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Abstract 

Since the development of the Sanger sequencing in 1977, technological advances have 

revolutionized the -omics field. Large-scale sequencing projects have resulted in the generation 

of an enormous amount of data that have motivated the development of bioinformatics tools 

for its integration, organization and interpretation. Due to the fact that the amount of 

sequencing data produced worldwide doubles every 7 months, there is the need to improve 

data accessibility, processing and interpretation. In this sense, the main aim of this work is to 

develop bioinformatics tools for the analysis of the functional and structural characteristics of 

genomes. On the one hand, storage capacity and accessibility of -omics data has become a 

challenge, not only for raw data but also for post-processing results. And this is the case for 

transcriptomics, one of the most funded -omics. In order to overcome current limitations on the 

existing databases for plant lncRNAs, we developed Green Non-Coding (GreeNC), one of the 

most comprehensive online databases in the field that included 39 plant species and 6 algae, 

representing more than 200,000 lncRNAs. On the other hand, the availability of user-friendly 

tools to ensure feasible large-scale data analysis and management would help to democratize 

bioinformatics. Several software have recently emerged to allow the analysis of RNA-seq data in 

an accessible way. However, none of them provides an end-to-end solution. In this context, we 

took advantage of cloud computing to develop a cloud-based easy-to-use platform called 

Artificial Intelligence RNA-seq (AIR). AIR is the first end-to-end solution for the analysis of RNA-

seq data that is not limited to model species and does not require previous bioinformatics skills. 

Once developed, we validated AIR taking advantage of RNA-seq samples derived from mouse 

spermatogenic germ cells produced in our research group. We observed an increase in the 

prevalence of non-coding genes during spermatogenesis and detected silencing of the X 

chromosome. We also identified differentially expressed genes that were consistent with the 

sequential development of spermatogenesis. Precisely, it is known that the genome undergoes 

large three-dimensional (3D) conformational changes during spermatogenesis. To characterize 

such 3D re-organization, we made use of AIR and additional tools for Hi-C data analysis to 

generate an integrative atlas of the chromatin interactions and functional genomic 

characteristics of the mouse male germ line. Our results revealed previously undescribed 

patterns: (i) the sub-chromosomal organization scale is lost during prophase I, (ii) the sub-

megabase organization scale becomes diffuse along spermatogenesis especially in sperm, (iii) 

specific events such as the telomere bouquet and the X chromosome inactivation were 

observed, and (iv) cell-specific open conformations correlated with the expression of genes with 

relevant functional roles. Overall, we have developed new bioinformatics solutions to enhance 
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accessibility, processing and interpretation of -omics data that permitted the analysis of 

functional and structural features of genomes. 

Key words: sequencing, bioinformatics, lncRNAs, cloud computing, next-generation 

bioinformatics, RNA-seq, Hi-C, 3D genome organization, spermatogenesis, meiosis.  
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Chapter 1: Introduction 

1.1 Genomics 

1.1.1 A general framework 

Molecular biology is a branch of biological sciences that studies the structure, function and 

relationships between deoxyribonucleic acids (DNA), ribonucleic acids (RNA), and proteins. It 

reveals the essential principles underlying the transmission and expression of genetic 

information. One of the most important discoveries in molecular biology was the identification 

of the DNA structure by James Watson and Francis Crick in 1953 (Watson and Crick, 1953). 

Since then, the technological advances in the field, especially in the recent years, have made 

molecular biology the basis for the development of genomics (Powell, et al. 2007). Although the 

term “genome” was used for the first time back in 1920 to describe “the haploid chromosome 

set” (review in Goldman and Landweber, 2016) it was not until the description of the first DNA 

sequencing method (see section 1.1.2) that the term genomics was coined. This term contains 

the suffix -omics, which refers to a field of study in biology that involves large-scale information 

(Yadav, 2007). Thus, the field that studies the genetic information of an organism is called 

genomics, and it focuses on the structure, function, evolution, and editing of genomes. New 

techniques launched in the last decades have deepened our understanding of how genomes are 

organized and regulated. This has resulted in a large number of research areas that, together 

with genomics, provide a holistic perspective of the biology of the cell. These include: (i) 

transcriptomics, (ii) epigenomics, (iii) proteomics, (iv) metabolomics and (v) microbiomics.  

In the context of the interrelationships between the above-mentioned technical advances, this 

thesis is focused on the processing, manipulation, and interpretation of genomics and 

transcriptomics data in their crosstalk to unveil the functional and structural organization of 

genomes. This includes the development and application of bioinformatics tools and databases 

necessary for data processing and sharing. In this sense, recent advances in high-throughput 

sequencing technologies have been essential in the field. 

1.1.2 DNA sequencing: from hundreds to hundreds of billion bases 

Determining the linear order of nucleotides is key to understand the information encoded in the 

molecule. Thus, obtaining the DNA primary sequence is the first step when investigating 

genomes, and this became true in 1977 thanks to the development of the so-called Sanger 

sequencing (a pioneer method to sequence DNA developed by Frederick Sanger and colleagues, 

Sanger, et al. 1977). Since it represented a methodological leap in the field, Sanger sequencing 
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was rapidly adopted for the scientific community. In fact, just one year after its initial release, 

several eukaryotes and prokaryotes genes together with the genomes of small bacteriophages 

were sequenced. This included the bacteriophage φX174, with 5,386 nucleotides long (Sanger, 

et al. 1977), the 16S ribosomal RNA gene from E. coli (Brosius, et al. 1978), the chicken 

ovalbumin (McReynolds, et al. 1978), the bacteriophage fd DNA (Beck, et al. 1978), or the 

bacteriophage G4 DNA (Godson, et al. 1978). The obtention of these initial sequences were 

tedious and time-consuming since it required manual reading of gels, thus preventing the 

approach for large genomes due to the big effort required. Nevertheless, these limitations were 

soon overcome by the development of fluorescence-based Sanger sequencing in 1986, 

becoming a semi-automatic method (Smith, et al. 1986). This facilitated the sequencing of the 

first living organism (Haemophilus influenza, the bacterium that causes influenza) (Fleischmann, 

et al. 1995) in 1995, followed by other model organisms such as yeast (Saccharomyces 

cerevisiae, Goffeau, et al. 1996) and the nematode Caenorhabditis elegans (C. elegans 

Sequencing Consortium, 1999), among others. 

Thanks to the methodological advances in DNA sequencing, an international consortium was 

created in 1990 with the main aim to sequence the whole human genome (3 x 109 base pairs); 

this project was called the Human Genome Project (HGP) and represented the largest and the 

most expensive biological project in history. The project required the development of a 

significant number and range of methodological tools. Between 1990 and 1995, the consortium 

was especially focused on creating both genetic and physical maps (Guyer and Collins, 1995). 

Sequencing efforts were mainly done in the second part of the 90s using the hierarchical 

shotgun strategy, based on separately sequencing a series of overlapping fragments called 

Bacterial Artificial Chromosome (BAC) (Shendure, et al. 2017). As a result, the first draft of the 

human genome was released in 2001 with an estimated cost of $300 million (International 

Human Genome Sequencing Consortium, 2001; NHGRI, 2001). Shortly after, the mouse genome 

followed (Mouse Genome Sequencing Consortium, 2002). 

Due to the extremely high costs associated to sequencing, soon became evident that the 

development of new and more affordable sequencing methods was much in need. Different 

companies played an important role to tackle this demand in the mid 2000’s with the 

development of next-generation sequencing methods (NGS) (also known as “second-

generation” sequencing). That was the case, for instance, of 454 Life Sciences (acquired by 

Roche Diagnostics) and Solexa (acquired by Illumina Inc). 454 Life Sciences launched the first 

commercially available NGS instrument in 2005 being able to obtain 25 million bases in few 

hours. Its sequencing technology was based on the emulsion PCR (Polymerase Chain Reaction) 
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and the pyrosequencing technology (Margulies, et al. 2005). Solexa Inc., on the other hand, 

launched its own NGS instrument in 2006 based on the reversible dye-terminators technology 

on a flow cell surface that allowed the sequencing of 1000 million bases (1 Gbp) (Bentley, et al. 

2008). Both NGS methodological approaches broke Moore’s Law (Moore, 1965), which states 

that the capacity of data processing doubles every 18 months, having as a consequence a 

remarkable decrease of the sequencing costs. Along with the new developments, Life 

Technologies (acquired by Thermo Fisher) launched in 2010 Ion Torrent (table 1), based on 

detecting the pH change when the nucleotide is incorporated to the template (Rothberg et al. 

2011). 

It comes as no surprise that the arrival of the NGS technologies promoted the release of new 

and more ambitious genomic projects. The high throughput capacity of NGS allowed the 

obtention of sequences covering a particular locus many times (read depth/coverage), thus 

having the possibility to call genomic variants such as Single Nucleotide Polymorphisms (SNPs), 

small insertions and deletions (INDELs), and Structural Variants (SVs), including Copy Number 

Variants (CNVs) and Segmental Duplications (SDs) (Xi, et al. 2010; Nielsen, et al. 2011). In this 

context, the 1000 Genomes Project, created in 2008, represented an advance in the field (The 

1000 Genomes Project Consortium, 2010). The initial goal of this international consortium was 

the development of a catalogue of human variation from different ethnic groups around the 

world. The last phase of the 1000 Genomes Project (phase 3), which included 2,504 individuals 

from 26 different populations, identified 84.4 million of variants (The 1000 Genomes Project 

Consortium, 2015). 

Meanwhile Roche Diagnostics discontinued the 454 platform in 2016, Illumina technology 

improved significantly in terms of higher sequencing throughput or longer reads, thus being 

able to re-sequence a human genome for less than $1,000 with the NovaSeq system in 2017 

(Illumina, 2017) (table 1). Nevertheless, despite their immeasurable applications, NGS 

technologies present some drawbacks such as short read length and lack of portability (table 1). 

For instance, using only NGS-derived reads for the obtention of the primary sequence of a 

genome (genome assembly) may lead to incomplete, fragmented genomes due to their short 

length (Lee, et al. 2016). 

In this context, the third-generation sequencing technologies arise as an alternative to produce 

highly accurate de novo assemblies and highly contiguous genome reconstructions. The first 

instrument developed under the umbrella of the third-generation sequencing technologies was 

commercially introduced in 2010 by Pacific Biosciences (PacBio; recently acquired by Illumina). 
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PacBio instruments are based on the SMRT (Single Molecule Real Time) technology, which 

allows real-time sequencing from uninterrupted template-directed synthesis using 

fluorescently-labelled nucleotides (Eid, et al. 2009). It is able to yield reads of several kilobases 

(up to 60 Kbp), overcoming the NGS read length of few hundreds (Eid, et al. 2009) (table 1). 

Table 1. Overview of the most used next-generation and third-generation sequencing technologies. Table adapted 

from Besser, et al. (2017). 

NGS / 3rd generation 

technologies 

Throughput 

(Gb) 

Read length 

(bp) 
Strength Weakness 

Illumina MiSeq 0.3-15 2 x 300 
- Read length (+) 

- Scalability 
- Run length 

Illumina NovaSeq 2000-6000 2 x 150 

- Read accuracy 

- Throughput (++) 

- Low cost per sample 

- High initial investment 

- Run length 

- Read length 

Ion Torrent S5 0.6-15 Up to 400 

- Read length (+) 

- Speed 

- Scalability 

- Homopolymers* 

Ion Torrent Proton 10-15 Up to 200 
- Speed 

- Throughput (+) 
- Homopolymers* 

PacBio Sequel 5-10 Up to 60.000 
- Read length (++) 

- Speed 
- High error rate (+) 

Oxford Nanopore MinION 0.1-1 
Up to 

100.000 

- Read length (++) 

- Portability** 

- High error rate (++) 

- Run length 

- Throughput 

* Homopolymer: high error rate (insertions/deletions) on homopolymeric regions. 

** Portability: very easy to be transported anywhere. 

The also third-generation sequencing device MinION, released in 2015 by Oxford Nanopore 

technologies, also yields reads of several kilobases (up to 100 Kbp). Its size is as small as a pen 

drive, thus having high portability as it is wearable everywhere. Besides, it performs real-time 

sequencing, successfully used for Ebola surveillance (Quick, et al. 2016). However, although the 

third-generation technologies are very useful for genome assemblies due to their read length, 

they generate reads with higher error rates than the NGS technologies (Weirather, et al. 2017) 

(table 1). 

As described above, both next-generation and third-generation technologies have advantages 

and drawbacks. However, one does not exclude the other, and the combination of both 

technologies increases the accuracy of some analyses, especially in genome assemblies (Koren, 

et al. 2012). In fact, the trend of using both technologies is increasing and the primary 

sequences of several genomes have been already obtained in this way, for example in gorilla or 

maize (Gordon, et al. 2016; Yinping, et al. 2017). 
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1.1.3 RNA sequencing: from its origins to expression atlas 

The central dogma of molecular biology considers that DNA is transcribed into messenger RNA 

(mRNA) that, in turn, is codified to protein with the help of transfer RNA (tRNA) and ribosomal 

RNA (rRNA) (Crick, 1958). Like DNA, RNA is composed of nucleotides but, instead of thymine, 

this is replaced by uracil. The whole amount of RNA sequences in a cell is called the 

transcriptome and its study is crucial to obtain a better understanding of cell function, including 

the annotation of genes, their levels of expression, or the discovery of splicing variants and 

other post-transcriptional modifications. 

As soon as the Sanger sequencing technology became available for DNA sequencing (Sanger, et 

al. 1977), it was subsequently applied for obtaining RNA sequences, with the first application in 

producing a rabbit muscle cDNA library (cloned cDNA fragments inserted into a collection of 

host cells) in 1983 (Scott, et al. 1983). These sequences are called “Expressed Sequence Tags” 

(ESTs) and consist of short sub-sequences of cDNA (Adams, et al. 1991). EST sequencing allowed 

the study of novel sequences and the discovery of gene structures along genome sequences. 

Gene annotation of the first draft of the human genome was performed using EST evidence, 

estimating between 30,000 and 35,000 protein-coding genes (representing 1.5% of the 

genome) (International Human Genome Sequencing Consortium, 2001). Despite its initial 

applications, EST sequencing presented several drawbacks, such as low throughput and 

qualitative results (not quantitative) due to the normalization that is normally applied during the 

process of cDNA library construction (Saccone and Pesole, 2003; Wang, et al. 2009). This, 

together with the high cost associated with this type of sequencing, motivated the use of DNA 

microarrays as a more affordable and quantitative alternative for the transcriptome study. 

DNA microarrays are high-throughput technology based on the hybridization of fluorescently 

labelled cell-derived cDNA on high-density oligonucleotide microarrays. This technology was 

first described by Stephen Fodor and colleagues in 1991, who founded the microarray-

specialized company Affymetrix one year later (Fodor, et al. 1991). The first use of DNA 

microarrays for gene expression analysis was carried out on Arabidopsis thaliana (Schena, et al. 

1995) and soon after other model species followed, such as yeast (Shalon, et al. 1996). The 

potential of this technology was rapidly adopted in biomedicine as microarray-derived gene 

expression could be used to compare and classify different kinds of cancer (DeRisi, et al. 1996; 

Alon, et al. 1999; Golub, et al. 1999). The applications of DNA microarrays were diverse and 

include (i) gene expression analysis, (ii) transcription factor binding analysis, and (iii) genotyping 

(Bumgarner, 2013). But, since the oligonucleotide design for DNA microarrays relies on the 
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existing genomic sequences, this methodology was limited to model organisms with well-known 

transcriptomes. Moreover, reducing cross-hybridization was a challenge, since microarrays have 

high levels of background noise (Wang, et al. 2009). 

The appearance of the NGS technologies in mid 2000s boosted the transcriptomics research 

along with DNA sequencing. In 2008, NGS technologies were also applied on the human 

transcriptome by means of RNA-sequencing (RNA-seq) (Morin, et al. 2008). This technique 

vanquished the limitations of EST sequencing and microarrays mentioned above in several 

ways. RNA-seq (i) is a high-throughput technique, (ii) does not rely on the existing genomic 

sequences, thus being able to predict gene structures (gene annotation) and to be applied on 

non-model organisms, and (iii) provides a wider dynamic range for gene quantification than 

microarrays (Wang, et al. 2009). These advances expedited the progress of ambitious projects, 

such as the Encyclopaedia of DNA Elements (ENCODE). ENCODE was launched by the US 

National Human Genome Research Institute (NHGRI) in September 2003 with the aim to 

uncover the role of the non-coding regions of the human genome. The appearance of NGS-

derived techniques such as RNA-seq, among others, was used by ENCODE to boost the 

obtention of a catalogue of functional elements that includes, for instance, Transcription Start 

Sites (TSS), promoters, enhancers, nucleosome locations, or methylation sites. At its production 

phase, ENCODE concluded that 80.4% of the human genome participate in at least one 

biochemical RNA or chromatin associated event, challenging the initial concept that non-coding 

regions of the genome were “junk” DNA (The ENCODE Project Consortium, 2012). Consistent 

with the identification of functional elements on non-coding regions, pseudogenes, which were 

also described as “junk” DNA because of their coding capacity loss, were also revealed as true 

functional elements (Li, et al. 2013). In general, there is evidence that about 75% of human 

genome is transcribed (at least in some cell lines), being the coding regions a little minority 

(Djebali, et al. 2012). 

Due to the advance in high-throughput sequencing, it is clear today that the central dogma of 

molecular biology needs to be revisited. In addition to tRNAs and rRNAs, new non-coding RNAs 

have been described and classified into small and long non-coding RNA (Barbosa Dogini, et al. 

2014). On the one hand, small non-coding RNAs can be divided into different types: small 

interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs) and 

piwi-interacting RNAs (piRNAs) (Barbosa Dogini, et al. 2014). They are involved in a wide range 

of functions, such as splicing, gene regulation, transposon activity and RNA-editing (Barbosa 

Dogini, et al. 2014). On the other hand, long non-coding RNAs (lncRNA) are defined as non-

translated molecules longer than 200 nucleotides with small or non-existing Open Reading 
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Frame (ORF). LncRNA are also involved in relevant cell pathways, including in chromatin 

remodelling, transcriptional control and post-transcriptional processing (Mercer, et al. 2009; 

Barbosa Dogini, et al. 2014; Dykes and Emanueli, 2017; Chen, et al. 2018). 

In the human genome, the vast majority of lncRNAs are spliced with two to four exons, although 

lncRNAs from one to more than 10 exons have been also described. Besides, exons and introns 

of lncRNAs are slightly longer than those from coding genes (Derrien, et al. 2012). In terms of 

genomic location, lncRNAs can be either intergenic (they do not overlap any other gene) or can 

be overlapping an adjacent gene. This overlap can be either intronic or exonic. In humans, for 

example, the majority of lncRNAs are intergenic (Derrien, et al. 2012). Exon-overlapping 

transcripts at the opposite strand (antisense) are called Cis-Natural Antisense Transcripts (NATs) 

(Osato, et al. 2007). Also, their degree of conservation is lower compared to mRNAs, probably 

because secondary and tertiary RNA structure appears to be responsible of their wide variety of 

functions and regulatory roles (Mercer, et al. 2009; Johnsson, et al. 2014). 

Overall, the study of the transcriptome has evolved dramatically since early 1980s due to the 

development of new technologies that deepened the knowledge of genes in terms of sequence, 

function, and expression. In this sense, on the one hand, single-cell RNA-seq technique is being 

increasingly adopted as it allows evaluating changes in individual cells (Tang, et al. 2009). On the 

other hand, initiatives such as the Expression Atlas, launched by the European Bioinformatics 

Institute (EBI), provides information about gene expression in different tissues and species 

(https://www.ebi.ac.uk/gxa) (Papatheodorou, et al. 2017). Currently, the Expression Atlas 

contains more than 110,000 assays from both DNA microarrays and RNA-seq across tens of 

species. 

1.1.4 Towards the structural analyses of genomes 

Genomes are not a matter of linear DNA sequences as they are highly organized and regulated 

inside the cell nucleus. The size and complexity of genomes require that their structural 

organization has direct implications in their function, as spatial gene positioning is intimately 

related with transcription, DNA replication and repair, as well as genome reshuffling (Farré, et 

al. 2015). 

The first layer of organization of DNA is its own chemical modifications, specifically methylations 

on cytosines. DNA methylation is involved in regulating transcription, genomic imprinting, X 

chromosome inactivation, and inactivation of transposable elements (Jin, et al. 2011). But, 

beyond DNA methylation, DNA wraps around an octamer of histones (two each of H2A, H2B, 

H3, and H4) forming a nucleosome, which is the repeating unit of chromatin in eukaryotes 
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found approximately every 200 base pairs (Kornberg, 1974). Nucleosomes play an important 

role in regulating gene expression, as first suggested by Allfrey and Mirsky in 1964. Histones are 

susceptible to have chemical modifications that will either recruit non-histone proteins or 

loosen chromatin by disrupting nucleosome-nucleosome interactions, thus modulating DNA 

accessibility and transcription (Kouzarides, 2007). The field that studies these histone 

modifications as well as DNA methylation is called the epigenome, which is formally described 

as the study of changes in gene function that do not involve changes in the DNA sequence 

(Dupont, et al. 2009). 

The most common histone modifications include acetylation, methylation, phosphorylation and 

ubiquitylation. The general picture is that certain histone modifications, such as H3K9ac, 

H3K27ac, H3K36me3, or H3K4me3, are known as markers for “open” chromatin conformations 

and, therefore, regions with active transcription (Barski, et al. 2007; Araki, et al. 2009). Other 

modifications, such as H3K27me3, or H3K9me3, are related to “closed” chromatin 

conformations and, therefore, regions where gene transcription is inactive (Barski, et al. 2007; 

Araki, et al. 2009). These signatures can be identified by NGS-derived Chromatin 

Immunoprecipitation coupled with sequencing (ChIP-seq) (Johnson, et al. 2007), an approach 

based on treating cells with formaldehyde to cross-link proteins to DNA, followed by cell 

disruption and sonication. DNA bound to the protein of interest is co-precipitated using a 

specific antibody. Subsequently, cross-links are reversed, and the purified DNA undergo 

sequencing (Landt, et al. 2012). Thus, ChIP-seq is indeed a powerful method for identifying 

genome-wide DNA binding sites for transcription factors and other proteins. 

But gene expression is not only regulated by chemical modifications of DNA or histones on 

promoters or along gene bodies. Enhancers, silencers and insulators have been described as 

gene expression regulators acting in a spatial manner (Maston, et al. 2006). In fact, distal 

regulatory elements are connected to promoters and/or enhancers in a complex tri-dimensional 

(3D) network. Thus, the communication between widely spaced genomic elements is facilitated 

by the spatial organization of chromosomes that bring genes and their regulatory elements in 

close spatial proximity. The spatial organization of chromatin, also defined as the nucleome 

(Pennisi, 2015), has been initially studied by microscopy (Cremer and Cremer, 2001) and more 

recently by Chromosome Conformation Capture (3C)-based techniques (Dekker, et al., 2002; 

Simonis, et al. 2006; Dostie, et al. 2006; Lieberman-Aiden, et al. 2009). The 3C technology was 

initially developed to reveal the spatial disposition of DNA between two chosen loci (one-

versus-one method) (Dekker, et al., 2002). In brief, this approach is based on treating cells with 

formaldehyde to cross-link nearby DNA segments, which in turn are cleaved with Restriction 
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Enzymes (REs) followed by a ligation step. The election of the RE determines the theoretically 

maximum resolution; for instance, 4-bp cutters (e.g. Mbol) generate shorter fragments than 6-

bp cutters (e.g. HindIII) (Lajoie, et al. 2015; Sati and Cavalli, 2017). Ligated fragments, which are 

detected by PCR, are chimeric: the ends of the fragments come from distinct interacting loci. 

Thus, if two distal sites on the DNA sequence form more ligation junction with each other than 

with other sequences, this indicates interaction in vivo. 

Conformation capture techniques increased their throughput in the recent years thanks to 

improvements in the experimental procedures and NGS technologies (Schmitt, et al. 2016). 

These included: (i) Chromosome Conformation Capture on-Chip (4C) (Simons et al. 2006), (ii) 

Chromosome Conformation Capture Carbon Copy (5C) (Dostie, et al. 2006), (iii) ChIA-PET (a 

combination of ChIP and 3C) (Fullwood, et al. 2009), and (iv) Hi-C (Lieberman-Aiden et al. 2009) 

(figure 1). 

 

Figure 1. Comparison of different chromosome conformation capture methods. The first, horizontal panel shows the 

cross-linking, cleavage and ligation steps. Vertical panels show the specific steps for each technique. The vertical 

panels indicate the steps that are specific to separate methods. Figure extracted from de Wit and de Laat, (2012). 

The 4C approach identifies the interaction of one locus with other loci (one-versus-all approach) 

(Simonis, et al. 2006), 5C could identifies the interaction of few loci with other few loci (many-
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versus-many) (Dostie, et al. 2006). In both cases, 4C and 5C techniques, the approach initiates 

from a 3C library of fragments obtained after formaldehyde fixation, cleavage and ligation steps 

(figure 1). 

A major breakthrough in the field was the development of the Hi-C technique (first applied on 

the human genome, Lieberman-Aiden, et al. 2009), which allowed the identification of any 

genome-wide contact between a pair of loci in a population of cells (all-versus-all approach) 

(figure 1). While 3C libraries usually contain both chimeric and unligated fragments, Hi-C 

libraries are enriched in chimeric fragments as it incorporates an additional step between 

cleavage and ligation: introduction of biotinylated nucleotides at ligation junctions which 

enables the specific purification of these junctions. By this way, biotinylated ligated fragments 

are pulled down and subsequently subject to NGS sequencing (Belton, et al. 2012). The cleavage 

and ligation steps take place after cell lysis. As a way to increase resolution and efficiency, the in 

situ Hi-C was recently described (Rao, et al. 2014). The main difference with previous 

approaches is that cleavage and ligation steps in intact nuclei before cell lysis. It has the 

following advantages relative to standard Hi-C: (i) reduction of spurious contacts due to random 

ligation, (ii) faster protocol, and (iii) higher resolution (Rao, et al. 2014). 

The genome-wide applications of 3C techniques have served to provide insights into the spatial 

organization of chromatin, not only in human and mouse (Lieberman-Aiden, et al. 2009; Dixon, 

et al. 2012), but also in distant related species such as fruit fly (Sexton, et al. 2012), bacteria 

Caulobacter crescentus (Le, et al. 2013), fission yeast Schizosaccharomyces pombe (Mizuguchi, 

et al. 2014), nematode C. elegans (Crane, et al. 2015), or rice (Liu, et al. 2017). In this context, it 

becomes clear that functional activity of the genome can be determined by the association 

preferences of loci within each chromosome (Lieberman-Aiden, et al. 2009; Zhang, et al. 2012; 

Nagano, et al. 2013). Long before the development of conformation capture techniques, in the 

early 1900s, it was already known that chromosomes occupy specific locations in the nucleus 

called chromosome territories (CTs) (Cremer and Cremer, 2010). By using Fluorescence In Situ 

Hybridization (FISH) is was observed that gene-rich chromosomes tend to be located at the 

centre of the nucleus while gene-poor chromosomes tend to be at the nuclear periphery (Boyle, 

et al. 2001). The application of Hi-C in the human genome not only confirmed the existence of 

CTs, as it was seen gene-rich chromosomes preferentially interact, but also allowed the 

identification of new features of chromatin organization (Lieberman-Aiden, et al. 2009). In fact, 

this approach has revealed that genomes are compartmentalized into different levels of 

organization that include: (i) chromosomal territories, (ii) “open” (termed “A”)/”closed” (termed 

“B”) compartments inside chromosomal territories, (iii) Topologically Associated Domains 
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(TADs), and (iv) looping interactions (Dekker, et al. 2013; Phillips-Cremins, 2014; Rao, et al. 

2014) (figure 2). 

 

Figure 2. Overview of the genome organization from the nucleosomal scale to the nuclear scale. DNA wraps around 

octamers of histones forming nucleosomes (nucleosomal scale). Chromatin adopts a spatial conformation forming 

TADs, which are included into “open” A compartments or “closed” B compartments (supranucleosomal scale). 

Compartments are fractions of chromosomes, which are organized within the nucleus in chromosome territories 

(nuclear scale). Figure extracted from Golloshi, et al. (2017). 

Compartments define the organization of the genome at the sub-chromosomal scale, thus they 

are the largest-scale position-specific interaction pattern detected by Hi-C (Lieberman-Aiden, et 

al. 2009). Genomic regions labelled as compartments “A” are gene-rich, actively transcribed, 

with higher chromatin accessibility and enriched with histone modifications related with “open” 

chromatin conformations; in contrast, compartments “B” are more densely packed genomic 

regions containing lower gene densities (Lieberman-Aiden, et al. 2009; Rao, et al. 2014). This 

compartmentalization is highly dynamic across cell types (Dixon, et al. 2015; Schmitt, et al. 

2016). In 2014, Rao, et al. obtained for the human genome a very high resolution (1 Kbp) using 

by means of the in situ Hi-C. Considering this high resolution Hi-C experiment and other ChIP-

seq marks, they revealed that compartment A might be split into 2 sub-compartments and 

compartment B split into 4 sub-compartments. On the one hand, the difference with 

subcompartments A1 and A2 is that subcompartment A1 finishes replicating earlier than A2. In 

addition, subcompartment A2 has lower GC content, longer genes, and is more strongly 

associated with H3K9me3 than A1. On the other hand, subcompartment B1 is associated with 
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facultative heterochromatin (↑H3K27me3); subcompartment B2 is enriched at both the 

nuclear lamina and the Nucleolus Associated Domains (NADs) and includes a great fraction of 

pericentromeric heterochromatin; subcompartment B3 is also enriched at the nuclear lamina 

but strongly depleted at NADs; finally, subcompartment B4 is highly enriched with genes from 

the KRAB-ZNF superfamily, the regions of which show a particular chromatin pattern with the 

presence of H3K36me3, H3K9me3 and H4K20me3 (Rao, et al. 2014). 

At the sub-megabase scale, the Hi-C technique also revealed the existence of smaller 

organization domains within compartments, the so-called Topologically Associating Domains 

(TADs) (Sexton, et al. 2012; Dixon, et al. 2012). TADs are small domains that can be several 

kilobases (Kbp) in size, often containing distinct genes and multiple enhancers (Sexton, et al. 

2012; Dekker and Heard, 2015). Thus, TADs can be defined as contiguous regions in which loci 

tend to interact more often with each other than with loci outside the TAD (Lajoie, et al. 2015). 

These small domains have been identified in a wide range of species from humans and mice 

(Dixon, et al. 2012) to Drosophila (Sexton, et al. 2012). Interestingly, TADs were not described in 

the Arabidopsis thaliana genome (Wang, et al. 2015). It has been reported that TAD boundaries 

in cultured human and mouse somatic cell lines are enriched with the transcription factor CTCF 

(also known as 11-zinc finger protein or CCCTC-binding factor, which has been detected in the 

majority of boundaries), cohesins (specifically RAD21 and SMC3, which have also been detected 

in the majority of boundaries), active transcription marks such as H3K4me3 and H3K36me3, 

nascent transcripts, and housekeeping genes, suggesting that they might contribute to TAD 

formation (Dixon, et al. 2012; Rao, et al. 2014; Sanborn, et al. 2015). 

Studying the genome organization is not only important to understand gene regulation in 

somatic cells, but also to understand how chromosomes are transmitted during the formation 

of germ cells. 

