. (2016).

In summary, population genetics statistics were calculated for the
30 D. melanogaster wild-derived populations listed in Table 2.1 and
for four additional meta-populations (Table 2.2).

2.1.3 Functional annotations and outgroup species

We used the D. melanogaster reference genome version 5.57 annota-
tions file (in GFF3 format, see Box 2.1 for details), retrieved from
FlyBase (http://www.flybase.org), to assess the functional class
of each position in the genome (see below), and to estimate gene and
coding density metrics. To do the latter, genes were mapped to non-
overlapping sliding windows of varying size covering the euchromatic
genome based on start coordinates overlap.

The genome sequences of Drosophila yakuba (version 1.3 from Fly-
Base; Clark et al. 2007) and Drosophila simulans (version 2.0 from
FlyBase; Hu et al. 2013) are used as outgroup species. These se-
quences were retrieved aligned to the D. melanogaster reference
genome version 5.57.

The divergence time between D. melanogaster and the outgroup
species (Figure 2.1) is estimated to be: ~ 5 MYA with D. yakuba
and ~ 2.5 MYA with D. simulans. Thus, the usage of each outgroup
species has its own strengths and weaknesses. It is known that the
estimates of the rate of adaptive evolution can be biased if the diver-
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gence time between two species is short. This bias appears because
of three factors: (i) mis-attribution of polymorphisms to divergence;
(ii) the contribution of ancestral polymorphism to divergence; and
(iii) different rates of fixation of neutral and advantageous mutations
(Keightley & Eyre-Walker 2012). Therefore, D. yakuba seems more
appropriate than D. simulans for detecting genome-wide signals of
selection due to its larger divergence time with D. melanogaster.
However, the genome sequence of D. simulans has better coverage
and quality, and hence, it allows analyzing regions of the genome on
which there is not genomic information available for D. yakuba (Hu
et al. 2013). In addition, Keightley & Eyre-Walker (2012) demon-
strated that a estimates obtained using D. melanogaster and D.
simulans would be inflated only by a small non-significant extent, as
the branch length of each species to the common ancestor is greater
than 10 N, generations (~ 17 N).

Overall, to take advantage of the complementary information pro-
vided by each outgroup species, we have estimated population ge-
netics parameters using both of them.
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Figure 2.1: Drosophila phylogeny. Graphical representation of the
phylogenetic relationship between Drosophila species along with images
showing the male and female phenotypes. Note that all species used in
this work are classified within the melanogaster group and subgroup. The
divergence time between D. melanogaster and D. yakuba is ~ 3 times larger
than the time between D. melanogaster and D. simulans. (Adapted from
http://flybase.org/static/sequenced_species with images provided

by Nicolas Gompel)
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2.2 Estimation of population genetics

parameters

We used DGN sequences, along with reference annotations and
outgroup species data to generate a complete inventory of population
genetics parameters, perform genome-wide analyses of nucleotide
variation, and finally identify and assess the impact of the major
genomic determinants of genetic variation and evolutionary rate.

Population genetics metrics were estimated using two different ap-
proaches: (i) non-overlapping sliding windows of varying size (1
kb, 10 kb, 50 kb, 100 kb) covering the D. melanogaster euchro-
matic genome (i.e., windows-based approach), and (i) protein
coding genes annotated in the reference genome (i.e., genes-based
approach). Statistics were classified into 7 major categories: (i)
frequency-based nucleotide variation, (ii) divergence-based metrics,
(i) linkage disequilibrium, (iv) historical recombination, (v) selection
tests based on SF'S and/or variability, (vi) selection tests based on
polymorphism and divergence and, (vii) population differentiation.

2.2.1 Integration of annotations and sequence

genomic data

Certain population genetics metrics, such as most selection tests
based on polymorphism and divergence, depend on the comparison
of the ratios of polymorphic and divergent sites at two functional
classes of sites: neutral (0) and putatively selected (7).

Therefore, the integration of functional information into the genome
sequences processing work-flow is required to estimate the number
of analyzable (m;, mg), polymorphic (P;, Py) and divergent (D;,
Dy) putatively selected and neutral positions for each window and
gene annotation. In this work, coding 4-fold degenerate sites were
used as neutral reference and 0-fold degenerate sites as putatively
selected. Coding 4-fold positions can present any nucleotide (4, C,
G, T) without changing the amino acid of the translated protein
and hence, represent the best proxy of truly neutral positions. On
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the other hand, 0-fold degenerated sites are restricted to one specific
allele and any nucleotide change in such positions leads to an amino
acid change in the resulting protein. Thus, they are assumed to be
functional and putatively selected sites.

First, we selected the transcript with the highest number of coding
positions (i.e., the longest CDS of the complete isoform) for each
gene from the reference annotations file and we created temporary
sequence files. Then, we produced 0-fold and 4-fold sequences which
only encoded for that particular type of site, with the rest of positions
coded as “N”, using a custom Python script (Figure 2.2). The
specific functional class of each coding position was assessed using
the standard codon translation code table from NCBI (https://www.
ncbi.nlm.nih.gov/). Briefly, we ensured that every CDS started
with an “ATG” codon and finished with an STOP codon, taking into
account the specific DNA chain and reading frame of each annotation.
We followed a slightly different procedure for the windows-based and
genes-based approaches:

o Windows-based: We first recoded the reference genome se-
quence. Then, we used the recoded reference as a template
for recoding DGN samples and outgroup genome sequences
(Figure 2.3). Finally, we grouped recoded samples files by pop-
ulation and used the resulting multiFASTA files for estimating
population genetics metrics.

o Genes-based: We used DGN sequences, outgroup information
and functional annotations data to create temporary multi-
FASTA sequence files for each gene and population, which
where then recoded (Figure 2.5). Thus, with this approach we
recoded the reference, DGN and outgroup sequences at the
same time, removing from the analyses: (i) individual DGN
samples which do not accomplish the recoding criteria and,
(ii) non-homologous genes between D. melanogaster and the
outgroup species.
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mRNA sequence TGTCTCAGTGCAGTTGTCAGATGTCGTTTACTCAGTTGTCA

AGCAAAAAAGACCTATGA

CDS sequence ATGTCGTTACTGACCAACCTATAG

Degenerancy 000004202204004002204000

0-fold sites ATGTCNNTNNTNACNAANNTNTGA

4-fold sites NNNNNGNNNNNGNNCNNNNNANNN

Figure 2.2: Example of a recoded fragment of the longest isoform
of a gene. First the CDS sequence is obtained, and then, using the
degeneracy code, two sequences are created: 0-fold and 4-fold sites with
the corresponding alleles and the rest of positions coded as “N”. (Retrieved
from http://imk.uab.cat)

2.2.2 Windows-based estimates

Table 2.3 includes the diverse population genetics metrics estimated
using this approximation. Their estimation was implemented in an
automated pipeline (Figure 2.3). The pipeline’s input consists of (i)
the aligned multiFASTA files containing DGN sequences grouped by
population or meta-population, (ii) the reference D. melanogaster
functional annotations (in GFF3 format) and (iii) genome sequence
(in FASTA format) and, (iv) the outgroup reference genome sequences
of D. yakuba and D. simulans. Then, population genetics metrics,
classified in 7 categories, are calculated through the combination of
custom ad hoc Perl and R scripts, Variscan2 (Hutter et al. 2006)
and LDhelmet (Chan et al. 2012) software.

Frequency-based nucleotide variation

Genome sequences can include gaps (-) and missing or ambiguous
nucleotides (“N”), which have to be discarded for the estimation
of population genetics metrics. These problematic regions are not
equally distributed along the genome and in all samples, and this
might cause a bias in the estimation of statistics that where developed
assuming constant sample size over the whole alignment. Thus, we
did manually set the number of samples to use in order to ensure a
constant sample size over all analyzed sites for each population.
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Table 2.3: Windows-based population genetics metrics. List of
major windows-based metrics, computed for each population and meta-

population separately.
Category Estimate Description Reference
Frequency-based S Number of segregating sites per DNA sequence Nei (1987)
nucleotide Ul Total (minimum) number of mutations per site Tajima (1996)
variation nE Number of sites containing singletons Tajima (1996)
0 Proportion of nucleotide sites that are expected to  Watterson (1975); Tajima
be polymorphic in any suitable sample (1993, 1996)
T Nucleotide diversity: average number of nucleotide Jukes & Cantor (1969); Nei
differences per site between each pair of sequences & Gojobori (1986); Nei
(1987)
Poy Number of 0-fold (non-synonymous) segregating Nei (1987)
sites™
Py Number of 4-fold (synonymous) segregating sites* Nei (1987)
s Nucleotide diversity per bp in 0-fold sites* Jukes & Cantor (1969); Nei
& Gojobori (1986); Nei
(1987)
Ty Nucleotide diversity per bp in 4-fold sites* Jukes & Cantor (1969); Nei
& Gojobori (1986); Nei
(1987)
Divergence- K Nucleotide divergence per bp,corrected by Jukes & Cantor (1969)
based Jukes-Cantor
metrics Doy Number of 0-fold (non-synonymous) divergent Jukes & Cantor (1969)
sites®
Dyy Number of 4-fold (synonymous) divergent sites* Jukes & Cantor (1969)
Koy Nucleotide divergence per bp in 0-fold sites* Jukes & Cantor (1969)
Kyf Nucleotide divergence per bp in 4-fold sites* Jukes & Cantor (1969)
Linkage D Coefficient of LD whose range depends of the Lewontin & Kojima (1960)
Disequilibrium allele frequencies
D' Normalized D, independent of allele frequencies Lewontin (1964)
|D| Absolute D value (|D]) averaged over all Lewontin & Kojima (1960)
comparisons in the window
|D'| Absolute D’ value (|D'|) averaged over all Lewontin (1964)
comparisons in the window
r? Statistical correlation between pairs of sites Hill & Robertson (1968)
h Number of haplotypes Nei (1987)
Hd Haplotype diversity Nei (1987)
Historical P Historical population-scaled recombination rate Chan et al. (2012)
recombination (p=4 N r)*

Selection tests
based on SFS
and/or
variability

Fu and Number of derived nucleotide variants observed

Li's D only once in a sample with the total number of
derived nucleotide variants

Fu and Number of derived nucleotide variants observed

Li's F only once in a sample with the mean pairwise
difference between sequences

Tajima’s Difference between the number of segregating sites

D and the average number of nucleotide differences

Fu’s Fg Test based on the allele frequency spectrum

Fu & Li (1993)

Fu & Li (1993)

Tajima (1989)

Fu (1997)

Selection tests
based on

polymorphism
and divergence

K4/Ks  Ratio of non-synonymous to synonymous
nucleotide divergence (w)*

NI Neutrality index, which summarizes the four
values in an MK test table as a ratio of ratios*
DoS Direction of Selection: difference between the

proportion of non-synonymous divergence and
non-synonymous polymorphism*

« Proportion of adaptive substitutions from
McDonald-Kreitman test (MKT)*

Nei & Gojobori (1986)

McDonald & Kreitman
(1991)

Stoletzki & Eyre-Walker
(2011)

McDonald & Kreitman
(1991); Charlesworth (1994);
Smith & Eyre-Walker (2002)

Population
differentiation

Fgsr Average levels of gene flow based on allele
frequencies, under the infinite-sites model

Hudson et al. (1992)

* Only computed for populations with n > 10 and for 100 kb, 50 kb and 10 kb sliding windows

59



2. MATERIALS AND METHODS

DGN SEQUENCES ANNOTATION REFERENCE OUTGROUP
Custom

Custom
scripts

1
1
|
1
|
J Custom l J Recoded ref, ‘ :
|
1
|
1
1
1

} scripts I } sequence
I

Recoded DGN
sequences

POPULATION
DIFFERENTIATION

HISTORICAL
RECOMBINATION

SELECTION TESTS

Custom BASED ON
scripts POLYMORPHISM

AND DIVERGENCE

["Variscan2 }

Variscan2

¥ v
SELECTION TESTS BASED LINKAGE
ON SFS AND/OR DISEQUILIBRIUM
VARIABILITY

FREQUENCY-BASED
NUCELOTIEDE
VARIATION

Variscan2
v 1]

i DIVERGENCE-BASED METRICS ]

Figure 2.3: Windows-based approximation pipeline. This work-
flow allows the computation of several population genetics estimates for the
DGN sequence data in an automated way, using a combined implementation
of custom scripts, Variscan2 and LDhelmet software. Briefly, it takes as
input the DGN sequences, reference sequence and functional annotations
and outgroup sequence data, and returns population genetics metrics
classified in 7 categories.

The number of samples depends on the sequences quality (understood
as the proportion of called alleles relative to “N” calls), and ranges
from 50% of individuals for populations with a high number of
samples (e.g., RAL, ZI) to 100% for populations with a very low
sample size (e.g., EB, ED, KN or UG). If a specific position contains
less valid nucleotides than the established threshold, this position
was excluded from analysis. On the contrary, if a site has a larger
sample size than the threshold, extra nucleotides were randomly
discarded. Figure 2.4 shows an illustrative example on how the
handling of gaps and missing data is performed, setting the number
of samples to use to ensure a constant sample size along the genome.
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12 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 13 2
Seql CNAAAGAGCA TAAAAAAAAA
Seq 2 AATAAANACSGEG A--AAAAANA
Seq 3 AAT-AA-ATA A--TACAANA
Seq 4 AAA-AAAAAA AA-TAAAANA
Seq5 CAA-AGACAA AG-AAACAAA
Seq 6 AATAAAAAAG A A TAACAAA

* * *

Figure 2.4: Handling gaps and missing data. In this example the
minimum number of samples is set at four. Sites 4, 13 and 19 are discarded
as they contain less than 4 valid nucleotides. Site 1 has 6 valid nucleotides,
so 2 of those nucleotides will be randomly discarded. Site 2 contains one “N”
which is automatically discarded. Out of the remaining 5 valid nucleotides
1 is randomly discarded to ensure the fixed sample size of 4. This procedure
is repeated for all sites in the alignment. Since this leads to constant sample
size over all analyzed sites, the standard statistics can be calculated. This
feature is especially useful if e.g., only one sequence contains a long stretch
of “N” or gaps, while all other sequences carry valid nucleotides. (Adapted
from VariScan User’s Guide v. 2.0, Hutter et al. 2006).

Divergence-based metrics

Statistics were estimated using both D. simulans and D. yakuba as
outgroup species. Metrics regarding each outgroup were computed
separately. We followed the procedure described in the previous
section for setting the number of analyzable samples and sites for
each population.

Linkage Disequilibrium

Linkage Disequilibrium (LD) metrics can be estimated with or with-
out considering outgroup sequence information. Without an out-
group the derived and ancestral state of a polymorphic site are
inferred by the frequency of the segregating alleles. The major allele
is set to the ancestral and the minor allele to the derived state. With
this definition the coupling and repulsion phases for each pair-wise
comparison are calculated. However, when an outgroup is defined
it is possible to infer the ancestral state of a polymorphic site by
using the outgroup for comparison. If it is not possible to infer
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the ancestral state by comparison to the outgroup, the site will be
discarded for analysis. Since this might happen quite frequently, the
number of sites used for calculating LD statistics is usually higher
when not using an outgroup, even though the inclusion of an out-
group sequence adds more information to the analysis. In this work,
LD metrics were estimated taking into account outgroup species
information.

Only polymorphic sites that contain exactly two variants were used.
All sites containing gaps (-), missing or ambiguous nucleotides were
excluded from the analyses. Finally, sites containing 3 or more
variants were ignored for LD analyses but used when calculating
haplotype (h: number of haplotypes; Hd: haplotype diversity) and
Fu’s Fg statistics.

Thes LD statistics were not computed for America, Europe/North
Africa, Equatorial Africa and Southern Africa meta-populations
because they are aggregations of wild-derived populations. As only
bi-allelic polymorphisms are used, and gaps, missing or ambiguous
nucleotides are discarded, samples from these meta-populations do
not share enough analyzable polymorphic sites in order to obtain
confident LD estimates.

Historical recombination rate

Population-scaled historical recombination rates were computed us-
ing LDhelmet software (Chan et al. 2012). Briefly, this method
allows estimating fine-scale recombination rates genome-wide from
patterns of genetic variation employing a reversible-jump Markov
Chain Monte Carlo (rjMCMC) mechanism. It also uses custom
quadra-allelic mutation models and mutation rates, along with in-
formation from the available genomes of outgroup species to infer a
distribution of the ancestral allele at each polymorphic site.

Recombination in D. melanogaster occurs only in females and there-
fore, there are only 2 sets of recombinant chromosomes in each gen-
eration. In addition, males are homozygous for the X chromosome
(X0) and thus, the effective population size of the X chromosome
must be scaled by 4/3 to be equivalent to the N, of the autosomes.
Overall, the population-scaled recombination rate between a pair of
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sites in the X chromosome is defined as (Equation 2.1):

px =8/3 N} rf (2.1)

where NX is the effective population size for X and r;( is the prob-
ability of recombination between the sites per generation per X
chromosome in females. On the other hand, the population-scaled
recombination rate between a pair of sites in an autosome is defined
as (Equation 2.2):

pa=2 N} ri (2.2)

where NeA is the effective population size for the autosome and
7‘}4 is the recombination rate between the sites per generation per
autosome in females.

The computational method used for the estimation of p is based on
the levels of linkage disequilibrium observed in the sample sequences,
which are known to vary depending on the number of analyzed
samples. So, in order to obtain comparable error measures between
populations that differ in the number of sampled genomes, while
ensuring an optimal computational performance, p was estimated
using samples of 10 individuals taken from each population. The 10
genome sequences for each population were selected among those
with the lowest percentage of ambiguous or missing nucleotides, in
order to obtain the most accurate estimation in each case and to
avoid biases caused by differences in sequences quality.

It is known that inversions in heterozygosis can repress recombination
between the affected genomic region (Kirkpatrick 2010). Polymor-
phic inversions identified in D. melanogaster span from 3 to 14 Mb
for autosomic inversions and from 1.7 to 6 Mb for X chromosome
inversions (Corbett-Detig & Hartl 2012, Huang et al. 2014). Hence,
inversion polymorphisms have to be taken into account to avoid
introducing strong biases in the overall population recombination
rates estimates depending on the samples used for calculation. We
ensured that subset populations reflect the distribution of inversions
genotype frequencies from the original populations (Fisher Exact
test p-value > 0.05 in all cases, using counts of standard and inverted
genotype samples for original and subset populations). The inversion
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genotypes for individual samples were estimated by Corbett-Detig
and retrieved from www.johnpool.net/Updated_Inversions.xls.

We used LDhelmet software with the following parameters: 1,000,000
iterations of computation after 100,000 iterations of burn-in, specific
mutation rates (6 in units of 1/bp) for each population (distinguishing
autosomes and X chromosome values), the mutation matrix with
nucleotide transition probabilities used in Chan et al. (2012), and
default values for the rest of parameters (block penalty: 50; grid of
p-values: 0, 0.1, 10.0, 100; and number of Padé coefficients: 11).

Metrics were estimated in blocks of 50 SNPs, and the output of
LDhelmet consists of a list of SNPs with their associated p estimates.
Thus, to obtain average recombination estimates for each window,
SNP-based metrics were mapped to non-overlapping windows of
varying size (10, 50 and 100 kb) using custom R scripts.

Selection tests based on SFS and/or variability

The calculation of T'ajima’s D, Fu and Li's F and Fu and Li's D
statistics was performed following the procedure described in the
Frequency-based nucleotide variation section (see above) for setting
the number of analyzable samples and sites for each population.
Instead, F'u's Fg values were estimated considering same sites as for
LD metrics.

Selection tests based on polymorphism and divergence

These statistics were computed using metrics from Frequency-based
nucleotide variation and Divergence-based metrics categories in neu-
tral (4-fold) and putatively selected (0-fold) sites. Specifically, NI
and Fisher’s p-value were estimated considering the number of poly-
morphic (P) and divergent (D) sites, whereas K4/Kg and DoS
metrics were computed using relative frequencies (7, K). The rate
of adaptive evolution («) from the McDonald and Kreitman test
(MKT) was estimated using both, the counts of sites and their
relative frequencies.
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Population differentiation

Population differentiation metrics were estimated using custom
scripts developed by Dr. John E. Pool (from Madison-Wisconsin
University). Specifically, Fgp estimators of Hudson et al. (1992)
were computed.

Only those sites for which 50% of genomes have a called allele from
the largest African population sample (ZI population, n = 197)
were analyzed. For each site, that involves comparing all pairs of
individual genomes for each pair of populations, only valid (non-
“N”) called sites were considered. By excluding missing data on a
per-individual-allele basis, this implementation weights sites based
on how much missing data they have. Only windows with more
than 100 usable sites are reported. In total, 35 comparisons for
each window size were performed. This includes 10 comparisons
among the populations with more than 50 individuals (EF, FR,
RAL, SD and ZI), and the 25 comparisons that involve one of those
populations and another population with at least 20 individuals (EA,
EG, RG, SP and USW).

2.2.3 Genes-based estimates

Gene-based population genetics statistics were computed with the
aim of testing adaptation at the gene level. Therefore, we only ana-
lyzed putatively selected (0-fold, 7) and neutral (4-fold, 0) positions
following this approach. We used data regarding 13,753 protein
coding genes annotated in the D. melanogaster reference genome.
Metrics were computed for the 20 DGN populations and meta-
populations with more than 10 sampled genomes (Table 2.1, Table
2.2). We used D. simulans and D. yakuba genome sequences and
annotations as outgroup species to estimate derived allele frequencies
and divergence metrics.

Figure 2.5 illustrates the main processing work-flow. It takes as
input DGN and outgroup sequences, along with gene annotations
information, and returns population genetics parameters estimated
at the gene level classified in 3 different categories. The pipeline uses
custom Python and Perl scripts for the re-encoding of sequences

65



2. MATERIALS AND METHODS

and the computation of frequency-based nucleotide variation and
divergence-based metrics. Specifically, the custom Perl script esti-
mates the number of analyzed, divergent and polymorphic (along
with the corresponding derived allele frequencies) sites. “N” calls
were excluded from the analyses. In detail, we considered a site as
analyzed if it had at least one called allele (non “N”) in any sample
and the outgroup sequence (Figure 2.6).

Frequency-based nucleotide variation

Metrics in this category include the number of putatively selected
(Poy) and neutral (Pyf) polymorphic sites with their corresponding
derived allele frequencies (DAF) spectrum.

We estimated DAF grouping polymorphic sites in 10 and 20 frequency
categories (DAF10 and DAF20, respectively). We considered a site
as polymorphic if it had at least two different called alleles in the
in-group sequences. To estimate the derived allele frequencies, we
considered only polymorphic sites in which one of the called alleles
was the same in in-group and outgroup sequences, counting the
alternative alleles as derived (Figure 2.6).

DGN
SEQUENCES
| J l
I
FASTA for each PYTHON
gene and pop. recode. py

OUTGROUR

ANNOTATIONS

Ofoldfasta
PERL iMKT R
dafpl package
|

Figure 2.5: Genes-based approximation pipeline. This work-flow
allows the computation of gene-based population genetics metrics. It takes
as input DGN and outgroup sequences, along with reference annotations,
and returns statistics from frequency-based nucleotide variation, divergence-
based metrics and selection tests estimates. The main process is performed
through a combination of Python and Perl ad hoc scripts.

I
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Divergence-based metrics

We estimated the number of divergent positions for both classes of
sites (Dog, D4f) considering a site as divergent if all alleles from the
in-group sequences had the same called allele and it was different
from the outgroup one (Figure 2.6).

Recombination

We used two different recombination estimates (which were computed
at the window level) to assess gene-associated recombination values.
Crossing-over meiotic recombination rates retrieved from Comeron
et al. (2012) and historical population-scaled recombination metrics
estimated using LDhelmet (Chan et al. 2012). Gene annotations
were mapped to non-overlapping sliding windows based on start
coordinates.

Ingroup 1 A A A A A A A A

Ingroup 2 A A A T T A A A

Ingroup 3 A A T T C A A T

Outgroup A c A A A — N N

Results * *D *P *P *P — — —
@r3) (213) (/3 + 1/3)

Figure 2.6: Example of how to estimate the number of analyz-
able, polymorphic and divergent sites. The figure shows three sample
in-group sequences together with outgroup sequence information and the
assignment of each genomic position. In-group sequences were previously
filtered as described in Figure 2.4. In total, 5 sites are analyzable (m),
of which 1 is divergent (D) and 3 are polymorphic (P) with 4 different
allele variants. The derived allele frequency of each polymorphic site is also
shown. (*: analyzable position; — : non-analyzable position; D: divergent
site; P: polymorphic site (with the frequency of derived alleles).
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Selection tests based on polymorphism and divergence

We applied the Integrative McDonald and Kreitman Test (iMKT)
R package (see below) to estimate diverse selection tests based on
polymorphism and divergence genomic data for each analyzed gene
and population. Specifically, we computed the following statistics:
non-synonymous to synonymous divergence ratio (K4/Kg), neutral-
ity index (NI), direction of selection (DoS) and, ratio of adaptive
evolution («) using the original MKT and 4 derived methods: FWW
correction (Fay et al. 2001), DGRP correction (Mackay et al. 2012),
asymptotic MKT (Messer & Petrov 2013), and iMKT.

2.2.4 Statistical analyses

The statistical analyses shown in the section 3.3. Population ge-
nomics of D. melanogaster were performed using the R software
environment (https://www.r-project.org).

First, the significance of MKT-derived methods that are based on
2x2 contingency tables was assessed using a Fisher exact test (Fisher
1922) performed with the fisher.test function from the package stats.

Along this work, we also computed two different correlation coeffi-
cients with their corresponding p-values using the cor.test function
from the package stats: (i) the Pearson’s correlation coefficient
(Pearson 1895), and (ii) the Spearman’s rank correlation coefficient
(Spearman 1904), using in both cases a significance level of 0.05.

Finally, we performed pair-wise Wilcoxon’s rank sum tests (Wilcoxon
1945) in order to asses whether the differences in the nucleotide vari-
ation levels found between meta-populations and between the chro-
mosome arms of each meta-population were statistically significant
or not. Briefly, the Wilcoxon’s signed-rank test is a non-parametric
statistical hypothesis test used to compare two related samples to
assess if their population mean ranks differ (i.e., it is a paired differ-
ence test) used when the data can not be assumed to be normally
distributed (which is the case for population genetics data values
such as 7, k and p). The associated p-values were corrected using
Holm’s method (Holm 1979) in order to counteract the problem of
multiple comparisons (the more hypotheses tested, the higher the
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probability of a Type I error, false positive). This approach controls
the family-wise error rate (the probability that one or more Type I
errors will occur) by adjusting the rejection criteria of each of the
individual hypotheses or comparisons.

2.3 PopFly: the Drosophila population

genomics browser

PopFly is a population genomics-oriented genome browser that allows
the graphical display of a complete inventory of population genetics
parameters estimated from the Drosophila Genome Nexus data.

2.3.1 Browser software and interface

The PopFly genome browser is build-up using JBrowse develop-
ment version 12.1.1 software (March 2016, http://jbrowse.org/
jbrowse-1-12-1/, Skinner et al. 2009, Buels et al. 2016).

The browser interface is coded mainly in JavaScript (JS) and HTMLS5,
together with CSS for styling customization. The main configuration
files of the browser are written in JS and JavaScript Object Notation
(JSON). The first one controls the main features of the browser, and
holds the structure and links among the diverse modules, while the
second one contains detailed descriptions of all tracks stored (data
location, meta-information, key, name, etc.). Both files are highly
customizable by the administrator of the site.

Genetic information is stored using 4 major file formats (Box 1).
Reference genome and DGN sequences are kept in both FASTA
(multiFASTA) and VCF formats; gene, transposable elements and
polymorphic inversions annotations are saved in GFF format and
all functional and population genetics metrics estimated in non-
overlapping sliding windows are stored in Wig or bigWig formats.

The current browser implementation is running under Apache on a
CentOS 7 Linux x64 server, 16 Intel Xeon 2.4GHz processors, 32GB
RAM.
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2.3.2 Development and implementation of new
utilities

Besides the default built-in functions of JBrowse, we have developed
and implemented into the PopFly framework three new resources to
facilitate population genetics data analyses and retrieval: (i) a tool
designed to perform on-the-fly statistical analyses of the data, (ii)
an application for displaying dynamic gene reports with information
on adaptation metrics and, (iii) a plugin to download sequence
information.

On-the-fly statistical analyses

The On-the-fly statistical analyses tool allows generating custom
interactive plots to explore correlations among different genomic and
geographical features estimated for each population.

This application was developed using the Shinyapps framework for
R (http://shinyapps.io). Genetic population metrics correspond
to 100 kb non-overlapping windows estimates, whereas geographical
features were retrieved from Lack et al. (2016). The two correlation
statistics provided (Pearson correlation coefficient, Pearson 1895, and
Spearman’s rank correlation coefficient, p, Spearman 1904) with their
corresponding p-values are computed using a the cor.test function
from R package stats, with default parameters. Finally, ggplot2 and
shinythemes R libraries are required for the graphical representation.

Gene adaptation metrics dynamic report

This function allows displaying a summary of adaptation metrics
regarding any gene and population(s) of interest. In detail, the
tool is accessible for 13,755 protein-coding genes annotated in the
reference genome and 20 populations/meta-populations.

The map showing the available populations was built using Infogram
software (https://infogram.com/). The dynamic report is gen-
erated using rmarkdown package (https://cran.r-project.org/
web/packages/rmarkdown/) and implemented into PopFly through
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a combination of FastR framework (https://github.com/oracle/
fastr) and custom JavaScript functions.

Download sequences

The download sequences plugin allows the retrieval of the genome
sequences (in either FASTA or VCF file formats) corresponding
to any region and population(s) of interest. This utility uses a
combination of custom Perl and Bash scripts and vcftools software
(Danecek et al. 2011) to perform the trimming and subset of the
sequences of interest, along with JavaScript custom functions to
implement the resource into the PopFly framework and manage the
user’s custom parameters request.

In addition to the plugin itself, we have also developed and imple-
mented a Cron Job (i.e., a scheduled task that is executed by the
system at a specified time/date) whose main functions are to ensure
that there is enough free disk space in the server to use the utility
(and if it is not the case, to provide a warning and a brief explanation
about the problem) and to remove old files which are not necessary
anymore, as they have been downloaded by the requesting user. This
program is coded mainly using Bash programming.

71


https://github.com/oracle/fastr
https://github.com/oracle/fastr

2. MATERIALS AND METHODS

Box 2.1: Genome annotations file formats

FASTA and multiFASTA: text-based format for representing raw se-
quences (Figure 2.7). The first line in a FASTA file starts with a greater
than (>) symbol and holds a unique description of the sequence. Then,
the following lines contain the sequence itself in standard one-letter code
(Pearson & Lipman 1988). A multiple sequence FASTA (multiFASTA)
format file is obtained by concatenating several single sequence FASTA
files, with their corresponding identification and sequence lines.
>RAL-129_Chr2L:5020221_5045940
AAATAAAATCCAATTCCAACCTCCCCCCCCAACGAAAAATTCTGGTGCTGCAGGTGCACAAACGCAATTGCACTCGATTGCTGGAAATGCC
>RAL-136_Chr2L:5020221_5045940
AAATAAAATCCAATTCCAANNNNNNCCCCCAACGGAAAATTCTGGTGCTGCAGGTGCACAAACGCAATTGCACTCGATTGCTGGAAATGCC
>RAL-138_Chr2L:5020221_5045940
AAATAAAATCCAATTCCAACCTCCCCCCCCAACGGAAAATTCTGGTGCTGCAGGTGCACAAAAGCAATTGCACTCGATTGCTGGAAATGCC
>RAL-142_Chr2L:5020221_5045940
AAATAAAATCCAATTCCAACCTCCCCCCCCAACGAAAAATTCTGGTGCTGCAGGTGCACAAACGCAATTGCACTCGATTGCTGGAAATGEC
>RAL-149_ChrzL:5020221_5045940
AAATAAAATCCAATTCCAACCTCCCCCCCCAACGAAAAATTCTGGTGCTGCAGGTGCACAAACGCAATTGCACTCGATTGCTGCAAATGCC

Figure 2.7: Sample multiFASTA. File with the genomic sequence of
five individuals.

