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Autora: Núria Folguera Blasco

Director: Tomás Alarcón Cor

Codirector: Javier Menéndez Menéndez

Universitat Autònoma de Barcelona (UAB)

Centre de Recerca Matemàtica (CRM)
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Abstract

Epigenetic regulation (ER) is key for understanding cell fate decisions and transi-
tions. The inherent heterogeneity existing in ER systems exhibiting the differentiated
cell epi-phenotype allows to identify ER systems which can give rise to either a plastic
behaviour, where cell reprogramming is possible, or to a resilient one, where repro-
gramming is not feasible. The appearance of the plastic scenario has been linked
with ageing. By extending the ER model, ageing associated effects can be taken
into account. The extended ER model allows us to define a healthy plastic scenario.
When further dysregulations of the ER system are considered, a pathological form of
reprogramming is identified so that the ER system gets locked in a non-differentiated
state. When coupling ER to a gene regulatory network (GRN) model, the ability
of the ER systems to switch state allows us to identify differentiation-primed and
pluripotency-locked systems, as well as to design strategies able to unlock those cells
that remain in a stem cell like state. These strategies may be of key importance in
order to avoid cancer progression.
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Chapter 1

Introduction

1.1 Biological motivation

During embryonic development, a single cell, the fertilised egg, also known as
zygote, divides to give rise to many millions of cells forming a multicellular organ-
ism. These cells go on to organise themselves into complex structures as tissues and
organs. One important question is how such variety of cells can emerge from a single
cell.

In particular, it is interesting to understand how the organising principles of de-
velopment are encoded within the genetic material of the fertilised egg, which is key
in order to understand the final form of a multicellular organism. In this sense, the
distinction between genotype, the genetic information inherited by an organism from
its parents and encoded into its DNA, and phenotype, the way this genetic infor-
mation is expressed regarding physical appearance or internal structure, first set in
1909 by the Danish botanist Wilhelm Johannsen, shed some light on understanding
that, in spite of having the same genetic information (genotype), individuals could
be really different [117, 173].

In turn, this distinction helped towards the comprehension of how from a single
cell, the whole variety of cell types contributing to the bodyplan of complex or-
ganisms could arise. The genotype/phenotype distinction puts the emphasis on the
way genetic endowment is expressed/translated during development, since although
individual cells carry the same genetic information, their final aspect is very different.
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1.1.1 Cell differentiation

Cellular differentiation refers to the process by which embryonic stem cells (ESCs)
become structurally and functionally different, thus acquiring distinct identities and
specialised functions. In other words, cell differentiation involves the appearance of
cell types that have a clear identity in an adult organism, such as muscle, nerve,
blood or skin cells. In humans, the fertilised egg gives rise to at least 250 clearly
distinguishable types of cells [173, 167].

Although the differentiation process has been described in the previous paragraph
starting from the fertilised egg (ESCs), in fact, it can be generalised as starting with
a pluripotent founder cell, such as a stem cell. Stem cells are a type of cell which
are able to repeat division and whose daughter cells can either remain stem cells (i.e.
they are able to self-renew) or differentiate into a variety of cell types, in analogy of
what occurs with ESCs. Two types of self-renewal are possible: symmetric division,
where both daughters remain stem cells, and asymmetric division, in which case, one
of the daughter cells undergoes differentiation, whereas the other stays as stem cell.
In addition to ESCs, tissue-specific progenitor cells exist. These cells have a limited
capacity for regenerating those tissues for which they are specific. An example of
tissue-specific progenitor cells are hematopoietic stem cells (HSCs).

In general, cell differentiation is a gradual process in the sense that cells go
through several divisions before being terminally differentiated. From the initial
progenitor cell to the final differentiated cells, which are considered stable, there
are some intermediate steps, which are viewed as transient amplifying stages, corre-
sponding to early stages of the differentiation process.

The main characteristic of cell differentiation is changes in gene expression, i.e.
changes in the phenotype under an unchanging genotype. In general, a differentiated
cell has a target protein (usually labelled as the ‘luxury’ or cell-specific protein [173])
to be produced, for instance, hemoglobin in red blood cells. Besides upregulation of
the target protein, other genes that help in the production of ‘housekeeping’ proteins,
for instance, those needed for metabolism, are also activated [173].

A metaphor of cell differentiation in development was proposed by Conrad Wadding-
ton [162] (see Fig. 1.1 for a representation), which later was known as Waddington
landscape. The picture Waddington proposed depicts cell differentiation as a ball
sliding down a sloped ‘landscape’ with some valleys separated by ridges. The valleys

2



correspond to different cell types and how far the ball travels in this landscape mimics
the cell differentiation process; as development proceeds, the ball travels down the
valley and it encounters bifurcation points, leading to new valleys, i.e. new cell fates.
The branching points, which are the points of lowest local elevation, correspond to
the intermediate steps described above, i.e. the transitory states before reaching the
fully differentiated states, which will be at the bottom of the landscape. Since once
the ball has decided to take one path, all the others are ‘rejected’, this implies that
the cell (represented by the ball) has gone one step away from being pluripotent, and
closer to its final differentiated state.

Figure 1.1: Waddington landscape represents cell differentiation as a ball going down
a hill.

This landscape representation can be further used in the context of the geno-
type/phenotype distinction mentioned earlier. The structure of the landscape as
defined by its valleys and branching points, is identical in all the cells (all of them
have the same genotype). By contrast, the way the ball transits over this landscape
is something not predetermined and hence, when deciding to take one path or an-
other, the final fate is noticeably different, implying a completely different phenotype.

For decades, it was believed that cell differentiation was an irreversible process,
that is, when a cell was differentiated into a terminal phenotype, the cell fate was
determined and it could not be changed. For this reason, Waddington imagined
his landscape with a downwards slope, as, by viewing it in this manner, the cell
could only go forward in the differentiation process. This was proved wrong in
2006, when a Japanese scientist, Shinya Yamanaka, showed that cell differentiation
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could be reverted, i.e. somatic, differentiated cells could be reprogrammed into the
pluripotent (stem cell) state 1 [150].

1.1.2 Cell reprogramming

In 2006, Yamanaka and coworkers proved that differentiated cells could be re-
programmed into behaving like pluripotent stem cells [150, 23]. This process was
called cell reprogramming. Although reprogramming may follow a completely differ-
ent path to reach the pluripotent stem cell state compared to the one differentiation
process followed to reach the differentiated state, the initial and final state of the
differentiation process can be seen, respectively, as the final and initial points for
reprogramming.

The first successful reprogramming experiments were carried out with adult
mouse fibroblasts [150]. Later, reprogramming was also achieved with human cells
[149]. The pluripotent cells obtained by reprogramming were coined as induced
pluripotent stem cells (iPSCs). Such cells have the same morphology and growth
properties as ESCs [150, 167, 115, 124]. ESCs are able to divide indefinitely while
maintaining pluripotency, as well as having the ability to differentiate into cells of the
three germ layers (mesoderm, endoderm and ectoderm), that is, into any cell type.
This is the main reason why iPSCs are instrumental in treating many degenerative
diseases, such as Parkinson’s disease or a spinal chord injury.

Yamanaka proposed a mechanism for in vitro reprogramming constisting on in-
ducing the expression of certain genes. In particular, Yamanaka’s experiment was
performed by inducing the expression of 4 genes, the OSKM combination, which
stands for Oct4, Sox2, Klf4 and c-Myc genes. Since then, these 4 genes are known
as Yamanaka factors. OSKM were identified by systematic elimination among 24
candidate genes thought to induce pluripotency in somatic cells (any type of cell that
is not germinal) [150]. They tried several combinations by removing one gene at a
time so as to identify which genes were necessary to produce ESCs. They identified a
set of 10 genes which was reduced to a set of 4 following the same procedure, so they
could identify the OSKM genes as the key ones in order to obtain ESCs. They tried
to further reduce the gene set, but the results were not satisfactory and thus, these
4 genes remained as the key combination. As Takahashi and Yamanaka mention in

1For this remarkable discovery, which has helped to redesign the way developmental biology had
been thought for centuries, Yamanaka was awarded (jointly with John B. Gurdon) the Nobel Prize
for Physiology or Medicine in 2012 [124].

4



their paper [150], they were quite surprised that Nanog was dispensable in this key
combination, because it is a gene highly related to pluripotent behaviour. Before
Yamanaka’s discovery, Nanog was thought to be necessary to obtain pluripotency
and this could explain why other experimentalists did not succeed when trying to
obtain iPSCs.

It is noteworthy that more recent experiments have shown that not all of these
4 genes are essential. There exist other possible combinations which allow to obatin
iPSCs without the 4 Yamanaka factors at once [23, 64]. In fact, there is evidence
that reprogramming can occur spontaneously in vivo in response to injury or damage
conditions [151, 179], although such spontaneous reprogramming is extremely rare.

Something Yamanaka already observed, which has also been noted by many other
experimentalists [129, 23], is that although the reprogramming process is robust, well-
characterised and reproducible, it has extended latency and it is extremely inefficient,
i.e. from the differentiated cells that start the process of reprogramming, all of them
genetically identical, only few (about 1%) complete the process of reprogramming
and become pluripotent stem cells [129, 124]. These results may suggest an inherent
heterogeneity in the set of differentiated cells, whereby some cells may be more prone
to reprogramming than others.

The first to investigate whether cell heterogeneity is involved in reprogramming
was Yamanaka [176]. He reviewed the evidence available at the time regarding sup-
port for two models: the ‘elite’ model and the ‘stochastic’ model. The former assumes
that only a small subset of predetermined cells has reprogramming potential. By con-
trast, the stochastic model states that reprogramming is a random event occurring
on a homogeneous population. Although, at the time, Yamanaka found the evidence
supporting the stochastic model more compelling, later work has provided evidence
sustaining that cell populations are heterogeneous regarding their reprogramming
potential [66].

Reprogramming potential has also been linked to cell cycle duration [70, 66]. It
has been shown that within a genetically identical population of cells, those cells
with a shorter cell cycle are more likely to reprogram [66]. Several methods, such
as inhibiting the p53 pathway which controls the cell cycle progression, increase the
cell division rate and, ultimately, the rate of iPSCs formation [70]. Therefore, the
duration of the cell cycle seems to be one identified property that may help to explain
the heterogeneity in reprogramming potential. Since this heterogeneous cell response
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to reprogramming cannot have a genetic origin and the stochastic hypothesis is not
convincing enough, there must be some other form of regulation which can explain
this heterogeneity regarding cell ability to reprogram. This regulation is performed
through epigenetics. As we will see in the following section, epigenetics may help or
impede reprogramming by changing certain properties that control gene expression.

1.2 Basic facts about epigenetics

The term epigenetics, meaning above genetics, was coined by the developmental
biologist Conrad Waddington in the 1940s [160, 161, 163], to describe the feedback
between genes and environment which, eventually, produces the phenotype. A gen-
eral, well accepted definition of epigenetics is the study of heritable changes in the
cellular state, such as the gene expression profile of a cell (which determines which
genes should be expressed and which ones should not), that are not caused by changes
in the nucleotide sequence of the DNA [157].

Epigenetic regulation (ER) is essential to determine and maintain cell fate in
multicellular organisms, where all somatic cells are genetically identical. Epigenetics
provides the additional layers of information on top of the bare genomic sequence,
needed to deploy the full potential of the genetic code to create a variety of cells in an
otherwise genetically homogeneous organism. This is why it is said that epigenetics
gives to the cell a phenotypic plasticity, since depending on the epigenetic signature,
the phenotype may be one or another [3].

ER allows to modify the phenotype without modification of the genome (which
occurs through mutations on evolutionary time scales, much longer than those char-
acteristic of development). Epigenetic marks that silence or activate portions of the
genome are inherited upon cell division. This so-called epigenetic memory allows for
adaptations on a much shorter time scale than those associated with evolutionary
processes [42, 3]. Thus, information is encoded in transient signals which set the
cell in one of at least two regulatory states, which result in bistable gene expression,
with the gene being expressed or not (on or off). Both of these states are stable and
heritable through cell division. In particular, epigenetic cell memory is responsible
for identical genomes to have different functional identities, for example, different
phenotypes in cell differentiation [42]. Epigenetic modifications are thus mandatory
for correct cell differentiation. Nevertheless, this is not always the case as certain
epigenetic modifications are caused by other factors, such as ageing or cancer, and
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they confer to the cell what is known as epigenetic plasticity [51]. Epigenetic plas-
ticity, which will be explained later in Section 1.2.2, refers to the ability that these
epigenetic changes may cause into the cell behaviour, making it more favourable or
more reluctant to reprogramming, giving rise to plastic behaviour.

1.2.1 Epigenetic regulation of gene activity

When unpacked, the DNA molecule in higher eukaryotes would measure approxi-
mately two metres long and therefore it needs to be condensed in order to fit into the
nucleus of cells, something the molecule does by folding into a supercoiled structure.
The basic unit of DNA packageing is the nucleosome, in which, approximately 200
base pairs (bp) are wrapped around a core formed by 2 molecules each of 4 core
histones (H2A, H2B, H3 and H4), an octamer, around which 147 bp of DNA are
wrapped [42, 124] (see Fig.1.2 for a schematic representation). This protein-DNA
polymer is known as chromatin, having in the nucleosomes its fundamental subunit.
Chromatin is a massive macromolecular complex which has approximately six billion
bases of DNA, wrapped about 30 million nucleosomes [51].

However, when packageing the DNA to fit into the confined space of the nucleus
not all the information it encodes is physically available. Chromatin structure pro-
vides the solution to this problem by ‘indexing’ the information. Chromatin has not
a uniform structure: it can be highly condensed (heterochromatin) or less compacted
(euchromatin) [3]. These different structures, which can be identified by looking at
the epigenetic marks [92], have clear implications on how genetic information may be
used. When genetic information is located in a less compacted chromatin structure,
chromatin is said to be active, because this genetic information will be available to
initiate transcription. On the contrary, highly condensed chromatin is associated
with inactive or repressive chromatin, which impedes the use of the genetic informa-
tion it encodes [92].

Patterns of gene activity vary from one cell type to another. Hence, it is im-
portant to unravel the mechanisms that determine these patterns and how they are
inherited by daughter cells. In other words, we need to understand why certain genes
are maintained switched on and others are switched off in a particular cell type, and
what is the cause for the activation/inactivation of these genes to vary if we analyse
other cell types. In order to shed light on these concepts, the regulation of transcrip-
tion needs to be described, since it consists the first and main step in the expression
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Figure 1.2: (Top) Schematic representation of the chromatin structure. Nucleosomes
are shown in blue, around which the DNA is wrapped (in black). (Bottom) Zoom into
the structure of a nucleosome, where DNA in black wraps the nucleosome. Shown
in blue, one of the two molecules forming the nucleosome core, with 4 histones
(H2A, H2B, H3 and H4) and their respective tails. The histone tail modifications,
acetylation (A) and methylation (M) marks, determine whether the chromatin is
active or repressive. Histone acetyltransferases (HAT), histone methyltransferases
(HMT), histone deacetylases (HDAC) and histone demethylases (HDM) refer to the
enzymes which add or remove these epigenetic marks.

of a gene [173].

The transcription of a gene starts when RNA polymerase binds the promoter
region of the gene. Once bound, the RNA polymerase unwinds a short region of the
DNA helix, i.e. it separates the double strand, and initiates RNA synthesis using one
of the DNA strands as template. It is noteworthy that RNA polymerase, in order
to bind to DNA, demands for the cooperation of transcription factors (TFs), which,
together with the RNA polymerase, form an initiation complex at the promoter re-
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gion of the gene, i.e. they form a ‘transcribing machine’. TFs, thus, are needed for
gene transcription [173].

TFs, also known as gene regulatory proteins, can either be specific for a particular
gene or generic for the transcription of a large number of genes. Specific TFs can
still bind promoter regions of other genes, but they will not trigger their transcrip-
tion. On the contrary, when the appropriate TFs are bound to a particular region
of the DNA, i.e. a promoter region of a determined gene, the corresponding gene
can be turned on/off depending on the activatory/inhibitory effect of those TFs [173].

A common situation is depicted in Fig. 1.3, where the gene product itself acts as
transcription factor. In this case, TFs are found in a dimer form. When dimerising,
TFs can either have two protein molecules of the same type (homodimer) or different
protein molecules (heterodimer). By regulating gene expression in this way, if the
gene is on, as long as TFs are present, it will continue in this state.

Figure 1.3: Schematic representation of a self-activating regulatory gene. As can
be observed, regulation of gene transcription is performed by transcription factors.
Protein, which is the gene product, upon dimerisation, acts as transcription factor
for that gene that when bound to its promoter region, triggers gene expression. In
this case, TF is assumed to be in homodimer form.

Nevertheless, for a gene to remain switched off over an extended period of time,
such as the inactive X chromosome in female mammals, some other more reliable
mechanism is needed. By analysing the female inactive X chromosome, it has been
observed that its chromatin is packed in a much more compact structure (hete-
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rochromatin) than the one corresponding to genes being transcribed [173, 117]. In
this highly condensed state, the DNA is neither accessible to TFs nor to RNA poly-
merase and thus, transcription cannot occur, i.e. genes are transcriptionally inactive.
Further studies have shown that chromatin structure can also serve to activate genes.
Those genes that are switched on are located in a region where chromatin is packed
in a more open structure, which allow these genes to be transcribed as TFs can ac-
cess the DNA (see Fig. 1.4). Therefore, the promoter regions of active genes must
be accessible to the transcriptional machinery, whereas inactive genes are located
in inaccessible, more compact structures (heterochromatin) that prevent their inap-
propiate activity [51, 173]. In fact, for a gene to be maintained switched on, presence
of TFs and accessible chromatin structure are both needed, because the solely pres-
ence of TFs is not enough for transcription to happen. For a schematic illustration
of this situation, see Fig. 1.4.

Since any gene can assume different (on or off) trancriptional states depending
on the cellular context, chromatin must be able to respond to appropriate cues and
signals and change its state. The state of the chromatin depends both on the local
chromatin state and on the global chromatin environment in the cell [51]. Some
chemical alterations, such as epigenetic modifications, can change the packing state
of the chromatin, having thus the ability to switch off some of the genes that are
on, or activate some of those genes which are off. These epigenetic modifications,
although reversible, are hereditary, which explains why daughter cells have the same
gene expression pattern as their progenitors. Epigenetic modifications that disrupt
the chromatin structure may come from genetic, metabolic or environmental stimuli,
and they are performed by epigenetic enzymes [173].

These chemical modifications to the basic chromatin polymer consist on the ad-
dition of chemical marks to the histone proteins (covalent modifications) or directly
to a base in the DNA. Such modifications have the capability of allowing or impeding
expression of portions of the genome [3], thus deciding which information is made
available. In addition to the information of the primary DNA sequence, much of
the information regarding where and when to start transcription is stored in such
modifications. Chromatin modifications include DNA methylation, or acetylation,
methylation, phosphorylation, ubiquitination of the lysine (K) or the arginine (R)
residues of the histones. The patterns of these modifications determine accessibil-
ity of the transcriptional machinery to the genome (see Fig. 1.4), that is, they are
linked to active and silenced transcription [100, 92]. Generally, DNA methylation
is related to absence of transcription, whereas histone acetylation is associated with
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Figure 1.4: Schematic representation of a self-activating regulatory gene when taking
into account chromatin structure. Regulation of gene transcription is performed by
transcription factors when promoter region is accessible (euchromatin), top panel.
If chromatin structure is densely packed (heterochromatin), then, even with the
presence of the appropriate TFs, gene transcription cannot occur, because chromatin
is inaccessible (bottom panel).

gene transcription [173].

Chromatin modifications can be carried out at different positions on the different
histones, conferring a large information capacity on each nucleosome. Their addi-
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tion or removal, particularly acetylation (A) and methylation (M), is performed by
4 classes of enzymes, as illustrated in Fig. 1.2: histone acetyltransferases (HATs), his-
tone deacetylases (HDACs), histone methyltransferases (HMTs) and histone demethy-
lases (HDMs). Such modifications can influence the activity of nearby genes, mainly
because they affect the ability for certain TFs to bind [42]. The modifications di-
rectly to DNA are performed mainly by the DNA methyltransferase enzymes.

1.2.2 Epigenetic plasticity

A primary function of chromatin during development is to stabilise the differ-
ent cell fates. In terms of the Waddington landscape, when a stem cell starts the
differentiation process, chromatin affects the height of the walls that separate the
valleys, which correspond to different possible cell fates (see Fig. 1.1 and Section
1.1.1). Once a fate is chosen, chromatin acts as a barrier that prevents cells from
switching states. In ESCs, many genes are characterised as bivalent since they ex-
hibit both positive (activating) and negative (inactivating) histone marks. As the cell
differentiates, and thus commits to a specific lineage, the chromatin evolves towards
more restrictive states (see Fig. 1.5 (b)). Such restrictive states are associated with
heightened epigenetic barriers, which increase phenotypic robustness by stabilising
the associated state of the gene regulatory system. Hence, chromatin progressively
impedes changes of cellular state along with developmental progression [51].

Nevertheless, chromatin states can be altered by epigenetic dysregulations as-
sociated, for example, with cancer or age-related factors [51]. Such alterations can
produce even more repressive states, thus locking cells in undifferentiated phenotypes
(see Fig. 1.5 (b)) or permissive states. Such permissive states are characterised by
lower epigenetic barriers, which facilitate stochastic transitions between phenotypes
and in some extreme cases, to cell reprogramming (see Fig. 1.5 (c)). This phe-
nomenon is known as epigenetic plasticity, as it confers cells the ability to move
along Waddington landscape (see Fig. 1.1), not just downhill as in normal devel-
opment, but also across it (cell fate transitions, known as transdifferentiation) and
even uphill (cell reprogramming) [51].

1.2.2.1 Epigenetics and reprogramming efficiency

Reprogramming to iPSCs requires reprogramming factor binding (OSKM), tran-
scription and chromatin state changes, since iPSCs are functionally indistinguishable
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Figure 1.5: (a) Normal chromatin state, where cell adopts a new cellular state. (b)
Restrictive chromatin, where the epigenetic barrier increases, impeding cell state
transition and locking cells in a particular phenotype state. (c) Permissive chro-
matin, where the epigenetic barrier lowers, allowing bidrectional cell state transi-
tions, that is, reprogramming and cell transdifferentiation. Both (b) and (c) schemes
are examples of epigenetic plasticity.

from ESCs [124]. Consequently, reprogramming involves an epigenetic regulation, as
it changes the chromatin state of a somatic cell to that of a pluripotent cell [154].
Widespread epigenetic modifications are the responsible for the changes in the chro-
matin state and thus, they are important controllers of reprogramming [124]. How-
ever, one of the main questions which is poorly understood is when the potential
to reprogram is first established. As mentioned above, some authors believe that
reprogramming is purely stochastic [70]. According to other views, there are cells
that are predisposed to cell reprogramming [66] and, as showed in some studies, by
perturbing the epigenetic state before OSKM induction, the fraction of cells that
successfully achieve reprogramming can be modulated [129].

According to these studies, variability in reprogramming ability is partly due
to preexisting epigenetic heterogeneity (cell-to-cell variability), which can be tuned
to alter the outcome of the reprogramming process. In fact, in order to rule out
exogenous causes that could explain why some cells reprogram whereas others not,
e.g. the existence of some signalling-cues from neighbouring cells, it has been tested
whether a certain shared local environment would affect the future outcome of some
cells with respect to reprogramming. As shown in the experiments carried out by
Pour et al. [129], there is no significant evidence that the initial spatial location of
the starting cells will affect the final fate.

These results suggest that the differences in the reprogramming outcome may be
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of epigenetic origin. Furthermore, Pour et al. [129] show that the existing innate
differences in nuclear state of the initial cells, i.e. different initial chromatin states,
may be more permissive or more restrictive for transcription factors to bind the pro-
moter regions [51, 129]. To check this, in [129], they perturb the methylation pattern
prior to OSKM induction. By altering the epigenetic marks in this manner, there
is a change in the epigenome which posits cells more predisposed to reprogramming.
More precisely, methylation patterns are altered by adding Lsd1 and Ezh2 inhibitors
[129]. Lsd1 is a HDM which removes H3K4 mono- and di-methylation, and Ezh2
is a HMT that catalyses repressive H3K27 methylation, which has been linked to
various cancers [51]. Hence, inhibiting either of them (Lsd1 or Ezh2) results in a
more permissive chromatin state, reaching a 3-fold increase in the number of iPSCs
obtained [129]. These results show that reprogramming is sensitive to heterogeneity
of the epigenetically-regulated chromatin state.

As shown in several studies [150, 129, 66, 70], the molecular mechanisms during
in vitro OSKM -driven reprogramming have been well characterised, but little is
known about in vivo reprogramming. In particular, when studying in vitro repro-
gramming, its low efficiency has been linked to several barriers or bottlenecks, which
are activated by cellular damage and which appear mostly in aged cells [115]. These
cell-intrinsic barriers are mediated by tumour suppressor proteins, such as p53, which
inhibit reprogramming in vitro [115]. These results on in vitro experiments, suggests
a possible role for these tumour suppressors, ageing and cellular damage on in vivo
reprogramming.

Recent groundbreaking work by Mosteiro et al. [115] has shed some light on in
vivo reprogramming. They have shown that the expression of the Yamanaka factors
(OSKM) in vivo stimulates reprogramming of a small fraction of cells, whilst caus-
ing also extensive damage to the other cells that do not reprogram, taking them to a
state known as cellular senescence. Such cells are characterised both by their inabil-
ity to proliferate and by the secretion of inflammatory cytokines, which altogether
leads to tissue remodelling (senescent tissue). For example, cells without the tumour
suppressor p53 cannot protect themselves from the effects of OSKM overexpression
which implies widespread DNA damage in the tissue, which leads to a large number
of senescent cells and, consequently, high cytokine production and increased in vivo
reprogramming. However, the absence of some other tumour suppressor, such as
Ink4A/ARF, has been reported to have the opposite effect, that is, less senescence
and less in vivo reprogramming, after OSKM induction. Therefore, the positive
correlation between senescent cells and ability to reprogram in vivo seems clear [115].

14



Such correlation is mediated by the cytokine-rich environment that senescent
cells create [115]. Among the inflammatory cytokines produced by senescent cells,
interleukin-6 (IL-6) seems to be crucial for senescence ability to trigger reprogram-
ming. Its blocking, reduces both in vivo and in vitro reprogramming. On the con-
trary, IL-6 upregulation creates an environment which facilitates senescent neigh-
bouring cells to undergo reprogramming, since it creates a permissive tissue envi-
ronment by remodelling the extracellular matrix, which favours the reprogramming
process (it lowers the existing barriers, see Fig. 1.5(c)). Similarly, ageing and tissue
damage are two biological conditions related to higher levels of senescent cells which,
in turn, implies that they also help reprogramming to occur. These relationships
among ageing, tissue damage, senescent cells and reprogramming may be enlighten-
ing both for tissue repair and for understanding teratomas appearance, which are
tumours arising from iPSCs, more frequent in ageing tissues [115].

1.2.2.2 Epigenetics and metabolism

It has been observed that DNA transcription is regulated by chromatin organi-
zation (see Section 1.2.1) and there is increased evidence that metabolic signals play
important roles to determine chromatin structure. Recent efforts have been devoted
to study the links between metabolism and epigenetic modifications of chromatin,
both in normal scenarios and those appearing in some diseases such as cancer [100].

The capacity of the chromatin structure to affect cellular state transitions can
differ as a function of metabolic conditions that change during ageing. Ageing is as-
sociated with profound changes in the epigenome involving large disturbances of the
epigenetic landscape [18, 122]. Studies in model organisms have shown the remark-
able plasticity of age-associated epigenetic modifications, due to an ageing-associated
loss of epigenetic resilience [67, 14, 125]. Thus, whereas epigenetic alterations in DNA
methylation and chromatin remodelling are considered highly conserved hallmarks of
ageing [14, 138], the ability of cellular reprogramming-driven epigenetic remodelling
to ameliorate age-associated phenotypes has been described recently. This finding
unequivocally supports the causative role of epigenetic dysregulation as a driver of
ageing [121]. However, it remains intriguing how ageing-related changes in cellular
metabolism [62, 175, 24] might control the layers of epigenetic instructions that in-
fluence cell fate without involving changes in the DNA sequence [53].
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The dynamics of epigenetic modifications are instrumental to connect the ex-
tracellular environment and nuclear transcription. More precisely, many signalling
pathways in conjunction with transcription factors can remodel the epigenome, by
recruiting some enzymes, such as histone modifying enzymes, that can modify chro-
matin. Nevertheless, there is also increasing evidence that the information about the
cell metabolic state is also integrated into the regulation of epigenetics and hence,
it is also connected to transcription. Therefore, the link between metabolism and
transcription is not unexpected and, in fact, since most chromatin-modifying en-
zymes require substrates or cofactors that are intermediates of cell metabolism, the
relationship appears as more or less evident. Hence, fluctuations of metabolite lev-
els, such as acetyl-CoA or methyl groups, can have implications on the activity of
chromatin-modifying enzymes and consequently, alter chromatin dynamics and tran-
scription [100, 107, 109, 87, 148, 44, 113, 110].

Of special interest is understanding the molecular connections of cellular metabolism
and epigenome, because in a large variety of diseases, such as cancer or type II di-
abetes, abnormalities in the metabolism and in the epigenome have been identified
[100]. In particular, it may be the case that cellular ageing might result from stochas-
tic translation of metabolic signals into cellular epigenetic states [53]. The reversible
nature of epigenetic regulation of ageing is receiving increasing attention as it might
offer a revolutionary strategy to delay or reverse diseases clustered in older individu-
als [89, 120]. Therefore, by increasing the knowledge about the relationship between
epigenetics and metabolism, it may be easier to design some therapeutic strategies
[100].

Over the past 20 years, various epigenetic enzymes have been identified and char-
acterised. Such enzymes include the histone modifying enzymes (HMEs), which
include HATs, HDACs, HMTs and HDMs, as well as DNA methyltransferases and
DNA hydroxylases. HMEs add or remove epigenetic marks on the histone tails (see
Fig. 1.2), whereas DNA methyltransferases or hydroxylases add the marks directly
to the DNA chain. The activity of these chromatin-modifying enzymes is regulated
by the concentration of their metabolic substrates or cofactors, such as acetyl-CoA,
α-ketoglutarate (αKG) or the ratio NAD+/NADH [100]. Such metabolic substrates
and cofactors are capable of diffusing through nuclear pores thus providing a way for
the cell to deliver metabolic information to nuclear transcription. We briefly review
some of the better characterised interactions (as mentioned in [100]) between epige-
netic modifiers and metabolic players in mammals.
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Histone acetylation. Histone acetylation is catalised by HATs enzymes. In
mammals, HATs transfer the acetyl group of the acetyl-CoA to the lysine residues of
histones. Hence, high levels of acetyl-CoA promote histone acetylation, which helps
to activate the expression of certain genes.
In mammalian cells, both enhanced glycolisis and glutamine metabolism in the tri-
carboxylic acid (TCA) cycle cause generation of acetyl-CoA. Therefore, metabolic
alterations (such as those associated with cancer) can change the concentration of
acetyl-CoA which can affect histone acetylation levels.

Histone deacetylation. HDACs enzymes catalise the removal of histone acety-
lation, and they can be classified into two main groups: the classical HDACs and
the NAD+-dependent deacetylases (the sirtuin family). The deacetylation reaction
is energetically favourable and this is why sirtuins are a special family, because
they deacetylase in an apparent wasteful way, since they depend on NAD+, which
hydrolises to become NADH. Sirtuins are thought to mediate the effect of caloric
restriction on extending life span.

DNA and histone methylation. HMTs enzymes add methyl groups to lysine/argi-
nine residues of histones, whilst DNA methyltransferases add methyl groups to DNA.
The activity of these enzymes is structurally diverse and they possess high substrate
specificities, which makes difficult to generalise their effect. Depending on the histone
residue being methylated, the implications can be opposite: either being a silencing
or an activating mark.

DNA and histone demethylation. Since a covalent methyl group is chemi-
cally stable, DNA and histone methylation were initially considered relatively static
epigenetic marks. However, during embryonic development, extensive remodelling of
cellular methylome occurs, which suggests that some enzymes that actively remove
methylation marks have to exist.
One of the best characterised families of HDMs is the JHDM family (Jumonji-C
domain containing HDM). The demethylation mechanism used by JHDMs involves
αKG, which is a key metabolite of the TCA cycle. Moreover, αKG is also involved in
mitochondria-cytosol transfer of NAD+ and NADH. Hence, αKG presents a possible
metabolic link between HDACs and HDMs.
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1.2.2.3 Epigenetics and cancer

We have discussed evidence regarding the key role played by epigenetics on the
regulation of gene transcription, as it can allow or restrict access of TFs to their
associated promoter regions (see Section 1.2.1 and Fig. 1.4). Epigenetics is thus
fundamental in the regulation of cellular processes, such as cell proliferation or cell
differentiation. For this reason, when alterations in epigenetic mechanisms appear,
they contribute to the initiation of certain disorders, particularly those associated
with ageing and cancer. Some of the epigenetic disruptions related to cancer in-
volve DNA methylation, which is epigenetically stable, and thus, preserved through
mitosis. Hence, when cancer cells divide, the acquired epigenetic states may be main-
tanined in daughter cells, thus generating adaptive epiclones that drive malignant
progression. This, thus, is an example of how epigenetic modifications can help can-
cer progression [51].

During normal development, chromatin structure is stable. A deviation from this
normal behaviour, either being more restrictive or permissive, is a central element in
tumorigenesis (see discussion in Section 1.2.2). Restrictive chromatin states are usu-
ally related to blocking differentiation programs, whilst chromatin permissive states,
which are associated with epigenetic plasticity, allow malignant cells to activate al-
ternative gene regulatory programs, which can result in cell fate transitions [51]. In
this sense, cancer stem cells (CSCs) can be viewed as cancer cells that taking ad-
vantage of this epigenetic plasticity, can reprogram towards a less differentiated state.

Stem cells are essential in embryonic development, tissue homeostasis or renewal
of certain tissues after injury. Adult stem cells have the capacity for self-renewal un-
der basal conditions and during tissue repair. However, CSCs (also known as cancer
initiation cells) have also been identified and they share some of the SC properties:
they have a high capacity to self-renew, they can differentiate, migrate or activate
anti-apoptopic pathways, if needed [135]. The cancer stem cell hypothesis postulates
that, whilst they have capability for differentiation, CSCs have impaired stem cell
self-renewal, that is, they divide symmetrically. In other words, CSCs lock cells in
the stem cell state, impeding cell differentiation of one of the daughter cells. This
fact implies an increase in the tumour stem cell population, which may be a key
event for cancer progression [171].

CSCs are particularly relevant since they are resistant to therapy. Therefore,
CSCs provide a mean for cancer to survive and regrow after treatment. Furthermore,
when trying to diagnose cancer, the role of CSCs markers is key, and understanding
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how these markers can be epigenetically modified may be cornerstone in order to
design novel therapeutics with CSCs as their target [135]. The anti-stem cell based
cancer therapy relies precisely upon identification of some CSCs markers, for which,
small molecules targetting them are sought [135, 171].

Besides their role in CSCs, epigenetic modifications play a central role in the
progression of cancer. Disruption of epigenetic mechanisms alters the activity of
some genes which leads to malignant transformation. In general, these epigenetic
alterations consist of global changes in DNA methylation, modifications in histone
proteins and alterations in the expression of chromatin-modifying enzymes [51, 135].
Epigenetic dysregulation may be caused by genetic or metabolic stimuli which cause
oncogene activation or tumour suppressor silencing. For example, a gain-of-function
mutation of the polycomb repressor EZH2 (it becomes hyperactive) promotes chro-
matin restriction and hinders differentiation. EZH2 is a HMT that it has been
found to be overexpressed in some lymphomas and melanomas. Metabolic enzyme
mutations that disrupt the DNA methylation balance can cause tumour suppressor
silencing. These stimuli, hence, may cause in a premalignant cell to promote tumour
initiation or in an already malignant cell, to accelerate tumour evolution and adap-
tation. Such epigenetic modifications are not something isolated, since roughly 50%
of human cancers have mutations in chromatin proteins, remarking the important
role of epigenetic aberrations [51].

When specifically examining the epigenetic modifications found in cancer, many
tumours exhibit genome-wide hypomethylation and hypermethylation, showing the
importance of DNA methylation. A well established characteristic is hypermethyla-
tion of the CpG island in the promoter regions of many tumour supressor genes, such
as p53 and BRCA1, which inactivates them. Regarding histone modifications, such
as their acetylation or methylation, they are responsible for structural changes of
the chromatin (see Section 1.2.2.2). Among these epigenetic modifications, histone
acetylation, which is controlled by HATs and HDACs, is the one whose effects are
better characterised, being a global positive mark of gene activity. Loss of histone
acetylation can result in gene repression and HDACs are often found overexpressed
in various types of cancer, which hinders the expression of some tumour supressor
genes. Contrary to what happens with histone acetylation, there is not a clear inter-
pretation for histone methylation, since its effect (i.e. silencing or activating) is site
specific [135].

Purely epigenetic alterations may provide an explanation for tumours that arise
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without (or just a few) genetic mutations. In other words, epigenetics may provide
a rationale for tumours which lack of genetic signs [51]. This helps to gain a deeper
characterisation of cancer and strengthens the consideration of epigenetics as a can-
cer hallmark.

Another important role for epigenetics in cancer appears in relation to the het-
erogeneity existing in cancer cell populations. Within the heterogeneity, there exist
subpopulations of ‘drug-tolerant’ cells [139], which achieve resistance by nonmuta-
tional mechanisms. More precisely, they exhibit an altered chromatin state with
reduced histone methylation, which makes them more resistant to treatment. There-
fore, for this resistant subpopulations to persist, the presence of a HDM is needed
[139]. By designing strategies able to modify the chromatin or the activity of HMEs,
drug resistant subpopulations could disappear. Furthermore, a relationship between
the ‘drug-tolerant’ cancer cell subpopulations and the CSCs is likely to exist [112].

1.2.2.4 Epigenetic alterations at the interface of ageing, metabolism and
cancer

Whilst in Sections 1.2.2.2 and 1.2.2.3 epigenetic alterations appearing in metabolism
and in cancer have been described separately, they are not independent. In the pre-
vious sections, we have given a general overview of epigenetics aspects of metabolism
and cancer. Here, we provide a very brief summary of the interplay between epige-
netics, ageing, metabolism and cancer.

1.2.2.4.1 Geroncogenesis: metabolic changes associated with ageing drive
cancer

The correlation between ageing and cancer incidence rate is a well established em-
pirical fact. The currently accepted explanation for such a correlation is subsumed
under the multiple hit hypothesis or Knudson hypothesis [118, 91]. According to this
theory, cancer is caused by successive accumulation of gene mutations, and thus more
likely to appear at older age as this affords the time needed for such mutations to
occur. Accordingly, more than 60% of all cancers occur in people aged over 65 [174].
However, a new paradigm is emerging due to recent experimental results according
to which ageing interferes with the normal regulatory mechanisms regulating both
differentiation and robustness of differentiated phenotypes. Crucial to these results
is the effect of senescent cells. As mentioned in Section 1.2.2.1, Mosteiro et al. [115]
have reported that activation of the senescence programme triggers secretion of a
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number of signalling cues (mostly inflammatory signals, particularly IL-6), which
alter the environment of ageing tissues so that (i) spontaneous reprogramming of
somatic cells occurs, whereby they revert back to stem cell-like phenotypes, and (ii)
stem cells are locked into self-renewal mode [108]. These two effects combined lead to
lessened capability for aged tissues to regenerate and an increase of the self-renewing
cell population, which directly correlates with heightened oncogenic risk.

Whilst Knudson’s hypothesis provides a rationale for the heightened incidence
of cancer with age, it fails to explain why cancer risk is greatly reduced by calorie
restriction and physical exercise, letting epigenetics to take a central role and appear
as a plausible option to its argumentation. It seems that the time taken to accumu-
late gene mutations is not the sole cause of the increased risk of cancer with age.
Instead, decline in metabolic homeostasis and gene regulation that occurs normally
with ageing may also be a key factor [174].

It is thought that during ageing the normal decline in oxidative metabolism con-
stitutes an early hit that drives tumorigenesis. In particular, the sirtuins (see Section
1.2.2.2), which coordinate physiological responses to energetic demand and nutrient
intake, seem to be highly related to these metabolic changes. Therefore, the abil-
ity to regulate the sirtuins may open a promising avenue to reverse the age-related
metabolic changes that are believed to underlie tumorigenesis [174].

One of the latest identified hallmarks of cancer is the dysregulation of cellular en-
ergetic pathways [68]. As observed by the German biochemist Otto Warburg, cancer
cells utilise glucose in a different way than normal cells [100, 174], commonly known
as the Warburg effect. The main characteristic of the Warburg effect is that cells
can reprogram carbon metabolism by reducing energy production from oxidative
phosphorylation and upregulating glycolisis. This metabolic switch is advantageous
to cancer cells because it allows the biosynthesis of macromolecules and organelles
required for the rapid cell growth and division, both important cancer properties
[106, 174].

The molecular mechanisms of such switch are not clearly understood. Some stud-
ies seem to point out to mutations in some metabolic regulators, as those seen in
some rare genetic diseases [174]. In general, the most accepted view is that Warburg-
like metabolic changes are genetic in origin, but an alternative hypothesis is that the
metabolic switch is due to epigenetic changes whose likelihood increases with age but
which appear earlier in cancer cell lineages. According to this idea, the Warburg-
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like metabolic state will appear in normal tissues and this sets the cell in a system
where later mutations can lead tumorigenesis. This hypothesis, called geroncogene-
sis, states that the driver of tumorigenesis is the ageing-induced metabolic decline,
in other words, the ageing-induced dysregulation of mitochondrial metabolism [174].

The age-related metabolic changes can be viewed as an early hit that pushes
cells first towards a reprogramming of metabolism and then to a cancer-like state,
which is accelerated by sedentary lifestyle and an increased calorie consumption.
Geroncogenesis provides a framework to explain why calorie restriction can delay
the appearance of the Warburg-like metabolic state (the change in the metabolism)
and hence reduce the subsequent chance to develop cancer [111]. Recently, it has
been shown that the age-related metabolic decline is associated with epigenetic al-
terations, which highlights the importance of the epigenetics in this metabolic shift.
In particular, this connection has been identified through the sirtuin family [174], as
we detail in the following paragraphs.

The decline in metabolism during ageing is due to a loss in activity of longevity
regulators that are critical for the maintenance of cellular homeostasis. Sirtuins, a
seven-member enzymatic family of nicotinamide adenine dinucleotide NAD+-dependent
deacetylases, are mostly in charge of the control of such regulators. In particular,
the founding member of this family is Sir2, which is a yeast transcriptional silencing
protein that delays ageing in response to calorie intake. In mammals, they have
different roles regulating metabolism, DNA repair, cyrcadyan rhytms and ageing.
Precisely, its activity decline during ageing (especially SIRT1, SIRT3 and SIRT6)
has been implicated in age-related diseases [174].

The reason for sirtuin activity reduction is a decrease in NAD+ levels, which
occurs with ageing, and which is accelerated by obesity and counteracted by calo-
rie restriction and physical activity. Therefore, it is clear that maintaining sirtuin
activity at normal levels, helps to hinder tumorigenesis and slows tumour growth,
because a change towards a glycolytic (Warburg-like) metabolism is prevented [174].

One of the major limiting factors when trying to fight against cancer is that it
mainly consists of mutations (hits in the cancer’s progression traditional view), which
are irreversible. Nevertheless, the recently found relationship between epigenetics and
cancer has brought hope into its treatment, mostly due to the fact that epigenetics
is reversible. More precisely, if age-related metabolic changes are an early driver of
tumorigenesis, then, molecules which could prevent or reverse these metabolic ageing
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may be appropriate for cancer treatment. Being still more precise, small molecules
that activate sirtuins may emerge as a satisfactory way to induce a youthful metabolic
state, which will make for cancer harder to appear [174].

1.2.2.4.2 The role of oncometabolites in metabolic reprogramming and
epigenetics in cancer

In section 1.2.2.4.1 we have discussed metabolic reprogramming as a hallmark of
cancer [68]. However, the issue of whether metabolic rewiring in cancer serves just
as a way to fulfill the proliferative demands of the tumour cells, or rather it has other
implications in driving cancer development, playing an important role, remains still
up in the air.

Recent evidence supports the notion that the switch in metabolism plays other
roles apart from supplying building blocks to produce new cells [106]. In particular,
cancer-associated mutations in metabolic enzymes, such as those found in isocitrate
dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) have been identi-
fied, which are found in low-grade gliomas, acute myeloid leukemias and lymphomas
[100, 51].

IDH1 and IDH2 activities are NADP+ dependent, and they interconvert isoci-
trate and αKG in cytosol and mitochondria, respectively. The mutant IDHs produce
2-hydroxyglutarate (2HG) from αKG, which modulates the activities of enzymes de-
pendent on αKG, mainly inhibiting them. This implies that the activity of JHDMs is
altered and hence, these mutations found in cancer have also implications in the epi-
genetic marks [100]. In fact, cells expressing mutant IDH generate an oncometabolite
which leads to DNA hypermethylation. Therefore, IDH mutations found in tumori-
genic pathways involve a remodelling of the cellular epigenetic state. However, the
most remarkable consequence of this epigenome modification is that the epigenetic
changes induced by mutant IDH cause a blockage of cell differentiation: they lock the
differentiation genes in a silent state, which facilitates cancer development through
accumulation of undifferentiated cells capable of self-renewal, since DNA methyla-
tion is stable and thus preserved through mitosis [51, 100].

