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A B S T R A C T

Charles Darwin’s theory of evolution proposes that the adaptations of
organisms arise because of the process of natural selection. Natural selec-
tion leaves a characteristic footprint on the patterns of genetic variation
that can be detected by means of statistical methods of genomic analy-
sis. Today, we can infer the action of natural selection in a genome and
even quantify what proportion of the incorporated genetic variants in
the populations are adaptive. The genomic era has led to the paradox-
ical situation in which much more evidence of selection is available on
the genome than on the phenotype of the organism, the primary target
of natural selection.

The advent of next-generation sequencing (NGS) technologies is provid-
ing a vast amount of -omics data, especially increasing the breadth of
available developmental transcriptomic series. In contrast to the genome
of an organism, the transcriptome is a phenotype that varies during the
lifetime and across different body parts. Studying a developmental tran-
scriptome from a population genomic and spatio-temporal perspective
is a promising approach to understand the genetic and developmental
basis of the phenotypic change.

This thesis is an integrative population genomics and evolutionary biol-
ogy project following a bioinformatic approach. It is performed in three
sequential steps: (i) the comparison of different variations of the McDon-
ald and Kreitman test (MKT), a method to detect recurrent positive se-
lection on coding sequences at the molecular level, using empirical data
from a North American population of D. melanogaster and simulated
data, (ii) the inference of the genome features correlated with the evolu-
tionary rate of protein-coding genes, and (iii) the integration of patterns
of genomic variation with annotations of large sets of spatio-temporal
developmental data (evo-dev-omics).

As a result of this approach, we have carried out two different stud-
ies integrating the patterns of genomic diversity with multiomics layers
across developmental time and space. In the first study, we give a global
perspective on how natural selection acts during the whole life cycle
of D. melanogaster, assessing whether different regimes of selection act

iii



through the developmental stages. In the second study, we draw an ex-
haustive map of selection acting on the complete embryo anatomy of D.
melanogaster.

Taking all together, our results show that genes expressed in mid- and
late-embryonic development stages exhibit the highest sequence conser-
vation and the most complex structure: they are larger, consist of more
exons and longer introns, encode a large number of isoforms and, on
average, are highly expressed. Selective constraint is pervasive, particu-
larly on the digestive and nervous systems. On the other hand, earlier
stages of embryonic development are the most divergent, which seems
to be due to the diminished efficiency of natural selection on maternal-
effect genes. Additionally, genes expressed in these first stages have on
average the shortest introns, probably due to the need for a rapid and
efficient expression during the short cell cycles. Adaptation is found in
the structures that also show evidence of adaptation in the adult, the
immune and reproductive systems. Finally, genes that are expressed in
one or a few different anatomical structures are younger and have higher
rates of evolution, unlike genes that are expressed in all or almost all
structures.

Population genomics is no longer a theoretical science, it has become
an interdisciplinary field where bioinformatics, large functional -omics
datasets, statistical and evolutionary models and emerging molecular
techniques are all integrated to get a systemic view of the causes and
consequences of evolution. The integration of population genomics with
other phenotypic multiomics data is the necessary step to gain a global
picture of how adaptation occurs in nature.
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hitchhiking – Change in the frequency of neutral variants linked to
beneficial selected sites (Smith and Haigh, 1974).
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phylostratigraphy – Statistical approach that consists on tracing
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(Chen et al., 2005).
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I N T R O D U C T I O N





1Introduction

1.1. Molecular population genetics

1.1.1. 50 years of molecular population genetics

The greatest innovation in the study of evolution at the genetic level
along the past 50 years has been the use of molecular tools for studying
the variation within and between species. Today, it is difficult to realize
the revolutionary impact that the discovery of molecular variation has
on the interpretation of genetic variation in natural populations (Casillas
and Barbadilla, 2017; Charlesworth and Charlesworth, 2017).

The aim of molecular population genetics is to explain the genetic varia-
tion patterns at the population level from population genetic principles.
The field was born in 1966, when two seminal articles provided the first
measures of genetic variation in several allozyme loci. Half a century
later, data has evolved from a bunch of sampled genes to the collection of
thousands of complete genomes. Remarkably, the mathematical theory
provided by the pioneering work of Fisher, Haldane, Wright and Kimura
–i.e., dynamic models of allele frequency change in populations under
the action of natural selection, genetic drift, mutation and/or gene flux–,
still remains as the explanatory frame to account for the evolutionary
change (Lynch, 2007; Charlesworth, 2010; Casillas and Barbadilla, 2017).

On the next pages, the main landmarks through the half-century of
molecular population genetics are described, empathizing how the mea-
surement of the genetic variation has been improved during that time,
while in the theoretical side, the neutral theory of molecular evolution
has become the universal null model to detect the footprint of natural
selection in a genome.
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From the allyzome era to the large-scale population genomics era

Three major advances in the data acquisition have been propitiated by
successive molecular technologies: starting with the variation at the pro-
tein level, followed by the variation at the DNA sequence and ultimately
the variation at the genomic level.

the allozyme era. The first empirical measures of genetic diversity
were done in 1966 when the electrophoretically detectable variation (or
allozymes) in both Drosophila pseudoobscura (Lewontin and Hubby, 1966)
and humans (Harris, 1966) was described. These surveys of molecu-
lar diversity revealed an amount of variation much higher than it was
expected from the two evolutionary selective views competing at that
time (Lewontin, 1974). The so-called classical hypothesis (described by
Dobzhansky in 1955 but attributed to Muller and Kaplan, 1966) stated
that natural selection was the only force to purge variation, and there-
fore most loci were thought to be homozygous. Opposite to this hy-
pothesis, the balancing hypothesis (Dobzhansky, 1955), postulated that a
large proportion of loci were polymorphic and that the genetic variation
was maintained by natural selection. Allozyme variability rejected the
former hypothesis and seemed, at first, to support the latter one –but
Kimura shortly showed that none of them could explain such variability,
see section 1.1.2. The electrophoresis technique exhibits certain limita-
tions, such as being unable to detect DNA variants which do not affect
the mobility of a protein as well as variants which do not change the
amino acid sequence (Lewontin, 1991). Therefore, allyzome data is not
a sufficient source to measure genetic variation (Lewontin, 1991).

the nucleotide sequence era. The study of allozymes was replaced
by a much more informative source of variation: the sequencing of nu-
cleotide sequences, with the pioneering work of Kreitman in 1983. The
availability of these sequences allowed the development of new statisti-
cal metrics to quantify variation (Casillas and Barbadilla, 2017). These
statistical metrics are still actively used in numerous publications (re-
viewed by Vitti, Grossman, and Sabeti, 2013; Casillas and Barbadilla,
2017). Despite a large number of sequences for many genes and differ-
ent species available (Clark et al., 2016) and the new tools developed to
further characterize this diversity, these surveys could give a biased view
of the genome variation patterns, as they were focused on providing the
diversity in some particular regions of the genome.
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the population genomics era. The first true population genomic work
in Drosophila was done by Begun et al. in 2007, through the sequencing
of six complete genomes of Drosophila simulans at low coverage. Today,
a single run of an Illumina sequencing platform can provide more data
than the one present in that study, facilitating the generation of big pop-
ulation genomics resources (Langley et al., 2012; Mackay et al., 2012;
Lack et al., 2015). This revolution affects not only the population ge-
nomic data and the related new methodologies to deal with it but also
other data associated with regulation, expression and other layers of the
genome. All this data allows a better characterization of the targets of
natural selection.

This thesis tries to face the challenges and opportunities of the present
population genomics momentum. To understand the state of the art of
population genomics, the conceptual basis of the neutral theory of molec-
ular evolution first needs to be established.

1.1.2. The neutral and nearly neutral theories

Successfully defining the neutral theory requires the introduction of a
key concept in population genetics: the distribution of fitness effects (DFE,
Eyre-Walker and Keightley, 2007; Keightley and Eyre-Walker, 2010). Typ-
ically, new mutations that enter a population are categorized into three
types based on natural selection in determining their fates: those that
do not differentially affect the fitness of an individual carrying it (neu-
tral), those that increase its fitness (beneficial), and those that decrease it
(deleterious, or even lethal). However, there is, in reality, a continuous
spectrum of fitness effects, from the most deleterious mutations to the
most beneficial ones, defined in the density function DFE. The transfor-
mation of the underlying concepts of the DFE over time can be used to
understand the history behind the rise of the theory of molecular evolu-
tion.

Molecular biology was born in the second half of the 20th century, at the
time when molecular diversity was starting to be assessed with protein
electrophoresis and protein amino acid sequencing methods. Pre-1960
ideas defended that all the differences within a species are due to muta-
tions that are either deleterious (classical hypothesis, Figure 1.1A) or ben-
eficial (balancing hypothesis, Figure 1.1B). In 1965, Emile Zuckerkandl
and Linus Pauling proposed the molecular clock hypothesis (MCH) after
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estimating that mammal hemoglobins evolve at a roughly constant rate
of 1.4×10-7 amino acid substitutions per year. Motoo Kimura, in 1968,
concerned by the unexpected big amount of variation present in the nat-
ural populations that neither balancing nor classical hypotheses could
explain, and together with the previous observation that mutations ac-
cumulate linearly with time, proposed the radical hypothesis that most
mutation changes in natural populations are neither harmful nor benefi-
cial. Accordingly, genetic drift is responsible for the random fluctuations
in allele frequency in finite populations. In the DFE, thus, appeared
a new and predominant category of mutations: the neutral mutations
(Figure 1.1C). A consequence of the neutral hypothesis is the minimal
equation K=μ (Kimura, 1968). Under neutrality, the rate at which allelic
changes are fixed in a given species (K) is equal to the mutation rate
(μ). This simple equation underlies many tests to detect natural selec-
tion, such as the McDonald and Kreitman test (introduced in section
1.1.4). Also, this linear accumulation of substitutions over generations
predicted by the neutral theory is the theoretical frame for the molecular
clock hypothesis (generation-time effect).

Under the assumption of the molecular clock hypothesis, species with
shorter generation times should evolve faster than those with longer
generation times. However, this prediction of the neutral theory was
challenged when it was discovered that rates of protein evolution were
proportional to absolute time (in years), not to generation time. This
means that protein molecular clocks of species with different genera-
tion time are similar, although the neutral theory predicts this constancy
for species with an equal generation time (Zuckerkandl, 1976; Wilson,
Carlson, and White, 1977). Tomoko Ohta redefined Kimura’s neutral
theory by introducing a new type of mutations: the nearly neutral mu-
tations (Ohta, 1973). In the DFE, these mutations lie between the neu-
tral and the deleterious ones, accounting for a significant fraction of all
mutations (Figure 1.1D). The nearly neutral theory predicts that slightly
deleterious mutations are mostly eliminated by natural selection in large
populations, but a large fraction of them behaves as effectively neutral
and are randomly fixed in small populations by genetic drift. This the-
ory increasingly gained importance because it can be used as a robust
null model against which to test any selective non-neutral hypothesis.
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Figure 1.1 Historical evolution of the DFE. A. DFE representing the classical hy-

pothesis (Dobzhansky, 1955; Muller and Kaplan, 1966). Natural selection is consid-

ered the only force to purge variation. B. DFE representing the balancing hypothesis

(Dobzhansky, 1955). Natural selection maintains the genetic variation. C. In 1968,

the DFE according to Kimura’s neutral theory. Themajority of differences within and

between species are neutral. Some are adaptive (fixed by positive selection) and oth-

ers are strongly deleterious. D. In 1973, the DFE according to Ohta’s nearly neutral

theory. Themajority of differences are neutral, slightly deleterious or nearly neutral,

and some are beneficial (fixed by positive selection) and others are deleterious. Fig-

ure adapted from Castellano (2016).

Themolecular evolutionary rate as a function of the DFE

The DFE has been introduced as a key concept in population genetics
and it is defined as a density function of the fitness (measured by the
selective coefficient, s) of new mutations entering in the population, f (s)
(Figure 1.2A). However, the fate of new variation also depends on the
probability of fixation of each new mutation. This probability depends
on two factors: the strength of selection (s) and the population size (N)
–assuming the simplification that the effective population size Ne equals
N. Therefore, mutations with a selective coefficient s appearing in a
population of size N have a probability of fixation defined as u(N, s)
(Figure 1.2B).

New variants enter in a population at a rate of 2Nμ (in a diploid pop-
ulation). Therefore, K, the molecular evolutionary rate, can be calculated
as the integral of the combined probability of fixation and fitness effect
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of all mutations that enter in a population, from fitness −∞ to ∞ (also
scaled to other intervals, e.g., from -1 to 1):

K = 2Nμ
∫ ∞

−∞
u(N, s) f (s)ds (1.1)

Considering the assumption of the neutral theory, which states that mu-
tations are either neutral (s = 0) or strongly deleterious, the previous
Equation 1.1 simplifies to:

K = 2N[μ0u(N, s = 0) + (μ − μ0)u(N, s = −∞)] (1.2)

The probability of fixation of a neutral mutation is u(N, 0) = 1/2N, i.e.,
its initial frequency in the population, while the probability of fixation
of a strongly deleterious mutation is zero, u(N, s = −∞) = 0. Replac-
ing these values in the previous Equation 1.2, the equation simplifies to
Kimura’s minimal equation K = μ.

K = 2Nμ0u(N, s = 0) = 2Nμ01/2N = μ0

K = μ0
(1.3)

Figure 1.2 Factors determining the molecular evolutionary rate. A. Distribution

of fitness effects (DFE) of new mutations. B. The probability of fixation of new mu-

tations entering a population. The trajectory of mutations depends on the selective

coefficient (s). New variants that enter in the population segregate over time and can

become fixedordisappear. Thecolors represent the selective coefficients as in Figure

1.1.
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The population size paradox

According to the (nearly) neutral theory, the average neutral nucleotide
variation is the result of the equilibrium of two forces: mutation and ge-
netic drift. Mutation adds genetic variation at a rate of 2Nμ (for diploid
organisms) and genetic drift removes it at a rate that depends inversely
on the population size (1/2N).

In small populations, genetic drift removes variation faster than muta-
tion adds it, but in larger populations drift is less effective at removing
variation. As a consequence, a relation between the effective popula-
tion size and genetic variation is expected. The neutral heterozygosity
parameter, θ, known as the Watterson’s estimator (Watterson, 1975) pre-
dicts that small populations are expected to harbor less variation than
large ones:

θ = 4Nμ (1.4)

However, this prediction was challenged with allozyme polymorphism
data. While species’ population sizes vary 20 orders of magnitude
(Lynch, 2006), allozyme variation vary less than 4 (Bazin, Glémin, and
Galtier, 2006). This observation is so-called Lewontin’s paradox (Lewon-
tin, 1974).

Smith and Haigh (1974) proposed an explanation to this paradox: the
genetic hitchhiking effect (Figure 1.3A). Due to this process, neutral alle-
les that are linked to a favored selected mutation will also reach fixation
–creating what was later called a selective sweep (Berry, Ajioka, and Kre-
itman, 1991). Genetic hitchhiking results in the reduction of the linked
genetic variation, which could explain the observed genetic homogene-
ity of large populations. The levels of polymorphisms can be recovered
over time by mutation and recombination.

This theory was revised when allozyme polymorphism data was re-
placed by DNA sequence data. This latter data showed low genetic vari-
ation in some regions of the genome, particularly near the centromeres
or within chromosome rearrangements. The correlation between recom-
bination and genetic variation was not found with divergence. This lack
of correlation between recombination and divergence excludes the sim-
plest explanation that recombination is mutagenic. This, in turn, leads to
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the more feasible idea that the correlation between recombination and
genetic variation is due to a greater elimination of the variation in re-
gions of low recombination. John Gillespie developed a stochastic model
which takes into account both the effects of genetic drift and recurrent
hitchhiking, called genetic draft (Gillespie, 2000a,b, 2001). Genetic draft
also removes genetic variation as genetic drift does, but the effect of
genetic draft increases with the population size. In large populations,
genetic drift is less effective at removing alleles and genetic variation in-
creases. But at the same time, more adaptive mutations occur, because
there are more alleles available to mutate and selection is more effec-
tive in larger populations. Therefore, genetic variation is reduced due to
more hitchhiking events caused by the prevalence of adaptive selection.
With this theoretical model, population size and genetic diversity can
be uncoupled, potentially resolving Lewontin’s paradox (Gillespie, 2004;
Lynch, 2007).

Charlesworth et al. (1993) proposed a parallel effect regarding the dele-
terious mutations, known as background selection (BGS, Figure 1.3B). BGS
is the process by which neutral variation is removed from the popula-
tion for being linked to deleterious sites (Charlesworth, Morgan, and
Charlesworth, 1993). While hitchhiking predominates when selection
is strong and positive mutations are abundant, BGS will predominate
when selection is relatively weak and mutations are recessive. BGS is
expected to reduce the genetic variation similar to the hitchhiking effect.
In this scenario, a neutral mutation can remain in the population if it ap-
pears in a chromosome free of deleterious mutations or if recombination
breaks the haplotype. Therefore, recombination plays an important role
in mediating the fate of linked sites in the genome (see section 1.1.3).

In 2015, Corbett-Detig estimated the expected reduction in neutral vari-
ation by both hitchhiking and BGS effects using empirical data from 40
eukaryotic species. This work showed that there is a positive correlation
between the effective population size and the levels of linked neutral
variation, i.e., natural selection removes more variation at linked neutral
sites in species with large Ne than in those with small Ne. This work
finally provided the necessary empirical evidence that natural selection
constrains the levels of neutral genetic diversity across many species
(Corbett-Detig, Hartl, and Sackton, 2015).
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Figure 1.3 The effect of adaptive (hitchhiking) and purifying selection (BGS) on

linked neutral sites in regions with low and high recombination. A. An adaptive

mutation (green dot) destined to get fixed appears linked to a particular haplotype

(i.e., linked to some particular neutral alleles, represented with blue dots). When the

frequency of an advantageous allele increases in a region of low recombination, so

does the frequency of the linked neutral variants and all the other neutral alleles are

lost. This results in a reduction of the levels of polymorphism. In regions of high

recombination, the neutral levels of polymorphisms can be recovered over time by

mutation and recombination. B. BGS occurs when neutral alleles (blue) are linked

to deleterious variants which will eventually be removed. In regions of low recom-

bination, chromosomes carrying deleteriousmutations (red dots) will be eliminated

quickly from the population (represented as dashed gray lines). A neutral mutation

can remain in the population if it appears in a chromosome free of deleteriousmuta-

tions or if recombination breaks the haplotype. This results also in a reduction of the

genetic variation not as strong as the hitchhiking effect. Figure adapted fromGómez-

Graciani (2018) with permission.

1.1.3. The role of recombination in hitchhiking events

Recombination is a key parameter in modulating the patterns of genome
variation (Casillas and Barbadilla, 2017). The fate of a new mutation ap-
pearing in a genome is conditioned not only by the selective advantage
or disadvantage that confers to its bearer but also by the genomic con-
text in which it appears. Population genetic theory predicts that an in-
creased linkage between sites will limit the efficacy of both positive and
purifying selection since selection at one site interferes with selection at
linked sites (Hill and Robertson, 1966). If a newly selected mutation is
surrounded by many other selected ones, these mutations will interfere
with each other as they do not segregate independently. The reduction
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of the efficacy of selection due to the interaction between linked sites is
known as the Hill-Robertson interference (HRi, Hill and Robertson, 1966).

In low-recombining regions, there will be a greater density of selective
alleles that do not segregate independently, and a lower efficacy of both
positive and purifying selection is expected. On the other hand, high-
recombining regions will exhibit higher adaptation rates due to a higher
efficacy of both positive and purifying selection.

There are two kinds of HRi that can compromise the adaptation of
genomes. In the first type, known as clonal interference (Figure 1.4A),
adaptive mutations simultaneously segregating in different haplotypes
compete for fixation (Gerrish and Lenski, 1998). Without recombination,
they compete until the strongly beneficial one is fixed and the others
are lost. A deleterious mutation linked to the beneficial mutation might
be dragged to fixation as a consequence. The second type, called Ruby
in the rubbish (Figure 1.4B), occurs when a beneficial mutation appears
on genetic backgrounds loaded with segregating deleterious mutations
(Peck, 1994). Without recombination, beneficial mutations in linkage
with deleterious ones are lost. Both kinds of interference limit the rate
of adaptation in genomes.

Castellano et al. (2015) quantified for the first time the evolutionary ad-
vantage of genetic recombination in the Drosophila melanogaster genome.
Due to the HRi, the D. melanogaster genome has an adaptation rate
around 27% below the optimal adaptation rate.

1.1.4. Detecting the footprint of natural selection

At the molecular level, natural selection can be divided into two types:
direct selection refers to the variants that are the target of selection, and
that can be either advantageous or deleterious; linked selection refers
to the variants linked to those under selection, whether advantageous
(hitchhiking, Smith and Haigh, 1974) or deleterious (BGS, Charlesworth,
Morgan, and Charlesworth, 1993). Different methods have been devel-
oped to detect the action of natural selection at the molecular level. In
this thesis, the effect of direct selection and the methods that have been
used to detect it are addressed.
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Figure 1.4 Two types of Hill-Robertson interference due to low recombination.

A. Clonal interference. Is the process by which without recombination, beneficial

mutations (green dots) segregating simultaneously on different haplotypes compete

for fixation. A strongly beneficial mutation (green circled dot) is fixed together with

a linked deleterious variant. B. Ruby in the rubbish. Is the process by which with-

out recombination, beneficial mutations appearing on deleterious backgrounds are

lost, also reducing adaptation. In both cases, only the haplotype(s) that rise(s) in fre-

quency and may fix in the population. Figure adapted from Gómez-Graciani (2018)

with permission.

The neutral theory provides the theoretical basis of the current tests of
selection that are going to be presented in the next sections. Because
the neutral theory makes clear predictions about the observed polymor-
phisms within species and fixed differences between species are neutral,
it provides the necessary null (neutral) model against which to evaluate
non-neutral hypotheses.

Detecting selection using divergence

The action of natural selection at the molecular level can be assessed
by applying a simple method that does not require population genomic
data but sequence data for differences between species. K, the evolution-
ary rate (introduced in section 1.1.2), is commonly estimated by the ge-
netic distance between two orthologous sequences (d), divided by twice
the divergence time of both species (T), because substitutions can occur
on both branches of the phylogenetic tree:

13



I N T RODUCT ION

K = d/2T (1.5)

d is commonly estimated as the fraction of aligned amino acid positions
that differ between the two sequences while correcting the effect of mul-
tiple substitutions (e.g., the Jukes and Cantor correction, 1969). This
measure gives a general idea of how divergent two sequences are.

A powerful approach using divergence is to divide d depending on the
type of mutation that it causes, either synonymous or non-synonymous.
Therefore, dN represents the number of replacement substitutions per
non-synonymous site, while dS is the number of silent substitutions per
synonymous site. Since the mutation rate varies throughout a genome,
Kimura (1977) suggested to correct dN with dS, which is equivalent to
controlling for the differences in mutation rates, leading to the dN/dS

ratio (also referred to as Ka/Ks ratio, or simply ω, Yang and Bielawski,
2000).

Although the dN/dS ratio includes the combined effect of neutral, ad-
vantageous and deleterious mutations, it can give an indication of the
impact of natural selection on a sequence. The only accepted way to
demonstrate that there have been advantageous mutations during the
evolution of a sequence is to obtain a proportion higher than 1. A dN/dS

ratio of 1 is obtained when all mutations are selectively equivalent. A
ratio above 1 can only be obtained if there is a fraction of advantageous
mutations. But this is a very stringent requirement, and only a few genes
will ever reach a dN/dS higher than 1. One solution is not to account
for the dN/dS of the overall protein (as the average will likely be smaller
than 1) but subdividing the protein into functional domains, which may
have a dN/dS higher than 1.

Another solution to increase the power of detecting positive selection
by applying the dN/dS ratio is to analyze specific codons of a coding
sequence in multiple species. This is implemented in the codon-based
Z-test of the MEGA software (Kumar, Stecher, and Tamura, 2016).

The dN/dS test is a very conservative statistic for detecting adaptive
evolution, but it can be informative about the selection pressure exerted
on a sequence.

14
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Detecting selection using polymorphism and divergence

The McDonald and Kreitman test (MKT) was born as a method to over-
come the limitations of dN/dS when detecting adaptive selection (Mc-
Donald and Kreitman, 1991). This test takes into account both polymor-
phism and divergence data (Figure 1.5) and it is one of the most powerful
methods to detect natural selection. The MKT normalizes the divergence
ratio (DN/DS) with the polymorphism ratio (PN/PS) which takes into
account the constraint at non-synonymous sites and thus increases the
power of detecting adaptive selection.

Therefore, four different counts are needed to conduct the MKT: the
count of polymorphisms at synonymous (PS) and non-synonymous sites
(PN) as well as the count of fixed differences at synonymous (DS) and
non-synonymous sites (DN). The four counts are placed in a 2×2 contin-
gency table and significance is typically assessed with a Fisher’s exact
test. Note that in the dN/dS test the values used (dN and dS) are ratios
since they are obtained as the total count of fixed differences (D) divided
by the total number of sites in each type of site (mN or mS).

Figure 1.5 Diagram show-

ing the trajectory of neutral

mutations during a specia-

tion process. Intrapopula-

tion polymorphism is repre-

sented with blue dots which

are segregating during the

speciation process. These

variants eventually get fixed

or are lost (lost variants are

represented with red dots). T

is the divergence time; K the

mutation rate and d the diver-

gence rate.

Under neutrality, all non-synonymous mutations are expected to be neu-
tral and the DN/DS ratio will roughly equal to the PN/PS ratio (Figure
1.6A). In contrast, positive mutations will rarely be detected as polymor-
phic variants, because they tend to be fixed quickly, but have a cumula-
tive effect on the divergence. As a result, DN/DS will be greater than
PN/PS (Figure 1.6B).
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Some parameters have been developed to quantify selection using the
MKT-test. One of these parameters is the neutrality index (NI, Rand
and Kann, 1996).

NI =
Pn/PS

DN/DS
(1.6)

NI indicates to what extent the levels of polymorphic variation in the
testing region depart from the expected level under the neutral model.
Under neutrality, PN/PS equals DN/DS and thus NI equals 1. NI above 1
is interpreted as an excess of polymorphic variation compared to neutral
regions which can be interpreted as due to purifying selection. NI below
1 can be interpreted as an excess of variation between species due to
adaptive selection.

Another closely related summary statistic is the proportion of substitu-
tions that have been fixed by adaptive evolution: α (Charlesworth, 1994;
Smith and Eyre-Walker, 2002):

α = 1 − DSPN
DN PS

= 1 − NI (1.7)

Defining α as a proportion is erroneous because it can also take negative
values, and the meaning of a negative proportion is difficult to mathe-
matically interpret. Positive values of α indicate an excess of divergence
that is due to positive selection.

MKT is also used combining data across multiple genes by taking into
account all the counts of polymorphism and divergence at synonymous
and non-synonymous sites. However, this can lead to the Simpson’s
paradox (Simpson, 1951), wherein the results of individual 2×2 contin-
gency tables suggest a trend which disappears or reverses when the data
is combined in a single table. Regarding MK data, this can happen when
there are large differences in the number of non-synonymous substitu-
tions (DN) between genes (Walsh and Lynch, 2018). To take into account
this heterogeneity between genes, Stoletzki and Eyre-Walker (2011) sug-
gested a weighted approach proposed originally by Tarone (1981) and
Greenland (1982) which yields to unbiased estimated of the mean NI:
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NITG =
∑ DSiPNi/(PSi + DSi)

∑ PSiDNi/(PSi + DSi)
(1.8)

where the index refers to ith gene. With this index, each gene is weighted
by its total synonymous variation (PS and DS).

MKT-based extensions

Assuming that neutral mutation rates at synonymous and non-
synonymous sites are constant over time, adaptive selection is inferred
as an excess of DN/DS ratio, and the DN/DS ratio is statistically higher
than the PN/PS ratio. However, the MKT is not only statistically signif-
icant when there is an excess of divergence. The test can also be signif-
icant when there is an excess of non-synonymous polymorphism (i.e.,
PN/PS is significantly higher than DN/DS). The most common expla-
nation for this excess is that slightly deleterious mutations contribute
more to polymorphism than to divergence (because slightly deleteri-
ous mutations will not usually reach fixation), violating the assumption
that all non-synonymous polymorphisms are neutral (Figure 1.6C). The
presence of this non-neutral polymorphism can mask the effect of adap-
tive selection as it acts in opposite directions in the MKT (Figure 1.6D).
The excess of non-synonymous polymorphism increases the PN/PS ra-
tio, making the detection of adaptive selection unlikely due to a DN/DS

lower than PN/PS.

Several methods try to deal with the presence of slightly deleterious
mutations. Templeton (1996) suggested removing singletons (i.e., poly-
morphism only detectable in one sample) at both type of sites (synony-
mous and non-synonymous) from the total count of polymorphisms.
The slightly deleterious substitutions, which segregate at low frequen-
cies, should be overrepresented in the singletons (Figure 1.7C). Akashi
(1999) proposed a more powerful method, that consisted of taking into
account the complete distribution of allele frequencies, and not just the
singletons. Although both extensions are more powerful than the MKT
itself, their results are difficult to interpret, especially when the ratio
of non-synonymous to synonymous differences varies among allele fre-
quency classes (Hahn, 2018).

Fay, Wyckoff, and Wu (2001) developed a simpler methodology that re-
moves all polymorphism at a frequency below a threshold (normally
5%–15%, Figure 1.7D). Although there is no consensus about what
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Figure 1.6 Different selective scenarios that can be inferred by theMKT. A. If only

neutral alleles (blue) exist in the population, an equal proportion of divergent and

polymorphic sites is expected (DN/DS=PN/PS). B. An excess of divergence compared

to the polymorphism due to positive selection (DN/DS>PN/PS). C. If slightly delete-

rious substitutions segregate, they contribute to polymorphism (DN/DS<PN/PS). D.

If both adaptive and deleterious variants are present, the result in the MKT can be

misinterpreted. Adapted from Ràmia (2015).

this threshold should be exactly, Charlesworth and Eyre-Walker (2008)
demonstrated that the α estimates are robust for a frequency threshold
≥15 (because slightly deleterious substitutions tend to segregate at low
frequencies). However, this methodology is also expected to give biased
α values, and only these estimates are reasonably accurate when the rate
of adaptive evolution is high and the DFE of slightly deleterious mu-
tations is leptokurtic (because leptokurtic distributions have a smaller
proportion of polymorphisms that are slightly deleterious, Charlesworth
and Eyre-Walker, 2008).

Mackay et al. (2012) proposed a powerful extension of the MKT called
extended MKT (Figure 1.7E, eMKT method). Instead of simply remov-
ing low-frequency polymorphism below a given threshold, the count of
segregating sites in non-synonymous sites is partitioned into the num-
ber of neutral variants and the number of weakly deleterious variants
(see Methods, section 2.2.1, for methodological details). This increases
the power of detecting selection and allows the independent estimation
of both adaptive and weakly deleterious selection.

The last approach described here is the asymptotic MK method pro-
posed by Messer and Petrov (2013). This extension is robust to the pres-
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ence of selective sweeps (hitchhiking) and to the segregation of slightly
deleterious substitutions (BGS). In this approach, α is defined as a func-
tion that depends on the site frequency spectrum (SFS) of the alleles, so
α is estimated in different frequency intervals (x) and these values are
then adjusted to an exponential function. An exponential fit is suitable
as the non-synonymous allele frequency is expected to decay exponen-
tially over the respective levels of synonymous polymorphisms (Messer
and Petrov, 2013). The equation is:

α = 1 − DSPN(x)

DN PS(x)
(1.9)

Figure 1.7 Comparison of different MKT approaches. Example of a gene exhibit-

ing an excess of both slightly deleterious and fixed non-synonymous differences. A.

The hypothetical allele frequency spectrum of synonymous and non-synonymous

classes for a gene with n=10 sampled chromosomes. B. The standard MKT for this

gene (p-value = 0.09, 2×2 Fisher’s exact test). C. The 3×2 proposed by Temple-

ton (1996), separating singleton polymorphism from all others (p-value = 0.07, 2×2

Fisher’s exact test). D. The 2×2 table by Fay, Wyckoff, and Wu (2001), taking into ac-

countonlypolymorphismfoundonmore thanonechromosome (p-value=0.045, 2×2

Fisher’s exact test). E. Extended MKT (Mackay et al., 2012). The count of segregating

sites in non-synonymous sites is partitioned into the number of neutral variants and

the number ofweakly deleterious variants. PN is substitutedwith the number of non-

synonymous polymorphism that is neutral (p-value = 0.042, 2×2 Fisher’s exact test).

Adapted from Hahn (2018).
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Figure1.7ComparisonofdifferentMKTapproaches. Caption in thepreviouspage.
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MKT-extensions for other site classes

Although the estimation of the synonymous and non-synonymous
counts is often done on coding sequences (as 0-fold and 4-fold sites are
normally used as a proxy for non-synonymous and synonymous counts,
respectively), it is possible to extend the MKT to other non-coding re-
gions as long as one of the two sites are assumed to evolve neutrally
(e.g., the case for intronic sites; Casillas, Barbadilla, and Bergman, 2007;
Egea, Casillas, and Barbadilla, 2008). However, there are major caveats
that have made it difficult up to this date to successfully apply the MKT
to non-coding regions such as regulatory regions. Hahn (2018) raises
consequentially the right questions when he asks: What is the genetic
code of a regulatory region? How can the accumulation of changes pos-
itively affect a binding region? Those still unresolved questions need an
in-depth inspection.

DFE-based approaches

The other family of MKT-derived methods is called DFE-based methods
(Bustamante et al., 2005; Eyre-Walker and Keightley, 2007; Eyre-Walker
and Keightley, 2009; Bustamante et al., 2002; Boyko et al., 2008; Eyre-
Walker, 2006; Keightley and Eyre-Walker, 2007). These methods also
correct the presence of slightly deleterious non-synonymous substitu-
tions. The main distinction is that they first estimate the empirical DFE
at the selected site class and then calculate how many non-adaptive sub-
stitutions are expected to become fixed given the inferred DFE from
polymorphism data. For that, they usually also fit a demographic model
to the synonymous dataset and assume all non-synonymous polymor-
phism are either neutral or deleterious. Simulations show that these
methods can provide an accurate estimate of the average of α if data
from a large number of genes are collected (Hahn, 2018). As sequenc-
ing becomes cheaper, single-locus studies of the DFE will soon become
possible with such methods (Hahn, 2018).

One DFE-based method that is widely used is the DFE-alpha approach
(Eyre-Walker and Keightley, 2009). DFE-alpha software incorporates the
methodology for estimating the DFE of new deleterious mutations de-
veloped by Keightley and Eyre-Walker (2007) and the methodology for
estimating α by Eyre-Walker and Keightley (2009).

For estimating α, this program infers the DFE of new deleterious muta-
tions, and it uses this DFE to predict the number of substitutions orig-
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inating from the neutral and slightly deleterious mutations. If the ob-
served rate of substitutions (dN) is greater than the expected rate, the ex-
cess of divergence can be attributed to the adaptive substitutions, yield-
ing an estimate of α:

α =
dN − dS

∫ ∞
0 2Nμ(N, s) f (s|a, b)ds

dN
(1.10)

The method assumes that the DFE of deleterious mutations is a gamma
distribution with scale parameter a and shape parameter b, f (s|a, b).
Given the inferred DFE, the average fixation probability of new dele-
terious and neutral non-synonymous mutations (2Nμ(N, s)) relative to
the fixation probability of synonymous mutations is calculated by inte-
grating over f (s) (Eyre-Walker and Keightley, 2009).

Messer and Petrov (2013) conducted simulations to test the performance
of their method, the asymptotic MKT, and DFE-alpha, in particular, to
test their robustness to genetic draft or BGS. Simulations show that
DFE-alpha is very robust and yields accurate α estimations even in the
presence of genetic draft, BGS and demographic changes (Messer and
Petrov, 2013). Furthermore, DFE-alpha does not require to set a mini-
mum threshold for excluding the low-frequency polymorphisms (Eyre-
Walker and Keightley, 2009).

1.1.5. Patterns of genome variation

Genetic diversity is ubiquitous. At the molecular level, the irrefutable
proof is that no two humans share the same genome sequence (identi-
cal twins aside). With the advent of next-generation sequencing (NGS)
technologies, we face data on million to billion variants. In fact, more
than 6,000,000 variants have been described in the model species D.
melanogaster up to date (Huang et al., 2014). What evolutionary forces
could have led to such rich divergence between individuals within the
same species? This unresolved question, that Gillespie (1991) referred
to as the great obsession of population genetics, is reflected by a massive
theoretical and empirical research trying to connect the patterns of vari-
ation in natural populations with the evolutionary forces that account
for them (Connallon and Clark, 2014).
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Known determinants of protein evolution

Understanding how do proteins evolve is a long-standing biological
problem, and it is a central aim for evolutionary genetics. The large
increase in the amount of available functional and molecular genomic
datasets in the past few years provides an opportunity to shed light on
this issue. In fact, factors affecting the rates of molecular evolution have
long been studied, and many of them have been proposed to account for
a great part of this variation, such as the expression level (Marais et al.,
2004), expression bias (Duret and Mouchiroud, 2000), essentiality (Hirsh
and Fraser, 2001) or codon usage (Holloway et al., 2008).

One of the major determinants of protein evolution seems to be the ex-
pression level of the gene coding for the protein (Pal et al., 2001; Drum-
mond et al., 2005; Drummond, Raval, and Wilke, 2006), and this fact can
be extended to a significant amount of organisms, both prokaryotes (bac-
teria, Rocha and Danchin, 2004) and eukaryotes (green algae, Popescu
et al., 2006; Drosophila, Lemos et al., 2005; or Arabidopsis thaliana, Wright
et al., 2004).

The expression level seems to account for approximately 30% of all vari-
ance of the protein evolutionary rate in all these organisms. These stud-
ies conclude that highly expressed protein-coding genes have a lower
evolutionary rate (i.e., evolving slower) than those lowly expressed.
Drummond and Wilke (2008) proposed that translation-induced protein
misfolding may result in toxic products with detrimental effects. Under
the assumption that non-synonymous mutations increase the probabil-
ity of misfolding, the amino acid sequence of highly expressed proteins
should thus be under stronger purifying selection than the sequence of
proteins expressed at lower rates, irrespective of their biological func-
tion. On the other hand, in order to explain the observed low rate of
synonymous substitutions in highly expressed genes, the translation ac-
curacy hypothesis has been proposed (Akashi, 2003), which argues that
since some codons are more favorable (adaptive) than others due to the
biased distributions of tRNA, this could constraint synonymous change,
too.

Thus, expression level accounts for a significant effect and must be con-
sidered as the main determinant to understand protein evolution. How-
ever, our knowledge of other features, such as the ones listed in Table 1.1,
and their role as determinants of protein evolution has to be increased.
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Table 1.1 Genomic features associated with protein evolutionary rates.

Feature Correlation withω References

Exon length Negative correlated
Guillén, Casillas, and

Ruiz, 2018; Larracuente

et al., 2008

Expression bias

Strong positive correlated, likely

driven by positive selection on highly

biased genes, and purifying selection

on housekeeping genes

Guillén, Casillas, and

Ruiz, 2018; Larracuente

et al., 2008

Expression level
Strong negative correlated, likely

driven by purifying selection

RochaandDanchin, 2004;

Lemos et al., 2005; Petit

et al., 2007; Guillén, Casil-

las, and Ruiz, 2018

Essentiality
Essential genes are more conserved

than nonessential genes
Hurst and Smith, 1999;

Hirsh and Fraser, 2001

Dispensability Weak association Hirsh and Fraser, 2003

Functional cate-

gory (ontology/-

families)

Proteins implicated in multiple pro-

cesses evolve slower. Extremely weak

effect

Salathe et al., 2006

Intron length Non-significant negative correlation
Comeron and Kreitman,

2000; Marais et al., 2005

Exon inclusion lev-

els

Conflicting results: some indicate ev-

idences of stronger positive selection

in alternative regions, while others,

the opposite

Sorek and Ast, 2003; Er-

makova, Nurtdinov, and

Gelfand, 2006

Intron number Negative correlated Marais et al., 2005

Mutation rate Positive effect on protein evolution
Pál, Papp, and Lercher,

2006

Protein length Weak negative correlated
Comeron, Kreitman, and

Aguadé, 1999; Duret and

Mouchiroud, 1999

Protein-protein in-

teractions
Non-significant correlation Giot et al., 2003

Recombination

rate

Positive correlationwith theefficacyof

selection

Betancourt and Pres-

graves, 2002; Marais

et al., 2004; Presgraves,

2005; Zhang and Parsch,

2005; Haddrill et al., 2007

Table adapted from Rocha (2006) and Larracuente et al. (2008).

