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Abstract

In this dissertation, we obtain the renormalization group improved expressions of the
Wilson coefficients associated to the O(1/m3) HQET Lagrangian operators with leading-
logarithmic (LL) approximation, in the Coulomb gauge. The Wilson coefficients include
the heavy quark chromopolarizabilities. The analysis incorporates the effects induced by
spectator quarks, which are considered to be massless. Special attention is paid to gauge
independent combinations of Wilson coefficients.

The previous results are applied to pNRQCD at the weak coupling regime obtaining
the renormalization group improved O(α2/m3) and O(α/m4) spin-independent potentials
in the off-shell Coulomb gauge matching scheme. The O(α3/m2) potential is also com-
puted, but in the off-shell Feynman gauge matching scheme, up to missing contributions
proportional to c2

k, dss and dvs.
Such potentials are necessary to obtain the next-to-leading-logarithmic (NLL) potential

and soft running of the Wilson coefficient D̃
(2)
d associated to the spin-independent delta-

like potential, which we also compute. The obtained result is complete up to missing
contributions proportional to c2

k, dss, dvs and c̄
hl (i) NLL
1 of the NLL soft running. The first

three are expected to be of the order of the computed contribution to the soft running,
whereas the latter is of O(Tfnfmα

6 lnα), which is expected to be numerically subleading
compared to the other contributions. The NLL ultrasoft running is also incorporated, as
well as a contribution to the potential running of ultrasoft origin. The scheme independence
of the potential renormalization group equation is explored via field redefinitions.

Presently, obtaining the NLL running of D̃
(2)
d is the missing link to obtain the complete

next-to-next-to-next-to-leading-logarithmic (N3LL) pNRQCD Lagrangian. That is the nec-
essary precision to obtain the spin-average (spin-independent part) heavy quarkonium spec-
trum relevant for S-wave (zero angular momentum) states with N3LL (O(mα5+n lnn α) with
n ∈ Z and n ≥ 0) accuracy. We carry out this computation up to a missing contribution

coming from the missing contribution of D̃
(2)
d .
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Introduction

According to Big Bang Cosmology, the first stages of the Universe’s existence date from
13.8 billion years ago approximately. Between 10−12-10−6 seconds after the Big bang,
the Universe, with a temperature of approximately 1012-1022 K (100 MeV-109 GeV), was
basically a ”soup” of quarks, gluons (quark-gluon plasma) and leptons in what is called the
quark epoch of the Universe. The Universe’s temperature was then too high for hadrons,
bound states of quarks due to the strong interaction, to exist. These are the energies we
are able to reproduce presently in large accelerator facilities1.

While the Universe was cooling due to its expansion, between 10−6-1 second Universe’s
life, the temperature, of about 1010-1012 K (1-100 MeV) started to be low enough to allow
the first bound states to be formed, the hadrons. For this reason, this period of time is
known as the hadron epoch. By the end of it, only stable baryons, like the proton and the
neutron remained. Since then it is impossible to understand the Universe, as it is now,
without understanding the physics of bound states, because since then, as a consequence
of the different interactions, ordinary matter started regrouping in bound states consisting
in larger and larger number of particles.

We have to wait until the Universe was about 10-103 seconds old (with a tempera-
ture of around 107-109 K i.e. between 100 keV-1 keV) to find the first primordial nuclei,
bound states of protons and neutrons due to residual strong interactions, to be synthesized.
Among them, hydrogen (1H), helium-4 (4He), small amounts of deuterium (2H), helium-3
(3He), and lithium-7 (7Li) appeared. That is called the Big Bang nucleosynthesis epoch.

Much more time had to be passed, of around 380 · 103 years, for the Universe to be
cold enough to find electrons bounded with atomic nuclei, due to the electromagnetic
interaction, to form light neutral atoms like hydrogen or helium. This is known as the
recombination epoch, and universe’s temperature was around 4000 K (0.4 eV).

As the Universe was cooling, large amounts of molecular hydrogen (bound states of
two hydrogen atoms due to residual electromagnetic interactions) and helium, scattered in
the space, bounded again due to residual electromagnetic forces, forming regions of space
filled in with a medium of macroscopic gas. In some cases, this macroscopic gas started
to collapse due to the gravitational force giving rise to the formation of stars. The period
which comprises the formation of the first stars goes from 380 · 103 years to 150 · 106 years.
The Universe temperature was around 4000-60 K by then.

With the existence of these massive objects, the gravitational interaction, irrelevant
since the Planck epoch2, started to play a role again. Then, several star-kind objects

1Indeed, the highest total energy reached in the LHC has been 13 TeV.
2Period of time smaller than 10−43 s, where current physical theories lose their predictability. Physics
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started to form bound states, giving rise to bigger astronomical objects like supermassive
black holes, stars cumulus, planetary systems, and finally, the first galaxies. The period
of formation of the first galaxies comprises the period of times from 150 · 106 to 1 · 109

years. The Universe’s temperature lowered to between 60-19 K. Later, also due to the
gravitational interaction, galaxies started regrouping making more complex bound states
called galaxy clusters and superclusters. This started occurring in the period of time in
which the Universe was between 1 · 109 and 10 · 109 years. The Universe’s temperature was
between 19-4 K.

In the meanwhile, since the formation of the first stars, the strong and electromagnetic
interactions followed its course as a cause of the formation of more and more particle
composite bound states. High temperature inside stars formed heavier and heavier nuclei,
depending on the mass of the star, and then on its capacity to fuse them. At the end of
the stars life, an envelope of gas is expelled from it. The expelled gas, which is relatively
rich in heavy nuclei created within the star, cools as it moves away from the star, allowing
molecules (bound states of atoms) and dust particles (bound states of molecules or atoms)
to form. This kind of processes enriched the medium with a variety of different mass atoms.

In particular, 4.6 billion years ago approximately, our Solar system (also a bound state
of an star, the Sun, planets and other less important in mass objects), started its formation
and evolution in a medium already enriched with a wide range of atoms and molecules.
In a particular planet, the Earth, the conditions were such that these molecules bounded
in more and more complex molecules which gave rise to the cell, the smallest unit of life.
Any form of known life, including ourselves, is a bound state of cells.

As we have seen, bound states are present in a vast range of scales, from the tiniest
length scales presently accessible in accelerators, the hadron’s scale length (10−15 m), to
the biggest superclusters of galaxies (1022-1023 m) that have been observed. Bound states
are important, not only to understand the origin and evolution of the Universe, but also to
understand the origin and evolution of life. Thus, understanding bound states is crucial to
understand how the ordinary matter3 behaves. In particular, simple bound states (formed
by two or three particles) are of vital importance to understand the interactions that
produce them. The Earth orbiting around the Sun was crucial to the understanding of the
classical gravitational interaction, the hydrogen atom (a bound state of a proton and an
electron) to understand the electromagnetic interactions at the quantum level and heavy
quarkonium (a bound state of a heavy quark and a heavy antiquark) to improve our
comprehension of the strong interactions.

The research carried out in this dissertation is focused on the study of bound states
due to the strong interactions, so on the tiniest ones that can be presently measured. In
particular, we focus our attention to the most compact ones of them, heavy quarkonia QQ̄,
bound states made out of a heavy quark and a heavy antiquark4. These states, conceived

in this epoch is though to be dominated by quantum effects of gravity.
3Ordinary matter accounts for a 5% of the total Universe’s energy. The rest is accounted for the dark

matter (23%) and dark energy (72%) whose origin is the most puzzling problem that theoretical physics
faces nowadays.

4If m � ΛQCD, where m is the quark mass and ΛQCD ∼ 200-300 MeV is the scale of confinement, i.e.
the typical energy scale that separates the regions of large and small strong coupling, then Q is called a
heavy quark. There are three light quarks: the u, d and s, and three heavy quarks: the c, b and t, in the

2



as the simplest bound states one can study in the framework of the strong interactions, not
only help us to understand how the universe looked like at the first stages of its existence
(since these particles only existed ”naturally” in the hadron epoch), but also to improve
our understanding of the strong interaction. The description of the experiments presently
performed in large accelerator facilities indeed requires a solid knowledge of this interaction.
In fact, this is unavoidable in order to solve the most important problems that high energy
physics faces nowadays:

• To discern the differences between the SM predictions and experimental data i.e. to
detect new physics.

• To quantitatively understand the strong interactions.

Both items will be addressed by carrying out perturbative high precision computations of
heavy quarkonium related observables. The reason why we focus on heavy quarkonium is
because, for large enough masses, perturbation theory can be used and the heavy quark
dynamics simplifies, making it much simpler to study than other strongly interacting sys-
tems. Therefore, in the present dissertation, we will only study the weak coupling regime
of the strong interaction.

The theory which describes the strong interaction is QCD. However, using full QCD
to compute high order perturbative computations in heavy quarkonium can be very com-
plicated, to say the least. Instead, these kind of computations requires the use of EFTs,
which take advantage of the hierarchy of scales of the problem. The resulting EFTs make
the computations much simpler than in the underlying theory. In this context, the motiva-
tion of the present dissertation is to use EFTs of QCD in strong interaction processes, in
particular, to perform perturbative high precision calculations of heavy quark and heavy
quarkonium properties.

The non-relativistic nature of heavy quarkonium characterizes its dynamics by three
widely separated scales, the hard scale m, which is of the order of the heavy quark mass,
the soft scale mv, which is of the order of the relative momentum between the two heavy
quarks in the center of mass frame, or likewise, of the order of the inverse Bohr radius
of the system, and the ultrasoft scale mv2, which is of the order of the binding energy of
the system, where v is the relative velocity between the two heavy quarks in the center of
mass frame. Since the system is non-relativistic (v � 1), the hierarchy of scales is such
that m� mv � mv2 and one can take advantage of it by constructing subsequent EFTs
by integrating out the hard and soft modes ending up with the EFTs called NRQCD and
pNRQCD, respectively. In Fig. 1 we show schematically how the construction of these
EFTs is carried out.