To summarise, it can be stated that during the differentiation process of pro-
genitor cells, JHDM inhibition by 2HG causes defective histone demethylation and
blocks the accessibility of differentiation-related genes. Since 2HG inhibits JHDM, as
a consequence, DNA hypermethylates, which permanently locks the differentiation
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genes in a silent state. Remarkably, it has been observed that many tumours exhibit
a differentiation block [100, 51].

1.2.3 Reinterpreting Waddington epigenetic landscape

According to the picture proposed by Waddington in [162], cell differentiation is
depicted as sliding down through the epigenetic landscape, where the valleys corre-
spond to different cell types, and their separation, the walls, are due to epigenetic
differences existing between the different cell types (between the valleys), which re-
strict cell identity: the deeper the well, the more robust the cell state [167, 51].

For decades after Waddington put forward his landscape concept, it was believed
that the transitions represented by the landscape were irreversible. The work of
Yamanaka [150] established the feasibility of reprogramming the landscape. These
results call for the need of reinterpreting the landscape. The way the landscape has
to be thought of is as being a dynamical landscape, that is, the height of the walls
and valleys, or the slope of the landscape, can change over time. By changing the
height of the epigenetic barriers, cell reprogramming can also be explained. Epi-
genetic plasticity has been identified as a mechanism able to alter the barriers of
the landscape [51]. By considering Waddington landscape in this manner, both cell
reprogramming and transitions between different states are possible. This, hence,
includes as possible ingredients to the landscape the effect of metabolic changes,
ageing or diseases such as cancer, which are known factors to alter the epigenetics
and, consequently, the height of the walls separating the different states.

1.3 Background on mathematical modelling

In this Section, we provide a brief summary of previous modelling work on epi-
genetic and gene regulation relevant to this thesis.

1.3.1 Mathematical models of epigenetic regulation

Recent advances in the experimental determination of the mechanisms of epige-
netic regulation (ER) have triggered an interest in developing mathematical mod-
els capable of reducing their intrinsic complexity to its essential components re-
garding ER of gene expression [146, 110, 16, 31, 15, 131] and epigenetic memory
[42, 37, 6, 144, 16, 31, 145, 131]. References [31, 131] provide comprehensive reviews.
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In order to contextualise the model discussed in this thesis which will be presented
later, we summarise here the current state of the art in ER modelling.

Models of ER were originally formulated in order to shed light onto the mech-
anisms of epigenetic memory. Since DNA during the cell cycle is duplicated and,
therefore, the epigenetic marks diluted, early ER models were aimed at explaining
how epigenetic-regulatory states remain stable upon cell division and transmitted to
daughter cells. Such models must satisfy two essential properties, namely, they must
be bistable, i.e. each steady state corresponds to an alternative epigenetic state, and
the basin of attraction of such states must allow that large perturbations of the ER
systems undergoing DNA replication should not change the epigenetic state, allow-
ing, thus, mitotic heritability [37].

Dodd et al. [42] developed the first of such ER models. The authors consid-
ered a region of DNA consisting of N nucleosomes, each assumed to be in one of
three states, namely, unmodified (U), methylated (M) or acetylated (A). Modify-
ing (HMTs and HATs) and de-modifying (HDMs and HDACs) enzymes carry out
nucleosome modifications and removal of marks. A crucial ingredient of the model
by Dodd et al. [42] is that histone-modifying enzymes are recruited by modified
nucleosomes, thereby providing the necessary positive feedback for the system to be
bistable. However, recruitment based on next-neighbours interactions is not enough
to produce robust bistability; on the contrary, the coiled structure of DNA appears
to impose long-range interactions.

The model by Dodd et al. [42] has been modified and extended in several ways
[144]. Sneppen and Dodd have applied the same ideas [145] to modelling the patterns
of epigenetic regulation in CpG islands [99]. These authors found that nucleosome
dynamics (movement and insertion) is essential to explain experimental data; the
key mechanisms appeared to be exclusion of nucleosome occupation in regions of un-
methylated DNA and strong correlation between DNA methylation and nucleosome
position. Another interesting feature of the model developed by Sneppen and Dodd
[144] is that medium-length correlations are provided by the size of nucleosomes,
which allows relaxing the requirement for recruited demethylation.

Further, Angel et al. [6] have proposed an ER model to explain quantitative epi-
genetic control associated with the phenomenon of vernalisation, i.e. the perception
and epigenetic memory of a period of cold temperatures to initiate flowering later.
Considering that Arabidopsis vernalisation is mediated by polycomb repressive com-
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plex 2 (PRC2)-based silencing of the floral repressor flowering locus C (FLC ), Angel
et al. [6] developed an ER model in which the essential features were long-range
recruitment of positive and negative marks, random insertion of unmodified nucle-
osomes, as well as DNA replication phenomena diluting epigenetic marks by a 1/2
factor. The ER model by Angel et al. [6] is capable of reproducing not only the
patterns of FLC silencing following a period of exposition to cold temperatures but
also the quantitative dependence with respect to the duration of the exposition to
low temperatures. It is noteworthy that, for simplicity, the models [6, 42, 144, 145]
do not explicitly take into consideration the protein complexes mediating the epige-
netic modifications; rather, they assume that modifications themselves directly affect
other modification sites.

Besides the issue of maintaining stable epigenetic memory, recent efforts have
been devoted to the study of the regulation of epigenetic modifications by transcrip-
tion factors [146, 15]. Sneppen et al. [146], based on the experimental observation
that TFs can recruit histone-modifying enzymes, have proposed a model where ER
is coupled to transcription factors. Based on their previous model of epigenetic mod-
ification [42], they assume that TF binding to DNA within a nucleosome further
activates the positive modification of the nucleosome (i.e. the U to A transition),
with a given rate σ, which is assumed to be proportional to TF concentration and
consequently allows to produce ultrasensitivity of gene activation. A similar approach
has been recently proposed by Berry et al. [15]. An essential feature of the latter
model is the proposed feedback between transcription and epigenetic chromatin mod-
ification: activation of transcription depends on the balance between positive and
negative modifications, and, in turn, each passage of RNA polymerase II, which is
modelled as a discrete event, causes demethylation (see [15] for details). The model
by Berry et al. generates robust bistable behaviour capable of sustaining epigenetic
memory. Berry et al. argue that this a consequence of the model assumption that
transcription-induced removal of methylation marks is performed uniformly over the
DNA region, thus providing enough cooperativity for the system to function as epige-
netic memory storage. Furthermore, upon exhaustive parameter sensitivity analysis
of their model, they find that slow dynamics of chromatin modification buffers the
system against noisy transcriptional regulation proceeding in a bursty fashion. An
important feature that distinguishes this model from its predecessors is the assump-
tion of next-neighbour recruitment as opposed to long-distance recruitment.

All of the above-mentioned models are of a mechanistic character. Bintu et al.
[16] have recently proposed a phenomenological ER model capable of explaining ex-

26



perimental data obtained by using a reporter gene that expresses a fluorescent protein
with induced recruitment of a number of epigenetic-modifying enzymes. This model
considers active, reversible silent, and irreversible silent states. Such states represent
the active or silent epigenetic states themselves without embodying the activating
and silencing mechanisms involved. This model is able to reproduce the data ob-
tained from their experiments and predict the rates of transition between states.

1.3.2 Mathematical models of gene regulatory networks (GRNs)

The gene regulatory network (GRN) concept was firstly introduced by Monod
and Jacob, when in the 1960s they discovered that genes can regulate each other’s
expression. This, in turn, inspired Kauffman [86] who, more than 40 years ago, built
the first computational model of a gene network. Since the 1990s, mathematical
models of GRNs have been used for a large range of purposes such as graphical rep-
resentation of regulatory interactions found in high-throughout experiments, as toy
models in mathematical modelling, or in order to study some biological questions
such as cell differentiation [78].

As Monod and Jacob observed, genes do not act independently, and GRNs ac-
count for their interactions. More precisely, it can be said that GRNs are the net-
work representation of the mutual influence between the expression of different genes
through molecular regulatory interactions encoded in the genome. In particular, it
is the role of epigenetics to store information about the relationships in a GRN.

It is noteworthy that the usual approach (see e.g. [78]) considers a GRN as a
time-invariant architecture, as the links represent the same gene regulatory interac-
tion at all time. However, an alternative view considers that GRNs are not fixed
networks, i.e. the regulatory interactions may change from inhibiting to activating
or vice versa depending on cell type, for example [132].

We consider that the structure of the GRN is static, being encoded in the genome:
each interaction is molecular in nature and its specificity and effect are determined.
According to this view, the structure of the GRN changes through gene mutations.
However, since the time scale associated with these changes is much larger than the
organism lifespan, we do not take them into account.

Cell regulatory systems exhibit stochastic behaviour. In particular, gene expres-
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sion is known to be stochastic due to fluctuations in the number of TFs, as well as
the inherent stochasticity in gene state switching (on or off), depending on the epi-
genetic regulation. Such randomness causes that a single genotype can have different
sustained phenotypes: depending on the gene expression levels, which are affected
by chromatin states, the cell fate may be one or another. Therefore, epigenetic reg-
ulation has consequences on the GRN behaviour.

As stated in Sections 1.1.1 and 1.2, it is known that one genotype can give rise
to different stable phenotypes, so there is not a 1:1 correspondence between geno-
type and phenotype, as neo-Darwinism has traditionally assumed. GRNs can help
to shed light on this concept. GRNs and gene expression noise can, in the absence of
genetic mutations, generate a diversity of inheritable phenotypic states, which then
can be used as starting point for natural selection. In other words, they provide a
non-genetic source of diversity, i.e. a non-genetic phenotypic variability. Therefore,
the stochastic dynamics of the GRNs should be taken into account in what would be
an improved neo-Darwinian theory. In fact, if the stochastic dynamics was properly
incorporated, the fundament of this theory would be broaden, rather than threaten
[78].

Cells of multicellular organisms have a genome-scale network of O(105) genes. Al-
though having the same genome-wide regulatory network, cells are of different types,
which correspond to different stable patterns of gene expression within the GRN
[79]. The influence of expression between genes (repressing or activating), impedes
the genome to freely choose any possible gene expression pattern. Some of them are
much more stable than others, with some of these patterns being that unstable that
they will not be realised ever, because this would go against the interrelationships es-
tablished by the GRN. So, when deciding which pattern the GRN expresses, several
constraints limit the large amount of possibilities that otherwise would be available
[78].

Mathematically, each possible state that the GRN can adopt is represented by
a point S(t) ∈ RN

+ , whose components are given by the level of expression of each
gene at time t, with N denoting the total number of genes in the GRN. When the
dynamics of the GRN changes because of different level of gene expression, then, S
moves to another state S ′ in the N -dimensional state space. This change of state
can start because of some random perturbation that moves the system away from
its stable configuration S. Upon such perturbation, the GRN either relaxes back
to its state prior to the perturbation or, rather, it looks for another stable pattern
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where it will settle down [78]. A suitable mathematical approach to describe the
GRNs dynamics is offered by dynamical systems. This description accounts for the
stable cell states, S, as stable steady states (stable stationary points) of the associ-
ated dynamical system [167]. Therefore, trying to predict the long-term behaviour
of the dynamical system becomes a biologically interesting question, since it will
correspond to a particular cell fate S that the system will adopt.

The problem of differentiation, i.e. the switch from SC into a more specialised
cell type, can be subsumed under this paradigm by using genome-wide GRNs, which
highlight the existence of high-dimensional attractor states, corresponding to the fi-
nal cell fates [79]. Since cell differentiation gives rise to many different cell types, the
genome-wide GRN exhibits multistability, where each possible cell fate represents a
stable steady state. Hence, cell differentiation dynamics can be seen as an ordered
process, which stops in a stable state corresponding to a particular phenotype. This
has been shown, for instance, in the dynamics of neutrophil differentiation, where a
profiling of a 2773-dimensional gene expression state space illustrates that different
state space trajectories, which seem to diverge at the first stages of differentiation,
finally converge to a common state, the differentiated one [79].

Experimental data regarding neutrophil differentiation [79] raise the question of
whether the time course of thousand of genes in GRNs exhibit a globally coherent
pattern of attraction to a common state. Although theoretically it makes perfect
sense [79], validating this hypothesis experimentally is hard. Available data, gener-
ally, represents the topology of the GRNs, and less frequently, their dynamics. The
lack of this information is because it is really complicated to experimentally measure
it, especially when GRNs get larger. However, some insight has been gained when
analysing smaller GRNs. Some of the common properties that these GRNs seem to
exhibit include sparseness of interactions and preferential use of certain functions for
the interactions between the genes (inhibition or activation, mainly) [79].

The problem of reprogramming (or transdifferentiation) can also be understood
in these terms. Cells are initially at one state S, but the GRN can sustain other
steady states S ′ (as mentioned, the system has multistability, which corresponds to
all the possible phenotypes). Hence, a change in the gene expression pattern, which
may be caused by epigenetic alterations or by ectopic expression of certain genes,
may force cells to change state. In particular, ER plays a key role in the switch of
phenotype, since it can silence or activate the expression of a certain gene (or genes)
and this may settle the cell in a position wehere another stable pattern (another cell
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fate) must be adopted. Being able to quantify the statistics of these phenotypical
transitions has drawn researchers attention, since it can help to understand how some
cells may survive under certain changing or unfavourable conditions [58]. Further-
more, such quantification is also important to determine on which time scale these
transitions occur. Thomas et al. [155] show how different timescales may help to
the appearance of phenotypic switching in GRNs and they present a new modelling
approach that can deal with all these different timescales.

Of particular interest is computing how long it takes for a GRN to switch a gene
(or a set of them) from its active to its inactive form, or vice versa. Several approaches
to quantify this transition have been used, which are based on the saddle-crossing
rate formula [58, 127, 182], which measures the barrier the saddle-point offers in or-
der to reach the other stable state. Such transitions between metastable states occur
by crossing the mean-field separatrix through a saddle-point. Between any two of
these stable states, there is always an optimal transition path which goes through
the saddle point2.

In general, the transition rate between phenotypic states is defined as the multi-
plicative inverse of the mean-first-passage time (MFPT) starting from one phenotypic
state and reaching the other [58]. In order to have a quantitative measure of the tran-
sition rates between states, there is at our disposal several tools. When the system
of study is described by the master equation (ME), the Wentzel-Kramers-Brillouin-
Jeffreys (WKBJ) theory, more commonly known just as WKB approximation, pro-
vides a framework for this computation [19, 47, 75]. Alternatively, when the system
is described using the chemical Langevin equation (CLE), the Freidlin-Wentzell (F-
W) large deviation theory [54] is used. Both methodologies provide a mathematical
derivation for computing the transition rate from one phenotypic state A to another
phenotypic state B, which has an exponential form, with exponent minus the system
size (or, equivalently, with the inverse of noise intensity). Notice that since it is a
transition rate, the larger the system size (or the smaller the noise), the longer it
takes for the system to switch, since the transition rate decreases. Such transitions
are related to jumps over the epigenetic barriers separating Waddington wells. Epi-
genetic plasticity, which is the responsible for lowering or heightening the barriers,
may thus accelerate or slow down the phenotypic transitions.

Stochastic multistable systems spend most of the time fluctuating around one of
the metastable states, although rare events (which are exponentially suppressed with

2In particular, a first order saddle point, i.e. with just one component unstable [167]
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the size of the system) can occur, which results into transitions between states. The
fact that the fixed-point attractors of the mean-field description are stable under
stochastic perturbations implies that the phenotypes which those attractors repre-
sent are quite robust. Noticeably, the exponential form of the transition rate between
mean-field stable states implies that the system is robust to perturbations, i.e. the
phenotypes are stable against intrinsic stochasticity [58]. Thus, phenotypic transi-
tions will only happen rarely due to stochastic noise. Intuitively, these transitions
between phenotypes are more efficient if the perturbation is applied along an optimal
fluctuational path, rather than in any other direction.

Although the F-W theory is formulated in terms of transition between two (mean-
field) attractors, it has been extended to deal with more than two attractors [182],
something needed when dealing with larger GRNs because they exhibit multistability
with usually more than 2 stable steady states. This formulation, in turn, allows to
compute relative stabilities of the N attractors the system may have, which implies
that once the system switches, the other remaining attractors of the GRN system
are not equally likely to be taken [182]. This situation is relevant regarding cells at-
tempting to reprogram to a different cell fate; some transitions between cell fates are
more realistic than others [64]. For this formulation to be possible, a global potential
function must be defined where each state configuration S is associated with a poten-
tial energy [78, 167]. For a review of existing techniques in this area, we refer to [182].

F-W theory and its extensions allow us to explain transitions between cell at-
tractors corresponding to different phenotypes that happen in normal development,
but also in disease, when there is a remodelling of the epigenetic landscape. This
is something that the deterministic dynamical systems approach usually fails to de-
scribe because it focus its attention on the linear stability, but it does not give the
dynamics on the transition between states timescale, which is one of the main char-
acteristics of the behaviour of complex stochastic systems [182, 78].

Mathematical models of GRNs have been used to model different biological sit-
uations, in particular in the context of cell differentiation. One of them is the in-
teraction between GATA1 and PU.1, where the dominance of one gene or the other
represents one of the earliest and most fundamental decisions during haematopoietic
development [64]. They have an antagonistic relationship where, for simplicity, it
is assumed that expression of PU.1 leads to monocytic cells, whilst expression of
GATA1 yields to erythroid cells. The modelling procedure used in [64] progresses in
a gradual way by first assuming mutual inhibition, and then, adding self-activation
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to the 2-gene regulatory network. This model is reminiscient of a simpler genetic
switch controlling the choice between lysogenic and lytic pathways in phage lambda,
by the cross-antagonistic and autoregulatory transcriptional regulators Cro and CI.
This genetic switch has been tested experimentally using a synthetic genetic network
[72].

In general, GRNs with mutual inhibition have been used as a modelling framework
for binary cell fate choices, broadly used, but not limited, to lineage specification or
lineage reprogramming experiments [64]. More precisely, these GRNs are useful as
they steer the system towards one of the states, as well as stopping the regulators of
the other possible cell states. A clear well-known example, and one of the simplest
GRNs, is the genetic toggle-switch [127, 58]. Usually, this system exhibits bistable
behaviour, where two stable states (the on and off states) coexist with an unstable
state.

Regarding cell differentiation, if one has the Waddington landscape in mind, one
may imagine a particular GRN that would represent the full developmental potential
of the genome, since it would have an attractor for each possible phenotype, that is,
each possible cell type [78, 64]. The intermediate steps in cell differentiation would
be those states where cross-antagonist genes are both coexpressed. These states are,
thus, still multipotent progenitors, because they can still give rise to different phe-
notypes.

Modelling differentiation processes as GRNs where coexpression of mutually in-
hibiting genes leads to eventual monoexpression of one of those genes, and, conse-
quently, in a well-defined final phenotype, may explain why direct reprogramming
may be achieved by inducing ectopically certain factors. Inducing this expression
provokes that one stable state solution S is destabilized, the outcome of which may
be a different phenotype. Examples of this bifurcation cascade through resolving
cross-antagonistic pairs have been modelled in the HSCs, in the T-cells development
or when deciding on the predominance of either Nanog or GATA6, which is respon-
sible for deciding whether ESCs maintain their identity (they are kept as SCs), or
they differentiate into endoderm [64].

This mathematical approach for cell differentiaton allows us to explain many
other features. For example, it helps to explain both why the order of factor induc-
ing may affect the final outcome of cell reprogramming and why it is possible to reach
a final state through different paths. Furthermore, it also implies that transitions
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between different cell fates are easier to obtain by those states where a gene regula-
tory switch (branching point) is closer than in those systems where different switches
must be overcome. This also means that the number of factors which need to be
induced will also depend somehow on the number of cross-antagonistic branching
points separating those states [64].

However, when modelling cell fate switch using GRNs there is the possibility
of direct reprogramming. In this case, after inducing certain factors (which cause
epigenetic alterations), the reprogramming path takes advantage of a change in the
height of the walls separating the states, and thus, it crosses the ridge that divides
the two-lineage committed territories without reactivating progenitor cells [64]. In
fact, “direct” jumps of the system are unusual but feasible, due to the fact that the
barrier height separating the basins of the initial and final states can only be finite
and therefore, with a perturbation large enough, this should be affordable [78]. Direct
reprogramming reinforces the idea that cell differentiation and cell reprogramming
follow different paths (as mentioned in Section 1.1.2).

Although it may seem that GRNs have no room for mutations, this is not true.
In GRNs, mutations alter the phase space, either by creating or destroying an at-
tractor, or by changing the basin of attraction of at least one state. The first case
would allow the system to move to places where it has never been before, to move
the system from a place where it had settle down or would modulate the accessibility
to a given state, that is, how likely is that state to be reachable [78].

Hence, mutations can cause a gradual change, for instance, increasing/decreasing
the contour of the basin of attraction of a state, or a direct effect, when creating
a state, for example. The latter case can help to explain some abrupt changes in
evolution, by allowing the GRN to settle down in an, until then, impossible state.
Since this is a newly created state, evolutionary progress can be triggered because
this state could be optimal with respect to other states, since it could be a local
minimum more stable. In conclusion, GRNs can give a plausible explanation about
how small mutations can create large changes in phenotype, something which has
been hard to explain with the neo-Darwinian approach [78].

We have reviewed the use of GRNs to model gene interactions which give rise to
the appearance of different phenotypes. Beyond this issue, GRNs can also be used
to model cell-cell interactions. Normally, both dynamics, i.e. cell-cell and gene-gene
interactions, are analysed using dynamical systems by means of (ordinary, stochas-
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tic) differential equations, as mentioned above. In both cases, the appearance of Hill
functions is recurrent, and the Hill exponent deserves a special mention. Depend-
ing on its value, the type of behaviour the system being modelled can adopt may
be completely different. For instance, the appearance of bistability depends on this
[105].

Pattern formation can be explained by studying models of intercellular signalling
(cell-to-cell interactions). The idea of cell-cell dynamics models is to have the same
GRN in each cell and add some relationships between the GRNs of different cells, for
example, lateral inhibition between cells which are adjacent. When coupling both
models, that is, the one for gene to gene interactions and the one for cell-cell com-
munication, then, interesting results are found in terms of expression dynamics, gene
expression attractors, as well as in terms of spatial patterning. A clear example of
this coupling is the one described by de Back et al. in [105] for endocrine cells in
the pancreas, where results regarding mutlistability of spatial patterns are obtained,
something largely missing with other modelling frameworks.

1.4 Aims, objectives and thesis structure

The overarching aim of this thesis is the formulation and analysis of a new mul-
tiscale model of gene regulatory networks (GRNs) which account for the effects of
epigenetic regulation of gene expression. Specifically, we will focus on GRNs relevant
to reprogramming of somatic cells. By careful modelling and analysis of the epige-
netic regulatory systems acting upon the GRN, we study the influence of epigenetic
plasticity on cell reprogramming in health and disease. We focus on models of epi-
genetic regulation based on enzyme-catalysed modifications of histones. Our models
allow us to shed some light on possible epigenetic mechanisms involved in healthy
and pathological cell reprogramming during cancer and ageing.

Specific objectives of this thesis are:

1. Formulating a first model of epigenetic regulation to analyse the effects of epi-
genetic heterogeneity on the predisposition to cell reprogramming. Within this
model, we define two ‘epi-phenotypes’, one resilient to reprogramming and an-
other one which allows for reprogramming. We generate an ensemble of such
ER systems to analyse the features that characterise each phenotype and their
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robustness. This is developed in Chapter 2.

2. Formulating and analysing a stochastic multiscale model of a coupled ER-GRN
system. We develop a method for stochastic model reduction based on multi-
ple time scale asymptotics. Such reduction allows us to formulate an efficient
numerical simulation method. We apply our formulation to investigate the
effects of epigenetic plasticity and heterogeneity on the robustness of differen-
tiated phenotypes and cell reprogramming. This is the content of Chapter 3.

3. Formulating and analysing a second model of ER, which is an extension of
the model introduced in Chapter 2, that allows us to characterise two types
of cellular reprogramming, namely, healthy reprogramming and pathological
reprogramming. The former is a physiological type of reprogramming, which is
reversible, and contributes to the regenerative capabilities of tissues. The latter
is an irreversible form of reprogramming, where reprogrammed cells are not al-
lowed to (re-)differentiate. This model allows for definitions of epi-phenotypes
that are compatible with both forms of reprogramming, the physiological and
the pathological. We also formulate epigenetic strategies able to move the ER
system from the pathological scenario to the physiological one. This new model
is developed in Chapter 4.

Finally, in Chapter 5, we discuss both our findings and new research avenues for
future work.
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Chapter 2

Epigenetic regulation model of cell
fate reprogramming in ageing and
disease

2.1 Summary

We begin our investigation by formulating a model of epigenetic regulation (ER).
We further define an epi-state, epi-phenotype, associated with a somatic, fully-
differentiated cell and describe our method, using approximate Bayesian compu-
tation (ABC), for generating an ensemble of ER systems compatible with such an
epi-state. We show that, in agreement with recent experimental results [129], het-
erogeneity within the ensemble generates a sub-population where reprogramming is
favoured. Further, and also in agreement with Pour et al. [129], we show that such
preexisting ER heterogeneity can be harnessed by tuning the activity of ER enzymes
(and their cofactors) to alter the cellular response to reprogramming. Our aim in
this chapter is to study and to understand the relationship between epigenetic land-
scapes, cofactor fluctuations and cell state transitions (see Fig. 2.1 for a schematic
representation). This chapter is based on our published work [53].

2.2 Model formulation and analysis

In this Section, we provide the details regarding our stochastic model of epigenetic
regulation of gene expression which is based on [110]. Our model belongs to a family
which considers that single unmodified (U) loci can be modified so as to acquire
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positive (A) or negative (M) marks. A positive feedback mechanism is introduced
whereby M marks help to both add more M marks and remove A marks from
neighbouring loci. The positive marks are assumed to be under the effects of a
similar positive reinforcement mechanism [42, 131].

2.2.1 Stochastic model of epigenetic regulation

The stochastic model of epigenetic regulation is formulated in terms of the asso-
ciated Chemical Master Equation (CME), which, in general, is given by:

∂P (X, t)

∂t
=
∑
i

(
Wi(X− ri)P (X− ri, t)−Wi(X)P (X, t)

)
(2.2.1)

where X = (X1, . . . , Xn) is the vector containing the number of molecules of each
molecular species at time t, Wi(X) is the transition rate corresponding to reac-
tion channel i and ri is a vector whose entries denote the change in the num-
ber of molecules of each molecular species when reaction channel i fires up, i.e.,
P
(
X(t+ ∆t) = X(t) + ri|X(t)

)
= Wi(X)∆t.

Our model (see Table 2.2) is based on the stochastic models for epigenetic regu-
lation proposed by Dodd et al. [42] and Menéndez et al. [111]. The model originally
formulated in [42] considers nucleosome modification as the basic mechanism for epi-
genetic regulation. Nucleosomes are assumed to be in one of three states, methylated
(M), unmodified (U), and acetylated (A), and the dynamics of the model is given in
terms of the transition rates between these three states.

Dodd et al. [42] consider that direct transitions between M and A are very
unlikely. Instead, they assume that transitions occur in a linear sequence given by:

M 
 U 
 A,

i.e. methylated nucleosomes can only undergo loss of the corresponding methyl
group to enter the unmodified state which, then, by means of the intervention of the
corresponding histone-modification enzyme, can acquire an acetyl group, and vice
versa. They further put forward the hypothesis that such nucleosome modifications
are of two types, namely, recruited and unrecruited:

• Recruited modification refers to a positive feed-back mechanism where change
in the modification status of nucleosome is facilitated by the presence of other
modified nucleosomes (i.e. by the presence of other methylated or acetylated
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nucleosomes). Mathematically, this is expressed through a non-linear depen-
dence on the number of M -nucleosomes and A-nucleosomes of the correspond-
ing transition rates (see Table 2.2).

• Unrecruited modification refers to nucleosome modifications whose probability
is independent of the modification status of the other nucleosomes.

More specifically, the reactions involved in our model are:

1. HDM-mediated demethylation:

M +HDM � CM → U +HDM

HDM-mediated demethylation can be both unrecruited, where the rates asso-
ciated with each reaction are constant (see Table 2.2, reactions 1 to 3), and
recruited, where all the associated rates are taken to be proportional to the
number of A-nucleosomes (see Table 2.2, reactions 4 to 6).

2. Methylation:

U →M

Methylation can also be unrecruited (Table 2.2, reaction 7) or recruited, in
which case the associated rate is proportional to the number of methylated
nucleosomes (Table 2.2, reaction 8).

3. HDAC-mediated deacetylation:

A+HDAC � CA → U +HDAC

HDAC-mediated deacetylation can be both unrecruited (see Table 2.2, reac-
tions 9 to 11), or recruited, where all the associated rates are proportional to
the number of M-nucleosomes (see Table 2.2, reactions 12 to 14).

4. Acetylation:

U → A

As with the previous processes, acetylation can also be unrecruited (Table 2.2,
reaction 15) or recruited, in which case the transition rate is proportional to
the number of acetylated nucleosomes (Table 2.2, reaction 16).
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Table 2.1: Random variables

Variable Description
X1 Number of unmodified nucleosomes (U-nucleosome)
X2 Number of methylated nucleosomes (M-nucleosome)
X3 Number of acetylated nucleosomes (A-nucleosome)
X4 Number of HDM enzyme molecules
X5 Number of methylated nucleosome-HDM enzyme complexes
X6 Number of HDAC enzyme molecules
X7 Number of acetylated nucleosome-HDAC enzyme complexes

We consider the scenario where both histone hypomethylation (low level of neg-
ative (M) marks) and hyperacetylation (high level of positive (A) marks) allow for
genes to be expressed, insofar the associated transcription factors are present [100].
On the contrary, we associate histone hypermethylation and hypoacetylation with
silent states where genes are not expressed even in the presence of the appropriate
transcription factors. In this chapter, we focus on the conditions for bistability to
arise and the robustness of the associated open and closed states particularly in con-
nection with the abundance or activity of HDMs and HDACs.

The transition rates (Table 2.2) associated with each of these reactions are mod-
elled using the law of mass action [59]. This model is an extension of the one formu-
lated by Menéndez et al. [110], since we account explicitly for the enzymatic activity
of histone demethylases and histone deacetylases. In our modelling approach, we
treat removal of M and A marks by representing them using the Michaelis-Menten
model of enzymatic catalysis. This allows us to assess how varying HDM and HDAC
abundance can directly affect the behaviour of the ER system, which was not possi-
ble in previous models [110]. For simplicity, the activity of HMs and HACs activity
is not represented explicitly, thus keeping the model more tractable. By doing so, we
are able to add HDAC activity to our analysis, which was absent from [110], and to
study the combined effects of impaired HDM and HDAC activities. We also use the
current model to perform an exhaustive exploration of the feasible space of parame-
ters, thereby allowing us to produce meaningful predictions as to the effect of ageing
and oncometabolic transformation on the robustness of differentiated phenotypes.
Our aim thus is to analyse the effects of varying the concentration of these enzymes
(HDMs and HDACs) as well as possible synergies between them.
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Table 2.2: Random processes and their transition rates. Reaction numbers (R1, R2,
R3 or R4) correspond to the enumeration in Section 2.2.1. Xi are as in Table 2.1.
(Notation: unr. (r.) denotes unrecruited (recruited))
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Specifically, we focus our analysis on plastic behaviour of the epigenetic regulatory
states when the activity of histone-modifying enzymes (HMEs) is down-regulated
against the background of heterogeneity due to variability in the pool of cofactors
for chromatin-modifying enzymes. We proceed by first defining a base-line scenario
in which the associated epigenetic regulatory system is such that, for average values
of HDM and HDAC activities, the differentiation-promoting gene ER is open and the
pluripotency-promoting gene ER is closed. We refer to this scenario as the (normal)
differentiated cell epi-state. We then proceed to generate an ensemble of ER sys-
tems that satisfy the requirements imposed by this base-line scenario; the necessary
variability to generate this ensemble is provided by heterogeneity in abundance of
epigenetic cofactors. Analysis of this ensemble reveals that the requirements of the
base line scenario restrict the values of a few parameters only, leaving ample flexibil-
ity to fix the rest of them. This behaviour is typical of the so-called sloppy models
[34], where available data constrains a limited number of parameters (or parameter
combinations), the system being robust to the choice of a large number of model
parameters. In our case, this feature is absolutely essential since, nested within this
heterogeneous ensemble of ER systems, there exists a sub-ensemble of plastic ER
systems, i.e. ER systems which allow for cell-fate switching.

2.2.2 Mean-field limit and quasi-steady state approximation

In order to gain some insight into the behaviour of the stochastic ER model,
we analyse its mean-field limit regarding time scale separation and the quasi-steady
state approximation. For a full account of the technicalities we refer to [1, 40].

The mean-field equations, which describe the time evolution of the ensemble
average of the variables Xi, associated with the stochastic system with rates given
in Table 2.2 are:

dQi

dt
=

16∑
j=1

rj,iWj(Q) (2.2.2)

where Q is a vector whose entries, Qi, are defined as Qi ≡ 〈Xi〉 (i.e., its average
value). In order to proceed further, we assume that the variables describing the
system are divided into two groups according to their characteristic scales. More
specifically, we consider the situation where the subset of chemical species Xi, with
i = 1, 2, 3, scales as Xi = Sxi, where xi = O(1), whilst the remaining species are
such that Xi, with i = 4, 5, 6, 7, scale as Xi = Exi, where xi = O(1). Key to our
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approach is the further assumption that S and E must be such that ε = E
S
� 1.

The averaged variables, Qi, are similarly divided into two groups: slow variables,
i.e., Qi = Sqi (i = 1, 2, 3), and fast variables, i.e., Qi = Eqi (i = 4, 5, 6, 7). Note
that this assumption, also known as the Briggs-Haldane approximation, is standard
in enzyme kinetics (see Keener and Sneyd, [88]).

Under this rescaling, we define the following scale transformation for the transi-
tion rates in Table 2.2: Wj(Q) = k4S

2Eωj(q). We further rescale the time variable
so that a dimensionless variable, τ , is defined as τ = k4SEt. It is now straightforward
to verify that, upon rescaling, the mean-field equations become:

dqi
dτ

=
16∑
j=1

rj,iωj(q), i = 1, 2, 3, (2.2.3)

ε
dqi
dτ

=
16∑
j=1

rj,iωj(q), i = 4, 5, 6, 7. (2.2.4)

with ε = E/S.
Eqs. (2.2.3) and (2.2.4) show that if ε = E/S � 1 holds, then, the mean field

equations (Eqs. (2.2.3) and (2.2.4)) naturally display multiple scale structure, which
we will exploit to simplify our analysis by means of a quasi-steady state approxima-
tion (QSSA) [137].

Multi-scale asymptotic analysis [76] relies upon the construction of two approx-
imations. One of these approximations is constructed so that it is valid for longer
times and it is referred to as the outer solution. The second one, i.e. the inner solu-
tion, approximates the behaviour of the system at shorter times. These two regimes
must satisfy appropriate matching conditions which ensure that both solutions pro-
duce a uniformly valid approximation. The outer solution is usually obtained in
terms of the quasi-steady state approximation [88], which describes the dynamics of
the system once it has settled down onto the associated invariant manifold. Regard-
ing Eqs. (2.2.3)-(2.2.4), the QSS approximation consists on assuming that εdqi

dτ
' 0

which leads to a differential-algebraic system of equations which provides us with
the QSSA.

In order to obtain the QSSA, we follow the classical approach in enzyme kinetics
[76, 22, 88] and assume that the slow variables correspond to the number of U-, M-,
and A-nucleosomes, i.e. the substrates, whilst the enzymes HDM and HDAC and the
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associated complexes are assumed to be the fast variables. Under this assumption,
the resulting system displays multi-scale structure which we exploit to analyse the
system [1, 40].

The long time behaviour of the system is thus determined by its QSSA:

dq1
dτ

= eHDM
(κ1 + q3)(κ3 + κ6q3)q2

(κ2 + κ3) + (κ1 + q3)q2 + (κ5 + κ6)q3
+

+eHDAC
(κ9 + κ12q2)(κ11 + κ14q2)q3

(κ10 + κ11) + (κ9 + κ12q2)q3 + (κ13 + κ14)q2
− (κ8q2 + κ7 + κ16q3 + κ15)q1 (2.2.5)

dq2
dτ

= −eHDM
(κ1 + q3)(κ3 + κ6q3)q2

(κ2 + κ3) + (κ1 + q3)q2 + (κ5 + κ6)q3
+ (κ8q2 + κ7)q1 (2.2.6)

dq3
dτ

= −eHDAC
(κ9 + κ12q2)(κ11 + κ14q2)q3

(κ10 + κ11) + (κ9 + κ12q2)q3 + (κ13 + κ14)q2
+ (κ16q3 + κ15)q1 (2.2.7)

q4 = eHDM
κ2 + κ3 + (κ5 + κ6)q3

(κ2 + κ3) + (κ1 + q3)q2 + (κ5 + κ6)q3
(2.2.8)

q5 = eHDM
(κ1 + q3)q2

(κ2 + κ3) + (κ1 + q3)q2 + (κ5 + κ6)q3
(2.2.9)

q6 = eHDAC
κ10 + κ11 + (κ13 + κ14)q2

(κ10 + κ11) + (κ9 + κ12q2)q3 + (κ13 + κ14)q2
(2.2.10)

q7 = eHDAC
(κ9 + κ12q2)q3

(κ10 + κ11) + (κ9 + κ12q2)q3 + (κ13 + κ14)q2
(2.2.11)

where the re-scaled parameters κj are defined in Table 2.3, and the conservation laws

q4(τ) + q5(τ) = eHDM , (2.2.12)

q6(τ) + q7(τ) = eHDAC , (2.2.13)

hold. These conservation laws account for the fact that the total number of enzyme
molecules, i.e. the enzyme molecules in their free form and those forming a complex
must be constant. Hence, the quantities eHDM and eHDAC are defined as eHDM =
z0
E

and eHDAC = v0
E

, respectively, where z0 and v0 are the numbers of HDM and
HDAC enzyme molecules, respectively. E is the characteristic scale (i.e. average) of
abundance of the histone-modifying enzymes which, for simplicity, has been taken
to have the same value for both HDMs and HDACs. This result opens interesting
avenues to investigate, since both oncometabolic transformation and ageing appear
to reduce the number of both types of enzymes [100, 101, 175, 125, 115, 33, 48].
Therefore, our theory allows us in a natural manner to explore the effects of these
anomalies on the stability of epigenetic regulatory states because the values of eHDM
and eHDAC are undetermined, so they can be used as parameters.
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Table 2.3: Mean-field limit dimensionless parameters

Dimensionless parameters
ε = E/S, κ1 = k1/(k4S), κ2 = k2/(k4S

2), κ3 = k3/(k4S
2)

κ5 = k5/(k4S), κ6 = k6/(k4S), κ7 = k7/(k4SE), κ8 = k8/(k4E)
κ9 = k9/(k4S), κ10 = k10/(k4S

2), κ11 = k11/(k4S
2), κ12 = k12/(k4)

κ13 = k13/(k4S), κ14 = k14/(k4S), κ15 = k15/(k4SE), κ16 = k16/(k4E)

2.2.3 Parameter values and ensemble generation

2.2.3.1 Viability conditions and reference parameter values.

We start this discussion by defining the somatic cell epi-state in terms of appro-
priate viability conditions. In order to define such viability conditions unambigously,
we restrict our discussion to the context of the gene regulatory network used in
[110] (see also Fig. 2.1), i.e. a network of mutually repressive differentiation genes
and mutually reinforcing pluripotency genes, with further mutual inhibition between
differentiation and pluripotency genes [102]. For simplicity, as shown in Fig. 2.1,
we consider a network of two genes, one promoting differentiation and another pro-
moting pluripotency. Such systems, despite their simplicity, have proved themselves
useful to study differentiation in a number of contexts [77, 105]. Within such a
context, the phenotype of a normal somatic, differentiated cell demands that those
genes promoting pluripotent behaviour and/or proliferation should be silent, whereas
genes promoting differentiation and quiescent behaviour should be active.

Within such a GRN context, we consider that our ER systems are composed of
two replicas of the stochastic epigenetic regulation model, as described in Section
2.2.1, each associated with a different gene in the GRN (see Fig. 2.1). Each of
these ER systems is characterised by a different set of kinetic rates, κj, so that their
behaviour can be tuned to the demands of the viability conditions (to be specified
below). For the remainder of this chapter, an open epigenetic state refers to a steady
state of the system where q1 ' q2 ' 0 and q3 ' 1 (predominance of positive marks).
A closed or silent epigenetic state is associated with q1 ' 0, q2 ' 1 and q3 ' 0 at
equilibrium (predominance of negative marks).

The biological rational for these definitions, based on recent experimental evi-
dence, is as follows. Post-translational modification (PTM) of individual histones,
such as acetylation and methylation, plays pivotal roles in the epigenetic regulation
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Figure 2.1: A stochastic model of ageing metabolism-regulated cell fate. Schematic
representation of the minimal gene regulatory network (GRN) considered in our
stochastic model of epigenetic regulation (ER), consisting of a coupled pluripotency
and differentiation modules. The heterogeneity of epigenetic metabolites (EM),
which operates as regulator of the kinetic parameters (kj in our model) promot-
ing/impeding the functioning of histone modifiers, stochastically drives phenotypic
variability (epi-states). Arrows denote activation and blunt-ended lines denote in-
hibitory interactions.

of gene expression through chromatin structure changes. Histone acetylation is gen-
erally associated with a chromatin structure that is open and therefore accessible to
transcription factors and, therefore, gene activation [168, 11, 122]. Histone methy-
lation is linked to either active or repressed genes, depending on the residue that
is being modified (e.g., H3K4me3 mark is associated with active promoters whereas
H3K27me3 and H3K9me2/3 are associated with repressed regulatory regions).

Although it is likely that the sum of numerous PTMs within regulatory regions
determine the transcriptional state of a specific set of genes, for practical reasons
epigenetic studies usually involve profiling of one or a couple of well-established hi-
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stone modifications. Nevertheless, the silent/closed chromatin state is associated
with low levels of acetylation and high levels of certain methylated sites. Our model
acknowledges not only that; during ageing, the abundance and activity of enzymes in
charge of adding and removing histone marks, such as HDMs and HDACs, changes,
mainly because these chromatin-modifying enzymes for both activating and repress-
ing histone marks require certain cofactors (such as metabolites) which change their
abundance. This adds a level of complexity which is considered in the model.

For each component of the ER system (differentiation and pluripotency epigenetic
regulation), we have set the parameters κj so that they satisfy the following general
viability conditions, namely, (i) when eHDM = eHDAC = 1 (normal or average enzy-
matic concentration), the regulatory system is mono-stable (stable open chromatin
state for the differentiation ER, stable closed chromatin state for the pluripotency
ER, as shown in Fig. 2.4), and (ii) for eHDM < 1, eHDAC < 1 both the differenti-
ation and pluripotency ER exhibit a bistable regime. These conditions correspond
to a base-line scenario where we are considering the epigenetic regulation of a gene
regulatory system which, in a normal, terminally differentiated cell, involves that
differentiation-promoting genes should be open and accessible to the transcriptional
machinery of the cell, whereas pluripotency-promoting genes are epigentically si-
lenced [110]. Reference (default) parameter values satisfying the viability conditions
for the different scenarios described later on are given in Section A.1.3, Tables A.5
and A.6.

2.2.3.2 Ensemble generation.

Beyond the behaviour of the ER system for the reference parameter sets (Tables
A.5 & A.6 and Tables A.7 & A.8 in Section A.1.3), we have generated an ensemble
of ER systems to analyse the robustness of the different scenarios we analyse later on
in Section 2.3. Such ensemble is generated using approximate Bayesian computation
(ABC) [156].

Approximate Bayesian Computation (ABC) methods have been devised to tackle
those inference problems for which the estimation of the likelihood function is com-
putationally too demanding. Let θ = (k1, . . . , kn) be the vector whose components
are the parameters to be estimated and x be the data. The general aim is to approx-
imate the so-called posterior distribution, π(θ|x), i.e. the conditional probability of
θ given the data, from a prior distribution of the parameters, π(θ). In general, the
posterior is given by π(θ|x) ∼ f(x|θ)π(θ), where f(x|θ) is the likelihood function.
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All ABC methods follow the same generic procedure:

• Sample a candidate sequence of parameters, θ, from the proposed prior distri-
bution, π(θ).

• Sample or simulate a data set x from the model represented by the conditional
probability density f(x|θ).

• Compare the simulated data set, x, to the experimental data, x0, according
to some distance function, d(x, x0). If d(x, x0) ≤ ε, where ε is an a priori
prescribed tolerance, then θ is accepted.

The result of this algorithm is a sample of parameters from a distribution π(θ|d(x, x0) ≤
ε). The above procedure has, in general, the obvious shortcoming that it is often
difficult to determine an appropriate distance function between full data sets. To
overcome this obstacle, one often uses a distance between (a set of) summary statis-
tics, S(x) and S(x0), of the datasets, such as the mean and/or the variance.

