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Dr. Miquel Àngel Senar

Phd Student

Josefina Lenis

ii



Josefina Lenis. PhD Thesis 2018.



Josefina Lenis. PhD Thesis 2018.



Ackowledgements

First of all I want thank my advisor Miquel. Thanks to his support and guidance I discover a

strength that I did not know that I have. His actions and advice marked me and became an

example of fine academic work.

During my stay in the USA I fell in love with a small city called Eugene in the state of

Oregon. Where I still have very goods friends. The main responsible converting that time

in an amazing experience was the Dr. Sameer Shende. To whom I will always be deeply

thankful for his kindness and warm-hearted spirit. He invited me to work with his team,

an incredible smart and capable group of people, where I faced several challenges and I’ve

learned a lot. Thank you for the technical and moral support Sameer!

I want to thank each member of the Computer and Operating Systems Department. In

particular the people that stood by me in numerous occasions: Eduardo Cesar, Anna Sikora

-thank you for always encourage me to continue, your words and kind gestures help me more

than I can express- , Remo Suppi, Lola Rexachs, Emilio Luque and Gemma Roque. My fellow

colleagues during some of this time Albert Gutierrez, Aprigio Bezerra, Francisco Cruz, Javi

Navarro, Francisco Borges, Javier Panadero, Ferran Badosa, Hugo Meyer, Cecilia Jaramillo,

Joe Carrión, Laura Espinola and Jorge Villamayor.

A special mention for a close friend of mine in this PhD adventure: Àlex Chacón: I have
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Abstract

Over the last several years, many sequence alignment tools have appeared and become popular

thanks to the fast evolution of next generation sequencing (NGS) technologies. Obviously,

researchers that use such tools are interested in getting maximum performance when they

execute them in modern infrastructures. Today’s NUMA (Non-Uniform Memory Access)

architectures present major challenges in getting such applications to achieve good scalability

as more processors/cores are used. The memory system in NUMA systems shows a high

complexity and may be the main cause for the loss of an application’s performance. The

existence of several memory banks in NUMA systems implies a logical increase in latency

associated with the accesses of a given processor to a remote bank. This phenomenon is

usually attenuated by the application of strategies that tend to increase the locality of memory

accesses. However, NUMA systems may also suffer from contention problems that can

occur when concurrent accesses are concentrated on a reduced number of banks. Sequence

alignment tools use large data structures to contain reference genomes to which all reads

are aligned. Therefore, these tools are very sensitive to performance problems related to

the memory system. The main goal of this study is to explore the trade-offs between data

locality and data dispersion in NUMA systems. We introduced a series of methodical steps to

characterize NUMA architectures and to help understand the potential of the resources. With

this information we designed and experimented with several popular sequence alignment

tools on two widely available NUMA systems to assess the performance of different memory

allocation policies and data partitioning and replication strategies. We find that there is not

one method that is best in all cases. However, we conclude that memory interleaving is the

memory allocation policy that provides the best performance when for applications that used

a large centralized data structured on a large number of processors and memory banks In

the case of data partitioning and replication, the best results are usually obtained when the

number of partitions used is greater, and in some cases, combined with an interleave policy.
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Resumen

Durant els últims anys, moltes eines d’alineament de seqüències han aparegut i s’han popular-

itzat gràcies a la ràpida evolució de les tecnologies de Next Generation Sequencing (NGS).

Evidentment, els investigadors que utilitzen aquestes eines estan interessats en obtenir el

màxim rendiment quan les executen en infraestructures modernes. Actualment, les arqui-

tectures NUMA (accés a la memòria no uniforme) presenten grans reptes en aconseguir

que aquestes aplicacions tinguin una bona escalabilitat a mesura que s’utilitzen més proces-

sadors/nuclis. El sistema de memòria dels sistemes NUMA mostra una gran complexitat i pot

ser la causa principal de la pèrdua del rendiment d’una aplicació. L’existència de diversos

bancs de memòria en sistemes NUMA implica un augment lògic de la latència associada

als accessos d’un processador donat a un banc remot. Aquest fenomen sol estar atenuat

per l’aplicació d’estratègies que tendeixen a augmentar la localitat d’accés a la memòria.

Tanmateix, els sistemes NUMA també poden patir problemes de contenció que es poden

produir quan els accessos concurrents es concentren en un reduı̈t nombre de bancs. Les

eines d’alineació de seqüències utilitzen grans estructures de dades per contenir genomes

de referència als quals totes les lectures estan alineades. Per tant, aquestes eines són molt

sensibles als problemes de rendiment relacionats amb el sistema de memòria. L’objectiu

principal d’aquest estudi és explorar les compensacions entre la localitat de dades i la dispersió

de dades en els sistemes NUMA. Hem introduı̈t una sèrie de passos metòdics per caracteritzar

arquitectures NUMA i per ajudar a comprendre el potencial dels recursos. Amb aquesta

informació, hem dissenyat i experimentat diverses eines d’alineació de seqüència populars

en dos sistemes NUMA àmpliament disponibles per avaluar el rendiment de les diferents

polı́tiques d’assignació de memòria i les estratègies de partició i replicació de dades. Trobem

que no hi ha un mètode que sigui millor en tots els casos. Tanmateix, es conclou que la

intercalació de memòria és la polı́tica d’assignació de memòria que proporciona el millor

rendiment quan s’utilitza una gran quantitat de processadors i bancs de memòria. En el cas de
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la partició i la replicació de dades, els millors resultats solen obtenir-se quan la quantitat de

particions que s’utilitza és més gran, de vegades combinada amb una polı́tica interleave.
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Resumen

En los últimos años, muchas herramientas de alineadores de secuencias han aparecido y

se han hecho populares por la rápida evolución de las tecnologı́as de secuenciación de

próxima generación (NGS). Obviamente, los investigadores que usan tales herramientas

están interesados en obtener el máximo rendimiento cuando los ejecutan en infraestructuras

modernas. Las arquitecturas NUMA (acceso no uniforme a memoria) de hoy en dı́a presentan

grandes desafı́os para lograr que dichas aplicaciones logren una buena escalabilidad a medida

que se utilizan más procesadores/núcleos. El sistema de memoria en los sistemas NUMA

muestra una alta complejidad y puede ser la causa principal de la pérdida del rendimiento

de una aplicación. La existencia de varios bancos de memoria en sistemas NUMA implica

un aumento lógico en la latencia asociada con los accesos de un procesador dado a un banco

remoto. Este fenómeno generalmente se atenúa mediante la aplicación de estrategias que

tienden a aumentar la localidad de los accesos a la memoria. Sin embargo, los sistemas

NUMA también pueden sufrir problemas de contención que pueden ocurrir cuando los

accesos concurrentes se concentran en un número reducido de bancos. Las herramientas

de alineadores de secuencia usan estructuras de datos grandes para contener genomas de

referencia a los que se alinean todas las lecturas. Por lo tanto, estas herramientas son muy

sensibles a los problemas de rendimiento relacionados con el sistema de memoria. El objetivo

principal de este estudio es explorar las ventajas y desventajas entre la ubicación de datos y la

dispersión de datos en los sistemas NUMA. Hemos introducido una serie de pasos metódicos

para caracterizar las arquitecturas NUMA y ayudar a comprender el potencial de los recursos.

Con esta información, diseñamos y experimentamos con varias herramientas de alineación

de secuencias populares, en dos sistemas NUMA ampliamente disponibles para evaluar el

rendimiento de diferentes polı́ticas de asignación de memoria y estrategias de replicación y

partición de datos. Encontramos que no hay un método que sea el mejor en todos los casos.

Sin embargo, concluimos que aplicar interleave a la memoria es la polı́tica de alocación
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de memoria que proporciona el mejor rendimiento cuando se utiliza una gran cantidad de

procesadores y bancos de memoria. En el caso de la partición y replicación de datos, los

mejores resultados se obtienen generalmente cuando el número de particiones utilizadas es

mayor, a veces combinado con una polı́tica de interleave.
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1
Introduction

”Self-control means wanting to be effective at some random point in the

infinite radiations of my spiritual existence.”

- Franz Kafka
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INTRODUCTION

1.1 Introduction

NUMA (Non-Uniform Memory Access) systems have become increasingly common with the

passage of time. Nowadays practically any HPC facility, research center or university has these

systems in its infrastructure. Despite its complex hardware design, programs and applications

do not have to be adapted to run on them (unlike other hybrid or semi-hybrid systems such as

accelerators or GPUs). This feature is possibly one of its great advantages but at the same

time its Achilles heel. Due that when applications are not aware of the hardware where they

run on, they end up making sub-optimal use of resources. Writing parallel programs that

exhibit good scalability is far from easy. Studying the physical characteristics of a NUMA

architecture is key to understanding the impact that these can have on the performance of

the applications that are run on. However, if programmers wrote extremely optimal and

architecture-dependant code, they would narrow the machines where such code could be

executed on, so it is not a feasible solution either. Our initial hypothesis is that somewhere

between these two points there is the proper balance: where the advantages surpass the

drawbacks, by applying execution strategies to applications to optimize their execution time

without loosing flexibility.

In this research we propose a benchmark suite to characterize NUMA architectures,

through a set of well-known benchmarks. This information helps to see the limitations of our

system for applications that intensively use the memory system, either in idealistic scenarios

with purely sequential access patterns or unfavorable scenarios where accesses are completely

random. The acquired knowledge is translated into a guideline for final users of NUMA

system, in order to develop NUMA execution strategies for memory bound applications.

One main aspect of our proposal is that the user can take benefit of the architecture while

improving the performance of the application used without modifying a single line of code.

To validate the NUMA execution strategies based on our methodology, we designed an

experimentation using real memory bound applications: genomic mappers. Most mappers

take advantage of parallelization techniques in order to reduce the computational demands

involved in the alignment of millions of reads onto a reference sequence. Numerous software

tools have been developed in recent years and many studies have evaluated their performances

through several comparison criteria. In general, comparison studies have focused on mapper

sensitivity and mapper accuracy, while computational and time requirements have received

comparatively less attention.

Our proposed NUMA execution strategies mitigate two major drawbacks of these systems:

the latency of remote data accesses and the concurrence of multiple threads contending for
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INTRODUCTION

a single shared resource. We executed the mappers using different techniques of memory

allocation like interleave but we also introduce a proposal based multiple instances to reduce

the intense usage of interconnection bus. As a result we obtained improvements in the mappers

performance of up to 5x. We also provide an easy to follow guideline for the final user to

understand the architecture been used and make the most of it.

1.2 Contribution

As a result of this study we published three papers:

1. Josefina Lenis and Miquel Àngel Senar ”On the Performance of BWA on NUMA

Architectures.” TrustCom/BigDataSE/ISPA (3) 2015: 236-241 (PBIO) [3]

2. Josefina Lenis and Miquel Àngel Senar ”Optimized Execution Strategies for Se-

quence Aligners on NUMA Architectures.” Euro-Par Workshops 2016: 492-503

(PBIO) [4]

3. Josefina Lenis, Miquel Àngel Senar ”A performance comparison of data and mem-

ory allocation strategies for sequence aligners on NUMA architectures.” Cluster

Computing 20(3): 1909-1924 (2017) [5]

In our first work, we analyzed the performance of BWA-ALN, (Burrows-Wheeler Aligner)

[6], where we detected scalability problems exhibited by BWA-ALN, and we proposed simple

system-level techniques to alleviate them. We obtained results up to 4-fold speed higher than

the original BWA-ALN multithread implementation.

In the second paper, we extended the study to other popular aligners from the literature. We

analyzed performance problems of four aligners that constitute representative examples of the

two most commonly used algorithmic strategies: hash tables and Burrow Wheeler Transform

(BWT). The aligners under study were: BWA-MEM [7] (a newer version of BWA-ALN

especially suited to dealing with longer reads), BOWTIE2 [8] (an ultrafast and memory-

efficient tool for aligning sequencing reads to long reference sequences), GEM (GEnome

Multi-tool) [9] and SNAP (Scalable Nucleotide Alignment Program ) [10]. These aligners

are widely used by the scientific community and real production centers, and frequently

updated by developers. Although all the aligners under study take advantage of multithreading

execution, they exhibit significant scalability limitations on NUMA systems. Data sharing

between independent threads and irregular memory access patterns constitutes performance-

limiting factors that affect the studied aligners. We have applied various memory allocation
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INTRODUCTION

policies as well as several data distribution strategies to these aligners and we have obtained

promising results in all cases, reducing memory-bound drawbacks and increasing scalability.

In the last paper, we also extend our previous results by expanding our comparison study

to two different NUMA systems, one based on Intel Xeon and the other one based on AMD

Opteron, and by introducing a hybrid execution strategy that combines both data partitioning

and memory allocation policies.

1.3 Related work

Since the emergence of the NUMA architectures in the 80s, there has been studies of the

asymmetric accesses in these systems. Since then, NUMA systems have changed a lot

compared to the old ones. And while many of the fundamental concepts that have been

studied for decades remain, there are many others that need to be revised in order not to fall

into fallacies when it comes to predicting the performance of applications in these systems.

Both researchers and programmers a like, have helped to broaden the understanding of

these systems and improve their use. Mainly through performance models, libraries, data

mapping tools and threads.