1.1.6. The inquiry power of the population genomics

approach

A complete population genomic study should be seen as a three-step
process (Casillas and Barbadilla, 2017). The first step is to estimate the
parameters that capture the evolutionary properties of the sequences
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(e.g., polymorphism and divergence estimations or the proportion of
adaptive fixations). These parameters are stored in population genomic
browsers, such as PopFly (Hervas et al., 2017) or PopHuman (Casil-
las et al., 2018), which are the most complete population browsers for
Drosophila and human populations respectively, up to date.

The second step, at the genomic level, is to correlate those population ge-
nomic parameters with other genomic variables throughout the genome.
Such variables can be the recombination rate, gene density or GC density,
to assess the impact of these features on the pattern of genetic variation.

The third step, the multiomics or integrative level, consists of the correla-
tion between the patterns of genomic variation with annotations of large
sets of omics data, e.g., transcriptomics. The main difference between
-omics layers and the genomic sequence is that they change during the
lifetime and body parts of organisms. The developmental transcriptome
of an organism represents intermediate phenotypes between the geno-
type and the final phenotype on which natural selection acts (Civelek
and Lusis, 2014). Although the expression is related to the genotype
in a complex manner (determined by interactions between the genome
and environment) the integration of -omics layers with population ge-
nomic data promises to provide a global view of the functional effects
of genome variation (Wagner, 2008; Loewe, 2009; Pantalacci and Sémon,
2015; Casillas and Barbadilla, 2017).

1.2. Drosophila as amodel organism

Fruit flies have been an attractive and effective genetic model since the
Morgan laboratory at Columbia University worked on it to make crucial
discoveries a century ago –proving the chromosome theory of inheri-
tance (Morgan, 1910). Now, D. melanogaster is studied by more than
1,800 laboratories around the world (Hales et al., 2015): their easy cul-
ture, short generation time, many offspring, compact genome and easy
manipulation make them a suitable organism for testing hypotheses in
all research fields, including neurobiology, ecology, speciation, develop-
ment, and of course population genetics (Powell, 1997). In the case of
populations genetics, D. melanogaster has been crucial in three basic lines
of research: chromosome inversion polymorphism evolution (Dobzhan-
sky and Sturtevant, 1938), electrophoresis variation (Lewontin, 1974) and
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nucleotide variation (Kreitman, 1983; Singh and Rhomberg, 1987). More
recently, D. melanogaster has contributed to one of the major advances
in the population genomic field providing the first high-resolution map
of the footprint of natural selection (Mackay et al., 2012). This work
demonstrates that natural selection is pervasive in D. melanogaster (fur-
ther explored in section 1.4).

The genomic era has accelerated the development of high-throughput
technologies. Today, more than 1,000 complete Drosophila genomes from
multiple populations around the world are available (see section 1.4).
Also, population data is becoming available for close D. melanogaster
species, like D. simulans (Signor, New, and Nuzhdin, 2018). The avail-
ability of other non-model Drosophila species data (e.g., the i5k project,
Thomas et al., 2018) is leading to powerful studies of comparative ge-
nomics.

1.2.1. Evolutionary history of D. melanogaster

There are more than 2,000 discovered Drosophila species in the world
(Powell, 1997; Markow and O’Grady, 2006). One of the most extensively
studied lineages is the Sophophora subgenus with around 330 species,
including D. melanogaster, D. simulans and D. yakuba (Figure 1.8). These
two latter species are commonly used as external species for divergence
comparisons with D. melanogaster (outgroup).

D. melanogaster is currently accepted to be originated from Africa, and
expanded to the rest of the world becoming a cosmopolitan species
(Lachaise et al., 1988; David and Capy, 1988; Begun and Aquadro, 1993;
Andolfatto, 2001; Stephan and Li, 2007). The expansion from Africa to
Europe occurred 10,000–19,000 years ago (Li and Stephan, 2006; Thorn-
ton and Andolfatto, 2006; Duchen et al., 2013). Drosophila arrived in
North America relatively recently, less than 200 years ago. The varia-
tion found in the non-African populations is lower than the one found
in Africa (Begun and Aquadro, 1993; Andolfatto, 2001), indicating that
the propagation of D. melanogaster outside Africa was preceded by a
bottleneck (Begun and Aquadro, 1993; Andolfatto, 2001; Li and Stephan,
2006; Thornton and Andolfatto, 2006), which was deduced to be finished
around 50 years ago (Thornton and Andolfatto, 2006; Karasov, Messer,
and Petrov, 2010). A study by Duchen et al. (2013) suggested that the
North American population is an admixture between the African and
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Figure 1.8 Phylogeny and

taxonosmy of 12 Drosophila
species. Species are or-

ganized into four major

taxonomic groups indicated

by color: D. melanogaster

and D. simulans (n = 2, red),

melanogaster subgroup (n =

5, light blue), melanogaster

species group (n = 6, gray), 12

Drosophila genome species

(n = 12, dark blue). Males

(right) and females (left) of

each species are presented

and scaled according to their

relative size. Figure taken

from Stanley and Kulathinal

(2016).

European populations. The cosmopolitan distribution makes Drosophila
a very attractive organism to test how it has evolved and adapted inde-
pendently to diverse environments (Schmidt et al., 2005; Markow and
O’Grady, 2007).

1.2.2. The D. melanogaster life cycle

A major advantage of D. melanogaster is its particular short life cycle,
which allows a high number of offspring to use in genetic crosses. Re-
garding its development, D. melanogaster is a holometabolous insect,
which means it undergoes a complete metamorphosis –the immature
stages (larva) are very different from the mature stages (adult).

On average, the complete cycle needs 9 to 10 days to complete in the lab
at 25ºC (Figure 1.9). Upon fertilization, embryogenesis is completed in
24 hours, followed by three larval stages (first, second and third instar).
Each instar lasts on average one day, except the third instar, which nor-
mally takes two days. Five days after fertilization, larval development is
complete and it undergoes a complete metamorphosis in a pupal case,
which takes 4–5 days. During this time, larval tissues break down and
many adult structures develop from 19 different imaginal discs. Imagi-
nal discs are a set of progenitor cells that give rise to the adult structures.
Adult flies emerge from the pupal case (eclosion) and the process repeats
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Figure1.9TheD.melanogaster life cycle. Thecomplete cycle takes9–10dayswhen
flies are maintained at 25ºC in the lab. It is divided in four developmental stages:

embryo (day 1), larva (days 2–5), pupa (days 6–9) and adult (day 10).

itself in 8–12 hours when the flies are sexually mature (Stocker and Gal-
lant, 2008).

D. melanogaster embryo development

Embryo development is a continuous, complex process of interwoven
temporal events. Some events are frequently emphasized in order to or-
ganize the development into a series of different stages. D. melanogaster
embryo development has been divided into 17 stages by Volker Harten-
stein and José Campos-Ortega (1993) and despite its artificiality, this di-
vision provides a useful temporal framework in which embryonic events
can be referred to. A short description of the main events that character-
ize the Drosophila embryogenesis are described below (Figure 1.10).

fertilization. Embryogenesis starts with the fertilization of the oocyte
(stage 1). Female flies store sperm for up to 2 weeks in specialized or-
gans called seminal receptacles and spermathecae (Lefevre and Jonsson,
1962), which may contain sperm from different males. Because of that,
sperm competition imposes important selective pressure on males. In
fact, there is strong evidence that male reproductive genes evolve faster
and are under adaptive evolution (reviewed by Swanson and Vacquier,
2002).

28



1.2 DROSOPH I L A AS A MODEL ORGAN I SM

superficial cleavage and cellularization. After fertilization, the zy-
gotic nuclei divide in a common cytoplasm with no new cellular mem-
branes, referred to as syncytium (stage 2). After 10 synchronized rounds
of division, nuclei migrate to the periphery, where they become partially
encapsulated by cytoskeletal proteins to create furrow canals (stage 3/4).
Cellularization occurs in stage 5, after the transcription of bulk zygotic
genes, and marks the beginning of asynchronous cell divisions, followed
by the gastrulation that takes places during stages 6 and 7 and is com-
pleted in stage 8.

gastrulation. The gastrulation determines the formation of the basic
three germ layers: ectoderm, endoderm and mesoderm. Dramatic move-
ments reshape the body plan. Cells from the posterior migrate towards
the anterior in germ band extension (stages 9 and 10). From stage 11
onwards no major morphogenetic changes take place. The process fol-
lows with the germ band retraction to the posterior (stage 12). Cells
then migrate to the dorsal midline in dorsal closure (stage 13), head
structures begin to mature (stages 14–15), somatic musculature becomes
visible (stage 16) and embryogenesis is nearly completed when the larval
reaches its mature state (stage 17).

anterior/posterior patterning. In D. melanogaster, the anterior-
posterior (A/P) polarity is determined by the maternally contributed
mRNA already present in the egg before fertilization. Translation of this
mRNA after fertilization results in protein gradients, which are neces-
sary for the specification of the expression patterns of a series of zygotic
genes involved in segmentation and cell fate determination. There are
three groups of segmentation genes (GAP genes, pair-rule genes and
segment polarity genes) that are necessary for further specify A/P posi-
tioning within the embryo.

dorsal/ventral patterning. Similar to the A/P patterning, the dor-
sal/ventral (D/V) is also determined through gradients of proteins, but
the mechanisms are very different (Morisalo and Anderson, 1995). In
the D/V patterning, the maternal genes already present in the oocyte
are not transcribed until cellularization. Signaling events trigger a cas-
cade leading to the embryonic patterning and axis determination.

maternal-effect genes. The start of the embryogenesis involves
mRNA and proteins already present in the egg, which are shed by the
mother (King, 1970; Bastock and St Johnston, 2008). From a population
genetic perspective, such genes are very interesting because they influ-
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Figure 1.10Main stages ofD.melanogaster embryonic development. See section
1.2.2 for details. In each panel, anterior is to the right and dorsal is up. Images modi-

fied from the Atlas of Drosophila Development (Hartenstein, 1993) with permission.

ence the phenotype in the zygote from the mother’s genotype, and not
from the zygote’s genotype. Therefore, the embryo of a homozygous
mutant mother will be defective regardless of its own genotype. This
is a so-called maternal-effect mutation. Selection on maternal genes will
differ from selection on zygotic genes: selection is only half as strong
when acting on a maternal-effect gene as it is when acting on a zygotic-
effect gene. Because a maternal allele is not expressed in males, natural
selection is relaxed by a factor of two relative to a zygotic allele, which is
expressed in both sexes (Wade, Priest, and Cruickshank, 2009; Fairbanks,
2010).
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1.2.3. Genome properties

D. melanogaster has a 180-megabase (Mb) genome organized in four dif-
ferent chromosome pairs: three autosome pairs labeled 2, 3 and 4 and
the sexual pair. The sex chromosomes include an acrocentric X chromo-
some and a submetacentric Y chromosome, which is mainly composed
of heterochromatin. In the case of autosomes, chromosomes 2 and 3 are
large and metacentric and their arms are separately referred to as 2L,
2R, 3L and 3R. Chromosome 4 is very small, containing approximately
80 genes (Leung et al., 2010). Because of that, it is normally ignored in
most studies (Hales et al., 2015).

D. melanogaster’s small genome makes it a suitable model to use as a
proof of concept for sequencing techniques and assembling of larger,
more complex genomes (Rubin, 1996; Adams et al., 2000). In fact, D.
melanogaster was the second metazoan genome to be sequenced after
Caenorhabditis elegans (C. elegans Sequencing Consortium, 1998) and the
third eukaryotic genome after Saccharomyces cerevisiae (Goffeau et al.,
1996).

The current number of annotated protein-coding genes in the D.
melanogaster genome is 13,931 (according to FlyBase R.6.23; http://

flybase.org/cgi-bin/get_static_page.pl?file=release_notes.html;
last accessed: August 2018). Each protein-coding gene gets an annota-
tion ID that begins with 2 letters ("CG"). Once protein-coding genes are
further studied, they get a unique FlyBase identifier assigned, which
begins with "FBgn".

1.3. Evo-devo: the link between genotype and

phenotype

Development is the process through which an embryo becomes an adult.
During this process, an organism’s genotype is expressed to create the
phenotype, on which natural selection primarily acts. The relationship
between development (or ontogeny) and evolution (or phylogeny) has
been a long debated topic since its origins (Darwin, 1872; Haeckel, 1879;
Gould, 1977; Raff, 1996). The study of development in connection with
evolution is important because changes in the adult morphology are
first changes in the genes controlling the development leading to that

31



I N T RODUCT ION

morphology (Alberch, 1980). Evolution cannot be understood without
the consideration of developmental processes and how these affect evo-
lution by affecting the phenotypic variation arising in each generation
from genetic variation (Raff, 2000). The synthesis between developmen-
tal biology and evolution is within the scope of the field of evolutionary
developmental biology, informally known as evo-devo (Gilbert, 2003).

1.3.1. Models of development

Despite the widely divergent final phenotype of all today’s vertebrates,
they go through a broadly similar appearance during embryo develop-
ment. Different models of development have attempted to find a general
relationship between animal development and evolution (Gould, 1977;
Irie and Kuratani, 2014) which are summarized in the next sections.

The early conservationmodel

Karl Ernst von Baer first noticed in 1828 that there was a high similar-
ity between animal species during periods of the embryogenesis. His
observations on post-gastrulation embryos lead to the conclusion that
early developmental stages are the most similar between species within
a phylogenetic group, while late development stages are the most diver-
gent ones (von Baer’s third law, 1828, Figure 1.11).

Multiple theoretical justifications for Baer’s third law have been pro-
posed (Irie and Kuratani, 2011). The most plausible explanation sug-
gests that changes in early development can have consequences in later
development, since late developmental processes are causally dependent
on the correct functioning of earlier developmental processes, while late
developmental processes do not retroactively affect early developmen-
tal processes (Arthur, 1977; Riedl, 1978; Castillo-Davis and Hartl, 2002).
As a result of this developmental burden, early development should be
more constrained. Another possible explanation for this constraint is
the generative entrenchment concept (Wimsatt, 1986), which similar to the
developmental burden idea proposes that upstream regulators –i.e., any
element that can affect gene expression– tend to be evolutionary con-
served to ensure the correct generation of downstream events.
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The hourglass model

The advent of developmental genetics in mouse and Drosophila, and
some observations in comparative embryology (Sander, 1983; Elinson,
1987) led to an alternative hypothesis: the hourglass model of embry-
onic development evolution (Duboule, 1994; Raff, 1996, Figure 1.11). Ac-
cording to this hypothesis, early and late development would be more
divergent between species than intermediate developmental stages (mid-
development). The most conserved stage is called the phylotypic stage
(Sander, 1983). Richardson (1995) proposed the term phylotypic period,
given that there is not a unique conserved stage. There is no consen-
sus about when the phylotypic stage appears. First, Ballard (1981) pro-
posed that it appears in the pharyngula stage, Wolpert (1991) in the
early somite segmentation stage and Slack, Holland, and Graham (1993)
in the tailbud stage. Nowadays it is suggested that it should be in a stage
directly after gastrulation, at least in arthropods (Wilt and Hake, 2004)
or after neurulation in chordates (Wilt and Hake, 2004). There is also
no consensus on what property is conserved. Some authors considered
conservation of the expression patterns of specific genes (Haeckel, 1879;
Duboule, 1994). For example, Duboule (1994) observed that the expres-
sion of the Hox genes –essential class of homeotic genes that specify the
body plans of the developing embryo– are expressed during the phylo-
typic stage. The activation of these genes during the phylotypic stage
will be responsible for the morphological conservation. On the other
hand, Raff (1996) considered conservation of the developmental mech-
anisms. Raff (1996) proposed that the conservation was the result of
complex interactions between developmental modules during the proto-
typic stage, which leads to selective constraints to reduce morphological
divergence (Raff, 1996).

There have been proposed several hypotheses about the processes
that may lead to an hourglass pattern. Some studies propose that
many whole-body scale interactions take place during mid-development,
while during early and late development interactions are at a much more
restricted spatial scale (Raff, 1996), both at the level of mechanical inter-
actions and molecular signaling between tissues. Accordingly, changes
in mid-development would be much more likely to affect the whole em-
bryo and changes at other stages would have much more spatially re-
stricted effects. Other authors argue that the hourglass pattern arises
from different selection pressures acting in early and late development
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(Slack, Holland, and Graham, 1993; Wray, 2000; Wray, 2002; Kalinka and
Tomancak, 2012).

Other developmental models

A number of alternative models explaining the patterns of embryonic
conservation have been proposed. Richardson et al. (1997) proposed the
adaptive penetrance model, which questions the existence of a phylo-
typic stage and contrarily proposes that the most beneficial mutations
are likely to occur precisely in that stage (Richardson et al., 1997), be-
cause its potential to generate adult innovation (Figure 1.11).

Another model postulates no temporal difference of evolutionary conser-
vation during development. This is the so-called ontogenetic adjacency
model, proposed by Poe and Wake (2004, Figure 1.11).

Figure 1.11 Models of development. Scheme showing four models for the embryo

development. In allmodels, development fromegg to adult is shown in the y-axis. Di-

vergence is represented on the x-axis. In the Early conservation model, dashed lines

indicate that von Baer based his observations on post-gastrulation embryos. In the

Ontogenetic adjacency model, solid lines indicate that this model does not predict

any particular pattern of conservation; dashed lines represent an instance of a con-

servation pattern. Figure from Kalinka and Tomancak (2012).

There is an ongoing discussion about whether the early conservation
model, the hourglass model or some other pattern can explain the con-
servation among developmental stages (Richardson et al., 1997; Poe and
Wake, 2004; Kalinka and Tomancak, 2012). In the next section, the differ-
ent molecular approaches to test developmental models are presented.
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1.3.2. Testing evo-devomodels with molecular data

Studies assessing the mechanisms underlying the conservation of the de-
velopment traditionally have used morphological approaches. However,
the advent of molecular technologies has provided new molecular data
to test developmental models.

To quantify the similarity between cross-species embryos using molecu-
lar data, three main approaches have been used: comparative genomics,
comparative transcriptomics and phylotranscriptomics.

First, comparative genomics assesses the sequence divergence or conser-
vation of orthologous genes expressed in different developmental stages
to explore whether some stages are more conserved than others. Se-
quence conservation is typically measured using the dN/dS statistic (see
section 1.1.4).

Second, comparative transcriptomics approaches, which has become a
common method of choice in evo-devo (reviewed in Roux, Rosikiewicz,
and Robinson-Rechavi, 2015; Pantalacci and Sémon, 2015). This ap-
proach consists of estimating the expression level for the whole transcrip-
tome in several species, including time-course data of gene expression
following organs or stages during their development. A classical use
of this approach is to measure the expression divergence of orthologous
genes in time-course data.

Third, phylotranscriptomics quantifies the evolutionary age of the de-
velopmental transcriptome (Domazet-Lošo and Tautz, 2010, reviewed
in Drost et al., 2017). The difference in age of the genes expressed in
different developmental stages has been suggested to be a good indica-
tor of evolutionary conservation of the gene sequence (Irie and Sehara-
Fujisawa, 2007; Domazet-Lošo and Tautz, 2010). Determining the age of
a gene can be done following Domazet-Loso’s approach (2007), which
consists of tracing the origin of the gene in a phylogenetic tree using
BLAST. Each gene can be assigned to a phylostratum, that represents the
oldest phylogenetic node in which the gene can be found. Phylostrati-
graphic maps are already available for model species like D. melanogaster,
Danio rerio (zebrafish) or Arabidopsis thaliana (Drost et al., 2015).

These three approaches independently showed that the conservation
at the sequence, expression and evolutionary age level for orthologous
genes seems to be maximal during the mid-development (Domazet-Lošo
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and Tautz, 2010; Kalinka et al., 2010; Irie and Kuratani, 2011; Yanai et al.,
2011; Levin et al., 2012; Wang et al., 2013; Gerstein et al., 2014; Drost et
al., 2015; Levin et al., 2016). One of the most complete studies is the one
from Levin et al. (2016). In this study, the developmental transcriptome
series in ten species belonging to ten different phyla were compared
in order to test the existence of a phylotypic period across phyla. An
inverted hourglass pattern (i.e., early and late conservation and mid-
development divergence) is reported comparing different phyla while
within phyla an hourglass pattern is inferred.

Molecular studies in D. melanogaster

In this section, a short revision of the main contributions provided by
the three main molecular approaches described above is presented for
D. melanogaster.

comparative genomics. Davis, Brandman, and Petrov (2005) estimated
the sequence conservation using the dN/dS statistic on 4,028 ortholo-
gous genes between D. melanogaster and D. pseudoobscura. By combin-
ing the dN/dS analysis with microarray expression data from different
developmental stages, they found that genes with the highest rates of
non-synonymous substitutions were expressed at low levels in late em-
bryonic development and at high levels in the larva, pupa and adult. The
genes with the lowest rates of non-synonymous substitution (the most
conserved genes) were expressed at high levels in late embryonic devel-
opment and at low levels before and after late embryonic development.
This suggests, according to the authors, an hourglass pattern where em-
bryonic stages spanning from 12 to 22 hours are highly conserved be-
tween D. melanogaster and D. pseudoobscura. A similar study by Mensch
et al. (2013) estimated dN/dS for more than 2,000 genes across six dif-
ferent Drosophila species for three categories of genes: maternal genes,
genes expressed in early development and genes expressed in late devel-
opment. Maternal genes and late embryonic genes show higher dN/dS

than early expressed genes. Finally, another study by Artieri, Haerty,
and Singh (2009) found that genes expressed in the adult have a higher
dN/dS than genes expressed in the pupa. The pupa, in turn, has a higher
dN/dS that those expressed in the embryo (for 7,180 analyzed genes),
thus favoring von Baer’s law. Similar studies exist for other species of
animals, zebrafish and mouse (Roux and Robinson-Rechavi, 2008; Pi-
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asecka et al., 2013) and plants (A. thaliana, Quint et al., 2012; Gossmann
et al., 2016) with similar conflicting results.

comparative transcriptomics. Kalinka et al. (2010) in a comparative
transcriptomics approach, compared the genome-wide expression pro-
files across embryo development in six species of Drosophila. The time-
course expression for 3,019 orthologous genes was measured by microar-
rays in eight 2-hour intervals during embryo development. In agree-
ment with the hourglass model, the study found that mid-development,
around the 10-hour stage, is the period in which gene expression levels
is the most transcriptionally conserved among the six species.

phylotranscriptomics. Domazet-Lošo and Tautz (2010) performed a
study using a phylotranscriptomics approach. By overlapping the gene
age classification on the developmental transcriptome of D. melanogaster,
they show that genes expressed in the phylotypic stage are the oldest
and most conserved, while genes expressed in early and late develop-
ment are younger, also favoring the hourglass model.

1.3.3. The origin of the germ layers

An intriguing observation in animal development is the formation of
the germ layers. All true animals have at least two germ layers: the ecto-
derm and the endoderm. The majority of animals, with the exception of
diploblastic animals (Cnidaria and Ctenophora), has a third one, called
the mesoderm. Despite their importance in development, there is no
consensus theory on how two-layered metazoans appeared (reviewed in
Technau and Scholz, 2003).

The origin of the germ layers was addressed in the nematode C. el-
egans by Hashimshony et al. (2015). Using single-cell RNA-seq data
(Hashimshony et al., 2012), gene expression in each germ layer was de-
termined. The different germ layers were found to have distinct global
gene expression dynamics. The authors found sequential inductions of
the genes expressed in each layer: first, endoderm genes are expressed,
followed by ectoderm genes and finally by mesoderm genes. This sug-
gests a recapitulation of the evolutionary appearance of the germ layers
and accordingly, the endoderm genes are inferred to be the oldest ones,
while mesoderm genes, the last ones to develop. Another evidence
for this sequential origin of the germ layers was found by using phy-
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lostratigraphy maps (Domazet-Lošo and Tautz, 2010), which concluded
that endoderm genes are older than the ectoderm and mesoderm ones.
However, in a study in D. melanogaster by Domazet-Loso, Brajković, and
Tautz (2007), the ectoderm, and not the endoderm, was found to be the
oldest germ layer. A plausible explanation for these contradictory ob-
servations is the quality of the data that was used: while in C. elegans
the whole transcriptome was used, in D. melanogaster the analyses were
performed on a limited number of tissues (Yanai, 2018).

1.3.4. Evo-devo in the genomics era (evo-dev-omics)

Some examples have been shown of how comparative embryology can
benefit from the genomic era. In this section, the new techniques, de-
rived from the advent in sequencing and transcriptomic technologies,
are summarized (reviewed in Kalinka and Tomancak, 2012; Yanai, 2018,
Figure 1.12).

From gene annotations and sequence alignments, microarrays and RNA-
seq experiments can be designed. Microarrays (Schena et al., 1995) allow
the measurement and comparison of genome-wide gene expression in
multiple species. RNA-seq (Wang, Gerstein, and Snyder, 2009) allows
a fine measurement of the expression levels of individual genes and
cross-species comparisons of gene expression levels. Genes can then be
clustered accordingly to their expression patterns during development.

Expression data can be integrated with other annotations, as for exam-
ple gene set enrichment analyses and phylostratigraphy approaches. For
a given transcriptome, it is useful to assess which functional categories
of genes are enriched (for example, performing a gene ontology enrich-
ment analysis). The age of genes can be inferred from the pattern of
occurrences of orthologous genes in other genomes using phylostratig-
raphy maps, which can be used to assess the genes’ sequence conserva-
tion.

Another interesting application of transcriptomic data lies at the integra-
tion of evo-devo and population genetics, with the main goal of find-
ing specific loci associated with adaptation (Martin and Orgogozo, 2013;
Pantalacci and Sémon, 2015). However, measuring adaptation directly
on phenotypic traits is challenging and time-consuming, and therefore
most studies on phenotypic adaptation are limited to a single or small
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Figure 1.12 Evo-dev-omics approaches. Transcriptomics and phylostratigraphy

tools for studying animal development. Complete genomic sequences are available

for many related examples. Microarray and RNA-seq expression data can be used to

determine developmental gene expression time-courses and perform gene cluster-

ing analysis. Phylostratigraphy approaches can be used to determine the gene age.

Data sources: [1] Hu et al. (2013); [2] Rogers et al. (2014); [3] Bastian et al. (2008); [4]

Arbeitman et al. (2002); [5] Drost et al. (2015).

number of traits per organisms, for example, the olfactory specializa-
tion in mosquitoes (Rinker et al., 2013) or the efficient osmoregulation in
desert-adapted rodents (Marra, Romero, and DeWoody, 2014).

1.4. Population and evolutionary genomics in

Drosophila

The Drosophila community has access to powerful resources for carrying
out population and evolutionary biology analyses. The main contribu-
tions that have enabled advances at the intersections of population and
evolutionary genomics are highlighted below.

With the development of high-throughput sequencing technologies, D.
melanogaster has up to date more than 1,000 complete genomes from
populations around the world (Lack et al., 2015, 2016, Figure 1.13). One
of the most important contributions was provided by two independent,
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but largely complementary projects: the Drosophila Genetic Reference
Panel (DGRP, Mackay et al., 2012) and the Drosophila Population Ge-
nomics Project (DPGP, Langley et al., 2012). The DGRP is a panel of
205 complete genomes of D. melanogaster from a population sampled in
Raleigh, North America (Mackay et al., 2012; Huang et al., 2014). In turn,
the DPGP focused on the genomes of D. melanogaster from populations
in Africa and France (Langley et al., 2012; Grenier et al., 2015; Lack et al.,
2015).

The Drosophila Genome Nexus (DGN) is a recent compilation of each
of these population genomic sequences, aligned using a common ref-
erence alignment pipeline, which facilitates direct comparison among
datasets (Lack et al., 2015, 2016). Up to date, the DGN provides 1,121
wild-derived genomes spanning much of the D. melanogaster current ge-
ographic range (Lack et al., 2016). Such population datasets have al-
lowed studies about the demography and migration of D. melanogaster
(Pool et al., 2012), the bases of local adaptation (Langley et al., 2012),
chromosomal inversion (Corbett-Detig and Hartl, 2012) or copy num-
ber variation (Langley et al., 2012). From a population genomics per-
spective, the DGRP and DPGP projects have provided the first high-
resolution map of the footprint of natural selection. Both projects show
that both adaptive and purifying selection are pervasive in the genome
of D. melanogaster. More intriguing, they show that 30% to 50% of all
fixed non-synonymous substitutions in D. melanogaster are caused by
adaptive selection (Eyre-Walker, 2006; Mackay et al., 2012).

1.4.1. D. melanogaster resources

The complete description of the general properties of a genome is the re-
sult of large-scale collaborations and the modENCODE project is one of
the best examples of it. The project was launched in 2007 with the aim of
defining the functional elements of the D. melanogaster and Caenorhabdi-
tis elegans genome (Celniker et al., 2009). modENCODE has successfully
provided the scientific community with a broad view of the genome-
wide gene regulation and structure of the genome of D. melanogaster
(The modENCODE Project Consortium 2010).

40



1.4 POPULAT I ON AND EVOLUT IONAR Y GENOM I CS I N DROSOPH I L A

F
ig
u
re
1
.1
3
A
v
a
il
a
b
le
p
o
p
u
-

la
ti
o
n
g
e
n
o
m
ic
s
re
so
u
rc
e
s

fo
r
fo
u
r
Dr
os
op
hi
la
sp
e
ci
e
s.

P
o
p
u
la
ti
o
n

g
e
n
o
m
ic
s

re
-

so
u
rc
e
s
a
va
il
a
b
le

fo
r
fo
u
r

D
ro
so
p
h
il
a
sp
e
ci
e
s.

D
o
ts

re
p
re
se
n
ts
se
q
u
e
n
ce
d
p
o
p
u
-

la
ti
o
n
s,
a
n
d
th
e
si
ze
o
ft
h
e
d
o
t

is
p
ro
p
o
rt
io
n
a
lt
o
th
e
n
u
m
b
e
r

o
f

in
d
iv
id
u
a
ls

se
q
u
e
n
ce
d
.

F
o
r
d
e
ta
il
s,
se
e
F
ig
u
re
1
fr
o
m

C
a
si
ll
a
s
a
n
d
B
a
rb
a
d
il
la
(2
0
1
7
).

F
ig
u
re
s
ta
k
e
n
fr
o
m

C
a
si
ll
a
s

a
n
d
B
a
rb
a
d
il
la

(2
0
1
7
)
w
it
h

p
e
rm
is
si
o
n
.

41



I N T RODUCT ION

A wide variety of online resources and other complementary efforts are
available for D. melanogaster to the scientific community, contributing to
the extensive and comprehensive characterization of the genome. The
main databases of genomic resources, population and -omics datasets
devoted to this species are compiled in Table 1.2.

Table 1.2 Main genomic, population and -omics resources available for D.
melanogaster. Updated at the time of writing, August 2018.
Data type Data source Link (last update) References

RNA

expression
modENCODE

http://flybase.org

(v.FB2018_04, August 23,

2018)

http://www.modencode.org/

Graveley et al. (2011)

Gelbart and

Emmert (2013)

Bgee
https://bgee.org

(v.14.0, February 14, 2018)
Bastian et al. (2008)

RNA

localization
FlyAtlas2

http://flyatlas.gla.ac.uk/

FlyAtlas2/index.html

(v.2, August 15, 2018)

Leader et al. (2018)

FlyExpres
http://www.flyexpress.net/

(v.7, 2017)

Kumar et al. (2011)

Kumar et al. (2017)

Fly-FISH
http://fly-fish.ccbr.

utoronto.ca/ (2016)

Lecuyer et al. (2007)

Wilk et al. (2016)

BDGP

in situ

http://insitu.fruitfly.org/

cgi-bin/ex/insitu.pl

(v.3, August 22, 2018)

Tomancak et al. (2002)

Tomancak et al. (2007)

Regulatory

regions
RedFly

http://redfly.ccr.buffalo.edu/

(v.5.4.3, July, 24 2018)
Gallo et al. 2011

Metasites FlyBase

http://flybase.org/

(v.FB2018_04, August 23,

2018)

McQuilton et al. (2012)

St. Pierre et al. (2014)

FlyBase Consortium (2003)

FlyMine
http://www.flymine.org/

(version 46.0, 2018 July)
Lyne et al. (2007)

Population

data
DGN

http://www.johnpool.net/

genomes.html

(v.1.1, July, 2016)

Lack et al. (2015)

Lack et al. (2016)

DGRP
http://dgrp2.gnets.ncsu.edu/

(v.2, February 2013)

Mackay et al. (2012)

Huang et al. (2014)

DPGP
http://www.dpgp.org/

(version 3, 2015)

Pool et al. (2012)

Lack et al. (2015)

Interaction

and pathway
DroID

http://droidb.org/

(v.2018_08, August 29, 2018)
Yu et al. (2008)

Table modified from Hales et al. (2015).
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1.5. Objectives

This thesis is an integrative population genomics and evolutionary bi-
ology project following a bioinformatic approach that is performed in
three sequential steps: (i) the comparison of five MKT approaches using
empirical data from a North American population of D. melanogaster and
simulated data, (ii) the inference of the evolutionary genome features in-
fluencing the evolution of protein-coding genes, (iii) the integration of
patterns of genomic variation with annotations of large sets of spatio-
temporal developmental data (evo-dev-omics) (Table 1.3).

Table 1.3 The three objectives of the thesis.

Objective Outcome Publication

Comparison of five MKT

methodologies using both

real and simulated data

Flowchart to select a MKT ap-

proach

iMKT: web server performing

diverse MK-derived tests in

D. melanogaster and human

populations

(https://imkt.uab.cat)
PopHumanScan: the online cat-

alog of human genome adapta-

tion
(https://pophumanscan.uab.
cat)

Coronado-Zamora

et al. (in prepara-

tion)

Murga-Moreno et

al. (2018)

Inference of the evolu-

tionary genome features

influencing the evolution of

protein-coding genes

Adaptive evolution is substan-

tially impeded by Hill-Robertson

interference in Drosophila

Genomic features that increase

and decrease the evolutionary

capacity of proteins

Castellano et al.

(2015)

Coronado-Zamora

et al. (submitted,

first result)

Integration of patterns of

genomic variation with

annotations of large sets of

spatio-temporal develop-

mental data

Adaptation and conservation

throughout the D. melanogaster

life cycle

Mapping selection within

D. melanogaster embryo’s

anatomy

Coronado-Zamora

et al. (submitted,

second result)

Salvador-Martínez

et al. 2018

Gray-colored publications belong to other dissertations of the BGD group.

Comparison of five MKTmethodologies using empirical and

simulated data

The first objective is to estimate the rate of adaptive evolution, α, us-
ing five different MKT derived methodologies, as a benchmark to com-
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pare their performance under real and simulated data. For that, we use
genome-wide DNA variation data from a North American population
of D. melanogaster and simulated data from SLiM 2 evolutionary simu-
lation framework and test their performance in different conditions and
evolutionary scenarios.

As a result of the efforts to represent, understand and interpret this
huge amount of population genomic data, valuable resources have been
created in collaboration with other members of the Bioinformatics of
Genomics Diversity (BGD) group. Two resources have been devel-
oped: (i) iMKT, the integrative McDonald and Kreitman test web server
(freely available at https://imkt.uab.cat), that allows performing di-
verse MKT derived tests on D. melanogaster and human populations
(Coronado-Zamora et al., in prep.) and (ii) PopHumanScan, an online
catalog that compiles and annotates all candidate regions under selec-
tion in the human genome (freely available at https://pophumanscan.

uab.cat; Murga-Moreno et al., 2018).

Inference of the evolutionary genome features influencing the

evolution of protein-coding genes

The second objective is to infer the genomic features that influence the
evolution of protein-coding genes and discover genomic variation pat-
terns. An inventory of genomic features has been estimated throughout
the genome of D. melanogaster. These genomic features span four dif-
ferent characteristics of a genome: gene architectural, gene expression,
genomic context and gene phylogenetic features.

These features are correlated with the population genomic parameters
estimated in the first objective. The main aim is to assess how the fea-
tures contribute to the genome adaptation and constraint and the ob-
served patterns of genome variation.
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Integration of patterns of genomic variation with annotations

of large sets of -omics data

The third objective is to integrate the patterns of genome variation with
annotations of large sets of spatio-temporal developmental data, with
two main objectives:

temporal dimension. The first objective is to measure the pattern
of adaptive and selective constraint over the whole life cycle of D.
melanogaster by integrating population genomics data with the complete
developmental transcriptome of Drosophila. More specifically, the ob-
jectives are: (i) study whether D. melanogaster development follows the
hourglass model or the von Baer’s law, (ii) study whether there are dif-
ferences not just in conservation but also in the rates of adaptive substi-
tutions between stages and (iii) study whether the results in (i) and (ii)
can be accounted by specific genomic features.

spatio-temporal dimension. The second main objective is to carry out
a global selection-phenotype-genotype integration, more specifically, to
draw an exhaustive map of the selection acting on the complete embryo
development of D. melanogaster. The specific objectives are: (i) estimate
and compare both adaptation and selective constraint through the body
of D. melanogaster and (ii) integrate the genomic features with the selec-
tion patterns during the embryo development.
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2Methodology

2.1. Data

2.1.1. Population genomics data

The present thesis has been carried out using D. melanogaster intraspe-
cific variation data. The genomic sequences come from inbred iso-
lines of a North American D. melanogaster population sequenced in
the Drosophila Genetic Reference Panel (DGRP) project (Mackay et al.,
2012). The processing and filtering of the genomic alignments and the
estimation of the population statistics have been conducted by mem-
bers of the Bioinformatics of Genomics Diversity (BGD) group, as par-
ticipants of the DGRP consortium (Mackay et al., 2012; Huang et al.,
2014). As a result of the efforts to represent, understand and interpret
this huge amount of genomic data, valuable resources have been cre-
ated, such as PopDrowser (Ràmia et al., 2012), the first D. melanogaster
population genomics-oriented genome browser, which was the pre-
decessor of PopFly (https://popfly.uab.cat), the most complete D.
melanogaster population genomic browser up-to-date (Hervas et al., 2017)
or iMKT (https://imkt.uab.cat), a web server that allows performing
a battery of McDonald and Kreitman derived approaches (MKT) on D.
melanogaster populations (Coronado-Zamora et al., in prep.).

Drosophila Genetic Reference Panel (DGRP)

The D. melanogaster population genomic data comes from the DGRP com-
munity resource (Mackay et al., 2012), a population consisting of 205 in-
bred lines originating from Raleigh, North Carolina, USA (Figure 2.1A).
Two working phases (freezes) have been released of the DGRP, named
"Freeze 1" and "Freeze 2". Freeze 1 was released in 2012 and the popu-
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lation genomic analyses of its 168 sequences were published in Mackay
et al. (2012). Freeze 2 was released in 2014 (Huang et al., 2014), enlarging
the resource to 205 isolines.

In detail, Freeze 1 contains 168 isolines sequenced with a high coverage
(average 22×, for details, see Mackay et al., 2012). 129 isolines were se-
quenced using Illumina technology (21.4× coverage), 10 using the 454
sequencing platform (12.1× coverage) and 29 using both technologies.
The original 168 sequences were reduced to 158 because different con-
tamination and duplications were detected in 10 isolines, and are not
considered in the present thesis. Freeze 2 sequenced 48 DGRP lines that
either were not previously sequenced or that only had 454 sequences
available, and resequenced 6 isolines of the Freeze 1 that had a low cov-
erage (Figure 2.1B). The average coverage reached was 27×. Using the
population variability together with the genomes of two close species
(D. simulans and D. yakuba), a battery of population statistics have been
estimated in both releases which are the empirical starting point of all
the work presented here.

Figure 2.1 Population origin and overview of the sequenced isolines in Freezes 1

and 2. A. The DGRP population comes from Raleigh, North Carolina. B. 168 isolines

were included in Freeze 1, 129 sequencedwith Illumina (21.4× coverage), 10 with the

454 sequencing platform (12.1× coverage) and 29 using both platforms. Freeze 2 en-

larged the resource to 205 isolines by sequencing 48 new lines and resequencing 6

more with an overall average of 27×.