In our case, we have used the following version of the ABC rejection sampler
method [156], taking θ = (k1, . . . , k16):

1. Sample θ∗ from π(θ) =
∏

j πj(kj) where πj(kj) = U(0, 6.5 · 106) for kj, j =

2, 3, 7, 10 and 15, and πj(kj) = U(0, 5 · 104), otherwise, for the differentiation-
promoting gene, and πj(kj) = U(0, 6.5 · 106) for kj, i = 2, 3, 7, 10, 11 and 15,
and πj(kj) = U(0, 5 · 104), otherwise, for the pluripotency-promoting gene.

2. Simulate data set, x∗, from the Master Equation with transition rates as per
Table 2.2 using Gillespie’s stochastic simulation algorithm. We generate 10
realisations and collect data at times ti, i = 1, . . . , 25, corresponding to the
raw data time points.

3. For each time point, ti, we compute two summary statistics: the mean over the
10 realisations, x∗(ti), and the associated standard deviation, σ∗(ti).

4. If
∑25

i=1 (x∗(ti)− x0(ti))
2 ≤ ε1 and

∑25
i=1 (σ∗(ti)− σ0(ti))2 ≤ ε2 hold, θ∗ is ac-

cepted, where x0 denotes the experimental data.

5. Go back to Step 1.
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We run this algorithm until the number of accepted parameter sets reaches 10000.
This method has been used to generate an ensemble of differentiation epigenetic reg-
ulation systems (see Fig. 2.2) and an ensemble of pluripotency epigenetic regulation
systems (shown in Fig. 2.3).

Our approach is as follows. For each mode of epigenetic regulation (i.e. differ-
entiation or pluripotency ER), we generate simulated data (denoted as “raw data”
in Fig. 2.4) using the stochastic simulation algorithm on the model defined by the
transition rates Table 2.2. This simulated data will play the role of the raw data, x0,
to which we wish to fit our model. We consider two different data sets x0d and x0p ,
corresponding to the differentiation gene (reaction rates from Table A.5 in Section
A.1.3) and the pluripotency gene (reaction rates from Table A.6 in Section A.1.3),
respectively. Each data set consists of 10 realisations and 25 time points per re-
alisation. For each time point, ti, we consider two summary statistics: the mean
over realisations, x̄(ti), and the associated standard deviation, σ(ti). We then run
the ABC rejection sampler method until we reach an ensemble of 10000 parameter
sets for each epigenetic regulatory system, which fit the simulated data, x0, within
the prescribed tolerances for the mean and standard deviation. Fig. 2.4(a) & (b)
shows results comparing the reference (raw simulated) data to a sub-ensemble aver-
age, the 200 sets that best fit the raw data (full posterior distributions are shown in
Fig. 2.2, differentiation-promoting gene, and Fig. 2.3, pluripotency-promoting gene).

The above procedure provides us with an ensemble of parameter sets that are
compatible with the raw data, i.e. such that they fit the data within the prescribed
tolerances. The heterogeneity associated with the variability within this ensemble
has a clear biological interpretation. The rates kj are associated with the activity of
the different enzymes that carry out the epigenetic-regulatory modifications (HDMs,
HDACs, as well as, histone methylases (HMs) and histone acetylases (HACs)), so that
variation in these parameters can be traced back to heterogeneity in the availability
of cofactors, many of them of metabolic origin such as NAD+ or acetyl-CoA, which
are necessary for these enzymes to perform their function (as illustrated in Fig. 2.1).
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Figure 2.2: Differentiation gene. ε1 = 0.6 and ε2 = 1. z0 = v0 = E = 5 and S = 250.
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Figure 2.3: Pluripotency gene. ε1 = 0.4 and ε2 = 1. z0 = v0 = E = 5 and S = 250.
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Figure 2.4: Caption on the following page.

51



Figure 2.4: (Previous page.) Plot (a) shows results regarding the parametric sensi-
tivity analysis of the epigenetic regulatory system for the differentiation-regulating
gene. Plot (a) shows the comparison between the raw simulated data and the ABC
ensemble average, limited to the 200 ABC parameter sets that best fit the data. Plot
(b), idem for the pluripotency-regulating gene. Raw simulated data is generated by
using the SSA on the model defined by the rates shown in Table 2.2 with parameter
values given in Tables A.5 and A.6 in Section A.1.3, respectively.

The rationale for this procedure is as follows. All the parameter sets within the
ensemble are such that for normal or average concentration of HMEs exhibit the
behaviour of the base-line scenario, i.e. mono-stable open(closed) chromatin state
for the differentiation(pluripotency) ER system. However, and guided by the results
reported by Pour et al. [129], we will show that heterogeneity within such ensemble
allows to define a sub-population of ER systems with elevated reprogramming po-
tential.

Furthermore, the generated kinetic rate constants are dimensionless, i.e. they
are relative to a global scale associated to k4 (see Table 2.3). Such feature implies
that there is an undetermined time scale in our system associated with the (inverse
of the) rate constant k4. This additional degree of freedom can be used to fit our
model of epigenetic (de-)activation to particular data. Furthermore, the global time
scale corresponding to the differentiation ER regulation (i.e. de-silencing dynamics,
Fig. 2.4(a)) does not need to coincide with the global time scale associated with
the pluripotency ER system (i.e. silencing dynamics, Figure 2.4(b)). Therefore, our
model has the capability of reproducing different systems characterised by different
time scales as previously shown by Bintu et al. [16].

2.3 Results

We explore the behaviour of our system as the number of HDMs and HDACs vary
relative to their average abundance against the background of variability provided
by our ABC-ensemble approach.
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Figure 2.5: Caption on the following page.
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Figure 2.5: (Previous page). Plots (a) and (b) show the phase diagrams associ-
ated with the QSS approximation for the differentiation and pluripotency promoting
genes, respectively. We examine the stability properties of the QSSA as when eHDM
and eHDAC are varied. The system exhibits bistability in the region between the red
and blue lines. In the region above the red line the only stable steady state is the
closed state. By contrast, in the region below the blue line only the open steady
state is stable. Parameters values are given in Table A.5 in Section A.1.3 for the
differentiation-promoting gene and Table A.6 in Section A.1.3 for the pluripotency-
promoting gene. Plots (d) and (f) show the combined phase diagram for both the
differentiation-promoting and the pluripotency-promoting models of epigenetic regu-
lation for two clinically relevant cases. In both plots, solid (dashed) lines correspond
to the stability limits of the pluripotency(differentiation)-promoting gene. In plot
(d), the region between the solid red line and the dashed blue line is associated
with normal cell behaviour, i.e. open differentiation-promoting gene and silenced
pluripotency-promoting gene, whereas in Plot (f), the region marked as Rep. is asso-
ciated with epigenetic regulation configurations which facilitate cell reprogramming.
Plot (d) shows a refractory epigenetic scenario and Plot (f) depicts a plastic sce-
nario. Parameter values for Plot (d) as per Table A.5 in Section A.1.3 (dashed lines)
and Table A.6 in Section A.1.3 (solid lines). Parameter values for Plot (f) are given
in Table A.7 in Section A.1.3, and Table A.8 in Section A.1.3. Plots (c) and (e)
show two bifurcation diagrams, i.e. two sections of Plot (a), corresponding to the
differentiation-promoting gene, of the QSS approximation. Plot (c) corresponds to
fixing eHDAC = 1 and letting HDM activity to vary. Plot (e) examines the bifurcation
properties of the system for eHDM = 0.2 as HDAC concentration changes.

2.3.1 Variation in the abundance of HDM and HDAC drives
epigenetic switch

We first focus on a bifurcation analysis of the mean-field QSSA equations (2.2.5)-
(2.2.11), to investigate the qualitative behaviour of the ER system as the relative
abundances of HDMs and HDACs are varied. Results are shown in Figs. 2.5(a)
and (b). In particular, the phase diagram of both ER systems obtained by varying
the parameters eHDM and eHDAC . Both these diagrams display three differentiated
regions: one in which the only stable steady-state is the one associated with a si-
lenced gene, another one in which the only stable steady-state is the corresponding
to an open gene, and a third one where the system is bistable. Fig. 2.5(a) is asso-
ciated with the differentiation-promoting gene, and Fig. 2.5(b) corresponds to the
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pluripotency-promoting gene (parameters given in Table A.5, Table A.6 in Section
A.1.3, respectively). Since the qualitative behaviour of the differentiation-promoting
gene and the pluripotency-promoting gene is the same, without loss of generality,
we will focus on the description of the behaviour of the differentiation-promoting
gene. In order to clarify the three regions (open, closed and bistable) displayed in
Fig. 2.5(a), Fig. 2.6(a) shows a 3D plot, where the vertical axis shows the level of
positive marks (q3). This plot shows that the system dysplays bistable behaviour:
depending on the parameter values eHDM and eHDAC , the system may be both in
the open state (high levels of q3, top of the plot), or in the closed state. Fig. 2.6(b)
displays the projection on the xy-plane of the plot shown in Fig. 2.6(a), where we
can clearly identify the three regions described in Fig. 2.5(a).

A more detailed picture of the situation illustrated in Fig. 2.5(a) and Fig. 2.6 is
given in Fig. 2.5 (c), which shows the bifurcation diagram where eHDM , i.e. HDM
concentration, is taken as the control parameter, whilst keeping eHDAC constant. In
particular we show the steady state value of q3, i.e. the variable associated with
positive marks, as a function of HDM concentration. This allows to distinguish the
three regions displayed in Fig. 2.5(a). We observe that a decrease in HDM abun-
dance makes the corresponding gene inaccessible to the transcription machinery, i,e.,
it closes the chromatin (corresponding to the closed region, Fig. 2.5 (a)). As HDM
concentration recovers, the system enters a bistable regime where both the active and
silent states coexist (region marked as bistable in Fig. 2.5(a)). Further increase of
the demethylase concentration drives the system through a saddle-node bifurcation,
where the closed chromatin state and the saddle point collide resulting in mutual
cancellation. Beyond this saddle-node bifurcation, the only stable steady-state is
the active state, corresponding to open chromation (region labelled as open in Fig.
2.5(a)). It is noteworthy that these results are in agreement with the oncometabolic
transformation scenario associated with IDH mutations proposed by Thompson and
co-workers [101, 100] in which downregulation of HDM activity locks differentiation
genes into a silenced state which favours reprogramming of differentiated somatic
cells into a pluripotent cell [110]. The association between IDH mutations and can-
cer progression has been well established in the case of glioblastomas and acute
myelogenous leukaemia [32, 12, 9, 81].

In Fig. 2.5(e), we show the bifurcation diagram associated with fixing eHDM and
varying eHDACof the differentiation-regulating gene. Reduced HDAC concentration
recovers the base-line state where the epigenetic regulatory machinery is set to the
open state. As HDAC concentration recovers, the system enters a bistable regime in
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(a)

(b)

Figure 2.6: Plot (a) shows a 3D plot, where the x-axis represents eHDM , y-axis
represents eHDAC and the z-axis represents the steady state value of positive marks,
q3. Depending on the q3 value, the system can be open (high value of q3), closed (low
value of q3) or bistable (region where the two states coexist, together with an unstable
state). Plot (b) represents a projection of the plot shown in (a) on the xy-plane. In
this plot, we can again identify the three regions: closed (left region), bistable (middle
region) and open (right region). These regions can be easily understood by matching
the color of each region to the ones shown in Plot (a), which, in turn, can be related
to levels of q3.
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which both the active and silent states coexist. Further increase in HDAC activity
locks the system into the close chromatin state so that the gene is silenced. This
implies that reduced HDAC activity may help to rescue differentiation-regulating
genes from the effects of IDH mutation.

In these plots (Fig. 2.5 and Fig. 2.6) we can see that variation of the activity of
HDM and HDAC enzymes, can alter the stability of the epigenetic regulatory state.
In Section A.1.1 of the Appendix, we have verified the accuracy of the predictions
of the bifurcation analysis by means of direct simulation of the stochastic model
(Table 2.2) using the stochastic simulation algorithm, commonly known as Gillespie’s
algorithm [59, 60].

2.3.2 Mean-field analysis of the stochastic epigenetic regu-
lation model: refractory vs plastic scenario

We now proceed to analyse in more detail the implications of the bifurcation
analysis regarding robustness of the somatic cell epi-state. Fig. 2.5(d) shows the
combined phase diagram of both modes of epigenetic regulation (differentiation- and
pluripotency-promoting). In this combined diagram, the region between the solid
red line and the dashed blue line represents the part of the phase space where the
differentiation genes are open and the pluripotency genes are closed (region marked
as Normal Cell in Fig. 2.5(d)). This sub-space is therefore associated with normal,
differentiated somatic cells. As it has been previously shown in [110], efficient repro-
gramming requires both closed differentiation genes and open pluripotency genes.
Such situation is not viable under the scenario shown in Fig. 2.5(d) because these
two conditions cannot hold simultaneously, which we therefore dubb as the refractory
scenario.

By contrast, Fig. 2.5(f) corresponds to a plastic scenario, where, under appro-
priate conditions, cells become poised for reprogramming. The main difference with
the refractory scenario is the intersection between the bistability regions of both
the differentiation regulator and the pluripotency gene. In Fig. 2.5(f), the regime
where both bistability regions overlap is the one between the red solid line and the
blue dashed line (region marked as Rep. in Fig. 2.5 (f)). Within this region, since
both genes are in the bistable epigenetic regulatory regime, it is possible to find the
differentiation gene in its closed state and the pluripotency gene in the open state.
Such situation makes reprogramming much more likely to occur [110] and therefore
we identify this feature of the phase space with plastic behaviour. Therefore, by
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driving the ER system into this region by means of down-regulation of both HDM
and HDAC activity, cells become epigenetically poised to undergo reprogramming.
This is consistent with evidence according to which both oncometabolic transforma-
tion (e.g. IDH mutation leading to down-regulation of JHDM activity [100, 101])
and ageing (e.g. down-regulation of SIRT6 [175, 125, 115]) induce loss of HDM and
HDAC activity thus facilitating reprogramming.

These results are consistent with the results of Pour et al. [129] regarding the
existence of a sub-population with higher reprogramming potential which is, at least
in part, due to preexisting epigenetic heterogeneity.

2.3.3 Heterogeneity and robustness of the refractory and
plastic scenarios

Once we have established the possibility of two epigenetic-regulatory scenarios,
we need to assess their robustness regarding variations in the kinetic rates, kj, as
well as to determine whether there are key parameters which exhibit signicant biases
related to either type of behaviour. In order to study these issues, we have carried
out an exhaustive parameter sensitivity analysis. We have generated an ensemble of
differentiation and an ensemble of pluripotency ERs characterised by the correspond-
ing parameter sets θ = (kj, j = 1, . . . , 16) (see Table 2.2) compatible with simulated
data for the epigenetic regulation systems, as explained in Section 2.2.3.2.

In each ensemble, we first identify those sets θ that satisfy the viability conditions
within the tolerances set in the ABC-method (as described in Section 2.2.3.1). We
then proceed to classify the elements within the viable subensemble according to
whether they exhibit refractory or plastic behaviour. Once we have thus classified
the ER systems in each ensemble, we compare the empirical cumulative distribution
functions (CDFs) of each kj. The rationale for such an investigation is that the
requirement upon system behaviour should reflect on statistically significant biases
of the CDFs of key parameters. In particular, we consider that a specific scenario is
sensitive to parameter kj if its CDF is significantly different from that of a uniform
distribution [50]. Throughout the section, we have imposed a level of confidence of
95 %.

We first consider the differentiation ER system. In particular, we focus on the
sub-ensemble of the 400 parameter sets that best fit the raw data. Within such
sub-ensemble, we proceed to evaluate the robustness of the different scenarios we
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are considering. We first analyse the base-line scenario for the epigenetic regulation
of a differentiation-regulated gene, namely, (i) when eHDM = eHDAC = 1, the regu-
latory system is mono-stable (only the open chromatin state is stable), and (ii) for
eHDM < 1, eHDAC < 1 there exists a region of bistability. Out of all the parameter
sets of the considered sub-ensemble, only 94 fulfill these requirements (93 sets from
the ensemble generated and the one created corresponding to Table A.7 in Section
A.1.3). We refer to these as the viable set or viable subensemble. The remaining
307 are bistable at eHDM = eHDAC = 1, and they will be referred to as the non-
viable set. In Fig. 2.7, we present the corresponding CDF of each kj within both sets.

Regarding the viable set, we first seek to assess which kinetic constants have
distributions which deviate in a statistically significant manner from the uniform
distribution [50]. Such parameters are deemed to be the essential ones for the ER
system to exhibit the behaviour associated with the viable set [50]. We perform
this analysis by means of the Kolmogorov-Smirnov (KS) test [35, 29], which we use
to compare our samples with the uniform distribution. According to such analysis,
the kinetic constants k1, k3, k6, k7, k12, k14, and k16 are not uniformly distributed
(p-values are reported in Table A.1 in Section A.1.2). Thus, only the values of these
kinetic constants are constrained by the requirement that the system is mono-stable
for eHDM = eHDAC = 1.

Nested within the viable subsensemble, there are parameter sets which exhibit
plastic behaviour, as illustrated in the example shown in Fig. 2.5(f), i.e. with a
region where the bistable regions of the differentiation and pluripotency ER systems
overlap, which allows for facillitated reprogramming. We thus continue by studying
the plastic subset regarding both its frequency within the viable subset and further
restrictions imposed on parameter variability. We first check the number of plastic
parameter sets within the viable set relative to the pluripotency-gene ER system
defined by Table A.8 in Section A.1.3. Somehow unexpectedly, the plastic scenario
is rare, but not exceptional: amongst the 94 parameter sets that we have identified
as viable, 10 exhibit plasticity (see Fig. 2.7 for their CDFs).

Further restrictions on parametric heterogeneity imposed by the plastic scenario
are analysed regarding the variation of the CDFs of kinetic constants when com-
pared to those associated with the whole viable subset. The results of KS analysis
performed on the data shown in Fig. 2.7 show that only the distributions of k1
(associated with recruited demethylation), k9 (unrecruited deacetylation), and k14
(recruited deacetylation) are significantly modified by the plasticity requirement (p-
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Figure 2.7: Caption on the following page.
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Figure 2.7: This figure shows the cumulative distribution function(CDF) for a sam-
ple consisting of the 401 differentiation gene ER parameter sets generated by ABC
which best fit the synthetic data shown in Fig. 2.4(a), i.e. SSA simulated data for
the default stochastic ER differentiation system (see Table A.5 in Section A.1.3).
Out of these 401 parameter sets, 94 satisfy the constraints associated with the differ-
entiation epiphenotype. Amongst these, 10 are found to show plastic behaviour. The
remaining 307 parameter sets generate bistability at eHDM = eHDAC = 1. Colour
code: blue and red lines correpond to the CDF of the plastic and refractory dif-
ferentiation epiphenotypes, respectively. Green lines correspond to the CDF of the
parameters that generate bistability at eHDM = eHDAC = 1. Cyan lines correspond
to the CDF of a uniform distribution, which we add for reference.

values reported in Table A.3 in A.1.2).

From a more mechanistic perspective, we observe that, within the plastic set, the
mass of the CDFs of k1, k9 and k14 is displaced towards the large-value end of their
intervals with respect to their behaviour within the full viable set. In other words,
k1, k9 and k14 tend to be larger for plastic ER systems than for non-plastic, viable
ER systems. In essence, we observe that ER systems exhibiting plastic behaviour
tend to have increased activity in the enzymes performing histone deacetylation.
This is consistent with recent evidence that ageing decreases histone acetylation and
promotes reprogramming [175, 125, 115].

The same analysis has been conducted regarding the ensemble of parameter val-
ues generated for the pluripotency gene ER system (full posterior distribution in Fig.
2.3). The results of this analysis are shown in Fig. 2.8. Detailed analysis using the
KS test of the ensemble viable pluripotency ER systems shows that k3, k8, k12, k14,
k15, and k16 are significantly constrained by the requirements of such scenario (i.e.
their CDF departs significantly from the uniform distribution, as shown by the p-
values from Table A.2 in A.1.2). We then move on to investigate further restrictions
within the plastic set when compared to the viable pluripotency subset. We observe
that only the CDFs associated with k2 and k6 are significantly different (p-values
reported in Table A.4 in A.1.2). In both cases, values of k2 and k6 associated with
plasticity are larger than in the general viable population. Both parameters are as-
sociated with demethylation activity.

Our ensemble analysis thus provides a rationale for the coupling between varia-
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Figure 2.8: Caption on the following page.
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Figure 2.8: This figure shows the cumulative distribution function (CDF) for a sam-
ple consisting of the 1401 pluripotency gene ER parameter sets generated by ABC
which best fit the synthetic data shown in Fig. 2.4(b), i.e. SSA simulated data
for the default stochastic ER pluripotency system (see Table A.6 in A.1.3). Out of
these 1401 parameter sets, 29 satisfy the constraints associated with the pluripotency
epiphenotype. Amongst these, 11 are found to show plastic behaviour. Another 1367
parameter sets generate bistability at eHDM = eHDAC = 1. The remaining 5 param-
eter sets are bistable at eHDM = eHDAC = 1 but they are rejected since their steady
states do not correspond to open/closed situations. Colour code: blue and red lines
correpond to the CDF of the plastic and refractory pluripotency epiphenotypes,
respectively. Green lines correspond to the CDF of the parameters that generate
bistability at eHDM = eHDAC = 1. Cyan lines correspond to the CDF of a uniform
distribution, which we add for reference.

tions in the size of the pool of epigenetic cofactors and increased reprogramming in
a heterogeneous cell population. A notable case in point is provided by metabolic
changes during ageing: those cells where key metabolites such as acetyl-CoA and
NAD+ are less abundant lose acetylation capability (in our model, this is reflected
through the dependence of histone-modifying enzyme activity on the concentration
of these cofactors), leading to cells poised for reprogramming.

This analysis allows us to design a strategy to interfere with the epigenetic reg-
ulatory system, regarding the ability to either drive the system away from plastic
behaviour or to drive it to the plasticity scenario, while keeping it functional (i.e.
within the restrictions of the base-line scenario). An example illustrating the ef-
fectiveness of this strategy is shown in Fig. 2.9. Consider the viable set of the
ER differentiation-promoting gene, Fig. 2.7, which is neutral with respect to the
value of k9: k9 remains uniformly distributed within the viable subset. By contrast,
when plasticity is required, the admissible values of k9 accumulate mostly towards
the large-value end. This suggests that decreasing the value of k9 might be a vi-
able strategy to restore resilience. To check this, we consider the parameter set,
θ = kj/k4, j = 1, . . . , 16, that gives rise to the plastic behaviour depicted in Fig.
2.5(f) (Table A.7 in Section A.1.3, for the differentiation-promoting gene). We then
analyse the effect of modifying the value of k9 for the differentiation-promoting gene
on system behaviour. The new parameter set, θ′ = k′j/k4, j = 1, . . . , 16, is such
that k′9 = k9/4 and k′j = kj for all j 6= 9 (kj values as per Table A.7 in Section
A.1.3). Parameter values for the pluripotency gene remain unchanged (as per Table
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A.8 in Section A.1.3). The corresponding phase space is shown in Fig. 2.9(a). We
observe that by reducing deacetylase activity in this fashion, the ER system reverts
to resilient behaviour. This suggests that, by regulating the abundance of cofactors
associated with (de)acetylation, we can drive the system off the plastic regime into
the base-line behaviour.

Similarly, we can seek for complex, combined strategies to increase the robustness
of plastic behaviour. An example of such strategy is shown in Fig. 2.9(b). Based
on the results of the KS test for the differentiation-promoting gene, we observe that
deacetylation-related rates k9 and k14 are significantly increased in plastic scenar-
ios. Taking parameter sets from a resilient scenario (Tables A.5 & A.8 in Section
A.1.3, which lead to a combined phase diagram qualitatively similar to that shown in
Fig. 2.5(d)) and modifying k9 and k14 for the differentiation-promoting gene so that
k′9 = 3k9 and k′14 = 3k14 while keeping all the others at the same value, the resulting
ER system corresponds to a plastic system. Futhermore, this combined strategy
results in more robust plasticity (as compared to e.g. the case shown in Fig. 2.5(f)),
as measured by the area of the phase space region where reprogramming is feasible.
These results indicate that by combining the strategies suggested by the statistical
analysis of the plastic sub-ensemble, we can find conditions for optimal conditions to
achieve robust reprogramming. This, in turn, highlights the importance of cofactor
levels, since as it has been shown in Fig. 2.9, depending on its availability, the same
ER system can be driven to the plastic or resilient state.

These results are also consistent with the results of Pour et al. [129], who reported
that variations in the activity of HMEs could be used to marshal the variability asso-
ciated with epigenetic heterogeneity to alter the cellular response to reprogramming
stimuli.

These strategies require close attention to be payed to the correlations between
parameters. Parameters in complex systems biology models exhibit strong corre-
lations which confer the system with essential properties such as sloppiness, which
refers to the property exhibited by many multi-parameter models arising in systems
biology, whereby the system’s behaviour is insensitive to changes in parameter values
except along a small number of parameter combinations [34]. In order to quantify
such correlations, we have used hierarchical clustering. The results are shown in Fig.
2.10(a) & 2.10(b) for the base-line and the plastic scenarios of the differentiation-
regulating ER system, respectively. Not unexpectedly, we observe that, with respect
to the base-line scenario, correlations substantially change when the plastic scenario
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Figure 2.9: Caption on the following page.
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Figure 2.9: (a)This plot shows results regarding restoration of base-line behaviour
by removal of plasticity by restoring acetylation activity. It shows the phase space
corresponding to the ER system composed of a differentiation-promoting gene with
parameter set given by θ′ with k′9 = k9/4 (see text for details) and a pluripotency-gene
with parameters given by Table A.8 in Section A.1.3. This result demonstrates that
by reducing deacetylation activity, we can drive the system off plastic behaviour
and restore the normal situation as described by the base-line scenario. (b) This
plot shows results regarding the appearance of the plastic behaviour by increas-
ing deacetylation activity. Parameter values for the differentiation-promoting gene
are given by θ′ with k′9 = 3k9 and k′14 = 3k14 (see text for details) and for the
pluripotency-promoting gene are given by Table A.8 in Section A.1.3. This result
shows an strategy to drive the system to the plastic scenario and hence, indicates
how to obtain favourable scenarios for reprogramming.

is considered. Although the strategies illustrated in the results shown in Fig. 2.9
changed one or two parameters alone independently of all the others, more general
situations will require to closely monitor these correlations to understand which com-
binations of parameters are relevant to control the system’s behaviour [34].

2.4 Discussion

In this Chapter, we have provided computational evidence for the role of stochas-
tic translation of epigenetic cofactors into resilient/plastic cell states via ER systems
as a mechanistic facilitator of cellular ageing, and its reversal. When changes in
levels of such cofactors operate as regulators of the kinetic parameters associated
with chromatin-modifying enzymes such as HDMs and HDACs, the ensemble of ER
configurations reveals the occurrence of cell-to-cell phenotypic variability in terms
of different epi-states (see Fig. 2.11). This model provides a rationale for the re-
sponsiveness of cellular phenotypes to metabolic signals, as metabolic pools serve as
epigenetic cofactors. The metabolic control of epigenetic landscapes and cell state
transitions might therefore operate as a common hub capable of facilitating the
pathogenesis of ageing-related diseases including cancer.

Several layers of molecular communication exist between cell metabolism and
chromatin remodelling [180, 83, 113, 90, 56, 140]. A first layer of metabolo-epigenetic
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Figure 2.10: Plots showing hierarchical clustering analysis for the parameter sets
that satisfy the base-line scenario (plot (a)) and the plastic scenario (plot (b)) of the
differentiation-regulating ER system, respectively.

regulation includes metabolites/nutrient-responsive TF-dependent transcriptional reg-
ulation of chromatin regulators (HMT, HAT, etc.), which can lead to global changes
on chromatin structure. Second, metabolites can modulate chromatin modifications
at specific genomic loci by affecting the activity/localisation of proteins that recruit
or regulate chromatin-modifying enzymes during, for example, transcriptional acti-
vation phenomena. Third, chromatin-modifying enzymes employ many metabolites
as donor substrates and cofactors, and changes in levels of these bona fide epigenetic
metabolites can in turn lead to changes not only in the global status of chromatin
modifications but also to gene specific regulation under different metabolic condi-
tions.

Our mathematical model only incorporates the third such layer through cofactor-
induced heterogeneity. Because any metabolic input has the potential to affect vari-
ous epigenetic marks via its effects on transcription, our model ignores metabolic reg-
ulation of TF activity. In contrast to other metabolically-regulated enzymatic activ-
ities such as phosphorylation in which the substrate (ATP) is present in cellular con-
centrations far greater than the enzyme Km values, i.e., the concentration of metabo-
lite at half maximum velocity of enzyme-mediated reaction, the physiological cellular
concentrations of donors and cofactors that are employed by histone-modifying en-
zymes (e.g., organic ketoacids such as the demethylase cofactor α-ketoglutarate for
HDMs or the NAD+ deacetylase cofactor for HDACs) are close to HDM and HDAC
Km values [113, 51]; consequently, based solely on the intrinsic biochemical character-
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Figure 2.11: Caption on the following page.
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Figure 2.11: (Previous page). Epigenetic regulation of cell fate reprogramming in
ageing and disease: A predictive computational model. Cell reprogramming, a pro-
cess that allows differentiated cells to re-acquire stem-like properties, is increasingly
considered a critical phenomenon in tissue regeneration, ageing, and cancer. In light
of the importance of metabolism in controlling cell fate, we designated a computa-
tional model capable of predicting the likelihood of cell reprogramming in response
to changes in ageing-related epigenetic metabolites (EM). Our first-in-class Approx-
imate Bayesian Computation (ABC) approach integrates the biochemical basis of
ageing-driven metabolite interaction with chromatin-modifying enzymes to predict
how ageing-driven metabolic reprogramming could alter cell state transitions via re-
organisation of chromatin marks without affecting the shape of the Waddingtonian
epigenomic landscape. Our predictive mathematical model improves our understand-
ing of how pathological processes that involve changes in cell plasticity, such as tis-
sue repair and cancer, might be accelerated or attenuated by means of metabolic
reprogramming-driven changes on the height of phenotypic transitioning barriers.

istics of chromatin-modifying enzymes such as HDMs and HDACs, small fluctuations
in the concentrations of such metabolites could significantly alter HDM and HDAC
activities, either increasing or decreasing their respective histone-modifying activi-
ties. This layer of metabolo-epigenetic regulation is commonly viewed as a direct link
from cell metabolism to chromatin-modification status, which could be mathemati-
cally modelled and tested as has been confirmed in our current model (see Fig. 2.11).

Evidence accumulates demonstrating that differing metabolomes can be found
in distinct cell states, thus suggesting that changes in metabolism can impact and
probably specify cell fate via alteration of the chromatin landscape [142, 141, 152,
147, 52, 136]. Yet, there is a scarcity of examples showing that metabolic changes
can restructure the epigenetic landscape and lead to different cell states regardless
of other global changes in cell physiology occurring in response to this variation in
metabolite levels. Our findings support the notion that changes in the abundances of
certain metabolites would alter specific chromatin marks, thereby determining both
the stability of cell types and the probability of transitioning from one epi-state to
another [130]. Our model infers that such a change in metabolite level would be suf-
ficient to either impede or allow cell epi-state transitions by regulating the height of
the phenotypic barriers in the context of Waddingtons landscape (Fig. 2.11). How-
ever, we should acknowledge that the necessary involvement of cellular metabolism
on the structure of the epigenetic landscape will require the experimental coupling of
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defined metabolic conditions with epigenome editing systems (e.g., CRISPR-Cas9)
capable of targeting specific histone post-transcriptional modifications playing im-
portant roles in chromatin structure [74].

Our ensemble approach provides mechanistic support to the notion that emer-
gence of the cellular and molecular hallmarks of ageing including cancer might result
from a metabolically driven loss of epigenetic resilience. Flavahan et al. [51] have re-
cently proposed that non-genetic stimuli including ageing and metabolic insults can
induce either overly restrictive chromatin states, which can block tumor-suppression
and/or differentiation programs, or overly permissive/plastic chromatin states, which
might allow normal and cancer cells to stochastically activate oncogenic programs
and/or nonphysiologic cell fate transitions. Our ensemble approach provides a frame-
work that supports heterogeneity of epigenetic states as an engine that facilitates
cancer hallmarks and other ageing diseases. On the one hand, the ability of resilient
states to maintain large epigenetic barriers refractory to non-physiologic cell fate
transitions might explain why the NAD+-dependent HDAC/sirtuin pathway is one
of the few mechanisms described to mediate the correction or resetting of the abnor-
mal chromatin state of ageing cells induced by calorie restriction, the most robust
life span-extending and cancer preventing regimen [122, 96, 82, 49]. On the other
hand, the ability of plastic states to lower epigenetic barriers, and increase the sen-
sitivity of primed cells to undergo reprogramming-like events leading to loss of cell
identity is consistent with the ability of certain metabolites to promote oncogenesis
by epigenetically blocking the HDM-regulated acquisition of differentiation markers
[178, 114, 119, 110].

The traditional view of cancer formation (i.e., the Knudson model [91]) exclu-
sively involves the binary acquisition and accumulation of genetic alterations as the
principal driver mechanism for the age-dependency of multistage cancer development.
Our ensemble approach suggests an alternative, namely, that oncogenic chromatin
aberrations might also occur via purely epigenetic stimuli, giving thus a plausible ex-
planation for those cancers appearing without genetic mutations. Our model shows
that, nested within the ensemble of ER systems, those that prime cells for repro-
gramming exhibit properties associated with age-induced epigenetic dysregulation
[39, 108].

Furthermore, our model suggests the possibility of an ageing-progressive evolu-
tion from the resilient to the plastic cell state. As discussed, the plastic scenario
depicted in Fig. 2.5(f) is characterised by reduced acetylation levels, which have
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been linked to ageing [33, 133, 48, 125]. Therefore, it could occur that cells initially
bearing a resilient epi-phenotype may switch to a plastic one as ageing progresses.
This idea is in agreement with the results from Mosteiro et al. [115], where senescent
cells, which appear within ageing tissues, are more likely to undergo reprogramming,
i.e. they are in the plastic scenario.

Aging-responsive ER reprogramming might thus operate in a more progressive
and graded manner to increase cancer susceptibility without the need to induce ge-
netic mutations. Our ensemble model is mechanistically consistent with the fact that
those cancers in which the sole presence of epigenetic metabolites (e.g., oncometabo-
lites) suffices to stabilise undifferentiated cellular states by preventing demethyla-
tion of genes implicated in differentiation have accelerated models of oncogenesis.
Accordingly, patients with glioma with gain-of-function isocitrate dehydrogenases
(IDH) mutations generating the HDM oncometabolite/inhibitor 2-hydroxyglutarate,
which establishes a hypermethylator phenotype that stabilizes undifferentiated cel-
lular states that may be targetable and expanded later by transforming mutations,
are, on average, several years younger that those with wild-type IDH gliomas [17,
12, 30, 128, 41]. Compared with sporadic forms, familial paragangliomas due to mu-
tations in the succinate dehydrogenase complex and the consequent accumulation of
the HDM inhibitor succinate, which also establishes a hypermethylator phenotype
and the epigenetic silencing of key differentiation genes [95, 177], tend to present at
a younger age [98, 28]. Moreover, a mosaic pattern of IDH mutation-bearing cells
has been suggested to explain the occurrence of diverse and multiple tumors in some
pediatric disorders [4, 123]. Whereas the epigenetic signature of adult somatic cells
must be partially and acutely erased to adopt a more plastic epigenome, such cel-
lular plasticity, which might occur via metabolically driven epigenetic activation of
promoter regions of pluripotency genes, could impose a chronic, locked gain of stem
cell-like states disabled for reparative differentiation. In this sense, it has been coined
the term metabostemness, which refers to the metabolic control of the epitranscrip-
tional orchestration of reprogramming that redirects normal and tumor cells towards
less-differentiated cellular states, stem cell-like states in most cases [107].

The existence of metabolism-permissive resilient and plastic epigenetic landscapes
might have predictive power on the susceptibility of a cell to lose its normal cellular
identity through reprogramming-like resetting phenomena. The beneficial or dele-
terious decision paths during the maintenance of cell and tissue homeostasis might
be closely related to the ability of epigenetic landscapes to modulate the intrin-
sic responsiveness to reprogramming cellular identity. The incapability of finishing
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cellular reprogramming, or at least to increase cellular epigenetic plasticity, might
impede tissue self-repair in response to injury, stress, and disease, thus driving the
observed ageing phenotypes. Accordingly, the infliction of chronic injury and the
ageing phenotype have been shown to render tissues highly permissive to in vivo
reprogramming [115] while the cyclic, transient expression of reprogramming factors
has recently been shown to increase lifespan in a murine model of premature ageing
via remodeling of the chromatin landscape [121]. Because our model suggests that the
fine-tuning of metabolic epigenetic cofactors might direct plastic epigenetic states to
re-enter into epigenetic resilience, and vice versa, it would be relevant to experimen-
tally evaluate whether specific metabolic interventions might either mimic transient
reprogramming and revert some age-associated features without promoting complete
undifferentiation, or prevent the occurrence of unrestricted/uncontrolled plasticity in
chronically injured tissues such as those occurring in ageing and cancer.

In summary, by integrating the ability of chromatin epigenetic modifiers to func-
tion as sensors of cellular metabolism, our ensemble model provides computational
support to the notion that a metabolism-responsive loss of epigenetic resilience might
mechanistically facilitate cellular ageing. The stochastic translation of metabolic sig-
nals into resilient/plastic cell states via ER systems might be viewed as a metabolo-
epigenetic dimension that not only facilitates cellular ageing, but that also offers new
therapeutic and behavioural avenues for its reversal. Our findings strongly suggest
that the development of predictive mathematical models and computational simula-
tion platforms capable of operatively integrate the metabolic control of epigenetic re-
silience and plasticity and its combination with confirmatory lab-based testing might
accelerate the discovery of new strategies for metabolically correcting the aberrant
chromatin structure that affects cellular identity and epi-state transitions in ageing
and ageing-related diseases.

72



Chapter 3

Unlocking the pluripotent
phenotype: A multiscale model of
the epigenetic regulation of cell
fate and plasticity

3.1 Summary

In this Chapter, we introduce a stochastic model of combined epigenetic regu-
lation (ER)-gene regulatory network (GRN) to study the effects of epigenetic plas-
ticity, caused by the ER heterogeneity, on cell-fate determination. By adding ER
to the picture, the model presented in this Chapter extends previous approaches
where phenotypes are associated with the attractors of complex gene regulatory
systems and their robustness, as well as with the resilience of such attractors in
the presence of intrinsic noise, environmental fluctuations, and other disturbances
[79, 155, 181, 58, 170, 127, 97]. Furthermore, based on the existence of multiple scales,
we are able to formulate a method for stochastic model reduction, from which we
derive an efficient hybrid simulation scheme that allows us to deal with the combined
ER-GRN model. Our analysis of the coupled system reveals a regime of tristability
in which pluripotent stem-like and differentiated steady-states coexist with a third
indecisive state. Crucially, ER heterogeneity of differentiation genes is for the most
part responsible for conferring abnormal robustness to pluripotent stem-like states.
We then formulate epigenetic heterogeneity-based strategies capable of unlocking
and facilitating the transit from differentiation-refractory (pluripotent stem-like) to
differentiation-primed epistates. The application of the hybrid numerical method val-
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idated the likelihood of such switching involving solely kinetic changes in epigenetic
factors. Our strategies allow to unlock persistent states of pathological pluripotency,
suggesting that epigenetic heterogeneity regulates the mechanisms and kinetics of
phenotypic robustness of cell fate reprogramming.

3.2 Model formulation and analysis

In this Chapter, we aim to study a ER-GRN model which can describe cell dif-
ferentiation and cell reprogramming. One of the simplest GRNs which allows to do
this consists of two genes, one promoting differentiation, and the other promoting
pluripotency (see Fig. 3.1(a)). Nevertheless, in this Section (Section 3.2), we formu-
late our model and we analyse it considering the most generic case, i.e. we assume
to have an arbitrary number of genes NG. By doing so, our theoretical analysis can
be further applied to any ER-GRN model, which implies a wide applicability of the
derived formulation. However, when possible, we try to relate the theory developed
to our particular ER-GRN so as to keep track of our case study.

3.2.1 General description of the stochastic model of an epigenetically-
regulated gene network

Consider a gene regulatory network composed of NG self-activating genes which
can repress each other. In particular, we consider that the gene product of each of
these genes forms homodimers, which act as a transcription factor (TF) for its own
gene by binding to its own promoter. Furthermore, each gene within the network has
a number of inhibitors, which operate via competitive inhibition: the homodimers of
protein j bind to the promoter of gene i, and by doing so they impede access of the
TF to the promoter of gene i. In Fig. 3.1(a), an illustrative scheme of the simplified
case of two mutually inhibiting genes, one promoting pluripotency (blue) and one
promoting differentiation (green), is shown. The regulation topology of the network
can be represented using a weighted adjacency matrix B. B is a NG × NG matrix,
whose elements, bij > 0, are the binding rates of homodimers of protein j to the
promoter of gene i (see Fig. 3.1(a)). Moreover, the expression of gene i is induced
at a constant basal production rate, R̂i, independent of the regulatory mechanism
described above. Proteins (TF monomers) of type i are synthesised at a rate propor-
tional to the number of bound promoter sites with rate constant ki1 and degraded
with degradation rate ki2 (see Fig. 3.1(a), Tables 3.1 and 3.2).
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Figure 3.1: Schematic reprentation of the ER-GRN model and its multiscale reduc-
tion. (a): Gene regulatory network (GRN) of two self-activating, mutually-inhibitory
genes with epigenetic regulation. In the GRN model, the gene product (denoted by
Xi in Table 3.2) is its own transcription factor which, upon dimerisation, binds the
promoter region of the gene thus triggering gene transcription. The transition rates
corresponding to this GRN are given in Table 3.2. For simplicity, we use an effective
model in which the formation of the dimer and binding to the promoter region is
taken into account in a single reaction, and the resulting number of promoter sites
bound by two transcription factors is denoted by Xij (see Table 3.2). Furthermore,
depending on whether the epigenetic state is open (i.e. predominantly acetylated
(A)) or closed (i.e. predominantly methylated (M)) the promoter region of the gene
is accessible or inaccessible to the transcription factor, respectively. (b): Schematic
representation of the time separation structure of the multiscale method developed
to simulate the ER-GRN system. See Section 3.2.2 for more details.
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Table 3.1: Brief description of the variables and parameters involved in the sym-
metric model of gene regulatory network with competitive binding inhibition, with
i denoting any gene of the GRN, i.e. i = 1, . . . , NG. For simplicity, we will assume
that O(E) = O(Y ).

Variable Description
NG Number of genes
S Characteristic scale (average) for protein number
E Characteristic scale (average) for binding site number in the promoter regions
Y Characteristic scale (average) for binding site number for epigenetic marks
Z Characteristic scale (average) for epigenetic enzyme number
ei Number of binding sites in the promoter region of gene i
eHDM Number of HDM molecules
eHDAC Number of HDAC molecules

R̂i Basal rate of induction of gene i
ki1 Rate of transcription of gene i
ki2 Degradation rate of protein of type i
bij Binding rate of protein j homodimers onto the promoter region of gene i
uij Unbinding rate of protein j homodimers from the promoter region of gene i
cij Kinetic rate of the jth reaction from the ER system of gene i (see Table 3.3)
Xi Number of transcription factor monomers of type i
Xij Number of sites of the promoter region of gene i bound to a protein j homodimer
Yi1 Number of unmodified(U) nucleosomes in gene i (ER model)
Yi2 Number of methylated(M) nucleosomes in gene i (ER model)
Yi3 Number of acetylated(A) nucleosomes in gene i (ER model)
Yi4 Number of free HDM enzyme molecules associated with ER system of gene i
Yi5 Number of methylated nucleosome-HDM enzyme complexes in gene i (ER model)
Yi6 Number of free HDAC enzyme molecules associated with ER system of gene i
Yi7 Number of acetylated nucleosome-HDAC enzyme complexes in gene i (ER model)
xi = Xi

S Re-scaled number of Xi (slow GRN variables)

xij =
Xij

E Re-scaled number of Xij (fast GRN variables)

yij =
Yij

Y Re-scaled ER slow variables, j = 1, 2, 3, for gene i

yij =
Yij

Z Re-scaled ER fast variables, j = 4, 5, 6, 7, for gene i

In addition to TF regulation, we further consider that each gene is under epige-
netic regulation (ER). ER controls gene transcription by modulating access of TFs
to the promoter regions of the genes (see Fig. 1.4). In other words, in our model,
ER is associated with an upstream drive that regulates gene expression [36]. Such
epigenetic control is often related to alternative covalent modifications of histones.
To address the high complexity of ER, we focus on a simpler stochastic model of
ER. the one presented in Section 2.2.1. Just as a recall, our model belongs to a
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Table 3.2: Transition rates associated with the stochastic dynamics of the GRN.
Note that the rate of binding of homodimers to the promoter region of gene i is
modulated by the level of acetylation of gene i, Yi3: if Yi3 is above the threshold Y0,
gene i is open, i.e. the promoter is accessible to homodimers and TFs. By contrast, if
the gene’s acetylation levels decay, gene i is silenced and the promoter is inaccessible
to gene-transcription regulatory dimers.