Between the most outstanding studies three great categories can be described:

Threads and data mapping tools

Challenges in memory access on NUMA systems have been addressed by some approaches

that tried to optimize locality at the OS level. The AutoNUMA patches for Linux [11]

implement locality-driven optimization along two main heuristics. First, the threads migrate

toward nodes holding the majority of the pages accessed by these threads. Second, the

pages are periodically unmapped from a process address space and, upon the next page fault,

migrated to the requesting node.

Carrefour [12] [13] is another recent tool that consists of a memory-placement algorithm

for NUMA systems that focuses on traffic management. As in our approach, Carrefour

focuses on memory congestion as the primary source of performance loss in current NUMA

systems. It places memory so as to minimize congestion on interconnecting links for memory

controllers. By using global information and memory-usage statistics, Carrefour applies three

main techniques: memory collocation (to move memory to a different node so that accesses

are likely local), replication (copying memory to several nodes so that threads from each node
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can access it locally) and interleaving (moving memory so that it is distributed evenly among

all nodes).

AsymSched [14] is a dynamic thread and memory placement algorithm for Linux, that

takes into account the bandwidth asymmetry in NUMA systems. AsymSched is based on 3

techniques: thread migration, full memory migration and dynamic memory migration.

In the three mentioned cases (AutoNUMA, Carrefour and AsymSched), memory manage-

ment mechanisms are implemented in the Linux kernel and require a patch to be applied to

the virtual memory layer. Our work, however, focuses on the evaluation of techniques that can

be applied at the application level and therefore don’t require root permissions to be applied

to any NUMA system.

Application characterization tools

An interesting tool is Tabarnac [15], that not only identifies under-performance memory

access patterns but also can provide with a solution of how to improve the source code of

the program. Tabarnac is only used with benchmarks where a clear access pattern can be

identified. However when complex combination of access pattern happen simultaneously,

can’t offer a solid solution.

In [16] Majo et. al provides a series of guide-lines software-developer-oriented to achieve

an efficient use of NUMA systems. In this paper is remarked how the access pattern of a

program have a huge impact in the overall performance.

Hardware characterization tools

In [17] the authors present a comprehensive study of 2 NUMA processors: Intel (Sandy

Bridge-EP) and AMD (Bulldozer). They proposed a set of benchmarks to perform an in-

depth analysis of current ccNUMA multiprocessor systems with processors. One of the

most important contribution of this work is related to the specification of the cache-coherent

protocols used by the different manufacturers.

NUMA Performance Models

Similar study to our work, Braithwaite et al. [18], who propose an ”Empirical Memory-Access

Cost Model in Multicore NUMA ARchitecture”. Using STREAM benchmark [19][20] and

LMBENCH [21], the author develops a benchmarking methodology, who through simple

task-scheduling experiments to improves the performance of applications. Our study extends
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this notion and also considers contention problems, not only memory-access cost due latency

or memory bandwidth. We also consider the importance of executing programs in instances

as a possible outcome prediction of our model.

The performance model Roofline [22] is designed to assist in software development and

optimization by providing detailed and accurate information about machine characteristics.

The Roofline model is a visually performance model used to relate computational performance

with the memory capacities of architectures. The Roofline model helps to find possible

bottlenecks and to identify the performance boundaries for a given processor, however does

not provide any solution on how to solve such issues. An extended version of the Roofline [23]

to NUMA systems was presented by Lorenzo et al. In this work, the model was extended to

show the dynamic evolution of the execution of a given code. In it, is successfully shown the

impact of thread migration. Although this work is a useful tool to understand and characterize

the behaviour of the execution of parallel codes, only is tested with computational-bound

applications.

Mappers enhancer tools

Genome alignment problems have been considered by Misale et al. [24]. The authors

implement a framework to work under BOWTIE2 and BWA to improve the local affinity of

the original algorithm. Herzeel et al. [25] replaces the pthread-based parallel loop in BWA

with a Cilk for loop. Rewriting the parallel section using Cilk removes the load imbalance,

resulting in a factor 2x performance improvement over the original BWA.

In both cases - Misale et al. and Herzeel et al. - the source code of the applications

-aligners- are modified, which might be a costly action and dependent on the application

version. Abuin et. al. [26] presented a big data approach to solving BWA scalability problems.

They introduce a tool named BigBWA that enables them to run BWA on several machines

although it does not provide a clear strategy for dividing the data or setting the number of

instances. In contrast, our approach can be applied to different aligners with minimal effort

and, although not tested yet, it can be easily applied to distributed memory systems. Our work

is complementary to all the works mentioned above.

1.4 Thesis Structure

The thesis is structured as follows: In chapter 2 we explain briefly the history of parallel

systems then we describe the basic concepts of NUMA architectures and provide concrete
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details of the two systems used in our experiments. In chapter 3 we present our methodology to

characterize the NUMA systems and obtain NUMA Performace Aspects. Chapter 4 introduces

the problem of sequence alignment and a behavioral characterization of aligners used in

this study. In chapter 5 we describe in detail the NUMA execution strategies proposed to

validate our methodology, we also explained all scenarios used to evaluate the performance

improvement of aligners under study and analyzed the results obtained in our experiments .

Finally, in chapter 6 there is the conclusions and the future lines of work.
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”In the fight between you and the world, second the world. ”

- Franz Kafka
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2.1 Introduction

This chapter briefly reviews some fundamental concepts related to high performance com-

puting. In particular, we present an introduction to the basic elements that characterize the

architectures of current computers. The description starts from the analysis of the dominant

architecture in current microprocessors and finishes by briefly reviewing the computer ar-

chitectures that are commonly used to solve computationally complex problems. This sets

the base to discuss NUMA architectures advantages and drawbacks in depth. Finally, a brief

review of all the HPC performance tools used and evaluated during this study.

2.2 Brief history of parallel architectures

In 1965 Gordon Moore predicted that the number of transistors in an integrated circuit

followed a progression in which that value doubled every 18 months. This prediction, known

as Moore’s Law, has been fulfilled since then and continues in force. Translated in terms

of performance, this prediction has meant a constant increase in the computing capacity of

successive generations of microprocessors thanks to the increase in the frequency of its clock

and the integration of architectural solutions such as the parallelism at the instruction level

that decreased the latency of the memory system. In this way, sequential programs could

be executed more quickly and this gain could be achieved transparently for the programmer.

The progression in the improvement of the performance of the computers was altered at the

beginning of the last decade by the physical limitations that derived from the problems of heat

dissipation and consumption exhibited by the microprocessors. As of 2004, these limitations

stopped the increase in the frequency of the processors and generated a technological solution

that focused on the introduction of processors that instead of having a single processing unit

(control unit plus logical arithmetic unit) by chip, they had several of them grouped in an

entity called core.

In the 2.1 the evolution of the integration levels of the processors, their frequencies and

the number of cores is shown [1]. Evolution in time of the number of transistors per chip

(blue), the frequency (red) and the number of cores per processor (purple).

The architecture of a multicore processor is based on the existence of two or more

execution cores within a single processor. The operating system perceives each of its execution

core as a discrete logic processor with all its associated execution resources. Multicore

processors perform more work per cycle, are able to operate at a lower frequency, and present
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Figure 2.1: More’s Law vs Number of cores Source [1]

improvements in the performance of calculation activities and bandwidth intensive.

The emergence of multicore processors has meant, however, a paradigm shift from the

point of view of improving the execution of applications. This improvement is no longer

achieved automatically by the effects of increases in the clock frequency, but must be achieved

by conveniently exploiting the inherent parallelism offered by the new processors in the form

of multiple cores integrated in single device.

However, unlike single-core processors, much of the responsibility for better performance

now falls on the shoulders of programmers. The era where programmers relied on hardware

designers to make their programs faster has ended [27]. The performance improvements

in the new generations of computers will depend on the changes that are introduced in the

applications and in the system tools so that the computing capacity provided by the multicore

systems is exploited.

Currently Moore’s law is fulfilled at the level of cores in addition to the level of transis-

tors. The increase in the average of cores is shown, since the appearance of the multicore

architectures in 2004, in Supercomputers (infrastructures composed of thousands of multicore

processors). The increase in cores has doubled every two years since the emergence of

multicore processors in 2004 [28]

The limits that separate high-performance computing from ordinary computing are rather

arbitrary, since HPC refers merely to calculations that are made on computers more powerful

than the standards [1]. With 500 u$s today you can buy a laptop that have more computing

capacity, more main memory and a hard drive with more space than a computer of 1000000
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u$s in the year 1985 [27].

2.3 Parallel Architectures

The parallel architectures are defined under the MIMD (Multiple Instruction Multiple Data)

paradigm, where different instruction flows are applied to several data streams. In this section

we will review the 3 broad categories that parallel architectures are normally classified into:

• Shared-memory systems

• Distributed-memory systems

• Hierarchical (hybrid) systems

2.3.1 Shared-memory system

In shared memory systems, all CPUs (one or more) share the one physical memory address

space. Within this category there are 2 important set of shared-memory systems that have a

different performance and different complexity:

• Uniform Memory Access (UMA): where latency and bandwidth are the same for all

processors and all memory locations.

• Non-Uniform Memory Access (NUMA) in this case the memory is physically

distributed through several processors but logically shared, so the memory addresses

are global. Memory access times vary depending on the processor and the memory

location that is intended to access.

For this paradigm the most popular programming libraries include OpenMP[29], Cilk[30]

and Pthreads[31].

UMA

The most simple layout of parallel system is the UMA. Processors access memory through the

shared bus as seen in Figure 2.2. As stated before, all CPUs have the same latency and band-

width when accessing memory. This is why are known as Symmetric multiprocessor (SMP)

where systems use this centralized memory approach, where each processor is connected to a

shared bus. This shared bus handles all accesses to main memory and I/O. Communication
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between CPUs is implicit and transparent. All these characteristics makes it a very easy to

program for. Converting a serial code into a parallel code on UMA architecture requires a

minimal effort. However, this symmetric pattern does not scale properly, there is a limited

number of CPUs that can be added to a UMA architecture without turning the shared bus into

a bottleneck. In order to maintain scalability of memory bandwidth with CPU number, non-

blocking crossbar switches can be built that establishes point-to-point connections between

sockets and memory module but at the cost of giving up the UMA principle [32].

Figure 2.2: A UMA architecture provides

each CPU core (C1-C4) the same memory ac-

cess latency and bandwidth. Source [2]

Figure 2.3: A NUMA architecture connects

different NUMA nodes (Nodes 1-4) - typically

multicore CPUs (C1-C4) - via interconnect

links (Link), to enable a single logically shared

global memory. . Source [2]

NUMA

In NUMA systems, the main memory is physically distributed across the processors but,

logically, this set of main memories appears as only one large memory, so the accesses to

different parts are done using global memory addresses [1]. A processor and its respective

memory are called a NUMA node. A program running on a particular processor can also

access data stored in memory banks associated with other processors in a coherent way but at

the cost of increased latency compared to accessing its own local memory bank. In general,

parallel applications that may run using multiple processors are not usually designed taking

the NUMA architecture into account, mainly because is still a shared-memory system and

processors do not explicitly communicate with each other so communication protocols are

hidden within the system. However in NUMA architectures that can have a high cost in
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Figure 2.4: In a distributed-memory model, the memory is physically and logically distributed among

the individual processing units (P1-P3), e.g., CPUs. Accessing data from remote memory locations

requires to initiate a data transfer protocol, such as point-to-point communication provided by the MPI.

Figure source: [2]

performance if the data is not allocated in an optimal fashion as too many remote access may

occur.

2.3.2 Distributed-memory systems

In parallel distributed-memory computers, processing units do not share memory but each has

its own memory address space as shown in Figure 2.4. This model originates from a time

where a CPU contained a single processing core. Such a setup is typically not found anymore

in today’s cluster systems due to the advent of multicore CPUs. However, the model still

serves well as an introduction to distributed computing, as the concepts are still applicable[2].

When a parallel program is executed, the compute nodes exchange information between them

by passing messages that are transferred over interconnection networks (Gigabit Ethernet,

Infiniband, etc). The dominant programming standard in this type of systems is MPI [33],

although there are other alternatives such as co-Array Fortran[34], GASnet[35], Charm++

[36] among others. In distributed-memory system there are no longer race conditions to

access main memory however the communication between process becomes explicit and

need to be handled fully by the programmer. This increases significantly the programming

complexity.