Wiggle and bigWig file formats: text-based format used to store and
display huge amounts of continuous quantitative data (Figure 2.8). It
consists of one or more blocks, each containing a declaration line followed
by lines defining data elements. The declaration line determines the type
and specific options of the file (using space-separated key-value pairs).
Wiggle data elements must be equally sized, hence the window size (i.e.,
span) is always fixed. There are two types of WIG files: (a) Fixed step:
the distance between windows (step) is fixed and the data is stored in a
single column of data values and (b) Variable step: the distance between
windows is variable, so data is stored in two columns for genome positions
and data values. BigWig files are Wiggle files in an indexed binary format,
which improves data speed performance and storage (Kent et al. 2010).

A B

fixedStep chrom=3L start=1 step=160 span=160 variableStep chrom=3L span=100
0.06 1 0.06

0.08 101 0.08

0.11 201 0.11

6.09 301 0.09

0.08 401 0.08

Figure 2.8: Wiggle file. (A) Fixed step. (B) Variable step. Note that
both files contain the same exact information.
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Box 2.1: (Cont.) Genome annotations file formats

Generic Feature Format version 3 (GFF3): tabulated text file format
for storing genomic features (Eilbeck et al. 2005; Figure 2.9). It consists of
a set of header lines for meta-data information (starting with #), followed
by the annotations (one per line) with data distributed in 9 columns: (i)
sequence/chromosome ID, (ii) source, (iii) feature type (defined in the Gene
Ontology website), (iv) start, (v) end, (vi) score, (vii) strand, (viii) phase
and, (ix) attributes. The attributes column is commonly used to specify
relationships between annotations, although it can contain any information.

##gff-version 3
#itsequence-reglon 2L 5029608
2L FlyBase gene
2L FlyBase mRNA
2L FlyBase exon
2L FlyBase intron
2L FlyBase exon
2L FlyBase cDs

2L FlyBase intron
2L FlyBase cDs

2L FlyBase exon
2L FlyBase intron

Name=Cg25C; ID=FBgn@00O299
ID=FBtro079002;Parent=FBgno000299
ID=FBgn0O00B299-ex1;Parent=FBLro079002
ID=FBgnO0OB299-in1;Parent=FBtroo79002
. ID=FBgn000B299-ex2;Parent=FBLro079002
0 ID=FBgn00OB299-cds1;Parent=FBtroo79002
. ID=FBgnO0OB299-in2;Parent=FBtroo79002
1 ID=FBgn00OB299-cds2;Parent=FBtroo79002
ID=FBgnO00B299-ex3;Parent=FBLro079002
ID=FBgnO0OB299-in3;Parent=FBtroo79002

L I I A

Figure 2.9: Generic Feature Format version 3 (GFF3). Gene
annotations of the D. melanogaster reference genome.

Variant Calling Format (VCF) tabulated text file format for storing
variation information (Danecek et al. 2011; Figure 2.10). It consists of
a set header lines for metadata followed by data lines, each containing
information about a position in the genome, distributed in 9 fixed columns:
(i) sequence/chromosome ID, (ii) start, (iii) annotation ID, (iv) reference
allele(s), (v) alternative allele(s), (vi) quality, (vii) filters, (viii) extra
information and, (ix) format of the sample information; followed by a
variable number of extra columns which correspond to specific information
of each analyzed sample.

##fileformat=VCFva.1
grcontig=<ID=1,length=23011544>
BHFORMAT=<ID=GT ,Number=1, Type=5String,Description="Cenotype">

#CHROM POS 1D REF ALT QuUAL FILTER INFO FORMAT RAL-149 RAL-335 RAL-357
2L 5020256 . A G 5 ¥ A GT [:] 1

2L 5020284 C A GT (] L] L]

2L 5020348 . T C GT ] 0 1

2L 5020388 . [ T GT ] 1 -]

2L 5020464 . G A GT a 1 1

2L 5626473 . [ A . . . ar 8 [ 1

2L 5820477 . [ G,T GT 1 [:] 2

Figure 2.10: Variant Calling format (VCF). Sample file with SNP
data of three individuals.
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2.4 iMKT: an R package for the Integrative
McDonald and Kreitman Test

iMKT, which stands for Integrative McDonald and Kreitman Test,
is an R package to compute the McDonald and Kreitman test (MKT,
McDonald & Kreitman 1991) on polymorphism and divergence ge-
nomic data which can either be provided by the user or automatically
downloaded from PopFly (Hervas et al. 2017) or PopHuman (Casillas
et al. 2018).

The package was build and depends on R version > 3.3 (R Core Team
2015). It requires ggplot2 (Chang 2012, Wickham 2016) complete
library for the graphical display of results, and imports certain
functions for performing the analyses from wutils and stats default
libraries, knitr (Xie 2012) package, and the following CRAN packages
(https://cran.r-project.org/): cowplot, reshape2, nls2, MASS
and ggthemes.

2.4.1 Implementation of four McDonald and

Kreitman derived tests

iMKT includes the standard MKT (McDonald & Kreitman 1991)
along with four MKT-derived methods which allow inferring the rate
of adaptive evolution («): FWW correction (Fay et al. 2001), DGRP
correction (Mackay et al. 2012), asymptotic MKT (Messer & Petrov
2013, Haller & Messer 2017) and a new test named integrative MKT.

Besides the diverse a estimates, iIMKT package also allows estimating
3 metrics mainly based on divergence levels. The first is the K4/Kg
ratio, also known as w (Li et al. 1985, Nei & Gojobori 1986, Yang &
Bielawski 2000), which compares the rates of non-synonymous and
neutral divergence (Equation 2.3).

w:KA/KS (2'3)

Then, it is possible to estimate the fraction of non-synonymous fixed
differences which are truly adaptive (w4) using both w and the rate
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of adaptive evolution («) computed by any MKT Castellano et al.
2016, James et al. 2016; Equation 2.4):

WA =wXa (2.4)

Finally, the fraction of non-synonymous divergent sites which are
in fact deleterious can be estimated from the previous expression
(Equation 2.5).

Wp =W —wA (2.5)

Standard MKT

Under strict neutrality, the ratio of the number of selected and
neutral polymorphic sites (P;/FPy) is equal to the ratio of the number
of selected and neutral divergence sites (D;/Dg). The null hypothesis
of neutrality is rejected in a MKT when D;/Dy # P;/Py. The excess
of divergence relative to polymorphism for class i, is interpreted as
adaptive selection for a subset of sites 7. The fraction of adaptive
fixations («) is estimated as in Equation 2.6. The significance of the
test can be assessed with a Fisher exact test (Fisher 1922).

a=1--2°1 (2.6)

FWW correction

The FWW correction (Fay et al. 2001) is an extension of the MKT in
which low frequency polymorphisms are removed from the analysis,
based on an arbitrary cut-off. In this case, « is estimated using the
standard MKT equation, but considering only those polymorphic
sites (for both neutral and selected classes) with a frequency above
the established cutoff (), as shown in Equation 2.7.

(2.7)



2. MATERIALS AND METHODS

DGRP correction

In the DGRP correction (Mackay et al. 2012) P;, the count off
segregating sites in class 7, is separated into the number of neu-
tral variants and the number of weakly deleterious variants: P; =

Pz' neutral 1 -Pz weakdel -

This is done based on an established frequency cut-off (x), normally
set at 5%. Consider the pair of 2x2 contingency tables from Table
2.4: the table on the left is the standard MKT table with the
theoretical counts of segregating and divergent sites for each class,
while the table on the right contains the count of P; and Py for the
two-frequency categories below and over the established cut-off.

The estimate of the fraction of sites segregating neutrally within the
Jrequency < x (fneutral<x) 18 freutral<z = P0<I/P0' The expected
number of segregating sites in the non-synonymous class which are
neutral within the frequency < x is Pheutrai<z = P; X freutrai<z-
The expected number of neutral segregating sites in the non-
synonymous class is P; peutral = Preutrai<z + Pi>z- Finally, the
fraction of adaptive evolution, « is estimated as in Equation 2.8:

a=1— & Pz neutral (28)
D; B
The excess of sites segregating with frequency < x with respect to
the neutral site class are considered to be weakly deleterious and
therefore, b can be estimated as in Equation 2.9:

P; weak del Mo
b= ——r—r — 2.9
P m (2.9)

Table 2.4: Standard and DGRP MKT tables.

Number of segregating sites
Standard MKT table

by frequency category

Site class Polymorphism Divergence | Site class P<z P>=x

Neutral PO DO Neutral P0<m P0>z
Selected  F; D; Selected  Picy Pisy
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Then, the neutral fraction estimated from the neutral class after
correcting for weakly deleterious sites is shown in Equation 2.10:

I)i neutral 110
= — 2.10
f P m (2.10)

Finally, the fraction of new mutants which are strongly deleterious
and therefore not segregating is estimated as in Equation 2.11:

d=1—f—b (2.11)

Asymptotic MKT

The asymptotic MKT method (Messer & Petrov 2013, Haller &
Messer 2017) first estimates « for each derived allele frequency
(DAF) category using its specific P; and Py values (Equation 2.12).

Dy P

a=1——
D; PO(:):)

(2.12)
Then an exponential function if fitted to this values (Equation 2.13:

apir(r) =a+ b(=eo) (2.13)

Although the exponential function is generally expected to provide
the best fit, a linear function is also fit to the data (Equation 2.14:

aypir(xz) =a+ bz (2.14)

Finally, the asymptotic « estimate is obtained by extrapolating the
value of this function to 1, as shown in Equation 2.15.

Agsym = afit(lf = 1) (215)

The exponential fit is always reported, except if the exponential fit
fails to converge or if the linear fit is superior according to AIC.
The code of this function is adapted from Haller & Messer (2017),
http://github.com/MesserLab/asymptoticMK.
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iMKT approach

The iMKT approach is an extension of the asymptotic MKT that
incorporates the estimators of the DGRP correction method to
estimate diverse negative selection regimes. iMKT estimates «
using the asymptotic MKT, but it only fits the exponential model
(Equation 2.13) so it allows calculating the diverse fractions of
mutations under purifying selection. This method provides more
accurate estimates of «, although it requires better quality data to
perform.

The fraction of strongly deleterious mutations (d) is estimated as
the difference between neutral (0) and selected (i) polymorphic sites
relative to the number of analyzed sites (Equation 2.16).

P;/m;

d=1-—
Py/my

(2.16)

The fraction of weakly deleterious mutations (b) corresponds to
the relative proportion of selected polymorphic sites that cause the
underestimation of v at low DAF categories. In detail, if o,y is lower
than the low CI estimate of aysym model fitting, we considered the
presence of slightly deleterious mutations in DAF|,) category. The
weakly deleterious fraction among the segregating sites is (Equation
2.17):

Xasym — (a(w) X (Plx/Z‘PZ))

Qasymptotic — min C(x)

wd =

(2.17)

Then, the proportion of weakly deleterious mutations is estimated
as in Equation 2.18:

wd
0= o Jmo) (B ) (2.18)

Finally, the fraction of neutral sites (f) is (Equation 2.19):

f=1—d—b (2.19)
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2.4.2 Input custom data

The initial data required to perform any MKT consists of two tables
(Figure 2.11). The first one includes the number of polymorphic
sites (P) in each derived allele frequency (DAF) category for both
neutral (0) and putatively selected (i) functional classes. At least 10
DAF categories must be provided, but there is not any upper limit.
The second table contains the number of divergent (D) and analyzed
(m) sites for each class of sites. The format of input custom data is
adapted from the one used by Haller & Messer (2017).

A B
daf Pi PB mi Di m@ Do
8.0825 22490 17189 2598805 534641 620019 52537
B.875 3217 47808
8.125 1616 2874
8.175 999 2088 A - DAFinput sample file
8.225 754 1685 L . .
Tab-delimited file with named columns for
0.275 679 1443 the derived allele frequency (daf), and the
o= S 5 total number of non-synonymous and
8.325 575 1264 L,
synonymous polymorphic sites (P; and P,
B8.375 484 1232 respectively).
8.425 427 1148
oD 2ET s B - Divergence input sample file
B8.525 378 986
I N Tab-delimited file with named columns for
B8.575 341 928
the total number of mnon-synonymous
0.625 318 893 analyzed and divergent sites (m; and D;) and
0.675 335 978 the total number of synonymous analyzed
and divergent sites (mgand D).
B.725 315 945
8.775 297 822
8.825 326 885
0.875 369 953
8.925 448 1086
B.975 1019 1984

Figure 2.11: Input data for iMKT. Information corresponding to
the complete chromosome arm 2R of a North American population of
D. melanogaster and D. simulans as outgroup species. (Retrieved from
http:imkt.uab.cat)
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2.4.3 Retrieval and analysis of PopFly and
PopHuman data

Gene-based metrics from PopFly (Hervas et al. 2017) and PopHuman
(Casillas et al. 2018) genome browsers are downloaded using the
read.table function from the wtils R package. In detail, two data
objects can be retrieved, with information of:

e D. melanogaster: 13,753 protein coding genes for 16 wild-
derived populations and 4 meta-populations using D. simulans
as outgroup species.

e Homo sapiens: 20,661 protein coding genes for the 26 pop-
ulations of the 1000GP (Consortium et al. 2015) using Pan
troglodytes as outgroup.

Then, data is processed and transformed in order to serve as input
for the MK T-analysis functions.
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3.1 PopFly: the Drosophila population

genomics browser

In the last years, the continuous improvement of new sequencing
technologies together with the decrease of the sequencing cost allowed
us to obtain an unprecedented amount of genetic information, which
requires the availability of optimal bioinformatics tools in order to
be properly analyzed. Indeed, nowadays, the major bottleneck of
large genomics studies is not anymore in the data acquisition step
but in the computational handling and analysis of such data.

In this regard, a main bioinformatics issue when analyzing huge
amounts of genomic data is how to visualize such information in an
easy and intuitive manner from a population genomics perspective.
After all, a visual display of the estimated metrics describing genome-
wide variation and selection patterns is a key resource that would
allow gaining a global view and understanding of the evolutionary
forces shaping genome variation. Genome browsers provide an unique
solution to this problem as they allow the graphical retrieval of the
database content (Wang et al. 2013).

Taking advantage of the recently published Drosophila Genome
Neuxs (DGN) project data, which includes the euchromatic genome
sequences of more than one thousand D. melanogaster individuals,
together with the enhancement of current custom genome browser
frameworks, we developed a new genome browser named PopFly.
This new genome browser is based on a similar instance previously
developed by our group that hosts population genomics statistics for
one single D. melanogaster population from Raleigh, North America
(Ramia et al. 2011). This browser, called PopDrowser, was build up
as part of the Drosophila Genetic Reference Panel (DGRP) project
and rapidly became a reference tool in the field. However, it has
become outdated in terms of performance and data storage, which
motivated the development of PopFly. The advantages of PopFly
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over PopDrowser are deeply discussed later in the work (see 4.1.1.
Population genomics browsers).

PopFly can be defined as a population genomics-oriented genome
browser that contains a complete inventory of population genetics
parameters estimated from the DGN project data (Hervas et al.
2017). The browser server is designed for the automatic analysis and
display of genetic variation data within and between populations
along the D. melanogaster genome. The user-friendly graphical web
interface of PopFly allows the visualization and retrieval of func-
tional annotations, estimates of nucleotide diversity and divergence,
linkage disequilibrium statistics, recombination rate metrics, a bat-
tery of neutrality tests, and population differentiation parameters, at
different window sizes through the euchromatic chromosomes (chro-
mosome arms 2L, 2R, 3L, 3R and X chromosome). Furthermore, the
automated nature of the data processing pipeline (see Materials and
Methods for details) makes this platform highly scalable, allowing
the continuous updating of the database by the addition of the
increasing number of new genome sequences available for this and
related species.

PopFly, the Drosophila population genomics browser, is open and
freely available at site https://popfly.uab.cat. In addition, since
FlyBase release FB2017-04 (August 2017), it is also possible to access
PopFly directly from the FlyBase webpage (https://flybase.org).
When searching for any specific gene annotation in FlyBase, in the
“Genomic location” section of the annotation report there is a link
named “PopFly Genome Browser” which re-directs the user to a
PopFly browser instance showing the annotation of interest together
with nucleotide variation metrics of Drosophila meta-populations
(Figure 3.1).
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Figure 3.1: Accessing PopFly from FlyBase. The top image shows
the FlyBase web report regarding gene annotation MBD-R2 which includes
a link to access PopFly, located in the “Other Genome Views” section
within the “Genome location” information category. Note that the section
also includes links to NCBI, UCSC and Ensmbl genome browsers. The
bottom image shows the PopFly browser instance accessed when clicking
the corresponding link in FlyBase, with the browser view centered in the
annotation of interest and the following tracks activated: gene annotations,
transposable elements and nucleotide diversity metrics () in 10 kb windows
estimated in the 6 analyzed D. melanogaster meta-populations. (AUS:
Oceania, CHB: China, AM: America, ENA: Europe/North Africa, EQA:
Equatorial Africa, SA: Southern Africa)
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3.1.1 Browser interface

Genomic annotations and the estimated population genetic parame-
ters are displayed along the D. melanogaster euchromatic chromo-
somes through a graphical user interface implemented in JBrowse
framework (Skinner et al. 2009, Buels et al. 2016). Table 3.1 in-
cludes a summary of the annotations and main parameters estimates
included in PopFly.

When accessing PopFly for the first time, a dialog box appears. It
welcomes the user to the database and includes basic information
about the site: where to locate instructions on how to use the
server, detailed descriptions of the source data and tracks (i.e., layers
of information), a Tutorial section useful for novices in population
genetics or the PopFly database, contact information and the browser

Table 3.1: PopFly category tracks. Summary of tracks included in
PopFly classified in 7 major categories.

Category

Annotations and main parameter estimates

Reference tracks

Frequency-based
nucleotide variation

Divergence-based
metrics

Linkage
disequilibrium

Recombination rate

Selection tests based
on SFS and/or
variability

Selection tests based
on polymorphism and
divergence

Population
differentiation

D. melanogaster reference genome (build 5.57) sequence and
annotations (genes, transposable elements, polymorphic
inversions, coding proportion)

Watterson’s nucleotide diversity (6), nucleotide diversity (),

number of 0-fold and 4-fold segregating sites (Pyy, Pyy), O-fold
and 4-fold nucleotide diversity (o, mg4y)

Nucleotide divergence per bp (K) with D. yakuba and D.
simulans, number of 0-fold and 4-fold divergent sites (Dyy,
Dyy), 0-fold and 4-fold divergence (Ko, Kay)

LD sites, D, |D|, D', |D'|, 72, number of haplotypes (h),
haplotype diversity (Hd)

Recombination rate estimates from Comeron et al. (2012),

Fiston-Lavier et al. (2010), historical population-scaled
recombination rate (pa = 2Ner; px = 8/3Ner)

Fu & Li D and F test statistics, Tajima’s D, Fu’s Fs statistic

K 4/ Kg ratio, neutrality index (NI), direction of selection
(DoS), proportion of adaptive substitutions («) from
McDonald-Kreitman test

Fsr estimates between populations
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research paper reference citation (Hervas et al. 2017).

The default browser instance (Figure 3.2) contains the navigation
bar at the header of the page and the tracks panel (just below) with
5 activated tracks: (i) the reference genome sequence, (ii) gene anno-
tations, (iii) polymorphic inversions annotations, (iv) recombination
rate estimates of Comeron et al. (2012) and, (v) recombination
rate estimates of (Fiston-Lavier et al. 2010). The default region
displayed corresponds to the complete euchromatic chromosome arm

oL (2L:1..23011544).

The navigation bar includes the Help and Resources sections (with
the new subsections that we have developed and implemented) along
with the default JBrowse built-in modules (Genome, Track and View)
and the genome coordinates box. Interestingly, at the right top area
of the site there is a function (“Share”) that provides the URL of
the current browser instance with the actual activated tracks, which
can be shared and allows restoring that specific session at any time.
By default, PopFly loads the last instance viewed by the user (i.e.,
client-side loading), therefore it is important to supply the possibility
to save any particular instance in a way it can be easily accessed over
time. Finally, at the top left area of the tracks panel (and within the
Resources menu) there is the tool which allows filtering and selecting
tracks.

The D. melanogaster reference genome sequence is graphically dis-
played only when the view is focused on small genomic regions (< 1
kb). It contains the sequence itself for both DNA strands marked
with a color code (A in green, C in blue, G in yellow, T in red) and
the amino acids which correspond to the 6 possible coding reading
frames (with start codons in green and stop codons in red).

Genomic annotations (such as genes, inversions or transposable
elements) are displayed as horizontal rectangles covering their cor-
responding genomic coordinates. When right-clicking any feature,
a drop-down menu with diverse options appears. All this type of
tracks share an option which shows the information associated to the
feature (genomic coordinates, name, id, etc.) and allows downloading
its reference DNA sequence. In addition, there are specific options
for each kind of annotation. For gene annotations, the options in-
clude searching for that specific feature on both NCBI and FlyBase
databases and displaying a brief report of adaptation metrics based
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Figure 3.2: PopFly default browser instance. It contains the navigation bar at the header of the page and the tracks
panel (just below) with 5 activated tracks: (i) the reference genome sequence (with its 6 coding reading frames, visible
when zooming in), (i) gene annotations, (i77) polymorphic inversions annotations, (i) recombination rate estimates of
Comeron et al. (2012) and, (v) recombination rate estimates of Fiston-Lavier et al. (2010). The region displayed by default
is 2L:1..23011544.
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on polymorphism and divergence statistics regarding the gene of
interest using user-defined populations. Moreover, gene annotations
can be displayed in three modes: normal, compact and collapsed.
Transposable elements annotations include an option to search for
that specific feature on NCBI database. Finally, polymorphic inver-
sions annotations include an option to display a brief report which
shows their genotypes frequencies among the populations analyzed
within PopFly.

Otherwise, quantitative estimates (which include most population
genetic parameters) are represented as bar charts, where the height
of each bar corresponds to the estimated value and the left and right
limits account for the genomic coordinates of the window. These
metrics are available in non-overlapping sliding windows of varying
size (1 kb, 10 kb, 50 kb, 100 kb). When placing the cursor over
any bar, its associated value shows up. In addition, there is also a
function which permits transforming data values in a logarithmic
scale, useful for certain metrics.

3.1.2 Utilities and support resources

PopFly includes all the default built-in functions of JBrowse to
search and display chromosomal regions (or genes), select and filter
tracks, add custom annotations, download information, and highlight
specific regions of the genome. However, we have upgraded some of
them to adapt their functionality to the huge amount of data stored
in this server. In addition, we have also developed and implemented
new utilities and support resources within the PopFly framework
to facilitate performing population genetics analyses and retrieving
data. Some of the upgraded and developed functions are stated
below.
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Help section

The Help section contains exhaustive documentation about the data
analyzed by PopFly (including a brief report about the populations
structure, based on genetic distances among populations using Fsr
values) and the browser tracks. In addition, it also includes general
help about JBrowse software, direct links to the welcome dialog
box and the reference paper citation, and a comprehensive tutorial
introducing to the usage of the PopFly database and to the testing of
evolutionary hypotheses from a population genetics perspective. The
tutorial contains several step-by-step guides to facilitate reproducing
the results that are shown both in the form of figures and descriptive
text.

Tracks selector

PopFly contains more than 4,000 tracks. Therefore, given the large
number of tracks available, these can be filtered and selected using
the “Select tracks” tool, which can be accessed from the top left
corner, below the navigation bar or from the “Resources” section.
The filtering process is performed by first narrowing the search using
the menu on the left, and then selecting the tracks of interest from
the main panel on the right. This process can be done several times
in order to finally get the desired tracks selected. It is also possible
to select a track by typing its name in the search box located at the
top of the track selector tool. This utility was upgraded to handle
the vast number of tracks included in the browser, classifying them
in several categories and subcategories and enhancing the filtering
procedure.

Retrieval of track data

Track data can be conveniently downloaded from the browser inter-
face using the “Save track data” option which appears when pressing
the arrow located to the right of the track label. This utility allows
defining the region of interest (visible region or custom genomic
coordinates), the output format (bedGraph, Wiggle or GFF3) and

90



3.1. POPFLY: THE DROSOPHILA POPULATION GENOMICS BROWSER

the file name. We have upgraded the initial JBrowse function to
allow downloading data referring to the whole chromosome at once,
as by default it is limited to genomic regions spanning a maximum

of 500 kb.

Gene-based adaptation metrics report

A brief summary of adaptation metrics calculated for each protein-
coding gene annotated in the reference genome can be accessed
when right-clicking the feature annotation. In detail, these metrics
include the K4/Kg ratio (Li et al. 1985, Nei & Gojobori 1986), the
proportion of adaptive substitutions («) from MKT (McDonald &
Kreitman 1991) along with its associated p-value from Fisher Exact
test (Fisher 1922), and the direction of selection (DoS) statistics
(Stoletzki & Eyre-Walker 2011). First, the population(s) of interest
are selected, and then, by clicking the “Submit” button a report
is generated. This brief report includes graphical display of the
derived allele frequencies for neutral (4-fold degenerate) and puta-
tively selected (0-fold degenerate) sites and a table with the number
of analyzed, polymorphic and divergent sites for both functional
classes, together with the metrics stated above using both D. sim-
ulans and D. yakuba outgroup species, for the selected annotation
and population(s).

On-the-fly statistical analyses

The On-the-fly statistical analyses tool allows generating custom
interactive plots to explore correlations among different genomic
and geographical features estimated for each population or retrieved
from Lack et al. (2016) (Figure 3.3A). In addition to the graphical
representation of samples values, the utility provides two correlation
parameters with their associated p-values: Pearson correlation coef-
ficient (Pearson 1895) and Spearman’s rank correlation coefficient
(Spearman 1904). When the user clicks on a specific population, its
value is removed from the graph and the statistics are re-calculated.
Multiple points can be removed at once by selecting the correspond-
ing area in the graph and clicking the “Toggle points” button. Click-
ing the “Reset point” button resets all points. This tool also allows
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deciding whether to analyze the full genome, only the autosomes or
a single chromosome arm, and which parameters to correlate, from
the drop-down menus located above the plot area. It can be accessed
from the Resources menu placed at the navigation bar.

Download sequences

The download sequences plugin allows the easy and fast retrieval of
the genome sequences (in either FASTA or VCF file formats) corre-
sponding to any region and population(s) of interest (Figure 3.3B).
The tool requires setting the genomic coordinates (chromosome,
start, end) of the target region, as well as the desired population(s),
and allows deciding whether or not the reference genome sequence
is included in the alignment, and whether the output sequences are
going to be retrieved in one single alignment file with all selected
populations, or in separate files for each population. Finally, the
plugin returns a zip compressed file containing the requested se-
quences. This tool can be accessed from the Resources section of the
navigation bar or by clicking the corresponding plugin icon placed
next to the genome coordinates box (the most right one).
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Figure 3.3: New utilities developed and implemented in the
PopFly framework. (A) On-the-fly statistical analyses tool showing the
correlation estimates between Elevation (corresponding to the geographical
origin of samples, in meters) and nucleotide diversity (7) metrics for certain
populations, considering the complete euchromatic genome. The selected
populations are all from the African tropical area in order to remove the
possible bias caused by differences in latitude, which are known to affect
nucleotide diversity rates. In this case both correlation coefficients pin-
point a negative association between the features (Spearman’s p = —0.475
with an associated p — value of 0.0759 and Pearson’s r = —0.612 with
p — value = 0.0153, respectively). It means that higher the geograph-
ical location where the population lives, lower the polymorphism rate,
probably due to harder environmental conditions and higher pressures.
(B) The download sequences plugin with certain region (2L:1..20863468),
populations (AM: America, CHB: China) and output file settings (each
population in a separated FASTA file without including the reference
sequence) selected.
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3.1.3 Testing evolutionary hypotheses using PopFly

PopFly is designed to serve as a reference database of population
genetics estimates in D. melanogaster and to help testing evolution-
ary hypotheses from a population genetics perspective. The browser
allows not only to analyze and characterize any genomic region of
interest, but also to perform genome-wide scans of selection in order
to identify candidate regions under selective pressures, which should
be then examined in detail.

This section includes an example on how to use PopFly to test a
simple and direct evolutionary hypothesis. Specifically, here we
analyze whether one gene of interest has been experiencing recurrent
adaptive evolution in D. melanogaster or not, since the speciation
time between D. melanogaster and D. simulans, and we describe the
population genetics characteristics of the region where this gene is
located.

The gene of interest that we selected is the no hitter (nht) protein-
coding gene, located in the genomic region 2L:15,317,954..15,818,901.
It is a member of the Testis-specific TBP-associated factors (tTAFs)
gene group, generally localized in the spermatocyte nucleoli and
whose main function is to regulate the transcription of genes required
for spermatocyte entry into meiosis (Hiller et al. 2004). Genes related
to spermatogenesis have been reported to show signs of accelerated
adaptive evolution in Drosophila (Ranz et al. 2003, Haerty et al.
2007). Therefore, here we use PopFly to test if the nht gene is under
recurrent adaptive evolution in D. melanogaster, and if it supports
the essential role of sexual selection in this species.

For this example, the ZI (Siavonga, Zambia) population is used.
This population includes 197 individuals (large sample size), it shows
high levels of diversity, and it is known to have a relatively simple
demography, as it is widely accepted that D. melanogaster originated
in this area (Pool et al. 2012, Lack et al. 2016). The latter is extremely
important, as demographic processes can leave genomic footprints
similar to those left by natural selection (e.g., a clear reduction of
nucleotide diversity caused either by a population bottleneck or a
selective sweep event), which may lead to wrong conclusions.

Prior to analyze the gene information itself, we described the genomic
variation landscape of the genomic region where this gene is located.
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For doing so, an important consideration is to select the proper
visualization mode for the metrics of interest. The appropriate
windows size depends on the size of the target region. In general, to
inspect whole-genome patterns, it is recommended to use 100 kb or
50 kb windows, whereas if the analysis is focused on a small region,
10 kb or even 1 kb windows would be preferred. This example is
centered in a small genomic region (6.4 kb), so we used the smallest
windows available.

In order to get a general picture of the genomic properties of the
target region, we displayed the following metrics using 1 kb win-
dows: nucleotide diversity (m), Watterson’s estimator (), nucleotide
divergence relative to D. simulans (k), Tajima’s D (D), linkage
disequilibrium 72; and the historical recombination rate (p) metrics
in 10 kb windows (which are the smallest windows available for these
estimates). Figure 3.4 shows the PopFly instance with the view
centered in the nht gene and these tracks activated.

We compared the values of these six estimates for the target region
(window) against the median and mean values corresponding to the
chromosome arm 2L and the ZI population (Table 3.2).

Briefly, we observe that m is reduced in the target region compared
to the mean or median value in the corresponding chromosome and
population (ratio miapget, z1/Tenrar,z1 of 0.8789 relative to the median
and 0.8515 relative to the mean), but 6 is not reduced (ratio ~ 1 in
both cases). This, together with negative Tajima’s D values lower
than the chromosome average (absolute ratio of 1.6277 and 1.6131
relative to the median and mean values, respectively) may be indica-
tive of an excess of rare alleles segregating at low frequencies in that
region. The divergence rate relative to D. simulans of the candidate
window is ~ 1.5 times higher than the chromosome median, but
very similar (ratio ~ 1) to the mean value. The difference between
the median and the mean values of divergence in the chromosome is
explained by the presence of high peaks of divergence near the cen-
tromeres and telomeres of Drosophila chromosomes, which results in
a higher average (mean) value for the chromosome. Thus, comparing
the observed value to the median value is more informative in this
case. However, we observe that the linkage disequilibrium estimate
r2 is lower in this region than along the complete chromosome arm
(ratio = 0.7468 and ratio = 0.6837 relative to the median and mean
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Figure 3.4: View of the gene nht in its genomic context using
PopFly. PopFly snapshot with the view centered in the candidate genomic
region 2L:15815281..15321630 and the nhd gene (highlighted in yellow),
together with the following tracks regarding Zambia population (ZI) and 1
kb window size activated: Pi (), Theta (6), Kdsim (k with D. simulans),
TajD (Tajima's D), r2 (r?), rhobp (p).

values, respectively). Finally, the historical recombination rate (p)
found in that region is extremely high (ratio = 4.2735 relative to
the median and ratio = 3.4427 relative to the mean).

Then, to directly test if the nht gene shows signals of recurrent
protein-coding adaptive evolution, we examined the adaptation met-
rics of this gene using the “Gene-based adaptation metrics report”
utility (selecting ZI population) implemented in PopFly (Figure 3.5).