Transition rate Event (i, j = 1, . . . , NG)

Wi1(X) = R̂1 + ki1Xii Xi → Xi + 1
Wi2(X) = ki2Xi Xi → Xi − 1

Wi3(X) = bijH(Yi3 − Y0)
(
ei −

∑NG
k=1Xik

)
Xj(Xj − 1) Xj → Xj − 2, Xij → Xij + 1

Wi4(X) = uijXij Xj → Xj + 2, Xij → Xij − 1

wider class of models which consider that single unmodified (U) chromatin loci can
be modified so as to acquire positive (A) or negative (M) marks. These positive and
negative marks involve covalent modification of histones. Of such modifications we
consider methylation (associated with negative marks) and acetylation (associated
with positive marks) [42]. An illustrative example on how epigenetic modifications,
acetylation and methylation, alter the accessibility of TFs to the promoter regions of
the genes is shown in Fig. 3.1(a), where the open and closed state denote the acces-
sibility or inaccessibility, respectively, of TFs to the promoter region of a determined
gene. Both modifications are mediated by associated enzymes: histone methyltrans-
ferases (HMTs) and demethylases (HDMs), and histone acetyltransferases (HACTs)
and deacetylases (HDACs). For simplicity, and similarly to Chapter 2, we only ex-
plicitly account for HDM and HDAC activity (see Fig. 3.1(a)). In our model, a
positive feedback mechanism is introduced whereby M marks help to both add more
M marks and remove A marks from neighbouring loci (recruited mechanism). The
positive marks are assumed to be under the effects of a similar positive reinforcement
mechanism [42, 131]. A full description of the details of the ER model are given in
Section 2.2.1. Table 3.3 provides the transition rates for the ER model for a GRN
of an arbitrary number of genes.

Under suitable conditions, determined by the activity and abundance of histone-
modifying enzymes and co-factors, the positive reinforcement mechanism produces
robust bistable behaviour. In this bistable regime, the two possible ER stable states
are: an open epigenetic state where the levels of positive (negative) marks are ele-
vated (downregulated). In this case, the promoter of the gene is accessible to TFs and
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Table 3.3: This table shows the transition rates associated with the stochastic dy-
namics of the epigenetic regulatory system of gene i. The random variables Yik are
defined in Table 3.1. The different modification reactions are assumed to be of two
types, recruited and unrecruited. Details regarding the assumptions between this
distinction as well as a full description of the formulation of the stochastic epigenetic
regulation model are given in Section 2.2.1. See Table 2.2 for the interpretation of
each transition rate (Wj = Vij, j = 1, . . . , 16).

Transition rate Reaction change vector
Vi1 = ci1Yi2Yi4 rEi1

= (0,−1, 0,−1,+1, 0, 0)
Vi2 = ci2Yi5 rEi2

= (0,+1, 0,+1,−1, 0, 0)
Vi3 = ci3Yi5 rEi3

= (+1, 0, 0,+1,−1, 0, 0)
Vi4 = ci4Yi2Yi3Yi4 rEi4

= (0,−1, 0,−1,+1, 0, 0)
Vi5 = ci5Yi3Yi5 rEi5

= (0,+1, 0,+1,−1, 0, 0)
Vi6 = ci6Yi3Yi5 rEi6

= (+1, 0, 0,+1,−1, 0, 0)
Vi7 = ci7Yi1 rEi7

= (−1,+1, 0, 0, 0, 0, 0)
Vi8 = ci8Yi1Yi2 rEi8

= (−1,+1, 0, 0, 0, 0, 0)
Vi9 = ci9Yi3Yi6 rEi9

= (0, 0,−1, 0, 0,−1,+1)
Vi10 = ci10Yi7 rEi10

= (0, 0,+1, 0, 0,+1,−1)
Vi11 = ci11Yi7 rEi11

= (+1, 0, 0, 0, 0,+1,−1)
Vi12 = ci12Yi3Yi2Yi6 rEi12

= (0, 0,−1, 0, 0,−1,+1)
Vi13 = ci13Yi7Yi2 rEi13

= (0, 0,+1, 0, 0,+1,−1)
Vi14 = ci14Yi7Yi2 rEi14

= (+1, 0, 0, 0, 0,+1,−1)
Vi15 = ci15Yi1 rEi15

= (−1, 0,+1, 0, 0, 0, 0)
Vi16 = ci16Yi1Yi3 rEi16

= (−1, 0,+1, 0, 0, 0, 0)

transcription can occur. By contrast, in the absence (abundance) of positive (neg-
ative) marks the gene is considered to be silenced, as TFs cannot reach the promoter.

An essential part of the stochastic dynamics of the ER system is the noise-induced
transitions between the open and silenced states. Escape from steady states is a well-
established phenomenon (see e.g. [57]) and thoroughly analysed within the theory
of rate processes [69] and large deviation theory [54, 158, 127]. As we will illustrate
below, these noise-induced dynamics are essential to classify the epiphenotypes of
somatic cells [53] and stem cells and unravel the mechanisms of reprogramming and
locking.
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3.2.2 Multi-scale analysis and model reduction

The system that results from coupling the ER and GRN models becomes rather
cumbersome and computationally intractable as the GRN grows. For this reason, in
order to analyse the behaviour of the resulting stochastic model, we take advantage
of intrinsic separation of time scales [25, 26, 10, 5, 84, 1, 85, 40]. We exploit this time
scale separation to reduce our model by performing stochastic quasi-steady state ap-
proximations (QSSA) by means of asymptotic analysis of the stochastic ER-GRN
system as established in [10, 5, 84, 85] (see Fig. 3.1(b)). Especifically, we assume
that the characteristic scale for the number of TF monomers (S), the number of pro-
moter binding sites (E), the number of ER modification sites (Y ), and the number
of ER enzymes (Z), are such that S � E, Y � Z and O(E) = O(Y ) (see Table 3.1
for the definition of these variables). Note that the assumption Y � Z is exactly the
Briggs-Haldane hypothesis for enzyme kinetics [88] since the ER modification sites
are the substrates for the ER enzymes (see Section A.2.1.1). The multiscale analysis
is carried out in detail in Section A.2.1.1-A.2.1.4. We show that, upon appropriate
assumptions regarding the characteristic scales of the different molecular species, our
model exhibits a hierarchy of time scales, which allows to simplify the model and its
computational simulation.

The resulting reduced stochastic model is such that, since S � E and Y � Z,
the number of bound-to-promoter TFs and ER enzyme-substrate complexes are fast
variables that can be sampled from their quasi-equilibrium distribution with respect
(or conditioned to) their associated slow variables. TFs and ER modification sites
(ER substrates) are slow variables whose dynamics, which dominate the long time
behaviour of the system, are given by their associated stochastic dynamics with the
fast variables sampled from their quasi-steady state approximation (QSSA) prob-
ability density functions (PDFs). The assumption that S � Y allows for further
simplification of the model, as it allows to take the limit of S � 1 in the stochastic
equations for the TFs monomers which leads to a piece-wise deterministic Markov
description: the dynamics of the number of TFs monomers is given by an ODE which
is perturbed at discrete times by a noise source [84].

We present a summarised version of the asymptotic model reduction. Details of
this analysis are provided in Section A.2.1.2. The starting point of our analysis is
the so-called Poisson representation of the stochastic process, which is equivalent to
the Master Equation, [5]:
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Xi(t) = Xi(0) +

RG∑
k=1

rGik
P
(∫ t

0

Wik(X(s); Yi(s))ds

)
(3.2.1)

Xij(t) = Xij(0) +

RG∑
k=1

rGijk
P
(∫ t

0

Wik(X(s); Yi(s))ds

)
(3.2.2)

Yij(t) = Yij(0) +

RE∑
k=1

rEijk
P
(∫ t

0

Vik(Yi(s))ds

)
(3.2.3)

where Xi denotes the product of gene i, Xij refers to the number of dimers of type
j bound to the promoter region of gene i and Yij corresponds to the number of
molecular species of type j within the ER model of gene i (see Table 3.1). We
also use the notation X = (X1, . . . , XNG

, X11, . . . , XNGNG
) and Yi = (Yi1, . . . , Yi7).

P(λ) ∼ Poisson(λ), i.e. P(λ) is a random number sampled from a Poisson distribu-
tion with parameter λ [5], RG and RE denote the total number of reactions in the
GRN model (see Table 3.2) and in the ER model (Table 3.3), respectively, with Wik

and Vik denoting the transition rates corresponding to the GRN model and the ER
model (see Table 3.2 and 3.3, respectively). The stoichiometries rGik

, rGijk
and rEijk

denote the change in number of molecules that reaction k has on Xi, Xij and Yij,
respectively. Eqs. (3.2.1) and (3.2.2) are associated with the the stochastic dynamics
of the GRN (see Table 3.2), which are regulated by the ER part of the model. Eq.
(3.2.3) describes the dynamics of the ER system, which drives the dynamics of the
GRN (see Tables 3.2 and 3.3).

Under the appropriate conditions, separation of time scales can be made explicit
by re-scaling the random variables and the transition rates. Based on previous works
[1, 40, 53], we propose the following rescaling:

Xi = Sxi, Xij = Exij,

Yij = Y yij, for j = 1, 2, 3, Yij = Zyij, for j = 4, 5, 6, 7

Wik(X; Yi) = b11ES
2wk(x; yi), Vik(Yi) = c14ZY

2vik(yi).

(3.2.4)

In Eq. (3.2.4), the scale factors S, E, Y , and Z, as described in Table 3.1, are the
characteristic number of protein transcripts, promoter region binding sites, histone
modification sites, and epigenetic enzymes (HDMs and HDACs), respectively. For
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simplicity, we assume that these scales are the same for all the genes involved in
the GRN. As mentioned, we assume that S � E ' Y � Z. We further define a
re-scaled (dimensionless) time: τ = b11ESt. After using Eq. 3.2.4 as well as the
re-scaled time, the resulting re-scaled parameters for the GRN model (Table 3.2)
and the ER model (Table 3.3) are given in Table 3.4.

Table 3.4: Re-scaled GRN and ER parameters (see Section A.2.1.2)

Rescaled variables Dimensionless parameters

τ = b11ESt ε1 = E
S

R = R̂
b11ES2

xi ≡ qi = Xi

S
ωi1 = ki1

b11S2 ωi2 = ki2
b11ES

xij ≡ qij =
Xij

E
βij =

bij
b11

δij =
uij
b11S2

yij = Yij/Y , j = 1, 2, 3 κi1 = ci1
c14E

, κi2 = ci2
c14E2 , κi3 = ci3

c14E2

yij = Yij/Z, j = 4, . . . , 7 κi5 = ci5
c14E

, κi6 = ci6
c14E

, κi7 = ci7
c14EZ

κi8 = ci8
c14Z

, κi9 = ci9
c14E

, κi10 = ci10
c14E2

κi11 = ci11
c14E2 , κi12 = ci12

c14
, κi13 = ci13

c14E

κi14 = ci14
c14E

, κi15 = ci15
c14EZ

, κi16 = ci16
c14Z

By using Eq. (3.2.4) in Eqs. (3.2.1)-(3.2.3), we obtain:

xi(τ) = xi(0) +

RG∑
k=1

rGik

1

S
P
(
S

∫ τ

0

wk(x(σ); yi(σ))dσ

)
(slow) (3.2.5)

xij(τ) = xij(0) +

RG∑
k=1

rGijk

1

E
P
(
E

1

ε1

∫ τ

0

wk(x(σ); yi(σ))dσ

)
(fast) (3.2.6)

yij(τ) = yij(0) +

RE∑
k=1

rEijk

1

Y
P
(
Y

1

ε2

∫ τ

0

vik(yi(σ))dσ

)
, j = 1, 2, 3 (slow)

(3.2.7)

yil(τ) = yil(0) +

RE∑
k=1

rEilk

1

Z
P
(
Z

1

ε2

1

ε3

∫ τ

0

vik(yi(σ))dσ

)
, l = 4, 5, 6, 7 (fast)

(3.2.8)

where ε1 = E
S
� 1, ε2 = b11S

c14Z
, and ε3 = Z

Y
� 1, with ε1 < ε3. We have no direct

information to estimate the order of magnitude of ε2. Thus, without loss of generality
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we will assume that ε2 = O(1).

The scaling hypothesis S � E ' Y � Z allows for a series of successive approx-
imations which enables us to reduce the model Eqs. (3.2.5)-(3.2.8) into a much less
computationally demanding system. First, provided that both ε1 � 1 and ε3 � 1,
we can assume that the (rescaled) rates associated with the fast variables GRN-
ER dynamics (Eqs. (3.2.6) and (3.2.8)) are much larger than those corresponding
to their slow counterparts (Eqs. (3.2.5) and (3.2.7)). Under these conditions, the
stochastic dynamics of the fast variables reaches their (quasi-)steady states while the
slow variables are effectively frozen [25, 26, 10, 143].

We proceed with the asymptotic model reduction by first addressing the QSSA
PDFs of the fast variables (see Inner solution below). We then move on to study
the QSS approximation of the slow variables, in particular, the large-S asymptotics
of the protein concentration dynamics (see Outer solution below).

3.2.2.0.1 Inner solution

The inner solution corresponds to the relaxation dynamics of the fast variables
onto their quasi-equilibrium state, while the slow variables remain unchanged. The
solution of the inner dynamics allows us to determine the QSSA PDFs of the fast
variables conditioned to fixed values of the slow variables.

We proceed by considering the following rescaling of the time variable T = ε−11 τ .
Upon such rescaling, it is straightforward that all the rates of the reactions affecting
the slow variables (Eqs. (3.2.5) and (3.2.7)) are now O(ε1), which implies that
the slow variables, xi and yij (for j = 1, 2, 3), can be considered to remain frozen
whilst the fast variables reach their quasi-equilibrium distribution according to the
dynamics:

xij(T ) = xij(0) +

RG∑
k=1

rGijk

1

E
P
(
E

∫ T

0

wk(x(σ); yi(σ))dσ

)
(3.2.9)

yil(T ) = yil(0) +

RE∑
k=1

rEilk

1

Z
P
(
Z
c14ε1
b11ε3

∫ T

0

vik(yi(σ))dσ

)
, (3.2.10)

where l = 4, 5, 6, 7, ε2 = O(1) and the slow variables, xi and yij, j = 1, 2, 3, are
considered to stay constant.
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Consider the (inner) dynamics of the number of bound sites within the promoter
regions, Xij(T ), Eq. (3.2.9). Provided that the ER of gene i remains in the open
state, i.e. yi2 � 1 and yi3 ∼ O(1) (abundance of positive marks), the resulting
stochastic dynamics describes how the binding sites switch between bound-to-TF
dimer to unbound-to-TF dimer at constant rates (since the number of the different
TF molecules does not change at this time scale). Since the number of binding sites
is a constant, the (quasi-)steady state distribution of bound TFs to each promoter
is a multinomial (see Section 3.2 of the Supplemental Information for a detailed
derivation of this result). Otherwise, if gene i is epigenetically closed, thenXij(T ) = 0
for all j with probability one. Therefore, the random vector describing the number
of TFs bound at the promoter region of gene i, Bi, whose components are Bi =
(Xi1, . . . , XiNG

) is sampled from:

P (Bi|N) = ηiP+(Bi|N) + (1− ηi)P−(Bi|N),

(3.2.11)

where the quantity ηi is defined as ηi = H(Yi3−Y0) (i.e. gene i is epigenetically open,
corresponding to ηi = 1, if the corresponding level of acetylation, Yi3, exceeds the
threshold Y0), N = (X1, . . . , XNG

) is a vector containing the monomer gene product
of all genes, P−(Bi|N) =

∏
j∈〈i〉 δXij ,0, with δXij ,0 = 1 when Xij = 0, and P+(Bi|N)

is a multinomial PDF, whose generating function is given by:

G(pi1, . . . , piNG
) =

(
1 +

∑
k
βik
δik
x2kpik

1 +
∑

k
βik
δik
x2k

)ei

(3.2.12)

where ei denotes the number of binding sites at the promoter region of gene i, and the
other parameters are defined in Table 3.2 (transition rates) and Table 3.4 (rescaled
parameters).

Eq. (3.2.10) describes the inner dynamics of the fast components (enzymes and
enzyme-substrate complexes) of the ER system for each gene i. The resulting stochas-
tic dynamics describes how the enzymes switch between their free state and their
complex state at constant rates (since the number of the different substrates is con-
stant under the hypothesis of time scale separation). Since the number of enzymes
is conserved, the (quasi-)steady distribution of the number of enzymes of each type
in complex form is a binomial (see Section A.2.1.4 for a detailed derivation of this
result). The corresponding generating functions are given by:
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GHDM(pi) =

(
κi2 + κi3 + (κi5 + κi6)yi3 + (κi1 + yi3)yi2pi
(κi2 + κi3) + (κi1 + yi3)yi2 + (κi5 + κi6)yi3

)eHDM

(3.2.13)

GHDAC(pi) =

(
κi10 + κi11 + (κi13 + κi14)yi2 + (κi9 + κi12yi2)yi3pi
(κi10 + κi11) + (κi9 + κi12yi2)yi3 + (κi13 + κi14)yi2

)eHDAC

(3.2.14)

where i = 1, . . . , NG and κij are defined in Table 3.4. The number of free HDM and
HDAC molecules is then obtained from the conservation equations Yi4 = eHDM −Yi5
and Yi6 = eHDAC − Yi7, where eHDM and eHDAC denote the total number of HDM
and HDAC molecules, respectively.

3.2.2.0.2 Outer solution

The outer solution, corresponding to the dynamical evolution of the slow vari-
ables, is obtained by sampling the fast variables, whose values are needed to compute
the reaction rates for the slow variables, from their QSSA PDFs (see Eqs. (3.2.11)-
(3.2.14)):

xi(τ) = xi(0) +

RG∑
k=1

rGik

1

S
P
(
S

∫ τ

0

wk(x(σ); yi(σ))dσ

)
(3.2.15)

yij(τ) = yij(0) +

RE∑
k=1

rEijk

1

E
P
(
E

1

ε2

∫ τ

0

vik(yi(σ))dσ

)
, j = 1, 2, 3

(3.2.16)

The QSSA PDFs of the fast variables are conditioned by the current value of the slow
variables. We complete our asymptotic analysis by looking at the large S behaviour
of the slow GRN variables (see Eq. (3.2.5)). We resort to a law of large numbers
enunciated and proved by Kurtz which states that S−1P(Su) → u when S � 1
[94, 10, 5, 84]. We can apply this result straightforwardly to Eq. (3.2.15), which
eventually leads to the asymptotic reduction of the full ER-GRN system:

dxi
dτ

= Ri + ωi1xii − ωi2xi − 2

NG∑
j=1

(
βijηi

(
ej
E
−

NG∑
k=1

xjk

)
x2i − δijxij

)
,

for i = 1, . . . , NG (3.2.17)
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yij = yij(0) +

RE∑
k=1

rEijk

1

E
P
(
E

1

ε2

∫ τ

0

vik(yi(σ))dσ

)
, j = 1, 2, 3. (3.2.18)

The resulting dynamics consists on a hybrid system where the dynamics of the
TF monomers, xi(τ), Eq. (3.2.17), is described in terms of a piece-wise deterministic
Markov process [38, 20], i.e. by a system of ODEs perturbed at discrete times by two
random processes, one corresponding to stochastic ER (Eq. (3.2.18)) and the other
to TF dimers binding to the promoter regions. The latter are sampled from their
QSSA PDFs, Eq. (3.2.11). The stochastic dynamics of the slow ER variables, Eq.
(3.2.18) is in turn coupled to the random variation of the associated fast variables (ER
enzymes, HDM and HDAC, and complexes). The number of complexes, Yi5 and Yi7,
are sampled from their QSSA PDFs, Eqs. (3.2.13) and (3.2.14). The corresponding
numerical method used to simulate such system is described in detail in Section
A.2.1.5.

3.2.3 Transitions between ER states: minimum action path
approach

Noise-induced transitions are essential to understand ER dynamics and their
effect on cell-fate determination [51]. Throughout the bistable regime, sufficiently
large fluctuations in the stochastic ER system will induce switching between the
open and silenced states. The rate at which such transitions occur can be described
using reaction-rate theory [69] and large deviation theory [54], which show that the
waiting time between transitions is exponentially distributed. The average switching
time, τs, increases exponentially with system size, which in this case is given by the
scale of ER substrates, Y [54, 158, 19, 21]:

τs = CeY S , (3.2.19)

where C is a constant and S is the action of the stochastic switch. Eq. (3.2.19)
is derived from considering the probability distribution of the so-called fluctuation
paths, ϕ(τ), which connect the mean-field steady states in a time τ . According to
large deviation theory [54, 158], we have P (ϕ(τ)) ∼ e−YAFW (ϕ(τ)), which implies that
the probability of observing paths different from the optimal, i.e. the path ϕ∗ that
minimises the action, is exponentially supressed as system size, Y , increases. This
means that, for large enough system size, the behaviour of the system regarding large
fluctuations is characterised by the optimal path, which is such that:

S ≡ AFW (ϕ∗) = min
τ,ϕ(τ)

AFW (ϕ(τ)) . (3.2.20)
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An explicit form of the functional AFW (ϕ(τ)) can be given if the dynamics is given
by the corresponding chemical Langevin equation [61]:

dyij(τ) = fj(yi)dt+ gij(yi)dBjt , (3.2.21)

where Bjt denotes a Wiener process, and the mean-field drift, fj(yi), is fj(yi) =∑RE

k=1 rEijk
vik(yi), and the noise matrix, gij(yi), gjj =

√∑RE

k=1 r
2
Eijk

vik(yi), gij =

0 if i 6= j. The rescaled variables yi = (yij =
Yij
Y

), j = 1, . . . , 7, and the rescaled rates
vik(yi) are defined in Section 3.2.2. In this case, the action functional AFW (ϕ(τ)) is
the Freidlin-Wentzel (FW) functional:

AFW (ϕ) =

∫ τ

0

||ϕ̇(t)− f (ϕ(t)) ||2g(ϕ(t))dt, (3.2.22)

The norm || · ||2g(ϕ(t)) =
〈
·, D (ϕ(t))−1 ·

〉
, where D (ϕ(t)) = g (ϕ(t)) g (ϕ(t))T is the

diffusion tensor. Using Eq. (3.2.22), the optimal value of the action, S, can be found
by numerical minimisation, which provides both the optimal or minimum action path
(MAP) and the rate at which the ER system switch state driven by intrinsic noise.
Details regarding implementation of the action-optimisation algorithm are given in
Section A.2.3. A complete description of τs requires to estimate the pre-factor C,
which is not provided by the FW theory, but can be easily estimated using stochastic
simulation.

3.2.4 ER-systems ensemble generation and analysis

In Chapter 1 (Section 2.3.3) we have proposed to analyse an ensemble of ER
systems in order to study the robustness of the different ER scenarios under hetero-
geneous conditions regarding the availability of co-factors associated with the activity
of ER enzymes, which we take into account by considering variations (variability)
in the kinetic constants cij (see Table 3.1 and 3.3). Such an ensemble is generated
using approximate Bayesian computation (ABC) [156, 172], whereby we generate
an ensemble of parameter sets θi = (cij, i = 1, . . . , NG, j = 1, . . . , 16) compatible
with simulated data for the epigenetic regulation systems (see Section 2.2.3.2 for the
details regarding ABC implementation).

Our approach follows closely the one presented in Chapter 2, since we will be
using the data sets generated there. To summarise, we start by generating synthetic
(simulated) data (denoted as “raw data” in Fig. 3.2) regarding the ER system of
a genetic network of NG genes epigenetically poised for differentiation, i.e. open
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differentiation-promoting genes and silenced pluripotency-promoting genes (see the
example shown in Fig. 3.2). This simulated data will play the role of the exper-
imental data, x0, to which we wish to fit our model. The data set consists of 10
realisations and 25 time points per realisation for each of the NG genes. For each
time point, ti, we consider two summary statistics: the mean over realisations, x̄(ti),
and the associated standard deviation, σ(ti). We then run the ABC rejection sampler
method until we reach an ensemble of 10000 parameter sets which fit the simulated
data, x0, within the prescribed tolerances for the mean and standard deviation. The
heterogeneity associated with the rates cij of the parameter sets from the ensemble
is interpreted in terms of variability in the availability of certain cofactors.

In our particular case NG = 2, i.e. we have a 10000 parameter set ensemble of
the ER system for the pluripotency-promoting gene and another 10000 parameter set
ensemble for the gene promoting differentiation. Fig. 3.2 shows results comparing
the reference (raw simulated) data to a subensemble average consisting of the 100
sets that best fit the data, for the differentiation-promoting gene, Fig. 3.2 (a) and
pluripotency-promoting gene, Fig. 3.2 (b).

In our discussion, we will focus on this subensemble, i.e. the subensemble of
the 100 parameter sets that best fit raw data (see Fig. 3.2). Specifically, we will
consider those ER systems that for normal HME activity, i.e. when the number of
HMEs is equal to its characteristic number, eHDM = eHDAC = Z, exhibit bistable
behaviour. Within this subensemble, 90 sets for the differentiation-promoting ER
system and 100 sets for the pluripotency-promoting ER system satisfy this condition.

3.3 Results

In order to focus our discussion, we illustrate the application of our model for-
mulation on the case we want to study: a gene regulatory circuit with two genes,
one whose product promotes differentiation and another one whose protein induces
pluripotency. These two genes are further assumed to interact through mutual com-
petitive inhibition (see Fig. 3.1(a)). Although such a system may appear to be too
simplistic to describe realistic situations, there is evidence that mutual inhibition
between two key transcription factors controls binary cell fate decisions in a number
of situations [77, 105]. Our results are straightforward to generalise to more complex
situations.
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Figure 3.2: Caption on the following page.
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Figure 3.2: (Previous page). Comparison between raw simulated data (red) with
best fitted data resulting from the parametric sensitivity analysis of the epigenetic
regulatory system (blue). (a) Evolution to the open state of the differentiation-
regulating gene. (b) Evolution to the silenced state of the pluripotency-regulating
gene. Raw simulated data is generated by using the SSA on the model defined by the
rates shown in Table 3.3 with parameter values given in Tables A.5 and A.6, for (a)
and (b), respectively. Resulting fitted data correspond to the 100 ABC parameter
sets that best fit the raw data.

We proceed to analyse how ER sculpts the epigenetic landscape over the substrate
of the phase space given by the model of the gene regulatory network (GRN). The
latter provides the system with a variety of cell fates, corresponding to the stable
steady states of the dynamical system underpinning the model of gene regulatory
network [86]. The transitions between such cellular states, both deterministic and
stochastic, depend upon the ability of the cell regulatory systems to elevate or lower
the barriers between them. Epigenetic regulation is one of such mechanisms. Here,
we examine how ER is affected by ensemble variability associated with variations
in the availability of the necessary co-factors on which histone modifying enzymes
(HMEs) depend to carry out their function. In particular, we will show that such
variability is enough to produce a variety of behaviours, in particular differentiation-
primed and stem-locked states.

3.3.1 The GRN model exhibits a complex phase space, in-
cluding an undecided regulatory state

We start our analysis by studying the phase space of the dynamical system under-
lying our model of gene regulation, schematically illustrated in Fig. 3.1(a). Using the
methodology described in detail in Section A.2.1.1, we have derived the (quasi-steady
state approximation) equations for the optimal path theory of the stochastic model
of the mutually inhibitory two-gene system [110]. Such equations describe the most
likely relaxation trajectories towards their steady states [19, 21], under conditions of
time scale separations described in detail in Section A.2.1.2.

dq1
dτ

= R1 + p∞1p
ω11

β11
δ11
q21

1 + β11
δ11
q21 + β12

δ12
q22
− ω12q1 (3.3.1)
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dq2
dτ

= R2 + p∞2p
ω21

β22
δ22
q22

1 + β21
δ21
q21 + β22

δ22
q22
− ω22q2 (3.3.2)

where q1 and q2 are the variables (generalised coordinates) associated with the num-
ber of molecules of proteins, X1 and X2. The re-scaled variables, qi and qij, and
the re-scaled parameters, ωij, βij, and δij, are defined in Table 3.4 (see also Section
A.2.1.2).

The multiscale analysis carried out in Section A.2.1.2 shows that the parameters
p, p∞1 and p∞2 are such that p∞1p = e1

E
and p∞2p = e2

E
, where e1 and e2 are the

number of sites in the promoter regions of our two genes exposed to and available
for binding by TFs, which implies that p∞1p and p∞2p can be directly related to
ER: p∞i

p → 0, i = 1, 2, corresponds to an epigenetically silenced gene, whereas
p∞i

p ≥ O(1) is associated with an epigenetically open gene. In this section, we
study the phase space of the system when both p∞1p and p∞2p are varied. This al-
lows us to understand how the behaviour of the GRN changes when its components
are subject to ER. Our results are shown in Fig. 3.3.

The system described by Eqs. (3.3.1)-(3.3.2) exhibits three types of biologically
relevant steady states, namely, the pluripotency steady state (PSS), the differentita-
tion steady state (DSS), and the undecided steady state (USS). Different combina-
tions of these states can be stable or unstable depending on the parameter values (see
Fig. 3.3). The PSS (DSS) corresponds to a steady state with q1 � 1 and q2 = O(1)
(q1 = O(1) and q2 � 1) and the USS is associated with a state such that both q1 � 1
and q2 � 1.

Fig. 3.3 shows the phase space associated with the dynamical system Eqs. (3.3.1)
and (3.3.2). It shows the behaviour as the parameters p∞1p and p∞2p vary. The lines
shown in Fig. 3.3 correspond to the stability boundary of the different regimes. At
such boundaries, saddle-node bifurcations occur, as illustrated in the example shown
in Fig. A.4 (Section A.2.2). Fig. 3.3 reveals a complex phase space with seven
different phases. We denote by RP (RD) the region of the phase space where only
the pluripotency (differentiation) steady state is stable. Similarly, RU corresponds
to those parameter values such that only the undecided steady state is stable. Fur-
thermore, there are three bistable phases: one in which the PSS and the DSS coexist,
RPD, a second one where the PSS coexists with the USS, RPU , and the third one
where the DSS and USS coexist, RDU . Finally, a region exists where stable PSS,
stable DSS, and stable USS, RPUD, coexist. Fig. A.7 shows examples of trajectories
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Figure 3.3: Phase diagram of the two-gene system, Eqs. (3.3.1)-(3.3.2). Vertical
blue (horizontal green) hatching denotes regions where the pluripotency (differenti-
ated) state is stable. Diagonal pink hatching denotes regions where the undecided
state is stable. Regions of the phase diagram where different hatchings overlap cor-
respond to regions of bistability or tristability. In the labels in the plot, P stands
for pluripotency, D stands for differentiation and U for undecided. This phase di-
agram was obtained using the methodology formulated in [71]. Parameters values:
ω11 = ω21 = 4.0. Other parameter values as per Table A.12.
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illustrating the dynamics described by Eqs. (3.3.1)-(3.3.2) for different values of the
pair (p∞1p, p∞2p) corresponding to the different regions shown in Fig. 3.3. In par-
ticular, we show how the long term behaviour of different initial conditions differ as
(p∞1p, p∞2p) varies, so that different cell fates (co)exist related to different levels of
TF accessibility.

3.3.2 Co-factor heterogeneity gives rise to both pluripotency-
locked and differentiation-primed states

In the previous section, we have analysed the dynamical landscape provided by
the dynamical system describing the GRN. We now proceed to study the effect of
ER on the robustness of the different phases shown in Fig. 3.3 (see also Fig. A.7).
We here put forward that ER is essential to the robustness of such phases and, con-
sequently, to the stability of the associated cell fates, since transitions in bistable
ER systems can induce (or facilitate) transitions between the GRN phases. Such
transitions are associated with differentiation and reprogramming of cell fates. This
phenomenon, so-called epigenetic plasticity, has been recently proposed as a major
driver for disrupting cell-fate regulatory mechanisms in cancer and ageing [51]. We
further focus on the role of heterogeneity within the ensemble described in Section
3.2.4 (see also Section 2.3.3).

In order to characterise robustness of the different ER systems within the subensem-
ble, we have focused on the analysis of the average transition times between the open
and closed ER states. We define τ1+ (τ1−) as the average transition time for a
differentiation ER system- DERS- to switch from closed to open (open to closed).
Similarly, the quantities τ2+ and τ2− are analogously defined for the pluripotency ER
systems-PERSs. The results are shown in Fig. 3.4(a) and (b), where we present
scatter plots of the average transition times within the ensemble of DERSs (Fig.
3.4(a)) and PERSs (Fig. 3.4(b)). These figures show scatter plots where each point
represents an ER system (i.e. a given parameter set) within our subensemble. The
vertical and horizontal axes show the average switching time from closed-to-open
and open-to-closed, respectively. We observe that the heterogeneity exhibited by the
differentiation ER systems is greater than the one corresponding to the pluripotency
ER systems. In particular, the dispersion in τ2+ is much smaller than in τ1+ . Re-
garding τ2+ , most of the pluripotency ER systems are concentrated around a narrow
band. By contrast, the differentiation ER systems show large degrees of heterogene-
ity in both τ1+ and τ1− .
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Heterogeneity in the differentiation ER systems exhibits an interesting pattern,
whereby such systems organise themselves in three clusters obtained through k-means
clustering, shown as blue, green and red dots in Fig. 3.4(a). DERSs within the blue
cluster are charaterised by long closed-to-open waiting times and short open-to-closed
waiting times. DERSs belonging to the red cluster are the specular image of those
within the blue cluster, i.e. they have short closed-to-open waiting times and long
open-to-closed waiting times. Finally, DERSs in the green cluster are characterised
by large values of both τ1+ and τ1− .

Insight into the stochastic dynamics, particularly regarding heterogeneity of the
robustness of the open and silenced ER states to intrinsic noise, can be gained by
analysing the corresponding optimal escape paths. Four examples of such paths,
computed according to the MAP theory (see Section 3.2.3), for two DERSs (DERS1
and DERS2) and two PERSs (PERS1 and PERS2) are shown in Figs. A.8(a)-(d). A
comparison between the value of the minimum action S (see Eqs. (3.2.20)-(3.2.22)),
for the optimal escape paths corresponding to DERS1 and DERS2 (Figs. A.8(a) and
(c)), and for PERS1 and PERS2 (Figs. A.8(b) and (d)) shows a tendency for DERSs
to exhibit much more variability (see Table 3.5, where we report the minimum action
values for the optimal paths). Whilst the action value for PERS1 is about twice the
value of PERS2 in Fig. A.8(b) (closed to open), there is an over 8-fold increase
when comparing the action values of DERS1 and DERS2 in Fig. A.8(a) (closed
to open). Similarly, when comparing the action S for the open to closed optimal
paths, we observe that the variability associated with the DERSs (Fig. A.8(c)) is
also larger than the one in PERSs (Fig. A.8(d)). This property partly explains
the difference between Fig. 3.4(a) and Fig. 3.4(b) regarding DERS and PERS het-
erogeneity, respectively. A similar argument can be put forward to help us explain
the heterogeneity within the DERS ensemble (Fig. 3.4(a)). Blue cluster DERSs
exhibit optimal closed-to-open paths with larger value of the optimal action than
that found in their red cluster counterparts (see Fig. A.8(a) and Table 3.5, where
DERS1 belongs to the red cluster and DERS2 to the blue cluster). This property has
the consequence that the closed-to-open waiting time, τ1+ , is longer for blue cluster
DERSs.

To quantify the effects of bistable ER on the landscape related to the gene reg-
ulatory system (see Fig. 3.3), we proceed to estimate the probability, Q, that the
combined activity of each pair of DERS and PERS within our ensemble produces a
global epigenetic regulatory state compatible with differentiation. DERS-PERS pairs
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Figure 3.4: Caption on the following page.
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Figure 3.4: (Previous page). Scatter plots showing heterogeneity in the behaviour of
bistable differentiation ER systems (DERSs) and pluripotency ER systems (PERSs).
The vertical axis corresponds to the average opening time and the horizontal axis, to
the average closing time. Each dot in plot (a) represents a DERS within the ensemble
(see Section 3.2.4). Different colours and black lines show the three clusters resulting
from a k-means analysis discussed in Sections 3.3.2 and 3.3.3. Dots in plot (b)
represent PERSs within the ensemble defined in Section 3.2.4.

Table 3.5: Minimum action values, S, corresponding to the optimal escape paths
shown in Fig. A.8 (see Section 3.2.3 and Section 3.3.2 for details). Parameter values
are given in Tables A.15-A.18, for PERS1, PERS2, DERS1 and DERS2, respectively.

ER system Open to closed Closed to open
DERS1 0.05387 0.007012
DERS2 0.09947 0.05813
PERS1 0.01502 0.1836
PERS2 0.02043 0.07645

with high values of Q are associated with differentiation-primed states. By contrast,
those DERS-PERS combinations with low Q are identified with pluripotency-locked
states.

We proceed forward with this programme by recalling that escape times from
a stable attractor in a stochastic multi-stable system are exponentially distributed
[54, 158]. This implies that the PDFs for the escape times for both DERSs and
PERSs are fully determined by the corresponding values of τ1± and τ2±. We also
assume that, for a given ER-GRN system, the DERS and the PERS evolve indepen-
dently of each other.

We consider PDF of the waiting time associated with a scenario of full repro-
gramming of the epigenetic landscape, τP . Such a scenario assumes that the sys-
tem is initially in a pluripotency-locked ER state where the DERS is closed and
the PERS is open, which we denote as D−P+. For the system to make its tran-
sit into the differentiation-primed state D+P−, corresponding to open DERS and
closed PERS, there are two possible routes: D−P+ → D−P− → D+P− (route 1) and
D−P+ → D+P+ → D+P− (route 2). Simultaneous switch of both ER systems is
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considered highly unlikely and therefore ignored. The PDF of the waiting time of
the transition D−P+ → D+P−, denoted by P+−,−+(τP ), is given by:

P+−,−+(τP ) = Z−1 (P1(τP ) + P2(τP )) , (3.3.3)

where

P1(τ) = τ−11− τ
−1
2+ e

−τ/τ1−
(
e−τ/τ2+ − e−τ/τ2−

τ−12− − τ−12+

)
P2(τ) = τ−11− τ

−1
2+ e

−τ/τ2+
(
e−τ/τ1+ − e−τ/τ1−

τ−11− − τ−11+

)
,

and

Z−1 =
(τ1− + τ2+)

(
(τ−11− + τ−12− )(τ−11+ + τ−12+ )

)
τ−12+ + τ−11+ + τ−12− + τ−11−

.

P1(τp) and P2(τp) are the probabilities related to each of the landscape reprogram-
ming routes. The probability that the ER landscape has undergone reprogramming
from pluripotency-locked into differentiation-primed state within the time interval
(0, τP ], Q, is thus given by:

Q ≡
∫ τP

0

P+−,−+(τ)dτ, (3.3.4)

where in our case, τP has been taken as the mean time of τ1+, that is, the mean
time for the differentiation ER systems (DERSs) to switch from the closed to the
open state, switch needed for a cell to differentiate. Furthermore, we have chosen
τ1+ since it exhibits a larger range of variability than the time for the pluripotency
ER systems to switch from its open to its closed state, which is also a necessary
condition for differentiation to happen.

We investigate the DERSs belonging to the different clusters of Fig. 3.4(a) re-
garding their likelihood to produce pluripotency-locked epigenetic landscapes (re-
sults shown in Fig. 3.5). The analysis shows that DERSs within the red cluster (Fig.
3.5(c)) correspond to differentiation-primed epigenetic landscapes (Q = 1)for all the
DERS-PERS pairs. By contrast, the blue cluster (Fig. 3.5(a)) and the green cluster
(Fig. 3.5(b)) contain DERSs associated with both differentiation-primed (large Q)
and pluripotency-locked (small Q) epigenetic landscapes. As discussed in the next
section, the latter are more abundant within the blue cluster.
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(a)

(b)

Figure 3.5: Figure continues on the following page. Caption on the following page.
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(c)

Figure 3.5: (Previous page). Differentiation probability Q within the ensembles of
DERSs and PERSs corresponding to the three clusters of Fig. 3.4(a) (see Section
3.3.2). For all three plots, the horizontal axis runs over the whole ensemble of PERSs.
The vertical axis of plots (a), (b), and (c) runs over all the DERSs within the blue
cluster, the green cluster, and the red cluster, respectively.

3.3.3 Analysis of ensemble heterogeneity

We now proceed to analyse the patterns observed in our ensemble of ER systems
regarding both the differences between the three clusters observed in the ensemble
of DERSs (Fig. 3.4(a)) and the distinctive features that characterise pluripotency-
locked DERS-PERS pairs. In order to do this, we follow the methodology put for-
ward in Section 2.3.3, whereby ensemble statistics (cumulative distribution functions
(CDFs)) of the parameters cij (see Table 3.1) corresponding to the DERSs/PERSs
associated with the subensemble of systems exhibiting a particular behaviour are
analysed. By comparing such CDFs to either the general population (i.e. whole
ensemble) or to different subensembles, we can detect statistically significant biases,
which allows us to identify key parameters (and their biases) associated with the
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behaviour displayed by the focal subensemble.

3.3.3.1 Significant differences within the ensemble of DERSs

We start this analysis by studying the pattern emerging in the ensemble of
DERSs, Fig. 3.4(a). As discussed in the previous section, DERSs organise themselves
in three clusters, which exhibit remarkable differences regarding their capability to
trigger differentiation-primed epigenetic landscapes (see Figs. 3.4(a) and 3.5). Our
results are shown in Fig. 3.6, where we depict the empirical CDFs for the different
kinetic parameters of the ER reactions for the differentiation gene, c1j (see Table
3.3). We proceed to look for which c1j there are statistically significant differences,
by comparing the CDF of each cluster with that corresponding to the whole DERS
ensemble, and also the CDFs of the clusters among them (see Fig. 3.6). Each of
these two-sample comparison is carried out by means of the Kolmogorov-Smirnov
(KS) test. Statistically significant differences were found in the cases we comment
below. The p-values are reported in Section A.2.4.

Red cluster versus blue cluster. As discussed in the previous section, the differ-
ences between DERSs within the blue and red clusters are essential to ascertain the
main features that distinguish differentiation-primed and pluripotency-locked sys-
tems. The bias detected within the red (blue) cluster in the corresponding CDFs
(see Fig. 3.6) is towards bigger (smaller) values for c11 (unrecruited demethylation)
and c115 (unrecruited acetylation) and towards smaller (larger) values for c111 (un-
recruited deacetylation) and c116 (recruited acetylation). The behaviour of c11 , c111 ,
and c115 is straightforward to interpret. The trends observed in the data are con-
sistent with DERSs within red cluster being more prone to differentiation-primed
ER landscapes, as they promote removal of negative marks and addition of positive
marks.

Red cluster versus green cluster. In this case, the bias detected within the red
(green) cluster in the corresponding CDFs (see Fig. 3.6) is to larger (smaller) values
for c13 (unrecruited demethylation) and to smaller (bigger) values for c116 (recruited
acetylation). The tendency in the data corresponding to c13 is compatible with the
features of the red cluster DERSs, as it involves an increase in the removal of nega-
tive marks.

Blue cluster versus green cluster. Fig. 3.6 shows that DERSs within the green
cluster have smaller values of c13 (unrecruited demethylation) and larger values of
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Figure 3.6: Caption on the following page.
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Figure 3.6: (Previous page). Empirical CDFs for the whole ensemble of DERS
parameter sets (magenta lines). This ensemble has been generated according to the
methodology explained in Section 3.2.4 (see also Section 2.2.3.2). We also show the
partial empirical CDFs corresponding to each of the clusters from Fig. 3.4(a) (red,
green, and blue lines). We analyse a total of 90 DERS parameter sets. The red
cluster includes 31 sets, the green cluster contains 13 sets, and the blue cluster has
46 sets. For reference, we also show the CDF for a uniform distribution (black line).

c18 (recruited methylation) than their blue cluster counterparts. Both of such effects
stimulate addition of negative marks. However, DERSs in the green cluster also ex-
hibit lower c111 (unrecruited deacetylation) and bigger c115 (unrecruited acetylation),
which both encourage addition of positive marks. This can explain why the green
cluster DERSs exhibit both long τ1− and τ1+ (see Fig. 3.4(a)).

3.3.3.2 Significant differences between differentiation-primed and pluripotency-
locked ER landscapes

The quantity Q allows us to classify each pair DERS-PERS drawn from our
ensemble regarding their degree of resilience to switch into a state prone to differen-
tiation. If Q is larger than a threshold value T , the corresponding DERS-PERS pair
is categorised as differentiation-primed. By contrast, when Q < T , the DERS-PERS
pair is classified as pluripotency-locked.

We first proceed to compare within the whole population (without discriminat-
ing between clusters) those DERSs such that Q ≥ T (differentiation-primed ER
landscapes) against those with Q < T (pluripotency-locked ER landscapes). We
take T = 0.7. The results are shown in Fig. A.9. The CDFs of the parameters
c11 (unrecruited demethylation), c114 (recruited deacetylation), and c115 (unrecruited
acetylation) are biased towards higher values for the subensemble associated with
differentiation-primed ER landscapes (Q ≥ T ). The requirement for Q to be Q ≥ T
biases the CDF of c116 (recruited acetylation) towards lower values than in the general
population. The interpretation of the results regarding c11 and c115 is clear, since
they encourage the removal of negative marks and the addition of positive marks
and thus promote expression of the differentiation gene. The CDFs of c114 and c116
corresponding to differentiation-primed ER landscapes are virtually identical to the
CDFs associated with the general population (see Fig. A.9). These features are
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therefore inherent in bistable behaviour (see Section 3.2.1), rather than being spe-
cific to differentiation-primed DERSs.

