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Abstract

Damages resulting from wildfires have arisen as a major threat worldwide. Properly
accounting for the interaction between the fire and the atmosphere surrounding the
hazard could aid fire fighters and civil protection staff in making more informed, better
decisions during an ongoing event. In that sense, WRF-SFIRE is a wildfire simulator
which couples the meteorological model WRF-ARW and the fire spread model SFIRE
solving Rothermel’s equation through the level set method. This model solves the
complex interaction between the atmosphere and the fire through a Computational
Fluid Dynamics (CFD) approach. However, it has some limitations which provide the
motivation for this investigation.

The aforementioned coupled system needs to run fast enough to assure real-time
execution. A deep analysis of the parallelism programmed in WRF-SFIRE is an impor-
tant matter to get operational results. The best way to run WRF-SFIRE fast is using
a distributed memory parallelism with MPI, but it has some limitations because of the
dimension of the division of the domain.

Another important element of WRF-SFIRE, which evolves the fire being modeled
and keeps it updated, is the level set method. The level set method with strong and
heterogeneous rates of spread suffers from instabilities, resulting in spurious fires. This
is solved by enforcing the constraint that the level set function at a point may not
decrease below the minimum value at neighbors.

Finally, a new method of fitting the fire arrival time to observed perimeter data is
proposed. This new method can be used to generate an artificial fire history, which
can be used to spin up the atmospheric model for the purpose of starting a simulation
from the observed fire perimeter. The main idea is to minimize a non-linear objective
function, which is zero when the fire arrival time satisfies the eikonal equation. This
new method, unlike position or additive time corrections, respects the dependence of
the fire rate of spread on topography, diurnal changes of fuel moisture, winds, as well
as spatial fuel heterogeneity. This interpolation method could be used to assimilate fire
perimeters and satellite fire detections into the coupled atmosphere-fire model.

Keywords

Coupled Atmosphere-fire Model, WRF-SFIRE, HPC Platforms, Level Set Method,
Nonlinear Optimization, Eikonal Equation, Data Assimilation.



Resumen

Los danos causados por los incendios forestales han surgido como una gran amenaza
en todo el mundo. Una explicaciéon apropiada de la interacciéon entre el fuego y la
atmosfera alrededor del incendio pueden ser clave para que los bomberos y los cuerpos
de proteccion civil puedan tomar decisiones durante el transcurso del evento. En este
sentido, WRF-SFIRE es un simulador de incendios forestales que combina el modelo
meteorologico WRF-ARW y el modelo de propagacion de incendios SFIRE resolviendo
la ecuacion de Rothermel a través del método del conjunto de nivel. Este modelo
soluciona la compleja interaccion entre la atmosfera y el fuego a través de la dinamica de
fluidos computacional (CFD). Sin embargo, tiene algunas limitaciones que proporcionan
el objetivo de esta investigacion.

El sistema acoplado antes mencionado necesita ser ejecutado lo suficientemente
rapido como para asegurar ejecuciones en tiempo real. Un analisis profundo del par-
alelismo programado en él es una cuestion importante para obtener resultados opera-
cionales. La mejor manera de ejecutar rapidamente WRF-SFIRE es utilizando un
paralelismo de memoria distribuida con MPI, pero tiene algunas limitaciones debido al
tamano de las partes del dominio.

Otro elemento importante de WRF-SFIRE, que permite evolucionar el incendio y
lo mantiene actualizado, es el método del conjunto de nivel. El método del conjunto
de nivel con tasas de propagacion fuertes y heterogéneas sufre de inestabilidades, lo
que provoca incendios espurios. Esto se resuelve cumpliendo que la restriccion de que
la funcién del conjunto de nivel en un punto no pueda disminuir por debajo del valor
minimo en los vecinos.

Finalmente, se propone un nuevo método para ajustar el tiempo de llegada del
fuego a los datos perimetrales observados, que se puede usar para generar un historial
artificial del incendio, que puede utilizarse para spin up el modelo atmosférico con
el fin de comenzar una simulaciéon desde un perimetro de fuego observado. La idea
principal es minimizar una funcién objetivo no lineal, que satisface la ecuacion eikonal
cuando va a 0. Este nuevo método, a diferencia de la posicién o las correcciones de
tiempo aditivas, respeta la dependencia de la velocidad de propagacion en la topografia,
cambios diurnos en la humedad del combustible, vientos, asi como la heterogeneidad
espacial del combustible. Este método de interpolacién se puede usar para asimilar los
perimetros de fuego y las detecciones de fuego satelitales al modelo acoplado de fuego
atmosférico.

Palabras clave

Modelo Acoplado de Atmosfera-fuego, WRF-SFIRE, Plataformas HPC, Método del
Conjunto de Nivel, Optimizacién No-lineal, Ecuacion Eikonal, Asimilaciéon de Datos.



Resum

Els danys causats pels incendis forestals han sorgit com una gran amenaga a tot el
moén.  Una explicaciéo adequada de la interaccid entre el foc i 'atmosfera al voltant
del foc pot ser clau perqué els bombers i els cossos de proteccié civil puguin prendre
decisions durant el transcurs de ’esdeveniment. En aquest sentit, WRF-SFIRE és un
simulador d’incendis forestals que combina el model meteorologic WRF-ARW i el model
de propagacié d’incendis SFIRE que resol 'equacié de Rothermel a través del métode
del conjunt de nivell. Aquest model soluciona la interaccié entre ’atmosfera i el foc
a través de la dinamica de fluids computacional (CFD). No obstant aixo, té algunes
limitacions que permeten 1’objectiu d’aquesta investigacio.

El sistema acoblat abans esmentat necessita ser executat prou rapid com per assegu-
rar execucions en temps real. Una analisi profunda del paral-lelisme programat en ell és
una qiliestié important per obtenir resultats operacionals. La millor manera d’executar
rapidament WRF-SFIRE és utilitzant un paral-lelisme de memoria distribuida amb
MPI, pero té algunes limitacions causa de la grandaria de les parts del domini.

Un altre element important de WRF-SFIRE, que permet evolucionar I'incendi i el
manté actualitzat, és el métode del conjunt de nivell. El métode del conjunt de nivell
amb taxes de propagacié fortes i heterogénies pateix d’inestabilitats, el que provoca
incendis espuris. Aix0 es resol complint la restricci6 de que la funcié del conjunt de
nivell en un punt no pugui disminuir per sota del valor minim en els veins.

Finalment, es proposa un nou métode per ajustar el temps d’arribada del foc a
les dades perimetrals observades, que es pot utilitzar per generar un historial artificial
de I'incendi, que pot utilitzar-se per spin up el model atmosféric per tal de comengar
una simulacié des d'un perimetre de foc observat. La idea principal és minimitzar
una funcié objectiu no lineal, que satisfa I'’equacio eikonal quan va a 0. Aquest nou
métode, a diferéncia de la posicid o les correccions de temps additives, respecta la
dependéncia de la velocitat de propagacio en la topografia, canvis diiirns en la humitat
del combustible, vents, aixi com la heterogeneitat espacial del combustible. Aquest
metode d’interpolacié es pot usar per assimilar els perimetres de foc i les deteccions de
foc satelitals al model acoblat de atmosfera-foc.

Paraules clau

Model Acoblat d’Atmosfera-foc, WRF-SFIRE, Plataformes HPC, Métode del Conjunt
de Nivell, Optimitzacié No-lineal, Equacié Eikonal, Assimilacié de Dades.
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Chapter 1

Introduction

Every year, millions of hectares of forest are devastated by wildfires. This fact causes
dramatic damage to innumerable factors such as health [24], economy [9], ecosys-
tem [48], biodiversity [49], and society [57]. It has been recognized that the recent
increase in fire severity is associated with strict fire suppression policies, that over last
several decades led to significant accumulation of fuel, which when ignited makes fires
difficult to control [I]. In order to reverse this effect, prescribed burns are routinely used
as a method of fuel reduction and habitat maintenance [56, [71]. The previous strategy
of putting out all wildland fires is being replaced by a new approach where the fire is
considered as a tool in the land management practice, and some fires are allowed to
burn under appropriate conditions in order to reduce the fuel load and meet the forest
management goals [21].

Fire management decisions regarding both prescribed burns, as well as wildland fires,
are very complex. They require a careful consideration of potential fire effects under
changing weather conditions, values at risk, firefighter safety, and air quality impacts
of wildfire smoke [74]. In order to help in the fire management practice, a wide range of
models and tools have been developed. The first attempt to reproduce the fire spread
in a forest was done by Curry and Fons (1938) [20] and Fons (1946) [27] which was used
to build the first set of semi-empirical equations describing the fire spread [64} 2]. This
first formulation gave the first impulse to start modeling wildland fires using numerical
fire spread models to propagate the evolution of the fire. These models consist of
Rate of Spread (ROS) formulation and a moving interface [35]. There are several
examples of ROS formulation in literature: Rothermel [64], Finney [26], Mallet [40]
that can be combined with any moving interface method. Among different methods
for moving interfaces, the Level Set Method (LSM) [55] is a well-known technique
used to evolve dynamical systems such as the progression of a fire perimeter which
has been applied for different authors [38, 45] 63]. The LSM method is based on an
Eulerian moving interface method and gives a useful representation of what part of a
domain is burned (taking negative values) and what part is not (taking positive values).
Another moving interface methodology is based in Lagrangian Discrete Event System
Specification (DEVS) [34], 52}, 23], this formulation does not use a mesh for calculating
the evolution of fire and permits faster simulations at higher resolution. Finally there is
the formulation based on Huygens’ principle [61), 62 [3] which uses an elliptical spread

1
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of each point of the fire front.

The first operational models were constricted by the computing capabilities and in
general were uncoupled from atmospheric models. This models are based on a semi-
empirical formulation in which the ROS equation is formulated using the energy balance
equation tuned with experimental data. In these models, elevation data (slope) and fuel
characteristics are used together with ambient weather conditions or a general weather
forecast as inputs to the rate of spread model, which computes the fire propagation,
neglecting the impact of the fire itself on local weather conditions (see BehavePlus [5],
FARSITE [25] or PROMETHEUS [72]). In these tools, the atmospheric model provides
an external forcing to the fire spread model, but the prognostic and diagnostic variables
of the fire spread model (fire front position, heat fluxes,...) are not used to update the
atmospheric model. Therefore, they do not take into account one of the essential
parts of simulating the fire spread model, the fire’s effect on the atmosphere. The
predictability potential of a multi-physics wildfire spread system is supposed to be
better than considering the atmospheric and wildfire models as two isolated systems [12]
10}, IT]. Therefore, as computational capabilities increase, a new generation of coupled
fire-atmosphere models become available for fire managers as operational tools. In a
coupled fire-atmosphere model, weather conditions are computed simultaneously with
the fire propagation. This means that the state of the atmosphere is modified by the fire
so that the fire spread model is driven by the local micro-meteorology modified by the
fire-released heat and moisture fluxes. The main examples of this types of models are
WRF-SFIRE [43] which uses the LSM moving interface and FOREFIRE/Meso-NH [22]
with the DEVS moving interface. Other examples are CAWFE [I5] and BRAMS-
FIRE [2§].

The last versions of the mesoscale models incorporates a CFD scheme which al-
low have high resolution weather simulation up to resolutions of tens of meters, that
are coupled with semi-empirical fire spread models. In this cases, the fire model have
a reference NWP model which gives the meteorological variables involved in the fire
spread. This approach is fundamentally similar to so-called physics-based models like
FIRETEC [39] and WFDS [47], which also use CFD approach to compute the flow
near the fire, but focus on flame-scale processes in order to directly resolve combustion
and heat transfer within the fuel and between the fire and the atmosphere. As the com-
putational cost of running these models is too high to facilitate their use as forecasting
tools using high performance computing, this thesis focuses on the aforementioned hy-
brid approach, where the fire and the atmosphere evolve simultaneously affecting each
other, but the fire spread is parameterized as a function of the wind speed and fuel
properties, rather than resolved based on the detailed energy balance. Therefore, this
thesis proposes to improve some aspects of WRF-SFIRE [37], a fire-atmosphere model
described in Chapter 2] WRF-SFIRE combines a mesoscale numerical weather predic-
tion system WRF [68], which represents the state-of-the-art of the Numerical Weather
Prediction (NWP) developments, with a surface fire behavior model implemented by
a level set method [54], a fuel moisture model [73], and chemical transport of emis-
sions [41]. The coupling between the models is graphically represented in the diagram
in Figure[L.1] The fire heat flux modifies the atmospheric state (including local winds),
which in turn affects fire progression and the fire heat release. WRF-SFIRE has evolved
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Figure 1.1: Diagram of the coupling between the atmospheric and fire spread models
in WRF-SFIRE. Figure from [41].

from CAWFE [I1] [13], and an earlier version [43], distributed with the WRF release as
WREF-Fire [14], was recently improved by a high-order accurate level-set method [50].
The model WRF [69] is a

WRF-SFIRE solves the multi-physical problem in a cyclic fashion. That is, mete-
orological data is obtained by running WRF and the obtained WRF data is used to
expand the fire front numerically. At that point, the heat fluxes that fire emits to the
atmosphere are captured by the system and used to compute WRF for the next time
step. This constant feedback between the two models makes it possible to describe all
the processes in a more realistic way. However, it has a significant computational cost
which requires to exploit High Performance Computing (HPC) to the maximum. In
general the number of cores and number of CPU used are determinant for HPC, but
isn’t straightforward look for configuration that optimizes the processes [33]. The com-
puter architecture and the configurations of CPU and memory use are very significants
in the performance of the simulations running time [30]. WRF-SFIRE is implemented
using two different parallel paradigms, MPI distributed memory parallelization and
OpenMP shared memory parallelization. The MPI parallelization consists in dividing
the domain into different square regions called patches which are evolved in parallel. In
the case of OpenMP, each patch is divided into horizontal tiles which share the same
memory space and compute in parallel as well. Therefore, a first objective is to analyze
these two parallel paradigms in order to observe their characteristics and limitations
(Chapter [3]).