1.2 Bioinformatics 

Methodological advances in DNA and RNA sequencing need to be coupled with the 

development of efficient analytical tools. Thus, bioinformatics can be defined as the use of 

computational tools to answer biological questions and to manage biological data. It represents 

an essential discipline that enables data analysis and identification of patterns in biological 

systems. Today, bioinformatics is routinely present in large-scale genetic studies (Russell, et al. 

2018). 
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1.2.1 An historical view of the DNA sequencing data analysis 

The birth of the term bioinformatics (generally synonymous with the term “computational 

biology”) as currently known is tightly linked to the appearance of the Sanger sequencing 

technology (Hagen, 2000). In fact, shortly after the sequencing of the bacteriophage G4 genome 

(Godson, et al. 1978), computational algorithms were developed to compare this genome with 

the bacteriophage φX174, sequenced one year before (Sanger, et al. 1977). Later on, in 1979, 

different computational algorithms were developed mainly motivated by the need to establish 

homologies between genomes as they were sequenced and been available (Staden, et al. 1979). 

As soon as the Sanger sequencing technology was adopted as an essential tool for biological 

research, the number of DNA fragments sequenced highly increased. This generated a need to 

develop public databases in order to decrease the cost of data acquisition, to speed up the 

dissemination of sequencing data, and to prevent the generation of duplicated data (Dayhoff, et 

al. 1981). In 1982, two currently used reference databases were released: (i) the Nucleotide 

Sequence Database (https://ebi.ac.uk/ena) supported by the EMBL (European Molecular 

Biology Laboratory) (Burks, et al. 1985) and (ii) the GenBank database 

(https://www.ncbi.nlm.nih.gov/genbank/) supported by the NIH (National Institute of Health, 

USA) (Hamm and Cameron, 1986). Currently, the Nucleotide Sequence Database from EMBL 

European Nucleotide Archive (ENA). GenBank and ENA collaborate between them by 

exchanging data on a daily basis. By January 21th of 2019, ENA included more than 2.207 

million of sequences (ENA, 2019) (figure 3). In terms of complete genomes, GenBank currently 

contains more than 40 thousand genomes: 7,406 eukaryotic, 183,800 prokaryotic, 21,892 viral, 

15,085 from plasmids, and 12,148 from organelles (GenBank, 2019). 

 
Figure 3. Growth of submitted sequences and base pairs to ENA between 1982 and 2018. Both vertical axes are in 

logarithmic scale. Figure extracted from the European Nucleotide Archive (2019). 
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Along with the increasing amount of sequences being generated and stored, there is the need 

to improve the performance of algorithms used for nucleotide search. In this sense, FASTA 

(FAST-All) was the first program (released in 1988) that was able to compare both protein and 

DNA sequences (Pearson and Lipman, 1988). In fact, the term FASTA is since then used to 

describe the file format of the same name, which is today the standard format to store 

sequences (box 1). Two years later, in 1990, the Basic Local Alignment Search Tool (BLAST) was 

developed, being orders of magnitude faster than FASTA (Altschul, et al. 1990). BLAST enables 

searches through the large number of DNA sequences that currently exist in the databases. 

Box 1. FASTA format. It consists of a header starting with “>” that describes the sequence that will be found in the 

following lines below. 

>NC_012920.1 Homo sapiens mitochondrion, complete genome 
GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTTCGTCTGGGGG 
GTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTC 
CTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATTACAGGCGAACATACTTACTAAAGTGTGTTA 
ATTAATTAATGCTTGTAGGACATAATAATAACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATC 
ATAACAAAAAATTTCCACCAAACCCCCCCTCCCCCGCTTCTGGCCACAGCACTTAAACACATCTCTGCCA 

In the early 2000s, HGP resulted in an explosion in the number of raw sequences available from 

sequencing efforts. However, chromosomes needed to be assembled from the raw sequences. 

This purpose involves a process in which raw sequences are compared against themselves, thus 

aligning and merging fragments from a longer DNA sequence in order to reconstruct the original 

sequence. In this way, sequences grow longer as they are merged, ordered and oriented in 

order to assemble chromosomes. This process is known as genome assembly. In the HGP, it was 

performed using Phrap (Ewing, et al. 1998) and GigAssembler (Kent and Haussler, 2001). 

Along with the release of the first draft of the human genome (see section 1.1.2), several 

relevant –and still active– bioinformatics projects were launched. That was the case of 

Bioconductor (https://www.bioconductor.org) (Gentleman, et al. 2004), Ensembl 

(https://www.ensembl.org) (Hubbard, et al. 2002), and the UCSC Genome browser 

(https://genome.ucsc.edu) (Kent, et al. 2002). In the context of the sequencing of the human 

and mouse genomes, databases such as Ensembl and the UCSC Genome Browser were created 

as online repositories in order to integrate and visually display the available genomic 

information, such as genome sequence, gene prediction, expression data, cross-species 

homologies or genetic variants, among others. Complementary, Bioconductor was developed 

not to be used as a repository of genomic data but to compile different methods and 

bioinformatics approaches to analyse genomic data for researchers with some bioinformatics 

background under the R programming language environment. In order to reach a more diverse 

audience, Galaxy (https://usegalaxy.org/) was further released in 2005 as an online platform 
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with the aim to allow researchers with no bioinformatics background to exploit the growing 

information available in public databases such as GenBank, ENA, Ensembl, the UCSC Genome 

Browser, among others (Giardine, et al. 2005). 

The generation of millions of short reads by the massive use of NGS technologies motivated 

NCBI to develop in 2007 the Sequence Read Archive (SRA) in order to store and share all 

sequencing data available and made public (Wheeler, et al. 2007). However, the existing 

bioinformatics algorithms at that time were not prepared to handle millions of short sequences. 

In this context, several software were developed to address this problem, such as Velvet for 

genome assembly (Zerbino and Birney, 2008), Bowtie (Langmead, et al. 2009) and the Burrows-

Wheeler Alignment tool (BWA) (Li and Durbin, 2009) for read mapping from genomic data, 

TopHat (Trapnell, et al. 2009) for read mapping from transcriptomic data, SAMtools (Li, et al. 

2009) for manipulating mapping results, and the Genome Analysis Toolkit (GATK) (McKenna, et 

al. 2010) for Single Nucleotide Polymorphism (SNP) calling. 

With the arrival of the third-generation sequencing technologies (see section 1.1.2), not only 

the spectacular increase in the read length but also the high sequencing error rate highlighted 

the need of new software adapted for these new technologies. That was the case of Falcon 

(Chin, et al. 2016) or Canu (Koren, et al. 2017), which were developed for genome assembly. 

Other existing tools, instead, were updated to be able work efficiently with long reads, such as 

BWA (from version 0.7.11 onwards) and the genome assembler Spades (from version 3.0 

onwards) (Bankevich, et al. 2012). More recently, a new long-read mapper has been recently 

published, Minimap2 (Li, 2018), which claims to be much faster and more accurate than BWA. 

Therefore, big efforts have been made in bioinformatics in the last decade to improve the 

handling of the increasing amount of genomics data.  

1.2.2 The bioinformatics bottleneck 

Since the initial release of GenBank in 1982, the number of sequences stored has been growing 

exponentially, reaching more than 210 million sequences in December 2018 (GenBank, 2018) 

(figure 3). Likewise, the SRA database currently consist of more than 9 petabytes of raw 

sequencing data (SRA, 2019). As discussed in previous sections, this growth rate has been 

motivated by an improvement in the technology along with a continuous decrease of its costs. 

And not only specialized sequencing centres have access to high-throughput sequencing 

equipment; there are also several benchtop sequencers available in the market for smaller 

research institutions or individual laboratories. Illumina, for instance, has achieved an extremely 

high sequencing throughput, with longer reads and lower error rates than previous efforts (Liu, 
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et al. 2012; Schirmer, et al. 2016). The same company estimated in 2014 that the amount of 

sequencing data produced worldwide would double every 12 months. But neither the Moore’s 

law nor the Illumina estimate was right: the trend reveals the amount of data doubles every 7 

months approximately (Stephens, et al. 2015).  

The production of large amounts of raw sequencing data has revealed the existence of some 

limitations in the scope of data accessibility, processing and interpretation, thus creating a 

bottleneck in bioinformatics. These limitations include three main aspects: (i) the development 

of new and more affordable alternatives to manage the current (and future) sequencing data 

flood, (ii) the acquisition of basic informatics and bioinformatics skills that would allow 

researchers to make use of their own data, thus ensuring feasible large-scale data analysis and 

management, and (iii) reproducibility. 

1.2.2.1 Managing data acquisition, processing and sharing 

Storage capacity and accessibility has become a challenge due to the amount of sequencing 

data being produced. In this sense, cloud computing systems might handle this problem (see 

section 1.2.3). In parallel, the amount of post-processing results generated also increases, thus 

becoming a challenge as they need to be organized and stored in an organized manner to allow 

their retrieval and to facilitate their accessibility to the research community (Schulz, et al. 2016). 

In fact, from early 2000s to 2016, in the Nucleic Acids Research journal, there has been a linear 

trend towards database development with a proliferation rate of 100 new databases a year 

(Imker, 2018) (figure 4). 

In addition, available databases are introducing new and more affordable alternatives to 

manage big amounts of data. An intuitive Graphical User Interface (GUI) is utterly important for 

researchers interested in doing queries via web browser. However, at the time to retrieve big 

amounts of data in an easy and affordable way, an Application Programming Interface (API) is 

required (Helmy et al. 2016). Briefly, an API provides a way for sharing data in a structured way 

between software. For instance, a researcher working on the human gene BRCA2 can access to 

its annotated variants with few clicks through the Ensembl main page. In case this researcher 

wants to perform the same query several times, as the repository gets frequently updated, a 

bioinformatician could automate the process thus saving time. For this purpose, an API is 

needed; the bioinformatician would write a small program to connect to the Ensembl API 

(https://rest.ensembl.org/) to retrieve the list of annotated variants. 
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Figure 4. Cumulative count of new databases published in the Nucleic Acids Research (NAR) journal. Figure extracted 

from Imker, et al. (2018). 

1.2.2.2 Developing the “know-how” in bioinformatics 

The amount of sequencing data being produced is also requiring bioinformatics skills among the 

research community to be able to execute different software and informatics algorithms. These 

skills are mainly related to computer science and include: (i) being competent with the UNIX 

shell environment; (ii) previous knowledge of general programming languages such as Perl or 

Python; (iii) programming skills using languages specifically designed for queries, such as the 

Structured Query Language (SQL), for Relational Database Management Systems (RDBMS); (iv) 

knowledge of Version Control Systems (VCS) like Git to track changes done from version to 

version in a software and to share its code with the scientific community through platforms 

such as GitHub (https://github.com); (v) skills using available bioinformatics software in order to 

approach a biological problem with the best tool (Dudley and Butte, 2009). 

There are different initiatives that have been tackling the need to acquire bioinformatics skills 

by promoting its learning. In this sense, the Rosalind project was born in 2012 as a platform for 

learning programming and bioinformatics through problem solving (http://rosalind.info). In 

addition, the European Bioinformatics Institute (EBI) is also well aware of this need: in 2017, EBI 

added 11 new courses and 38 webinars in its online training platform relative to 2016, besides 

of participating into another 341 training events (Cook, et al. 2019). In Europe, Barcelona is one 

of the most consolidated bioinformatics hubs (Biocat, 2017). In this region, over the last few 

years, 5 master’s degrees and 1 bachelor’s degree have been carried forward in Barcelona and 

surroundings (Bioinformatics Barcelona, 2018). 
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1.2.2.3 Reproducibility 

Reproducibility (the replication of an analysis or experiment independently of the human 

resources and the geographical location) is another challenge in bioinformatics. Bioinformatics 

steps behind a publication are usually obscure as custom scripts and pipelines are not always 

shared. Besides, it has to be taken into account that software versions and manual data 

manipulation steps might affect the reproducibility of a bioinformatics analysis. In this sense, 

Sandve, et al. (2013) proposed 10 simple rules to increase reproducibility in bioinformatics 

analyses (table 2). 

Table 2. Rules for reproducible computational research (Sandve, et al. 2013). 

Rule Description 

1 For every result, keep track of how it was produced 

2 Avoid manual data manipulation steps 

3 Archive the exact versions of all external programs used 

4 Version control all custom scripts 

5 Record all intermediate results, when possible in standardized formats 

6 For analyses that include randomness, note underlying random seeds 

7 Always store raw data behind plots 

8 Generate hierarchical analysis output, allowing layers of increasing detail to be inspected 

9 Connect textual statements to underlying results 

10 Provide public access to scripts, runs, and results 

Precisely, following some of these rules would address the reproducibility problems mentioned 

so far: avoiding manual data manipulation steps to also avoid human errors (rule 2) or keeping 

track of software versions as well as the version of custom scripts and pipelines (rules 3 and 4). 

Operating systems additionally affect the reproducibility of the experiments. As an example, Di 

Tommaso and collaborators carried out different bioinformatics analyses (gene annotation, 

transcript quantification and differential gene expression) using the same software version on 

Linux and Macintosh computers obtaining different results (Di Tommaso, et al. 2015; Di 

Tommaso, et al. 2017). Full reproducibility (same results in Linux and Macintosh) was finally 

obtained using Docker containers (Merkel, 2014), which work as lightweight operating systems 

with the needed software already installed inside. 

In this context, the Bioinformatics and Genomics unit of the University of Torino identified very 

well this need to boost reproducibility in bioinformatics. They launched the initiative 

“Reproducible Bioinformatics” and provides several Docker images with ready-to-use pipelines 

following the rules proposed by Sandve, et al. (http://www.reproducible-bioinformatics.org/) 

(Kulkarni, et al. 2018). 
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1.2.3 Next generation bioinformatics 

Traditionally, the most commonly used workflow in bioinformatics involves two main steps: (i) 

downloading the data obtained produced, and (ii) subsequently analyse the data in a powerful 

workstation or in an in-house server. However, this workflow assumes the availability of 

computational resources and bioinformatics skills for every research group or institution. How 

these steps are executed is relevant due to they can compromise the reproducibility of the 

analysis (see previous section 1.2.2). Thus, the traditional bioinformatics workflow might be 

replaced in the near future by the next generation bioinformatics, which could be defined as the 

field that brings the last Information Technology (IT) developments to bioinformatics with the 

aim to provide: (i) real-time data analysis solutions, (ii) fast access to the data, and (iii) efficient 

and interactive data visualization through web interface (de Brevern, et al. 2015). 

Limitations in managing data acquisition and processing (see section 1.2.2) can be overcome by 

cloud computing systems (often referred as “the cloud”). Cloud-computing is defined as the 

technology that allows running application software and storing related data in central 

computer systems accessed through the Internet (Carr, 2009). Since the first description of its 

possible applications in the field of genomics, cloud computing systems represent a reliable 

alternative to traditional bioinformatics for several reasons (Dudley, et al. 2010; Stein, 2010). 

The main advantage that cloud computing can offer is scalability, as different instances (virtual 

servers) with customized resources (e.g. number of processors or memory available) can be 

opened to complete the analyses within a reasonable timeframe. Also, there is no need to 

perform initial capital investments, as cloud computing costs are variable by means of a fixed 

per-hour price (pay-per-use). 

Cloud-based bioinformatics solutions are classified into four different categories (Dai, et al. 

2012): (i) Data as a Service (DaaS), (ii) Software as a Service (SaaS), (iii) Platform as a Service 

(PaaS), and (iv) Infrastructure as a Service (IaaS). DaaS provides data on-demand through 

Internet, such as AWS Public Dataset (https://aws.amazon.com/es/opendata/public-datasets/) 

and Google Genomics Public Data (https://cloud.google.com/genomics/docs/public-datasets/). 

The difference between these sites and other databases such as GenBank is that AWS Public 

Dataset and Google Genomics Public Data are centralized sources of data, including archives of 

GenBank, Ensembl databases, data from the 1000 Genomes Project, among other repositories, 

that allow the access of the data in a standardized way. SaaS provides access to software, 

typically via web browser, for data analysis in the cloud (Rhyman, 2015). MG-RAST, for instance, 

is a SaaS for analysing metagenomics data (Meyer, et al. 2017). PaaS provides a platform where 
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bioinformaticians can deploy their own software and tools. Although Galaxy (Giardine, et al. 

2005) or DNAnexus (https://dnanexus.com) are considered PaaS, they are also considered SaaS 

since any user can access to the deployed software for data analysis. Finally, IaaS provides 

virtualized resources such as virtual machines that contain ready-to-use software in it and can 

be executed on either cloud computing providers (e.g. Amazon EC2, Google Cloud or Microsoft 

Azure) or local workstation. CloudBioLinux is an example of IaaS (Krampis, et al. 2012). 

The different “as a Service” categories described above bring the access to software and 

hardware more accessible to the scientific community. In this sense, cloud-based next 

generation bioinformatics is a promising alternative in terms of democratization of 

bioinformatics by facilitating the access to sequencing data analysis (Krampis and Wultsch, 

2015). Specifically, SaaS platforms can solve the need to acquire powerful computers for data 

analysis, as computing is performed in the cloud, and partially solve the lack of bioinformatics 

skills due to the analysis is configured via web browser in a much nicer way than performing it 

via command line interface. However, current available SaaS platforms (e.g. DNAnexus or 

Galaxy) still require basic skills in bioinformatics at the very beginning of the process (defining 

specific software parameters) and at the very end (manipulating and transforming results for 

data interpretation and integration). 
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Chapter 2: Objectives 

Recent advances from large-scale sequencing projects have resulted in the generation of an 

increasing amount of sequence data available for the research community. This revolution has 

motivated the development of efficient ways to integrate, organize and interpret -omics data. 

That will, in the long term, allow us to understand the essential principles underlying the 

transmission and expression of genetic information. Is in this context where we formulate the 

present work, which took place within the framework of a collaborative project between Aurora 

Ruiz-Herrera’s research group from Universitat Autònoma de Barcelona and Sequentia Biotech 

S.L. under the Industrial Doctorates Programme from the Generalitat de Catalunya.  

The main aim of this work is to develop and integrate next generation bioinformatics tools for 

the analysis of the functional and structural characteristics of genomes. The specific objectives 

are the following: 

1. Develop a public online database for lncRNAs  

Storage capacity and accessibility of genomics and transcriptomics data has become a 

challenge in the recent years. In order to overcome current limitations on the existing 

databases, here we develop a comprehensive online database for plant lncRNAs. 

2. Development and application of a “Software as a Service” (SaaS) platform for the high-

throughput analysis of RNA-seq data 

Since one of the majors constrains in bioinformatics is the availability of user-friendly 

tools to ensure feasible large-scale data analysis and management here we develop and 

validate a new SaaS platform called AIR (Artificial Intelligence RNA-seq). 

3. Analyse the structural organization of the mouse genome germ line derived from Hi-C 

data  

We made use of AIR and additional bioinformatics tools to generate an integrative atlas 

of the chromatin interactions and functional genomic characteristics of the mouse male 

germ line. 
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Chapter 3: Development of a database for lncRNAs in plant 

genomes 

3.1 Introduction 

The recent realization that genomes are made of large portions of non-coding challenged the 

central dogma of molecular biology (The ENCODE Project Consortium, 2012). This pivotal 

discovery boosted the launch of large genome-sequencing projects, such as the GENCODE 

project (part of the ENCODE project), which aimed to characterize and annotate all gene 

features in the human and mouse genome (Harrow, et al. 2012). Since a big portion of the 

human transcriptome has no apparent coding capacity, the study of non-coding RNA, especially 

long non-coding RNA (lncRNA), has become an emerging field (Carninci, et al. 2005; Mattick and 

Makunin, 2006; Mattick, 2009; Djebali, et al. 2012). In human, lncRNAs have been extensively 

studied to such an extent that, in 2012, a catalogue of 14.880 lncRNAs was released (Derrien, et 

al. 2012). Currently, the last human GENCODE annotation (version 29) contains 29.566 lncRNAs. 

Although studies on lncRNA are by far more advanced in human and mice, recent studies in 

plants are highlighting the importance of lncRNA on relevant cell functions, such as 

transcriptional regulation and control of gene expression (Franco-Zorrilla, et al. 2007; 

Swiezewski, et al. 2009; Heo and Sung, 2011; Ding, et al. 2012; Shin and Chekanova, 2014; Gai, 

et al. 2018; Liu, et al. 2018). It is widely known that plant evolution is characterized by a large 

number of Whole Genome Duplications (WGD) and gene duplications, which are the origin of 

many pseudogenes (Clark and Donoghue, 2018). Besides, a large proportion of plant genomes 

are enriched in retrotransposons (Zou, et al. 2009). Therefore, since it is though that lncRNAs 

are derived from pseudogenes and retrotransposons (Milligan and Lipovich, 2014; Ganesh and 

Svoboda, 2016), this class of non-coding RNA might have a considerable importance in plants. 

So far, only few lncRNAs have been functionally characterized in plants, highlighting the 

potential interest of lncRNAs in plant biology and in regulating important agronomic traits. This 

is the case of IPS1, COLDAIR, COOLAIR, LDMAR or Enod40, among others, which are implicated 

in a diversity of essential functions. IPS1, for instance, is a lncRNA expressed in Arabidopsis 

thaliana upon phosphate starvation and it is thought to counteract the activity of miR399 on 

PHO2, which in turn regulates the expression of phosphate transporter genes (Franco-Zorrilla, 

et al. 2007). COLDAIR, on the other hand it has been shown that may play a role in recruiting 

the histone methylase PRC2 to interact with the PRC2 complex, so maintaining a stable silenced 

state of FLC to repress flowering during vernalization (Heo and Sung, 2011). COOLAIR and ASL 

are other A. thaliana lncRNAs that regulate the FLC expression (Swiezewski, et al. 2009; Shin 
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and Chekanova, 2014). In rice (Oryza sativa), the lncRNA LDMAR has been found to control 

photo-sensitive male sterility by regulating DNA methylation levels in the promoter region of 

LDMAR (Ding, et al. 2012). In Medicago truncatula, the lncRNA Enod40 has been shown to 

participate in establishing symbiotic interactions with soil-bacteria by affecting nodule 

formation (Campalans, et al. 2004). Most recently, in mulberry (Morus multicaulis), the lncRNA 

MuLnc1 has been associated with both biotic and abiotic stress through RNA interference 

(RNAi) (Gai, et al. 2018). Finally, the lncRNA TWISTED LEAF in rice is thought to affect the leaf 

morphological development by cis-regulating the gene OsMYB60 via natural antisense 

mechanism (Liu, et al. 2018). 

To gain further insights on the role of lncRNAs in plant biology, their comprehensive annotation 

is critical. Several genome-wide studies have been performed in several plant species (Boerner 

and McGinnis, 2012; Lin, et al. 2014; Shuai, et al. 2014; Flórez-Zapata, et al. 2016; Joshi, et al. 

2016; Jain, et al. 2017), so there is a need to store and share this information, for instance, by 

means of online databases. Although many plant lncRNA databases currently exist (Chen, et al. 

2012; Jin, et al. 2013; Xie, et al. 2014; Yi, et al. 2015; Quek, et al. 2015; Xuan, et al. 2015; 

Szczessniak, et al. 2016), all of them present important drawbacks that need to be addressed. 

These include lack of APIs and maintenance, higher GUI friendliness desirable, few species or 

lncRNAs available (table 3). 

Table 3. Overview of the most relevant databases for plant lncRNAs. 

Name Publication details Species 
Number of 

lncRNAs 
Observations 

PlantNATsDB Chen, et al. (2012) 
70 plant 

species 

> 2,000,000 

(NATs*) 

Lack of API; NATs != lncRNAs; GUI 

friendliness (++) 

PLncDB Jin, et al. (2013) A. thaliana > 13,000 Down (11/2018) 

NONCODE v5 Xie, et al. (2014) A. thaliana > 3,000 
Lack of API; not plant specific; GUI 

friendliness (++) 

PNRD Yi, et al. (2015) 
4 plant 

species 
> 5,000 Lack of API; GUI friendliness (+) 

lncRNAdb v2.0 Quek, et al. (2015) 
8 plant 

species 
> 10 

API available; functional lncRNAs; not plant 

specific; GUI friendliness (++) 

PLNlncRbase Xuan, et al. (2015) 
45 plant 

species 
> 1,000 Down (11/2018) 

CANTATAdb 

v1.0 

Szczessniak, et al. 

(2016) 
10 species > 45,000 Lack of API; GUI friendliness (+++) 

CANTATAdb 

v2.0 
None 39 species > 239,000 Lack of API; GUI friendliness (+++) 

* NATs: Natural Antisense Transcripts. 

With the aim to overcome current limitations on existing databases, the main objective of this 

work was to develop a well-suited online database of in silico predicted plant lncRNAs from a 
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wide range of plant species. This new database is called Green Non-Coding (GreeNC) database 

and represents one of the most comprehensive databases of lncRNAs available for the scientific 

community, thus becoming a meeting point for the plant lncRNA research. 

3.2 Methods 

3.2.1 Data source 

A total of 45 publicly available transcriptomes were downloaded in FASTA format from 

Phytozome (Goodstein, et al. 2012) and consisted of 39 plant species and 6 algae species 

(Tuskan, et al. 2006; Merchant, et al. 2007; Ouyang, et al. 2007; Palenik, et al. 2007; Jaillon, et 

al. 2007; Rensing, et al. 2008; Ming, et al. 2008; Paterson, et al. 2009; Worden, et al. 2009; 

Schnable, et al. 2009; Huang, et al. 2009; Chan, et al. 2010; Vogel, et al. 2010; Schmutz, et al. 

2010; Prochnik, et al. 2010; Velasco, et al. 2010; Hu, et al. 2011; Shulaev, et al. 2011; Xu, et al. 

2011; Young, et al. 2011; Banks, et al. 2011; Paterson, et al. 2012; Blanc, et al. 2012; Lamesch, 

et al. 2012; Bennetzen, et al. 2012; Sato, et al. 2012; Prochnik, et al. 2012; Wang, et al. 2012; 

DePamphilis, et al. 2013; Verde, et al. 2013; Droc, et al. 2013; Zimmer, et al. 2013; Slotte, et al. 

2013; Motamayor, et al. 2013; Yang, et al. 2013; Hellsten, et al. 2013; Wu, et al. 2014; Schmutz, 

et al. 2014; Wang, et al. 2014; International Wheat Genome Sequencing Consortium, 2014; 

Bartholomé, et al. 2015). 

3.2.2 Identification of lncRNA 

Two scripts were written to identify lncRNAs (see section 3.2.2.1). Then, lncRNAs were divided 

into high- and low- confidence groups (see section 3.2.2.2). 

3.2.2.1 Pipeline design 

The first script followed the approach developed at the McGinnis lab to identify lncRNAs in 

transcriptomes and is based on identifying the coding potential of each transcript and on 

similarity with known proteins (Boerner and McGinnis, 2012). The script retains transcripts 

longer than 200 nucleotides and with an ORF shorter than 120 aa by using Ugene (version 1.13) 

(http://ugene.unipro.ru/). Sequences were then BLASTxed (BLAST version 2.2.28+) 

(ftp://ftp.ncbi.nlm.nih.gov/blast/executables/LATEST) against SwissProt (2013/11) (UniProt 

Consortium, 2015). CPC (version 0.9-r2) (http://cpc.cbi.pku.edu.cn/) (Kong, et al. 2007) was also 

used, with the FrameFinder parameter “-r” set to “True” or “False” and the BLASTX parameter 

“-S” set to “3” or “1”, depending on the group of transcripts being analysed. 

The second script was written to discriminate other non-coding transcripts from lncRNAs and to 

identify possible miRNA precursors. Transcripts were analysed by cmscan (Infernal version 
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1.1rc4) against the RFAM database (release 11) (Nawrocki, et al. 2015). In addition, BLASTn 

(version 2.2.28+) was used against a database of mature plant miRNAs from miRBase (release 

20) (Griffiths-Jones, 2010) and the putative miRNA coordinates were validated by MIReNA 

(version v2.0) (http://www.lcqb.upmc.fr/mirena/). Finally, MIReNA was called again, using the 

parameters “–valid”, “–x”, “–mfei -0.69”, “–amfe –32", “–ratiomin 0.83”, and “–ratiomax 1.17”. 

RepeatMasker (version open-4.0.5) (http://www.repeatmasker.org/) was used for repetitive 

element identification with the parameters: “-species Viridiplantae”, “-no_is”, “-gff”, and “-

nolow”. The search engine used was RMBLAST (version 2.2.23+) against the RepBase database 

(released 31 January 2014) (Bao, et al. 2015). 

3.2.2.2 lncRNA classification 

The final set of lncRNAs was divided into two different groups: high-confidence and low-

confidence. High-confidence lncRNAs included the transcripts without hits against SwissProt, 

described as non-coding by CPC, and considered non-precursors of miRNA. Otherwise, low-

confidence lncRNAs included transcripts with hits against SwissProt, described as coding by CPC, 

or considered precursors of miRNA. Transcripts having predicted repetitive regions by 

RepeatMasker were also classified as low-confidence in order to exclude putative transposons. 

3.2.3 Benchmark 

The first script developed for the annotation of lncRNAs was tested with 480 lncRNAs and 1,268 

coding genes annotated in Arabidopsis thaliana (TAIR10 genome version) resulting in a 

sensitivity of 92% and a specificity of 94.95%. The second script was tested with the 480 

lncRNAs from A. thaliana, resulting in a sensitivity of 93% and a specificity of 97.6%. 

3.2.4 Database structure 

Data was imported into a MySQL (version 5.5) based relational database stored in an Ubuntu 

server (version 14.04). This database was then integrated into a MediaWiki by mapping 

relational data fields against wiki-predefined templates via Semantic MediaWiki. The use of 

templates facilitates printing information and styling it for different page types (e.g. genes and 

species). The template approach exposes the fields to the query system of Semantic MediaWiki, 

enhancing the search possibilities of the site. All transcript sequences were kept in a FASTA file 

with the same IDs as in the MySQL, and then formatted using makeblastdb (BLAST version 

2.2.28+). In this way, sequences can be retrieved using their ID with blastdbcmd (BLAST version 

2.2.28+) and, at the same time, other BLAST programs can be run against the resulting BLAST 
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database. Taking advantage of this, an Express NodeJS API web service was created to expose 

sequence retrieval, lncRNA information and BLAST searches. 

3.3 Results 

GreeNC includes approximately 175,000 gene pages with information on more than 200,000 

transcripts (63% classified as high-confidence lncRNA) from 39 plant species and 6 algae. All 

information can be accessed through a graphical interface using any web browser or can be 

programmatically accessed via RESTful API. 

3.3.1 Graphical interface 

3.3.1.1 Main page 

GreeNC is available at the following link: http://greenc.sciencedesigners.com. This address 

brings the user to the main page of the database (figure 5). 

 

Figure 5. Screenshot of the main page in GreeNC. Four sections are highlighted: navigation bar (A), species panel (B), 

miscellaneous panel (C) and statistics panel (D). 

The main page is divided into 4 different sections: 
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• Navigation bar. There is a black bar at the top of the web page with 2 drop-down menus 

and a search box. The first drop-down menu is called Navigation and allows the access 

to other sections of the database. The second drop-down menu lists every available 

species in GreeNC. Finally, the search box allows the search of any species or gene 

(figure 5A). 

• Species panel. This panel contains a picture for each available species in order to access 

to any of them in a fast and visual way (figure 5B). 