If we now restrict our analysis to those DERSs within the blue cluster (see Fig.
3.7), we observe that the parameters whose CDFs differ significantly when splitted
into differentiation-primed and pluripotency-locked are c11 (unrecruited demethyla-
tion) and c114 (recruited deacetylation). As in the analysis in the whole ensemble,
only the result regarding c11 is relevant for the analysis of the features yielding to
differentiation-primed ER landscapes.

Regarding the PERSs, the results are less compelling. The results are shown in
Fig. A.10. Our analysis shows that significative differences can be found between the
empirical distributions of three parameter values: c13 (unrecruited demethylation),
c18 (recruited methylation), and c115 (unrecruited acetylation). PERSs such that
Q ≥ T exhibit larger values of all three parameters.

3.3.4 Ensemble-based strategies for unlocking resilient pluripo-
tency

The results of the previous sections suggest a number of strategies to unlock re-
silient pluripotency states which hinder differentiation. One of our main conclusions
is that such states of resilient pluripotency are mostly vinculated to DERS-PERS
combinations such that the DERS belongs to either the blue or the green cluster.
In view of this, a possible strategy in order to encourage differentitation-primed ER
landscape consists on changing a selected combination of parameter values according
to a rationale provided by the analysis carried out in the previous two sections. Our
results are shown in Fig. 3.8.

One possible strategy consists on first transforming a blue cluster DERS into a
green cluster one, and then completing the reprogramming of the DERS by trans-
forming the resulting set into a red cluster DERS. A candidate strategy involves first
changing a parameter whose CDF is significantly different when the blue cluster is
compared with the green cluster. The second step is then to change a parameter
that exhibits significant difference between the green and red cluster. Taking the
results of the previous section into consideration, we consider the reduction of c111
(unrecruited deacetylation) and the increase of c13 (unrecruited demethylation). The
result of this reprogramming strategy is shown in Fig. 3.8(a), where we show that
a blue cluster DERS (big blue circle) is first transformed into a green cluster one
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Figure 3.7: Caption on the following page.
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Figure 3.7: (Previous page). Empirical CDFs for the DERS parameter sets within
the blue cluster. This ensemble has been generated according to the methodology
explained in Section 3.2.4 (see also Section 2.2.3.2). The DERSs within the blue
cluster have been divided into two subsets: those such that Q < T (SC-locked, blue
lines) and those such that Q ≥ T (non-SC-locked, orange lines), with T = 0.7. For
comparison, we plot the CDFs of the whole DERS ensemble (magenta lines), and, for
guidance the CDF corresponding to a uniformly distributed random variable (black
lines).

(green square in Fig. 3.8(a)), and then, finally, into a red cluster DERS (red square
in Fig. 3.8(a)). The initial blue cluster DERS has been chosen as the set with
the largest value of c111 , which has been shown to be a significant difference when
comparing the blue cluster to the red one, and the blue cluster to the green one,
leading to the idea that this property is linked to the blue cluster (idea which is re-
inforced because c111 is not significant when comparing the red and the green cluster).

The efficiency of such a strategy to unlock resilient pluripotency and to encour-
age differentiation is shown in Fig. 3.8(b), where we present statistics of the dif-
ferentiation time, τD, for the original blue cluster DERS and for the corresponding
reprogrammed one (two step reprogramming, red cluster-like). These simulations
have been done for the full ER-GRN, Eqs. (3.2.17)-(3.2.18), using the hybrid multi-
scale simulation algorithm described in Section 3.2.2 (and fully developed in Section
A.2.1.5). The resulting differentiation times for the ER-GRN with reprogrammed
ER landscape are orders of magnitude smaller than those with original ER-GRN
within the blue cluster DERS.

An alternative strategy, that involves changing the value of one parameter only,
consists on increasing the value of c13 (unrecruited demethylation). Such a strategy
is not obvious, since c13 is not one of the parameters whose empirical CDF has sig-
nificant differences when DERS in the red cluster are directly compared with those
in the blue cluster. However, since the CDF of c13 is significantly different when
both the blue cluster and the red cluster are compared to the green cluster, it is
conceivable that increasing c13 without further intervention could reprogram blue
cluster DERSs. The result of this reprogramming strategy is shown in Fig. 3.8(a)
(red diamond). Simulation results shown in Fig. 3.8(b) (two step reprogramming)
confirm the viability of this approach. In fact, based on the statistics of the differ-
entiation time, both strategies are virtually indistinguishable.
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Figure 3.8: Caption on the following page.
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Figure 3.8: (Previous page). Plots showing the effect of the different reprogramming
strategies of blue cluster DERSs, as evaluated in terms of the statistics of the differ-
entiation time (τD). (a) Two step reprogramming is illustrated by the green square
(first step), which finally becomes the red square (second step). One step reprogram-
ming is depicted as the red diamond (see Section 3.3.4 for details). (b) Comparison
of τD for the original DERS (big blue circle in (a)) and the ones resulting from the
reprogramming strategies. We consider a base-line scenario where the number of
HMEs is exactly equal to average, i.e. eHDM = eHDAC = Z. We then compare the
simulation results obtained for different scenarios regarding the different strategies
to the base-line scenario. Parameter values: Z = 5 and Y = 15. Other parameter
values given in Table A.19.

3.3.5 Loss of HDAC activity hinders differentiation in our
ER-GRN model

Besides variability associated with cofactor heterogeneity, our model allows us to
address the issue of variability regarding HME activity. HME activity is affected by
both normal physiological processes, such as ageing, and pathologies such as cancer.
For example, impaired activity of HDM and HDAC has been observed in relation to
cancer and ageing. Here, we analyse the impact of HDM and HDAC loss of activity
on the dynamics of differentiation. In particular, we simulate differentiation in our
ER-GRN model to obtain statistics of the differentiation time to assess the effect of
loss of HME activity. The simulations shown in this section have all been carried
out using the hybrid multiscale simulation algorithm described in Section A.2.1.5.

In order to clarify the effect of loss of HME activity on the ER model, we first
consider the phase diagram of its mean-field limit in different situations (see Section
2.3.1 for details). The results are shown in Fig. A.11. Figs. A.11(a) and (c) show
the phase diagram for two DERSs, one belonging to the red cluster (DERS1) and
another, to the blue cluster (DERS2). Regarding the features of the phase diagram,
the main distinction between blue cluster DERSs and red cluster DERSs, as illus-
trated in the examples shown in Figs. A.11(a) and (c), is that the surface occupied
by the bistable region (shaded blue region) is much larger in blue cluster DERSs,
because of the displacement of its lower boundary. By comparison, the bistability
region of the PERSs is narrower than that of the DERSs (see Figs. A.11(b) and
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(d)). In particular the boundary that separates the bistable phase from the closed
phase (area at the left of the blue shaded region) is displaced towards smaller HDM
activity in the DERS phase diagrams.

This property suggests that a possible strategy to promote differentiation would
be to decrease HDM activity, as this would drive the PERS into its closed phase
whilst allowing the DERS to remain within its bistability region. In order to assess
this and other scenarios, we consider a base-line scenario where the number of HMEs
is exactly equal to average, i.e. eHDM = eHDAC = Z. We then compare different
scenarios regarding the abundance of HDM and HDAC to the base-line scenario.

Contrary to what could be expected, simulation results show that the strategy
of reducing HDM activity alone beyond the PERS closing boundary further hinders
differentiation. As can be seen in Fig. 3.9 (c), a decrease in HDM activity actu-
ally leads to longer differentiation time (see also [110]). Similarly, Figs. 3.9 (a) and
(b), which show statistics of the differentiation time, reveal that a decrease in both
HDM and HDAC activity also leads to an increment in differentiation times, that is,
this strategy fails to decrease the differentiation time below the base-line scenario.
In both cases, such hindrance of differentiation is the product of the increase in the
opening times (τ1+) of the DERS. This effect occurs because, as HDM and HDAC ac-
tivity is reduced, the DERS is driven towards the boundary between the closed state
and the bistability region. Close to such a region, the DERS closed state becomes
more stable and thus the corresponding τ1+ increases. By contrast, further reduction
of HDAC activity moves the DERSs system closer to their boundary between the
bistability region and the open state, resulting in a reduction of the differentiation
time. However, since the differentiation times remain above those corresponding
to the base line HDM and HDAC activity scenario (see Fig. 3.9 (a) and (b)), we
conclude that loss of both HDM and HDAC activity contributes towards hindering
differentiation.

3.4 Conclusion

In this Chapter we have presented a model of epigenetic plasticity which has
helped us to uncover some of the details and mechanisms underlying epigenetic regu-
lation of phenotypic robustness, in particular regarding the robustness of pluripotent
states. We have further uncovered how epigenetic heterogeneity regulates the deci-
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Figure 3.9: Plot continues on the following page. Caption on the following page.
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Figure 3.9: (Previous page). Plots showing the effect of the variation of HDM
and HDAC on the statistics of the differentiation time (τD). We consider a base-
line scenario where the number of HMEs is exactly equal to average, i.e. eHDM =
eHDAC = Z. We then compare the simulation results obtained for different scenarios
regarding the abundance of HDM and HDAC to the base-line scenario, i.e. by
changing the values of (eHDM , eHDAC). Parameter values: Z = 5 and Y = 15. Other
parameter values given in Tables A.15, A.16, ?? and ??, Section A.2.5.

sion mechanisms and kinetics driving phenotypic robustness in a stem-lock model
of pathological pluripotency. Our deconstruction of epigenetic plasticity and phe-
notypic malleability provides crucial insights into how pathological states of perma-
nently acquired pluripotency can be therapeutically unlocked by exploiting epigenetic
heterogeneity.

We have added an ER layer to previous approaches in which cell phenotypes were
associated with the attractors of complex gene regulatory systems and their robust-
ness, with the resilience of such attractors tuned by the presence of intrinsic noise,
environmental fluctuations, and other disturbances [79, 155, 181, 58, 170, 127, 97].

109



Our approach is based on two main pillars: namely, a framework for the gener-
ation of the ensemble of ER systems, and a multiscale asymptotic analysis-based
method for model reduction of the stochastic ER-GRN model (see Section 3.2.2).
The ensemble generation method allows the definition of epi-phenotypes based on
epigenetic-regulatory modes compatible with a given state of the whole ER-GRN
system [53]. We initially chose an epi-phenotype in which the ER of differentiation
gene(s) (DERS) is open/active whereas the ER of pluripotency gene(s) (PERS) is
closed/silent. We then used Approximate Bayesian Computation (ABC) to generate
an ensemble of DERS and PERS compatible with the above-mentioned phenotype
(see Section 3.2.4, Fig. 3.2 and Chapter 2). With such an ensemble generated,
we then proceeded to evaluate its hidden, intrinsic heterogeneity in terms of the
physical properties of the ER-GRN systems. This approach is closely related to the
notion of neutral networks formulated to analyse systems with genotype-phenotype
maps [164, 165, 166]. By making a number of assumptions regarding separation
of characteristic scales, we re-scaled both the variables and the parameters of the
ER-GRN system, which allowed us to discriminate the underlying separation of time
scales and consequently construct an asymptotic expansion, leading to a stochastic
QSSA of the system. This approximation reduces a rather complex stochastic sys-
tem (Eqs. (3.2.1)-(3.2.3)) to a hybrid, piece-wise deterministic Markov system (see
Section 3.2.2). Furthermore, our model reduction procedure gives rise to an efficient
and scalable, hybrid numerical method to simulate the ER-GRN system (see Section
A.2.1.5). Although the model reduction was formulated for a GRN with an arbi-
trary number of mutually inhibiting genes, such a procedure is applicable to broader
situations.

When analysing the behaviour of the mean-field limit of the GRN, it became
apparent that, even in the simplest case considered involving a gene regulatory cir-
cuit of only two genes, the system exhibited a complex space that included several
multi-stable phases. We observed a regime of tri-stability where the expected stem-
lock (pluripotent) and differentiated steady-states coexist with a third state, the
indecision state, in which the expression level of both genes is very low. From a
developmental perspective, the latter state could serve the purpose of priming cells
for differentiation, as the expression level of the pluripotency gene has decreased in a
manner that could release repression upon the differentiation gene. Of note, the tran-
sitions between the different phases can be triggered by changes directly related to
epigenetic regulation (i.e., cofactors of chromatin-modifying enzymes), which thereby
act as bona fide molecular bridges connecting epigenetic and phenotypic plasticity
by translating changes in ER states into variations of GRN states.
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Having analysed the phase diagram of the GRN system and established its connec-
tion with ER (see Section 3.3.1), we have assessed the role of epigenetic heterogeneity
in generating stem-lock pluripotent states. Such states can be viewed as examples
of the so-called overly restricted epigenetic states, which present accentuated epige-
netic barriers that block cell state transitions and which are biologically unable to
disengage self-renewal pathways [51]. The opposite situation of so-called overly per-
missive epigenetic states is accompanied by lowered epigenetic barriers that allow the
promiscuous sampling of alternative cell states [51]. Yamanaka originally appreciated
the link between epigenetic heterogeneity and plasticity when aiming to explain the
extremely low efficiency of somatic cell reprogramming at the population level [176].
We now know that an epigenetic predisposition to reprogramming fates exists in so-
matic cells and, therefore, the potential to acquire stem cell-like traits might in part
reflect a pre-existing heterogeneity in cell states [129]. Furthermore, by perturbing
the epigenetic state of somatic populations via inhibition of some epigenetic enzymes
(e.g., the histone methyltransferase Ezh2, which catalyses repressive H3K27 methy-
lation [159]), such heterogeneity can be harnessed to fine-tune the cellular response
to reprogramming-to-pluripotency factors. Indeed, our findings support a scenario
in which a sub-ensemble of ER systems with higher reprogramming potential pre-
exists within the ensemble of ER systems compatible with a terminally differentiated
cell state, and that such a sub-ensemble could be harnessed by targeting chromatin-
modifying enzymes such as HDMs and HDACs.

A careful evaluation of our ensemble of ER systems (i.e., combinations of DERSs
and PERSs) concerning stem-locked systems associated with differentiation-repressive
ER states (see Sections 3.3.2, 3.3.3, and 3.3.4) has concluded that DERS heterogene-
ity had a stronger influence on such pluripotency-locked systems when compared
with that of PERSs. Accordingly, we found that the ensemble of DERSs can be
divided into three different clusters, with each one exhibiting distinct properties re-
garding stem locking. The so-called red cluster appeared to generate differentiation-
permissive ER systems irrespective of their PERSs counterparts. By contrast, the
so-called blue and green clusters contained DERSs yielding pluripotency-locked ER
systems irrespective of their PERSs companions. In light of these findings, we con-
ducted a detailed comparative analysis to uncover the underlying, statistically signif-
icant differences between DERSs within the differentiation-permissive sub-ensemble
and those associated with the differentiation-repressive epigenetic states (see Section
3.3.2). This approach allowed us to detect which kinetic ER parameters were key to
determine whether a DERS within a given system produces either permissive or re-
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Figure 3.10: Strategies to unlock pluripotent stem-like states in ageing and can-
cer. Epigenetic regulation heterogeneity of differentiation genes (DERS), but not
that of pluripotency genes (PERS), was predominantly in charge of the entry and
exit decisions of the pluripotent stem-like states (blue). The application of a hybrid
numerical method validated the likelihood of epigenetic heterogeneity-based strate-
gies capable of unlocking and directing the transit from differentiation-refractory to
differentiation-primed (red) epistates via kinetic changes in epigenetic factors. (Note:
The epigenetic parameters regulating the entry into robust epi-states throughout the
entire ER-GRN system revealed a regime of tri-stability in which pluripotent stem-
like (blue) and differentiated (red) steady-states coexisted with a third indecisive
(green) state). (R: Recruited; U: Unrecruited).

pressive ER differentiation systems (see Section 3.3.3). Remarkably, the elucidation
of the identity of such critical regulators (see Fig. 3.10) would allow the formula-
tion of strategies aimed to unlock differentiation-repressive epigenetic states by solely
changing the values of such parameters (i.e., epigenetic cofactors). The feasibility of
such strategies was verified by direct simulation of the ER-GRN system using our
hybrid simulation method.

Our mathematical deconstruction of epigenetic plasticity suggests, for the first
time, that epigenetic heterogeneity may underlie the predisposition of cell popu-
lations to pathological reprogramming processes that cause a permanent, locked
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stem-like state disabled for reparative differentiation and prone to malignant trans-
formation. Just as the potential of single somatic cells to generate pluripotent lin-
eages reflects a pre-existing epigenetic heterogeneity permissive for the enhancement
of reprogramming fates [110, 53, 129], we show that ER heterogeneity could gener-
ate a subpopulation in which robustness of the pluripotent phenotype is inherently
boosted. Moreover, the uncovering of the epigenetic mechanisms underpinning such
stem-locked states might help in the formulation of strategies capable, for instance,
of unlocking the chronic epigenetic plasticity of senescence-damaged tissues while
stimulating differentiation of such stem cell-like states to successfully achieve tissue
rejuvenation (see Fig. 3.11). As we enter a new era of therapeutic approaches to
target ageing per se (e.g., senolytic agents), our current mathematical modelling
and computation simulation might pave the way to incorporate new systemic strate-
gies based on the local availability of epigenetic cofactors capable of fine-tuning the
senescence-inflammatory regulation of reparative reprogramming in ageing and can-
cer.
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Figure 3.11: Physiological and pathological cell fate reprogramming: A mathemati-
cal approach. Reprogramming-like phenomena in response to damage signalling may
constitute a reparative route through which human tissues respond to injury, stress,
and disease via induction of a transient acquisition of epigenetic plasticity and phe-
notype malleability. However, tissue regeneration/rejuvenation should involve not
only the transient epigenetic reprogramming of differentiated cells, but also the com-
mitted re-acquisition of the original or alternative committed cell fate. Chronic or
unrestrained epigenetic plasticity would drive ageing/cancer phenotypes by impairing
the repair or the replacement of damaged cells; such uncontrolled phenomena of in
vivo reprogramming might also generate cancer-like cellular states. Accordingly, we
now know that chronic senescence-associated inflammatory signalling might lock cells
in highly plastic epigenetic states disabled for reparative differentiation and prone to
malignant transformation. We herein introduce a first-in-class stochastic, multiscale
reduction method of combined epigenetic regulation (ER)-gene regulatory network
(GRN) to mathematically model and computationally simulate how ER heterogene-
ity regulates the entry-exit mechanisms and kinetics of physiological and pathological
cell fate reprogramming. (SAIS: Senescence-associated inflammatory signalling)
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Chapter 4

Ageing and epigenetic
dysregulation effects in cell
reprogramming

4.1 Summary

In this Chapter, we present an extension of the model formulated in Chapter 2.
The current model does not consider any longer an infinite abundance in the me-
dia of the acetyl and methyl groups necessary for the acetylation and methylation
modifications, respectively. Instead, we consider that these marks have a charac-
teristic scale, Z. We show that the epigenetic regulatory system exhibits different
behaviours depending on how Z is related to the other existing characteristic scales.
Furthermore, the model presented below, allows us to account for the activity of not
just the enzymes removing the epigenetic marks (HDMs and HDACs), but also the
activity of those enzymes performing the epigenetic histone modifications, histone
methyltransferases (HMTs) and histone acetyltransferases (HATs). The incorpora-
tion of these features leads to a more realistic model able to reproduce the plastic
and resilient scenarios described in Chapter 2, as well as clarifying the connections
between the appearance of the plastic cell behaviour and both ageing and epige-
netic dysregulation. In particular, when introducing ageing-related factors in our
model, such as upregulation of the activity of HATs for the pluripotency gene [80],
we identify a healthy, physiological cell reprogramming, where cell dedifferentiation
is reversible. When this effect occurs concomitantly with other epigenetic alterations,
such as downregulation of the HDAC activity [122, 174], we find a pathological ir-
reversible form of cell reprogramming as the epigenetic regulatory system enters a
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pluripotency-locked state. These results allow us to formulate epigenetic strategies
for rescueing the epigenetic regulatory system from the pathological cell reprogram-
ming or avoiding it.

4.2 Model formulation and analysis

In this Section, we present the details regarding the extended model of epige-
netic regulation. The current model relaxes the assumption that ER proceeds within
an infinite abundance of acetylation and methylation marks (which was assumed
in Chapter 2) by assuming that marks are finitely abundant. Under these condi-
tions, epigenetic regulatory systems of the differentiation-promoting gene and the
pluripotency-promoting gene compete for the marks. This feature allows to have a
model where both genes are coupled, rather than having two replicas of the same
stochastic model of ER (as studied in Chapter 2).

4.2.1 Epigenetic regulation model

As in the previous chapters, we formulate a model of ER acting upon a GRN of
2 mutually inhibiting genes, where one gene promotes differentiation and one gene
promotes pluripotency. The ER model assumes that unmodified nucleosomes (U)
can be modified by acquiring negative and positive marks. These marks can be
added (removed) by recruited and unrecruited mechanisms under the presence of
the corresponding histone (de)modifying-enzyme (see Section 2.2.1 for a complete
description of this phenomena). Nucleosomes are considered to be either unmodified
(U), acetylated (A) or methylated (M), and the dynamics of the model is described
by the transitions rates between these three states. Direct transitions between A
and M nucleosomes are considered highly unlikely, so the transitions are modelled
according to the linear sequence

M 
 U 
 A,

(see Section 2.2.1 for further details).

Since we are studying a GRN with one gene promoting differentiation and one
gene promoting pluripotency, we will assume that we have nucleosomes specific for
each gene. Furthermore, we will also assume that the histone-modifying enzymes
(HMTs, HATs, HDMs and HDACs) are gene-specific. The rationale for this assump-
tion comes from the fact that experimental results point to the importance of local
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changes in the chromatin patterns [33, 122, 48, 138, 104]. Specifically, different pat-
terns of methylation and acetylation have been observed in pluripotency-promoting
and differentiation-promoting genes. Inglés et al. [80] have found that centenarians
overexpress pluripotency-associated genes, and Heyn et al. [153] have shown differ-
ences in the DNA methylome when comparing centenarians and newborn individuals.
In particular, Heyn et al. find that tissue-specific genes are hypomethylated in cen-
tenarians when compared to octogenarians and newborns, i.e. there is a decrease in
the methylation marks of differentiation-associated genes with ageing. Both findings
remark the importance of being able to study addition and removal of methylation
and acetylation marks separately for each gene and thus, the need for gene-specific
enzymes. So we will denote with a subscript D or a subscript P , standing for dif-
ferentiation and pluripotency, respectively, to which gene the nucleosome or enzyme
belongs to.

In our modelling scenario, the dynamics is expressed in terms of the transition
rates as depicted in Table 4.2 with variables defined in Table 4.1. More specifically,
the reactions involved in our model are:

1. HDM-mediated demethylation:

MD +HDMD � CMD
→ UD +HDMD +Met

MP +HDMP � CMP
→ UP +HDMP +Met

HDM-mediated demethylation can be both unrecruited, where the rates asso-
ciated with each reaction are constant (see Table 4.2, reactions 1 to 3 (differen-
tiation gene), reactions 25 to 27 (pluripotency gene)), and recruited, where
all the associated rates are taken to be proportional to the number of A-
nucleosomes (see Table 4.2, reactions 4 to 6 (differentiation gene), reactions
28 to 30 (pluripotency gene)).

2. HDAC-mediated deacetylation:

AD +HDACD � CAD
→ UD +HDACD + Acet

AP +HDACP � CAP
→ UP +HDACP + Acet

HDAC-mediated deacetylation can be both unrecruited (see Table 4.2, reac-
tions 7 to 9 (differentiation gene), reactions 37 to 39 (pluripotency gene)), or
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recruited, where all the associated rates are proportional to the number of M-
nucleosomes (see Table 4.2, reactions 10 to 12 (differentiation gene), reactions
40 to 42 (pluripotency gene)).

3. HMT-mediated methylation:

UD +Met+HMTD � C̃MD
→MD +HMTD

UP +Met+HMT P � C̃MP
→MP +HMT P

HMT-mediated methylation can also be unrecruited (Table 4.2, reactions 13 to
15 (differentiation gene), reactions 31 to 33 (pluripotency gene)) or recruited,
in which case the associated rate is proportional to the number of methylated
nucleosomes (Table 4.2, reactions 16 to 18 (differentiation gene), reactions 34
to 36 (pluripotency gene)).

4. HAT-mediated acetylation:

UD + Acet+HATD � C̃AD
→ AD +HATD

UP + Acet+HAT P � C̃AP
→ AP +HAT P

As with the previous processes, HAT-mediated acetylation can also be unre-
cruited (Table 4.2, reactions 19 to 21 (differentiation gene), reactions 43 to 45
(pluripotency gene)) or recruited, in which case the transition rate is propor-
tional to the number of acetylated nucleosomes (Table 4.2, reactions 22 to 24
(differentiation gene), reactions 46 to 48 (pluripotency gene)).

Similarly to what we assumed in 2.2.1, we consider the scenario where both
histone hypomethylation (low level of negative (M) marks) and hyperacetylation
(high level of positive (A) marks) allow genes to be expressed when the associated
transcription factors are present [100]. On the contrary, we relate histone hyperme-
thylation and hypoacetylation to silent states where genes are not expressed even in
the presence of the appropriate transcription factors. In this chapter, we focus on
the conditions for the resilient and plastic scenarios to arise (as described in Section
2.3), as well as their robustness, particularly in connection with the abundance or
activity of the histone modifying enzymes (HMEs) and the effects of ageing. As
argued previously, changes in the abundance of HMEs are well justified due to the
variability in the pool of cofactors employed by HMEs. Not only this, but also, the
levels of activity of the HMEs change during ageing [48, 125, 122]
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Variable Description

X1 Number of methylation marks (Met)
X2 Number of acetylation marks (Acet)
X4 Number of unmodified nucleosomes differentiation gene (UD-nucleosome)
X5 Number of methylated nucleosomes differentiation gene (MD-nucleosome)
X6 Number of acetylated nucleosomes differentiation gene (AD-nucleosome)
X7 Number of HDM enzyme molecules differentiation gene (HDMD)
X8 Number of methylated nucleosome diff. gene -HDM enzyme complexes (CMD

)
X9 Number of HDAC enzyme molecules differentiation gene (HDACD)
X10 Number of acetylated nucleosome diff. gene -HDAC enzyme complexes (CAD

)
X11 Number of HMT enzyme molecules differentiation gene (HMTD)

X12 Number of methylated nucleosome diff. gene -HMT enzyme complexes (C̃MD
)

X13 Number of HAT enzyme molecules differentiation gene (HATD)

X14 Number of acetylated nucleosome diff. gene -HAT enzyme complexes (C̃AD
)

X15 Number of methylated nucleosome plurip. gene -HDM enzyme complexes (CMP
)

X16 Number of acetylated nucleosome plurip. gene -HDAC enzyme complexes (CAP
)

X17 Number of methylated nucleosome plurip. gene -HMT enzyme complexes (C̃MP
)

X18 Number of acetylated nucleosome plurip. gene -HAT enzyme complexes (C̃AP
)

X19 Number of unmodified nucleosomes pluripotency gene (UP -nucleosome)
X20 Number of methylated nucleosomes pluripotency gene (MP -nucleosome)
X21 Number of acetylated nucleosomes pluripotency gene (AP -nucleosome)
X22 Number of HDM enzyme molecules pluripotency gene (HDMP )
X23 Number of HDAC enzyme molecules pluripotency gene (HDACP )
X24 Number of HMT enzyme molecules pluripotency gene (HMTP )
X25 Number of HAT enzyme molecules pluripotency gene (HATP )

Table 4.1: Random variables
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Table 4.2: Random processes and their transition rates. Xi are as in Table 4.1.
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The transition rates (Table 4.2) associated with each of these reactions are mod-
elled using the law of mass action [59]. This model is an extension of the one formu-
lated in Chapter 2 (see Section 2.2.1), which, in turn, is based on previous models
by Menéndez et al. [110]. This model extends the model previously presented in
two ways. On one side, it accounts explicitly for the activity of four types of HMEs:
the above-modelled HDMs and HDACs, but also, the presence of HMTs and HATs.
Furthermore, the modelling approach adopted here treats both removal and addition
of M and A marks by representing them using the Michaelis-Menten model of enzy-
matic catalysis. This allows us to analyse how changes in the HMEs abundance can
directly affect the behaviour of the ER system, which was not possible in previous
models [110]. In particular, we aim to study the effects of altered activity of HMEs
and their connection with ageing-related cell reprogramming. Ageing is also a new
feature incorporated into this modelling framework. The precise form in which age-
ing is considered will be fully described later.

4.2.2 Mean-field equations and QSSA

As we have done previously (see Chapter 2), in order to gain some insight into
the behaviour of the stochastic ER model, we analyse its mean-field limit regarding
time scale separation and the quasi-steady state approximation (QSSA). For a full
account of the technicalities we refer to [1, 40].

The mean-field equations, which describe the time evolution of the ensemble
average of the variables Xi (see Table 4.1), related to the stochastic system with
rates given in Table 4.2 are:

dQi

dt
=

48∑
j=1

rj,iWj(Q), (4.2.1)

where Q is a vector whose entries, Qi, are defined as Qi ≡ 〈Xi〉 (i.e., its average
value). In order to proceed further, we assume that the variables describing the sys-
tem are divided into three groups according to their characteristic scales. The differ-
ent characteristic scales correspond to the characteristic number of epigenetic marks,
Z, the characteristic number of sites, S, and the characteristic scale for the HMEs
and complexes, E. More specifically, we consider the situation where the subset of
chemical species Xi, with i = 1, 2, corresponding to the marks, scales as Xi = Zxi,
where xi = O(1), the subset of chemical species Xi, with i = 4, 5, 6, 19, 20, 21, corre-
sponding to the substrates, scales as Xi = Sxi, where xi = O(1) and the remaining
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species are such that Xi, with i = 7, . . . , 18, 22, 23, 24, 25, corresponding to the en-
zymes and complexes, scale as Xi = Exi, where xi = O(1). We further assume that
S and E must be such that ε = E

S
� 1 (Briggs-Haldane approximation), which is a

standard assumption in enzyme kinetics (see [88]). Of key importance is the relation-
ship between the characteristic scale Z and the characteristic scale S. Depending on
this, the system will have a media with abundance or non-abundance of epigenetic
marks. Later, we will deal with this discussion. It is noteworthy to mention that
when S

Z
→ 0 (i.e. overabundance of marks), the current model reduces to the model

of Chapter 2, where marks where assumed to be infinite.

In order to proceed further, we define the following scale transformation for the
transition rates in Table 4.2: Wj(Q) = k16S

2EZωj(q), where for the rescaling we
have used the transition rate of highest order. We further rescale the time variable so
that a dimensionless variable, τ , is defined as τ = k16SEZt. It is now straightforward
to verify that, upon rescaling, the mean-field equations become:

Z

S

dqi
dτ

=
48∑
j=1

rj,iωj(q), i = 1, 2, (4.2.2)

dqi
dτ

=
48∑
j=1

rj,iωj(q), i = 4, 5, 6, 19, 20, 21, (4.2.3)

ε
dqi
dτ

=
48∑
j=1

rj,iωj(q), i = 7, . . . , 18, 22, . . . , 25, (4.2.4)

with ε = E/S. Eqs. (4.2.2)-(4.2.4) show that if ε = E/S � 1 holds, then, the
mean-field equations (Eqs. (4.2.2)-(4.2.4)) naturally display multiple scales struc-
ture, which we will exploit to simplify our analysis by means of a QSSA [137]. Fur-
thermore, depending on the ratio ε4 := S

Z
, further simplification will also be possible.

We will mainly distinguish three relevant cases: ε4 � 1, ε4 = O(1) and ε4 � 1. No-
tice that we denote this ratio with a subscript 4 for our convenience, since in this
way it is easy to see that it is the ratio about the abundance of epigenetic marks,
which is one of the features introduced in this Chapter 4.

Regarding Eqs. (4.2.2)-(4.2.4), the QSS approximation consists on assuming that
εdqi
dτ
' 0 which leads to a differential-algebraic system of equations which provides

us with the QSSA. In our particular case, the QSSA is given by:
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Z

S

dq1
dτ

= (κ3 + κ6q6)q8 − (κ13 + q5)q1q11q4 + (κ14 + κ17q5)q12 +

+ (κ27 + κ30q21)q15 − (κ31 + κ34q20)q1q24q19 + (κ32 + κ35q20)q17 (4.2.5)

Z

S

dq2
dτ

= (κ9 + κ12q5)q10 − (κ19 + κ22q6)q2q13q4 + (κ20 + κ23q6)q14 +

+ (κ39 + κ42q20)q16 − (κ43 + κ46q21)q2q25q19 + (κ44 + κ47q21)q18 (4.2.6)

dq4
dτ

= (κ3 + κ6q6)q8 − (κ13 + q5)q1q11q4 + (κ14 + κ17q5)q12 + (κ9 + κ12q5)q10 −

− (κ19 + κ22q6)q2q13q4 + (κ20 + κ23q6)q14 (4.2.7)

dq5
dτ

= −(κ1 + κ4q6)q5q7 + (κ2 + κ5q6)q8 + (κ15 + κ18q5)q12 (4.2.8)

dq6
dτ

= −(κ7 + κ10q5)q6q9 + (κ8 + κ11q5)q10 + (κ21 + κ24q6)q14 (4.2.9)

dq19
dτ

= (κ27 + κ30q21)q15 − (κ31 + κ34q20)q1q24q19 + (κ32 + κ35q20)q17 +

+ (κ39 + κ42q20)q16 − (κ43 + κ46q21)q2q25q19 + (κ44 + κ47q21)q18 (4.2.10)

dq20
dτ

= −(κ25 + κ28q21)q20q22 + (κ26 + κ29q21)q15 + (κ33 + κ36q20)q17 (4.2.11)

dq21
dτ

= −(κ37 + κ40q20)q21q23 + (κ38 + κ41q20)q16 + (κ45 + κ48q21)q18 (4.2.12)

q7 =
pHDMD(κ2 + κ3 + (κ5 + κ6)q6)

(κ1 + κ4q6)q5 + κ2 + κ3 + (κ5 + κ6)q6
(4.2.13)

q8 =
pHDMD(κ1 + κ4q6)q5

(κ1 + κ4q6)q5 + κ2 + κ3 + (κ5 + κ6)q6
(4.2.14)

q9 =
pHDACD(κ8 + κ9 + (κ11 + κ12)q5)

(κ7 + κ10q5)q6 + κ8 + κ9 + (κ11 + κ12)q5
(4.2.15)

q10 =
pHDACD(κ7 + κ10q5)q6

(κ7 + κ10q5)q6 + κ8 + κ9 + (κ11 + κ12)q5
(4.2.16)

q11 =
pHMTD(κ14 + κ15 + (κ17 + κ18)q5)

(κ13 + q5)q4q1 + κ14 + κ15 + (κ17 + κ18)q5
(4.2.17)

q12 =
pHMTD(κ13 + q5)q4q1

(κ13 + q5)q4q1 + κ14 + κ15 + (κ17 + κ18)q5
(4.2.18)

q13 =
pHATD(κ20 + κ21 + (κ23 + κ24)q6)

(κ19 + κ22q6)q4q2 + κ20 + κ21 + (κ23 + κ24)q6
(4.2.19)
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q14 =
pHATD(κ19 + κ22q6)q4q2

(κ19 + κ22q6)q4q2 + κ20 + κ21 + (κ23 + κ24)q6
(4.2.20)

q15 =
pHDMP (κ25 + κ28q21)q20

(κ25 + κ28q21)q20 + κ26 + κ27 + (κ29 + κ30)q21
(4.2.21)

q16 =
pHDACP (κ37 + κ40q20)q21

(κ37 + κ40q20)q21 + κ38 + κ39 + (κ41 + κ42)q20
(4.2.22)

q17 =
pHMTP (κ31 + κ34q20)q19q1

(κ31 + κ34q20)q19q1 + κ32 + κ33 + (κ35 + κ36)q20
(4.2.23)

q18 =
pHAT P (κ43 + κ46q21)q19q2

(κ43 + κ46q21)q19q2 + κ44 + κ45 + (κ47 + κ48)q21
(4.2.24)

q22 =
pHDMP (κ26 + κ27 + (κ29 + κ30)q21)

(κ25 + κ28q21)q20 + κ26 + κ27 + (κ29 + κ30)q21
(4.2.25)

q23 =
pHDACP (κ38 + κ39 + (κ41 + κ42)q20)

(κ37 + κ40q20)q21 + κ38 + κ39 + (κ41 + κ42)q20
(4.2.26)

q24 =
pHMTP (κ32 + κ33 + (κ35 + κ36)q20)

(κ31 + κ34q20)q19q1 + κ32 + κ33 + (κ35 + κ36)q20
(4.2.27)

q25 =
pHAT P (κ44 + κ45 + (κ47 + κ48)q21)

(κ43 + κ46q21)q19q2 + κ44 + κ45 + (κ47 + κ48)q21
(4.2.28)

where the re-scaled parameters κj are defined in Table 4.3, and where we have used
the following conservation laws,

q7 + q8 = pHDMD, where pHDMD =
HDMDT

E
,

q9 + q10 = pHDACD, where pHDACD =
HDACDT

E
,

q11 + q12 = pHMTD, where pHMTD =
HMTDT

E
,

q13 + q14 = pHATD, where pHATD =
HATDT

E
,

q15 + q22 = pHDMP , where pHDMP =
HDMP T

E
,

q16 + q23 = pHDACP , where pHDACP =
HDACP T

E
,

q17 + q24 = pHMTP , where pHMTP =
HMT P T

E
,
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q18 + q25 = pHAT P , where pHAT P =
HAT P T

E
,

with the subscript T denoting total, e.g. HDMDT denotes the total number of HDM
molecules for the differentiation gene (that is, those in its free form, q7, and those
bound forming a complex, q8). These conservation laws account for the fact that
the total number of enzyme molecules, i.e. the enzyme molecules in their free form
and those forming a complex, must be constant. Hence, the quantities pHMEgene are
defined as the total number of molecules of the HME affecting a particular gene over
its characteristic scale, E. Hence, E denotes the average of abundance of the HMEs
which, for simplicity, has assumed to be the same for all HMEs for both genes. This
result opens interesting avenues to investigate, since ageing appears to alter the ac-
tivity of some of these HMEs [175, 125, 115, 33, 48, 138, 104]. Therefore, our model
allows us in a natural manner to explore the effects of these anomalies on the stability
of epigenetic regulatory states because the values of pHMEgene are undetermined, so
they can be used as parameters.

In order to reduce further the dimension of our system, Eqs. (4.2.5)-(4.2.28), we
can also employ other conservation laws corresponding to the number of nucleosomes
at the promoter region of the differentiation and the pluripotency gene, ND and NP ,
respectively. After rescaling, these conservation laws result into,

q4 + q5 + q6 +
E

S
(q8 + q10 + q12 + q14) =

ND

S
, (4.2.29)

q19 + q20 + q21 +
E

S
(q15 + q16 + q17 + q18) =

NP

S
, (4.2.30)

where using the assumption that E
S
≈ 0, Eqs. (4.2.29)-(4.2.30) can be approximated

by

q4 + q5 + q6 ≈
ND

S
,

q19 + q20 + q21 ≈
NP

S
.

For simplicity, and without loss of generality, we will assume that ND

S
≈ 1 and

NP

S
≈ 1. Therefore, we obtain that

q4 ≈ 1− q5 − q6, (4.2.31)

and
q19 ≈ 1− q20 − q21. (4.2.32)
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Table 4.3: Re-scaled variables and dimensionless parameters

Rescaled variables Dimensionless parameters
q1 = X1/Z κ1 = k1/(k16SZ), κ2 = k2/(k16S

2Z), κ3 = k3/(k16S
2Z)

q2 = X2/Z κ4 = k4/(k16Z), κ5 = k5/(k16SZ)
q4 = X4/S κ6 = k6/(k16SZ), κ7 = k7/(k16SZ)
q5 = X5/S κ8 = k8/(k16S

2Z), κ9 = k9/(k16S
2Z)

q6 = X6/S κ10 = k10/(k16Z), κ11 = k11/(k16SZ)
q7 = X7/E κ12 = k12/(k16SZ), κ13 = k13/(k16S)
q8 = X8/E κ14 = k14/(k16S

2Z), κ15 = k15/(k16S
2Z)

q9 = X9/E κ17 = k17/(k16SZ), κ18 = k18/(k16SZ)
q10 = X10/E κ19 = k19/(k16S), κ20 = k20/(k16S

2Z)
q11 = X11/E κ21 = k21/(k16S

2Z), κ22 = k22/(k16)
q12 = X12/E κ23 = k23/(k16SZ), κ24 = k24/(k16SZ)
q13 = X13/E κ25 = k25/(k16SZ), κ26 = k26/(k16S

2Z)
q14 = X14/E κ27 = k27/(k16S

2Z), κ28 = k28/(k16Z)
q15 = X15/E κ29 = k29/(k16SZ), κ30 = k30/(k16SZ)
q16 = X16/E κ31 = k31/(k16S), κ32 = k32/(k16S

2Z)
q17 = X17/E κ33 = k33/(k16S

2Z), κ34 = k34/(k16)
q18 = X18/E κ35 = k35/(k16SZ), κ36 = k36/(k16SZ)
q19 = X19/S κ37 = k37/(k16SZ), κ38 = k38/(k16S

2Z)
q20 = X20/S κ39 = k39/(k16S

2Z), κ40 = k40/(k16Z)
q21 = X21/S κ41 = k41/(k16SZ), κ42 = k42/(k16SZ)
q22 = X22/E κ43 = k43/(k16S), κ44 = k44/(k16S

2Z)
q23 = X23/E κ45 = k45/(k16S

2Z), κ46 = k46/(k16)
q24 = X24/E κ47 = k47/(k16SZ), κ48 = k48/(k16SZ)
q25 = X25/E τ = k16SEZt, ε = E/S, ε4 = S/Z
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A quick look through the system, Eqs. (4.2.5)-(4.2.28), allows us to see that depend-
ing on the ratio S

Z
different behaviours will arise, which will imply other possible

reductions of the size of the algebraic-differential system. Let us focus now on the
analysis of the system regarding the ratio ε4 = S

Z
. We will consider three possible

scenarios:

1. Z � S (ε4 � 1). When taking Z � S, we are assuming that the characteristic
scale for the epigenetic marks, Z, is much larger than the characteristic scale
for the sites, S. This assumption corresponds to the scenario considered in
Section 2.2.1, where the marks have not been modelled explicitly because they
have never been considered a limiting factor. Therefore, when taking ε4 = 0 we
expect to obtain a model very similar to the one previously studied in Chapter
2. This scenario is essential, since this will allow us to find parameter values
for this model, so as to have the same base-line behaviour (bistability in a
determined region of the phase space, monostability at the normal enzymatic
level) as with the previous model. Hence, the limit of setting ε4 = 0 will be
the starting point for our discussion.

2. Z ≈ S, i.e. ε4 = O(1). Taking as reference the behaviour of the system for
ε4 = 0, we continue the solutions found by increasing ε4. Modifying ε4 in this
way corresponds to moving from a media where marks are infinitely abundant
(ε4 = 0) to a media where marks are as abundant as sites (ε4 = 1), covering
the regime of a media where marks are still abundant, but finite (0 < ε4 < 1).

3. Z � S (ε4 � 1). In this case, epigenetic marks are much less abundant
than nucleosomes, which implies that the sites cannot be all modified. This
corresponds to a regime where the majority of nucleosomes will be unmodified,
that is, with neither methylation nor acetylation marks. Since we are interested
in studying the open(closed) state of the genes, which are characterised by
high(low) levels of acetylation and low(high) levels of methylation, we need
that marks are, at least, of the same order as sites. Otherwise, we would not
be able to distinguish open and closed states. This limit thus provides no
relevant information for the problem we are studying.

We now consider in more detail the implications of regimes 1 and 2 on the be-
haviour of Eqs. (4.2.5)-(4.2.28). It is noteworthy that these different scalings for the
ratio S

Z
have a clear biological interpretation in terms of ageing. Ageing is known
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to alter the methylation and acetylation patterns. Therefore, by changing the abun-
dance of epigenetic marks, we could induce some of the patterns observed in ageing.
For instance, in a media where marks are scarce, hypoacetylated or hypomethylated
scenarios will be forced to be adopted. According to our model notation, reducing
the abundance of the marks in the media corresponds to moving from ε4 = 0 to
0 < ε4 ≤ 1.