The DGRP population was created collecting gravid females from a sin-
gle population of Raleigh, followed by the full-sibling inbreeding ap-
proach during 20 generations to obtain full homozygous individuals
(Figure 2.2). After this, the residual heterozygosis in the samples is ex-
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pected to be 1.4% (inbreeding coefficient F = 0.986, Falconer and Mackay
1996). However, the expected 1.4% of residual heterozygosis was true for
90% of the sequenced chromosome lines. Huang et al. (2014) later found
that 8% of the DGRP lines showed high values of residual heterozygos-
ity (>9%) associated with large polymorphic inversions and they were
excluded from the analyses.

Figure 2.2 Experimental protocol for the creation and sequencing of the DGRP

isolines. The DGRP population was created collecting gravid females around a

farmer’s market in Raleigh, followed by the full-sibling inbreeding approach during

20 generations to obtain full homozygous individuals. For each line, 500–1000 flies

were extracted to perform high-throughput sequencing. Figure from Stone (2012).

The population genomic analyses performed using the Freeze 1 data
used D. yakuba as outgroup species for the computation of divergence
metrics. Furthermore, this dataset was reduced to 128 isolines due to
the computational requirements of the method used to estimate selec-
tion (described in section 2.2.1). The analyses performed using the com-
plete DGRP dataset, the Freeze 2 data consisting of 205 isolines, used D.
simulans as an outgroup species and D. yakuba in some complementary
analyses.

2.1.2. Gene expression data

The developmental expression data used in this thesis comes from two
major resources: (i) the modENCODE consortium, from which the de-
velopmental transcriptome across D. melanogaster life cycle stages was
obtained and (ii) Tomancak’s embryogenesis expression dataset (Toman-
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cak et al., 2007), a high-throughput database of mRNA expression in six
different embryonic stages of D. melanogaster.

modENCODE data: temporal dimension

Gene expression data of 17,875 genes comes from RNA-seq experiments
in the modENCODE project (Graveley et al., 2011) downloaded from Fly-
Base (release 6.06; last accessed: December 2015). In detail, the dataset
contains the expression data for 30 stages of the whole life cycle of D.
melanogaster, including 12 embryonic samples collected at 2-hour inter-
vals for 24 hours, six larval, six pupal and three sexed adult stages at 1, 5
and 30 days after eclosion (Graveley et al., 2011). Reads per kilobase per
million mapped reads (RPKM) values are provided only for exonic re-
gions of the gene (excluding segments that overlap with other genes), ex-
cept for genes derived from dicistronic/polycistronic transcripts, where
all exon regions were used for the estimation of RPKM expression (see
Gelbart and Emmert, 2013 for methodological details on the expression
data processing).

BDGP data: spatio-temporal dimension

The Berkeley Drosophila Genome Project (BDGP) database was used to
obtain the patterns of gene expression over the fly embryo’s anatomy
(Tomancak et al., 2007). This is a high-throughput database of mRNA
expression spanning different embryonic stages. The BDGP divides the
first 16 stages of embryogenesis defined by Hartenstein (1993) into six
stages ranges: stage 1–3, stage 4–6, stage 7–8, stage 9–10, stage 11–12 and
stage 13–16. This database has been the subject of previous studies deal-
ing with computational image analysis of patterns of gene expression
(Frise, Hammonds, and Celniker, 2010; Kumar et al., 2011; Salvador-
Martínez and Salazar-Ciudad, 2015), but has never been combined with
populational genomic data as in the present work. Based on the ex-
pert analysis of whole-mount in situ RNA-hybridization images, the
BDGP database contains for each gene, the list of the embryonic anatom-
ical structures in which it is expressed (http://insitu.fruitfly.org/
insitu/html/downloads.html/; last accessed: December 2015). In de-
tail, the BDGP has produced a large number of gene expression patterns,
and textually annotated them with anatomical and developmental terms
using a controlled vocabulary (cv). The terms spatially correspond to lo-
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cal regions of the embryo and describe developmental and anatomical
properties of gene expression.

2.2. Data analysis

2.2.1. Detecting and quantifying natural selection on gene

coding regions

Inferring the action of natural selection on coding sequences relies on
polymorphism and divergence data on two types of sites in the genome,
one putatively selected and one neutral. Normally, non-synonymous po-
sitions (0-fold degenerated) are used as a proxy for selected sites, while
synonymous positions (4-fold degenerated) are used as a proxy for neu-
tral sites. This implies knowing the functional class of each nucleotide
in the genome, which is not trivial. The same nucleotide can act, for ex-
ample, as a coding site for a transcript, while as a UTR site for another.
In this study, two criteria for the classification of each genome position
were used: (i) a hierarchical criterion, used in the Freeze 1 data and (ii)
the longest isoform criterion, used in the Freeze 2 data. With a hierarchi-
cal criterion, each position of the sequence is annotated following this
order: 0-fold degenerated, 2-fold degenerated, UTR, intron, intergenic
site and 4-fold degenerated (Figure 2.3A). With the longest isoform crite-
rion, the longest CDS of a complete isoform is extracted and 0-fold and
4-fold degenerated sites are annotated accordingly. Therefore, UTR, in-
tron, intergenic site and 2-fold degenerated sites are not considered (Fig-
ure 2.3B). In both cases, only synonymous and non-synonymous sites
that are ortholog with the outgroup species were considered.

In the next paragraphs, more details about how the data was filtered and
processed are given, however, a more complete description can be found
in the original works published by members of the BGD group: Castel-
lano et al. (2015) and Castellano (2016) filtered and processed Freeze
1 data (Mackay et al., 2012), and Hervas et al. (2017) and Coronado-
Zamora et al. (in prep.) filtered and processed Freeze 2 data (Huang
et al., 2014).

freeze 1 data. Coding exon annotations from D. melanogaster were
retrieved from FlyBase (release 5.50; www.flybase.org; last accessed:
March 2013). The number of synonymous (mS), non-synonymous (mN)
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Figure 2.3 Examples of a recoded sequence. A. Recoding a sequence withmultiple

transcripts following a hierarchical criteria. B. Recoding the same sequence as A) but

followiing the long isoform criteria. N is for intergenic (green); U is for UTR (orange);

0, 2 and 4 are the degeneracies of the coding regions (blue) and I is for introns (red).

and short introns (mins) sites and substitutions (PS, PN , Pins, respectively)
were computed. The folded site frequency spectrum (SFS) was calcu-
lated from the minor allele frequency (MAF, Figure 2.4A and 2.4B) for
synonymous (SFSS), non-synonymous (SFSN) and short introns changes
(SFSins) using an ad hoc Perl script. Divergence statistics (D) for syn-
onymous (DS), non-synonymous (DN) and short intron sites (Dins) were
estimated using a multiple genomic alignment between DGRP isogenic
lines (Mackay et al., 2012) and D. yakuba as outgroup species (Clark et
al., 2007) using BDGP 5 coordinates (Berkeley Drosophila Genome Project
5; www.fruitfly.org/sequence/release5genomic.shtml), publicly avail-
able at http://popdrowser.uab.cat (Ràmia et al., 2012; last accessed:
May 2010). Multiple hits were corrected using Jukes and Cantor correc-
tion (Jukes and Cantor, 1969).

One of the programs used for estimating adaptation (DFE-alpha, Eyre-
Walker and Keightley, 2009) needs all sites sampled in the same number
of sequences for all analyzed sites (Eyre-Walker and Keightley, 2009).
Therefore, the original dataset of 158 lines was reduced to 128 by ran-
domly sampling the polymorphisms at each site without replacement
to accomplish the requirement. Finally, residual heterozygous sites and
ambiguous positions (N) were excluded from the analysis. After the fil-
tering, the dataset contained 11,103 protein-coding genes. In addition to
using 4-fold degenerated sites as a proxy for the neutral mutation rate,
short introns sites (�65 bp) were also used as an alternative neutral class.
Following Halligan and Keightley’s (2006) approximation, the positions
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8–30 of introns shorter than 65 bp were used as a neutral reference. This
final dataset consisted of 6,690 protein-coding genes.

freeze 2 data. For analyzing the sequences present in the complete
DGRP release, the genome reference sequence and annotations corre-
sponding to the FlyBase 5.57 release (http://flybase.org/; last ac-
cessed: September 2017) were used to assess the functional class of each
genomic position. The D. simulans genome sequence and annotations
were retrieved from FlyBase (release 2.0; Hu et al., 2013; last accessed:
September 2017) and were used to estimate the derived allele frequen-
cies (DAF or unfolded SFS, Figure 2.4A and 2.4C) and divergence met-
rics (D). Additionally, an alignment with D. yakuba (FlyBase release 1.3;
Clark et al., 2007; last accessed: September 2017) was also used to com-
pute the divergence metrics. The total number of fixed differences (DN ,

Figure 2.4 The site frequency spectrum (SFS). The number of polymorphic sites

segregating at different frequencies in a population can be represented with the site

frequency spectrum (SFS). A. 10 individual samples of a population and the corre-

sponding outgroup sequence are shown. The numbers on the bottompart represent

the counts for the minor allele and the derived allele. B. The minor allele frequency

is used to obtain the folded SFS (frequencies ranging from 0 to 0.5). C. Additionally,

the outgroup species sequence allows to know whether alleles are ancestral or de-

rived, and the unfolded SFS or derived allele frequency can be obtained (frequencies

ranging from 0 to 1). Figure adapted from Booker, Jackson and Keightley (2017).
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DS), polymorphic sites (PN , PS) and analyzed sites (mN , mS) in each site
type were computed using ad hoc Perl scripts. Finally, polymorphism
was categorized according to their frequency in 10 and 20 equally dis-
tributed bins to obtain the DAF. This dataset contains a total of 13,753
protein-coding genes.

Both Freeze 1 and Freeze 2 data represent a valuable population genomic
resource which is the mainstay for the next analyses, the detection of the
action of natural selection in protein-coding genes at the molecular level.
Several methods for estimating adaptation and selection constraint that
rely on polymorphism and divergence data have been applied, which
are described in the next sections.

Standard McDonald and Kreitman test (MKT)

The standard McDonald and Kreitman test (MKT) is used to detect recur-
rent positive selection at the molecular level in a background of neutral
mutations (McDonald and Kreitman, 1991). The standard MKT com-
pares the amount of variation within a species (polymorphism, P) to the
divergence between species (D) at two types of sites, one of which is
assumed to evolve neutrally and is used as the null model to detect
selection at the other type of site. In the standard MKT, these sites
are synonymous (neutral, s) and non-synonymous sites (putatively se-
lected, n) in a coding region. Under strict neutrality, the ratio of the
number of selected and neutral polymorphic sites (PN/PS) is expected
to be equal to the ratio of the number of selected and neutral diver-
gence sites (DN/DS). The null hypothesis of neutrality is rejected when
DN/DS �= PN/PS. The excess of divergence relative to polymorphism
for class n (DN/DS > PN/PS), is interpreted as a signature of adaptive
selection on non-synonymous sites. Subsequently, the fraction of adap-
tive fixations (α) is estimated according to Equation 2.1. The significance
of the test can be assessed with a Fisher’s exact test on the 2×2 MKT
contingency table (Table 2.1).

αstandard = 1 − DS
DN

PN
PS

(2.1)
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Table 2.1 Standard MKT table.

Site class Polymorphism Divergence

Neutral PS DS

Selected PN DN

Fay, Wyckoff andWu correctionmethod (FWWmethod)

In the standard McDonald and Kreitman test, the estimate of adaptive
evolution (α) can be easily biased by the segregation of slightly dele-
terious non-synonymous substitutions. Specifically, slightly deleterious
mutations contribute more to polymorphism than to divergence, and
thus, lead to an underestimation of α. Because they tend to segregate
at lower frequencies than do neutral mutations, they can be partially
controlled by removing low-frequency polymorphisms from the analy-
sis. This approach is known as the Faw, Wyckoff and Wu method, FWW
(Fay, Wyckoff, and Wu, 2001). In this case, α is estimated using the stan-
dard MKT equation, but considering only those polymorphic sites (for
both neutral and selected classes) with a frequency above the established
cutoff, typically 5%.

αFWW = 1 − DS
DN

PN>5%

PS>5%
(2.2)

Extended MKT (eMKT)

An alternative approach that considers the presence of non-synonymous
slightly deleterious mutations is the DGRP methodology (Mackay et al.,
2012) and named here as extended MKT (eMKT). Because adaptive mu-
tations and weakly deleterious selection act in opposite directions in the
MKT, α and the fraction of substitutions that are slightly deleterious
(b) will be both underestimated when both selection regimes operate
(see Introduction, section 1.1.4, MKT-based extensions). To take adap-
tive and slightly deleterious mutations mutually into account, PN , the
count of segregating sites in class n, should be separated into the num-
ber of neutral variants and the number of weakly deleterious variants,
PN = PN neutral + PN weakly del..
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Table 2.2 eMKT table.

Site class Polymorphism Divergence

Neutral PS DS

Selected PN neutral DN

The estimate of the fraction of sites segregating neutrally within the
DAF<5% ( fNeutral DAF<5%) is f̂Neutral DAF<5% = PS DAF<5%/PS. The ex-
pected number of segregating sites in the non-synonymous class n
which are neutral within the DAF<5% is P̂N neutral DAF<5% = PN ×
f̂Neutral DAF<5%. The expected number of neutral segregating sites in the
non-synonymous class n is P̂N neutral = P̂N neutral DAF<5% + PN DAF>5%.
Then, α is estimated substituting PN with the expected number of neu-
tral segregating sites, P̂N neutral (Table 2.2). The new equation is:

αextended = 1 − DS
DN

P̂N neutral
PS

(2.3)

One advantage of the eMKT is the ability to quantify negative selection.
For that, the excess of sites segregating at DAF < 5% with respect to the
neutral site class is considered to be due to weakly deleterious segregat-
ing sites.

Asymptotic MKT

Messer and Petrov (2013) proposed a simple asymptotic extension of the
MKT that yields accurate estimates of α, as it considers the presence of
slightly deleterious mutations all along the DAF spectrum. Briefly, the
asymptotic MKT first estimates α for each DAF category using its spe-
cific PN and PS counts and then fits an exponential (or a linear) function
to these values, of the form: α f it(x) = a + b(−cx). Finally, the asymptotic
α estimate is obtained by extrapolating the value of this function to 1:

αasymptotic = 1 − DS
DN

PN(x)

PS(x)
(2.4)

αasymptotic = α f it(x = 1) (2.5)
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The BGD group proposed an extension of the asymptotic MK that es-
timates the fraction of deleterious substitutions following the extended
MKT methodology, and refer to it as the integrative MKT (iMKT, Figure
2.5).

Figure 2.5 Example of results from iMKT using D. melanogaster 2R chromosome
(Freeze 2) and D. simulans as outgroup. The two vertical lines show the limits of
the x cutoff interval used (in the example [0,0.9]). Black dots indicate the binned α

values for each DAF category following equation 2.4. The solid red curve shows the

fitted αfit(x). The dashed red line shows the final αasymptotic, following equation 2.5.

The dark gray band indicates the 95% CI around the α estimation. The blue dashed

line shows the estimated α using the standard MKT following equation 2.1 for com-

parison.

Simulations for testing the performance of MKT approaches

SLiM 2, a forward population genetic simulation software developed
by Haller and Messer (2017), was used to test the different intro-
duced MKT-derived methods. For this purpose, the SLiM configura-
tion script provided on Messer’s asymptoticMK’s GitHub repository
was used (available at https://github.com/MesserLab/asymptoticMK;
last accessed: December 2017). The evolution of a population of 1,000
diploid individuals under 13 different scenarios was simulated, with
50 replications for each scenario to compute the simulated standard de-
viation (±SD). Simulation runs depended upon seven parameters: T,
number of generations; L, chromosome length; μ, mutation rate; re-
combination rate; rb, beneficial mutation rate; sd, selection coefficient of
deleterious mutation and sb, selection coefficient of beneficial mutation.
After an initial period of 10,000 generations to arrive at a steady-state
(burn-in), runs executed for T additional generations. The simulated
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chromosome was 107 bp long (L), with a uniform nucleotide mutation
rate (μ) of 10-9 and an uniform recombination rate of 10-7 per base per
generation. There are three different types of mutations: neutral type
"m1" with a relative proportion of 0.5 of all new mutations and a se-
lection coefficient (s) of 0; functional non-beneficial type "m2", with a
relative proportion of 0.5 of all new mutations and a selection coefficient
drawn from a gamma distribution with a mean sd of -0.02 and a shape
parameter of 0.2; and a functional beneficial type "m3", with a relative
proportion rb of 0.0005 and selection coefficient sb of 0.1. The parameters
described below (T, μ, rb, sb and sd) were modified to run the 13 simula-
tion scenarios proposed by Haller and Messer (2017). Fitness effects were
assumed to be additive. Every 500 generations after the burn-in period,
all polymorphisms were recorded in the population by dividing them
according to their frequency into 20 equally sized frequency bins, and
then adding them to an ongoing binned tabulation. At the end of each
model run, binned values for the non-synonymous polymorphism PN

and synonymous polymorphism PS were obtained. PN was estimated
from the combined mutations of types m2 and m3. PS was estimated
from all polymorphisms from mutations of type m1. Values for DN and
DS were obtained from the set of mutations fixed during the simulation;
i.e., DN was estimated from the combined mutations of types m2 and
m3 and DS from all mutations of type m1. The output of SLiM 2 was
used as input data for the different MKT methods to estimate α. The
true value of α was estimated from the simulation run as the fraction of
d3/(d2+d3), where d2 is the number of m2 mutations fixed and d3 is the
number of m3 mutations fixed. For this analysis, an x cutoff of [0.1,0.9]
was used for estimating α with all the methodologies according to Haller
and Messer (2017).

DFE-alpha

DFE-alpha (Eyre-Walker and Keightley, 2009), one of the most pop-
ular DFE-based methods, also corrects for the segregation of slightly
deleterious alleles, providing a more accurate estimation than the stan-
dard MKT and other methods that do not take polymorphism data
into account. Additionally, this method attempts to correct for possi-
ble effects of demography. For that, DFE-alpha incorporates two de-
mographic situations: (i) a constant population size and (ii) a single,
instantaneous change in population size from an ancestral size N1 to a
present-day size N2 that occurred t generations ago. This software uses
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a maximum-likelihood (ML) method based on polymorphism data to
infer the distribution of fitness effects of new mutations. Like the MKT-
based methods previously explained, DFE-alpha assumes two classes of
sites in the genome: neutral sites (synonymous) and selected sites (non-
synonymous) and contrasts the site frequency spectrum (SFS) at these
two classes. As a neutral reference, two types of sites were used: 4-fold
degenerated sites and the positions 8–30 of short introns (�65 bp) fol-
lowing Halligan and Keightley’s (2006) approximation. As selected sites,
0-fold degenerated sites were used. Provided the SFS at both neutral and
selected sites together with divergence data, the DFE-alpha method al-
lows to calculate the proportion of fixed substitutions that are adaptive
(αDFE, equation 2.6) and the rate of adaptive substitutions relative to
the neutral rate (ωα, estimated as αDFE × ω, Gossmann, Keightley, and
Eyre-Walker, 2012).

αDFE =
dN − dS

∫ ∞
0 2Nμ(N, s) f (s|a, b)ds

dN
(2.6)

Furthermore, in the analysis another complementary statistic was in-
cluded, ωna (estimated as ω-ωa), which represents the proportion of
non-adaptive substitutions (slightly deleterious and neutral) relative to
the neutral rate (Galtier, 2016). Thus, the classical ω ratio is decomposed
into these two metrics: ωa and ωna, and differentiate whether high rates
of ω are due to positive selection or a relaxation of selection.

Therefore, natural selection on coding regions was estimated under a
two-epoch demographic model and using a folded SFS (MAF). The SFS
was folded to avoid difficulties with misidentification of the ancestral
state (Hernandez, Williamson, and Bustamante, 2007) and because it
performs well for inferring deleterious DFE (Eyre-Walker and Keightley,
2007; Boyko et al., 2008; Tataru et al., 2017).

Additionally, in some analyses the proportion of effectively
neutral mutations was estimated (Nes<1) using the program
prop_muts_in_s_ranges.c that comes with the DFE-alpha software.

Gene resampling (bootstrapping)

The different statistics to estimate the selection regimes parameters (i.e.,
α, ω, ωa and ωna) do not follow a parametric sampling distribution. For

61



METHODOLOGY

this reason, we simulate the sampling distribution with the bootstrap
method. The confidence intervals (CI) were obtained by estimating the
selection regime parameters for 100 bootstrap replicates by sampling
genes with replacement within each sampled bin.

The resampling was performed using the boot R package (Canty and
Ripley, 2017) of R (R Core Team, 2017). Resampling is especially useful
for DFE-alpha and the asymptotic methods, as they require the concate-
nation of several genes to compute α. This is because most genes do not
have enough segregating or divergent sites to compute an MKT.

2.2.2. Gene expression through the developmental and life

cycle stages

Gene expression data of 17,875 genes comes from RNA-seq experiments
in the modENCODE project (Graveley et al., 2011). More in detail, the
dataset contains the expression data for 30 stages of the whole life cycle
of D. melanogaster, including 12 embryonic samples collected at 2-hour
intervals for 24 hours, six larval, six pupal and three sexed adult stages
at 1, 5 and 30 days after eclosion (Graveley et al., 2011).

Methodological limitations of the RNA-seq method together with exper-
imental noise can lead to low, but positive RPKM values, even for not
expressed genes. To account for this problem and just consider genes
that are expressed in a certain stage, five different filter criteria were
applied:

a low stringent criterion, in which a gene is considered expressed
in a stage if its RPKM is larger than zero. This criterion is used as
a standard in other works (Hebenstreit et al., 2011; Wagner, Kin, and
Lynch, 2013; Guillén, Casillas, and Ruiz, 2018). See Table B.1 for the
genes analyzed in each stage for this criterion.

a low stringent criterion with 2-fold differential expression, in
which a gene is considered expressed in a stage if its RPKM is larger
than zero in that stage and if, in addition, its maximal gene expression
(over all the stages) is at least twice that of its minimal gene expression
(also over all the stages). See Table B.2 for the genes analyzed in the case
of females and Table B.3 for the genes analyzed in males.
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a low stringent criterion with a 4-fold differential expression,
that is as the 2-fold criterion but with a 4-fold differential expression
criterion. See Table B.4 for the genes analyzed in females and Table
B.5 for the genes analyzed in males. These two criteria were analyzed
separately for females and males. This is because their expression has
been measured differently in the last three stages of modENCODE.

a medium stringent criterion, in which a gene is considered ex-
pressed if its RPKM is equal or higher than 2. See Table B.6 for the
genes analyzed in each stage.

high stringent criterion, in which a gene is considered expressed if
its RPKM is equal or higher than 10. This criterion is also used as a
stringent criterion in RNA-seq analysis by other authors (Dezso et al.,
2008). See Table B.7 for the genes analyzed in each stage.

Figure 2.6 shows the number of genes for each criterion and stage. As a
result of applying each of these five criteria on the same modENCODE
RNA-seq data, seven different lists of genes for each life cycle stages
were obtained (Tables B.1–B.7).

Additionally, for all previous analyses, genes that were constitutively ex-
pressed in all stages were discarded. In an additional analysis, genes that
are always expressed in all stages under the low stringent criterion were
also considered (6,655 genes, from which 5,687 can be analyzed using
4-fold sites as a proxy for the mutation rate and 3,758 can be analyzed
using short intron sites as a proxy for the mutation rate). Finally, indi-
vidual genes having polymorphic and divergent sites were also analyzed
using MKT derived methods (see Table B.8 for the genes considered).
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Figure2.6Genesexpressed foreachcriterionandstage. The titleof subfiguresA-G

denotes the criterion used. In green, total genes expressed in each stage. In blue, the

proportion of genes that can be analyzed with 4-fold data. In yellow, the proportion

that can be analyzed with short intron data. The embryonic stages are named by

the time intervals (from 0h to 24h), the larval stages are the first instar (L1), second

instar (L2) and third instar (L3). The L3 stages are subdivided into the first 12 hours

(L3-12h) and several puff stages (L3-PS1 to L3-PS7). WPP is thewhitepre-pupae stage.

The pupal stages with RNA-seq are phanerocephalic pupa, 15h (P5), 25.6 hours pupa

(P6), yellow pharate, 50.4 hours (P8), amber eye-pharate, 74.6 hours (P9-10), green

meconiumpharate, 96 hours (P15). Adult stages are 1, 5 and 30 days after eclosion (1

day, 5 days and 30 days).
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Gene expression profile clustering

To identify shared temporal expression patterns among the genes of the
modENCODE RNA-seq experiments, a soft clustering method to the
log2-transformed RPKM expression values was applied. Gene expres-
sion clusters are not well defined in expression time-course data, as is
the case, and soft clustering methods are then advised to identify clus-
ters (Futschik and Carlisle, 2005). A fuzzy c-means algorithm with the
mfuzz() function of the R package Mfuzz (Futschik, 2015) was used. The
Mfuzz soft clustering algorithm uses the Euclidean distance as a distance
metric and requires two main parameters: c, the number of clusters
and m, the fuzzification parameter. For the clustering, log2-transformed
expression values were z-standardized, so that the average expression
value for each gene is zero and the standard deviation is one. The fuzzy
soft clustering method is different from hard clustering (like hierarchical
clustering) in the sense that genes are not uniquely assigned to one clus-
ter. Instead of this, a gene i has gradual degrees of membership μij to a
cluster j. High membership values indicate a high correlation between
gene i with the cluster centroid cj (Futschik, 2015). The mfuzz() function
uses the fuzzy c-means algorithm, based on minimization of a weighted
square error function with which the clusters centroids cj result from
the weighted sum of all cluster members. The membership value (μij)
indicates how well the gene i is represented by cluster j. Genes hav-
ing a cluster membership lower than 0.8 were excluded. The c and m
values were optimized using the procedure described in Futschik (2015)
and Futschik and Carlisle (2005), resulting in c = 9 clusters for both
datasets and a m parameter of 1.23 and 1.08 for the embryonic devel-
opment (Figure 2.7) and life cycle (Figure A.1), respectively. Therefore,
for the embryo development, this resulted in 9 different clusters based
on the expression pattern of 3,819 embryo-expressed genes, out of 5,514
embryo-expressed genes determined with the low stringent criteria. One
of the clusters was discarded as it consisted of very few genes with a
membership value � 0.8 (90 genes), and therefore only 8 were finally an-
alyzed (Figure 2.7). In the case of the genes expressed in the whole life
cycle, 9 clusters were obtained based on the expression of 8,167 genes,
out of 9,241 genes expressed in the whole life cycle (according to the
low stringent criteria and discarding female expression data, so genes
exclusively expressed in adult females were not considered). Tables 2.3
and B.9 show the number of genes expressed in each cluster for the two
analyses.
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Figure 2.7 Temporal profile of expression of the genes in each embryonic devel-

opment cluster. Each yellow line represents the expression pattern of a given gene.

The black line represents the average expression of all genes expressed in a stage.

All shown genes have a cluster membership� 0.8. Cluster 9 was not analyzed as it

consisted of very few genes with a membership value� 0.8.

Maternal, maternal-zygotic and zygotic genes

A list of maternal, maternal-zygotic and zygotic genes was obtained
from data by Thomsen et al. (2010) using egg and early development mi-
croarray analyses. Maternal genes are those genes which mRNA is shed
in the egg and which are not transcribed by the embryo. Maternal-zygotic
genes are those genes which mRNA is shed in the egg by the mother but
that are also transcribed by the embryo. Zygotic genes are genes which
mRNA is exclusively transcribed by the egg. The maternal gene list was
obtained joining the original Thomsen’s categories for non-transcribed
genes: "maternal decay", "mixed decay", "stable" and "zygotic decay" cat-
egories (4,942 genes). The maternal-zygotic list was created by joining
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Table 2.3 Genes expressed in 8 clusters of the embryo development.

4-fold genes represent genes that can be analyzed with the 4-fold gene dataset

and Short-intron genes those genes that can be analyzed with the short-intron

dataset.

Cluster Total genes Membership� 0.8 4-fold genes
Short-intron

genes

1 311 229 140 79

2 540 403 198 99

3 614 303 142 68

4 519 315 201 121

5 845 597 500 324

6 411 272 184 95

7 1,325 1,096 837 453

8 785 604 419 226

9 - - - -

Total 5,350 3,819 2,621 1,465

the categories of genes that are both present in the egg and transcribed
later (1,332 genes analyzed): "maternal decay + transcription" and "sta-
ble transcription" categories. Finally, the zygotic genes correspond to the
original "purely zygotic" category (850 genes). Three lists of genes were
obtained, one for the maternal genes, one for the maternal-zygotic and
one for the zygotic genes. See Table 2.4 for the genes analyzed in each
category.

Table 2.4 Maternal, maternal-zygotic and zygotic genes analyzed. 4-

fold genes represent genes that can be analyzed with the 4-fold gene

dataset and Short-intron genes those genes that can be analyzedwith the

short-intron dataset.

Class Total genes 4-fold genes Short-intron genes

Maternal 4,942 4,255 2,808

Maternal-Zygotic 1,332 1,162 740

Zygotic 850 690 359

Total 6,992 5,999 3,836

For assessing if a developmental stage, cluster or gene category under-
goes differential selection compared to the genes not expressed in such
group of genes, a permutation test was applied. Table 2.7 summarizes
all the hypotheses tested with this data and in section 2.3.1 the method-
ological details about the performed permutation test are explained.
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2.2.3. Anatomical structure data

For each gene available in the BDGP database, the list of the embry-
onic anatomical structures in which it is expressed was obtained (BDGP;
http://insitu.fruitfly.org/insitu/html/downloads.html/; last ac-
cessed: December 2015). Gene IDs were validated and updated us-
ing FlyBase converting id tool obtaining a total of 5,969 genes (http://
flybase.org/static_pages/downloads/IDConv.html; last accessed: De-
cember 2016). The gene ID of the polymorphism and divergence
datasets were also validated and updated, obtaining 11,074 genes for
the 4-fold gene dataset (instead of 11,103) and 6,671 genes for the short-
intron dataset (instead of 6,690).

The original anatomical structure dataset was collapsed into 18 different
anatomical structures as described in Tomancak et al. (2007) and only
genes without "no staining" as their unique term were analyzed. Some
of the structures are visually displayed in Figure 2.8.

Figure 2.8 Visual representation of anatomical structures analyzed in this study.

From left to right and from top to bottom: "Peripheral nervous system" (PNS), "Tra-

cheal system", "Head mesoderm" (hms, head mesoderm), "Procephalic ectoderm/-

Central nervous system(CNS)", Intestinal tract (including: "Foregut", "Salivarygland",

sg, salivary glands; "Midgut", mg, midgut; "Hindgut", hg, hindgut), Visceral mus-

culature (including "Malpighian tubules", mp, Malpighian tubules; mg, midgut; hg,

hindgut), "Ectoderm/Epidermis", "Fat body", "Germ line" (go, gonads). Not shown,

but analyzed: "SNS", "Optical lobe", "Segmental/GAP", "Garland cells/Plasmato-

cytes/Ring gland", "Yolk", "Circulatory system", "Ubiquitous", "Maternal". Images

modified from Hartenstein (1993) with permission.

The anatomical structure classification was done collapsing all the data
globally (thus, only considering the spatial dimension, Table 2.5) and
dividing it into six embryo developmental stages (considering the spatio-
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temporal dimension). The number of genes analyzed is shown in Table
B.10.

Table 2.5 Genes expressed in each anatomical structure. 4-fold genes represent

genes that can be analyzed with the 4-fold gene dataset and Short-intron genes those

genes that can be analyzed with the short-intron dataset.

Antomical structure Origin Total genes 4-fold genes
Short-intron

genes

Ectoderm/Epidermis Ectoderm 1,521 1,294 726

Foregut Ectoderm 1,062 912 502

Hindgut/Malpighian

tubules
Ectoderm 1,171 1,023 608

PNS Ectoderm 353 298 160

Procephalic ectoderm/

CNS
Ectoderm 1,731 1,490 910

Salivary gland Ectoderm 320 285 174

SNS# Ectoderm 54 47 20

Optical lobe# Ectoderm 154 126 58

Tracheal system Ectoderm 581 485 251

Endoderm/Midgut Endoderm 1,892 1,654 1,024

Garland/Plasmatocytes/

Ring gland
Mesoderm 467 414 246

Headmesoderm/Circ.

Syst./FB
Mesoderm 724 640 374

Mesoderm/Muscle Mesoderm 1,449 1,270 767

Ubiquitous Other 2,956 2,589 1,682

Maternal Other 4,283 3,762 2,382

Germ line Other 480 419 281

Segmental/GAP# Other 149 130 68

Amnioserosa/Yolk Other 477 419 228

Total 5,671 4,945 3,028

# Anatomical terms that were not analyzed in posterior analyses (not enough genes to be ana-

lyzed, the minimum is 150 genes).

Germ layer data

Genes were further classified by the germ layer they are derived from:
ectoderm, endoderm and mesoderm (Figure 2.9). For example, the cv
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"dorsal epidermis" is classified as ectoderm. A gene was assigned to
a certain germ layer if it was expressed only in an anatomical structure
belonging to it (and not in those anatomical structures of any other germ
layer). Table 2.6 contains the genes expressed in each germ layer.

Table 2.6 Genes expressed in each layer. 4-fold genes repre-

sent genes that can be analyzed with the 4-fold gene dataset

and Short-intron genes those genes that can be analyzed with

the short-intron dataset.

Layer Total genes 4-fold genes Short-intron genes

Ectoderm 1,324 1,137 663

Endoerm 303 269 168

Mesoderm 302 271 168

Total 1,929 1,677 999

For assessing if an anatomical structure or gene layer undergoes differ-
ential selection compared to the genes not expressed in such anatomical
structure or gene layer, a modification of the standard permutation test
procedure was applied. The novel introduction of such a permutation
test for this data is further discussed in section 4.3.3. Table 2.8 summa-
rizes all the hypotheses tested with this spatio-temporal dataset and in
section 2.3.2 methodological details about the performed permutation
test are explained.

Figure 2.9 Visual representation of

the embryonic germ layers. The

mesoderm is represented in red, the

ectoderm in blue and the endoderm

in yellow. The amnioserosal covering

of the embryo is represented in white.

Figure taken from Gilbert, 2014.

2.2.4. Genomic features metrics

In this section, the different genomic features analyzed in the present
thesis are defined and details about how they were measured are given.
These measures span from gene architectural features to expression level
and local recombination rate estimates. The analyses were performed
using the Freeze 1 dataset, with FlyBase release 5.50 annotations.
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A total of four architectonic features were measured: gene size, num-
ber of exons, number of transcripts and intron length. Ad hoc Perl and
bash/awk scripts were implemented for the calculations.

gene architectural features. Features that are related to the gene
structure, including gene size, the number of exons and transcripts and in-
tron length.

Gene size. Defined as the length of the coding sequence (CDS) of a gene
in bp.

Number of exons and transcripts. Number of different exons and tran-
scripts of a gene, respectively. It is the total count of all exons and
transcripts that are annotated for a gene in the FlyBase.

Intron length. It is the average distance between the exons of a gene in
bp. If two exons overlap, the longest was used for the estimation. Each
gene is treated as an independent entity, therefore, overlapping genes
were not taken into account. Figure 2.10A represents a scheme of the
estimation of the average intron length of a gene with three transcripts.

Figure 2.10 Example of intron and intergenic distance measurement. Red and

green highlighted parts are used to estimate the intron length and intergenic dis-

tance, respectively. A. Light blue boxes represent exons. The conserved intronic re-

gionsof transcripts areused toestimate theaverage intron length. B. Darkblueboxes

represent genes. For the estimation of the average intergenic distance, the average

distance between the two closest genes from a given gene is computed.

gene expression features. Features that are related to the transcription
profile of genes, which includes the expression bias, expression level,
codon usage and the transcriptome divergence index.

Expression bias and expression level. Expression bias and expression
level were estimated using the modENCODE data, described in section
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2.2.2. Expression bias (or breadth) was estimated for this dataset using
Yanai et al.’s (2005) tissue specificity metric, τ:

τ =
∑n

j=1 1 − log(Sj)

log(Smax)

n − 1
(2.7)

where S is the logarithm of the RPKM and n is the number of develop-
mental stages. τ ranges from 0 to 1. A gene with a τ value close to 0
indicates that it is broadly expressed across multiple stages or tissues.
A gene with a τ value close to 1 indicates that it has a highly biased
expression. A τ equal to 1 means that a gene is expressed in only one
stage or tissue.

Average gene expression level is measured as the logarithm of the aver-
age expression in the 30 stages in RPKM units. In some analyses, the
maximum expression level was used, measured as the logarithm of the
maximum expression in the 30 stages in RPKM units.

Codon bias. Measured as the frequency of optimal codons, Fop. The
software CodonW was used for the estimation of Fop (Peden 1999;
www.codonw.sourceforge.net; last accessed: June 2012). A specific D.
melanogaster codon table already provided by this software was used.
The index is estimated as the ratio of optimal codons to synonymous
codons. Values range between 0 (no optimal codons are used) and 1
(only optimal codons are used).

Transcriptome divergence index. The transcriptome divergence index
(TDI, Quint et al., 2012) measures the sequence divergence but weighted
by the relative expression level of a gene. It is a measure of the average
transcriptome selection pressure, estimated as:

TDIs =
∑n

i=1
Kai
Ksi

eis

∑n
i=1 eis

(2.8)

where n is the total number of genes i analyzed in each stage s, and e is
the expression level of the gene (as the logarithm of the RPKM).

genomic context features. Features that are related to the relative
position of genes in a genome, including the recombination rate, the inter-
genic distance and the gene density.
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Recombination rates. Recombination rate estimates at 100 kb non-
overlapping windows were retrieved from Comeron, Ratnappan, and
Bailin (2012). This data was used to assign exons to the recombination
rate of the window they are located. Gene recombination rate consists
of the average exons recombination rate. Briefly, these empirical recom-
bination rate estimates consist of the characterization of the products of
5,860 female meioses by genotyping a total of 139 million informative
SNPs and mapped 106,964 recombination events at a resolution up to 2
kilobases. These are the most precise and comprehensive estimates of
recombination available for D. melanogaster up to date.

Intergenic distance. It is the average distance between the two closest
genes to a given gene in bp. When a gene is nested in another one, the
intergenic distance is set as 0. Figure 2.10B represents a scheme of the
estimation of the average intergenic distance of a gene.

Gene density. Additionally, gene density was also used for some of the
conducted analyses. The data was retrieved from the study in Castellano
et al. (2015). To compute gene density the midpoint coordinate of each
gene was calculated first. The start point corresponds to the first posi-
tion of the first coding exon and the stop point corresponds to the last
position of the last coding exon. Then all coding sites 50 kb upstream
and 50 kb downstream the midpoint coordinate were counted and this
coding sequence count was used as an estimate of gene density.

gene phylogenetic features. Features related to the phylogeny of
genes, which includes the phylogenetic age.

Phylogenetic age. A phylogenetic age was assigned to each gene us-
ing the phylostratigraphic maps of D. melanogaster from Drost (2014).
These maps assign a phylogenetic age to each protein-coding gene in a
species of interest (in this case D. melanogaster) based on the phyloge-
netic level at which orthologs for that gene are found (e.g., if a gene has
orthologs at the level of eukaryota, the phylogenetic age is older than
if a gene has only orthologs among Drosophilids). With this method,
each gene can be assigned a discrete age category ranging from 1 to 13,
or phylostratum (PS), corresponding to hierarchically ordered phyloge-
netic nodes along the tree of life database (Figure 2.11, Drost et al., 2015).
The PS dataset was downloaded from http://dx.doi.org/10.6084/m9.

figshare.1244948/ (last accessed: May 2015). As this data set uses Fly-
Base protein IDs as identifiers, the R packages biomaRt (Durinck et al.,
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2005) and AnnotationDBI (Pagès et al., 2017) were used to convert them
into FlyBase Gene IDs.

Figure 2.11D.melanogaster phylostratigraphicmap. Numbers in parenthesis rep-
resents the number of genes per phylostratum (PS1-PS13). Figure taken from Drost

et al. (2015).