• Miscellaneous panel. This panel stores a general description of the database. Below this 

description there are 4 buttons that allow fast access to other sections of the database, 

such as BLAST, advanced search, Frequently Asked Questions (FAQ) or a page to contact 

the authors. To the right part of this panel there is a list of news created by the 

maintainers (figure 5C). 

• Statistics panel. This panel shows a table with statistics about the genome assembly 

version, the number of genes and of lncRNAs per species (figure 5D). 

3.3.1.2 Species page 

From the navigation bar (second drop-down menu) or from the species panel it is possible to 

access to a species page. GreeNC is hierarchically organized into species pages, and under the 

species page anyone can access to gene pages from the corresponding species. The species 

page contains two different sections: 

• Species title and description. This section contains the name of the species with its 

associated picture, synonyms of the species name, information about the used genome 

version and links that points to the corresponding NCBI Taxonomy page and to the 

FASTA file of the lncRNAs for that species (figure 6A). 

• Gene list. This section contains a table showing genes that transcribe lncRNAs. This table 

also contains the chromosome, start and end positions of the gene and the number of 

lncRNAs it transcribes (figure 6B). 
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Figure 6. Screenshot of the Arabidopsis thaliana page in GreeNC. Two sections are highlighted: species title and 

description (A) and gene list (B). 

3.3.1.3 Gene page 

The gene page contains four sections (figure 7): 

• Gene information. A table shows the gene name and alias, its coordinates, the database 

source and assembly, the species the gene comes from and whether this gene also 

transcribes coding transcripts or not (figure 7A). 

• Transcript features. A table shows all lncRNAs the gene transcribes. Each row is relative 

to a lncRNA and displays its confidence (high or low), whether the lncRNA might be a 

miRNA precursor or not, its length, its sequence, and other features such as its ORF, 

coding potential, folding energies or GC content (figure 7B). 

• Matches to external databases. This table displays whether the lncRNAs have matches 

to miRBase, Rfam, Swissprot, RepBase or NONCODE. It includes the database version, 

the hit name linked to the corresponding web page in the reference database, and the 

e-value (figure 7C).  

• Gene model. This section shows a picture of the gene model: the axis that shows the 

coordinates of the gene, the gene feature and all transcripts being associated with it. 

Coding transcripts are drawn in magenta while high-confidence lncRNAs are drawn in 

green and low-confidence lncRNAs are drawn in cyan (figure 7D). 
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Figure 7. Screenshot of the gene page of an A. thaliana’s gene in GreeNC. Four sections are highlighted: gene 

information (A), transcript features (B), matches to external databases (C) and gene model (D). 

3.3.1.4 Advanced search page 

The Advanced search section can be accessed via the Miscellaneous panel from the main page 

of from the first drop-down menu in the navigation bar. There are three different query options 

to choose in this page: 

• Query by gene information. This query option allows the user to filter the lncRNAs by 

species, coordinates and whether the genes transcribing lncRNAs also transcribe coding 

transcripts. The data can be also downloaded in a Comma Separated Values (CSV) table 

by selecting csv in the output option (figure 8). 

• Query by transcript feature. This query option allows the user to filter the lncRNAs by 

species, confidence, length, coding potential, folding energies (AMFE and MFEI) or GC 

content. The data can be also downloaded in a CSV table by selecting csv in the output 

option. 

• Query by transcript matches to external databases. This query option allows the user to 

filter the lncRNAs by species, hit to database, hit name and e-value. The data can be 

also downloaded in a CSV table by selecting csv in the output option. 
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Figure 8. Screenshot of the advanced search page for query by gene information in GreeNC. It represents a form where 

the user can fill with search parameters. 

3.3.1.5 Miscellaneous page 

The user might also be interested in searching lncRNAs based on the similarity of some 

sequences. For this reason, we also made available a BLAST page where the user is able to 

BLASTn some sequence against the whole GreeNC database. The BLAST section can be accessed 

via the Miscellaneous panel from the main page of from the first drop-down menu in the 

navigation bar. 

3.3.2 Programmatic access 

The graphical interface is always a nice way to see the results. However, it fails when there is a 

need to retrieve the information through programming scripts. In order to overcome this 

limitation, GreeNC incorporates a RESTful (Representational State Transfer) API that provides 

the information via HTTP (Hypertext Transfer Protocol) GET requests. 

It can be accessed under /api/ (http://greenc.sciencedesigners.com/api/) location. It contains 4 

different resources: i) available databases (section 3.3.2.1, ii) available species (section 3.3.2.2), 

iii) transcripts information (section 3.3.2.3), and BLAST queries (section 3.3.2.4). 

3.3.2.1 Available databases 

The “db” function shows the list of the available BLAST databases in GreeNC. Currently, we only 

have a unique database containing all lncRNAs and its name is greenc (box 2). 
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Box 2. Bash command example to retrieve the list of databases available. 

$ curl http://greenc.sciencedesigners.com/api/db/ 

{"nucl":{"greenc":{"path":"/home/ubuntu/db/lncrna/lncRNAall.fa"}}} 

Once the user has chosen the database, the sequences of specific lncRNAs can be retrieved by 

adding the database name after /db/ followed by /entry/, the transcript alias, and /fasta (box 3). 

Box 3. Bash command example to retrieve the sequence of a specific lncRNA in JSON format. 

$ curl 

http://greenc.sciencedesigners.com/api/db/greenc/entry/Athaliana_AT1G01170.1/fasta 

{"def":">lcl|Athaliana_AT1G01170.1:1-

515","seq":"ACGACCGTCTTCCACCGTTGAATTCTTCTGGAACTGGAGTCCACTGTTTAAGCTTCACTGTCTCTGAATCGGC

AAAGCTT\nTAGAAGAAAATGGCATCAGGAGGTAAAGCCAAGTACATAATCGGTGCTCTCATCGGTTCTTTCGGAATCTCATACA

TCTT\nCGACAAAGTTATCTCTGATAATAAGATCTTTGGAGGGACTACTCCAGGAACTGTCTCTAACAAAGAATGGTGGGCAGCA

A\nCGGATGAGAAATTCCAAGCATGGCCAAGAACCGCTGGTCCTCCCGTTGTTATGAATCCCATTAGCCGTCAGAATTTCATC\n

GTCAAGACTCGTCCGGAATGAGAAAATAATAAGTTCAATGCTTTGATTTTCAGAATAAGATGAACGATGACGATGTTTTC\nTAA

ATCCGAGCTTGTACTAAATAACAATACATTACAACACGGTTTGCGGAACTACTCCACAGTCTATCTTCTGTTAAAAA\nACTCAA

ACAAGCTATTGCAAAAAGCCCTTACGAGA"} 

The output is in JSON format and the sequence contains breaklines every 80 bases. FASTA 

format can be also retrieved by adding /2 at the end of the URL (box 4). 

Box 4. Bash command example to retrieve the sequence of a specific lncRNA in FASTA format. 

$ curl 

http://greenc.sciencedesigners.com/api/db/greenc/entry/Athaliana_AT1G01170.1/fasta/2>

lcl|Athaliana_AT1G01170.1:1-515  

ACGACCGTCTTCCACCGTTGAATTCTTCTGGAACTGGAGTCCACTGTTTAAGCTTCACTGTCTCTGAATCGGCAAAGCTT 

TAGAAGAAAATGGCATCAGGAGGTAAAGCCAAGTACATAATCGGTGCTCTCATCGGTTCTTTCGGAATCTCATACATCTT 

CGACAAAGTTATCTCTGATAATAAGATCTTTGGAGGGACTACTCCAGGAACTGTCTCTAACAAAGAATGGTGGGCAGCAA 

CGGATGAGAAATTCCAAGCATGGCCAAGAACCGCTGGTCCTCCCGTTGTTATGAATCCCATTAGCCGTCAGAATTTCATC 

GTCAAGACTCGTCCGGAATGAGAAAATAATAAGTTCAATGCTTTGATTTTCAGAATAAGATGAACGATGACGATGTTTTC 

TAAATCCGAGCTTGTACTAAATAACAATACATTACAACACGGTTTGCGGAACTACTCCACAGTCTATCTTCTGTTAAAAA 

ACTCAAACAAGCTATTGCAAAAAGCCCTTACGAGA 

3.3.2.2 Available species 

Another function of the API provides all species that GreeNC stores. The function is called 

“species” and yields a list or array (box 5). 

Box 5. Bash command example to retrieve the list of available species. 

$ curl http://greenc.sciencedesigners.com/api/species/ 

["Amborella_trichopoda","Ananas_comosus","Arabidopsis_lyrata","Arabidopsis_thaliana",

"Brachypodium_distachyon","Capsella_grandiflora","Capsella_rubella","Carica_papaya","

Chlamydomonas_reinhardtii","Citrus_clementina","Citrus_sinensis","Coccomyxa_subellips

oidea_C-

169","Cucumis_sativus","Eucalyptus_grandis","Eutrema_salsugineum","Fragaria_vesca","G

lycine_max","Gossypium_raimondii","Linum_usitatissimum","Malus_domestica","Manihot_es

culenta","Medicago_truncatula","Micromonas_pusilla_CCMP1545","Micromonas_pusilla_RCC2

99","Mimulus_guttatus","Musa_acuminata","Oryza_sativa_Japonica_Group","Ostreococcus_l



 43 

 

ucimarinus","Phaseolus_vulgaris","Physcomitrella_patens","Populus_trichocarpa","Prunu

s_persica","Ricinus_communis","Selaginella_moellendorffii","Setaria_italica","Solanum

_lycopersicum","Solanum_tuberosum","Sorghum_bicolor","Spirodela_polyrhiza","Theobroma

_cacao","Triticum_aestivum","Vitis_vinifera","Volvox_carteri","Zea_mays","Zostera_mar

ina"] 

3.3.2.3 Transcript information 

The function “transcript” shows the transcript information for a lncRNA in JSON format. It is 

necessary to specify the transcript alias at the end or the URL (box 6). If information about more 

than one transcript needs to be retrieved, the transcript aliases need to be concatenated 

separated by “+” and placed at the end of the URL (for instance 

Athaliana_AT1G01170.1+Athaliana_AT1G01471.1). 

Box 6. Bash command example to retrieve information about one or several lncRNAs. 

$ curl http://greenc.sciencedesigners.com/api/transcript/Athaliana_AT1G01170.1 

[{"Athaliana_AT1G01170.1": { 

    "transcript_name":"AT1G01170.1", 

    "features": { 

        "length":515, 

        "cpc_type":"noncoding", 

        "cpc_potential":-0.756, 

        "mfei":-21.573, 

        "amfe":-0.519, 

        "gc_content":41.553 

    }, 

    "swissprot":{}, 

    "rfam":{}, 

    "repbase":{}, 

    "confidence":"High", 

    "gene_alias":"Athaliana_AT1G01170", 

    "gene_name":"AT1G01170", 

    "coord": { 

        "chromosome":"Chr1", 

        "start":73931, 

        "end":74737, 

        "strand":"-", 

        "species":"Athaliana" 

    } 

}}] 

3.3.2.4 BLAST queries 

It is also possible to perform BLAST searched via API instead of using the GUI. While the Bash 

commands seen so far were doing GET requests to the server, the “blast” function of the API 

needs a POST request. The variables that need to be defined are “seq” (required), which needs 

to store the query sequence, and the “e-value” (optional). The output is in JSON format 

containing the different alignments, positions and scores (box 7). 
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Box 7. Bash command example to perform a BLAST search given a query sequence. 

$ curl -d 

"evalue=0.001&seq=TACTTTTCTAATATCACGAGGACTTACATGGCCTCAAGTCACCTGTGGTGTTGTGCAAGAAGGAGAA

GCAAAGTCTGTCTATGTATTATGAGATAGCTACTTCTATGGCTAGGATATAGTTGTACAAGACCGGCTTTTCTTCTACTTCTTGC

ACAACCTGAGGTTATTGAGGCTATACAAGTCTTCTTCTATAATGTTATTTATTA" -X POST 

http://greenc.sciencedesigners.com/api/blast 

{"_id":"", 

    "type":"blast", 

    "ref":"", 

    "db":"blastdb", 

    "program":"blastn", 

    "seqtype":"prot", 

    "maxiters":"1", 

    "username":"Anonymous", 

    "date":"", 

    "params": { 

        "expect":0.001, 

        "gap_open":5, 

        "gap_extend":2, 

        "filter":"L;m;" 

    }, 

    "results": [object] 

} 

3.4 Discussion 

Over the last few years, it has emerged the idea that lncRNAs might play an important role in 

transcriptional regulation and control of gene expression rather than being just transcriptional 

noise (Carninci, et al. 2005; Mattick and Makunin, 2006; Mattick, 2009; Djebali, et al. 2012; 

Derrien, et al. 2012). In order to boost the lncRNA research in plants, we have developed the 

Green Non-Coding (GreeNC) database, an online database of plant lncRNAs with a user-friendly 

and intuitive access for researchers and API for bioinformaticians and informatics pipelines. It is 

based on a MediaWiki running on the Amazon Web Services with the Semantic MediaWiki 

extension incorporated. 

Among the most relevant databases for plant lncRNA currently available, GreeNC database is 

the most comprehensive in terms of the number of species, as it contains 39 plant species -

including important species for agriculture such as tomato, orange, cucumber, apple, wheat, 

maize, or potato- and 6 algae (a total of 45 species). Although PlantNATsDB contains 70 species, 

this database is not specific for lncRNAs, but specific for NATs. Some lncRNAs might be NATs, 

but these terms are not interchangeable (St Laurent, et al. 2015). In terms of the number of 

lncRNAs stored, CANTATAdb v2.0 currently stores few thousands more lncRNAs than GreeNC. 

Nevertheless, CANTATAdb v1.0 got updated in 2018 to the 2.0 version. At the beginning of 

2016, when GreeNC was officially released, CANTATAdb only contained 45.000 lncRNAs and 10 
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species. Therefore, GreeNC also represented the biggest database in terms of number of 

lncRNAs from early 2016 to the beginning of 2018. 

Since its initial release in 2016, GreeNC has been visited more than 12,000 times, including the 

view of more than 57,000 pages according to Google Analytics. In addition, GreeNC has proven 

itself as a useful repository for lncRNA plant research as it was used by several genome-wide 

identification studies. These include studies where several hundreds of unannotated lncRNAs 

have been identified (Kwenda, et al. 2016; Li, et al. 2017), while others have used GreeNC to 

characterize a lncRNA related to the flowering of Paspalum notatum (Ochogavía et al. 2017). In 

addition, GreeNC has also been used for training machine-learning algorithms in a successful 

way (da Costa Negri, et al. 2018). 

Moreover, the big amount of information stored in GreeNC has been extracted from high 

sensitivity and specificity pipelines and it is available via an easy-to-use and friendly GUI as well 

as via API. The database not only follows the key accessibility suggestions of Helmy et al. 2016 

for database creation; the access to the database’s knowledge is enhanced due to the Semantic 

MediaWiki extension. This extension allows the creation of query pages such as the advanced 

search page described in section 3.3.1.4. 

Summarizing, the Green Non-Coding database can be considered a valid reference database for 

plant lncRNA research. Since genomic projects are making available new expression details 

across different tissues and novel lncRNAs are continuously reported in the literature, future 

updates of GreeNC will include this information to complete its resources for lncRNA research in 

plants. 
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Chapter 4: Development and application of a “Software as a 

Service” platform for the high-throughput analysis of RNA-seq 

data 

4.1 Introduction 

Transcriptomics is, at present, the most funded -omics field after genomics (Ulrich, 2016). This 

field is mainly based on RNA-seq technology, which generated, during 2017 alone, more than 

200,000 samples that were submitted to the Sequence Read Archive (SRA) (items counted from 

SRA advanced search). This number continuously increase since, in only one year, the number 

of submitted samples doubled (more than 400,000 samples in 2018). Fuelled by technological 

advancements and the lowering of sequencing costs (see section 1.1.2), RNA-seq will become 

even more common in large-scale -omics studies, paving the way for the development of 

technologies such as single cell RNA-seq, which provides more resolution (Tang, et al. 2009; 

Saliba, et al. 2014). 

Data derived from RNA-seq has been traditionally analysed by means of command-line interface 

that requires a deep knowledge of bioinformatics skills. Depending on the aim of the 

experiment, this typically includes the analysis of expression profiling (genes expressed in a 

given sample), Differential Gene Expression (DGE) analysis (genes significantly differentially 

expressed between samples) and functional characterization of expressed genes such as Gene 

Ontology Enrichment Analysis (GOEA) (gene functions significantly enriched in a subset of genes 

relative to the full set of genes from a given genome). 

In this context, any software aiming to reach a wide range of users should include the following 

characteristics: it should (i) be easily accessible and cross-platform compatible, (ii) be 

reproducible with the use of Docker (Merkel, 2014), (iii) not require previous informatics or 

bioinformatics skills, thus being an end-to-end solution, (iv) include a wide range of non-model 

species, and (v) not be restricted by computational resources. Focusing on RNA-seq data 

analysis, several software with Graphical User Interface (GUI) -many of them cloud-based and 

commercially available- have emerged recently to allow the analysis of RNA-seq data, providing 

more accessibility to the research community (Kearse, et al. 2012; Illumina, 2014; Malhotra, et 

al. 2017). In this context, cloud-based systems for RNA-seq data analysis are gaining importance 

due to their cross-platform compatibility and their low computational requirements as the 

analyses are performed in remote machines. However, most of the software currently available 
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fail to fulfil some of the mentioned requirements (table 4). For instance, there is a limitation in 

the number of genomes available, truncating the possibility of working on the many non-model 

sequenced genomes. In addition, software currently available also require previous knowledge 

of bioinformatics such as understanding basic concepts (e.g. trimming or mapping) and being 

aware of additional tools that will be used in the analyses and their parameters that sometimes 

need to be tuned. 

Table 4. Overview of the most relevant software available for DGE analyses. Bold words show the most optimal 

implementation of the feature displayed in the first column. 

Software characteristics 
Seven 

Bridges 
DNAnexus Genestack 

Illumina 

BaseSpace 
Galaxy Geneious 

Cloud-based Yes Yes Yes Yes Yes No 

Dockers Yes Yes Yes Yes Yes No 

Genomes available* Limited Limited Limited Limited Limited Limited 

Computational resources Low Low Low Low Low High 

Speed of analysis Fast Fast Fast Fast N/A** N/A** 

Previous bioinformatics 

knowledge 
Yes Yes Yes Yes Yes Yes 

Previous informatics knowledge No No No No Yes No 

End to end solution No No No No No No 

* Unlimited: all genomes sequenced and available. Limited: only few genomes from model organisms or need to be 

provided by the user. ** Not applicable: it highly depends on the computational resources available. 

With the aim to overcome the above-mentioned limitations, the main objective of this study is 

two-fold: (i) develop a new SaaS platform called Artificial Intelligence RNA-seq (AIR) for a user-

friendly and effective way to analyse RNA-seq data, and (ii) validate its performance and 

usability taking advantage of RNA-seq data from mouse germ cells generated in our laboratory. 

4.2 Methods 

4.2.1 Reference genomes retrieval 

AIR retrieves genomes and their associated gene annotations from three repositories: (i) 

Ensembl (https://ensembl.org/) and Ensembl Genomes (http://ensemblgenomes.org/), (ii) 

National Centre for Biotechnology Information (NCBI) RefSeq (https://ncbi.nlm.nih.gov/refseq/), 

and (iii) Joint Genome Institute (JGI) (https://jgi.doe.gov/). Three in-house Bash scripts were 

written for downloading genomes from each repository; they mainly use open-source software 

such as wget and curl. The access to Ensembl and NCBI is via File Transfer Protocol (FTP) 

without user credentials while the JGI site needs user credentials via Hypertext Transfer 

Protocol Secure (HTTPS), storing the session information in cookies for further downloading. 
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Additional information is required in order to obtain functional information of genes in the 

cases of Ensembl and NCBI RefSeq repositories. The Gene Ontology Consortium 

(http://geneontology.org/) provides the file “goa_uniprot_all.gaf.gz” with a relationship 

between UniProt IDs and Gene Ontology (GO) terms. Finally, in the case of NCBI, it also needs 

the file “gene_refseq_uniprotkb_collab.gz”, which contains the association between RefSeq 

accession names and UniProt IDs. 

4.2.2 Integrity and quality check of FASTQ data 

AIR allows the upload of Illumina sequencing data from a wide range of files with the “.fq.gz”, 

“.fastq.gz”, “.txt.gz”, “.fq.bz2”, “.fastq.bz2”, “.txt.bz2”, “.fq”, “.fastq”, and “.txt” extensions. 

However, within the file, the only allowed format is FASTQ. In-house scripts written in Python 

and AWK validates the format of the uploaded files. Valid files undergo a quality check and 

trimming step using BBDuk (Bushnell, 2014) (minimum length of 35 bp and a minimum Phred-

quality score of 25) and FastQC (Andrews, 2014). 

4.2.3 Mapping and gene expression quantification 

After quality check, trimmed reads are mapped with the splicing-aware mapper STAR (Dobin, et 

al. 2013) against the reference genome. The alignment mode is “end to end”. The maximum 

number of mismatches allowed, defined by the “--outFilterMismatchNmax” argument, depends 

on whether the data come from the same genotype relative to the reference genome selected, 

from a different genotype, or from a different species. The value of this argument is 3, 5, or 10 

whether the data is defined as “same genotype”, “different genotype”, or “different species”, 

respectively. While chimeric alignments are not allowed, protrude alignments are permitted 

with the argument “--alignEndsProtrude 100 ConcordantPair”. The gene expression 

quantification is performed with featureCounts (Liao, et al. 2014) with the following 

parameters: “-C”, “-Q 30”, and “-p” (in case of paired-end datasets). 

4.2.4 Statistical analysis 

Lowly expressed genes are filtered using HTSFilter (Rau, et al. 2013) with the following 

parameters: “s.len=50” and “s.max=200”. The filtered set of genes is subsequently normalized 

with the function “normalizeData” from the same package using the Trimmed Mean of M-

values (TMM) method. Afterwards, the filtered set of genes is given to four different statistical 

methods for the identification of Differentially Expressed Genes (DEG): DESeq2 (Love, et al. 

2014), edgeR (Robinson, et al. 2010), EBSeq (Leng, et al. 2013) and NOISeq (Tarazona, et al. 

2015). While DESeq2 and edgeR analyses are performed with default parameters, EBseq needs 
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an undetermined number of iterations in order to estimate parameters of the distribution it is 

based on. The correct number of iterations is reached when parameters converges the 

expected probability. We define convergence when the differences of parameters of the 

iteration i and the iteration i-1 is below 0.01. EBSeq starts with 5 iterations with a step of 5 

more iterations if convergence is not reached. Finally, NOISeq is executed with noise correction 

using the TMM normalization approach, 100 permutations, no count filter applied, and 10 K-

means clusters. Since NOISeq does not yield q-values but a probability of differential expression 

equivalent to 1 - q-values, its q-values are calculated as 1 - probability of differential expression. 

Gene Ontology Enrichment Analysis (GOEA) is performed by means of a hypergeometric test for 

each GO term, thus identifying significant enriched GO terms relative to the expected genome 

background (Tian, et al. 2017). P-values are corrected with the Benjamini-Hochberg procedure 

to reduce false positives. We considered as significantly enriched the terms with q-values equal 

or smaller than 0.05. Results are shown in an interactive Voronoi treemap 

(https://carrotsearch.com/foamtree/). 

Then, several plots, such as Volcano plots, MA-plot, Principal Component Analysis (PCA), or 

heatmaps are generated using the R libraries reshape2, ggplot and ggrepel. The R stats package 

is used for hierarchical clustering using the Euclidean distance. 

4.3 Results 

The Artificial Intelligence RNA-seq (AIR) is a rapid, easy-to-use SaaS platform for the analysis of 

RNA-seq data. It is made of three main sections (figure 9): (i) the bioinformatics core with all 

scripts and programs needed to perform the bioinformatics analysis, (ii) a cloud-based 

architecture to store and perform analyses online by using cloud computing, and (iii) a front-end 

with a graphical user interface accessible online. AIR is already setup to work on more than 

150,000 genomes and it is available at https://transcriptomics.sequentiabiotech.com. 

 

Figure 9. Overview of the three main sections of AIR. Users access to the graphical user interface through the web 

browser (client-side/front-end) to start an analysis. This user request is received by the cloud-based architecture 

(grey colour tones), specifically received by a remote machine called “orchestra director”, which opens a computing 
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instance with high resources for the analysis. Computing instances are connected to the bioinformatics core (blue 

colour tones), which is a disk containing all pipelines for data processing and analysis. 

4.3.1 Bioinformatics core 

4.3.1.1 Reference genomes retrieval 

Three different in-house Bash scripts have been written to connect to the Ensembl, to the 

National Centre for Biotechnology Information (NCBI) RefSeq and to the Joint Genome Institute 

(JGI) sites in order to retrieve the available genomes. 

In particular, the Ensembl- and the NCBI-genomes retrieval scripts connect via File Transfer 

Protocol (FTP). They download the genome in FASTA format, the gene annotation in General 

Transfer Format (GTF) or in General Feature Format (GFF), and the UniProt annotation. UniProt 

IDs are then intersected with the Gene Ontology Consortium information, thus obtaining a final 

relationship between gene names and associated GO terms. Finally, the JGI-genome retrieval 

script connects to the site through its API after providing user credentials, as it needs an 

account to log in. From its repository, the genome in FASTA file, the gene annotation in GFF, 

and three additional text files containing gene definitions, gene names and the corresponding 

GO terms are downloaded. As a last step, each script indices the downloaded genome in FASTA 

format with STAR (Dobin, et al. 2013), as this RNA-seq aligner is the one used in a further step 

to map the samples provided by the user on the genome. 

4.3.1.2 Integrity and quality check of FASTQ data 

In house Python/AWK scripts were designed to read the full file and to check its integrity. These 

scripts check whether: (i) headers start with “@”, (ii) sequences and quality scores have the 

same length, and (iii) the third line of each read starts with “+”. In addition, paired-end files are 

detected and paired using the orientation identified from the header of the files, the read 

number and the read names. Reversed paired-end files without a detected mate or bad-

formatted FASTQ files do not pass the check and cannot be used in further steps. 

For the quality check or trimming step, a Python module was written to remove the bad quality 

portions of the reads in three steps. First, the module calls FastQC (Andrews, 2014) to gather 

quality metrics before trimming. Second, the actual trimming is performed using BBDuk 

(Bushnell, 2014). The third step involves another FastQC call on the final trimmed files. Quality 

metrics are stored into a JSON file, which is subsequently provided to the AIR front-end for 

visualization. 
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4.3.1.3 Mapping and gene expression quantification 

The high-quality reads resulting from the quality check and trimming processes are mapped 

against the reference genome with STAR (Dobin, et al. 2013) using the end-to-end alignment 

mode. After the mapping step, the gene expression quantification is performed with 

featureCounts (Liao, et al. 2014), considering only the uniquely mapped reads and properly-

paired reads in case of samples sequenced with the paired-end strategy. The quality of the 

alignments is assessed using Qualimap (Okonechnikov, et al. 2016). 

4.3.1.4 Statistical analysis 

From the featureCounts output, the statistical analysis starts by filtering lowly expressed genes 

using HTSFilter (Rau, et al. 2013). A Principal Component Analysis (PCA) is subsequently 

performed using the filtered set of genes and normalizing them with the Trimmed Mean of M-

values (TMM) method. The filtered set of genes from the HTSFilter is given to four different 

statistical methods for the identification of Differentially Expressed Genes (DEG): DESeq2 (Love, 

et al. 2014), edgeR (Robinson, et al. 2010), EBSeq (Leng, et al. 2013) and NOISeq (Tarazona, et 

al. 2015) (see section 4.2.1.4). Additional plots such as the Volcano plot or the MA-plot are 

generated (figure 10A). A heatmap of expression patterns as Z-scaled FPKM (Fragments Per 

Kilobase of transcript per Million mapped reads) values from the DEG is also generated; the 

order of the genes is additionally established after hierarchical clustering using the Euclidean 

distance (figure 10B). 

Significant genes are reported if their corrected q-values are equal or smaller than 0.05. The 

selected genes undergo a GOEA performed by the hypergeometric test approach with false 

discovery rate adjustment (Tian, et al. 2017). The GOEA results are shown in a Voronoi treemap 

(https://carrotsearch.com/foamtree/) (figure 10C). GO terms are represented as boxes. On the 

one hand, the size of the box depends on the significance of the enrichment of the GO term. 

Thus, the size of the box depends on the q-value of the GO term: the smaller it is, the bigger the 

box. On the other hand, the colour of the box depends on the enrichment score. The higher the 

enrichment, the reddish the colour. 
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Figure 10. Overview of the different graphical outputs generated by the statistical analysis. (A) Volcano and MA plots; 

green dots are down-regulated genes while read dots are up-regulated ones. (B) Heatmap of expression patterns 

from the DEG. (C) Enriched GO terms from the GOEA in a Voronoi treemap. 

4.3.2 Graphical user interface 

The AIR platform is accessible from the main page https://transcriptomics.cloud or from 

https://transcriptomics.sequentiabiotech.com. Once logged in, the website is composed of 

different pages from which the user can find his/her own information, upload and validate 

sequencing data, create a new analysis, or viewing the final results. The frontend is coded in 

HTML/CSS and JavaScript. 

4.3.2.1 User page 

At the subdirectory /home (https://transcriptomics.sequentiabiotech.com/home), it brings the 

user to the user page of the platform, which can be divided into 3 different parts: 

• Navigation bar. It is the left-side menu of the page and is shown in all pages of AIR to 

ease the navigation. The main pages of AIR are accessible from this menu (figure 11A). 

• User information. This panel shows how many projects have been completed, how 

many samples the user has uploaded, how many gigabytes of data the user has 

uploaded, or how many euros are available in the user’s wallet to be spent (figure 11B). 

• Shortcut buttons. Two big buttons are shown at the right-side of the web page: 

“Samples” addresses you to the page to upload your samples, while “Analysis” 

addresses you to the page to define an analysis with already uploaded samples (figure 

11C). 
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Figure 11. Screenshot of the user page in AIR. (A) Navigation bar from which the main pages of AIR are accessible. (B) 

User information showing how many projects have been completed, how many samples the user has uploaded, how 

many gigabytes of data the user has uploaded, or how many euros are available in the user’s wallet. (C) Shortcut 

buttons to upload your samples (“Samples”) or to define an analysis (“Analysis”). 

4.3.2.2 Sample upload page 

AIR accepts raw Illumina sequencing data as input. The process of uploading the samples and 

making the accessible for further analyses goes through three steps: 

1. Upload files tab. From this page, the user can upload samples stored on the computer 

or upload samples stored in Google Drive (figure 12). 

2. Validate samples tab. Once the samples have been fully uploaded, they undergo a 

validation and integrity check: the main purpose of this step is to verify that the 

uploaded files contain sequencing data in FASTQ format and checks whether the FASTQ 

format is well formatted or truncated. It is important to validate file pairs (forward and 

reverse files) from paired-end sequencing data together, as this step also identifies 

pairs of samples in case paired-end sequencing data is uploaded. 

3. Resource payment page. Successfully validated samples are eligible for analysis. 

Beforehand, these samples need to be selected in the resource payment page. 
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Figure 12. Screenshot of the sample upload page in AIR. From this page, a user can upload samples for further 

analysis. 