We focused on the metrics that consider D. simulans as outgroup
species. We observe an excess of derived alleles at low frequency
categories for the non-neutral class and a surplus of neutral alleles
segregating at intermediate to high derived frequencies. MKT results
support the hypothesis of recurrent adaptive evolution operating on
the target gene, as reflected by a positive « value of 0.7719 (with
an associated Fisher exact test p = 0.0226), direction of selection
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Table 3.2: Summary metrics of the candidate region. Observed
metrics values for the target region compared to the mean and median
values of the chromosome arm 2L for the ZI population. Metrics estimated
in 1 kb windows (except p, which is computed using 10 kb windows). [D:
Tajima’s D estimate]

Estimate Target Median targi?f:; dian Mean targ:t{?::lz dian
T 0.00826  0.0094 0.8789 0.0097 0.8515
0 0.0105 0.0106 0.9905 0.0110 0.9545
k 0.082067  0.0536 1.5050 0.0759 1.0812
D -0.6825  -0.4193 1.6277 -0.4231 1.6131
r? 0.0104 0.0139 0.7468 0.0152 0.6837
p 0.0902 0.0211 4.2735 0.0262 3.4427

metric above 0 (DoS = 0.327) and a ratio of non-synonymous to
synonymous divergence much higher than 1 (K4/Kg = 3.8). Besides,
we also find a signal of positive adaptation considering D. yakuba
as outgroup species (« = 0.4118 with p = 0.331; DoS = 0.1319 and
Ks/Kg = 1.3077).

Summarizing, we observe that the nht gene is located in a region with
reduced 7 and high levels of k£ (with D. simulans) and recombination
(p), and an excess of rare alleles (T'ajima’sD < 0 and 6 > 7).
These signatures could be indicative of an increased fixation rate of
adaptive variants due to recurrent selection operating in that region.
In addition, the diverse adaptation metrics estimated on the nht gene
support the hypothesis that it is under recurrent adaptive evolution
in D. melanogaster since the speciation time with D. simulans.

Hence, in this section we demonstrate that taking advantage of the
huge amount of population genetics information stored in PopFly,
we are able to replicate previously reported results, as well as solving
new specific and concise evolutionary questions from a population
genomics perspective.
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Figure 3.5: Adaptation metrics
the nht gene. The report shows (i) the word-wide D. melanogaster
populations map, used to select the population of interest, (ii) a graphical
display of the distribution of derived alleles (DAF) for neutral (4-fold) and
putatively selected (0-fold) segregating sites and, (iii) MKT results tables
using both outgroup species information. [0: neutral sites; i: putatively
selected sites; P: polymorphic; D: divergent; m: analyzed]
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3.2 iMKT: an R package for the Integrative
McDonald and Kreitman Test

The Integrative McDonald and Kreitman Test (iMKT) package for
the R software environment (a standard for statistical analyses,
https://www.r-project.org/) allows computing the McDonald
and Kreitman test (MKT, McDonald & Kreitman 1991) on poly-
morphism and divergence genomic data provided by the user or
automatically downloaded from PopFly (Hervas et al. 2017) or Po-
pHuman (Casillas et al. 2018). It includes five MKT derived tests
which allow inferring the rate of adaptive evolution («), as well as
the fraction of strongly deleterious (d), weakly deleterious (b), and
neutral (f) sites.

The package is open and freely available from GitHub at
https://github.com/BDG-UAB/iMKT under the GNU General
Public License and it can be installed using the devtools library
(https://github.com/r-1ib/devtools), as shown in Figure 3.6.

The iMKT package includes 12 functions (Table 3.3), classified in
three main categories: (i) Calculation of MKT-derived methods;
(ii) iMKT using PopFly and PopHuman data and; (iii) Miscella-
neous functions. Each function has an associated help page with its
corresponding description, details about input parameters, usage,
examples and so on.

The first category of functions includes five different MKT de-
rived methods (Standard MKT, FWW correction, DGRP correction,

## Install devtools package if necessary
> install.packages("devtools")

## Install iMKT package from GitHub
> devtools::install_github("sergihervas/iMKT")

## Load iMKT library
> library (iMKT)

Figure 3.6: Installation of iMKT package. The package has to be
installed from GitHub using the install_github function from the devtools
library. Once it is installed, it has to be loaded into the current workspace.
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Table 3.3: iMKT R package functions.

Category Function name Description
Calculation of standardMKT() Original MK test (McDonald & Kreitman
MKT-derived 1991)
methods FWW() Fay correction (Fay et al. 2001)
DGRP() DGRP correction (Mackay et al. 2012)

asymptoticMKT() Asymptotic MKT (Messer & Petrov 2013,
Haller & Messer 2017)

iMKT() extended asymptotic MKT implementing
the estimators of purifying selection from
DGRP correction

completeMKT)() Perform all previous tests at once using
the same input data and parameters

IMKT using loadPopFly() Load PopFlyData object into the current

PopFly and workspace, with information of 13,753

PopHuman data genes for 20 D. melanogaster populations
loadPopHuman() Load PopHumanData object into the

current workspace, with information of
20,643 genes for 26 human populations

PopFlyAnalysis() Perform any MKT using PopFlyData
PopHumanAnalysis() Perform any MKT using PopHumanData
Miscellanea checkInput() Check input data and throw explicative
errors when it is malformed
themePublication() Customization and styling of the graphs
produced

asymptotic MKT, integrative MKT) which allow estimating both
the rate of adaptive evolution and the fraction of sites under puri-
fying selection; and one function to estimate all five tests at once
using the same input parameters. The second one includes functions
which allow the easy retrieval and analysis of population genetics
information stored in PopFly (http://popfly.uab.cat) and Po-
pHuman (http://pophuman.uab.cat) genome browsers, using the
MKT methods from the previous category. Finally, the functions
from the third category are used within the other functions and do
not produce analyses output.

The following sections illustrate the usage of iMKT package. First
we explain the new estimators from the integrative MKT method.
In brief, this method is an extension of the asymptotic MKT which
incorporates the estimators of the DGRP correction for quantifying
negative selection. Second, we show the execution of diverse MKT-
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derived methods using user custom data, and third, we provide
an example on how to apply iMKT using PopFly and PopHuman
genomic information directly retrieved from these genome browsers.

3.2.1 Estimators of the integrative MKT

In Drosophila, we observe an excess of putatively selected sites rel-
ative to neutral sites segregating at low derived frequencies, while
at intermediate and high frequencies the number of neutral poly-
morphisms is greater than the number of putatively selected ones
(Figure 3.8A). This could be caused by the presence of mutations
with weakly deleterious effects which have not been removed by
natural selection either because they are linked to advantageous
mutations or just by chance (i.e., genetic drift).

In order to provide a way to quantify with precision the fraction of
such slightly deleterious mutations (b), together with the fraction of
strongly deleterious (d) and neutral (f) sites within the putatively
selected class, we incorporated both the asymptotic MKT and the
DGRP correction methods in a unified test, named integrative MKT
(iMKT). The iMKT method combines the approach developed by
Messer & Petrov (2013) to estimate the fraction of adaptive substitu-
tions (a)) and an adaptation of the theoretical framework established
by Mackay et al. (2012) to quantify the fraction of putatively selected
sites that are under purifying selection pressures.

First, the rate of adaptive evolution («) is calculated using the
exponential fit of the asymptotic MKT method. The asymptotic «
estimate and the a values of each derived allele frequency (DAF)
category are used to quantify the fraction of weakly deleterious sites,
as explained below.

The fraction of strongly deleterious sites (d) is estimated by com-
paring the rates of neutral (0) and putatively selected (i) segregating
sites among the number of analyzable positions for each functional
class. Assuming that all segregating sites in the selected class are
effectively neutral and that there are no significant differences in
the mutation rates of both classes of sites, we do not expect to ob-
serve any differences among both nucleotide variation rates. On the
contrary, if we observe a larger fraction of neutral segregating sites
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than non-neutral ones, we can infer that this difference corresponds
to the fraction of sites within the putatively selected class that are
not segregating because they are strongly deleterious or even lethal
(Equation 2.16).

Then, the fraction of putatively selected sites that are indeed segre-
gating is divided into those which have weakly or slightly deleterious
fitness effects and those which are effectively neutral.

The calculation of the fraction of weakly deleterious sites (b)
is based on the observation that a estimates corresponding to low
derived allele frequency categories are significantly lower than the
asymptotic « value. The underestimation of « at low DAF categories
is indicative of the presence of polymorphic variants with slightly
deleterious effects segregating at such low frequencies. Thus, the
weakly deleterious fraction among the ¢ segregating sites is estimated
as the difference between aqsymptotic and o corrected by the pro-
portion of i sites segregating at that frequency among the total of
segregating sites (Equations 2.17 and 2.18). In other words, b corre-
sponds to the area between the a estimates at low DAF categories
and the asymptotic « value, corrected by the number of 7 segregating
sites in each category, i.e., the gray shaded area in Figure 3.8B.

Finally, the fraction of neutral functional sites (f) corresponds
to the remaining proportion of segregating sites which are not slightly
deleterious (Equation 2.19).

The performance (strengths, limitations, comparison with previous
methods and so on) of the iMKT new estimators using empirical
data from diverse populations of D. melanogaster is analyzed and
discussed along this work.
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3.2.2 Calculation of MKT-derived methods

All functions from this category require two common input param-
eters with polymorphism and divergence information to perform
the corresponding test. The first (daf) has to include three named
columns for the derived allele frequency (daf), the total number of
non-synonymous polymorphic sites (P;) and the total number of
synonymous polymorphic sites in each frequency (FPp). The second
(divergence) must have four named columns for the total number of
non-synonymous analyzed sites (m;), the total number of divergent
non-synonymous sites (D;), the total number of synonymous ana-
lyzed sites (mg) and the total number of divergent synonymous sites
(Dg). In addition, there are optional parameters specific for certain
functions (Table 3.4).

The package includes two sample data frames (Figure 2.11) which
can be used as daf and divergence input parameters: myDafData
and myDivergenceData. Polymorphism and divergence metrics in
these files correspond to the complete euchromatic chromosome arm
2R of the North American population of D. melanogaster from the
DGRP project (n = 205), using D. simulans as outgroup species.

The output of each function always contains the corresponding «
estimate, together with specific details of the selected test. This
section includes two examples that illustrate how to execute and
interpret the output of two functions from this category: standard-
MKT and iMKT. The usage of the other MKT functions is very
similar to the examples presented here and can be accessed through
the package documentation and each function’s help page. Moreover,
all five functions that perform specific MKT-derived tests have been
applied to empirical genomic data and results are discussed later in
this work.

Standard MKT
The first example shows how to perform a standard MKT using the

standard MK T() function and the package sample data (Figure 3.7).
The output of the function is a list which contains 4 elements:
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e Alpha estimate: o value obtained using the original MKT
(McDonald & Kreitman 1991).

e Fisher p-value: Fisher exact test p-value (Fisher 1922) for the
MKT table, used to determine the significance of the test.

o MKT table: 2x2 contingency table containing the number
of polymorphic and divergent sites for neutral and selected
functional classes (Py, P;, Do and Dj).

e Divergence metrics: table with adaptation metrics based on
divergence: K,, K, w, wa, wp.

As it is shown in Figure 3.7, the adaptation value of a = 0.2384
with a corresponding Fisher’s p-value of 1.4809 x 10783 supports
the hypothesis that the genomic region of interest is under adaptive
evolution, with ~ 23% of fixed differences being adaptive. However,
this signal can not be observed using the divergence based metrics:

Table 3.4: Input parameters for the calculation of MKT-derived
methods functions from iMKT. List of parameters, with the functions
on which they are required and a brief description including the default
values.

Parameter Functions Description

daf ALL Data frame containing DAF, P; and Py values.
Mandatory. No default value

divergence ALL Data frame containing divergent (D) and
analyzed (m) sites for selected (i) and neutral
(0) classes. Mandatory. No default value

listCuttofs ~ DGRP(), FWW()  List of cutoffs to use for trimming. Default
cutoffs values are: 0, 0.05, 0.1

plot DGRP(), FWW(), Report graphical results. Options are TRUE
iMKT() or FALSE. Default is FALSE
xlow asymptoticMKT(), Lower DAF limit for asymptotic alpha fit and
iMKT() estimation. Values must be in the range [0, 1].
Default value is 0
xhigh asymptoticMKT(), Higher DAF limit for asymptotic alpha fit and
iMKT() estimation. Values must be in the range [0, 1],

and zhigh must be higher than zlow. Default
value is 0.9

seed asymptoticMKT()  Seed value which allows reproducing the exact
analysis. Default value is NULL
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## Perform standard MKT
> standardMKT (myDafData, myDivergenceData)

> $alpha.symbol
> [1] 0.2364499

> $‘Fishers exact test P-value®
> [1] 1.480943e-183

> $ ‘MKT table

> | | Polymorphism| Divergence|l

> |i--mmmmmmmm e | === e :

> |Neutral class | 45101 52537 |

> |Selected class | 35816/ 54641 |

> $‘Divergence metrics

> | Kal Ks | omega | omegal | omegaD |
S e it - e i : |
> | 0.0210254| 0.0847345| 0.2481331| 0.058671| 0.189462]|

Figure 3.7: Execution of standardMKT() function. Output pro-
duced when executing standard MK () using sample daf and divergence data.
It is a list of four elements: the « value, the corresponding Fisher Exact
test p-value, the MKT table and five divergence-based statistics.

the ratio of non-synonymous to synonymous divergence w = 0.2481
is lower than 1, and the derived statistic wqa = w X a = 0.0587 is
slightly different than 0.

Integrative MKT

The second example presents the execution of iMKT/() function
using again the package sample data. It uses the common daf and
divergence parameters, two arguments which define the lower and
higher limit for the asymptotic fit (zlow, set to 0; and ahigh, set to 0.9)
and the option to display graphical results (plot) activated (TRUE).
Haller & Messer (2017) recommend to set the higher limit for the
fit at 0.9 in order to remove possible biases in the estimation of «
due to polarization errors. Although it implies removing also some
informative variants, the authors demonstrate that this correction
provides more accurate « estimates. The output of the function
(Figure 3.8) is a list that contains:

o Asymptotic MK table: table including information about the
model type (exponential) along with the fitted function values
(a, b, c), the agsymptotic estimate with its corresponding lower
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and higher confidence interval values, and the ayyigine estimate
(using the standard MKT methodology and the polymorphic
sites within the xlow and xhigh cutoffs).

e Fractions of sites: negative selection fractions (d: strongly
deleterious, f: neutral and b: weakly deleterious).

e Graphs: 3 plots showing: (A) the distribution of alleles frequen-
cies (DAF) for neutral and selected sites, (B) the adaptation
values (a) for each DAF category along with the function fit,
the qusymptotic and Qorigina; €stimates and the limits used for
function fitting and adaptation values calculation, and (C) the
negative selection fractions.

In the standard McDonald and Kreitman test, the estimate of adap-
tive evolution can be easily biased by the segregation of slightly
deleterious non-synonymous substitutions that contribute more to
polymorphism than they do to divergence and lead to an underesti-
mation of a. The asymptotic MK method overcomes this limitation
(Messer & Petrov 2013) and hence, yields to a more accurate esti-
mation of the true level of adaptation. Therefore, in this second
example (Figure 3.8), the adaptation signal appears much clearer
than before (ov = 0.6259). The significance of the estimate can be
assessed using the confidence intervals. As the 0 value is not included
(CI, =]0.6045,0.6474]), we can state that the « value is significant
and that the target region (D. melanogaster chromosome arm 2R, in
a North American population with n = 205 and using D. simulans
as outgroup species) is under positive selection.

In addition, the iMKT method provides the quantification of the
fraction of strongly deleterious (d = 0.8105), weakly deleterious
(b = 0.1271) and neutral (f = 0.0623) mutations. Results show
that the proportion of slightly deleterious mutations that cause the
underestimation of « in the original MKT is as high as almost 13%
in this specific case.
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## Perform integrative MKT
> iMKT (myDafData, myDivergenceData, xlow=0, xhigh=0.9, plot=
TRUE)

> $‘Asymptotic MK table
model a b c a_asym CI_low CI_high a_orig
exp 0.6259 -1.3951 18.9619 0.6259 0.6043 0.6476 0.2157

vV Vv

> $‘Fractions of sites*
> Type Fraction
> 1 d 0.81053796
> 2 f 0.06232362
> 3 b 0.12713842
> $Graphs
A
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Figure 3.8: iMKT() function execution and output Execution of
iMKT() using sample daf and divergence data, displaying graphical results.
The output of the function includes a summary of the asymptotic model fit,
with its parameters, original and asymptotic a estimates and the confidence
intervals for the fit. It also contains the fractions of strongly deleterious
(d), weakly deleterious (b) and neutral (f) sites within the selected class.
Finally, three graphs are generated: (i) derived allele frequency counts
distribution, (ii) « values and model fit and (iii) fractions of sites under
purifying selection.
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3.2.3 iMKT using PopFly and PopHuman data

Besides the use of custom polymorphism and divergence data, the
iMKT package also allows the easy retrieval and analysis of pop-
ulation genetics information stored in PopFly (Hervas et al. 2017)
and PopHuman (Casillas et al. 2018), the two genome browsers
that contain the broadest catalog of population genetics estimates
developed so far in the model species D. melanogaster and Homo
sapiens, respectively. There are four individual functions devoted to
do this (Table 3.3).

The loadPopFly() and loadPopHuman() functions permit the down-
load of gene-based population genetics metrics: (i) D. melanogaster:
13,753 protein coding genes for 16 wild-derived populations and 4
meta-populations from the DGN (Lack et al. 2016) using D. simu-
lans as outgroup and the recombination rate estimates of Comeron
et al. (2012); (ii) Homo Sapiens: 20,661 protein coding genes for the
26 populations of the 1000GP (Consortium et al. 2015) using Pan
troglodytes as outgroup species and recombination values retrieved
from Bhérer et al. (2017) corresponding to sex-average estimates.
These two functions do not have any input parameter.

The execution of each of these functions results in the loading of
a new data object into the current workspace (PopFlyData and
PopHumanData), which can be manually examined before starting
any analysis. Each row of these data frames contains information
regarding one gene annotation in one single population. Metrics for
each gene include the number of polymorphic (P), divergent (D) and
analyzed (m) positions, and the derived allele frequency distribution
(DAF) for neutral (0, 4-fold) and putatively selected (i, 0-fold) sites;
together with gene-associated recombination rate estimates. Once
the data is loaded into the workspace, diverse iMKT analyses can
be performed using the PopFlyAnalysis() and PopHumanAnalysis()
functions.

These two functions allow performing any MKT using a subset of
PopFly or PopHuman data defined by custom genes and populations
lists. In addition, they also permit deciding whether to analyze
genes grouped by recombination bins or not. They have eight input
parameters, listed in Table 3.5. Briefly, each of these functions
groups polymorphism and divergence values of the custom genes,
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Table 3.5: Input parameters for PopFlyAnalysis() and PopHu-
manAnalysis() functions.

Parameter Description

genes List of genes to analyze. Custom genes must be listed using FlyBase IDs
(FBgn...) for PopFly data and using Ensembl ID (ENSG...) for
PopHuman data. Mandatory. No value by default

pops List of populations to analyze. Available populations from PopFly are:
AM, AUS, CHB, EA, EF, EG, ENA, EQA, FR, RAL, SA, SD, SP,
USI, USW, ZI; and from PopHuman are: ACB, ASW, BEB, CDX,
CEU, CHB, CHS, CLM, ESN, FIN, GBR, GIH, GWD, IBS, ITU, JPT,
KHV, LWK, MSL, MXL, PEL, PJL, PUR, STU, TSI, YRI. Mandatory.
No value by default

recomb Group genes according to recombination values (TRUE/FALSE).
Default value is FALSE. When set to TRUE, genes are sorted by
recombination values and grouped in the number of bins defined by the
bins parameter. A “concatenated” gene is created for each bin, grouping
the counts of polymorphic, divergent and analyzed sites

bins Number of recombination bins to use. Default value is 0. Mandatory
only if recomb=TRUE

test Which test to perform. Options include: standardMK, FWW, DGRP,
asymptoticMK, iMK. Default value is standard MK

xlow Lower DAF limit for asymptotic alpha fit and estimation. Default value
is0

xhigh Higher limit for asymptotic alpha fit and estimation. Default value is 0.9

plot Whether or not to report graphical results. Default value is FALSE

creating a new “concatenated gene” for each population of interest
and performs the test defined, taking advantage of the functions
from the previous category.

The next example shows how to analyze a subset of D. melanogaster
genes using the loadPopFly() and the PopFlyAnalysis() functions.
Following the example presented in the 3.1.53. Testing evolutionary
hypotheses using PopFly section, focused on the nht gene, here we
focus the analysis on the gene group to which it belongs. Genes
involved in sexual reproduction processes are a good target for being
under adaptive evolution due to their direct implication in the evo-
lutionary outcome of the species. In this regard, here we analyze the
five genes from the Testis-specific TBP-associated factors (tTAFs)
gene group: cannonball, meiosis I arrest, no hitter, spermatocyte ar-
rest and TBP-associated factor 30kD subunit a-2. These are paralogs
of the generally expressed TAF subunits of transcription factor IID
(TFIID). They are predominantly localized to spermatocyte nucleoli
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and regulate the transcription of genes necessary for spermatocyte
entry into meiosis. This gene group has been compiled by FlyBase
curators using the following publications: Metcalf & Wassarman
(2007), Chen et al. (2005), Hiller et al. (2004), Tora (2002), Aoyagi
& Wassarman (2000).

Moreover, we use the two D. melanogaster populations from PopFly
with largest sample sizes: RAL, Raleigh, USA, (n = 205) and
Z1, Zambia, (n = 197). These populations have very different de-
mographic histories and are subject to distinctive environmental
pressures in the present. Hence, comparing both would allow assess-
ing if any signal of adaptation is shared among all individuals of this
species or, on the contrary, is specific of a certain geographic region
with its associated conditions.

Here we do not consider genes’ recombination context, as we are
analyzing only five genes and therefore, it would mot make sense
to split them in recombination bins. We use the DGRP method
with the default cut-offs (0, 0.05 and 0.1) and the option to display
graphical results set to TRUE (Figure 3.9). The function returns
a list of lists with the default test output (DGRP in this case) for
each population (RAL: Figure 3.10; ZI: Figure 3.11). The output of
the DGRP() function is a list which contains five elements:

e Results: « estimates with their associated p-value from the
Fisher Exact test for each cut-off (0, 0.05 and 0.1).

e Divergence metrics: list with global divergence metrics (K4,
Kg, w) and divergence-based estimates by cut-off (wa, wp).

o MKT tables: 2x2 contingency tables containing the number of
polymorphic sites for neutral and selected functional classes
below and above each cut-off (P, P;) together with the original
MKT table with the number of polymorphic and divergent
(Do, D;).

e Fractions: fractions of functional sites under purifying selection
(d: strongly deleterious, f: neutral and b: weakly deleterious).

e Graphs: two graphical results: (i) a estimates for each cut-off
and (ii) fractions of sites under purifying selection.
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## List of genes

> mygenes <- c("FBgn0011569","FBgn0014342","FBgn0041103",

## Execute PopFlyAnalysis
> PopFlyAnalysis (genes=mygenes,

"FBgn0002842","FBgn0031623")

pops=c("RAL“ LNZIMY)

recomb=FALSE, test="DGRP", plot=TRUE)
& RAL
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Figure 3.9: Execution of PopFlyAnalysis() and graphical display
of results. First the genes to use are defined and stored in a list named
mygenes. Then the PopFlyAnalysis() function is executed, selecting RAL
and ZI populations, DGRP test, not to use recombination information and
the graphical output activated. The graphs represent (A) the a estimates
for each cut-off and (B) the fractions of sites under purifying selection for

Fragiion 910485

RAL (top) and ZI (bottom) D. melanogaster populations.
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> $‘Population = RAL®
> $‘Population = RAL ‘$Results

alpha.symbol Fishers exact test P-value

> Cutoff = O 0.3795094 0.081388456

> Cutoff = 0.05 0.5160173 0.007687381

> Cutoff = 0.1 0.5284271 0.007019258

> $‘Population = RAL‘$‘Divergence metrics

> $‘Population = RAL‘$‘Divergence metrics ‘$‘Global metrics ¢
Ka Ks omega

> 1 0.0501912 0.1031175 0.486738

> $‘Population = RAL‘$‘Divergence metrics ‘$‘Estimates by

cutoff ¢
omegal.symbol omegaD.symbol
> Cutoff = 0 0.1847216 0.3020163
> Cutoff = 0.05 0.2511652 0.2355727
> Cutoff = 0.1 0.2572055 0.2295324

> $‘Population = RAL ‘$ ‘MKT tables °

> $‘Population = RAL ‘$‘MKT tables ‘$‘Number of segregating
sites by DAF category - Cutoff = 0°¢

> | | DAF.below.cutoff| DAF.above.cutoff |
L —— EESiputituhauiubeh il oty N
> |Neutral class | 0| 33|
> |Selected class | ol 50|

\%

$ ‘Population = RAL ‘$ ‘MKT tables ‘$ ‘Number of segregating
sites by DAF category - Cutoff = 0.05°¢

> | | DAF.below.cutoff| DAF.above.cutoff|
> |i-mmmmm - | === I il B
> |Neutral class | 14| 19|
> |Selected class | 32| 18]

A\

$‘Population = RAL ‘$ ‘MKT tables ‘$‘Number of segregating
sites by DAF category - Cutoff = 0.1°¢

> | | DAF.below.cutoff| DAF.above.cutoff |
> |i-mmmmmm - it s
> |Neutral class | 15| 18|
> |Selected class | 35| 15|

> $‘Population = RAL ‘$ ‘MKT tables ‘$‘MKT standard table®
> | Polymorphism| Divergence|l

> |i-mmmmmm e - - :

> |Neutral class | 33| 86 |

> |Selected class | 501 210

> $‘Population = RAL ‘$Fractions

0 0.05 0.1
d 0.6979837 0.69926494 0.69633630
f 0.3020163 0.23557274 0.22953242
b 0.0000000 0.06516231 0.07413128

vV V VvV

Figure 3.10: Output of PopFlyAnalysis() for RAL population
and DGRP correction. The output includes (i) the « and Fisher exact
test p-value estimates for each cut-off, (ii) a battery of divergence-based
metrics, (iii) the diverse MKT 2x2 contingency tables, and (iv) the fractions
of sites under purifying selection.
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> $‘Population = ZI*
> $‘Population = ZI‘$Results

alpha.symbol Fishers exact test P-value

> Cutoff = 0 0.5637718 6.819912e-05

> Cutoff = 0.05 0.5910360 2.234582e-05

> Cutoff = 0.1 0.5746775 5.921311e-05

> $‘Population = ZI‘$‘Divergence metrics ¢

> $‘Population = ZI‘$‘Divergence metrics ‘$‘Global metrics
Ka Ks omega

> 1 0.04923518 0.09820359 0.5013583

> $‘Population = ZI‘$‘Divergence metrics ‘$ ‘Estimates by cutoff
omegal.symbol omegaD.symbol

> Cutoff = 0 0.2826516 0.2187066

> Cutoff = 0.05 0.2963208 0.2050375

> Cutoff = 0.1 0.2881193 0.2132390

> $‘Population = ZI‘$‘MKT tables®

> $‘Population = ZI‘$‘MKT tables ‘$ ‘Number of segregating sites
by DAF category - Cutoff = 0°¢

> | | DAF.below.cutoff| DAF.above.cutoff |

> |i-mmmmm - | === I it B

> |Neutral class | ol 731

> |Selected class | ol 80 |

> $‘Population = ZI‘$‘MKT tables ‘$ ‘Number of segregating sites
by DAF category - Cutoff = 0.05°¢

> | | DAF.below.cutoff| DAF.above.cutoff |

> |i-mmmmmm e | === - itk s

> |Neutral class | 47| 26|

> |Selected class | 571 23|

> $‘Population = ZI‘$‘MKT tables ‘$ ‘Number of segregating sites
by DAF category - Cutoff = 0.1°¢

> | | DAF.below.cutoff| DAF.above.cutoff |

> |- | === e B

> |Neutral class | 53| 20 |

> |Selected class | 60| 20|

> $‘Population = ZI‘$‘MKT tables ‘$ ‘MKT standard table‘

> | | Polymorphism| Divergence|

> |i-mmmmmmm e | === e al

> |Neutral class | 731 82|

> |Selected class | 80| 206 |

> $‘Population = ZI‘$Fractions

0 0.05 0.1
d 0.7812934 0.77994519 0.781518080
f 0.2187066 0.20503746 0.213238953
> b 0.0000000 0.01501736 0.005242967

vV Vv

Figure 3.11: Output of PopFlyAnalysis() for ZI population and
DGRP correction. The output includes (i) the o and Fisher exact test
p-value estimates for each cut-off, (ii) a battery of divergence-based metrics,
(iii) the diverse MKT 2x2 contingency tables, and (iv) the fractions of sites
under purifying selection.
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Results support the hypothesis that this set of five genes is under
recurrent adaptive evolution in both populations, but adaptation
metrics are slightly higher in the African population than in the
American one (agar ~ 0.52 and az; ~ 0.58).

Specifically, RAL samples (Figure 3.9, 3.10) appear to be affected
by a large fraction of weakly deleterious mutations (b ~ 0.07) which
causes the underestimation of « in the Standard MKT (« = 0.3795;
p—wvalue = 0.081). When slightly deleterious mutations are removed
using the DGRP test, a estimates increase up to o ~ 0.52, with an
associated Fisher p — value ~ 0.007. The three MKT tables with
the number of polymorphic sites below and above the cut-off show
that 60% of sites from the selected class have a DAF < 5%, and
70% of them have DAF < 10%, whereas only ~ 45% of neutral sites
are below this frequency cut-offs.

On the other hand, African samples from the ZI population (Figure
3.9, 3.11) do not carry such a large fraction of weakly deleterious mu-
tations (b ~ 0.01) and therefore, o values are not so underestimated
with the Standard MKT: apigina = 0.5637; p —value = 6.82 x 107°
and aparp 0.05 = 0.5910; p — value = 2.23 x 107°. In fact, using
a cut-off of 0.1 yields to an estimate of a = 0.5747; p — value =
5.92 x 1075, closer to the one obtained with the original test. In this
case, ~ 75% of putatively selected and ~ 70% of neutral sites have
a DAF < 10%, a smaller difference than in the previous situation.

Overall, we detect a positive selection signal in the two populations
analyzed, which are known to be under very different environmental
pressures. Hence, we can conclude that (i) these 5 genes as a whole
have been under recurrent positive selection in D. melanogaster since
the speciation time between this species and D. simulans, and that
(ii) sexual selection in Drosophila is orthogonal to environmental
variables. In addition, the fraction of slightly deleterious mutations
is larger in the New World population (RAL) as expected, due to
its demographic history influenced by a population bottleneck prior
to a population expansion (Stephan & Li 2007). The latter may
explain the observed results on which apar < az;g.
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3.3 Population genomics analyses in

Drosophila melanogaster

PopFly stores the broadest catalog of population genetics metrics
computed in D. melanogaster so far, with information about 30
worldwide wild-derived natural populations and 6 meta-populations
covering all continents where this species inhabits (Table 2.1 and
Table 2.2). Population genomics analyses over this data set would
allow obtaining a global description of genetic variation patterns
and assessing the major determinants of genome evolution in dif-
ferent populations of this model organism, which live under diverse
environmental conditions and have different demographic histories.
Thus, this huge population genetics comparative would enlighten
our knowledge about how evolution works at the molecular level and
which are the major forces causing the evolutionary change.

Figure 3.12 represents the phylogenetic tree reconstruction for DGN
genome data based on Fsr values retrieved from Lack et al. (2016).
Results show a clear division in the overall data set, with two
main groups corresponding to African (ancestral) and non-African
(colonizer) populations which are highly differentiated among them
(Fsr > 0.18 in all pair-to-pair comparisons).

As expected, populations belonging to the same country are clus-
tered together (South Africa: SD, SP; Ethiopia: EA, EF; United
States: RAL, USI, USW). Surprisingly, the Egypt population (EG)
falls within the non-African cluster, even though it is an African
population. This could be due to the fact that the Sahara desert
acts as a natural barrier which separates both African regions, caus-
ing higher genetic differentiation between North and South Africa
populations than between North Africa and European populations.
Therefore, based on our results and following Lack et al. (2016)
proposal, we decided to group Egypt together with France (FR)
and The Netherlands (NTH) populations in Europe/North Africa
meta-population.