In this thesis as the WRF-SFIRE model will be used, the ROS formulation will be
the one of Rothermel and the moving interface the LSM. In this case, the fire front
structure is able to evolve using the level set equation which gives the location where
the perimeter is going to move depending on the rate of spread, which depends on the
wind and the slope of the terrain. If the rate of spread is homogeneous, the level set
function produces at a smooth solution. The problem appears when the rate of spread
is strong and heterogeneous. This fact causes spurious ignitions which do not make
sense in terms of the real solution. Therefore, in Chapter [] the problem is analyzed
and a solution to avoid this unrealistic situation is proposed. The final solution is tested
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and added to the master branch of WRF-SFIRE Git repository [16].

In order to adjust the coupled fire-atmosphere models to the observation, several
methods of initialization and real-time adjusts can be used. These techniques have
been evolved together with the computation power and very related to the atmospheric
modeling. The most straightforward techniques were based in successive corrections
and most representative methods are Cressman [19] and Barnes [7]. Later, the statis-
tical methods are developed as Optimum Interpolation for obtaining an state which
minimizes the error variance [66], in the 70s Anthes [6] and Hoke [31] developed the
nudging method in which the model is dynamically corrected using the error between
observations and the forecast, actually the variational data assimilation methods are
widely applied for data assimilation using the 3D-Var [18] and 4D-Var techniques [5§],
more recently the Kalman Filters [32] has become a basic tool for data assimilation

Focusing in wildland forest fires, some authors try to correct the simulations using
collected meteorological data from the surroundings of the wildfire [44], the main prob-
lem of this technique is that meteorological conditions near and inside the fire are too
changing and the combustion region quite thin. An alternative to this was adjusts the
perimeters simulated by the models to the ones observed using data from satellite or
observed fire perimeters [70], [63], both using Kalman filters for adjusting these perime-
ters. In our case, as we are working with a coupled fire-atmosphere numerical model,
the ignition procedure itself affects the atmospheric state (especially local updrafts near
the fire line and the near fire winds). Therefore, particular attention is needed during to
the data assimilation process in order to assure that realistic fire-induced atmospheric
circulation is established at the time of data assimilation.

One possible solution to this problem, assuring consistency between the fire and
the atmospheric models, is defining an artificial fire progression history, and using it to
replay the fire progression prior to the assimilation time. In this case, the heat release
computed from the synthetic fire history is used to spin up the atmospheric model
and assure consistency between the assimilated fire and the local micro-meteorology
generated by the fire itself. Therefore, a new method of fitting the fire arrival time to
data is proposed, which can be used to generate an artificial fire history (Chapter [5).

The organization of the thesis is according to the following summary. A detailed
explanation of WRF-SFIRE is given in Chapter 2] After this, Chapter [3] analyzes the
behavior of the multi-physics system on multi-core platforms. Then, a solution to the
problem of spurious fire ignitions for the level set method with strong and heterogeneous
rate of spread is presented in Chapter 4] A new method of fitting the fire arrival time
to data is formulated, solved, and tested for some experiments in Chapter 5 Finally,
the main conclusions of this work and the open lines are reported in Chapter [6]



Chapter 2
WREF-SFIRE

This chapter describes the different components of the wildfire simulator WRF-SFIRE,
which couples the meteorological model WRF-ARW [60] and the fire spread model
SFIRE in an open source Fortran code available from the Github repository [16].

2.1 General structure

In order to couple the two different scales (atmosphere and fire combustion), WREF-
SFIRE uses a 3D mesh representing the atmosphere and the fire is represented on a
finer 2D mesh located at the surface of the 3D atmospheric mesh (Figure [2.1)).

The three dimensions from the 3D atmospheric mesh are two horizontal z and y
directions and one vertical z direction. The two horizontal directions are defined as
longitude and latitude geolocation coordinates, and the vertical levels or n vertical
coordinates are defined as

_ DPh — DPnt
/1/ )
where 1 = pps — Pnt, Pr is the hydrostatic component of the pressure, pp, is the hy-
drostatic pressure value along the surface boundary (it changes depending on the land
or orography) and py, is the hydrostatic pressure value along the top boundary (it is a
constant). Therefore, n varies from 1 at the surface to 0 at the upper boundary of the
model domain.

In Figure[2.2] one can observe that the atmospheric variables are located at different

places of the cubic cell according to the following:

e 0 point locations, not staggered: They are located at the center of the cubic cell.
For instance, the thermodynamical variables such as temperature and pressure.

e U point locations, staggered in x direction: They are located at the center of the
left face. The x component of the wind is an example of this category.

e V point locations, staggered in y direction: They are located at the center of the
front face. The y component of the wind is located in the V points.

e IV point locations, staggered in 7 direction: They are located at the center of the
bottom face. For instance, the 7 components of the wind and the geopotential.

5
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Figure 2.1: 3D atmospheric mesh and 2D fire mesh with their respective resolutions.

Figure 2.2: Left figure: Definition of the 6, U and V locations of a cubic atmospheric
cell. Right figure: Detailed location of 6, U and V locations from the x-y and x-n
planes. Both figures are from [17].

All variables on the fire mesh are located at the centers of the 2D fire mesh cells
except the x and y components of the fire mesh winds, UAH and VAH, which are
represented on U and V locations of the fire mesh cells. Furthermore, 4 subcells are
generated for each fire cell in order to solve the combustion process. In order to construct
the fire mesh, one needs to define mesh ratio between atmosphere and fire meshes.
This ratio gives the number of fire cells inside each atmospheric cell. In Figure [2.3] the
ratio 1:4 between atmosphere and fire meshes is illustrated. These two main meshes
are recommended to satisfy at least a ratio of 1:10 in x and y direction (sr_z and
sr_y) [36]. So, for each atmospheric node, 10 fire points are required in order to model
in a suitable way the interaction between the atmosphere and the fire. Furthermore,
to ensure convergence, it is required that the ratio between the temporal resolution
in seconds (dt) and the spatial resolution of the atmospheric mesh in kilometers (dz)

satisfies:
dt
5. <6 [43]

WRF-SFIRE is implemented in each iteration of WRF, where the fire is evolved in
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Figure 2.3: Ratio 1:4 between atmosphere and fire meshes using an example of a one
atmospheric cell and four fire cells. The figure is from [I7].

a cyclic fashion. Therefore, in each iteration of WREF:
1. The WRF model is solved on the atmospheric grid.
2. The winds are interpolated from the atmospheric to the fire mesh.
3. The fire ignition is generated if it was not previously generated.
4. The fire front is evolved using the discretized level set method.
5. The fire arrival time and the fuel fraction are computed in each fire node.

6. The heat fluxes from the fire to the atmosphere are computed from the previous
fuel fraction and the previous fire arrival time.

7. These fluxes are added to the WRF model, which is computed again returning to
step 1.

Using this work-flow, the two dependences are achieved. The atmosphere depends
on the fire from the heat fluxes and the fire depends on the atmosphere from the wind,
temperature, humidity, and other variables.

2.2 Fire spread model

The variable of interest when modeling fire spread is the speed at which the fire line
propagates or rate of spread R. This rate is computed using the semi-empirical Rother-
mel formula [65] which computes the rate of spread at the normal direction of the fire
front depending on the effects of fuel, slope and wind. Therefore, the Rothermel formula
gives the rate of spread in the normal direction as

R = Ro(1+ ¢u + ¢s), (2.1)

where Ry is the rate of fire spread dismissing the effects of wind and slope, ¢,, is the
wind factor and ¢, is the slope factor. However, a front-tracking solver is required in
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Figure 2.4: The level set function used for modeling the evolution of a wildland fire.

order to propagate the fire front at the previous rate of spread in equation . WRF-
SFIRE uses the level set method [54] which uses a three dimensional construction, the
level set function, to define the evolution of the fire front by level sets as time progresses.
The level set function is used in order to define which parts of the domain are either
part of the fire front, burned or unburnt. So, it is defined as

(2, t) <0 Burned area
(@, t) =0 Fire front (2.2)
(#,t) >0 Unburnt area

where ¥ € R? is a point in the domain and ¢ is the temporal variable. Therefore, at
each time 7, the level set ¢ (7, 7) = 0 defines the fire front. Figure shows these fire
fronts for different times using different colors (z axis of the figure) over the domain
(x-y plane of the figure). One can also observe that the level set function is a three
dimensional volume because it has two spatial dimensions and one temporal dimension.

This level set function is evolved temporally using the partial differential equation

88—7’;’+R||w|| =0, (2:3)
which uses the previous rate of spread R as a vector in the normal direction defined as
3
"t el

which is computed by finite central differences.
The previous equation ([2.3)) is solved numerically using the Runge-Kutta method
of order 2. Therefore, having solved the iteration k, the iteration k£ + 1 is defined as

PR = gk AL ()
1 1 1
wk—i—l — ¢k + At(éF(l/}k) + §F(¢k+2)>

where F'is a discretization of —R||V1)|| using an upwinding method and an artificial
viscosity term for added stability considerations. So

F(ih) = —R||VY|| + eAv,



2.3. COUPLING 9

where @w is the upwinding finite differences approximation of V1 selected in the con-
figuration file (namelist.input file). The essentially nonoscillatory (ENO) method [53]
of order one explained in the Section [5.4.3]is typically used to ensure evolving the in-
formation from the past to the future. The viscosity term is scaled using the scaled-free
artificial viscosity € = 0.4 and

o? o

V(@ +Ar,y) — 2¢(z,y) +(z — Az, y) n Y(z,y + Ay) — 2¢(x,y) + Pz, y — Ay)

~ .

Ax Ay

2.3 Coupling

In this section, the interaction between WRF atmosphere model and SFIRE spread fire
model is explained. Therefore, steps 2 and 6 in the iteration work-flow of the Section [2.1
are described in more detail.

First, in step 2, the output winds from WRF-ARW solved in the 3D atmospheric
mesh are horizontally interpolated from the atmospheric mesh and vertically interpo-
lated to a vertical level (; in the 2D fire mesh by assuming the ideal logarithmic wind
profile. Therefore, wind u depends on the height about the terrain ( as defined in [43]

el G <¢
U@N{& “ o<c<6

where (y is the roughness height and ¢ is a proportionality constant. The common
roughness height is (5 = 0.13H, where H is the vegetation height and the vertical level to
interpolate from (; depends also on the vegetation category. This wind interpolated into
the fire mesh is then used to compute the rate of spread formula in the equation
which in turn is used to drive the fire spread simulation.

In step 6, after running the fire spread model, the heat fluxes are inserted into
the WRF-ARW atmospheric model. In order to compute the heat fluxes, one needs
to calculate at each location the fuel fraction. Each location starts with fuel fraction
F; = 1. Then, once the location is ignited at time ¢;, in all times such that ¢ > ¢;, the
fuel fraction is defined as

t—t
Ty

Fy(t) =exp (= ) 13,

where T} is the fuel burn time, which is proportional to the fuel weight w as

w

0.8514°

f%

In WRF-SFIRE the values w from each of 13 Rothermel’s fuel categories are from
the NCAR’s CAWFE code [12, [10, 1T, T3]. Then, this fuel fraction is integrated in
the previous subcells and the heat fluxes are computed as in the CAWFE code, so the
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average sensible heat flux density released in the temporal interval [¢,¢ + At] in (W
m~?) is computed as

Fy(t) = Fyt+a8) 1
At 1+ M

¢h = h7

and the average latent heat flux density at the same temporal interval is computed as

Ff(t) —Ff(t—i-At) My 4 my,

= L
% At 1+ M,

where M is the fuel particle moisture content (dimensionless), w; is the total fuel load in
(kg m~2), h is the fuel heat contents of dry fuel in (J kg™!), m; = 0.56 is the estimated
mass ratio of the water output from the combustion of dry fuel, and L = 2.5 x 10% J
Kg1 is the specific latent heat of condensation of water at 0°C. All of these variables
depend on the fuel type category assigned at each particular point.

Finally, these heat fluxes ¢;, and ¢, are added to the WRF model as forcing terms
on a layer above the surface in the differential equations of the atmospheric model,
which assumes an exponential decay with increasing altitude.



Chapter 3

Scalability Study

In order to predict the evolution of a fire operationally, one needs to be able to run the
simulation in real-time. A coupled atmosphere-fire simulator is computationally expen-
sive because of the necessity for evolving the atmosphere and the fire simulation while
interchanging information. In this chapter, the parallel paradigms programmed in the
coupled atmosphere-fire simulator WRF-SFIRE are analyzed. Therefore, a scalability
study of WRF-SFIRE parallelization is achieved. Furthermore, the operational time
capabilities of WRF-SFIRE are analyzed.