4.3.2.3 Create analysis page 

Once the samples are uploaded, the creation of an analysis also goes through 3 steps: 

1. Analysis name and sequencing strategy. The user can specify the type of sequencing 

(either single or paired-end) and label the analysis with a custom name (figure 13). 

2. Definition of groups. The user provides information about their experimental design 

with an easy drag-and-drop function. The minimum number of experimental groups is 

2, and the name of each group is customizable.  

3. Genome selection. A search box is available, displaying the best-matching genomes 

according to what has been typed. Currently, more than 150.000 genomes are already 

available. In addition, the user can indicate whether the samples have the same 

genotype of the reference genome, or if they are expected to be similar but not 

identical, or if they are related species. 
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Figure 13. Screenshot of the analysis creation page in AIR. This page is the first step to define an analysis. In this page, 

the user must specify an analysis name and select the sequencing strategy used for the uploaded data (either single-

end or paired-end). 

4.3.2.4 Analysis page 

When an analysis is started, it automatically appears in the section “My analyses” from the left-

side menu. The analysis main page, which is accessible by clicking on the analysis name from 

“My analyses”, contains 2 different parts: 

• Status of the analysis. The analysis is divided into different parts: (i) trimming and quality 

check of the data, (ii) mapping data against the reference genome, and (iii) the 

statistical analysis. In order to follow the status of each analysis and to access to the 

generated results for each part, a workflow is shown in the middle of the page. In it, it is 

possible to see the degree of completion for each part as well as to access to the results 

once the corresponding part is done (figure 14A). 

• Downloadables. The raw FASTQ files, the trimmed FASTQ files, the alignment files, and 

raw and normalized expression tables can be downloaded from the box at the right part 

of the page (figure 14B). 
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Figure 14. Screenshot of the analysis page in AIR. (A) Status of the analysis consisting of a workflow that allows the 

user to follow the status of the analysis as well as to access to the different results of the analysis. (B) Downloadables. 

Different generated output from the different analysis steps is available to be downloaded. 

4.3.2.5 Trimming and mapping results 

Results of the trimming step are shown after clicking the corresponding button in the workflow 

shown in the middle of the analysis page. The page is divided into 2 sections: (i) for the 

untrimmed data, and (ii) for the trimmed data. The information provided is summarized in 5 

parts: 

• Basic statistics. It shows a table displaying how many reads per file, its GC average 

content, the sequence length range, and the Illumina platform. The number of reads in 

the trimmed samples will always be less due to the fact that the bad-quality portions of 

the reads are removed and some reads are as short that they are removed as well. 

• GC content. It shows a plot with the GC content distribution for each file. 

• Per Base Sequence Quality. It shows the Phred quality scores qualities along reads; lines 

show the quality median while shadows show the lower and upper quartile. For Illumina 

data, the quality at the end of the reads tends to be lower. The per base quality in the 

trimmed samples should be very high. 

• Sequence length Distribution. It shows a histogram with the distribution of read lengths. 

Along the trimming process, several reads have different unequal lengths as the bad 

quality portions of the reads are removed. 
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• Adapter Content. It shows the percentage of adapter along the read length. 

Results of the mapping step are shown after clicking the button “BAM quality” in the workflow 

shown in the middle of the analysis page (figure 14A). The page shows a table with general 

statistics with the absolute number and percentage of reads that mapped to the genome 0 

times (unmapped), 1 time (uniquely mapped), or more than 1 times (multi-mapped). In 

addition, it also shows how many reads and percentage of them mapping on genes (figure 15A). 

By clicking to the sample name, placed in the first column of the table, different plots and 

detailed statistics are shown (figure 15B). 

 

Figure 15. Screenshot of the mapping results in AIR. (A) Table with general mapping statistics. (B) Plots displaying 

different mapping information for a specific sample, after clicking its name from the table. 

4.3.2.6 Statistical analysis results 

The statistics page is made out of multiple rows, using each one the same reference for the 

different pairwise comparisons. The pairwise comparisons are represented in boxes, which 

contain four buttons, one for each statistical approach used (figure 16). 
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Figure 16. Screenshot of the statistical page in AIR. This page shows a row with green boxes, displaying pair-wise 

comparisons with sperm as reference, and a row with purple boxes, displaying pair-wise comparisons with round 

spermatids as reference. 

AIR uses four R packages with different statistical approaches: 

• DESeq2 (Love, et al. 2014). It provides methods to test for differential expression by use 

of negative binomial generalized linear models. DESeq2 is one of the leading methods 

for a DGE analysis with 7073 citations (November 2018). When the variability across the 

replicates is high, it can only identify few differentially expressed genes. 

• edgeR (Robinson, et al. 2010). It is the most cited package to perform a DGE analysis 

with 9226 citations (November 2018). Its statistical approach fits the data to a negative 

binomial model and uses an empirical Bayes estimation and exact tests to call DEG. 

When the variability across the replicates is high, it can only identify few differentially 

expressed genes. 

• NOISeq (Tarazona, et al. 2015). It is a non-parametric approach suitable for experiments 

with high variability among replicates under the same condition. For these cases, 

NOISeq is able to identify more differentially expressed genes compared to edgeR and 

DESeq2, but its False Positive Rate (FPR) is higher (Schurch, et al. 2016). 

• EBseq (Leng, et al. 2013). It applies empirical Bayes methods and a negative binomial 

distribution for DGE. Although it is particularly suited to perform time course analyses, 

it generally shows higher false positive rates with respect to edgeR and DESeq2 (Ching, 

et al. 2014; Schurch, et al. 2016). 
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At the bottom of the page, each statistical approach is accompanied by an explanation on the 

methodology and recommendations on their best use. When accessing to a specific statistical 

approach, the page shows: (i) a PCA showing the clustering of the samples, (ii) general charts for 

the interpretation of the experiment such as the Volcano and the MA plots (figure 10A), and (iii) 

several tabs in which the DEG and the GOEA results are shown. 

The PCA is interactive, allowing direct manipulation of samples. If a given sample lies far apart 

from its group replicates (e.g. an outlier), the sample can be clicked in order to remove it from 

the analysis. Then, DEGs are shown in tables (including gene IDs, gene names, gene 

descriptions, and statistical values such as p-values, q-values, and fold changes) and their 

expression patterns (Z-scaled FPKM values) are presented in a heatmap. In this heatmap, 

changes in expression levels are displayed in different colours: from green (less expressed) to 

red (more expressed) relative to the corresponding reference (figure 10B). The order of the 

genes is established after hierarchical clustering using the Euclidean distance. 

Moreover, the GOEA of the significant genes are shown in an interactive Voronoi treemap split 

by the three main categories in the gene ontology (Biological Process, BP; Cellular Component, 

CC; Molecular Function, MF) and divided by up-regulated and down-regulated genes (figure 

10C). All data, including raw and normalized expression values and tables with the DGE and 

GOEA results are downloadable in spreadsheet file formats (e.g. CSV or xlsx). 

4.3.3 Validation of AIR using RNA-seq data from mouse germ cells 

Once the AIR pipeline was developed, we validated its suitability taking advantage of RNA-seq 

data produced in our lab (Vara and Paytuví-Gallart, et al. submitted). This included data 

obtained from four populations of highly enriched mouse germ cells isolated by Fluorescence-

Activated Cell Sorter (FACS): spermatogonia, primary spermatocytes (pachynema/diplonema), 

round spermatids and sperm (figure 17). 

 



 65 

 

 

Figure 17. Overview of the spermatogenesis process. The two extensive waves of transcription that take place during 

this process can be seen below cell types (adapted from Reig-Viader et al. 2016 and de Mateo & Sassone-Corsi, 

2014). 

Pools containing between 20,000 and 40,000 cells were obtained by FACS-sorting from adult 

mice (C57BL/6J strain). Four independent biological replicates were included in the analysis. 

Briefly, full-length low-input RNA sequencing libraries were prepared by members of our 

research group using the Smart-seq2 protocol (Picelli, et al. 2014). Sequencing of Nextera® 

libraries was carried out on a HSeq2500 (Illumina) to obtain more than 30 million pair-end reads 

per sample. A total of sixteen replicates were uploaded in AIR and validated before conducting 

further analysis. All replicates together summed to 45 gigabytes and 1,228 million of reads. The 

analysis took five hours and 48 minutes to complete. 

4.3.3.1 Quality metrics 

Before the mapping step, sequence portions of the reads with low Phred quality scores were 

removed in order to increase the overall quality of the data. On average, samples did not lose 

more than 10% of the read pairs (table 5). 

Table 5. General statistics before and after quality check and trimming step. It includes the number of reads and 

sequence length distributions of each biological replicate. Abbreviations: Sg – Spermatogonia; P/D – 

Pachynema/Diplonema; RS – Round Spermatids; R1 – Replicate 1, R2 – Replicate 2. 

Biological 

replicate 
File ID 

Read pairs 

before 

trimming 

Read length 

before 

trimming 

Read pairs 

after 

trimming 

Read length 

distribution after 

trimming 

Percentage of 

survival 

P/D R1 
P0000_N701-

S502_1 
44072247 76 40170411 35-76 91.14 

P/D R1 
P0000_N701-

S502_2 
44072247 76 40170411 35-76 91.14 

RS R1 
P0000_N701-

S503_1 
56528181 76 51211991 35-76 90.59 

RS R1 
P0000_N701-

S503_2 
56528181 76 51211991 35-76 90.59 

Sperm R1 P0000_N701- 36247245 76 30756175 35-76 84.85 
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S504_1 

Sperm R1 
P0000_N701-

S504_2 
36247245 76 30756175 35-76 84.85 

Sg R1 
P0000_N701-

S505_1 
41736421 76 37543704 35-76 89.95 

Sg R1 
P0000_N701-

S505_2 
41736421 76 37543704 35-76 89.95 

P/D R2 
P0000_N701-

S506_1 
37627009 76 35087621 35-76 93.25 

P/D R2 
P0000_N701-

S506_2 
37627009 76 35087621 35-76 93.25 

RS R2 
P0000_N701-

S507_1 
33223896 76 30636921 35-76 92.21 

RS R2 
P0000_N701-

S507_2 
33223896 76 30636921 35-76 92.21 

Sperm R2 
P0000_N701-

S508_1 
37132726 76 34156455 35-76 91.98 

Sperm R2 
P0000_N701-

S508_2 
37132726 76 34156455 35-76 91.98 

Sg R2 
P0000_N701-

S517_1 
40742610 76 38010687 35-76 93.29 

Sg R2 
P0000_N701-

S517_2 
40742610 76 38010687 35-76 93.29 

P/D R3 
P0000_N702-

S502_1 
31553176 76 29130117 35-76 92.32 

P/D R3 
P0000_N702-

S502_2 
31553176 76 29130117 35-76 92.32 

RS R3 
P0000_N702-

S503_1 
43455067 76 38753330 35-76 89.18 

RS R3 
P0000_N702-

S503_2 
43455067 76 38753330 35-76 89,18 

Sperm R3 
P0000_N702-

S504_1 
36639224 76 33023282 35-76 90,13 

Sperm R3 
P0000_N702-

S504_2 
36639224 76 33023282 35-76 90,13 

Sg R3 
P0000_N702-

S505_1 
38771263 76 34953928 35-76 90,15 

Sg R3 
P0000_N702-

S505_2 
38771263 76 34953928 35-76 90,15 

P/D R4 
P0000_N702-

S506_1 
37276664 76 34320275 35-76 92,06 

P/D R4 
P0000_N702-

S506_2 
37276664 76 34320275 35-76 92,06 

RS R4 
P0000_N702-

S507_1 
30567301 76 27825912 35-76 91,03 

RS R4 
P0000_N702-

S507_2 
30567301 76 27825912 35-76 91,03 

Sperm R4 
P0000_N702-

S508_1 
33184700 76 30854197 35-76 92,97 

Sperm R4 
P0000_N702-

S508_2 
33184700 76 30854197 35-76 92,97 

Sg R4 
P0000_N702-

S517_1 
35598432 76 32262491 35-76 90,62 

Sg R4 P0000_N702- 35598432 76 32262491 35-76 90,62 
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S517_2 

The read pairs were then mapped against the mouse genome GRCm38 (retrieved from Ensembl 

release 89). On average, 80% of the read pairs mapped in just one locus on the genome 

(uniquely mapped) and over 70% of read pairs were assigned to genes (table 6). 

Table 6. Mapping efficiency statistics. It includes the number and percentage of reads that mapped once on the 

genome (uniquely mapped), reads that mapped multiple times on the genome (multi-mapped), reads that did not 

map (unmapped), and reads that mapped once on genes (uniquely mapped on genes). Abbreviations: Sg – 

Spermatogonia; P/D – Pachynema/Diplonema; RS – Round Spermatids; R1 – Replicate 1, R2 – Replicate 2. 

Biological 

replicate 
Sample ID 

Number of 

read pairs 

Uniquely 

mapped read 

pairs 

(%) 

Multi-

mapped read 

pairs 

(%) 

Unmapped 

reads 

(%) 

Uniquely mapped 

read pairs on 

genes 

(%) 

P/D R1 
P0000_N701-

S502 
40170411 

32865101 

(81.81%) 

2622824 

(6.52%) 

4682486 

(11.65%) 

28179005 

(70.14%) 

RS R1 
P0000_N701-

S503 
51211991 

41336093 

(80.71%) 

4260103 

(8.31%) 

5615795 

(10.96%) 

35803461 

(69.91%) 

Sperm R1 
P0000_N701-

S504 
30756175 

24260179 

(78.87%) 

2931414 

(9.53%) 

3564582 

(11.58%) 

20342978 

(66.14%) 

Sg  R1 
P0000_N701-

S505 
37543704 

30516058 

(81.28%) 

2740144 

(7.29%) 

4287502 

(11.42%) 

26728331 

(71.19%) 

P/D R2 
P0000_N701-

S506 
35087621 

29488533 

(84.04%) 

2552231 

(7.27%) 

3046857 

(8.68%) 

25716482 

(73.29%) 

RS R2 
P0000_N701-

S507 
30636921 

26367194 

(86.06%) 

1484709 

(4.84%) 

2785018 

(9.09%) 

23947716 

(78.16%) 

Sperm R2 
P0000_N701-

S508 
34156455 

29708743 

(86.97%) 

1432018 

(4.19%) 

3015694 

(8.82%) 

27099974 

(79.34%) 

Sg R2 
P0000_N701-

S517 
38010687 

28074303 

(73.85%) 

3540476 

(9.31%) 

6395908 

(16.82%) 

20473593 

(53.86%) 

P/D R3 
P0000_N702-

S502 
29130117 

21967847 

(75.41%) 

2704119 

(9.28%) 

4458151 

(15.30%) 

18279098 

(62.74%) 

RS R3 
P0000_N702-

S503 
38753330 

32455484 

(83.74%) 

2827907 

(7.29%) 

3469939 

(8.95%) 

29049945 

(74.96%) 

Sperm R3 
P0000_N702-

S504 
33023282 

28523977 

(86.37%) 

1404504 

(4.25%) 

3094801 

(9.37%) 

25838380 

(78.24%) 

Sg R3 
P0000_N702-

S505 
34953928 

27053571 

(77.39%) 

3075743 

(8.79%) 

4824614 

(13.80%) 

22602831 

(64.66%) 

P/D R4 
P0000_N702-

S506 
34320275 

26319970 

(76.68%) 

3217903 

(9.37%) 

4782402 

(13.93%) 

22198845 

(64.68%) 

RS R4 
P0000_N702-

S507 
27825912 

22246393 

(79.94%) 

2035509 

(7.31%) 

3544010 

(12.73%) 

19287752 

(69.31%) 

Sperm R4 
P0000_N702-

S508 
30854197 

26588200 

(86.17%) 

1306126 

(4.23%) 

2959871 

(9.59%) 

23990832 

(77.75%) 

Sg R4 
P0000_N702-

S517 
32262491 

23839185 

(73.89%) 

4079114 

(12.64%) 

4344192 

(13.46%) 

19311631 

(59.85%) 
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4.3.3.2 Transcriptional profile of germ cells 

Once the quality check was finished (trimming and mapping efficiency statistics), we analyzed 

differences in terms of gene expression among cell types. These differences can be browsed in 

the “Statistical analysis” page (figure 16). Since the analysis was defined with four conditions 

(four cell types) and comparisons are pairwise, the following comparisons were carried out (the 

reference is interchangeable): 

• Spermatogonia versus pachynema/diplonema 

• Spermatogonia versus round spermatids 

• Spermatogonia versus sperm 

• Pachynema/diplonema versus round spermatids 

• Pachynema/diplonema versus sperm 

• Round spermatids versus sperm 

The PCA shown in each of the comparisons revealed that some replicates did not cluster with 

the other replicates from the same condition (outliers), thus suggesting high variability within 

conditions (figure 18 - Standard PCA). The PCA was then redone after applying on the data the 

NOISeq batch effect correction (figure 18 - NOISeq correction). 

The high variability within conditions would explain the fact that almost no DEGs are found by 

edgeR and DESeq2. Nevertheless, NOISeq corrected the data in a way that replicates clustered 

with other replicates from the same condition more consistently. In this sense, since NOISeq is 

suitable for differential gene expression analysis from samples with high variability, it identified 

several thousands of DEG in each comparison (table 7). 
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Figure 18. Principal Component Analyses (PCA) showing sample clustering. It shows the clustering of spermatogonia 

(Sg), pachynema/diplonema (P/D), round spermatids (RS) and sperm replicates before and after NOISeq batch effect 

correction. 
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Table 7. Number of DEGs for each comparison and statistical approach. A DEG was considered to have a q-value below 

0.05. Abbreviations: Sg – Spermatogonia; P/D – Pachynema/Diplonema; RS – Round Spermatids. 

Comparison DESeq2 edgeR NOISeq (q-value 0.05) NOISeq (q-value 0.01) EBSeq 

Sg versus P/D 2,208 1.889 19,115 11,081 1,648 

Sg versus RS 3,701 4.234 14,041 3,826 2,269 

Sg versus Sperm 5,950 6.223 22,157 16,471 4,217 

P/D versus RS 0 0 9,798 2,347 2 

P/D versus Sperm 1,130 60 13,525 7,278 455 

RS versus Sperm 69 85 11,023 3,760 1,064 

AIR has the possibility to exclude outlier samples from the analysis as long as there are at least 

two replicates per experimental condition. Considering the pairwise comparison spermatogonia 

versus pachynema/diplonema, removing the outlier sample “P0000_N701-S505” belonging to 

spermatogonia, the number of DEG in DESeq2 increases up to 4,999 (+126%). All genes 

identified as DEG by the DESeq2 method were also identified by NOISeq. However, the number 

of DEG in NOISeq (q-value 0.05) was very high (table 7). Thus, in order to reduce the number of 

false positives, we filtered the results using a q-value of 0.01. With this threshold, the number of 

DEG in NOISeq was reduced to 11,081 (-57%) maintaining 95% of genes identified as DEG by 

DESeq2 without the outlier. Since changes in terms of gene expression are expected during 

gametogenesis, subsequent analyses were performed using the results obtained by the NOISeq 

method (q-value < 0.01). 

Expression values and DEG tables were downloaded from AIR for further analyses. In order to 

obtain representative expression values for each gene and cell type, expression values of 

replicates from the same cell type and gene were averaged. Genome-wide, we detected that 

the number of expressing genes considering a Count Per Million (CPM) higher than 1 is reduced 

along spermatogenesis with 19,145, 15,480, 14,706 and 13,646 expressed genes in 

spermatogonia, pachynema/diplonema, round spermatids and sperm, respectively (table 8). 

Moreover, the number of expressed genes in the chromosome X is remarkably reduced from 

spermatogonia to pachynema/diplonema, as the number of expressed genes (CPM > 1) in the 

chromosome X of spermatogonia is 788 and in pachynema/diplonema 487 (-38.19%) (table 8). 

Table 8. Number of expressing genes considering all chromosomes, autosomal chromosomes, or chromosome X. 

Reduction percentages relative to the cell type located at the left side column are shown within parenthesis. 

Abbreviations: Sg – Spermatogonia; P/D – Pachynema/Diplonema; RS – Round Spermatids. 
 

Sg P/D RS Sperm 

All chromosomes 19,145 15,480 (-19.14%) 14,706 (-4.99%) 13,646 (-7.37%) 

Autosomes 18,355 14,992 (-18.32%) 14,225 (-5.11%) 13,263 (-6.76%) 

X chromosome 788 487 (-38.19%) 481 (-1.23%) 359 (-25.36%) 
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In all pairwise comparisons analysed, the vast majority of DEGs detected were protein-coding 

(supplementary tables 1-2). However, the prevalence of protein-coding genes was continuously 

reduced along spermatogenesis. The net balance in spermatogonia versus 

pachynema/diplonema, round spermatids versus sperm, and spermatogonia versus sperm 

suggests a decrease of protein-coding genes and an increase of non-coding genes such as 

lncRNA genes, antisense RNAs (asRNA) genes and pseudogenes (figure 19). The net balance in 

pachynema/diplonema versus round spermatids is negative in all gene biotypes, indicating a 

higher transcriptional activity in round spermatids than in pachynema/diplonema primary 

spermatocytes. The overall balance in spermatogenesis, considering spermatogonia (cell type at 

the beginning of spermatogenesis) and sperm (cell type at the end of spermatogenesis), genes 

more expressed in spermatogonia are 80.34% protein-coding and 13.17% non-coding while 

genes more expressed in sperm are 56.99% protein-coding and 36.74% non-coding. 

 

Figure 19. Balance of DEGs separated by biotype for each pair-wise comparison. It includes unannotated and 

unconfirmed genes, known protein-coding genes, pseudogenes, long noncoding RNA (lncRNA), and antisense RNA. 

Several of the DEGs detected in our study were identified as relevant in spermatogenesis. For 

instance, the up-regulated genes in spermatogonia relative to pachytene/diplotene Dmc1 and 

Tex15 (fold change of 2.26 and 1.04, respectively) are essential for the Double Strand Breaks 

(DSBs) repair produced in leptotene/zygotene stages of primary spermatocytes (Yang, et al. 

2008). The lncRNA Xist was also found among the up-regulated genes of spermatogonia relative 

to pachytene/diplotene (fold change of 1.64). Genes encoding synaptonemal complex proteins 

Sycp1, Sycp2 and Sycp3 were found as down-regulated in spermatogonia relative to 

pachynema/diplonema (fold-change of -0.47, -1.45 and -1.68, respectively). Also, acrosomal-

associated genes such as Spaca3, Spaca7 and Spaca9 start being increasingly expressed in 



 72 

 

round spermatids relative to pachynema/diplonema (fold changes of 0.79, 0.62, 1.48, 

respectively). More genes related to the Spaca family, which stands for Sperm Acrosome 

Associated, were found more expressed in round spermatids relative to sperm: Spaca1, Spaca3, 

Spaca4, Spaca5, Spaca6 and Spaca7 (fold changes of 2.39, 1.97, 1.98, 2.25, 1.15 and 0.78, 

respectively). In addition, the gene Zpbp (Zona Pellucida Binding Protein) is also more expressed 

in round spermatids relative to sperm (fold change of 1.22). In contrast, protamines Prm1, Prm2 

and Prm3 are more expressed in sperm than in round spermatids (fold change of 1.54, 1.61 and 

1.14, respectively). 

4.4 Discussion 

4.4.1 Development and applicability of the AIR platform 

The number of RNA-seq samples submitted to SRA increased from more than 200,000 to more 

than 400,000 in the last two years, suggesting (i) an upward trend in the usage of the RNA-seq 

technology and (ii) an increasing accumulation of raw RNA-seq sequencing data that might 

create a bottleneck for bioinformatics analyses (see section 1.2.2). This has motivated the 

development of different solutions to analyse RNA-seq data in the recent years (Kearse, et al. 

2012; Illumina, 2014; Malhotra, et al. 2017). Most of them are cloud-based systems, so 

hardware limitation is not a problem for the final user due to the computational power and 

storage are provided by Google Cloud, Amazon, Microsoft Azure, among others. However, 

current solutions for RNA-seq analyses have some limitations: (i) they require previous 

bioinformatics knowledge in order to select tools and tool-specific parameters, and (ii) they are 

limited to model species (table 9). In this sense, none of them is an end-to-end solution. 

Like most of the currently available solutions for RNA-seq analysis, the Artificial Intelligence 

RNA-seq (AIR) presented here is a cloud-based platform, thus being accessible and cross-

platform. In this way, the analyses are fast due to the fact that a computing instance with 

customized resources is exclusively opened for the user who, in turn, only requires a computer 

with enough computational resources to open a web browser (table 9). AIR also makes use of 

Docker containers, enhancing the reproducibility of bioinformatics analyses. However, AIR has 

been designed to be an end-to-end solution. On the one hand, users are not required to have 

previous informatics or bioinformatics knowledge due to the fact that analyses can be 

performed with few clicks on a web-based Graphical User Interface (GUI). On the other hand, 

there is no limitation in terms of choosing the genome as all sequenced organisms archived in 

Ensembl, NCBI and JGI are available in AIR (table 9). Considering that an end-to-end solution 

includes all stages of a process, we could say that AIR covers all stages of an RNA-seq analysis 
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from the input to the final result. No stage remains blocked due to lack of bioinformatics 

knowledge or working on non-model species. In this sense, AIR outperforms current RNA-seq 

solutions for non-bioinformaticians and scientist working on non-model species. 

In fact, since its initial release in 2017, 754 users have created an account in AIR and 155 

analyses have been performed on 46 different genomes. For instance, AIR has been already 

used to study obesity in humans (Gerlini, et al. 2018) and the expression changes after 

activating the transcription factor PPARγ also in human (Kim, et al. 2019). In this way, AIR is 

postulated as a highly valuable next-generation bioinformatics tool for RNA-seq data analysis, 

reaching in this case consistent results within short (a matter of few hours) timeframe. 

Table 9. AIR features compared with the most relevant software available for DGE analyses. Bold words show the most 

optimal implementation of the feature displayed in the first column. 

Software characteristics AIR 
Seven 

Bridges 
DNAnexus Genestack BaseSpace Galaxy Geneious 

Cloud-based Yes Yes Yes Yes Yes Yes No 

Dockers Yes Yes Yes Yes Yes Yes No 

Genomes available* Unlimited Limited Limited Limited Limited Limited Limited 

Computational resources Low Low Low Low Low Low High 

Speed of analysis Fast Fast Fast Fast Fast N/A** N/A** 

Previous bioinformatics 

knowledge 
No Yes Yes Yes Yes Yes Yes 

Previous informatics 

knowledge 
No No No No No Yes No 

End to end solution Yes No No No No No No 

* Unlimited: all genomes sequenced and available at the NCBI, Ensembl and JGI sites (currently > 150.000). Limited: 

only few genomes from model organisms or need to be provided by the user. 

** Not applicable: it highly depends on the computational resources available. 

4.4.2 Transcriptional profiling and differential expression analysis of germ cells 

In terms of applicability, AIR performance was validated taking advantage of RNA-seq data from 

mouse germ cells produced in our laboratory, including a total of 16 samples derived from four 

cell types involved in mouse spermatogenesis. It only took 5 hours and 48 minutes to process 

45 gigabytes of data, including trimming, mapping and statistical analysis with four statistical 

algorithms (DESeq2, edgeR, NOISeq and EBseq) and all possible pair-wise comparisons. The 

dynamic tables and plots generated by AIR allow fast data mining, thus minimizing human 

resources, boosting research and accelerating results. 

The fact that AIR includes four different statistical approaches allowed us to choose the most 

appropriate for the nature of the data. Being a dynamic biological process, germ cells presented 

high variability within conditions in the form of a poor clustering in the PCA (figure 18). This 
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might be indicative of having an unknown source of technical noise in the experiment 

(Tarazona, et al. 2013). Under these conditions, DESeq2, edgeR and EBseq performed poorly 

thus reporting a very low number of DEGs. In contract, NOISeq was able to correct the data for 

possible biases identifying this way a considerable number of DEGs. 

Spermatogenesis is a highly regulated process at both the transcriptional and post-

transcriptional levels (Bettegowda and Wilkinson, 2010; Hammoud, et al. 2014). Bivalent 

promoters (promoters with H3K4me3 and H3K27me3 histone modifications) are frequently 

observed in germ cells as part of the transcriptional regulation (Hammoud, et al. 2014). At the 

post-transcriptional levels, small non-coding RNA has been extensively studied in 

spermatogenesis, especially piRNA, which is required for transposon silencing (Fu and Wang, 

2014). Other small non-coding RNAs, such as miRNA and siRNA, are involved in the regulation of 

gene expression (Yadav and Kotaja, 2014; Hilz, et al. 2016). 

Our RNA-seq results revealed that the tendency along spermatogenesis is to reduce the 

expression of protein-coding genes in favour of genes that transcribe non-coding transcripts 

such as lncRNA, asRNA and pseudogenes. lncRNAs have been described as being involved in 

chromatin remodelling, transcriptional control and post-transcriptional processing (Mercer, et 

al. 2009; Barbosa Dogini, et al. 2014). Although the role of lncRNAs in spermatogenesis needs to 

be further investigated, several lncRNAs have been already identified as testis-specific (Hong, et 

al. 2018), involved in male germ cell development (Luk, et al. 2014) or involved in fertility (Wen, 

et al. 2016; Wichman, et al. 2017). Therefore, the progressive increase of lncRNAs along 

spermatogenesis might be indicative of potential functional roles. In addition, due to the fact 

that RNA was selected by the poly-A tail at the time to prepare the RNA-seq library, lncRNAs 

may even have even more relevance in spermatogenesis since they might have been 

underestimated due to the fact that most of them do not have the poly-A tail (Derrien, et al. 

2012; Zhao, et al. 2018). 

We also observed a decrease in the number of expressing genes during spermatogenesis, from 

19,145 genes detected in spermatogonia to 13,646 in sperm. It has been generally accepted the 

existence of two waves of active transcription during spermatogenesis: the first one before 

meiosis and the second one before spermiogenesis starting in primary spermatocytes (Sassone-

Corsi, 2002; de Mateo and Sassone-Corsi, 2014; da Cruz, et al. 2016). In this way, the first wave 

of active transcription in spermatogonia seems to promote the expression of a more variety of 

genes than the second one as the number of expressing genes is approximately 19,000 in 

spermatogonia and 15,500 in pachynema/diplonema. Interestingly, the reduction of the 
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expressing genes along spermatogenesis in chromosome X was sharper than in autosomes. In 

fact, the silencing of chromosome X has been described during meiosis I (Meiotic Sex 

Chromosome Inactivation, MSCI) (Turner, 2007; Yan and McCarrey, 2009). Remarkably, a 

substantial number of genes escaped global silencing in the X chromosome in primary 

spermatocytes (487 genes) and round spermatids (481 genes). 

A high number of meiosis-related genes are differentially expressed during the different steps of 

spermatogenesis. Briefly, at leptonema, the pairing and the alignment of homologous 

chromosomes is promoted and it is maintained by the synaptonemal complex (Zickler and 

Kleckner, 1999). Precisely, the synaptonemal complex proteins Sycp1, Sycp2 and Sycp3 were 

found more expressed in pachynema/diplonema than in spermatogonia. Also, at this step, DSBs 

are initiated and are required for recombination (Keeney, et al. 1997; Martinez-Garay, et al. 