It is also remarkable that China population (CHB) appears to be
the most differentiated population among the colonizer ones, and
the fact that Australia population is genetically closer to American
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Figure 3.12: Phylogenetic tree reconstruction from Fgsp values.
Fs7 values between pairs of 15 different populations retrieved from Lack
et al. (2016). Values were averaged across chromosome arms X, 2L, 2R,
3L, and 3R, each of which was analyzed using inversion-free genomes only.
AUS: Australia, CHB: China, CO: Congo, EA: Ethiopia, EF: Ethiopia,
EG: Egypt, FR: France, NTH: Netherlands, RG: Rwanda, RAL: United
States, SD: South Africa, SP: South Africa, USI: United States, USW:
United States, ZI: Zambia.
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than Asian populations.

Regarding the African cluster, Rwanda population (RG) seems to
be closer to Southern than Equatorial Africa populations, although
geographically it is more proximal to the second group. Again,
geographical barriers causing the suppression of genetic exchange
among populations may explain the observed unexpected genetic
differences. However, we included this population into the Equatorial
Africa meta-population, following Lack et al. (2016).

Finally, America and Southern Africa meta-populations composition
is supported by the clustering of the corresponding populations in
the reconstructed tree without any disagreement.

The following sections include global descriptions of genome-wide
patterns of nucleotide variation, divergence and historical recom-
bination, summaries of adaptation metrics estimated using diverse
MKT-derived methods, and the identification and characterization
of the determinants of genome variation.

In order to provide a general picture of the genetic variation land-
scape in D. melanogaster genome the population genetics analyses are
focused on the 6 previously described meta-populations (Asia, Ocea-
nia, America, Europe/North Africa, Equatorial Africa and Southern
Africa), using as units of analysis both 50 kb non-overlapping win-
dows and gene-based metrics.

3.3.1 Genome-wide polymorphism and divergence
patterns
For the description of genome-wide patterns of nucleotide variation

we used nucleotide diversity (7) and divergence (k) with both D.
stmulans and D. yakuba outgroup species.

Nucleotide diversity

Polymorphism (7) values along the genome, estimated in 50 kb
non-overlapping windows are shown in Figure 3.13. The distribution
of 7 values across each chromosome arm follows a similar pattern in
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the diverse meta-populations analyzed.

All they show a reduction of diversity around the centromeric and
telomeric regions of the autosomes. This reduction is gradual in the
centromeric region, spanning several kilobases from the centromere
at both arms, and more pronounced in chromosome 3 than 2 and
in the left arm than in the right one. Besides, in the telomere the
reduction of polymorphism is sharp and only spans few kilobases.
Chromosome X behaves differentially to autosomes. In this case,
there is a decrease of variability in the telomeric region which spans
few kilobases and then gets stabilized, but we do not observe any
reduction of diversity in the centromeric region.

Table 3.6 shows the 7 values estimated for each meta-population
considering the complete euchromatic genome, only autosomes, X
chromosome and each autosomic chromosome arm separately. More-
over, since male individuals only carry one X chromosome for every
two of each autosomes (ratio 1X:2A) while females carry two of
each (2X:2A), the X/A effective population size is 3/4. Hence, X
polymorphism values must be corrected by a factor of 4/3 in order
to eliminate the difference in effective population sizes and obtain
measures comparable to autosomes.

Nucleotide diversity estimates show a decrease of variability in non-
African meta-populations compared to African ones, consistent with
previous studies (Mackay et al. 2012, Pool et al. 2012, Lack et al.
2015, 2016, Grenier et al. 2015). Considering full-genome, Asia has
the lowest 7 value, followed by Oceania, America and Europe/North
Africa, which have similar polymorphism values (non-significant
differences, Figure 3.14). Besides, African meta-populations exhibit
higher levels of nucleotide diversity. Southern Africa samples have
higher levels of 7 than Equatorial Africa ones, pinpointing the
presence of a latitudinal 7 cline affecting African populations. The
same patterns and differences are also observed when analyzing only
the autosomic chromosomes set.

When the analyses are focused on each chromosome arm indepen-
dently, the differences among meta-populations remain (Figure 3.14).
Results show the same tendency described above: Asia population
has the lowest levels of diversity in any chromosome, African samples
the highest, and the rest of meta-populations are in between.
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Figure 3.14: Summary and comparison of nucleotide diversity (7) estimates. (A) Box plot showing the
distribution of 7 values for the complete genome, only autosomes, each chromosome arm and X chromosome (raw values
and metrics corrected by a factor of 4/3). Values correspond to 50 kb non-overlapping windows covering the euchromatic
sequence. We observe that African populations show higher values than non-African ones in all chromosomes. This tendency
is much more pronounced in the X chromosome.
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Table 3.6: Summary of nucleotide diversity estimates for each
meta-population. Average (and standard deviation) polymorphism val-
ues () estimated for each meta-population regarding the complete genome
(G), all autosomes (A), each chromosome arm independently, the X chro-
mosome and X chromosome scaled by its effective population size; along
with the X chromosome to autosomes ratio using raw and corrected values.

Europe / Equatorial Southern

Asia Oceania America N.Africa Africa Africa
G 0.00426 0.00529 0.00539 0.00535 0.00757 0.00813
n=2,378 (£ 0.00189) (& 0.00221) (& 0.00230) (&£ 0.00237) (& 0.00295) (% 0.00305)
A 0.00459 0.00568 0.00577 0.00578 0.00758 0.00807
n=1,930 (£ 0.00187) (& 0.00219) (4 0000231) (&£ 0.00233) (& 0.00309) (% 0.00319)
2L 0.00480 0.00605 0.00640 0.00682 0.00845 0.00932
n=460 (& 0.00169) (£ 0.00194) (£ 0.00212) (& 0.00219) (£ 0.00291) (£ 0.00277)
2R 0.00470 0.00582 0.00592 0.00556 0.00752 0.00786
n=422 (£ 0.00180) (&£ 0.00216) (&£ 0.00221) (& 0.00212) (& 0.00297) (£ 0.00294)
3L 0.00499 0.00617 0.00608 0.00597 0.00781 0.00819
n=490 (£ 0.00219) (&£ 0.00239) (&£ 0.00246) (& 0.00246) (= 0.00335) (=£ 0.00360)
3R 0.00398 0.00488 0.00489 0.00497 0.00673 0.00711
n=558 (£ 0.00160) (£ 0.00201) (& 0.00215) (& 0.00213) (= 0.00286) (£ 0.00295)
X 0.00288 0.00362 0.00378 0.00347 0.00750 0.00840
n=448 (£ 0.00128) (£ 0.00132) (£ 0.00135) (& 0.00143) (£ 0.00223) (£ 0.00233)
4X/3 0.00384 0.00483 0.00504 0.00462 0.01000 0.01120
(£ 0.00171) (£ 0.00176) (£ 0.00180) (& 0.00191) (&£ 0.00298) (= 0.00311)
X/A 0.6287 0.6368 0.6555 0.5997 0.9892 1.0411
4X/3A 0.8383 0.8491 0.874 0.7996 1.319 1.3882

We also performed pair-wise comparisons using the Wilcoxon rank
sum test (Wilcoxon 1945) correcting p-values with the Holm’s method
(Holm 1979) to identify significant differences comparing: (i) the
ratio between the X chromosome (and 4X/3) and autosomes values,
for each meta-population and, (ii) meta-populations estimates for the
complete genome, autosomes, X chromosome and each chromosome
arm independently. The same tests were applied for divergence and
historical recombination estimates (section 3.3.2. The landscape of
population historical recombination).

The X/A ratio polymorphism estimates (Table 3.6) pinpoint a clear
decrease of X chromosome variability in the non-African populations
compared to autosomes (ratios ~ 1.6 and p < 1076 in all these
comparisons). However, this signal is not present in the ancestral
(African) samples, which have ratios ~ 1 (p > 0.05 for both Equato-
rial and Southern Africa populations). After correcting chromosome
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X values by the X effective population size (4/3), we still observe
this decrease of variability in colonizer populations (ratios ~ 1.2 and
p < 10719), whereas ancestral samples have ratios of ~ 0.7 (and
p < 10716).

Regarding the comparisons between meta-populations, statistical
analyses support the differences explained above. Asia meta-
population shows lower variability than the rest, no matter the
chromosome arm analyzed (all p < 1078). African meta-populations
values are statistically higher than non-African ones (all pair-wise
comparison p-values between African and non-African populations
are p < 107'4), with Southern Africa samples exhibiting more diver-
sity than Equatorial Africa samples (p < 107> for genome, autosomes,
chromosome arm 2L and X chromosome; and p > 0.05 for 2R, 3L
and 3R. Then, Oceania - America comparisons only show statistical
differences in chromosome arm 2L (p = 0.006), but not in the rest
(p > 0.05). Europe/N. Africa - America comparisons show a similar
pattern to the one just described, with differences in 2L chromosome
arm 2L (p = 0.0052) and chromosome X (p = 0.0032) but not in
the rest of comparisons (all p > 0.05). Finally, Europe/N. Africa -
Oceania only show differences in chromosome arm 2L (p = 107%),
with all the rest of comparisons having an associated p > 0.05.

In summary, as global trends we observe higher levels of nucleotide
diversity in African than non-African meta-populations and a clear
decrease of X chromosome polymorphism in colonizer populations,
which remains even after correcting by the X chromosome effective
population size. In addition, we observe that Asia meta-population
presents the lowest values of m, then Oceania, America and Eu-
rope/North Africa meta-populations have intermediate and similar
values and finally, Equatorial Africa and Southern Africa have the
highest variability estimates, with a latitudinal polymorphism cline
(souther the population, higher 7).

Divergence with D. simulans and D. yakuba
Divergence per base-pair (k) metrics considering both D. simulans
and D. yakuba outgroup species computed in 50 kb non-overlapping

windows covering the euchromatic D. melanogaster genome are
shown in Figure 3.15.
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We observe the same pattern no matter the outgroup considered nor
the meta-population analyzed, with a plain distribution of values
along almost all entire chromosome arms and high peaks of divergence
in the centromeric regions. These peaks could be due to (i) a reduced
quality of alignments in these regions producing more sequence errors,
(ii) higher mutation rates in those regions or (iii) higher fixation of
slightly deleterious mutations due to low recombination reducing
the efficiency of selection (Ramia 2015). This effect is much more
notorious in chromosome 2 than in 3. In fact, chromosome arm 3R
shows the weakest signal of increased k in the centromeric region.

We also estimated the Spearman’s correlation coefficient of divergence
between D. melanogaster and both D. simulans and D. yakuba
for all meta-populations and chromosome arms (Supplementary
Figure 7.1). We observe that divergence metrics computed using
both outgroup species show a high positive and very significant
correlation (associated p ~ 0 in all cases) in all meta-populations
and chromosome arms analyzed, with correlation coefficients ranging
from 0.79 to 0.9 for the autosomes and from 0.59 to 0.61 for the X
chromosome metrics, depending on the meta-population.

Table 3.7 shows average and standard deviation nucleotide diver-
gence estimates (k) for each meta-population and genomic region
(complete genome, autosomes, each chromosome arm, X chromo-
some), together with the X chromosome to autosomes ratio. We
observe that divergence levels do not vary between meta-populations
and are slightly higher in the X chromosome than the autosomes.
In addition, estimates of divergence relative to D. yak are ~ 2 times
higher than relative to D. sim, but the same pattern is observed in
both cases, with a similar distribution of divergence in the autosomes
and higher levels in the X chromosome (Figure 3.16). America and
Europe/N. Africa meta-populations show slightly lower levels of
divergence than the rest, and Equatorial Africa is the one with the
highest levels of divergence.

Even though the X/A ratio of divergence seems only slightly higher
than 1 (kx is ~ 1.15 higher than k4 for D. simulans and ~ 1.1
higher for D. yakuba), the observed differences between autosomes
and X chromosome estimates are significant in all meta-populations
and for both outgroup species (p < 10716).

Then, we compared divergence metrics for meta-population. Using
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Figure 3.15: Nucleotide divergence per bp between D. melanogaster and D. simulans and D. yakuba along
the D. melanogaster genome. Nucleotide divergence values estimated in non-overlapping windows of 50 kb covering
the euchromatic X chromosome and 2L, 2R, 3L, and 3R chromosome arms. Light and dark green dots correspond to
divergence relative to D. simlans and D. yakuba, respectively.
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Table 3.7: Summary of divergence per bp (k) estimates for each
meta-population. Average (and standard deviation) values of divergence
(k) with D. simulans and D. yakuba estimated for each meta-population,
along with the X chromosome to autosomes ratio. G: Genome; A: Auto-
somes.

Europe / Equatorial Southern

Asia Oceania  America \pi0n Africa Africa
D. simulans G 0.06743 0.06485 0.06396 0.0633 0.06982 0.06713
: n=2,378 (& 0.04713) (£ 0.03802) (& 0.03678) (£ 0.03421) (& 0.05399) (& 0.04801)
A 0.06492 0.06209 0.0616 0.06062 0.06752 0.06503
n=1,930 (& 0.0486) (& 0.0398) (& 0.03915) (£ 0.03591) (= 0.05504) (& 0.05117)
2L 0.06969 0.06733 0.06536 0.06099 0.06885 0.06227
n=460 (& 0.05334) (£ 0.049) (& 0.04738) (& 0.03133) (& 0.0529) (< 0.03633)
2R 0.07313 0.06899 0.06853 0.06436 0.0758 0.07126
n=422 (4 0.06564) (& 0.05824) (& 0.05705) (& 0.0457) (& 0.06995) (< 0.06237)
3L 0.06514 0.0593 0.0597 0.06365 0.07323 0.07381
n=490 (£ 0.05029) (£ 0.02689) (& 0.02879) (& 0.04612) (& 0.06788) (< 0.07246)
3R 0.05467 0.0551 0.05508 0.05506 0.05515 0.05489
n=558 (& 0.01445) (& 0.01438) (& 0.01429) (& 0.01435) (& 0.01444) (< 0.01438)
X 0.07822 0.07664 0.07411 0.07475 0.07975 0.07617
n=448 (& 0.03838) (& 0.02612) (& 0.02127) (& 0.02235) (& 0.04802) (< 0.02027)
X/A 1.1601 1.1818 1.1587 1.1809 1.1422 1.1346
D. vakuba G 0.13351 0.13121 0.12983 0.12893 0.13622 0.13332
-V n=2,378 (& 0.05562) (£ 0.04872) (& 0.04637) (£ 0.04345) (& 0.0629) (& 0.05713)
A 0.13061 0.12795 0.12709 0.12582 0.13379 0.1308
n=1,930 (& 0.05789) (£ 0.05097) (& 0.04947) (< 0.04586) (= 0.06571) (% 0.06051)
2L 0.1392 0.13642 0.13345 0.1289 0.13778 0.13014
n=460 (£ 0.06399) (£ 0.05922) (& 0.05482) (& 0.04097) (& 0.06216) (< 0.04509)
2R 0.13853 0.13436 0.13359 0.12888 0.14184 0.13643
n=422 (£ 0.07429) (£ 0.06654) (& 0.06578) (& 0.05474) (& 0.08062) (< 0.07139)
3L 0.12995 0.12501 0.12516 0.12864 0.14012 0.14052
n=490 (& 0.05525) (& 0.04081) (& 0.0411) (& 0.05312) (& 0.0785) (< 0.08087)
3R 0.11817 0.11881 0.11883 0.11876 0.11888 0.1186
n=558 (& 0.03363) (& 0.03357) (& 0.0337) (& 0.03357) (& 0.03363) (< 0.03361)
X 0.14602 0.14512 0.14158 0.14224 0.14672 0.14415
n=448 (£ 0.04237) (£ 0.0344) (£ 0.02647) (& 0.02738) (& 0.04764) (< 0.03757)
X/A 1.0937 1.106 1.0905 1.1032 1.0771 1.0812

either D. simulans or D. yakuba as outgroup species, all pair-wise
comparisons of divergence metrics had an associated p > 0.05. Thus,
we do not observe statistically significant differences between popu-
lations, as expected.

Overall, divergence metrics do not vary between meta-populations
and autosomic chromosome arms but are higher in the X chromosome
than in the autosomes. We observed the same pattern using both D.
simulans and D. yakuba outgroup species. However, K pyqx metrics
are ~ 2 times higher than Kp;,, because of the speciation time
between D. melanogaster and each of these species.
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3.3.2 The landscape of population historical

recombination

The rate of population-scaled historical recombination per base-
pair (p/bp) for autosomes and the X chromosome (pq = 2 N, r
and pxy = 8/3 N, r, respectively) is represented in Figure 3.17.
Metrics were estimated in 50 kb non-overlapping windows along the
euchromatic genome of D. melanogaster.

We observe a clear decrease of p in all centromeric and telomeric
regions of the autosomes, similar to the one observed for nucleotide
diversity (7) and consistent with Chan et al. (2012) results and other
recombination rate estimates such as Fiston-Lavier et al. (2010) and
Comeron et al. (2012). The comparison to previous estimates of
recombination in D. melanogaster is addressed in the next chapter
(Discussion) of this work.

The pattern is variable between meta-populations, but there are
some similar trends and regions with increased rates of recombination
(e.g., in the middle area of chromosome arm 2L there is a clear peak
of high p shared between Oceania and America meta-populations
which is also observed in other populations but with a weaker signal).
Surprisingly, Asia estimates show a high rate of dispersion, with
extremely high and low values distributed along the genome, but
the decrease of p in the telomeric and centromeric regions is also
visible. Besides, the X chromosome shows a drastic decrease of p at
both centromeric regions and a hilly distribution of recombination
estimates along its middle region.

Table 3.8 shows average (and SD) p metrics estimated for each
meta-population. Regarding full genome estimates, we observe
that p Asia < p Oceania < p America < p Europe/N.Africa <
p Equatorial Africa < p SouthernAfrica. However, this order
is not maintained in all chromosomes. Equatorial Africa shows
higher values for each autosomic chromosome arm than Southern
Africa, but X chromosome estimates in the Southern Africa meta-
population are extremely higher than in the rest. In addition, there
are certain situations in which the order stated above is changed, such
as chromosome arm 2L where p Asia > p Oceania and p America >
p Europe/N.Africa. Again, we observe a high dispersion of Asia
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Figure 3.17: Population-scaled historical recombination rate (p) patterns along the D. melanogaster

genome.

Recombination values estimated in non-

overlapping windows of 50 kb covering the euchromatic X chro-

mosome and 2L, 2R, 3L, and 3R chromosome arms. The dashed lines correspond to the mean genome p values of each
meta-population. Note that the Y-axis scale is different for each analyzed meta-population. We observe that in all
populations except Asia there is an increase of p in the X chromosome relative to the autosomes.
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Table 3.8: Summary of historical recombination rate esti-
mates for each meta-population. Average (and standard deviation)
population-scaled historical recombination rate (p) estimated for each
meta-population, along with the X chromosome to autosomes ratio.

Asia Oceania America Europe / Equatorial Southern

N.Africa Africa Africa
G 0.00769 0.00883 0.01452 0.01523 0.05429 0.05548
n=2,378 (£ 0.01366) (£ 0.00888) (& 0.01099) (& 0.01103) (= 0.04536) (=& 0.06573)
A 0.00796 0.00836 0.01425 0.01442 0.04747 0.03663
n=1,930 (£ 0.01396) (£ 0.00807) (&£ 0.01056) (& 0.00991) (&£ 0.03821) (=& 0.02784)
2L 0.0101 0.00933 0.01484 0.01361 0.05136 0.04519
n=460 (£ 0.01415) (& 0.00928) (& 0.01046) (& 0.00871) (&£ 0.03923) (= 0.02862)
2R 0.00688 0.00829 0.01549 0.01455 0.04981 0.03708
n=422 (£ 0.00687) (& 0.00784) (& 0.01096) (£ 0.0099) (£ 0.03736) (= 0.02347)
3L 0.00761 0.00857 0.01484 0.01639 0.05632 0.04278
n=490 (& 0.01421) (& 0.00769) (& 0.01069) (£ 0.0115) (&£ 0.04489) (= 0.03576)
3R 0.00733 0.00743 0.0123 0.01327 0.03473 0.02385
n=558 (& 0.01708) (& 0.00738) (& 0.00997) (& 0.00908) (&£ 0.02674) (= 0.01454)
X 0.0059 0.01191 0.01629 0.02045 0.09834 0.17727
n=448 (£ 0.01139) (& 0.01252) (& 0.01335) (& 0.01555) (&£ 0.06073) (% 0.10062)
X/A 0.7785 1.32 1.1133 1.3144 1.7236 2.8081

estimates, with SD values much higher than expected (SD > mean
in all chromosomes). This effect is extreme in the chromosome
arm 3R (mean = 0.00733 and SD = 0.01708). Results are also
graphically displayed in Figure 3.18.

The X/A ratio follows the same pattern described for the complete
genome estimates, but Oceania > America. It is lower than 1
for Asia meta-population (0.7785, p = 107Y), very similar to 1
for America (p = 0.052), between 1.3 and 2 for Oceania (1.32,
p = 107%), Europe/N.Africa (1.3144, p = 10~!3) and Equatorial
Africa (1.7236, p < 10716) and extremely high for Southern Africa
(2.8081, p < 10716).

When analyzing p metrics for each chromosome arm independently
(Figure 3.18), we observe the same pattern described above, with
higher rates in African populations. This effect is much more pro-
nounced in the X chromosome. In addition, we observe that African
samples show higher rates of dispersion than do non-African ones.
All pair-wise comparisons using either complete genome or auto-
somes estimates have an associate p < 10716 except the comparisons
America (AM) - Europe/N. Africa (ENA) (p = 0.00269 and p = 0.21,
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Figure 3.18: Summary and comparison of population-scaled historical recombination rate (p) estimates.
Box plot showing the distribution of p values for the complete genome, autosomes, each chromosome arm and X chromosome.
Values correspond to 50 kb non-overlapping windows covering the euchromatic sequence. We observe that African populations
show higher values than non-African ones in all chromosomes. This tendency is much more pronounced in the X chromosome.
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respectively) and Equatorial Africa (EQA) - Southern Africa (SA)
(p = 0.00034 and p = 10715, respectively). For chromosome arm
2L, all comparisons have p < 10716 except Australia (AUS) - Asia
(CHB), America - Europe/N. Africa and Equatorial Africa - South-
ern Africa (p > 0.05). The same trend is maintained in the rest of
chromosomes, with all p < 10716 except: AUS - CHB (p = 0.011),
AM - ENA (p = 0.328), EQA - SA (p = 10°) for chromosome arm
2R; AUS - CHB (p = 107?), AM - ENA (p = 0.042), EQA - SA
(p = 1075) for chromosome arm 3L; AM - ENA (p = 0.0068), EQA -
SA (p = 107'2) for chromosome arm 3R and; AUS - AM (p = 1077),
AM - ENA (p = 1075) for X chromosome.

Overall, we observe that African meta-populations show higher rates
of historical recombination than do non-African ones, and that X
chromosome estimates are much higher than autosomes values for
these populations specifically. Non-African populations show similar
p rates, with Asia samples presenting the lowest estimates and a
X/A ratio lower than one, while the rest of populations have rates
higher than 1.

3.3.3 Detection of positive and purifying selection in

the Drosophila genome

Adaptation metrics presented in this section were estimated
for 13,753 protein-coding genes annotated in the reference D.
melanogaster genome and using D. simulans as outgroup species,
because of the higher quality of this genome compared to the D.
yakuba genome sequence (Hu et al. 2013). The section is divided
in three parts: (i) comparative analysis of four MKT methods at
the single-gene level; (ii) genome-scale estimates of adaptive evolu-
tion and; (iii) quantifying the fraction of purifying selection in the
genome.

Briefly, the first and second parts show the estimates of positive
selection both (i) at the single gene level and (ii) at the genomic
scale. So first, we estimated the fraction of adaptive substitutions
(a) for each single protein coding gene using four tests derived from
the McDonald and Kreitman Test (MKT, McDonald & Kreitman
1991) and polymorphism and divergence genomic data from the
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RAL (Raleigh) North American population (n = 205, the population
with the largest sample size available in the DGN data). Second,
we analyzed the adaptation rate of the six D. melanogaster meta-
populations considering the complete set of genes as a whole and
using again all four MKT methods.

Then, the third part focuses on the detection of negative selec-
tion at the genomic scale. We estimated the fraction of functional
sites which are strongly deleterious (d), weakly deleterious (b) and
effectively neutral (f) using two of these methods (DGRP correction
and integrative MKT), which allowed to quantify the abundance of
purifying selection in the D. melanogaster genome.

i. Comparative analysis of four MKT methods at the

single-gene level

We estimated « for each single protein coding gene using the Standard
MKT (McDonald & Kreitman 1991), FWW correction (Fay et al.
2001), DGRP correction (Mackay et al. 2012) and the Asymptotic
MKT (Messer & Petrov 2013) (forcing the exponential model fit).
We used non-synonymous coding sites (0-fold) as the non-neutral
class (i), and synonymous coding sites (4-fold) as neutral (0).

o Standard MKT: in order to remove non-informative o values
of 1 and —oo from the analysis, we only considered the 11,005
genes (80% of the initial set) that have at least one neutral
polymorphic site (P) and one non-synonymous divergent site
(D;), even though a fraction of them lack variability enough
to have power to be detected statistically. Results show a & =
—1.275 (£3.956) among the 11,005 analyzable genes. There
are 739 genes with « positive and p < 0.05 (p determined with
a Fisher exact test, Fisher 1922) with a & = 0.789 (£0.138).

o FWW correction: we estimated « using the following cut-offs:
0.025, 0.075, 0.125, 0.175, 0.225, 0.275 and 0.325. Table 3.9
shows the number of genes available to be analyzed using each
cutoff. We observe that « increases as it does the cut-off,
but the number of analyzable genes decreases because we are
removing polymorphic sites from the analysis, which leads to
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lower number of genes with enough segregating positions to
be analyzed and a decrease of the test power. We obtain the
highest number of genes with positive o and p < 0.05 using
a cut-off of 0.025, with a total of 1,039 genes (@ = 0.861;
+0.123).

DGRP correction: we used the same cut-offs as in the FWW
correction. Table 3.10 shows the number of genes available to
be analyzed using each cutoff. As this method does not remove
polymorphic sites but only classifies them in two categories
according to the established cut-off (below and over), the
number of genes available to be analyzed does not decrease
while increasing the cut-off. Indeed, all 11,005 genes analyzable
in the Standard MKT are also analyzable with this method
using any cut-off. In addition, the number of genes with
positive a and p < 0.05 is higher than in the FWW correction.
Again, we observe the highest number of positive and significant
genes using a cut-off of 0.025, with a total of 1,102 genes
(@ = 0.819; +0.130).

Asymptotic MKT: only 236 genes are analyzable with the
asymptotic MKT when the exponential fitting is forced. This
happens because the method requires a minimum of polymor-
phic sites segregating at different DAF categories in order to
estimate «, and many genes do not accomplish this require-
ment. Out of the 236 analyzable genes, 35 are significant and
positive, with a @ = 0.774 (£0.198). Genes are considered
significant if the CI interval of the o estimate does not include
the 0. Only polymorphic sites in the DAF range between 0 and
0.9 are used to avoid a bias in the « estimates, as suggested
by Haller & Messer (2017).

Table 3.11 shows the « values obtained for the 236 genes analyzable
by the asymptotic MKT using the other methods. Because we only
used polymorphisms in the DAF range between 0 and 0.9 to estimate
a with the asymptotic MKT, we analyzed this set of genes using
the same polymorphism DAF range in the other tests. In this case,
FWW test allows estimating positive « values with p < 0.05 for
more than 80 genes, an increase of ~ 2.3 fold with respect to the
asymptotic MKT. In addition, « estimates are higher with this
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method. We observe a clear increase of the number of genes with
positive estimates and p < 0.05 using the DGRP correction when
increasing the cut-off from 5% to 15%, even though it yields to lower
« values. Also, using the DGRP correction and the cut-off set at
15%, we obtain a number of genes with o > 0 and p < 0.05 similar
to the FWW correction. Finally, the standard MKT leads to the
lowest « estimates and number of genes with positive a and p < 0.05
among the 236 genes analyzed in this case.

Overall, the DGRP correction is the method that performed the best
for detecting positive selection at the single-gene level. Contrary to
other methods such as the FWW or the asymptotic MKT, on which
some genes are not analyzable, this correction allows estimating «
in the same number of genes than the Standard MKT. In addition,
it detects the highest number of genes with positive a values and
p < 0.05. Specifically, setting the cut-off at ~ 5% provides the best
results. FWW correction also performs well, but the loss of power
can be very dramatic if data has a large fraction of low frequency
variants. Finally, the asymptotic approach is not meant to be used
for single-gene analyses, as it requires a huge amount of polymorphic
sites at different frequencies to perform. However, in the cases it can
be applied, this method provides the highest unbiased a estimates.

Table 3.9: Genes analyzed by FWW method. Number of analyzable
genes together with their summary adaptation metrics for each cut-off.

Cut-off ar(ilel;fls(id a mean (+ SD) Sne(;l?osfé()%()g a mean (+ SD)
0 11005 1.275 (£ 3.956) 739 0.789 (£ 0.138)
0.025 10249 -0.215 (£ 2.559) 1039 0.861 (£ 0.123)
0.075 9930 -0.043 (+ 2.191) 996 0.876 (£ 0.119)
0.125 9722 0.048 (£ 1.855) 929 0.883 (£ 0.113)
0.175 9545 0.100 (£ 1.732) 881 0.887 (£ 0.114)
0.225 9377 0.140 (£ 1.701) 831 0.891 (£ 0.112)
0.275 9214 0.179 (£ 1.616) 774 0.901 (£ 0.104)
0.325 9042 0.207 (£ 1.576) 724 0.905 (£ 0.105)
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Table 3.10: Genes analyzed by DGRP method. Number of analyz-
able genes and their summary adaptation metrics for each cut-off.

Cut-off aliﬁ;zez q © mean (£ SD) ffg;sjo%og « mean (+ SD)
0 11005 1.275 (£ 3.956) 739 0.789 (£ 0.138)
0.025 11005 -0.735 (£ 3.615) 1102 0.819 (+ 0.130)
0.075 11005 -0.779 (£ 3.708) 1056 0.816 (£ 0.131)
0.125 11005  -0.809 (& 3.693) 1011 0.814 (£ 0.130)
0.175 11005 -0.837 (£ 3.631) 989 0.810 (£ 0.132)
0.225 11005 -0.860 (+ 3.605) 974 0.808 (£ 0.132)
0.275 11005 -0.896 (£ 3.669) 948 0.804 (£ 0.134)
0.325 11005 -0.918 (+ 3.661) 928 0.803 (£ 0.134)

Table 3.11: Genes analyzed by Asymptotic MKT. Adaptation met-
rics of the 236 genes analyzable using the asymptotic MKT method com-
puted with standard MKT, DGRP and FWW corrections.

Asymptotic Standard DGRP DGRP FWW FWW
MKT MKT 0.05 0.15 0.05 0.15

Mean 0.774 0.714 0.773 0.763 0.817 0.840
(+ SD) (+£0.198)  (£0.139) (& 0.139) (£ 0.150 (+ 0.167) (& 0.165)
a >0 and
p <0.05

35 14 18 83 84 81

ii. Genome-scale estimates of adaptive evolution

Here we compare « estimates obtained using each of the MKT-
derived methods on the complete set of 13,753 protein-coding genes
for the six D. melanogaster populations.

In detail, polymorphism and divergence metrics of all genes for each
population were grouped together, creating a sort of “concatenated”
gene on which the diverse tests were applied. In these analyses
the number of polymorphic sites is large enough for fitting the
exponential model in the asymptotic MKT. This is true in all cases
except the chromosome arm 3R of the Asian meta-population, on
which the linear fitting is used.

Table 3.12 shows the « estimates for each meta-population con-
sidering genes from: (i) the complete genome, n = 13,753; (ii)
autosomes, n = 11,584; (iii) chromosome arms 2L, n = 2,647; (iv)
9R, n = 2,822; (v) 3L, n = 2,723; (vi) 3R, n = 3,392 and; (vi) X
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chromosome, n = 2,169. Only polymorphic sites with frequencies
in the range [0, 0.9] were used in the asymptotic method, and we
considered a cut-off of 10% in the DGRP and FWW corrections
because polymorphic sites of Asia and Oceania meta-populations
were classified only in 10 DAF categories due to the low number of
samples that they include (18 and 15 individuals, respectively). We
are aware that this limitation of both the data and the method may
cause a slightly underestimation of a in the DGRP correction test,
as we previously demonstrated, but we do not expect any significant
bias which could cause a misinterpretation of the major results.