Still we can find two different situations depending on the relative size of ΛQCD with
respect to the soft scale:

• The weak coupling regime (mv � mv2 & ΛQCD): The matching between NRQCD
and pNRQCD can be carried out perturbatively. This situation is satisfied for very
large masses.

SM of particle physics. However, only the b and/or the c form heavy quarkonium bound states. The t is
too massive and it decays before any bound state can be formed.
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Figure 1: Schematic construction of pNRQCD. The hard scale is firstly integrated out to obtain
the EFT called NRQCD and, subsequently, the soft scale is also integrated out obtaining the
EFT called pNRQCD.

• The strong coupling regime (mv & ΛQCD): The matching between NRQCD and
pNRQCD can not be carried out perturbatively.

On the one hand, the quantity Rhad ∼ 1/ΛQCD determines the typical size of the light
hadrons. On the other hand, at energy scales close to the confinement scale, the strong
coupling constant becomes large5, so perturbation theory breaks down. Light hadrons
are non-perturbative systems. Contrarily, at the energy scale of the heavy quark mass
the coupling constant α(m) is small, implying that on length scales comparable to the
Compton wavelength λ ∼ 1/m of the heavy quark the strong interactions are perturbative
and very much like the electromagnetic interactions. In particular, the system under study,
namely heavy quarkonium, have a size of the order of RQQ̄ ∼ 1/(mα(m)) � Rhad, being
perturbative and very much hydrogen-like. Thus, in a first approximation, the heavy
quarkonium spectrum can be described by solving the Schrödinger equation with the singlet
Coulomb potential, obtaining the energy levels

E(n) = −C2
F

mrα
2

2n2
, (1)

where n is the principal quantum number, mr is the reduced mass of the system and the
color factor CF = 4/3 in QCD. Comparing the binding energy with the ultrasoft scale we
identify that v ∼ α/n, so the identification v ∼ α is a good approximation for the lower
levels of heavy quarkonium.

Therefore, in the present dissertation we will assume the strict weak coupling regime
mv � mv2 � ΛQCD. In that case, pNRQCD [1, 2] provides a well founded connection

5Particularly, α(ΛQCD) becomes infinite in MS-like renormalization schemes.
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between QCD and descriptions of the heavy quarkonium dynamics in terms of Schrödinger-
like equations. This connection is obtained using standard QFT techniques such as di-
mensional regularization and renormalization. Schematically, pNRQCD is described by a
Schrödinger-like equation where relativistic corrections to the potential and interactions
with other low energy degrees of freedom can be incorporated systematically. The weak
coupling regime is a good starting point for some particular systems. The top-antitop
production near threshold can be obtained in a first approximation using a weak coupling
analysis. This also applies, to a large extent, to the lower energy levels of bottomonium
(bb̄), charmonium (cc̄) and the Bc (bc̄ or b̄c).

Computations in the previously mentioned systems become feasible in the framework
of pNRQCD with otherwise unreachable very high accuracy. Nowadays, the achieved
precision for the heavy quarkonium mass is N2LL [3] and N3LO [4], and the precision
battle ground is N3LL [5, 6] and N4LO. For inclusive radiative decays, non-relativistic sum
rules, or the top-antitop production near threshold the N3LO [7] expressions are known,
whereas the N2LL [8] expressions are sought. For M1 radiative transitions the achieved
precision is N2LO [9].

Such computations and their comparison with the experiment will give us valuable
information of the QCD dynamics. They are also of vital importance for the most ac-
curate determination of some of the SM parameters like the masses of the heavy quarks:
top, bottom and charm, or the strong coupling constant [10]. Moreover, several of these
results can be easily applied to atomic physics opening the possibility of accurately deter-
mining, lepton masses, the electromagnetic coupling constant, as well low energy hadronic
constants.

The present dissertation is devoted to the complete determination of the heavy quarko-
nium spectrum with N3LL accuracy, leaving for future projects the computation of other
observables. That is a very demanding task which has been already considered in previous
works [4, 6, 11, 12, 13], where several contributions were computed. At present, the missing
link to obtain the complete N3LL heavy quarkonium spectrum is the spin-average (spin-
independent) contribution to the S-wave (zero angular momentum) states. The spectrum
for S-wave states can be splitted as

ES-wave = Eaver + S1 · S2Ehfs , (2)

where Eaver is the spin-average contribution and Ehfs is the hyperfine splitting contribution.
Particularly, Eaver comes from the expectation value of the spin-independent delta-like
interaction potential between the two heavy quarks, whose Wilson coefficient is needed with
NLL accuracy. The determination of that Wilson coefficient with the necessary accuracy
is the computation we address in this thesis. Its running is divided in three different parts:
the soft running, the potential running and the ultrasoft running. Partial results will be
obtained for the soft running, whereas the potential running will be completely determined.
Finally, we will include the ultrasoft running which was already computed in Ref. [14].

The dissertation is divided as follows. In Ch. 1 we introduce some EFT concepts
qualitatively. In Ch. 2 we obtain the LL running of the Wilson coefficients associated to
the 1/m3 operators of the HQET Lagrangian. Of those, the ones associated to the spin-
independent operators are relevant to obtain the potential running of the spin-independent
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delta-like potential with NLL precision. In Ch. 3 we introduce the NRQCD Lagrangian
and compute the already known [15] NLO matching of the spin-independent four fermion
operators in the different mass case. This section is devoted to a reader interested in how
the matching between QCD and NRQCD is performed. It also set the details for a future
evaluation of the N2LO matching of the four fermion operators, which could be useful to
determine the missing contribution of the NLL soft running of the spin-independent delta-
like potential. In Ch. 4 we compute the matching between NRQCD and pNRQCD to
obtain the spin-independent α2/m3 and α/m4 interaction potentials, which are necessary
to obtain the NLL potential running of the spin-independent delta-like potential. We
partially compute the spin-independent part of the α3/m2 potential which allows us to
partially obtain the NLL soft running of the spin-independent delta-like potential. The
already known ultrasoft running is also included. Therefore, in this chapter we obtain the
pNRQCD Lagrangian relevant for S-wave states with N3LL accuracy. Finally, we compute
the heavy quarkonium mass of spin-average states with N3LL accuracy. These results are
complete up to a missing contribution coming from the NLL soft running. Conclusions
and prospects of future research are also discussed. At the end the thesis we include an
appendix in order to fix notation, summarize useful results and mathematical identities,
display master integrals, and perform examples of computations we have been involved in.
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Chapter 1

Effective Field Theories in Particle
Physics

1.1 Introduction

An EFT of a physical system is a low-energy (long-distance) theory specially designed to
the description of that system such that it is computationally simpler than its underlying
high-energy theory. This is due to the so called high energy degrees of freedom decouple
and disappear completely from the dynamics of the low energy system (see from Ref.
[16] to Ref. [23] for reviews). The details of the high-energy (short distance) theory
become irrelevant to the description of the low energy system and their effects are encoded
into the parameters of the EFT Lagrangian, called Wilson coefficients. Its construction
is characterized by a scale Λ, acting as a cut-off, which splits the high and low energy
degrees of freedom and under which the EFT is expected to describe the physical system
as good as the underlying high energy theory does. Indeed, both theories are imposed to
be equivalent at energies smaller than the cut-off i.e in the IR. It is in the UV, where both
theories differ. The EFT is mathematically described by an effective Lagrangian LEFT

which can be systematically improved by introducing operators of higher dimensionality,
obtaining a power series of corrections in 1/Λ. Therefore, given an operator it can be
determined to what order in 1/Λ will contribute, in other words, power counting rules
arise.

Typically, there are two situations in which EFTs are used depending on if the underly-
ing high energy theory is known or not. In the case it is, the EFT is used in a ”top-down”
approach. This is done when one wants a simpler low energy theory to describe a system.
One can construct the effective Lagrangian from an explicit calculation in the high energy
theory, i.e. from first principles, finding the operators that enter in the EFT. Examples
are when we integrate out heavy particles like the t, the W and the Z or when we use
HQET to describe the b and the c. In the case the underlying high energy theory is not
known, the EFT is used in a ”bottom-up” approach. One must construct the underlying
theory with constraints based on the symmetries the high energy theory is supposed to
have (like Lorentz and gauge invariance), which are the relevant degrees of freedom and
”naturalness” considerations (like no fine tunning), i.e. it can not be constructed from
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first principles. An example of that case is the extension of the SM introducing operators
of higher dimensionality to describe physics at energies closer to some heavy particle that
has been integrated out and whose effects do not show up in the SM. A ”bottom-up”
approach is also taken when the underlying theory is known, but the matching is too dif-
ficult to be performed. An example of that case is the construction of an EFT to describe
non-perturbative dynamics in QCD.