Table B.11 contains a summary statistic of the features analyzed and
Figure 2.12 depicts the features distribution.
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Figure 2.12 Features distribution for the D. melanogaster gene dataset. A. Size
distribution and categories. B. Number of exons distribution and categories.C. Num-

ber of transcripts distribution and categories. D. Intron length distribution and cat-

egories. E. Intergenic distance distribution and categories. F. Expression bias distri-

bution and categories. G. Expression level distribution and categories. H. Fop distri-

bution and categories. I. Recombination rate distribution and categories. J. Phyloge-

netic age distribution and categories.
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2.2.5. Testis and immune genes

The Gene Ontology (GO) terms were downloaded for the gene dataset
through the R package biomaRt (Durinck et al., 2005) using the D.
melanogaster ENSEMBL database, following the procedure used at
Castellano et al. (2015). When a gene was associated to any term related
to testis or the immune system (see Table B.12 for the related genes to
this terms) it was removed from the expression dataset of the low strin-
gent criterion (a total of 171 out of 2,869 genes were removed). Those 171
exhibit higher rates of adaptation as it would be expected (permutation
test, ωa, p-value = 0.028; ω, p-value < 0.001) when compared against the
complete Drosophila dataset (6,690 short intron genes).

2.2.6. GO enrichment

Gene Ontology (GO) enrichment analysis was performed using the PAN-
THER Overrepresentation Test (Release 20171205, Mi et al., 2017) apply-
ing a Fisher’s exact test with a false discovery rate (FDR) multiple test
correction (p-value < 0.05).

2.2.7. Standard statistical analysis

Correlations between temporal profiles were carried out by Spearman’s
rank correlations, calculated by the cor.test() function in R (R Core
Team, 2017).

Analyses of variance (ANOVA) were performed using the lm() and
anova() functions of R (R Core Team, 2017). The homogeneity of vari-
ances was assessed with the Fligner-Killeen test, implemented in the
fligner.test() function of R (R Core Team, 2017).

2.3. Statistical analysis

In the following section, details about the different statistical tests ap-
plied in this thesis are given. At the end of this section, two tables
(Tables 2.7 and 2.8) summarize the hypotheses tested.
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2.3.1. Permutation test for temporal analysis

To assess whether developmental stages or gene clusters undergo differ-
ential selection compared to the genes not expressed in such stage or
gene cluster, a permutation test was applied. For obtaining a null dis-
tribution for the differences between gene groups, the complete list of
genes was shuffled without replacement 1,000 times via ad hoc bash and
Perl scripts. Adaptation rate and selective constraint were estimated in
each randomized list, obtaining an expected null distribution. The two-
tailed p-value was obtained by counting the number of replicates below
and above the observed difference divided by the total number of repli-
cates (i.e., 1,000). Multiple comparisons for each analysis were corrected
by the false recovery rate (FDR) approach (Benjamini and Hochberg,
1995).

See Figure 2.13 for a graphical summary of the permutation procedure
and Table 2.7 for a summary of the hypothesis tested in the second part
of the thesis that used the classical permutation test procedure.
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Figure 2.13 Classical permutation test procedure performed for the temporal

analysis. First, the gene datasets should be defined. In the figure, these datasets are

the sets of genes that are expressed in different developmental stages. The genes are

divided into two datasets depending on the hypothesis to test. The hypothesis in the

figure is whether genes that are expressed in the embryo development undergo dif-

ferential expression compared to the genes that are not expressed in the embryo de-

velopment. The statistics of interest are estimated for the two datasets. In the figure,

the difference of the proportion of adaptive substitutions (αDFE) is estimated. Next,

the same statistic is calculated in each permuted dataset: genes are labeled as "em-

bryo" and "others" randomly 1,000 times. Finally, the significance of the observed

statistic is obtained by comparing it with the distribution of the expected statistic.
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2.3.2. Permutation test for spatial analysis

To assess whether anatomical structures or germ layers undergo differen-
tial selection compared to other genes, a permutation test was applied.
Specifically, a matrix was first built, in which each column represents
an anatomical structure or layer and each row represents a gene. The
matrix is filled with 0 and 1, with 0 indicating no expression and 1 indi-
cating expression of each gene in an anatomical structure or germ layer.
To generate the expected null distribution, the gene ID labels in the ma-
trix are reshuffled at random. Each reshuffle of the labels represents
a new permuted dataset in which genes are distributed randomly be-
tween anatomical structures (or germ layers) while keeping the number
of genes per anatomical structure (or germ layer) constant. Therefore, in
each permuted dataset, the number of genes co-expressed between each
anatomical structure is as in the original dataset. This allows inferring
the null distribution of the statistical output (α, ω, ωa, ωna) simultane-
ously for all the anatomical structures. This captures the correlational
structure of the data and, contrary to the previous permutation test (sec-
tion 2.3.1), there is no need to compute as many null distributions as
hypothesis drawn. This results in fewer permutation tests to run and
more statistical power. The reshuffling process was repeated 1,000 times
to obtain the null distribution. A two-tailed p-value was obtained by
counting the number of replicates above or below the observed value,
dividing the value by the total number of replicates (1,000) and multi-
plying it by 2 (Figure 2.14).

The following Table 2.8 summarizes the hypothesis tested in the third
part of the thesis that used the permutation test procedure for spatial
analysis.
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Figure 2.14 Permutation test procedure for the spatial analysis. First of all, the

anatomical structures to study are defined. In the figure, the peripheral nervous sys-

tem (PNS), head mesoderm and salivary glands are shown. The list of the genes ex-

pressed in each anatomical structure of study is obtained. A matrix in which each

column stands for an anatomical structure and each row stands for a gene is built.

The total number of rows is equivalent to the number of genes in the dataset. The

matrix is filled with 0 and 1, with 0 indicating no expression and 1 indicating expres-

sion. This represents the genes shared between the anatomical structures. Once the

matrix is built, the observed values of an statistic are calculated (an estimation for

each anatomical structure i,α1..i). To generate the expected distribution, the gene ID

labels in thematrix are randomly reshuffled. Each reshuffle j of the labels represents

a new permuted dataset, αperm 1..j, 1..i. This allows inferring the null distribution of

the statistics simultaneously for all the anatomical structures at once. A two-tailed

p-value was obtained by counting the number of replicates above or below the ob-

served value in our analysis divided by the total number of replicates (i.e., 1,000) and

multiplying this value by 2.
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3Results

3.1. Population genomics at the DNA variation

level

The first natural step in every population genomics analysis is to de-
scribe the DNA variation at the molecular level. This is accomplished by
estimating the population statistics that capture the evolutionary prop-
erties of the genome sequences.

At the DNA variation level, the genome-wide variation of D. melanogaster
was analyzed. Specifically, the proportion of substitutions that are adap-
tive, α, was estimated using five different approaches derived from the
McDonald and Kreitman test (MKT, see Methodology, section 2.2.1). The
comparison of the methodologies was performed using both empiri-
cal and simulated data to assess their statistical properties, including
the number of genes necessary to conduct an MKT, the estimation of
other selective regimes in addition to adaptive selection and the effect of
slightly deleterious substitutions in the estimations of α.

3.1.1. Genome-wide distribution of synonymous and

non-synonymous polymorphic sites and fixed

differences in D. melanogaster

We start with a global analysis of the polymorphism and divergence
levels of a total of 13,753 protein-coding genes of a North American pop-
ulation of D. melanogaster (Huang et al., 2014; Lack et al., 2015, 2016). The
distribution of the total number of synonymous (at 4-fold degenerated
sites, S) and non-synonymous (at 0-fold degenerated sites, N) polymor-
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phic sites (P) and divergent sites (D) for the set of genes is presented in
the Figure 3.1.

Figure 3.1 Distribution of synonymous and non-synonymous polymorphic sites

and fixed differences in a North American D. melanogaster population. D. simu-
lans is used as the outgroup species. The total megabases (Mb) analyzed are 12.10

for 0-fold and 2.91 for 4-fold degenerated sites.

12,609 protein-coding genes (91.68%) of the D. melanogaster population
exhibit some form of coding nucleotide variation either in polymor-
phism or in divergence, relative to the outgroup D. simulans. With a total
of 245,580 synonymous fixations (DS) in 2.91 megabases (Mb) of synony-
mous coding region analyzed (mS), the genomic average synonymous
divergence (dS) is 8.43%. In the case of the average non-synonymous di-
vergence, 241,341 non-synonymous fixations (DN) were found in 12.10
Mb of non-synonymous coding sites (mN), hence dN is 1.99%. For poly-
morphism, 171,725 synonymous polymorphisms (PS) and 129,352 non-
synonymous polymorphisms (PN) were detected, yielding an average
synonymous SNP density (ps) of 5.9% and a non-synonymous SNP den-
sity (pn) of 1.07%. Under neutrality, the ratios of polymorphism and

divergence are expected to be equal (neutrality index, NI =
Pn/PS

DN/DS
,

Rand and Kann, 1996). However, the obtained NI is 0.77, indicating
that there is an excess of non-synonymous substitutions (DN is higher
than expected under neutrality), suggesting that positive selection is a
major force shaping the Drosophila genome (Pearson’s χ2 test with Yates’
continuity correction = 3,254.3, p-value = 2.2×10-16).
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The same analysis was performed using D. yakuba as an outgroup
species. In this case, the dS increased from 8.43% to 17.87%, expected
value since the divergence time is around twice in the D. melanogaster–D.
yakuba branch (7.4 million years ago (Mya), Tamura, Subramanian, and
Kumar, 2004) than in the D. melanogaster–D. simulans branch (up to 4.3
Mya, Cutter, 2008). In the case of non-synonymous fixations, the percent-
age of dN increased from 1.99% to 3.18%. The NI, in contrast, indicates
an excess of amino acid polymorphism (DN is lower than expected),
suggesting that negative selection acts to remove deleterious mutations
(NI = 1.06, Pearson’s χ2 test with Yates’ continuity correction = 171.95,
p-value = 2.2×10-16). It could also indicate that balancing selection is a
common force to maintain the polymorphism in one or both species.

For the next analyses, D. simulans will be used as outgroup species un-
less the contrary is stated. The suitability of choosing one species or
another as an outgroup is thoroughly discussed in the Discussion, sec-
tion 4.1.1.

3.1.2. Estimation of the fraction of adaptive substitutions (α)

with MKT-based approaches

The fraction of substitutions fixed by positive selection, α, was estimated
using five different McDonald and Kreitman derived methodologies in
the Drosophila protein-coding genes described above.

The first implemented approach is the standard McDonald and Kreit-
man test (standard MKT, McDonald and Kreitman, 1991), described in
Methods, section 2.2.1. Briefly, the standard MKT assumes that positive
selection can be detected as the excess of divergence relative to polymor-
phism at putatively selected sites. This can be quantified by the index
αstandard:

αstandard = 1 − DS
DN

PN
PS

(3.1)

One of the major limitations of the standard MKT is that it assumes that
deleterious mutations do not contribute to polymorphism, contrary to
what is observed in many species (Charlesworth and Eyre-Walker, 2008).
In the presence of weakly deleterious polymorphisms segregating in the
population, α values are downwardly biased, because PN will be inflated.
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One way to overcome this problem is to remove low-frequency polymor-
phisms from the analysis, which are expected to be enriched in slightly
deleterious variants. This approach is known as the Fay-Wycoff-Wu
method (FWW method, Fay, Wyckoff, and Wu, 2001). With the FWW
method, α is estimated as in Equation 3.1 but considering only polymor-
phic sites with a frequency above the established cutoff, typically set at
5%, for both neutral and selected classes.

αFWW = 1 − DS
DN

PN>5%

PS>5%
(3.2)

However, the FWW method is still expected to lead downwardly biased
estimates of α due to the segregation of slightly deleterious mutations
(MAF>5%) and will provide reasonably accurate estimates of α only if
the rate of adaptive evolution is high and the distribution of fitness ef-
fects for slightly deleterious mutations is very leptokurtic (Charlesworth
and Eyre-Walker, 2008). The higher the cutoff to remove low-frequency
polymorphisms, the more minimized is the bias, but it leads, on the
other hand, to a small amount of remaining polymorphism data, which
lowers the statistical power to detect adaptation. To illustrate this, the
expected polymorphism that neutrally segregates for a sample of 100
haploid individuals under the standard neutral model with infinite sites
mutation is given by the following expression (Nielsen and Slatkin, 2013)
and represented in Figure 3.2:

E[ f j] =
1/j

∑n−1
k=1 1/k

, j = 1, 2, ..., n − 1 (3.3)

Results show that 44.10% of all the polymorphisms are at a frequency
<5% and would be eliminated by the FWW method (Figure 3.2).

Mackay et al. (2012) introduced the extended MKT (eMKT) to correct for
the effect of slightly deleterious mutations but without losing polymor-
phism data as the FWW. Instead of removing all low-frequency poly-
morphisms under a given threshold, non-synonymous segregating sites
(PN) are split into neutral and weakly deleterious variants, and only the
later are removed, thus increasing the amount of data analyzed and, as
a consequence, the power of detecting selection. The formula is as:
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Figure3.2Expectedsite frequencyspectrum(SFS) fora sampleofn=100haploid
individuals under the standard neutral coalescence model assuming an infinite

site mutationmodel. Approximately half of the neutral polymorphism are at a MAF

below a 10%.

αextended = 1 − DS
DN

PN neutral
PS

(3.4)

One advantage of this method is that it not only removes the effect of
negative selection in the estimation of α, but it provides a measure to
quantify it (Mackay et al., 2012).

Finally, Messer and Petrov (2013), introduced the asymptotic MKT, a
heuristic approach that takes into account the effect of slightly deleteri-
ous mutations segregating at any frequency, and not only below the 5%
threshold as the previous two correction methods. First, it estimates α

for each derived allele frequency (DAF) category, and then it fits an ex-
ponential function (or a linear one, when the exponential is not possible)
to the values, of the form:

α f it(x) = a + b−cx (3.5)

The asymptotic α estimate is obtained by extrapolating the value of this
function to 1.
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αasymptotic = α f it(x = 1) (3.6)

The last approach that is presented here is an extension of the asymptotic
MKT, that incorporates the methodology by Mackay et al. (2012) to also
calculate the fraction of sites that are under negative selection regimens.
This is called the integrative MKT (iMKT). The main distinctiveness com-
pared to the asymptotic MKT is that it calculates the negative fraction
and for that, only exponential fittings are used, while asymptotic MKT
incorporates both linear and exponential fittings.

Table 3.1 shows the α values estimated using the five methodologies
explained above.

Standard MKT is the methodology that allows estimating αst in a larger
number of genes, because only genes without either synonymous or
non-synonymous variable sites were not analyzed. A total of 10,505
(76.38%) D. melanogaster genes fulfilled this criterion. Regarding positive
and negative selection, as determined with a significant and positive or
a negative αst at p-value < 0.05 with a Fisher’s exact test, twice as many
genes are detected under negative selection (1,215 genes) than under
positive selection (689 genes).

When the FWW correction (at 5%) is used, a noticeable decrease in the
genes that can be analyzed is observed (from 10,505 to 8,315 genes). This
is because there is a significant loss of data with this method and genes
cannot longer be analyzed. However, the absolute number of genes un-
der positive selection increases an 18.14%, from 689 to 814. Finally, a
noticeable drop in the number of genes under negative selection is ob-
served in D. melanogaster, 85.68% less compared to the results in the
standard MKT, from 1,215 to 174.

A significant increase in positively selected genes is achieved with the
eMKT method (44.41% more, from 689 to 995), and also, very few genes
are lost compared to the standard MKT (4.06%, 10,078 out of 10,505 can
be analyzed). This method allows detecting more signals of positive
selection. However, the drop in negatively selected genes is not as pro-
nounced as with the FWW correction (from 1,215 to 670 genes), which
could indicate that this method does not efficiently remove the excess
of slightly deleterious polymorphism. A plausible explanation is that 4-
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fold degenerated sites are not completely neutral and as a consequence,
less polymorphism at non-synonymous sites is removed than it should.

Asymptotic approaches, both asymptotic MKT and iMKT, are the ones
that performed the worst regarding the number of genes that can be
analyzed when using single-gene data. In D. melanogaster, some genes
can be analyzed using the asymptotic approaches (5,522 genes with the
asymptotic MKT and 237 with the iMKT, this latter decrease is because
the exponential fit needs more data). However, a small proportion of pos-
itively selected genes can be detected with either approximation, only
114 genes can be detected as under significant positive selection with
the asymptotic MKT, while only 35 genes with the iMKT.

In general, eMKT correction is the method that performed the best in
terms of detecting evidence of both positive and negative selection, as it
can maintain a reasonably good statistical power. For species with low-
frequency variants, the FWW method is very penalizing and the loss of
power is very dramatic, although it can perform well in species with a
sufficient amount of data (like D. melanogaster). Asymptotic approaches
are useless in dealing with single-gene data. In those cases, gene con-
catenation is a good alternative to overcome this limitation and is going
to be further discussed in the following section 3.1.3.

3.1.3. Concatenating genes for estimating α

Gene concatenation is the process of merging the nucleotide variation of
multiple genes into a single entity. This process has the advantage of in-
creasing the number of polymorphic sites to construct the site frequency
spectrum (SFS), and thus, gaining statistical power to implement asymp-
totic approaches. One important consideration is which is the optimum
number of genes that should be concatenated to obtain a concatenated
fragment with enough segregating sites to gain power to detect selection
but not to dilute the heterogeneous behavior of different genes.

To assess which is this minimum number to obtain a representative mea-
sure of the average α of a sample of genes, a simulation was performed.
1,000 random D. melanogaster protein-coding genes were picked from the
dataset. These genes were merged to obtain concatenated fragments of
1, 2, 5, 10, 25, 50, 75, 100, 250, 750 and 1,000 genes by resampling them
1,000 times with replacement (except for concatenated fragments of 2
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and 5 genes, in which data was resampled 3,500 and 2,000 times, respec-
tively, to ensure the representation of all the 1,000 genes), and estimated
α under the iMKT method in each concatenated fragment. A DAF of 20
frequency categories was used, with an x cutoff interval of [0,0.9] (thus,
removing polymorphic sites above a frequency of 0.9).

In Figure 3.3 results are shown. It is observed that only when ≤10 are
concatenated, the average α is higher than when >10 genes are concate-
nated. This is because the former subset of genes is not an aleatory sam-
ple of the total 1,000 genes. Only those genes with enough polymorphic
and divergent sites can be analyzed with the iMKT, which precisely are
the ones with more statistical power to detect positive selection. From
25 concatenated genes onwards, the α mean stabilizes, and iMKT can
estimate α in all concatenated fragments when ≥250 genes are concate-
nated. However, estimations with concatenated fragments of 75 and 100
genes already allows obtaining an accurate mean of α.

The number of genes analyzable in each concatenated fragment of this
sample, the α values and ±SD are shown in Table B.13.

Effect of recombination on α estimates

Recombination has an important effect on the rate of adaptive evolution
(Castellano et al., 2015) as it has been explained in the Introduction, sec-
tion 1.1.3. The efficiency of natural selection is expected to be maximized
in high recombining regions. Because of that, an analysis categorizing
the genes in concatenated fragments depending on their recombination
context was performed. Recombination rates for D. melanogaster were
retrieved from Comeron, Ratnappan, and Bailin (2012). Genes were di-
vided into five equally sized groups depending on their recombination
rates. Then, genes in each group were resampled 100 times with replace-
ment and α was estimated in each concatenated bin using the five MKT
methods. Figure 3.4 shows the results of the α values estimated with
each methodology in each recombination rate concatenated fragment.
Table B.14 contains the α and ±SD estimated in each bin.

The amount of concatenated genes in these cases is enough for the iMKT
to estimate α in most concatenated fragments (more than 2,500 genes).
Results show that iMKT is the method that achieves the highest α values
when a sufficient amount of data is available. An exponential increase
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Figure 3.3 α estimated in concatenated gene fragments with the iMKT method.

Each concatenated fragment was obtained by resampling 1,000 times the 1,000 ran-

dom D. melanogaster genes with replacement, in concatenated fragments (bins) of

1, 2, 5, 10, 25, 50, 75, 100, 250, 750 and 1,000 genes (except for 2- and 5-size concate-

nated fragments, where data was resampled 3,500 and 2,000 times, respectively),

and α was estimated in each concatenated fragment. A DAF of 20 categories was

used, with an x cutoff interval of [0,0.9]. The bottom part of the plot represents the

proportion of bins that can be analyzed (in orange) or not (in blue).

of the adaptation levels with the recombination is observed, up to a re-
combination level of around 2cM/Mb (as observed in Castellano et al.,
2015). This plateau has been interpreted as the maximum asymptotic
levels of adaptation that occur when there is no effective Hill-Robertson
interference against selective sites (Castellano et al., 2015). It is worth
mentioning that, under these conditions, there are no substantial differ-
ences between the FWW and the iMKT methods, especially in higher
recombination rates, while the eMKT method fails by exhaustively cor-
recting for the slightly deleterious mutations, returning downwardly bi-
ased α values. The method that performs the worst was the standard
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MKT because it is the only method that does not correct for the effect of
slightly deleterious mutations.

3.1.4. Testing methodologies with simulated data

Until now, the best approach was considered to be the one estimating
the highest α. However, it can be the case that the α estimates are biased.
For assessing a potential over or underestimation of α, the different MKT
methodologies were tested on simulated data, using the forward simu-
lation framework SLiM 2 (Haller and Messer, 2017), applying the SLiM
configuration script provided in the asymptototicMK’s GitHub reposi-
tory (https://github.com/MesserLab/asymptoticMK; last accession: De-
cember 2017). The main advantage of using simulated data is that the
"real" α is known. Briefly, a population of 1,000 diploid individuals
evolving in 13 different scenarios was simulated, with 50 replicates for
each scenario. See Methods (section 2.2.1) for a detailed description of
each scenario.

Figure 3.4 α estimated in concatenated gene fragments categorized by their re-

combination rate (cM/Mb) using different MKTmethods. Genes were divided into

five equally sized groups according to their recombination levels. Genes in each cat-

egory were resampled with replacement 100 times and α was estimated in each of

this 100 bins. A DAF of 20 bins was used with a x cutoff of [0,0.9] in all methods.
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α was estimated in each conducted simulation using the five MKT ap-
proaches. The results from the analysis of the SLiM 2 simulations are
shown in Table 3.2 and in Figure 3.5. Additionally, Table B.15 shows
the mean estimation error of the different MKT approaches compared
to the true α. Note that an x cutoff of [0.1,0.9] was used instead of the
one of [0,0.9] that was being used in previous analyses in order to re-
produce Haller and Messer’s work (2017). Because of that, eMKT and
FWW methods use a more stringent cutoff, removing the polymorphism
below a frequency of the 15%.

Table 3.2 Results from the MKTmethods for simulation runs with SLiM 2.

Simulation Standard MKT FWW 15% eMKT 15% iMKT True α

Baseline 0.179 (±0.038) 0.207 (±0.038) 0.202 (±0.038) 0.313 (±0.05) 0.326 (±0.016)

L=106 0.168 (±0.104) 0.193 (±0.099) 0.189 (±0.1) 0.289 (±0.088) 0.306 (±0.07)

L=108 0.175 (±0.011) 0.202 (±0.011) 0.197 (±0.011) 0.297 (±0.016) 0.325 (±0.005)

T=2×104 0.187 (±0.103) 0.22 (±0.105) 0.214 (±0.105) 0.376 (±0.155) 0.374 (±0.076)

T=2×106 0.175 (±0.01) 0.203 (±0.009) 0.198 (±0.009) 0.3 (±0.014) 0.322 (±0.006)

µ=10-8 0.175 (±0.011) 0.202 (±0.011) 0.196 (±0.011) 0.283 (±0.016) 0.304 (±0.005)

µ=10-10 0.154 (±0.104) 0.182 (±0.103) 0.177 (±0.103) 0.299 (±0.13) 0.321 (±0.071)

sd=0.002 0.082 (±0.04) 0.107 (±0.038) 0.103 (±0.039) 0.211 (±0.045) 0.241 (±0.014)

sd=0.200 0.31 (±0.038) 0.335 (±0.038) 0.33 (±0.038) 0.41 (±0.047) 0.437 (±0.023)

rb=0.0001 -0.117 (±0.054) -0.079 (±0.05) -0.086 (±0.051) 0.065 (±0.053) 0.085 (±0.013)

rb=0.0010 0.382 (±0.028) 0.401 (±0.027) 0.397 (±0.027) 0.468 (±0.037) 0.491 (±0.016)

sb=0.02 -0.112 (±0.055) -0.072 (±0.052) -0.08 (±0.053) 0.077 (±0.056) 0.094 (±0.015)

sb=0.20 0.358 (±0.029) 0.38 (±0.029) 0.376 (±0.029) 0.463 (±0.045) 0.471 (±0.02)

The first row shows the average results with their ±SD of 50 replicate runs of the baseline SLiM 2 model provided

in Haller and Messer, 2017’s GitHub. These runs used parameter values of mutation rate µ=10-9 per base position

per generation, chromosome length L=107 base positions, beneficial mutation rate rb=0.0005, beneficial mutation

selection coefficient sb=0.1, deleterious mutation selection coefficient sd=-0.02, and time after burn-in T=2×10
5

generations. Each subsequent rowshows the results from50 replicate runsusing thenon-baselineparameter value

shown, while keeping the rest of values as in the baseline. Trueα specifies the true value ofα averaged across the
50 replicates in each row; the rest represent the α values estimated from the different MKT methods. The x cutoff

used in all methods is [0.1,0.9], as in the original paper (Haller and Messer, 2017). In FWW and eMKT corrections, a

cutoff of the 15%was used. In all analyses a DAF of 20 bins was used.

In 13 out of 13 simulations, the mean α was lower than the real α for
the standard MKT, FWW and eMKT corrections. For iMKT, only in the
scenario with the smallest number of generations simulated (T=10×104)
the mean α was higher than the real α, as observed in Haller and Messer
(2017). In general, it can be observed that those simulation scenarios
which created less polymorphism (i.e., a shorter simulated genomic re-
gion, lower mutation rate or a lower generation time), are the ones in
which the mean estimation error of the iMKT is higher. On the contrary,
simulations that produced more polymorphism provided more accurate
iMKT α estimates (mean errors below 0.03, Table B.15) and they are
also the ones in which the 100% of the simulations could be estimated
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with the exponential fit. This was already pointed out in Haller and
Messer’s work (2017). A clear pattern cannot be found for the other
MKT methodologies. However, it seems that the scenarios that produce
a higher number of beneficial mutations (a high beneficial mutation rate,
rb or high beneficial selection coefficient, sb) are the ones with the lowest
estimation errors, both for the FWW and eMKT corrections (mean errors
are < 0.1). Overall, iMKT is the method that performs the best when the
level of polymorphism is high, as it is the case for these simulations. The
eMKT and FWW approaches cannot correct for the presence of deleteri-
ous mutations as efficiently as the iMKT approach, and underestimate
α in most of the cases. However, in cases with a low polymorphism
level, closer to what is found in real data, iMKT only worked in approx-
imately 50% of the cases and performed similarly to eMKT and FWW
corrections (Figure 3.5). However, it should be taken into account that
a DAF of 20 frequency bins was used and iMKT could work better by
using a less fractionated DAF.

3.1.5. A flowchart to select an MKT approach

Taking into account the previous results on each presented MKT ap-
proaches, Figure 3.6 displays a flowchart that recommends the use of
each methodology depending on one’s data and needs. The first fac-
tor to consider is whether one wants to estimate α in individual genes
or in concatenated fragments. If single gene data is used, asymptotic
methods are not applicable and one is recommended to use either the
eMKT, FWW or standard MKT methodology. The use of eMKT, FWW
or standard MKT will depend on whether negative selection wants to
be removed and/or wants to be quantified. If negative selection is not
affecting the data one may use the standard MKT. This is the case of
a leptokurtic distribution of deleterious effects (DFE) because leptokur-
tic distributions have a smaller proportion of polymorphisms that are
slightly deleterious (Eyre-Walker and Keightley, 2007). On the contrary,
both FWW or eMKT removes negative selection, but only the latter al-
lows additionally its quantification and also it does not lose as much
information as FWW.

If the input data is concatenated gene data, for a given threshold (Figure
3.3) asymptotic methods are preferred. For estimation of the negative
fraction, the iMKT is the preferred method. Otherwise, one may use the
asymptotic MKT. It has been already shown that these methods need

97



RESULTS

Figure 3.5 Results from the five MKT approaches for 13 simulation runs con-

ducted with SLiM 2. A. Shows the averaged results from 50 replicate runs of the

baselineSLiMmodel suppliedonMesser&PetrovGitHub (seeMethods, section2.2.1).

These runs used parameter values of mutation rate µ = 10-9 per base position per

generation, chromosome length L = 107 base positions, beneficial mutation rate rb =

0.0005, beneficial mutation selection coefficient sb = 0.1, deleteriousmutation selec-

tion coefficient sd = -0.02, and time after burn-in T = 2×10
5 generations. The subse-

quent graphs (B-M) shows the results from 50 replicate runs using the non-baseline

parameter value shown in the graph title. A DAF 20 was used, with an x cutoff of

[0.1,0.9].

98



3.1 POPULAT I ON GENOM I CS AT THE DNA VAR I AT I ON L E V E L

a considerable amount of data to work. If the fitting is not possible,
it is advisable to use a less fractioned DAF frequency (e.g., divide the
polymorphic sites according to their frequency 10 instead of 20 equal
width frequency bins). If the fitting is still not possible, then the use
of the eMKT methodology is advisable for the same reasons explained
above.

Figure 3.6 iMKT analysis flowchart.
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3.1.6. Adaptation in the D. melanogaster genome

After the assessment of the best method to quantify both adaptation and
negative selection in D. melanogaster protein-coding genes –the eMKT–
we analyzed the general properties and functions of such genes under
positive and negative selection. For that, it was obtained the list of genes
that appeared to be under positive and negative selection as determined
by the eMKT methodology correcting with a 5% cutoff (Table 3.1). A to-
tal of 995 genes under positive selection were detected, with an α mean
of 0.8 (±0.122), and 670 under strong negative selection, with an α mean
of -8.30 (±10.83). A gene ontology (GO) enrichment analysis was per-
formed within the category biological process using the PANTHER-GO
enrichment analysis tool (Mi et al., 2017). Table 3.3 shows the enriched
GO terms for the 995 genes under positive selection with a false discov-
ery rate (FDR) < 0.05. Among the enriched GO terms, the ones related
to the immune system and sperm-related genes are remarkable. In the
670 genes under strong negative selection, no apparent enrichment of
GO terms was found.
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Table 3.3 Top 20 enrichedGO terms in the biological process category among the

D. melanogaster population positively selected genes.

GO biological process Fold enrichment FDR p-value

Cell-cell adhesion mediated by cadherin (GO:0044331) 7 0.021

Calcium-dependent cell-cell adhesion via plasma

membrane cell adhesion molecules (GO:0016339)
6 0.010

Homophilic cell adhesion via plasmamembrane

adhesion molecules (GO:0007156)
5.76 0.001

Male genitalia development (GO:0030539) 4.87 0.043

Homeostasis of number of cells (GO:0048872) 4.34 0.041

Regulation of hemocyte differentiation (GO:0045610) 4.34 0.040

Response to mechanical stimulus (GO:0009612) 3.67 0.038

Lipid transport (GO:0006869) 3.25 0.035

Multicellular organismal homeostasis (GO:0048871) 2.92 0.036

Heart development (GO:0007507) 2.67 0.012

Dorsal closure (GO:0007391) 2.67 0.017

Digestive tract development (GO:0048565) 2.56 0.040

Open tracheal system development (GO:0007424) 2.25 0.003

Developmental growth (GO:0048589) 2.18 0.025

Immune response (GO:0006955) 2.11 0.026

Imaginal disc development (GO:0007444) 2 3.2×10-5

Compound eye development (GO:0048749) 1.89 0.010

Regulation of organelle organization (GO:0033043) 1.87 0.009

Epithelial cell differentiation (GO:0030855) 1.85 0.007

Positive regulation of transcription, DNA-templated

(GO:0045893)
1.82 0.016
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3.2. Population genomics at the genomic level

The population genomic statistics estimated on protein-coding genes
are correlated with other genomic features to evaluate the impact of
these properties on the nucleotide variation of these genes. The aim
is to discover variation patterns of protein-coding genes updating pre-
viously known ones by adding new layers of molecular genomic in-
formation. Thanks to the availability of complete genomes and high-
quality functional genomics datasets (see Table 1.2 for a compendium of
D. melanogaster -omics resources), together with refined statistical meth-
ods, light can be shed to one of the most long-standing problems in
molecular population genetics: understanding what genetic, genomic,
expression and phylogenetic features governs the evolution of protein-
coding genes.

3.2.1. Measured genomic features

First of all, a number of features of D. melanogaster were measured to re-
late them to the variation level of protein-coding genes. Those features
span different characteristics of the genome: (i) gene architectonic fea-
tures: gene size, as the length of the coding sequence of a gene; number
of exons and transcripts, as the total number of exons and transcripts a
gene has; intron length, measured as the average distance in base pairs
between the exons of a given gene; (ii) expression features: expression
bias, a measure of how evenly distributed the expression of a gene is
over time; expression level, the average expression of a gene over all
life cycle stages; codon usage bias, measured as the frequency of op-
timum codons, Fop; (iii) genomic context features: recombination rate,
based on observed cross-overs in 100 kb intervals, from Comeron, Rat-
nappan, and Bailin (2012); intergenic distance, as the average distance in
base pairs between two adjacent genes; (iv) phylogenetic features: phy-
logenetic age, using the phylostratigraphic maps from Drost (2014). A
complete description of the measurement of these genomic features can
be found in Methods, section 2.2.4. This information constitutes one of
the most complete genomic feature datasets used for characterizing a
species genome.
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3.2.2. Correlation between selective regimes and features

The relationship between the set of estimated features and the selective
regimes parameters was assessed. Four different parameters were es-
timated using DFE-alpha software (Eyre-Walker and Keightley, 2009).
First, αDFE (α from now onwards), the proportion of substitutions that
are adaptive. Second, ω (dN/dS), used as a proxy for conservation at the
sequence level. ω is the rate of non-synonymous substitutions per non-
synonymous site (dN) divided by an estimation of the mutation rate (dS,
the rate of synonymous substitutions per synonymous site) in a gene. ω

can be subdivided into two statistics: ωa and ωna. Third, ωa is estimated
as ω × α, or the rate of adaptive substitutions per non-synonymous site
divided by the synonymous substitution rate (Gossmann, Keightley, and
Eyre-Walker, 2012). Forth, ωna is ω × (1 − α), the rate of non-adaptive
substitutions (i.e., nearly neutral and deleterious, Galtier, 2016).

For analyzing the patterns of variation, genes in the dataset were catego-
rized in five different categories (when possible) based on each genomic
feature (see Table B.11 for the number of genes considered in each cat-
egory) and resampled with replacement 100 times the genes in each
category and estimated the selection statistics in each category bin in or-
der to estimate the CI of each parameter (see Methods, Gene resampling
(bootstrapping) section).

Genomic features negatively correlated with the selective regimes

The genomic features negatively correlated with the selective regimes
are shown in Figure 3.7. All four analyzed features related to the ar-
chitecture properties of genes are negatively correlated with the evo-
lutionary rate of proteins, which are gene size, number of exons and
transcripts and intron length.

Gene size follows a reverse J-shaped distribution, highly positively
skewed and with a long tail (Figure 3.7A). It ranges from 9 to 55,400bp (a
CDS of 9bp is likely due to errors in the D. melanogaster annotation file).
Each gene size category is composed of more than 2,000 genes (Table
B.11), so attributed errors to the annotation accuracy are expected to be
negligible.
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Gene size is linearly negative correlated with both ωa (Figure 3.7B) and
ωna (Figure 3.7C). These observations indicate that the longer the gene,
the less adaptive and non-adaptive substitutions become fix, i.e., purify-
ing selection is more efficient on longer genes. On the contrary, shorter
genes experience a reduction of the efficacy of natural selection, and
thus, they tend to fix more adaptive and non-adaptive substitutions.
These results are also found in a number of studies (see Table 1.1), but
only related to ω and not to ωa and ωna as in here. This allows us to
infer that the higher substitution rates experienced by short genes are
due to the accumulation of both adaptive and negative selection.

The number of exons and transcripts, similarly to the gene size, follow a
reverse J-shaped distribution and highly positively skewed (Figures 3.7D
and 3.7G, respectively). Regarding the number of transcripts feature,
genes could not be divided in equally-sized categories, due to the high
proportion of genes having 3 or fewer transcripts annotated (almost half
of them only have one transcript annotated) and therefore, genes were
divided into 4 categories.

Both the number of exons and number of transcripts show clear nega-
tive correlations with both ωa (Figures 3.7E and 3.7H, respectively) and
ωna (Figures 3.7F and 3.7I, respectively). Genes having 3 or more ex-
ons annotated experience a similar rate of adaptive substitutions; while
the relationship with the rate of non-adaptive substitutions is linear. In
the case of the number of transcripts, a similar trend is found. To our
knowledge, only the number of exons feature has been correlated with
ω (Guillén, Casillas, and Ruiz, 2018) with similar results.

The last architectonic feature is the intron length, which also follows a
reverse J-shaped distribution, highly positively skewed and with a long
tail (Figure 3.7J).

The correlation between intron length and the selective regimes is also
negative correlated with both ωa (Figure 3.7K) and ωna (Figure 3.7L).
That indicates that genes having longer introns, experience a more ef-
ficient purifying selection than genes with short or without introns. A
number of studies found the same trend when analyzing dN and ω.
Marais et al. (2005) argue that this correlation can be explained by a
higher abundance of cis-regulatory elements within introns in genes un-
der strong purifying selection. Because of their important role during
development (for a review see Spitz and Furlong, 2012), it is thoroughly
discussed in section 4.2.3.
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Two features related to the expression level also show a negative corre-
lation with both ωa and ωna: the codon usage, measured as Fop, and the
expression level.

The Fop follow a bell-shaped distribution and ranges from 0 (no optimal
codons are used) and 1 (only optimal codons are used) (Figure 3.7M).
Typically, it is used as a measure of the expression level.

The correlation between the Fop and the selective regimes is also linear,
but the distribution follows a reverse J-shaped curve rather than a linear
relation as the previous four features. That indicates that genes with a
higher Fop are more constrained (Figure 3.7N) and fix less adaptive sub-
stitutions (Figure 3.7O). The negative correlation is expected because, as
found in a number of studies (Table 1.1), the correlation is likely driven
by purifying selection against mutations that reduce the transcriptional
and/or translational efficiency and/or robustness of proteins. Genes
with a higher adaptive rate would have fixed many amino acids that do
not necessary are the optimal ones (Larracuente et al., 2008).

The last feature negatively correlated with the selective regimes is the
expression level. Expression level follows a bimodal distribution and
positively skewed (Figure 3.7P).

In agreement with the literature (Table 1.1), genes that are highly ex-
pressed are more constrained than low-expressed genes (Figures 3.7Q
and 3.7R, respectively). Therefore, highly expressed genes fix less adap-
tive and non-adaptive substitutions. Some studies (Table 1.1) also find
the same pattern with ω. The most plausible explanation could be that
new non-synonymous mutations affecting the transcription or transla-
tion of proteins (e.g., leading to misfolding or misinteraction) will have a
stronger deleterious effect in highly expressed genes than in lower ones.
Additionally, a number of studies (Carneiro et al., 2012; Williamson et al.,
2014; Hodgins et al., 2016) have also correlated the expression level with
ωa using DFE-alpha in mammals (European rabbit) and plants (Capsella
grandiflora, lodgepole pine and interior spruce) finding consistent results.

In general, it can be inferred that purifying selection acts more efficiently
on complex and highly expressed genes, i.e., those that are longer, con-
taining more exons and longer introns, encoding a large number of iso-
forms and that are highly expressed, while the contrary happens with
less complex and less expressed genes.
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Genomic features positively correlated with the selective regimes

Only four features are positively correlated with the selective regimes.
None of them are related to the architectonic properties of genes, but
with the expression level, genomic context and phylogenetic features.

The only expression feature positively correlated with the selective
regimes is the expression bias. The expression bias follows a bimodal
distribution and it ranges from 0 to 1 (Figure 3.8A). A gene with an
expression value close to 0 indicates that it is broadly expressed across
multiple stages, while a value of 1, that is specifically expressed in a few
stages.