First, we observe that asymptotic MKT provides the highest esti-
mates of «, followed by FWW and DGRP corrections, while standard
MKT underestimates « in all situations.

Second, results show that differences in adaptation rates between
chromosomes are similar in all meta-populations. Specifically a x >
a 9p > @ o1, > « 31, > « 3r. As shown in Table 3.12, the X /A ratio
is higher than one in all meta-populations and tests. Differences
between X chromosome and autosomes adaptation rates are very
pronounced using the standard MKT (ratios ranging from ~ 1.7 to
~ 2.6) but lower for the methods that account for the presence of
slightly deleterious mutations. Indeed, X/A rates obtained with the
asymptotic MKT are the lowest, but still > 1 (ratios ~ 1.3).

Third, we compared visually the rate of adaptive evolution among
the six D. melanogaster meta-populations using results obtained
with the asymptotic MKT. We observe that Asia shows the lowest
values. Then, Europe / N. Africa, America and Oceania show very
similar rates, with the order of o values varying in each chromosome
arm. In addition, there is also a latitudinal African cline, with
Souther Africa showing higher adaptation rates than Equatorial
Africa meta-populations. This is the same trend observed previously
for nucleotide diversity rates,

In summary, results show that, on average, more than 60% of fixed
differences are adaptive in the genome of D. melanogaster relative
to D. simulans, with « values estimated with the asymptotic MKT
ranging from ~ 0.60 for Asia samples, ~ 0.64 for Oceania, Amer-
ica and Europe / N. Africa meta-populations and up to ~ 0.68
for African individuals (Figure 3.19). In addition, X chromosome
presents higher « values in all cases, ranging from ~ 0.75 to ~ 0.83.
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Table 3.12: Adaptive evolution in the six Drosophila meta-
populations. Adaptation metrics («) for the asymptotic test were esti-
mated using polymorphism values with frequencies between 0 and 0.9. G:
Genome, A: Autosomes; *: linear fitting in the asymptotic MKT.

Europe / Equat. Southern
N. Africa Africa Africa

G Standard 0.44769 0.47783 0.41322 0.40447 0.36683 0.48069
n=13,753 FWW 10%  0.49851 0.55363 0.57125 0.57811 0.62687 0.64212
DGRP 10%  0.49153 0.53664 0.52104 0.51876 0.4910 0.5641
Asymptotic  0.60471 0.64951 0.63514 0.63502 0.68148 0.69083

A Standard 0.37692 0.40602 0.32891 0.32439 0.25753 0.39272
n=11,584 FWW 10%  0.43033 0.49078 0.51094 0.52108 0.56791 0.58181
DGRP 10%  0.42351 0.47167 0.45261 0.45313 0.40934 0.49206
Asymptotic  0.55284  0.60270 0.58562 0.58891 0.63247 0.64255

2L Standard 0.42265 0.46153 0.4118 0.4089 0.34875 0.47703
n=2,647 FWW 10%  0.51498 0.55212 0.56557 0.57152 0.61123 0.62982
DGRP 10%  0.49418 0.53188 0.51902 0.52016 0.48296 0.55606
Asymptotic  0.57223 0.63736 0.62616 0.63961 0.66832 0.67081

2R Standard 0.40423 0.44519 0.37524 0.37121 0.30826 0.42171
n=2,822 FWW 10% 0.51084  0.53463 0.54829 0.55526 0.59608 0.60348
DGRP 10%  0.48711 0.51346 0.49107 0.49399 0.44656 0.51916
Asymptotic  0.59357  0.63180 0.62224 0.61499 0.65645 0.66627

3L Standard 0.37748 0.38951 0.30429 0.29946 0.23705 0.36016
n=2,723 FWW 10%  0.37785 0.48049 0.49469 0.50977 0.56515 0.57709
DGRP 10%  0.37785 0.45989 0.43351 0.4342 0.3957 0.47457
Asymptotic  0.47550 0.59838 0.58052 0.58311 0.62596 0.63144

3R Standard 0.29493 0.3237 0.21572 0.21515 0.13294 0.30783
n=3,392 FWW 10% 0.2945 0.3878 0.42928 0.44571 0.49926 0.51635
DGRP 10%  0.29456 0.37396 0.35919 0.35922 0.30875 0.41666
Asymptotic  0.40496*  0.53683 0.50807 0.51198 0.57952 0.60707

X Standard 0.64498 0.68695 0.66487 0.6335 0.67199 0.72513
n=2,169 FWW 10%  0.69652 0.73905 0.74771 0.7412 0.79458 0.81311
DGRP 10%  0.68543 0.72797 0.72341 0.70841 0.72292 0.76658
Asymptotic  0.75088 0.78094 0.77683 0.76322 0.81907 0.82981

X/A Standard 1.71118 1.69191 2.02143 1.95289 2.60936 1.84643
FWW 10%  1.61857 1.50587 1.4634 1.42243 1.39913 1.39755
DGRP 10% 1.61845 1.54339 1.59831 1.56337 1.76606 1.5579
Asymptotic ~ 1.35818 1.29567 1.3265 1.29597 1.29507 1.29152

Asia Oceania America
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Figure 3.19: Adaptive and purifying selection in six Drosophila
meta-populations using integrative MKT. Graphical representation
of (i) the rate of adaptive evolution («) and the fraction of sites under pu-
rifying selection (d: strongly deleterious, b: weakly deleterious, f: neutral)
estimated using the asymptotic approach iMKT for the six D. melanogaster
meta-populations. Note that values in the Y-axis vary between graphs.
Adaptation metrics are higher in African than in non-African samples, and
Asia meta-populations shows the lowest « estimate. The shaded gray area
in the top graphs corresponds to the fraction of weakly deleterious (b) sites,
which lower the estimate of o at low frequencies in all situations.
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iii. Quantifying the fraction of purifying selection along

the genome

We estimated the fraction of putatively selected sites which are
strongly deleterious (d), weakly deleterious (b) and neutral (f) using
both the DGRP correction and the integrative MKT for the six
D. melanogaster meta-populations. As in the previous section, we
used a cut-off of 10% for the DGRP method due to the limitation
in the number of samples of certain populations, and again, the
chromosome 3R of the Asian population was not analyzable using
the iMKT (data can not fit an exponential model). We considered
again (i) the complete set of genes; (ii) only autosomic genes and;
(iii) each chromosome arm independently (Table 3.13).

The fraction of strongly deleterious sites (d) is very similar in both
methodologies, as it is based in the same theoretical assumption,
but we observe that integrative MKT is able to detect a larger
fraction of weakly deleterious mutations (b) than DGRP. Contrary,
the fraction of neutral sites (f) is larger using the DGRP correction
than the iMKT, maybe because some deleterious variants are wrongly
assigned to be neutral based on their frequency and the arbitrary
cut-off applied in the DGRP test. Probably, a better adjustment of
the frequency cut-off applied in the DGRP method would lead to
estimates closer to the ones obtained with the iMKT.

Here, we focus the description of results obtained using the iMKT
in order to be consequent with the previous and following sections.
Figure 3.19 shows the graphical representation of the integrative
MKT method, with (i) the estimation of o and (ii) the fraction of
sites under purifying selection.

In general, ~ 84 — 87% of sites appear to be strongly deleterious (d),
~ 4 — 7% neutral (f) and ~ 5 — 11% weakly deleterious (b) (Figure
3.19). There are not clear differences between chromosomes, but
chromosome arm 3R shows a larger fraction of slightly deleterious
mutations than the rest in all meta-populations. Regarding the X/A
ratio, in general we do not observe clear differences between sexual
and autosomic chromosomes. However, the fraction of b is slightly
lower in the sexual chromosome in all meta-populations (X/A ratios
~ 0.82 — 0.88) except Asia (1.17345).
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Table 3.13: Purifying selection fractions in the six Drosophila
meta-populations. Again we only considered polymorphism values with
frequencies between 0 and 0.9. G: Genome, A: Autosomes; d: strongly
deleterious; b: weakly deleterious; f: neutral.

Asia Oceania America Europe / Equatorial Southern

N. Africa Africa Africa

G DGRP 10% d 0.87698  0.88061 0.86416 0.86144 0.84661 0.87330
n=13,753 [ 0.11325  0.10594 0.11088 0.11196 0.12331 0.10635
b 0.00976  0.01345 0.02496 0.02659 0.03008 0.02035

iMKT d 0.87698  0.88061 0.86416 0.86144 0.84661 0.87330

[ 0.07061 0.05800 0.05846 0.05661 0.03931 0.03974

b 0.05240  0.06139 0.07738 0.08194 0.11408 0.08696

A DGRP 10% d 0.87765  0.88023 0.86307 0.86137 0.84275 0.87050
n=11,584 f 0.11320  0.10653 0.11169 0.11221 0.12510 0.10831
b 0.00915  0.01324 0.02524 0.02642 0.03215 0.02118

iMKT d 0.87766  0.88023 0.86307 0.86137 0.84275 0.87050

f0.07104  0.05755 0.05828 0.05592 0.04063 0.04073

b 0.05131 0.06222 0.07865 0.08271 0.11662 0.08877

2L DGRP 10% d 0.87793  0.88270 0.86952 0.86739 0.84921 0.87750
n=2,647 f0.10695  0.10197 0.10670 0.10764 0.11972 0.10399
b 0.01512  0.01533 0.02379 0.02496 0.03107 0.01851

iMKT d 0.87793  0.88270 0.86952 0.8674 0.84921 0.87750

f 0.06662  0.05945 0.05883 0.0568 0.04198 0.04048

b 0.05545  0.05784 0.07165 0.0758 0.10881 0.08202

2R DGRP 10% d 0.87828  0.88439 0.86842 0.86784 0.84872 0.87347
n=2,822 f0.10479  0.10138 0.10719 0.10636 0.12103 0.10521
b 0.01693  0.01423 0.02439 0.02580 0.03024 0.02132

iMKT d 0.87827  0.88439 0.86842 0.86784 0.84872 0.87347

[ 0.06429  0.05603 0.05451 0.05490 0.03850 0.04034

b 0.05744  0.05958 0.07707 0.07726 0.11278 0.08619

3L DGRP 10% d 0.88349  0.88241 0.86450 0.86260 0.84509 0.86950
n=2,723 f 0.11644  0.10403 0.11033 0.11097 0.12270 0.10717
b 0.00007  0.01356 0.02517 0.02643 0.03222 0.02334

iMKT d 0.88349  0.88241 0.86450 0.86260 0.84509 0.86950

f0.11023  0.05635 0.05654 0.05325 0.03914 0.04069

b 0.00628  0.06124 0.07895 0.08415 0.11577 0.08981

3R DGRP 10% d 0.86892  0.87081 0.84884 0.84786 0.82780 0.86121
n=3,392 f 0.13116  0.11959 0.12351 0.12421 0.13729 0.11697
b -0.00008  0.00961 0.02765 0.02793 0.03491 0.02182

iMKT d - 0.87081 0.84884 0.84786 0.82780 0.86121

f - 0.05679 0.06357 0.05840 0.04275 0.04105

b - 0.07240 0.08759 0.09374 0.12945 0.09775

X DGRP 10% d 0.87269  0.88532 0.87598 0.86468 0.86758 0.88822
n=2,169 f0.11282  0.09964 0.10235 0.10767 0.11186 0.09492
b 0.01450  0.01504 0.02166 0.02765 0.02056 0.01685

iMKT d 0.87268  0.88533 0.87598 0.86467 0.86758 0.88822

f0.06712  0.06309 0.05938 0.06252 0.03299 0.03462

b 0.06021 0.05157 0.06464 0.07281 0.09943 0.07716

X/A DGRP 10% d 0.99435 1.00578 1.014958 1.00384 1.02946 1.02036
f 099664  0.93532 0.91637 0.95954 0.89416 0.87637

b 1.58469 1.13595 0.85816 1.04655 0.63950 0.79556

iMKT d 0.99432 1.00579 1.01496 1.00383 1.02946 1.02036

[ 0.94482 1.09626 1.01887 1.11803 0.81196 0.84999

b 1.17345  0.82883 0.82187 0.88030 0.85259 0.86921
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Then, when we compare visually the values obtained for each meta-
population we observe that the fraction of strongly deleterious sites
(d) from lowest to highest estimates corresponds to: Equatorial
Africa, Europe / N. Africa, America, Souther Africa, Asia and
Oceania. Then, the fraction of weakly deleterious sites (b) is lower in
Asia, followed by Oceania, America, Europe / N. Africa, Southern
Africa and finally the highest estimate corresponds to Equatorial
Africa samples. Finally, the fraction of neutral sites (f) follows
the opposite pattern than b. This tendency is maintained in all
autosomic arms. However, for the X chromosome Oceania shows a
lower fraction of weakly deleterious variants than Asia (b = 0.05157
and b = 0.06021, respectively).

3.3.4 The effect of recombination and coding density
in the rates of nucleotide variation and

adaptation

One of the major goals of evolutionary biology is the identification
and description of the genomic determinants of nucleotide variation
and, therefore, of molecular evolution. Taking advantage of the
huge amount of genomic information obtained in this work, we
analyzed the relationship between some genomic determinants of
genetic change such as recombination and coding density and
(i) the observed patterns of nucleotide variation at intra- and inter-
species level (polymorphism and divergence, respectively) and (ii)
the rate of adaptive and purifying selection in the D. melanogaster
genome.

We did not analyze the influence of mutation rate (), another well-
known determinant of the rate of genetic variation, because we do
not have the adequate data to do so. The best proxy for the mutation
rate that we can use is the rate of synonymous divergence (kg), but
these estimates are not independent from the levels of divergence (k)
and adaptation («) and therefore, analyzing the correlation between
such variables may lead to highly biased results.

First, we used 100 kb windows-based estimates of population histor-
ical recombination (p), coding density (i.e., the proportion of coding
nucleotides relative to the total number of sites in the window),

141



3. RESULTS

nucleotide diversity (7) and divergence with D. simulans (k) to
analyze the correlations among these parameters.

Figure 3.20 shows the Spearman’s correlation coefficients (Spear-
man 1904) between each pairwise comparison of metrics for each
meta-population considering whole genome data. We observe that
historical recombination is positively correlated with polymorphism
(correlation coefficients between 0.52 for the Oceania population
and 0.77 for the Equatorial Africa meta-population; p < 0.05). and
negatively correlated with divergence (correlation coefficients in the
range from -0.15 to -0.22; p < 0.05). Besides, the correlation coef-
ficients between recombination (p) and divergence (k) pinpoint a
negative association in all populations (coefficients from -0.24 to
-0.11; p < 0.05) except Southern Africa, where we observe a positive
estimate of 0.06, but with an associated p = 0.0486.

Besides, there is a weak and negative correlation between coding
density and 7 (correlation coefficients of -0.07 and -0.09 for Amer-
ica and Southern Africa meta-populations, respectively; p < 0.05)
and a weak and positive correlation between coding density and
divergence (coefficients between 0.08 and 0.09; p < 0.05) for some
meta-populations. Recombination and coding density also show a
positive and weak correlation with coefficients of 0.06 and 0.07 for
Asia and Oceania populations, respectively; p < 0.05. Finally, there
is a negative correlation between polymorphism and divergence rates
(coefficients around -0.4 for non-African populations and somewhat
lower for African populations, with values of -0.27 for Equatorial
Africa and -0.19 for Southern Africa; p < 0.05).

Results regarding each chromosome arm independently can be ac-
cessed at Supplementary Figures 7.2 and 7.3. We observe in every
chromosome the same patterns described for full-genome metrics. In
addition, the distribution of p and 7 values shown in Supplementary
figure 7.2 suggests that an asymptotic model would fit the data better
than a linear one, which highlights the presence of an optimal recom-
bination threshold, as suggested by Mackay et al. (2012), Castellano
et al. (2016) and Barrén (2015). Correlation coefficients between p
and polymorphism in the X chromosome are in general lower than
in the autosomes, but the asymptotic correlation is maintained. We
also observe lower correlation coefficients for the X chromosome than
the autosomes between p and divergence metrics.
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cleotide variation metrics and genome variables. Historical recom-
bination (p), coding density, nucleotide diversity () and divergence with D.
simulans (k) metrics estimated in 100 kb windows for each meta-population.
Correlation coefficients with an associated p > 0.05 are shaded in grey.
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Second, we used gene-based estimates to analyze pairwise correlations
between p, coding density, the rate of adaptive evolution («) and the
fractions of sites under purifying selection (d: strongly deleterious,
b: weakly deleterious, f: neutral).

Specifically, we grouped genes in ten equally sized bins (of 1,375 genes
each) according to (i) recombination and (ii) coding density values
and we applied the integrative MKT on each of these bins to obtain
adaptation metrics. Adaptation and recombination estimates for ten
bins of p and each meta-population can be accessed at Supplementary
table 7.1. The list of bins based on coding density can be accessed
at Supplementary Table 7.2.

Figure 3.21 shows Spearman’s correlation coefficients estimated
using the ten bins according to population recombination (p) for
each meta-population considering the complete set of protein-coding
genes. Results corresponding to coding density bins can be accessed
at Supplementary figure 7.4.

Results show that historical recombination is positively correlated
with both the rate of adaptive evolution (correlation coefficients
between 0.77 for Oceania population and 1 for Europe / North Africa
meta-population; p < 0.05) and the fraction of strongly deleterious
sites (d, coefficients in the range from 0.88 to 0.99; p < 0.05). There
is also a negative correlation between p and the fractions of neutral
(f) and weakly deleterious (b) sites (correlation coefficients from -0.76
t0 -0.92 and from -0.9 to -1, respectively; p < 0.05). We also see that
adaptation («) is positively correlated with d (coefficients from 0.71
to 0.99; p < 0.05) and negatively correlated to f and b (coefficients
from -0.77 to -0.98 and from -0.89 to -0.99, respectively; p < 0.05).
Finally, we observe a strong and negative correlation between d
and f (coefficients in the range from -0.65 to -0.95; p < 0.05) and
between d and b (coefficients from -0.98 to -1; p < 0.05) and a
positive correlation between f and b (coefficients from 0.83 to 0.94;
p < 0.05).

Then, regarding coding density bins, we observe that there are no
correlation coefficients with p < 0.05 and thus we can state that both
parameters are not correlated. Indeed, coding density appears to be
only negatively correlated to the fraction of neutral sites (coefficients
from -0.65 to -0.78; p < 0.05). In the other comparisons using
the proportion of coding sites as one of the parameters we do not
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Figure 3.21: Spearman’s correlation coefficients between adapta-
tion metrics and recombination. Recombination (p), rate of adaptive
evolution («) and fraction of strongly deleterious (d), neutral (f) and
weakly deleterious sites (b) for 13,754 genes grouped in ten bins based
on p estimates for each meta-population. Correlation coefficients with an
associated p > 0.05 are shaded in grey.
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get statistical support (i.e., correlation coefficients with p < 0.05).
Adaptation metrics («) only appear to be negatively correlated with
f in the Asia population (correlation coefficient of -0.77 with a
p = 0.03). Then, we observe the same trend as before regarding the
correlations between the diverse fractions of sites under purifying
selection. In detail, we see a negative correlation between d and both
f and b, with correlation coefficients ranging from -0.77 to -0.93 and
from -0.64 to -0.96, respectively; p < 0.05). Finally, the correlation
between f and b is positive as described above (coefficients of 0.76
for America and Equatorial Africa and 0.87 for Southern Africa
meta-populations; p < 0.05).

Figure 3.22 shows the a and b estimates for each bin of recombina-
tion and coding density. We clearly observe a positive non-linear
correlation between p and « and a negative non-linear correlation
between p and b. Besides, the relationship between coding density
and both metrics does not appear to follow any clear pattern.

Interestingly, p and « metrics follow an asymptotic distribution
(similar to the one observed between p and 7) which again highlights
the presence of an optimal threshold of recombination (r,:) above
which sites segregate independently and therefore the adaptation
rate is not affected by linked selection (Castellano et al. 2016, Casillas
& Barbadilla 2017). Thus, we used an adaptation of the approach
applied to estimate the fraction of b in the integrative MKT, in
order to estimate the reduction in adaptation rate caused by the
Hill-Robertson interference (Lgg;) and the optimal recombination
value (rop) in the six D. melanogaster meta-populations (Table
3.14).

We observe that there are not clear differences between meta-
populations. In detail, Equatorial Africa and America meta-
populations show the largest rate of Ly r; (~ 24%) followed by Asia,
Southern Africa, Europe/N. Africa and Oceania, with rates ranging
from ~ 19.5% to ~ 21.3%. Castellano et al. (2016) found that Ly g;
on the Raleigh North American population (RAL) was on average
27%, an estimate which is somehow close to the value obtained in
this work (24%). On average, results show that Lygr; ~ 22% in
the genome of D. melanogaster, considering all six meta-populations
together.
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3. RESULTS

Table 3.14: Hill-Robertson interference in six D. melanogaster
populations. Results correspond to the complete set of 13,754 protein
coding genes grouped in 10 bins based on p metrics.

Asia  Oceania America Europe / Equatorial Southern

N. Africa Africa Africa
Recombination 60200 00676 0.01463  0.01526 0.07852 0.06529
optimal (7op¢)
Hill-Robertson 1939 (19555  0.24085  0.20969 0.24226 0.21319

Load (LHRi)
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4. Discussion

4.1 Bioinformatics tools for population

genomics

The increasing amount of genomic data available nowadays, caused
by the lowering of the cost and improvement of new sequencing tech-
nologies, requires the continuous development and optimization of
bioinformatics tools able to handle and analyze such information. In
this regard, the implementation of new biologically-oriented software
is constantly growing (Rigden & Fernandez 2017), a tendency that
is not predicted to decelerate in the next years (Li et al. 2016).

Bioinformatics tools might help addressing several steps from data
acquisition, filtering, processing, visualization or analysis to the
final reporting step. This work focuses on the development and
application of two tools for dealing with two of the steps stated
previously: (i) the visualization and (ii) the analysis of genetic data,
both from a population genomics perspective.

Results presented in this work focus on analyses performed using
the Drosophila Genome Nexus project data (DGN, Lack et al. 2015,
2016), but furthermore, the two tools developed during this project
were also applied to human data from the 1000 Genomes Project
(1000GP, Consortium et al. 2015), even that these analyses are
out of the scope of this thesis. Briefly, we first developed PopFly
(Hervas et al. 2017), a population genomics oriented web browser with
information from the DGN project, which lead to the development of
PopHuman, the human population genomics browser (Casillas et al.
2018). Second, we implemented a battery of MKT-derived methods
in an R package named iMKT, which lead to the development of
a web-server that includes all the functionalities from the iMKT
R package. Thus, in the following sections, we first discuss the
strengths and weaknesses of the PopFly novel genome browser and
then we shift to to review the integrative MKT software.
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4.1.1 PopFly: the Drosophila population genomics

browser

With the launch of large-scale sequencing projects such as the DGN
(Lack et al. 2015, 2016) and the 1000GP (Consortium et al. 2015),
the need of tools able to properly store and allow a graphical repre-
sentation of such information has become a pivotal step in population
genetics studies. Indeed, a visual display of the estimated metrics
describing genome-wide variation and selection patterns would allow
gaining a global view and understanding of the evolutionary forces
shaping genome variation.

Genome browsers are precisely designed to face this challenge, and
their development and improvement is continuously growing as the
amount of available sequencing data does too. In the last years, next
generation genome browsers have implemented some novel features
in order to deal with such large data sets, while enhancing the user’s
final experience when using the tool. In this regard, the JBrowse
software (Buels et al. 2016) has emerged as a very valuable tool
for building up custom genome browsers, as it allows a very easy
implementation of the whole framework in a web server, making
all information available and easy to share. Indeed, most species-
specific genome browsers (FlyBase, WormBase or ZFIN) that were
initially based on the GBrowse framework (Stein et al. 2002) are now
shifting to JBrowse (see 1.4.1 Genome browsers: graphical biological
databases), which demonstrates its suitability for dealing with this
type of data.

In addition, web services are becoming a standard protocol for data
exchange and application communication in all knowledge areas,
including biology. However, the problem of how to define the data
exchange format and the application interface is still unsolved. Most
genome browsers (and bioinformatics application platforms in gen-
eral) are gradually moving to cluster servers or cloud environments,
which appears to be an adequate solution to avoid heavy data trans-
mission (Wang et al. 2013). For instance, Ensembl (Flicek et al. 2009)
and JBrowse are actively using Amazon web services to improve the
on-line service; and in the future, we expect that more and more
cloud technologies will provide high performance for the end users.
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Overall, with the development of new sequencing and web technolo-
gies, together with the increasing number of population genomics
projects performed in the last years, genome browsers have become
a key collaboration platform for researchers to share data and to
exchange knowledge (Nielsen et al. 2010). From a population ge-
nomics perspective, the development of specific populations-oriented
genome browsers able to allow an easy retrieval and visualization of
such data is one the major bioinformatics challenges right now.

In this regard, we developed PopFly, a population genomics-oriented
genome browser, based on JBrowse software, that contains a complete
inventory of population genomic parameters estimated from the
Drosophila Genome Nexus data (Lack et al. 2015, 2016).

This browser is designed for the automatic analysis and display of
genetic variation data within and between populations along the
D. melanogaster genome, allowing the visualization and retrieval
of functional annotations, estimates of nucleotide diversity metrics,
linkage disequilibrium statistics, recombination rates, a battery of
neutrality tests, and population differentiation parameters at differ-
ent window sizes through the euchromatic chromosomes. PopFly is
open and freely available at site https://popfly.uab.cat; and it
has been designed to work in the most used web browsers (Chrome,
Firefox, Safari, Microsoft Edge, Internet Explorer and Opera).

This new genome browser is based on a similar instance previously
developed by our group named PopDrowser (Ramia et al. 2011).
The latter was built up as part of the Drosophila Genetic Reference
Panel project (DGRP, Mackay et al. 2012) and it hosts a catalog
of population genomics statistics for one single D. melanogaster
population from Raleigh, North America.

Compared to PopDrowser, PopFly presents two significant advan-
tages. First, data is not limited to a single population. This allows
detecting very recent selective sweeps that have occurred in a single
population, or older selective sweeps shared among a few related
populations, whose detection gives a reinforcement of the time depth
and biology underlying the specific selection signal (Casillas et al.
2018). Second, PopFly is based on JBrowse, whereas PopDrowser is
implemented in a GBrowse framework, the previous genome browser
software version developed by the GMOD community (Stein et al.
2002). While in most existing genome browsers architectures, such
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as GBrowse, the genome is rendered into images on the web-server
and the role of the client is restricted to displaying those images,
JBrowse distributes work between the server and client and therefore
uses significantly less server overhead than previous genome browsers.
Moreover, JBrowse helps to preserve the user’s sense of location by
avoiding discontinuous transitions, offering instead smoothly ani-
mated panning, zooming, navigation, and track selection (Skinner
et al. 2009). This allows PopFly to outperform its previous version in
terms of speed and execution while providing a better user experience
when navigating the site.

In addition, the JBrowse open-source framework nature allowed us
to (i) modify parts of the code to upgrade some built-in functions
and adapt their functionality to the huge amount of data stored in
this server, and (ii) implement new utilities and support resources
to facilitate performing population genetics analyses and retrieving
data (see 3.1.2. Utilities and support resources).

Since its public release on June 2017, the PopFly genome browser
has established as a reference tool for population genetics studies in
D. melanogaster, as supported by the increasing traffic of users it
has experienced since its release (see Boz 4.1). Two key factors have
driven this process: (i) the direct link established from FlyBase to
PopFly (Figure 3.1); and (ii) the announcement of PopFly as the
official repository of the Drosophila Genome Nexus Project through
the DGN principal diffusion channels: DGN main website (http:
//www.johnpool.net/genomes.html) and the Drosophila popula-
tion genomics Google group (https://groups.google.com/forum/
#!forum/drosophila-population-genomics) with 230 members,
created in 2008 and administered since then by Dr. John Pool (head
of the DGN research project).

Currently (August 2018), PopFly has been cited in five scientific
publications. In brief, researchers used PopFly to download sequence
data, analyze nucleotide variation levels or examine adaptation
estimates for genes and regions of interest. Three of these articles
have been already published in high-impact journals (Casillas et al.
2018, Telonis-Scott & Hoffmann 2018, De Castro et al. 2018). The
remaining two (Rech et al. 2018, Da Lage et al. 2018) are still
published in bioRxiv (https://www.biorxiv.org), a free online
archive and distribution service for unpublished preprints in the life
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Box 4.1: PopFly users traffic

PopFly incorporates the Google Analytics functionality that allows tracking
and collecting information of users, sessions, and so on. Since its public
release on June 19, 2016 to August 19, 2018, the summary statistics are:

- A total of 2,758 users (106 users/month), accounting for 4,516 sessions
(173 sessions/month), 6,619 pages (276 pages/month), and an average time
spent of 01:47 minutes per session.

- The most used web browsers to access PopFly are: Chrome (1,604 users,
58.16%); Firefox (675 users, 24.47%); Safari (316 users, 11.46%); Microsoft
Edge (81 users, 2.94%); Internet Explorer (49 users, 1.78%); and Opera
(11 users, 0.4%).

- As shown in Figure 4.1A, the traffic of users is increasing and stabilizing
over time. Note that we observe two peaks of traffic: May/June 2017 (when
the PopFly research paper was initially published on-line) and January
2018 (coinciding with the MSc in Bioinformatics at UAB).

- If we consider only the last 6 months, statistics are: 1,005 users (167
users/month), 1,469 sessions (244 sessions/month) and 1,985 visited pages
(331 pages/month), with an average time of 01:24 minutes per session.
This shows that the increase of traffic is constant and not produced by the
specific events mentioned above.

- Interestingly, geographic statistics (Figure 4.1B, C) show that PopFly is
being accessed from all over the world, with most of its users residing in the
United States of America (31.41% of users), followed by Spain (17.77%),
United Kingdom (9.32%), France (8.63%), and Germany (5.04%).

- Finally, considering the 1,433 users and 1,985 sessions whose origin was
tracked, we observe that users access PopFly from:

e FlyBase: 906 users (63.22%), 1,151 sessions (57.98%), with an average
time of 00:37 minutes per session. FlyBase Beta: 28 users (1.95%),
43 sessions (2.17%), with an average of 01:52 minutes per session.

e DGN diffusion channels: 162 users (11.30%), 310 sessions (15.62%),
with an average time of 03:35 minutes per session.
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Box 4.1: (Cont.) PopFly users traffic
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Figure 4.1: PopFly analytics (A) Sessions per month. We observe
an increase of the number of sessions (and users) over time; (B) Sessions
per country. Note that most sessions (users) are from America, followed
by Europe and Asia; (C) Summary statistics of sessions per country.
With countries sorted based on the number of sessions.
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sciences, operated by Cold Spring Harbor Laboratory, a not-for-profit
research and educational institution.

In summary, the PopFly genome browser works not only as a
database useful for retrieving population genetics information from
this model species, but also as a research tool on which it is possible
to perform population genomic studies and to test evolutionary hy-
potheses (see 3.1.2. Testing evolutionary hypotheses using PopFly).
For these reasons, and based on both the impact of the previous
genome browser developed by our group (PopDrowser), and the
positive reception that PopFly already had from the community,
we hope that this novel browser will become a reference tool in the
Drosophila population genetics field.

What is next?

The current browser implementation has some limitations that should
also be discussed. PopFly’s major deficiency is that it uses the D.
melanogaster reference version 5.57, because the DGN sequence data
was mapped to this specific reference genome sequence. However,
the D. melanogaster reference genome version 6 was released few
years ago (Hoskins et al. 2015), and the newest population genomics
studies in this species are carried out using this new reference. Thus,
it seems clear that the DGN data pipeline and the PopFly browser
itself should also shift to the new reference genome.

Interestingly, using the reference genome version 6 would allow the
integration within PopFly of the huge amount of population genetics
data obtained as part of the European Drosophila Population Ge-
nomics Consortium project (DrosEU; http://droseu.net/). This
is a collaborative consortium of scientists and laboratories interested
in evolutionary genetics and genomics of Drosophila melanogaster,
founded in 2013. Its main objective is to cooperate closely in col-
lecting, generating and analyzing genomic and environmental data
for numerous Drosophila populations across Europe (and beyond).
Our laboratory joined this consortium back at the end of 2016, and
proposed to use PopFly as the project’s main repository. This is
currently and on-going project, but this process would require an
effort and amount of time that could not be covered during the
development of this work.
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Additionally, another improvement that could not be performed yet
but is scheduled to be completed in the future is the incorporation of
multiple Drosophila species within the PopFly’s framework, starting
with the recently published D. simulans largest population genomics
project (Signor et al. 2018). We think that the availability in the same
software of a catalog of population genetics parameters estimated
both in D. melanogaster and in this closely related species would
facilitate and clarify testing more complex evolutionary hypotheses
in Drosophila.