3.1 Experimental scenario

3.1.1 Cardona fire

In order to properly analyze the parallel paradigms, it is important to choose an ap-
propriate test case. The real case analyzed is a wildfire which occurred in Catalonia
(North-East of Spain) on July 8, 2005 [29]. The 2005 Cardona fire burned a total of
1438 hectares and lasted for 6 hours. The fire started at 14:30 and it burns until approx-
imately 20:30. This particular case was labeled by the firefighters as a wildfire driven
by the winds generated by the fire itself. Thus, it is a perfect example to show the
benefits of using a multi-physics system that takes into account the feedback between
the atmosphere and fire processes.

To run WRE-SIFRE, it is required to determine the computational domains and
mesh resolutions, taking into account that the atmospheric model is represented using
a 3D grid and that the fire is propagated at the surface, on a 2D horizontal grid of the
3D atmospheric grid (Chapter . The size of the computational domain is fixed in this
case and corresponds to 49 km? (7 km x 7 km). This computational domain is large
enough to contain the evolution over the whole 6-hour time period. Once the domain
has been determined, the mesh resolutions are defined from the input data resolutions.
The digital elevation map used has a resolution of 25 meters, which is the maximum
input data resolution used in the system. For that reason, the initial coarser fire grid
resolution is chosen to be 24 meters, which is the number closest to 25 that allows
for having fire and meteorological grid resolutions that fit the underlying domain size
and at the same time exploit the initial data fully. Regarding the atmospheric mesh

11
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Table 3.1: Grid resolutions used in the four experiments performed.

Atmospheric res. | Fire res. | Atmospheric grid points
(meters) (meters) per vertical level
236 24 29x29
118 12 59x59
100 10 70x70
59 6 116x116

initialization, the initial weather data used as initial conditions for the simulations
is a weather data set provided by the SMC (Servei Meteorologic de Catalunya) [67],
which is at 3 km horizontal resolution and interpolated at 19 vertical levels. Then,
the coupled atmosphere-fire model is simulated using different atmosphere and fire grid
resolutions. Table summarizes the four atmospheric and fire grid resolutions used
in the experimental study as well as the number of points in the atmospheric grid in
one vertical level for each configuration.

Figure [3.1] shows the fire front position predicted by WRF-SFIRE when using the
different grid resolutions. The green filled shape corresponds to the observed final burnt
area after the 6-hour event and the dotted lines are the simulated fire front positions
after the event for each configuration in Table[3.1] As one can observe, the atmospheric
grid resolution plays a relevant role in the final result in terms of quality. Moving
to higher spatial resolutions improves the match with the final observed perimeter,
especially at the head of the fire. There is a significant change in behavior on the
flanks of the fire only when reaching the higher atmospheric resolutions (59m). The
resolution does not have a significant impact at the rear part of the fire as expected
since the propagation is negligible in this part of the fire. The main reason for these
results is the capacity of WREF to better detect local wind convections due not only
to the atmospheric effects but also because of the wildfire. Figures and show
the wind speeds and wind directions at two different instants of the fire propagation.
Figure depicts wind conditions before the fire ignition and Figure [3.3| shows wind
parameters five hours later. In both cases, the four grid configurations mentioned
above were used to determine not only the influence of the coupled system on the
atmospheric behavior, but also the precision in detecting such interaction. In Figure|3.2]
independent of the grid resolution, the only wind observed is the one generated by the
WRF model. However, when considering the effect of the atmospheric grid resolution
once the fire has started (see Figure , one can clearly observe that the results are
quite different. Increasing the atmospheric resolution allows the model to capture the
winds generated by the fire itself. Therefore, a significant quantity of atmospheric
grid points is necessary to ensure accuracy in the results. However, high resolution
simulations imply longer execution times (Figure . Therefore, it is necessary to
use high performance computing resources in order to achieve as much resolution as
possible. Since the simulations that provide better quality results are the ones with
atmospheric grid resolutions equal to 100 and 59 meters, the next analysis is focused
on these two cases.
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Figure 3.1: Cardona wildfire final burnt area compared to the simulated fire fronts
when using WRF-SFIRE with atmospheric grid resolutions equal to 236, 118, 100 and
29 meters.
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Figure 3.2: Graphical representation of the wind speed and wind direction at fire initial
time using WRF-SFIRE for the four experiments described in Table [3.1}
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Figure 3.3: Graphical representation of the wind speed and wind direction five hours
after the fire starts using WRF-SFIRE for the four experiments described in Table [3.1]
The red dots are the ignition points.
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Figure 3.4: Total, WRF, and SFIRE serial execution times simulating the Cardona fire
using WRF-SFIRE with atmospheric grid horizontal resolutions equal to 236, 118, 100
and 59 meters.
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Figure 3.5: Patches division and tiles division of a domain depicted in the horizontal
plane with 16x16 points in one vertical level.

3.1.2 Computer characteristics and baseline serial configuration

The execution platform used for the experiments with shared memory is a multi-core
system composed of 2 sockets integrating Intel Xeon processors with 8 cores and multi-
threading. On the other hand, the execution platform when running the model in
its MPI version, consists of a cluster of 24 compute nodes each equipped with two
Intel Xeon E5-2670 Sandy Bridge CPUs with 16 cores each. In order to analyze the
parallelization improvements and the scalability of the model, the simulation is first
executed using WRF-SFIRE in its baseline serial configuration. Figure [3.4] shows the
execution time spent when simulating the Cardona fire using a single thread approach
for all tested grid resolutions. Moreover, the execution time spent for each individual
model (WRF and SFIRE) is also depicted. As one can observe, higher resolution imply
longer execution time varying from, approximately, 17 hours to 7 days depending on the
resolution used. All the execution times obtained are prohibitively slow for operational
purposes.
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3.2 Shared memory study

Shared memory parallelization in WRF-SFIRE is programmed using OpenMP. OpenMP
is an Application Program Interface (API) for parallel programming in shared mem-
ory systems. In an OpenMP parallelization, a process is divided in different threads,
which have the same globally shared memory. Therefore, data transfer is transparent
to the programmer and synchronization takes place but it is mostly implicit. Using this
structure, one can work simultaneously in different parts of the domain and the job is
parallelized.

In the particular case of the OpenMP parallelization in WRF-SFIRE, some piece
of the domain is divided into tiles which are horizontal divisions of the domain piece
which are sharing memory (Figure . Therefore, the computations in this domain
piece can be done in parallel in each of the tiles. The number of tiles are set to the
amount of threads that will be run the model.

In this study, the Cardona fire experiment is run using 2, 4, 8 and 16 threads locating
each thread in a different core and with atmospheric grid resolutions of 100 and 59
meters. The WRF and SFIRE execution times are collected for each configuration.
Then, the ideal execution time T} is computed using the total serial execution time T}
(from Figure and the number of parallel threads N as

Figure shows the ideal execution time (green line), the real total execution time
(blue line) and the execution time of the two models WRF and SFIRE (bar chart) when
using 2, 4, 8 and 16 threads for an atmospheric grid resolution of 100 meters. Figure
depicts the same information as in Figure but for an atmospheric grid resolution of
59 meters. As one can observe, the scalability of the system is reasonable because the
total execution time has almost the same tendency as the ideal case. However, in terms
of absolute execution time incurred in both cases, it is clear that the one that could
reach the execution time requirements for operational purposes is the experiment with
the atmospheric grid resolution equal to 100 meters. Nevertheless, both experiments
are too slow to be used in an operational setting.

3.3 Distributed memory study

Distributed memory parallelization in WRF-SFIRE is programmed using MPI. MPI
or Message Passing Interface is a communication protocol to run parallel distributed
systems. In a MPI framework, different processes run different parts of a job. The
processes are independent and have their own piece of memory. All the process run
in parallel. After each computation, all the processes send each other the important
information to keep working properly. The synchronization among all the processes
usually is the bottleneck using this parallel paradigm. Therefore, it is important to
reduce as much as possible the number of synchronizations and communications between
processes in order to have an efficient code.
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Figure 3.6: Ideal, WRF, SFIRE and total execution time in minutes simulating the
Cardona fire using WRF-SFIRE with an atmospheric grid resolution of 100 meters and
OpenMP parallelization with 2, 4, 8 and 16 threads.

Figure 3.7: Ideal, WRF, SFIRE and total execution time in minutes simulating the
Cardona fire using WRF-SFIRE with an atmospheric grid resolution of 59 meters and
OpenMP parallelization with 2, 4, 8 and 16 threads.
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The MPI parallelization in WRF-SFIRE is done through patches, that is, the domain
is divided into a fixed number of parts according to the amount of cores available for
a given simulation. These patches usually are square divisions of the domain using the
horizontal plane as a reference (Figure. Since each patch needs information from its
neighbors’ patches to run the model, each patch includes extra points (called halo) to
incorporate those points from the four boundaries that are required to execute during
one iteration of the model. After finishing each iteration, the patches must exchange
the results from the points in the halo, therefore, a synchronization barrier is required.
This scheme implies that all MPI processes proceed in a synchronized fashion which
implies a non-depreciable communication time if the patch size is not well evaluated.

In this study, the Cardona fire experiment is run using 48, 96 and 144 cores and with
atmospheric grid resolutions of 100 and 59 meters. The WRF and SFIRE execution
times are collected again for each configuration. Then, the ideal execution time T; is
computed using the total serial execution time T (from Figure and the number of
cores N from the equation (3.2)).

Figures (3.8 and show the ideal execution time, the real total execution time,
and the execution time of the two models when using 48, 96 and 144 cores in a MPI
distributed memory parallelization. It is possible to observe that execution time is
significantly reduced, but it is very different from the ideal execution time. Furthermore,
the CPU hours spent are large because this execution time is distributed among all
the cores. Therefore, it is important also to take into account which cases provide
an accurate result, while minimizing the computational cost in terms of CPU hours.
Another limitation of MPI is that the domain is partitioned in patches. Therefore, if the
number of MPI processors increases, the number of patches increases, and so the size
of the patches decreases. There is a minimum size of the patches which in turns limits
the number of MPI processors which can be used. Therefore, the maximum number of
MPI processors is limited by the size of the domain. However, it seems that using an
adequate set up and parallelization strategy, it could be possible to reach operational
times.

3.4 Summary

Finally, both parallel paradigms OpenMP and MPI are compared. Therefore, the ideal
time is compared to the parallel execution time 7, in terms of the percentage efficiency

FE as
E=2-".100 3.1
T ) ( )

p

for all the previous cases.

One can observe in Table [3.2] that operational times can only be found using MPI
distributed memory parallelization. However, the percentage efficiency is always below
40% showing that the computational cost in terms of CPU hours is too large using this
parallel paradigm. Using OpenMP shared memory parallelization, the total execution
time is always far from real-time and the efficiency, in the case of 16 OpenMP threads,
is always below 50%. So, using OpenMP threads also results in a big computational
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Figure 3.8: Ideal, WRF, SFIRE and total execution time in minutes simulating the
Cardona fire using WRF-SFIRE with an atmospheric grid resolution of 100 meters and
MPI parallelization with 48, 96 and 144 cores.

Figure 3.9: Ideal, WRF, SFIRE and total execution time in minutes simulating the
Cardona fire using WRF-SFIRE with an atmospheric grid resolution of 59 meters and
MPI parallelization with 48, 96 and 144 cores.
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Resolutions | Configuration | Total | WRF | SFIRE | Ideal | Efficiency
100m;10m Serial 1366 | 709 657
100m;10m 2 OMP threads | 716 384 332 683 95%
100m;10m 4 OMP threads | 383 212 171 342 89%
100m;10m 8 OMP threads | 236 137 99 171 72%
100m;10m 16 OMP threads | 176 106 70 85 48%
100m;10m 48 MPI cores 79 67 12 28 35%
100m;10m 96 MPI cores 42 31 11 14 33%
100m;10m 144 MPI cores 29 20 9 7 24%
59m;6m Serial 9026 | 4673 | 4353
59m;6m 2 OMP threads | 7907 | 4220 | 3687 4513 57%
59m;6m 4 OMP threads | 4250 | 2359 | 1891 2257 53%
59m;6m 8 OMP threads | 2593 | 1501 1092 1128 44%
59m;6m 16 OMP threads | 1870 | 1114 | 756 564 30%
59m;6m 48 MPI cores 480 360 120 188 39%
59m;6m 96 MPI cores 255 160 95 94 37%
59m;6m 144 MPI cores 213 141 72 47 22%

Table 3.2: Summary of the execution times, in minutes, using the different parallel con-
figurations for the Cardona fire simulation. The last column is the percentage efficiency
computed from equation (3.1]) using the ideal execution time and the total execution
time.

cost. In summary, the best configuration in order to get predictions in operational
times is found using distributed memory parallelization through MPI. However, the
computational cost in terms of CPU hours is huge and the maximum number of MPI
processors is limited by the size of the domain (patches size limitation).
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Chapter 4

Level Set Method for heterogeneous
Rate of Spread

In this chapter, the problem when applying the level set method explained in Section[2.2]
with strong and heterogeneous rate of spread is shown. Then, a solution avoiding local
minima in the level set method is proposed. The resulting approach was merged with
the main branch of the WRF-SFIRE Github repository.

4.1 Spurious ignitions

In [42] was observed that if, in the level set method, a local minimum appears on the
boundary, its value keeps decreasing out of control. It is found out that this can in fact
happen anywhere in the presence of spatially highly variable rate of spread.