4.2.2.1 Case 1: ε4 = 0 (Z � S)

Taking ε4 = 0 means that marks are infinitely abundant in the media (previously
studied model, where the marks where not explicitly modelled, see Section 2.2.1). In
particular, when setting S

Z
= 0 in Eqs. (4.2.5)-(4.2.6) gives us

dq1
dτ
≈ 0⇒ q1(τ) = K1,

dq2
dτ
≈ 0⇒ q2(τ) = K2,

with K1 and K2 constant values. Furthermore, when using the conservation law for
the methylation marks, we have that

q1 +
S

Z
(q5 + q20) +

E

Z
(q8 + q12 + q15 + q17) =

MetT
Z

,

where using the assumption that both S/Z = 0 and E/Z = 0, leads to

q1 ≈
MetT
Z

. (4.2.33)

For simplicity, we will denote the ratio pMet =: MetT
Z

. Hence, we can conclude that
when Z � S holds, then, q1 ≈ pMet (a constant value). An analogous discussion for
q2 will lead us to the same result, so we write q2 ≈ pAcet.

In this case, the system of Eqs. (4.2.5)-(4.2.28) is reduced to:

dq5
dτ

= −(κ1 + κ4q6)q5q7 + (κ2 + κ5q6)q8 + (κ15 + κ18q5)q12 (4.2.34)

dq6
dτ

= −(κ7 + κ10q5)q6q9 + (κ8 + κ11q5)q10 +

+ (κ21 + κ24q6)q14 (4.2.35)
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dq20
dτ

= −(κ25 + κ28q21)q20q22 + (κ26 + κ29q21)q15 +

+ (κ33 + κ36q20)q17 (4.2.36)

dq21
dτ

= −(κ37 + κ40q20)q21q23 + (κ38 + κ41q20)q16 +

+ (κ45 + κ48q21)q18 (4.2.37)

together with the algebraic equations, Eq. (4.2.13)-(4.2.28), Eqs. (4.2.31)-(4.2.32)
and q1 = pMet, q2 = pAcet.

Interestingly, in this limit, as epigenetic marks are abundant, HMEs do not need
to compete for them, which implies that the system described by Eqs. (4.2.34)-
(4.2.37) decouples into two independent subsystems. One of these subsystems de-
scribes the behaviour of the differentiation gene, Eqs. (4.2.34)-(4.2.35), and the other
subsystem corresponds to the dynamics of the pluripotency gene, Eqs. (4.2.36)-
(4.2.37).

4.2.2.2 Case 2: ε4 = O(1) (Z ≈ S)

Consider now the case where S/Z = O(1), i.e. S = ε4Z, with ε4 ∈ (0, 1]. We
wish now to study the system for 0 < ε4 ≤ 1. Recall that we are still assuming that
E � S (ε ≈ 0).

The main difference between the case ε4 = 0 and 0 < ε4 ≤ 1 is that we can
no longer assume that the marks are infinitely abundant in the media. If we go
back to the system described by Eqs. (4.2.5)-(4.2.28), we can see that the first two
equations, Eqs. (4.2.5)-(4.2.6), are the ones corresponding to the time evolution of
the epigenetic marks. In the previous case, we have been able to use the multiple-
scale assumption and eliminate these two equations, by assuming that marks were
constant over time. Now, we have that marks are of the same order as sites. At first,
this fact could seem to imply that the system to study will be 6-dimensional (rather
than 4-dimensional). However, using the conservation laws for the total number of
marks, we will be able to introduce the nonconstant behaviour of q1 and q2 without
needing to increase the dimension of the problem. Specifically,

q1 +
S

Z
(q5 + q20) +

E

S
(q8 + q15 + q12 + q17) = MetT ,

where using that S/Z = ε4 and that E/S ≈ 0, we obtain the following expression

ε4(q5 + q20) + q1 ≈ pMet,
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from where it is straightforward to obtain an expression for q1,

q1 ≈ pMet − ε4(q5 + q20), (4.2.38)

where pMet = MetT
Z

. Using the analogous conservation law for the acetylation marks,
we can derive the expression for q2,

q2 ≈ pAcet − ε4(q6 + q21), (4.2.39)

where pAcet = AcetT
Z

.

Within the limit ε4 = O(1), the behaviour of qi, i = 7, . . . , 18, 22, . . . , 25 remains
unchanged because ε = E

S
� 1 still holds. Therefore, as in the previous case, we

just need to study the time evolution for q5, q6, q20 and q21, by means of the sys-
tem described by Eqs. (4.2.34)-(4.2.37), which is supplemented with the algebraic
expressions given by Eqs. (4.2.13)-(4.2.28), Eqs. (4.2.31)-(4.2.32) and Eqs. (4.2.38)-
(4.2.39).

When assuming ε4 = O(1), the algebraic expressions for q11, q12, q13, q14, q17, q18,
q24 and q25, will have an extra non-linear term, since instead of having q1 = pMet or
q2 = pAcet, they will have q1 = pMet − ε4(q5 + q20) or q2 = pAcet − ε4(q6 + q21). This
difference has a huge impact on the behaviour of the system. Now, since q1 and q2
are not constant and they involve one variable of each gene, they add a coupling on
to the 4-dimensional system. This implies that now the system behaves as a unit,
where the gene promoting differentiation and the gene promoting pluripotency are
competing for the marks, i.e. they are not independent one from the other. There-
fore, any change occurring to the epigenetic status of one gene, will have effects on
the other one.

Although we have not considered this case, we want to notice that within the
limit ε4 = O(1), we could assume the abundance of acetylation and methylation
marks to be different. More precisely, we could have two parameter values, ε4a and
ε4m, denoting the abundance of the acetyl and methyl groups, respectively, with both
parameters O(1) but not necessarily ε4a=ε4m. This will allow to explore cases where
acetyl groups are more abundant than methyl groups, or vice versa. For simplicity,
we have not considered this case.

4.2.3 Parameter values and viability conditions

Similarly to what we have done in Chapter 2, we consider a network of two
genes, one gene promoting differentiation and the other one promoting pluripotency.
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Within such a context, the epi-phenotype of a normal somatic, differentiated cell de-
mands that those genes promoting pluripotent behaviour and/or proliferation should
be silent, whereas genes promoting differentiation and quiescent behaviour should be
active.

Although having presented a more complex model (see Section 4.2) able to cou-
ple the activity of both genes through the epigenetic marks, we initially use the case
where the activity of both genes is decoupled, i.e. we take ε4 = 0 to generate the
parameter values. We proceed in this way because this case mimics the case used in
Chapter 2, where we considered that the epigenetic regulatory model was composed
of two replicas of the stochastic ER model, as described in Section 2.2.1, each one
related to a gene of the GRN. In the case presented in here, the ER system is char-
acterised by just one set of kinetic rates, κj (see Table 4.3), so that the behaviour
of the system can be tuned to the demands of the viability conditions (to be speci-
fied below) by changing these parameters. The variability in the rates kj, which are
related to the activity of the HMEs that carry out the epigenetic modifications, can
be interpreted in terms of the existing heterogeneity in the availability of cofactors,
such as NAD+ or acetyl-CoA, which are needed for the HMEs to perform their func-
tion, and which change their abundance with ageing. It is important to remark that
the kinetic rate constants, κj, as given in Table 4.3, are dimensionless, so there is an
undetermined scale in our system, k16, which can be used to fit real data (if available).

For the remainder of this Chapter, and according to the notation introduced in
Table 4.1 and Table 4.3, an open epigenetic state for the differentiation gene will refer
to a steady state of the system where q4 ' q5 ' 0 and q6 ' 1 (predominance of pos-
itive marks). Similarly, for a pluripotency gene, the open state will be characterised
by q19 ' q20 ' 0 and q21 ' 1. A closed or silent epigenetic state for the differentia-
tion gene is associated with q4 ' 0, q5 ' 1 and q6 ' 0 at equilibrium (predominance
of negative marks), whilst the corresponding closed state for the pluripotency pro-
moting gene is characterised by q19 ' 0, q20 ' 1 and q21 ' 0.

In the Appendix (Section A.3.1) we give the tables of parameter values used in
our ER system so as to generate the plastic and resilient epiphenotypes, as described
in Chapter 2. These parameter sets have been chosen following the same viability
criteria as in Chapter 2 (see Section 2.2.3.1), namely, that for a media with abundant
marks (ε4 = 0) at normal enzymatic level (for all the HMEs this model includes),
the differentiation(pluripotency) gene has just one stable steady state, corresponding
to its open(closed) state. Furthermore, for these parameter sets it is also required
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that for pHDMD
< 1, pHDACD

< 1 (pHDMP
< 1, pHDACP

< 1) the differentiation
(pluripotency) gene has a bistability region, where the open and the closed states of
the gene coexist.

4.3 Results

In this Section, we study the effects that ageing and epigenetic dysregulation may
have in the resilient and plastic scenarios (as defined in Section 2.3 in Chapter 2)
regarding their robustness with respect to changes in the abundance of epigenetic
marks and HME activity, and their consequences in cell reprogramming.

4.3.1 The plastic and resilient scenarios are recovered under
the assumption of abundant marks

The first analysis we perform is to study whether in this model, the previous two
scenarios identified in Section 2.3, namely, the plastic and the resilient scenario, are
both still feasible. In order to do this, we set ε4 = 0, which implies that the model
has no coupling, i.e. there is no competition for the marks because the epigenetic
marks are abundant in the media (as assumed in Chapter 2). When ε4 = 0, the
4-dimensional system of ODEs presented (see Section 4.2) decouples into two inde-
pendent subsystems, each of 2-ODEs, one for the ER system of the gene promoting
differentiation and another one for the ER system of the pluripotency-promoting
gene. This is exactly the situation modelled in Chapter 2, when we had two replicas
of the stochastic model of ER. This similarity between both systems is the one we
want to take advantage of so as to identify the two relevant scenarios previously
considered.

Fig. 4.1 and Fig. 4.2 show, respectively, the plastic and the resilient scenario.
As can be seen, the main difference between Figure 4.1 and 4.2 is the overlap-
ping/nonoverlapping bistability regions. In Fig. 4.1 it can be observed that the
bistability region of the differentiation gene, described by the area between the red
and the blue dashed lines, and the bistability region of the pluripotency gene, de-
picted by red and blue solid lines, have a region where they overlap. In this section of
the phase diagram, with the zone of interest zoomed at in Fig 4.1(b), it can be seen
that the open state boundary for the pluripotency gene (red solid line) appears at the
left (i.e. for lower values of pHDM) of the closed state boundary for the differentiation
gene (blue dashed line), indicating that the bistability regions coexist in this area.
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In this region both genes are bistable, which indicates, that the system could move
to the closed-differentiation, open-pluripotency state, i.e. the cell could reprogram,
giving rise to the so-called plastic scenario. This diagram has been obtained with
the parameter values from Table A.22 in Section A.3.1.

In contrast, Fig. 4.2 illustrates a resilient epiphenotype, where the bistability
regions do not overlap. In this scenario, cell reprogramming is not possible because
both genes cannot be bistable at once, which is why this scenario is labelled as the
resilient scenario. In the situation depicted in Fig. 4.2, whenever the differentiation
gene can be closed (region at the left of the blue dashed line), the pluripotency gene
is also closed, impeding thus, reprogramming to occur. This refractory scenario has
been generated with the parameter values given in Table A.21, Section A.3.1.

4.3.2 Cell reprogramming is still feasible in a media with
non-abundant marks

In the previous section, we have shown that with the model presented in this
Chapter, the two relevant scenarios (resilient and plastic) presented in Chapter 2
can still be obtained. The current model allows us to investigate the effect of alter-
ing the abundance of the epigenetic marks, since this factor is modelled in terms of ε4.

We are interested in studying whether the plastic scenario stays feasible in a me-
dia of non-abundant epigenetic marks (i.e. 0 < ε4 ≤ 1) or if on the contrary, it ceases
to exist. The latter would imply that the plastic scenario is just an artifact of our
model assumptions but it would not be biologically plausible, since epigenetic marks
can be really large, but not infinite as assumed when taking ε4 = 0.

In order to assess the robustness of the plastic scenario regarding variation on
the abundance of marks, we consider the parameter values from the plastic scenario,
Table A.22, and we increase ε4. The resulting phase-diagram for ε4 = 10−5 is shown
in Fig. 4.3. As can be observed (see Fig. 4.3(b) for better observation), in a media
of non-abundant marks, the plastic scenario is still conserved. This finding reveals
that cell reprogramming is feasible in a media of non-abundant marks and, in fact,
it implies that cell reprogramming is attainable in a realistic assumption, i.e. when
marks are finite.

Although it may seem that ε4 = 10−5 is a very small parameter, we want to
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(a)

(b)

Figure 4.1: Caption on the following page.
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Figure 4.1: (Previous page). Plots showing the existence of the plastic scenario, as de-
scribed in Section 2.3, when the marks are abundant in the media, which is obtained
by setting ε4 = 0. In both plots, solid (dashed) lines correspond to the bistability
limits of the pluripotency(differentiation)-promoting gene. Red(blue) color denotes
the boundary where the open(closed) state ceases to be stable. This means that the
region at the left of the solid (dashed) red line, the only possible stable steady state is
the closed one for the pluripotency(differentiation) gene, the region between the solid
(dashed) red and solid (dashed) blue line is where the pluripotency(differentiation)
gene is bistable, and in the region at the right of the blue solid (dashed) line the only
possible stable steady state is the open state for the pluripotency (differentiation)
gene. (a) Phase space of a plastic scenario corresponding to the ER model with
parameter set given by Table A.22 in Section A.3.1. (b) Zoom of the phase space
shown in (a), where the overlapping between both bistabilities regions is clearer
(region between the red solid line and the blue dashed line).

emphasise the important step taken when moving from ε4 = 0 to ε4 = 10−5, since
it means changing the scenario from an infinite number of marks, to a media where
they have a finite presence. In fact, once the existence of the plastic scenario has
been confirmed for a media with non-infinite marks, we have wondered on the effect
of a further reduction of the abundance of the epigenetic marks, i.e. an increase
on the ε4 parameter. Taking the initial plastic scenario (described by Table A.22 in
Section A.3.1) and setting ε4 = 0.01 and ε4 = 0.1, gives rise to the scenarios depicted
in Fig 4.4 and Fig. 4.5, respectively.

Fig. 4.4 and Fig. 4.5 reveal several interesting results. The first thing to notice
when observing Fig. 4.4 and 4.5 is that none of them exhibits plastic behaviour
(i.e. the overlap between both bistability regions vanishes). In both cases, thus, cell
reprogramming is not achievable. Furthermore, when comparing Fig. 4.4 (a) to Fig.
4.5, where the only difference is an increase in ε4, it can be seen that the bistability
region for the differentiation gene is shifted to the left, whilst the bistability region
for the pluripotency gene is shifted to the right. This combined movement of both
bistability regions have as consequence that the region in between these bistability
regions, corresponding to open differentiation gene and closed pluripotency gene, i.e.
normal somatic, differentiated cell, increases its area. This can be interpreted as
an increased robustness of the differentiated epi-phenotype, since now, in order to
enter a bistability region, the variation in the HMEs activity needs to be larger than
previously, when both bistability regions were really close. Notice that in all the
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Figure 4.2: Plot showing the existence of the resilient scenario, as described in
Section 2.3, when the marks are abundant in the media, which is obtained by
setting ε4 = 0. Solid (dashed) lines correspond to the bistability limits of the
pluripotency(differentiation)-promoting gene. Red(blue) color denotes the bound-
ary where the open(closed) state ceases to be stable. This means that the region
at the left of the solid (dashed) red line, the only possible stable steady state is the
closed one for the pluripotency(differentiation) gene, the region between the solid
(dashed) red and solid (dashed) blue line is where the pluripotency(differentiation)
gene is bistable, and in the region at the right of the blue solid (dashed) line the only
possible stable steady state is the open state for the pluripotency (differentiation)
gene. Parameter set for this resilient scenario given by Table A.21 in Section A.3.1.
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(a)

(b)

Figure 4.3: Plots showing the existence of the plastic scenario, as described in
Section 2.3 even when the marks are not abundant in the media, ε4 = 10−5.
In both plots, solid (dashed) lines correspond to the bistability limits of the
pluripotency(differentiation)-promoting gene. Red(blue) color denotes the bound-
ary where the open(closed) state ceases to be stable. In the region at the left(right)
of the red(blue) line the only possible stable steady state is the closed(open), and
the region between the red and the blue line exhibits bistable behaviour. (a) Phase
space of a plastic scenario corresponding to the ER model with parameters given by
Table A.22 in Section A.3.1 (b) Zoom of the phase space shown in (a), where the
overlapping between both bistabilities regions is clearer (region between the red solid
line and the blue dashed line). 138



(a)

(b)

Figure 4.4: Plots showing the loss of the plastic scenario (ε4 = 10−2). In
both plots, solid (dashed) lines correspond to the bistability limits of the
pluripotency(differentiation)-promoting gene. Red(blue) color denotes the bound-
ary where the open(closed) state ceases to be stable. At the region at the left(right)
of the red(blue) line the only possible stable steady state is the closed(open), and
the region between the red and the blue line exhibits bistable behaviour. (a) Phase
space of a resilient scenario, as described in Section 2.3, corresponding to the ER
model with parameters given by Table A.22 in Section A.3.1. (b) Zoom of the phase
space shown in (a), where the non-overlapping between both bistability regions is
clearer.
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Figure 4.5: Plot showing that the differentiated epiphenotype increases its robustness
as ε4 increases. Plot for ε4 = 10−1. It can be observed that the bistability regions
do not overlap and the distance separating them, distance between the dashed blue
line and the solid red line, increases when compared to Fig. 4.4. Solid (dashed) lines
correspond to the bistability limits of the pluripotency(differentiation)-promoting
gene. Red(blue) color denotes the boundary where the open(closed) state ceases to
be stable. At the region at the left(right) of the red(blue) line the only possible
stable steady state is the closed(open), and the region between the red and the blue
line exhibits bistable behaviour. ER system given by Table A.22 in Section A.3.1.
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above figures, the x axis has represented the HDM activity, assuming to be the same
for both genes, whilst the y-axis has represented the activity of HDAC enzymes,
again assuming to be the same for both genes, i.e. setting pHDMD

= pHDMP
(and

denoting it as phdm) and setting pHDACD
= pHDACP

(and denoting it as phdac).
Let us recall that phdm = 1 or phdac = 1 represents normal activity (abundance) of
these enzymes.

In Section 4.3.1 we have proved the existence of the plastic scenario. In this
Section we have shown that the plastic scenario is still feasible in a media with non-
infinite epigenetic marks, although we have also concluded that a further increase
on the ε4 value renders the system without the plastic behaviour, increasing the
robustness of the differentiated state. However, as discussed in Section 1.2.2.1, ageing
tissues exhibit cell reprogramming [115]. Our results suggest that in order to find
a plausible explanation for the correlation between ageing and cell reprogramming,
the effect of other factors needs to be incorporated, because by solely decreasing
the abundance of epigenetic marks, the plastic behaviour is not obtained. It is
well-known that ageing tissues are characterised by epigenetic dysregulations, such a
decrease on the activity of the HDACs (sirtuin family) which is assumed to shorten
lifespan, or a decrease of HDMs activity found in several cancers (IDH mutation)
[17, 12, 30, 128, 41, 122] . In the next section, we will analyse the precise epigenetic
alterations related to ageing, so as to see if we can recover the existing cell plasticity
characteristic of ageing.

4.3.3 Analysing ageing effects: appearance of cancer-related
pathological plasticity and how to revert it

According to the results by Inglés et al. [80], centenarian individuals exhibit
overexpression of pluripotency-related genes, when compared to younger individu-
als. Therefore, in order to study the effects of ageing in the model, we will study
the effect of increasing the number of HAT enzymes for the pluripotency gene, mod-
elled through the parameter pHATP

, since this implies that the pluripotency gene will
have extra help in order to acetylate, which is an epigenetic mark for gene expression
(open gene). In order to verify whether increasing the number of pluripotency gene
HATs would favour reprogramming, as per the experimental results in ageing tissues
[151, 179], we start with the parameter set given by Table A.22, such that for ε4 = 0
plastic behaviour was obtained, but plasticity was lost when increasing ε4 (see Fig.
4.4 and Fig. 4.5). In particular, we assume that the number of HAT enzymes for the
pluripotency gene becomes greater by a 50%, i.e. pHATP

= 1.5. The abundance of all
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the other HMEs remains unaltered. The results for this situation, with ε4 = 0.1, are
illustrated in Fig. 4.6. It is worth remarking that for ε4 6= 0, there is competition for
the marks, so changing the activity of some epigenetic enzymes adding or removing
marks to/from the pluripotency gene, such as pHATP

, has also consequences on the
differentiation gene. If the activity of one enzyme adding (removing) marks increases
on one gene, it implies that there are less(more) epigenetic marks available for the
other gene to use.

Fig. 4.6 represents the bifurcation diagram obtained when setting pHATP
= 1.5

with respect to the abundance of HDAC enzymes, which for simplicity, has been
assumed to be the same for the differentiation and the pluripotency genes, i.e.
pHDACD

= pHDACP
, which therefore are denoted by the general notation pHDAC .

Analysing Fig. 4.6, we can observe that at normal enzymatic level for the HDAC
enzymes, pHDAC = 1, the system exhibits tristable behaviour (stable steady states
shown in red). This behaviour can be appreciated in more detail by observing Fig.
4.6 (a), where we can see that q6, variable corresponding to the (re-scaled) acety-
lated sites at the promoter region of the differentiation gene, has two steady states
with high values (associated with open differentiation gene) and one steady state with
lower values, corresponding to closed differentiation gene (Fig. 4.6 (b) provides a bet-
ter representation of the two steady states with high q6). When looking at Fig. 4.6
(c), which represents the steady state values of q21, corresponding to the (re-scaled)
acetylated sites at the promoter region of the pluripotency gene, we can observe that
at normal enzymatic level, pHDAC = 1, there are two stable solutions with high val-
ues of q21 (corresponding to open pluripotency gene), and one steady state solution
with lower values of q21 which is related to closed pluripotency gene. Again, the
solutions for high values of q21 are better depicted in Fig. 4.6 (d). Therefore, we
can see that at normal enzymatic level, there exists different possibilities regarding
the state the cell can adopt. Specifically, these diagrams (see Fig. 4.6) shows the
existence of five possible steady state solutions, of which, three are stable: one cor-
responds to both genes open, another one corresponds to the differentiation gene
open and the pluripotency gene closed and the third one, which is the one leading to
cell reprogramming, has differentiation gene closed and pluripotent gene open. It is
important to remark that since ε4 = 0.1, the behaviour of one gene is not decoupled
from the behaviour of the other gene and this is why, we cannot combine any possible
stable steady state of the differentiation gene to any possible stable steady state of
the pluripotency gene, because they are steady states of the 4-dimensional system,
not of the 2-dimensional subsystems (as analysed in Chapter 3). This explains why
both differentiation and pluripotency genes closed is not a stable solution in this case.
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Figure 4.6: One-parameter bifurcation diagrams showing the value of the vari-
able q6 (a,b) and q21 (c,d) at steady states versus the parameter pHDAC , assuming
pHDACP

= pHDACD
, for ε4 = 0.1 and pHATP

= 1.5. Red (black) lines correspond
to stable(unstable) steady states. Parameter values given by Table A.22 in Section
A.3.1. Plots (b) and (d) are zooms of the top right region of plots (a) and (c), re-
spectively, which are provided for a better illustration of the existing bistability in
that area.
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The situation depicted in Fig. 4.6, which is related to the previous resilient sce-
nario depicted in Fig. 4.5 where cells were in the differentiated state for normal en-
zymatic levels, shows that when altering the activity of HATP , setting pHATP

= 1.5,
and letting the HDAC enzymes at its normal activity (pHDAC = 1) cell reprogram-
ming is feasible. In other words, the up-regulation of the enzymatic activity of the
HAT for the pluripotency gene seems to drive the system towards a situation where
cells could renew, since they could be reprogrammed towards a stem cell-like state.
This, which we relate to a ‘healthy’ ageing, could explain why people overexpressing
the pluripotency-associated genes can become centenarians, since these individuals
have the possibility to rejuvenate their tissues, by generating stem cell-like cells, and
differentiating them again.

Interestingly, the ‘healthy’ ageing situation described in the previous paragraph,
not only holds for normal activity of HMEs. As depicted in Fig. 4.6, if the activity
of HDAC enzymes decreases slightly, the cell could still reprogram towards the stem-
cell like state, i.e. differentiation-gene closed, pluripotency-gene open. However, it is
well-documented that HDACs decrease their activity with ageing [125, 122, 48]. As
can be seen in Fig. 4.6, if this reduction exceeds a threshold, then, the system enters
into a regime where the bistable behaviour for the differentiation-gene disappears
and if the reduction is more severe, then, the pluripotency-gene gets locked in the
open state. Therefore, a decrease of the HDAC activity, which is known to happen
with ageing, will drive the ‘healthy’ ageing (‘healthy’ plasticity) to a malignant or
pathological plasticity, where cells will lose their ability to differentiate again. In
other words, the cell will enter a region where the only possible fate it can take is
a less differentiated state, where pluripotency genes are expressed, i.e. cell will get
locked in an undifferentiated state, which may cause the accumulation of undifferen-
tiated cells in the tissue, a feature observed in some cancers. This situation, where
there is a combined effect of an increase of HAT activity for the pluripotency genes
and a global decrease in activity of HDAC enzymes, is the one assumed to occur in
normal ageing, which is the reason we label this situation as the physiological ageing.

The physiological ageing situation depicted in Fig. 4.6 holds for larger values of
ε4, i.e. for scenarios where the epigenetic marks are less abundant. Fig. 4.7 depicts
the results for ε4 = 0.5, where it can be observed that the results are qualitatively
analogous, with the difference on the value of pHDAC for which the pathological plas-
ticity appears. In this case, the level of HDAC reduction must be greater than in
the previous case when ε4 = 0.1.
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Therefore, upregulation of the pluripotency-associated genes can render cells in a
situation favourable for renewing tissues and thus, it may be one of the reasons why
this overexpression is found in centenarian people [80]. However, when this feature
is accompanied by a decrease of the HDAC activity, the transient plasticity acquired
may be permanent, which will put the cells in a situation favourable for cancer de-
velopment. An immediate consequence of this fact is that if we could find ways to
boost the activity of HDAC enzymes to recover its normal average, i.e. to avoid
the decline associated with ageing, then we would be able to obtain results in two
interesting ways, since we would move from the pathological to the ‘healthy’ ageing
scenario. On one hand, we would avoid situations with higher oncogenic likelihood,
and on the other hand, by being able to renew our tissues we may find the way to
revert the ageing process. Interestingly, it has been reported in the literature that the
increase of the activity of sirtuin 1 (see Section 1.2.2.4.1), which has HDAC activity,
has been proved to be successful in extending lifespan, which is in agreement with
our results. Our findings agree with the fact that when accounting for epigenetic
dysregulation associated with ageing, pathological cell reprogramming is a realistic
possibility, highlighting the key role played by HMEs as drivers of impaired ageing.

With the epigenetic strategy suggested, increasing HDAC activity, we have exem-
plified possible epigenetic alterations that we argue that could give rise to a ‘healthy’
plastic phenotype in the presence of factors associated with ageing. Since this model
takes into account the activity of 8 enzymes, the number of strategies that we could
design is large. The strategy we have presented was consisting on changing the
activity of just one enzyme, but of course, combined strategies that alter the activ-
ity of more than one enzyme are also possible. How successful these strategies are
is something needed to quantify as it will provide useful therapeutic information.
Of particular interest will be testing which strategies drive the system towards a
more favourable situation for reprogramming, in the sense that the appearance of
the ‘healthy’ ageing phenotype appears without the possibility for stem-cell locking
reprogramming.

4.4 Discussion

In this Chapter, we have presented a model of the epigenetic regulation of a two
gene regulatory system, where one gene promotes differentiation and one gene pro-
motes pluripotency. This model includes the one presented in Chapter 2, where each
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Figure 4.7: One-parameter bifurcation diagrams showing the value of the vari-
able q6 (a) and q21 (b) at steady states versus the parameter pHDAC , assuming
pHDACP

= pHDACD
, for ε4 = 0.5 and pHATP

= 1.5. Red (black) lines correspond
to stable(unstable) steady states. Parameter values given by Table A.22 in Section
A.3.1

146



gene had its own ER model. The model presented here extends the previous one
by adding competition for the epigenetic marks needed for the epigenetic alterations
at the histones of the genes. The addition of competition implies that both genes
are not independent and thus, the model goes one step closer towards bridging the
modelling framework and the real biological problem, where systems, rather than
disconnected, form a high complex unit.

We have extended the previous model by both incorporating the activity of spe-
cific gene enzymes and by adding explicit modelling of HATs and HMTs activity. By
exploiting the multiple-scales arising naturally in the model, we have incorporated a
new parameter able to represent the abundance of the epigenetic marks. Such abun-
dance is known to be altered within ageing systems and our model allows us to study
this alteration by changing the value of the corresponding parameter. Therefore,
the extended model allows us to study the interplay between ageing and epigenetic
dysregulation. As discussed in Chapter 1, epigenetic dysregulation associated with
ageing has recently emerged as one of the key elements driving tumorigenesis (see
Section 1.2.2.3). In particular, epigenetic heterogeneity has been linked to higher
reprogramming rate (see Section 1.2.2.1), to the metabolism rewire characteristic of
cancer cells (see Section 1.2.2.4.1)... Therefore, this Chapter sheds some light on the
connection between the combined effects of ageing and epigenetic dysregulation to
cancer.

We have placed our efforts on analysing the existence and robustness of plastic
behaviour associated with the epigenetic regulatory system, as defined in Section
2.3, but also on its transient or permanent acquisition, as discussed in Chapter 3.
Cell reprogramming is feasible for ER systems exhibiting the plastic epi-phenotype.
Determination of the conditions which favour the appearance of this scenario allows
us to understand when cells can revert to a stem cell-like state, e.g. when CSCs may
appear. As discussed, one of our main results is that the plastic epiphenotype ap-
pears in realistic situations, i.e. when genes compete for a finite number of epigenetic
enzymes. However, when marks become scarce, the possibility of cell reprogramming
disappears and the differentiated epi-phenotype, characterised by open(closed) dif-
ferentiation(pluripotency) gene, increases its robustness. Since cell reprogramming
is known to occur withing ageing tissues, we have further studied ageing effects.

When taking into consideration not only the abundance of the epigenetic marks,
but also ageing-related epigenetic alterations regarding variations in activity of HMEs,
in particular HATs [80] and HDACs [122, 174], we can distinguish two different plas-
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tic phenotypes. On one hand, there is the ‘healthy’ plastic phenotype, characterised
by bistable behaviour of both genes, which allow, first, to revert to a stem-cell like
state and later, to return to the differentiated state, since both states are stable.
These state could be related to healthy reprogramming that helps the regeneration
(or rejuvenation) of tissues and, consequently, revert some of the problems associated
with the ageing process. On the other hand, we have characterised a ‘pathological’
(or physiological) plastic state, by which the acquisition of stem-cell features is irre-
versible and cells get locked in a undifferentiated state. Noticeably, this irreversible
plasticity appears when taking epigenetic dysregulation effects, such as those ob-
served in the sirtuin family, in cooperation with ageing.

Our modelling results show that epigenetic enzymatic alterations associated with
ageing may be responsible for locking cells in a cancer-prone state, impeding their
differentiation. The accumulation of undifferentiated cells has been related to cancer
and according to our model, this is just a consequence of aged cells with dysregu-
lation on the activity of HMEs. Consequently, epigenetic alterations may underlie
initiating events that set the system in a cancer-prone situation. Interestingly, suc-
cessful strategies so as to revert this situation and set the cell in a ‘healthy’ plastic
state have been formulated, consisting on the restoration to base-line levels of the
HDAC activity.

Our model suggests that when trying to design drugs to revert ageing-effects,
epigenetic activity cannot be ignored. In fact our modelling will recommed to those
studying senolytic drugs, that these drugs should be accompanied by epigenetic
strategies, such the one suggested based on restoring the normal epigenetic activity
of HDACs. Hence our mathematical model may be helpful for a better understanding
of the existing connection between ageing and epigenetic enzymatic dysregulation
and, consequently, to distinguish the ‘healthy’ ageing progression versus a disease-
associated ageing.
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Chapter 5

Conclusions & Future work

5.1 Conclusions

As Nessa Carey explains in her book [27], if we go back to the past, it can be said
that during the 19th century, Darwin and Mendel defined the era of evolution and
genetics. Watson and Crick marked the 20th century by coining it as the DNA era,
helping to understand how genetics and evolution interact. Now, it is expected that
epigenetics will trigger a similar paradigm shift in the 21st century, converting it into
the epigenetic era [27]. In fact, epigenetic therapies will probably have a major clini-
cal impact sooner than later, but in order to be successfully effective, understanding
how epigenetic alterations and, more in general, epigenetic plasticity drives diseases
such as cancer is a must. For this reason, trying to test and validate some models
for cancer epigenetics seems a key step towards this goal [51]. This is precisely what
this thesis has intended to, i.e. formulating and analysing mathematical models in
order to shed some light on the role played by epigenetics in cell plasticity.

In this thesis, we have aimed at unravelling the effects that epigenetic regulation
and, in particular, heterogeneity in the epigenetic regulatory systems, have in both
cell fate decisions and transitions. The former has been discussed in Chapter 3,
where we have shown that depending on the epigenetic regulatory system, some cells
are resilient to differentiation, i.e. they want to remain in a stem cell-like state. The
latter, cell fate transitions, has been discussed mainly in Chapter 2 and Chapter 4,
where we have focused our discussion on identifying key properties of the epigenetic
regulatory systems in order to allow a cell to dedifferentiate, i.e. to change its cell
fate to a pluripotent one. This issue has been studied in more depth in Chapter
4, where we have also analysed when this cell fate transitions are reversible, which
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leads to the so-called ‘healthy’ plastic behaviour, and when these transitions are per-
manent, scenario which is related to malignant plasticity due to its connections with
tumorigenesis. All these results let to a general conclusion, namely, that epigenetic
regulation plays a key role in determining cell fate and it is on its heterogeneity,
where the answer to many questions is found.

In Chapter 2 we have formulated a stochastic model of epigenetic regulation
which has allowed us to distinguish two important scenarios, the so-called resilient
and plastic scenarios. The main difference between them is the existence of a regime
(defined in terms of the activity of HMEs) where cell reprogramming is feasible. The
plastic scenario is characterised by having a region on the HDM-HDAC phase space
where both genes, the differentiation and the pluripotency, are bistable. Within this
region, where both genes coexist with bistable behaviour, our model allows the ER
system to switch from a differentiation-locked state to a pluripotency-permissive one,
and vice versa. In other words, within the plastic scenario ER sets the system in a
position where it can reprogram from the differentiated state to the stem-cell one,
and differentiate back to the differentiated cell fate, if needed.

Having established that depending on the ER systems our model can exhibit
plastic or resilient epi-phenotypes, we have explored the epigenetic properties that
are associated with the appearance of each scenario. Interestingly, the analysis of our
model suggests the possibility of an ageing-progressive evolution from the resilient
to the plastic state, since the plastic scenario is characterised by reduced acetylation
levels, which have been linked to ageing [33, 133, 48, 125]. This property of the plastic
scenario implies that cells exhibiting initially a resilient epi-phenotype may switch to
a plastic one as ageing progresses. This hypothesis is reinforced with the results from
Mosteiro et al. [115], where senescent cells, which are more likely to be found within
ageing tissues, induce reprogramming by releasing signalling cues into the tissue that
significantly facilitate in vivo OSKM -induced reprogramming. Translating these re-
sults into our modelling framework, cells with properties related to ageing, such as
those having lower acetylation levels, exhibit plastic epi-phenotypes corresponding
to lower epigenetic barriers associated with robustness of differentiated phenotypes.

The elite model for reprogramming postulates that some cells are more prone to
reprogramming than others due to existing inherent epigenetic heterogeneity. The
results from Chapter 2 are in agreement with this notion, since we have identified a
scenario where cell reprogramming is possible and another one where it is not, and the
only difference between them is the existing inherent heterogeneity. Similarly, Pour
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et al. [129] show that some cells are initially more predisposed to reprogramming,
but that this ‘privilege’ can be acquired by tuning cell epigenetics. In particular,
they show that heterogeneity in ER can be harnessed through modification of HMEs
activity to increase reprogramming. The importance of cell epigenetics has also been
tested by different strategies in Chapter 2, where we have shown that resilient phe-
notypes become plastic phenotypes, and vice versa, when altering some epigenetic
features.

The results from Mosteiro et al. [115] regarding reprogramming in vivo, have
shown that senescent tissues have larger reprogramming rate. Once reprogrammed,
cells might get locked in the stem cell-like state, i.e. they cannot switch to a differ-
entiated fate [108]. This issue has been studied in Chapter 3. In this Chapter, we
have formulated an ER-GRN model, where the ER model formulated in Chapter 2
has been coupled to a 2-GRN model, with one gene promoting differentiation and
one gene promoting pluripotency. The study of this combined model has allowed
to identify three possible (stable) cell fates: the differentiated state, the pluripotent
state and the so-called undecided state, where both genes are expressed at really
low levels. The biological interpretation of the undecided state is of interest, since
it has been eperimentally observed that cells undergoing differentiation (or repro-
gramming), they do it in a two step manner: first, by switching off the pluripotency
(differentiation) genes, which will lead them to this undecided state, and then, by
activating the expression of the gene needed to acquired their final cell fate, differenti-
ation (pluripotency) gene for those cells undergoing differentiation (reprogramming)
[116]. Interestingly, depending on the epigenetic regulatory status (on or off) of
the ER systems forming the GRN, these three possible cell fates can coexist, which
will allow stochastic transitions between them. However, this combined ER-GRN
model endows the system with the possibility for cell fate transitions, which consists
on changing the ER state of one of the genes forming the GRN network. In other
words, this system affords the possibility of ER transitions between the active and
inactive form, which has implications on the state the ER-GRN system can adopt
and, thus, into the cell fate.

In Chapter 3, in order to characterise the properties of ER systems more likely to
produce pluripotency-locked epi-states, we have focused the discussion in analysing
the existing ER heterogeneity in terms of which ER states are less likely to allow cell
differentiation. Our analysis of the ER ensemble heterogeneity indicates that ER of
the pluripotency gene plays a minor role in determining the ability to differentiate.
By contrast, ER systems for differentiation genes are the main players to determine
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differentiation or locking in the stem cell-like phenotype. Our analysis has revealed
the existence of three different types of behvaiour for the ER systems of the differ-
entiation gene: those which want to differentiate, those which are undecided since
transitions between the open and closed state are both long, and those which want
to remain in its closed state, i.e. they are resilient to differentiation. These last
set of ER systems are those associated with stem-cell locking, since the ER system
for the differentiation gene wants to remain closed, which impedes the expression of
the differentiation gene. Of particular interest is being able to unlock these systems,
since accumulation of undifferentiated cells, i.e. cells in a stem-cell like state, has
been linked to cancer.

In order to address this question, in Chapter 3 we have been sucessful in design-
ing stategies that can change the associated behaviour of a particular ER system
from the differentiation-resilient type (stem-cell locking) to the differentiation-prone
behaviour. Noticeably, the change of behaviour has been obtained by just altering
the activity of epigenetic kinetic enzymatic constants. This fact reinforces that con-
centration of epigenetic metabolites and co-factors may be of extreme importance,
since alteration in the activity of HMEs, such as HDMs and HDACs, can completely
change the behaviour an ER system exhibits, which when analysed in a more general
framework, shapes the ER-GRN model by altering the final state the system may
take.

From a more theoretical point of view, in Chapter 3 we have derived a stochastic
model reduction for the ER-GRN model, which is based on the existence of multiple
scales. This model reduction allowed us to formulate an efficient hybrid simulation
method which has been used to test the strategies predicted by our ensemble ap-
proach. By using the hybrid scheme, we have been able to compute the time it takes
the ER-GRN system to differentiate and we have concluded, that the strategies de-
signed are successful in the sense that they greatly reduce the time needed for cell
differentiation. The implications of these strategies may open new avenues to design
therapeutic strategies able to change pathological cell reprogramming, where cells
get locked in the stem-cell like state, to ‘healthy’ cell reprogramming, where cells can
recover their differentiated phenotype. These suggested kinetic routes, thus, may
have important consequences in the treatment of ageing associated diseases, such
as cancer, where cells get locked in undifferentiated states, which drives malignant
progression.

Another important result is that, although the stochastic model reduction for the
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ER-GRN model has been tested in a particular ER-GRN system, it has been formu-
lated in general terms, and thus it is applicable to more general ER-GRN systems.
Similarly, the numerical scheme could also be extended to different ER-GRN systems
from the one we have dealt with. Therefore, the thesis provides a general framework
of wide applicability when studying complex systems with separation of time scales,
as those appearing when analysing coupled ER-GRN models.

In Chapter 4 we have extended the model presented in Chapter 2, by relaxing
some of the simplifying assumptions involved in it. These new features are the con-
sideration of HAT and HMT activity and the assumption of a finite abundance of
marks, which implies that differentiation and pluripotency ER systems need to com-
pete for them. Their introduction yields to interesting results. The first thing to be
observed with this model is that the scenarios described in Chapter 2, i.e. plastic
and resilient, are robust, since under finite abundance of epigenetic marks, they are
still feasible.

By introducing competition for the epigenetic marks, the ER system rather than
being formed by two replicas of the same model, it is formed by a single ER model
where both ER systems are coupled. This clearly is a more realistic model, since in
a multicellular organism, the epigenetic marks source is the same for all the genes,
which implies that they need to compete for them.

These additional elements allow us to take into account ageing effects in a more
direct way than it was possible in the previous model. The incorporation of age-
ing effects leads to a situation where cells are in the plastic scenario, as previously
identified in Chapter 2, in the sense that the differentiated state may switch to a
state where pluripotency gene is expressed. However, this new model allows us to
distinguish two relevant cases within the plastic scenario. When ageing effects are
taken into account, the plastic state the cell adopts is identified with a physiological
ageing or physiological plasticity, since the undecided state is the only possible state
the cell can adopt, i.e. the plasticity acquired is permanent rather than transient.
However, this analysis also allows to identify the ‘healthy’ plastic state, where the
cell can revert to a stem-cell like state but also revert to the differentiated state, i.e.
the acquisition of the stem-cell state is transient and not permanent. This ability is
the one that could allow tissue renewal and thus, provide a way to a healthy ageing.
Interestingly, this pattern has been associated with centenarian individuals, which
suggest that the formula for the eternal youth could be given in these terms.
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Consequently, Chapter 4 suggests that when designing drugs so as to treat ageing-
related diseases, epigenetic regulation should be considered as a major player. In par-
ticular, epigenetic dysregulation has been observed in ageing and cancer. If epigenetic
activity can be maintained at normal levels, or at least, avoid severe dysregulation,
epigenetic barriers will be maintained, which implies that both healthy reprogram-
ming and normal somatic phenotypes are robust, and which reduces the likelihood
of cancer and ageing-associated diseases.

5.2 Future work

The model and results of this thesis can be further extended in several ways. The
first and more obvious way is by coupling the more complex ER model presented in
Chapter 4 to the combined ER-GRN model presented in Chapter 3.

Regarding the model presented in Chapter 4 other situations can also be stud-
ied. In particular, in the model presented, the abundance of the methyl and acetyl
groups is modelled by means of a single parameter. However, with ageing, acetyla-
tion and methylation marks do not seem to exhibit the same pattern. For instance,
acetylation marks are assumed to have an increment in mid ages, and then there is
a general decline, situation appearing in ageing individuals. The methylation marks
do not follow the same pattern and in fact, it is not clear which behaviour they ex-
hibit. Therefore, assuming that their relative abundance is the same, does not seem
a realistic assumption.

Another feature that could be analysed within the model presented in Chapter
4 is the relative abundance of nucleosomes. It is well-documented that nucleosome
abundance decreases with ageing. In all our modelling framework (both in Chapter
4 and in Chapter 2) we have assumed that the number of nucelosomes over its char-
acteristic scale was fixed to one, i.e. the number of nucleosomes has been assumed
constant. However, if we add a parameter to denote this ratio, by setting this pa-
rameter to a value lower than 1, the relative abundance will decrease and hence, a
new ageing feature could be introduced into the model so as to study its effects in
terms of cell fate transitions.

Of course, one of the major directions for future work will go into the experimental
area. In this thesis, there is a lack of biological experiments which can confirm or re-
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fute our results. It would be really interesting to perform some biological experiments
which could complement the results presented here. In this sense, the formulation
of a more realistic model, as the one presented in Chapter 4, should make easier to
match the experiments and the parameters tuned there, with the modelling param-
eters presented here. In this sense, testing the ability to successfully move cells from
the stem-cell locked state to the differentiated-prone state according to the strategies
formulated in this thesis, would be something really desirable.

In this sense, we have made some contacts with some researchers working with
synthetic gene regulatory networks at UPF. Based on a synthetic GRN presented in
[72], we would like to test our 2-GRN model, with self-activation and competitive
binding. Precisely, we would like to show experimentally the existence of the trista-
bility region, i.e. the one with the differentiated, the pluripotent and the undecided
one. As discussed previously, this tristability situation has an important biological
interpretation in cell differentiation, and this is why we are interested in showing its
existence, arising from this simple 2-GRN. In order to find this region experimentally,
we have worked on trying to amplify the area of the phase space it occupies, and
we have seen that this area is highly sensible to the degradation rates of the genes.
Therefore, something which could also be analysed further is the effect of different
degradation rates.