2.3.3 Hybrid systems

Nowadays, no system is purely shared-memory or strict distributed-memory, most configu-

rations are combination of both. Commonly composed by a layout of NUMA architectures
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Figure 2.5: In hierarchical systems the distributed- and shared-memory model are combined. In

the depicted case three UMA-based shared-memory nodes are connected via a network connection,

however, NUMA systems can be used in a similar manner. Figure source: [2]

connected over fast network interface, as shown in Figure 2.5. The programming approach

is also hybrid: using MPI for the inter-node communication and OpenMP for intra-node

executions. The concept behind hybrid systems is broader than just multicore computers

connected via network, it is also used to name any system layout that mixes available pro-

gramming paradigms on different hardware layers. An example could be a cluster built

from nodes that contains, besides the “usual” multicore processors, additional accelerator

hardware, ranging from application-specific add-on cards to GPUs (graphics processing units),

FPGAs (field-programmable gate arrays), ASICs (application specific integrated circuits),

co-processors, etc.[32]

2.4 Study Case: NUMA Systems

NUMA arrived as a solution to bottlenecks produced by the intensive access to the single

memory bus present on Symetric Multi-Processor (SMP) systems. To profit from the scala-

bility provided by NUMA systems, applications need to be aware of the hardware they are

running on and the memory allocation policies applied by the operating system. Memory

pattern accesses that imply memory transfers from non-local banks will negatively impact the

overall execution time due to the distance penalty of remote memory banks. A second issue

that can also increase execution time is contention; applications employing large numbers of

threads and storing all data in a single bank, generate a race between threads, congesting the

connection links and downgrading access times -local and remote- to memory.

A processor and its respective memory bank is called NUMA domain or NUMA node,and
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we will use these terms indistinctly along this thesis. Other clarification that needs to be done

respect naming it is related to which part of the NUMA node we are referring to. For example

if we say ”threads are bound to NUMA node 0” we mean the processor but if the phrase

changes to ”data is placed on NUMA node 0” we mean the memory bank.

2.4.1 Our Infrastructure

As an example of NUMA systems, we can see the following two Figures (Figure 2.6 and

Figure 2.7) that represent the two architectures we employed in this study, one manufactured

by AMD and the other by Intel.

Figure 2.6: Schematic diagram of the AMD

Opteron 6376 architecture (Abu-Dhabi)

Figure 2.7: Schematic diagram of the Intel

Xeon E5 4620 architecture (Sandy Bridge)

The first system, shown in Figure 2.6, is a four-socket AMD Opteron Processor 6376, with

each socket containing 2 dies packaged onto a common substrate referred to as a Multi-Chip

Module (MCM). Each die (processor) consists of 8 physical cores that share a 6 MB Last

Level Cache (LLC) and a memory bank. Only one thread can be assigned to one core and,

therefore, up to 64 threads can be executed simultaneously. The system has 128GB of memory,

divided into 8 modules of 16GB DDR3 1600 MHz each. The second architecture (Figure 2.7)

is an Intel Xeon CPU E5 4620 -also four-socket. Each socket contains an 8 core-processor and

a 16 MB LLC. The total number of cores is 32. 64 threads can be executed simultaneously

using HyperThread technology. This system also has a memory of 128 GB, but it is divided

into 4 modules of 32GB DDR3. 1600MHz each.

Nodes are connected by links - HyperTransport (AMD) and QuickPath Interconnect (Intel).

Memory bandwidth for both cases depend on the clock, the width of the interconnection links
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(number of bits that can be sent in parallel in a single transfer), the data rate (single or double),

and the actual bandwidth between memory controller and the DDR3 memory modules [18].

Allocation Policy

Linux operating system uses Node Local allocation as the default allocation policy when the

system is up and running. Node Local allocation means that when a program is started on a

CPU, the data requested by that program will be allocated to a memory bank corresponding

to its local CPU.

Specifying memory policies for a process does not cause any memory allocation [37].

Allocation policy takes effect only when a page is first requested by a process. This is known

as the first-touch policy, which refers to the fact that a page is allocated based on the effective

allocation policy when a process first uses a page in some fashion. Despite the default Linux

policy, a programmer can set an allocation policy for its program using a component of

NUMA API [38] called libnuma. This user space shared library can be linked to applications

and provides explicit control of allocation policies to user programs. The NUMA execution

environment for a process can also be set up by using the numactl tool [38]. Numactl can be

used to control process mapping to cpuset and restrict memory allocation to specific nodes

without altering the program’s source code.

A popular memory allocation policy is interleave where memory pages are allocated

between selected nodes in a round-robin fashion. The idea behind it is that all used node all

accessed equally as opposed to all the traffic being concentrated on one node.

2.5 Measuring performance

In this section, in first place we will enunciate the definitions of the metrics used during this

work and later we will describe all the performance monitoring tools used and/or test for this

work.

2.5.1 Definitions

When we think about computer performance we think of the effectiveness that a computer

system complete a task. Depending on the context, ’effectiveness’ may involve one or more

of the following concepts:

• Short time for a given computational work
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• High throughput (rate of processing work)

• Energetic efficiency of computing resource(s)

• High availability of the computing system or application

• Fast (or highly compact) data compression and decompression

• Short data transmission time

In HPC time is the most important criteria to define a system performance. The computer

that performs the same amount of work in the shortest time is the fastest.[27] The execution

time of a program is measured in seconds. In order to improve performance for a given

application, it is necessary to monitor, analyze and tune the critical elements involved in the

execution.

Execution Time

It is the measure that shows how long it takes to execute a process. It is defined as the interval

between the start of the execution and the end of it. For parallel executions, the end of the

execution is given when the last thread or parallel process that composes the application ends.

SpeedUp

It is a metric that characterizes the gain of running a program in parallel. Let T(n,1) be

the run-time of the fastest known sequential algorithm and let T(n,p) be the run-time of the

parallel algorithm executed on p processors, where n is the size of the input.

Speedup(n) =
T (n,1)
T (n, p)

(2.1)

Parallel efficiency

It is obtained from the division between the Speedup and the number n of computing elements

with which the application is executed (see equation 2.2). The value of the efficiency can vary

between 0 and 1. Being 1 an ideal value that represents that the application is completely

parallel.

Parallele f f iciency =
Speedup(n)

n
(2.2)
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2.5.2 Performance tools

In this section we will describe the tools used to measured the behavior of benchmarks and the

applications tested as validation that later we will be discussed in chapters 3 2. Two important

features present in performance tools are: profiling and tracing. As stated Sameer Shende in

[39].

“To understand the behavior of the parallel program, we must first make its behavior

observable. To do this, we regard the execution of a program as a sequence of actions, each

representing some significant activity such as the entry into a routine, the execution of a line

of code, a message communication or a barrier synchronization. Performance analysis based

on profiling and tracing involves three phases:

• instrumentation or modification of the program to generate performance data,

• measurement of interesting aspects of execution which generates the performance

data and

• analysis of the performance data.

”

In the following subsections we will provide a brief description of the hardware counters

used and the tools we rely on to do our research.

Hardware Counters

Hardware counter are extra logic added to the CPU that track low-level operations or events

that happen within the processor [40]. Traditional hardware performance counters measure

only values on a single core. A chip package has many resources which are package-wide

and thus need a separate performance reporting mechanism. The shared socket-wide values

are called Offcore events are per-core values on their way to the uncore [41].

For all the experiments performed in this work we measured the basic hardware given by

perf tool [42]. These are:

• context-switches: when a task needs to be change for while ensuring that the tasks

do not conflict. A high number of contest switches could impact negatively the

performance of an application.

• CPU-migrations: when a task is moved from one computing environment to

another.
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• page-faults: when a running program accesses a memory page that is not currently

mapped by the memory management unit

• cycles : usually, the time required for the execution of one simple processor opera-

tion such as an addition; this time is normally the reciprocal of the clock rate.

• stalled-cycles-frontend: measures all the cycles that are a waste because the CPU

has to wait for resources (usually memory) or to finish long latency instructions.

• stalled-cycles-backend : measures all the cycles that are a waste because Front-End

does not feed the Back End with micro-operations. This can mean that you have

misses in the Instruction cache, or complex instructions that are not already decoded

in the micro-op cache. Just-in-time compiled code usually expresses this behavior.

• instructions : the number of instructions executed

• branches: measures how many time the branch predictor tried to guess the correct

branch.

• branch-misses: measures how many time the branch predictor failed to guess the

correct branch.

• LLC-loads-misses: when the processor needs to fetch data that does not exist in

the last level cache, so it brings it from memory.

• cache-misses: this event represents the number of memory access that could not be

served by any of the cache.

• seconds time elapsed: entirely execution time.

PAPI

PAPI[43] provides two interfaces to the underlying counter hardware; a simple, high level

interface for the acquisition of simple measurements and a fully programmable, low level

interface directed towards users with more sophisticated needs. The low level PAPI interface

deals with hardware events in groups called EventSets. EventSets reflect how the counters are

most frequently used, such as taking simultaneous measurements of different hardware events

and relating them to one another.
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TAU

TAU [44] is a performance evaluation tool that supports parallel profiling and tracing. TAU

has become the standard within the HPC world, not only because of the quality of its results

but also, for the low overhead, plus it is regularly updated. When profiling a program, shows

you how much (total) time was spent in each routine and tracing shows you when the events

take place in each process along a timeline. TAU can Profiling and tracing can measure time

as well as hardware performance counters from your CPU. TAU can extract

• It supports C++, C, UPC, Fortran, Python, and Java

• TAU runs on all HPC platforms and it is free (BSD style license)

• TAU has instrumentation, measurement and analysis tools

• To use TAU, you need to set a couple of environment variables and substitute the

name of the compiler with a TAU shell scrip

As a result of this research, TAU added a NUMA feature to measure remote/local main

memory access ratio for a given parallel application.

Likwid

Likwid (Like I Knew What I’m Doing) [42] is a tool suite to measure the different aspects

that affect the performance of an application. It works on Intel and AMD processors on Linux

systems. It offers several features, like measure performance counter, obtain architecture

topology, core-biding etc. Likwid is oriented to performance programmers and offers a less

complex interface. It is simple to use toolsuite of command line applications. While the focus

of Likwid is on x86 processors some of the tools are portable and not limited to any specific

architecture.

Chapter 2 20



Josefina Lenis. PhD Thesis 2018.

21



3
Analysis Methodology

”Test yourself on mankind. It is something that makes the doubter doubt,

the believer believe. ”

- Franz Kafka
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3.1 Introduction

The properties of the main memory system of an HPC architecture can have a drastic impact

on the performance and efficiency of a program’s execution. In order to provide guidance to a

user or programmer we have created an empirical methodology. To characterize a NUMA

architecture we rely on four main features, that we call NUMA performance aspects:

1. Topology and the native features of the architecture

2. Latency

3. Bandwidth

4. Contention degradation

The first indicator is information related to the hardware itself and it is provided by the

manufacturer: the number of processors, cores and memory banks. From this information we

calculate the theoretical maximum memory bandwidth and determine the restrictions due to

the interconnection layout. The following 3 characteristics are latency (time elapsed since

data is requested until it is retrieved by a CPU), bandwidth (the amount of data delivered per

time over a physical link) and contention degradation (the factor on how a multithread race

condition affects the performance of a parallel application).

Taking into account the concepts described above, we propose a methodology consisting

of a series of steps to obtain the key information that allow us to characterize the architecture

where the parallel programs will be executed. The result of carrying out these steps is to

obtain what we will now define as NUMA performance aspects.

This information is valuable, mainly at the user level, since certain parameters can be

tuned when executing the programs -such as the data allocation policy or the creation of

independent instances- to obtain a better performance from the hierarchy of memory. But

it could also be potentially used by a programmer because through the libnuma API tuning

parameters can be applied at the code level. Without getting to the point of programming

an algorithm that is architecture dependent, but considering NUMA performance aspects to

better benefit from the hardware underlying.

Through greater detail we can know clearly the difference between what the manufacturer

claims and the reality. Technical specifications are not always met. Being aware of the

true potential of our system, help us know where we are standing before executing an

parallel application. In this chapter we will describe how to obtain each of the indicators and

understand how they characterize the architectures.
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3.2 Calculating Theoretical Bandwidth

Table 3.1 was built with the respective manufacturer’s specification [45] [46]

Table 3.1: Processor and memory information of the architectures used

Intel E5-4620 AMD OPTERON 6376

# of Cores 8 16

# of Threads 16 16

Processor Base Frequency 2.20 GHz 2.30 GHz

Cache 16 MB SmartCache 2 x 8 MB (16 MB)

Bus Speed 7.2 GT/s QPI 5.2 GT/s HT

# of Links (QPI or HT) 2 4

Memory Types DDR3 800/1066/1333 DDR3 1600

Max # of Memory Channels 4 4

As a first step, we need to calculate the maximum theoretical bandwidth to know what

is the upper limit of our system. It is worth noting that these values are rarely reached. To

calculate this value it is considered that the scenario is the best possible: that is to say that the

program is compiled in an optimal way, that the prefetchers are able to anticipate most data

request, the access pattern can be predicted, etc.

Max BW =
Memory Frequency x # o f Channels x Word Size

Byte
(3.1)

Using the information in table 3.1 and formula 3.1 we obtain the following numbers for

both architectures:

• Intel: 1333 x 4 x 64/8 = 42.6 GB/s

• AMD: 1600 x 4 x 64/8 = 51.2 GB/s

These reflect the value of the local memory access. Depending on the amount of sockets

of the system, we could theoretically increase this value. In our case both architectures used

have 4 sockets. So potentially a maximum memory bandwidth (Max BW) of 170.4 GB/s

(Intel) and 204.8 GB/s (AMD) if 4 sockets are accessing data allocated in their respective

memory banks independently. This is a unrealistic scenario, due it is highly unlikely to avoid

out-of-socket-accesses that are restricted to the interconnection bus speed. It is possible to
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calculate interconnection bus bandwidth from table 3.1 and considering that one hop accesses

are performed using 16-bit links. Values are:

• Intel: 7.2 x 2 x 16/8 = 28.8 GB/s

• AMD: 5.2 x 2 x 16/8 = 20.6 GB/s

Another important fact to consider when calculating the theoretical values of memory

bandwidths is that they are based on the assumption that all channels are being occupied.