The partial differential equation to evolve the level set function can be rewritten

as aw
= —RIVY], (11)

where one can observe that the right hand side of the equation is a negative magnitude.
Therefore, if there is a large rate of spread at a specific point surrounded by small rates
of spread, the level set function is going to evolve downward at that point. This effect
causes local minima of the level set function which conceptually means burning took
place in the past. Therefore, this situation ends in a physically unrealistic fire arrival
time causing spurious ignitions to be created. Usually, the rate of spread is highly
heterogeneous because of local effects of the atmosphere on the fire or an heterogeneous
fuel (Figure . Therefore, a solution for this situation is required in order to avoid
these local minima.

In order to properly analyze the problem, it is important to choose a test case for
which the simulation produces spurious ignitions. The real case analyzed is a wildfire
which occurred in Mariposa County, California on July 16, 2017 [51]. The 2017 Detwiler
fire burned a total of 33113 hectares and lasted for 14 days. The fire started at 3:56 am
and it kept until 14 days later. This particular case has a highly heterogeneous rate of
spread, which causes spurious fires when using the level set method.

21
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Figure 4.1: Heterogeneous rate of spread computed from semi-empirical Rothermel’s
formula (2.1)) for the Detwiler fire occurred in California.

In this case, one can observe an heterogeneous rate of spread with large magnitude
in the right side of Figure In Figure [4.2] one can observe the level set function
after some iterations of WRF-SFIRE for the Detwiler fire. This heterogeneous rate of
spread causes some local minima to develop on the same side of the level set function
which causes some spurious fire ignitions. Therefore, the level set method ends up with
an unrealistic fire arrival time causing new ignitions before the actual ignition time of
the fire which can be seen at the tip of the cone.

4.2 Avoiding local minima approach

In order to solve the problem stated in the previous section, it is proposed to avoid
creation of local minima. The solution attempts to ascertain if the level set function
at a point Z and time 7 tends to go lower than its neighbors. In this case, the level set
function at this point and time is going to be defined as

(T, 1) = min (Y, 1), (4.2)

4 neighbor of ¥

where ¢ neighbor of ¥ means that the point 7 is at one mesh step from & in either of
the two dimensional directions.

This replacement gives a solution to the previous problem because it avoids evolving
the level set function at a particular point to a point below its neighbors, i.e. it avoids
creating local minima. This prevents getting an unrealistic situation in the fire arrival
time. This restriction is defined by the fact that the fire arrival time cannot evolve
to the past. Applying this new approximation, one can observe in Figure [£.3] that the
local minima approach gives a realistic result without spurious ignitions for the same
fire as in the previous example.
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Figure 4.2: The level set function after few iterations of WRF-SFIRE for the Detwiler
fire which has the rate of spread in Figure

Figure 4.3: The improved level set function after few iterations of WRF-SFIRE for the
Detwiler fire which has the rate of spread in Figure [{.I] Note that creation of local
minima is avoided by this new approach.
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Figure 4.4: Difference between the level set function using and not using the proposed
solution to avoiding local minima in the fire arrival time applied to the Cardona fire in

Section m

4.3 Consistency of the solution

In this section the consistency of the proposed solution is tested. The Cardona fire
from Section which did not have spurious ignitions, is tested using the new local
minima approach and comparing it with the previous results. Figure [4.4] shows the
differences between not using the proposed solution or using it after some iterations
of WRF-SFIRE. The results show little differences in one of the boundaries and later
instants outside the fire perimeter at this particular time. However, in all the time
steps, the fire front is identical in both cases. Therefore, one can conclude that the
new proposed solution avoiding local minima does not change the simulated result
significantly. In conclusion, the new proposed solution is a consistent approach.



Chapter 5

Interpolation of the Fire Arrival Time

In the previous sections, one can observe that WRF-SFIRE is a simulator which cou-
ples an atmospheric model, WRF, and a fire propagation model, SFIRE. In such a
coupled model, atmosphere and fire evolve together, influencing each other. Since the
atmosphere and fire evolve simultaneously in the model, incorporating real world obser-
vations about the fire can lead to inconsistencies when simulated fire is forced to match
the observations. In these situation, the simulated atmosphere and fire are incompati-
ble. Therefore, to modify the simulated fire in a consistent way, it is necessary to evolve
the atmosphere from moment of the ignition to the instant of the observed data. Thus,
it is necessary to construct an interpolated evolution of the fire from the ignition to the
observed data in order to define the atmosphere using the heat fluxes from the defined
fire. Once there is a consistency between atmosphere and fire, the coupled simulation
can continue from the observed data.

This chapter proposes a new method to interpolate the fire from the ignition point
Z; at time T} to some observed perimeters I'y,...,I'y at times T7,...,Ty. The main
goal is to simulate the coupled atmosphere-fire model from the last observed perimeter
I'y in a consistent manner. Therefore, it is necessary to interpolate the fire arrival time
from Z; to I'y, from I'; to I'y and so on.

5.1 Proposed work-flow of the interpolation method
The work-flow of the new fire arrival time interpolation technique is defined as:

1. Run a first simulation of WRF-SFIRE from moment of the ignition, 7}, to some
time after the fire arrival time at the first observed perimeter I';, 17.

2. Use the variables from the model to construct a reasonable rate of spread R using
the fire spread model of the equation ([2.1)).

3. Interpolate the fire arrival time by using the rate of spread R computed in the

previous step, knowing that the fire arrival time at the ignition point is 7T; and
the fire arrival time at the first observed perimeter I'; is 77.

25
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4. Spin up the atmosphere in WRF-SFIRE using the previous interpolated fire arrival
time until the fire arrival time at the first observed perimeter I'y, T;.

5. Go to step 1 and use T} instead of T; and T; instead of T}. Repeat the cycle until
Ty.

6. Run WRF-SFIRE coupled from the last observed perimeter I'y at Ty.

Therefore, the main goal of this chapter is finding the interpolation in step 3.

5.2 Fire spread model

The state of the fire spread model is the fire arrival time 7' (Z) at locations Z in a
rectangular simulation domain 2 C R?. The isoline T (£) = 7 is then the fire perimeter
at time 7. The normal vector to the isoline is V7I'/ ||[VT||. The rate of spread in the
normal direction and the fire arrival time at a location on the isoline then satisfy the

eikonal equation
1

VT = 7 (5.1)

It is assumed that R depends on location (because of differing fuels and terrain) and

time (because of wind and fuel moisture changing with time). Rothermel’s model [65]

for 1D fire spread formulated in equation gives an expression for the rate of spread

R. The 1D model is adapted to spread over the 2D landscape by postulating that the

wind factor and the slope factor are functions of the components of the wind vector
and the terrain gradient in the normal direction. Thus,

R=R(Z,T(%),VT (7).

The fire spread model is coupled to an atmospheric model. The fire emits sensible
and latent heat fluxes, which change the state of the atmosphere, and the changing
atmospheric conditions in turn impact the fire (Figure . Wind affects the fire
directly and temperature, relative humidity, and rain affect the fire indirectly through
changing fuel moisture.

The fire model is implemented on a rectangular mesh by finite differences. For
numerical reasons, the gradient in the eikonal equation needs to be computed by
an upwinding-type method [53], which avoids instabilities caused by breaking causality
in fire propagation: for the computation of V7" at a location &, only the values from the
directions that the fire is coming from should be used, so the methods switch between
one-sided differences depending on how the solution evolves. Sophisticated methods of
an upwinding type, such as ENO or flux-limiters [59], aim to use more accurate central
differences and switch to more stable one-sided upwind differences only as needed.
Unfortunately, the switching causes the numerical gradient of 7" at a mesh node to
become a nondifferentiable function of the values of T' at that point and its neighbors.
In addition, a penalty term is added to prevent the creation of local minima. It was
shown in Chapter [4] that level set function can decrease out of control in the presence
of spatially highly variable rate of spread.
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Figure 5.1: Graphical representation of the problem proposed in Chapter . An inter-
polation of the fire arrival time between two perimeters I'y and I'y at times T} < T5 is
represented by blue arrows.

5.3 Minimal residual formulation

5.3.1 Eikonal equation

The main goal is to define the fire arrival time between two consecutive perimeters
['y and 'y at times T} and T}, respectively. A special case is to interpolate from
the ignition point Z; at time T} to the first perimeter I'y at time 77. However, one can
solve this problem in the same way as interpolating between two perimeters. Therefore,
without loss of generality, consider the situation when the two observed fire perimeters
I'y and I'y; at times T} < T3 are known, and the fire progression between the two
perimeters is of interest (Figure [5.1)).

In this situation, a function T : R? — R, defining for each domain point & € Q C
R? a fire arrival time T'(Z) € R, is required. This problem has the constraints that for
all points 7, € I'y, then T'(#) = T; and Zy € I, then T'(Z) = Ty. These fire arrival
times define the level set function which is going to drive the coupled simulation. This
is going to be done using a spin-up of the atmosphere from the heat fluxes produced
by the interpolated fire arrival times.

The fire arrival time is defined using the rate of spread R. It is well known that the
rate of spread is a positive velocity defined as the distance traveled by the fire in the
normal direction, divided by the time spent. Thus,

Distance traveled‘ B ‘Ax 1
Time spent AT ||V

7|

This is the eikonal equation (5.1)) which is solved in this chapter.
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5.3.2 Nonlinear optimization problem

In this section, a nonlinear constrained optimization problem is formulated in order to
solve the eikonal equation ({5.1)) approximately

1
VT|| ~ =, 5.2
VTl ~ & (52)
subject to
T~ T1 in Fl
and
T~ T2 in FQ.

The reason for using an approximated solution is to give a necessary flexibility to the
fire arrival time T'. Furthermore, it is assumed that the rate of spread R once computed
from the prognostic variables of the system is constant over the whole domain.

Therefore, the problem is solved using the nonlinear constrained optimization
problem

mjin J(T) (5.3)
T = Tl at Fl
T = TQ at FQ,

where J(T') is the objective function to be minimized

s = ([ 1savrig ) "

Therefore, J(7T') is constrained using the p norm of the residuals of the eikonal
equation. The reason for using the p norm is that the p norm is differentiable and when
p goes to infinity, the p norm is equivalent to the maximum norm (the maximum norm
is not differentiable). A value of p = 4 is used in all the experiments in Section .
The norm of the gradient of T"is squared in order to avoid the square root and so, R is
also squared. The residuals are defined using a function f : R?> — R such that

1
=
Therefore, the function f is 0 when the eikonal equation is solved. Thus, minimizing

J(T) is the same as solving the eikonal equation approximately.
For stability reasons, in all the experiments f is defined as

f([E,:U)ZI'y—l.

However, other functions such as

FUIVTI, R?) =0 <= [|VT]| = (5:4)

oy =o—1,
f(xay):i_ya
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have advantages in some situations. Thus, it is possible to define f as desired, complying
with the restriction in equation (5.4]). Finally, there are no boundary conditions imposed
on the boundary of €.

5.3.3 Nonlinear optimization problem with dynamic rate of spread

In the eikonal equation , one can observe that the fire arrival time and the rate of
spread have a mutual dependency. So, when the fire arrival time is modified by the rate
of spread during the minimization, this new defined fire arrival time should affect the
rate of spread imposed in the minimization. Therefore, this idea gives a new nonlinear
optimization problem defined in this section.

The main idea is to solve the same nonlinear optimization problem in Section
but using a dynamic rate of spread. Therefore, the nonlinear constrained optimization
problem in equation is solved considering the rate of spread depends on the fire
arrival time in the minimization. This gives rise to a slightly modified objective function

-(/ \f<||VT||§,R<T>2>|p)1/p.

Therefore, a change in the fire arrival time T is going to affect the rate of spread
R(T). This new consideration gives more reality to the optimization problem because
the rate of spread depends on the fire arrival time as shown in the previous sections.
So, the eikonal equation is solved approximately and simultaneously for 7" and R.

5.4 Numerical minimization of the residuals

5.4.1 Discretization and the constraint matrix

The coupled atmosphere-fire simulation is done on a uniformly spaced m x n rectangular
grid (aligned approximately with longitude and latitude). Therefore, the nonlinear
constrained optimization problem formulated in the previous section has to be
solved on that grid. Thus, a discretization of the objective function J(T') and the
constraints

T=TatTy, T=T;atTy (5.5)

are used.
The discretization of the objective function J(7') on the m x n mesh is

= (/ﬂ}f(||VT\|§,RQ)\”)/ <Am Ay - ZZU IV T513, R2)|? )W, (5.6)

=1 j=1

where Az and Ay are the z and y mesh spacings, T;; = T'(x;;), and R;; = R(z45).
A term p is also added to the objective function, which penalizes local minima in the
fire arrival time. This term is added to the objective function in order to avoid the fire
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Figure 5.2: Graphical explanation of the barycentric interpolation where (z,,y,) is a
perimeter point from the shapefile ', at time 7T}, and (x1,y1), (22, y2), (z3,y3) are the
three grid points with nonzero coefficients for the interpolation of (z,,y,). The grid
point (x4,y4) is an example of a point in the mesh with coefficient equal to 0 for the
interpolation of (x,,y,).

arrival time going down because of spatially highly variable rate of spread (Chapter [4)).
This penalization term is formulated as

p=K- ZZmaX { min {T;_y; — Ty, Tiv1j — Ty, Tijor — Tij, T jn — Tij},o}7

i=1 j=1

where K is a scale constant. In all of the experiments, K = 10.