2002). In these sense, important genes for DSBs such as Dmc1 and Tex15 were found more 

expressed in spermatogonia than in pachynema/diplonema. On the other hand, several Sperm 

Acrosome Associated (Spaca) genes are more expressed in round spermatids relative to the 

other steps of spermatogenesis. This gene family have roles in the binding of spermatozoa to 

the egg plasma membrane (Korfanty, et al. 2012). In addition, the gene Zpbp (Zona Pellucida 

Binding Protein), which is key for fertilization as participates in the interaction with the zona 

pellucida of the oocyte (Swegen, et al. 2018), is also more expressed in round spermatids 

relative to sperm. Therefore, round spermatids are already expressing genes that will be of 

essential importance in sperm. Finally, consistent with the replacement of histones by 

protamines during the spermiogenesis process (Balhorn, et al. 1984; Hud, et al. 1993; Johnson, 

et al. 2011), protamines Prm1, Prm2 and Prm3 were found more expressed in sperm than in 

round spermatids. 

Overall, our germ cell transcriptome analysis highlighted several DEGs that were consistent with 

the sequential development of spermatogenesis and the specific events being carried out in 

each cell type (e.g. the MSCI, the assembly of the synaptonemal complex or the DSBs). 

Moreover, the transformation of round spermatids into spermatozoa was accompanied by the 

transcription of genes related to spermiogenesis and sperm function. This agrees with the 

second wave of active transcription described in round spermatids (da Cruz, et al. 2016). 
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Chapter 5: Analysis of the structural organization of the mouse 

genome during spermatogenesis 

5.1 Introduction 

Mammalian genomes are packaged into a specifically tailored chromatin structure that consists 

of several superimposed layers of organization. These include chemical modifications on DNA 

and histones (the epigenome) and the high-order chromatin organization (the nucleome). This 

organisation is achieved by chromatin folding into loops, Topologically Associating Domains 

(TADs), and compartments (A and B), which ultimately can influence the transcriptional activity 

of genomic regions (Lieberman-Aiden, et al. 2009; Dixon, et al. 2012; Rao, et al. 2014) (see 

section 1.1.4). 

How these different levels of chromatin organization changes during the cell cycle has just 

begun to be elucidated (Dekker, et al. 2013). Studies in somatic cells have shown how the highly 

compartmentalized folding state of the genome in interphase is lost during mitosis (Naumova, 

et al. 2013; Gibcus, et al. 2018). But, despite the exciting recent advances in the field, the 

general picture of how mammalian genomes are packaged inside cells is incomplete. Even more 

fragmentary is our understanding of the heritability of genome organization. In this context, 

germ cells represent a unique cell model, where unipotent diploid cells undergo extensive 

cellular differentiation (meiosis) to form highly differentiated haploid cells that ultimately form a 

totipotent embryo after fertilization. In the case of mammalian males, germ cells are produced 

during spermatogenesis (figure 17). These sequential developmental stages involve dramatic 

and highly regulated chromosomal movements and chromatin remodelling, whose regulatory 

pathways are far from being understood. 

Spermatogenesis begins with the cell differentiation of Primordial Germ Cells (PGCs) to 

spermatogonia (Reig-Viader, et al. 2016). This transition is composed of different mitotic cell 

divisions yielding a pool of uncommitted spermatogonia (spermatogonia A) that differentiate 

into committed spermatogonia (spermatogonia B) that enter meiosis (Grisworld, 2016). Thus, 

spermatogonia differentiate into primary spermatocytes, which undergo both first (resulting in 

secondary spermatocytes) and second (resulting in round spermatids) meiotic divisions. Finally, 

round spermatids undergo spermiogenesis, a differentiation phase that involves an 

intermediate step (elongated spermatids) to become male gametes (spermatozoa) ready for 

fecundation (figure 17). 
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In detail, primary spermatocytes pass though different stages along prophase of meiosis I 

(prophase I): leptonema, zygonema, pachynema and diplonema (reviewed in Reig-Viader, et al. 

2016). It is in the primary spermatocytes at the leptotene stage (leptonema) where telomeres 

cluster at the nuclear envelope forming the so-called bouquet stage (Scherthan, et al. 1996; 

Reig-Viader, et al. 2016; Boateng, et al. 2013). This structure promotes the pairing and the 

alignment of homologous chromosomes, maintained by a protein structure called 

synaptonemal complex (Zickler and Kleckner, 1999). Also, at leptonema, DSBs required for 

recombination are initiated by the endonuclease protein SPO11 (Keeney, et al. 1997). DSBs are 

then repaired at the zygotene stage (zygonema), leading to synapses between homologous 

chromosomes. Subsequently, at pachytene stage (pachynema), the homologous chromosomes 

are fully synapsed, and recombination is resolved producing crossover (exchange of genetic 

material between two homologous chromosomes) and non-crossover events (repair of DSBs 

not resulting in exchange of genetic material between two homologous chromosomes) (Handel 

and Schimenti, 2010). At diplotene stage (diplonema), homologous chromosomes start to 

segregate by the disassembling the synaptonemal complex (Handel and Schimenti, 2010). After 

the first meiotic division, secondary spermatocytes, which are already haploid cells with two 

chromatids, are formed. They undergo the second meiotic division (meiosis II), resulting in 

round spermatids (haploid cells with one chromatid). Through spermiogenesis, round 

spermatids become first elongated spermatids and then motile sperm. This process includes 

changes in cell morphology and DNA packaging through the replacement of histones by 

protamines (Balhorn, et al. 1984; Hud, et al. 1993; Johnson, et al. 2011). 

How the higher-order chromatin organisation is configured in mammalian pre-meiotic, meiotic 

and post-meiotic germ cells and how it is related to gene expression still remains largely 

unexplored. Recent studies in mouse (Jung, et al. 2017; Ke, et al. 2017; Wang, et al. 2019; 

Alavattam, et al. 2019; Patel, et al. 2019) and macaque (Wang, et al. 2019) suggested the 

existence of a remarkable reprogramming of chromatin architecture during mammalian 

spermatogenesis and early embryogenesis. However, how the different levels of chromatin 

organization are configured during all stages of spermatogenesis and how it is related with gene 

expression remain unknown. In this sense, the main aim of this work is to elucidate the 

organization and function of the three-dimensional (3D) genome during mouse 

spermatogenesis. 
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5.2 Material and methods 

5.2.1 Material 

We took advantage of in situ Hi-C data produced in our lab (Vara and Paytuví-Gallart, et al. 

submitted) for the study of the high-order chromatin structure. This included six different highly 

enriched germ cell populations from adult mice (C57BL/6J strain) isolated by FACS: 

spermatogonia (two replicates), primary spermatocytes at pachytene/diplotene (P/D) stages 

(three replicates) and at leptotene/zygotene (L/Z) stages (one replicate), secondary 

spermatocytes (two replicates), round spermatids (two replicates), and sperm (two replicates) 

(figure 17). In addition, Hi-C data from a population of fibroblasts (two replicates) was also 

produced as a somatic profile. Briefly, Hi-C libraries were prepared by members of our research 

group using the in situ Hi-C protocol (Rao, et al. 2014). Pools containing between 1.7 and 113 

million cells were obtained by FACS. Sequencing of Hi-C libraries was carried out on a Hi-Seq 

2500 v4 (Illumina) to obtain an average of 247 million pair-end reads per sample. All replicates 

together summed more than 200 gigabytes in size and 3,400 million reads (table 10). 

5.2.2 Quality check of FASTQ data 

Sequenced raw data underwent a quality check and trimming step using BBDuk (version 

10/2015) (Bushnell, 2014). Setting a minimum read length of 35 bp and a minimum Phred 

quality score of 20, adapters and low-quality reads were removed while preserving their longest 

high-quality regions. 

5.2.3 Hi-C data processing, binning and normalization 

The workflow for Hi-C processing includes the following steps: (i) read mapping, (ii) fragment 

assignment, (iii) fragment filtering, (iv) binning, (v) bin level filtering, and (vi) balancing (figure 

20A). It begins with paired-end sequencing data that is aligned against the reference genome as 

if it was single-end data, mapping each mate forward and reverse separately (figure 20A - read 

mapping). Hi-C fragments are chimeric; therefore, some reads might have covered the junction 

site, thus being also chimeric (the 5’ and the 3’ portions of a read coming from different loci). As 

chimeric reads will not align on the genome, reads are first shortened by truncating them 

before mapping. Multi-mapped reads are made longer by extending them by few nucleotides 

and mapped again along different iterations (iterative mapping). The workflow continues 

assigning each read to a restriction fragment, as they can be inferred from the genomic 

sequence (figure 20A - fragment assignment). However, during the Hi-C library preparation, 

some artefacts can appear: (i) self-ligated fragments (“self-circles”), (ii) un-ligated fragments 

(“dangling ends”), (iii) fragments not derived from restriction sites (“internal fragments”), and 
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(iv) re-ligated adjacent fragments (“contiguous sequences”) (figure 20B). Reads derived from 

artefact fragments, from the PCR amplification step prior to sequencing (“PCR duplicates”) and 

located too far from a restriction site thus being inconsistent with the library insert size are 

removed (figure 20A - fragment filter). Valid reads are usually binned into fixed genomic interval 

sizes (from 40 Kbp to 1Mbp) leading to the creation of a square matrix that stores all bin-bin 

interactions (figure 20A - binning). Since some genomic regions have low mappability or high 

repeat content, rows/columns from the square matrix lying on these regions should be 

removed as they are source of noise (figure 20A – bin filtering). Finally, an iterative correction 

(also called “balancing”) is applied on the square matrix to correct any biases, such as the GC 

content, the mappability, or the number of fragments in each bin (Lajoie, et al. 2015; Ferhat and 

Noble, 2015). 

 

Figure 20. Overview of the Hi-C analysis workflow. (A) Workflow for Hi-C processing (adapted from Lajoie, et al. 2015). 

(B) Experimental artefacts that arise from the Hi-C library preparation (adapted from Wingett, et al. 2015).  

After the quality check of our Hi-C data (section 5.2.2), reads were processed with TADbit 

(version 0.2.0.23) (Serra, et al. 2017), which makes use of the GEM (version 1.7.1) mapper 

(Marco-Sola, et al. 2012) to iteratively map them against the mouse genome (version mm10). 
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Reads were mapped from 15 bp towards using a step size of 5 bp. The filters used to remove 

possible artefacts were the following: “self-circle”, “dangling-end”, “error”, “extra dangling-

end”, “too short”, “too large”, “duplicated”, and “random breaks”. The filter “error” removes 

reads coming from the same restriction fragment (like dangling-ends), but the forward and the 

reverse read map to the same strand. The filter “extra dangling-end” removes reads mapping 

on re-ligated adjacent fragments or contiguous sequences. The filters “too short” and “too 

large” removes those reads mapping on very short or very large restriction fragments. Finally, 

the filter “random breaks” remove those reads having a RE cutting site in a distance that is not 

consistent with the insert size distribution of the Hi-C library. The maximum molecule length 

parameter was set at 2 times the 99.9 percentile of the insert size distribution, returned by the 

“insert_size” function of TADbit. The maximum distance of a read to a cleavage site was set to 

the 99.9 percentile of the insert size distribution. 

An in-house Python script was used for binning and data normalization. This script imported the 

“HiC_data” function of TADbit, read the map files generated after the artefacts filtering step, 

bin the reads into a square matrix of 50 Kbp, and stored the matrix into a file in NPZ format (raw 

matrix). Afterwards, HiCExplorer (version 1.8.1) (Ramírez, et al. 2018) was used to correct the 

raw matrix with the ICE (Iterative Correction and Eigenvector decomposition) approach the 

resulting matrix, setting a maximum number of iterations of 500. 

5.2.4 Correlation coefficient analysis 

In order to validate the reproducibility of the Hi-C replicates, pairwise comparisons between 

biological replicates were performed using HiCRep (version 1.4) (Yang, et al. 2017) under a 

smoothing parameter of 5 and a considered distance over 10 Mbp. Since HiCRep only handles 

intra-chromosome raw matrices, each pair-wise comparison yielded 20 correlation scores (19 

autosomal chromosomes and the sex chromosome X). The correlation between two replicates 

was defined as the mean of the 20 correlation scores. 

5.2.5 Inter-chromosome and intra-chromosome interaction ratio 

ICE-normalised data stored in matrices were exported with HiCExplorer to the GInteractions 

format, which consists of 7 columns: chromosome, start and end from bin 1, chromosome, start 

and end from bin 2, and the amount of interaction. The GInteractions tables were imported in R 

for further quantification of intra-chromosome and intra-chromosome interactions and plotting. 
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5.2.6 Inter-subcentromeric interaction quantification 

ICE-normalised matrices were scaled with a factor of 1,000,000/sum(matrix) and exported with 

HiCExplorer to GInteractions format. The GInteractions tables were imported in R for this inter-

telomere interaction quantification. Since the telomeric and centromeric regions (annotated 

from the beginning of each chromosome to 2.9 Mbp according to the UCSC Table Browser) 

were masked due to the low-count filtering step prior to ICE normalization, we only considered 

inter-chromosome interactions between loci located within genomic positions 3 to 3.5 Mbp in 

each chromosome. Differences in the subcentromeric interaction frequencies between cell 

types were assessed with the Wilcoxon test. 

5.2.7 Distance-dependent interaction frequency 

The contact probability as a function of genomic distance, P(s), measures the probability of 

interaction between loci at a given distance. In this sense, ICE-corrected matrices were scaled 

with a factor of 1/sum(matrix). The resulting matrices were then input to “hicPlotDistVsCounts” 

from the HiCExplorer package in order to obtain the P(s). 

5.2.8 Simulation of somatic contamination in sperm samples 

In order to validate our enriched sperm population, we simulated six Hi-C sperm datasets of 100 

million reads with different proportions, from 0 to 100% by steps of 20%, of fibroblast reads. 

Both sperm and fibroblasts reads were derived from our generated libraries. Previously 

published data on sperm (SRR3225862 and SRR3225863 accessions from Jung, et al. 2017) were 

also downloaded from NCBI SRA database. These datasets underwent a quality check, Hi-C data 

processing, binning and normalization steps (see section 5.2.2). The resulting raw Hi-C matrices 

were used for correlation coefficient analysis while the ICE-normalised matrices were used to 

calculate the averaged contact probability P(s) (see section 5.2.4). 

5.2.9 A/B compartments and TADs calling 

Raw matrices were used for the definition of A/B compartments. Columns with a low number of 

counts were filtered out using TADbit, setting the parameter “min_count” to 10. Since TADbit 

fits the column count distribution into a polynomial distribution, columns with a number of 

counts smaller than the first antimode of the distribution, which cannot be smaller than the 

min_count parameter, are filtered out. Then, genome-wide matrices were normalized by the 

expected interactions at a given distance and by visibility by means of one iteration of the ICE 

method. The correlation analysis was also performed with TADbit thus getting the first 5 

eigenvectors. In-house scripts computed A/B compartments generally from the first eigenvector 



 85 

 

(with the exception of P/D), using 0 as threshold to differentiate both compartments and the 

gene density to label them. In the case of P/D, all 5 eigenvectors were examined visually in 

order to select one of them for each chromosome. By convention, eigenvector values belonging 

to compartment A were forced to be positive values and eigenvector values belonging to 

compartment B were forced to be negative values. 

TADs were identified using an in-house script that imported the “Chromosome” module of 

TADbit and using the raw and the ICE-normalised matrices as input, each chromosome 

separately. Filtered bins due to low count were considered in order to mask those regions at the 

time to call TADs. 

TAD signal is referred to the insulation score, defined as the average of interactions in a sliding 

window diamond along the matrix diagonal (Lajoie, et al. 2015). In this context, TAD signals for 

each cell type were obtained by first normalizing the different matrices in terms of number of 

reads. Each matrix was then scaled with a factor of 100,000,000/sum(matrix) by means of a 

custom script. Afterwards, TAD signals were obtained from the output given by the 

“hicFindTADs” program from HiCExplorer. 

5.2.10 Compartment switching 

BED files with a resolution of 50 Kbp were available from the A/B compartments calling step 

(see section 5.2.7). Each genomic bin of 50 Kbp had its corresponding compartment attributed. 

Pairwise comparisons between cell types (genome-wide and per-chromosome) were 

performed; the ratio of compartment switching was calculated as the number of genomic bins 

with a compartment change (A>B or B>A) divided by the total number of bins. From these files, 

a matrix was created with 50 kbp-binned genomic coordinates as rows and cell types as 

columns, filled by the corresponding compartment labelling in each bin and cell type. Cell-

specific A compartments were defined as those bins being compartment A in a cell type and 

compartment B in the remaining cell types. 

5.2.11 Compartments and gene expression relationship 

Compartments A and B of each cell type were intersected with BEDTools (version 2.26) against a 

BED file with the TSS of genes derived from the GRCm38 gene annotation from Ensembl 

(release 89). Genes in each compartment were grepped (Bash command) with the table of 

FPKM values downloaded from AIR (see chapter 4), generating the expression profiles 

represented as boxplots for each cell type and compartment. Statistical significance among 

pairwise comparisons was tested using the Wilcoxon test using a p-value threshold of 0.05. 
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5.2.12 HiCloud genome browser 

HiCloud is a user-friendly tool developed within the framework of this thesis to visualize and 

integrate Hi-C data with other epigenetic features into a genome browser in order to browse 

the results all encapsulated into a unique single place. HiCloud uses technologies such as 

NodeJS in the back-end and HTML/CSS in the front-end and takes advantage of HiCExplorer to 

generate the graphical output (supplementary figure 30). 

5.3 Results      

5.3.1 Quality metrics and correlation coefficient analysis 

After quality-trimming, we detected that on average, no more than 5% of reads were lost (table 

10; supplementary table 3). Then, quality-trimmed reads were mapped, obtaining an average 

mapping efficiency (forward and reverse reads uniquely mapped) of 72.1%. These reads were 

subsequently filtered to remove Hi-C artefacts, such as duplicates (9.8%), reads mapping in very 

short restriction fragments (“too short”) (5.8%), dangling-ends (3.8%) and extra dangling-ends 

(3.8%) the greatest sources or artefacts (table 10; supplementary table 3). Interestingly, the 

average of dangling-ends in all samples but round spermatids was 1.8% while in round 

spermatids alone was 15.8%. After the artefact removal step, an average of 265 million of 

paired-end reads was obtained per cell type (table 10, supplementary table 3). 

Table 10. Hi-C quality metrics per cell type. It includes the number of reads before and after quality check and 

trimming, the number of reads that mapped once in the genome (uniquely mapped), the percentage of reads 

classified as artefacts (see section 5.2.3), and the final number of valid reads. Legend: Fib: fibroblast; Sg: 

spermatogonia; L/Z: leptonema/zygonema; P/D: pachynema/diplonema; SpII: secondary spermatocytes; RS: round 

spermatids. 

INFO PER CELL 

TYPE 
Fib Sg L/Z P/D SpII RS Sperm 

Raw read pairs 500514408 1428752701 225472936 761934779 444722954 494535554 1128671379 

Trimmed read 

pairs 
486002613 1366310545 216917242 724352845 423752920 471961823 1087438630 

Uniquely 

mapped read 

pairs 

346917699 387340642 158331725 522268513 314131439 335780080 324425739 

Self-circle (% 

relative 

uniquely 

mapped) 

0.12 0.17 0.11 0.20 0.19 0.30 0.09 

Dangling-end 

(% relative 

uniquely 

mapped) 

1.72 0.33 0.06 3.25 2.07 15.84 0.26 

Error (% 

relative 
0.86 0.03 0.03 0.77 1.23 3.55 0.03 



 87 

 

uniquely 

mapped) 

Extra 

dangling-end 

(% relative 

uniquely 

mapped) 

3.03 3.58 4.95 4.24 2.68 6.40 4.15 

Too short (% 

relative 

uniquely 

mapped) 

5.56 6.97 6.55 5.85 4.90 6.43 5.50 

Too large (% 

relative 

uniquely 

mapped) 

0.01 0.00 0.00 0.00 0.00 0.01 0.00 

Duplicated (% 

relative 

uniquely 

mapped) 

4.74 8.34 3.98 8.94 12.65 16.03 5.87 

Random 

breaks (% 

relative 

uniquely 

mapped) 

0.38 0.14 0.01 0.60 0.34 2.75 0.16 

Total valid 

read pairs 
293977083 316529749 134826221 411123699 244223890 189129404 276055642 

Total valid (% 

relative to 

Raw) 

58.73 22.15 59.8 53.96 54.92 38.24 24.46 

Total valid (% 

relative to 

Trimmed) 

60.49 23.17 62.16 56.76 57.63 40.07 25.39 

Total valid (% 

relative to 

Mapped 

uniquely) 

84.74 81.72 85.15 78.72 77.75 56.33 85.09 

As we analysed different replicates per cell type (excluding leptonema/zygonema), we 

calculated pairwise correlation scores among them with the aim to assess the reproducibility of 

the Hi-C data generated. Pairwise correlation coefficients showed high correlation scores 

(between 0.82 and 0.98), thus validating our results (figure 21). Among cell types, primary 

spermatocytes at pachynema/diplonema stage showed high correlation values (between 0.82 

and 0.86) with primary spermatocytes at leptonema/zygonema stage, suggesting similarities in 

the higher-order chromatin structure during prophase I. The correlation between round 

spermatids and secondary spermatocytes was also high (>0.90). 
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Figure 21. Heatmap with correlation values among replicates. It is based on the pairwise similarity score calculated 

using HiCRep. Legend: Fib: fibroblast; Sg: spermatogonia; L/Z: leptonema/zygonema; P/D: pachynema/diplonema; 

SpII: secondary spermatocytes; RS: round spermatids; rep1: replicate 1; rep2: replicate 2. 

5.3.2 The higher-order chromatin structure along spermatogenesis 

Once the reproducibility of the Hi-C data was confirmed, interaction matrices from replicates 

from the same cell type were merged thus obtaining a more representative interaction matrix 

for each cell type. From these matrices, genome-wide heatmaps were created at 500 Kbp 

resolution and per-chromosome heatmaps at 50 Kbp resolution (supplementary figures 1-8). 

Genome-wide heatmaps show the interaction pattern among different chromosomes while per-

chromosome heatmaps show the interaction pattern within the same chromosome. 

5.3.2.1 Inter-chromosome and intra-chromosome interaction ratio 

Genome-wide Hi-C heatmaps reveal certain chromosome organisation patterns. That is, there is 

higher interaction frequency between pair of loci from the same chromosome than between 

pair of loci from different chromosomes (Lajoie, et al. 2015). Interactions within the same 

chromosome are called intra-chromosome interactions while interactions between 
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chromosomes are called inter-chromosome interactions. In this sense, we quantified the ratio 

of interchromosome and intrachromosome interactions for each chromosome and cell type to 

interrogate whether chromosomes have different interaction patterns. 

The inter/intra-chromosome interaction ratio was below one in all chromosomes of all cell 

types with the exception of chromosome 19 in fibroblast and the vast majority of chromosomes 

in sperm, meaning that these chromosomes have more inter-chromosome interactions than 

intra-chromosome interactions. In addition, an upward tendency was shown in the autosomal 

chromosomes of fibroblasts, spermatogonia, round spermatids and sperm as the inter/intra-

chromosome interaction ratio slightly increased with the chromosome number and, therefore, 

with the chromosome size (figure 22). In contrast, the ratio in chromosome X was remarkably 

reduced, in comparison with similar-size autosomal chromosomes, in round spermatids, sperm 

and, more weakly, in pachynema/diplonema. In all chromosomes in leptonema/zygonema and 

in all autosomes in pachynema/diplonema, the ratio of inter/intra-chromosome interactions 

remained stable across all chromosomes. 

 

Figure 22. Inter-chromosome/intra-chromosome interaction ratio for each chromosome and cell type. Legend: Fib: 

fibroblast; Sg: spermatogonia; L/Z: leptonema/zygonema; P/D: pachynema/diplonema; RS: round spermatids. 

5.3.2.2 Distance-dependent interaction frequency 

The amount of interaction between a pair of loci located in the same chromosome depends on 

the genomic distance between them. Nearby loci are more likely to interact; thus, the amount 

of interaction decreases when the genomic distance between two loci increases (Lieberman-

Aiden, et al. 2009; Lajoie, et al. 2015). However, the strength of this interaction decrease is 
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related with chromosome organization. Lieberman-Aiden and colleagues described a lineal 

decrease of interactions between distances from 500 Kbp to 7Mbp with a slope of -1.08 

(Lieberman-Aiden, et al. 2009). This slope was compared with the slopes given by two different 

polymeric models: (i) the “fractal” globule, which represents a self-organized polymer with a 

long-lived and non-equilibrium conformation, and (ii) the “equilibrium” globule, which 

represents a polymer with a densely knotted conformation. Since the “fractal” and the 

“equilibrium” models showed slopes of -1 and -3/2, respectively, the “fractal” globule was 

considered to be a more suitable model for chromatin organization during interphase 

(Lieberman-Aiden, et al. 2009; Mirny, 2011). 

The average intrachromosomal contact probability as a function of genomic distance, P(s), was 

investigated as a way to analyse whether the dynamics of the higher-order chromatin structure 

during spermatogenesis was also translated into differences in levels of chromosome 

organisation. Firstly, we computed the contact probability as a function of genomic distance P(s) 

(figure 23A). In general terms, all cell types appear to follow the same pattern at shorter 

distances (below 0.5 Mbp). In contrast, at medium distances (from 0.5 to 7 Mbp), the decay in 

the interaction of loci is slower in primary spermatocytes, followed by the group of cells 

composed of secondary spermatocytes, round spermatids and sperm. The group of cells 

composed of fibroblasts and spermatogonia has the fastest interaction decay at these 

distances. However, at long distances (above 7 Mbp), fibroblasts and spermatogonia show the 

slowest decay, suggesting that interaction of loci separated by long distances is maintained. 

Primary spermatocytes show an abrupt drop in the interaction of loci at long distances. 
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Figure 23. Intra and inter-chromosomal contacts. (A) Contact probability as a function of genomic distance P(s) for 

fibroblasts and the different germ cell types. Discontinuous straight lines correspond to the fractal (green) and 

equilibrium (red) models. Grey-shadowed area expands the genomic region from 0.5 to 7 Mbp. (B) Inter-

chromosomal interactions between mouse chromosomes 1 and 2 in leptonema/zygonema and 

pachynema/diplonema stages. Dotted-white boxes show high contact regions. (C) Boxplots showing inter-

chromosomal interactions (CPM) in subcentromeric regions (from 3000 to 3500 Kbp) among all cell types analysed. 

(D) Boxplots showing inter-chromosomal interactions (CPM) in subcentromeric regions (3000-3500 Kbp) among all 

cell types analysed. Inter-subcentromeric interactions in L/Z and RS were significantly higher relative to fibroblast 

(Wilcoxon test, p-value < 2.2e-16). Legend: Fib: fibroblast; Sg: spermatogonia; L/Z: leptonema/zygonema; P/D: 

pachynema/diplonema; RS: round spermatids. 

Specifically, fibroblasts and spermatogonia, both being in interphase stage, shared a similar 

contact probability P(s) patterns with slopes from 0.5 to 7 Mbp of -1.20 (r2 = 0.99) and -1.03 (r2 

= 0.99), respectively (figure 23A). However, at the genomic distance of 10 Mbp, fibroblasts 

presented a slighted change in the slope by lowering the amount of interactions at longer 
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distances whereas spermatogonia maintains the slope up to 100 Mbp distance. On the other 

hand, prophase I cells display two abrupt changes in slopes; the first one between 2.5 and 4.5 

Mbp and the second one at 40 Mbp (figure 23A). The former slope change makes prophase I 

cells not to fit with the power-law decay described by Lieberman-Aiden, et al. (2009) between 

distances from 0.5 to 7 Mbp, so the slopes were calculated from 0.5 to 2.5 Mbp for L/Z (slope = 

-0.51, r2 = 0.99) and from 0.5 - 4.5 Mbp for P/D (slope = -0.60, r2 = 0.99). This pattern resembles 

what it has been previously reported for the mitotic chromosome (slope = 0.5; Naumova, et al. 

2013). Specifically, the change in the slope observed in the meiotic chromosome between 2.5 - 

4.5 Mbp preceded by a rapid fall-off resembles the drop of the P(s) curve recently described at 

2 Mbp in prometaphase cells (Gibcus, et al. 2018). In case of secondary spermatocytes, round 

spermatids and sperm, they shared a similar contact probability P(s) patterns with slopes from 

0.5 to 7 Mbp of -0.89 (r2 = 0.98), -0.96 (r2 = 0.98) and -0.92 (r2 = 0.98), respectively (figure 23A). 

Remarkably, the presence of enriched inter-chromosomal contacts between telomeres in both 

leptonema/zygonema and pachynema/diplonema stages, being more prominent in the former, 

was observed (figure 23B). In order to know whether this observation was statistically 

significant, we quantified the number of counts between bins with the same start coordinates 

at the subcentromeric regions from different chromosomes in fibroblast, leptonema/zygonema, 

pachynema/diplonema and round spermatids (figure 23C). Especially leptonema/zygonema but 

also round spermatids presented a significantly higher amount of interaction (Wilcoxon test, p-

value < 0.05) when compared to fibroblast (figure 23D). 

5.3.2.3 Genomic compartments  

Compartments belong to the sub-chromosome organization scale and consists of alternated 

genomic regions of “open” and “closed” chromatin states termed “A” and “B”, respectively.  On 

the one hand, compartments A are correlated with histone modifications that characterize 

accessible chromatin, such as H3K9ac, H3K27ac, H3K36me3, or H3K4me3 (Barski, et al. 2007; 

Araki, et al. 2009). On the other hand, compartments B are correlated with histone 

modifications associated to “closed” chromatin states, such as H3K27me3 or H3K9me3 (Barski, 

et al. 2007; Araki, et al. 2009). In this sense, the definition of compartments might provide 

insights into the chromosome organization changes and their functional roles during 

spermatogenesis. 

Looking at the chromosome-specific interaction heatmaps, plaid patterns, which are indicative 

of the presence of A/B compartments, were well defined in the case of fibroblasts and 

spermatogonia (figure 24A-B; supplementary figures 2-3). On the contrary, such patterns were 
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mainly lost in primary spermatocytes, especially in leptonema/zygonema (figure 24C-D; 

supplementary figures 4-5). Precisely, leptonema/zygonema correspond to initial stages of 

meiotic prophase I, where homologous chromosome condensate, align, pair and synapse. In the 

case of secondary spermatocytes, round spermatids and sperm, they show a blurry-like plaid 

pattern suggesting an intermediate status between fibroblasts and leptonema/zygonema 

(figure 24E-F; supplementary figures 6-8). 

Changes in chromosome conformation were also evident when analysing the dynamics of 

compartment profiles using the eigenvector decomposition (Imakaev, et al. 2012) (figure 25A-

B). The eigenvector values showed blocks of contiguous positive and negative values in both 

fibroblasts and spermatogonia, showing the presence of compartments in these cell lines. 