For example, in the case of AMD, there are 4 channels. To aspire to achieve the theoretical

bandwidth there should be a physical memory module in each DIMM slot of the channel. A

user can retrieve the information of how many channels are being used, using linux command

dmidecode –type memory.

Calculate the bandwidth is a good practice in order to know the optimal capacity of the

system to use. Although it should be a more widespread practice among HPC system users, it

is understandable that it entails some complexity.

3.3 Measuring Latency

We used the lmbench [21] to measure latency, specifically the lat mem rd module. This test

consists of measure memory read latency changing the memory sizes and strides. The entire

memory hierarchy is measured, including onboard cache latency, LLC cache latency and

main memory latency. The module lat mem rd uses a double nested loop. The outer loop is

the stride size. The inner loop is the array size. For each array size, the benchmark creates a

ring of pointers that point backward one stride. And then it goes through each element of the

array in turn by doing

p = (char ∗∗)∗ p (3.2)

The size of the array starts in 512 bytes up to final size provided as parameter. We used

as final size 2 GB, large enough to test the main memory. For the small sizes, the cache will

have an effect, and the loads will be much faster as the array increases its size and stride the

latency will reflect that.

Latency

In Figure 3.1 we can see that the processor has a 16kB L1d, 2MB L2 and 8MB L3. We do not

see sharp edges in the transition from one level to the other because the caches are used by
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Figure 3.1: Latency profile of AMD Opteron 6376 using lmbench

other parts of the system as well and so the cache is not exclusively available for the program

data. Specifically the L2, L3 cache is a unified cache and also used for the instructions. [47]

3.4 Measuring Bandwidth

To measure the memory bandwidth we use the well-known STREAM benchmark [19][20]. It

measures sustainable memory bandwidth (in MB/s) and the corresponding computation rate

for four simple vector kernels:

The first test (COPY) is the simplest - and the fastest - of all since it does not involve any

arithmetic operation. It simply brings 2 from memory a(i) and b(i) and performs an update

operation.

The second kernel (SCALE) is a modification of the first one, where a simple arithmetic

multiplication operation is added. It consists of obtaining two values of the memory, a(i) and

b(i), but multiply b(i) by a scalar before writing it in a (i). It is a simple scalar operation but

more complex operations are created from it. The performance of this test can be used as an

indicator of the performance of more complex operations in comparison.
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name kernel

COPY a(i) = b(i)

SCALE a(i) = q*b(i)

SUM a(i) = b(i) + c(i)

TRIAD a(i) = b(i) + q*c(i)

Table 3.2: STREAM’s vector kernels

The third kernel (SUM), adds a third operand. For larger arrays, due it fetches 3 values,

this can potentially fill a processor pipeline, so the memory bandwidth can be tested by filling

the processor pipeline or the performance when the pipeline is full. This benchmark tries to

approximate the actual behavior of a real application.

The fourth one (TRIAD), allows chained, overlapped or fused, multiple-add operations. It

builds on the SUM benchmark by adding an arithmetic operation to one of the fetched array

values. Given that fused multiple-add operations (FMA) are important operations in many

basic computations, such as dot products, matrix multiplication and polynomial evaluations.

This benchmark can be directly associated with application performance. The FMA operation

has its own instruction set now and is usually done in hardware. Consequently, feeding such

hardware operations with data can be extremely important – hence, the usefulness of the

TRIAD memory bandwidth benchmark [48].

Figure 3.2: All possible bandwidth values for

one-processor execution on AMD system

Figure 3.3: All possible bandwidth values for

one-processor execution on Intel system

NUMA system has a performance sensitivity to the placement of threads and data. Chang-

ing these parameters can give very different outcomes, however exploring all possibilities
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can be unfeasible. The AMD system has 8 NUMA domains this means that if an 8-threads-

program is executed (using one processor to bind all threads and one memory bank to host

all data) we have 64 possibilities of parameters of execution. We calculate it considering all

the variations allowing repetition and taking into account the order (V ′(8) = 82 = 64). But

as the number of threads involved increases, also it does the possible combinations. In a 16

threads scenario we would need 2 processors, in this case we do not allow repetitions for the

processors, however the combinations increase to 224,

Vk(n) =
n!

k!(n− k)!)
=

8!

2!(8−2)!)
= 28 ∀ NUMA domains ε (0,7)

and employing the same formula we can see that for 32 threads the number reaches 560

combinations. Running a syntactic program, such as STREAM, gives us the opportunity to

test most combinations and profiling the memory behavior without the need of executing

higher time consuming applications.

Algorithm 1 Execution of STREAM with 16 threads using numactl API (AMD)

Data: NUMA domains = 0, 1, 2, 3, 4, 5, 6, 7

for processor1 in NUMA domains do
for processor0 in NUMA domains do

if $processor0 < $processor1 then
for memory bank in (1, 2, 3, 4, 5, 6, 7) do

numactl ––cpunodebind=$processor0, $processor1 ––interleave=0, $node

./stream
end

end
end

end

The profiling process consists of testing all possible combinations for the 8, 16 and 32

threads. In figures below we can appreciate in a very clear way how the maximum bandwidth

is reached when the data is fetched from the local memory banks, pointed out by the dark

green diagonal. In Figure 3.2 (AMD) we have 8 NUMA domains, as a result we have an 8x8

matrix. Light green areas surround the diagonal, representing that accesses to processors on

the same chip have an acceptable memory bandwidth. The matrix reflecting AMD system

is not symmetric, as explained in chapter 2, the interconnection bus have different bit wide

links. In Figure 3.2 (Intel) we have a 4x4 matrix and in this case we can see a more remarked
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difference between local allocation and remote nodes. In AMD, memory bandwidth drops to

half when data is changed from local to on-chip neighbour (1 HOP), from 11000 MB/s to

5700 MB/s and reduced 5.25x when the farthest distance-combination is employed. In Intel,

on the other hand, the memory distance-penalty is even higher. When the data is local, the

BW is 16700 MB/s drops 5.5x when it is 1-Hop distance and 6.4x when is 2-HOP distance.

For the following measures of BW using 16 and 32 threads we also considered the

allocation policy. Due that these scenarios we could no longer guarantee that the accesses

were 100% local. As remote accesses are unavoidable at this point, we wondered if it was

possible to balance the memory accesses by allocating the data onto two memory banks. The

data were interleaved between bank 0 and the rest of banks. Script 1 shows the steps followed

to benchmarking the combinations.

(a) BW values for 16 threads on AMD system with

membind policy

(b) BW values for 16 threads on AMD system with

interleave policy

(c) BW values for 16 threads on Intel system with

membind policy

(d) BW values for 16 threads on Intel system with

interleave policy

Figure 3.4: BW measures for all systems using 16 threads

It is clear that many of the combinations explored are sub-optimal and it does not make
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(a) BW values for 32 threads on AMD system with

membind policy

(b) BW values for 32 threads on AMD system with

interleave policy

(c) BW values for 32 threads on Intel system with

membind policy

(d) BW values for 32 threads on Intel system with

interleave policy

Figure 3.5: BW measures for all systems using 32 threads

sense to take them into account when executing a program but the objective of this stage of

the methodology is to show the sensitivity of the memory system to the allocation policies.

In Figure 3.4a again can be observed the diagonal marked by local accesses. Now it is

represented by two cells, side by side. When the number of NUMA node matches the memory

bank the memory throughput is maximum, however this does not happen for Intel (Figure

3.4c), because no matter which set of combination do we test in either case a remote access is

happening, if the remote access is 1-HOP distance then the cells are greener but even then the

difference of bandwidth is not significant.

When interleave policy is used, it is clear the increment of the global memory throughput

of the system, it is easy to observe as the graphics get more green on both cases (Figures

3.4d and 3.4b). Curiously the last presents two straight yellow lines at when using nodes

2-3 and 4-5, this is related to the fact mentioned above, the links that link the nodes are
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not all bidirectional, the access relationship between a processor and a memory bank is not

bijective. In other words, accesses from the processor x to the bank y is not always equivalent

to accessing the processor y bank x.

In the last scenario, it can be seen that as the number of threads increases, the bandwidth

becomes more restricted by inter-node accesses. But as in the previous case, the global

bandwidth of the system increases when the data is distributed using interleave instead of

concentrating all the accesses to a single bank.

3.5 Measuring Contention

To measure contention we used a benchmark developed by James Brock and modified by

Andreas Klöckner. We also made some changes to allow certain parameters at the time

of execution, which we will detail below. This benchmark, unlike STREAM, consists in

generating random accesses to an array on memory, trying to trick the hardware prefetch and

obtain a latency close to the true one. The random accesses are produced by multiplying the

iterator by a prime number which is comfortably larger that the cache line. The following

formula ensures that each byte is incremented exactly once.

∗ (((char∗)x)+(( j ∗1009)%N))+ = 1 (3.3)

This benchmark automatically creates the maximum number of threads possible for a

given system. Each thread is pinned to its matching core. It allocates the array on node 0 and

then each thread traverses the array using the formula 3.3, in three different modes: sequential

(one thread at the time), two simultaneously, and all at once. As each thread ends up accessing

the array, the bandwidth is calculated from all possible positions towards the memory bank 0

with equation 3.4.

bandwidth∗ =
array size∗ntrips∗ cache line size

time
(3.4)

We have introduced small variations to this benchmark that allowed us to pass through as

parameter the number of memory bank where the array is allocated, in addition to adapting

the pin process of the threads to the cores for both architectures used (AMD and INTEL)

since the numbering of the cores change for each manufacturer.

With these variations we can calculate the bandwidth from any core to any memory bank,

and we can also see how the final bandwidth is affected the intensive use of interconnection
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buses as the number of threads increases.

These test show how they affect the fact that many threads simultaneously try to access the

same memory bank. For this testbed we used the cases of 8, 16, 32, 48 and 64 threads. The

behavior concurs with what was explained in the previous section, for AMD Figure 3.6 with 8

threads (blue line) you can see the maximum bandwidth is achieved when data is completely

local, this only can achieved with 8 threads. In the case of 16 threads (orange line) we will

have remote accesses, so the BW even in the best situation is 40 % worse per thread. This

behavior can be extrapolated by increasing the number of threads obtaining each time a minor

bandwidth memory per thread. For 64 threads the behavior is practically constant, no matter

where the data is stored, it will always have the maximum access time (unless data are spread

system-wide). For Intel, Figure 3.7 the behavior is quite similar, with the particularity that

the step change between the usage of only local node and combination of local and remote is

more clearly exposed for 8 threads (blue line).

Figure 3.6: Concurrency stress test on AMD system
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Figure 3.7: Concurrency stress test on Intel system

3.6 Creating a guideline

In this chapter we presented a series of steps to characterize two common commercial NUMA

architectures. And could be extrapolated to other NUMA systems. It was carried out using

well-known benchmarks such as STREAM and lmbench, and also the manufacturer’s technical

specification. The steps are easy to implement and quickly an end user could get the following

NUMA performance aspects from the system:

• First, the theoretical ceiling. Know what is the maximum value of memory band-

width that we can obtained. At this point we also highlight which are the relevant

data in the technical specification that allow us to calculate said bandwidth.

• The next step is to know the latency through lmbench. The memory access latency

is a complementary information that outlines the memory hierarchy and quantifies

the cost of not using the cache system properly.

• The third step is to know the parallel bandwidth. This is where the user can really see

what a NUMA architecture implies. Using STREAM, with the presented execution

Chapter 3 33



ANALYSIS METHODOLOGY

algorithm, we make a sweep of all possible combinations of data placement and

threads, getting a variety of BW. As the number of threads increases it does also

the number of possible place, creating subsets that are optimal for execution and

need to be taken into account when running a parallel program. And also that the

implementation of interleave policy can have a strong impact in it.

• In this last stage, the effect of contention is analyzed. It is perceived a trade-off

game between the number of threads and total system BW. How the performance

is degraded by each single thread but increases throughput at the system level to a

certain limit.

All these steps were manually implemented through scripts that can be consulted in our github

repository:

https://github.com/jlenis/NUMA characterization - exec strategies

In order for a program to run on NUMA architecture, there is no need to make any

adjustments to the code, unlike when accelerators or GPUs are used. However, the user must

be aware that she/he is dealing with a hybrid system. We do not advocate for notion that a

programmer should write code for a given architecture in mind, however all the complexity

that the programmer is saving in her/his code is transferred to the final user as execution time

penalty. We propose a guideline at user level, acquiring the hardware insights from the NUMA

performance counter plus his own knowledge of the applications he wants to run. We are now

at the point (4) of our methodology Figure 3.8.

For the two NUMA systems we characterize, these are the insights:

• Both system are extreme sensitive to memory allocation policy .

• On paper AMD system has a better BW however Intel benchmarked better results.