The constraints of the problem are the ignition point at time 7; and the observed
perimeters I'), at time 7},. They are shapefiles, i.e., collections of points on the perimeter
%y = (2,,y,) which do not necessary lie on the mesh (Figure . Therefore, it is
necessary to redefine the nonlinear constrained optimization problem as

mjin J(T) (5.7)

subject to HT = g,

where HT' = g is a linear system of constraints. H is a sparse matrix and since the points
in the shapefiles do not need to lie on the grid, the rows of H are the coefficients of an
interpolation from the grid to the points in the shapefiles which define the perimeters.
Each column of H corresponds to a different node on the m x n mesh. The right hand
side of the linear system, g, is a vector with the fire arrival times of the perimeters for
each row interpolated. This vector has the same length as the number of rows in the
matrix H (number of points in the perimeters).

The coefficients of the interpolation matrix H are defined from barycentric inter-
polation. The rectangles of the grid are split into two triangles each, and, for each
triangle, we compute the barycentric coordinates of the points in the shapefile, i.e., the
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Figure 5.3: Graphical explanation of the linear system of constraints HT = g from the
example in Figure [5.2}

coefficients of the unique linear combination of the vertices of the triangle that equals to
the point in the shapefile. Therefore, each point in the perimeter (x,,y,) is contained
in a triangle with vertices (x1,y1), (z2,v2), (z3,y3) on the mesh and is interpolated
to these mesh nodes by finding the coefficients oy, as, as which satisfy the system of
equations

121 + QoTo + Q3T3 = T
Q1y1 + oy + azys = Yy
o1 + o + a3 = 1.

In the example of Figure , the point in the perimeter (x,,y,) is defined as a
linear combination of the three points in the triangle (z1,¥1), (22, y2) and (x3,y3); and
the coefficients oy = 0.1, ap = 0.3 and a3 = 0.6. Therefore, each of the rows of H is
going to have at most 3 nonzero entries corresponding to the coefficients oy, s, as.
Figure depicts how one of the rows of the interpolation operator matrix H and the
right hand side g are defined for the example in Figure [5.2

If all 3 barycentric coordinates are in [0, 1], the point is contained in the triangle,
the barycentric coordinates are the sought interpolation coefficients, and they form one
row of H. For efficiency, most points in the shapefile are excluded up front, based on a
comparison of their coordinates with the vertices of the triangle, which is implemented
by a fast binary search.

When there is more than one point of the shapefile in any triangle, these are con-
densed into a single constraint, obtained by averaging the interpolated rows of H inside
the same triangle of grid nodes. Therefore, the matrix H is going to have only the
relevant rows. This way, over constraining the fire arrival time near the perimeter is
avoided, which should be avoided for the same reason as limiting the number of con-
straints in mixed finite elements to avoid locking, cf., e.g., [8]. Furthermore, the linearly
dependent constraints are removed and the matrix H of the linear system of constraints
has full row rank.
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5.4.2 Initial approximation

In order to solve the nonlinear constrained optimization problem using a descent
method, as will be shown in the following sections, it is vital to have a reasonable
initial approximation of the fire arrival time satisfying the previous linear system of
constraints HT = g. Thus, the quadratic minimization problem

1
I(T) = 5 / (=) T||* dedy — mTin subject to (5.5) and T'|sq = Tiax (5.8)
9)

is solved, where A = 88—; + 88—;2 is the Laplace operator, Ty, is the maximum value of
the fire arrival time at the boundaries, and o > 1 is generally non-integer.

The reason for choosing o > 1 is that /I (T) is the Sobolev W2 (Q) seminorm and
in 2D, the space W2 (£2) is not embedded in continuous functions if and only if o > 1.
Consequently, I (T") is not a bound on the value T (Z) at any particular point, only
averages over some area can be controlled. Numerically, when o = 1, minimizing I (T")
with a point constraint, such as an ignition point, results in 7" taking the shape of a
sharp funnel at that point (Figure , which becomes thinner as the mesh is refined.
This situation is definitely undesirable because it can result in a non-differentiable first
approximation of the fire arrival time.

The discrete form of (5.8)) is
1
3 (ST, T) — mTin subject to HT = g and T = Ty,ax at 082, (5.9)
where S = A% with — A a discretization of the Laplace operator with Dirichlet boundary
conditions.

To solve (|5.9), the first step to make is a change of variable U = T — T}, where T,
is the constant function with value T,,... This shifts the solution to a Dirichlet zero
boundary problem. Thus, the solution of the optimization problem (5.9) is equivalent
to solve

1
3 (SU+T,),U+Ty) — ml;n subject to H(U +T,) = g and U = 0 at 092.  (5.10)

Since Ty is a constant function, then ST, = 0. Applying this fact and rearranging
the linear system of constraints give that solving the optimization problem in equa-
tion ([5.10)) is equivalent to solving

1
3 (SU,U+T,) — mUin subject to HU = g — HT}, and U = 0 at 09).
Thus, expanding the inner product, @) is defined as
1 1
Q) = 5 (SU,U) + 5 (SU,T,) — mgn subject to HU = g — HT}, and U = 0 at 0.

At this point, one can construct the Lagrangian of Q(U) for the equality constraints
HU =g — HT,. So,

1 1
LIUN=QU)+ N (HU —g+HT}) = §UTSU - 5T,,TSU+ MN(HU — g+ HT).
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For optimality reasons, VyL(U, A) = 0 and V,L(U, A) = 0. Therefore,
1
VMMLM:SU+§SH+AU¥:SU+XUL:Q

and
V)\£<U,>\) = HU—Q+HTb = 0.

Consequently, solving the optimization problem in equation (5.9) is equivalent to
solving the saddle point problem

(5.11)

SU+NH=0
HU = g — HT,.

To solve (5.11]), a first feasible solution is found Uy = H' (HHT)_1 (9 — HTy),
so that HUy = g — HT,. Then, one can substitute in the saddle point problem in

equation (5.11)) U = Uy + V to get

S(Uy+V)+ATH =0
H<U0+V)IQ—HTb

Thus,

(5.12)

SV +\TH = —-SU,
HV =0

Finally, the saddle point problem in equation is solved approximately by
preconditioned conjugate gradients for the equivalent symmetric positive definite linear
system

PSPV +p(I — P)V = —-SU,, (5.13)

where P=1T—-H" (HTH)_1 H is the orthogonal projection on the nullspace of H, and
p > 0 is an arbitrary regularization parameter.
Since S is the discretization of the Dirichlet problem, the preconditioner used is

M :rw— PStPr,

where ST is the inverse of S on the complement of its nullspace.
Finally, the solution is recovered by

T=T,+Uy+ PV.

The method only requires access to matrix-vector multiplications by S and ST,
which are readily implemented by sine FFT. To get a reasonable starting point for the
descent method iterations it is only necessary to solve to low accuracy, but the
satisfaction of the constraint HT = g to rounding precision is important.
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5.4.3 Projected preconditioned gradient descent method

Once a first approximation is obtained, in order to solve the nonlinear constrained
optimization problem , one can use the gradient descent method or steepest descent
method projected to the constraints subspace. In order to apply this iterative nonlinear
optimization method, it is necessary to compute the gradient of the objective function
proposed in the equation , VJ(T). In that particular case, the objective function
defined is not differentiable because of the upwinding method used to compute ||VT|3.
However, in this section, a suitable approximation of V1" is proposed.

At this point, one needs to know the components of the gradient matrix discretized
in a squared m x n mesh. So, using the chain rule

1-p

0J (u NS ) T NSNS g el 0fis
=2 = (aeay S Y1) T LSl ) o (5i)

i=1 j=1

i=1 j=1

where Az and Ay are the z and y mesh spacings, Ty = T'(xx), and fi; = f(||VT;]]3), R,).
Ofij

In equation (|5.14]), everything is known except the term e which needs an expan-
sion by the chain rule
Ofiy _ _ 0fy OINTyll)  0fy O(R}) (5.15)
0T O(||VTy|l3)  0Tn I(RZ) 0Ty’

where R;; = R(x;;).

The first factor of each term of the sum are known because they are the partial
derivatives of f with respect the first and second components of f, respectively. For
instance, if f(z,y) = zy — 1, then

Of(INT3, B?) _ 0f(x,y)

A
Thus, of
AT,
Similarly, .
af(”;ﬂ;’ R?) _ 3ng T T
So,
o = VTl

However, one needs to know in more detail how ||[VTj;||3 and R}, are computed in
order to interpret their derivatives with respect to T};. First,

ar\*> [oT\’
TII? = — -
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Figure 5.4: Example of three consecutive nodes in the = direction of a fire arrival time
function T'(x,y) with the y direction held constant. (a) The z partial derivative is
always positive. (b) The x partial derivative is always negative.

and the partial derivatives 2 o T and 8T are computed numerically respecting the flow of

information, i.e. locations with large value T" depend on nearby locations with smaller
value T but not the other way round. Therefore, the information flows from the past
to the future.

In order to see this, for the remain of this section, the fire arrival time function
T(x,y) is going to be illustrated using three consecutive nodes in the = direction and
keeping the y direction constant. Everything in this section can be done similarly for
the y direction, keeping the direction z constant.

Suppose that T;_; ;, T;; and Ty, ; are the three consecutive nodes in Figure @
The partial derivative with respect to x is computed numerically using the left one-sided
partial derivative, i.e.

OTy; Ty — T,

or Az
because as the previous statement says, it is necessary to carry the information from
the past to the future.

Another similar example is using 7;_; ;, T;; and T4, ; from Figure . In that
case, one should use the right one-sided partial derivative, i.e.

-1 = diff:{? (T;J)?

oL Ty — 1y R
~ ’ = dift (T;,).
ax AI 1 x( J)

These previous cases don’t have any trouble because

L1 ' OTit1,5

ox ox > 0.

However, a problem appears when dealing with borderline cases when the partial
derivatives of the neighbors have different signs or are zero, i.e. when

Ti1; 0Ty, <0,
ox or —
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aT'—l,] aTm+1

—<0

Ti—1,j

Figure 5.5: Example of three consecutive nodes in the = direction of a fire arrival time
function T'(x,y) with the y direction held constant. The z partial derivatives have
different signs on both sides.

as illustrated in Figure where the x partial derivatives on both sides have different
signs. In this case, one needs to decide which one-sided derivative should be taken
through an appropriate upwinding method. Therefore, an upwinding method chooses

diff= (T,
or ~ glffx (T;J)

depending on the values of diff%(7T};) and diff?(T;;).

In WRF-SFIRE, the computation of ||VT||3 is implemented using different upwind-
ing methods. However, the ENO upwinding method is most frequently used. It is
formulated as
(diff?, if [diff* < 0 and difff < 0] or [diff* < 0 and diff? < 0]
diffe | if [diff> > 0 and diff > 0] or [diff® > 0 and diff? > 0]
~ ¢ difff, if diff? > 0 and diff < 0 and |diffy| > |diff?| (5.16)
diff?, if diff? > 0 and diff < 0 and |diff}| < |diff?|

L0, otherwise

oT;;
ox

where difft = diff%(7};) and difff = diff(7},;). The ENO upwinding method can be
defined similarly for the y partial derivative.

The derivative from equation is expended by the chain rule, assuming that
the formula for the derivative of a squared function is also valid for one-sided partial
derivatives. Thus,

AT\ 2 0T;;\ 2
iy () () I CON G
8Tkl N 6Tkl 83: 0Tkl Gy 8Tkl

where 88T < and ;J are computed using the ENO upwinding method of equation ([5.16|).
At this point, two questions arise. How can
y O,
o(%Li (%)
() and —2 (5.17)

0Ty 0Ty
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be defined? Are one-sided partial derivatives from an upwinding method differentiable?
First, one can define these derivatives using perturbations of the neighbors, and the
ENO upwinding method seen before. However, the one-sided partial derivatives from
an upwinding method are not differentiable because sometimes the derivatives doing
perturbations of a node at the negative and positive sides are not the same. Therefore,
an approximation is proposed which defines for all the possible cases of three consecutive
nodes T;_y ;, T;; and Tj;q j, the derivatives from the negative and positive side. Then,
the solution is defined as the average of both sides. The same thing is done for the
y direction taking three consecutive nodes T; ;_1, Tj; and T; j1;. In order to illustrate
the procedure to compute all the possible cases, the example of the three consecutive
nodes in the x direction in Figure is explained. In that case, the ENO upwinding
method of equation decides that
Ty ~ diffE(T};) = M)

Ox Ax

because
dfE(T5) > 0, difff(T,) < 0 and [difEX(T,)] = [diff(T;,)].

At this point, in order to compute the derivatives of equation (5.17]), one observes
8Tij

that the only derivatives of different than 0 are those with respect to 7;_; ;, T;; and

ox
T;11 ;. Thus,
L 8Ti]' 8Tij aTij
o) o) o
87}—1,j ’ 87—;] aj—;—i—l,j ’

can be nonzero.