Related to the previous point, the development of PopFly provided
us with the technological infrastructure and knowledge necessary
to build up new genome browsers with data from other organisms.
In this regard, and taking advantage of the huge amount of human
genetic data gathered in the 1000 GP (Consortium et al. 2015),
we decided to develop a novel human-based population genomics
browser, named PopHuman (Casillas et al. 2018) (see Appendiz 7.2).

This new browser allows the interactive visualization and retrieval of
an extensive inventory of population genetics metrics estimated in
non-overlapping windows along the chromosomes and in annotated
genes for all 26 populations of the 1000GP (Casillas et al. 2018). The
genome browser is open and freely accessible at https://pophuman.
uab.cat; and it has been designed in order to work in the most
commonly used web browsers (Chrome, Firefox, Safari, Microsoft
Edge, Internet Explorer and Opera).

4.1.2 Integrative MKT software

A major issue in population genetics has been the accurate detection
of the impact of natural selection along the genome. In this regard,
many tests have been proposed, being the McDonald and Kreitman
Test (Standard MKT, McDonald & Kreitman 1991) the most used
method. Several modifications to the Standard MKT have been
applied over the last years, leading to a battery of MKT-derived
methods, with their own strengths and weaknesses (see 1.2.3. Tests
of selection). However, even the improvements of both the quality
and amount of sequencing data and the theoretical methods applied
to such data, some major questions are still unsolved. First, what
is the best method to quantify both the impact of positive and
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negative selection regimes acting on nucleotide variants? And then,
once the methodological challenge has been solved, we should be
able to address the true evolutionary questions: Which is the real
rate of genome adaptation? Which fraction of the genome is under
purifying selection?

Besides, the improvement of NGS technologies that lead to the se-
quencing of hundreds or even thousands of individuals from the same
species provides us with the necessary data on which to empirically
test evolutionary theoretical hypotheses. The availability of such
datasets increases the request of developing high performance specific
tools able to deal and analyze this information.

In order to face these challenges, we developed the Integrative MKT
(iMKT). Note that iMKT accounts for two different concepts: (i) an
extension of the asymptotic MKT which incorporates the estimators
of the DGRP correction method (Mackay et al. 2012) to estimate
several selection regimes; and (ii) the integration of five MKT de-
rived methods within the same analysis framework: Standard MKT
(McDonald & Kreitman 1991), FWW correction (Fay et al. 2001),
DGRP correction (Mackay et al. 2012), asymptotic MK method
(Messer & Petrov 2013, Haller & Messer 2017), and the new iMKT.

The performance, power and biological interpretation of the novel es-
timators of the fractions of negative selection developed as part of the
iMKT method are discussed in a further section (4.2.3. Prevalence
of weakly deleterious selection and evidence of adaptive selection).
Thus, here the discussion is mainly focused on the technological
development of the iMKT software.

The iMKT analysis framework has been implemented in two tools: an
R package and a web-server. The first tool was completely developed
as part of this thesis while the second one is out of this thesis’
scope, and was developed by other members of our lab. Briefly,
these services allow the user to apply the five MKT derived methods
stated above and obtain results quickly and easily using R on any
machine or through any web browser. Previously, we discussed and
highlighted the importance of both PopFly and PopHuman genome
browsers as central repositories of population genomics estimates
for D. melanogaster and Homo sapiens model species, respectively.
Thus, we decided to provide functionalities to directly link the iMKT
software to both databases, which allows retrieving and analyzing
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population genomics information in a single step, demonstrating the
utility of combining both tools.

The development of the iMKT software was inspired by two projects
that also developed tools able to perform certain MKT methods: (i)
the standard and generalized MKT website (Egea et al. 2008), and
(i) the asymptotic MK service (Haller & Messer 2017).

On the one hand, the standard and generalized MKT website
(http://mkt.uab.cat/mkt/) is a web-server that allows performing
MKTs using custom user data, not only for synonymous and non-
synonymous changes, but also for other classes of regions and/or
several loci. Briefly, the website has three different interfaces: (i)
the standard MKT, where users can analyze several types of sites in
a coding region, (ii) the advanced MKT, where users can compare
two closely linked regions in the genome that can be either coding or
non-coding, and (iii) the multi-locus MKT, where users can analyze
many separate loci in a single multi-locus test (Egea et al. 2008). The
input of this software is a set of nucleotide sequences together with
their corresponding functional annotations, which are then processed
in order to calculate the MKT table and the estimate of the rate
of adaptive evolution. This represents a clear difference compared
to iMKT input, which requires to previously process the data to
obtain the number of polymorphic and divergent sites (see below).
This feature made the standard and generalized MKT web-server
very useful for dealing with sequence data directly retrieved from
GenBank, but it has become inefficient for analyzing large datasets
containing hundreds or even thousands of genomes.

On the other hand, the asymptotic MK web-server (http://
benhaller.com/messerlab/asymptoticMK.html) provides an R-
based implementation of the asymptotic MKT (Messer & Petrov
2013) as a web-based service, but it can also be run at the com-
mand line using curl (a tool for transferring data using various
protocols), or as a local R script (Haller & Messer 2017). In brief,
it allows performing the asymptotic MK method using also user
custom polymorphism and divergence data.

The iMKT software incorporates most functionalities of the standard
and generalized MKT web service (such as the possibility of using not
only synonymous and non-synonymous changes but any classes of
sites as neutral and putatively selected) and the complete framework
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of the asymptotic MKT, together with new developed functions,
within a single unified tool. This allows the execution and comparison
of the results obtained with several MKT-based methods on the same
input data and computational environment, removing the possible
bias caused by the application of different software with their own
assumptions and limitations, and leading to comparable measures
among the tests applied.

Input data and selection of the appropriate MK method

The initial data required to use the iMKT software consists of
two tables (Figure 2.11). The first one includes the number of
polymorphic sites (P) in each derived allele frequency (DAF) category
for both neutral (0) and putatively selected (i) functional classes.
The second table contains the number of divergent (D) and analyzed
(m) sites for each class of sites. The format of input custom data is
adapted from the one used by Haller & Messer (2017).

The number of polymorphic sites and DAF categories of the input
data on which they are distributed determines the appropriate test
to use. We observed that in order to obtain meaningful and unbiased
estimates of a in the asymptotic methods, at least 10 DAF categories
must be provided, but there is not any upper limit. Indeed, the
performance of asymptotic methods depends on a balance between
the number of DAF categories and the number of polymorphic sites
in each of them. The higher both numbers are, the better the
accuracy of these tests.

We are aware that the specificity of the input data format might be
a limitation for some users. The estimation of divergent and poly-
morphic sites (along with their associated derived allele frequencies)
is not a trivial process and requires the application of specific tools,
which could be a limiting factor for using the iMKT software. To
overcome this limitation, we designed and implemented a custom
pipeline for analyzing the DGN and 1000GP data (https://imkt.
uab.cat/population-genetics-pipeline/). The pipeline uses se-
quence alignments (in multiFASTA format) or variation data (in
VCF) for a set of samples and an outgroup species and estimates
the necessary nucleotide variation metrics to generate the iMKT
input data. Currently, we are working on its scalability to any data
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source and its implementation as an on-line functionality in the
iMKT web-server.

Then, we used empirical D. melanogaster and simulated genetic
data (see 3.3.1.i. Comparative analysis of four MKT methods at
the single-gene level) to determine the efficacy of each method in
diverse situations based on the input data and the desired output.
This allowed to design an analysis flowchart which helps deciding
which is the optimal test to perform in every situation (Figure 4.2).

The first factor to consider is whether the input data consists of
a single gene or a set of “concatenated” genes. The concept of
concatenated genes refers to a set of genes that are analyzed as a
whole, counting the number of polymorphic and divergent sites of all
of them together. In general, asymptotic methods are not applicable
on individual gene data. Haller & Messer (2017) demonstrated
the greater power of the asymptotic MK test to estimate the true
value of «, compared to the original non-asymptotic test. However,
they also noticed the need for a large data set to obtain reasonably
accurate results from the asymptotic test, showing that estimates of
a from a single gene, or from a system with a very short divergence
time, are unlikely to be meaningful. Our results also support these
observations. Then, the second factor to take into account is whether
to estimate the fractions of sites under negative selection or not.
Only DGRP and iMKT methods are able to do so.

Within the tests recommended for single gene analysis, the DGRP
correction should be used if there is interest in estimating the purify-
ing selection fractions. If this is not the case, the decision depends on
the distribution of fitness effects (DFE). If it is leptokurtic (L-shaped),
either the standard MKT or the FWW method are recommended,
because leptokurtic distributions have a smaller proportion of poly-
morphisms that are slightly deleterious (Eyre-Walker & Keightley
2007), and it is under this condition that the standard MKT and
the FWW perform the best. Otherwise, the DGRP method should
be used. Besides, for concatenated genes data, if there is interest in
the negative selection fraction, the iMKT should be the first option.
Otherwise, the asymptotic MKT is recommended. In the case that
these methods do not work with the chosen DAF spectrum, the
number of DAF bins used to classify polymorphic sites should be
increased, if possible. Otherwise, the DGRP method should be used.
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Do you want
to estimate the
negative fraction?

Do you want
to estimate the
negative fraction?

HELLELL]
MKT
Could you use
another DAF
frequencyZ

Figure 4.2: iMKT analysis flowchart. Flowchart shapes codes: circle
shape is used to denote a begin. Parallelogram is used to represent input.
The diamond represents a decision question. The squares represent the
final decision. The lines with arrows determine the flow through the chart.

(Figure designed by Jests Murga).
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The iMKT R package

The iMKT R package allows to compute the McDonald and Kreitman
test on polymorphism and divergence genomic data provided by
the user or automatically downloaded from PopFly (Hervas et al.
2017) or PopHuman (Casillas et al. 2018). It includes five MK
derived methodologies, which allow inferring the rate of adaptive
evolution (a) as well as the fraction of strongly deleterious (d),
weakly deleterious (b), and neutral (f) sites.

The package is currently available at https://github.com/
BGD-UAB/iMKT, it requires R environment version >= 3.3 to work,
and its performance has been tested with successful results in the
three major operating systems: Microsoft Windows, GNU /Linux
and Macintosh OS.

The integration of MKT methods in the R framework environment
allows performing fast and reproducible analyses (along with high-
quality graphs) using custom user data. Moreover, it provides the
possibility to be implemented within a larger work-flow allowing,
at the same time, the integration and analysis of diverse layers of
-omics information (ie. genomics, transcriptomics, epigenomics) in
a unified environment. In addition, thanks to R’s commitment to
open-source software, developers can easily incorporate custom new
methodologies into the iMKT framework, as well as contribute to
the main source code (through GitHub’s pull requests), allowing a
continuous upgrade of the tool.

Along this work, we have specifically shown how to use the diverse
functions implemented in the iMKT R package (see 3.2. iMKT: an
R package for the Integrative McDonald and Kreitman Test) and
we have also applied this software to perform a global comparison
of the adaptation rate and negative selection fractions of six D.
melanogaster meta-populations (see 3.3.3. Detection of positive
and purifying selection in the Drosophila genome), demonstrating
the utility of this novel tool for analyzing population genomics
data. Indeed, most tables and graphs shown in these sections were
directly retrieved from the R package output. The discussion of
the estimates of adaptive and purifying selection obtained using the
iMKT is addressed later in this work (4.2.8 Prevalence of purifying
selection and evidence of adaptive evolution).
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Altogether, we expect the iIMKT R package to become a useful tool
for scientists to analyze both their own custom data and two of
the largest population genomics datasets available right now (DGN,
Lack et al. 2015, 2016; 1000GP,Consortium et al. 2015).

What is next?

A major limitation of the iMKT R package right now is that it is
not listed as an official R package in The Comprehensive R Archive
Network (CRAN), which would reinforce its utility and diffusion
while providing an easier way for installing it. Although the package
fulfills the major CRAN requirements, the complete process for
being accepted could not be completed during this thesis due to time
restrictions. However, this action, together with the publication of
the software and analyses performed, is scheduled to be completed
in the near future.

In addition, as discussed previously, web services are the standard
protocol for data exchange and communication. Thus, we also
implemented all functionalities of the iIMKT R package within a web-
server to extend its availability. This work was mainly performed
by other members of our group. The iMKT web server is open and
freely accessible at site https://imkt.uab.cat. Its performance
has been successfully tested in the most used web browsers (Chrome,
Firefox, Safari, Microsoft Edge, Internet Explorer and Opera).

A major strength of this server compared to the R package on
which it is based is that no programming (R) skills are required to
obtain results in both the form of text and graphically (which be
downloaded in a PDF file). In addition, it does not depend on any
software besides a web browser. On the other hand, however, its
performance is reduced compared to the R package because it acts
mainly as a graphical user interface that executes in the back-end the
R functions from the iMKT package. Thus, some time is wasted in
these steps of data traffic and exchange. Additionally, the amount of
machine memory that can be used is limited by the server in which
it is stored, while the R package is only limited by the machine on
which it is executed.

The iMKT web-server home page shows direct links to the following
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four sections:

e MKT custom analysis: upload custom polymorphism and
divergence data files, select the preferred test(s) and get the
results.

e PopFly data analysis: allows selecting genes from the PopFly
database or upload a custom list, then select the population(s)
of interest and perform the desired MK test(s).

e PopHuman data analysis: allows selecting genes from the
PopHuman database or upload a custom list, then select the
population(s) of interest and perform the desired MK test(s).

e Learn more (About): menu with four entries, which are (i)
iMKT R package: explanation and link to download the iMKT
R package to perform the analysis in the user’s local R en-
vironment; (ii) Drosophila and human data: description of
the Drosophila and human data available at iMKT; (iii) Pop-
ulation genetics pipeline: summary of the pipeline developed
and possibility to download it; (iv) MK methodologies: brief
description about how the different MK-derived methodolo-
gies work (Standard MKT, FWW method, DGRP method,
Asymptotic MKT, iMKT).

In addition, it also has a contact section that allows users to make
suggestions and share any issues or questions related to this web
server with the development and maintenance team.

Once published, we expect the iMKT web-server to have a great
reception from the scientific community and become a useful tool
due to its simplicity to use and easy availability.

166



4.2. POPULATION GENOMICS OF DROSOPHILA MELANOGASTER

4.2 Population genomics of Drosophila

melanogaster

In the last years, several population genomics studies in D.
melanogaster have been performed (Langley et al. 2012, Mackay
et al. 2012, Pool et al. 2012, Huang et al. 2014, Grenier et al. 2015,
Kao et al. 2015). These studies included specific analyses of nu-
cleotide variation and adaptation patterns along the genome, and
the assessment of the impact of the major genomic determinants,
like recombination or gene expression, in the establishment of such
patterns; using single or few populations.

However, each of these studies used its own pipeline for processing
genome data and for estimating the inventory of population genetics
parameters necessary to test evolutionary hypotheses, making the
comparison of results from diverse projects very though. To overcome
this challenge, the DGN project compiled all available population
genomic sequencing reads and re-assembled them against a single
common reference genome assembly, using a unified pipeline (Lack
et al. 2015). The DGN consortium performed a very preliminary
analysis of the data, mainly oriented to clarify the genetic structure
of such populations (Lack et al. 2016), but a global population
genomics analysis of the data was still missing.

This thesis faces the challenge: (i) estimating a complete inventory
of population genetics parameters in all available D. melanogaster
populations, and (ii) providing a global description of nucleotide vari-
ation patterns, as well as their major determinants, all around the
globe. Even that most analyses are not new in terms of originality
(e.g., estimating genome-wide patterns of polymorphism or the rate
of adaptive evolution in diverse chromosome arms are routine steps
in population genomics studies), this work is indeed original and new
in the sense that it provides a comprehensive overview and compari-
son of estimates computed using a common approach. Specifically,
metrics are calculated in 30 D. melanogaster world-wide populations
and the analyses were performed in six Drosophila meta-populations.

Nevertheless, we are aware that the analyses presented in this thesis
have some limitations that do not allow us to draw concise conclu-
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sions. First, our main goal here is to provide a general view of the
evolutionary dynamics of genetic variation. Thus, there is still a
need of performing additional and more specific analyses that could
not be covered during the development of this project due to time
constraints. Second, the DGN sequence data is primarily aimed
at SNP-oriented analysis, and aside from inversion calling and the
detection of short insertions/deletions (indels), structural variation
is not addressed (Lack et al. 2016).

Nucleotide variation estimates obtained in this work are somewhat
higher than previous values. There are two possible explanations
for it. First, we are analyzing aggregations of populations, i.e.,
meta-populations, which are composed by samples from diverse
populations. Thus, genetic differences between the populations
may cause an increase in the estimates of nucleotide diversity for
the resulting meta-populations. Second, these differences could be
partially explained by the methodological approach that we used.
We filtered genome sequences to account for heterozygosity (and
“pseudo-heterozygosity” ), admixture and identity by descent (IBD),
re-coding the affected genome regions as “N” and thus, removing
these genome tracks from the analyses. These regions are usually
expected to show lower levels of nucleotide diversity and hence, by
excluding them, the overall estimates are increased. Finally, we
used a subset of samples for each population to estimate the battery
of population genetics parameters, considering only informative
positions (i.e., non-“N”); and ensuring a constant sample size for all
analyzed windows.

4.2.1 Impact of demography on populations

structure

The demographic history of a population leaves a footprint in the
patterns of polymorphism, which could mimic the one produced by
natural selection. For example, a reduction of nucleotide diversity
could be caused either by a population bottleneck or a selective
sweep event (see 1.2.2. Genome-wide signatures of selection). Thus,
understanding the demographic history of a species is an important
requirement to be able to make inferences about how natural selection
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and other evolutionary forces have shaped the genome variation
landscape.

D. melanogaster is a cosmopolitan species that originated from sub-
Saharan Africa. The ancestral Afro-tropical population suffered a
population bottleneck followed by a population expansion about 60
kya, which promoted the fixation of several beneficial mutations
(Stephan & Li 2007, Singh et al. 2012). In addition, the ancestral
population colonized Europe and North America around 19,000 and
200 years ago, respectively, leaving signatures in the genome of local
adaptation (Duchen et al. 2012).

To understand the structure of populations in this species, assess
whether or not this structure is consistent with the species known
demographic history, and justify the analysis of samples at the meta-
population level, we performed a phylogenetic tree reconstruction
using Fs7 values from Lack et al. (2016) (Figure 3.12). Even that
Fsr metrics used here are restricted to inversion-free chromosome
arms, Lack et al. (2015) demonstrated only small and non-statistically
significant effects of inversions on genetic differentiation levels.

Geographic structure is apparent, especially between African (ances-
tral) and non-African (colonizer) populations, with the latter group
showing a common reduced gene pool apparently resulting from past
population bottlenecks (Grenier et al. 2015, Lack et al. 2016).

Regarding the African cluster, Fisp estimates revealed patterns simi-
lar to those of Pool et al. (2012) for these populations. In detail, pop-
ulation differentiation was particularly low among southern African
populations and somewhat elevated among Ethiopian samples, which
showed moderate differentiation from other sub-Saharan samples
probably due to a past bottleneck (Pool et al. 2012, Lack et al. 2015).

In the non-African cluster, populations are structured into several
groups. First, the three populations from America are genetically
very close, with the western population (USW) being more differen-
tiated to the eastern ones (RAL, USI), a pattern previously found
(Caracristi & Schlotterer 2003, Campo et al. 2013). The prevailing
demographic model for D. melanogaster suggests that the coloniza-
tion of North America took place very recently with Europe as the
source of the founder flies (David & Capy 1988). This model implies
a rapid demographic growth involving both population and range ex-
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pansion from eastern to western North America. In addition, recent
studies demonstrated that North American populations have mainly
European but partly African ancestry (Kao et al. 2015, Pool 2015,
Bergland et al. 2016), which is also supported by our phylogenetic
reconstruction (Figure 3.12). The Australia population is genetically
closer to the American than the Asian populations, consistent with
Reinhardt et al. (2014) observations.

The two European populations (FR, NTH) are also grouped together
and show low differentiation among them, as expected (Grenier
et al. 2015). Surprisingly, the Egypt population (EG) falls within
the non-African cluster, even though it is an African population.
This could be explained by the Sahara desert acting as a natural
barrier which separates both African regions, and causing higher
genetic differentiation between North and South Africa populations
than between North Africa and European populations. Thus, we
considered EG together with FR and NTH populations in a single
Europe/North Africa meta-population, as suggested by Lack et al.
(2016).

Finally, some studies have shown that Asian lines are the most
differentiated samples (Schlotterer et al. 2005, Grenier et al. 2015),
and that additional population bottlenecks may have impacted the
China population (Laurent et al. 2011). Our results are in agreement
with an independent migration from Africa to Asia (David et al.
1976, Grenier et al. 2015), as the China population is closer to the
other non-African samples than to the African ones.

4.2.2 Genome-wide nucleotide variation and

recombination patterns

Polymorphism and divergence

Genome-wide molecular population analyses showed that patterns of
polymorphism () differ: (i) among different autosomal regions, and
(ii) between the X chromosome and the autosomes. Polymorphism
is lower in the centromeric and telomeric regions of the autosomes,
and this reduction is gradual and spans several kilobases, while in
chromosome X there is only a small decrease of variability in the
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telomeric region. These patterns are shared among all populations
from this species. On the contrary, the X chromosome has an overall
reduced level of polymorphism in non-African populations, but not
in the African ones. This strong reduction in diversity was previously
reported (Begun & Aquadro 1993, Baudry et al. 2004, Mackay et al.
2012, Langley et al. 2012, Huang et al. 2014, Grenier et al. 2015)
and presumably results from the bottleneck that occurred during
the expansion out of sub-Saharan Africa.

We observe that levels of polymorphism are in agreement with the
populations structure discussed in the previous section. The Asian
population shows the lowest levels of 7 (0.0426), consistent with
previous results (Grenier et al. 2015 found 7 ~ 0.03; and Lack et al.
2016 7 = 0.0401) and with the particular demographic history of this
population, affected by multiple bottlenecks (Laurent et al. 2011).

Then, when comparing the American and European populations,
we observe that American samples show somewhat higher diversity
because of their partial African ancestry (Kao et al. 2015, Pool
2015, Bergland et al. 2016). Indeed, we found a polymorphism level
of m = 0.0539, similar to Mackay et al. (2012) (7 = 0.0531) and
Lack et al. (2016) (7 in the range 0.0511-0.0569). However, the
nucleotide diversity levels estimated for the Europe/North African
meta-population are higher in this work (7 = 0.0535) than in Lack
et al. (2016) (7 in the range 0.0466-0.0495). This is caused by the
aggregation of the Egypt population together with the European
ones, resulting in higher estimates of polymorphism (see above).
The Oceania population shows similar nucleotide diversity levels to
Europe/N. Africa and America, with an average of m = 0.0529 (Lack
et al. 2016, m = 0.0516, Grenier et al. 2015, m ~ 0.04). Finally,
within the African populations, genomic diversity is higher in the
South African meta-population (7 = 0.0813) than in the Equatorial
African one (m = 0.0757), as previously described by Pool et al.
(2012), Lack et al. (2015, 2016).

Besides, nucleotide divergence (k) patterns show high peaks of diver-
gence in the centromeric regions shared by all meta-populations, and
observed using either D. simulans or D. yakuba as outgroup species,
in agreement with the results reported by Mackay et al. (2012),
Langley et al. (2012), Huang et al. (2014). There are at least three
non-exclusive reasons that could explain it: (i) a reduced quality of
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alignments in these regions producing more spurious polymorphisms,
(ii) higher mutation rates in those regions, or (iii) higher fixation of
slightly deleterious mutations due to low recombination reducing the
efficacy of selection (Ramia 2015). The latter possibility is discussed
in following sections. Regarding k between D. melanogaster and
the outgroup species D. simulans and D. yakuba, meta-populations
analyzed in this work showed levels of k in the ranges 0.0633 —0.0698
and 0.128 — 0.136, respectively. Differences among meta-populations
were not statistically significant, as expected. The estimated rates
are in concordance with the ones obtained for the North Ameri-
can population analyzed in the Freeze 2.0 of the DGRP (Huang
et al. 2014), where k was estimated to be 0.062 and 0.1283 using D.
stmulans and D. yakuba outgroup species, respectively.

Recombination

Recombination rate appears to be one major determinant of the levels
of nucleotide variation and adaptation along the genome (discussed
in following sections). Thus, a fine-scale recombination map is a
prerequisite of studies seeking to estimate the influence of natural
selection on the genome. Although the inferences of recombination
and selection used in this work rely on the same data and have the
potential to distort each other, Chan et al. (2012) demonstrated
that their method is robust to the influence of positive selection,
and that in general, p estimates show good agreement with existing
experimental estimates of recombination, such as the one developed
by Comeron et al. (2012).

The p metrics estimated here are also consistent with the recom-
bination rates in cM/Mb by Comeron et al. (2012). Genome-wide
patterns are similar, with a decrease of recombination rates near the
centromeric and telomeric regions of autosomes and at both extremes
of the X chromosome (Figure 3.17). Hitchhiking and background
selection (Charlesworth 1994) in these large regions of reduced re-
combination may also contribute to this relative reduction in values
of p, as noticed by Langley et al. (2012).

In addition, p and recombination rates in cM/Mb show a positive and
significant correlation for all meta-populations analyzed (Figure 4.3).
This association is observed in all chromosome arms independently,
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with correlation coefficients ranging from 0.4 to 0.75 (all with an
associated p < 107!1). For the X chromosome, the correlations
coefficients are: 0.39 for Asia; 0.48 for Oceania; 0.68 for America;
0.69 for Europe/N. Africa; 0.72 for Equatorial Africa; and 0.7 for
Southern Africa (all p < 1079?). However, as we are comparing the
historical recombination rate (p = 4N,r) with recombination rates
in ¢cM/Mb, the correlation coefficients that we obtain are somewhat
moderate.

These results are also consistent with the previously p recombination
map developed by Langley et al. (2012) as part of the Drosophila
Population Genomics Project 1 (DPGP1). Specifically, authors
estimated p using 37 lines of the RAL population and the LDhat
version 2.1 software package (McVean et al. 2004). The LDhat
software was the first robust LD-based recombination rate calculator,
aimed mainly to estimate p using human genetic data. Thus, it has
certain limitations for dealing with high-diversity genetic datasets
such as the ones of D. melanogaster (see Chan et al. (2012) paper
about their new tool LDhelmet, based on LDhat, for a deep discussion
and comparison among both tools).

We also find extensive fine-scale variation across all chromosomes
and meta-populations. The most outstanding difference is the higher
overall recombination rate in African populations compared to non-
African ones, consistent with Chan et al. (2012) results. Because p is
estimated as the composite parameter of r and N., where N, is the
effective population size and r is the (female) rate of recombination
per generation, this difference might be explained (at least partially)
by differences in the effective population size of such data sets (Chan
et al. 2012).

Besides, we observed that recombination rates in the X chromosome
are higher than in the autosomes in all populations except Asia. In
detail, we observe that p estimates for the Asian population are not
consistent with the estimates obtained for the other populations, and
thus, these results must be interpreted with caution. It is possible
that the Asian population actually has lower recombination rates due
to its reduced effective population size and the multiple bottlenecks
experienced by this population. However, we found that the Asian
genome sequences have, on average, lower quality (i.e., they show a
larger fraction of non-informative nucleotides) and extensive genome
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Figure 4.3: Comparison between experimental and computa-
tional recombination maps. Spearman’s rank correlation coefficients
together with their associated p-values. The experimental high-resolution
map estimates correspond to Comeron et al. (2012). Metrics and correlation
are for 100 kb non-overlapping windows covering the complete euchromatic
genome. Note that Y axis scales differ between rows of the plot, but in all
cases we observe a positive and statistically significant correlation.
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regions masked by IBD (Lack et al. 2016), which might bias our
estimates of p.

The higher p values in the X chromosome compared to the autosomes
are much more pronounced in African than non-African populations
(Figure 3.18). There are three possible explanations for the differ-
ences observed between populations, as discussed by Chan et al.
(2012). First, the historical population bottleneck experienced by
non-African populations as part of the out-of-Africa process. The
effect of a population bottleneck on LD is stronger on the X chromo-
some than on the autosomes due to its reduced effective population
size (Wall et al. 2002). Furthermore, Chan et al. (2012) have shown
using simulations that bottlenecks which reduce the N, tend to cause
the LDhelmet method to underestimate the true recombination rate.
Second, the impact of polymorphic inversions may be greater in
African populations, since they have a higher frequency of polymor-
phic inversions in the autosomes and in the X chromosome. Thus,
the increase of African X chromosome recombination rate could be
partially attributed to the effect of polymorphic inversions disturbing
the normal patterns of recombination. Third, as D. melanogaster
males are hemizygous for the X chromosome, deleterious mutations
are more exposed to the action of natural selection, leading to a
more efficient role of selection on the X chromosome compared to
autosomes. This last possibility is discussed later in this work (4.2.5.
The faster-X hypothesis).

So in summary, our p estimates appear to be consistent with both
experimental (Comeron et al. 2012) and LD-based computational
(Langley et al. 2012, Chan et al. 2012) recombination rate maps pre-
viously developed. In addition, they are also in agreement with the
demographic and genetic (i.e., polymorphic inversions frequencies)
histories of the diverse populations. Overall, we can conclude that
our high-resolution p maps may also reflect the pattern of recom-
bination (r) per base pair on even finer resolutions. However, it
remains possible that hitchhiking or other forces may interfere with
local estimates of p.
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4.2.3 Prevalence of purifying selection and evidence

of adaptive evolution

A main observation from population genomics analyses is that adap-
tive and purifying selection is pervasive in the genomes of most
studied species, especially in those with a high N, such as Drosophila.
Briefly, deleterious mutations arise continuously and a large fraction
of segregating sites are undergoing weak deleterious selection, while
adaptive selection is also ubiquitous (Casillas & Barbadilla 2017).

The strength of the diverse selection regimens shaping the patterns of
molecular evolutionary change can be estimated by the comparison
of polymorphism and divergence rates between different classes of
sites. These classes of sites are either assumed to be neutral, or
putatively selected (i.e., the target of selection).

Mutations in 4-fold sites have been tipically considered as a proxy for
neutrality since long (Kimura 1968) and used in major population
genomics studies (Mackay et al. 2012), and so we did in this work.
However, there are a couple of reasons why this type of sites might not
be completely neutral. First, some 4-fold degenerated sites may be in
linkage disequilibrium with non-synonymous strongly selected sites,
thus behaving, in the practice, as being selected. Second, analyses
of the codon usage bias suggested that synonymous mutations could
also be subject to selection (Hershberg & Petrov 2009). In this
regard, Lawrie et al. (2013) estimated that over 20% of mutations in
4-fold positions in D. melanogaster are indeed deleterious and thus,
destined to rapidly disappear. Short intron sites have been shown to
be evolving (nearly) neutrally in Drosophila (Parsch et al. 2010) and
can be used as an alternative proxy for neutrality. Short intron sites
are defined as those sites falling in introns of less than length 86bp,
16bp away from the intron start and 6bp away from the intron end
in order to eliminate any functional sequences at the edges of the
introns (Haddrill et al. 2005, Lawrie et al. 2013).

In this regard, both the already published McDonald and Kreitman-
based tests (McDonald & Kreitman 1991, Fay et al. 2001, Mackay
et al. 2012, Messer & Petrov 2013) and the extended asymptotic
method (integrative MKT) applied along this work have the flexibility
to consider any class of sites as putatively selected and neutral.
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Estimators of the Integrative MKT and the fractions of

sites under purifying selection

Mackay et al. (2012) proposed three novel estimators of the purifying
selection fractions (d: strongly deleterious, b: weakly deleterious,
and f: neutral) as part of the extended MKT method applied in
that project (i.e., DGRP correction). Briefly, the DGRP method
relies on a pre-established derived allele frequency (DAF) cut-off
used to differentiate between neutral and weakly deleterious sites
within the putatively selected class. If this cut-off is not well defined,
it may cause an under- or over-estimation of the number of sites in
any of the two categories, leading to biased « estimates (Campos
et al. 2014).