Nevertheless, at the beginning of prophase I, the eigenvector values were close to 0 in 

leptonema/zygonema stage, consistent with an absence of compartments. Compartments 

appear again in the late prophase I, where the synaptonemal complex unassemble, as the 

eigenvector in pachynema/diplonema shows again blocks of contiguous positive and negative 

values (figure 25A). Nevertheless, unlike fibroblasts and spermatogonia, the first eigenvector did 

not represent compartments in the vast majority of chromosomes in pachynema/diplonema. In 

the case of round spermatids and sperm, the first eigenvector was consistent with the presence 

of compartments (figure 25A-B). 
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Figure 24. Chromosomal organization during in interphase, pre-meiotic, meiotic and post-meiotic cells. Genome-wide ICE-corrected heatmaps at 500 kbp and chromosome 8 region-specific ICE-

corrected heatmaps at 50 kbp with TAD and compartment signal (eigenvector values) for (A) fibroblast, (B) spermatogonia, (C) leptonema/zygonema (L/Z), (D) pachynema/diplonema (P/D), (E) 

round spermatids, and (F) sperm. 
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Figure 25. Sub-chromosome organization scale and eigenvector decomposition. (A) Representation of compartment 

signal (eigenvector values) across mouse chromosome 18 in all cell types. (B) Density plots representing eigenvector 

values for each cell type, considering all chromosomes but sex chromosomes. (C) Pair-wise representation of 

eigenvectors between cell types genome-wide. Each dot represents a 50Kbp bin in the genome. Bins representing A 

compartment conservation are depicted in red, whereas in blue are depicted bins with B compartment conservation. 

Bins with unclear signal or compartment switching are represented in grey. The purple line is a LOESS curve showing 

the tendency of the compartment switching. R-squared correlation values are represented for each pairwise 

comparison. Legend: Fib: fibroblast; Sg: spermatogonia; L/Z: leptonema/zygonema; P/D: pachynema/diplonema; SpII: 

secondary spermatocytes; RS: round spermatids. 

Apart from leptonema/zygonema, the remaining cell types analysed showed 

compartmentalization. In this sense, regression analyses among the eigenvectors of cell types 

were carried out as a way to test the degree of compartment conservation during 

spermatogenesis (figure 25C). R-squared values from linear regressions were particularly high in 

the case of secondary spermatocytes versus round spermatids (r2=0.93), denoting very high 

degree of compartment conservation. R-squared values were also high in round spermatids 

versus sperm (r2=0.80). In the case of fibroblast, the R-squared value versus spermatogonia 

showed a remarkable compartment conservation (r2=0.71). Nevertheless, as spermatogenesis 

progresses, the degree of compartment conservation in fibroblast versus 
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pachynema/diplonema, round spermatids, and sperm decreases considerably (r2=0.26, r2=0.48, 

and r2=0.39, respectively). Finally, as expected due to the absence of compartments (figure 

25A), the eigenvector of leptonema/zygonema has no correlation with either fibroblast or 

pachynema/diplonema (r2=0). 

5.3.2.4 Topologically associating domains 

While compartments denote the chromosome organization at the megabase scale, the 

organization at the sub-megabase scale is revealed by the presence of TADs (Sexton, et al. 2012; 

Dixon, et al. 2012). TADs represent loop-like structures of several kilobases in size with elevated 

interaction frequencies between loci located within the same TAD, where promoter-enhancer 

contacts take place (Lajoie, et al. 2015). To further investigate the dynamics of the higher-order 

chromatin structure during spermatogenesis at the sub-megabase scale, we analysed TAD 

insulator scores (TAD signal), TADs size and the robustness of TAD boundaries. 

We first quantified the TAD signal as insulation scores in all cell types (figure 26A). In fibroblasts 

and spermatogonia, the TAD signal was highly variable thus indicating the presence of these 

structures (figure 26A-B). In contrast, consistent with the A/B compartment patterns, we 

detected a substantial reduction in the variance of the TAD signal in leptonema/zygonema 

(figure 26B). The TAD signal slightly recovered in pachynema/diplonema, secondary 

spermatocytes and round spermatids, but was drastically reduced in sperm (variance of TAD 

signal close to 0). Hi-C heatmaps focused on specific genomic regions confirm these patterns 

(supplementary figures 9-15). 

 

Figure 26. Sub-megabase organization scale and TAD signal. (A) Representation of the TAD signal (insulation score) 

across mouse chromosome 18 in all cell types. (B) Variance of the TAD insulation scores in all cell types, considering 

all chromosomes but sex chromosomes. The Kruskal-Wallis statistical test reveals TAD signal variances are different 

among the cell types analysed (p-value < 2.2e-16). Legend: Fib: fibroblast; Sg: spermatogonia; L/Z: 

leptonema/zygonema; P/D: pachynema/diplonema; SpII: secondary spermatocytes; RS: round spermatids. 
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The extreme reduction of the TAD signal observed in sperm cells differed from what has been 

previously described in the literature, in which the presence of TADs in sperm has been 

reported (Ke, et al. 2017; Jung, et al. 2017; Wang, et al. 2019). To further validate the pattern 

observed in our enriched sperm population, we simulated Hi-C datasets derived from sperm 

including different proportions (from 0 to 100%, by steps of 20%) of reads from fibroblast Hi-C 

libraries in order to test whether the patterns observed previously (Ke, et al. 2017; Jung, et al. 

2017; Wang, et al. 2019) are due to the presence of somatic contamination. Our sample 

containing 100% sperm showed a very distinct pattern with those samples containing some 

percentage of fibroblast reads (figure 27). The sample SRP071784 (retrieved from Jung, et al. 

2017) has the highest correlation (0.72) with the simulated sample with 20% sperm and 80% 

fibroblast or 40% sperm and 60% fibroblast (figure 27A). In addition, the contact probability as a 

function of genomic distance shows that the pattern of sample SRP071784 is much more similar 

to fibroblast than to sperm (figure 27B). Also, Hi-C heatmaps show that a minority of fibroblast 

reads in a sperm sample dramatically disrupts the interaction pattern (figure 27C). Therefore, 

these results suggest the sample SRP071784 is much more similar to our fibroblast data than to 

our sperm data. 
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Figure 27. Simulations of samples with different fibroblast and sperm content. (A) Heatmap showing correlation 

values, based on the pairwise similarity score calculated using HiCRep, among samples with different fibroblast and 

sperm content as well as the merged sperm replicates from SRP071784. (B) Contact probability as a function of 

genomic distance for samples with different fibroblast and sperm content as well as the merged sperm replicates 

from SRP071784 (retrieved from Jung, et al. 2017). (C) Chromosome 8 region-specific ICE-corrected heatmaps at 50 

kbp for samples with different fibroblast and sperm content as well as the merged sperm replicates from SRP071784. 

In terms of the number of TADs, TADbit identified a total of 2,002 TADs with an average length 

of 1.3 Mbp in fibroblasts, a number slightly higher than in spermatogonia (834 TADs, mean size 

of 3.26Mbp) (figure 28; supplementary table 4). Although the total number of TADs was 

dramatically reduced in primary spermatocytes (305 TADs in L/Z and 294 TADs in P/D), the 

strength score of TAD boundaries was extremely high (74.25% and 79.59% of TADs with scores 

between 10 and 9 in L/Z and P/D, respectively, an indicator of a high confidence in the 

prediction (supplementary table 4). This pattern contrasted with secondary spermatocytes and 
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round spermatids; both cell types presented large numbers of small TADs but low boundaries 

scores (figure 28; supplementary table 4). 

 
Figure 28. TAD border alignment in chromosome 18 (70-90 Mbp) between all cell types. Dark and grey arches 

represent TADs with higher and lower than expected intra-TAD interactions, respectively. TAD border robustness 

(from 1 to 10) is represented by a colour gradient. 

5.3.4 Functional compartment switching during spermatogenesis 

As detailed above, we detected changes in genome organization during spermatogenesis at 

different levels: (i) different inter-/intra-chromosome interaction patterns (see 5.3.2.1), (ii) 

distance-dependent interaction frequencies (see section 5.3.2.2), (iii) genomic compartments 

(see section 5.3.2.3), and (iv) TAD signal and number of TADs (see section 5.3.2.4). Also, the 

analysis of RNA-seq data showed that germ cells presented different transcriptional profiles 

(see chapter 4). In the light of these observations and considering that compartments A have 

been described to be associated with open chromatin state regions (Lieberman-Aiden, et al. 

2009), we integrated gene expression with cell-specific A compartments as a way to investigate 

the relationship between 3D structure and function during spermatogenesis. 
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5.3.4.1 Insights on compartment switching and gene expression 

We first quantified the percentage of genome labelled as compartment A in each cell type and 

then we analysed compartment switching during spermatogenesis (figure 29). The proportion 

of the mouse genome organised in compartments A was 45.68% in fibroblast, reduced in 

spermatogonia (39.36%) to raise again in round spermatids (46.94%) and sperm (48.64%). In 

terms of compartment switching, 13.9% of compartments change from A to B or from B to A 

between fibroblasts and spermatogonia, 22.8% between spermatogonia and 

pachynema/diplonema, 24% between pachynema/diplonema and secondary spermatocytes, 

6.3% between secondary spermatocytes and round spermatids, and 11.28% between round 

spermatids and sperm. 

 
Figure 29. Alluvial plot showing the global dynamics of A/B compartment switch during spermatogenesis. Each line 

represents a 50 kbp bin in the genome. Legend: Fib: fibroblast; Sg: spermatogonia; L/Z: leptonema/zygonema; P/D: 

pachynema/diplonema; SpII: secondary spermatocytes; RS: round spermatids; N/A: not assigned. 

RNA-seq data generated from spermatogonia, pachynema/diplonema, round spermatids and 

sperm (see chapter 4) was then integrated with compartments assignment. To this aim, raw 

expression values from AIR were downloaded and converted to Counts Per Million (CPM). Since 

the X chromosome behaved in a different way than autosomes in terms of inter-

chromosome/intra-chromosome interaction ratio, we performed the following analyses 

considering autosomes and the X chromosome separately.  

Consistent with the presence of a relationship between chromatin remodelling and active 

transcription, genes located in compartments A were significantly more expressed than those in 

B compartments across all cell types in autosomal chromosomes (Wilcoxon test, p-value < 2.2e-

16) (figure 30). This pattern was also confirmed for chromosome X in spermatogonia (Wilcoxon 

test, p-value < 6.9e-16). Nevertheless, there was no significant differences in gene expression 
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between compartments A and B in chromosome X in pachynema/diplonema, round spermatids 

and sperm (Wilcoxon test, p-value > 0.05). 

 
Figure 30. Box plots representing gene expression in autosomal chromosomes and chromosome X according to A/B 

compartment assignment. Differences in gene expression were assessed between compartments A and B with the 

Wilcoxon test. A compartments in autosomal chromosomes and the X chromosome in spermatogonia showed 

statistically significant differences (p-value < 6.9e-16). Legend: Sg: spermatogonia; P/D: pachynema/diplonema; RS: 

round spermatids; N/A: not assigned. 

In searching for transcriptional signatures of compartment switching during spermatogenesis, 

we first identified cell-specific A-compartments (regions labelled as compartment A in a cell 

type and labelled as compartment B in the remaining cell types). The cell type with more 

extension of A-specific regions was pachynema/diplonema with 306 Mbp (8.7% of the genome). 

This was followed by round spermatids with 108.2 Mbp (3.1% of the genome) (table 11). 

Table 11. Description of the A-specific regions in the four cell types analysed by RNA-seq. It includes genomic extension 

and the number of expressed genes. Legend: Sg: spermatogonia; P/D: pachynema/diplonema; RS: round spermatids; 

germline: includes A compartment regions in Sg, P/D, RS and sperm but classified as B compartment in fibroblast. 

Cell type Genomic extension (Mbp) Number of expressing genes Ratio of expressing protein-coding genes 

Germline 21.75 160 0.75 

Sg 9 43 0.74 

Sg + P/D 5.45 14 0.92 

P/D 306 330 0.55 

P/D + RS 57.2 147 0.59 

RS 108.2 196 0.59 

RS + Sperm 37.95 200 0.52 

Sperm 57.15 154 0.55 

Subsequently, the number of expressing genes (CPM > 1) in A-specific regions was assessed 

(table 11). The number of genes involved in these regions ranges from few tens to few 

hundreds depending on the cell type. Interestingly, as observed in section 4.3.3.2, the ratio of 
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protein-coding genes is higher in A-specific regions where spermatogonia is involved (> 0.74) 

while in the other cell types the ratio is lower (< 0.60). 

5.3.4.2 Functional signatures of compartment switching 

The expressing genes involved in compartment A-specific regions were considered for GOEA in 

order to identify functional signatures during spermatogenesis. Several GO terms related to 

morphogenesis and cell differentiation were enriched with statistical significance in all cell types 

excluding sperm: “anatomical structure formation involved in morphogenesis, GO:0048646” 

and “anatomical structure morphogenesis, GO:0009653” (figure 31; supplementary table 5). In 

these GO terms, we found genes such as Mpp5. In addition, in all cell types, including sperm, 

the gene Stag3, involved in “cellular process involved in reproduction in multicellular organism, 

GO:0022412”, specifically in “male meiosis sister chromatid cohesion, GO:0007065”, was 

identified. The gene Immp2l was also found, involved in “response to stress, GO:0006950”. 

Finally, several genes belonging to the enriched GO category, “catabolic process, GO:0009056”, 

specifically “aggrephagy, GO:0035973” were described. 

Specifically, in spermatogonia, we found the genes Gm1993 and Gm5169, which are involved in 

the “synaptonemal complex, (GO:0000795)” under the GO term “cell cycle, GO:0007049”. The 

gene Klhl13 is also being involved in the mitotic cell division of the cell. On the other hand, the 

gene Pot1A was found under the GO term “regulation of molecular function, GO:0065009”. 

Pot1A is part of the telomere shelterin complex. The gene Diaph2 was also identified among the 

A-specific expressed genes in spermatogonia. 
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Figure 31. Bubble plot of the significant enriched GO terms from the GOEA analysis. GO terms are summarized up to the level 3 (GO terms with 2 parents). The size of the bubble is related with 

the number of genes having the corresponding GO term. The colour of the bubble depends on the enrichment score (enrichment scores higher than 10 are set to 10). For a proper visualization, 

GO terms with 1 gene were hidden from the figure. Detailed information is available at the supplementary table 5. 
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In primary spermatocytes (pachynema/diplonema) we found and enrichment of the GO term 

“cell communication, GO:0007154” (i.e. Fgf10). Likewise, the GO term “cell adhesion, 

GO:0007155”, specifically its progenitor “cell-matrix adhesion involved in ameboidal cell 

migration, GO:0003366”, was very enriched in both pachynema/diplonema and round 

spermatids. The other two most representative GO terms were related with the cell cycle: “cell 

cycle process, GO:0022402” and “cell cycle checkpoint, GO:0000075”. In this sense, genes such 

as Mad2l1 and Ppp2r1a were spot out under these categories. Another relevant category was 

“response to chemical, GO:0042221”, in which the gene Abcg2 was identified. 

The most representative GO term in round spermatids was “system process, GO:0003008”. 

Inside this category, twenty-seven genes involved in “sensory perception of smell, GO:0007608” 

were identified. Specifically, 12 out of 24 genes are olfactory receptors localized in 3 different 

genomic clusters (chromosome 7:86.3-86.4Mb; chromosome 7:102.6-106.8Mb; chromosome 

11:49.2-42.3Mb). Chrna7 was also identified under the GO term “response to odorant, 

GO:1990834”. Besides of it, other genes related with “response to chemical, GO:0042221”, 

such as Gabrb1 and Cyp2r1, were found in the A-specific regions of round spermatids. 

In both round spermatids and sperm, the dopamine receptor Drd2 was found under the GO 

term “response to chemical, GO:0042221”. Also, in both round spermatids and sperm, several 

genes have been identified under the GO term “cellular response to caffeine (GO:0071313)”. In 

sperm, genes Plcz1 and Smcp were found with implications in “fertilization, GO:0009566”. 

Finally, the acrosomal hyaluronoglucosaminidases HYAL4 and HYAL6 were identified under the 

GO term “primary metabolic process, GO:0044238”. 

5.4 Discussion 

Spermatogenesis involves a continuous process of cell division and differentiation, ranging from 

undifferentiated diploid cells (PGS) to specialized haploid cells (spermatozoa) (Reig-Viader, et al. 

2016). In this sense, our data reveals that the 3D genome organization of germ cells is highly 

dynamic and correlates with gene expression. 

5.4.1 Dynamics of the higher-order chromatin organization during gametogenesis 

While A/B compartments and TADs are present in spermatogonia, this higher order chromatin 

organisation is mainly lost during early prophase I in leptonema/zygonema. At this stage, 

meiotic chromosomes are organized into large DNA loops attached to a protein scaffold 

composed of specific meiotic cohesins (e.g. REC8 and RAD21L, Gutiérrez-Caballero, et al., 2011; 

Llano, et al. 2012) and proteins of the synaptonemal complex (e.g. SYCP3) (Henderson and 
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Keeney, 2005). Thus, this particular chromosomal organization necessarily affects the way 

chromosomes are organized. In late prophase I, in pachynema/diplonema, the weak TAD signal 

and the low number of TADs suggest that TADs are still absent at this stage. However, 

compartments start to appear again, though they are not as clear as in spermatogonia. 

Precisely, it is at the diplotene stage where the synaptonemal complex is unassembled, thus 

lowering the rigidity of chromosomes when they are aligned side-by-side with their 

homologous. In fact, the analysis of contact probability as a function of genomic distance P(s) 

reveals pachynema/diplonema maintains more interactions between long-distance separated 

loci than leptonema/zygonema (figure 23A). 

The P(s) analysis also suggests differences in meiotic chromosome folding when compared to 

what has been reported in metaphase chromosomes (Naumova, et al. 2013; Gibcus, et al. 

2018). That is, prophase I cells display two changes in P(s), the first one between 2.5 and 4.5 

Mbp and the second at 40 Mbp. Although the first slope fall-off observed in the meiotic 

chromosome between 2.5 - 4.5 Mbp resembles what has been described in prometaphase cells 

(Gibcus, et al. 2018), the second decrease in contact probability detected at longer distances 

(40 Mbp) was not present in the mitotic chromosome. This suggests that the chromatin is 

organised differently in mitotic and meiotic chromosomes. This particular chromosome 

organisation can be the result of the particular assembly of chromosomes during prophase I: (i) 

telomeres contact with the nuclear envelope (bouquet) (Scherthan, et al. 1996; Reig-Viader, et 

al. 2016) in leptonema/zygonema thus creating a loop-like structure that make distant regions 

hardly to interact, or (ii) chromatin is anchored as long DNA loops in the synaptonemal complex, 

thus preventing interactions below 40 Mbp to occur. 

A striking pattern was observed during spermatogenesis when considering TAD signal. Its 

variance was reduced through the spermatogenesis process when comparing to fibroblasts and 

spermatogonia, being the TAD signal variance extremely low in sperm (figure 26). A complete 

absence of the TAD signal has been described in mitotic chromosomes (Naumova, et al. 2013; 

Gibcus, et al. 2018) and, in this regard, meiotic chromosomes (i.e., primary spermatocytes) 

mirror this pattern. However, in the case of sperm, we detected an extremely low TAD signal, 

contrary to what has been previously reported (Jung, et al. 2017; Ke, et al. 2017; Wang, et al. 

2019). While we used FACS to obtain highly enriched populations of sperm separated from the 

rest of the germ cell populations, Jung, et al., Ke, et al. and Wang et al. obtained the swimming 

sperm from the supernatant after incubating dissected cauda epididymis. Our Hi-C simulations 

mixing sperm and fibroblast reads suggest that the higher order chromatin structures previously 

reported might be due to the presence of somatic contamination (figure 27). In this context, the 
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absence of TAD signal observed in sperm might be related to the histone replacement process 

that takes place during spermiogenesis. According to the literature, the vast majority of histones 

are replaced by protamines in sperm, folding DNA into toroidal subunits of approximately 50 

kbp (Balhorn, et al. 1984; Hud, et al. 1993; Johnson, et al. 2011). Therefore, the highly 

compacted chromatin that characterises sperm is associated with the presence of A/B 

compartments at the Mbp scale but not with the formation of TAD structures at the finer scale 

(i.e. kbp). 

The highly compacted sperm chromatin might also be related with the inter-chromosome/intra-

chromosome interaction ratio. Most sperm chromosomes have more inter-chromosome 

interactions than intra-chromosome interactions, suggestive of highly compacted chromosome 

structure into a very compressive environment, thus favouring inter-chromosome interactions 

than intra-chromosome interactions. Additionally, in sperm, but also in fibroblast, 

spermatogonia and round spermatids, the inter-chromosome/intra-chromosome interaction 

upward rate tendency suggests the so-called chromosome territories. Gene-rich chromosomes, 

which in fact are the shortest chromosomes, tend to be located at the centre of the nucleus 

(Boyle, et al. 2001). In this sense, as observed in our data, the shortest chromosomes might 

interact more with the other chromosomes (higher inter-chromosome/intra-chromosome 

interaction ratio) than the longest ones. 

Also related with the inter-/intra-chromosome interaction ratio, the X chromosome shows a 

distinct pattern in regards the autosomal chromosomes of pachynema/diplonema, round 

spermatids and sperm. This is consistent with the Meiotic Sex Chromosome Inactivation (MSCI) 

previously described during meiosis I, a silencing process that is maintained in post-meiotic cells 

(Namekawa, et al. 2006; Turner, 2007; Yan and McCarrey, 2009). The fact that the sex 

chromosomes are isolated from the autosomal ones (Yan and McCarrey, 2009) explains the 

reduction of the inter-/intra-chromosome interaction ratio in these cell types. Gene expression 

data also confirmed this pattern, as we identified a sharper reduction of the expressing genes in 

the X chromosome than in autosomal chromosomes between spermatogonia and meiotic/post-

meiotic cells (see section 4.3.3.2). 

Additional chromosomal features include the clustering of telomeres in the nuclear envelope, 

the so-called bouquet (Scherthan, et al. 1996; Reig-Viader, et al. 2016), which was identified in 

leptonema/zygonema by Hi-C maps. This cell type shows significantly higher interaction among 

subcentromeric regions than fibroblast (figure 23D). Round spermatids also show higher 

interaction among subcentromeric regions than fibroblast (figure 23D). At this stage of the 
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spermatogenesis, especially during spermiogenesis, chromosomes adopt a looped 

conformation because of centromere association (Haaf and Ward, 1995; Zalensky, et al. 1995; 

Meyer-Ficca, et al. 1998) that explains this higher interaction. 

5.4.1 Functional insights of the higher-order chromatin organization during 

gametogenesis 

The study of transcriptional signatures of compartment switching revealed different expressing 

genes in cell-specific A compartments that are related with spermatogenesis. This is the case of 

morphogenesis-related genes implicated in cell differentiation process along spermatogenesis. 

In this sense, the gene family Mpp (Membrane palmitoylated protein) (e.g. Mpp5) were found 

in centrosomes or in the mitotic spindle, thus involved in microtubule-related functions such as 

cytoskeleton rearrangements (Matsumoto-Taniura, et al. 1996). Continuous contact with 

different stimulus, being either chemical or hormonal, influence cell differentiation progress or 

sperm motility. For example, Drd2 is a dopamine receptor the ligand of which, dopamine, has 

been found in sperm affecting its motility (Urra, et al. 2014). In addition, Saucedo, et al. 2018 

reported fibroblast growth factors (Fgfs) such as Fgf10 to influence sperm motility, having their 

receptors mainly in the acrosome of round spermatids and sperm. 

Spermatogenesis is a very dynamic process that involves a series of cell divisions. In this sense, 

expressing genes related to cell cycle processes were identified in cell-specific A compartments. 

For instance, Klhl13 is involved in the mitotic cell division of cells according to the Mouse 

Genome Database (MGD) (Smith, et al. 2018). It is in primary spermatocytes, specifically at the 

stage of leptotene, where the synaptonemal complex starts being assembled. Also, according to 

MGD (Smith, et al. 2018), the expressing genes Gm1993 and Gm5169, found in spermatogonia-

specific A compartments, are related with the synaptonemal complex. At further stages of 

primary spermatocytes, chromosome synapsis and meiotic recombination is carried out. The 

gene Stag3 has been described as essential for DNA repair and synapsis between homologous 

chromosomes (Llano, et al. 2014). Also, while Mad2l1 is related with the spindle checkpoint, 

Deup1 has been described as essential for the centriole formation (Zhao, et al. 2013). As 

centrioles are needed for development of flagella in living organisms, Deup1 plays a key role in 

spermiogenesis. 

In order to fertilize the oocyte, sperm will use chemotaxis for guidance. Several olfactory 

receptors, which have been previously described as important for the sperm guidance towards 

the oocyte (Flegel, et al. 2015), were identified in cell-specific A compartments and being 

expressed. Other membrane receptors were found: Chrna7 has been described as important for 
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normal sperm motility (Bray, et al. 2005), while Gabrb1 might have implications in the fertility of 

male (Jodar, et al. 2012). The gene Cyp2r1 is involved in the vitamin D metabolism, which might 

also be involved in sperm metabolism and motility (Rehman, et al. 2018). Plcz1 localizes in the 

acrosome with involved in fertilization, while Smcp, according to its Entrez Gene (Maglott, et al. 

2005) entry, is thought to stabilize the mitochondrial sheath. At the end, fertilization is reached 

when the membrane of sperm fuses with the oocyte through the acrosome reaction, which 

releases hyaluronidases such as Hyal4 and Hyal6. On the other hand, the capacity of sperm for 

membrane fusion is correlated with the cholesterol concentration of the surrounding 

environment (Cross, et al. 1998). The gene Abcg2 has been identified as a mediator of 

cholesterol removal (Scharenberg, et al. 2009). Finally, additional genes have been associated 

with infertility. Mutations in Immp2l produce infertile mouse females or subfertile males (Lu, et 

al. 2008). Diaph2 was found to be associated with ovarian failure, but it has been also 

associated with sperm morphology in bulls (Bione, et al. 1998; Fortes, et al. 2013). Also, 

Ppp2r1a together with Stag3 have been described as essential for fertility in mice (Hu, et al. 

2014). 

Overall, our results reveal previously undescribed stages of compartmentalisation for meiotic 

chromosomes in both early (prophase I) and late stages of spermatogenesis (round spermatids 

and sperm) and provide evidence on the existence of a fine tuning between chromatin 

remodelling and gene expression in germ cells. 
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Chapter 6: General discussion 

Several technological advances have led in the last decades to a better understanding of how 

genomes are organized and regulated. Since the first sequencing method was released in 1977, 

new technologies such as next-generation and third-generation sequencing technologies 

boosted the development of different -omics fields (Margulies, et al. 2005; Bentley, et al. 2008; 

Eid, et al. 2009; Rothberg et al. 2011). This permitted, for instance, the study of genetic variants 

(e.g. the 1000 Genomes Project Consortium, 2015), gene expression and regulation (e.g. the 

ENCODE Project Consortium, 2012), or the most recent exploration of the tri-dimensional (3D) 

organization of genomes (e.g. Lieberman-Aiden, et al. 2009). The increased performance of new 

sequencing technologies came in parallel with the development of bioinformatics. As genomes 

were released together with its transcriptional and epigenetics profiles, different databases 

emerged to make -omics information accessible to the scientific community (Hubbard, et al. 

2002; Kent, et al. 2002). The arrival of new bioinformatics tools soon followed to handle new 

sequencing reads yielded by high-throughput technologies. Notwithstanding recent advances in 

the field, the currently amount of -omics data requires further maturation and expansion of 

bioinformatics tools. 

In this context, this thesis takes advantage of different technologies to develop and integrate 

next-generation bioinformatics tools to increase our understanding of genomes at both the 

functional and the structural levels. 

6.1 Towards the development of online databases and cloud platforms for the 

analysis of transcriptomics data 

The amount of sequencing data produced worldwide doubles every 7 months, thus growing at a 

faster rate than the expected by Illumina or by Moore’s law (Stephens, et al. 2015) (figure 32). 

Moore’s law (formulated by Gordon Moore, cofounder of Intel) states that the number of 

transistors in a chip (processing capacity) doubles every 18 months (Moore, 1965). Due to the 

fact that sequencing is growing at a higher rate than processing capacity, the flood of 

sequencing data that is expected to be generated in the next few years is likely to create a 

bottleneck in bioinformatics. 
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Figure 32. Growth of DNA sequencing. The plot shows the cumulative number of human genomes generated so far 

from early 2000s and the growth projection towards 2025. Figure extracted from Stephens, et al. (2015). 

Under this scenario, data accessibility needs to be improved in order to power researchers with 

useful tools for allowing data mining and to facilitate reaching conclusions efficiently. In parallel, 

data processing should also be ameliorated, not in terms of hardware, which processing growth 

is limited by the Moore’s law, but in terms of efficiency, automatization and democratization 

using IT solutions currently available.  

With all these factors in mind, we have developed in this thesis two bioinformatics solutions for 

the transcriptomics field. In particular, the first tool (GreeNC) has been implemented to boost 

data accessibility of lncRNA annotation in plants and the second one (AIR) to democratize data 

processing of high-throughput RNA-seq data in any type of organism. 

6.1.1 GreeNC: a comprehensive online database of plant lncRNAs 

The analysis of sequencing data generates post-processing results, which are far more complex 

than raw data: it includes a wide variety of data types (e.g. integer and floating-point numbers, 

strings, Booleans, lists, key – value relationships) and variables (e.g. GC content, gene length, 

gene expression). In this sense, post-processing results need to be organized and stored in an 

organized manner to allow their retrieval and to facilitate their accessibility. There are two types 

of informatics databases to store data: SQL (e.g. MySQL) and NoSQL (e.g. MongoDB). 

Traditionally, SQL was preferred for database development; however, this paradigm is changing 

due to NoSQL databases, which are (i) more efficient in managing big amounts of data and (ii) 
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more flexible as there is no need to pre-define the number of data types and variables to be 

stored (schema-less approach) (Schulz, et al. 2016). 

Since transcriptomics is one of the most funded -omics fields at the moment, large amounts of 

data are generated in a short period of time (Ulrich, 2016). Thus, efforts to enhance data 

accessibility are much in need. As an example, it has been suggested that most of the human 

transcriptome is non-coding, increasing the interest in this field (Carninci, et al. 2005; Mattick 

and Makunin, 2006; Mattick, 2009; Derrien, et al. 2012; Djebali, et al. 2012). In this context, the 

latest GENCODE annotation (version 29) currently contains more non-coding genes (e.g. lncRNA 

genes) than coding genes in both human and mouse genomes. However, although lncRNAs are 

known to be involved in important processes such as chromatin remodelling, transcriptional 

control and post-transcriptional processing (Mercer, et al. 2009; Barbosa Dogini, et al. 2014), 

their research is far more extended in human and mouse than in other organisms (e.g. plants). 

Despite being a largely unexplored field, some lncRNAs have been already characterized in 

plants, most of them regulating important agronomic traits such as flowering, morphological 

development, or stress response (Franco-Zorrilla, et al. 2007; Swiezewski, et al. 2009; Heo and 

Sung, 2011; Ding, et al. 2012; Shin and Chekanova, 2014; Gai, et al. 2018; Liu, et al. 2018). Being 

plant transcriptomics an emerging field, a comprehensive annotation of lncRNAs is required to 

ease their functional characterization in plant biology. In this context, we developed GreeNC, a 

public online database of plant lncRNAs derived from genome-wide studies on 39 plant species 

and 6 algae. Before the release of GreeNC, the available databases for plant lncRNAs presented 

several drawbacks such as lack of APIs, low GUI friendliness and few species or lncRNAs 

available. This motivated the development of GreeNC, which in turn fulfils most of the rules 

suggested for database creation (Helmy et al. 2016) (table 2): (i) high data quality due to high 

accurate pipelines (rule 2); (ii) easy-to-use and friendly GUI besides of the availability of an API 

using modern technologies such as NodeJS (rules 3-5); and (iii) simple query options, including 

the possibility of batch downloads (rules 6 and 7).  