This fact is because the derivative of T;; with respect to x only can depend on its
neighbors and itself because the upwinding method depends only on neighbors and the
point itself. Therefore, one can start computing the derivative of 6(;2" with respect to Tj;
by perturbing this node 7;; (Figure ) When there is a perturbation to the positive
and negative side of the node T;;, one can observe in Figure that the one-sided
derivatives do not change. Therefore, the ENO upwinding method decides to use the
same left one-sided derivative as in the initial problem. Therefore

(8@3;?)) :(&)  Off(T))

aT,, aT,, aT,,
_ a(Tij—Ajzi—l,j) _ L
aﬂj AZC’

where (-); and (-)_ represents the derivatives from the positive and negative side,
respectively. Therefore, in that particular case, both partial derivative sides are equal,
implying that the partial derivative is differentiable with respect to 7;;. Thus, the final

result is a(@) a(@) a(%) X
oz — ox — ox ~
T ( 9T >+ ( e ) Az
The next case considered is the derivative of % with respect to T;_; ;. So, the

node T;_; ; is perturbed to the positive and negative direction as before (Figure [5.7)).
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(a) (b)

Figure 5.6: (a) Example of three consecutive nodes in the z direction of a fire arrival
time function 7'(z,y) with the y direction held constant. The x partial derivatives
have different signs in both sides. The ENO upwinding method decides to take the
left one-sided derivative for the x partial derivative of Tj;. (b) The same example as in
Figure [5.6p, but perturbing the central node T}; in the positive and negative direction.
The ENO upwinding method decides to take the left one-sided derivative for the x
partial derivative of T}, after the perturbations.

In this case, the one-sided derivatives are different depending on the direction of the
perturbation. Therefore, the case is split in two different computations. As one can see
in Figure |5.7p, when T;_; ; is perturbed to the positive direction, the derivative of Tj;
with respect to z according to the ENO upwinding method changes to difff(7;;) from
the original problem. Thus,

<8(%)) ~ Ot (Ty))  o(Fi)
—+

= =0.
aTi_Lj aTi—l,j aTi—Lj

On the other hand, Figure shows that after perturbing 7;_;; to the negative
direction, the derivative of T;; with respect to z according to the ENO upwinding
method is diff%(7};). So,

AN OE(Ty) o)
oiry) "

8Ti,1,j 8Ti,1,j AZII

Consequently, the result for that particular case is

oG L[(OE)Y (05N ] L0 _ 1
8]},173- 2 (9Ti,1,j + 8]},17]' _ 2 2A$

Finally, one can analyze the derivative of 8;;? with respect to T;1;,; (Figure [5.8]).

In this case, both one-sided derivatives are different. So, in the case of the positive
direction, one can observe in Figure [5.8h that

(a(%)) %a(diffgmj)) (Tl
+

= - O,
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(a) (b)

Figure 5.7: (a) The same example as in Figure , but perturbing the left node T;_ ;
in the positive direction. The ENO upwinding method decides to take the right one-
sided derivative for the x partial derivative of T;; after the perturbation. (b) The same
example as in Figure , but perturbing the left node 7;_; ; in the negative direction.
The ENO upwinding method decides to take the left one-sided derivative for the x
partial derivative of T;; after the perturbation.

and in Figure [5.8b, one can conclude that

(6(%)) ~ O(difff(uy;))  O(FHETE)

011, OTi41 B OT1,5 - Az

Consequently, the final result is

o) ()Y (N ] 0tk
aﬂ+17j 2 0Ti+1,j + 87—;4_17]‘ _ 2 2Al‘

Then, computing the derivatives with respect to y similarly and analyzing all the
cases, one can compute the partial derivatives in equation (5.17). However, in equa-

2.
ij

tion (|5.15]) there is still a gap. How can
of Rzy?

Assuming that formula for the derivative of a squared function is valid, using the
chain rule gives

be computed? What are the dependencies

O(R3) B 2R”8sz
0Ty Y OTw
However, it is necessary to know the dependencies of R;; in order to compute the

derivative %. As was shown in Section , the rate of spread R depends on many
factors: the spatial position Z, the fire arrival time T'(Z), and the gradient of the fire
arrival time VT'(Z). Therefore, the previous derivative is complex. Consequently, it is
proposed to assume that the rate of spread R is constant during the minimization, so

it is independent of the fire arrival time T'. Therefore, the derivative

8Rl-j

= 0.
8Tkl
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(a) (b)

Figure 5.8: (a) The same example as in Figure , but perturbing the right node
Tit1,; in the positive direction. The ENO upwinding method decides to take the left
one-sided derivative for the x partial derivative of T}; after the perturbation. (b) The
same example as in Figure 5.6, but perturbing the right node 75, ; in the negative
direction. The ENO upwinding method decides to take the right one-sided derivative
for the = partial derivative of T;; after the perturbation.

However, the computation of this derivative could be line of a future research. There-
fore, an approximation of the gradient of the objective function J(7) is proposed. An
approximation of the derivative of an upwinding method is also proposed because one
can generalize this methodology for any upwinding method.

Once there is a method to approximate the gradient of the objective function, one
can use this approximation in order to apply the projected gradient descent method
also known as the projected steepest descent method. This method consists in finding
a better solution for the nonlinear optimization method of equation in an iterative
fashion. From the initial approximation of Section [5.4.2] in each iteration, a new T+
is computed from the previous 7% using the equation

TH =T — ), VJ(T"),

where V.J(T*) is the approximation of the gradient of the objective function in equa-
tion which is the steepest direction, i.e. the direction giving the best improvement
for the next iteration and a4 is the step size, i.e. how far the new iteration is going in
the previous direction. This step size is computed using the exact line search

ap = miﬂr{{; J(TF — aVJ(T")).
ac

Therefore, the idea is to find, in each iteration, a direction and a step size which
moves to a better fire arrival time minimizing the objective function J(7"). This method
converges, but it is very slow.

In order to improve the rate of convergence, the gradient is preconditioned using
the matrix A = —A (discrete Laplace operator). In that manner, the convergence is
faster and one can solve the optimization problem using

TFY =Tk — 0, ATV (T,
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where o was found using the exact line search

o = min J(T% — aA7'VJ(TY)). (5.18)
acR

This method works for cases with a constant rate of spread R because a constant
rate of spread was assumed in order to compute the gradient of the objective function.
However, as was previously shown, the rate of spread depends on the fire arrival time.
For this reason, the projected multigrid descent method is explored since it is not
necessary to assume the rate of spread constant because the computation of the gradient
of the objective function is not requiered. Therefore, one can use the method without

taking into account any derivative for the rate of spread.

5.4.4 Projected multigrid descent method

First of all, a first approximation satisfying the constraints is found using the quadratic
minimization problem of Section [5.4.2] After that, the residuals of the eikonal equation
are minimized using the projected multigrid descent method. This method consists in
combining line searches in the direction of changes to the value of the fire arrival time
T at a single point, and linear combinations of point values as in [46].

Therefore, a bilinear coarse grid function ¢ is defined using different coarse mesh
sizes. The bilinear coarse grid functions are defined as pyramids centered at all points
(x,y) in the domain, using different mesh sizes s and with supports

[.Q?—S,.T—l—S] X [y_37y+s]'

The formulation of the bilinear coarse grid functions in the previous square is

e st o o - mac{o, (1 1) (1 12))

for all (&,9) € [—s,s] x [—s,s] and 0 in the rest of the domain. In Figure 5.9 there is
an example of a bilinear coarse grid function in a 100 x 100 domain, centered at the
point (50,50) with mesh size s = 8.

Then, ¢, is projected onto the Hp, = 0 subspace, so that the constraints remain
satisfied throughout the iterations. The projection is P = I — H'(HH")™*H and is
formulated as

@s = Ps = HT(HHT)ilH(pS'

Figure shows an example of a bilinear coarse grid function with mesh step
size 16 and Figure [5.10b shows the same bilinear coarse grid function projected onto
the Hyp, = 0 subspace showing also the constraints (perimeter shape points). One can
observe that in all the points where the constraints lie, the bilinear coarse grid function
is defined as 0 in order to keep the constraints invariant through the iterations.

These projected bilinear coarse grid functions are the different directions in which to
apply the line search in all the following cases: changing the mesh step sizes s, centering
at all the points which are required to interpolate, and applying the direction to the
positive and negative sides d; = +¢s. The required points to apply the minimization
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Figure 5.9: Example of a bilinear coarse grid function ¢ in a square 100 x 100 domain,
centered at (z,y) = (50,50) with mesh size s = 8

Figure 5.10: (a) Example of a bilinear coarse grid function ¢ with mesh size s = 16.
(b) The same ¢ function projected to Hp = 0. The red dots represent the shape points
of the perimeter.
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to are the points between the two perimeters or between the ignition point and the
first perimeter. In order to choose the points, for each perimeter I', the optimization
problem

1
Pe(T) = 5 / I(~2)° T dedy - min
Q

subject to T'="Tr at T,
T =T, at m and
T =T,.x at 02

is solved, where Tt is the fire arrival time at the perimeter I', T; is the ignition time,
m is an interior point from the intersection of the interior of all the perimeters as far
as possible from the first perimeter, and T, is the maximum value of the fire arrival
time at the boundaries. The value o used in all the experiments is a = 1.4 > 1.

The solution of this squared minimization 7" is found using the same strategy as in
the squared minimization in Section [5.4.2] This new minimization gives an accurate
approximation of a mask for each perimeter I'. The masks are defined as

1, T <1
Mp={ " =T
0, otherwise.

Then, in the multigrid method, the bilinear coarse grid functions are centered only
at the required points. In the case of interpolating between the ignition point and the
first perimeter, the required points are those with value one in the first mask Mr,.
In the other cases interpolating between two consecutive perimeters I'y, and I'x,q, the
required points are those with value one in Mg N Mr, . The expression Mg , means
the complement of the mask, i.e. where the mask Mr, is 0.

The idea of the multigrid method is to solve the minimization problem in the equa-
tion iteratively. From the initial approximation of Section in each iteration,
a new 7"t is computed from the previous T* using the equation

T = T% + agd,, (5.19)
where o is found using the exact line search
ap = min J(T* + ad,).

These equations mean that different directions d, are tried using the best step sizes
for each direction and if a direction and step size improves the fire arrival time, this
solution is changed for the next step. Therefore, it is a trial and error technique that
in each iteration tries to change the fire arrival time at a single point or in a linear
combination of them.

The multigrid method is typically solved using at the beginning the maximum mesh
step size permitted in the domain and then the mesh step size decreases by a factor of
2 at each step size iteration. Each step size iteration is repeated a different number of
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times. These times will be called sweeps going forward. The smallest step size (step
size 1) is done one time and the number of sweeps increases linearly as the step size
increases at each iteration. All the step size iterations are repeated a fixed number of
times or general cycles. In all the experiments, the general number of cycles is 4. Each
cycle is ordered from the coarser step size iterations to the finest.

Finally, a relaxed projection of 7%*! onto the constraints subspace, HT**! = ¢, is
done in order to smooth the iterated solution.

Therefore, the same projection P =1 — H' (HH") ' H is used as
Tk—i—l — Tk+1 o pHT(HHT)—l(HTk+1 . g>’

where p is a fixed relaxation parameter. In all the experiments, p = 0.1. For the initial
approximation, the projection is made completely by setting p = 1.

5.4.5 Dynamic rate of spread

This section proposes a solution for the numerical optimization of the residuals using
the dynamic rate of spread idea from Section [5.3.3] The first important observation is
that the projected preconditioned gradient descent method of Section can not be
used for this problem. The reason is that the projected preconditioned gradient descent
method assumes constant rate of spread. Therefore, the dynamic rate of spread is going
to be used inside the projected descent multigrid method of Section [5.4.4]

After each cycle of the projected multigrid descent method, the rate of spread is
recomputed from the new fire arrival time 7. In order to compute the new rate of spread
R(T'), the x and y components of the wind in the fire mesh (UF and VF respectively)
and the fuel moisture (FMC_G) are collected at all the time steps (to,t1,...,%) of
the first simulation of WRF-SFIRE run in the first step of the work-flow detailed in
Section [5.1l These wind and fuel moisture variables are defined at all the simulation
times 7 and points Z in the domain as UF. (%), VF (%), and FMC G, (Z) respectively.
Then, the rate of spread is computed from the fire arrival time 7" and the winds and
fuel moisture from the simulation. Therefore, at each point 7 in the domain, the wind
components UF,(Z) and VF,(Z), and the fuel moisture FMC G, (%) are interpolated
from all the simulation times 7 = tg, ¢, ..., tx to the fire arrival time at the same point
7 = T(Z). So, for all the points 2’ in the domain, the values UF(z (%), VEr#(Z), and
FMC_ Gy (%) are obtained. Using these values of the wind and the fuel moisture, the
fire spread model is computed using equation in the normal direction

VI(7)

IVT (@)

where T'(¥) is the new fire arrival time obtained after each cycle of the projected multi-
grid descent method at point 7 in the domain.
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Exact solution T

Fire arrival time

(a) (b)

Figure 5.11: (a) Rate of spread in the concentric circle perimeters problem. (b) Exact
solution T for the concentric circles problem.

5.5 Experimental results

5.5.1 Ideal case

The optimization problem defined in Section [5.3.2] is tested using both numerical so-
lutions proposed in Sections [5.4.3] and [5.4.4] on an idealized case. This ideal case is
defined using concentric circles as perimeters on a mesh with 100 x 100 nodes. The fire
spreads equally in all directions from the center of the mesh. The propagation is set
at different rates of spread in different sections of the domain. There is a jump in the
rate of spread from R; = 1 to Ry = 2 dividing the space between perimeters I'; and I'y
in two different circular sectors of the same size (Figure [5.11). Then, the fire arrival
time at I'y is defined and the fire arrival time at I'y is computed from the given rates
of spread. In this case there exists an exact solution shown in Figure [5.11p.