The expression bias is positively correlated following a J-shaped curve
with both ωa (Figure 3.8B) and ωna (Figure 3.8C). That indicates that
natural selection is less efficient on genes that are specifically expressed
in a few stages. On the contrary, genes that are ubiquitous are under
constraint.

This pattern has already been found by a number of studies (Table B.11)
and the most plausible explanation is that the extensive pleiotropy expe-
rienced by ubiquitously expressed genes will constraint them. Ubiqui-
tously expressed genes may be are involved in more cellular and physi-
ological processes than stage-specific genes.

Only one variable clearly enhance the efficacy of purifying and positive
selection at the same time: the recombination rate. It follows a reverse
J-shaped distribution and it is positively skewed (Figure 3.8D).

Recombination increases the independence of sites between genes, there-
fore, genes in high recombination environments can effectively fix adap-
tive substitutions (Figure 3.8E). The increase is not linear but rather
asymptotic, in agreement with reaching an adaptation level that occurs
when there is no effective Hill-Robertson interference against selective
sites. On the contrary, the correlation with ωna follows a negative asymp-
totic relationship (Figure 3.8F).

To some extent, this trend is also observed with the intergenic distance
measure, that could have a similar effect as the recombination rate. This
feature also follows a reverse J-shaped distribution and highly positively
skewed (Figure 3.8J). More isolated genes tend to fix more adaptive sub-
stitutions (Figure 3.8K) and remove non-adaptive substitutions (Figure
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3.8L). However, the correlations are not clearly linear. Contrary to what
is expected (assuming that there is a linear correlation as with the re-
combination), genes that are close to each other or completely nested fix
adaptive substitution higher than expected. On the other hand, genes
that are isolated, fix a high proportion of non-adaptive substitutions.

The phylogenetic age is the last feature that we analyzed. Because its a
discrete feature (can only take values from 1 to 13) rather than a continu-
ous variable as the other ones, it was manually divided into 5 categories,
trying to keep the same number of genes. Therefore, it does not follow
a clear distribution 3.8G).

The correlation with the phylogenetic age and ωa follows a J-shaped
curve (Figure 3.8H). The same is found with ωna (Figure 3.8I). That in-
dicates that phylogenetically younger genes, more specifically the ones
that appeared in Diptera (phylogenetic ages 12–13), accumulate more
adaptive and non-adaptive substitutions than phylogenetically older
ones.

All the aforementioned features are discussed in detail together with
their role during development in section 4.2.
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Figure 3.7Genomic features negatively correlatedwithωa andωna. A. Gene size

distribution and categories. B. Relationship between ωa and size. C. Relationship

betweenωna and size. D. Number of exons distribution and categories. E. Relation-

ship between ωa and number of exons. F. Relationship between ωna and number

of exons. G. Number of transcripts distribution and categories. H. Relationship be-

tween ωa and number of transcripts. I. Relationship between ωna and number of

transcripts. J. Intron length distribution and categories. K. Relationship between

ωa and intron length. L. Relationship between ωna and intron length. M. Fop dis-

tribution and categories. N. Relationship betweenωa and Fop. O. Relationship be-

tweenωna and Fop. P. Expression level distribution and categories. Q. Relationship

betweenωa and expression level. R. Relationship betweenωna and expression level.

Each boxplot (100 bootstrap replicates per category) in a plot is calculated for a ran-

domlydrawnsampleof the setof genes ineachcategorywith replacement. SeeTable

B.11 for the number of genes considered in each category.
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Figure 3.8Genomic features positively correlatedwithωa andωna A. Expression

bias distribution and categories. B. Relationship between ωa and expression bias.

C. Relationship between ωna and expression bias. D. Recombination rate distribu-

tion and categories. E. Relationship between ωa and recombination rate. F. Rela-

tionship betweenωna and recombination rate. G. Phylogenetic age distribution and

categories. H. Relationship between ωa and phylogenetic age. I. Relationship be-

tweenωna and phylogenetic age.J. Intergenic distance distribution and categories.

K. Relationship between ωa and intergenic distance. L. Relationship between ωna

and intergenic distance. Each boxplot (100 bootstrap replicates per category) in a

plot is calculated for a randomly drawn sample of the set of genes in each category

with replacement. See Table B.11 for the number of genes considered in each cate-

gory.
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3.3. Population genomics at themultiomics level

The advent of NGS technologies has made available functional genomic
datasets measuring features such as gene expression across different de-
velopmental stages or body parts. In this work, high quality expression
data from modENCODE (Consortium et al., 2010) and BDGP (Tomancak
et al., 2007) has been integrated with population genomics data to infer
adaptation and selective constraint in different moments of the develop-
ment and body parts.

3.3.1. Overall temporal pattern of adaptation and selective

constraint over the life cycle of D. melanogaster

The pattern of adaptation and selective constraint is measured over the
whole life cycle of D. melanogaster. Although different works analyze
the pattern of constraint and expression divergence during develop-
ment (e.g., Kalinka et al., 2010; Levin et al., 2016, see section 1.3.2),
little is known about the role of natural selection in the life cycle of
D. melanogaster. We give a global perspective on how natural selection
acts during the development of this species, trying to assess whether
different regimes of selection act on different developmental stages.

Four selective regimes (ωa, ωna, ω and α) have been calculated in the
set of genes expressed in each life cycle stage using DFE-alpha. Addi-
tionally, a fifth statistic was also calculated, the proportion of effectively
neutral mutations, P0, based on polymorphism data alone, using the pro-
gram prop_muts_in_s_ranges.c that comes with DFE-alpha (see section
2.2.1). Finally, the transcriptome divergence index (TDI), a measure of
the average transcriptome selection pressure, was also calculated (Quint
et al., 2012). The TDI is computed as the ω of each gene weighted by its
relative expression in each stage (see Methods, section 2.2.4).

Figure 3.9 shows the temporal pattern found when using the DFE-alpha
method. Short introns were used as a proxy for the neutral mutation
rate, considering all genes with non-zero expression (and excluding the
6,655 genes that were constitutively expressed throughout all stages, see
section 2.2.2 and Table B.1). A total of 2,869 genes fitted to this crite-
rion. Both adaptive (ωa) and non-adaptive (ωna) substitution rate are
the highest in the set of genes expressed at the very first embryonic
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stage. Both substitution rates gradually decrease until the 10-hour em-
bryo stage. The next developmental stages (mid and late embryonic
development) show, on the contrary, the lowest substitution rates (either
adaptive or not). At the third larval stage the rate of adaptive substitu-
tions (ωα), and to a lesser extent, the rate of non-adaptive substitutions
(ωna) increase and remain high through all the pupal stages. Finally, in
the male adult stage, ωα and ω values are very similar to those of the
pupa while female adults exhibit lower values.

To analyze whether these differences between stages were statistically
significant, stages were merged into eight developmental periods: em-
bryo 0–2 h, embryo 2–6 h, embryo 6–24 h, larva 1–3, larva 4–6, pupa,
females and males. By means of a permutation test, the probability that
the genes expressed in a period undergo differential selection compared
to the genes not expressed in that period was calculated, using as a null
model the 2,869 genes expressed during the whole development (see
Methods section 2.3.1). This analysis shows that mid and late embry-
onic development, the beginning of the larva and genes expressed in
female adults show significantly low rates of non-synonymous substi-
tutions (Figure A.2). The relatively high rates of substitutions in early
development and in the larva, pupa and males are not significant in this
analysis. P-values are shown in Table B.16.

However, if the same permutation test is done using the whole gene
dataset (expressed in all stages or not) as the null model, the test shows
that early development, late larva, pupa and male adult exhibit signif-
icantly high ωa, ω and α values (Figure A.3). P-values are shown in
B.17. The results of these permutation tests indicate that, in general,
a vast majority of D. melanogaster protein-coding genes are under neg-
ative selection while a high proportion of the genes expressed in the
development, under this criterion of expression, are biased toward less
constrained genes.

We performed the following validity checks to confirm these results un-
der different conditions and criteria.

testing for different mkt methodologies. Three different methods
to estimate α were compared since the use of different methodologies
can yield different α estimates. Similar results were found when using
the standard MKT and eMKT (Figure A.4) as alternatives compared to
DFE-alpha. The ωα and α statistics were, however, slightly lower for
both standard MKT and eMKT than for DFE-alpha. This is especially

111



RESULTS

evident for the standard MKT, which does not correct for the effect of
slightly deleterious polymorphisms.

testing the putative neutral class. The estimation of the different
statistics relies on a selectively neutral class of sites in the genome. Two
classes of sites were used: positions 8 to 30 at short introns (as in Hal-
ligan and Keightley, 2006) and 4-fold degenerated sites (see Methods,
section 2.2.1). Very similar results were found by both approaches (see
Figure 3.9 for the result using short introns and Figure A.5 when using 4-
fold degenerated sites). The values of ω, ωa and ωna are, overall, larger
when the statistics are estimated based on 4-fold degenerated sites as
neutral reference.

testing the statistical power. The unequal number of genes ex-
pressed in each developmental stage can have an effect on the values
of the estimated metrics. The pattern of Figure 3.9 was performed re-
sampling the number of genes expressed in each stage. This analysis
was repeated but resampling the same number of genes in each stage
(350 genes per stage with replacement 100 times) and calculating the
mean values for the selection metrics. Figure A.6 shows that very simi-
lar values are found for each selection statistic over time.

testing different expression criteria. The criterion used to consider
a gene as expressed at a stage can have a major effect on the temporal
patterns of the different statistics. In Figure 3.9 a gene is considered
expressed at a stage if at least one transcript read (RPKM) is reported
in the RNA-seq experiment in such stage –this is a low stringent criteria,
see section 2.2.2. Very similar results were found when considering only
genes that have a maximal expression level (over all stages) that is at least
twice (or four times) its minimal expression level (Figure A.7). Similar
results are also found if in each stage the genes that have two or more
transcript reads (Figure A.8, see Methods, section 2.2.2, Medium strin-
gent criterion) or ten or more Figure A.9, see Methods, section 2.2.2, High
stringent criterion) were considered. In this case, the stages with maxi-
mum and minimum ωa, ωna and ω are the same that in the previous
analyses, but the overall temporal profile is smoother. The comparison
of these results with the original analyses depicted above indicates that
the conservation of mid and late embryonic development (low ω and
ωna) is stronger in genes with high expression levels than those with
low expression levels (Figures A.9C and A.9D), in agreement with previ-
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ous reports of slower rates of evolutionary change in strongly expressed
genes (Pal et al., 2001).

accounting for the immune system and testis-related genes. Im-
mune system and testis-related genes have been reported to be under
higher rates of adaptation than other genes in a number of publications
(Pröschel, Zhang, and Parsch, 2006; Haerty et al., 2007; Obbard et al.,
2009). It was investigated whether the results can be explained by the
testis and immune genes alone. Our results are roughly the same when
excluding genes related with the immune system and sperm-related
genes (Figure A.10), so the temporal pattern of conservation and adap-
tation and the high rates of substitution observed are not due to these
genes.
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Figure 3.9 Temporal pattern of the four selective regimes indexes estimated

with DFE-alpha (ωa, α, ωna and ω), P0 and TDI. A. ωa, the rate of adaptive

non-synonymous substitutions relative to the mutation rate. B. α, the proportion

of base substitutions fixed by natural selection. C. ωna, the rate of non-adaptive

non-synonymous substitutions relative to the mutation rate. D.ω, the rate of non-

synonymous substitutions relative to the mutation rate. E. Proportion of effectively

neutral mutations. F. Transcriptome divergence index (TDI). Each boxplot (A-E, 100

bootstrap replicates per stage) in a plot is calculated for a randomly drawn sample of

the set of genes expressed in a stage with replacement. The solid line going through

the boxplot is inferred by LOESS. For the male and female stages the line is simply

a linear regression. The dashed line shows the mean value of each statistic for the

genes that are expressed in all stages (again with 100 bootstrap replicates). The TDI

is the ω of each gene weighted by its relative expression in each stage (see Meth-

ods, section 2.2.4). The embryonic stages are named by the hour’s intervals (from 0h

to 24h), the larval stages are the first instar (L1), second instar (L2) and third instar

(L3). The L3 stages are subdivided into the first 12 hours (L3-12h) and several puff

stages (L3-PS1 to L3-PS7). WPP is the white pre-pupae stage. The pupal stages with

RNA-seq are phanerocephalic pupa, 15h (P5), 25.6 hours pupa (P6), yellow pharate,

50.4 hours (P8), amber eye-pharate, 74.6 hours (P9-10), greenmeconiumpharate, 96

hours (P15). Adult stages are 1, 5 and 30 days after eclosion (1 day, 5 days and 30

days). Number of genes analyzed are in Table B.1.
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3.3.2. Gene expression profile clustering

There are at least three different scenarios that could explain the ob-
served temporal pattern of change in the estimated selective regimes. In
the case of ωa for example, it could be that a subset of genes with high
ωa is expressed just with the observed temporal pattern. Alternatively,
it could be that each of the time periods with high ωa would express a
distinct group of genes that have high levels of adaptive substitutions. It
could also be that no simple correspondence exists between the high ωa

in a time period and the expression of a specific subset of genes in it.

Figure 3.10 Selective regimes (ω, ωa, ωna and α) estimated using DFE-alpha

over development clusters. A.ω for each cluster. B.ωa for each cluster. C.ωna for

each cluster. D.α for each cluster. Each point in the plots is calculated for a randomly

drawn sample of the set of genes in each cluster with replacement (100 bootstrap

replicates per cluster). Number of genes analyzed in Table 2.3. Permutation p-values

are shown in Table B.18.

To explore these three possibilities, all the analyzed genes were cate-
gorized into classes based on their temporal profiles of expression. To
do that, an unsupervised soft clustering algorithm was used (Futschik
and Carlisle, 2005) as explained in the Methods (section 2.2.2). Genes
within each temporal expression class show relatively similar changes in
gene expression levels over time. Eight such classes were considered for
embryonic development (Figure 2.7, Table 2.3) and nine classes for the
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whole life cycle (Figure A.1, Table B.9). For the embryonic development,
clusters 1 and 2 are the ones showing the highest significant ωa and ω

compared to the other clusters (cluster 1: ω: p-value < 0.001; ωa: p-value
= 0.008; cluster 2: ω: p-value < 0.001; ωa: p-value = 0.059, Figure 3.10B
and 3.10E). These clusters correspond to the genes that are expressed at
high levels in the earliest development and that rapidly decrease their
expression to very low levels. ωa, ω and α values in clusters 1 and 2 are
larger than those in the first three developmental stages and, thus, it is
likely that the genes in these clusters are responsible for the high ωa, ω,
ωna and α values in the earliest development. The decline in the values
of these selection statistics over early development would then just be
a simple reflection of the decrease in expression of the genes in those
clusters over time. Cluster 8 also shows larger ω than the ones found
in the other clusters (permutation test, ω: p-value < 0.001). Cluster 8 is
composed of genes whose expression increases only in the last stages of
embryonic development. This high ωa cannot be detected when directly
analyzing the genes in each stage because the other genes expressed in
these late stages have lower ω values, as it can be seen for cluster 5,
which expresses genes from the 10 hour onwards and are constrained.
Thus, the temporal pattern of change in the selection statistics seems to
come from the temporal dynamics of expression of three different sets
of genes (those of cluster 1, 2 and 8). Table B.18 contains the p-values.
Similar results were found when the clustering was done over the whole
life cycle (Figure A.11, Table B.19).
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3.3.3. Genomic features correlation

The previous correlations between the population statistics (α, ωa, ωna

and ω) and the genomic features (section 3.2) are extended to the devel-
opmental level by assessing how these genomic features change during
time when considering the genes expressed in different developmental
stages.

Genomic features exhibit a temporal pattern that either mirror that of
ωa or exhibit the opposite pattern that of ωa (Figure 3.11). To analyze
these relationships, the correlation between the average ωa of each stage
and the average of each genomic feature by stage was calculated (Table
3.4). Gene size, number of exons, Fop and number of transcripts per gene
follow a temporal pattern that is the opposite of that of ωa. Intron length
also shows a temporal pattern opposite to that of ωa except that no clear
differences between stages are found after embryonic development. The
intergenic distance shows a temporal pattern similar to that of ωa, except
that this distance is low in the earliest stages in which ωa is high. The
average expression bias shows a temporal pattern similar to that of ωa

except for an overall increase over time. The average expression level
simply decreases over developmental time and the life cycle. The same
correlations are found when 4-fold degenerated sites were used as a
proxy for the mutation rate (Table B.20 and Figure A.12).

Table 3.4 Spearman’s correlations betweenωa and genomic features.

Genomic feature Relation withωa
Correlation (r2) for fe-

males (p)

Correlation (r2) for

males (p)

Intron length Negative 0.802 (1.12×10-6) 0.808 (1.08×10-6)

Gene size Negative 0.731 (1.56×10-6) 0.764 (1.39×10-6)

Number of exons Negative 0.862 (6.53×10-7) 0.886 (4.82×10-7)

Number of transcripts Negative 0.874 (5.70×10-7) 0.870 (5.94×10-7)

Fop Negative 0.759 (1.42×10-6) 0.688 (1.71×10-6)

Expression bias Positive 0.508 (4.89×10-5) 0.552 (1.58×10-5)

Recombination Positive 0.330 (2.07×10-3) 0.334 (1.91×10-3)

Intergenic distance N.S. 0.043 (0.299) 0.082 (0.148)

Expression level Negative 0.303 (0.003) 0.412 (4.19×10-4)

Phylogenetic age Positive 0.700 (1.67×10-6) 0.649 (2.09×10-6)

See Figure A.13 for the correlations. Spearman’s correlations performed between each stage’s average ωa

and the average of each genomic feature in each stage. Females andmales are separated because their gene

expression is measured separately in the last three stages in the modENCODE.

A similar pattern is found when the genomic features were analyzed
in the gene expression clusters for the embryo development and life
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cycle (see Figure A.14 and p-values in Table B.21 and Figure A.15 and
p-values in Table B.22, respectively). That indicates that those genes that
are expressed in clusters showing selective constraint exhibit particular
features. For example, cluster 5, a set of genes expressed specifically in
mid-development that appear to be one of the most constrained set of
genes (Figure 3.10A), expresses on average, genes that are longer, with
more exons and transcripts (Figure A.14). On the contrary, cluster 8,
a set of genes specifically expressed at the end of the development, is
relaxed (Figure 3.10A), and the genes expressed are shorter, with short
introns and fewer exons and transcripts (Figure A.14).
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Figure3.11Temporal patternof six genomic featuresoverdevelopmental stages.

Lines and stages as in Figure 3.9. A. Gene size is the coding sequences lengthof a gene

in base pairs. B. Exons are the number of exons for the genes expressed in a stage. C.

Transcripts are the number of different transcripts in each gene expressed in a stage.

D. Fop is a measure of codon usage bias: the ratio of optimal codons to synonymous

codons. E. Intron length is the average distance, in bases, between the exons of a

gene. F. The expression bias is a measure of how much the expression of a gene is

restricted to one or few stages estimated as Equation 2.7 (seeMethods, section 2.2.4).

G. Recombination rate is estimated in 100 kb non-overlapping windows. H. Expres-

sion level is the average expression (as the logarithm of the RPKM counts) of a gene

in over all stages. Mean sampling distributionwas obtained by resampling 100 times

with replacement the genes from each stage. See Table B.1 for the genes considered

in each stage. The same patterns are found when using 4-fold data, see Figure A.12.
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3.3.4. Analysis of maternal, maternal-zygotic and zygotic

genes

To further explore the high ωa and ωna values in the earliest stages,
maternal, maternal-zygotic and zygotic genes were analyzed separately.
For that purpose, a microarray study was used (Thomsen et al., 2010).
This study categorized developmental genes as maternal, zygotic and
maternal-zygotic by determining which transcripts are already present
in the egg and which ones are not. Maternal genes are defined as genes
which mRNA is shed within the egg by the mother and are never tran-
scribed by the embryo. Thus, the embryo contains mRNAs coming from
two different genomes, the one of the mother and the one of the embryo.
Maternal-zygotic genes are genes which mRNA is shed in the egg by the
mother but are also transcribed by the embryo. Zygotic genes are genes
which mRNA is not shed in the egg by the mother but transcribed by the
embryo itself. To compare the selective regimes of the three categories
a permutation test was applied (see Methods for details, section 2.3.1).
No significant differences between maternal, maternal-zygotic and zy-
gotic genes were found for ωa (Figure 3.12). This implies that the large
ωa of the earliest stages is not due to any specific gene category. Con-
sistent with the hypothesis of lower efficiency of natural selection on
maternal genes both ω (p-value = 0.024) and ωna (p-value = 0.003) were
higher for maternal genes than for zygotic genes (and intermediate for
the maternal-zygotic genes). On the contrary, zygotic genes show lower
values than expected in the permutation test for ωa (p-value = 0.035) and
ωna (p-value = 0.036). Table B.23 contains permutation p-values.

Finally, this analysis was repeated but using the genes that are in com-
mon with the genes expressed in the first fours hours according to mod-
ENCODE, to check whether maternal genes account for the high ωna

observed in Figure 3.9). Results were very similar, indicating that the
high ωna values in the earliest stages are probably due to the maternal
genes in these stages (Figure A.16).
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Figure 3.12 Selective regimes (ωa, ω, ωna and α) for maternal, maternal-

zygotic and zygotic genes. Maternal genes are those genes which mRNA is shed

by the mother in the egg and are never zygotically transcribed, maternal-zygotic are

those genes which mRNA is present in the egg but that are also transcribed by the

zygote. Zygotic genes are genes which mRNA are not shed in the egg by the mother.

A.ωa is not statistically different between these gene categories. B.ω is significantly

higher in maternal genes than in the other two gene categories (permutation test, p-

value = 0.024). C.ωna is significantly higher in maternal genes than in the other two

gene categories (permutation test, p-value = 0.003). D.α ismarginally lower inmater-

nal genes compared to the other two categories. Each point in a plot (100 bootstrap

replicates per group) is calculated for a randomly drawn sample of the set of genes

in each gene category. The number of genes analyzed in each category is shown in

Table 2.4. P-values in table B.23.
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3.3.5. Adaptation over the whole embryo’s anatomy

In this last analysis, we aim to measure adaptation and constraint in the
whole embryo anatomy. The integration of transcriptomics and popula-
tion genomics can be used to understand the genetic and developmental
basis of the phenotypic change.

From the BDGP database (Tomancak et al., 2007), genes that are ex-
pressed in 18 different anatomical organs during six different embryo
developmental stages were collected. Then, this data was integrated
with population genomic data to infer adaptation and constraint in dif-
ferent body parts.

3.3.6. A novel permutation test approach

From a statistical point of view, analyzing this anatomical data is chal-
lenging. First, a different number of genes is expressed in each anatom-
ical term. Second, a proportion of these genes are shared between
anatomical terms and/or stages. The anatomical structures are not in-
dependent and therefore a statistical test taking into account this de-
pendency should be applied. Methods correcting for multiple testing
problems (e.g., Bonferroni) are too conservative and the interpretation
of a finding depends on the number of performed tests.

We have developed a novel permutation test approach that implies the
advantages of the classical permutation test procedure and, addition-
ally, overcomes the problem of multiple testing. The main advantages
of permutation tests are that they can be applied to any statistic and
the generated null distribution is empirical, i.e., is obtained by using the
observed data (Berry, Mielke, and Johnston, 2016). Our innovation for
analyzing this anatomical data consists on generating the expected null
distribution simultaneously for all anatomical terms. As a result, in each
permuted dataset, the number of genes co-expressed between anatom-
ical terms stays as in the original data. See Methods, section 2.3.2, for
details.
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3.3.7. Action of natural selection at the germ layer level

Differences in the selective regimes experienced by the tissues derived
from each of the three primary germ layers of the D. melanogaster embryo
were assessed. These germ layers constitute the first three tissues in
embryonic development: ectoderm, mesoderm, and endoderm. Later
embryonic and larval tissues develop from one of the three germ layers.
The set of genes that are exclusively expressed in the derivatives of each
germ layer was analyzed. Therefore, genes which expression overlapped
for two or three layers were excluded from the analysis. The number of
genes analyzed for each germ layer is provided in Table 2.6.

The set of genes exclusively expressed in the ectoderm-derived tissues
are more constrained than those expressed in the other two layers (low
ω, permutation test, p-value = 0.004). On the other hand, the set of genes
expressed in the tissues derived from the mesoderm show higher rates
of adaptive substitutions (high ωa, permutation test, p-value < 0.001).
Finally, the set of genes expressed exclusively in the tissues derived from
the endoderm show a relative relaxation of selection compared to the
other two layers (high ωna, permutation test, p-value = 0.046).

Neither mutation, recombination nor gene density rates differ between
the genes expressed in each germ layer. Hence, these genome variables
do not seem to bias our measurements of differential selection (analysis
of variance, Tables B.24–B.26).

3.3.8. Selection at the anatomical structure level

The set of genes expressed in 18 anatomical structure reported in the
BDGP (Tomancak et al., 2007) was analyzed. A gene was counted as ex-
pressed in a given anatomical structure if it was expressed in at least one
developmental stage of the structure. The studied anatomical structures
were "Amnioserosa/Yolk", "Procephalic Ectoderm/CNS", "Peripheral
Nervous System (PNS)", "Foregut", "Ectoderm/Epidermis", "Tracheal
System", "Salivary Gland", "Hindgut/Malpighian tubules", "Mesoder-
m/Muscle", "Head Mesoderm/Circulatory", System/Fat body", "Gar-
land cells/Plasmatocytes/Ring gland", "Germ line", and "Endoder-
m/Midgut". In addition, genes that are expressed ubiquitously or that
are present already in the egg were also analyzed. These latter genes
were categorized either as "Ubiquitous" or "Maternal" according to the
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original BDGP database (Tomancak et al., 2007). The number of genes
per anatomical structure can be found in Table 2.5. A visual representa-
tion can be seen in Figure 2.8.

All four analyzed selective regimes –ω, ωa, ωna and α– vary through
the embryo anatomy (Figure 3.13). The genes expressed in the anatom-
ical structure "Garland cells/Plasmatocytes/Ring gland" and these ex-
pressed in the "Germ line" exhibit high rates of adaptive substitution
(higher than the expected rate in random permutations of the genes in
the database: high ωa, permutation test, p-value = 0.018 and high ωa,
permutation test, p-value = 0.018, respectively). The same was found for
those genes expressed in the "Head mesoderm/Circulatory system/Fat
body", but only with a marginal significance (high ωa, permutation test,
p-value = 0.052).

Figure 3.13 Number of analyzed genes for each anatomical term and evidence

of selection. Red: relaxation of selection (high fixation of non-adaptive substitu-

tions); blue: selective constraint (low fixation of non-synonymous substitutions);

green: positive selection (high fixation of adaptive substitutions); dark grey: no ev-

idence of selection; light grey: not analyzed, because the minimum number of 150

genes was not reached.

Contrastingly, several anatomical structures of the digestive system ex-
hibit a high constraint in the genes they express (higher than expected
from the permutation test). This is the case of the "Foregut" (low ω, per-
mutation test, p-value < 0.001, low ωna, p-value = 0.012), the "Hindgut/-
Malpighian tubules" (low ω, permutation test, p-value < 0.001, low ωna,
p-value = 0.018), the "Endoderm/Midgut" (low ω, permutation test, p-
value < 0.001, low ωna, p-value = 0.018, low ωa, p-value = 0.024) and the
"Salivary gland" (low ω, permutation test, p-value < 0.001). In several
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neuroectodermic anatomical structures, the set of genes expressed also
showed higher selective constraint than expected by chance alone. This
is the case of the peripheral nervous system (PNS) (low ω, permutation
test, p-value < 0.001, low ωa, p-value = 0.016) and the "Procephalic Ecto-
derm/CNS" (low ω, permutation test, p-value = 0.004, low ωna, p-value
< 0.001). Higher constraint was also found in the "Ectoderm/Epidermis"
(low ω, permutation test, p-value < 0.001, low ωna, p-value = 0.030, low
ωa, p-value = 0.024) and the "Mesoderm/Muscle" (low ω, permutation
test, p-value = 0.016).

Finally, the "Maternal" genes category exhibit higher values of relaxed
selection (high ωna, permutation test, p-value = 0.026), as it was found
in the previous study (section 3.3.4). The set of genes in the anatomical
structures "Ubiquitous" and "Amnioserosa" genes do not show evidence
of any preferential regime of selection.

Very similar results were found when short introns, instead of 4-fold
degenerated sites, were used to estimate the mutation rate (Table B.27).
Neither recombination rates nor gene density or mutation rates differ
between the genes expressed in each anatomical structure (analysis of
variance, Tables B.28-B.30).

3.3.9. Analysis by embryo developmental stages

The previous anatomical structures were further analyzed by splitting
them between stages. In other words, each set of genes expressed in
an anatomical structure and stage were analyzed independently (even
for the genes expressed in the same anatomical structure at some other
stage). A total of six developmental stages that span the first 16 hours of
embryo development were analyzed: stage 1 (1–3), stage 2 (4–6), stage
3 (7–8), stage 4 (9–10), stage 5 (11–12), and stage 6 (13–16). The list of
genes analyzed by anatomical structure and developmental stage can
be found in Table B.10. Figure 3.14 shows the results obtained in this
analysis. Table B.31, shows the p-values of the permutation tests for each
anatomical structure, and Figure 3.15, shows a schematic illustration of
the results.

In general, the results are very similar to the ones in the previous sec-
tion. First of all, evidence of relaxation is only found in the first stage,
where maternal genes are expressed. The following stages mainly ex-
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hibit evidence of selective constraint in most structures. The anatomical
structures in stage 13–16 (an embryonic stage close to the larval stage)
are the ones that most often exhibit ωa and ω values which are signifi-
cantly different from the ones expected by chance.

Very similar results were found for most of the anatomical structures
when short introns were used as a proxy to estimate the neutral mutation
rate (Table B.32).

Figure 3.14 Anatomical structures under preponderant selection for six embryo

developmental stages. Stage 1: Relaxation on "Maternal". Stage 2: Selective con-

straint on "Ectoderm/Epidermis" and "Procephalic ectoderm/CNS" and positive se-

lectionon"Germ line."Stage3: Selectiveconstrainton the Intestinal tract ("Hindgut/-

Malpighian tubules" and "Endoderm/Midgut") and positive selection on "Germ line".

Stage 4: Selective constraint on "Mesoderm/Muscle" and on the Intestinal tract

("Hindgut/Malpighian tubules" and "Endoderm/Midgut"). Stage 5: Selective con-

straint on Intestinal tract ("Hindgut/Malpighian tubules", "Foregut" and "Endoder-

m/Midgut"), "Procephalic ectoderm/CNS" and "Tracheal system". Stage 6: Selec-

tive constraint on "PNS", "Procephalic ectoderm/CNS", "Ectoderm/Epidermis", In-

testinal tract ("Hindgut/Malpighian tubules", "Foregut", "Salivary glands" and "En-

doderm/Midgut"), and positive selection on "Head mesoderm/Circulatory system/-

Fat body" and "Germ line". Not shown: Stage 3: Selective constraint on "Ubiquitous"

and "Ectoderm/Epidermis". Stage 4: Selective constraint on "Ubiquitous" and "Ecto-

derm/Epidermis". Stage 5: Selective constraint on "Ubiquitous", "Ectoderm/Epider-

mis", "Head mesoderm/Circulatory system/Fat Body". Stage 6: Selective constraint

on "Ubiquitous", "Mesoderm/Muscle" and positive selection on "Garland/Plasmato-

cytes/Ring gland." See text for p-values and Figure 3.15 for a schematic version of

this figure. Because several anatomical structures under constraint overlap in the

figure, someare represented in darkblue and some in light blue to facilitate visualiza-

tion. Abbreviations: amg, anteriormidgut rudiment; pc, pole cells; hg, hindgut; pmg,

posterior midgut rudiment; hms, head mesoderm; ms, mesoderm; mp, Malpighian

tubules; fb, fat body; mg, midgut; go, gonads; sg, salivary glands. Images modified

from Hartenstein (1993) with permission.
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Figure 3.15 Summary of evidence of selection on the genes expressed in each

anatomical structure among stages. Schematic version of Figure 3.14. Color pat-

tering as in Figure 3.13.

3.3.10. Relationship between phylogenetic age, Fop,
expression bias and adaptation

The relationship between the phylogenetic age (using Drost, 2014 data),
the expression bias and expression level (using modENCODE RNA-seq
expression data, Graveley et al., 2011), the frequency of optimum codons
(Fop), and the different selection regimes was analyzed. Additionally,
the set of genes expressed in the 18 anatomical structures were divided
into eight groups depending on the number of anatomical structures in
which they are expressed (1, 2,..., 7, 8 or more). These values can be
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taken as a rough measurement of the pleiotropic effects of a gene on
embryonic anatomy. This index is called spatial pleiotropy.

As shown in Figure 3.16, the anatomical structures with the highest rates
of adaptive substitutions are not the anatomical structures with the low-
est Fop, newest genes, or highest expression bias as it was expected ac-
cording to the patterns found in section 3.2. Therefore, these variables
do not seem to explain the differences in the rates of adaptive substitu-
tion found between anatomical structures.

Figure 3.16 Mean resampling of Fop, phylogenetic age, expression bias and spa-
tial pleiotropy in each anatomical structure. A. Fop mean resampling. B. Phy-

logenetic age mean resampling. C. Expression bias mean resampling. D. Spatial

pleiotropy mean resampling. Resampling of each anatomical structure is estimated

by resampling with replacement 100 times the genes in each anatomical structure.

129



RESULTS

3.3.11. Relationship between phylogenetic age, Fop and
expression bias

To acquire a better understanding of the results in the previous section,
the relationship between the phylogenetic age, expression bias, and Fop
of the analyzed genes was assessed.

A positive correlation between phylogenetic age and expression bias was
found (Pearson’s ρ = 0.49, p-value = 0.039, Figure 3.17). Thus, younger
genes tend to be expressed in more specific stages than phylogenetically
older genes, which are more broadly expressed through stages. Fur-
thermore, genes expressed in anatomical structures derived from the
endoderm are phylogenetically the oldest on average, whereas those de-
rived from the ectoderm express the youngest genes (except for the set
of genes expressed in the salivary glands).

The "Segmental/GAP" anatomical structure is also exceptional in ex-
pressing the youngest genes (note that during development these genes
are expressed before the germ layers are formed). A negative correlation
is found between phylogenetic age and Fop (Pearson’s ρ = -0.698, p-value
= 1.27×10-3). The salivary glands stand out for having one of the highest
Fop values.

3.3.12. Relationship between pleiotropy, phylogenetic age,

Fop, expression bias and adaptation

The relationship between the spatial pleiotropy and the phylogenetic
age, Fop, and expression bias was analyzed.

A negative correlation between the spatial pleiotropy and the phyloge-
netic age was found (Figure 3.18A, Pearson’s ρ = 0.777, p-value = 0.023).
A negative correlation was also found for expression bias (Figure 3.18B,
Pearson’s ρ = -0.9 p-value = 0.002). Finally, a positive correlation was
found with Fop (Figure 3.18C, Pearson’s ρ = 0.926, p-value = 9.51×10-4)

When the patterns of selective regimes were analyzed, a negative corre-
lation between spatial pleiotropy and both ω (Figure 3.19A, Pearson’s
ρ = -0.89, p-value = 0.003) and ωna (Figure 3.19B, Pearson’s ρ = -0.749,
p-value = 0.032) was found.
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Figure 3.17Relationship betweenphylogenetic age and expression bias and Fop.
A. Positive correlation between phylogenetic age and expression bias. B. Negative

correlationbetweenphylogenetic ageandFop. Eachdot represents themeanof each

anatomical structure. Each color represents the germ layer of origin of each anatom-

ical structure: blue: ectoderm origin; yellow: endoderm origin; green: mesoderm

origin; red: not originated from the germ layers.

Thus, genes expressed in a low number of anatomical structures seem
to be less selectively constrained than genes expressed in a high number
of anatomical structures. No correlation was found between ωa and the
number of anatomical structures in which a gene is expressed (Figure
3.19C). As shown in Figure 3.16D, the anatomical structures with the
highest ωa are not the ones where lowest spatial pleiotropy. Therefore,
these results are not simply explainable from differences in Fop, phy-
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logenetic age, spatial pleiotropy or expression bias among anatomical
structures.

Figure 3.18 Relationship between spatial pleiotropy, phylogenetic age, expres-

sionbias andFop. Thegenedata setwasdivided into eight groupsdependingon the
number of anatomical structures in which they are expressed (1, 2, ..., 7, 8 or more).

Each group is obtained by resampling 100 times with replacement the genes of each

group. A. Negative correlation between the spatial pleiotropy and phylogenetic age.

B. Negative correlation between spatial pleiotropy and expression bias. C. Positive

correlation between the spatial pleiotropy and the Fop.
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Figure 3.19 Relationship between spatial pleiotropy andω,ωna andωa. A. A

negative correlation betweenω and spatial pleiotropy is found. B. A negative corre-

lation between ωna and spatial pleiotropy is found. C. No correlation between ωa

and the gene groups is found. Each group is estimated by resampling 100 times with

replacement the genes in each group.
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D I S C U S S I O N





4Discussion

Molecular population genetics was born half a century ago. During
these years, great progress and changes in data acquisition and theoreti-
cal developments have revolutionized the field (Casillas and Barbadilla,
2017). Today, this genomic revolution has provided us with enough de-
tailed population genetic data, which in combination with sophisticated
statistical methodologies, allows us the large-scale analysis of genomic
patterns of DNA variation (Casillas and Barbadilla, 2017).

This thesis represents a complete analysis of the three population ge-
nomics levels in a species (Figure 4.1): the DNA variation level, the
genomic level and the multiomic (integrative) level (Casillas and Bar-
badilla, 2017). These three levels are consecutive and interconnected
since every level acts as the input for the subsequent one. The first part
of the thesis consisted of the evaluation of a set of MKT statistics, which
required first the compilation of the necessary population genomics data
and the estimation and description of selection parameters. In the sec-
ond part, the previous estimates were correlated with features estimated
along the genome to assess their relative importance on the molecular

Figure 4.1 The inquiry power of population genomics approach. Representation

of three population genomics level, emphasizing the contributions provided by the

BGD group and the present thesis. Contributions [1] Casillas et al. (2018); [2] Hervas

et al. (2017); [3] Murga-Moreno et al. (2018); [4] Castellano et al. (2015); [5] Coronado-

Zamora et al. (submitted); [6] Salvador-Martínez et al. (2018).
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evolutionary rate of protein-coding genes. Ultimately, in the third part,
the patterns of genomic diversity were integrated with other multiple
-omics layers across developmental time and space. On the next pages,
the main results and impact of the findings are discussed.

4.1. Population genomics at the DNA variation

level

The availability of molecular techniques and bioinformatic tools that
makes the study of genome variation within and between species pos-
sible has undoubtedly been one of the greatest advances in this ge-
nomic revolution (Charlesworth and Charlesworth, 2017). Nowadays,
NGS technologies allow the fast and cheap sequencing of thousands of
genomes. This huge amount of data, together with sophisticated meth-
ods to analyze it, can reveal the meaning of the variability existing at the
DNA sequence level.

One of the most comprehensive and complete population genomics com-
munity resources, the Drosophila Genetic Reference Panel (DGRP), has
been used for testing molecular population genetics hypotheses and es-
timating the fraction of adaptive evolution, α. During the last years, sev-
eral statistical methods have been developed for quantifying the amount
of selection in a genome using polymorphism and divergence data. The
McDonald and Kreitman test (McDonald and Kreitman, 1991) and its
derivatives are extensively used to detect the signature of natural selec-
tion at the molecular level. Their main advantages and more importantly,
their limitations, are discussed in the following section 4.1.1.

4.1.1. Estimating the adaptive rate in D. melanogaster with
MKT-basedmethods

The first analysis of the thesis consisted in the general description of the
patterns of polymorphism and divergence in a total of 13,753 protein-
coding genes of a North American population of D. melanogaster. 76.38%
of the genes exhibit variation both in polymorphism and in divergence,
an indispensable requirement for applying the MKT and for quantifying
the proportion of adaptive substitutions (α).
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There are four important factors that must be taken into account when
performing an MKT, as they can imply a rejection of the neutral hypoth-
esis and significantly affect the estimates of adaptive evolution. Those
factors are: (i) the outgroup for estimating divergence parameters, (ii)
the effect of the segregation of slightly deleterious substitutions, (iii) the
constancy of the neutral mutation rate over time and (iv) the effect of
concatenating sites. The impact of these four factors in the presented
results are thoroughly discussed in the next sections.