To overcome this limitation, we implemented these estimators to-
gether with the asymptotic MKT method (Messer & Petrov 2013,
Haller & Messer 2017) in the iMKT (see 2.4.1.v iMKT approach,
and 3.2.1 Estimators of the integrative MKT). The iMKT does not
consider any prior frequency cut-off to trim polymorphisms, and
relies on the fit of the data to an asymptotic model. Hence, the
cut-off is defined by the data itself, which facilitates the analyses of
diverse types of data (i.e., human -vs- Drosophila or autosomes -vs-
X chromosome data sets).

Using the DGRP data, Mackay et al. (2012) found that averaged
over the entire genome, 58.5% of the segregating sites are neutral or
nearly neutral, 1.9% are weakly deleterious, and 39.6% are strongly
deleterious; although they also found great variability between the X
chromosome and autosomes, chromosome regions and classes of sites.
Regarding non-synonymous sites, these are the most constrained
(d = 77.6%), the fraction of weakly deleterious sites is much larger
than the genome average (b = 3.8%) and consequently, the neutral
fraction is reduced (f = 18.6%). Later, Castellano (2016) re-analyzed
the DGRP data considering a different genomic scale (using the
complete genome as a single window) and found, for non-synonymous
positions: (i) a larger fraction of strongly deleterious sites (d = 81%),
(ii) similar proportion of weakly deleterious sites (b = 3%), and (iii)
a slightly lower fraction of neutral sites (f = 15%), explained by the
increase of d, because f =1 — (d +b)).
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Here, we analyzed non-synonymous sites (0-fold degenerated coding
positions) as putatively selected class, and we applied both DGRP
and iMKT methods to all six meta-populations at diverse genomic
scales (genome, autosomes, each autosomic chromosome arm, and X
chromosome) using the higher quality assembly of D. simulans (Hu
et al. 2013) as outgroup species (see 3.3.3. Detection of positive and
purifying selection in the Drosophila genome).

Our estimates for the six Drosophila meta-populations (Table 3.13)
are consistent with the estimates reported by Mackay et al. (2012)
and (Castellano 2016), but we found a larger fraction of strongly
deleterious sites (d ~ 86%) than these studies. We also observe that
the fraction of weakly deleterious sites estimated using the DGRP
correction (b ~ 2.5%) is much lower than using the iIMKT (b ~ 7.5%);
and the opposite for the fraction of neutral sites (fparp ~ 11.5%;
firixr ~ 6.5%). As discussed previously, it is possible that we are
under-estimating the fraction of b with the DGRP method because of
the DAF cut-off used to distinguish between deleterious and neutral
segregating mutations. A considerable proportion of mutations
with slightly deleterious fitness effects may reach frequencies above
this cut-off because they are in linkage disequilibrium with adaptive
mutations, and thus, they will be wrongly assumed to be functionally
neutral.

However, we also found an association between metrics estimates
and the sample size of each meta-population, using both the DGRP
and the iIMKT methods. Specifically, populations with lowest sample
sizes (Asia, n = 18 and Oceania, n = 15) show the highest d and
lowest b values, followed by the three meta-populations composed
of 30 individuals from three populations each (America, Europe/N.
Africa and Southern Africa), and finally, the meta-population with
the largest sample size (Equatorial Africa, n = 50) presents the
lowest d and highest b values. As here we are comparing samples
with different n, results must be interpreted with caution. Instead,
further investigation should be performed (using equilibrated sample
sizes, ideally) in order to get more reliable and accurate results. In
addition, these novel estimators need to be tested against simulations
with known output to assess their accuracy and error rates.

Even though this is an initial general analysis, our results allow
us to discuss some general trends. First, the pressure of natural
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selection against non-synonymous mutations with strongly negative
fitness effects seems to be stronger in the short past (i.e., in the
D. melanogaster - D. simulans lineage compared with D. yakuba).
Specifically, more than 80% of new 0-fold coding mutations have
strongly deleterious effects. Then, we found that the proportion
of weakly deleterious mutations within the non-synonymous class
is much higher than previously though (~7.5% of sites), a pat-
tern maintained in all meta-populations and chromosomes analyzed
(Table 3.13). Consequently, we detected a smaller fraction of non-
synonymous sites which are effectively neutral (~6.5%).

In summary, the genome of D. melanogaster appears to be under
hard selective constraint, with mutations having strongly deleterious
effects being removed quickly from the genetic pool. However, some
mutations with weakly deleterious effects are able to escape from
natural selection pressures because they are linked to advantageous
mutations or located in regions of very low recombination where
selection is less efficient.

Adaptive evolution

Initial studies using population genomics data in D. melanogaster
such as the DGRP (Mackay et al. 2012) showed that on average
25.2% of the fixed sites between D. melanogaster and D. yakuba are
adaptive, ranging from 30% in introns, to 24% for non-synonymous
sites, to 7% in UTR sites.

However, Messer & Petrov (2013) demonstrated few years later that
these values were under-estimated because they were obtained using
a non-asymptotic approach that was unable to remove accurately a
large fraction of weakly deleterious mutations. Indeed, they found
that the rate of adaptive evolution in D. melanogaster, using D.
stmulans as outgroup, is as high as 0.57 (with a confidence interval
in the range 0.54-0.6). This study, performed using 130 lines of the
RAL population (from the DGRP) also estimated the original «
from the standard MKT (McDonald & Kreitman 1991), which is
0.407, thus demonstrating the power of their novel method.

Here, using D. simulans as outgroup and the iMKT (which incorpo-
rates the asymptotic method of Messer & Petrov 2013), we found
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somewhat higher « values, ranging on average from 0.6 to 0.65 for
non-African populations and from 0.68 to 0.69 for African ones. In
detail, adaptation rates for African populations are higher in all
chromosome arms (Table 3.12); and values in the X chromosome are
higher than in the autosomes in all samples, consistent with previous
observations (Mackay et al. 2012, Langley et al. 2012). Overall, our
results promote us to state that a large fraction of non-synonymous
fixations in D. melanogaster are adaptive, which demonstrates the
influence of recurrent and strong positive selection pressures shaping
the genome variation patterns in such species.

However, there is a major question in evolutionary biology (and
population genomics) which still needs to be solved: What is the
adaptive significance of this amount of positive selection? KEven
though we usually refer to positive and adaptive selection as synony-
mous terms, they might not be. If weakly deleterious mutations are
constantly fixed in the genome (like in regions under Hill-Robertson
interference, see the following section), the opportunity for com-
pensatory mutations to also reach fixation increases. We consider
compensatory mutations those that restore the negative effect of
the previously fixed deleterious mutations. Thus, it is possible that
many of those non-synonymous variants fixed by positive selection
are not adaptive (they do not provide an innovative new feature to
the organism) but only compensatory (Kimura 1985).

In order to obtain a complete picture of how adaptation occurs,
population genomics data will need to be integrated with other
phenotypic multi-omics layers of information such as transcriptomics
or epigenomics, leading toward a population -omics synthesis era
(Casillas & Barbadilla 2017).

4.2.4 Genomic determinants of the adaptation rate

and the HRi

The levels of nucleotide diversity and rates of adaptation are known to
vary along the genome (Mackay et al. 2012). There are many genomic
determinants which influence the establishment of these distinctive
patterns, such as gene density and function, and differences in
mutation or recombination rates.
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The first observation from population genomics studies is that recom-
bination rate shows a positive correlation with the polymorphism
level for every analyzed variant (Begun & Aquadro 1992, Mackay
et al. 2012, Huang et al. 2014). Mackay et al. (2012) hypothesized
that the correlation between polymorphism and recombination is due
to the reduced N, in regions of low recombination. This would imply
that selection is also reduced on such regions, and these should show
a reduced fraction of strongly deleterious and positively selected
sites. Our results support this hypothesis, as we observe that, in
all meta-populations, the fraction of strongly deleterious sites and
the adaptation rate increase as recombination does so (Figure 4.4).
Besides, the proportions of weakly deleterious and effectively neutral
sites show the opposite pattern.

Because at any time there are genetic variants in LD simultaneously
selected in the genome, these variants interfere with each other,
reducing the efficacy of natural selection and inducing a cost of
linkage known as the HRi (Hill & Robertson 1968). As recombina-
tion increases, the linkage disequilibrium between alleles is reduced,
variants can segregate more freely, and consequently, the efficacy of
natural selection is increased (see 1.2.1. Determinants of patterns
of genetic variation).

In this regard, the genome can be divided in two distinctive types
of regions depending on their linkage disequilibrium: non-linked
selected blocks (NLSB), and linked selection blocks (LSB) (Barrén
2015). In the first class of regions, the neutral theory can be applied
as a null model for the interpretation of genetic variation (Lewon-
tin & Krakauer 1973), and they they constitute ~40% of the D.
melanogaster genome (27% in autosomes, 77% in the X chromosome,
Barrén 2015). Besides, in LSD (regions of high linkage and low
recombination), HRi is predicted to constantly occur, which means
that ~60% of the genome, especially in the autosomes, seems to be
in a sub-optimal situation regarding natural selection efficacy. The
neutral theory is not longer valid as a null model in these regions,
which means that the development of new baseline models of genome
variation (such as the one developed by Corbett-Detig et al. 2015,
combining BGS and hitchhiking and incorporating polymorphism,
recombination rate, and density of functional elements in the genome)
are required to assess the impact of selection on this type of regions.
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Figure 4.4: The impact of recombination on natural selection
regimes. Average estimates of (A) strongly deleterious sites, (B) weakly
deleterious sites, (C) effectively neutral sites and, (D) adaptation rate;
computed in ten bins of recombination, for all six meta-populations. The
complete set of 13,753 genes were ranked according to the gene-associated
p values in each population and grouped in ten bins (each bin containing
1,375 genes). Note that bin 1 of the Asia population is not shown because
we could not estimate b and thus the other metrics were biased. Lines and
confidence intervals (shaded in grey) were computed using logical regression
methods (loess curve). The values in the X axis do not correspond to the
estimate of the rate of recombination (p). Instead, they correspond to each
of the ten bins.

Castellano et al. (2016) provided an approach to quantify the adap-
tive potential of a genome. By estimating the optimal recombination
threshold from which mutations segregate independently and from
which adaptation is not restricted by HRi (7 ), it is then possible
to estimate the cost of linkage (Lgp;). Specifically, authors found
that rop was 2 ¢cM/Mb, and that HRi reduces the evolutionary
adaptation rate of the D. melanogaster genome by an average of
27% (using the RAL North American population, n = 205).

Here, we quantified this effect in diverse wild-derived populations
with different demographic and migratory histories in order to char-
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acterize which are the HRi load dynamics operating in Drosophila,
and their impact on the molecular evolutionary rate. We found that
adaptation is substantially impeded by HRi in all meta-populations,
with Lppr; estimates ranging from ~ 19.5% to ~ 24% (Table 3.14),
values similar to the estimate provided by Castellano et al. (2016).
Thus, our results reinforce the importance of HRi as a major force
operating at the species level, but with a weak strength in local
adaptation processes.

Besides recombination, another genomic determinant of the adap-
tation rate is gene density (Hey & Kliman 2002). Genes located in
gene-poor regions are expected to show higher rates of adaptation,
whereas genes in gene-rich regions would show lower rates (Castel-
lano 2016). Assuming that the mutation and the recombination rates
are constant and uniform along the genome, new mutations arising
in gene-rich regions are more prone to be in linkage disequilibrium
with other variants, reducing the efficacy of selection via HRi; while
mutations appearing in gene-poor regions are expected to be more
effectively targeted by natural selection. Indeed, Castellano et al.
(2016) found a negative correlation between the rate of adaptive
evolution and the density of selected sites across the genome (Spear-
man’s correlation coefficient = -0.69, with and associated p < 0.001).
This correlation was independent from gene functions (correlation
coefficient = -0.75, p < 0.001 excluding immune and testes specific
genes).

However, our results can not confirm Castellano et al. (2016) obser-
vations, as we do not obtain any correlation coefficient between gene
density and the rate of adaptation with statistical support (Figure
3.22). Increasing the number of bins does not lead to significant
results (e.g., correlation coefficient = -0.17, p > 0.3 using the Ameri-
can meta-population and genes grouped in 30 bins). Hence, further
analyses are required in order to elucidate whether Castellano et al.
(2016) observations of the negative association among gene density
and the rate of adaptive evolution can be replicated or not, and its
implications in the evolutionary dynamics of D. melanogaster.
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4.2.5 The faster-X hypothesis

Although the Drosophila X chromosome is usually similar to the
autosomes in size and cytogenetic appearance, theoretical models
predict that its hemizygosity in males may cause unusual patterns of
accelerated evolution (Vicoso & Charlesworth 2006). This is known
as the faster-X hypothesis (Charlesworth et al. 1987).

In an equilibrium population with equal numbers of males and
females, equal X-linked and autosomal mutation rates, and no nat-
ural selection, the expected ratio of X-linked vs. autosomal diver-
sity is 3/4. However, in the ancestral (African) populations of D.
melanogaster studied here, we observed X-linked diversity levels
(corrected by the X/A effective population size factor) higher than
the autosomal average, consistent with previous results (Hutter et al.
2007, Langley et al. 2012). In addition, the X chromosome shows
increased levels of nucleotide divergence compared to autosomes.
These observations could be explained by a higher mutation rate in
the X. However, Keightley et al. (2009) demonstrated that there are
no statistical differences between the mutation rates in autosomes
and chromosome X.

Another plausible explanation for the observed X polymorphisms
levels is the distinctive effect of background selection in autosomes
and the X chromosome (Charlesworth 1994). Because Drosophila
males are hemizigous for the X chromosome (XO), deleterious mu-
tations arising in it are more exposed to natural selection and thus
more efficiently purged from the gene pool, compared to autosomes.
However, background selection has not been predicted to strongly
influence diversity in regions of the Drosophila genome subject to
moderate or high rates of recombination (Langley et al. 2012) and
thus, this process alone can not explain the observed differences.

Besides, Vicoso & Charlesworth (2006) proposed that differences
in recombination rates (generally higher on the X) could account
for observed deviations of the X/A diversity ratio. Because the
autosomes show lower recombination rates than the X chromosome,
they are more affected by linked selection (and HRi) and thus
they show a greater diversity reduction. Here, we found higher
X recombination rates (p) for all meta-populations except Asia
(discussed above). The inflated X-linked p metrics were much more
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pronounced in the African populations than in non-African ones.
In terms of linked and non-linked selection blocks, Barrén (2015)
showed that the larger rate of recombination in the X with respect to
the autosomes makes that 50% more sites are selectively independent
in this chromosome than in the autosomes. In addition, we also
found evidences of higher adaptation rates in the X chromosome than
autosomes for all analyzed meta-populations, with up to an increase
of ~20% of fixed adaptive variants in that specific chromosome.
Regarding negative selection fractions we can observe a slight increase
of strongly deleterious sites and a clear decrease of weakly deleterious
variants in all populations (except Asia).

Relative to the African populations, the non-African ones showed an
X/A diversity ratio significantly lower than 1, even after correcting
for the X /A effective population size factor (4/3). This might be
explained by the demographic histories of such populations, as it is
known that demographic events such as population bottlenecks or
founder events may lead to a disproportionate reduction in X-linked
diversity (Wall et al. 2002). However, demographic models such
as the one proposed by Pool & Nielsen (2008) cannot completely
explain the X-linked and autosomal variation in the non-African
sample.

An alternative explanation for the stronger reduction of diversity
in the non-African X chromosomes is a stronger hitchhiking effect
on the X chromosome relative to autosomes for those populations.
This is consistent with our observations that the X/A recombination
ratio is much lower in non-African than in African populations.

Overall, all molecular population genomic analyses performed along
this work support the faster-X hypothesis. The X chromosome shows
increased rates of polymorphism for African populations (in non-
African populations we observe a reduction of 7 in the X chromosome
compared to the autosomes, probably caused by demographic events),
faster rates of molecular evolution, a higher fraction of adaptive
and strongly deleterious variants, and a lower proportion of weakly
deleterious sites, relative to the autosomes.
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Overall, the general population genomics overview presented in this
thesis allows to get a global picture of the patterns of nucleotide
variation and adaptation along the Drosophila genome. By analyzing
six meta-populations from all around the globe (Asia, Oceania,
America, Europe/North Africa, Equatorial Africa and Southern
Africa), we provide a comprehensive description and a unified vision
of the population genomics dynamics in this model species.

We found that most patterns are shared by all populations, such as
the distribution of polymorphism, divergence and historical recom-
bination values along the chromosomes, or the accelerated rate of
evolution in the X chromosome. The impact of both positive and
purifying selection, as well as the adaptive constraint caused by HRIi,
are also long term processes that affect all populations, i.e., they are
orthogonal to the species actual geographic distribution.

Besides, we also confirmed local differences among populations sub-
ject to distinctive demographic and environmental pressures. In
general, African populations have higher nucleotide diversity levels,
recombination and adaptation rates than non-African ones, consis-
tent with the demographic history of such species.

In conclusion, this thesis should serve as a reference starting point
for future and more detailed population genomics analysis using the
DGN resource data.
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General conclusions

o We developed two novel bioinformatics tools to facilitate the
visualization and analysis of population genomics data: the
population genomics web-browser PopFly, and the R statistical
package iMKT.

e We applied both tools to perform an initial population ge-
nomics analysis in D. melanogaster using the DGN data, to
get a global picture of the nucleotide variation and adaptation
patterns along the genome, and assess the relative impact of
the genomic determinants of genetic variation in six meta-
populations spanning five continents.

PopFly, the Drosophila population genomics browser

e PopFly contains the broadest catalog of population genetics
estimates in D. melanogaster, storing more than 4,000 tracks
with information of almost one thousand samples from 30
world-wide natural populations from the Drosophila Genome
Nezus project data.

e The user-friendly graphical web interface of PopFly allows the
visualization and retrieval of functional annotations, estimates
of nucleotide diversity and divergence, linkage disequilibrium
statistics, recombination rate metrics, a battery of neutrality
tests, and population differentiation parameters, at different
window sizes through the euchromatic chromosomes.

e In addition, we have also developed and implemented new
utilities and support resources within the PopFly framework
to facilitate performing population genetics analyses on-the-fly
and retrieving sequence data.
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e The development of PopFly also provided us with the tech-
nological infrastructure and knowledge necessary to build up
genome browsers in other species, such as PopHuman.

iMKT: an R package for the Integrative McDonald and

Kreitman Test

e The Integrative McDonald and Kreitman Test (iMKT) package
for the R software environment allows computing the McDonald
and Kreitman test on polymorphism and divergence genomic
data provided by the user or automatically downloaded from
PopFly or PopHuman.

e It calculates five MKT derived tests (Standard MKT, MKT
with the FWW correction, MKT with the DGRP correction,
asymptotic MK method, and the novel iMKT). All methods
allow inferring the rate of adaptive evolution («). In addition,
the MKT with the DGRP correction and the integrative MKT
allow inferring the fraction of strongly deleterious (d), weakly
deleterious (b), and neutral (f) sites.

e The iMKT R package has also been implemented, outside the
scope of this thesis, in a freely accessible web-server which
allows the user to calculate the five MKT derived methods
stated above and perform analyses quickly and easily through
any web browser.

Population genomics of Drosophila melanogaster

e Polymorphism levels are reduced near the centromeres and
telomeres of autosomes and at both extremes of the X chro-
mosome. They are also lower in non-African populations
(m = 0.005) than in African ones (7 = 0.008); and the X chro-
mosome has an overall reduced level of diversity in non-African
populations.

e Divergence (relative to both D. simulans and D. yakuba out-
group species) is extremely high in the centromeric regions of
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all chromosomes, and increased in the X chromosome compared
to autosomes.

Historical recombination rate estimates are also reduced near
the centromeres and telomeres. p is higher in African popula-
tions compared to non-African ones, and in the X chromosome
relative to the autosomes.

The genome of D. melanogaster is under hard selective con-
straint, with more than 85% of new 0-fold coding mutations
having strongly deleterious effects, ~ 7.5% being weakly dele-
terious and ~ 6.5% being effectively neutral.

A large fraction of non-synonymous fixations between D.
melanogaster and D. simulans are adaptive (o = 0.66). The
X chromosome shows an increased rate of adaptive evolution
relative to autosomes (axy = 0.78).

Recombination is positively correlated with both the fraction of
adaptive fixations and the fraction of strongly deleterious sites,
while it is negatively correlated with the fraction of weakly
deleterious sites.

Overall, the adaptation rate in Drosophila is substantially
impeded by Hill-Robertson interference, which diminishes the
rate of adaptive evolution by approximately ~ 22%.
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Supplementary Table 7.1: Adaptation metrics for genes grouped
by recombination rate (p). Recombination estimates correspond to
each population. Results obtained using the iMKT method.

. Adaptation d: strongly . b: weakly
Bin (Qasymptotic) ~ deleterious [+ neutral deleterious € F (& SD)
Asia 1 0.3583 0.80632 0.19368 - 0.00016 (+ 0.00011)
2 0.4735 0.84429 0.08099 0.07472 0.00068 (+ 0.00018)
3 0.5385 0.84862 0.09071 0.06067 0.00147 (+ 0.00027)
4 0.5902 0.87828 0.07536 0.04636 0.0025 (£ 3e-04)
5 0.6103 0.87105 0.07185 0.0571 0.00383 (+ 0.00049)
6 0.6249 0.88222 0.06935 0.04843 0.00539 (+ 0.00046)
7 0.6516 0.88766 0.06004 0.0523 0.00743 (£ 8e-04)
8 0.5986 0.87561 0.07208 0.05231 0.01019 (% 0. 00100)
9 0.631 0.89015 0.07076 0.03909 0.01451 (+ 0.00165)
10 0.6642 0.89935 0.05478 0.04587 0.03034 (+ 0.01603)
Oceania 1 0.3636 0.77654 0.10398 0.11947 0.00047 (+ 0.00033)
2 0.5509 0.82402 0.06351 0.11247 0.00167 (+ 0.00037)
3 0.6289 0.87262 0.05826 0.06911 0.00328 (£ 0.00059)
4 0.6133 0.87763 0.06174 0.06063 0.00497 (+ 0.00042)
5 0.625 0.88677 0.05758 0.05565 0.00676 (+ 0.00057)
6 0.7022 0.88165 0.05711 0.06124 0.0086 (£ 0.00054)
7 0.7157 0.88784 0.05407 0.05809 0.01067 (+ 0.00054)
8 0.6766 0.90004 0.05272 0.04724 0.01288 (+ 7e-04)
9 0.6621 0.88871 0.05914 0.05215 0.01636 (£ 0. 00126)
10 0.678 0.8898 0.06013 0.05007 0.0258 (+ 0.00662)
America 1 0.3198 0.74514 0.08737 0.16749 0.00122 (+ 0.00086)
2 0.4549 0.80048 0.06856 0.13095 0.00427 (+ 9e-04)
3 0.5893 0.84824 0.06163 0.09013 0.00732 (+ 0.00082)
4 0.591 0.85049 0.0647 0.08481 0.00997 (+ 0.00062)
5 0.6178 0.85819 0.06014 0.08167 0.01219 (+ 0.00068)
6 0.5985 0.86857 0.0576 0.07383 0.01463 (£ 0.00072)
7 0.6521 0.87632 0.05611 0.06757 0.0171 (£ 0.00075)
8 0.7151 0.88006 0.05437 0.06557 0.02021 (+ 0.00102)
9 0.6976 0.88497 0.05139 0.06364 0.0243 (£ 0.00133)
10 0.6677 0.88173 0.05662 0.06165 0.034 (£ 0.00595)
Europe / North 1 0.2706 0.73691 0.08541 0.17768 0.00164 (+ 0.00121)
Africa 2 0.3826 0.80181 0.07097 0.12723 0.00583 (£ 0.00103)
3 0.5675 0.84556 0.06035 0.09409 0.00881 (+ 8e-04)
4 0.6001 0.85417 0.06011 0.08572 0.01087 (+ 0.00055)
5 0.6325 0.8655 0.05437 0.08013 0.01289 (+ 0.00057)
6 0.6468 0.86868 0.05462 0.0767 0.01526 (+ 0.00063)
7 0.6749 0.87433 0.05301 0.07266 0.01781 (% 0.00078)
8 0.6757 0.87764 0.0531 0.06926 0.02066 (£ 0.00079)
9 0.6786 0.88279 0.05013 0.06707 0.02492 (£ 0.00159)
10 0.7201 0.86751 0.05871 0.07378 0.03514 (+ 0.00732)
Equatorial Africa 1 0.2602 0.71296 0.04686 0.24018 0.00536 (+ 0.00319)
2 0.4662 0.77647 0.04883 0.17469 0.0161 (£ 0.00311)
3 0.5438 0.81522 0.04673 0.13805 0.02473 (+ 0.00222)
4 0.6165 0.83702 0.0401 0.12288 0.03222 (+ 0.00226)
5 0.6625 0.84168 0.04057 0.11775 0.04179 (+ 0.00301)
6 0.6606 0.85083 0.04125 0.10791 0.05177 (+ 0.00294)
7 0.702 0.86782 0.03479 0.09739 0.0635 (£ 0.00395)
8 0.6967 0.85226 0.04273 0.10501 0.07852 (& 0.0047)
9 0.7589 0.8681 0.03657 0.09532 0.10151 (+ 0.00696)
10 0.7754 0.87413 0.03522 0.09065 0.14461 (+ 0.03086)
Southern Africa 1 0.1423 0.75401 0.07764 0.16836 0.00356 (4 0.00249)
2 0.5422 0.83507 0.04375 0.12118 0.01313 (£ 0.00253)
3 0.6189 0.85935 0.04355 0.09711 0.02164 (£ 0.00202)
4 0.6283 0.86373 0.04135 0.09492 0.02801 (+ 0.00194)
5 0.6684 0.87652 0.04007 0.08341 0.03554 (+ 0.00211)
6 0.6667 0.87946 0.04072 0.07982 0.04287 (+ 0.0022)
7 0.6559 0.8788 0.04163 0.07957 0.05229 (+ 0.00335)
8 0.6676 0.88482 0.03905 0.07613 0.06529 (£ 0.00479)
9 0.751 0.88319 0.0395 0.07732 0.10018 (+ 0.02055)
10 0.8212 0.88983 0.03584 0.07433 0.22418 (+ 0.06106)
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Supplementary Table 7.2: Adaptation metrics for genes grouped
according to coding density. Coding density metrics estimated based
on the reference genome. Results obtained using the iMKT method.

. Adaptation d: strongly . b: weakly mean coding den-
Bin (Qasymptotic) ~ deleterious [+ neutral deleterious  sity (+ SD)
Asia 1 0.6697 0.86667 0.07251 0.06083 0.0677 (+0.02585)
2 0.5745 0.8651 0.08312 0.05178 0.12719 (£0.01008)
3 0.5929 0.87497 0.0756 0.04943 0.16111 (iO 01028)
4 0.6123 0.87428 0.07443 0.05128 0.19689 (£0.00912)
5 0.6096 0.87571 0.0674 0.05688 0.22361 (£0.00857)
6 0.6779 0.88341 0.06457 0.05202 0.25689 (£0.0105)
7 0.6004 0.89055 0.06809 0.04136 0.29408 (£0.01128)
8 0.5983 0.87395 0.07454 0.05151 0.32773 (£0.01011)
9 0.5268 0.87385 0.0757 0.05045 0.36959 (£0.01554)
10 0.6373 0.88865 0.05693 0.05442 0.46205 (£0.04944)
Oceania 1 0.6712 0.87089 0.06764 0.06147 0.0677 (+0.02585)
2 0.6288 0.87294 0.06877 0.0583 0.12719 (£0.01008)
3 0.6733 0.87859 0.05405 0.06737 0.16111 (£0.01028)
4 0.6389 0.87927 0.0632 0.05752 0.19689 (+0.00912)
5 0.6515 0.87905 0.05773 0.06322 0.22361 (£0.00857)
6 0.6879 0.88754 0.05474 0.05772 0.25689(i0 0105)
7 0.6635 0.89308 0.05131 0.05561 0.29408 (£0.01128)
8 0.6665 0.8782 0.05204 0.06976 0.32773 (£0.01011)
9 0.6034 0.87698 0.05675 0.06627 0.36959 (£0.01554)
10 0.6411 0.88735 0.05669 0.05596 0.46205 (£0.04944)
America 1 0.6488 0.84961 0.06713 0.08325 0.0677 (+0.02585)
2 0.6211 0.85845 0.0658 0.07574 0.12719 (£0.01008)
3 0.6356 0.8646 0.05986 0.07555 0.16111 (£0.01028)
4 0.6295 0.86212 0.06044 0.07745 0.19689 (:t(] 00912)
5 0.6346 0.86119 0.05822 0.0806 0.22361 (£0.00857)
6 0.6611 0.86959 0.05645 0.07395 0.25689(=£0.0105)
7 0.6619 0.87822 0.04961 0.07216 0.29408 (+0.01128)
8 0.6092 0.85695 0.06081 0.08225 0.32773 (£0.01011)
9 0.5575 0.86399 0.05901 0.07701 0.36959 (:H] 01554)
10 0.634 0.87304 0.0549 0.07206 0.46205 (£0.04944)
Europe / N. 1 0.6687 0.84789 0.0626 0.08951 0.0677 (+0.02585)
Africa 2 0.6195 0.85217 0.0636 0.08423 0.12719 (£0.01008)
3 0.6383 0.86002 0.05846 0.08152 0.16111 (£0.01028)
4 0.6333 0.86214 0.05893 0.07893 0.19689 (£0.00912)
5 0.6305 0.8572 0.05804 0.08476 0.22361 (iO 00857)
6 0.6639 0.86919 0.05343 0.07738 0.25689(+0.0105)
7 0.6629 0.87378 0.04826 0.07797 0.29408 (£0.01128)
8 0.622 0.8551 0.05527 0.08963 0.32773 (£0.01011)
9 0.564 0.86022 0.05689 0.08289 0.36959 (£0.01554)
10 0.6269 0.87283 0.05371 0.07346 0.46205 (j:(] 04944)
Equatorial Africa 1 0.6823 0.8311 0.04557 0.12333 0.0677 (+0.02585)
2 0.647 0.8378 0.04494 0.11726 0.12719 (£0.01008)
3 0.6773 0.84446 0.04089 0.11465 0.16111 (:t(] 01028)
4 0.6684 0.84724 0.04241 0.11035 0.19689 (£0.00912)
5 0.6757 0.84579 0.03857 0.11563 0.22361 (£0.00857)
6 0.7055 0.85442 0.03612 0.10946 0.25689(+0.0105)
7 0.6856 0.85782 0.03499 0.1072 0.29408 (£0.01128)
8 0.635 0.84383 0.04041 0.11577 0.32773 (:H] 01011)
9 0.6109 0.84393 0.03995 0.11612 0.36959 (£0.01554)
10 0.6625 0.85689 0.03683 0.10628 0.46205 (£0.04944)
Southern Africa 1 0.6833 0.86123 0.04787 0.09091 0.0677 (+0.02585)
2 0.663 0.86444 0.04475 0.0908 0.12719 (£0.01008)
3 0.6795 0.87289 0.04211 0.085 0.16111 (£0.01028)
4 0.672 0.87114 0.04375 0.08511 0.19689 (iO 00912)
5 0.701 0.87745 0.03765 0.0849 0.22361 (£0.00857)
6 0.716 0.8813 0.03761 0.08109 0.25689(+0.0105)
7 0.7007 0.88369 0.03494 0.08136 0.29408 (+0.01128)
8 0.6512 0.86977 0.04086 0.08937 0.32773 (£0.01011)
9 0.6188 0.87158 0.04158 0.08684 0.36959 (£0.01554)
10 0.6675 0.87953 0.03895 0.08152 0.46205 (£0.04944)
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Supplementary Figure 7.1: Correlation between divergence met-
rics using D. simulans and D. yakuba. Spearman’s correlation coef-
ficients (Spearman 1904), with their associated p-values. Note that values
in the Y axis are two times higher than in the X axis. All situations show
a positive correlation between both parameters, with an associated p = 0.
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Supplementary Figure 7.2: Correlation between polymorphism
and (A) historical recombination and (B) coding density. Spear-
man’s correlation coefficient with its associated p — value. In general, we
observe a positive and significant correlation between 7 and recombination,
but this correlation is not present between 7 and coding density.
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Supplementary Figure 7.3: Correlation between divergence and
(A) historical recombination and (B) coding density. Spearman’s
correlation coefficient with its associated p — value. In general, we do
not observe any significant correlation between divergence and neither
recombination nor coding density.
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Abstract

Summary: The recent compilation of over 1100 worldwide wild-derived Drosophila melanogaster
genome sequences reassembled using a standardized pipeline provides a unique resource for
population genomic studies (Drosophila Genome Nexus, DGN). A visual display of the estimated
metrics describing genome-wide variation and selection patterns would allow gaining a global
view and understanding of the evolutionary forces shaping genome variation.