• Both are sensitive to contention degradation when data is centralized.

• Intel has better local access BW but suffers from a harder drawback when data is

accessed remotely.

• In AMD the distance or HOPS that dictated by the amount of links between nodes

than the layout.
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Figure 3.8: Methodology to obtain a guideline of NUMA execution strategies

We believe that there is a sweet spot between the two extremes points of: programming

an application dependent of the architecture and not considering the hardware features at

all, a series of parameters adjustments that can be done at user lever to reduce the drawback

of NUMA effects. To validate this hypothesis we want to evaluate the comportment of real

parallel memory-bound applications on the systems studied. We opted for sequencing aligners

due the huge relevance of genomic workflows in the scientific community. Applications have

several algorithmic phase, and even though that are labeled as mainly memory-bound they

have also an important computational phase and a strong I/O interaction. Everything related

to the sequencing aligners and its background will be properly explained in next chapter.
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Sequencing aligners

”Don’t despair, not even over the fact that you don’t despair. Just when

everything seems over with, new forces come marching up, and precisely

that means that you are alive. ”

- Franz Kafka
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4.1 Introduction

Deciphering the DNA through its variations has become a essential study that provides

relevant results to all branches of biology and medicine. The advancement of technology has

resulted in a reduction of costs in the so-called new generation sequencers, enabling to a large

part of the scientific community have large volumes of data for research.

In this chapter we will explain conceptually basic principles of the human genome study.

In a first instance, an global introduction to the subject and then detailing each of the stages

involved in the process, to provide an extensive context to sequence alignment. Finally we

will describe all the short-read mappers used as a test bed to validate the NUMA execution

guideline.

4.2 Motivation

The information contained in the chromosomes is what determines the characteristics of

human beings, from our eye color to the disorders that we may be prone to suffer. Among the

many possibilities that arise from this field of study, perhaps one of the most the resonance of

personalized medicine. The variations in the genome of individuals can be associated with

certain diseases and its analysis enables the creation of treatments adapted to the specific

characteristics of a patient’s genome.

The genomic studies that have been carried out since the middle of the 70s were possible

thanks to a set of biochemical techniques that obtained sequences of nucleotide bases from of

a organic tissue. These techniques, known as sequencing, evolved rapidly to this day. Since

approximately ten years new tools were introduced to the scientific community of sequencing,

developed mainly by Illumnia, SOLiD Systems, 454 Roche and HeliScope. These New

Generation Sequencers (NGS) have drastically improved the amount and quality of the output

data, and significantly reducing the costs.

As a consequence, not only the laboratories with the latest technology have this equipment,

but it is increasingly common that institutes, hospitals and universities acquire sequencers that

generate massive data sets. Taking into account that many of these institutions have modest

clusters composed of common PCs (Commodities PC) and that the sequencers mentioned

above they have the capacity to produce data of the order of one billion of base pairs per day

[6], the challenge is then in which the computational applications have sufficient capacity to

deal with the analysis of this data in an efficient way.

Chapter 4 37



SEQUENCING ALIGNERS

Figure 4.1: Standard variant calling workflow

4.3 NGS Workflows

Genome investigations are mainly based on the study of variations in DNA sequences. These

variations are can identify, using the reference genome as a comparison human [49], or

comparing sets of genomes of individuals to each other. According to the type of variation

and how it is expressed in the human genome, it is possible to relate them to certain diseases

or disorders. Be able to determine if these variations can be associated to hereditary disorders

(Mendelian), to complex diseases or somatic mutations, among others, is the result of a

process analysis of the data obtained with NGS.

The entire process or workflow is very complex as it depends on many programs and

databases, and involves the handling of huge amounts of heterogeneous data. Thanks to

the growing interest in projects NGS, it is understandable the appearance of numerous tools

(private and opensource) that allow to perform specific tasks within the workflow [50].

The choice of tools to use depends largely on the biological results that are sought, so

workflows are rarely the same. However, you can perform an abstraction and say that most of

the workflows share the same conceptual stages.

4.3.1 Sequencing

The sequencing stage consists in the transformation of a tissue biological in DNA sequences,

called readings (reads). The length of the reads are measured in the amount of nucleotide

bases it has. These fragments are combined in files of fastQ format. Some of the techniques
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used in this process are:

(a) Pyrosequencing.

(b) Sequencing by synthesis.

(c) Sequencing by ligation.

(d) Sequencing of a single molecule, real-time sequencing.

(e) Secuenciación Post-light.

The sequencing process follows a standard protocol for its realization, however certain

parameters can be customized to obtain reads with certain characteristics. These characteristics

affect to all stages of the workflow:

Reads length

During the sequencing it is possible to specify the number of readings. The more extensive

readings are more reliable however they imply a higher cost of generation and analysis.

Normally they range from dozens up to several hundred bases.

Single-end y Paired-end reads

In the single-end readings, the sequencer reads from one end of one molecule to the other,

generating a sequence of even bases. In the paired-end readings, the sequencer starts at the

end of a fragment and ends its reading in a specified number of bases and there begins a new

reading from the opposite end in the direction opposite to the first. As the molecules have

a length of two times greater than an average sequencer reading (Illumina in this case), the

paired-end readings do not overlap. The data sequenced in paired-end readings come in two

files. One that saves the sequences in one direction and the other stores in the order reverse.

Paired-end readings are better for identifying positions relative to numerous readings

within the genome. allowing effective way to solve structural arrangements such as insertion,

the elimination or investments of genes.

Coverage

The coverage measures the number of times a specific site in the genome It is sequenced

during the sequencing process. It can be calculated as:
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coverage = No total of generated bases/Size sequenced genome

For example, 30x coverage, which in some cases can be considered high coverage, means

that on average each base is reported 30 times This does not mean that it is made as an equal

bread basket. Some bases can be sequenced 70 times and others 1 or 2, or even any arbitrary

number of times. The greater the coverage, the more reliable the sequencing.

Genome vs. Exome

Human genome sequencing has reduced its costs with the introduction of new generation

technology, however, remains expensive on a large scale. That’s why, many researchers

are inclined to use the exome sequencing. The exome is the coding part of the genome, It

represents approximately 1.5 % of it. Being represented in smaller files, exomes allow work

with coverage greater than the genomes. The exome sequencing was already used to identify

molecular defects of a single gene, disorders heterogeneous and improve the accuracy of

patient diagnosis.

4.3.2 Alignment

The alignment or alignment stage is the process in which determines the position correspond-

ing to each reading of nucleotide bases. There are two main approaches to solve the alignment

problem, which is based on using a reference genome (assembled by mapping) or dispense

with it (assembled de novo). The de novo assembly consists of in determining the order of the

fragments or readings, using overlapping of common regions to join them. The continuous

sequence of readings it’s called ”contig”. The contig length that an assembler can produce is

limited by the number of repeated sequences, polymorphisms, missing data and errors [51].

In the assembly by mapping, each reading is compared to a reference genome, and there that

your position is determined. It is clear that when they are investigated new species the use

of denovo alignment is necessary, since there is no reference genome. But in the case of

study of the human being, the decision on which method to choose becomes more complex In

denovo, all the readings are compared to each other, as a result, a much more precise process

is obtained [52] but computationally more demanding. That is harmed by readings too short,

as this increases the possibility that more readings are overlaid in a non-univocal way. That’s

why for short readings from 35bp to 100bp, the use of assemblers predominates by mapping

that are faster, but as a counterpart the assemblers that use a reference genome have polarized
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results since readings that look more like the reference sequence are more likely to be mapped

successfully compared to readings that contains valid differences. [53]

Using the assembly by mapping would imply that to discover the position correct one

reading should be compared to three billion of possible positions within the human genome.

The current programs they use indexing techniques to optimize their mapping algorithms.

The two most commonly used approaches [54] by The aligner programs are:

Hash table based algorithms (paced-seed indexing):

In this method in each position in the reference is fragmented into four pieces of equal size

called seeds and said seeds they are paired and saved in a query tables. As results you get

6 combinations of seed pairs for possible position. Each reading is also fragmented in the

same way where the seed pairs are used as a key to search for positions that correspond in the

reference algorithm.

Preffix/Suffix Tree based algorithms (Burrows-Wheeler Transformed):

Use the Burrows-Wheeler transform to store representations of the reference genome whose

memory utilization is very efficient. Implementations of this method use about 2GB of RAM

for represent the complete genome compared to the technique of spaced seeds that requires

approximately 50GB. Readings are aligned character by character, from right to left using as

a reference the transformed genome. Each new character aligned allows you to reduce the

list of possible positions that may correspond to you to reading. This is a significantly more

complex algorithm but it runs faster.

4.3.3 Variant calling

In a few words at this stage it is about determining the possible variants that an individ-

ual presents with respect to a specific reference, and see how they relate to the biological

phenomenon that is being investigated

The set of variations that occur in a single nucleotide base they are known as SNV (Single

Nucleotide Variation), within this category are the SNP single nucleotide polymorphisms

(Single Nucleotide Polymorphism) and the insertions / deletions of a single INDELs base

(InsertionDeletion). The second set of variations are structural variations SV (Structural

Variation), which involve to large blocks (more than 100 bases) of DNA. In this category

there are duplication, INDELS, investments, translocations, among others [55].
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Figure 4.2: Single-nucleotide polymorphism Figure 4.3: Types of SNP

Before the emergence of NGS technologies, genome studies human beings positioned the

SNP variations as the main source of the phenotypic and genetic variations. However, in the

past years has been shown, that there are large structural variations in the human genome [56].

The evidence indicates that the variations can be associated with diversity and susceptibility

to diseases, despite the fact that most structural variations they are outside the coding region.

The tools for variant, differ according to the types of variations what you want to search But

there is also another classification that is born of the biological phenomenon that you want to

analyze:

1) Determination of germline variants, which is central to find the causes of rare and

characteristic diseases genetic It is obtained by comparing the tissue of the individual in

question with the reference genome.

2) Determination of somatic variants, that are searched for diseases like cancer. But in

this case a comparison is made between the results of the sequencing of healthy tissues with

those of carcinogenic tissues of the same individual.

4.3.4 Annotation

After identifying the variations, it is necessary to be able to predict its functional impact.

Expressed otherwise associating the variation to its corresponding biological information. For

that the tools who make the annotations, they usually compare the variations found with public

databases like dbSNP [57] that provides more than 20,000 validated human SNPs, there are

other bases of data such as( HGMD Human Gen Mutation Database)[58] that contains more

of 76,000 mutations of approximately approximately 2900 genes,or the COSMIC (Catalog
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of Somatic Mutation in Cancer)[59] at the institute Sanger, stores ˜25000 human somatic

mutations related to cancer [53].

4.4 Sequence Aligners

Sequence aligners -or aligners, for the sake of simplicity- can be classified into two main

groups: based on hash tables or based on Suffix/Preffix trie. In ”A survey of sequence

alignment algorithms for next-generation sequencing” Li et. al[60],define very precisely each:

• Hash Table: ”The idea of hash table indexing can be tracked back to BLAST. All

hash table based algorithms essentially follow the same seed-and-extend paradigm.

BLAST keeps the position of each k-mer (k = 11 by default) subsequence of the

query in a hash table with the k-mer sequence being the key, and scans the database

sequences for k-mer exact matches, called seeds, by looking up the hash table.”

SNAP is an example of a hash table-based aligner, where given a read to align draws

multiple substrings of length s from it and performs an exact look-up in the hash

index to find locations in the database that contain the same substrings. It then

computes the edit distance between the read and each of these candidate locations

to find the best alignment.

• Suffix Trie: ”reduce the inexact matching problem to the exact matching problem

and implicitly involve two steps: identifying exact matches and building inexact

alignments supported by exact matches. To find exact matches, these algorithms

rely on a certain representation of suffix/prefix trie”

Examples of BWT-based aligners are BWA, BOWTIE2 and GEM. Hash tables are a

straight forward algorithm and are very easy to implement, but memory consumption

is high; BWT algorithms, on the other hand, are complex to implement but have low

memory requirements and are significantly faster [54].

On the other hand, BWT is an efficient data indexing technique that maintains a relatively

small memory footprint when searching through a given data block. BWT is used to transform

the reference genome into an FM-index, and, as a consequence, the look-up performance of

the algorithm improves for the cases where a single read matches multiple locations ”The

advantage of using a trie is that alignment to multiple identical copies of a substring in the

reference is only needed to be done once because these identical copies collapse on a single
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path in the trie, whereas with a typical hash table index, an alignment must be performed for

each copy.”

The computational time required by an aligner to map a given set of sequences and the

computer memory required are critical characteristics, even for aligners based on BWT. If an

aligner is extremely fast but the computer hardware available for performing a given analysis

does not have enough memory to run it, then the aligner is not very useful. Similarly, an

aligner is not useful either if it has low memory requirements but it is very slow. Hence,

ideally, an aligner should be able to balance speed and memory usage while reporting the

desired mappings [61]. In [24], Misale et al. define three distinguishing features among the

parallelization of sequence aligners:

1. There is a reference data structure indexed (in our study, the human genome refer-

ence). Typically this is read-only data.