Impact of the chosen outgroup on the divergence estimates

The estimates of divergence were quantified in two close sister species
of D. melanogaster, D. simulans and D. yakuba. D. melanogaster and D.
simulans diverged approximately 4.3 Mya (Cutter, 2008), whereas the
divergence time with D. yakuba is longer, 7.4 Mya (Tamura, Subrama-
nian, and Kumar, 2004). Keightley and Eyre-Walker (2012) determined
that estimating the rate of adaptive evolution can be biased especially
when the divergence time between two species is low relative to within-
species variation. As Keightley and Eyre-Walker (2012) summarize, this
bias can be due to (i) an erroneous attribution of polymorphism to di-
vergence (Figure 4.2), (ii) ancestral polymorphism contributing to diver-
gence (Figure 4.2) and (iii) differences in the rate of fixation of neutral
and adaptive mutations. The first bias can happen because, typically,
divergence is calculated by randomly selecting an allele from the focal
species and comparing it to the allele in the outgroup species (for which
generally just one sequence is available). However, some differences cat-
egorized as divergent could be, in reality, due to polymorphisms. The
problem can be partially addressed taking into account all available al-
leles, as it is unlikely that a polymorphism will appear as fixed in a
large sample of sequences. Inflating divergence by this polymorphism
misattribution can lead to an overestimation of the rate of adaptive evo-
lution, α (Keightley and Eyre-Walker, 2012). An example of the second
case should be the segregation of a slightly deleterious substitution. It
is more likely that a slightly deleterious substitution segregating at the
time of the divergence will be lost in one lineage and continue segregat-
ing in the other one. As a consequence, ancestral polymorphism originat-
ing from slightly deleterious substitutions contribute more to divergence
than neutral mutations, leading to an overestimation of α (Keightley and
Eyre-Walker, 2012). Again, this bias can be partially solved taking into
account all possible alleles. However, as noted above, polymorphism
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data is usually only available for the focal species and not for the out-
group. Furthermore, unlike the minor allele count that can be directly
observed from sequence polymorphism data, the inference of the an-
cestral state requires maximum parsimony methods that can potentially
produce misleading results Keightley and Jackson, 2018. In the third sce-
nario, advantageous mutations reach fixation faster than neutral ones,
inflating the adaptive estimates in the short term (Keightley and Eyre-
Walker, 2012) –this scenario is further argued when the neutral mutation
rate is discussed below.

The fact that a neutrality index (NI) of 0.77 was obtained when using
D. simulans as outgroup and an NI of 1.06 when using D. yakuba, can
be explained in three ways. First, D. simulans has experienced more
adaptive evolution (i.e. DN is higher than expected), which is a rather
straightforward explanation. Second, the estimation is affected by the
short divergence time. According to Bierne and Eyre-Walker (2004), be-
cause the effective population size of D. simulans is higher than that of D.
melanogaster, the former had less time of fixation (the coalescence time
is on average longer). Therefore, neutral mutations will have less time
to fix in the simulans lineage. In contrast to neutral mutations, bene-
ficial mutations spread much more rapidly through a population than
neutral do. Therefore, using D. simulans will likely lead to inflated α

estimations (Bierne and Eyre-Walker, 2004). However, this reason seems
to contradict the average negative α that was obtained when the MKT
was performed in individual protein-coding genes (Table 3.1). Then, the
third and more plausible explanation is that the gene heterogeneity is
high in the D. melanogaster-D. simulans gene dataset. That is, there are
large differences in the number of non-synonymous substitutions (DN)
between genes, leading to the Simpson’s paradox (see section 1.1.4). In
fact, using the weighted NI statistic yields a NITG of 0.98, a more reason-
able value according to the average α.

The recent availability of genomic data of a North American D. simulans
population (Signor, New, and Nuzhdin, 2018) represents a valuable com-
plement to the DGRP and other D. melanogaster panels. Such resources
can reduce the bias associated with polymorphisms contributing to ap-
parent divergence, although polymorphism may still appear to be fixed
in a sample of sequences (Keightley and Eyre-Walker, 2012).

Tataru et al. (2017) recently presented an approach that proposes a hier-
archical probabilistic method to infer α from polymorphism data alone
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without using divergence data. This is a promising complement to ob-
tain better estimates of adaptive molecular evolution independently of
an outgroup. On the opposite, Keightley and Jackson (2018) proposed
a maximum-likelihood method to estimate the SFS of a focal species us-
ing information from multiple outgroups (up to three) while assuming
simple models of nucleotide substitution.

Figure 4.2 Representation of two

possible misatributions of polymor-

phism to divergence. The sequences

used for the computation of diver-

gence are represented in black. In

gray, the ones that are not used and

provide additional information on the

alleles status.

Segregation of slightly deleterious substitutions

Another important factor affecting the estimates of adaptive evolution
is the segregation of slightly deleterious substitutions, as it has been al-
ready introduced in section 1.1.4. The impact of slightly deleterious sub-
stitutions has been assessed comparing five MKT approaches. Slightly
deleterious substitutions violate the assumption that only neutral mu-
tations contribute to polymorphism in an MKT. Several methods (Tem-
pleton, 1996; Akashi, 1999; Fay, Wyckoff, and Wu, 2001; Bustamante et
al., 2002; Smith and Eyre-Walker, 2002; Sawyer et al., 2003; Bierne and
Eyre-Walker, 2004; Bustamante et al., 2005; Mackay et al., 2012; Messer
and Petrov, 2013) have attempted to circumvent this effect by excluding
or taking into account the polymorphism at low frequencies, because
slightly deleterious substitutions segregate at a low level. The MKT-
based methods that have been compared in the present thesis are the
standard MKT McDonald and Kreitman, 1991, the FWW method (Fay,
Wyckoff, and Wu, 2001), the eMKT (Mackay et al., 2012), the asymp-
totic MK (Messer and Petrov, 2013) and a derived method developed by
the BGD group, iMKT. Within the MKT-based methods, the DFE-alpha
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approach was not included. The reason was that is a sophisticated likeli-
hood approach that also models demography, in contrast to the previous
ones. However, as DFE-alpha is widely used for the estimation of the
proportion of adaptive substitutions, is discussed in section 4.1.2.

The comparative analysis of the MKT-derived methods allows us to con-
clude the following: first, the assumptions of the standard MKT do not
hold for D. melanogaster data. As Bierne and Eyre-Walker (2004) pointed
out, the use of D. melanogaster data is likely underestimating α, unless
a methodology correcting for the segregation of slightly deleterious mu-
tations is used. The FWW correction (Fay, Wyckoff, and Wu, 2001) ex-
clude polymorphisms in both the neutral and the selected site classes
(PS, PN) at frequencies below a given threshold. However, this method
is still expected to lead to biased estimates because slightly deleteri-
ous substitutions can still segregate at a frequency above the threshold
(Charlesworth and Eyre-Walker, 2008), and removing data implies the
loss of statistical power. The eMKT proposed by Mackay et al. (2012),
instead of removing the polymorphism at low frequencies, separates
PN, the count of segregating sites in the non-synonymous class, into
the number of neutral variants and the number of weakly deleterious
variants. This allows the evaluation of adaptive and weakly deleterious
independently while increasing the statistical power to detect selection.
The asymptotic method proposed by Messer and Petrov (2013) is con-
ceptually the best because it allows an efficient removal of the slightly
deleterious substitutions in all frequencies and not below a conventional
threshold as in the FWW and eMKT methods. On the other hand,
this procedure lacks power when applied to individual genes. Even
though the number of differences between D. melanogaster and its out-
group species and within D. melanogaster is high, it is not enough for the
iMKT to work for single genes. For this reason, such methodologies use
concatenated sets of genes to estimate the value of α overall (Boyko et al.,
2008; Eyre-Walker and Keightley, 2009). The gene concatenation process
is discussed in detail in the following section.

Simulations via SLiM 2 has been conducted as a benchmark to compare
the performance of the mentioned methodologies under different evolu-
tionary scenarios. One important advantage of performing simulations
is that a predefined α value is known, and therefore the methodology
estimating an α value closest to this known value can be assessed. iMKT
is the best method in terms of estimating the most accurate α value,
but its performance decreases in simulations which generated less poly-
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morphism (a shorter genomic region, less generational time or lower
mutation rate). In those cases, iMKT performance was similar to FWW
and eMKT corrections.

Haller and Messer (2017) advise using a cutoff of [0.1,0.9], thus remov-
ing polymorphism at a frequency lower than 0.1, implicitly applying an
FWW-like correction. If the estimations are repeated without applying
this cutoff, there is almost no difference between the α values estimated
by iMKT and FWW (Figure 4.3), especially in those scenarios that pro-
duced less polymorphism. And, on top of that, the iMKT performance
diminishes in such scenarios, especially when the simulated chromo-
some is short (only 90% of the simulations runs could be analyzed by
iMKT) because the polymorphism simulated is not enough.

Constancy of the neutral mutation rate over time

One of the most unrealistic assumptions of the MKT is that the neutral
mutation rate is constant over time (Hahn, 2018), meaning that the se-
lective constraint is also constant. However, the neutral rate is heavily
affected by changes in the effective population size (Ne) (Balloux and
Lehmann, 2012; Lanfear, Kokko, and Eyre-Walker, 2014).

For an illustrative example of why neither neutral mutation rate nor
selective constraint are constant over time, one can imagine the evolu-
tionary trajectory of duplicated genes. For a newly duplicated gene, the
strength of selection is initially relaxed and then changes when a new
function is acquired, becoming under selective constraint. On the other
hand, for a single-copy gene, for example, the strength of selection may
fluctuate over time. In these cases, the MKT results can be misleading.
However, this effect is expected in general to be negligible in the MKT
for single genes because the fluctuations in the selection strength over
time should not have a directionality (Fay, Wyckoff, and Wu, 2001). At
the population level, on the contrary, persistent changes in the popu-
lation size can have a big impact on the level of sequence constraint
and therefore affect the MKT considerably. For example, if a popula-
tion has been expanding, slightly deleterious substitutions can lead to
an overestimation of α as they could have been fixed in the past (thus,
contributing to divergence) due to the larger importance of genetic drift
in small populations (Eyre-Walker and Keightley, 2009).
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Figure 4.3 Results from the five MKT approaches for 13 simulation runs con-

ducted with SLiM 2. A. Shows the averaged results from 50 replicate runs of the

baselineSLiMmodel suppliedonMesser&PetrovGitHub (seeMethods, section2.2.1).

These runs used parameter values of mutation rate µ = 10-9 per base position per

generation, chromosome length L = 107 base positions, beneficial mutation rate rb =

0.0005, beneficial mutation selection coefficient sb = 0.1, deleteriousmutation selec-

tion coefficient rd = -0.02, and time after burn-in T = 2×10
5 generations. The subse-

quent graphs (B-M) shows the results from 50 replicate runs using the non-baseline

parameter value shown in the graph title. A DAF of 20 frequency bins was used, with

an x cutoff of [0,1]. eMKT and FWW methods corrects polymorphisms below a 10%

frequency.
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Proxy for themutation rate

Due to the degeneracy of the genetic code, synonymous sites of protein-
coding genes has been considered silent and free of natural selection.
Many examples of studies using 4-fold degenerated sites are used as
a proxy for the mutation rate (e.g.: Halligan et al., 2010; Halligan et
al., 2013; Castellano et al., 2015; Phung, Huber, and Lohmueller, 2016).
However, some studies have pointed out that these sites are subject to
selection, especially due to codon usage (reviewed by Hershberg and
Petrov, 2008). In D. melanogaster, it was found that 22% of 4-fold syn-
onymous sites evolve under selective constraint (Lawrie et al., 2013).
Regardless of the reasons why 4-fold degenerated sites could be un-
der constraint, this has serious implications for the interpretation of the
dN/dS test. Specifically, it can lead to an overestimation of positive se-
lection. When 4-fold degenerate sites are constrained, the proportion of
non-synonymous sites interpreted to evolve more than the neutral ref-
erence is elevated, leading to an increased rate of false positives in the
detection of positively selected sites or genes (Künstner, Nabholz, and
Ellegren, 2011). In the case of the MKT, because it takes into account the
polymorphism, the constraint in synonymous sites would downwardly
bias the α estimations.

The analyses presented here were performed using both 4-fold degen-
erated and short intron sites as a proxy for the neutral mutation rate,
always leading to similar results. In some cases, the rate of adaptive
evolution (measured with α or ωa) was higher when 4-fold were used
compared to the same estimates using short introns. D. melanogaster has
an asymmetrical intron length distribution, with a group of short and
another of long introns (Parsch et al., 2010). Short introns appear to
be under less selective constraint than long introns (Parsch et al., 2010).
Within short introns, the least constrained sites are those falling between
the 5’ and 3’ regions of the intron which operate in splice site recogni-
tion (Halligan and Keightley, 2006). Halligan and Keightley (2006) found
that the fastest evolving intron sites are the bases 8–30 of introns �65 bp.
These findings suggest that short intron sequences may be the most ap-
propriate proxy for the neutral mutation rate. Furthermore, Parsch et al.
(2010) show that the high divergence observed in short introns is not
due to adaptive evolution. There are some limitations to the use of short
introns. First, Lawrie et al. (2013) noted that parts of the short introns
could be under selection. Second, short intron sites are not present in
all protein-coding genes, contrary to 4-fold degenerated sites. There-
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fore, gene datasets can significantly differ regarding their short intron
content (e.g., in the gene dataset used in this thesis, 6,690 out of 11,003
protein-coding genes have short introns).

The effect of concatenating data

As explained above, the process of concatenating genes to create single
evolutionary entities is a good strategy to overcome the problem of not
having enough polymorphism data to conduct an MKT. In the majority
of the performed analyses, this process does not seem to affect the re-
sults. However, there are some caveats that must be taken into account
when interpreting results obtained by this procedure.

First of all, genes that are in the same genomic context are not necessar-
ily concatenated. This is of particular importance in the case of recom-
bination because it can affect the variance of segregating sites among
regions (Hahn, 2018). Concatenated genes do not necessarily share the
same recombination context, GC-content or gene density rate, which are
factors related to the adaptive capacity of genes Castellano et al., 2015.
It is unlikely, though, that inside a gene this can have a significant ef-
fect on the MKT. But when concatenating large gene sets, the increased
variance in the number of segregating sites per gene due to both the con-
straint of the gene per se and the recombination context in which genes
lay (when there are no linked selection) can lead to a rejection of the
neutral hypothesis or a diminished statistical power do detect selection
(Hahn, 2018). As an example, the neutral site frequency spectrum (SFS)
derived from a concatenating process may significantly differ from the
one obtained from a specific gene, affecting the MKT (Hahn, 2018).

By concatenating hundreds of genes, it is more difficult to detect a signal
of positive selection if it is only happening on a few genes of the pool.
In summary, all the evolutionary forces acting differentially on different
genes contribute to the dilution of potential biological signals.

4.1.2. DFE-basedmethods: DFE-alpha

Other methods correcting for the potential biases of the MKT estimates
are based on the estimation of the DFE at functional sites (Bustamante
et al., 2002; Bustamante et al., 2005; Eyre-Walker, 2006; Eyre-Walker and
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Keightley, 2007; Keightley and Eyre-Walker, 2007; Boyko et al., 2008;
Eyre-Walker and Keightley, 2009). The DFE-based methods first esti-
mate how many non-synonymous substitutions are expected to get fix
given the DFE and any excess on this expectation is attributed to adap-
tation. DFE-alpha method (Eyre-Walker and Keightley, 2009) is a widely
used method belonging to the DFE-based extensions, which additionally
aims to correct for possible effects of demography.

Messer and Petrov (2013) compared the performance of their method,
the asymptotic MKT and the DFE-alpha method through simulations.
The authors claimed that DFE-alpha correctly estimated α when the
model allowed population size change, but the demography inferred
was found to be wrong, mainly due to background selection acting at
linked sites (Messer and Petrov, 2013). Genetic draft leaves signatures
in the SFS similar to those observed under a recent population size ex-
pansion. The DFE-alpha method systematically inferred a population
expansion even though no expansion was set in the simulation (Messer
and Petrov, 2013).

Another limitation of DFE-alpha is that it becomes computationally in-
tensive, especially when a two-size-change demographic model is ap-
plied (Kim, Huber, and Lohmueller, 2017). Since DFE-alpha can only
consider two population-size changes, it becomes insufficient for captur-
ing the excess of rare variants due to the complex demographic history
of some populations, like the human history (Keightley and Eyre-Walker,
2007; Kim, Huber, and Lohmueller, 2017).

4.1.3. The North American population of D. melanogaster

D. melanogaster originated from Africa and expanded to the rest of the
world (David and Capy, 1988; Lachaise et al., 1988). Around the middle
of the 19th century D. melanogaster populations from Europe colonized
North America. The D. melanogaster North American population used
in the analyses (DGRP, Mackay et al., 2012) contains a subset of the ge-
netic variation of the European population, which is, in turn, a subset
of the African genetic variation (Caracristi and Schlötterer, 2003). How-
ever, some studies showed that the North American population is more
similar to the African population than the European one (Caracristi and
Schlötterer, 2003; Baudry, Viginier, and Veuille, 2004; Haddrill et al.,
2005). Therefore, the North American population of D. melanogaster is
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an admixture of populations, with a 15% of African ancestry and 85%
European ancestry (Duchen et al., 2013).

A weak spot of the DGRP is the inbreeding approach followed to ob-
tain the isolines (see Methods 2.1.1). The inbreeding approach alters
the frequency spectrum of the lethal or strongly deleterious recessive
mutations (García-Dorado, 2012). However, alternative resources such
as the Drosophila Population Genomics Project (DPGP, Langley et al.,
2012) would encounter the same problem. Previous works have com-
pared adaptation and DFE estimates between DGRP and DPGP datasets,
showing no differences between them (Castellano et al., 2015; Castellano,
James, and Eyre-Walker, 2017). Given that DPGP sample size (n=110) is
smaller than DGRP (n = 205) it is likely that these mutations contribute
very marginally to the estimations of polymorphisms, DFE and adapta-
tion in both databases. Therefore, it is expected that the DGRP isolines
contain a representative sample of the natural variation of the popula-
tion at the moment at which the flies were sampled (Mackay et al., 2012).

4.1.4. From Drosophila to humans

The availability of the most complete worldwide nucleotide variation
dataset for humans, the 1000 Genomes Project (1000GP, Auton et al.,
2015), provides abundant data to detect targets of positive selection
in our species. It has previously been demonstrated that Drosophila
genomes undergo pervasive positive selection (Mackay et al., 2012;
Huang et al., 2014), and their high variability and high population ef-
fective size make it the perfect candidate to test adaptive evolution. In
humans, on the contrary, only a few protein-coding genes have suffi-
cient divergence and polymorphic sites to be analyzable with MKT ap-
proaches which highlight the need of other approximations to detect
signals of positive selection in single-gene data, such as the Bayesian
population genetic inference method (Bustamante et al., 2005).

4.2. Population genomics at the genomic level

The second step in this three population genomics level analysis is the
correlation of the population genomic parameters previously estimated
(α) with several properties estimated along the genome. Thanks to the
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availability of more diverse genomic datasets measuring factors such as
gene expression or recombination maps as well as improved genomic
annotations it is possible to integrate the genomic and functional dimen-
sion with the population dimension.

α is not the only parameter that was used for performing the correla-
tions with the patterns of genome variation. Three other closely related
population statistics are also incorporated in the study: (i) ωa, which is
the proportion of adaptive substitutions relative to the mutation rate, es-
timated as ω × α (Gossmann, Keightley, and Eyre-Walker, 2012); (ii) ωna,
which is similar to ωa, but instead of accounting for adaptive substitu-
tions, it considers the non-adaptive ones (Galtier, 2016); (iii) ω, which is
the total number of non-synonymous substitutions relative to the neu-
tral mutation rate (the sum of ωa and ωna). ω is extensively used as a
proxy for conservation at the sequence level.

An inventory of genomic features was estimated throughout the genome
of D. melanogaster. These genomic features span from (i) gene-
architectural features; (ii) expression features; (iii) genomic context fea-
tures and (iv) phylogenetic features.

How the features listed above contribute to the proportion of adaptive
and non-adaptive substitutions (ωa and ωna, respectively) on protein-
coding genes? Previous works tried to define the main determinants of
protein evolution by applying sophisticated statistical regression models
to correct for the effect of other covariates in the presence of heteroge-
neous data (see Drummond, Raval, and Wilke, 2006; Plotkin and Fraser,
2007). Nonetheless, the pervasive evidence of multicollinearity between
existent determinants of protein evolution (which can be represented
performing a partial correlation matrix between all features, Figure 4.4)
suggests that some genomic features cannot be split into single indepen-
dent entities, and must be considered together. Next, I will discuss the
most relevant relationships, some of which were already described in
the literature.

The main distinction of this work in contrast to previous ones (e.g., Duret
and Mouchiroud, 2000; Larracuente et al., 2008) is the estimation of α

using polymorphism and divergence data by means of the DFE-alpha
software.

Another distinction is the concatenation of sequences to increase the
statistical power for the calculation of polymorphism and divergence
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Figure 4.4 Multicollinearity of genomic features. The diagram represents all ge-

nomic features of 9,683 genes included in a partial correlation matrix. Green lines

connecting two features represent positive partial correlations, and red lines repre-

sent significant negative partial correlations. The thickness of the lines corresponds

to the magnitude of the p-value (<0.0005, <0.005 and <0.05). Dashed lines indicate

that the correlationwasmarginally significant. Two determinants are not connected

when there was no significant correlation.

metrics. As explained before, any concatenation process reduces the
true (i.e., biological relevant) variation due to the heterogeneity of genes.
With our approach, we tried to minimize the loss of statistical power
by splitting the empirical distributions of genome features into five cate-
gories (Table B.11), maintaining an equivalent number of genes in each
category. It is then possible to perform simple linear regressions between
the genomic features and the estimated selective regimes.

4.2.1. Recombination and the efficacy of positive and

purifying selection

The here shown results support the known role of recombination as an
amplifier of the efficacy of both positive and purifying selection (Pres-
graves, 2005; Betancourt, Welch, and Charlesworth, 2009; Campos et al.,
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2014; Castellano et al., 2015). Thus, the recombination rate is the only
genomic feature that shows a positive correlation with ωa and a negative
correlation with ωna. Therefore, genes in high recombination regions ex-
perience more efficient purifying and positive selection. Previous studies
have demonstrated that the reduction in linkage disequilibrium between
nucleotide sites induced by recombination allows them to behave inde-
pendently, increasing the efficiency of selection acting on them. Accord-
ing to the HRi, a reduced efficacy of purifying and positive selection is
expected and observed in regions with low rates of recombination and
linkage disequilibrium between sites (Castellano et al., 2015). Recombi-
nation rate and the estimates of the HRi effect, in particular, should not
be overlooked, but be included as parameters to estimate in population
genomic studies (Castellano et al., 2015; Casillas and Barbadilla, 2017).
It is of particular interest to know which is the recombination thresh-
old above which HRi disappears, as well as to know the percentage of
adaptive mutations that are lost in other species.

4.2.2. Main determinant of the evolutionary rate: gene

expression

One of the most important determinants of protein evolution is the ex-
pression bias, a measure of how much the expression of a gene is re-
stricted to one or few developmental stages (or tissues). The metric τ

has been used for estimating the expression bias for each gene. This
metric has been demonstrated to be the best overall index to measure ex-
pression specificity (Kryuchkova-Mostacci and Robinson-Rechavi, 2017).

Ubiquitously expressed genes have been found to evolve more slowly
than genes with a more restricted expression, which exhibited faster evo-
lutionary rates due to the accumulation of adaptive and non-adaptive
substitutions. Larracuente et al. (2008) investigated whether this ef-
fect is driven by genes that are expressed in male reproductive tissues
(which are known to be fast evolving in several species, including D.
melanogaster), which was not the case. Their greater propensity to adap-
tation could be partly due to the fact that these genes are involved in
less cellular processes than ubiquitously expressed genes, leading to a
less extensive pleiotropy (Larracuente et al., 2008).

However, a negative correlation between the expression bias and the ex-
pression level is also found: genes that are broadly expressed exhibit
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higher expression levels and vice versa for restricted-expressed genes.
Therefore, the constraint could be explained by either a high expression
level or a low expression bias or a combination of both (Subramanian
and Kumar, 2004).

Because this strong relationship between the levels of constraint and ex-
pression is found in yeast (Pal et al., 2001), which is not affected by the
expression bias since yeast is a unicellular organism, it is reasonable to
hypothesize that gene expression level is the first evolutionary determi-
nant of the adaptive rate and not the expression bias (Subramanian and
Kumar, 2004). Expression bias, created by an increased complexity in
terms of the number of tissues and developmental stages of more com-
plex organisms, can be considered a modifying factor of the effect of
purifying selection (Subramanian and Kumar, 2004).

Additionally, a negative correlation between the spatial pleiotropy and
Fop was observed (Figure 3.18C), which indicates that ubiquitously ex-
pressed genes have a higher codon usage bias (measured with Fop) than
narrowly expressed ones. This is in agreement with a selective pressure
on codon usage depending not only the level of expression –because
highly expressed genes tend to have a higher codon bias (Quax et al.,
2015)–, but also on the number of body parts in which genes are ex-
pressed as suggested in Duret and Mouchiroud (1999).

Three complementary hypotheses trying to explain why highly ex-
pressed genes evolve slowly have been proposed (reviewed in Rocha,
2006): (i) the functional hypothesis states that highly expressed proteins
require more cell resources and probably control more important pro-
cesses –thus, being less prone to change; (ii) the translation accuracy
hypothesis states that the efficiency of translation of proteins depends
on its tRNA distribution and therefore the rate of synonymous substitu-
tions will be reduced to favor the maintenance optimal codons; (iii) the
translational robustness hypothesis states that selection will constraint
amino acid changes affecting misfolding or mistranslations.

4.2.3. Intron length orchestrates expression levels

A positive correlation between the intron length and expression bias was
found (Figure 4.4), suggesting that housekeeping genes tend to have
shorter introns than restricted-expressed genes. Some authors propose
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that housekeeping genes require very little regulation and thus, their in-
trons are shorter (the genomic design hypothesis, Eisenberg and Levanon,
2003). The contrary happens with stage- or tissue-specific genes, which
need more regulatory elements, which can be located within introns
(Castillo-Davis et al., 2002). Other authors claim that short introns are
the result of selection for translation efficiency because short introns
would reduce the cost of transcription in highly expressed genes (the
economy selection hypothesis, Castillo-Davis et al., 2002; Rao et al., 2010).
An alternative to this hypothesis argues that is not the energetic cost, but
the transcription time, a more important factor accounting for the small
introns of some genes (the time-cost hypothesis, Chen et al., 2005).

Genes that are expressed in the early moments of the embryonic de-
velopment requires an exact timing of gene expression to ensure the
proper development of the embryo (Swinburne and Silver, 2008; Artieri
and Fraser, 2014). Thus, the time-cost theory might be the most feasi-
ble explanation of their short introns. As it is shown in Figure 3.11E,
D. melanogaster genes expressed in the first two hours of development
have the shortest introns of the whole life cycle (also reported in An-
derson, 1973; Artieri and Fraser, 2014; Heyn et al., 2014). This short
intron size would be imposed by the very fast cell divisions occurring
in those hours. Since cells divide very rapidly in early D. melanogaster
development, there is no time to transcribe, splice and translate long
genes and genes with long introns. In vertebrates, the earliest stages of
development involve also fast cell divisions and a delayed start of major
embryo patterning through cell signaling (O’Farrell, Stumpff, and Su,
2004; Heyn et al., 2014; Siefert, Clowdus, and Sansam, 2015). However,
Heyn et al. (2015) pointed out that not necessarily all genes expressed
during embryogenesis have short introns.

In the next hours of the D. melanogaster embryo development the intron
length of genes expressed in these stages appeared to be longer (Figure
3.11E). In 1986, Gubb introduced the intron delay hypothesis, stating that
intron length could function as a time delayer and aid the orchestration
of gene expression patterns. A delayed expression can create oscillating
patterns of gene expression. In mice, the Hes7 gene is an example of this
phenomenon. Hes7 is involved in the somite segmentation during em-
bryo development. Removal of its introns results in an earlier expression
(19 minutes), linked to severe developmental defects (Takashima et al.,
2011). Another study shows that in six Drosophila species the expression
of zygotic genes with long introns is delayed compared to shorter zy-
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gotic genes (Artieri and Fraser, 2014). These observations indicate that
intron length delay plays an important role in regulating gene expres-
sion during development.

4.2.4. An intergenic Hill-Robertson interference

As previous studies found, short genes tend to accumulate both adap-
tive and non-adaptive substitutions (Comeron, Williford, and Kliman,
2008; Larracuente et al., 2008). Thus, natural selection is less effective on
short protein-coding genes than on long ones. A possible explanation
for this observation could be the fact that for a given adaptive mutation
rate, longer genes would have more adaptive segregating sites compet-
ing against each other in different haplotypes. This would produce a
kind of intergenic or intraexonic Hill-Robertson interference (Hill and
Robertson, 1966). This proposed idea is in agreement with the observed
negative correlation between gene size and Fop (Figure 4.4). Li (1987)
predicted that the efficacy of selection on optimal codons decreases with
increasing gene size. Within a gene, recombination rarely happens, and
thus, there is a high degree of linkage between sites. The efficiency of
natural selection in purging deleterious or fixing advantageous variants
is lower when there is linkage.

4.2.5. Phylogenetic age as a new proxy for gene conservation

By using phylostratigraphic maps to assign a phylogenetic age to each
D. melanogaster gene, it was shown that phylogenetically older genes
are more conserved than phylogenetically recent ones (Domazet-Loso,
Brajković, and Tautz, 2007; Domazet-Lošo and Tautz, 2010). The same
results have been found in plants (Guo, 2013).

The reasons by which younger genes show higher ωa and ω values than
older genes are complex. Younger genes exhibit higher expression bias
and tend to be expressed in less anatomical structures than older genes
(Figure 3.18A). This suggests a scenario in which emerging genes start
with very restricted expression (both in anatomical space and develop-
mental time) and thus have a low level of pleiotropy that would facil-
itate their further evolution. On the other hand, older genes are more
likely to be metabolic or housekeeping genes with essential functions
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that are unlikely to change in an adaptive way (Hastings, 1996; Duret
and Mouchiroud, 2000; Daubin and Ochman, 2004; Zhang and Li, 2004;
Albà and Castresana, 2005; Domazet-Loso, Brajković, and Tautz, 2007;
Wolf et al., 2009a).

There is a concern with the use of phylostratigraphic maps. These maps
assign a phylogenetic age to each protein-coding gene in a species of
interest, based on the phylogenetic level at which orthologs for that
gene are detected. The accuracy of phylostratigraphic inferences relies
on BLAST searches, which show some limitations when sequences are
highly divergent (Elhaik, Sabath, and Graur, 2005). However, Domazet-
Lošo et al. (2017) have shown that phylogenetic data is not biased by
BLAST results.

4.2.6. Novel genomic features for evolutionary rate

determination

According to current knowledge, the number of exons and transcripts
has never been directly associated ωa or ωna. However, as one would
expect, the number of exons positively correlates with gene size (Figure
4.4). Likewise, the greater the number of exons is, the greater the num-
ber of different isoforms, which can be produced by re-shuffling exons
via alternative splicing. Therefore, the relationship between the number
of exons or transcripts with the selective regimes could be due to the nat-
ural or physical correlation between the number of exons and transcripts
with gene size.

Additionally, the negative correlation between the number of transcripts
and gene expression bias suggests that broadly expressed genes code for
more isoforms than stage-specific genes. Since broadly expressed gene
isoforms must operate in a more diverse set of cell compartments, biolog-
ical processes or tissues, this correlation is expected. Haerty and Golding
(2009) found that genes undergoing alternative splicing (more than one
transcript per gene) have a broader pattern of expression, which is asso-
ciated with a lower divergence in comparison with genes with a single
annotated protein isoform (Haerty and Golding, 2009).
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4.3. Population genomics at themultiomic level

The ultimate level is the multiomic or integrative level, in which the ge-
nomic patterns explained above are correlated with large -omics datasets.
In contrast to the genomic sequence, -omics layers, vary during the life-
time or body parts of an individual, representing intermediate pheno-
types between the genomic space and the final phenotype on which
natural selection ultimately acts (Civelek and Lusis, 2014; Casillas and
Barbadilla, 2017).

4.3.1. Towards a population -omics synthesis

Natural selection acts primarily on the phenotypic properties of organ-
isms and only act secondarily on the genotype to the extent that it de-
termines the heritability of these properties of the phenotype. The ge-
nomic revolution has led to the currently paradoxical situation in which
more information on selection in the genome is available than on the
phenotype of the organism. The action of the selection in the whole
phenotype of an organism has never been studied to this date, nor has
any study integrated both levels of selection on a genomic scale. In
this final part, we deal with this global fitness-phenotype-genotype in-
tegration, more specifically, to draw an exhaustive map of the selection
acting on the complete development of the species D. melanogaster. A
total of three layers of -omics information have been integrated (Fig-

Figure 4.5 Integration of three -omics layers. The first layer is the genomic varia-

tion data in D. melanogaster. The second is the developmental transcriptome. The

third one, gene expression data with accurate annotations of the anatomical regions

and timing in which genes are expressed.
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ure 4.5). The first layer is the genomic variation data in D. melanogaster
that has extendedly been analyzed, demonstrating the omnipresence of
the selection (Mackay et al., 2012; Huang et al., 2014). Secondly, the ad-
vent of NGS technologies has boosted the breadth of available functional
datasets. The Berkeley Drosophila Genome Project (BDGP) has generated
a database of gene expression with accurate annotations of the anatom-
ical regions in which genes are expressed in six embryo developmen-
tal stages (Tomancak et al., 2002, 2007). So far, the expression of 8,405
genes have been documented with 137,115 digital photographs (BDGP
insitu; http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl; last ac-
cessed: October 2018). And third, the modENCODE project (Graveley et
al., 2011) provides the most complete gene expression database through
D. melanogaster complete life cycle (it includes 17,788 genes over most
developmental and life cycle stages).

Two analyses at different scales were performed. The first analysis con-
sisted of the measurement of the action of natural selection in the genes
expressed across the life cycle development of D. melanogaster, providing
a temporal view. In the second analysis, natural selection was mapped
across different anatomical organs during six embryo developmental
stages, providing a spatio-temporal view.

4.3.2. Measuring the action of natural selection across the D.
melanogaster life cycle

Through the integration of population genomics data with the develop-
mental transcriptome of D. melanogaster three main conclusions can be
drawn. First, the rate of adaptive substitution measured along the life
cycle of D. melanogaster reveals two peak periods: one encompassing the
four initial hours of the embryonic development and one encompassing
from the L3 larval stage onwards. Second, the pattern of the selection
statistics measured over development mirrors that of the genetic features
analyzed. And third, our results support the hourglass model of devel-
opment evolution.
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Adaptive evolutionmainly acts in the adult

D. melanogaster is a holometabolous insect with an indirect development,
meaning that its development includes four life stages –embryo, larva,
pupa and adult– with two active free-roaming phases (larva and adult)
and two sessile developmental phases (embryo and pupa; Bainbridge
and Bownes, 1981).

The larval and adult phenotypes, especially their morphology, arise pri-
marily through the genetic, cellular and tissue interactions of embry-
onic and pupal development (metamorphosis), respectively. Therefore,
it is hypothesized that adaptation occurring in the larva or in the adult
should be reflected not only in the genes expressed in the larva or in the
adult but also in those expressed in the embryo (for the larva) and the
pupa (for the adult). The observation that genes expressed in mid and
late embryonic development show lower rates of non-synonymous sub-
stitutions than genes expressed in the pupal stages suggests that adap-
tation has occurred preferentially in the adult rather than in the larva.

The differences in the adaptation rates found for the sets of genes ex-
pressed in male and female adults lead to the following conclusions. The
fact that males exhibit higher adaptive rates can be accounted by male
specific processes occurring mostly after the determination of the adult
morphology during pupation. In fact, male adult genes exhibit a high ex-
pression bias (Figure 3.11F) and higher values of ω and ωa compared to
female-biased genes (Figure 4.6). A GO-enrichment reveals an overrepre-
sentation of terms related to post-mating behaviour (fold enrichment=7.25,
FDR=3.63×10-3), sperm storage (fold enrichment=5.93, FDR=8.26×10-3)
or flagellated sperm motility (fold enrichment=3.57, FDR= 4.76×10-3). In
that line it has previously been reported in D. melanogaster that the genes
exhibiting the highest rates of adaptive change are involved in male re-
productive processes, such as spermatogenesis (Civetta and Singh, 1998;
Swanson et al., 2001; Artieri and Singh, 2010) and immunity (Schlenke
and Begun, 2003; Jiggins and Kim, 2007; Obbard et al., 2009; Early et al.,
2017) and are male-biased (Pröschel, Zhang, and Parsch, 2006; Baines et
al., 2008). On the other hand, female-biased genes appear to have higher
expression than males-biased ones (Figure 3.11H) which can explain the
high purifying selection acting on them (Figures 3.9 and 4.6). Because
immune and male reproductive genes could account for false positive
signals found in our results, they should be excluded of the analyses
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to avoid possible bias and confounding effects (Larracuente et al., 2008;
Castellano et al., 2015).

Figure 4.6 Female- and male-biased genes. A gene is considered female-biased if

it is expressed during female adulthood but not in any male adult stage, and vice

versa for male biased genes. A gene is considered as expressed if RPKM � 10 (high

stringent criteria). A.ωa between female andmale genes. B.ω between female and

male genes. C.ωna between female andmale genes. D.α between female andmale

genes. Each boxplot (100 bootstrap replicates per category) in a plot is calculated

for a randomly drawn sample of the set of genes in each category with replacement.

Number of female-biased genes: 507. Number of male-biased genes: 688.

In contrast to adult morphology, which arises primarily through de-
velopmental processes occurring in the previous pupal developmental
stages, spermatogenesis and immune response are continuous processes
that occur mostly through the whole adult lifespan and that are regu-
lated by genes expressed in the adult. In contrast to a previous report
(Artieri, Haerty, and Singh, 2009), male adults do not show higher rates
of non-adaptive substitutions than the pupa, but rather show similar
levels (Figure 3.9). In another previous study (Davis, Brandman, and
Petrov, 2005), it was found that genes with the highest number of non-
synonymous substitutions are more intensively expressed in the larva
and pupa than in the embryo and biased towards male adults. These
results are consistent with the findings presented here.
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An important novelty of our approach is that by using DFE-alpha, adap-
tive and non-adaptive evolution can be assessed independently. This
allows the inference that the lower level of conservation in early pupal
and male stages is due to adaptive non-synonymous substitutions and
not to non-adaptive non-synonymous substitutions. In the earliest devel-
opmental stages instead, the lower sequence conservation is due mostly
to non-adaptive substitutions. Most likely the latter is due to maternal-
effect genes. Previous studies have already pointed out that selection in
maternal genes is less efficient (although these studies do not relate that
to the lower conservation of early development, Cruickshank and Wade,
2008; Fairbanks, 2010). This is the case because in females the alleles in
the loci of maternal genes can affect the fitness of the offspring, while
it is not the case for males. From a population genomic perspective,
selection is only half as strong when acting on maternal-genes that on
zygotic-genes (Wade, Priest, and Cruickshank, 2009). Therefore, many
non-adaptive variants cannot be eliminated from the population (lead-
ing to the higher ωna, Figure 3.9C). This high rate of non-synonymous
non-adaptive substitutions in the maternal genes is consistent with re-
cent findings that indicate that there is some variation in which genes
are expressed in the earliest developmental stages. Thus, while the ma-
ternal genes involved in the earliest embryo patterning can be different
within Diptera, the zygotic genes expressed right after (so-called GAP
genes), tend to be the same in all the Diptera species analyzed so far
(Wotton et al., 2015).

Genomic features mirror the patterns of selective regimes

The pattern of the selective regimes measured over the life cycle mirrors
that of the pattern of the genomic features analyzed. Thus, the highly
conserved mid and late embryonic development stages express genes
that, on average, are larger, have more exons, more isoforms and larger
introns.