Another possible model extension would consist on considering the addition of a
feedback from the GRN model into the ER model. In order to do this, HMEs, cor-
responding to the ER model, would be recruited by the transcription factors, which
are modelled in the GRN model. Therefore, this new feature will add feedback in
the opposite direction to the one considered in here, which has been from the ER
system to the GRN.

Finally, the ER models presented in this thesis have assumed the existence of two
types of marks, the positive and the negative marks, which activate or inactivate
gene expression. However, a more realistic situation is obtained when assuming the
existence of two types of substrates, the activating or the silencing substrate. There-
fore, depending on which substrate the epigenetic marks are added, they may have
one effect or the opposite one. This situation is more realistic because acetylation
marks are well-accepted as marks for gene activity, but methylation marks can have
both effects, activating or inhibiting, depending on which residue they are added.
Therefore, this new formulation will allow to study both possibilities for the methy-
lation marks, something which is out of our scope, since in here, methylation marks
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have considered to be silencing marks.
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Appendix A

Supplementary materials

A.1 Supplementary materials Chapter 2

In this Section, we provide supplemental information for the results presented
in Chapter 2. In particular, we present numerical results confirming the results
obtained by the bifurcation analysis in Section 2.3.1, the p-values for the significative
differences found by applying the Kolmogorov-Smirnov test (see Section 2.3.3), and
the parameter values which give rise to the plastic and resilient scenarios, as described
in Section 2.3.1.

A.1.1 Numerical results: stochastic simulation algorithm

We present simulation results verifying the bifurcation analysis of the equations
discussed in Section 2.3.1. In particular, we explicitly show the existence of the
hysteresis cycles predicted by our bifurcation analysis. For concreteness, since the
behaviour of both differentiation- and pluripotency-promoting genes is qualitatively
similar, we specifically focus on simulations of the differentiation-promoting gene.
Differences with the pluripotency case only concern the quantitave value of the crit-
ical (bifurcation) points, not the behaviour of the system.

Fig. A.1 shows simulation results where we have set the number of HDAC en-
zymes, v0, to v0 = E (see Table A.5). Note that according to the description given
in Section 2.2.3.1, this is equivalent to fixing the HDAC concentration to eHDAC = 1,
since eHDAC = v0

E
. We then vary z0 which, according to what has been described, it is

the same as varying HDM concentration, since we define eHDM = z0
E

. Fig. A.1 shows
results regarding the empirical distribution of x3, P (x3), where x3 ≡ X3(tinf )/S with
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Figure A.1: Simulation results corresponding to Fig. 2.5(c). Each histogram shown
in this figure is the result of 1000 realisations of the stochastic process prescribed by
the rates shown in Table 2.2. Parameter values are obtained from Tables A.5 and
2.3
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tinf the duration of the simulation which is taken long enough so that the system set-
tles onto its quasi-steady state starting from prescribed initial conditions Xi(t = 0).
In order to ascertain whether the system exhibits the hysteresis cycle predicted by
our bifurcation analysis as z0 changes (see Fig. 2.5(c)), we first set an initial condi-
tion with X1(t = 0) = 0, X2(t = 0) = 0.9S, X3(t = 0) = 0.1S. This allows us to
explore the behaviour of the system along the lower stable branch (corresponding to
closed chromatin) of the diagram Fig. 2.5(c). Similarly, by setting initials conditions
to X1(t = 0) = 0, X2(t = 0) = 0.01S, X3(t = 0) = 0.99S, in Fig. A.1(b) we trace
the behaviour of the system along the upper stable branch (associated with open
chromatin).

Fig. A.1(a) shows that, for the prescribed initial condition, the system exhibits
a unimodal distribution around the closed chromatin state for small values of z0.
As z0 increases and approaches the critical value where the closed chromatin state
ceases to exist, fluctuations increase (as shown by the bimodal behaviour of P (x3))
thus heralding the onset of a phase transition. Beyond this point, P (x3) exhibits
unimodal behaviour around the open chromatin state. These results, including the
value of the critical point (which in the simulations is formally characterised by a
divergence of the variance of x3), are in agreement with those obtained from the
bifurcation analysis (see Fig. 2.5(c)).

In Fig. A.1(b) we trace the other half of the hysteresis cycle. By setting initial
conditions to X1(t = 0) = 0, X2(t = 0) = 0.01S, X3(t = 0) = 0.99S, P (x3) exhibits
unimodal behaviour around the open chromatin state for larger values of z0. As z0 is
reduced and approaches the critical value for which the open chromatin state ceases
to exist, fluctuations are again observed to increase, i.e. P (x3) becomes bimodal
around the critical point. Beyond this point, P (x3) recovers unimodal behaviour but
peaked around the closed chromatin state. Results, including the value of the critical
point, are again in excellent agreement with the bifurcation analysis (see Fig. 2.5(c)).

Fig. A.2 shows the same results regarding the verification of the bifurcation anal-
ysis shown in Fig. 2.5(e). Here, we have set the number of HDM enzymes, z0, to
z0 = 0.2E (see Table A.5). We then simulate the behaviour of the system as the
number of HDAC molecules, v0, is changed. We observe the same excellent agree-
ment between simulations and bifurcation analysis as we do between the numerical
and analytical results shown in Figs. A.1 and 2.5(c), respectively.
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Figure A.2: Simulation results associated with Fig. 2.5(e). Each histogram shown
in this figure is the result of 1000 realisations of the stochastic process prescribed by
the rates shown in Table 2.2. Parameter values are obtained from Tables A.5 and
2.3.
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A.1.2 Kolmogorov-Smirnov test analysis

A.1.2.1 General description

The Kolmogorov-Smirnov (KS) test [35, 29] is a non-parametric test which al-
lows to evaluate the equality of continuous probability distributions. This well-known
method can be used both to compare an empirically obtained sample with a refer-
ence probability distribution, or to compare two empiricial samples. In other words,
the KS test allows us to tell whether two distributions are the same within the level
of confidence we desire. Since this is a well-known technique, we will not go into
its details and we will use this section to report our results. Interested readers are
referred to the specialised literature for details [35, 29]. Throughout the thesis, we
have imposed a level of confidence of 95 %.

In order to analyse the statistical significance of our results of Section 2.3.3 re-
garding the shapes of the distributions of the kinetic parameters, kj, associated with
the different scenarios we consider (refractory vs plastic), we resort to the KS test.

A.1.2.2 Comparing the viable subset with the uniform distribution

The first test we are interested in carrying out consists on checking which kinetic
constants, kj, exhibit a non-uniform distribution within the viable subset. These pa-
rameters are the ones deemed to play a substantial role in the associated behaviour
(i.e. viable (base-line) conditions of the differentiation/pluripotency ER system) [50].
The null hypothesis for the test is therefore whether the empirical cumulative dis-
tribution function (CDF) of each kj is equal to the uniform. Since we are using a
confidence interval of 95%, whenever the p-value is larger than 0.05 the null hypoth-
esis cannot be rejected, i.e. the parameter is deemed to be uniformly distributed.
As we mention in Section 2.3.3, the null hypothesis is rejected only for k1, k3, k6, k7,
k12, k14, and k16 (differentiation-promoting gene) and for k3, k8, k12, k14, k15 and k16
(pluripotency-promoting gene). The reported p-values are given in Table A.1 and
Table A.2, respectively.

A.1.2.3 Comparing the plastic sets with the viable subset

We continue our analysis by testing the CDFs of the kinetic constants when we
consider those parameter sets that exhibit plastic behaviour. We analyse which pa-
rameters have different distributions when compared to their distributions within
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Parameter p-value
k1 1.273016 · 10−13

k3 0.015373
k6 0.002362
k7 0.005169
k12 1.969483 · 10−8

k14 2.467713 · 10−51

k16 4.555466 · 10−11

Table A.1: Reported p-values for the parameters for which the hypothesis that they
are distributed uniformly was rejected (diff.-promoting gene). Confidence interval of
95%. The p-values for the rest of the kinetic constants are all larger than 0.05.

Parameter p-value
k3 0.048676
k8 1.025119 · 10−5

k12 1.489366 · 10−12

k14 8.060631 · 10−4

k15 0.026272
k16 3.781311 · 10−4

Table A.2: Reported p-values for the parameters for which the hypothesis that they
are distributed uniformly was rejected (plurip.-promoting gene). Confidence interval
of 95%. The p-values for the rest of the kinetic constants are all larger than 0.05.

the viable set. These parameters are the ones deemed essential for the associated be-
haviour (i.e. plastic behaviour). The null hypothesis for the test is therefore whether
the empirical CDF of each kj for the plastic sets is equal to their empirical distribu-
tions within the whole viable set. Since we are using a confidence interval of 95%,
whenever the p-value is larger than 0.05 the null hypothesis cannot be rejected, i.e.
the parameter is deemed to be uniformly distributed. As reported in Section 2.3.3,
the null hypothesis is rejected only for k1, k9 and k14 (differentiation-promoting gene)
and for k2 and k6 (pluripotency-promoting gene). The reported p-values are given
in Table A.3 and Table A.4, respectively.
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Parameter p-value
k1 0.023493
k9 0.037880
k14 1.492134 · 10−4

Table A.3: Reported p-values for the parameters for which the hypothesis that
they have the same distribution as that within the viable subset was rejected, diff.-
promoting gene. Confidence interval of 95%. The p-values for the rest of the kinetic
constants are all larger than 0.05.

Parameter p-value
k2 0.0310
k6 0.0425

Table A.4: Reported p-values for the parameters for which the hypothesis that they
have the same distribution as that within the viable subset was rejected, plurip.-
promoting gene. Confidence interval of 95 %. The p-values for the rest of the kinetic
constants are all larger than 0.05.

A.1.3 Reference parameter values: resilient and plastic sce-
narios

Here we give the sets of parameter values used to produce the phase diagrams
from Fig. 2.5, associated both with the reprogramming-resilient phenotype (Fig.
2.5(d)) and the phenotype with elevated plastic potential (Fig. 2.5(f)). These sets
of parameter values have been chosen with the same viability criteria as those given
in Section 2.2.3, namely, that the mean-field limit has a single stable steady state
corresponding to the open (closed) epigenetic state for the differentiation (pluripo-
tency) gene. Besides this, we further require that, for the reprogramming-resilient
phenotype there is no overlap of the bistability regions, whereas for the plastic phe-
notype we require the area between the solid red line and the dashed blue line (see
Fig. 2.5(f)) to be positive. The reference parameter values are given in Tables A.5,
A.6, A.7 and A.8.
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Rescaled parameter Scaling parameter Units Reference
κ1 = 200 dimensionless –
κ2 = 100 dimensionless –
κ3 = 50 dimensionless –
κ5 = 1 dimensionless –
κ6 = 200 dimensionless –
κ7 = 10 dimensionless –
κ8 = 100 dimensionless –
κ9 = 200 dimensionless –
κ10 = 100 dimensionless –
κ11 = 0.1 dimensionless –
κ12 = 1 dimensionless –
κ13 = 1 dimensionless –
κ14 = 200 dimensionless –
κ15 = 100 dimensionless –
κ16 = 100 dimensionless –

E = 100 –
S = 5000 –

Table A.5: Reference parameter values used for the epigenetic regulation of a
differentiation-promoting gene, reprogramming-resilient phenotype (Fig. 2.5(d)).

A.2 Supplementary materials Chapter 3

This Section contains the technical details involved in the formulation and multi-
scale analysis of the ER-GRN system introduced in Chapter 3, as well as additional
information and results. Specifically:

1. Section A.2.1 is devoted to presenting the multi-scale WKB analysis of the
GRN part of the model with the aim of:

• Deriving the quasi-steady state approximation (QSSA) for the probability
density functions (PDFs) of the fast stochastic variables. Such QSSA
PDFs are essential to the results of Section 3.2.2.

• Deriving the (outer) optimal path equations for the gene regulatory system
analysed in Chapter 3.

• Deriving the associated estimate of the relaxation time of the GRN system
upon epigenetic-regulatory switch.
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Rescaled parameter Scaling parameter Units Reference
κ1 = 200 dimensionless –
κ2 = 100 dimensionless –
κ3 = 10 dimensionless –
κ5 = 1 dimensionless –
κ6 = 10 dimensionless –
κ7 = 100 dimensionless –
κ8 = 100 dimensionless –
κ9 = 200 dimensionless –
κ10 = 100 dimensionless –
κ11 = 10 dimensionless –
κ12 = 1 dimensionless –
κ13 = 1 dimensionless –
κ14 = 100 dimensionless –
κ15 = 100 dimensionless –
κ16 = 100 dimensionless –

E = 100 –
S = 5000 –

Table A.6: Reference parameter values used for the epigenetic regulation of a
pluripotency-promoting gene, reprogramming-resilient phenotype (Fig. 2.5(d)).
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Rescaled parameter Scaling parameter Units Reference
κ1 = 200 dimensionless –
κ2 = 100 dimensionless –
κ3 = 30 dimensionless –
κ5 = 1 dimensionless –
κ6 = 100 dimensionless –
κ7 = 50 dimensionless –
κ8 = 100 dimensionless –
κ9 = 200 dimensionless –
κ10 = 100 dimensionless –
κ11 = 0.1 dimensionless –
κ12 = 1 dimensionless –
κ13 = 1 dimensionless –
κ14 = 200 dimensionless –
κ15 = 80 dimensionless –
κ16 = 70 dimensionless –

E = 100 –
S = 5000 –

Table A.7: Reference parameter values used for the epigenetic regulation of a
differentiation-promoting gene, plastic phenotype (Fig. 2.5(f)).

• In Sections A.2.1.3 and A.2.1.4 we derive the quasi-steady state proba-
bility density functions of the fast variables of the ER-GRN stochastic
model.

• In Section A.2.1.5 we describe the formulation of the numerical method
associated with the asymptotic model reduction of the stochastic ER-GRN
model.

2. Section A.2.2 contains a comparison between our asymptotic results (both
WKB and stochastic model reduction) for the benchmark case of a self-activating
one-gene regulatory system.

3. In Section A.2.3 we briefly present the details of the numerical method for
action minimisation used to implement the Minimum Action Path (MAP).

4. In Section A.2.4 we present the p-values corresponding to the Kolmogorov-
Smirnov tests performed in Section 3.3.3.
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Rescaled parameter Scaling parameter Units Reference
κ1 = 200 dimensionless –
κ2 = 100 dimensionless –
κ3 = 10 dimensionless –
κ5 = 1 dimensionless –
κ6 = 50 dimensionless –
κ7 = 100 dimensionless –
κ8 = 100 dimensionless –
κ9 = 200 dimensionless –
κ10 = 100 dimensionless –
κ11 = 8 dimensionless –
κ12 = 1 dimensionless –
κ13 = 1 dimensionless –
κ14 = 100 dimensionless –
κ15 = 100 dimensionless –
κ16 = 100 dimensionless –

E = 100 –
S = 5000 –

Table A.8: Reference parameter values used for the epigenetic regulation of a
pluripotency-promoting gene, plastic phenotype (Fig. 2.5(f)).

5. In Section A.2.5 we include the parameter values used in the different simula-
tions of Chapter 3.

6. In Section A.2.6 we include a number of supplementary figures with results
complementary to those presented in Chapter 3.

A.2.1 Multiscale analysis of the GRN system: WKB ap-
proximation and multi-scale optimal path theory

In this appendix we provide a detailed derivation of the multiscale analysis of the
gene regulatory (sub)system. In particular, we derive the quasi-steady multinomial
probability distribution describing the QSSA of the occupancy of binding sites within
the promoter region of the epigenetically opened genes. Our current treatment con-
siders an extension of the multiple scale WKB method that was first introduced in
[1, 40]. We will show that under suitable conditions on separation of the different
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characteristic scales of the system (which will be precisely defined below), the WKB
approximation of the outer solution collapses onto a trivial WKB mode. By con-
trast, within the corresponding inner regime, the solution is given by a non-trivial
(the so-called fast) WKB mode, which turns out to take the form of a multinomial
distribution.

Before proceeding further, it is worth noting that we focus our analysis on the
GRN subsystem alone for clarity. The same analysis can be performed with the ER
part of the whole system.

A.2.1.1 General setting: WKB and multi-scale optimal path theory

The WKB approximation and the (closely related) optimal path theory are vari-
ants of large deviation theory which has been used to study mean first passage time
problems associated with the escape from metastable states in a wide variety of con-
texts, including multi-stable systems [45, 103], extinctions in population-dynamical
models [46], hybrid stochastic systems [21], gene regulatory systems [181, 170], and
small stochastic systems [134]. This methodology has recently been extended to ac-
count for, and take advantage of, separation of time scales. In this section we give a
brief summary of this methodology. For a full account of the technicalities we refer
to [1, 40].

An alternative formulation to analyse the dynamics of continuous-time Markov
processes on a discrete space of states is to derive a partial differential equation for
the generating function, G(p1, . . . , pNG

, p11, . . . , pNGNG
, t):

G(p1, . . . , pNG
, p11, . . . , pNGNG

, t) =

=
∑
X

(
NG∏
i=1

pXi
i

)(
NG∏
i,j=1

p
Xij

ij

)
P (X1, . . . , XNG

, X11, . . . , XNGNG
, t),

(A.2.1)

where P (X1, . . . , XNGNG
, t) is the solution of the Master Equation. The probability

density generating function (PDGF) satisfies a partial differential equation (PDE)
which can be derived from the corresponding Master Equation, Eq. (2.2.1). This
PDE is the basic element of the so-called momentum representation of the Master
Equation [43, 126, 7, 8, 84]:
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∂G

∂t
=

Hk

(
p1, . . . , pNG

, p11, . . . , pNGNG
, ∂p1

, . . . , ∂pNG
, ∂p11

, . . . , ∂pNGNG

)
G(p1, . . . , pNG

, p11, . . . , pNGNG
, t)

(A.2.2)

This PDE, or, equivalently, the operator Hk, is determined by the reaction rates
shown in Table 3.2: it is obtained by multiplying both sides of the corresponding

Master Equation by
(∏NG

i=1 p
Xi
i

)(∏NG

i,j=1 p
Xij

ij

)
and summing up over all the possible

values of X. Furthermore, the solution of Eq.(A.2.2) must satisfy the normalisation
condition G(p1 = 1, . . . , pNG

= 1, p11 = 1, . . . , pNGNG
= 1, t) = 1 for all t.

Eq.(A.2.2) allows us to define a Hamiltonian, Hk(p,Q), where the position op-
erators in the momentum representation have been defined as Qi ≡ ∂pi with the
commutation relation [Qi, pj] = Sδi,j, where each pair (pi, Qi) is the set of gener-
alised coordinates associated with the random variable Xi. The quantity S is the
characteristic scale corresponding to the random variable Xi. Similarly, Qij ≡ ∂pij
with [Qij, pkl] = Eδi,kδj,l. Each pair (pij, Qij) has the random variable Xij associated,
and the quantity E is the characteristic scale associated with the random variable
Xij [40].

In order to proceed with our multiple time scale analysis, we assume, as per
the Briggs-Haldane treatment of the Michaelis-Menten model for enzyme kinetics
[22, 88], that the species involved in the system under scrutiny are divided into two
groups according to their characteristic scales. More specifically, we have a sub-
set of chemical species whose numbers, Xi, scale as Xi = Sxi, where xi = O(1),
whilst the remaining species are such that their numbers, Xij, scale as Xij = Exij,
where xij = O(1). Key to our approach is the fact that S and E must be such that
ε = E

S
� 1. We further assume that the generalised coordinates, Qi, scale in the

same fashion as the corresponding variables Xi, i.e. Qi = Sqi, where qi = O(1). We
refer to the variables belonging to this subset as slow variables. Similarly, Qij = Eqij,
where qij = O(1), which are referred to as fast variables. Moreover, we assume that
the moment coordinates, pi and pij, are all independent of S and E, and therefore
remain invariant under rescaling.

Under this scaling for the generalised coordinates, we define the following scale
transformation for the Hamiltonian in Eq. (A.2.2):
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Hk(p,Q) = kJS
kElHω(p, q) (A.2.3)

where J identifies the reaction with the largest order among all the reactions that
compose the dynamics and kJ is the corresponding rate constant. The exponents k
and l correspond to the number of slow and fast variables involved in the transition
rate WJ , respectively (see Table 3.2). The last step is to rescale the time variable so
that a dimensionless variable, τ , is defined such that:

τ = kJS
k−1Elt (A.2.4)

It is now a trivial exercise to check that, upon rescaling, Eq. (A.2.2) reads:

∂G

∂τ
=

SHω

(
p1, . . . , pNG

, p11, . . . , pNGNG
, ∂p1

, . . . , ∂pNG
, ∂p11

, . . . , ∂pNGNG

)
G(p1, . . . , pNG

, p11, . . . , pNGNG
, τ)

(A.2.5)

Closed, analytic solutions are rarely available for Eq. A.2.5. Nevertheless, the
PDE for the generating function admits a perturbative solution, which is commonly
obtained by means of the WKB method [46, 8]. From a formal point of view, Eq.
(A.2.5) is a Schrödinger-like equation and, therefore, there is a plethora of methods at
our disposal in order to analyse it. In particular, when the fluctuations are (assumed
to be) small, it is common to resort to WKB methods [93, 2, 63], which consists on
proposing the following Ansatz for the solution of Eq. (A.2.5):

G(p, τ) = eSA(p,τ),

where A(p, τ), the so-called action, satisfies the Hamilton-Jacobi equation associated
with the Hamiltonian Hω(p, q):

∂A

∂τ
= Hω

(
p,
∂A

∂p

)
. (A.2.6)

The solution to the above Hamilton-Jacobi equation, Eq. (A.2.6), can be given
in terms of the solution of the associated Hamilton equations:

dpi
dτ

= −∂Hω

∂qi
, (A.2.7)

dqi
dτ

=
∂Hω

∂pi
, (A.2.8)
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and it is given by:

A(p, τ) = −Hωτ −
∫ p∑

i

qi(p)dpi +A0(p) =

= −Hωτ −
∫ τ

(
NG∑
i=1

qi(s)ṗi(s) + ε

NG∑
i,j=1

qij(s)ṗij(s)

)
ds+A0(p)

(A.2.9)

where the first (second) summatory is over the set of slow (fast) variables, and A0(p)
is an integration constant, whose value is chosen so that A(p = 1, τ) = 0 for all τ .

We define A0(τ) as the value of the action functional Eq. (A.2.9) calculated on the
path which maximises its value, i.e. the optimal path. To determine the optimal
path we therefore need to solve the variational problem δA = 0. The Euler-Lagrange
equations associated with this variational problem are the Hamilton equations cor-
responding to the Hamiltonian Eq. (A.2.3):

dpi
dτ

= −∂Hω

∂qi
, (A.2.10)

dqi
dτ

=
∂Hω

∂pi
, (A.2.11)

for the slow variables, and

ε
dpij
dτ

= −∂Hω

∂qij
, (A.2.12)

ε
dqij
dτ

=
∂Hω

∂pij
, (A.2.13)

for the fast variables, with ε = E/S. These equations are (formally) solved with
boundary conditions [46]: qi(0) = q0i , qij(0) = q0ij , pi(τ) = pi, and pij(0) = p0ij .

Eqs. (A.2.10)-(A.2.13) show that, if the scaling Eq. (A.2.3) and ε = E/S � 1
hold, our optimal path theory exhibits separation of time scales, which can be ex-
ploited to simplify our analysis by means of a multi-scale asymptotic approximation.
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A.2.1.1.1 Multi-scale analysis: Outer regime.

Multi-scale asymptotic analysis [76] is predicated upon the construction of two
approximations: one which is valid in the long term, the so-called outer solution, and
another one which approximates the behaviour of the system at shorter times, the
so-called, inner solution. These two regimes must satisfy the appropriate matching
conditions which ensure that both solutions produce a uniformly valid approximation.
The outer solution is usually obtained in terms of the quasi-steady state approxima-
tion, which describes the dynamics of the system once it has settled down onto the
associated invariant manifold. Eqs. (A.2.10)-(A.2.13) are the starting point for the
formulation of the semi-classical quasi-steady state approximation (SCQSSA) [1, 40].

The QSS approximation consists on assuming that ε
dpij
dτ
' 0 and ε

dqij
dτ
' 0 in Eqs.

(A.2.12)-(A.2.13),

−∂Hω

∂qij
= 0, (A.2.14)

∂Hω

∂pij
= 0, (A.2.15)

resulting in a differential-algebraic system of equations which provides us with the
semi-classical quasi-steady state approximation (SCQSSA).

A.2.1.1.2 Multi-scale analysis: Inner regime.

To obtain the equations of the inner approximation, one usually proceeds first to
re-scale the variable τ : T ≡ ε−1τ . Under this re-scaling the equations for the slow
variables Eqs. (A.2.10)-(A.2.11) become:

dpi
dT

= O(ε), (A.2.16)

dqi
dT

= O(ε), (A.2.17)

which, at the lowest order, imply that pi(T ) ' pi(T = 0) ≡ p0i and qi(T ) ' qi(T =
0) ≡ q0i within the inner regime. By contrast, the equations for the fast variables
now read:

dpij
dT

= − ∂Hω

∂qij

∣∣∣∣
pll(T )=p0ll ,qll(T )=q0ll

, (A.2.18)
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dqij
dT

=
∂Hω

∂pij

∣∣∣∣
pll(T )=p0ll ,qll(T )=q0ll

, (A.2.19)

where the index l = 1, . . . , NG.

A.2.1.2 Multi-scale optimal path theory: estimation of the GRN relax-
ation time upon epigenetic switch

The general procedure to compute the Hamiltonian associated with the charac-
teristic function PDE, Eq. (A.2.2), is described in Section A.2.1.1. In this section
we provide the details of the optimal path theory analysis of the stochastic model
of the gene regulatory network with competitive inhibition, as described in Section
3.2.1 and in Table 3.2, using the procedure outlined in Section A.2.1.1. According to
such procedure, the resulting Hamiltonian, Hk(p,Q), associated with the generating
function PDE can be written as:

Hk(p,Q) =

NG∑
i=1

(pi − 1)
(
R̂i + ki1piiQii − ki2Qi

)
+

+

NG∑
i,j=1

(
pij − p2j

)(
bij

(
ei −

NG∑
k=1

pikQik

)
Q2
j − uijQij

)
(A.2.20)

where the pairs (pi, Qi) and (pij, Qij) are associated with the random variables Xi,
i.e. the number of protein molecules transcribed by gene i, and Xij, namely, the
number of sites in the promoter of gene i bound to dimers of protein j, respectively.

According to the multi-scale optimal path theory formulation, the Hamiltonian
Eq. (A.2.20) satisfies the following scaling relationship:

Hk(p,Q) = b11ES
2Hω(p, q).

where the re-scaled variables and parameters are defined in Table A.9.

The re-scaled Hamiltonian, Hω(p, q), is given by:

Hω(p, q) =

NG∑
i=1

(pi − 1) (Ri + ωi1piiqii − ωi2qi) +
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Table A.9: Re-scaled variables and dimensionless parameters.

Rescaled variables Dimensionless parameters

τ = b11ESt ε = E/S, R = R̂/(b11ES
2)

qi = Qi/S ωi1 = ki1/(b11S
2), ωi2 = ki2/(b11ES),

qij = Qij/E βij = bij/b11, δij = uij/(b11S
2)

+

NG∑
i,j=1

(
pij − p2j

)(
βij

(
p∞i

p−
NG∑
k=1

pikqik

)
q2j − δijqij

)
(A.2.21)

where p∞i
p = ei

E
. The remaining re-scaled variables and parameters are given in

Table A.9.

Eq. (A.2.21) allows to write down the set of Hamilton equations which determine
the optimal fluctuational path. These equations read:

dqi
dτ

= Ri + ωi1piiqii − ωi2qi −

− 2pj

NG∑
i=1

(
βij

(
p∞i

p−
NG∑
k=1

pikqik

)
q2j − δijqij

)
(A.2.22)

ε
dqij
dτ

= (pi − 1)ωi1qiiδij + βij

(
p∞i

p−
NG∑
k=1

pikqik

)
q2j − δijqij −

−

(
NG∑
k=1

(
pik − p2k

)
βikq

2
0k

)
qij (A.2.23)

dpi
dτ

= (pi − 1)ωi2 −
NG∑
l=1

(
pli − p2i

)(
βli

(
p∞i

p− 2

NG∑
k=1

alkplkqlk

)
qi

)
(A.2.24)

ε
dpij
dτ

= −(pi − 1)ωi1piiδij +

(
NG∑
l=1

(
pil − p2l

)
βil

)
pij +

(
pij − p2j

)
δij

(A.2.25)

Eqs. (A.2.22)-(A.2.25) show that the scaling of the Hamiltonian and its associated
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generalised coordinates, shown in Table A.9, makes evident that this system exhibits
multiple time scales structure where the pairs of coordinates (pi, qi) are slow variables
which control the long-time behaviour of the system, whereas the pairs (pij, qij) are
fast variables, which very quickly settle onto the invariant manifold determined by
the quasi-steady state approximation.

A.2.1.2.1 Multi-scale analysis: outer solution.

The outer (long time) solution of the optimal path theory equations, Eqs. (A.2.10)-
(A.2.13) is obtained by applying the QSS approximation to the fast variables, i.e. the
pairs (pij, qij). It is straightforward to verify that, by taking εṗij ' 0 and εq̇ij ' 0,
for all i and j, and setting pi(τ) = 1 for all i within the outer regime, and after some
algebra, we obtain the associated SCQSSA equations:

dqi
dτ

= Ri + p∞i
pωi1

βiiq
2
i

δii + δii
∑

k
βik
δik
q2k
− ωi2qi (A.2.26)

qij(τ) = p∞i
p

βijq
2
j

δij + δij
∑

k
βik
δik
q2k

(A.2.27)

pij(τ) = 1 (A.2.28)

As shown in [1, 40, 53], the quantities p∞i
p are given by:

p∞i
p =

ei
E
,

where ei is the number of binding sites within the promoter region of gene i. The
mean-field limit of Eqs. (A.2.26)-(A.2.27) is dictated by taking p∞i

p = 1 for all i
which prescribes that the number of binding sites in all genes is exactly equal to its
average over a population of cells. It is therefore clear that the SCQSSA equations
with p∞i

p 6= 1 will, in general, behave differently than their mean-field counterparts.
In particular, Eqs. (A.2.26)-(A.2.27) may allow transitions between states that are
forbidden by the mean-field dynamics. This possibility will be discussed at length in
the next section in connection to the robustness of phenotypic states (see also de la
Cruz et al. [40]).

Furthermore, it is straightforward to verify that the action functional Eq. (A.2.9)
calculated on the outer solution, AQSS, at the lowest order vanishes: AQSS = 0.
Therefore, the only positive contribution to the action must come from the inner
solution.
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A.2.1.2.2 Multi-scale analysis: inner solution and matching conditions.

According to the analysis carried out in Section A.2.1.2, in order to fully char-
acterise the behaviour of the stochastic competitive binding model, we must address
the short time regime and formulate the appropriate matching conditions with the
SCQSSA. The matching conditions are prescribed as follows:

1. The outer solution is such that pi(τ) = 1 for all i. This implies that, within
the inner regime, where pi(T ) 'cnt. ≡ p0i , then, p0i = 1 for all i.

2. The SCQSS approximation, Eqs. (A.2.26)-(A.2.28), is such that, on the SC-
QSSA trajectory, Hω = 0. Therefore, the inner solution and the initial condi-
tions should be such that

Hω (p0i = 1, pij(T ), q0i , qij(T )) = 0.

3. The outer solution is such that pij(τ) = 1 for all i and j. Therefore,

lim
T→∞

pij(T ) = 1

Taking into account Matching Condition 1 and Eqs. (A.2.26)-(A.2.28), the inner
Hamiltonian, Hωin

(pij, qij) ≡ Hω (p0i = 1, pij(T ), q0i , qij(T )):

Hωin
(pij, qij) =

∑NG

i,j=1 (pij − 1)
(
βij

(
p∞i

p−
∑NG

k=1 pikqik

)
q20j − δijqij

)
(A.2.29)

Since, as per Matching Condition 2, the inner solution must satisfy Hωin
(pij, qij) = 0,

this yields to two solutions: the so-called fast mode,

pij = 1, (A.2.30)

for all i and j, which implies that the action integral vanishes on the fast mode.
The so-called slow mode is given by the solution of the following system of algebraic
equations:

βij

(
p∞i

p−
NG∑
k=1

pikqik

)
q20j − δijqij = 0 (A.2.31)
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for all i and j. Since Eqs. (A.2.31) hold for any i and j, let us fix i and write down
Eqs. (A.2.31) for two generic j’s, j1 and j2,

βij1

(
p∞i

p−
NG∑
k=1

pikqik

)
q20j1 − δij1qij1 = 0 (A.2.32)

βij2

(
p∞i

p−
NG∑
k=1

pikqik

)
q20j2 − δij2qij1 = 0 (A.2.33)

from where it can be obtained,

p∞i
p−

NG∑
k=1

pikqik =
δij1qij1
βij1q

2
0j1

=
δij2qij2
βij2q

2
0j2

, (A.2.34)

which imply that:

qik =
βikδijq

2
0k

βijδikq20j
qij, (A.2.35)

for any i, k and j, with k 6= j. Using Eqs. (A.2.35), Eqs. (A.2.31) become:

βijq
2
0j
p∞i

p− δij

(
NG∑
k=1

βik
δik
pikq

2
0k

+ 1

)
qij = 0

which implies that:

qij(T ) = p∞i
p

βijq
2
0j

δij + δij
∑

k
βik
δik
q20kpik(T )

(A.2.36)

Note that the slow mode cannot be determined by energy conservation, Hω(p, q) = 0,
alone. In order to circumvent this obstacle, we proceed as follows. Eqs. (A.2.36)
must be supplemented with two extra equations, which are provided by the (inner)
equations of motion, in particular the equations for the fast generalised coordinates
qij(T ) (see Eq. (A.2.19)). Taking into account that pi(T ) = 1 and that the slow
mode must satisfy Eqs. (A.2.36), the equations of motion for the fast generalised
coordinates qij(T ), read:

dqij
dT

= −

(
NG∑
l=1

(pil − 1) βilq
2
0l

)
qij. (A.2.37)
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From Eqs. (A.2.37), it is straightforward to verify that:

q̇ij
q̇ik

=
dqij
dqik

=
qij
qik
, (A.2.38)

We now turn our attention to the inner action integral, Ain, which is given by
Eq. (A.2.9) computed on the slow mode:

Ain = −ε
∫ ∞
0

(
NG∑
i,j=1

qij(T )
dpij
dT

)
dT, (A.2.39)

where it has been used that pi(T ) is constant within the inner regime. Before pro-
ceeding further, we define Ain =

∑NG

i=1Aini
, where:

Aini
≡ −ε

∫ ∞
0

(
NG∑
j=1

qij(T )
dpij
dT

)
dT (A.2.40)

Consider now Eq. (A.2.40). Integrating by parts we obtain:

Aini
= −ε

 NG∑
j=1

pijqij

∣∣∣∣∣
T=∞

T=0

−
∫ ∞
0

q̇ii

(
pii +

∑
j 6=i

pij
q̇ij
q̇ii

)
dT,


which, since

q̇ij
q̇ii

=
qij
qii

(see Eqs. (A.2.38)), becomes:

Aini
= −ε

 NG∑
j=1

pijqij

∣∣∣∣∣
T=∞

T=0

−
∫ ∞
0

q̇ii
qii

(
NG∑
j=1

pijqij

)
dT,


Furthermore, Eq. (A.2.31) implies that:

NG∑
j=1

pijqij = p∞i
p− δii

βiiq20i
qii,

therefore:

Aini
= ε

(
δii
βiiq20i

qii

∣∣∣∣qiiout
q0ii

+

∫ qiiout

q0ii

(
p∞i

p

qii
− δii
βiiq20i

)
dqii,

)
= εp∞i

p log

(
qiiout
q0ii

)
,

(A.2.41)
where
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qiiout = p∞i
p

βiiq
2
0i

δii + δii
∑

k
βik
δik
q20k

,

which is dictated by the matching conditions, and q0ii = qii(T = 0). Therefore, Ain
is given by

Ain = ε

(
NG∑
i=1

p∞i
p log

(
qiiout
q0ii

))
=

1

S

(
NG∑
i=1

ei log

(
qiiout
q0ii

))
(A.2.42)

where, for Ain > 0, it is sufficient that the initial conditions for qij satisfy that q0ii <
qiiout . The quantities q0ii = qii(T = 0) must be such that Hω(p0i , p0ij , q0i , q0ij) = 0.

Moreover, since p0iq0i = Xi(t=0)
S

and p0ijq0ij =
Xij(t=0)

E
, besides the energy condition,

p0iq0i ≥ 0 and 0 ≤ p0ijq0ij ≤ ei
E

must hold for all i, j.

By insering Eq. (A.2.42) into the WKB Ansatz,

G(pi1, . . . , piNG
) = eSAin =

(
qiiout
q0ii

)ei
, (A.2.43)

we obtain that P+(Bi|N) (see Eq. 3.2.11), with N = (X1, . . . , XNG
), is a multi-

nomial distribution since the correponding generating function, G(p1, . . . , pNG
), is

given by:

G(pi1, . . . , piNG
) =

(
1 +

∑
k
βik
δik
x2kpik

1 +
∑

k
βik
δik
x2k

)ei

(A.2.44)

where we have taken xk = p0kq0k = q0k .

A.2.1.3 Consistency with the stochastic model reduction method

In this section, we check the consistency between the multiscale WKB method
presented here and the model reduction methodology developed in Section 3.2.2.
For concreteness, we focus the discussion in the derivation of the quasi-steady state
distribution of the binding/unbinding sub-system (GRN). As discussed in Section
3.2.2, the fast variables of the GRN sub-model, i.e. the TF-promoter binding site
dimers, are in quasi-equilibrium with the slow variables, i.e. the protein products
[25, 26, 10, 143]. We therefore consider an (inner) approximation where the slow
variables are frozen during the (fast) evolution of the binding/unbinding subsystem
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towards equilibrium. We start by writing a Master equation for a reduced set of
reactions given by:

Free binding sites + 2Xj

Kij1

�
Kij2

Xij for all i,

where Kij1 = kij1 (ei −
∑

lXil), where kij1 = bijH(Yi3−Y0)Xj(Xj−1), and Kij2 = uij.
Recall that Xj, the number of protein transcript of gene j is a slow variable for all j,
and, therefore, within the inner approximation, they are considered to be constant.
The associated reduced Master Equation (RME) is given by:

∂P (Xi, t)

∂t
=

∑
j

kij1

ei −∑
l 6=j

Xil − (Xij − 1)

P (Xi − rj , t)−

(
ei −

∑
l

Xil

)
P (Xi, t)


+

∑
j

uij ((Xij + 1)P (Xi + rj , t)−XijP (Xi, t)) (A.2.45)

where Xi = (Xi1, . . . , XiNG
). Before proceeding forward, we made an additional

assumption regarding time scale separation, namely, for all i, the RME Eq. (A.2.45)
reaches its (quasi-)equilibrium state in a much shorter time than the average switch-
ing times of the ER sub-system. In other words, we can consider separately the steady
state solution for open and silenced genes and that, upon ER switch, the equilibrium
distribution of the binding/unbinding system “instantaneously” switches to the as-
sociated equilibrium distribution. The feasability of this assumption is illustrated
below, where we analyse the case of one single self-activating gene, which can be
fully solved analytically.

We thus consider two steady-state solutions of Eq. (A.2.45): P+(Xi) associated
with an open gene (i.e. H(Yi3 − Y0) = 1) and P−(Xi), related to a silenced gene (i.e.
H(Yi3 − Y0) = 0). P−(Xi) is trivial: since in a silenced gene TF dimers can only
detach from the promoter, the corresponding steady state solution is:

P−(Xi) =
∏
j∈〈i〉

δXij ,0, (A.2.46)

with δXij ,0 = 1 if Xij = 0 and δXij ,0 = 0 otherwise. An analytical expression for
P+(Xi) can be found using WKB asymptotics. By re-scaling variables in the RME,
we derive the following partial differential equation for the associated generating
function (see Section A.2.1.1):
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∂G(pi1, . . . , piNG
, τ)

∂τ
= SHωin

(pi1, . . . , piNG
, ∂pi1 , . . . , ∂piNG

)G(pi1, . . . , piNG
, τ)

(A.2.47)
where Hωin

(pi, qi) is derived in detail in Section A.2.1.2 (see under heading Multi-
scale analysis: inner solution and matching conditions), with pi = (pi1, . . . , piNG

)
and qi = (qi1, . . . , qiNG

), and is given by Eq. (A.2.29):

Hωin
(pi, qi) =

NG∑
i,j=1

(pij − 1)

(
βij

(
ei
E
−

NG∑
k=1

pikqik

)
q20j − δijqij

)
Note that since Hωin

(pi, qi) is identical to the inner Hamiltonian associated with the
multiscale WKB method, the corresponding WKB solution of Eq. (A.2.47), derived
from the stochastic model reduction, is identical to the one provided by the multiscale
WKB method.

A.2.1.4 Quasi-steady state distribution of the enzyme/complex sub-system
(ER).

Similarly to the inner approximation obtained for the fast GRN variables, we can
find a QSSA for the fast variables corresponding to the ER component of the system,
namely, the enzymes and complexes associated with the ER enzymatic reactions. We
will focus on the number of complexes formed, since the free enzyme molecules can be
obtained using the associated conservation law [53]. We start by writing the Master
Equation corresponding to a reduced set of reactions given by:

Substrate + Yij−1

Kij1

�
Kij2

Yij for all i and j = 5, 7

which affect only the fast ER variables (see Table 3.1). The number of substrate
molecules is a slow variable for all i and j, and, therefore, within the inner approx-
imation is considered constant. According to Table 3.3, and denoting by ε1 = E

S

and ε3 = Z
Y

, with O(E) = O(Y ), the corresponding rates are Ki51 = ε1
ε3

(κi1 +
κi4yi3)(pHDMp− yi5)yi2, Ki52 = ε1

ε3
(κi2 + κi5yi3)yi5, Ki71 = ε1

ε3
(κi9 + κi12yi2)(pHDACp−

yi7)yi3, and Ki72 = ε1
ε3

(κi10 + κi13yi2)yi7, where yi2 and yi3 are taken to be fixed,
and pHDMp = eHDM

Y
, pHDACp = eHDAC

Y
. The corresponding Master Equation can be

solved using the same method used for the fast GRN variables. The resulting QSSA
PDF generating functions are:
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G∞(pi5) =

(
κi2 + κi3 + (κi5 + κi6)yi3 + (κi1 + yi3)yi2pi5
(κi2 + κi3) + (κi1 + yi3)yi2 + (κi5 + κi6)yi3

)eHDM

(A.2.48)

G∞(pi7) =

(
κi10 + κi11 + (κi13 + κi14)yi2 + (κi9 + κi12yi2)yi3pi7
(κi10 + κi11) + (κi9 + κi12yi2)yi3 + (κi13 + κi14)yi2

)eHDAC

(A.2.49)

where yi2 = Yi2/Z, yi3 = Yi3/Z, and the parameters κij are defined in Table 3.4.

The number of complexes Yi5 and Yi7 are sampled from the binomial distributions
related to the generating functions Eqs. (A.2.48) and (A.2.49). The corresponding
number of free enzymes is then obtained using the conservation laws: Yi4 = eHDM −
Yi5 and Yi6 = eHDAC − Yi7, with eHDM and eHDAC denoting the total number of
HDM and HDAC enzymes, respectively.

A.2.1.5 Numerical method

So far, we have exploited separation of time scales to formulate a QSSA whereby
both the number of bound sites within the promoter of the genes and the number
of enzymes and complexes molecules associated with the ER enzyme kinetics are
sampled from their QSSA PDFs. Furthermore, since S � 1, we have taken a large-
S limit which allows us to write the dynamics of Xi, i.e. the number of protein
transcripts of gene i, in terms of an ODE perturbed by two random forcings: one
associated with the random (fast) binding/unbinding dynamics, and another one pro-
duced by the random ER dynamics. However, as long as we assume that ε2 = O(1)
and Y = E � S, further simplification is not possible and the evolution of the slow
ER variables (i.e. number of positive and negative marks, and unmarked sites) need
to be solved by numerical simulation of their stochastic dynamics. In spite of this,
Eqs. (3.2.11)-(3.2.14) and (3.2.17)-(3.2.18) provide the reduced version of the origi-
nal stochastic model which allows for a far more efficient numerical implementation
of the complex ER-GRN stochastic system.

The asymptotic reduction of the full stochastic model provides the basis for a
hybrid numerical method with enhanced performance with respect to the stochastic
simulation algorithm. The current hybrid method is based on that formulated in [65].
The numerical method proceeds through iteration of a basic algorithm composed of
the following steps:
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1. Set initial conditions for the slow variables of the GRN and ER components of
the system described by Eqs. (3.2.17)-(3.2.18) (see Section 3.2.2).

2. Sample the fast variables from their QSSA PDFs conditioned to the current
value of the corresponding slow variables. Their sampled values are fed in the
evolution equations of the latter.

3. Consider the stochastic dynamics of the slow ER variables, Eqs. (3.2.7). These
stochastic equations must be solved by numerical simulation using Gillespie’s
SSA. We first set the corresponding time step, ∆τ , using the SSA.

4. Solve the ODEs for the slow variables of the GRN dynamics in the time interval
[τ, τ + ∆τ).

5. Complete the Gillespie step for the slow ER variables by choosing which el-
ementary reaction alters the ER regulatory state and update the slow ER
variables accordingly.