2. There is a set of reads that can be mapped onto the reference independently.

3. The result consists in populating a shared data structure.

From a high level point of view, this is the behavior of all the aligners that we used in this

study. Therefore, continuous access to the single shared data structure -index- by all threads

can increase memory performance degradation. Additionally, read mapping exhibits poor

locality characteristics: when a particular section of the reference index is brought to the local

cache of a given core, subsequent reads usually require a completely different section of the

reference index and, hence, cache reuse is low.

4.4.1 Burrows Wheeler Aligner

Burrows Wheeler Aligner (BWA) is one of the most used short-read mapper by the genomic

community. BWA uses the BWT on a reference genome to create an index of it, and two

auxiliary data structures. These data structures are used to calculate the range where a

read sequence matches the reference genome, so they are accessed every time a read is

analyzed. Once the index of the reference genome is allocated in memory, BWA takes

each individual read and calculates its suffix array coordinates using BWT and the reference

genome index.There is no dependency between reads, so several reads can be aligned in

parallel. In fact, BWA allows multithreaded execution using pthreads. Each thread executes a

sequential version of the core mapping algorithm, while main data structures are allocated
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at the beginning of execution before the rest of threads are created [25]. For this work we

centered on BWA original algorithm aln [6].

4.4.2 Bowtie2

Bowtie 2 is tool for aligning sequencing reads to long reference sequences. It is particularly

good at aligning reads of about 50 up to 100s of characters to relatively long genomes. Bowtie

2 indexes the genome with an FM Index (based on the Burrows-Wheeler Transform or BWT)

to keep its memory footprint small: for the human genome, its memory footprint is typically

around 3.2 gigabytes of RAM. Bowtie 2 supports gapped, local, and paired-end alignment

modes. Multiple processors can be used simultaneously to achieve greater alignment speed.It

runs on the command line under Windows, Mac OS X and Linux.

4.4.3 Genome Multitool 3

Genome Multitool 3 (GEM3) is a high-performance mapping tool for aligning sequenced

reads against large reference genomes (e.g. human genome). In particular, it is designed

to obtain best results when mapping sequences up to 1K bases long. GEM3 indexes the

reference genome using a custom FM-Index design, and performs an adaptive gapped search

based on the characteristics of the input and the user settings. GEM3 allows performing

complete searches that find all possible matches according to the user criteria. It enables

the user to perform searches looking for the first-match/best-match, all-first-n matches, and

all-matches. GEM3 supports single-end, and paired-end mapping modes. Also, it supports

both global-alignment and local-alignment models for different error models It offers out-of-

the-box multithreaded mode to exploit several cores processors and achieve greater speed,

without affecting the relative order of the reads. GEM3 is distributed under GPLv3, and runs

on command line under Mac OSX and linux.

4.4.4 Scalable Nucleotide Alignment Program

Scalable Nucleotide Alignment Program (SNAP) is a sequence aligner that is 3-20x faster

and just as accurate as existing tools like BWA-mem or Bowtie2. It runs on commodity x86

processors, and supports a error model that lets it cheaply match reads with more differences

from the reference than other tools. SNAP search algorithm is based on hash table. SNAP fast

performance is related to the larger length of the reads that it processes which allow for fast
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hash-based location of reads using larger ”seed” sequences. It also meant to be executed on

machines withat least 10 GB of RAM to take profit of the increased server memories, which

allow trading memory to save CPU time.
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5
Experimentation

”You can hold yourself back from the sufferings of the world, that is

something you are free to do and it accords with your nature, but perhaps

this very holding back is the one suffering you could avoid. ”

- Franz Kafka
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5.1 Performance of sequence aligners on NUMA systems

In Chapter 3 we presented a series of studies that can be used to characterize NUMA architec-

tures. From there we analyzed the NUMA performance aspects in order to understand the

functioning of the system. We analyze how this acquired knowledge can give us answers

to possible problems that could be experienced by applications that are not NUMA-aware

but that are executed on such systems. In this chapter we propose to study the behavior of

sequence aligners, which are real applications and mainly memory-bound, and evaluate their

level of NUMA-awareness. We will first start with BWA, which is one of the most adopted

sequence aligner by the scientific community.

As explained in chapter 4, BWA uses the Burrows-Wheeler Transformation of the ref-

erence genome, and two auxiliary data structures:c tab and o cctab. These data structures

are used to calculate the range where a read sequence matches the reference genome, so

they are accessed every time a read is analyzed. There is no dependency between reads, so

several reads can be aligned in parallel. In fact BWA allows multithread execution employing

pthreads. Each threads executes a sequential version of BWA algorithm. In BWA, the tables

c tab and o cctab are allocated at the beginning of the execution in a single node, before the

alignment starts. This means that all pthreads which are not on the local socket will have

slower access time to these tables[25]. BWA counts with three algorithm: bwa-backtrack,

bwa-sw, bwa-mem. In this section we will focus on BWA’s original algorithm bwa-bactrack.

BWA has three components: index, aln, and sampe/samse. The first component is used to

index the reference genome, employing Burrows Wheeler Transformation. This only needs to

be done one time, due that the same reference genome can be used for all the executions of

BWA. The aln command takes the reads and calculates their suffix array coordinates using

BWT and the reference genome index. In the last sub-module samse -for single end reads -

and sampe -paired end reads- the chromosome coordinates are created. BWA implements

parallelisation by means of pthreads library but only on ALN component. In order to obtain

the minimum execution time possible, one could think that the best strategy is to use as

many threads as cores available. However the results obtained are not consistent with this

hypothesis. Execution times for BWA-ALN multithread using up to 64 threads are displayed

in figure 5.1

The figure 5.1 reflects the execution times as the number of threads increases on AMD

system. The blue line represents the execution times of BWA using the default allocation

policy. This is letting the operating system be responsible for placing the data. It can be seen

that BWA presents a limited scalability beyond 32 cores. When running an application on
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Figure 5.1: Scalability study for BWA-ALN on AMD architecture

a NUMA architecture, the most basic reasoning leads us to think that from 32 threads and

higher, too many remote accesses are occurring and this counteracts the benefit of increasing

parallelism. That is why it is even more surprising than when we forced the policy to allocate

data so that it remains local to the main thread (red line), the performance is even worse. But

if we base our understanding on the NUMA performance aspects of this architecture, we

know that it is very prone to have contention problems both in applications with sequential

and random memory access patterns. In addition, the fact of employing 32 threads -or higher-

implies that remote access of the maximum distance can not be avoid. However, as discussed

in the chapter 3 we can mitigate the effect if the data distribution is made using interleave

policy, where access to all banks is balanced fairly. When we change the policy to interleave

(green line), we can observe how the scalability increases now beyond the 32 threads, as

predicted.

The behavior of BWA is adjusted to what was expected, taking into account the NUMA

performance aspects of the system. This led us to design an experiment to characterize and

evaluate the behavior of a set of sequence aligners, which we will explain in the next section.

Chapter 5 50



EXPERIMENTATION

5.2 Allocation Strategies and Data Partitioning

The experiments carried out in this study are the product of a series of systematic tests designed

to evaluate the behavior of aligners in the two NUMA architectures. The experimentation

can be divided into two main parts. In the first part, we tested several configurations of data

allocation that enforced locality between threads and memory banks as well as configurations

where shared data structures are spread evenly on different memory banks. In the second part,

experiments were based on the idea of data partitioning and replication: multiple independent

instances of the same application were executed simultaneously, so the main shared data

were replicated on each memory bank and input data split. A conceptual scheme of both

experiments are shown in figure 5.2. Details of these two schemes are presented below.

(a) Allocation Strategies (b) Data Partitioning

Figure 5.2: Experimentation approaches

5.2.1 Analysis of memory allocation

First, we have analyzed how sensitive a particular aligner is to different memory allocations.

In order to achieve this, we carried out 3 experiments: the first one is a traditional scalability

study in which aligners run with default system settings. We focused on 5 particular cases:

using 8, 16, 32, 48 and 64 threads, because in the AMD system, each processor has 8 cores

and 1 memory bank associated; so 8, 16, 32, 48 and 64 threads implies a minimum usage

of 1, 2, 4, 6 and 8 NUMA nodes, respectively. To compare the output, we performed the

same cases in the Intel System. For the other two cases, we used the Linux Tool numactl to

set a memory policy allocation. With the parameter –localalloc, the data is allocated on the
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current node where threads are running the program. The idea behind this is to maximize

local data affinity, keeping data onto the closest memory to the running processor. Finally, in

the third case the –interleave parameter is used so that memory is allocated in a round robin

fashion between selected nodes. All the aligners that we used need two input data files: one

that contains all the reads that need to be mapped and a second one that contains the reference

genome index.

The objective of these experiments is, firstly, to gain insight into the level of scalability of

the aligner. Additionally, re-running the aligner using different parameters of numactl provides

us with information about the behavior of the application and its data allocation sensitivity

by using two extreme cases: when the locality and concurrency increase (localalloc) and

vice-versa (interleave).

5.2.2 Data partitioning and replications strategies

With the second part of our experimentation, we aim to reduce to a minimum the contention

produced when multiple threads access the index. To achieve this, we used data replication

and data partitioning techniques. We ran simultaneous independent instances of a given

aligner, each instance with a copy of the index. For example, if 4 simultaneous independent

instances are created, each one will process a 4th part of the original input data (see figure

5.2b) and use an entire copy of the index. It is important to remark that creating instances

increases the initial memory requirements, due to the fact now multiple copies of the index are

required instead of just one. Ideally, each memory bank would hold a copy of the reference

index and the threads local to that bank would not need to access any data located remotely.

For this case, we could think of each NUMA node as a symmetric multi-processor unit,

capable of running an independent instance of an aligner. However, only BOWTIE2 and

BWA generate an index small enough to fit on a memory bank of the systems we are using.

The case of GEM and SNAP is different, where the index needs to be stored in more than one

memory bank. To decide how many instances we would run, we took two critical factors into

account:

1. the layout of the memory system.

2. the size of the index needed by the aligners.

Regarding the memory system, it is worth noting that AMD architecture presents more

restricting features than INTEL, in the sense that the memory banks are smaller. The AMD
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system also has a more complex layout due to the fact that the number of NUMA nodes is

larger. Knowing this, we designed the experimentation having AMD’s constraints in mind,

but considering that it would work on the Intel system too. The AMD system allowed us a

maximum of 8 instances of 8 threads each, for an aligner with a small index. For these aligners,

we also created other combinations with 4 instances of 16 threads each and 2 instances of 32

threads, always using the maximum number of threads possible. In Table 5.1, we can see the

sizes of the indexes used. For SNAP, it was not possible to create more instances than 2 due

to the fact that the index does not fit on one memory bank of the AMD system and barely fits

on two.

We introduce a novel hybrid execution technique combining the partitioning techniques

with the memory allocation policies explained in Section 5.2.1: localalloc and interleave.

Figure 5.3 shows a graphical representation of the three hybrid scenarios that we have

tested when partitioning techniques were combined with memory allocation policies. In this

example, 2 instances (partitions) are created. Instance 1 is running on Socket 0 (Processor 0

and Processor 1) and Instance 2 on Socket 1 (processor 2 and processor 3). Each instance

processes one half of the total input and uses a copy of the index. When combined with

memory allocation policies, data is allocated in three different ways, which result in the three

resulting scenarios:

• Partitioning (Original) Figure 5.3a: Memory banks are reserved ahead of the

execution using the command membind. NUMA nodes local to Processor 0 and

Processor 1 are explicitly selected for Instance 1 and for Instance 2 the NUMA

nodes local to Processor 2 and Processor 3. This does not necessarily mean that

both memory banks would be used; they are allocated and will be used if needed.

• Partitioning + Localalloc Figure 5.3b: The difference between this technique and

”Partitioning” is that the reservation of NUMA nodes is performed implicitly, using

the command localalloc.

• Partitioning + Interleave Figure 5.3c: As in ”Partitioning”, when an interleave

policy is used, the NUMA nodes are explicitly reserved, but the allocation that takes

place is done in a round-robin fashion, guaranteeing that both memories are being

used and that the index is equally distributed.
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(a) Partitioning (b) Partitioning + Localalloc (c) Partitioning + Interleave

Figure 5.3: Hybrid experimentation

Table 5.1: Detailed information about the aligners.

Aligner Ver-
sion

Index
(GB)

BOWTIE2 2.2.9 3.9

BWA-

MEM
0.7.12 5.1

GEM 3.0 15.0

SNAP 1.0.18 29.0

5.3 Experimental Results

In this section, we show the main results obtained during the experimentation. For all the

experiments, we used the reference human genome GRCh37 [62], maintained by The Genome

Reference Consortium, and two data sets were used as input data:

• Synthetic benchmark [63]:

Single end, base length = 100, number of reads= 11M Size = 3.1GB

• Segment extracted from NA12878 [64]:

Single end, base length = 100, number of reads= 22M Size = 5.4GB

The aligners were compiled using GCC 4.9.1 and we used the latest version available of

each, as shown in the second column of Table 5.1. Results were obtained as an average of

ten executions. Figures 5.4, 5.5, 5.6 and 5.7 of the following subsection show both average

execution times and the corresponding standard deviation for each test. Detailed numerical
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values of mean execution times and corresponding relative errors are available in Tables A3,

B5, C7 and D9, annexed at the end of this chapter.