The EFTs considered in this thesis follow a ”top-down” approach since the full theory
QCD is well-known and the regime where we work is perturbative, so there are no difficulties
when performing the matching between the full and the effective theory. In this context, the
way of disentangling the low and high energy degrees of freedom follows two steps. First,
one must identify the high energy (heavy) degrees of freedom in the full theory and integrate
them out of the action, ending up with an effective action with non-local interactions
between the low energy (light) degrees of freedom. The second step is the expansion of
this non-local effective action in local operators which describe local interactions between
the low energy degrees of freedom. This way of understanding the construction of EFTs is
known as the Wilsonian approach to EFTs. The effective Lagrangian resulting from this
process can be written as

LEFT = L<D + LD +
∞∑
n=1

LD+n = L<D + LD +
∞∑
n=1

cn
OD+n

Λn
, (1.1)

where Li means that it contains operators of mass dimension i, Oi is an operator of
mass dimension i, Λ is the scale of new physics where the EFT loses its validity, and cn
are dimensionless coefficients called Wilson coefficients which encode the physics at short
distances. Three different kind of operators can be identified:

1. Relevant: [O] < MD, are dominant.

2. Marginal: [O] = MD, remain constant.

3. Irrelevant: [O] > MD, are subdominant.

Remember that traditional textbooks argue that any QFT must contain only relevant and
marginal operators or otherwise it loses its predictive power because an infinite number
of counterterms are needed to renormalize an infinite number of parameters. However,
this statement is in controversy with EFTs since, in addition to relevant and marginal
operators, they are constructed with an infinite number of irrelevant operators with any
possible mass dimension. The key point is that the predictive power is not lost as long as
our goal is to make a calculation with a given precision. Once the aimed accuracy is fixed,
the series is truncated and the infinities arising from loop integrals at a given order can be
absorbed by a finite number of counterterms. Another crucial property demanded to any
EFT is a well-defined power counting. Let us look at the irrelevant operators of Eq. (1.1).
Since the scale of new physics Λ is much larger that any typical momentum and energy of
the system, the series define a power counting in 1/Λ. Note that if we want an EFT to
be renormalizable at O(1/Λr), the effective Lagrangian must be truncated to incorporate
operators of dimension up to [O] = MD+r. As it can be seen, the dimensionality of the
operators is intimately related with the power counting.
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1.2 Matching

In the construction of an EFT we need to map the underlying theory to the Wilson coeffi-
cients of the effective theory. That map is called matching and consists on imposing both
theories to be equal (up to corrections in 1/Λ) at a given energy scale Λ, called the match-
ing scale, which is the cut-off of the effective theory. In practice, this is done by imposing
S-matrix elements or Green functions to be equal in the underlying and the effective theory
after expanding the former in powers of 1/Λ. In the cases at hand, such a computation
can be carried out in perturbation theory. Typically, the matching is a computation in the
underlying theory since loop integrals in the EFT appear to be scaleless and are set to zero
in dimensional regularization. By construction, both theories have the same IR behaviour,
so IR divergences cancel in the matching process1. However, UV divergences appear and
they are canceled by renormalization counterterms determining part of the running of the
Wilson coefficients of the EFT. The matching determines the Wilson coefficients evaluated
at the matching scale2 c(Λ), which can be expressed as a power series in the underlying
theory expansion parameter, the coupling constant α

c(Λ) =
∑
m

amα
m(Λ) , (1.2)

where am are constants and the index m runs till the aimed accuracy.
After the construction of the effective theory and the subsequent matching, an interac-

tion mediated by heavy fields in the underlying theory is described by higher-dimensional
operators in the EFT. It means that, non-local interactions in the underlying theory, are
approximated in the effective theory by local contact interactions with coupling c(Λ)/Λn−D,
where n is the mass dimension of the operator we are considering.

Therefore, there are two expansion parameters in the effective theory which must be
taken into account in order to determine an observable with a certain precision, the coupling
constant α and the inverse of the cut-off 1/Λ. The size of a certain contribution is then
measured in powers of αr/Λs.

1.3 Renormalization Group

Once the matching calculation is done, we obtain the Wilson coefficients at fixed order
c(ν = Λ), where ν is the cut-off of the EFT. However, the expressions of these Wilson
coefficients still need to be improved via RG in what is called the resummation of large
logarithms. The RG improvement is specially important when the ln(ν/Λ) is large, which
happens when ν gets closer to the next physical scale of the problem, and it allows to find
O(lnn(ν/Λ)) contributions that can not be found by just working at fixed order.

The way to determine the RGE of a Wilson coefficient is by computing S-matrix ele-
ments or Green functions. For instance, in the one-loop approximation, we have that

1A kind of IR divergence called pinch singularity can occur. These IR divergences are eliminated by
subtracting to the diagrams of the underlying theory the ones of the effective theory [8].

2Note that, for simplicity in the discussion, we have chosen the matching scale to be equal to the
expansion parameter, but they do not have to be necessarily the same.
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A = Atree +A1-loop , (1.3)

where A is the S-matrix element, which is a physical observable, so it can not depend on
the renormalization scale (νdA/dν = 0) and it must be a finite quantity. On the contrary,
the one-loop contribution to the S-matrix A1-loop is UV divergent. Such a divergence gets
absorbed in the tree level contribution to the S-matrixAtree, which at the Wilson coefficient
level allows to determine the counterterms of the Wilson coefficients in Atree. Likewise,
this allows to determine their RGE. Let us see how it works from a schematic example
with a single Wilson coefficient. Thus

Atree = cBA , (1.4)

A1-loop = ag2 1

ε
M2εA , (1.5)

where A stands for some momentum structure, cB is the bare Wilson coefficient, M is some
energy or momentum scale of the problem and a is a constant. The quantity Atree +A1-loop

must be finite and ν-independent. Since the second term is UV divergent, such divergence
must be canceled by the coefficient in Atree, so

cBA+ ag2 1

ε
M2εA = finite and ν-independent . (1.6)

At the level of the Wilson coefficients and rewriting cB = c(ν) + δc(ν), being c(ν) the
renormalized Wilson coefficient and δc(ν) the counterterm, we have that

c(ν) + δc(ν) + ag2 1

ε
M2ε = finite and ν-independent . (1.7)

Since the left hand side of Eq. (1.7) must be finite, we can fix the counterterm

δc(ν) = −ag2 1

ε
ν2ε . (1.8)

Finally, since the left hand side of Eq. (1.7) must be ν-independent

ν
d

dν

(
c(ν) + δc(ν) + ag2 1

ε
M2ε

)
= 0 , (1.9)

which allows us to find the RGE of the Wilson coefficient c

ν
d

dν
c(ν) = −ν d

dν
δc(ν) = 2ag2 . (1.10)

After solving the RGEs, the RG improved Wilson coefficients are obtained. They can be
expressed as c(ν) = c(Λ) + ∆c(ν), with ∆c(ν = Λ) = 0. If we expand c(ν) in powers of
the coupling constant α(Λ), the resulting expression is a tower of logarithms (from here it
comes the term resummation of logarithms) of the form

c(ν) =
∑
m

(
amα

m(Λ) +
∞∑
n=1

bmnα
m+n(Λ) lnn

( ν
Λ

))
, (1.11)
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where am and bmn are constants and the index m runs till the aimed accuracy of a par-
ticular calculation. If the logarithms lnn(ν/Λ) are large, then the resummation of them
become numerically important compared to the fixed order computation, and they must
be computed. We will refer to these expressions where the RG evolution has been taken
into account as RG improved expressions and the procedure to compute them as the re-
summation of large logarithms. Such a resummation, which is the sum over the index n,
is achieved by solving the RGEs.

In general, we will use the terms LO, NLO, N2LO and so on to refer to the first, second,
third and so on non-vanishing fixed order contribution to the Wilson coefficients. Once
the Wilson coefficients are RG improved we will refer to their accuracy as being LL, NLL,
N2LL and so on.
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Chapter 2

Heavy Quark Effective Theory
(HQET)

2.1 Introduction

The expansion in inverse powers of the heavy quark mass is a powerful tool for the study
of hadrons containing one or more heavy quarks. This expansion is formulated more
systematically in terms of an effective theory and of its associated effective Lagrangian.
For the one-heavy quark sector, this effective theory is the HQET [24]. Once obtained,
its Lagrangian can be applied, for instance, to physical observables associated to the B or
D mesons such as their spectrum or decays. The HQET Lagrangian is also instrumental
in the description of systems with more than one heavy quark, in particular if we fix
our attention to the heavy quark-antiquark sector, i.e. heavy quarkonium, as the HQET
Lagrangian corresponds to one of the building blocks of the NRQCD Lagrangian [25, 26].
The Wilson coefficients of the HQET Lagrangian operators also enter into the Wilson
coefficients of the operators (i.e. the interaction potentials) of the pNRQCD Lagrangian
[1, 27], an effective field theory optimized for the description of heavy quark-antiquark
systems near threshold (for reviews, see Refs. [2, 8]). The dependence of the potentials
with the Wilson coefficients of the HQET Lagrangian is a consequence of the matching
between NRQCD and pNRQCD.

In this chapter we address the computation of the LL running of the Wilson coefficients
associated to the 1/m3 operators of the HQET Lagrangian. The Wilson coefficients we
compute have applications in heavy quark and heavy quarkonium physics. On the one
hand, what is more important for the present work is that the computed Wilson coefficients
that are associated to spin-independent operators are necessary ingredients to obtain the
pNRQCD Lagrangian with N3LL accuracy, which in turn is the necessary precision to
obtain the complete heavy quarkonium spectrum with N3LL accuracy, i.e. with O(mα5 +
mα6 lnα + mα7 ln2 α + . . .) accuracy. They are also necessary for the computation of the
production and annihilation of heavy quarkonium with N2LL precision. Actually, this is
one of the main motivations we undertake this work. More precisely, they play a role in
the computation of the NLL potential running of the Wilson coefficient D̃

(2)
d associated

to the spin-independent delta-like potential, which is of O(α/m2) at its LO. Let us see
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the reason why we need this Wilson coefficient to this order. In momentum space, the
spin-independent delta-like potential can be written as Ṽd ∼ D̃

(2)
d /m2. Then, the potential

Vd in position space contributes to the spectrum in the following way

Vd ∼ d3kṼd ∼
d3k

m2
D̃

(2)
d ∼ mα3(α + α2 lnα + . . .+ α2 + α3 lnα + . . .)