As a first step, the linear system of constraints is constructed from the barycen-
tric method defined in Section [5.4.1l Figure shows the two circular concentric
perimeters defined for the linear system of constraints.

Then, an initial approximation of the fire arrival time is found by solving the
quadratic minimization problem described in Section with a = 1.4. Figure [5.13
shows the initial approximation of the fire arrival time imposed by the ignition point
and the two concentric circles in our particular case, using different values of « from
1 to 1.4. One can see how the unrealistic sharp funnel at the ignition point for a = 1
disappears with increasing values of a.

From the first approximation using o = 1.4, T°, which satisfies the constraints
(Figure ), the projected preconditioned gradient descent method in Section
can be used to solve the optimization problem and improve the initial objective function
value of J(T°) = 8.4779. In Figure , one can observe an example of how the line
searches work in order to find the best step size for each iteration. One can observe that
in the final iteration of the line search, the improvement in the objective function value
is negligible. After finding the best step size at each iteration, the fire arrival time can
be changed if the objective function improves. In Figure [5.14f, one can observe how
the objective function is improved at each iteration and also see that at the beginning
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. |
100

Figure 5.12: Graphic of the linear system of constraints generated using the barycentric
method for the ideal case of the circular concentric perimeters.
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Figure 5.13: Initial approximation of the fire arrival time 7" in the two concentric circles
perimeter case using different values of a.
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Initial approximation T, J(T)=8.4779 Final iteration of the line search
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Figure 5.14: (a) Initial approximation from the first perimeter at 7} = 16 to the second
perimeter at 7o = 40 obtained with @ = 1.4. (b) Final iteration of the line search
looking for the best step size. (c) Values of the objective function after each iteration
of the projected preconditioned gradient descent method. (d) Result of the fire arrival
time interpolation after 100 iterations of the projected preconditioned gradient descent
method.

the objective function values improve significantly with each iteration and then start
becoming almost constant values. After 25 iterations, the resulting fire arrival time
can be seen in Figure with objective function value of J(7?°) = 0.27585. One
can observe that the shape of the resulting fire arrival time is very similar to the exact
solution in Figure [5.11p. Finally, the norm of the gradient of the objective function of
the initial approximation is ||V.J(T?)|| = 0.1593 and using the projected preconditioned
gradient descent method, the norm of the gradient is reduced to ||VJ(T?)|| = 0.0961
after 25 iterations.

As an alternative method, the projected multigrid descent method proposed in Sec-
tion is run. The coarsening is done by the ratio of 2. The number of sweeps is
linearly decreasing with the level. On the coarsest level, the mesh step is 16 and the
sweep is done 5 times. The mesh step on the second level is 8 and the sweep is repeated
4 times, until resolution 1 on the original, finest grid, and the sweep repeats once. The
same first approximation is used (Figure ) and an example of a bilinear coarse grid
function with step size 16 is shown in Figure [5.15b. Figure shows the decrease
in the cost function with the number of line searches on any level. One can observe
that the cost function decreases more in the first cycle, and then the curve becomes
flatter. The final result after 4 cycles of 5 different resolutions (from 16 to 1 decreasing
by powers of two) is shown in Figure , which again is close to the exact solution in
Figure [5.11p. The projected multigrid descent method with dynamic rate of spread of
Section [5.4.5| can not be solved in this case because a constant rate of spread is defined.
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Initial approximation T, J{T)=8.4779 Bilinear coarse grid function with mesh step 16
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Figure 5.15: (a) Initial approximation from the first perimeter at T} = 16 to the second
perimeter at 7o = 40 obtained with @ = 1.4. (b) Example of a bilinear coarse grid
function at mesh step 16. (c) Values of the objective function after each step size
iteration of the projected multigrid descent method. (d) Result of the fire arrival time
interpolation after 4 cycles of the projected multigrid descent method.

Finally, a comparison between the previous methods is performed. Therefore, the
initial approximation, the projected preconditioned gradient descent method, and the
projected multigrid descent method are compared.

As there is an exact solution, one can use the absolute percentage error of the fire
arrival time
555 — Aij|

|51
where S;; is the (7, j) component of the exact solution of the fire arrival time and A;;
is the (i, 7) component of the fire arrival time approximation from the three different
optimization methods.

Then, the mean absolute percentage error is formulated as

APE;; = 100, (5.20)

M N
1
MAPE = —— > ) APEy;. (5.21)

i=1 j=1

Figure [5.16h, shows the absolute percentage error and how the error is concentrated
in the rate of spread jump because the first approximation does not consider the effect
of the rate of spread. The mean absolute percentage error of the first approximation
is 2.11%. Using the projected preconditioned gradient descent method, the error is
considerably reduced as shown in Figure [5.16b. In this case, the error is accumulated
next to the first perimeter. This could be caused by the projection at the end of
each iteration. However, the maximum error is less than 4% and the mean absolute
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Figure 5.16: (a) Absolute percentage error of the initial approximation compared to
the exact solution for the concentric circles experiment. (b) Absolute percentage error
of the projected preconditioned gradient descent method result compared to the exact
solution for the concentric circles experiment. (c¢) Absolute percentage error of the
projected multigrid descent method compared to the exact solution for the concentric
circles experiment.

percentage error is 0.52%, less than 1%. Figure [5.16c shows that using the projected
multigrid descent method, the error in general is smaller than using both previous
methods. However, near the first perimeter, there are still huge errors of 2%. The
mean absolute percentage error of 0.26% is smaller than both previous methods and is
a significant improvement to the initial approximation.

5.5.2 WRF-SFIRE ideal case

The next step is to try to reproduce the fire arrival time generated by the coupled
atmosphere-fire simulator, WRF-SFIRE. Therefore, an ideal WRF-SFIRE case is sim-
ulated and used as a test case for the previous optimization methods (Sections m
and . The inputs for the optimization are: the latitude-longitude coordinates of
the ignition point and the ignition time, simulated perimeter and its associated time,
and the prognostic variables (components of the wind, components of the slope, and
fuel moisture) used to compute the rate of spread in the domain at all the output time
steps of the simulation.

In the previous ideal example in Section there was not any variable of the
simulation affecting the rate of spread computation because a specific constant rate of
spread was enforced. In this example, the prognostic variables previously mentioned
are going to be involved and they are going to drive the optimization. Therefore, it is
important to have a reliable rate of spread computed from these prognostic variables



50 CHAPTER 5. INTERPOLATION OF THE FIRE ARRIVAL TIME

Fire arrival time

(a) (b)

Figure 5.17: (a) Configuration of the hill experiment. The red dot represents the
ignition point, the blue shape represents the simulated perimeter, the blue arrows rep-
resents the initial winds, and the colored contour plot represents the elevation (a hill
in the middle of the domain). (b) WRF-SFIRE simulated fire arrival time for the hill
experiment.

in order to drive the optimization to the optimal fire arrival time. The fire arrival time
depends on the rate of spread and in Section [5.2] one can observe that the fire arrival
time affects the rate of spread as well. Therefore, for each change of the fire arrival
time in the optimization process, it is important to also change the rate of spread. As
a first approximation of the rate of spread, one can assume a constant rate of spread
computed using the prognostic variables in the WRF-SFIRE simulation. After this
approximation, a way to dynamically change the rate of spread in order to take into
account the fire arrival time dependency on the rate of spread is proposed.

The ideal WRF-SFIRE experiment used is the hill case. The domain is a squared
410 x 410 grid, the initial atmosphere conditions are a strong wind from north-east,
constant fuel category 3 of the 13 Rothermel’s fuel categories [4] (which is grass), and
a hill in the middle of the domain (Figure [5.17h). The interpolation is done from the
ignition point at time 7T; to the perimeter after some iterations of WRF-SFIRE at time
Ty. The fire arrival time simulated using WRF-SFIRE can be observed in Figure [5.17pb.

As in Section [5.5.1] the interpolation operator of the ignition point and the perime-
ter shape points, H, and the vector of fire arrival times, g, are constructed using the
barycentric method explained in Section m (Figure . Then, an initial approxi-
mation is computed using the method in the Section [5.4.2] giving an objective function

value of J(T°) = 8684.0704 (Figure [5.19a and Figure [5.20R).

Then, the preconditioned projected gradient descent method is used as in the pre-
vious ideal perimeter circles experiment using as a starting point the previous first
approximation. Figure [5.19b shows the objective function values at the final iteration
of the line search as a function of the step size o (equation (5.18))). In Figure , one
can observe that the objective function improves significantly in the first iterations and
then it is almost constant. Therefore, almost all the improvement is accomplished in
the first iterations and then the method converges slowly. Figure [5.19d shows the fire
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1000

Figure 5.18: Graphic of the linear system of constraints generated using the barycentric
method for the ideal WRF-SFIRE case of the hill.

arrival time after 1000 iterations with objective function value of J(T1%%) = 487.7882.
Finally, the norm of the gradient of the objective function of the initial approxima-
tion is ||[VJ(T?)|| = 2.1758 and using the projected preconditioned gradient descent
method, the norm of the gradient is reduced to ||V J(T'%)|| = 0.0279 after 1000 iter-
ations. Therefore, the value of the objective function, the norm of the gradient of the
objective function, and the shape of the fire arrival time show an improvement from
the initial approximation. However, the fire arrival time at the end of 1000 iterations
is still far from the fire arrival time simulated with WRF-SFIRE at the same perimeter
time (Figure [5.17p).

Next, the projected multigrid descent method of Section [5.4.4]is used. Figure [5.20p
shows an example of one coarse bilinear function used for the multigrid minimization
of mesh step size 16. In Figure [5.20c, one can observe that the solution improves faster
in the first cycles and in the coarsest step size iterations in each of the general 4 cycles.
The final solution in Figure [5.20d shows a substantial improvement over the initial
approximation because of a similar shape of the fire arrival time compared with the fire
arrival time simulated using WRF-SFIRE (Figure [5.17pb).

Finally, the projected descent multigrid optimization method using dynamic rate of
spread of Section [5.4.5]is used. In Figure|5.21p shows an example of one coarse bilinear
function used for the multigrid minimization of mesh step size 16. In Figure [5.21, one
can observe that the solution improves faster in the first cycles and in the coarsest step
size iterations in each of the general 4 cycles. The final solution in Figure [5.2Id shows
a substantial improvement over the initial approximation because of a similar shape of
the fire arrival time compared with the fire arrival time simulated using WRF-SFIRE
(Figure [5.17p). Using the dynamic rate of spread, one can construct in each step size
iteration a more realistic rate of spread as well as a better fire arrival time. Therefore,
the rate of spread computed using the first approximation of the fire arrival time 7°
shown in Figure [5.22h is improved same way as for the fire arrival time. Figure 5.22b
shows the rate of spread at the last iteration of the projected multigrid descent method
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Figure 5.19: (a) Initial approximation from the ignition point to the first perimeter
obtained with @« = 1.4. (b) Final iteration of the line search looking for the best
step size. (c) Values of the objective function after each line search iteration of the
preconditioned gradient descent method. (d) Fire arrival time interpolated after 1000
preconditioned gradient descent method iterations.
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Figure 5.20: (a) Initial approximation from the ignition point to the first perimeter
obtained with a = 1.4. (b) Example of a bilinear coarse grid function at mesh step size
16. (c) Values of the objective function after each step size iteration of the projected
multigrid descent method. (d) Result of the fire arrival time interpolation after 4 cycles
of the projected multigrid descent method.



5.5. EXPERIMENTAL RESULTS 23

Initial approximation T, J(T)=8684.0704 Bilinear coarse grid function with mesh step 16

g
(=]

Fire arrival time
o
2

Fire arrival time

30 - == o 40
0 20 - S o
0 50 100 150 200 250 300 350 400 450 0 o 10

(a) (b)

{0 Objective function value after each step size iteration s Fire arrival time T after optimization, J(T)=1606.0789

BOOOD - -
G000

4000

Objective function value
Fire arrival time

o 10 20 30 40 50 60
Iterations ] 50 100 150 200 250 300 350 400 450

() (d)

Figure 5.21: (a) Initial approximation from the ignition point to the first perimeter
obtained with @ = 1.4. (b) Example of a bilinear coarse grid function at mesh step size
16. (c) Values of the objective function after each line search iteration of the projected
multigrid method using dynamic rate of spread. (d) Result of the fire arrival time
interpolation after 4 cycles of the projected multigrid method using dynamic rate of
spread.

using dynamic rate of spread. One can observe that the hole in the middle of the rate of
spread computed using the initial approximation of the fire arrival time (Figure [5.22})
is filled and well explained after all the iterations of the projected multigrid descent
method using dynamic rate of spread (Figure [5.22p).