5.3.1 Analysis of memory allocation policies

In Figures 5.4, 5.5, 5.6 and 5.7, the execution times for all four aligners can be seen, each

one using the datasets mentioned above: GCAT Synthetic Input and NA12878 Real Input.

Execution times are also evaluated for both systems described in Chapter 2 (AMD-based

cluster and Intel-based cluster). For each aligner, each figure shows how it scales when

different memory allocation policies are used (namely, original, localalloc and interleave).

This first set of experiments shows the behavior of the aligners under three scenarios. The

first one (original) corresponds to the execution of a given aligner with its default parameters

without any particular allocation policy or NUMA control and lets the operating system

handle the allocation. On Linux systems, this will normally involve spreading the threads

throughout the system and using the first-touch data allocation policy, which means that, when

a program is started on a CPU, data requested by that program will be stored on a memory

bank corresponding to its local CPU [37]. The allocation policy takes effect only when a page

is first requested by a process. The second case (localalloc) corresponds to the scenario where

the functions of the numactl utility are used to reduce remote access, restricting the allocation

to specific nodes. The third case (interleave) evaluates the performance of the application

when its memory pages are distributed in the nodes following a round-robin scheme. When

aligners are executed with no explicit memory allocation policy (shown by the green line

in Figures 5.4, 5.5, 5.6 and 5.7), scalability decreases significantly beyond 32 threads in all

four aligners. When these aligners run on more than 32 cores, at least one NUMA node

at two-hops distance is used. Therefore, all the speedup gained due to multithreading is

mitigated by the latency of remote accesses and traffic saturation of interconnection links.

BOWTIE2 and BWA show a more regular and similar behavior. They reduce their execution

time gradually to the point of using 32 cores. From there, their times are increased (slightly

in the case of BWA and more significantly in the case of BOWTIE2). GEM and SNAP

show a more irregular behavior since their execution times are not always reduced when the

number of cores increases. It is worth mentioning, actually, that all aligners’ execution time

when using the complete system is worse than using a smaller number of cores. From the

two memory allocation policies, interleave is clearly the one that performs best. For all the

aligners, the interleave policy reduces execution time as more processors are used (with the

only exception being BOWTIE2 in the case of the real dataset). GEM and SNAP, actually,
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obtain their best execution times when interleave allocation is used. It is also worth noting

that more stable and steady results are obtained with interleave. The variability between

executions is reduced drastically, mainly because interleave spreads data across the system,

and the aligners experience fair and balanced accesses.

(a) BOWTIE2 (b) BWA

(c) GEM (d) SNAP

Figure 5.4: Different memory allocation policies. The lower the better. Arch: AMD. Dataset: GCAT

Synthetic Input

As explained in Section 4.4, aligners share a common data structure -an index- among

all threads. This structure is loaded in memory by the master thread (by default, Linux will

place this data on its local memory bank). Therefore, as the number of threads increases, the

memory bank that allocates the index becomes a bottleneck. Allocating data in an interleave

way does not reduce remote accesses but guarantees a fair share of them between all memory

banks and, therefore, prevents access contention, a phenomenon especially prone to happening
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(a) BOWTIE2 (b) BWA

(c) GEM (d) SNAP

Figure 5.5: Different memory allocation policies. The lower the better. Arch: INTEL. Dataset: GCAT

Synthetic Input

in these architectures due to reduced memory bandwidth between NUMA nodes [17]. This

reason explains why using an allocation policy that reinforces locality between processors

and memory banks does not provide good results. Execution times are made worse by both

increased latencies in memory accesses and increased congestion of banks containing the

index. Execution times for a given aligner change depending on the system that is used. This

makes sense, as mentioned in Chapter 2: systems are equivalent but not identical. It is also

worth noting that the behavior of a given aligner changes depending on the dataset. Aligners

do not have a unique and uniform memory access pattern. There are queries that are easier to

map than others, and the mappeability among the regions of the human genome is not uniform

[65]. Not all aligners process the queries in the same way, and the work done is irregular. The
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(a) BOWTIE2 (b) BWA

(c) GEM (d) SNAP

Figure 5.6: Different memory allocation policies. The lower the better. Arch: AMD. Dataset:

NA12878 Real Input

nature of the input data can significantly affect the behavior of an aligner. However, a memory

placement strategy that distributes data evenly among all nodes seems to be the strategy that

most consistently provides the best results.

Accessing remote data is not the only problem on NUMA architectures. The congestion

generated by multipl to a shared common data structure increases congestion. Executing the

aligners with interleave policy does not reduce the amount of remote accesses but diminishes

the drawbacks of congestion in a sensible way. These outcome matches with the ones

predicted by the NUMA performance aspects exposed in chapter 3. When benchmarking both

systems with STREAM we observed and quantify how an interleave fashion of placing the

data improved the aggregated bandwidth of the entire system. How ever testing this theory,
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(a) BOWTIE2 (b) BWA

(c) GEM (d) SNAP

Figure 5.7: Different memory allocation policies. The lower the better. Arch: INTEL. Dataset:

A12878 Real Input

validates that this also happens in more complex application (than synthetic benchmark with

sequential accesses).

5.3.2 Data partitioning and replication strategies

With the execution of multiple simultaneous instances, we aimed to attenuate the traffic of

socket-interconnection buses and therefore reduce contention between threads. Latency will

also improve because locality will increase and memory accesses will be available to local

nodes. However, the way that instances are created is strongly conditioned by the system

architecture that the aligner is running on. To generate the instances for each scenario, we
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have taken into account the aligners’ memory requirements (in particular, the size of the index

generated by each aligner) and the amount of available space on the memory banks. Within

the four chosen aligners for this study, there are two - BOWTIE2 and BWA - with indexes that

are small enough to fit on one memory bank. For these aligners, we have been able to create

as many instances as there where available NUMA domains. As the maximum number of

threads is the same on both architectures, the same test can be executed on both systems. The

maximum number of instances possible for AMD is 8 instances of 8 threads. This constitutes

the most desirable situation because all instances would have all needed data stored locally,

and remote accesses to remote banks would be significantly reduced. Unfortunately, this is

not the situation for GEM and SNAP. Their indexes require more than one bank, therefore

their instances are not entirely isolated and, although replication strategies are used, remote

accesses and memory contention cannot be avoided completely. For these two aligners, only

2 instances of 32 threads were possible. In order to complete the experimentation, we have

designed tests with other possible combinations of instance x threads for BOWTIE2 and

BWA: 4 instances of 16 threads and 2 instances of 32 threads. For all scenarios the subset of

NUMA nodes used, were selected using the NUMA performance aspects. Once the number

of instances is determined, a memory allocation policy is applied, thus generating the hybrid

scenarios described in Section 5.2.2. In Table 5.2, we can see a list of all the hybrid scenarios

that were tested in this part of the experimentation. The name of each case, as used in Figures

5.8, 5.9, 5.10 and 5.11, appears in the column Names.

Figures 5.8, 5.9, 5.10 and 5.11 show a complete speedup comparison of all strategies

when the maximum number of cores are being used. This means that whole systems were

used (with 64 threads and all memory banks). Speedup has been computed by using the

execution time achieved by each aligner when it was executed on the whole system with its

default setup (i.e. with no memory allocation policy and data partitioning strategy applied) as

a baseline.

From these experiments it is observed that all aligners benefit from execution through

the creation of instances in all cases. However, some slight differences can be observed

in the aligners’ behavior. On the one hand, aligners with small indexes (BOWTIE2 and

BWA-MEM) improve their execution times in all scenarios in which instances are used,

regardless of the memory allocation policy applied. The remarkable case is BOWTIE2, which

presents speed-ups between 1.5x and 5x comparing to its original configuration. The best

results are obtained when using the largest number of instances (8Inst Original in all Figures),

which corresponds to the case that maximum locality is achieved, also reducing memory
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Table 5.2: Instances created for each aligner

Aligner #Inst x
Threads Policy Name

2x32t

Original

2Inst Original

4x16t 4Inst Original

8x8t 8Inst Original

BOWTIE2 2x32t
Localalloc 2Inst Localalloc

BWA-MEM 4x16t
4Inst Localalloc

2x32t
Interleave 2Inst Interleave

4x16t
4Inst Interleave

SNAP 2x32t Original 2Inst Original

GEM 2x32t Localalloc
2Inst Localalloc

2x32t Interleave
2Inst Interleave
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(a) BOWTIE2 (b) BWA

(c) GEM (d) SNAP

Figure 5.8: Different memory allocation policies. The lower the better. Arch: AMD. Dataset: GCAT

Synthetic Input

controller congestion. When using a smaller number of instances aligners also benefit from

the combination with the memory allocation policies. The interleaving allocation provides

slightly better results compared to the other two cases. This means that if BWA-MEM or

BOWTIE2 are executed with four instances of 16 processors each, allocating memory in a

round-robin fashion provides better results than allocating memory in any other way. This

hybrid schema provides the best trade-off between locality increase and contention avoidance.

On the other hand, aligners with larger indexes (GEM and SNAP) always benefit from the

creation of instances combined with interleave allocation. Execution times were not always

better than the default ones when instances were combined with the other allocation schemes.

The strategy that combines multiple instances and memory interleaving improves execution
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(a) BOWTIE2 (b) BWA

(c) GEM (d) SNAP

Figure 5.9: Different memory allocation policies. The lower the better. Arch: INTEL. Dataset: GCAT

Synthetic Input

time up to 5x in the case of GEM and 2.8X in the case of SNAP. However, it is worth noting

that none of these results are better than using an interleave allocation policy alone.

5.3.3 Summary results

Figure 5.12 summarizes the main results achieved by each aligner when they were executed

with the maximum number of resources (i.e. using 64 threads). In each figure, we can

see 4 sets of tests: one for each input and one for each architecture, four combinations of

experiments in total. For each set, the first column represents the execution time of the

aligner without any added memory policy or data partition. The second column is the best
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(a) BOWTIE2 (b) BWA

(c) GEM (d) SNAP

Figure 5.10: Different memory allocation policies. The lower the better. Arch: AMD. Dataset:

NA12878 Real Input

time achieved when the aligner was executed with a memory policy, and the last column

is the best execution time achieved with data partitioning and independent instances. As

said before, aligners exhibit random access patterns to memory and are also sensitive to the

input data. However, as Figure 5.12 shows, significant improvements in execution times

were achieved by all 4 aligners when memory interleaving or multiple instances were used.

According to these results, we can deduce a rule of thumb that has shown to be valid for

this set of representative aligners. For BOWTIE2 and BWA-MEM, where the size of the

index is much smaller than the capacity of a memory bank, data partitioning arises as the

best solution because it allows us to minimize the usage of socket interconnection links (QPI

and HyperTransport). For aligners with larger indexes, such as SNAP and GEM, even when
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(a) BOWTIE2 (b) BWA

(c) GEM (d) SNAP

Figure 5.11: Different memory allocation policies. The lower the better. Arch: INTEL. Dataset:

A12878 Real Input

data partitioning is employed, more than one memory bank is required to store the index,

and accesses through interconnection links cannot be avoided. For these aligners, execution

time is mostly reduced when a pure interleave policy is employed, ensuring that accesses are

equally distributed among all memory banks and, therefore, contention is minimized.