= mα4︸︷︷︸
N2LO

+mα5 lnα + . . .

︸ ︷︷ ︸
N2LL

+ mα5︸︷︷︸
N3LO

+mα6 lnα + . . .

︸ ︷︷ ︸
N3LL

, (2.1)

where we have used the power counting rules given in Ref. [8]. The O(α, α2) terms come

from the initial matching condition of D̃
(2)
d at tree level and at one loop, respectively. The

O(α2 lnα + . . . , α3 lnα + . . .) terms come from the RG evolution of D̃
(2)
d at LL and at

NLL, respectively. As it can be seen, in order to determine the contribution of the spin-
independent delta-like potential to the N3LL heavy quarkonium spectrum the running of
D̃

(2)
d must be determined with NLL accuracy. That means

δD̃
(2) NLL
d ∼ α2 + α3 lnα + α4 ln2 α + . . .⇒ ν

d

dν
δD̃

(2) NLL
d ∼ α3 + α4 lnα + . . . , (2.2)

where δD̃
(2) NLL
d stands for the purely NLL contribution to D̃

(2)
d , more precisely, D̃

(2)
d =

D̃
(2) LL
d + δD̃

(2) NLL
d . In particular, we will see in Ch. 4 that the potential RGE1 of δD̃

(2) NLL
d

has the form

ν
d

dν
δD̃

(2) NLL
d,p ∼ α3

(
A12(2cA1 + c̄A2) + A34(2cA3 + cA4)

)
+ . . . , (2.3)

where A12 and A34 are constants, cAi are Wilson coefficients associated to the O(1/m3)
spin-independent operators of the HQET Lagrangian, and the dots stand for irrelevant
terms for the present discussion. Comparing Eq. (2.2) with Eq. (2.3) it can be seen that
the cAi must be determined with LL precision, namely with the following accuracy

cAi ∼ 1 + α lnα + α2 ln2 α + . . . . (2.4)

On the other hand, the computed Wilson coefficients associated to spin-dependent opera-
tors start to be relevant when considering the pNRQCD Lagrangian with N4LO and N4LL
accuracy, which is the necessary precision to determine the N4LO, i.e the O(mα6), and the
N4LL, i.e. the O(mα6 + mα7 lnα + mα8 ln2 α + . . .), heavy quarkonium spectrum. This
computation is beyond the scope of this work, though. These results are also instrumental
in the determination of higher order logarithms for NRQED bound states, like in hydrogen
and muonic hydrogen-like atoms.

1The NLL contribution to D̃
(2)
d is conveniently divided in four pieces, δD̃

(2)NLL
d = D̃

(2)NLO
d +

δD̃
(2)NLL
d,us + δD̃

(2)NLL
d,s + δD̃

(2)NLL
d,p . In Ch. 4 we will define what each contribution is. At the moment, we

only need to know that δD̃
(2)NLL
d is splitted in different contributions.
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The computation presented here also provides a cross-check of some of the reparametriza-
tion invariance relations given in Ref. [28] (except for cM and dhl1 , for which we introduce
some controversy) and gives a solution in the standard basis settled on by the same refer-
ence.

At present, the operator structure of the HQET Lagrangian, and the tree-level values
of their Wilson coefficients, is known to O(1/m3) in the case with no light quarks [28].
The inclusion of light quarks has been considered in Ref. [29]. The Wilson coefficients
were computed with LL accuracy in Refs. [30, 31, 32] to O(1/m2) and with NLO accuracy
in Ref. [28] also to O(1/m2) but without considering dimension 6 heavy-light operators.
The LL running to O(1/m3) without considering spectator effects was considered in Refs.
[33, 34], which turned out to have internal discrepancies between their explicit SL results
and their own anomalous dimension matrix. The inclusion of heavy-light operators to
O(1/m3) was considered in Ref. [29], but only SL results for the Wilson coefficients were
provided. The resummed expressions of the Wilson coefficients with LL approximation,
to O(1/m3), and including spectator quarks were obtained in Refs. [35, 36, 37], which
corrected the inconsistencies found in Refs. [33, 34] and found disagreement with some of
the SL results presented in Ref. [29]. The present chapter basically summarizes and details
the work done in Refs. [35, 36, 37].

In summary, in this chapter we obtain the RG improved expressions of the Wilson
coefficients of the HQET Lagrangian operators with LL approximation to O(1/m3), which
includes the heavy quark chromopolarizabilites. The analysis includes the effects induced
by spectator quarks, which are considered to be massless. The Coulomb gauge will be used
throughout.

The chapter is organized as follows. In Sec. 2.2 we give a brief introduction to HQET
and talk about heavy quark symmetry. In Sec. 2.3 we introduce the HQET Lagrangian up
to O(1/m3) including relevant heavy-light operators (see Ref. [29] for a complete basis of
heavy-light operators). In Sec. 2.4 we compute the Compton scattering, which allows us to
identify gauge-independent combinations of Wilson coefficients. The Sec. 2.5 is dedicated
to the computation of the anomalous dimensions and it is divided in three subsections:
In Sec. 2.5.1 and Sec. 2.5.2 the RGEs for the Wilson coefficients associated to the 1/m3

heavy-light operators and to the 1/m3 heavy-gluon operators are presented, respectively.
In Sec. 2.5.3 physical combinations are sought, and their associated RGEs are presented.
The solution of the RGEs for the physical quantities we have found is displayed in Sec.
2.5.5. A numerical analysis of the solution is also performed. We compare with the earlier
work done in Refs. [29, 33, 34] in Sec. 2.6. We dedicate Sec. 2.7 to show how the UV
pole of the loop integrals is obtained. Finally, in Sec. B we display the necessary Feynman
rules, master integrals and some useful color algebra and gamma matrices relations. The
problem with cM and dhl1 not satisfying reparametrization invariance in the Coulomb gauge
is also discussed.

2.2 Heavy Quark Symmetry

As we already discussed in Ch. 1, in particle physics, it is very common that the effect
that a given heavy particle has in the dynamics of a certain process becomes irrelevant. In
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that case, it is useful to construct and EFT where such a particle no longer appears. The
resulting theory happens to be mathematically more tractable than the full theory.

The case in which one wants to describe the properties of hadrons which contain a
heavy quark [38] is quite similar to the case described above, where the heavy particle role
is played by the heavy quark, but with some subtleties. The difference is that, in this
case, it is not possible to completely remove the heavy quark from the effective theory.
Instead, what it is possible is to integrate out the ”small components” in the full heavy
quark spinor, which describe fluctuations around the mass shell.

The starting point for the construction of HQET is the use of the phenomenological fact
that a heavy quark Q of mass m � ΛQCD inside an hadron is almost on-shell and moves
with very good approximation with the hadron’s velocity v. Thus, its four momentum can
be written as

PQ = mv + k , (2.5)

where k is the residual momentum of the heavy quark which describes small fluctuations
with respect to the on shell condition PQ = mv. Since the heavy quark is almost on shell,
k � mv. The first step is to introduce large and small component fields

Qv(x) = eimv·xP+Q(x) , (2.6)

qv(x) = eimv·xP−Q(x) , (2.7)

respectively, so that

Q(x) = e−imv·x
(
Qv(x) + qv(x)

)
, (2.8)

where Q(x) is the full heavy quark spinor appearing in the Dirac Lagrangian for the heavy
quark

LQ = Q̄(i /D −m)Q , (2.9)

and P± = 1
2
(1 ± /v) are projection operators. In the rest frame, where v = (1,0), Qv

corresponds to the upper two components of Q and qv to the lower two ones. These new
fields satisfy /vQv = Qv and /vqv = −qv. If the heavy quark was perfectly on shell (this
happens in the infinite heavy quark mass limit), the field qv would be absent. For describing
an hadron containing a heavy antiquark we just must replace v → −v in Eqs. (2.6-2.8).

At the classical level, the heavy degrees of freedom (small component) qv can be elimi-
nated by just using Eq. (2.8) to replace the expression of Q in terms of the new fields into
the equation of motion of the heavy quark, (i /D −m)Q = 0, obtaining

i /DQv + (i /D − 2m)qv = 0 . (2.10)

From Eq. (2.10) it is apparent that Qv describes massless degrees of freedom, whereas
qv corresponds to degrees of freedom with twice the heavy quark mass. For this reason,
we called qv heavy degrees of freedom above. The small component field qv is the degree
of freedom which is integrated out of the theory deriving a nonlocal effective action for
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the large component Qv. Such effective action can then be expanded in local operators.
Multiplying Eq. (2.10) by P± we obtain

− iv ·DQv = i /D⊥qv , (2.11)

(iv ·D + 2m)qv = i /D⊥Qv , (2.12)

where Dµ
⊥ = Dµ − vµv ·D. Eq. (2.12) can be solved and gives

qv =
1

iv ·D + 2m− iη
i /D⊥Qv , (2.13)

showing that the small component field qv is suppressed by the heavy quark mass. Inserting
it into Eq. 2.11 we obtain

− iv ·DQv = i /D⊥
1

iv ·D + 2m− iη
i /D⊥Qv , (2.14)

which is the equation of motion for Qv. From the EOM it is easy to guess the effective
Lagrangian:

Leff = Q̄v(iv ·D)Qv + Q̄vi /D⊥
1

iv ·D + 2m− iη
i /D⊥Qv , (2.15)

which is, in the absence of radiative corrections, the HQET Lagrangian. This Lagrangian
was derived more elegantly from the generating functional of QCD in Ref. [39].