As in the previous ideal experiment, the initial approximation, the projected pre-
conditioned gradient descent method and the projected multigrid descent method using
or not using dynamic rate of spread are compared. The absolute percentage error is
computed from equation using the WRF-SFIRE simulated fire arrival time as the
true state. In Figure [5.23p, the absolute percentage error of the initial approximation
is plotted. One can observe a huge error surrounding the ignition point with an abso-
lute percentage error close to 600%. Furthermore, the mean absolute percentage error
computed from equation of 103% indicates the necessity to improve this first
guess. Using the projected preconditioned gradient descent method, one can observe a
significant improvement near the ignition point and in general over the whole domain
(Figure [5.23p). The surface plot of the absolute percentage error shows that the min-
imization improves the error in the diagonal of the perimeter where the winds drives
fast the fire. Therefore, this fact and the mean absolute percentage error of 53% need
still an improvement but show the improvement from the initial approximation. Then,
Figure [5.23k shows the absolute percentage error using the projected multigrid descent
method. A significant improvement from the previous two methods, the mean absolute
percentage error of 51%, and no need to compute the gradient of the objective function
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Figure 5.22: (a) Rate of spread computed from the initial approximation of the fire
arrival time 7% (b) Rate of spread at the last iteration of the projected multigrid
descent method.

show the capability of using a projected multigrid descent method. However, a mean
absolute percentage error of 51% is still a significant amount of error. This gives the
motivation to add the dependency of the fire arrival time on the rate of spread. Finally,
Figure [5.23[d shows the absolute percentage error using the projected multigrid descent
method with dynamic rate of spread. A significant improvement from all the previous
methods can be observed. The mean absolute percentage error is 48%. Therefore, the
projected multigrid descent method using dynamic rate of spread is the best technique
to solve the optimization problem proposed in this chapter.

5.5.3 WRF-SFIRE real case

The last step is to test the optimization method for a real case. Therefore, a real fire
is simulated using WRF-SFIRE so, the ignition point, observed perimeters, and the
necessary prognostic variables to compute the rate of spread are used in order to find
the optimal fire arrival time. In these experiments, the exact or expected solution is
not known. The method used in this section is the projected multigrid descent method
with dynamic rate of spread.

Cougar Creek

The first real case to test is the Cougar Creek fire which occurred in Washington on
the eastern slopes of Mount Adams in the late summer of 2015. In Figure [5.24], one can
observe the ignition point and the first observed perimeter. Therefore, the main goal is
to interpolate the fire arrival time between this ignition point #; and the first observed
perimeter I'.

The first step is to interpolate the ignition point and I'; as a linear system of con-
straints in the simulation grid. So, it is necessary to compute the interpolation operator
matrix H and the right hand side g of the linear system of constraints HT = g of the
optimization problem using the aforementioned barycenter method (Section . Fig-
ure [5.25] shows the constraints of the minimization interpolated into the grid.

Then, a first approximation of the fire arrival time is computed using the squared
minimization proposed in Section In Figure [5.26 one can observe the result of
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Figure 5.23: (a) Absolute percentage error of the initial approximation compared to
the exact solution for the hill experiment. (b) Absolute percentage error of the pro-
jected preconditioned gradient descent method result compared to the exact solution
for the hill experiment. (c) Absolute percentage error of the projected multigrid descent
method compared to the exact solution for the hill experiment. (d) Absolute percentage
error of the projected multigrid descent method using dynamic rate of spread compared
to the exact solution for the hill experiment.

the first approximation which is going to be the first guess for the multigrid optimiza-
tion with an objective function value of J(7°) = 608.3957. The first approximation
shows a slow progression at the beginning of the fire and then it speeds up at the end
of the simulation. This fact should change in the projected multigrid descent method
with dynamic rate of spread because of the heterogeneous rate of spread over the whole
domain. Figure shows the first rate of spread computed from the previous first
approximation of the fire arrival time and the interpolated prognostic variables of Sec-
tion [5.4.5

The projected descent multigrid optimization method using dynamic rate of spread
of Section [5.4.5| is used. In Figure [5.28b shows an example of one coarse bilinear
function used for the multigrid minimization of mesh step size 16. In Figure [5.28c, one
can observe that the solution improves faster in the coarsest step size iterations in each
of the general 2 cycles. The final solution in Figure shows an improvement over
the initial approximation because of a less flat shape of the fire arrival time and the
objective function value of J(7") = 500.0837.

Las Conchas

Trying to evaluate the projected multigrid descent method with dynamic rate of spread
using another real case, the Las Conchas fire, reveals a difficulty. In this New Mexico
fire which burned in 2011, different perimeters overlap (Figure . More precisely, the
ignition point, the first perimeter and the second perimeter have some points lying in
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Figure 5.24: Graphic of the ignition point x; and first observed perimeter I'; of the
Cougar Creek fire.
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Figure 5.25: Graphic of the linear system of constraints generated by the barycen-
ter method for the ignition point and the first perimeter of the Cougar Creek fire in

Figure [5.24]
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Figure 5.26: Graphic of the first approximation of the fire arrival time between the
ignition point and the first observed perimeter of the Cougar Creek fire.
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observed perimeter of the Cougar Creek fire.
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Figure 5.28: (a) Initial approximation from the ignition point to the first perimeter
obtained with a = 1.4 for the Cougar Creek fire. (b) Example of a bilinear coarse grid
function at mesh step size 16. (c) Values of the objective function after each line search
iteration of the projected multigrid method using dynamic rate of spread. (d) Result
of the fire arrival time interpolation after 2 cycles of the projected multigrid method.

the same place. Therefore, when the barycenter method is applied, points from different
perimeters lie in the same domain interpolation triangle. This makes it necessary to
resolve an incompatibility because this fact means that at the interpolation triangle,
the fire arrives at two different times. Mathematically, when two perimeters lie in the
same triangle, the linear system of constraints HT' = g is inconsistent because the same
linear combination of mesh nodes in H has a different right hand side g.

In this case, a solution where two very close perimeters are generated depending on
the representatives of each perimeter in the grid in all the places where the perimeters
coincide is proposed. This technique consists of a first step computing the squared
minimization with Dirichlet boundary conditions proposed for the initial approximation
in Section but using an interior point of the first perimeter and the first perimeter
as a constraints. In that way, one can obtain for all the points in the domain the Tgk in
Figure [5.29] Then, in each triangle where two perimeters coincide, the representative
of each perimeter is determined using the minimum and maximum values of T; in the
triangle vertexes (Figure .

As one can observe in Figure this new technique divides properly the con-
straints. However, when an ignition point and a perimeter lie in the same triangle,
the first approximation in Section [5.4.2 is not capable of explaining how the solution
expands from an ignition point very close to the perimeter and it generates local min-
ima at different places (Figure [5.31j). Therefore, it tries to find the ignition point at
different bad locations. For instance, if a synthetic ignition point is generated in the
middle of the burned area, the solution obtained between the new ignition point and
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Figure 5.29: Graphical representation of the new technique which defines two new

perimeter through the grid representatives of each perimeter in the cases where both
perimeters lie at the same grid triangle.
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Figure 5.30: Graphic of the linear system of constraints generated by the barycenter
method for the ignition point and the two first perimeters of the Las Conchas fire in
Figure 5.1 The new method solving the problem when two perimeters lie in the same
interpolation triangle is used (Figure .
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Figure 5.31: (a) Initial approximation between the ignition point and the first perimeter
[’y in the Las Conchas fire. (b) Initial approximation between a synthetic ignition point
in the middle of the burned area and first perimeter I'; in the Las Conchas fire.

the first perimeter I'; is an acceptable first approximation to the optimization (Fig-
ure 5.31p). If in the square minimization of Section a value of @ = 1 is used,
the funnel shape ensures not violating the maximum principle. Using that and adding
the first approximation between the first and the second perimeter, the result gives a
logical first approximation (Figure [5.32).

In general, the situations where an ignition point is lying in a perimeter means that
next to the ignition point there is a break like a road, river, etc. In that situations,
one should not consider the fire arrival time because the fire can not propagate in that
direction. Therefore, one should find a solution for that situations where these places
have not to be computed (avoiding ignition process).
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Figure 5.32: Initial approximation between the synthetic ignition point and the second
perimeter I'y going through the first perimeter I';.
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Chapter 6

Conclusions and Future Work

Wildfires are one of the major causes of environmental destruction every year world-
wide. Any kind of prediction tool that can somehow accurately forecast the evolution of
wildfires can help to contain them and plan appropriate damage mitigation strategies.
One of the major challenges when simulating wildfires is the process of working with a
multi-physical problem (combustion and atmosphere). In this direction, WRF-SFIRE
is a coupled fire-atmosphere simulator which reproduces the interaction between the
propagation of a fire and the atmosphere surrounding it (Chapter . This thesis pro-
poses some improvements to this simulator in order to achieve a reliable and useful
operational tool.

One can observe in Chapter |3 that the usage of a high resolution in the meteoro-
logical mesh is required in order to explain the coupling between the atmosphere and
the fire. This makes it necessary to exploit high performance computing resources in
order to give operational results. One could observe that the MPI parallel paradigm can
give operational times when a large amount of MPI processes are used. However, the
size domain restricts the amount of patches one can use to parallelize the simulation.
OpenMP and MPI parallel paradigms can be combined. So, each squared distributed
memory patch is divided in horizontal shared memory tiles. However, this configu-
ration doesn’t give better results than only using MPI parallelization. Therefore, the
best parallel configuration is to use MPI distributed memory parallelism, using as many
patches as the size of the domain allows. This contribution has generated the following
publications:

e A. Farguell, J. Moré, A. Cortés, J.R. Mir6, T. Margalef and V. Altava, Reducing
Data Uncertainty in Surface Meteorology using Data Assimilation: A Comparison
Study, Procedia Computer Science, Vol. 80, 1846-1855, 2016.

e Angel Farguell, Ana Cortés, Tomas Margalef, Josep R. Mir6, J. Mercader, A
Multi-physics wildfire Spread Model on Multi-core Systems, Proceedings of the
17th International Conference on Computational and Mathematical Methods in
Science and Engineering, CMMSE 2017, 853-861, 2017.
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e A. Farguell, A. Cortés, T. Margalef, J.R. Mir6, J. Mercader, Data resolution ef-
fects on a coupled data driven system for wildfire propagation prediction, Procedia
Computer Science 108C 1562-1571, 2017.

e Angel Farguell, Ana Cortés, Tomas Margalef, Josep R. Mir6, J. Mercader, Scala-
bility of multi-physics system for wildfire spread prediction in multi-core platforms,
Journal of Supercomputing, DOI: 10.107/s11227-018-2330-9, 2018.

In this scalability study, possible future work could be fund by analyzing the bottle-
necks of the MPI parallelization of WRF-SFIRE. Therefore, it would be interesting to
perform analysis of the balance between communication and computation in order to
determine if a parallel optimization of the MPI code in order to speed up the simulation
is possible.

In Chapter [4] a solution for level set method with spatially highly variable rate of
spread is proposed. The solution proposed consists in using a constraint for the level
set method where local minima are avoided. It is shown that the proposed solution
gives realistic results for the cases with spurious ignitions and is consistent with those
did not have spurious ignitions. The proposed solution is implemented in the master
branch of the WRF-SFIRE Git repository in order to avoid future spurious ignitions.
The current version of the Git repository can be downloaded from [I6]. However, the
level set method has a conceptual problem dealing with the possibility of deforming
the level set function in such a way that one can create spurious ignitions. This opens
an interesting future line of research with the possibility of designing a new approach
similar to the level set method.

Finally, in Chapter [5 a new method for fitting fire arrival time data by an approx-
imate solution of the eikonal equation is proposed. In this context, the optimization
problem of minimizing the residuals of the eikonal equation is formulated and solved
using the projected preconditioned gradient descent method, giving an approximation
for the gradient of an upwinding method. However, this method assumes rate of spread
is constant. Therefore, the problem is also solved using the projected multigrid descent
method both using and not using a dynamic rate of spread. These methods are illus-
trated on an idealized case, an idealized case from WRF-SFIRE simulation, and two
real fire cases from WRF-SFIRE simulation. The method producing the best results in
all the cases is the projected multigrid descent method using a dynamic rate of spread.
For both idealized cases, the results are very close to the exact solutions.

For the Cougar Creek fire, it seems to give an accurate interpolation of the fire
arrival time depending on the rate of spread. However, there is a problem when some
constraints (ignition point or observed perimeters) lie in the same coordinates. The
problem of different observed perimeters overlapping is solved using a new separation
method. However, there is still a problem when the ignition point and the first ob-
served perimeter coincide, which opens a new future work. This new method has been
published in:
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e Angel Farguell, James Haley, Adam Kochanski, Ana Cortés Fite, and Jan Mandel,
Assimilation of Fire Perimeters and Satellite Detections by Minimization of the
Residual in a Fire Spread Model, ICCS 2018, LCNS 10861, 711-723, 2018.

e Angel Farguell, James Haley, Jan Mandel, Adam Kochanski, Sher Schranz, As-
similation of Fire Perimeters and Satellite Observations into a Coupled Fire-
Atmosphere Model, American Meteorological Society’s 12th Fire and Forest Me-
teorology Symposium, 13-17 May 2018 in Boise, Idaho.

e James Haley, Angel Farguell, Adam Kochanski, Jan Mandel, Sher Schranz, Data
likelihood of Actives Fires Satellite Detection and Applicattions to Ignition Esti-
mation and Data Assimilation, VIII International Conference on wildfire Research
(accepted) 2018.

As it has been shown along this chapter, the different contributions made in this
work open new and interesting research lines. One current work, that clearly opens
several computational and modeling challenges consists of including a third counter
part in the multi-physics system used in this thesis work, the smoke. The key points
that must be faced when including the smoke in the model are reported in:

e Adam Kochanski, Steven Krueger, Jan Mandel, Martin Vejmelka, Dalton Burke,
James Haley, Angel Farguell, Sher Schranz, Coupled fire-atmosphere-smoke fore-
casting: current capabilities and plans for the future, VIII International Confer-
ence on wildfire Research (accepted) 2018.
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