Availability and implementation: Here, we present PopFly, a population genomics-oriented gen-
ome browser, based on JBrowse software, that contains a complete inventory of population gen-
omic parameters estimated from DGN data. This browser is designed for the automatic analysis
and display of genetic variation data within and between populations along the D. melanogaster
genome. PopFly allows the visualization and retrieval of functional annotations, estimates of
nucleotide diversity metrics, linkage disequilibrium statistics, recombination rates, a battery of
neutrality tests, and population differentiation parameters at different window sizes through the eu-

chromatic chromosomes. PopFly is open and freely available at site http:/popfly.uab.cat.
Contact: sergi.hervas@uab.cat or antonio.barbadilla@uab.cat

1 Introduction

High-throughput sequencing technologies are allowing the descrip-
tion of genome-wide variation patterns of an ever growing number
of organisms. Several studies have been carried out in the last years
involving dozens and even hundreds of wild-derived samples in the
species Drosophila melanogaster, the model organism for popula-
tion genetic studies (reviewed by Casillas and Barbadilla, 2017). The
Drosophila Genome Nexus (DGN) project has reassembled most
published D. melanogaster population genomic data, creating a set
of around 1100 worldwide genome sequences comparable among
them, which greatly facilitates future population genomic studies in
this model species (Lack et al., 2015, 2016).

One main bioinformatics challenge when analyzing a huge
amount of genomic data is how to get an easy and intuitive

©The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

visualization and retrieval of such information. Genome browsers
provide a unique platform for molecular biologists to browse, search,
retrieve and analyze these genomic data efficiently and conveniently
taking advantage of their
PopDrowser, the Population Drosophila Browser (Ramia et al.,
2012), displays population genomic parameters estimated from a sin-
gle population of D. melanogaster (the Drosophila Genetic Reference
Panel, Mackay et al., 2012). However, this browser has become out-
dated in terms of performance and data storage. Here, we present
PopFly, a population genomics-oriented web-browser that updates

user-friendly  graphical interface.

our previous PopDrowser. PopFly contains a complete inventory of
population genomic parameters estimated from the DGN project
data, along with functional annotations from the reference D. mela-
nogaster genome sequence. The user-friendly graphical web interface
of this new browser allows an easy visualization and retrieval of the
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broadest catalog of genome-wide patterns of nucleotide variation and
population genetics estimates in D. melanogaster at different reso-
lution scales. Furthermore, the automated nature of the data process-
ing pipeline makes this platform highly scalable, allowing the
continuous updating of the database by the addition of the increasing
number of new genome sequences.

2 Browser overview
2.1 Input data

The input data is a set of aligned D. melanogaster genome sequences
from the DGN project. At present, the analyzed data comprises more
than 960 genome sequences from 30 populations out of 18 countries
spanning 5 continents. The genome sequences of Drosophila yakuba
and Drosophila simulans are used as outgroup species.

2.2 Software implementation

PopFly contains a set of precomputed population genomic estimates
generated through the combined implementation of programs
VariScan2 (Hutter et al., 2006), LDhelmet (Chan et al., 2012), and
custom ad-hoc scripts. Data and summary statistics are graphically
displayed along the chromosome arms on a web-based user interface
(Fig. 1) using the JBrowse software (Buels et al., 2016), which consider-
ably improves the performance of its previous version, and can be easily
downloaded in bedGraph, wiggle or gff3 format files. PopFly also in-
corporates utilities to perform on-the-fly statistical analyses and down-
load sequences, and allows uploading user custom tracks. The current
browser implementation is running under Apache on a CentOS 7.2
Linux x64 server, 16 IntelXeon 2.4GHz processors, 32GB RAM.

2.3 Browser tracks
The genome browser includes, for each sampled population and
metapopulation (populations aggregated by continent): summary

.

..
e Spmmmm .
L

Fig. 1. PopFly snapshot with certain activated tracks and the utility to down-
load sequences

Table 1. PopFly category tracks

measures of nucleotide diversity, divergence between species, link-
age disequilibrium statistics, historical population-scaled recombin-
ation rate estimates, a battery of neutrality tests and population
differentiation metrics (Table 1), computed at non-overlapping win-
dows of varying size (1kb, 10kb, 50kb, 100kb). The browser also
contains the D. melanogaster genome reference sequence along with
its functional annotations (version 5.57 from FlyBase), and the high-
resolution reference recombination maps from Comeron et al.,
(2012) and Fiston-Lavier et al., (2010).

Acknowledgements

We would like to thank Miquel Ramia for his helpful guidance and sugges-
tions. We also thank Josefa Gonzélez and the JBrowse developing community
for their valuable comments to improve PopFly.

Funding

This work was supported by the Ministerio de Economia y Competitividad
[BFU2013-42649-P to A.B.]; the Generalitat de Catalunya [2014-SGR-1346];
the Departament de Genética i Microbiologia of the Universitat Autdonoma de
Barcelona [12° PIPF to S.H.]; the Youth Employment Initiative and European
Social Fund [PEJ-2014 to E.S]; and the National Institutes of Health [RO1
GM111797 to J.EP.].

Conflict of Interest: none declared.

References

Buels,R. et al. (2016) JBrowse: a dynamic web platform for genome visualiza-
tion and analysis. Genome Biol., 17, 66.

Casillas,S. and Barbadilla,A. (2017) Molecular population genetics. Genetics,
205,1003-1035.

Chan,A.H. et al. (2012) Genome-wide fine-scale recombination rate variation
in Drosophila melanogaster. PLoS Genet., 8, ¢1003090.

Comeron,].M. et al. (2012) The many landscapes of recombination in
Drosophila melanogaster. PLoS Genet., 8,¢1002905.

Fiston-Lavier,A.-S. et al. (2010) Drosophila melanogaster recombination rate
calculator. Gene, 463, 18-20.

Hutter,S. et al. (2006) Genome-wide DNA polymorphism analyses using
VariScan. BMC Bioinform., 7,409.

Lack,].B. et al. (2016) A thousand fly genomes: an expanded drosophila gen-
ome nexus. Mol. Biol. Evol., 33,3308-3313.

Lack,].B. et al. (2015) The drosophila genome nexus: a population genomic re-
source of 623 drosophila melanogaster genomes, including 197 from a sin-
gle ancestral range population. Genetics, 199, 1229-1241.

Mackay,T.F.C. et al. (2012) The drosophila melanogaster genetic reference
panel. Nature, 482, 173-178.

Ramia,M. et al. (2012) PopDrowser: the population drosophila browser.
Bioinformatics, 28, 595-596.

Category

Reference tracks
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Annotations and main parameter estimates

D. melanogaster reference genome (build 5.57) sequence and annotations
Watterson’s nucleotide diversity (6), nucleotide diversity (r), number of 0-fold and

4-fold segregating sites (Pyg, P4f), 0-fold and 4-fold nucleotide diversity (mof, 74f)

Divergence-based metrics

Nucleotide divergence per bp (k) with D. yakuba and D. simulans, number of 0-fold

and 4-fold divergent sites (Do, D4), and 0-fold and 4-fold divergence (kog, kaf)

Linkage disequilibrium
Recombination

LD sites, D, |D|, D’, |D’|, 1, number of haplotypes (h), haplotype diversity (Hd)
Recombination rate estimates from Comeron et al. (2012) and Fiston-Lavier et al.

(2010), historical population-scaled recombination rate (ps=2N.r; px = 8/3 N.r)
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Population differentiation

Fu & Li D and F test statistics, Tajima’s D, Fu’s Fs statistic

Ka/Ks ratio, neutrality index (NI), direction of selection (DoS), proportion of adaptive

substitutions (¢) from McDonald-Kreitman test
Fsr estimates between populations
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ABSTRACT

The 1000 Genomes Project (1000GP) represents the
most comprehensive world-wide nucleotide variation
data set so far in humans, providing the sequencing
and analysis of 2504 genomes from 26 populations
and reporting >84 million variants. The availability
of this sequence data provides the human lineage
with an invaluable resource for population genomics
studies, allowing the testing of molecular population
genetics hypotheses and eventually the understand-
ing of the evolutionary dynamics of genetic variation
in human populations. Here we present PopHuman, a
new population genomics-oriented genome browser
based on JBrowse that allows the interactive visu-
alization and retrieval of an extensive inventory of
population genetics metrics. Efficient and reliable pa-
rameter estimates have been computed using a novel
pipeline that faces the unique features and limita-
tions of the 1000GP data, and include a battery of nu-
cleotide variation measures, divergence and linkage
disequilibrium parameters, as well as different tests
of neutrality, estimated in non-overlapping windows
along the chromosomes and in annotated genes for
all 26 populations of the 1000GP. PopHuman is open
and freely available at http://pophuman.uab.cat.

INTRODUCTION

Soon after the elucidation of the entire human genome
(1-3), the description of genetic variation in human pop-
ulations and the identification of those variants that af-
fect health and disease became the next challenges of ge-
nomics research (4). The International HapMap Consor-
tium built the first genome-wide catalog of common human

genetic variation in diverse populations (4-6), charting hap-
lotype maps of 1.6 million single nucleotide polymorphisms
(SNPs) in 1184 reference individuals from 11 global popu-
lations. In addition to numerous genome-wide association
studies (GWAS) (7), the HapMap data allowed the detec-
tion of positive natural selection across the human genome
(8,9), as well as the development of new tests to infer recent
episodes of selective sweeps based on the length of haplo-
types, such as the Long-Range Haplotype (LRH) (10), the
integrated Haplotype Score (iHS) (11), and the Cross Popu-
lation Extended Haplotype Homozygosity (XP-EHH) (8).

During the last decade, the development of next gener-
ation sequencing (NGS) technologies (12,13) has allowed
the deciphering of complete genome sequences of thou-
sands of human individuals, and the 1000 Genomes Project
(1000GP) has become the reference data set for population
genetics and genomics (14,15). With the aim of providing
a deep characterization of human genome sequence varia-
tion, the most recent version of the 1000GP (Phase I1I) com-
pletes the sequencing and analysis of 2504 genomes from 26
populations and describes most variants with frequencies
as low as 1%. Due to its higher resolution and smaller SNP
ascertainment bias compared to HapMap genotyping data,
the availability of the 1000GP data provides the human lin-
eage with an invaluable resource on which to test molecular
population genetics hypotheses and eventually understand
the evolutionary dynamics of genetic variation in human
populations (16).

Regions of the genome that are (or have been) subject to
natural selection show distinctive patterns of genetic varia-
tion in the DNA sequence (17). The signature of long-range
haplotypes persists for a relatively short period of time (<30
000 years), and related statistics can detect very recent se-
lection only. However, other signatures persist longer in
the genome: differentiation between populations (<50 000—
<75 000 years), high frequency derived alleles (<80 000
years), reduction in genetic diversity and excess of rare al-
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leles (<250 000 years), and high proportion of function-
altering substitutions between species (many millions of
years) (17).

Population genomics analyses of the 1000GP data set can
be largely facilitated by (i) making an inventory of param-
eter values along the chromosomes that capture the evo-
lutionary properties of the available sequences, and (ii) al-
lowing the query and visualization of these estimates in a
genome browser designed specifically for this data. As far
as we are concerned, the 1000 Genomes Selection Browser
1.0 (18) is the only previous database that allows the interac-
tive visualization and retrieval of population genetics met-
rics for the 1000GP data. It was published when the 1000GP
was still in its first phase (1,092 individuals, 14 populations,
38 million SNPs) (14), and analyzed within-species poly-
morphism data for three populations in 30 kb sliding win-
dows (18). Here, we present PopHuman, a new population
genomics-oriented genome browser. PopHuman represents
not only an update to the 1000GP Phase III (2504 individ-
uals, 26 populations, 84.7 million SNPs), but also dramatic
improvements in the amount of data analyzed and browser
performance, compared to the 1000 Genomes Selection
Browser 1.0. Furthermore, PopHuman analyzes between-
species divergence, which allows the implementation of sta-
tistical tests to detect the signature of recurrent natural se-
lection acting over prolonged periods of time, such as the
McDonald and Kreitman test (MKT) (19), instead of re-
cent selective sweeps only. Supplementary Table S1 details
the differences between the two databases.

POPHUMAN ANALYSIS PIPELINE

‘We have designed and implemented a custom pipeline (Fig-
ure 1) facing the unique features and limitations of the
1000GP Phase III data (15). The pipeline discards report-
edly inbred individuals (20) and non-accessible nucleotides
(15), incorporates the genomic sequence of the chimpanzee
(21) as outgroup, and estimates a battery of nucleotide vari-
ation, divergence and linkage disequilibrium parameters, as
well as different tests of neutrality, on the filtered data. Sev-
eral metrics have been computed both in non-overlapping
sliding windows along the chromosomes and in annotated
protein coding genes for 26 populations of distinct geo-
graphical origin (15).

Pre-processing of the 1000GP Phase III data

We retrieved human genome variation data gen-
erated by the 1000GP Phase III (15) from http:
/lwww.internationalgenome.org/data in  Variant Call
Format (VCF). This included 84.4 million variants
detected across 2504 individuals from 26 different popu-
lations, mapped to the human reference genome version
GRCh37/hgl9. We want to warn the user that four of the
analyzed populations present admixture (corresponding to
the Admixed American metapopulation), so special care
should be taken while interpreting PopHuman results in
those cases.

Inbred individuals. The initial VCF files were filtered to ex-
clude 243 individuals with inbreeding coefficients similar or
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greater than the ones expected for first-cousin offspring, ac-
cording to Gazal et al. (20).

Genome accessibility mask. Due to the nature of short-
read sequencing, sequencing depth varies along the length
of the genome. The 1000GP provides an ‘accessibility
mask’, a Browser Extensible Data (BED) file that indicates
which sites of the genome were accessible to the sequenc-
ing techniques and have power for variant discovery (15).
Two definitions were used in the Phase 111, of which we se-
lected the “pilot-style’ mask. This definition is less conserva-
tive than the ‘strict’ mask while being still adequate for pop-
ulation genomics analyses, and was chosen to maximize the
amount of genomic sequence to be analyzed. It excludes the
portion of the genome where depth of coverage (summed
across all samples) was higher or lower than the average
depth by a factor of 2-fold, as well as sites where >20%
of overlapping reads had mapping quality of zero. Overall,
89.4% of the genome is considered reliable (95.9% of the
non-N bases). Specifically, we placed 10 kb non-overlapping
sliding windows in accessible regions of the genome (i.e.
windows do not overlap any non-accessible nucleotide) to
focus on high quality genomic regions only. Table 1 summa-
rizes the total amount of data analyzed by PopHuman by
following this methodology. In addition, we analyzed longer
non-overlapping sliding windows of 100 kb placed all along
the genome (i.e. windows might overlap non-accessible nu-
cleotides, although these positions were discarded for the
population genomics analyses) to focus on broader scale
patterns of diversity across the genome.

Ancestral states. The ancestral states of human segregat-
ing sites were taken from the 1000GP Phase III (15), which
were obtained by using the 6-way EPO alignments available
in Ensembl v71 (22).

Outgroup species. To compute divergence metrics and
neutrality tests based on the comparison of polymorphism
and divergence, we added differences between humans and
chimpanzees to the VCF files, as identified from a pre-
computed hgl9 => panTro4 alignment obtained from
the VISTA browser (23) in multi-FASTA format (MFA).
Specifically, the pairwise alignment was converted to VCF
using custom scripts and merged with the 1000GP VCF files
using bcftools merge.

Recombination

The most recent human genetic sex-specific maps were ob-
tained from Bhérer ez al. (24), based on a total of 104 246
informative meioses from six recent studies of human pedi-
grees.

Estimation of population genomics statistics

Windows-based. ~ Several windows-based variation statis-
tics and tests of neutrality (Table 2) were computed for each
population separately using the R package PopGenome
(25) and custom functions, considering biallelic SNPs as
within-species variation data. Haplotype-based statistics
(iHS and XP-EHH) were computed in a multithreaded
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UCSC Genome Browser®,
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2504 individuals, 26 populations Most recent human genetic l wesc-to-json.pl
VICF format VISTA Genome Browser®,  maps, sex-specific, 104 246
: hg19 => panTro4 meioses from pedigrees from
l e Multi-FASTA format 6 published studies*

sts/2504 10 - pﬁ — Nucleotide variation
individuals? were removed w l e il s

Linkage disequilibrium

Neutrality tests

BED file (Pilot-style 6 VF merger UCF format
Recombination

ty Mask?)

Beftools merge

Figure 1. PopHuman pipeline. Cited references in the figure: ' 1000GP Phase I1I (15); 2Inbred individuals in the 1000GP (20); *VISTA Genome Browser
(23); “Human genetic maps (24); SPopGenome software (25); ®UCSC Genome Browser (35); 7JBrowse software (34).

Table 1. Summary of the amount of data analyzed in PopHuman

Chromosome ‘Windows-based analysis Genes-based analysis
Chromosome size Number of bases Percentage of Number of RefSeq®
Chromosome number (millions of bases)* Number of windows® (millions) analyzed bases genes analyzed
1 249.25 14 741 147.41 59.14 2328
2 243.20 16 270 162.70 66.90 1464
3 198.02 13575 135.75 68.55 1274
4 191.15 12512 125.12 65.45 879
5 180.92 12073 120.73 66.73 1022
6 171.12 11433 114.33 66.81 1206
7 159.14 9919 99.19 62.33 1108
8 146.36 9783 97.83 66.84 818
9 141.21 7358 73.58 52.11 944
10 135.53 8760 87.60 64.63 903
11 135.01 8877 88.77 65.75 1439
12 133.85 8773 87.73 65.54 1175
13 115.17 6481 64.81 56.27 449
14 107.35 5948 59.48 55.41 779
15 102.53 5334 53.34 52.02 791
16 90.35 4688 46.88 51.88 938
17 81.20 4556 45.56 56.11 1358
18 78.08 5164 51.64 66.14 341
19 59.13 2681 26.81 4534 1609
20 63.03 4091 40.91 64.91 647
21 48.13 2211 22.11 45.94 296
22 51.30 2009 20.09 39.16 535
X 155.27 9312 93.12 59.97 918
Y 59.37 622 6.22 10.48 53
TOTAL 3095.68 187171 1871.71 60.46 23274

2Chromosome sizes are according to version GRCh37/hgl9 of the human genome.

Non-overlapping sliding windows of 10 kb have been defined such that they do not include non-accessible bases according to the Pilot-style Accessibility
Mask of the 1000GP (15).
“RefSeq genes provided by the NCBI Entrez Gene database (33).
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framework implemented by the program selscan (26),
considering biallelic SNPs with Minor Allele Frequency
(MAF) > 0.05 and a maximum gap of 20 kb between
two consecutive SNPs. Then, whole chromosome per-SNP
scores were summarized by calculating the mean of the ab-
solute value of these scores for all SNPs in a window (27).
Sexual chromosomes were not analyzed in these cases.

Genes-based. Comparisons of DNA polymorphism
within populations and divergence to an outgroup species
using the MKT (19) have been extensively used to detect
the signature of natural selection at the molecular level
(28). The MKT can be generalized to any two types of sites
provided that one of them is assumed to evolve neutrally
and that both types of sites are closely linked in the genome
(29-31). Furthermore, Mackay et al. (32) developed an
integrative new framework for the MKT by incorporating
information on the MAF of the segregating sites, which
allows estimating the fraction of new mutations that
are strongly deleterious (and therefore not segregating),
slightly deleterious (segregating at low frequency), old
neutral (neutral before the split of humans and chim-
panzees), and recently neutral (since the split of humans
and chimpanzees), as well as the fraction of adaptive
fixations. The standard and integrative MKTs (Table 3)
were applied to all annotated human protein coding genes
in RefSeq (33) and for different types of sites (i.e. 0-fold
nonsynonymous coding sites, 5 UTR, 3'UTR, introns, and
+500 bp intergenic flanking regions, compared to 4-fold
synonymous coding sites), for each population separately,
using custom functions build within PopGenome (25).

OVERVIEW OF THE
BROWSER

PopHuman is a new population genomics-oriented genome
browser based on JBrowse (34) that allows the interactive
visualization and retrieval of several metrics estimated in
non-overlapping sliding windows along the chromosomes
and in annotated genes for all 26 populations of the 1000GP.
It also includes a number of utilities and support resources.

POPHUMAN GENOME

JBrowse implementation

PopHuman is built on JBrowse (34) and is currently running
under Apache on a CentOS 7.2 Linux x64 server with 16
Intel Xeon 2.4 GHz processors and 32 GB RAM.

Browser tracks

Variation statistics. Windows-based variation statistics
and tests of neutrality (Table 2) are classified into: (i)
frequency-based nucleotide variation; (ii) divergence-based
metrics; (iii) linkage disequilibrium; (iv) recombination; (v)
selection tests based on the Site Frequency Spectrum (SFS)
and/or variability and (vi) selection tests based on the
MKT. They are displayed for each population separately as
histogram plots, with a yellow line showing the mean, and
two shaded bands showing +1 and +2 standard deviations
from the mean. Visualization style can be customized using
the ‘Edit config’ option for each track.
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Reference tracks.  Several tracks have been imported from
the UCSC Genome Browser (35) (Supplementary Table S2)
and can be visualized along with variation statistics. They
are classified into: (i) sequencing and annotation; (ii) reg-
ulation; (iii) comparative genomics; (iv) variation and (v)
repeats.

Utilities and support resources

Tracks selector. PopHuman contains more than a thou-
sand tracks, including both variation statistics (Table 2) and
reference tracks (Supplementary Table S2). Given the large
number of tracks available, these can be filtered and selected
using the ‘Select tracks’ tool, which can be accessed from
the top left corner, below the navigation bar. The filtering
process is normally performed by first narrowing the search
using the menu on the left, and then selecting the tracks of
interest from the main panel on the right. This process can
be done several times in order to finally get all the desired
tracks selected.

Downloading raw data.  Variation statistics for a given re-
gion can be conveniently downloaded in bedGraph, Wiggle
or GFF3 formats using the ‘Save track data’ option for each
track. In addition, bulk downloads of full variation tracks
are available in BigWig format from the Resources menu.
Finally, variant calls for the analyzed individuals can also
be downloaded in VCF format using the PopHuman utility
‘Download sequences’, which can be accessed either from
the Resources menu, or directly from the navigation bar.

Integrative MKT. Gene-based MKTs (Table 3) can be re-
trieved by right-clicking a gene and selecting the option ‘In-
tegrative MKT.

Help section. The Help section contains exhaustive doc-
umentation about the 1000GP Phase III data analyzed by
PopHuman and details about the browser tracks. Interest-
ingly, it contains a comprehensive tutorial introducing to
the usage of the database and to the testing of evolution-
ary hypotheses from a population genetics perspective. The
tutorial works out, in different sequential steps, the visual-
ization and analysis of a genomic region of around 20 kb in
chromosome 7 that includes the TRPV6 gene. TRPVG is a
well-studied protein coding gene involved in the absorption
of calcium from the diet that has experienced parallel selec-
tive sweeps in non-African populations, coinciding with the
establishment of agriculture first in Europe around 10 000
years ago, and later in Asia. The tutorial contains several
step-by-step guides to facilitate reproducing the results that
are shown both in the form of figures and descriptive text.

Availability

All data, tools and support resources provided by PopHu-
man, as well as reference tracks downloaded from the
UCSC Genome Browser (35), are open and freely available
at http://pophuman.uab.cat.

COMPARISON TO OTHER DATABASES

While the PopHuman analysis pipeline presented here is
completely novel, the genome browser is based on a similar



7.4. ARTICLE 2. POPHUMAN: THE HUMAN POPULATION GENOMICS BROWSER

Nucleic Acids Research, 2018, Vol. 46, Database issue DI1007

Table 2. List of major windows-based variation statistics and tests of neutrality in PopHuman, computed for each population separately

Category Track name Track description Reference
Frequency-based N Number of segregating sites per site (42)
nucleotide variation
Pi Nucleotide diversity: average number of nucleotide (42-44)
differences per site between any two sequences
theta Nucleotide polymorphism: proportion of nucleotide (45-47)
sites that are expected to be polymorphic in any
suitable sample
hap_diversity_within Haplotype diversity within the population (48)
Divergence-based metrics Divsites Number of divergent sites
Nucleotide divergence per base pair, corrected by (43)
Jukes-Cantor
Linkage disequilibrium Kelly_ZnS Average pairwise 1 value (49)
Rozas_ZA Average of 1% only between adjacent polymorphic sites (50)
Rozas ZZ Rozas_ZA minus Kelly_ZnS (50)
Wall_B; Wall_.Q Proportion of pairs of adjacent segregating sites that (51)
are congruent, with values approaching 1 indicating
extensive congruence among adjacent segregating sites
iHS Integrated haplotype score, based on the frequency of (11)
alleles in regions of high LD (computed for the
autosomes)
XP_EHH Long-range haplotype method to detect recent ®)
selective sweeps (computed for the autosomes, between
the major continental populations CEU, CHB and
YRI, taken in pairs)
Recombination recomb_Bherer2017_females/m Recombination estimates (¢cM/Mb) from the refined (24)
ales/sexavg genetic map by Bhérer et al. (2017), which collects
recombination events from six recent studies of human
pedigrees, pertaining to a total of 104 246 informative
meioses. Maps are available in three separate tracks:
females, males and sexavg
recomb_deCODE_ deCODE genetic map based on 5136 microsatellite (52)
females/males/sexavg markers for 146 families with a total of 1257 meiotic
events.
recomb_Marshfield_ Marshfield genetic map based on 8325 short tandem (53)
females/males/sexavg repeat polymorphisms (STRPs) for 8 CEPH families
consisting of 134 individuals with 186 meioses.
recomb_Genethon_ Genethon genetic map based on 5264 microsatellites (54)
females/males/sexavg for 8 CEPH families consisting of 134 individuals with
186 meioses.
Selection tests based on FayWu_H Number of derived nucleotide variants at low and high (55)
SFS and/or variability frequencies with the number of variants at
intermediate frequencies
FuLi_D Number of derived nucleotide variants observed only (29)
once in a sample with the total number of derived
nucleotide variants
FuLi_F Number of derived nucleotide variants observed only 29)
once in a sample with the mean pairwise difference
between sequences
Tajima_D Difference between the number of segregating sites (56)
and the average number of nucleotide differences.
Zeng E Difference between 61, and 8y, sensitive to changes in (57)
high-frequency variants.
Selection tests based on the DoS Direction of Selection: difference between the (58)
MKT proportion of nonsynonymous divergence and
nonsynonymous polymorphism
NI Neutrality Index: summarizes the four values in a (19,59)

alpha; alpha_cor

McDonald and Kreitman test table as a ratio of ratios
Proportion of substitutions that are adaptive. The
second is calculated after removing slightly deleterious
mutations

(19.32.60.61)

A complete list is available under the section Help — Tracks Description of Pop Human.
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Table 3. List of major gene-based variation statistics in PopHuman, computed for each population separately and for different types of sites

Category Estimate

Description Reference Types of sites analyzed

Descriptive statistics ™

K
Ta/Ts
Ka/Ks
DAF
Recombination (Bhérer et al.

2017), cM/Mb
Standard MKT P

cM/Mb

ag

Integrative MKT d

DoS

Nucleotide diversity: average number of
nucleotide differences per site between any
two sequences

Nucleotide divergence per base pair, (43)

corrected by Jukes-Cantor

Ratio of nonsynonymous to synonymous (44,62) Ratio: 0-fold divided by
nucleotide polymorphism (w) 4-fold

Ratio of nonsynonymous to synonymous (44,62)
nucleotide divergence (w)

Derived Allele Frequency: distribution of (63)
allele frequencies of segregating sites

Recombination estimates (¢cM/Mb) from the (24)
refined genetic map by Bhérer et al. 2017

Number of segregating sites (42)

(42-44) Whole gene region £500 bp

Whole gene region £500 bp
‘Whole gene region £500 bp

Separately: 4-fold; 0-fold;
S'UTR; 3’UTR; intron;
intergenic (+500 bp)
Number of divergent sites

Nucleotide diversity: average number of
nucleotide differences per site between any
two sequences

Nucleotide divergence per base pair, (43)
corrected by Jukes-Cantor

Proportion of substitutions that are adaptive.
It is calculated both from P and D, and from
mand K

Fraction of new mutations that are strongly (32)
deleterious and do not segregate in the
population

Fraction of new mutations that are slightly
deleterious and segregate at minor allele
frequency (MAF) <5%

Fraction of new mutations that are neutral
since before the split of humans and
chimpanzees, calculated after removing the
excess of sites at MAF <5% due to slightly
deleterious mutations

Fraction of new mutations that have become
neutral recently, after the split of humans and
chimpanzees, calculated after removing the
excess of sites at MAF <5% due to slightly
deleterious mutations

Proportion of substitutions that are adaptive,
calculated after removing slightly deleterious
mutations

Direction of Selection: difference between the (58)
proportion of nonsynonymous divergence

and nonsynonymous polymorphism

(42-44)

(19,32,60,61)
Separately: 0-fold; SUTR;

3'UTR; intron; intergenic
(500 bp)

(19.32.60.61)

A comprehensive explanation is available under the section Help — Integrative MK T of PopHuman.

instance previously developed by our group that hosts pop-
ulation genomics statistics for 30 Drosophila melanogaster
populations (36). Novel features that have been imple-
mented in PopHuman include the utility to retrieve gene-
based integrative MKT metrics.

Compared to the 1000 Genomes Selection Browser 1.0
(18), PopHuman presents three significant advantages.
First, PopHuman analyzes the 1000GP Phase III data,
which included 2.29 times more sampled sequences (2504
versus 1092) compared to the Phase I, and used an improved
variant calling pipeline. Specifically, Phase 11T implemented
an expanded set of variant callers, including some that use
haplotype information and others that rely on de novo as-
sembly, it considered low coverage and exome sequencing
data jointly rather than independently, and used a different
genotype calling that allowed the integration of multi-allelic

variants and complex events (15). Second, PopHuman ana-
lyzes 26 instead of just three populations. This allows de-
tecting very recent selective sweeps that have occurred in
a single population and that can only be detected by an-
alyzing data for this specific population; or older selective
sweeps shared among a few related populations, whose de-
tection gives a reinforcement of the time depth and biol-
ogy underlying the specific selection signal. Three illustra-
tive examples are provided: (i) a recent selective sweep re-
lated to skin pigmentation (37) in the region comprising the
genes SLC24A5, MYEF2, SLC12A1 and CTXN2 in Euro-
pean (EUR) and South Asian (SAS) populations but not
in East Asian (EAS) populations (Supplementary Figure
S1); (ii) the presence of high frequency derived alleles in the
gene TRPV6 in all non-African populations, with a stronger
signature in EAS populations, intermediate in SAS popula-
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tions, and weaker in EUR populations, reflecting the time
frame in which the establishment of agriculture, and thus
the corresponding selective sweeps, occurred in those pop-
ulations (stronger signatures in more recent sweeps; Sup-
plementary Figure S2) and (iii) the presence of high fre-
quency derived alleles in the Duffy red cell antigen gene
(DARC, FY, ACKRI) in sub-Saharan Africa, thought to
be the result of selection for resistance to P. vivax malaria
(38,39), which is also seen in EAS populations (Supplemen-
tary Figure S3). Finally, PopHuman, contrary to the 1000
Genomes Selection Browser 1.0, implements selection tests
based on the comparison of polymorphism and divergence,
which are the only ones able to reveal the fixation of adap-
tive variants and other signatures of recurrent selection oc-
curring over the last millions of years. One extreme exam-
ple is found in the gene PRMI, which encodes a sperm-
specific protein that compacts sperm DNA and shows a
clear excess of function-altering substitutions between hu-
mans and chimpanzees compared to synonymous substi-
tutions, indicative of positive Darwinian selection (40,41)
(Supplementary Figure S4).

CONCLUSION

The PopHuman database and browser go a step forward
in the description and analysis of the most comprehensive
human diversity data to date from a population genomics
perspective. We aim PopHuman to be extended to incorpo-
rate novel metrics of transcriptomic and epigenomic varia-
tion, not only across individuals and species but also during
the lifetime of an individual and/or in different parts of the
body. In this way, PopHuman will become a pioneer popu-
lation multi-omics browser advancing the upcoming popu-
lation —omics synthesis (16).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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