Derivatives acting on Qv produces powers of the residual momenta k � m. Hence, the
nonlocal effective Lagrangian Eq. (2.15) can be expanded in powers of iv ·D/m, defining
the operator product expansion of the HQET Lagrangian as a series of local operators. It
can be seen that, to first order in 1/m

Leff = Q̄v(iv ·D)Qv −
1

2m
Q̄vD

2
⊥Qv −

g

4m
Q̄vσαβG

αβQv +O(1/m2) . (2.16)

In the present discussion we stop the derivation of the HQET Lagrangian to O(1/m)
because we only want to be illustrative. However, this thesis is concerned with the HQET
Lagrangian up to O(1/m3). In the rest frame the above Lagrangian is written as

Lrest frame
eff = Q†

(
iD0 +

1

2m
D2 +

g

2m
σ ·B

)
Q+O(1/m2) . (2.17)

The term D2/m can be identified as the kinetic energy associated to the off-shell residual
motion of the heavy quark, whereas the term σ ·B/m is the Pauli term, which describes
the interaction of the heavy quark spin with the gluon field. In the m→∞ limit, these two
operators do not appear. On the one hand, it implies that hadronic states with different
heavy quark spin have the same properties. This is the origin of the heavy quark spin
symmetry. On the other hand, it implies that hadron properties are independent of the
flavor of the heavy quark it contains. This is the origin of the heavy quark flavor symmetry.
Together, they are referred as the heavy quark symmetry.
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These approximate symmetries allow the determination of relations between hadrons
containing a heavy quark, like the B, D, B∗ and D∗ heavy mesons or the Λb and Λc heavy
baryons. These symmetries are broken by relativistic effects suppressed by powers of the
heavy quark mass, which are of the order of powers of ΛQCD/m. As far as m� ΛQCD, heavy
quark symmetry is a good approximation to the description of the hadrons containing a
quark of mass m.

2.3 The HQET Lagrangian

2.3.1 The HQET Lagrangian without light fermions

The HQET Lagrangian is defined uniquely up to field redefinitions. In this thesis we
use the HQET Lagrangian density for a quark of mass m � ΛQCD in the special frame
v = (1, 0, 0, 0) given in Ref. [28]:

LHQET = Lg + LQ , (2.18)

Lg = −1

4
Gµν aGa

µν + cg1
g

4m2
fabcGa

µνG
µ b
αG

να c +O
(

1

m4

)
, (2.19)

LQ = Q†

{
iD0 +

ck
2m

D2 +
cF
2m

σ · gB

+
cD

8m2
(D · gE− gE ·D) + i

cS
8m2

σ · (D× gE− gE×D)

+
c4

8m3
D4 + icM g

D · [D×B] + [D×B] ·D
8m3

+ cA1 g
2 B2 − E2

8m3
− cA2

g2E2

16m3

+cW1 g
{D2,σ ·B}

8m3
− cW2 g

Di σ ·B Di

4m3
+ cp′p g

σ ·D B ·D + D ·Bσ ·D
8m3

+cA3 g
2 1

Nc

Tr

(
B2 − E2

8m3

)
− cA4 g

2 1

Nc

Tr

(
E2

16m3

)
+icB1 g

2 σ · (B×B− E× E)

8m3
− icB2 g

2 σ · (E× E)

8m3

}
Q+O

(
1

m4

)
, (2.20)

where Q is a non-relativistic fermion field represented by a Pauli spinor. The components
of the vector σ are the Pauli matrices. We define iD0 = i∂0 − gA0, iD = i∇ + gA,
Ei = Gi0 and Bi = −εijkGjk/2, where εijk is the three-dimensional totally antisymmetric
tensor2 with ε123 = 1 and (a× b)i ≡ εijkajbk. Note also that we have rescaled by a factor
1/Nc the coefficients cA3,4 , as compared to the definitions given in Ref. [28]. In general, we
will refer to the cAi as the chromopolarizabilities.

2 In dimensional regularization several prescriptions are possible for the εijk tensors and σ, and the
same prescription as for the calculation of the Wilson coefficients must be used.
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2.3.2 The HQET Lagrangian with massless fermions

By including nf massless fermions to the HQET Lagrangian, it has the following structure:

LHQET = Lg + LQ + Ll, (2.21)

Ll =

nf∑
i=1

q̄ii /Dqi +
δL(2)

q

m2
+
δL(2)

Qq

m2
+
δL(3)

q

m3
+
δL(3)

Qq

m3
+O

(
1

m4

)
, (2.22)

where qi is a relativistic fermion field represented by a Dirac spinor. The complete set of
operators to O(1/m2) can be found in Ref. [32]. They read

δL(2)
Qq =

chl1

8
g2

nf∑
i=1

Q†T aQq̄iγ
0T aqi −

chl2

8
g2

nf∑
i=1

Q†σjT aQq̄iγ
jγ5T

aqi

+
chl3

8
g2

nf∑
i=1

Q†Qq̄iγ
0qi −

chl4

8
g2

nf∑
i=1

Q†σjQq̄iγ
jγ5qi, (2.23)

δL(2)
q =

clD
4
q̄iγνDµG

µνqi

+
cll1
8
g2

nf∑
i,j=1

q̄iT
aγµqi q̄jT

aγµqj +
cll2
8
g2

nf∑
i,j=1

q̄iT
aγµγ5qi q̄jT

aγµγ5qj

+
cll3
8
g2

nf∑
i,j=1

q̄iγ
µqi q̄jγµqj +

cll4
8
g2

nf∑
i,j=1

q̄iγ
µγ5qi q̄jγµγ5qj. (2.24)

However, the light-light operators δL(2)
q and δL(3)

q , as well as the 1/m2 gluonic operator
with associated Wilson coefficient cg1, contribute at NLL or beyond, so we will not consider
them any further.

The O(1/m3) (dimension 7) heavy-light operators were considered in detail in Ref. [29]
and they can be found in the Eq. (10) of that reference. However, we will not consider all
of them, but only those that get LL running and that could affect the LL running of the
Wilson coefficients of the heavy-gluon operators: c4, cM , cA1 , cA2 , cA3 , cA4 , cp′p, cW1 , cW2 ,
cB1 and cB2 . After disregarding some of them because they are proportional to the energy
of the heavy quark (so they become subleading after using the heavy quark EOM), we find
that the only relevant operators are

M(3h)s/o
4± = ±g2[q̄lγ

µCas/oql][h̄vCas/oiD±µ hv] , (2.25)

M(3h)s/o
6± = ±g2[q̄liσ

µλvλCas/oql][h̄vCas/oiD±µ hv] , (2.26)

M(3l)s/o
2± = ±g2[q̄lCas/o(ivD±)ql][h̄vCas/ohv] , (2.27)

M(3l)s/o
3± = ±g2[q̄l/vCas/o(ivD±)ql][h̄vCas/ohv] , (2.28)

M(3l)s/o
4± = ±g2[q̄liσ

λνvλCas/oiD±ν ql][h̄vCas/ohv] , (2.29)

M(3h)s/o
3± = ±g2

s [q̄lγµCas/oql][h̄viσµνCas/oiD±ν hv] , (2.30)

19



M(3h)s/o
5± = ±g2

s [q̄liσµλv
λCas/oql][h̄viσµνCas/oiD±ν hv] , (2.31)

M(3h)s/o
7± = ±g2

s [q̄lγ5/vCas/oql][h̄vγ5Cas/oi /D
±
hv] , (2.32)

M(3h)s/o
9± = ±g2

s [q̄lγ5Cas/oql][h̄vγ5Cas/oi /D
±
hv] , (2.33)

M(3l)s/o
5± = ±g2

s [q̄liσ
µνCas/o(ivD±)ql][h̄viσµνCas/ohv] , (2.34)

M(3l)s/o
6± = ±g2

s [q̄lγ5/vCas/oiD±µ ql][h̄vγ5γ
µCas/ohv] , (2.35)

M(3l)s/o
7± = ±g2

s [q̄lγ5γ
µCas/o(ivD±)ql][h̄vγ5γµCas/ohv] , (2.36)

M(3l)s/o
8± = ±g2

s [q̄lγ5Cas/oiD±µ ql][h̄vγ5γ
µCas/ohv] , (2.37)

M(3l)s/o
10± = ±g2

s [q̄lγνCas/oiD±µ ql][h̄viσµνCas/ohv] , (2.38)

where iD+
µ = i

→
∂µ −gAaµT a and iD−µ = i

←
∂µ +gAaµT

a, meaning the arrows over the
derivatives that they act over the fields in the left/right hand depending on the direction
of the arrow (they only act over heavy quark fields or over light quark fields), Cas = 1,
Cao = T a, and σµν = i

2
[γµ, γν ]. It is also understood that in the octet case the covariant

derivative stands left/right of the color matrix when acting to the left/right. In our case, we
work in the rest frame, so that vµ = (1,0) and hv ≡ Q. Moreover, we are in the heavy-quark
sector, and not in the antiquark one, so we can project to this sector. Note that we have
not displayed the operator M(3l)s/o

9± because it is wrong (there are typographic mistakes
and even free indices) and should be corrected. Fortunately, as we will see later on, this
operator is not relevant for the computation of the LL running of the Wilson coefficients,
since the operators that are left are enough to absorb all the divergences coming from
one-loop diagrams. After all these simplifications, the previous operators can be written
as

M(3h)s/o
4± = ±g2[q̄lγ

iCas/oql][Q†Cas/oiDi±Q] , (2.39)