Today, GreeNC is the most comprehensive database in terms of the number of species in 

comparison with currently available plant databases. GreeNC also represented the largest 

database in terms of number of lncRNAs from early 2016 to the beginning of 2018 until the 

release of CANTATAdb v2.0 (239,000 lncRNAs), which slightly surpassed GreeNC (203,000 

lncRNAs). GreeNC has provided to the scientific community a valuable lncRNA resource for 

nearly three years since its launch in 2016. During this period, several studies have used GreeNC 

for lncRNA identification and characterization. For instance, novel lncRNAs were identified in 
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banana (Musa acuminata) (Li, et al. 2017) and potato (Solanum tuberosum) (Kwenda, et al. 

2016). In addition, surveys in GreeNC allowed the identification of a candidate transcript 

involved in apomictic development as a potential lncRNA in Paspalum notatum (Ochogavía et al. 

2017). Machine-learning algorithms were also trained with the lncRNA resource of GreeNC (da 

Costa Negri, et al. 2018). In this way, GreeNC has proven to be a useful repository to boost the 

research in the field. 

From the technological point of view, GreeNC was developed using the relational database 

MySQL to store the data. This database was chosen since the number of fields to store for each 

lncRNA (e.g. species, gene, coordinates, coding potential or folding energies) was well defined. 

However, genomic projects are making available new expression data across different tissues 

and novel lncRNAs are continuously reported in the literature. In parallel, the availability of 

expression data would allow the construction of both coding and lncRNA gene co-expression 

network to infer putative functionalities (Chen, et al. 2018). The incorporation of this data might 

require a shift towards NoSQL databases due to (i) the amount of data stored will scale up and 

NoSQL databases offer better performance, (ii) variables such as gene expression might come 

from different sources, thus requiring an evolving data model that is provided by schema-less 

NoSQL approaches, and (iii) NoSQL databases are more suitable to store graphs (e.g. gene 

networks) (de Brevern, et al. 2015; Schulz, et al. 2016). Future updates of GreeNC will include 

expression data and gene networks to complete its resources for lncRNA research in plants. 

6.1.2 AIR: the first end-to-end solution for high-throughput RNA-seq analysis 

According to Cisco Global Cloud Index, cloud computing is growing so fast that by 2021 94% of 

the worldwide workload will be performed in the cloud, being SaaS the most used cloud service. 

The adoption of SaaS comes with a series of advantages: (i) the initial costs for its adoption are 

low (pay-per-use model) in comparison with an on-premise solution, (ii) support and training 

are usually available, (iii) since hardware is not on-premise, neither hardware maintenance nor 

dedicating a physical space to allocate servers are required, (iv) system upgrades are carried out 

by the provider, (v) deployment is immediate due to its cloud-based nature, and (vi) it is 

adaptive to tour workload needs (scalability) (Rhyman, 2017). 

The accelerated growth of sequencing is produced not only by ultra-high-throughput 

sequencing equipment acquired in specialized sequencing centres (e.g. Illumina NovaSeq), but 

also by benchtop sequencers that permitted the democratization of sequencing as they target 

smaller research institutions or even individual laboratories (e.g. Illumina MiSeq or Ion Torrent 

S5) (table 1). It is at these smaller institutions where a bioinformatics facility might represent a 
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constraint, thus lacking expertise to perform genome-wide studies. In these cases, the use of 

SaaS focused on bioinformatics applications can be a solution. Following the democratization of 

sequencing, next-generation bioinformatics (SaaS platforms applied on bioinformatics) 

democratize bioinformatics, thus solving the need to acquire (i) powerful computers for data 

analysis and (ii) bioinformatics skills due to easy-to-use interfaces (de Brevern, et al. 2015). 

Several next-generation bioinformatics solutions have recently emerged in the field of RNA-seq 

data analysis (Illumina, 2014; Malhotra, et al. 2017). However, they still require basic skills in 

bioinformatics at the very beginning of the process (defining specific software parameters) and 

at the very end (manipulating and transforming results for data interpretation and integration). 

In addition, non-model species are not available by default. In this way, current next-generation 

bioinformatics solutions for the analysis of RNA-seq data do not reach full democratization. In 

order to overcome these limitations, we developed AIR, a SaaS platform. 

One of the advantages of AIR is that users are not required to have previous informatics or 

bioinformatics knowledge as they only need to upload their samples and to start an analysis 

with few clicks. In addition, it is not only limited to model species: all genomes available in 

Ensembl, NCBI and JGI can be used (more than 150,000 genomes available). All stages of the 

RNA-seq data analysis are handled by AIR, from the quality check and trimming to the statistical 

analysis with the creation of tables and plots and no further involvement of the user. In this 

sense, it represents the first end-to-end solution in the field. AIR, which has today more than 

750 users and 1,000 RNA-seq samples analysed, has been already cited in two different 

publications that studied obesity and transcriptional changes after activating the transcription 

factor PPARγ in human (Gerlini, et al. 2018; Kim, et al. 2019). For instance, the use of AIR to 

study obesity in human ease the identification of potential targets for managing metabolic 

health (Gerlini, et al. 2018). 

Technologies behind AIR, such as Docker, should be spread out in bioinformatics beyond cloud-

based systems. As highlighted by Di Tommaso, et al. (2015 and 2017), reproducible results with 

the same data across computers and operating systems is only achievable with Dockers. In this 

sense, centralization of bioinformatics analyses in SaaS solutions would enhance reproducibility 

in the field. This goes in parallel with the application of the rules for reproducible computational 

research suggested by Sandve, et al. 2013 (table 2). Centralization of bioinformatics analyses in 

SaaS solutions would likely fulfil most of the rules suggested. In the case of AIR, for instance, it 

does not fulfil rules 8 (it is not applicable), 9 (it should be done by the final user) and 10 (results 

can be shared through a public URL, but scripts are not provided due to industrial interest). 
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Altogether, pipeline automatization for RNA-seq data included in a smart cloud-based system 

allowed the development of AIR, which is ready for reproducible bioinformatics research in 

transcriptomics bringing at the same time the possibility to perform RNA-seq data analyses to 

institutions without bioinformatics facilities or researchers with poor expertise in bioinformatics 

analyses. 

6.2 Principles of chromosome assembly during spermatogenesis 

In this work, we also elucidated the 3D organization of the mouse genome during 

spermatogenesis. Specifically, we studied the dynamics of the higher-order chromatin 

organization in: (i) pre-meiotic (spermatogonia), (ii) meiotic (primary spermatocytes at 

pachytene/diplotene and leptotene/zygotene stages and secondary spermatocytes) and (iii) 

post-meiotic cells (round spermatids and sperm). Our study permitted to unveil principles of 

chromosome assembly during the formation of germ cells, which was reflected at different 

levels of resolution: (i) intra-/inter-chromosomal interaction ratios, (ii) distance-dependent 

interaction frequencies, (iii) genomic compartments and (iv) topological domains. Moreover, we 

showed evidence of a delicate fine-tuning between chromatin remodelling and cell-specific 

gene expression. 

6.2.1 Commitment to enter meiosis is accompanied by changes in chromosome 

occupancy 

Mammalian spermatogenesis begins with the differentiation of PGCs to spermatogonia 

(reviewed in Reig-Viader, et al. 2016). The interaction patterns observed in both genome-wide 

and per-chromosome interaction heatmaps suggested that this transition is accompanied by an 

interphase-like genome organization. That is, plaid patterns were well defined, which were 

indicative of genome A/B compartmentalization (supplementary figures 1 and 3). This 

observation was also confirmed by analysing distance-dependent interaction frequencies 

(contact probability) (figure 23A). In this case, the decrease of interaction as a function of 

genomic distance in spermatogonia followed a similar pattern than fibroblasts. In contrast, we 

detected distinct patterns in the inter-chromosome/intra-chromosome interaction ratio when 

compared to somatic cells. In fibroblasts, small chromosomes (e.g. 18 or 19) showed higher 

intra-/inter-chromosomal interaction ratio than large ones (e.g. 1, 2 or X). This pattern is likely 

due to the presence of chromosomal territories, where each chromosome is physically 

separated and occupies a distinct volume within the nucleus (Cremer and Cremer 2010). Since it 

is known that small and gene-rich chromosomes tend to be located at the centre of the nucleus 
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(Boyle, et al. 2001), they are more likely to interact with each other. In contrast, inter-

chromosomal interactions are minimized in spermatogonia (figure 22); that is, intra-/inter-

chromosomal interaction ratio decreased by 2-fold approximately and differences among 

chromosomes were reduced. These results suggest that commitment to enter meiosis is 

accompanied by a drastic remodelling of chromosomal occupancy inside the nucleus, which 

appears to be already established in spermatogonia. 

At the sub-megabase organization scale, TADs were detected in spermatogonia, although the 

TAD number was reduced when compared to fibroblasts (from 2,002 to 834 TADs) as well as 

TAD signal variance (figures 26 and 28). Altogether, our observations suggest that the 3D 

organization of the genome in spermatogonia is being remodelled prior to prophase I, not only 

in terms of chromosome localization inside the nucleus but also at the sub-megabase scale. 

6.2.2 Compartmentalization is highly re-arranged during prophase I  

As meiosis progresses (prophase I), we detected that the high-order chromatin organization 

reorganized at several levels. We have to take into account that, at this stage of meiosis 

(prophase I), homologous chromosomes condensate, align and pair (at leptonema), start to 

synapse (at zygonema) and recombine (at pachynema) (reviewed in Reig-Viader, et al. 2016). In 

the light of our results, these processes are affecting the way chromosomes are organised in 

prophase I. Overall, both genome-wide and per-chromosome interaction heatmaps suggested 

the existence of strong local and weak long-range interactions in primary spermatocytes 

(supplementary figures 1, 4 and 5). This was indicative of highly condensed chromosomes, as 

previously described for mitotic chromosomes (Naumova, et al. 2013). 

At the largest chromosome scale, we detected that the inter-/intra-chromosome interaction 

ratio reached a minimum for all chromosomes in primary spermatocytes (ratio of 0.25) when 

compared to fibroblasts (ratio of 0.75 on average) and it was stable for all chromosomes (figure 

22). These results suggest that chromosome territories are lost in prophase I. In fact, it is known 

that there is a clustering of telomeres called bouquet in primary spermatocytes at leptotene 

stage that promotes the pairing of homologous chromosomes (Scherthan, et al. 1996; Reig-

Viader, et al. 2016). This telomeric attachment to the nuclear envelope is essential for 

successful synapsis between homologs (Boateng, et al. 2013). Remarkably, the bouquet 

structure was detected in our analysis (and recently validated by Alavattam, et al. 2019) by 

assessing the inter-chromosome subcentromeric interactions as there was statistically higher 

interaction in leptonema/zygonema relative to fibroblasts (figure 23D). We did not find 
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statistically significant differences between fibroblast and pachynema/diplonema, suggesting 

that the bouquet is no longer maintained at later stages of prophase I. 

The analysis of contact probability in primary spermatocytes also confirmed that the overall 

reorganization of the genome in prophase I was translated into changes of the condensation 

status of meiotic chromosomes. Our analysis showed that primary spermatocytes presented the 

slowest decrease in contact probability when compared to the rest of cell types analysed, with 

slopes close to -0.5 between genomic distances of 0.5 Mbp and 2.5 (in leptonema/zygonema) 

or 4.5 Mbp (in pachynema/diplonema) followed by a rapid fall-off. This slope resembles what 

has been described for mitotic prophase and metaphase chromosomes (Naumova, et al. 2013; 

Gibcus, et al. 2018). These studies indicated that the mitotic prophase chromosomes present a 

slow decrease in contact probability at short distances (slope of -0.5) followed by a rapid fall-off 

at 3 Mbp (Gibcus, et al. 2018). This drop-off is increasingly delayed when cells progress towards 

metaphase, in which this rapid fall-off is at 10 Mbp (Naumova, et al. 2013; Gibcus, et al. 2018). 

Based on these observations, it has been proposed that DNA loops of 60-80 Kbp wrap around a 

scaffold of proteins in the mitotic pre-metaphase and metaphase chromosomes (Gibcus, et al. 

2018). Precisely, the rapid fall-off in contact probability observed in pre-metaphase and 

metaphase chromosomes coincide with the total length of DNA that wraps around the scaffold 

per turn. In this way, the length increases towards metaphase, shortening metaphase 

chromosomes (Gibcus, et al. 2018). However, chromosomes are organized differently in 

meiosis: DNA loops are attached to the synaptonemal complex, which brings homologous 

chromosomes together (Henderson and Keeney, 2005). Consistent with our data, recent studies 

also described meiotic chromosomes retain a slope of 0.5 in distances up to 5 Mbp, with higher 

contact probability at longer distances in pachynema relative to leptonema (Wang, et al. 2019; 

Patel, et al. 2019). The fact that pachynema/diplonema shows higher contact probability at 

longer distances than leptonema/zygonema would be explained by an elongation of the DNA 

loops attached to the synaptonemal complex, thus promoting more interaction at longer loci. 

Precisely, it has been proposed a loop length of 0.8-1 Mbp in zygonema and 1.5-2 Mbp in 

pachynema (Patel, et al. 2019), mirroring previous cytological studies (Klecner, et al. 2003). 

In terms of compartmentalization at the sub-chromosome scale, we did not observe A/B 

compartmentalization in leptonema/zygonema; however, it seems A/B compartments start to 

appear in pachynema/diplonema again, although this was not evident when analysing the first 

eigenvector. The unassembling of the synaptonemal complex at diplotene stage might be 

involved in the reappearance of compartmentalization since it would add rigidity to the 

chromosomes when homologous are aligned side-by-side. The fact that compartments were 



 121 

 

not inferred from the first eigenvector suggests the presence of attenuated A/B 

compartmentalization, as recently described (Alavattam, et al. 2019). Other studies have also 

suggested A/B compartmentalization in pachynema (Patel, et al. 2019; Wang, et al. 2019); 

specifically, Wang, et al. (2019) did not predict compartmentalization from the full Hi-C matrix 

but from submatrices of 10 Mbp along the diagonal, thus predicting compartments using local 

interaction patterns. This approach was not performed in this work but could be useful to 

provide clearer eigenvector profiles (supplementary figure 12). 

At the sub-megabase scale, we identified a sharp drop in the TAD signal variance, especially in 

leptonema/zygonema but also in pachynema/diplonema (figure 26). The total number of TADs 

identified in these cell types was around 300, giving TAD structures of 9 Mbp on average 

(supplementary table 4). In mammals, TADs range from tens of Kbp up to 2 Mbp with an 

average of 800 Kbp (Dekker and Heard, 2015). In this context, given the low TAD signal variance, 

the low number of TADs and their big size, we suggest an absence of this structure in primary 

spermatocytes (also suggested by Wang, et al. 2019 and Patel, et al. 2019). The particular 

organization of primary spermatocytes would prevent the formation of these sub-megabase 

structures. The length of the DNA loops attached to the synaptonemal complex, estimated 

between 0.8-1 Mbp in zygonema and between 1.5-2 Mbp in pachynema, would prevent TAD 

formation. The shortest loops observed in leptonema/zygonema would also explain the lower 

TAD signal variance observed in this cell type when compared to pachynema/diplonema. 

6.2.3 Reprogramming of genome compartmentalization in post-meiotic cells  

The end of meiosis results in the formation of haploid cells (round spermatids), which undergo 

spermiogenesis, a differentiation process that involves an intermediate step (elongated 

spermatids) to produce male gametes ready for fertilization (sperm) (reviewed in Handel and 

Schimenti, 2010). The sperm genome is highly compacted, and it is achieved by replacing 

histones by protamines during spermiogenesis (Balhorn, et al. 1984; Hud, et al. 1993; Johnson, 

et al. 2011). Protamines are arginine-rich proteins (positively charged) that changes the 

electrostatic environment of the DNA, thus changing its conformation into toroidal structures of 

50 Kbp allowing high compaction (Johnson, et al. 2011). 

The analysis of genome-wide and per-chromosome interaction heatmaps revealed that round 

spermatids showed plaid patterns that were blurrier relative to fibroblast and spermatogonia 

(supplementary figures 1 and 7). This was suggestive of more condensed genomes, as recently 

reported (Wang, et al. 2019; Alavattam, et al. 2019). This pattern of genome condensation was 

confirmed by the contact probability analysis: round spermatids presented an intermediate 
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state between prophase I (e.g. primary spermatocytes) and interphase-like (e.g. fibroblast and 

spermatogonia) cell types with less long-range interactions than fibroblast but more than 

primary spermatocytes (figure 23). The analysis of inter-/intra-chromosome interaction ratio 

also revealed a weak recovery from prophase I; that is, the interaction ratio was higher in round 

spermatids for all chromosomes, with exception of sex chromosomes (figure 22). However, like 

spermatogonia, evidence of chromosome territories was weaker than fibroblasts (figure 22). In 

fact, it is at round spermatids where centromeres cluster around the chromocenter, which is a 

visible aggregation of centromeric heterochromatin the centre of the nucleus (Haaf and Ward, 

1995; Zalensky, et al. 1995; Meyer-Ficca, et al. 1998). This was statistically significantly 

confirmed by assessing the inter-subcentromeric interactions (figure 23D) (and validated by 

Alavattam, et al. 2019). 

At the sub-chromosome organization scale, our analyses revealed A/B compartmentalization in 

round spermatids with a percentage of compartment A (46.94%) higher than in fibroblast 

(45.68%). However, at the sub-megabase scale, the TAD signal variance remained similar to 

pachynema/diplonema. In this way, TADs might be also absent in these cell types considering 

the low TAD signal variance and the fact that most of the predicted TAD boundaries had very 

low-quality scores (figure 26; supplementary table 4). Consistent with an unclear presence of 

TADs in this cell type, TADs in round spermatids were described as weak or being similar to 

pachynema (Wang, et al. 2019; Alavattam, et al. 2019). 

Remarkably in sperm, the analysis of the inter-/intra-chromosomal interactions ratio suggested 

the presence of chromosomal territories. In fact, inter-chromosomal interactions were greater 

than intra-chromosomal interactions in all but the X chromosome, with the interactions 

inversely correlated with chromosomal size (figure 22). Since ratios were higher than in 

fibroblasts, the higher-order chromatin structure is likely densely packed in sperm, thus 

favouring inter-chromosome interactions although chromosome territories remain. 

Mirroring the pattern observed in round spermatids, blurry plaid patterns were detected in 

sperm when analysing genome-wide and per-chromosome interaction heatmaps 

(supplementary figures 1 and 8) together with A/B compartmentalization (figure 25). In fact, 

sperm showed the higher percentage of compartment A (48.64%). The contact probability 

analysis also revealed that sperm presented an intermediate state of chromatin condensation 

between prophase I and interphase-like (figure 23). These results suggest that the sperm 

genome is more condensed than the interphase-like cell types. In fact, the reorganization of the 

sperm genome into toroidal structures due to the replacement of histones by protamines leads 
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to high compactness (Johnson, et al. 2011). These toroidal structures might extend 

compartments A and change the sub-megabase organization scale. 

The TAD signal variance observed in sperm was extremely low in sperm, even lower than 

leptonema/zygonema. These findings contrast with the patterns reported by recent studies: (i) 

well-defined plaid-patterns, and (ii) well-defined TAD structures (Jung, et al. 2017; Ke, et al. 

2017; Wang, et al. 2019). For example, Wang, et al. (2019) stated that 78% of TAD boundaries 

are shared between fibroblast and sperm. The patterns reported were obtained from the 

isolation of sperm from the supernatant after incubating dissected cauda epididymis. In 

contrast, we isolated sperm by FACS, ensuring low percentage of somatic contamination. In 

addition, we observed in our simulations using samples with mixed compositions of fibroblast 

and sperm that small fractions of somatic contamination might affect the plaid-pattern 

observed in the interaction heatmaps (figure 27). Altogether, correlation analyses, contact 

probability and interaction heatmap patterns from these simulations confirm our results in 

sperm. 

6.2.4 Dynamics of the X chromosome architecture during spermatogenesis   

In eutherian males, sex chromosomes (X and Y) synapse at the Pseudo-Autosomal Region (PAR), 

thus the X chromosome remains mostly asynapsed during prophase I (Yan and McCarrey, 2009). 

The asynapsed status of sex chromosomes has been suggested to trigger the inactivation of sex 

chromosomes (the so-called Meiotic Sex Chromosome Inactivation, MSCI) during the transition 

from zygonema to pachynema (Turner, 2007; Yan and McCarrey, 2009). In this way, 

chromosomes X and Y are condensed and physically separated from the autosomes in the 

periphery of the nucleus forming the sex body (Turner, 2007; Yan and McCarrey, 2009). The sex 

body is diluted in further stages of spermatogenesis (e.g. spermatids), but the sex chromosome 

inactivation is maintained and sex chromosomes appear as heterochromatic domains called 

Post-Meiotic Sex Chromatin (PMSC) (Namekawa, et al. 2006; Turner, 2007). 

In this context, the dynamics of the X chromosome architecture during spermatogenesis was 

also assessed in our study. The inter-chromosome/intra-chromosome interaction ratio revealed 

that the X chromosome had a comparable ratio to similar-size chromosomes (e.g. 1 or 2) in 

fibroblasts and spermatogonia. The inter-/intra-chromosome interaction ratio remained stable 

in leptonema/zygonema with no visible differences between autosome and sexual 

chromosomes. This tendency remained the same in pachynema/diplonema for autosomal 

chromosomes, but the ratio of the X chromosome slightly decreased (figure 22). Since the 

separation of sex chromosomes in the sex body at the nucleus periphery would reduce the 
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probability of inter-interactions, the decrease of the inter-/intra-chromosome interaction ratio 

in the X chromosome might suggest the presence of MSCI (also observed in Wang, et al. 2019 

and Alavattam, et al. 2019). In both round spermatids and sperm, the X chromosome also 

showed an inter-/intra-chromosome interaction ratio below chromosomes of similar size, but it 

was more evident than in pachynema/diplonema. In this sense, the specific chromosome 

organization in pachynema/diplonema might have masked MSCI due to the low inter-

chromosome interactions shown in autosomes. 

During MSCI, the X chromosome is not only isolated at the nucleus periphery, but it is also 

transcriptionally silenced (Turner, 2007). In this sense, the inactivation of the X chromosome 

can be also studied using RNA-seq data. In recent studies, a reduction in the transcriptional 

activity was also recently observed in both pachynema and round spermatids (Wang, et al. 

2019). According to our data, we observed a sharp reduction in the number of expressing genes 

in chromosome X (-38.3%) relative to the autosomes (-18.2%) in pachynema/diplonema versus 

spermatogonia (table 8). Reduction in the transcriptional activity was also maintained in round 

spermatids and sperm, thus confirming the inactivation of the X chromosome in late meiotic 

and post-meiotic cells. 

Consistent with the per-chromosome interaction heatmaps (supplementary figures 2-8), which 

showed no plaid patterns, A/B compartmentalization was not detected in the X chromosomes 

of leptonema/zygonema, pachynema/diplonema, round spermatids and sperm (supplementary 

figures 18-22). Accordantly, absence of compartmentalization in pachynema and round 

spermatids was recently described (Alavattam, et al. 2019). In contrast, plaid patterns and A/B 

compartmentalization were found in fibroblasts and spermatogonia (supplementary figures 16 

and 17). At the sub-megabase organization scale, TADs could be inferred in both fibroblasts and, 

in a weaker way, in spermatogonia (supplementary figures 9 and 10), but were not present in 

the remaining cell types, which showed low TAD signal variance (supplementary figures 25-29) 

(confirmed in pachynema and round spermatids by Wang, et al. 2019). Altogether, the inter-

/intra-chromosome interaction ratio, the RNA-seq data analysis and the higher-order chromatin 

organization of the X chromosome, MSCI was confirmed in late prophase I and PMSC in post-

meiotic cell types. 

6.3 Functional signatures of spermatogenesis 

Beyond changes in the higher-order chromatin structure, spermatogenesis also relies on highly 

regulated gene expression mechanisms at both the transcriptional and post-transcriptional level 

(Bettegowda and Wilkinson, 2010; de Mateo and Sassone-Corsi, 2014; Hammoud, et al. 2014). 
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This is the case of small non-coding RNA, such as piRNAs, which play a relevant role in 

gametogenesis. In fact, disruption of the piRNA pathway has been related to meiotic arrest at 

the zygotene stage (Fu and Wang, 2014). During spermatogenesis, two transcription waves of 

piRNA have been suggested, one before meiosis I (pre-pachytene piRNA) and another one in the 

transition from pachynema to round spermatids (pachytene piRNA) (de Mateo and Sassone-

Corsi, 2014; Fu and Wang, 2014). Likewise, two additional transcriptional waves of total mRNA 

are known to occur, the first one before meiosis I and the second one at primary spermatocytes 

(Sassone-Corsi, 2002; de Mateo and Sassone-Corsi, 2014; da Cruz, et al. 2016). In this context, 

we took advantage of the RNA-seq data generated in our laboratory to identify functional 

signatures of spermatogenesis. This also served us to stablish a link between the dramatic 

chromatin remodelling that takes places during spermatogenesis and the regulatory pathways 

involved in this process. 

Overall, we detected that expression of protein-coding genes decreased in favour of non-coding 

genes (pseudogenes, lncRNA genes and asRNA genes) during spermatogenesis (figure 19). Since 

compartments A are correlated with open chromatin state regions (Lieberman-Aiden, et al. 

2009), we analysed the biotypes of the expressing genes detected in cell-specific A 

compartment regions. Consistent with our transcriptome analysis, about half of the expressing 

genes in A-specific compartment regions in meiotic and post-meiotic germ cells are non-coding 

(table 11). We have to take into consideration that RNAs were selected by their poly-A tail when 

preparing the RNA-seq library. Since most lncRNAs do not have poly-A tail, lncRNAs might have 

been underestimated in our experiment (Derrien, et al. 2012; Zhao, et al. 2018). Since this class 

of non-coding RNA might be involved in chromatin remodelling and transcriptional regulation 

(e.g. mediating histone modifications), post-transcriptional processing (e.g. regulating splicing or 

being a source of miRNA), or chromatin looping (e.g. mediating proximity between enhancer 

and promoter) (Mercer, et al. 2009; Barbosa Dogini, et al. 2014; Dykes and Emanueli, 2017), the 

potential roles of lncRNA in spermatogenesis are promising. 

Focusing on specific functions of protein coding genes, several spermatogenesis-related genes 

were identified in spermatogonia. That was the case, for instance, of predicted genes Gm1993 

and Gm5169 which contain Sycp3-like domains. Sycp3 (Synaptonemal Complex Protein 3) is a 

component of the synaptonemal complex established during meiosis. In this sense, the 

presence of genes with Sycp3-like domains in spermatogonia suggests that genes implicated in 

meiotic processes are already transcribed before entering meiosis (Martinez-Garay, et al. 2002). 

This was also the case of genes involved in repair of the DSBs (e.g. Dmc1 and Tex15), or Pot1A 

as part of the shelterin complex at the bouquet stage at leptonema (Wang, et al. 2018). These 
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are examples of genes significantly more expressed in spermatogonia than in 

pachynema/diplonema. 

Involved in chromatin cohesion, Stag3 was found significantly more expressed in 

pachynema/diplonema than in spermatogonia, although it was already expressed in 

spermatogonia. In fact, Stag3 was found in an A-specific region common in all germ cells. 

Additional genes involved in the formation of the synaptonemal complex, such as Sycp genes 

(e.g. Sycp1, Sycp2 or Sycp3) were also significantly more expressed in pachynema/diplonema 

than spermatogonia or round spermatids. Precisely, the synaptonemal complex is still 

assembled in pachynema, thus it is consistent with the active expression of the Sycp family at 

this stage. In addition, in A-specific regions, an Hyal5 (hyaluronidase) and Fgf10 were found and 

being significantly more expressed in pachynema/diplonema than in spermatogonia. On the one 

hand, hyaluronidases are involved in the acrosome reaction, thus important for fertilization. On 

the other hand, receptors for Fgf10 are in the acrosome and stimulate sperm motility (Saucedo, 

et al. 2018). 

Several important genes for fertilization were found significantly more expressed in round 

spermatids than in other stages of spermatogenesis. That was the case, for example, of genes 

involved in the formation of the sperm acrosome (Spaca), the zona pellucida binding protein 

(Zpbp), Abcg2 or Plcz1 (Korfanty, et al. 2012; Swegen, et al. 2018; Cross, et al. 1998; 

Scharenberg, et al. 2009). In the case of hyaluronidases, Hyal5, which was already found as 

being significantly more expressed in pachynema/diplonema than spermatogonia, significantly 

increased its expression in round spermatids. Other hyaluronidases, such as Hyal4 and Hyal6, 

were identified in A-specific regions of round spermatids and sperm. Genes related with sperm 

motility were also identified: Drd2 (dopamine receptor D2) and Deup1 were found as up-

regulated in round spermatids relative to pachynema/diplonema, besides of being located in an 

A-specific compartment region shared between round spermatids and sperm. While dopamine 

affects sperm motility (Urra, et al. 2014), Deup1 is essential for centriole formation and 

development of flagella (Zhao, et al. 2013). Protamines (Prm1, Prm2 and Prm3) were also found 

significantly more expressed in round spermatids than pachynema/diplonema, consistent with 

the replacement of histones by protamines during spermiogenesis (Johnson, et al. 2011). 

Previous works have reported the presence of genes related to meiotic recombination and 

chromosome segregation were remarkable in leptonema/zygonema while the presence of 

genes related to sperm motility and “sperm-egg recognition” were remarkable from pachynema 

to round spermatids (da Cruz, et al. 2016). Consistent with these findings, we identified 18 
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genes with “sperm motility” ontology annotation and 10 genes with “sperm-egg recognition” 

ontology annotation being significantly more expressed in pachynema/diplonema than 

spermatogonia. In addition, we identified 46 genes with “meiotic cell cycle” also being more 

expressed in pachynema/diplonema than spermatogonia. In this way, we found 

pachynema/diplonema to be involved in early expression of important genes for 

spermiogenesis but also expressing genes for regulating the progression of meiosis I. At this 

stage, though, recombination is resolved. Protein complexes in charge of this task should have 

been previously transcribed and coded at early stages. In this sense, we identified 4 genes with 

“DNA recombination” ontology annotation (Msh2, Tex11, Prdm9, Swap70) being significantly 

more expressed in spermatogonia than in pachynema/diplonema. 

In the case of sperm, but also in the other cell types, the expression of compartments A were 

significantly higher than the expression of compartments B (figure 30). In addition, the 

percentage of compartment A that covers the genome gradually increased during 

spermatogenesis, reaching its maximum in sperm (figure 29). These results are in agreement 

with the recent idea that sperm are not inactive cells (Jodar, et al. 2016; Jung et al. 2017). In 

fact, it has been shown that a large number of sperm promoters are in an active epigenetic 

state, suggesting that this genetic information can influence embryo development upon 

fertilization (Jung, et al. 2017). Nevertheless, like the number of the expressing genes, gene 

expression progressively decreased during spermatogenesis (figure 30). Although RNA is found 

in sperm, it should be further studied whether it is a result of active transcription or it is the 

remnants from previous stages (Ren, et al. 2017). We cannot either confirm nor reject the 

hypothesis of active transcription in sperm since we did not use the so-called spike-in controls in 

our experimental design. In this way, we could only evaluate the relative changes in gene 

expression without the possibility to assess the absolute changes. 