6. Repeat Steps 2 through to 5 until some stopping condition is satisfied.

If we are running the fixed time step version of the algorithm, Step 1 needs to be
done only once during the initialisation of the algorithm.

A.2.2 Benchmark: stochastic model of a single self-activating
gene

We use the simplest case of a single self-activating gene as benchmark to check the
accuracy of the multi-scale analysis introduced in Section A.2.1. This example can be
analysed in detail and we use it as an illustrative example which can help to shed some
light onto more complex situations (see Fig. A.3 for a schematic representation). The
dynamics of this system is described by the Chemical Master Equation (CME) with
transition rates Wj given in Table A.11. A slightly modified version of this system
has been analysed in de la Cruz et al. [40] using the methods proposed by Alarcón
[1]. This methodology is based on optimal path theory (OPT) [21] with separation
of time scales. The latter is used to formulate a quasi-steady state approximation
(QSSA) of the Euler-Lagrange (Hamilton) equations of the optimal path.
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Figure A.3: Schematic representation of the model of self-activation gene regulatory
circuit with epigenetic regulation. The gene productX1 is its own transcription factor
which, upon dimerisation, binds the promoter region (if possible, i.e. if acetylated)
of the gene thus triggering gene transcription. The transition rates corresponding to
this gene regulatory circuit are given in Table A.11. For simplicity, we use an effective
model in which the formation of the dimer and binding to the promoter region is
taken into account in a single reaction, and the resulting number of promoter sites
bound by two transcription factors is denoted by X11. Furthermore, depending on
whether the epigenetic state is predominantly acetylated or methylated, the promoter
region of the gene is accessible or inaccessible to the transcription factor, respectively.

Table A.10: Random variables associated with the stochastic dynamics of an auto-
activation gene regulatory circuit [55, 169]. See Fig. A.3 for a schematic representa-
tion.

Variable Description
X1 Number of transcription factor molecules
X11 Number of bound promoter sites in the gene promoter region
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Table A.11: Transition rates associated with the stochastic dynamics of an auto-
activation gene regulatory circuit [55, 169]. e1 corresponds to the number of binding
sites within the gene’s promoter region. See Fig. A.3 for an schematic representation.
Notation: TF stands for transcription factor and GPR for gene promoter region.

Transition rate r Event

W1(x) = R̂ + k1X11 r1 = (1, 0) Synthesis of the TF
W2(x) = k2X1 r2 = (−1, 0) Degradation of the TF
W3(x) = b11X1(X1 − 1)(e1 −X11) r3 = (−2,+1) Dimer binding to the GPR
W4(x) = u11X11 r4 = (+2,−1) Unbinding from the GPR

A.2.2.0.1 Robustness of the active state: assessing the accuracy of the
multi-scale OPT predictions.

Using the methodology outlined in Section A.2.1.2, de la Cruz et al. [40] have
derived the SCQSSA equations for the stochastic model of a self-activating gene:

dq1
dτ

= R + ω1p∞1p
q21

δ11 + q21
− ω2q1, (A.2.50)

q11 = p∞1p
q21

δ11 + q21
. (A.2.51)

where p and p∞1 are parameters such that p∞1p = e1
E

[1, 40, 53]. The rescaled
variables and parameters are defined in Table A.9. Fig. A.4 shows how the steady
state behaviour of the Eqs. (A.2.50)-(A.2.51) changes as p∞1p varies. We set our
system up so that its mean-field limit, corresponding to p∞1p = 1 [46], exhibits
bistability. We observe that, as p∞1p decreases (i.e. as e1 decreases), the system
goes through a saddle-node bifurcation whereby the active state (i.e. the steady
state where q1 = O(1)) loses stability. Therefore, our stochastic SCQSSA predicts
that a noise-induced transition from the active state into the inactive state (i.e. the
steady state such that q1 � O(1))) will occur, provided that e1

E
is smaller than the

critical value of p∞1p, which we refer to as (p∞1p)cr. This scenario has been fully
explored and verified by means of direct stochastic simulations by de la Cruz et al.
[40]. Therefore, the robustness of the active state is quantified by the action integral
computed on such trajectory [46, 21].

It is straightforward to verify the action integral Eq. (A.2.9) computed on the
outer solution, AQSS, satisfies that AQSS = 0. This is because Hω(p, q) = 0, p1(τ) =
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Figure A.4: Bifurcation analysis for the SCQSS approximation of the stochastic
auto-activation gene regulatory circuit, Eq. (A.2.50), with mean-field transcription
rate ω1 = 3.0. Parameter values as given in Table A.12. See de la Cruz et al. [40]
for details.
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1, and εṗ11 ' 0. Therefore, in order to quantify the robustness of the system, we
must resort to the analysis of the inner regime. The result of this analysis, which is
carried out in detail in the Section A.2.1.2, see Eq. (A.2.42), is that there exists a
solution of the inner dynamics with a positive contribution to the action, Ain:

Ain =
e1
S

log
q11out
q011

(A.2.52)

where

q11out = p∞1p
q201

δ11 + q201
.

We have further used that ε = E/S, p∞1p = e1/E. This quantity and q011 = q11(T =

0) must be such that Hω(p01 , p011 , q01 , q011) = 0. Moreover, since p01q01 = X1(t=0)
S

and

p011q011 = X11(t=0)
E

, besides the energy condition, p01q01 ≥ 0 and 0 ≤ p011q011 ≤ e1
E

must hold. Furthermore, q01 must belong to the basin attraction of the active steady
state of Eqs. (A.2.50)-(A.2.51).

The estimate for the robustness of the active state in this simple gene regulatory
network within our multi-scale optimal path theory is therefore given by [170]:

A0 =

{
e1
S

log
(
q11out
q011

)
if e1

E
< (p∞1p)cr

O(1) if e1
E
≥ (p∞1p)cr

(A.2.53)

Eqs. (A.2.50) and (A.2.53) allow for several numerically testable predictions.
Below the critical value, i.e. for e1

E
< (p∞1p)cr, we have that:

τE ∼ exp

(
e1 log

(
q11out
q011

))
,

since τE ∼ eSA0 , whereas, if e1
E
≥ (p∞1p)cr

τE ∼ O
(
eS
)
,

which means that the below-critical escape time from the active state grows ex-
ponentially with the number of binding sites in the promoter region of the gene.
This prediction of our multi-scale optimal path theory analysis has been validated
by direct stochastic simulations of the stochastic model of the self-activating gene
regulatory circuit, Table A.11 [59, 60], which are shown in Fig. A.5.
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/E

Figure A.5: This plot shows simulation results regarding the average exit time from
the active steady state. We have plotted how the (logarithm of the) average exit
time, τE, changes as e1, i.e. the total number of binding sites in the promoter region
of the self-activating gene, is let to vary. We show our results as a log-linear plot.
This figure validates our result that the below critical exit time varies exponentially
with e1. Blue circles represent simulation results. The red line represents a least-
squares fitting of the simulated data. The coefficients of this fitting are within the
95% confidence interval. Parameter values for the stochastic simulations have been
taken from Tables A.12 and A.9. Furthermore ω1 = 3.0. Averages are performed
over 1000 realisations for each data point.
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Table A.12: Parameter values used in simulations of the stochastic self-activating
single gene regulatory circuit. See de la Cruz et al. [40] for details.

Rescaled parameter Parameter Units Reference
ω1 = a

kdeg
√
Kd

Kd = 10 nM [55]

ω2 = 1 kdeg = 2 min−1 [55]
δ11 = 1 r = 0.4 nM · min−1 [55]
R = r

kdeg
√
Kd

S = 1000 –

b11ES = kdeg E = 20 –

A.2.2.0.2 Model reduction: assessing the accuracy of the asymptotic
analysis and the numerical method.

Following the procedure described in Section 3.2.2, we can obtain Eq. (3.2.17),
for the stochastic model of a single self-activating gene, which reads as follows,

dx1
dτ

= R1 + ω1x11 − ω2x1 − 2
(
ηi

(e1
E
− x11

)
x21 − δ11x11

)
, (A.2.54)

where x11 = X11

E
and X11 is a sampled from:

P1(X11|x1) = H(Yi3 − Y0)P1+(X11|x1) +H(Y0 − Yi3)P1−(X11|x1), (A.2.55)

where P1+(X11|x1) is a binomial distribution whose generating function isG∞(p11|x1) =
(1 + π11(x1)(p11 − 1))e1 where

π11(x1) =
x21

δ11 + x21
,

and P1−(X11|x1) = δX11,0. We have used this simple model to test the accuracy of
the asymptotic model reduction and the associated numerical method. The results
are shown in Fig. A.6 where we compare the performance of our approximation
against stochastic simulation algorithm results. SSA is feasible for this simple model
which allows a systematic comparison with our approximation. For more complex
systems, SSA is computationally too costly, and an alternative is necessary, which is
the motivation behind our asymptotic analysis.

To carry out the comparison between the asymptotic reduction and the SSA, we
have simulated a (very long) realisation where we let the system to evolve towards
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Figure A.6: Caption on the following page.
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Figure A.6: (Previous page). Results for simulations of the aysmptotic model re-
duction for the stochastic model of the self-activating gene with fixed ∆τ . Series
of plots comparing a number of statistics regarding the stochastic simulation of
the self-activating GRN using Gillespie’s stochastic algorithm (plots (a), (b), (c),
and (d)) and the asymptotic model reduction (plots (e), (f), (g), (h) with fixed
time step ∆τ = 0.25ε = 2.5 · 10−3, and plots (i), (j), (k), (l) with fixed time
step ∆τ = 0.5ε = 5 · 10−3). The average time step in the Gillespie simulation is
∆τ = 2.6946 · 10−4. The mean and standard deviation of x1 in the Gillespie simu-
lation are 〈x1〉 = 1.2532 and σx1 = 0.0794, respectively. According to simulation of
the asymptotic model reduction these quantities are 〈x1〉 = 1.2488 and σx1 = 0.0752,
〈x1〉 = 1.2431 and σx1 = 0.1072 for ∆τ = 0.25ε and ∆τ = 0.5ε, respectively. Param-
eter values given in Table A.12 and a = 1.95.

the open gene steady-state (Figs. A.6(a), (e), and (i)). Over this long realisation, we
have collected statistics regarding three quantities: x1, x11, and π11. The asymptotic
reduction fares rather well against the SSA when we take ∆τ to be up to an order of
magnitude larger than the average time step in the SSA simulation. This is a rather
substantial improvement in computational performance. Taking larger values of ∆τ ,
in our case ∆τ > 0.5ε, with ε = 10−2, distorts the statistics and the results of the
asymptotic reduction are no longer accurate.

We have tried the τ−leap version of the algorithm, for which we do not report
the results because there was no improvement in performance when compared to the
fixed time step method. The ∆τ selection method used in our simulations is the
one proposed in [61]. The issue with these simulations is that occasionally the ∆τ
selection procedure produces a value of the time step that is exceedingly large. This
compromises the stability of the method and its accuracy. Further work, beyond the
scope of this thesis, needs to be done regarding adaptive time step versions of the
asymptotic reduction method.

A.2.3 Summary of the minimum action path theory and its
numerical implementation

The Freidlin-Wentzell theory of large deviations provides a framework to under-
stand the effects of small random perturbations in dynamical systems. Following
large deviation principles, statistics of rare events, when they occur, will follow the
least unlikely path with high probability. The key element of this theory is an action
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functional whose minimiser gives the stochastic trajectory of maximum likelihood
by which this event happens [73]. Therefore, our problem of finding a stochastic
trajectory is translated into finding the trajectory that minimizes a deterministic
functional. The minimization is done by a custom made genetic algorithm that ex-
plores different paths in the n+1 dimensional space, where one dimension corresponds
to the parameter which parameterizes the path and the remaining n dimensions cor-
respond to the number of chemical species involved in the model.

The action minimisation was performed by finding the path

ϕ(s) = (yi1(s), . . . , yi7(s)) : s = [0, 1]→ R7,

with yij described in Table 3.1 that minimises the time independent gMAM func-
tional [73] given an initial and final point, ϕ(0) and ϕ(1), respectively:

S(ϕ(s)) =

∫ 1

0

|f(s)|a (1− cos ηa(s))|n̂(s)|2ads (A.2.56)

where f is the deterministic component of the Langevin equation and n̂ is a unit
vector tangent to ϕ at a path position s (see Eq. (3.2.20)). The position dependent
diffusion matrix a(s) = gᵀ (ϕ(s)) g (ϕ(s)) is used to compute the inner product that
defines the norm |·|a =

√
〈·, a−1·〉 (see Eq. (3.2.20)). The angle ηa(s) is the angle

between f and ϕ at a path position s, which is defined using the same inner product,

cos ηa = 〈f,a−1n̂〉
|f |a|n̂|a .

For notation convenience, we drop the i subscript of yij, i.e. we denote the
variables by yj. In order to find the minimum action path, the candidate paths
where parametrized by n = 11 points along the path ϕ̃(s) = (yi1(s

i), . . . , yi7(s
i)),

evaluated along a set of ordered values {si ∈ [0, 1]} with i = 1, ..., n; s1 = 0 and
sn = 1. Thus, each path is determined by a 8n-dimensional vector. To evaluate
the gMAM functional (A.2.56), each path is interpolated using Akima splines along
N = 200 points. The minimisation was performed using a custom made evolutionary
algorithm on a population of dpop = 10000 candidate curves. Each generation of the
algorithm keeps the top dfit = 2000 curves that score the lowest action, whilst the rest
of the curves are replaced by offspring curves resulting from random pairings from
the fittest individuals. For each random parent pair from the dfit best candidates,
namely, (ϕ̃′, ϕ̃′′), its offspring path, ϕ̃′′′, is calculated by taking uniform random
intermediate values between each of the n− 2 intermediate points of its parents pair
and introducing mutations by randomly perturbing the resulting curve (the first
and last point, y1j and ynj , are not modified since they correspond with the stable
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stationary points (see Eq. (3.2.20)). Namely each coordinate y
′′′i
j of an offspring is

calculated as

y′′ij = ((1− ρ1)y′′ij + y′′′ijρ1)e
mρ2 , (A.2.57)

where ρ1 is a uniform number U(0, 1), ρ2 is a Gaussian random number N(0, 1), and
m = 0.01 is the mutation intensity. The parametrisation vector {s′′′i} is calculated
similarly while imposing that it is monotonically increasing. In order to initialise the
population, the first dpop trajectories are generated by sampling random points in
the latin hypercube defined by ϕ(0) and ϕ(1) and sampling ordered uniform vectors
{si}. In order to keep track of the convergence of the algorithm, a Limited-memory
BFGS quasi-Newton method is used to find a refined local minimum on the best
candidate path every ggrad = 20 generations. The simulations were accelerated by
introducing resulting optimal trajectories from the L-BFGS as a new offspring curve
for the next generation. The algorithm is stopped when the curves approach the
same local minimum over gmax = 400 trajectories or when the slope of the loglog
curve of the average action of the dfit best paths, as a function of the number of
generations, is small enough (αp = 0.01).

In order to validate the results, the algorithm was run several times taking as
final result the best curve candidate. Additionally, for some candidates, different
values of the parameters of the algorithm (dpop, dfit, n, ggrad, gmaxm,N, and αp) were
explored to ensure that the algorithm was not stuck in local minima.

As a summary, the minimum action path (MAP) method follows these steps:

1. Compute stationary states of the system: Compute the stationary states
of the system for the given parameters (saddle point, ys, and the initial and
final stable states, yini and yf ).

2. Generate initial population of paths. Generate dpop random paths that
start at yini and end at yf .

3. Start optimization loop Set counter i = 1 (number of generations of the
genetic algorithm).

Compute the fitness Compute the value of the action functional S
along each path ϕ (individual) from the population. In order to do so, the
vector force f (mean-field drift vector), the gradient of the force, and the
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inverse of the diffusion tensor a (a−1), with a = ggt and g the noise matrix,
need to be evaluated at each point of the path.

Rank the paths according to their fitness Rank them from the
lowest to the highest value of the action functional S.

Keep the best paths Select the first dfit paths, i.e, those df it paths
with lower value of S. This subgroup of dfit paths will be carried to the next
generation.

Find optimal gradient path If i ≡ 0 (mod ggrad), compute a L-BFGS
minimisation taking the minimum action path of the population as the initial
condition. If the resulting path improves, add it to the dfit subpopulation.

Check convergence If the converging conditions are met, exit the loop
and take the best path as the optimum result.

Generate new paths Generate new paths by mixing and mutating
the best dfit paths from the generation. This is done in order to get a new
population with the same number of individuals as the original one (dpop paths).

Update generation counter i = i+1

A.2.4 Kolmogorov Smirnov test: analysis of ensemble het-
erogeneity

In this section, we provide the p-values of those differences found to be significant
in the Kolmogorov-Smirnov (K-S) tests carried out in Section 3.3.3 (see details there).

A.2.4.1 Significant differences within the ensemble of DERSs

Red cluster versus blue cluster. Our analysis shows that the KS test detects sig-
nificant differences for c11 (p-value 0.0349, unrecruited demethylation), c111 (p-value
0.0062, unrecruited deacetylation), c115 (p-value 0.0010, unrecruited acetylation), and
c116 (p-value 3.9433·10−4, recruited acetylation).

Red cluster versus green cluster. In this case, our analysis shows that significa-
tive differences are found only for two parameter values: c13 (p-value 2.5697·10−4,
unrecruited demethylation) and c116 (p-value 0.0307, recruited acetylation).

Blue cluster versus green cluster. Significative differences are found for the empir-
ical distributions of c13 (p-value 2.1411·10−4, unrecruited demethylation), c18 (p-value
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0.0038, recruited methylation), c111 (p-value 0.0156, unrecruited deacetylation), and
c115 (p-value 0.0023, unrecruited acetylation).

A.2.4.2 Significant differences between differentiation-primed and pluripotency-
locked ER landscapes

We first proceed to compare within the whole population (without discriminat-
ing between clusters) those DERSs such that Q ≥ T (differentiation-primed ER
landscapes) against those with Q < T (pluripotency-locked ER landscapes). We
take T = 0.7. The parameter values for which the KS test yields significant dif-
ferences when comparing the differentiation-primed ER system to the pluripotency-
locked ER are c11 (p-value 0.0125, unrecruited demethylation), c114 (p-value 0.0435,
recruited deacetylation), c115 (p-value 0.0191, unrecruited acetylation), and c116 (p-
value 0.0057, recruited acetylation).

If we now restrict our analysis to those DERSs within the blue cluster, we
observe that the parameters whose CDFs differ significantly when splitted into
differentiation-primed and pluripotency-locked are c11 (p-value 0.0135, unrecruited
demethylation) and c114 (p-value 0.0095, recruited deacetylation).

Regarding the PERSs, the results are shown in Fig. A.10. Our analysis shows
that significative differences can be found between the empirical distributions of
three parameter values: c13 (p-value 5.9983·10−6, unrecruited demethylation), c18
(p-value 7.4181·10−4, recruited methylation), and c115 (p-value 0.0047, unrecruited
acetylation).

A.2.5 Reference parameter values

In this appendix we give the parameter values used in the simulations reported
in Chapter 3. The parameter sets Tables A.15-A.19 are taken from the pluripotency
and differentiation ER ensembles generated using the method described in Section
3.2.4 and in reference [53]. Parameter sets from Tables A.13 and A.14 are the ones
used to generate the raw data from Figure 3.2.

A.2.6 Supplementary figures
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Table A.13: Reference parameter values used to generate the ensemble of the differ-
entiation epigenetic regulatory systems (see Fig. 3.2(a)).

Rescaled parameter Value (dimensionless)
κ1 200
κ2 100
κ3 50
κ5 1
κ6 200
κ7 10
κ8 100
κ9 200
κ10 100
κ11 0.1
κ12 1
κ13 1
κ14 200
κ15 100
κ16 100
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Table A.14: Reference parameter values used to generate the ensemble of the pluripo-
tency epigenetic regulatory systems (see Fig. 3.2(b)).

Rescaled parameter Value (dimensionless)
κ1 200
κ2 100
κ3 10
κ5 1
κ6 10
κ7 100
κ8 100
κ9 200
κ10 100
κ11 10
κ12 1
κ13 1
κ14 100
κ15 100
κ16 100
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Table A.15: Dimensionless parameters corresponding to the pluripotency epigenetic-
regulatory system PERS1 (see Figs. 3.4 and 3.9, and Fig. A.11 and A.8).

Rescaled parameter Value (dimensionless)
κ1 121.624100
κ2 14.942093
κ3 90.265221
κ5 135.026962
κ6 137.927872
κ7 1652.600464
κ8 2235.608398
κ9 123.194839
κ10 47.182499
κ11 32.408936
κ12 34383.695312
κ13 102.787231
κ14 157.155838
κ15 5133.064453
κ16 6294.414551
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Table A.16: Dimensionless parameters corresponding to the pluripotency epigenetic-
regulatory system PERS2 (see Figs. 3.4 and 3.9, and Fig. A.11 and A.8).

Rescaled parameter Value (dimensionless)
κ1 107.745895
κ2 14.304025
κ3 52.221851
κ5 172.351425
κ6 173.544327
κ7 1692.524658
κ8 6550.556641
κ9 47.068409
κ10 43.554352
κ11 41.708683
κ12 949.391724
κ13 31.121500
κ14 50.545132
κ15 5126.510254
κ16 5547.370605
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Table A.17: Dimensionless parameters corresponding to the differentiation
epigenetic-regulatory system DERS1 (see Figs. 3.4 and 3.9, and Fig. A.11 and
A.8).

Rescaled parameter Value (dimensionless)
κ1 40.951008
κ2 33.545677
κ3 36.101627
κ5 71.377869
κ6 45.063740
κ7 2806.709717
κ8 7397.834961
κ9 170.622452
κ10 77.820129
κ11 0.093411
κ12 6848.829102
κ13 131.147171
κ14 9.915549
κ15 3712.249268
κ16 2623.266846
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Table A.18: Dimensionless parameters corresponding to the differentiation
epigenetic-regulatory system DERS2 (see Figs. 3.4 and 3.9, and Fig. A.11 and
A.8).

Rescaled parameter Value (dimensionless)
κ1 21.022829
κ2 37.389736
κ3 6.075892
κ5 119.379074
κ6 199.229645
κ7 2635.588623
κ8 4078.342285
κ9 142.806244
κ10 50.091576
κ11 0.435084
κ12 6921.437988
κ13 11.198260
κ14 8.374920
κ15 1926.709595
κ16 7136.016602
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Table A.19: Dimensionless parameters corresponding to the differentiation
epigenetic-regulatory system used in the simulations corresponding to reprogram-
ming of pluripotency-locked DERSs (see Fig. 3.8).

Rescaled parameter Value (dimensionless)
κ1 70.205910
κ2 73.419846
κ3 3.609020
κ5 119.968636
κ6 107.726303
κ7 5100.981445
κ8 4037.399658
κ9 40.685452
κ10 78.823647
κ11 0.785620
κ12 43095.195312
κ13 55.197235
κ14 17.289341
κ15 5054.711914
κ16 7180.712402

Table A.20: Parameter values used in simulations of the stochastic two-gene regula-
tory circuit with self-activation and competitive inhibition. See de la Cruz et al. [40]
for details.

Rescaled parameter Parameter Units Reference
ω11 = ω21 = a

kdeg
√
Kd

Kd = 10 nM [55]

ω21 = ω22 = 1 kdeg = 2 min−1 [55]
δij = 1 for all i, j r = 0.4 nM · min−1 [55]
βij = 1 for all i, j –
R1 = R2 = r

kdeg
√
Kd

S = 1000 –

b11ES = kdeg E = 5 –
e1 = 5 –
e2 = 5 –

203



0 1 2 3 4
0

2

4

q
2

(p
1

p=0.35, p
2

p=1)  R
PU

0 1 2 3 4
0

2

4

(p
1

p=1, p
2

p=0.35)  R
DU

0 1 2 3 4
0

2

4
q

2

(p
1

p=1, p
2

p=1)  R
PUD

0 1 2 3 4
0

2

4

(p
1

p=0.35, p
2

p=0.35)  R
U

0 1 2 3 4

q
1

0

2

4

(p
1

p=1.05, p
2

p=0.35)  R
D

0 1 2 3 4

q
1

0

2

4

q
2

(p
1

p=0.35, p
2

p=1.05)  R
P

Figure A.7: These plots illustrate the dynamics of Eqs. (3.3.1)-(3.3.2) within each of
the regions shown in Figure 3.3. Each of the pannels in this plot shows trajectories
for values of the pair (p∞1p, p∞2p) corresponding to the different regions shown in
Figure 3.3. For each (p∞1p, p∞2p) we plot three trajactories associated with three
different initial conditions: (q1(τ = 0), q2(τ = 0)) = (0, 0) for the purple trajectories,
(q1(τ = 0), q2(τ = 0)) = (3, 4) for the green trajectories, and (q1(τ = 0), q2(τ = 0)) =
(4, 3) for the blue trajectories. Blue arrows indicate the direction and magnitude of
the vector field associated with the dynamical system defined by Eqs. (3.3.1)-(3.3.2).
Parameters values: ω11 = ω21 = 4.0. Other parameter values as per Table A.20.
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Figure A.8: Plots (a)-(d) represent the optimal transition paths for selected members
of the DERS and PERS ensembles. These paths are obtained using MAP theory (see
Section 3.2.3 and Section A.2.3). Parameter values are given in Section A.2.5, Tables
A.15-A.18.
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Figure A.9: Caption on a following page.
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Figure A.9: (Previous page). This figure shows results regarding the empirical CDFs
for the (whole) ensemble of DERS parameter sets. This ensemble has been generated
according to the methodology explained in Section 3.2.4 (see also Section 2.2.3.2).
For guidance, the CDF corresponding to a uniformly distributed random variable is
added (black line). By SC-locked (blue line) we denote those parameter sets where
Q < 0.7, whereas those sets with Q ≤ 0.7 are referred as non-SC locked (orange
lines). See Section 3.3.2 and Section 3.3.3 for further details.

Figure A.10: (Previous page). This figure shows results regarding the empirical
CDFs for the ensemble of PERS parameter sets. This ensemble has been generated
according to the methodology explained in Section 3.2.4 (see also Section 2.2.3.2).
For guidance, the CDF corresponding to a uniformly distributed random variable is
added (black line). Different sets are defined following the same criteria as in Fig.
A.9. For further details, see Section 3.3.2 and 3.3.3.

A.3 Supplementary materials Chapter 4

In this Section, we provide supplemental information for the results obtained in
Section 4.3.1. Precisely, we show the parameter values used to recover the plastic
and scenario scenarios described in 2.3.1, for the model presented in Chapter 4.

A.3.1 Reference parameter values: resilient and plastic sce-
narios

Here we give the sets of parameter values used to produce the phase diagrams
associated both with the the phenotype with elevated plastic potential (Fig. 4.1) and
the reprogramming-resilient phenotype (Fig. 4.2). These sets of parameter values
have been chosen with the same viability criteria as those given in Section 2.2.3.1
(Chapter 2), namely, that the mean-field limit has a single stable steady state corre-
sponding to the open (closed) epigenetic state for the differentiation (pluripotency)
gene. Besides this, we further require that with ε = 0 (abundant marks), there is no
overlap of the bistability regions for the reprogramming-resilient phenotype, whereas
for the plastic phenotype we require that the solid red line is at the left of the dashed
blue line (see Fig. 4.1(b)). The reference parameter values are given in Tables A.21
(resilient scenario) and A.22 (plastic scenario).

208



(a) (b)

(c) (d)

Figure A.11: The blue region correspond to the bistable phase, where both the open
and silenced ER states are stable. The region above (at the left of) the bistability
tongue is a monostable phase where only the silenced ER state is stable, which we
designate as the closed phase. Correspondingly, the region below (at the right) is
a monostable phase where only the open ER state is stable, which we refer to as
the open phase. The points at the boundary of the bistability region are instability
thresholds where saddle-node bifurcations occur. This phase diagram was obtained
using the methodology formulated in [71] and using Bertini (see Appendix B and
[13]). Parameter values are given in Section A.2.5, Tables A.15-A.18.

209



Rescaled parameter Rescaled parameter Units Reference
κ1 = 200 κ25 = 200 dimensionless –
κ2 = 100 κ26 = 100 dimensionless –
κ3 = 30 κ27 = 10 dimensionless –
κ4 = 1 κ28 = 1 dimensionless –
κ5 = 1 κ29 = 1 dimensionless –
κ6 = 100 κ30 = 50 dimensionless –
κ7 = 200 κ31 = 200 dimensionless –
κ8 = 100 κ32 = 100 dimensionless –
κ9 = 0.1 κ33 = 100 dimensionless –
κ10 = 1 κ34 = 200 dimensionless –
κ11 = 1 κ35 = 100 dimensionless –
κ12 = 200 κ36 = 100 dimensionless –
κ13 = 160 κ37 = 200 dimensionless –
κ14 = 90 κ38 = 100 dimensionless –
κ15 = 90 κ39 = 8 dimensionless –
κ16 = 1 κ40 = 1 dimensionless –
κ17 = 100 κ41 = 1 dimensionless –
κ18 = 100 κ42 = 100 dimensionless –
κ19 = 160 κ43 = 200 dimensionless –
κ20 = 80 κ44 = 100 dimensionless –
κ21 = 80 κ45 = 100 dimensionless –
κ22 = 140 κ46 = 180 dimensionless –
κ23 = 70 κ47 = 90 dimensionless –
κ24 = 70 κ48 = 90 dimensionless –

Table A.21: Reference parameter values used for the epigenetic regulation model
giving rise to resilient phenotype (Fig. 4.2)
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Rescaled parameter Rescaled parameter Units Reference
κ1 = 200 κ25 = 200 dimensionless –
κ2 = 100 κ26 = 100 dimensionless –
κ3 = 30 κ27 = 10 dimensionless –
κ4 = 1 κ28 = 1 dimensionless –
κ5 = 1 κ29 = 1 dimensionless –
κ6 = 100 κ30 = 50 dimensionless –
κ7 = 200 κ31 = 200 dimensionless –
κ8 = 100 κ32 = 100 dimensionless –
κ9 = 0.1 κ33 = 100 dimensionless –
κ10 = 1 κ34 = 200 dimensionless –
κ11 = 1 κ35 = 100 dimensionless –
κ12 = 200 κ36 = 100 dimensionless –
κ13 = 185 κ37 = 200 dimensionless –
κ14 = 90 κ38 = 100 dimensionless –
κ15 = 90 κ39 = 8 dimensionless –
κ16 = 1 κ40 = 1 dimensionless –
κ17 = 100 κ41 = 1 dimensionless –
κ18 = 100 κ42 = 100 dimensionless –
κ19 = 160 κ43 = 200 dimensionless –
κ20 = 80 κ44 = 100 dimensionless –
κ21 = 80 κ45 = 100 dimensionless –
κ22 = 140 κ46 = 205 dimensionless –
κ23 = 70 κ47 = 105 dimensionless –
κ24 = 70 κ48 = 105 dimensionless –

Table A.22: Reference parameter values used for the epigenetic regulation system of
the plastic phenotype (Fig. 4.1)
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Appendix B

Bertini description

In this thesis, a numerical software called Bertini has been used to compute steady
state solutions of the systems of equations appearing in the ER models presented.
In this Appendix, we give a brief summary of what Bertini does and the way this
software works. For further information on this software, we refer to the book [13],
where further details, as well as clarifying examples, are presented.

B.1 General overview

Bertini is a software that numerically computes algebraic sets, i.e, solution sets
of systems of polynomial equations, which are subsets of the Euclidean space. It is
based on numerical algebraic geometry which allows to compute to extremely high
accuracy (with little work) approximations to the solutions. It is worth remarking
that the methods that Bertini uses in the solving process depend on some random
selection of constants which makes the algorithms work correctly with ’probability
one’, but which also implies that, the results from one run to another can be slightly
different.

In particular, we will be interested in finding isolated solutions of polynomial
systems, that is, zero-dimensional solution sets (although Bertini is able to compute
positive-dimensional solution sets, we will not look into it). More precisely, we will
use Bertini to find the solution set, more properly called an affine complex algebraic
set, V(f1, f2, . . ., fn):= {x ∈ Cn|f1(x) = . . . = fn(x) = 0}, where fi, i = 1, . . . , n, is
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a polynomial in N unknowns. More in general, we will denote by

f(z) :=

 f1(z1, . . . , zN)
...

fn(z1, . . . , zN)

 (B.1.1)

the polynomial system, with N not necessarily equal to n, that is, it is not necessary
a square system for Bertini to work. In fact, when n > N we will have an overde-
termined system, whilst when n < N we will work with an undetermined system
(which will give rise to a positive-dimensional solution set). As stated before, we
will not deal with this latter case and to be more precise, we will assume to have a
square system, n = N . Notice too that V(f1, f2, . . . , fn) is more properly called an
affine complex algebraic set.

B.2 How does Bertini work?

As we have mentioned, Bertini is based on numerical algebraic geometry and this
area has as fundamental computation, homotopy continuation. Homotopy continua-
tion deals with the problem of finding a finite set S of solutions of a (square) system
such as (B.1.1), defined for z ∈ CN , with the property that S contains every isolated
solution of f(z) = 0. Let us assume that f(z) = 0 is the system for which we wish to
find the solutions, from now on, we will label this system as our target system and
we will refer to it as system A.

Before proceeding further, let us recall what we mean by an isolated solution.
We say that a solution z∗ ∈ CN is isolated if there exists r > 0 such that the only
solution contained in Br(z

∗) := {z ∈ Cn
∣∣ ||z− z∗||2 < r} is z∗.

Although it may seem too simplistic to consider the problem of finding (numeri-
cal) solutions for polynomial systems, this kind of systems are the ones that appear
when modelling biological problems by means of ODEs (law of mass action, conser-
vation laws, ...), for example. Hence, its importance. Furthermore, once it is known
how to find the isolated solutions for a square system, it is quite easy to solve the
problem for nonsquare systems and for positive-dimensional sets V(f).

In order to find the solutions of the system A, what Bertini does is taking a
system B of ’similar’ equations with known solutions, and deform the system B and
its solutions to the system A and its solutions. This approach is called homotopy
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continuation, or simply, continuation. More precisely, deforming the system B so
as to reach the system A is accomplished by means of a parameterized family of
equations, known as homotopy, which for certain values of the parameters, results in
the systems A and B.

Definition 1. A homotopy, H(z, t), is a smooth function H(z, t) : CN × [0, 1]→ CN

In Bertini, the homotopy H(z, t) denotes the composition of a family of systems,
H(z, s), H(z, s) : CN × U → CN , with U ⊂ C open subset, with a defined path
s = q(t), where s is given by a differentiable map q : [0, 1] → U ⊂ C, such that
s = q(t), with q(0) = 0 and q(1) = 1, i.e, it gives the path parameterized by t going
from s = 1 (t = 1) to s = 0 (t = 0). We want to observe that s is a complex variable
and hence, there are an infinite number of continuous one-real dimensional paths
going from t = 1 to t = 0.

There are 3 basic steps in order to solve a polynomial system f(z), i.e, to find the
solutions of the target system A via homotopy continuation. These are as follows:

1. Build and solve a start system g(z) (usually, g(z) is simpler than f(z)).

2. Construct a homotopy between f(z) (target system) and g(z).

3. Follow the paths from t = 1 to t = 0, that is, to deform the system g(z) and its
solutions to f(z) and its respective solutions (see below for further explanation).

If both the start system g(z) and the homotopy (i.e, the deformation rule) are well-
chosen, then, this 3-step process will lead to the solutions of the target system f(z).
Let us describe each of these three steps a bit more in detail.

Step one. In order to construct a polynomial system g(z) which is related to
f(z), we can take, for instance, a system with the same degrees, but which we can
solve easily. The solutions of this new system, i.e, the solutions of g(z) = 0, are
called in Bertini startpoints.

Step two and three. The simplest form for the homotopy is a linear one, that
is, H(z,t) = tg(z) + (1 − t)f(z), with t a new parameter, t ∈ [0, 1]. When taking
t = 1, we have H(z, 1) = g(z), for which we know the solutions H(z, 1) = 0, whereas
when taking t = 0, we have H(z, 0) = f(z), for which we want to compute the solu-
tions H(z, 0) = f(z) = 0.

214



The key point is that for t ∈ (0, 1] the solutions vary continuously and they will
not collide, which, then, implies that we will get paths connecting the startpoints
(solutions of the start system, g(z), at t = 1) to the endpoints, i.e, solutions of the
target system, f(z), at t = 0. In other words, the continuous variation of the solu-
tions defines a path, and each of these paths is the image of the interval [0,1] under
a continuous map, p(t); that is, H(p(t), t) = 0 for t ∈ [0, 1] defines a path that de-
forms the solutions of the system B (for t = 1) to the ones of the system A (for t = 0).

To march along the paths (moving from t = 1 to t = 0), Bertini uses predictor-
corrector methods, although when approaching t = 0, then, more powerful methods
are used. We want to note that some of the paths could be divergent (in Bertini,
these paths are referred as paths approaching a point ’at infinity’ when t → 0),
which means that the initial system had more solutions than the target system. An-
other important remark is that the continuation paths are nonreal for most of the
homotopy (during the ’tracking steps’), but they may be real at the start and end
points of the homotopy. More in general, continuing real solutions not always leads to
real solutions, that is, real solutions can continue to complex solutions and vice versa.

B.2.1 Choosing a good homotopy

As we have stated, the choice of the continuation rules, the homotopy, is an im-
portant step in order to find the solutions of the target system. Hence, let us show
some of the properties that a good homotopy must satisfy.

A good homotopy for the system f(z) = 0 and a set S1 of D distinct solutions of
g(z) := H(z, 1) = 0 (startpoints), is a system of infinitely differentiable functions

H(z, t) :=

 H1(z1, . . . , zN , t)
...

HN(z1, . . . , zN , t)

 (B.2.1)

such that

1. for any choice of t ∈ [0, 1], H(z, t) is a system of polynomials.

2. for any of the D distinct startpoints, ω ∈ S1, there is a smooth path pj(t) :
(0, 1]→ CN , such that pj(1) = ω, and
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3. pj is smooth on (0, 1], and for each t∗ ∈ (0, 1],
(a) the associated paths don’t cross, i.e, for any k 6= j, 1 ≤ j, k ≤ D, and
t∗ ∈ (0, 1], pj(t

∗) 6= pk(t
∗), and

(b) the points pj(t
∗) are smooth isolated solutions of H(z, t∗) = 0.

4. H(pj(t), t) = 0, ∀t ∈ (0, 1] and 1 ≤ j ≤ D.

In addition, we say that Eq. (B.2.1) is a good homotopy for the system f(z) = 0
if we can choose a set S1 of D distinct solutions of g(z) := H(z, 1) = 0 such that the
set of finite limits,

S0 := {z ∈ CN
∣∣||z||2 <∞ and z = lim

t→0
pj(t)}

contains every isolated solution of f(z) = 0, where || · ||2 denotes the two-norm of a
vector.

Without going into all the details, we can state that a good homotopy, according
to the description given above, can be build by applying the following recipe:

H(z, t) = (1− t)f(z) + γtg(z),

where, for instance, gi(z) = zi
di − 1, with di = deg fi, i = 1, . . . , N , and γ, γ 6= 0,

is a random complex number (usually taken to be a number following the uniform
distribution in a small band around the unit circle). This is known as the gamma
trick and it guarantees for H(z, t) to be a good homotopy (with probability one). In
fact, if the homotopy is not specified by the user, this is Bertini’s default method
for constructing the homotopy. This type of homotopy is known as total-degree
homotopy and it guarantees that the number of paths ending at z∗ is equal to the
multiplicity of z∗ as solution of f(z) = 0.

More in general, numerical algebraic geometry is based on algorithms that depend
on certain bad phenomena happening with probability zero. That is, when choosing
the value of some parameters at random, bad phenomena don’t occur, which is the
basis of the gamma trick. And this is precisely the reason why we can state that the
total-degree homotopy will be a good one, with probability one.
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B.2.2 Path tracking details

Let start by assuming that we have a family of homotopies on CN , that is,

H(z, t) :=

 H1(z1, . . . , zN , t)
...

HN(z1, . . . , zN , t)

 = 0, (B.2.2)

such that each Hi is polynomial in the variables z ∈ CN and analytic in the parame-
ter t ∈ C (although the definition can be generalised to a set of parameters t ∈ CM ,
we focus on the case M = 1 for simplicity). Assume that we also have a differentiable
map ψ : t ∈ [0, 1] → z ∈ CN satisfying that H(ψ(t), t) = 0 for t ∈ (0, 1] and the
Jacobian of H with respect to z1, . . . , zN has rank N for the points (ψ(t), t) with
t ∈ (0, 1] (i.e, the points (ψ(t), t) are nonsingular).

The way H is constructed guarantees that ψ exists and that ψ(1) = p0, a pre-
scribed point (startpoint). The goal is to compute the solution of the target system,
f(z) = 0, corresponding to this particular path, i.e, computing p∗ = ψ(0). Trying to
compute this point is what is known as path tracking.

For simplicity, let us denote ψ(t) by z(t). The process of path tracking described
in the previous paragraph is equivalent to solving the following initial value problem

∂H(z(t), t)

∂t
+

N∑
i=1

∂H(z(t), t)

∂zi

dzi
dt

= 0, with z(1) = p0, (B.2.3)

which corresponds to the Davidenko differential equation and which is obtained
by differentiating H(z(t), t) with respect to t. Denoting by z(t) := (z1(t), . . . , zN(t))t

the solution of Eq. (B.2.3), and by

JH(z, t) :=
∂H

∂z
:=


∂H1

∂z1
· · · ∂H1

∂zN
...

. . .
...

∂HN

∂z1
· · · ∂HN

∂zN

 ,

the Jacobian matrix with respect to the variable z evaluated at (z, t), then, the
Davidenko differential equation reads as follows,

∂H(z(t), t)

∂t
+ JH(z(t), t)

dz(t)

dt
= 0,
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where using the fact that the Jacobian JH(z(t), t) is invertible in the path since the
matrix has rank N at any point of the path, we obtain

dz(t)

dt
= −

(
JH(z(t), t)

)−1∂H(z(t), t)

∂t
with z(1) = p0. (B.2.4)

Solving the initial value problem, Eq. (B.2.4), will allow to find the roots of H(z, 0) =
0. It is extremely important to highlight that we need to be specially careful when
approaching t→ 0, because if the solution is singular, then, the Jacobian will not be
invertible (rank defficient) and Eq. (B.2.4) will not be valid. This is the reason why
Bertini usually splits the interval t ∈ (0, 1] into t ∈ [ε, 1], with ε > 0 small, and then
taking the limit to estimate limt→0 z(t).

We want to remark that Bertini tracks the paths from t = 1 to t = 0 (and not the
other way around) because there are considerably more floating-point numbers near
t = 0 than near t = 1. Since the singular endpoints require many digits of accuracy,
this turns out to be useful. In fact, Bertini uses multiprecision because it is the only
way to have an accurate polynomial solving software. Nevertheless, multiprecision
needs to be used only when necessary, due to its high computational cost.

In the previous lines, we have theoretically described how Bertini does the path
tracking. However, what is useful to know is which algorithms Bertini uses to do
the path tracking. In general, Eq. (B.2.4) is solved by using a first-order tracking
method, the Euler-Newton predictor-corrector. So, the method starts at t0 = 1 with
p0 as the initial value and computes approximations p1, p2, . . . at values 1 = t0 >
t1 > t2 > . . . > 0. In order to do so, it applies Euler’s method, that is,

pi+1 = pi −
(
JH(pi, ti)

)−1∂H(pi, ti)

∂t
∆ti,

where ∆ti = ti+1 − ti. To be more precise, what this method does is predicting
the next approximation, pi+1, along the line tangent to the solution path from the
current point of the path. Since we know that each point of the path must satisfy
H(z, t) = 0, we can use a predictor-corrector strategy so as to improve the point given
by the Euler’s method. So, the prediction to pi+1 is followed by a correction using
Newton’s method for H(z, ti+1), starting with z0 = pi+1. More precisely, Newton’s
method is as follows:

zi+1 = zi −
(
JH(zi, ti+1)

)−1
H(zi, ti)

Applying this method, we can get a better prediction for z(ti+1) which we can use to
replace pi+1. Therefore, path tracking accuracy is determined by Newton’s method
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in the predictor-corrector cycle. Moreover, Bertini computes the condition number
of the Jacobian matrix as it tracks each path, increasing and decreasing precision as
necessary.

Another question we could ask about the path tracking process is if all the so-
lutions of f(z) = 0 are found when using this methodology. The following Theorem
guarantees this:

Theorem 1. Given a system such as in Eq. (B.2.2) of N complex analytic functions
defined for (z, t) in an open set U ⊂ CN ×C, and a point (z∗,t), which is an isolated
solution of multiplicity µ of H(z∗, t) = 0, it follows that for any sufficiently small ε >
0, there is a δ > 0 such that for any point t′ with the Euclidean distance |t′− t∗| < δ,
the sum of the multiplicities of the solutions of H(z, t′) = 0 with Euclidean distance
less than ε from z∗ is µ.

This theorem states that given a total-degree homotopy, then, exactly µ paths
will have as endpoints the z value, with |z−z∗| < ε as the parameter of the homotopy
t→ 0.
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