M(3h)s/o
6± = ∓g2[q̄lγ

iγ0Cas/oql][Q†Cas/oiDi±Q] , (2.40)

M(3l)s/o
2± = ±g2[q̄lCas/o(iD±0 )ql][Q

†Cas/oQ] , (2.41)

M(3l)s/o
3± = ±g2[q̄lγ

0Cas/o(iD±0 )ql][Q
†Cas/oQ] , (2.42)

M(3l)s/o
4± = ±g2[q̄lγ

iγ0Cas/oiDi±ql][Q
†Cas/oQ] , (2.43)

M(3h)s/o
3± = ∓g2

s [q̄lγ
iCas/oql][Q†iεijkσkCas/oiDj±Q] , (2.44)

M(3h)s/o
5± = ±g2

s [q̄lγ
iγ0Cas/oql][Q†iεijkσkCas/oiDj±Q] , (2.45)

M(3h)s/o
7± = ∓g2

s [q̄lγ5γ
0Cas/oql][Q†σiCas/oiDi±Q] , (2.46)

M(3h)s/o
9± = ∓g2

s [q̄lγ5Cas/oql][Q†σiCas/oiDi±Q] , (2.47)

M(3l)s/o
5± = ∓g2

s [q̄lγ
iγjCas/oiD±0 ql][Q†iεijkσkCas/oQ] , (2.48)
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M(3l)s/o
6± = ∓g2

s [q̄lγ5γ
0Cas/oiDi±ql][Q

†σiCas/oQ] , (2.49)

M(3l)s/o
7± = ±g2

s [q̄lγ5γ
iCas/oiD±0 ql][Q†σiCas/oQ] , (2.50)

M(3l)s/o
8± = ∓g2

s [q̄lγ5Cas/oiDi±ql][Q
†σiCas/oQ] , (2.51)

M(3l)s/o
10± = ∓g2

s [q̄lγ
jCas/oiDi±ql][Q

†iεijkσkCas/oQ] . (2.52)

We then have

δL(3)
Qq =

nf∑
l=1

∑
m

dhlmOm , (2.53)

where the Om operators are all the possible linear independent combinations of the M
operators given in Eqs. (2.39-2.52). In the present work, only those linear combinations
whose associated Wilson coefficient gets LL running will be defined. The discussion is
reserved to Sec. 2.5.1.

2.4 Compton scattering

In order to explore the existence of physical combinations involving the Wilson coefficients
that we aim to calculate, i.e. c4, cM , cA1 , cA2 , cA3 , cA4 , cW1 , cW2 , cp′p, cB1 and cB2 , we
compute the Compton scattering amplitude, which is the amplitude of the scattering of
a heavy quark with a gluon3 Qg → Qg. We compute it at tree level up to O(1/m3) in
the mass expansion and in the Coulomb gauge, though obviously the Compton scattering
amplitude is a gauge-independent quantity. It is precisely this property the one that will
allow us to identify gauge-independent combinations of Wilson coefficients.

We take the external incoming and outgoing quarks to have four-momentum p = (E1,p)
and p′ = (E ′1,p

′), respectively. We take the gluon four-momenta as outgoing and label
them by k1, i, a and k2, j, b with respect to Lorentz and color indices. This also implies the
on-shell condition k0

1 = −|k1| and k0
2 = |k2|. We work in the incoming quark rest frame,

i.e E1 = 0 and p = 0, so p ′ = −(k1 + k2) and E ′1 = −(k0
1 + k0

2). In addition, we define
the unit vectors n1 = k1/|k1| and n2 = k2/|k2|. The relation

|k2| =
|k1|

1 + |k1|
m

(1 + n1 · n2)
(2.54)

holds from four-momenta conservation.
By inserting the appropriate Wilson coefficients up to O(1/m3), the diagrams we have

to consider for the computation are listed in Fig. 2.1. We split the amplitude in its spin-
dependent Aij abSD and spin-independent Aij abSI parts

Aij ab = Aij abSD +Aij abSI , (2.55)

where

3More precisely, we will compute the scattering of a heavy quark with a transverse gluon.
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Figure 2.1: Topologies contributing to Compton scattering at tree level up to O(1/m3). Dia-
grams are generated from these topologies by considering all possible vertices and kinetic inser-
tions contributing up to O(1/m3).

Aij abSD = cF
g2

2m
σkεijk[T a, T b]αβ

+cF
g2

4m

1

1 + n1 · n2

(
(σ × n2)inj1 − (σ × n1)jni2 + σi(n1 × n2)j + σj(n1 × n2)i

+2(σ × n1)inj1 − 2(σ × n2)jni2

)
[T a, T b]αβ

+cF ck
g2

4m2
|k1|
(
(σ × n1)inj1 + (σ × n2)jni2

)
[T a, T b]αβ

+
g2

8m2
|k1|
[
(2cF ck − cSck)

(
(σ × n1)inj1 − (σ × n2)jni2

)
+cSck

(
(σ · n1)nk1ε

ijk + (σ · n2)nk2ε
ijk
)

+c2
F

(
(σ · n1)nk2ε

ijk + (σ · n2)nk1ε
ijk + σi(n1 × n2)j + σj(n1 × n2)i

)]
{T a, T b}αβ

+(cB1 − 2cW1 − c2
F ck − cSck)

g2

16m3
|k1|2

(
(σ · n1)nk2ε

ijk + (σ · n2)nk1ε
ijk

+σi(n1 × n2)j + σj(n1 × n2)i
)

[T a, T b]αβ

−(2cW1 − 2cW2 + 2cF c
2
k + cSck + cScF )

× g2

16m3
|k1|2

(
(σ × n1)inj1 − (σ × n2)jni2

)
[T a, T b]αβ

−(2cW1 − 2cW2 − cScF + cSck − 2cF c
2
k)

× g2

16m3
|k1|2

(
(σ × n1)inj1 + (σ × n2)jni2

)
{T a, T b}αβ

+(cB2 + cB1 − 2cW1 − cScF − cSck)
g2

8m3
|k1|2σkεijk[T a, T b]αβ

−cp′p
g2

16m3
|k1|2

[(
(n1 × n2)jσi − (n1 × n2)iσj

+εijk(n1 − n2)k(σ · (n1 + n2))
)
{T a, T b}αβ

−
(
(n1 × n2)jσi + (n1 × n2)iσj − εijk(n1 + n2)k(σ · (n1 + n2))

)
[T a, T b]αβ

]
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+c2
F

g2

8m3
|k1|2(1 + n1 · n2)

(
(σ · n2)nk1ε

ijk + σj(n1 × n2)i
)
[T a, T b]αβ

−cF ck
g2

4m3
|k1|2(1 + n1 · n2)(σ × n2)jni2[T a, T b]αβ

− g2

8m3
|k1|2(1 + n1 · n2)

[
cS
(
(σ × n2)jni2 + (σ · n2)nk2ε

ijk
)

+c2
F

(
(σ · n2)nk1ε

ijk + σj(n1 × n2)i
)
− 2cF ck(σ × n2)jni2

]
{T a, T b}αβ , (2.56)

Aij abSI = −ig2δij
1

|k1|
1

1 + n1 · n2

[T a, T b]αβ − ck
ig2

2m
δij{T a, T b}αβ −

ig2

2m
δij[T a, T b]αβ

+
ig2

4m2
|k1|
(
δij(2− c2

Fn1 · n2) + c2
Fni2n

j
1

)
[T a, T b]αβ

+
ig2

16m3
|k1|2

[
δij
(
(4c4 + 4cM − 2cA1 − cA2 + 2cScF )

+(4c4 − 2cA1)n1 · n2

)
+ 2cA1n

i
2n

j
1

]
{T a, T b}αβ

−c 2
F

ig2

8m3
|k1|2(δijn1 · n2 − ni2n

j
1)(n1 · n2){T a, T b}αβ

− ig2

8m3
|k1|2

(
δij(2− c2

Fn1 · n2) + c2
Fni2n

j
1

)
(1 + n1 · n2)[T a, T b]αβ . (2.57)

Note that cD, which is gauge dependent, does not appear explicitly. It only appears
implicitly through cM (as cM is related with cD by reparametrization invariance4 [28]).
One can also observe that three combinations of Wilson coefficients always appear in the
observable: c̄A2 ≡ cA2 − 4cM , c̄W ≡ cW1 − cW2 and c̄B1 ≡ cB1 − 2cW1 . These combinations,
together with the Wilson coefficients c4, cA1 , cA3 , cA4 , cB2 and cp′p, are physical quantities,
i.e. they are gauge-independent. This implies that the RGEs of these physical quantities
can only depend on physical quantities, in particular, on physical combinations of Wilson
coefficients. Later on, we will see that this is indeed the case. We suspect that individually
cM , cW1 , cW2 and cB1 are gauge dependent quantities, since our results are in agreement
with Ref. [33] (where the calculation was done in the Feynman gauge) at the level of the
SL precision for the physical quantities defined earlier, but we disagree for each of these
four individually.

It is worth mentioning that, for the observables we have studied (the Compton scatter-
ing here and the heavy quarkonium spectrum in Ch. 4), we see that cA2 always appear in
the combination c̃A2 ≡ 2cA1 + c̄A2 . A similar analysis for the elastic scattering of a heavy
quark with a massless quark shows that c̄hl1 ≡ cD + chl1 is physical. Note, however, that cD
and chl1 individually are not; indeed they are gauge dependent (for instance, see Ref. [3]
for a discussion on this issue).