Improvements in execution times were greater when real input was used. Bigger improve-

ments were also obtained on the AMD system. The NUMA architecture of this system has

longer distances between processors and memory banks and shows latencies greater than

those of the Intel system. Therefore, aligners suffer greater penalties in AMD architectures in

terms of memory accesses in general; but, by applying NUMA-aware strategies, aligners also

show more substantial improvements in such systems.
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(a) BOWTIE2 (b) BWA-MEM

(c) GEM (d) SNAP

Figure 5.12: Execution times: Summary results for all aligners. The lower the better

5.4 Annexed results
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Table A3: Execution times for BOWTIE2 using different memory allocation policies

BOWTIE2

AMD

NA12878 GCAT

Original Localalloc Interleave Original Localalloc Interleave

Threads Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%]

8 620.37 0.80 752.28 0.57 749.88 0.59 937.96 0.48 1310.05 0.06 1311.13 0.09

16 339.21 2.77 480.94 6.47 455.81 1.60 481.81 0.28 687.68 1.68 692.95 2.15

32 260.75 15.73 573.00 6.91 326.25 4.93 271.29 1.36 396.29 4.02 387.34 1.26

48 385.47 13.52 369.64 14.60 383.85 7.82 271.58 1.50 285.21 1.05 293.66 0.86

64 529.92 10.51 520.64 11.82 480.47 12.50 282.33 2.93 262.09 4.38 272.07 2.72

INTEL

NA12878 GCAT

Original Localalloc Interleave Original Localalloc Interleave

Threads Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%]

8 721.51 0.41 722.62 0.27 666.22 0.59 915.07 0.10 1174.50 0.51 1169.95 0.26

16 403.03 1.00 403.99 3.43 373.43 1.86 495.40 0.62 563.76 1.72 569.07 0.33

32 350.98 1.15 347.59 2.18 252.68 5.08 303.09 1.69 501.55 1.36 530.68 0.39

48 293.05 1.92 279.86 1.58 275.15 2.71 296.58 1.14 344.19 1.26 368.96 0.75

64 400.77 1.60 402.51 1.75 417.47 1.77 292.12 0.86 282.03 1.10 292.53 0.54
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Table A4: Execution times for BOWTIE2 using data partitioning

BOWTIE2

AMD INTEL

NA12878 GCAT NA12878 GCAT

Name Threads Mean [s] Error [%] Mean [s] Error [%] Mean [s] Error [%] Mean [s] Error [%]

2Inst Original 32 284.78 5.25 201.50 3.63 199.40 10.14 272.50 4.85

4Inst Original 16 115.03 9.14 188.86 6.06 129.14 7.89 214.53 6.16

8Inst Original 8 104.52 13.55 175.36 6.28 118.23 2.33 191.58 2.42

2Inst Localalloc 32 398.46 16.59 202.33 6.26 205.20 22.72 278.52 2.77

4Inst Localalloc 16 127.08 8.70 175.09 1.00 134.51 8.20 211.12 2.31

2Inst Interleave 32 160.59 4.87 197.56 1.31 199.39 10.14 293.21 1.45

4Inst Interleave 16 118.75 4.43 180.48 4.63 129.14 7.89 206.66 2.07

Table B5: Execution times for BWA-MEM using different memory allocation policies

BWA-MEM

AMD

NA12878 GCAT

Original Localalloc Interleave Original Localalloc Interleave

Threads Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%]

8 621.40 0.85 618.78 0.41 620.07 0.33 1223.40 9.22 1224.56 0.16 1225.20 0.23

16 333.76 0.33 348.35 0.45 346.37 0.71 619.03 0.40 658.15 0.60 655.84 0.90

32 234.89 0.71 269.83 15.78 214.69 0.26 381.98 1.44 479.43 14.90 377.16 0.42

48 254.82 25.22 264.07 15.57 164.24 1.68 374.68 9.25 480.27 11.91 276.52 0.40

64 244.95 6.02 253.13 2.45 145.10 1.49 376.32 2.20 367.73 0.67 234.23 0.40

INTEL

NA12878 GCAT

Original Localalloc Interleave Original Localalloc Interleave

Threads Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%]

8 671.26 0.25 598.68 0.39 591.44 1.21 1242.25 8.23 1181.80 0.32 1175.52 0.48

16 368.48 1.10 391.26 3.24 385.35 0.65 651.29 0.48 703.42 2.71 691.03 1.23

32 234.07 1.37 309.14 2.70 293.92 0.67 393.66 0.33 550.59 2.84 521.19 0.35

48 239.97 25.11 265.37 4.11 234.67 0.76 350.85 3.75 417.55 3.18 380.09 0.27

64 260.20 10.04 263.35 10.85 207.75 1.24 387.17 1.60 384.51 2.25 368.91 1.02
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Table B6: Execution times for BWA-MEM using data partitioning

BWA-MEM

AMD INTEL

NA12878 GCAT NA12878 GCAT

Name Threads Mean [s] Error [%] Mean [s] Error [%] Mean [s] Error [%] Mean [s] Error [%]

2Inst Original 32 315.47 17.32 254.19 10.03 186.52 3.61 285.88 2.50

4Inst Original 16 120.62 26.46 187.19 11.30 128.07 4.82 273.23 3.74

8Inst Original 8 95.18 14.60 174.18 8.13 113.95 18.42 240.59 3.04

2Inst Localalloc 32 316.14 19.45 272.18 6.90 214.15 16.13 289.98 2.24

4Inst Localalloc 16 143.99 9.20 204.88 10.59 144.75 6.67 224.44 9.41

2Inst Interleave 32 123.69 0.92 208.05 4.07 194.23 14.67 283.68 0.67

4Inst Interleave 16 122.814 9.51 173.85 0.11 131.57 8.24 196.14 1.14

Table C7: Execution times for GEM using different memory allocation policies

GEM

AMD

NA12878 GCAT

Original Localalloc Interleave Original Localalloc Interleave

Threads Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%]

8 359.59 9.24 675.36 4.06 522.62 6.06 156.29 5.40 217.24 5.71 190.61 8.39

16 562.60 11.49 894.56 13.89 700.63 7.67 121.81 13.01 223.38 14.22 201.40 14.34

32 712.83 4.44 691.45 14.40 329.49 2.90 175.94 14.47 232.01 12.09 94.98 14.57

48 488.35 15.41 756.27 12.09 127.51 4.14 115.13 8.22 87.39 13.86 34.55 0.67

64 616.17 15.99 805.56 12.82 127.24 2.76 186.47 10.18 162.08 10.21 30.18 1.01

INTEL

NA12878 GCAT

Original Localalloc Interleave Original Localalloc Interleave

Threads Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%]

8 166.94 0.17 157.82 1.92 209.87 1.88 111.14 1.31 113.73 2.58 115.83 1.11

16 102.06 0.48 105.65 2.54 137.71 11.45 79.30 1.55 70.23 1.65 69.41 1.02

32 147.04 0.55 111.87 0.77 78.21 1.28 60.77 1.75 91.90 2.69 53.66 8.33

48 175.41 1.14 233.83 11.70 61.23 1.22 41.56 4.08 70.93 3.75 42.08 8.82

64 154.66 4.26 225.36 4.92 53.02 1.88 42.42 9 58.02 3.24 37.72 9.37

Table C8: Execution times for GEM using data partitioning

GEM

AMD INTEL

NA12878 GCAT NA12878 GCAT

Name Threads Mean [s] Error [%] Mean [s] Error [%] Mean [s] Error [%] Mean [s] Error [%]

2Inst Original 32 183.21 7.10 197.09 23.35 68.99 12.04 70.77 23.68

2Inst Localalloc 32 457.95 6.57 277.87 7.92 362.08 22.92 139.14 17.79

2Inst Interleave 32 90.68 14.34 36.39 10.91 104.25 9.63 38.77 5.40
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Table D9: Execution times for SNAP using different memory allocation policies

SNAP

AMD

NA12878 GCAT

Original Localalloc Interleave Original Localalloc Interleave

Threads Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%]

8 266.12 10.19 359.73 5.32 385.81 6.42 531.21 2.91 641.46 7.31 611.84 8.03

16 179.59 13.67 297.83 6.04 367.85 14.57 458.95 5.85 757.73 10.96 577.34 15.55

32 196.58 9.30 316.51 10.42 176.06 7.57 552.31 7.52 504.56 11.93 290.12 14.34

48 161.99 21.72 195.39 3.93 83.21 10.28 501.86 8.12 516.69 12.12 112.99 5.42

64 310.72 5.84 300.50 8.82 43.07 1.93 434.68 7.88 618.66 14.59 81.35 2.33

INTEL

NA12878 GCAT

Original Localalloc Interleave Original Localalloc Interleave

Threads Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%] Mean [s] Error[%]

8 238.91 10.97 303.45 6.86 451.87 7.10 456.73 4.75 504.73 7.53 679.12 4.94

16 226.77 10.96 287.53 10.75 255.52 8.15 355.90 8.08 292.29 7.51 331.94 8.21

32 172.94 15.69 299.46 11.00 199.86 15.00 301.85 14.12 312.13 7.61 122.85 0.55

48 266.62 5.76 339.21 16.89 102.13 6.21 168.38 11.42 199.75 11.69 111.74 0.38

64 209.95 8.57 284.43 2.53 77.62 0.72 344.04 14.46 163.80 9.42 93.25 0.37

Table D10: Execution times for SNAP using data partitioning

SNAP

AMD INTEL

NA12878 GCAT NA12878 GCAT

Name Threads Mean [s] Error [%] Mean [s] Error [%] Mean [s] Error [%] Mean [s] Error [%]

2Inst Original 32 613.81 3.01 788.64 9.87 233.31 21.30 415.65 15.33

2Inst Localalloc 32 675.62 5.04 233.34 9.68 301.45 14.33 309.68 19.68

2Inst Interleave 32 219.15 15.11 153.74 16.91 211.57 8.89 179.95 14.78
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Conclusions and Future lines

”Anyone who keeps the ability to see beauty never grows old. ”

- Franz Kafka
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6.1 Conclusions

Knowing the underlying architecture where applications are running is a key aspect to

achieving their optimal performance. If an application is memory-bound, it might suffer

performance issues when executed in NUMA systems. We proposed a series of systematic

steps to evaluate and characterize NUMA systems. These steps were carried out employing

well-known memory benchmarks like STREAM and lmbench. We quantify the effects of poor

locality, sub-optimal combination of subset of NUMA nodes and race condition of parallel

applications through four dimensions called NUMA performance aspects. With this, We

this gained understanding about the architecture employed we design an experimentation to

validate if the behavior detected with the synthetic benchmarks could be extrapolated to real

and complex applications.

We evaluated several genomic aligners and we have seen that they exhibit poor scalability

in modern NUMA systems because they are penalized by contention and/or remote memory

bank accesses. Our experiments have shown that increasing data locality may not always

produce the expected outcome. As the number of threads increases, all aligners show poor

scalability. In our study, we have shown that this phenomenon is not only related to remote

memory accesses taking place but also due to the memory contention generated by the race

of multiple threads trying to access a single shared data structure. Minimizing memory

contention is a key aspect in increasing the performance of aligners.

Our experiments have found that congestion causes the most serious NUMA problems for

a representative set of genomic aligners. Congestion happens when the rate of requests to

memory banks or the rate of traffic over interconnects is too high. As a consequence, memory

accesses are delayed and execution time increases. We have evaluated several strategies that

can be applied to alleviate this problem so that the application can take advantage of all the

available processors in existing NUMA systems. These strategies do not require changes to

the original application code, and they don’t require either kernel modification or privilege

permissions. We have explored several solutions that are based on combining two concepts:

congestion avoidance and increased locality. Congestion avoidance looks to balance the traffic

among multiple memory banks. Genomic aligners with large reference indexes (GEM and

SNAP) especially benefit from this strategy. Increased locality was reinforced by running

aligners in multiple instances. Aligners with small indexes (BWA-MEM and BOWTIE2)

show significant improvements in execution time thanks to this strategy, which could also be

combined with memory interleaving if the size of the memory banks is not large enough to

hold genome indexes.
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Improvements in execution times of 5x and 2.5x were obtained for BOWTIE2 and

BWA-MEM, respectively, when the aligners were executed with the maximum number of

threads (64). For other aligners with larger indexes (i.e. SNAP and GEM), the interleave

technique proved to be a better choice because the index is distributed across the system

memory banks and mitigates the contention produced when all threads try to access the same

data structure. Improvements of up to 5x and 2.8x were obtained for GEM and SNAP,

respectively.

Although there is no single strategy that emerges as the best for all scenarios, the proposed

strategies of this study improved the performance of all the aligners. This is not a minor

achievement taking into account that the behavior of the aligners is quite susceptible to

variation depending on the nature of the input data and the system architecture they run on.

It is reasonable to assume that NUMA systems in the future will have more NUMA

nodes and more complicated interconnection topologies. This will imply that NUMA effects

will continue to be a concern. Therefore, it will be necessary to apply techniques such as

those presented in this work so that parallel applications can be optimized efficiently to take

advantage of all the resources that will be available in those systems. We have evaluated

several strategies that don’t require changes to the applications. However, we expect that

larger improvements could be achieved if NUMA-awareness is integrated into the design of

new aligners.

6.2 Future Lines

As future lines we see several possible open paths:

• Implement a unified tool: As a first step we want to implement methodology as a

tool. We would like to codify a program that groups all the benchmarks used in this

research, allowing the user to characterize the architecture automatically. Currently

it is implemented through scripts, but we believe it would be better fit to do it as

an autonomous tool. Ideally, this tool would allow an inexperienced user to better

understand the limitations of the system, and obtain hints on how to execute parallel

applications, for example if it is convenient to execute her application using the

interleave policy, or maybe instances replication, or nothing at all. Also it would

allow to graphically interpret and quantify the NUMA performance aspects. This

information could be really useful to parallel programmers too. They could design

better allocation strategies, through the usage of numalib library, identify the stages
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of their code and select an allocation policy accordingly.

• Create NUMA pragmas: As a long term goal we would like to focus our guideline

not only in characterizing the architecture but also the parallel applications. We

want to create NUMA pragmas to instrument code to detect applications’ contention

problems in NUMA systems. This could be reported by existing performance

analysis tools that use our tool as an add-on. In a second step, specific pragmas could

be interpreted by compiler an apply directly creation and execution of instances and

the data replication.

• Extend our model to all NGS workflow: Some of the execution strategies intro-

duced in this research can be extended to the following stages of the NGS workflow.

For the variant calling stage, where the parallelization of the tools is limited, we

have some preliminary results that show scalability problems on NUMA systems.

It would be interest to test our proposed guideline with several known applications

of this stage, specially GATK [66]. When working with a set of stages sharing

intermediate data, like genomic workflows, the spectrum of possible strategies for

improving the usage of memory increases. One promising idea is to apply instance

and data replication to the alignment and variant calling stages, but passing the data

between them using a NUMA-aware RAM drive instead of writing files on disk.
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