Overall, our work provides a comprehensive overview of the functional regulation of the high-

order chromatin organization in all stages of meiosis and along spermiogenesis. We unravelled 

previously undescribed stages of genome compartmentalization and 3D organization together 

with the in-depth profiling of functional cell-specific signatures identified from gene expression 

data and compartment switching dynamics. In this way, we provide evidence on the existence 

of a fine-tuning between chromatin remodelling and gene expression in germ cells. 
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Chapter 7: Conclusions 

The conclusions of this work are the following: 

1. GreeNC represents one of the most comprehensive plant lncRNA databases including 

45 species and more than 200,000 lncRNAs. 

2. GreeNC overcomes limitations identified in previous databases as it (i) includes high 

data quality, (ii) represents an easy-to-use and friendly GUI, (iii) availability of an API, (iv) 

contains simple query options, and (v) offers the possibility of batch downloads.  

3. AIR is the first end-to-end solution for the analysis of high-throughput RNA-seq data 

that does not require previous bioinformatics skills and its not limited to model species 

(more than 150,000 genomes available).  

4. AIR permitted the analysis of 45 gigabytes in less than 6 hours of RNA-seq data derived 

from mouse germ cells, resulting in the identification several DEGs related with meiosis 

and spermiogenesis consistent with the sequential development of spermatogenesis.  

5. The analysis of the dynamics of the higher-order chromatin organization of the mouse 

genome during spermatogenesis reveals principles of chromosome assembly at 

different levels of resolution: (i) intra-/inter-chromosomal interaction ratio, (ii) distance-

dependent interaction frequencies, (iii) genomic compartments and (iv) topologically 

associating domains. 

6. Chromosome territories are partially or totally lost in pre-meiotic, meiotic or post-

meiotic cells with the exception of sperm. This is consistent with the chromosome 

organization events that takes place during meiosis I (bouquet, pairing of homologous 

chromosomes and recombination) or round spermatids (centromere clustering at the 

chromocenters).  

7. Three chromosome condensation patterns are observed during spermatogenesis: (i) 

interphase-like (e.g. fibroblasts and spermatogonia), (ii) mitotic-like (e.g. primary 

spermatocytes), and (iii) an intermediate state (e.g. round spermatids and sperm). 

8. The genome organization at the sub-chromosome scale (e.g. A/B compartments) is 

maintained in all cell types but mainly lost in primary spermatocytes. 
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9. Several cell-specific A compartments regions expressing genes related with meiosis and 

spermiogenesis functions are present in the genome of germ cells. This pattern is 

consistent with the existence of a fine-tuning between chromatin remodelling and gene 

expression. 

10. At the sub-megabase organization scale, TADs are detected in spermatogonia, but their 

presence remains poorly defined or inexistent in primary spermatocytes and sperm.  

11. The X chromosome suffers global chromatin remodelling and silencing during prophase 

I; neither A/B compartmentalization nor TADs are detected in primary spermatocytes. 

This observation is consistent with the meiotic sex chromosome inactivation (MSCI). 

12. The formation of post-meiotic sex chromatin (PMSC) correlates with chromatin 

remodelling that results in low inter-/intra-chromosomal interactions and an absence of 

neither A/B compartmentalization in the X chromosome of round spermatids. 
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Supplementary figures 

 

Supplementary figure 1. Genome-wide ICE-corrected interaction heatmaps. First row: fibroblast (left) and 

spermatogonia (right). Second row: leptonema/zygonema (left) and pachynema/diplonema (right). Third row: 

secondary spermatocytes (left) and round spermatids (right). Forth row: sperm. 
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Supplementary figure 2. Per-chromosome ICE-corrected interaction heatmaps in fibroblast. First row: chromosomes 1-

4. Second row: chromosomes 5-8. Third row: chromosomes 9-12. Forth row: chromosomes 13-16. Fifth row: 

chromosomes 17-19 and X. 
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Supplementary figure 3. Per-chromosome ICE-corrected interaction heatmaps in spermatogonia. First row: 

chromosomes 1-4. Second row: chromosomes 5-8. Third row: chromosomes 9-12. Forth row: chromosomes 13-16. 

Fifth row: chromosomes 17-19 and X. 
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Supplementary figure 4. Per-chromosome ICE-corrected interaction heatmaps in leptonema/zygonema. First row: 

chromosomes 1-4. Second row: chromosomes 5-8. Third row: chromosomes 9-12. Forth row: chromosomes 13-16. 

Fifth row: chromosomes 17-19 and X. 
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Supplementary figure 5. Per-chromosome ICE-corrected interaction heatmaps in pachynema/zygonema. First row: 

chromosomes 1-4. Second row: chromosomes 5-8. Third row: chromosomes 9-12. Forth row: chromosomes 13-16. 

Fifth row: chromosomes 17-19 and X. 
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Supplementary figure 6. Per-chromosome ICE-corrected interaction heatmaps in secondary spermatocytes. First row: 

chromosomes 1-4. Second row: chromosomes 5-8. Third row: chromosomes 9-12. Forth row: chromosomes 13-16. 

Fifth row: chromosomes 17-19 and X. 
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Supplementary figure 7. Per-chromosome ICE-corrected interaction heatmaps in round spermatids. First row: 

chromosomes 1-4. Second row: chromosomes 5-8. Third row: chromosomes 9-12. Forth row: chromosomes 13-16. 

Fifth row: chromosomes 17-19 and X. 
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Supplementary figure 8. Per-chromosome ICE-corrected interaction heatmaps in sperm. First row: chromosomes 1-4. 

Second row: chromosomes 5-8. Third row: chromosomes 9-12. Forth row: chromosomes 13-16. Fifth row: 

chromosomes 17-19 and X. 
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Supplementary figure 9. Focused, per-chromosome ICE-corrected interaction heatmaps in fibroblast. These heatmaps 

show the region between 50-80 Mbp for each chromosome. First row: chromosomes 1 (left) and 2 (right). Second 

row: chromosomes 3 (left) and 4 (right). Third row: chromosomes 5 (left) and 6 (right). Forth row: chromosomes 7 

(left) and 8 (right). Fifth row: chromosomes 9 (left) and 10 (right). Sixth row: chromosomes 11 (left) and 12 (right). 

Seventh row: chromosomes 13 (left) and 14 (right). Eighth row: chromosomes 15 (left) and 16 (right). Ninth row: 

chromosomes 17 (left) and 18 (right). Tenth row: chromosomes 19 (left) and X (right). 
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Supplementary figure 10. Focused, per-chromosome ICE-corrected interaction heatmaps in spermatogonia. These 

heatmaps show the region between 50-80 Mbp for each chromosome. First row: chromosomes 1 (left) and 2 (right). 

Second row: chromosomes 3 (left) and 4 (right). Third row: chromosomes 5 (left) and 6 (right). Forth row: 

chromosomes 7 (left) and 8 (right). Fifth row: chromosomes 9 (left) and 10 (right). Sixth row: chromosomes 11 (left) 

and 12 (right). Seventh row: chromosomes 13 (left) and 14 (right). Eighth row: chromosomes 15 (left) and 16 (right). 

Ninth row: chromosomes 17 (left) and 18 (right). Tenth row: chromosomes 19 (left) and X (right). 
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Supplementary figure 11. Focused, per-chromosome ICE-corrected interaction heatmaps in leptonema/zygonema. 

These heatmaps show the region between 50-80 Mbp for each chromosome. First row: chromosomes 1 (left) and 2 

(right). Second row: chromosomes 3 (left) and 4 (right). Third row: chromosomes 5 (left) and 6 (right). Forth row: 

chromosomes 7 (left) and 8 (right). Fifth row: chromosomes 9 (left) and 10 (right). Sixth row: chromosomes 11 (left) 

and 12 (right). Seventh row: chromosomes 13 (left) and 14 (right). Eighth row: chromosomes 15 (left) and 16 (right). 

Ninth row: chromosomes 17 (left) and 18 (right). Tenth row: chromosomes 19 (left) and X (right). 
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Supplementary figure 12. Focused, per-chromosome ICE-corrected interaction heatmaps in pachynema/diplonema. 

These heatmaps show the region between 50-80 Mbp for each chromosome. First row: chromosomes 1 (left) and 2 

(right). Second row: chromosomes 3 (left) and 4 (right). Third row: chromosomes 5 (left) and 6 (right). Forth row: 

chromosomes 7 (left) and 8 (right). Fifth row: chromosomes 9 (left) and 10 (right). Sixth row: chromosomes 11 (left) 

and 12 (right). Seventh row: chromosomes 13 (left) and 14 (right). Eighth row: chromosomes 15 (left) and 16 (right). 

Ninth row: chromosomes 17 (left) and 18 (right). Tenth row: chromosomes 19 (left) and X (right). 
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Supplementary figure 13. Focused, per-chromosome ICE-corrected interaction heatmaps in secondary spermatocytes. 

These heatmaps show the region between 50-80 Mbp for each chromosome. First row: chromosomes 1 (left) and 2 

(right). Second row: chromosomes 3 (left) and 4 (right). Third row: chromosomes 5 (left) and 6 (right). Forth row: 

chromosomes 7 (left) and 8 (right). Fifth row: chromosomes 9 (left) and 10 (right). Sixth row: chromosomes 11 (left) 

and 12 (right). Seventh row: chromosomes 13 (left) and 14 (right). Eighth row: chromosomes 15 (left) and 16 (right). 

Ninth row: chromosomes 17 (left) and 18 (right). Tenth row: chromosomes 19 (left) and X (right). 
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Supplementary figure 14. Focused, per-chromosome ICE-corrected interaction heatmaps in round spermatids. These 

heatmaps show the region between 50-80 Mbp for each chromosome. First row: chromosomes 1 (left) and 2 (right). 

Second row: chromosomes 3 (left) and 4 (right). Third row: chromosomes 5 (left) and 6 (right). Forth row: 

chromosomes 7 (left) and 8 (right). Fifth row: chromosomes 9 (left) and 10 (right). Sixth row: chromosomes 11 (left) 

and 12 (right). Seventh row: chromosomes 13 (left) and 14 (right). Eighth row: chromosomes 15 (left) and 16 (right). 

Ninth row: chromosomes 17 (left) and 18 (right). Tenth row: chromosomes 19 (left) and X (right). 
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Supplementary figure 15. Focused, per-chromosome ICE-corrected interaction heatmaps in sperm. These heatmaps 

show the region between 50-80 Mbp for each chromosome. First row: chromosomes 1 (left) and 2 (right). Second 

row: chromosomes 3 (left) and 4 (right). Third row: chromosomes 5 (left) and 6 (right). Forth row: chromosomes 7 

(left) and 8 (right). Fifth row: chromosomes 9 (left) and 10 (right). Sixth row: chromosomes 11 (left) and 12 (right). 

Seventh row: chromosomes 13 (left) and 14 (right). Eighth row: chromosomes 15 (left) and 16 (right). Ninth row: 

chromosomes 17 (left) and 18 (right). Tenth row: chromosomes 19 (left) and X (right). 



 145 

 

 

Supplementary figure 16. Per-chromosome eigenvector in fibroblast. Positive values represent A compartments while 

negative values represent B compartments. 
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Supplementary figure 17. Per-chromosome eigenvector in spermatogonia. Positive values represent A compartments 

while negative values represent B compartments. 
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Supplementary figure 18. Per-chromosome eigenvector in leptonema/zygonema. Positive values represent A 

compartments while negative values represent B compartments. 
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Supplementary figure 19. Per-chromosome eigenvector in pachynema/diplonema. Positive values represent A 

compartments while negative values represent B compartments. 
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Supplementary figure 20. Per-chromosome eigenvector in secondary spermatocytes. Positive values represent A 

compartments while negative values represent B compartments. 



 150 

 

 

Supplementary figure 21. Per-chromosome eigenvector in round spermatids. Positive values represent A 

compartments while negative values represent B compartments. 
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Supplementary figure 22. Per-chromosome eigenvector in sperm. Positive values represent A compartments while 

negative values represent B compartments. 
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Supplementary figure 23. Per-chromosome TAD signal (insulator score) in fibroblast. 
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Supplementary figure 24. Per-chromosome TAD signal (insulator score) in spermatogonia. 
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Supplementary figure 25. Per-chromosome TAD signal (insulator score) in leptonema/zygonema. 
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Supplementary figure 26. Per-chromosome TAD signal (insulator score) in pachynema/diplonema. 
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Supplementary figure 27. Per-chromosome TAD signal (insulator score) in secondary spermatocytes. 
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Supplementary figure 28. Per-chromosome TAD signal (insulator score) in round spermatids. 
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Supplementary figure 29. Per-chromosome TAD signal (insulator score) in sperm. 



 159 

 

 

Supplementary figure 30. Screenshot of HiCloud. The top part of the figure shows the control panel to select the data 

or the coordinates to display. The bottom part of the figure shows the graphical output generated.  
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Supplementary tables 

Supplementary table 1. Number of DEGs according to biotype. Legend: Sg: spermatogonia; P/D: pachynema/diplonema; RS: round spermatids. 

Comparison  Type  DEG number asRNA  lncRNA  Pseudogenes  Protein coding genes  smRNA  Unannotated  

Sg versus P/D 
Up-regulated  5091 121 209 151 4251 18 341 

Down-regulated  3842 253 495 273 2619 20 182 

Sg versus RS 
Up-regulated  2574 26 58 27 2368 84 11 

Down-regulated  1105 49 76 32 924 22 2 

Sg versus sperm  
Up-regulated  6956 185 392 339 5592 23 425 

Down-regulated  6124 532 986 732 3490 47 337 

P/D versus RS 
Up-regulated  350 8 25 3 304 0 10 

Down-regulated  1609 118 153 62 1185 0 91 

P/D versus sperm  
Up-regulated  2619 104 217 148 2026 4 120 

Down-regulated  3206 224 399 266 2155 7 155 

RS versus sperm  
Up-regulated  1636 59 127 134 1275 0 41 

Down-regulated  1626 115 167 122 1153 0 69 
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Supplementary table 2. Percentage of DEGs according to biotype. Legend: Sg: spermatogonia; P/D: pachynema/diplonema; RS: round spermatids. 

Comparison  Type  DEG number  asRNA  lncRNA  Pseudogenes  Protein coding genes  smRNA  Unannotated  

Sg versus P/D 
Up-regulated  5091 2.38 4.11 2.97 83.5 0.35 6.7 

Down-regulated  3842 6.59 12.88 7.11 68.17 0.52 4.74 

Sg versus RS 
Up-regulated  2574 1.01 2.25 1.05 92 3.26 0.43 

Down-regulated  1105 4.43 6.88 2.9 83.62 1.99 0.18 

Sg versus sperm  
Up-regulated  6956 2.66 5.64 4.87 80.39 0.33 6.11 

Down-regulated  6124 8.69 16.1 11.95 56.99 0.77 5.5 

P/D versus RS 
Up-regulated  350 2.29 7.14 0.86 86.86 0 2.86 

Down-regulated  1609 7.33 9.51 3.85 73.65 0 5.66 

P/D versus sperm  
Up-regulated  2619 3.97 8.29 5.65 77.36 0.15 4.58 

Down-regulated  3206 6.99 12.45 8.3 67.22 0.22 4.83 

RS versus sperm  
Up-regulated  1636 3.61 7.76 8.19 77.93 0 2.51 

Down-regulated  1626 7.07 10.27 7.5 70.91 0 4.24 
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Supplementary table 3. Hi-C quality metrics per replicate. It includes the number of reads before and after quality check and trimming, the number of reads that mapped once in the genome 

(uniquely mapped), the percentage of reads classified as artefacts (see section 5.2.3), and the final number of valid reads. Legend: Fib: fibroblast; Sg: spermatogonia; L/Z: leptonema/zygonema; 

P/D: pachynema/diplonema; SpII: secondary spermatocytes; RS: round spermatids; rep1: replicate 1; rep2: replicate 2; rep3: replicate 3. 

Reads information 
Fib 

(rep1) 

Fib 

(rep2) 
Sg (rep1) Sg (rep2) 

L/Z 

(rep1) 

P/D 

(rep1) 

P/D 

(rep2) 

P/D (rep 

3) 

SpII 

(rep1) 

SpII 

(rep2) 
RS (rep1) RS (rep2) 

Sperm 

(rep1) 

Sperm 

(rep2) 

# raw 
2480313

30 

2524830

78 

2788164

01 

2874840

75 

2254729

36 

2331329

42 

2505849

96 

2782168

41 

2159815

36 

2287414

18 

2392716

47 

2552639

07 

2488830

03 

2199470

94 

# trimmed 
2402602

84 

2457423

29 

2678400

97 

2746176

12 

2169172

42 

2160400

83 

2431828

43 

2651299

19 

2090318

52 

2147210

68 

2238135

58 

2481482

65 

2401772

38 

2118153

48 

# uniquely 

mapped 

1740846

30 

1728330

69 

1936239

84 

1937166

58 

1583317

25 

1562906

79 

1737700

45 

1922077

89 

1589688

33 

1551626

06 

1552730

80 

1805070

00 

1724293

05 

1519964

34 

% self-circle 

(relative uniquely 

mapped) 

0.13 0.12 0.17 0.17 0.11 0.25 0.24 0.12 0.15 0.24 0.27 0.34 0.09 0.08 

% dangling-end 

(relative uniquely 

mapped) 

0.32 3.13 0.12 0.55 0.06 5.36 4.33 0.06 1.10 3.04 12.77 18.90 0.15 0.37 

% error (relative 

uniquely mapped) 
0.19 1.53 0.04 0.03 0.03 1.70 0.59 0.03 1.18 1.28 5.59 1.52 0.03 0.03 

extra dangling-end 

(relative uniquely 

mapped) 

2.94 3.12 4.70 2.46 4.95 3.36 4.63 4.72 2.22 3.14 4.60 8.20 3.57 4.74 

% too short 

(relative uniquely 

mapped) 

4.84 6.28 7.34 6.60 6.55 5.82 5.75 5.98 3.62 6.18 6.79 6.07 5.61 5.38 

% too large 

(relative uniquely 

mapped) 

0.01 0,01 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.02 0.01 0.00 

% duplicated 

(relative uniquely 

mapped) 

3.34 6.15 7.62 9.05 3.98 18.91 4.05 3.85 11.11 14.18 22.16 9.91 3.87 7.87 

% random breaks 

(relative uniquely 

mapped) 

0.09 0.67 0.03 0.25 0.01 1.00 0.80 0.01 0.09 0.58 1.92 3.58 0.06 0.26 

# total valid 
1547017

18 

1392753

65 

1574955

26 

1590342

23 

1348262

21 

1054263

11 

1404288

38 

1652685

50 

1296154

16 

1146084

74 

8413236

0 

1049970

44 

1505377

22 

1255179

20 

% total valid reads 62.37 55.16 56.49 55.32 59.80 45.22 56.04 59.40 60.01 50.10 35.16 41.13 60.49 57.07 
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(relative to raw) 

% total valid 

(relative to 

trimmed) 

64.39 56.68 58.80 57.91 62.16 48.80 57.75 62.33 62.01 53.38 37.59 42.31 62.68 59.26 

% total valid 

(relative to 

uniquely mapped) 

88.87 80.58 81.34 82.10 85.15 67.46 80.81 85.98 81.54 73.86 54.18 58.17 87.30 82.58 

 

 

 

Supplementary table 4. Compartment and TAD statistics. It includes the mean size of compartments and TADs, the number of TADs, and the percentage of robustness of TAD boundaries. Legend: 

Fib: fibroblast; Sg: spermatogonia; L/Z: leptonema/zygonema; P/D: pachynema/diplonema; SpII: secondary spermatocytes; RS: round spermatids. 

Cell type Compartment mean size (bp) TAD number  TAD mean size (bp) % Robust TADs (score 10 and 9) 

Fib 1000367 2002 1361638 72.32 

Sg 755820 834 3268585 71.70 

P/D 282056 294 9272109 79.59 

L/Z 150888 305 8937705 74.24 

SpII 760457 5004 544764 12.23 

RS 869856 4649 586363 8.49 

Sperm 933584 1042 2616123 14.87 
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Supplementary table 5. Significant enriched GO terms from the GOEA analysis. GO terms were summarized up to the level 3 (GO terms with 2 parents). This table provides the summarized GO 

terms and the name of the expressing genes from A-specific compartment regions for each cell type. 

GO terms Germline Sg+P/D P/D+RS RS+Sperm Sg P/D RS Sperm 

GO:0000075 cell cycle checkpoint Nsun2   Mad2l1; Spdl1           

GO:0000920 cell separation after cytokinesis Chmp2a               

GO:0001775 cell activation     Anxa3   Rap2b; P2ry12 Dock2   Lcp2; Plcz1 

GO:0001816 cytokine production         Maf   Adamts3   

GO:0001909 leukocyte mediated cytotoxicity             Ctsc   

GO:0002200 somatic diversification of immune 

receptors 
Lig4 Exo1             

GO:0002252 immune effector process     C8b     Cfh     

GO:0002253 activation of immune response           Cd36     

GO:0002532 production of molecular mediator 

involved in inflammatory response 
          Chia1     

GO:0003006 developmental process involved in 

reproduction 

Taf4b; Dazl; 

Aspm 
Dmrt1; Dmrt3 Dach1 Spef2; Cyp19a1 Diaph2 Fgf10   

Dpy19l2; 

Spag16; Capza3 

GO:0003008 system process Immp2l   
Ttn; Tmc1; 

Scn1a; Grm7 
Drd2 Fli1; Gucy1a1 Ppargc1a 

Chrna7; 

Olfr654; 

Olfr554; 

Olfr1392; 

Grm5; Olfr703; 

Trdn; Mkks; 

Olfr275; 

Gabrb3; Prkg1; 

Olfr697; 

Gabra5; Dlg2; 

Gja1; Olfr301; 

Olfr308; 

Olfr701; Grm1; 

Olfr653; Calca; 

Olfr1393; 

Olfr303; Eya4 

Trpm8 

GO:0006457 protein folding Emc6           Mkks   
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GO:0006807 nitrogen compound metabolic 

process 

Immp1l; 

Immp2l 
Kmo; Spcs3       Pcsk2 Trhde Dmd; Lgsn 

GO:0006950 response to stress 

Paxip1; Rad21; 

Psmd14; 

Smarcad1; 

Lig4; Lig1; 

Immp2l 

Reln; Stxbp4; 

Exo1; Kmo 

Pnpt1; Vrk2; 

Dpp4; Grm7 
    Cd36; Oxr1 Gja1 Dmd 

GO:0006955 immune response   Exo1           Sftpd 

GO:0007017 microtubule-based process     Ppp2r1a Deup1         

GO:0007049 cell cycle 

Nsun2; Poc5; 

Bora; Rad21; 

Syce1; Pik3c3; 

Aspm; Stag3; 

Lig4 

Exo1     
Gm1993; 

Gm5169 
      

GO:0007154 cell communication     
Syt10; Nrxn1; 

Grm7 
Drd2 

Grm8; Sv2c; 

Rasd2 

Fgf10; Cnr1; 

Gabra1 

Fgf12; Dlg2; 

Sv2b; Gabra5; 

Gja1; Olfr275 

  

GO:0007155 cell adhesion 
Cdh13; 

Pcdhga12 
Fat1; Reln 

Cdh2; Nrxn1; 

Chl1; Dpp4; 

Cdh18; Pcdh9; 

Ctnna2; 

Cadm2; 

Cntnap5b; 

Cntn6 

  P2ry12; Rap2b 

Plcb1; Cdh12; 

Cdh9; Klra8; 

Gm28710; Cntn3; 

Pcdh17; Igfbp7; 

Cntnap2; Flrt2; 

Cd36; Dsg1b; 

Dsg1a; Cyfip2; Itga4 

Adgrl3 Pdlim1 

GO:0007163 establishment or maintenance of cell 

polarity 
Mpp5 Fat1   Lin7a   Dock2 Gja1   

GO:0007272 ensheathment of neurons Qk     Aspa         

GO:0007275 multicellular organism development   
Dmrt1; Dmrt3; 

Reln 
            

GO:0007389 pattern specification process   Reln Ttc21b Sox17   Fgf10; Cobl     

GO:0007566 embryo implantation             Calca; A1cf   

GO:0007568 aging     Prmt6           

GO:0007585 respiratory gaseous exchange     Dach1         Sftpd 

GO:0007611 learning or memory   Reln Grm7   Fgf13 
Pak7; Cnr1; Plcb1; 

Adgrb3; Amph; 

Grm5; Chrna7; 

Gabra5; Atp8a1 
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Cntnap2 

GO:0007625 grooming behavior Ctns     Drd2         

GO:0007626 locomotory behavior   Dmrt3 Dpp4       Alk   

GO:0007631 feeding behavior     Grm7; Dach1           

GO:0007638 mechanosensory behavior     Etv1; Nrxn1 Drd2   Cntnap2; Foxp2     

GO:0008037 cell recognition Spaca3   Cadm2 Glipr1l1; Prss37   Cntnap2     

GO:0009056 catabolic process 
Pik3c3; Wdfy3; 

Tbc1d5 
    Oxct1         

GO:0009058 biosynthetic process   Kmo Hmgcll1     Dio2     

GO:0009566 fertilization               Plcz1; Smcp 

GO:0009605 response to external stimulus Lypd8; Spaca3   
Tmc1; Csmd1; 

Ttn 
Drd2 Gucy1a1 Foxp2 Alk Dmd 

GO:0009628 response to abiotic stimulus Lig4; Paxip1     Rp1     
Gja1; Calca; 

Grm1 
Trpm8 

GO:0009653 anatomical structure morphogenesis Mpp5 Dmrt1; Reln 
Meis1; Cdh2; 

Ctnna2; Ttn 

Rp1; Sox17; 

Wdpcp; Drd2; 

Spef2 

Tenm3 

Fgf10; Bmp5; 

Epha7; Hpgd; 

Aldh1a1 

Zfpm2   

GO:0009719 response to endogenous stimulus Qdpr   Pnpt1     Igfbp7; Ppargc1a Gja1; Mkks Pdgfd 

GO:0014854 response to inactivity       Drd2       Dmd 

GO:0014874 response to stimulus involved in 

regulation of muscle adaptation 
          Ppargc1a     

GO:0016049 cell growth 
Mex3c; 

Tmem108 
        Cobl; Cyfip2     

GO:0016458 gene silencing 
Sox6; Cnot6l; 

Lin28b 
              

GO:0019725 cellular homeostasis             Trim32 Dmd 

GO:0019748 secondary metabolic process           Ddc     

GO:0019827 stem cell population maintenance Aspm; Mcph1   Cdh2           

GO:0019835 cytolysis     C8b     Reg3g     

GO:0021700 developmental maturation     Nrxn1     Adgrb3 Gja1 Snx19 

GO:0022402 cell cycle process 
Chmp2a; 

Smarcad1; 
  Ppp2r1a; Pnpt1 Deup1 Klhl13     Magi2 
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Aspm; Mcph1; 

Rad21; Haspin 

GO:0022404 molting cycle process Nsun2               

GO:0022406 membrane docking     Nrxn1 Exoc5         

GO:0022412 cellular process involved in 

reproduction 
Stag3   Ppp2r1a     Hyal5; Spaca6     

GO:0022602 ovulation cycle process             Chrna7   

GO:0030029 actin filament-based process         Elmo1       

GO:0030534 adult behavior     Nrxn1; Grm7 Drd2   Pcdh17; Cntnap2 
Olfr275; 

Chrna7 
  

GO:0031294 lymphocyte costimulation     Dpp4           

GO:0031987 locomotion involved in locomotory 

behavior 
            Adgrl3   

GO:0032940 secretion by cell     Abca12     Fgf10   Cadps 

GO:0033058 directional locomotion     Ttn           

GO:0033687 osteoblast proliferation     Fignl1           

GO:0034381 plasma lipoprotein particle clearance           Cd36     

GO:0035265 organ growth     Ttn     Fgf10     

GO:0035637 multicellular organismal signaling   Dmrt3 Grm7           

GO:0035640 exploration behavior     Chl1           

GO:0036093 germ cell proliferation   Dmrt1             

GO:0042221 response to chemical 

Pik3c3; Lig4; 

Prkcb; 

Tmem108; 

Qdpr 

  
Pde1c; Ttn; 

Abcg2; Anxa3 

Cftr; Drd2; 

Oxct1; Grin2b; 

Rnls 

P2ry12; 

Adamts7; Fgf13 

Ppargc1a; Gabra1; 

F830016B08Rik; 

Cd36; Ddc; 

Gm4841; Ifi202b 

Gabrb3; Grm5; 

Cyp2r1; Ryr3; 

Gabrb1; 

Chrna7 

Rfc3 

GO:0042330 taxis           Epha7; Flrt2     

GO:0042698 ovulation cycle             
Gabrb1; 

Chrna7 
  

GO:0044085 cellular component biogenesis Serinc1               

GO:0044236 multicellular organism metabolic 

process 
          Ppargc1a     
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GO:0044238 primary metabolic process Rpe; Lrat; Lipe     
Cyp19a1; 

St8sia3 
  

Aldh1a1; Chia1; 

Ppargc1a; Aoah 
Ndst3; Cyp2r1 

Pdha2; Hyal6; 

Hyal4; Chil5 

GO:0044281 small molecule metabolic process Ppip5k2         Ttpa Gpd2; Cyp2r1   

GO:0044419 interspecies interaction between 

organisms 
Chmp2a     Vta1   Reg3g     

GO:0044703 multi-organism reproductive process           Hyal5; Hpgd   Smcp 

GO:0045058 T cell selection           Dock2     

GO:0048532 anatomical structure arrangement               Dmd 

GO:0048589 developmental growth           Fgf10     

GO:0048609 multicellular organismal reproductive 

process 
Immp2l   Abcg2   Diaph2 Hpgd     

GO:0048646 anatomical structure formation 

involved in morphogenesis 
  Reln   Sox17   Bmp5; Fgf10 Zfpm2; Kif16b   

GO:0048771 tissue remodeling             Gja1   

GO:0048871 multicellular organismal homeostasis Mex3c     Drd2     Arrdc3   

GO:0050673 epithelial cell proliferation Cdh13         Fgf10     

GO:0050900 leukocyte migration           Itga4     

GO:0051235 maintenance of location Taf3             Pex5l 

GO:0051301 cell division 

Nsun2; Bora; 

Rad21; Syce1; 

Pik3c3; Aspm; 

Lig4 

              

GO:0051606 detection of stimulus     Scn1a           

GO:0051641 cellular localization 
Aspm; Cdh13; 

Cep112 
Reln 

Nrxn1; Cenpq; 

Cdh2 
    Itga4 Dlg2 

Magi2; Syne1; 

Dmd 

GO:0051703 intraspecies interaction between 

organisms 
        Grid1       

GO:0060384 innervation             
Gabrb3; 

Gabra5 
  

GO:0060466 activation of meiosis involved in egg 

activation 
          Plcb1     

GO:0060710 chorio-allantoic fusion           Bmp5     
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GO:0061744 motor behavior     Dpp4           

GO:0065009 regulation of molecular function Serinc1 Reln 
Nrxn1; Grm7; 

Crbn; Pot1b 
  Pot1a; Fgf13 Eno1b; Itga4; Cd36   

Hjurp; Sftpd; 

Rfc3; Mtrr; 

Dync1i1 

GO:0071625 vocalization behavior     Nrxn1     Foxp2     
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