4Even though we will introduce some controversy about this relation in the coming sections (the relation
found in Ref. [28] is satisfied in the Feynman gauge, but it is not in the Coulomb gauge), cM will be still
related with cD and with other gauge dependent quantities like chl1 and dhl1 .
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For QED, we obtain

Aij = AijSD +AijSI , (2.58)

where

AijSD =
g2

4m2
|k1|
[
(2cF ck − cS)

(
(σ × n1)inj1 − (σ × n2)jni2

)
+cS

(
(σ · n1)nk1ε

ijk + (σ · n2)nk2ε
ijk
)

+c2
F

(
(σ · n1)nk2ε

ijk + (σ · n2)nk1ε
ijk + σi(n1 × n2)j + σj(n1 × n2)i

)]
−(2cW1 − 2cW2 − cScF + cSck − 2cF c

2
k)

g2

8m3
|k1|2

(
(σ × n1)inj1 + (σ × n2)jni2

)
−cp′p

g2

8m3
|k1|2

(
(n1 × n2)jσi − (n1 × n2)iσj + εijk(n1 − n2)k(σ · (n1 + n2))

)
− g2

4m3
|k1|2(1 + n1 · n2)

[
cS
(
(σ × n2)jni2 + (σ · n2)nk2ε

ijk
)

+c2
F

(
(σ · n2)nk1ε

ijk + σj(n1 × n2)i
)
− 2cF ck(σ × n2)jni2

]
, (2.59)

AijSI = −ck
ig2

m
δij

+
ig2

8m3
|k1|2δij

(
(2 + 4c4 − 2cA1 + 2cScF + 4cM − cA2 − 2c2

F )

+(2 + 4c
(1)
4 − 2cA1 + 2c2

F ck − 2c2
F )n1 · n2

)
+
ig2

4m3
|k1|2δij

(
c2
F (1− n1 · n2)− 1

)
(1 + n1 · n2)

+
ig2

4m3
|k1|2

(
(c2
F + cA1 − c2

F ck) + c2
Fn1 · n2

)
ni2n

j
1 . (2.60)

Note that there is no O(1/m0) contribution. Note also that, in the spin-dependent ampli-
tude, there is no O(1/m) contribution and that, in the spin-independent one, there is no
O(1/m2) contribution. Setting the Wilson coefficients to their tree level values we obtain

AijSD =
g2

4m2
|k1|
[
(σ × n1)inj1 − (σ × n2)jni2 + (σ · n1)nk1ε

ijk + (σ · n2)nk2ε
ijk

+(σ · n1)nk2ε
ijk + (σ · n2)nk1ε

ijk + σi(n1 × n2)j + σj(n1 × n2)i
]

+
g2

4m3
|k1|2(1 + n1 · n2)(−σj(n1 × n2)i − (σ · n2)nk1ε

ijk

+(σ × n2)jni2 − (σ · n2)nk2ε
ijk) , (2.61)
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AijSI = −ig
2

m
δij +

ig2

2m3
|k1|2δij(1 + n1 · n2)

− ig2

4m3
|k1|2(δijn1 · n2 − ni2n

j
1)(1 + n1 · n2) . (2.62)

These expressions agree with Eq. (19) in Ref. [40].
The above analysis gives us the set of Wilson coefficients and their combinations that

appear in physical observables:

{c4, cA1 , c̄A2 , cA3 , cA4 , c̄W , c̄B1 , cB2 , cp′p} . (2.63)

We compute the anomalous dimensions for these, but also for the unphysical set:

{c4, cM , cA1 , cA2 , cA3 , cA4 , cW1 , cW2 , cB1 , cB2 , cp′p} , (2.64)

in the Coulomb gauge, as it can be important for future research about the possible gauge
dependence of these Wilson coefficients, and also it is an intermediate step we can not skip.

For completeness, we also define polarizabilities. The concept of polarizability is po-
tentially ambiguous, as it is defined after subtracting what are called Born terms (which
indeed can be defined in several ways) from the Compton scattering computation. Indeed,
this discussion already appears in the context of QED in the elastic scattering of photons
with protons (see, for instance, Refs. [41, 42, 43]). One possible definition is the one used
in Ref. [44], which adapted to the notation of the present work reads

4m3

α
αE1 ≡ −cA1 −

c̄A2

2
+ c2

F − cF + 1 , (2.65)

4m3

α
βM1 ≡ −1 + cA1 . (2.66)

Note that, even in QED, the polarizabilities are not low energy constants, as they depend
on the renormalization scale.

2.5 RG improved Wilson coefficients of the 1/m3 op-

erators with LL accuracy

In this section, we obtain the renormalization group improved expressions of the Wilson
coefficients associated to the 1/m3 operators of the HQET Lagrangian with leading loga-
rithmic approximation, which includes the heavy quark chromopolarizabilities. In order to
do so, we need to determine their anomalous dimension with O(α) accuracy. Our analysis
includes the effects induced by spectator quarks.

In principle, one would like to only compute irreducible diagrams. However, as indicated
in Ref. [35], this would involve considering a more extensive basis of operators, including
those that vanish on shell. Instead, since we want to work in a minimal basis of operators,
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we will also need to consider reducible diagrams in a computation that resembles that of
an S-matrix element.

In particular, we will compute the divergent part of the amplitude for the elastic scat-
tering of a heavy quark with a transverse gluon, which allows to determine the anomalous
dimensions of the heavy-gluon operators, and of a heavy quark with a massless quark,
which allows to determine the anomalous dimensions of the heavy-light operators. Both
computations are carried at one-loop order. In general, external particles will be consid-
ered to be on shell i.e. free asymptotic states, so the free EOMs5 will be used throughout.
The computation is done in the Coulomb gauge and in dimensional regularization. The
divergences coming from Feynman diagrams cancel with the divergences of the Wilson co-
efficients determining their anomalous dimension. The computation is organized in powers
of 1/m, up to O(1/m3), by considering all possible insertions of the HQET Lagrangian
operators. This statement requires some qualifications once 1/m3 operators with massless
fermions fields are involved. For those, we do not seek the anomalous dimension of all their
Wilson coefficients and we are not exhaustive in the search of a complete basis of opera-
tors. The reason is that most of them start to contribute at NLL, playing a subleading role
in heavy quarkonium physics6. We will only consider those that get LL running paying
special attention to those that contribute to the LL running of the chromopolarizabilities.

As a cross-check, we will also compute the elastic scattering of a heavy quark with a
longitudinal gluon, which allows us to determine the anomalous dimension of the combi-
nations 2cA1 + cA2 , 2cA3 + cA4 and cB1 + cB2 . Furthermore, we compute the one transverse
gluon-matrix element of the heavy quark, which allows us to cross-check the anomalous
dimension of c4, cM , cW1 , cW2 and cp′p. In the latter, only irreducible diagrams enter the
calculation.

It is important to recall that the Compton scattering analysis at O(1/m3) showed that
c4, cA1 , c̄A2 = cA2 − 4cM , cA3 , cA4 , c̄W = cW1 − cW2 , c̄B1 = cB1 − 2cW1 , cB2 and cp′p are
physical combinations i.e. they are gauge-independent. This observation will be crucial
in order to determine which combinations of Wilson coefficients associated to heavy-light
operators are gauge-independent.

The Wilson coefficients of the kinetic term will be kept explicit for tracking purposes
even though they are protected by reparametrization invariance (ck = c4 = 1 to any order in
perturbation theory) [45]. We will compute the LL running of c4 as a check. The Wilson
coefficients cp′p = cF − 1 and the physical combination c̄W = cW1 − cW2 = 1 are fixed
by reparametrization invariance [28], as well. We will check by explicit calculation that
all these relations are satisfied at LL. In principle, cM is also fixed by reparametrization
invariance. It was originally determined in Ref. [28]. Recently, a new result, 2cM =
cD − cF , was obtained [44], which differs by a sign of the old one. Working off shell, our
computation in QED in Sec. 2.5.4 indeed confirms (at one loop and in the Coulomb gauge)

5The heavy quark EOM is E = ck
p2

2m , the massless quark EOM is /ki = 0, i = 1, 2 and the gluon EOM
is k2

i = (k0i )2, i = 1, 2.
6They play a subleading role, for instance, in the determination of the N3LL heavy quarkonium spec-

trum. Indeed, only the ones associated to spin-independent operators are needed to this order. The Wilson
coefficients of the spin-dependent operators start to be relevant at higher orders and they are computed
just for completeness.
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2cM = cD − cF . Nevertheless, in QCD working on shell and in the Coulomb gauge, we
observe that this relation is not satisfied. More precisely, the RGE we find for cM at one-
loop order is not equal to the one of cD−cF . The constraints imposed by reparametrization
invariance once operators with light fermion fields are included have also been studied in
Ref. [44] for the QED case, where the relations7 dhl1 = chl1 /16 and dhl4 = −chl2 /16 were
deduced. The results we have obtained for QED are in agreement with these relations.
However, for QCD working on shell and in the Coulomb gauge the relation for dhl1 is
violated, as it happened with cM . More precisely, the RGE we find for dhl1 at one-loop
order is not equal to the one of chl1 /16. Indeed, we can see in Sec. 2.5.3 and in App. B.3
that the violation of these two equations seems to be related. Nevertheless, the Wilson
coefficient dhl1 does not enter into the running of the chromopolarizabilities.