The correlations between the genomic features and the population statis-
tics have already been discussed (section 4.2), but their distribution over
developmental and life cycle stages has not been analyzed before. With
this statistical analysis, it is not possible to conclude whether the tem-
poral adaptation pattern is a consequence of differences in genomic fea-
tures over the life cycle (thus, selective effects on developmental stages
become secondary), or if these genomic features are a consequence of
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differential adaptation over the life cycle. However, there are some in-
trinsic characteristics of development that make the first option more
likely, which are addressed in the next paragraphs.

In D. melanogaster (Salvador-Martínez and Salazar-Ciudad, 2015) and in
the ascidian Ciona intestinalis (Salvador-Martínez and Salazar-Ciudad,
2017) the area of expression of genes over the embryo’s anatomy de-
creases quantitatively over developmental time. To understand why this
is the case, one has to consider that the spatial information in the em-
bryo is built over the life cycle, especially during embryonic and pupal
development (Salazar-Ciudad, Jernvall, and Newman, 2003). Spatial in-
formation means the information on where each organ, tissue or cell
type is located in the embryo’s anatomy. This spatial information starts
being small (e.g., in the zygote) and progressively increases as specific
cells, tissues and organs form in specific parts of the body. The same
occurs for the spatial information at the level of gene expression: genes
start being expressed in wide areas of the embryo (e.g., in the part that
will become the thorax of the fly) and progressively become restricted
to smaller areas of it (e.g., in parts that will become the flight muscles
of the second thoracic segment). This trend is not only observed during
embryonic development but throughout all the life cycle (as Figure 3.11F
shows). This spatial restriction of gene expression over time is an intrin-
sic property of development. It is a consequence of spatial information
having to be built from the zygote and has no direct adaptive advantage
per se.

From this perspective, the temporal pattern of the measured selection
parameters would be a consequence of genes becoming more restrict-
edly expressed, while their level of expression decreases. The earliest
development would escape this trend due to the lower efficiency of nat-
ural selection on maternal genes. The same argument used for time and
expression level can be applied to time and expression bias. Late devel-
opment and post-embryonic stages have higher expression bias. Genes
with higher expression bias tend to be less conserved and are more likely
to exhibit adaptive non-synonymous substitutions. Thus, the temporal
pattern of the measured selection parameters could be a consequence of
early developmental genes being expressed widely in space and time,
which promotes conservation, and late development genes being ex-
pressed in a more restricted manner in space and time, that facilitates
adaptive non-synonymous substitutions.
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This argument does not directly explain why the temporal pattern of
selection statistics correlates with the number of exons, number of tran-
scripts, intron length and gene size. An alternative and largely comple-
mentary explanation would be that, as suggested from a more qualita-
tive evo-devo perspective (Kennison, 1993; Gellon and McGinnis, 1998),
embryonically expressed genes have a more complex regulation than
post-embryonically expressed genes –this is also discussed in section
4.2.3. Although the former genes are expressed in wider areas of the
embryo, their expression changes more in time and space than that of
post-embryonically expressed genes. This more complex regulation may
require a more complex genetic structure, such as manifested by larger
genes having more exons, more transcripts and larger introns. The larger
intron length of developmental genes may also be a reflection of complex
regulation but at the level of cis-regulatory elements, since cis-regulatory
elements can be located within introns, too (see section 4.2.3). The larger
area of expression, less temporally restricted expression and more com-
plex gene structure may also reflect that mid and late developmental
genes interact with more other genes than genes expressed later. This
would make them, in rough terms, more pleiotropic and thus, less likely
to change.

The hourglass model of development

The pattern of adaptation and constraint through the development is
roughly consistent with the hourglass model but not with the von Baer’s
law. However, the fit to the hourglass model is rather weak, since there
are no major differences in ω between embryonic stages after the eighth
hour (Figure 3.9), except for genes in cluster 8 (Figure 3.10). Cluster 8
contains genes specifically expressed in the last hours of the develop-
ment. During the first 2 hours, ω is significantly high (permutation test,
hours 0–2: p-value = 0.032), but from hours 6–8 to hours 22–24 ω is lower
than expected based on the permutation test (p-value < 0.001). This is
also the case for ωa. In contrast with previous studies (Kalinka et al.,
2010; Levin et al., 2016), this study does not show that the latest stages
of embryonic development are less conserved. However, genes whose
expression is restricted only in late embryonic development (cluster 8,
Figure 3.10), show a significant high ω and marginally significant high
ωa. These genes are only a small proportion of the genes expressed in
the last embryonic developmental stages and thus, have a minor effect
on our calculations of ωa, ω and α in these stages (thus likely explaining
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the differences between our study and Kalinka et al. 2010). The differ-
ence in dN between mid- and late-developmental stages in Kalinka et al.
(2010) is however rather subtle, too. Overall, results are compatible with
Kalinka et al. (2010).

The hourglass model was proposed on the basis of knowledge about D.
melanogaster and vertebrate’s development (Slack, Holland, and Graham,
1993; Duboule, 1994; Raff, 1996). The life cycles of the fly and the mouse
are quite different. Mice, as all amniotes, are direct developers, mean-
ing that development gives rise to a juvenile and later, gradually, to an
adult. Fruit flies are indirect developers in which embryonic develop-
ment gives rise to a free-roaming larva and, by a rather abrupt process
of metamorphosis, gives to an adult. If the hourglass model is under-
stood for the whole life cycle the results are roughly consistent with it
at the genetic level: genes expressed during embryonic development are
highly conserved, except for the genes expressed in the earliest stages,
while the genes expressed later, from the larval stage L3 onwards, show
less conservation and more adaptation. On the other hand, this tempo-
ral hourglass pattern can also be understood as development generally
obeying von Baer’s law, but departing from it in the earliest stages. It is
hypothesized that this departure would arise from the lower efficiency
of selection on maternal genes and as a consequence of the reduced gene
structure complexity required for fast nuclei divisions in early develop-
ment.

4.3.3. Mapping natural selection through the embryo’s

anatomy

This work measures which parts of the embryo’s body exhibit signifi-
cantly higher (or lower) adaptation levels (measured with ωa) or con-
straint (measured with ωna), compared with the rest of genes expressed
in the other anatomical structures of the embryo. The anatomical struc-
tures with high ωa values should be interpreted as body regions with
high rates of adaptive substitutions. The ones with high ω or ωna

should be interpreted as body regions under relaxed natural selection,
whereas the anatomical structures with low ω or ωna values should be
interpreted as body regions under a history of selective constraint.

The latest embryonic stage analyzed, stage 13–16, shows the highest
number of anatomical terms exhibiting evidence of selection, both adap-
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tation and selective constraint. In this stage, the anatomical structures
and the gene spatial co-expression patterns are positioned and shaped
in very similar ways to those of the larva (no major morphogenetic rear-
rangements occur from that stage onwards, Hartenstein, 1993). In that
sense, the results in this latest stage could be taken as a proxy for adap-
tation over the body parts of the functional larva.

In summary, high rates of adaptive substitution are found the "Germ
line", the "Garland cells/Plasmatocytes/Ring gland", and also the "Head
mesoderm/Circulatory system/Fat body." Most of the rest of the body
seems to be under selective constraint. Results are consistent with previ-
ous findings from other non-development studies. Thus, the evidences
of adaptation in the "Germ line" is consistent with previously reported
high Ka and α in testis- or sperm-specific genes (Civetta and Singh, 1995;
Wyckoff, Wang, and Wu, 2000; Meiklejohn et al., 2003; Pröschel, Zhang,
and Parsch, 2006; Haerty et al., 2007; Assis, Zhou, and Bachtrog, 2012)
and sperm-related genes already expressed in germ line cells (Civetta
et al., 2006; Bauer DuMont et al., 2007).

The category "Garland cells/Plasmatocytes/Ring gland" is closely
linked to the immune system. Plasmatocytes comprise the 95% of all
the immune cells in D. melanogaster (similar to human macrophages,
Ratheesh, Belyaeva, and Siekhaus, 2015). The ring gland has also been
related to the immune system (Christesen et al., 2017). As explained
above, the immune system has already been shown to exhibit high rates
of adaptive substitutions (high α) in D. melanogaster.

Overall, the results suggest that there is a high degree of conservation
in genes expressed over most parts of the embryonic anatomy. In par-
ticular, ectodermal-derived organs. This is in agreement with the ob-
servation that the ectoderm is the oldest germ layer in D. melanogaster
(Domazet-Loso, Brajković, and Tautz, 2007). Adaptive substitutions are
found in the set of genes expressed in anatomical structures involved in
reproduction and immunity.

Also, evidence of relaxation of selection was found in the first stage, sup-
porting the results found with the modENCODE data in the temporal
analysis. In overall, the results of the temporal analysis and the spatio-
temporal analysis are consistent and complementary.

Taken all together, it can be stated that selective constraint is pervasive
over most of the embryo’s anatomy, except for anatomical structures
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that show evidence of adaptation in the adult (immune system and
reproductive-related genes) and a relaxation in the first stage due to
the maternal-effect genes.

Results are neither driven by recombination context nor expression level

The map of selection regimes through the embryo’s anatomy does not
directly explain why these specific anatomical structures exhibit high
rates of adaptive substitutions. However, some additional analyses were
performed to limit some possible explanations. For example, it could be
that the genes expressed in organs under positive selected are preferably
found in regions of high recombination or low genic density. It can
also be the case that these genes are low pleiotropic or phylogenetically
younger.

First, it was checked if there was a correlation between the expression
bias and the anatomical organs exhibiting high adaptation. No relation
between these anatomical structures and the level of temporal pleiotropy
(expression bias) was found (Figure 3.16C). It was expected that genes
expressed in anatomical structures exhibiting the higher level of adapta-
tion have a high expression bias. Furthermore, a measure of the spatial
pleiotropy was also incorporated, an index measuring the pleiotropic
effects of a gene on the embryonic anatomy, without finding a relation
(Figure 3.16D).

The analysis of Fop and phylogenetic age revealed that these two features
do not explain the adaptation levels found. It is expected that anatomical
organs enriched in phylogenetic recent genes and/or with a low Fop, are
the ones exhibiting higher rates of adaptation, which is not the case.

Finally, the analyses on recombination, mutation and gene density also
showed no differences between body parts, i.e, genes expressed in or-
gans under selection are not located in a high recombination context or
low genic density regions.

In that respect, these results do not accommodate straight-forward ge-
nomic explanations but rather suggest that there may be some functional
features of the "Garland cells/Plasmatocytes/Ring gland" and "Germ
line" which have favored the accumulation of adaptive substitutions in
the genes they express, at least when compared with other parts of the
anatomy, regardless of their pleiotropic effects.
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Permutation tests as a powerful statistical strategy to detect selection in

multiple anatomical parts

Each anatomical structure expresses a particular set of genes. How-
ever, some of these genes can be expressed in more than one anatomical
structure. The number of genes shared depends on the function of the
anatomical structures: those structures having a similar function share
a higher number of genes (Figure 4.7). This non-independence between
anatomical structures make it difficult to analyze them separately, as
they are not completely independent regarding the genes they express.
This dependence has further implications for statistical tests and how in
these tests related genes are taken into account (see section 2.3.2).

Figure 4.7 Genes shared between anatomical organs. The matrix layout shows

intersections of the 18 anatomical organs, frommore frequent to less frequent inter-

sections (only the 20 first intersections are shown). The blue bars on the left side rep-

resent the number of genes expressed in each anatomical structure, while the black

bars on the top represents the number of genes shared between the anatomical or-

gans. Image performed with the R package UpSetR (Conway et al., 2017).

Permutation tests are better suited for avoiding statistical Type I er-
rors and are considered a robust alternative to the Bonferroni correction
(Sham and Purcell, 2014). One of the main advantages of this method,
which has been applied for the first time in this kind of data, is that it
can be applied to any statistic and can incorporate distributional and
dependence characteristics inherent to the data used, making it a robust
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test (Westfall and Young, 1993). Most importantly, when using permuta-
tion tests the null distribution is empirical, i.e., is obtained by calculating
all possible, or a very large number of, values of the statistic under rear-
rangements of the labels of the observed data points (Berry, Mielke, and
Johnston, 2016). Therefore, in the case of the analyses performed here,
the null distribution of adaptive and constraint rates is different for the
different analyses, as each one is comprised of a different number and
combination of genes.

The case of the salivary glands and GAP genes

There are two anatomical structures that appear in the analyses as an
exception to many of the identified trends. The salivary glands express
old genes that, in contrast to the rest of the organs derived from the
ectoderm, exhibit rather high Fop. The high Fop may be explainable by
both the old age (i.e., more time to optimize their sequence) of the genes
expressed and the fact that many of the genes expressed in the salivary
glands are well known to be expressed at very high levels (Andrew,
Henderson, and Seshaiah, 2000). Genes that are expressed at high levels
are known to usually have rather high Fop, because this facilitates a
faster and efficient translation as explained in section 4.2.2 (Gingold and
Pilpel, 2011; Quax et al., 2015).

The "Segmental/GAP" anatomical structure is also exceptional because
it expresses the highest proportion of new genes. "Segmental/GAP"
genes are expressed very early on before the germ layers form. In fact,
previous studies have shown that there is substantial variation between
Diptera, in which genes act early in development as segmental and GAP
genes (Wotton et al., 2015). Since these genes are all transcriptional fac-
tors, it is not surprising that they are all relatively young (old genes
tend to be metabolic genes involved in processes that are shared among
distantly related groups, Wolf et al., 2009b).

Main caveats about the assumptions of our approach

There are a number of caveats to be considered when using gene ex-
pression as a phenotype. First, the amount of adaptive amino acid
substitutions in the set of genes expressed in an anatomical structure
may not accurately reflect the amount of adaptive phenotypic changes
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in it. Development is a complex process with myriads of genetic and
cell biomechanic interactions, which lead to a complex relationship be-
tween genetic variation and phenotypic variation. It can be, for example,
that some anatomical structures show only a small number of adaptive
changes in the genes they express and then being not detectable by these
methods, but that those genetic changes have comparatively large effects
on the phenotype.

Second, only changes in coding regions are considered, although there
is plenty of evidence of adaptation resulting from changes in regula-
tory regions (Davidson, 2001; Carroll, 2005). Some studies conclude
that non-coding elements tend to experience more adaptive events than
protein-coding genes, at least in mice (Eyre-Walker and Keightley, 2007;
Halligan et al., 2013) and Drosophila (Kousathanas et al., 2011; Mackay
et al., 2012).

Third, variation in a gene can have an effect on anatomical structures
where such genes are not expressed (Gilbert, 2014). This is the case of
extracellularly diffusible proteins. During development, a signal from
a group of cells can influence another adjacent group and this interac-
tion is necessary for cell development and differentiation. Signals can
be transmitted in different ways and one of them is through the extracel-
lular space in the form a secreted diffusible protein. Another example
is the genes involved in the production of mechanical forces (reviewed
in Zhou et al., 2009 and Vining and Mooney, 2017), which are necessary
for the correct patterning, growth and morphogenesis of a developing
embryo.

Although all these caveats should be kept in mind there is no reason to
expect that, a priori, the complexity of the genotype-phenotype map (or
for that matter the amount of cis- regulation, signaling, or mechanical
forces) to be dramatically different between anatomical structures.

4.4. Concluding remarks

The current -omics era is calling for more integrative, multi-level ap-
proaches to study adaptation. A novel approach for mapping the phe-
notypic adaptation and natural selection over the complete anatomy of
the embryo of D. melanogaster has been presented. The emergence of
techniques such as spatial transcriptomics offering more resolutive maps
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(Stahl et al., 2016, even for the single cell level, Karaiskos et al., 2017;
Shah et al., 2018) promises that natural selection will be charted with an
unprecedented resolution also outside the D. melanogaster species.

Population genomics is concerned with genome variation, but natural
selection acts upon the phenotype, not directly on the genotype, and
the genomic dimension, albeit necessary, is not sufficient to account for
a complete picture of organismal adaptation (Lewontin, 2000; Casillas
and Barbadilla, 2017). Population genomics is no longer a theoretical sci-
ence, it has become an interdisciplinary field where bioinformatics, large
functional multiomics datasets, statistical and evolutionary models and
emerging molecular techniques are all integrated to get a systemic view
of the causes and consequences of evolution. This thesis is a first step to-
wards the final goal of charting a complete fitness-phenotype-genotype
map. At this coming moment, population genetics theory will become
integrated in a systemic evolutionary theory (Casillas and Barbadilla,
2017).
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5Conclusions

The conclusions of this work are the following:

1. The conducted comparison of McDonald and Kreitman test (MKT)
methodologies using both empirical and simulated data shows
that the method proposed by Mackay et al. (2012), the extended
MKT (eMKT), is the one that performs best if single-gene data is
used. The eMKT allows to remove the effect of negative selection
as well as to quantify it. On the contrary, the asymptotic method
developed by Messer and Petrov (2013) is preferred when data is
abundant as in the case of concatenated genes.

2. The original MKT is a powerful method to detect recurrent positive
selection on coding sequences at the molecular level, granted that
slightly deleterious polymorphism is absent. This supposition is
unrealistic in D. melanogaster and probably in many other species,
and therefore other alternative MKT should be applied.

3. The four categories of genomic features analyzed along the D.
melanogaster genome –i.e., gene architectonic, gene expression, ge-
nomic context and gene phylogenetic features– are strongly cor-
related with both the adaptive and non-adaptive rates of protein-
coding genes.

4. Our results support the known role of recombination in reducing
the Hill-Robertson interference. The constraint due to purifying
selection is positively correlated with gene architectonic complex-
ity, evolutionary age and/or expression levels. The adaptation
rate due to positive selection seems restricted to those coding se-
quences with low structural complexity, evolutionary younger and
expressed in a few developmental stages at a low level.
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5. The integration of population genomics data with the developmen-
tal transcriptome of D. melanogaster has allowed us to measure the
rate of adaptation and selective constraint through the complete
life cycle of the fruit fly.

6. Considered over the whole life cycle, D. melanogaster seems to fit
the hourglass model of evolutionary development at the molecular
level. Genes expressed during mid- and late-embryonic develop-
ment are highly conserved, while genes expressed in the earliest
stages and from the larval stage L3 onwards are highly divergent.

7. The higher sequence divergence observed in the firsts hours of the
embryo development is mostly due to the accumulation of non-
adaptive substitutions. We hypothesize that this departure would
arise from the lower efficiency of selection on maternal-effect genes.
Additionally, genes expressed in these first stages have on average
the shortest introns, probably due to the need for a rapid and effi-
cient expression during the short cell cycles.

8. The pattern of the selective regimes measured over the life cycle
mirrors that of the pattern of the genomic features analyzed. Thus,
genes expressed in mid- and late-embryonic developmental stages
show the highest sequence conservation and the most complex
gene structure: they are larger, consist of more exons and longer
introns, encode a large number of isoforms and, on average, are
highly expressed.

9. The charted fitness-phenotype-genotype map of adaptation and
constraint over the complete anatomy of the embryo of D.
melanogaster suggests that selective constraint is pervasive over
most of the embryo’s anatomy, particularly on the digestive and
nervous systems, except for the anatomical structures that also
show evidence of adaptation in the adult, the immune and repro-
ductive systems, and a relaxation of selection in the first stage due
to the maternal-effect genes.

10. A novel permutation test has been applied to infer the departures
of adaptation and selective constraint simultaneously for all body
parts of the embryo. This permutation test captures the correla-
tional structure of the data and has a higher statistical power com-
pared to standard permutation test procedures.
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11. The genes annotated with the anatomical terms "Salivary glands"
and "Segmental/GAP" depart from the trends identified. The sali-
vary glands express old genes, that, in contrast to the rest of the ec-
toderm, exhibit a rather high frequency of optimum codons (Fop).
The high Fop could be explained by both the old age of these
genes and the fact that many of them are well known to be ex-
pressed at very high levels. In contrast, the genes annotated with
the anatomical term "Segmental/GAP" are the youngest compared
to the genes annotated in the other anatomical terms.

12. The last embryonic stage analyzed (13–16) exhibits the most con-
trasting values of both adaptation (ωa) and constraint (ω) between
anatomical structures. In this stage, the anatomical structures and
the gene spatial co-expression patterns are positioned and shaped
in very similar ways to those of the larva. In that sense, the results
in the latest stage could be taken as a proxy for adaptation over
the body parts of the functional larva.

13. Genes with a low spatial pleiotropy, i.e., expressed in a few
anatomical terms, are evolutionary younger and exhibit higher
rates of evolution. In contrast, genes that are highly pleiotropic
are phylogenetically older and more evolutionary constrained.

14. By measuring natural selection in genes expressed across develop-
ment or different body parts, a systemic view of the causes and
consequences of evolutionary and functional effects of genomic
variation. This thesis is a first step in the pursuit to achieve an
ultimately unified fitness-phenotype-genotype map.
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Chapter 6

A P P E N D I X





ASupplementary figures

Figure A.1 Temporal profile of expression of the genes in each of the nine life

cycle clusters. In yellow is represented the expressionprofile of the genes belonging

to a cluster with a membership� 0.8.
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Figure A.2ω,ωa,ωna andα of the different developmental periods estimated

using DFE-alpha using the life cycle set genes for the null distribution. A.ω, the

rate of adaptive non-synonymous substitutions relative to the mutation rate. B. α,

theproportionofbasesubstitutions fixedbynatural selection. C.ωna, the rateofnon-

adaptive non-synonymous substitutions relative to themutation rate. D.ω, the rate

of non-synonymous substitutions relative to the mutation rate. Each boxplot (100

bootstrap replicates per period) in a plot is calculated for a randomly drawn sample

of the set of genes that belong in a periodwith replacement. The number of genes ex-

pressed in each period is: Embryo 0-2h: 333 genes; Embryo 2-6h: 886 genes; Embryo

6-24h: 2,086 genes; Larva begin: 1,877 genes; Larva end: 2,363 genes; Pupa: 2,708

genes; Females: 1,784 genes; Males: 2,563 genes. P-values in Table B.16.
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Figure A.3ω,ωa,ωna andα of the different developmental periods estimated

using DFE-alpha using the life cycle set genes for the null distribution. A.ω, the

rate of adaptive non-synonymous substitutions relative to the mutation rate. B. α,

theproportionofbasesubstitutions fixedbynatural selection. C.ωna, the rateofnon-

adaptive non-synonymous substitutions relative to themutation rate. D.ω, the rate

of non-synonymous substitutions relative to the mutation rate. Each boxplot (100

bootstrap replicates per period) in a plot is calculated for a randomly drawn sample

of the set of genes that belong in a periodwith replacement. The number of genes ex-

pressed in each period is: Embryo 0-2h: 333 genes; Embryo 2-6h: 886 genes; Embryo

6-24h: 2,086 genes; Larva begin: 1,877 genes; Larva end: 2,363 genes; Pupa: 2,708

genes; Females: 1,784 genes; Males: 2,563 genes. P-values in Table B.17.
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Figure A.4 The selection statistics follow a similar temporal pattern when mea-

sured with the eMKT and standard MKT method. A. α, estimated using the stan-

dard MKT, without concatenating genes. B. ωa, estimated using the standard MKT

method,without concatenating genes. C.α, estimatedusing the eMKTmethod,with-

out concatenating genes. D.ωa, estimatedusing the eMKTmethod,without concate-

nating genes. In Figures A-D, αand ωa were estimated individually for each gene

expressed in each stage (number of genes analyzed in Table B.8). Each boxplot A-D

represents the median estimated by the bootstrap method (100 times with replace-

ment). E. α, estimated using the standard MKT, concatenating genes. F. ωa, esti-

mated using the standard MKT method, concatenating genes. G. α, estimated using

the eMKT method, concatenating genes. H.ωa, estimated using the eMKT method,

concatenating genes. In this case, the same data as for Figure 3.9 was used. Colors

and lines as in Figure 3.9.
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Figure A.5ωa, α,ωna andω over estimated using DFE-alpha developmental

time when using 4-fold as a proxy for the mutation rate. A.ωa, the rate of adap-

tive non-synonymous substitutions relative to the mutation rate. B. α, the propor-

tion of base substitutions fixed by natural selection. C.ωna, the rate of non-adaptive

non-synonymous substitutions relative to the mutation rate. D.ω, the rate of non-

synonymous substitutions relative to themutation rate. Colors and lines as in Figure

3.9. The number of analyzed genes is shown in Table B.1.
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Figure A.6ωa, α,ωna andω estimated using DFE-alpha over developmental

stages when resampling the same number of genes in each stage. A.ωa, the rate

of adaptive non-synonymous substitutions relative to the mutation rate. B. α, the

proportion of base substitutions fixed by natural selection. C.ωna, the rate of non-

adaptive non-synonymous substitutions relative to themutation rate. D.ω, the rate

of non-synonymous substitutions relative to the mutation rate. Colors and lines as

in Figure 3.9. The number of analyzed genes is shown in Table B.1.
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Figure A.7ωa, α,ωna andω estimated using DFE-alpha over developmental

time when analyzing genes that have a maximal level of expression that is at

least twice or four times than of its minimal expression for females and males.

In this analysis, only genes that have a maximal level of expression (over all stages)

that is at least twice (or four times) than of its minimal expression are considered.

In all cases, the pattern resembles that of Figure 3.9. A. ωa, the rate of adaptive

non-synonymous substitutions relative to the mutation rate. B. α, the proportion

of base substitutions fixed by natural selection. C. ωna, the rate of non-adaptive

non-synonymous substitutions relative to the mutation rate. D.ω, the rate of non-

synonymous substitutions relative to the mutation rate. E.ωa, the rate of adaptive

non-synonymous substitutions relative to the mutation rate. F. α, the proportion

of base substitutions fixed by natural selection. G. ωna, the rate of non-adaptive

non-synonymous substitutions relative to the mutation rate. H.ω, the rate of non-

synonymous substitutions relative to the mutation rate. I.ωa, the rate of adaptive

non-synonymous substitutions relative to the mutation rate. J. α, the proportion

of base substitutions fixed by natural selection. K. ωna, the rate of non-adaptive

non-synonymous substitutions relative to the mutation rate. L. ω, the rate of non-

synonymous substitutions relative to the mutation rate. M.ωa, the rate of adaptive

non-synonymous substitutions relative to the mutation rate. N. α, the proportion

of base substitutions fixed by natural selection. O. ωna, the rate of non-adaptive

non-synonymous substitutions relative to the mutation rate. P. ω, the rate of non-

synonymous substitutions relative to themutation rate. Colors and lines as in Figure

3.9. The number of analyzed genes is shown in Tables B.2-B.5.
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Figure A.8 The selection statistics follow a similar temporal pattern when con-

sidering genes expressed with a RPKM� 2 and using DFE-alpha. In the medium

stringent criterion, only genes that have two or more RPKM in that stage are consid-

ered. Similar results are found when compared to the pattern of Figure 3.9. A. ωa,

the rate of adaptive non-synonymous substitutions relative to the mutation rate. B.

α, the proportion of base substitutions fixed by natural selection. C.ωna, the rate of

non-adaptive non-synonymous substitutions relative to themutation rate. D.ω, the

rate of non-synonymous substitutions relative to themutation rate. Colors and lines

as in Figure 3.9. The number of analyzed genes is shown in Table B.6.
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FigureA.9The selection statistics followa similar temporal patternwhenconsid-

ering genes expressed with a RPKM� 10 and using DFE-alpha. In the high strin-

gent criterion, only genes that have ten or more RPKM in that stage are considered.

In this case, the stages with maximum and minimumωa,ωna andω are the same

that in the previous analyses, but the overall temporal profile is smoother. A.ωa, the

rate of adaptive non-synonymous substitutions relative to the mutation rate. B. α,

the proportion of base substitutions fixed by natural selection. C. ωna, the rate of

non-adaptive non-synonymous substitutions relative to themutation rate. D.ω, the

rate of non-synonymous substitutions relative to themutation rate. Colors and lines

as in Figure 3.9. The number of analyzed genes is shown in Table B.7.
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Figure A.10 ωa, α, ωna and ω over developmental time when genes related

with testis and immune are removed using DFE-alpha. A. ωa, the rate of adap-

tive non-synonymous substitutions relative to the mutation rate. B. α, the propor-

tion of base substitutions fixed by natural selection. C.ωna, the rate of non-adaptive

non-synonymous substitutions relative to the mutation rate. D.ω, the rate of non-

synonymous substitutions relative to themutation rate. Colors and lines as in Figure

3.9. The number of analyzed genes is shown in Table B.12.
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Figure A.11ω,ωa,ωna and α for each life cycle cluster. A.ω sampling for each

cluster. B.ωa sampling for each cluster. C.ωna sampling for each cluster. D. α sam-

pling for each cluster. Female data pointswhere discarded andonlymaleswere used

for the adult stage. Each point in a plot (100 bootstrap replicates per cluster) is cal-

culated for a randomly drawn sample of the set of genes in each cluster with replace-

ment. Number of genes analyzed in Table B.9. Permutation p-values are displayed in

Table B.19.
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Figure A.12 Six genomic features over developmental stages, using 4-fold data.

Linesandstagesas inFigure3.9. A. Size is theCDS lengthofagene inbp. B.Numberof

exons is the total numberofdifferentexonsagenehas. C. Numberof transcripts is the

number of different transcripts a gene has. D. Fop is a measure of codon usage bias,

the ratio of optimal codons to synonymous codons. E. Intron length is the average

distance, in bases, between the exons of a gene. F. The expression bias is a measure

of howmuch the expression of a gene is restricted to one or few stages estimated as

Equation2.7. G. Recombination rate is estimated in100kbnon-overlappingwindows.

H. Expression level is the average expression (as the logarithm of the RPKM counts)

of a gene in over all stages. Mean sampling distribution obtained by resampling 100

timeswith replacement the genes from each stage. The number of analyzed genes is

shown in Table B.1.

218



SUPP L EMENTAR Y F I GURES

Figure A.13 Correlations betweenωa and the genomic determinants.
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Figure A.14 Genomic features for each cluster of the embryo development. A.

Size is the CDS length of a gene in bp. B. Number of exons is the total number of differ-

ent exons a gene has. C. Number of transcripts is the number of different transcripts

a gene has. D. The expression bias is a measure of how much the expression of a

gene is restricted to one or few stages estimated as Equation 2.7. E. Fop is a measure

of codon usage bias, the ratio of optimal codons to synonymous codons. F. Intron

length is the average distance, in bases, between the exons of a gene. G. Intergenic

distance is the average distance, in bases, between adjacent genes. H. Recombina-

tion rate is estimated in 100 kb non-overlapping windows. The number of analyzed

genes is shown in Table 2.3. Clusters 1, 2 and 8 have significantly lower intron length

than other clusters (permutation test, cluster 1: p = 0.042; cluster 2: p = 0.019; clus-

ter 8: p = 0.004, while clusters 5 and 7 show high intron length and high intergenic

distance, respectively (permutation test, cluster 5: p < 0.001; cluster 7: p < 0.001) and

rather lowωa andω. A similar pattern is found for gene size, number of exons and

number of transcripts, that are low for clusterswith highωa,ω andα (cluster 1, tran-

scripts p = 0.092; cluster 2, exons p = 0.004, transcripts p = 0.038; cluster 8 size p <

0.001, exons p < 0.001, transcripts p < 0.001) and high for clusters 5 and 7 (permuta-

tion test, size: cluster 5: p < 0.001; transcripts: cluster 5: p < 0.001; cluster 7: p = 0.003;

exons: cluster 5: p < 0.001; cluster 7: p < 0.001). Codon usage bias, measured as Fop,

has also a similar pattern with low values in clusters with highωa,ω and α (permu-

tation test, cluster 1: p = 0.019; cluster 2: p = 0.027; cluster 8: p = 0.019). Permutation

P-values are displayed in Table B.21.
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Figure A.15 Genomic features for each cluster of the life cycle. A. Size is the CDS

length of a gene in bp. B. Number of exons is the total number of different exons a

genehas. C. Numberof transcripts is thenumberofdifferent transcriptsagenehas. D.

The expressionbias is ameasureof howmuch theexpressionof a gene is restricted to

one or few stages estimated as Equation 2.7. E. Fop is ameasure of codon usage bias,

the ratio of optimal codons to synonymous codons. F. Intron length is the average

distance, in bases, between the exons of a gene. G. Intergenic distance is the average

distance, in bases, between adjacent genes. H. Recombination rate is estimated in

100 kb non-overlapping windows. The number of analyzed genes is shown in Table

B.9. Permutation p-values are shown in Table B.22.
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Figure A.16ωa,ω,ωna and α for the maternal genes, maternal-zygotic genes

and zygotic geneswhich are in commonwith themodENCODEdataset. Each box-

plot (100 bootstrap replicates per group) is calculated for a randomly drawn sample

of the set of genes in each category. Number of genes analyzed: 204maternal genes,

20 maternal-zygotic and 172 zygotic genes.
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Table B.1 Genes expressed in 30 stages with the low stringent criteria. 4-

fold genes represent genes that can be analyzedwith the 4-fold gene dataset

and Short-intron genes those genes that can be analyzed with the short-

intron dataset.

Stage Total genes 4-fold genes Short-intron genes

0-2 h 1,019 642 333

2-4 h 1,937 1,253 665

4-6 h 2,348 1,466 801

6-8 h 2,729 1,792 989

8-10 h 3,142 2,078 1,154

10-12 h 3,403 2,336 1,320

12-14 h 3,779 2,587 1,488

14-16 h 3,801 2,794 1,572

16-18 h 4,173 2,976 1,679

18-20 h 4,230 3,094 1,735

20-22 h 4,174 3,022 1,686

22-24 h 4,505 3,154 1,771

L1 4,037 2,947 1,648

L2 4,030 2,934 1,645

L3 12 h 3,971 2,889 1,638

L3-PS1-2 5,142 3,737 2,023

L3-PS3-6 5,845 4,067 2,200

L3-PS7-9 6,202 4,165 2,252

WPP 6,002 4,050 2,177

P5 6,491 4,255 2,270

P6 6,497 4,166 2,245

P8 6,837 4,400 2,359

P9-10 6,385 4,234 2,292

P15 6,493 4,480 2,434

♀ Eclosion (1 day) 3,998 3,007 1,750

♀ Eclosion (5 days) 3,424 2,454 1,476

♀ Eclosion (30 days) 3,418 2,468 1,484

♂ Eclosion (1 day) 7,104 4,509 2,484

♂ Eclosion (5 days) 7,164 4,480 2,469

♂ Eclosion (30 days) 7,050 4,483 2,471

Total 9,287 5,323 2,869
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Table B.2 Genes expressed in 30 stages with 2-fold change in females. 4-

fold genes represent genes that can be analyzedwith the 4-fold gene dataset

and Short-intron genes those genes that can be analyzed with the short-

intron dataset.

Stage Total genes 4-fold genes Short-intron genes

0-2 h 922 632 326

2-4 h 1,744 1,225 648

4-6 h 2,011 1,411 768

6-8 h 2,413 1,743 958

8-10 h 2,811 2,027 1,124

10-12 h 3,085 2,265 1,270

12-14 h 3,380 2,501 1,423

14-16 h 3,603 2,722 1,522

16-18 h 3,867 2,862 1,601

18-20 h 3,975 2,979 1,659

20-22 h 3,899 2,909 1,616

22-24 h 4,104 3,022 1,687

L1 3,797 2,857 1,594

L2 3,834 2,877 1,611

L3 12 h 3,814 2,853 1,617

L3-PS1-2 4,974 3,686 1,991

L3-PS3-6 5,497 3,978 2,147

L3-PS7-9 5,619 4,044 2,174

WPP 5,467 3,933 2,112

P5 5,716 4,099 2,173

P6 5,541 3,979 2,131

P8 5,821 4,199 2,236

P9-10 5,558 4,066 2,189

P15 5,755 4,263 2,301

♀ Eclosion (1 day) 3,829 2,937 1,706

♀ Eclosion (5 days) 3,193 2,405 1,442

♀ Eclosion (30 days) 3,204 2,412 1,445

Total 6,847 4,836 2,570
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TableB.3Genesexpressed in30 stageswith2-fold change inmales. 4-fold

genes represent genes that can be analyzedwith the 4-fold gene dataset and

Short-intron genes those genes that can be analyzed with the short-intron

dataset.

Stage Total genes 4-fold genes Short-intron genes

0-2 h 922 630 325

2-4 h 1,753 1,225 648

4-6 h 2,024 1,413 769

6-8 h 2,430 1,749 963

8-10 h 2,825 2,032 1,127

10-12 h 3,098 2,269 1,272

12-14 h 3,394 2,505 1,426

14-16 h 3,614 2,725 1,525

16-18 h 3,889 2,871 1,607

18-20 h 3,995 2,986 1,664

20-22 h 3,918 2,919 1,624

22-24 h 4,126 3,033 1,695

L1 3,813 2,865 1,599

L2 3,854 2,887 1,618

L3 12 h 3,833 2,865 1,623

L3-PS1-2 5,002 3,701 1,999

L3-PS3-6 5,585 4,001 2,160

L3-PS7-9 5,735 4,070 2,190

WPP 5,565 3,960 2,128

P5 5,879 4,132 2,192

P6 5,723 4,016 2,152

P8 6,002 4,236 2,257

P9-10 5,751 4,103 2,215

P15 6,123 4,374 2,373

♂ Eclosion (1 day) 6,161 4,328 2,373

♂ Eclosion (5 days) 6,077 4,281 2,346

♂ Eclosion (30 days) 6,066 4,278 2,341

Total 7,231 4,925 2,629

226



SUPP L EMENTAR Y TAB L E S

Table B.4 Genes expressed in 30 stages with 4-fold change in females. 4-

fold genes represent genes that can be analyzedwith the 4-fold gene dataset

and Short-intron genes those genes that can be analyzed with the short-

intron dataset.

Stage Total genes 4-fold genes Short-intron genes

0-2 h 775 566 292

2-4 h 1,472 1,116 589

4-6 h 1,656 1,274 693

6-8 h 2,033 1,594 879

8-10 h 2,385 1,850 1,028

10-12 h 2,633 2,062 1,160

12-14 h 2,854 2,256 1,286

14-16 h 3,092 2,434 1,372

16-18 h 3,250 2,525 1,428

18-20 h 3,410 2,654 1,487

20-22 h 3,322 2,571 1,437

22-24 h 3,457 2,667 1,496

L1 3,242 2,525 1,417

L2 3,283 2,562 1,438

L3 12 h 3,407 2,651 1,498

L3-PS1-2 4,391 3,377 1,807

L3-PS3-6 4,594 3,529 1,891

L3-PS7-9 4,634 3,567 1,911

WPP 4,510 3,471 1,860

P5 4,681 3,594 1,906

P6 4,487 3,466 1,856

P8 4,741 3,649 1,941

P9-10 4,540 3,528 1,897

P15 4,761 3,710 1,995

♀ Eclosion (1 day) 3,259 2,605 1,516

♀ Eclosion (5 days) 2,748 2,191 1,312

♀ Eclosion (30 days) 2,751 2,189 1,313

Total 5,464 4,144 2,189
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TableB.5Genesexpressed in30 stageswith4-fold change inmales. 4-fold

genes represent genes that can be analyzedwith the 4-fold gene dataset and

Short-intron genes those genes that can be analyzed with the short-intron

dataset.

Stage Total genes 4-fold genes Short-intron genes

0-2 h 780 568 293

2-4 h 1,484 1,121 589

4-6 h 1,680 1,287 698

6-8 h 2,056 1,606 884

8-10 h 2,412 1,865 1,033

10-12 h 2,657 2,073 1,162

12-14 h 2,877 2,270 1,290

14-16 h 3,118 2,447 1,376

16-18 h 3,293 2,553 1,440

18-20 h 3,454 2,681 1,498

20-22 h 3,356 2,597 1,450

22-24 h 3,493 2,690 1,508

L1 3,274 2,548 1,427

L2 3,313 2,583 1,448

L3 12 h 3,438 2,670 1,509

L3-PS1-2 4,504 3,448 1,851

L3-PS3-6 4,796 3,645 1,956

L3-PS7-9 4,843 3,682 1,972

WPP 4,711 3,586 1,922

P5 4,902 3,716 1,971

P6 4,714 3,595 1,924

P8 4,970 3,780 2,011

P9-10 4,780 3,664 1,972

P15 5,169 3,917 2,112

♂ Eclosion (1 day) 5,081 3,843 2,093

♂ Eclosion (5 days) 4,995 3,782 2,059

♂ Eclosion (30 days) 5,003 3,792 2,065

Total 5,859 4,334 2,299

228



SUPP L EMENTAR Y TAB L E S

Table B.6 Genes expressed in 30 stages with the medium stringent crite-

ria. 4-fold genes represent genes that can be analyzed with the 4-fold gene

dataset and Short-intron genes those genes that can be analyzed with the

short-intron dataset.

Stage Total genes 4-fold genes Short-intron genes

0-2 h 1,019 642 333

2-4 h 1,937 1,253 665

4-6 h 2,348 1,466 801

6-8 h 2,729 1,792 989

8-10 h 3,142 2,078 1,154

10-12 h 3,403 2,336 1,320

12-14 h 3,779 2,587 1,488

14-16 h 3,801 2,794 1,572

16-18 h 4,173 2,976 1,679

18-20 h 4,230 3,094 1,735

20-22 h 4,174 3,022 1,686

22-24 h 4,505 3,154 1,771

L1 4,037 2,947 1,648

L2 4,030 2,934 1,645

L3 12 h 3,971 2,889 1,638

L3-PS1-2 5,142 3,737 2,023

L3-PS3-6 5,845 4,067 2,200

L3-PS7-9 6,202 4,165 2,252

WPP 6,002 4,050 2,177

P5 6,491 4,255 2,270

P6 6,497 4,166 2,245

P8 6,837 4,400 2,359

P9-10 6,385 4,234 2,292

P15 6,493 4,480 2,434

♀ Eclosion (1 day) 3,998 3,007 1,750

♀ Eclosion (5 days) 3,424 2,454 1,476

♀ Eclosion (30 days) 3,418 2,468 1,484

♂ Eclosion (1 day) 7,104 4,509 2,484

♂ Eclosion (5 days) 7,164 4,480 2,469

♂ Eclosion (30 days) 7,050 4,483 2,471

Total 9,287 5,323 2,869
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Table B.7 Genes expressed in 30 stages with the high stringent crite-

ria. 4-fold genes represent genes that can be analyzed with the 4-fold gene

dataset and Short-intron genes those genes that can be analyzed with the

short-intron dataset.

Stage Total genes 4-fold genes Short-intron genes

0-2 h 4,066 3,485 2,449

2-4 h 3,372 2,838 1,937

4-6 h 3,504 2,949 2,010

6-8 h 3,727 3,148 2,145

8-10 h 3,935 3,312 2,231

10-12 h 4,069 3,430 2,274

12-14 h 4,304 3,621 2,456

14-16 h 3,929 3,310 2,155

16-18 h 4,089 3,394 2,206

18-20 h 3,687 3,040 1,905

20-22 h 3,944 3,238 2,073

22-24 h 4,122 3,375 2,182

L1 3,529 2,933 1,847

L2 3,349 2,761 1,719

L3 12 h 3,009 2,452 1,500

L3-PS1-2 2,838 2,326 1,434

L3-PS3-6 4,047 3,344 2,144

L3-PS7-9 4,659 3,835 2,451

WPP 4,450 3,685 2,373

P5 5,203 4,275 2,679

P6 5,670 4,667 2,925

P8 5,691 4,704 2,879

P9-10 4,411 3,641 2,184

P15 4,110 3,382 2,015

♀ Eclosion (1 day) 4,247 3,625 2,367

♀ Eclosion (5 days) 4,700 3,968 2,684

♀ Eclosion (30 days) 4,733 4,006 2,713

♂ Eclosion (1 day) 5,081 4,123 2,484

♂ Eclosion (5 days) 5,456 4,442 2,701

♂ Eclosion (30 days) 5,393 4,439 2,692

Total 10,075 8,042 4,887
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Table B.8 Genes expressed in 30 stages with the low stringent cri-

terion. Genes with 0 divergent or polymorphic sites were removed as

they cannot be used for estimating α using the MKTmethod.

Stage Short-intron genes Genes with variation

0-2 h 333 242

2-4 h 665 492

4-6 h 801 587

6-8 h 989 739

8-10 h 1,154 872

10-12 h 1,320 1,010

12-14 h 1,488 1,149

14-16 h 1,572 1,217

16-18 h 1,679 1,292

18-20 h 1,735 1,340

20-22 h 1,686 1,302

22-24 h 1,771 1,366

L1 1,648 1,270

L2 1,645 1,266

L312 h 1,638 1,274

L3-PS1-2 2,023 1,566

L3-PS3-6 2,200 1,711

L3-PS7-9 2,252 1,751

WPP 2,177 1,694

P5 2,270 1,751

P6 2,245 1,746

P8 2,359 1,823

P9-10 2,292 1,773

P15 2,434 1,894

♀ Eclosion (1 day) 1,750 1,344

♀ Eclosion (5 days) 1,476 1,137

♀ Eclosion (30 days) 1,484 1,146

♂ Eclosion (1 day) 2,484 1,933

♂ Eclosion (5 days) 2,469 1,913

♂ Eclosion (30 days) 2,471 1,922

Total 2,869 2,232
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Table B.9 Genes expressed in 9 clusters of the life cycle. 4-fold genes repre-

sent genes that can be analyzed with the 4-fold gene dataset and Short-intron

genes those genes that can be analyzed with the short-intron dataset.

Cluster Total genes Membership� 0.8 4-fold genes
Short-intron

genes

1 691 558 276 141

2 707 607 253 116

3 1,128 957 779 472

4 659 521 359 195

5 1,020 890 635 342

6 656 559 325 182

7 2,611 2,496 1,478 722

8 655 491 225 119

9 1,186 1,088 382 232

Total 9,241 8,167 4,712 2,521
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Table B.10 Number of genes expressed in each anatomical structures by stage.

4-fold genes represent genes that can be analyzed with the 4-fold gene dataset and

Short-intron genes those genes that can be analyzed with the short-intron dataset.

Stage Anatomical structure Total genes 4-fold genes
Short-intron

genes

1 Germ line# 81 73 47

1 Maternal 4,076 3,593 2,316

1 Ubiquitous 468 408 257

2 Amnioserosa# 135 122 60

2 Ectoderm/Epidermis 291 250 114

2 Endoderm/Midgut# 4 4 1

2 Foregut# 84 66 34

2 Germ line^ 168 153 99

2
Hindgut/Malpighian

tubules#
69 58 30

2 Maternal 2,335 2,048 1,287

2 Mesoderm/Muscle# 126 109 52

2 Optical lobe# 52 44 22

2 PNS# 1 1 1

2
Procephalic ectoderm/

CNS^
232 189 85

2 Segmental/GAP# 129 114 58

2 Ubiquitous 2,123 1,860 1,180

3 Amnioserosa/Yolk# 117 109 57

3 Ectoderm/Epidermis 373 311 150

3 Endoderm/Midgut 527 459 275

3 Foregut# 102 83 33

3 Germ line^ 193 175 109

3
Hindgut/Malpighian

tubules^
200 169 93

3 Mesoderm/Muscle 592 512 301

3 Optical lobe# 49 38 20

3 PNS# 5 4 3

Continued on next page
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Table B.10 – Continued from previous page

Stage Anatomical structure Total genes 4-fold genes
Short-intron

genes

3
Procephalic ectoderm/

CNS
441 382 212

3 Segmental/GAP# 50 44 16

3 Ubiquitous 2,377 2,081 1,371

4 Amnioserosa/Yolk^ 247 220 119

4 Ectoderm/Epidermis 561 476 251

4 Endoderm/Midgut 701 609 382

4 Foregut# 173 142 69

4
Garland/Plasmatocytes/

Ring gland#
34 30 11

4 Germ line# 158 142 87

4
Hindgut/Malpighian

tubules^
274 238 137

4 Mesoderm/Muscle 748 649 396

4 Optical lobe# 81 68 31

4 PNS# 19 11 4

4
Procephalic ectoderm/

CNS
470 405 241

4 Salivary gland# 6 4 4

4 Segmental/GAP# 32 29 17

4 SNS# 6 6 1

4 Tracheal system# 8 4 2

4 Ubiquitous 2,283 1,992 1,315

5 Amnioserosa/Yolk 346 304 176

5 Ectoderm/Epidermis 477 401 208

5 Endoderm/Midgut 1,176 1,030 645

5 Foregut 408 355 190

5
Garland/Plasmatocytes/

Ring gland^
257 233 136

5 Germ line# 131 117 74

Continued on next page
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Table B.10 – Continued from previous page

Stage Anatomical structure Total genes 4-fold genes
Short-intron

genes

5
Headmesoderm/Circ.

Syst./FB
479 422 247

5
Hindgut/Malpighian

tubules
592 525 317

5 Mesoderm/Muscle 834 742 445

5 Optical lobe# 54 43 15

5 PNS# 103 79 38

5
Procephalic ectoderm/

CNS
934 803 495

5 Salivary gland# 112 98 68

5 Segmental/GAP# 14 11 5

5 Tracheal system^ 306 256 135

5 Ubiquitous 2,034 1,777 1,174

6 Amnioserosa/Yolk 301 262 154

6 Ectoderm/Epidermis 1,119 946 527

6 Endoderm/Midgut 1,596 1,391 861

6 Foregut 849 720 395

6
Garland/Plasmat./

Ring gland
406 358 212

6 Germ line 341 297 209

6
Headmesoderm/Circ.

Syst./FB
382 344 192

6
Hindgut/Malpighian

tubules
939 826 495

6 Mesoderm/Muscle 903 800 479

6 Optical lobe# 61 48 19

6 PNS^ 316 267 145

6
Procephalic ectoderm/

CNS
1,486 1,276 786

6 Salivary gland^ 269 238 136

6 Segmental/GAP# 6 4 0

Continued on next page
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Table B.10 – Continued from previous page

Stage Anatomical structure Total genes 4-fold genes
Short-intron

genes

6 SNS# 52 45 19

6 Tracheal system 432 369 190

6 Ubiquitous 1,599 1,400 918

Total 5,671 4,945 3,028

Anatomical structures not analyzed in posterior analyses (not enough genes to be

analyzed, the minimum is 150 genes)
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Table B.11 Genomic features analyzed.

Feature Value (ranks)
Number of

genes
Reference

Gene size [9,617] 2,223 Gramates et al., 2017

(617,1,020] 2,220

(1,020,1,520] 2,219

(1,520,2,370] 2,220

(2,370,55,400] 2,221

Number of [1,2] 4,008 Gramates et al., 2017

exons (2,3] 1,742

(3,4] 1,395

(4,7] 2,140

(7,114] 1,818

Number of [1] 5,278 Gramates et al., 2017

transcripts [2] 2,775

[3] 1,026

[4,75] 1,574

Intron length [0,54.9] 2,221 Gramates et al., 2017

(54.9,65] 2,337

(65,119] 2,111

(119,426] 2,213

(426,84,000] 2,221

Intergenic [0,540] 2,225 Gramates et al., 2017

distance (540,1,100] 2,217

(1,100,2,570] 2,220

(2,570,7,390] 2,220

(7,390,184,000] 2,221

Expression [0.0556,0.249] 2,203 Gelbart and Emmert, 2013

bias (0.249,0.354] 2,201

(0.354,0.531] 2,202

(0.531,0.729] 2,202

(0.729,1] 2,202

Avg. expression [0,0.408] 2,221 Gelbart and Emmert, 2013

Continued on next page

237



SUPP L EMENTAR Y TAB L E S

Table B.11 – Continued from previous page

Feature Value (ranks)
Number of

genes
Reference

level (0.408,0.732] 2,220

(0.732,1.06] 2,220

(1.06,1.37] 2,220

(1.37,3.67] 2,221

Fop [0.176,0.441] 2,221 Peden, 1999

(0.441,0.494] 2,250

(0.494,0.538] 2,231

(0.538,0.591] 2,187

(0.591,0.88] 2,214

Recombination [0,0.692] 2,262 Comeron et al., 2,012

rates (0.692,1.52] 2,243

(1.52,2.39] 2,184

(2.39,3.59] 2,220

(3.59,14.8] 2,194

Phylogenetic [1] 3,209 Drost, 2014

age [2] 2,442

[3] 342

[4,11] 1,807

[12,13] 1,952
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Table B.12 Testis and immune related genes GO terms.

GO code Definition

GO:0002218 Activation of innate immune response

GO:0002227 Innate immune response in mucosa

GO:0002253 Activation of immune response

GO:0002385 Mucosal immune response

GO:0002433
Immune response-regulating cell surface receptor signaling pathway in-

volved in phagocytosis

GO:0002758 Innate immune response-activating signal transduction

GO:0002775 Antimicrobial peptide production

GO:0002784 Regulation of antimicrobial peptide production

GO:0002805 Regulation of antimicrobial peptide biosynthetic process

GO:0002920 Regulation of humoral immune response

GO:0002921 Negative regulation of humoral immune response

GO:0004766 Spermidine synthase activity

GO:0006597 Spermine biosynthetic process

GO:0006909 Phagocytosis

GO:0006952 Defense response

GO:0006955 Immune response

GO:0006959 Humoral immune response

GO:0006963 Positive regulation of antibacterial peptide biosynthetic process

GO:0006965
Positive regulation of biosynthetic process of antibacterial peptides active

against Gram-positive bacteria

GO:0006967 Positive regulation of antifungal peptide biosynthetic process

GO:0007140 Male meiosis

GO:0007283 Spermatogenesis

GO:0007284 Spermatogonial cell division

GO:0007285 Primary spermatocyte growth

GO:0007286 Spermatid development

GO:0007288 Sperm axoneme assembly

GO:0007290 Spermatid nucleus elongation

GO:0007291 Sperm individualization

GO:0007321 Sperm displacement

GO:0007485 Imaginal disc-derived male genitalia development

Continued on next page
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Table B.12 – Continued from previous page

GO code Definition

GO:0008584 Male gonad development

GO:0009617 Response to bacterium

GO:0016045 detection of bacterium

GO:0016768 Spermine synthase activity

GO:0019028 Viral capsid

GO:0019730 Antimicrobial humoral response

GO:0019731 Antibacterial humoral response

GO:0030317 Spermmotility

GO:0030382 Spermmitochondrion organization

GO:0030539 Male genitalia development

GO:0035006 Melanization defense response

GO:0035007 Regulation of melanization defense response

GO:0035009 Negative regulation of melanization defense response

GO:0035041 Sperm chromatin decondensation

GO:0035044 Sperm aster formation

GO:0035260 Internal genitalia morphogenesis

GO:0035323 Male germline ring canal

GO:0036126 Sperm flagellum

GO:0042742 Defense response to bacterium

GO:0045071 Negative regulation of viral genome replication

GO:0045087 Innate immune response

GO:0045088 Regulation of innate immune response

GO:0045089 Positive regulation of innate immune response

GO:0045824 Negative regulation of innate immune response

GO:0046692 Sperm competition

GO:0046693 Sperm storage

GO:0048133 Male germ-line stem cell asymmetric division

GO:0048137 Spermatocyte division

GO:0048515 Spermatid differentiation

GO:0048803 Imaginal disc-derived male genitalia morphogenesis

GO:0050688 Regulation of defense response to virus

GO:0050776 Regulation of immune response

Continued on next page

240



SUPP L EMENTAR Y TAB L E S

Table B.12 – Continued from previous page

GO code Definition

GO:0050777 Negative regulation of immune response

GO:0050778 Positive regulation of immune response

GO:0050829 Defense response to Gram-negative bacterium

GO:0050830 Defense response to Gram-positive bacterium

GO:0050832 Defense response to fungus

GO:0050983 Deoxyhypusine biosynthetic process from spermidine

GO:0051533 Positive regulation of NFAT protein import into nucleus

GO:0051607 Defense response to virus

GO:0070725 Yb body

GO:0070864 Sperm individualization complex

GO:0090382 Phagosomematuration

GO:2000019 Negative regulation of male gonad development

GO:2000020 Positive regulation of male gonad development

GO:2000018 Regulation of male gonad development

GO:1990111 Spermatoproteasome complex

GO:0033327 Leydig cell differentiation

GO:0008295 Spermidine biosynthetic process
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TableB.13αand±SDof thegenes ineachbin.

Bin Mean (±SD) Total %

1 0.800 (±0.275) 2/1,000 0.2%

2 0.872 (±0.201) 19/3,500 0.54%

5 0.742 (±0.380) 60/2,000 3%

10 0.616 (±0.449) 152/1,000 15.2%

25 0.515 (±0.256) 616/1,000 61.6%

50 0.536 (±0.174) 860/1,000 86%

75 0.546 (±0.138) 930/1,000 93%

100 0.553 (±0.115) 975/1,000 97.5%

250 0.568 (±0.065) 1,000/1,000 100%

500 0.572 (±0.046) 1,000/1,000 100%

750 0.574 (±0.039) 1,000/1,000 100%

1,000 0.575 (±0.034) 1,000/1,000 100%

The x cutoff interval is [0,0.9]. A DAF of 20 categories

was used.
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Table B.15 Mean absolute errors between true α values and the esti-

mates from the five MKT approaches.

Simulation Δstandard ΔFWW 15% ΔeMKT 15% ΔiMKT ρexp

Baseline 0.147 0.119 0.124 0.038 0.9

L=106 0.148 0.126 0.13 0.075 0.58

L=108 0.15 0.122 0.127 0.028 1

T=2×104 0.193 0.165 0.17 0.125 0.56

T=2×106 0.147 0.119 0.125 0.023 1

µ=10-8 0.13 0.103 0.108 0.023 1

µ=10-10 0.168 0.142 0.146 0.096 0.6

sd=0.002 0.159 0.133 0.138 0.045 0.94

sd=0.200 0.127 0.102 0.107 0.044 0.88

rb=0.0,001 0.202 0.165 0.172 0.048 0.94

rb=0.0,010 0.11 0.09 0.094 0.035 0.92

sb=0.02 0.206 0.167 0.174 0.051 0.92

sb=0.20 0.113 0.091 0.095 0.029 0.88

The increments are estimated asΔmethod=|αmethod-αtrue| in each run, averaged over
the 50 replicates. ρexp specifies the proportion of simulations in which the iMKT (ex-
ponential) fit was performed.

Table B.16 P-value of the permutation test for the pe-
riods (using genes expressed in whole development

with the lowstringent criteria as null distribution). P-

values corrected with the FDRmethod.

Period α ωa ω ωna

Embryo 0-2h 0.812 0.266 0.032 0.371

Embryo 2-6h 0.812 0.266 0.032 0.250

Embryo 6-24h 0.464 <0.001 <0.001 <0.001

Larva 1-3 0.605 <0.001 <0.001 <0.001

Larva 4-6 0.718 0.782 0.507 0.25

Pupa 0.812 0.605 0.055 0.25

Females 0.812 <0.001 <0.001 <0.001

Males 0.605 0.697 0.272 0.100
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Table B.17 P-value of the permutation test for the
periods (using the whole dataset as null distribu-

tion). P-values corrected with the FDRmethod.

Period α ωa ω ωna

Embryo 0-2h 0.346 0.002 <0.001 0.637

Embryo 2-6h 0.346 0.110 0.024 0.719

Embryo 6-24h 0.448 0.895 0.221 0.472

Larva 1-3 0.346 0.604 0.840 0.472

Larva 4-6 0.024 <0.001 <0.001 0.719

Pupa 0.056 <0.001 <0.001 0.472

Females 0.346 0.895 0.157 0.472

Males 0.024 <0.001 <0.001 0.713

Table B.18 P-value of the permutation test
for the clusters. P-values corrected with the

FDRmethod.

Cluster α ωa ω ωna

1 0.525 0.008 <0.001 0.469

2 0.955 0.059 <0.001 0.120

3 0.376 0.195 0.728 0.230

4 0.525 0.496 0.728 0.256

5 0.376 0.012 <0.001 0.633

6 0.525 0.288 0.265 0.818

7 0.955 0.086 <0.001 0.230

8 0.955 0.086 <0.001 0.230

Table B.19 P-value of the permutation test for
the clusters in the life cycle. P-values corrected

with the FDRmethod.

Cluster α ωa ω ωna

1 0.282 0.823 0.008 0.009

2 0.591 0.120 <0.001 0.227

3 0.676 <0.001 <0.001 <0.001

4 0.964 0.425 0.045 0.365

5 0.591 0.526 0.562 0.615

6 0.243 0.622 <0.001 <0.001

7 0.257 <0.001 <0.001 0.016

8 0.470 0.324 0.264 0.621

9 0.658 0.324 <0.001 0.038
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Table B.20 Spearman’s correlations between adaptation (ωa) and genomic fea-

tures.

Genomic variable Relation withωa
Correlation (r2) in fe-

males (p)

Correlation (r2) in

males (p)

Intron length Negative 0.852 (7.30×10-7) 0.772 (1.34×10-6)
Gene size Negative 0.655 (1.99×10-6) 0.604 (4.32×10-6)
Number of exons Negative 0.885 (4.90×10-7) 0.840 (8.25×10-7)
Number of transcripts Negative 0.725 (1.58×10-5) 0.664 (1.88×10-6)
Fop Negative 0.716 (1.61×10-6) 0.658 (1.95×10-6)
Expression bias Positive 0.447 (1.95×10-4) 0.509 (4.68×10-5)
Recombination Positive 0.233 (1.17×10-2) 0.411 (4.26×10-4)
Intergenic distance N.S. 0.050 (0.260) 0.089 (0.131)

Expression level Negative 0.270 (0.006) 0.386 (7.02×10-4)
Phylogenetic age Positive 0.708 (1.64×10-6) 0.699 (1.68×10-6)

Spearman’s correlations performed between each stage’s averageωa and the average of each genomic fea-

ture in each stage. Females andmales are separated because their gene expression ismeasured separately in

the last three stages in the modENCODE.

Table B.21 P-value of the permutation test for the genomic features of the em-
bryo development clusters. P-values corrected with the FDRmethod.
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1 0.994 0.042 0.101 0.678 0.019 0.092 0.271 <0.001

2 0.162 0.019 0.004 0.487 0.027 0.038 0.030 <0.001

3 0.311 0.201 0.183 0.392 0.717 0.224 0.019 0.100

4 0.771 0.201 0.183 0.376 0.008 0.171 0.936 <0.001

5 <0.001 <0.001 <0.001 0.487 <0.001 <0.001 0.146 <0.001

6 0.123 0.114 0.016 0.376 0.374 0.083 0.311 <0.001

7 0.248 0.139 <0.001 0.557 <0.001 0.003 <0.001 <0.001

8 <0.001 0.004 <0.001 0.487 0.019 <0.001 0.016 <0.001
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Table B.22 P-value of the permutation test for the genomic features of the life
cycle clusters. P-values corrected with the FDRmethod.
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1 0.424 0.054 0.071 0.991 <0.001 0.060 0.012 0.256

2 <0.001 <0.001 <0.001 0.991 0.834 <0.001 <0.001 0.005

3 <0.001 <0.001 <0.001 0.313 <0.001 <0.001 <0.001 <0.001

4 0.176 0.030 0.961 0.991 <0.001 0.217 0.947 0.015

5 <0.001 0.009 <0.001 0.313 0.027 0.002 <0.001 <0.001

6 0.002 0.049 0.006 0.991 0.026 0.060 0.012 0.088

7 <0.001 <0.001 <0.001 0.313 <0.001 <0.001 0.011 <0.001

8 0.071 0.051 0.055 0.313 0.090 0.053 0.298 <0.001

9 0.002 0.009 <0.001 0.991 <0.001 0.002 0.021 <0.001

Table B.23 P-values of the permutation test for ma-
ternal, maternal-zygotic and zygotic genes. P-values

corrected with the FDRmethod.

Class α ωa ω ωna

Maternal 0.075 0.920 0.024 0.003

Maternal-Zygotic 0.603 0.920 0.156 0.246

Zygotic 0.249 0.920 0.035 0.036

Table B.24 Recombination rate average levels in each germ layer and statistical

analysis.

Layer
Recombination

average (±SD)

Homogeneity of

variances (Fligner-

Killeen test p-value)

p-value

corrected FDR

ANOVA

p-value

p-value

corrected FDR

Ectoderm 2.200 (±1.922) 0.043 n.s. 0.091 n.s.

Endoderm 2.326 (±2.020) 0.7 n.s. 0.737 n.s.

Mesoderm 2.194 (±1.877) 0.08 n.s. 0.422 n.s.

The comparisons in the ANOVA/Fligner-Killen test are done using the anatomical structure

dataset as a reference (5,969 genes, from which 5,165 genes are analyzed with the gene

dataset).
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Table B.25 Mutation rate (K4f) average levels in each germ layer and statistical

analysis.

Layer
Mutation rate

average (±SD)

Homogeneity of

variances (Fligner-

Killeen test p-value)

p-value

corrected FDR

ANOVA

p-value

FDR

p-value

Ectoderm 0.167 (±0.054) 0.124 n.s. 4.86×-3 7.29×-3

Endoderm 0.188 (±0.054) 0.641 n.s. 1.00×-6 3.01×-6

Mesoderm 0.170 (±0.067) 0.708 n.s. 0.698 n.s.

The comparisons in the ANOVA/Fligner-Killen test are done using the anatomical structure

dataset as a reference (5,969 genes, from which 5,165 genes are analyzed with the gene

dataset).

Table B.26 Gene density average in each germ layer and statistical analysis.

Layer
Density

average (±SD)

Homogeneity of

variances (Fligner-

Killeen test p-value)

FDR

p-value

ANOVA

p-value

FDR

p-value

Ectoderm 28,236.99 (±15,474.87) 0.183 n.s. 0.037 n.s.

Endoderm 29,389.59 (±13,994.62) 0.153 n.s. 0.708 n.s.

Mesoderm 28,682.9 (±13,526.86) 0.111 n.s. 0.674 n.s.

The comparisons in the ANOVA/Fligner-Killen test are done using the anatomical structure

dataset as a reference (5,969 genes, from which 5,165 genes are analyzed with the gene

dataset).
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Table B.27 Permutation test p-value for anatomical struc-
tures analyzed with short-intron sites.

Anatomical structure ω ωa ωna α

Amnioserosa/Yolk n.s. n.s. n.s.* n.s.

Ectoderm/Epidermis <0.001 0.066 n.s.* n.s.

Endoderm/Midgut 0.004 n.s.* n.s. n.s.

Foregut 0.004 0.006 n.s. 0.020

Garland/Plasmat./

Ring gland
n.s.* 0.020 n.s. 0.042

Germ line n.s.* n.s.* n.s. n.s.

Headmesoderm/Circ.

Syst./FB
n.s. n.s. n.s. n.s.

Hindgut/Malpighian

tubules
0.012 n.s.* n.s. n.s.

Maternal n.s. n.s. n.s. n.s.

Mesoderm/Muscle 0.004 n.s.* n.s. n.s.

PNS <0.001 n.s.* n.s. n.s.

Procephalic ectoderm/

CNS
0.004 n.s. 0.020 0.072

Salivary gland n.s.* 0.016 n.s.* 0.030

Tracheal system n.s. n.s. n.s. n.s.

Ubiquitous n.s. n.s. n.s. n.s.

*Marginally significant when p-value is 1 tailed. Only analyzed

anatomical structures with more than 150 genes.
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Table B.28 Recombination rate average levels in anatomical structure and statis-

tical analysis.

Anatomical

term

Recombination

average (±SD)

Homogeneity of

variances (Fligner-

Killeen test p-value)

p-value

corrected FDR

ANOVA

p-value

p-value

corrected FDR

Amnioserosa/Yolk 2.210 (±1.855) 0.438 n.s. 0.397 n.s.

Ectoderm/Epidermis 2.265 (±1.891) 0.491 n.s. 0.642 n.s.

Endoderm/Midgut 2.315 (±1.961) 0.488 n.s. 0.488 n.s.

Foregut 2.269 (±1.929) 0.522 n.s. 0.749 n.s.

Garland/Plasmat./

Ring gland
2.261 (±1.900) 0.253 n.s. 0.778 n.s.

Germ line 2.264 (±1.987) 0.772 n.s. 0.798 n.s.

Headmesoderm/Circ.

Syst./FB
2.184 (±1.932) 0.228 n.s. 0.155 n.s.

Hindgut/Malpighian

tubules
2.278 (±1.875) 0.226 n.s. 0.862 n.s.

Maternal 2.311 (±1.967) 0.176 n.s. 0.149 n.s.

Mesoderm/Muscle 2.285 (±1.955) 0.945 n.s. 0.959 n.s.

Optical lobe 2.467 (±2.241) 0.317 n.s. 0.297 n.s.

PNS 2.199 (±1.929) 0.602 n.s. 0.423 n.s.

Procephalic ectoderm/

CNS
2.290 (±1.975) 0.666 n.s. 0.945 n.s.

Salivary gland 2.137 (±1.726) 0.053 n.s. 0.183 n.s.

Segmental/GAP 2.161 (±2.030) 0.786 n.s. 0.455 n.s.

SNS 1.899 (±1.740) 0.518 n.s. 0.173 n.s.

Tracheal system 2.291 (±1.947) 0.848 n.s. 0.969 n.s.

Ubiquitous 2.336 (±1.996) 0.032 n.s. 0.071 n.s.

The comparisons in the ANOVA/Fligner-Killen test are done using the anatomical structure

dataset as a reference (5,969 genes, from which 5,165 genes are analyzed with the gene

dataset).
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Table B.29 Mutation rate (K4f) average levels in anatomical structure and statis-
tical analysis.

Anatomical

term

Mutation

average (±SD)

Homogeneity of

variances (Fligner-

Killeen test p-value)

p-value

corrected FDR

ANOVA

p-value

FDR

p-value

Amnioserosa/Yolk 0.167 (±0.054) 0.185 n.s. 0.119 n.s.

Ectoderm/Epidermis 0.159 (±0.055) 0.059 n.s. 1.31×10-20 2.35×10-19

Endoderm/Midgut 0.169 (±0.055) 0.09 n.s. 0.085 n.s.

Foregut 0.159 (±0.055) 0.439 n.s. 8.71×10-14 5.22×10-13

Garland/Plasmat./

Ring gland
0.160 (±0.056) 0.102 n.s. 2.08×10-5 3.74×10-5

Germ line 0.175 (±0.058) 0.985 n.s. 0.155 n.s.

Headmesoderm/Circ.

Syst./FB
0.169 (±0.057) 0.805 n.s. 0.261 n.s.

Hindgut/Malpighian

tubules
0.163 (±0.053) 0.002 0.0,309 5.65×10-7 1.27×10-6

Maternal 0.174 (±0.056) 0.358 n.s. 1.54×10-6 3.08×10-6

Mesoderm/Muscle 0.163 (±0.058) 0.535 n.s. 6.53×10-9 2.35×10-8

Optical lobe 0.145 (±0.053) 0.594 n.s. 1.32×10-7 3.96×10-7

PNS 0.155 (±0.053) 0.122 n.s. 1.73×10-7 4.46×10-7

Procephalic ectoderm/

CNS
0.161 (±0.058) 0.066 n.s. 1.67×10-17 1.50×10-16

Salivary gland 0.167 (±0.056) 0.342 n.s. 0.225 n.s.

Segmental/Gap 0.152 (±0.059) 0.199 n.s. 5.64×10-5 9.23×10-5

SNS 0.147 (±0.060) 0.386 n.s. 3.61×10-3 5.42×10-3

Tracheal system 0.156 (±0.053) 0.018 n.s. 2.34×10-10 1.06×10-9

Ubiquitous 0.172 (±0.057) 0.375 n.s. 0.42 n.s.

The comparisons in the ANOVA/Fligner-Killen test are done using the anatomical structure

dataset as a reference (5,969 genes, from which 5,165 genes are analyzed with the gene

dataset).
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Table B.30 Density average levels in anatomical structure and statistical analy-

sis.

Anatomical

term

Density

average (±SD)

Homogeneity of

variances (Fligner-

Killeen test p-value)

p-value

corrected FDR

ANOVA

p-value

FDR

p-value

Amnioserosa/Yolk 28,276.67 (±15,252.51) 0.827 n.s. 0.268 n.s.

Ectoderm/Epidermis 28,198.58 (±15,736.26) 0.017 n.s. 0.018 0.04

Endoderm/Midgut 29,712.36 (±14,777.18) 0.976 n.s. 0.031 n.s.

Foregut 28,928.85 (±15,510.51) 0.094 n.s. 0.779 n.s.

Garland/Plasmat./

Ring gland
28,833.39 (±14,653.44) 0.894 n.s. 0.753 n.s.

Germ line 29,395.97 (±14,646.84) 0.88 n.s. 0.628 n.s.

Headmesoderm/Circ.

Syst./FB
28,783.69 (±14,743.77) 0.822 n.s. 0.624 n.s.

Hindgut/Malpighian

tubules
30,064.67 (±15,434.71) 0.039 n.s. 0.016 0.042

Maternal 29,643.09 (±14,847.18) 0.307 n.s. 4.04×10-6 7.28×10-5

Mesoderm/Muscle 29,198.36 (±14,949.43) 0.658 n.s. 0.697 n.s.

Optical lobe 24,602.59 (±14,572.78) 0.895 n.s. 7.44×10-4 4.46×10-3

PNS 28,647.39 (±16,165.25) 0.061 n.s. 0.629 n.s.

Procephalic ectoderm/

CNS
28,483.50 (±15,490.24) 0.019 n.s. 0.081 n.s.

Salivary gland 30,769.15 (±15,004.98) 0.737 n.s. 0.047 n.s.

Segmental/Gap 24,976.21 (±16,523.63) 0.618 n.s. 1.69×10-3 7.62×10-3

SNS 23,067.53 (±14,686.63) 0.167 n.s. 6.00×10-3 0.018

Tracheal system 27,136.9 0(±16,268.12) 0.127 n.s. 3.09×10-3 0.011

Ubiquitous 29,906.60 (±15,058.90) 0.639 n.s. 4.37×10-5 3.93×10-4

The comparisons in the ANOVA/Fligner-Killen test are done using the anatomical structure

dataset as a reference (5,969 genes, from which 5,165 genes are analyzed with the gene

dataset).
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Table B.31P-values of the permutation test. 4-fold sites are used as a proxy for the
mutation rate.

Stage Anatomical structure ω ωa ωna α

1 Maternal n.s. n.s. 0.002 0.010

1 Ubiquitous n.s. n.s. n.s. n.s.

2 Ectoderm/Epidermis 0.054 n.s. n.s. n.s.

2 Germ line 0.012 0.010 n.s. n.s.

2 Maternal n.s. n.s. n.s. n.s.

2
Procephalic ectoderm/

CNS
0.001 0.074 n.s. n.s.

2 Ubiquitous n.s. n.s. n.s. n.s.

3 Ectoderm/Epidermis 0.002 0.056 n.s. n.s.

3 Endoderm/Midgut 0.004 n.s. 0.001 n.s.

3 Germ line 0.008 0.002 n.s. 0.004

3
Hindgut/Malpighian

tubules
0.046 n.s. n.s. n.s.

3 Mesoderm/Muscle n.s. n.s. 0.094 n.s.

3
Procephalic ectoderm/

CNS
n.s. 0.094 n.s. 0.096

3 Ubiquitous 0.010 0.076 n.s. n.s.

4 Amnioserosa/Yolk n.s. n.s. n.s. n.s.

4 Ectoderm/Epidermis 0.020 n.s. n.s. n.s.

4 Endoderm/Midgut 0.014 n.s. 0.001 n.s.

4
Hindgut/Malpighian

tubules
0.068 n.s. 0.022 n.s.

4 Mesoderm/Muscle 0.078 n.s. 0.014 n.s.

4
Procephalic ectoderm/

CNS
n.s. n.s. n.s. n.s.

4 Ubiquitous 0.006 n.s. n.s. n.s.

5 Amnioserosa/Yolk n.s. n.s. n.s. n.s.

5 Ectoderm/Epidermis 0.001 0.068 0.034 n.s.

5 Endoderm/Midgut 0.001 n.s. 0.002 n.s.

5 Foregut n.s. n.s. 0.002 0.070

Continued on next page
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Table B.31 – Continued from previous page

Stage Anatomical structure ω ωa ωna α

5
Garland/Plasmat./

Ring gland
n.s. n.s. n.s. n.s.

5
Headmesoderm/Circ.

Syst./FB
n.s. n.s. 0.012 0.094

5
Hindgut/Malpighian

tubules
0.030 n.s. 0.012 n.s.

5 Mesoderm/Muscle n.s. n.s. 0.092 n.s.

5
Procephalic ectoderm/

CNS
0.014 n.s. 0.090 n.s.

5 Tracheal system n.s. n.s. 0.040 0.066

5 Ubiquitous 0.004 0.048 n.s. n.s.

6 Amnioserosa/Yolk n.s. n.s. n.s. n.s.

6 Ectoderm/Epidermis 0.001 0.001 0.032 n.s.

6 Endoderm/Midgut 0.001 0.012 n.s. n.s.

6 Foregut 0.001 n.s. 0.058 n.s.

6
Garland/Plasmat./

Ring gland
0.014 0.016 0.058 0.006

6 Germ line 0.016 0.014 n.s. n.s.

6
Headmesoderm/Circ.

Syst./FB
n.s. 0.008 n.s. 0.014

6
Hindgut/Malpighian

tubules
0.002 0.072 0.066 n.s.

6 Mesoderm/Muscle 0.078 n.s. n.s. n.s.

6 PNS 0.001 0.016 n.s. n.s.

6
Procephalic ectoderm/

CNS
0.001 n.s. 0.001 n.s.

6 Salivary gland 0.001 0.001 n.s. 0.012

6 Tracheal system n.s. n.s. n.s. n.s.

6 Ubiquitous 0.046 n.s. n.s. n.s.
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Table B.32 Permutation test p-values for anatomical structures. Short-
intron sites are used as a proxy for the mutation test.

Stage Anatomical structure ω ωa ωna α

1 Maternal n.s. n.s. n.s. n.s.

1 Ubiquitous n.s. n.s. n.s. n.s.

2 Maternal n.s. n.s. n.s. n.s.

2 Ubiquitous n.s. n.s. n.s. n.s.

3 Ectoderm/Epidermis 0.038 n.s. n.s. n.s.

3 Endoderm/Midgut 0.006 n.s. n.s. n.s.

3 Mesoderm/Muscle n.s. n.s. 0.044 n.s.

3 Procephalic ectoderm/CNS n.s. n.s. n.s. n.s.

3 Ubiquitous n.s. n.s. n.s. n.s.

4 Ectoderm/Epidermis 0.074 n.s. 0.056 n.s.

4 Endoderm/Midgut 0.056 n.s. n.s. n.s.

4 Mesoderm/Muscle 0.05 n.s. 0.002 0.054

4 Procephalic ectoderm/CNS n.s. n.s. n.s. n.s.

4 Ubiquitous n.s. n.s. n.s. n.s.

5 Amnioerosa/Yolk n.s. n.s. n.s. n.s.

5 Ectoderm/Epidermis 0.001 0.084 n.s. n.s.

5 Endoderm/Midgut 0.05 n.s. n.s. n.s.

5 Foregut n.s. n.s. n.s. n.s.

5 Garland/Plasmat./Ring gland n.s. n.s. n.s. n.s.

5 Headmesoderm/Circ. syst./FB n.s. n.s. n.s. n.s.

5 Hindgut/Malpighian tubules n.s. n.s. n.s. n.s.

5 Mesoderm/Muscle 0.034 n.s. n.s. n.s.

5 Procephalic ectoderm/CNS 0.080 n.s. n.s. n.s.

5 Ubiquitous n.s. n.s. n.s. n.s.

6 Amnioserosa/Yolk 0.016 n.s. n.s. n.s.

6 Ectoderm/Epidermis 0.001 0.002 n.s. n.s.

6 Endoderm/Midgut 0.066 n.s. n.s. n.s.

6 Foregut 0.006 0.016 n.s. 0.038

6 Garland/Plasmat./Ring gland 0.068 0.052 n.s. n.s.

6 Germ line n.s. n.s. n.s. n.s.

6 Headmesoderm/Circ. Syst./FB n.s. n.s. n.s. n.s.

6 Hindgut/Malpighian tubules n.s. n.s. n.s. n.s.

6 Mesoderm/Muscle 0.006 0.040 n.s. n.s.

6 Procephalic ectoderm/CNS 0.002 n.s. 0.034 n.s.

6 Tracheal system n.s. n.s. n.s. n.s.

6 Ubiquitous n.s. n.s. n.s. n.s.

Only analyzed anatomical structures with more than 150 genes.

255





Colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede and Ivo Pletikosić. The style
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