The Coulomb gauge will be used throughout this computation. On the one hand, this
significantly reduces the number of diagrams but, on the other hand, the complexity of
each one of them increases. It also makes it difficult to use standard routines designed for
computations of Feynman diagrams in covariant gauges and relativistic setups. However,
since we are only looking for the UV pole, the calculation is feasible. The renormalization
of the heavy quark field, gluon fields, the strong coupling g and the Wilson coefficients
cF , cD and cS are needed. The relations between the bare and renormalized fields and
couplings are

gB = ZggR , AB = Z
1/2
A AR , A0

B = Z
1/2

A0 A
0
R , ψB = Z

1/2
h ψR , qB = Z

1/2
l qR ,

ck,B = ck,R , cF,B = cF,R + δcF , cS,B = cS,R + δcS , cD,B = cD,R + δcD , (2.67)

where the subscript B stands for bare and R for renormalized quantities. Often the sub-
script R will be removed in the following when it is understood. In the Coulomb gauge,
the renormalization constants read (we define D = 4 + 2ε and d = 3 + 2ε):

Z
−1/2

A0 = Zg = 1 +
11

6
CA

α

4π

1

ε
− 2

3
TFnf

α

4π

1

ε
, Z

1/2
A = 1− CA

2

α

4π

1

ε
− 2

3
TFnf

α

4π

1

ε
,

Z2
gZA = 1 +

8

3
CA

α

4π

1

ε
, Zl = 1 + CF

α

4π

1

ε
, Zh = 1 +

p2

m2

4

3
CF

α

4π

1

ε
,

δcF = −cF,RCA
α

4π

1

ε
, δcS = −2cF,RCA

α

4π

1

ε
,

δcD = −1

3

(
11CAcD,R − 16(CA + CF )c2

k,R − 5CAc
2
F,R

) α
4π

1

ε
, (2.68)

where

CF =
N2
c − 1

2Nc

=
4

3
, CA = Nc = 3 . (2.69)

Since for any Wilson coefficient ci,B = ci,R(ν) + δci(ν), once the counterterm δci(ν) is
determined, its RGE can be obtained from the expression

7Look at Eqs. (2.72) and (2.75) in order to see the operators with associated Wilson coefficients dhl1
and dhl4 .

27



ν
d

dν
ci,R = −ν d

dν
δci = γci , (2.70)

where γci is the anomalous dimension of the Wilson coefficient ci, which is a finite quan-
tity. We will only present explicitly the RGEs, but a reader interested in obtaining the
counterterms can do it straightforwardly from the anomalous dimension

ci,B = ci,R(ν)− 1

2ε
γci . (2.71)

2.5.1 Anomalous dimensions of 1/m3 heavy-light operators

Let us consider firstly the inclusion of spectator quarks to the computation. The coefficients
clD, cll and the ones associated to 1/m3 light-light operators are NLL, and we will neglect
them in the following. The chli , associated to 1/m2 heavy-light operators, were computed
with LL accuracy in Ref. [32]. The Wilson coefficients chli and dhli , the latter associated
to 1/m3 heavy-light operators, evaluated at the hard scale are of O(α), so at the order of
interest, i.e. at leading order, their matching condition is zero. This is so because such
operators can not be generated at tree level in the underlying theory, QCD. Given this
condition, the only way they can get LL running is through mixing with other Wilson
coefficients that get LL running.

In order to determine which operators of Eqs. (2.39-2.52) are relevant i.e. which
operators get LL running, we compute the scattering of a heavy quark with a massless
quark at one loop order. As previously mentioned, the Wilson coefficients associated to
these operators will get LL running if there is a mixing with other Wilson coefficients
that get LL running. That is, if there is a mixing with the Wilson coefficients of the
heavy-gluon sector up to O(1/m3) or with the Wilson coefficients associated to heavy-light
operators up to O(1/m2). Obviously, one also has to compute the self-running with the
Wilson coefficients associated to the O(1/m3) heavy-light operators which get LL running.
Divergences coming from Feynman diagrams will be absorbed in the Wilson coefficients dhli
determining their running. What we find is what we already advanced in previous sections,
not all the operators in Eqs. (2.39-2.52) get LL running, but only a combination of some
of them. The other possible operators are irrelevant for our calculation because their
associated Wilson coefficients do not mix with Wilson coefficients that get LL running and
their matching condition, i.e. the Wilson coefficient evaluated at the hard scale, is zero at
tree level. At least their matching condition is O(α). These two properties together make
the contribution of these operators subleading. In particular, there are eleven different
operators relevant for our discussion, which read
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O1 = M(3h)o
4+ +M(3h)o

4− , (2.72)

O2 = M(3l)o
3+ +M(3l)o

3− , (2.73)

O3 = M(3l)s
3+ +M(3l)s

3− , (2.74)

O4 = M(3h)o
7+ +M(3h)o

7− , (2.75)

O5 = M(3h)s
7+ +M(3h)s

7− , (2.76)

O6 = M(3l)o
6+ +M(3l)o

6− , (2.77)

O7 = M(3l)s
6+ +M(3l)s

6− , (2.78)

O8 = M(3l)o
7+ +M(3l)o

7− , (2.79)

O9 = M(3l)s
7+ +M(3l)s

7− , (2.80)

O10 = M(3l)o
10+ −M

(3l)o
10− , (2.81)

O11 = M(3l)s
10+ −M

(3l)s
10− , (2.82)

where Eqs. (2.72-2.74) are spin-independent operators, so they are relevant to obtain the
N3LL heavy quarkonium spectrum, whereas Eqs. (2.75-2.82) are spin-dependent ones,
so they start to be relevant to compute the N4LO heavy quarkonium spectrum. The
Feynman rules associated to these operators are displayed in App. B.1. The running of
these operators is obtained from the topologies drawn in Fig. 2.2. They produce around
124 diagrams to be computed without counting crossed and inverted ones. The RGEs we
obtain are

ν
d

dν
dhl1 =

[
1

4
(2β0 − 3CA)dhl1 − CA

(
1

96
cM −

1

192
cScF −

1

16
c3
k −

5

64
ckc

2
F

)]
α

π
,(2.83)

ν
d

dν
dhl2 =

[
dhl2

(
4

3
CF −

17

12
CA +

β0

2

)
− 1

4
chl3 ck −

1

16
chl2 cFCA

− (8CF − 3CA)

(
1

24
cM −

1

96
cA2 +

1

16
c4 +

1

48
cScF

− 5

48
c3
k −

5

24
ckc

2
F +

1

16
cDck +

1

16
chl1 ck

)]
α

π
, (2.84)

ν
d

dν
dhl3 =

[(
4

3
CF +

β0

2

)
dhl3 − CF (CA − 2CF )

(
1

12
cM −

1

48
cA2 −

1

48
cA4

+
1

8
c4 +

1

24
cScF −

5

24
c3
k −

5

12
ckc

2
F +

1

8
cDck +

1

8
chl1 ck

)]
α

π
, (2.85)

ν
d

dν
dhl4 =

α

π

[
(8CF − 3CA)

(
1

32
cW1 −

1

32
cW2 +

1

16
cp′p +

1

64
cSck

− 1

32
cScF −

5

32
cF c

2
k +

5

64
c2
F ck

)
− 1

4
dhl4 (3CA − 2β0)

]
, (2.86)
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Figure 2.2: Topologies contributing to the LL running of the Wilson coefficients associated
to the 1/m3 heavy-light operators. The first diagram is the tree level diagram multiplied by
the renormalization of the external fields and coupling. The other diagrams are the one-loop
topologies that also contribute. In general the depicted gluon can be either longitudinal or trans-
verse. All possible vertices and insertions with the right counting in 1/m should be considered
to generate the diagrams.

ν
d

dν
dhl5 =

α

π

[
CF (2CF − CA)

(
− 1

16
cW1 +

1

16
cW2 −

1

8
cp′p −

1

32
cSck

+
1

16
cScF +

5

16
cF c

2
k −

5

32
c2
F ck

)
+

1

2
dhl5 β0

]
, (2.87)

ν
d

dν
dhl6 =

α

π

[
1

192
cB1CA +

1

192
cScFCA −

5

96
c2
F ckCA +

1

64
chl2 cF (8CF − 3CA)

+
1

16
chl4 cF +

1

3
dhl4 (8CF − 3CA) +

4

3
dhl5 +

1

6
dhl6 (5CF − 5CA + 3β0)

+
5

12
dhl8 (2CF − CA) +

1

12
dhl10CA

]
, (2.88)

ν
d

dν
dhl7 =

α

π

[
− CF (2CF − CA)

(
1

32
chl2 cF +

2

3
dhl4

)
+

1

6
dhl7 (5CF + 3β0)

+
5

6
dhl9 CF

]
, (2.89)

30



ν
d

dν
dhl8 =

α

π

[
− 1

32
cW1CA −

1

192
cB1CA −

1

96
cB2CA −

1

64
cDcFCA −

1

64
cSckCA

+
1

192
cScFCA +

5

32
cF c

2
kCA −

5

96
c2
F ckCA −

1

64
chl1 cFCA −

1

16
chl2 ck(8CF − 3CA)

+
1

32
chl2 cF (8CF − 3CA)− 1

4
chl4 ck +

1

8
chl4 cF −

1

12
dhl4 (8CF − 3CA)

−1

3
dhl5 +

1

6
dhl6 (3CF − 2CA) +

1

2
dhl8 (CF − 2CA + β0) +

1

6
dhl10CA
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, (2.90)

ν
d

dν
dhl9 =

α

π

[
CF (2CF − CA)

(
1

8
chl2 ck −

1

16
chl2 cF +

1

6
dhl4

)
+

1

2
dhl7 CF

+
1

2
dhl9 (CF + β0)

]
, (2.91)

ν
d

dν
dhl10 =

α

π

[
1

48
cW1CA +

1

192
cW2CA −

7

192
cB1CA −

1

48
cB2CA +

1

384
cp′pCA

+
1

128
cDcFCA +

1

96
cSckCA −

7

384
cScFCA +

5

64
c2
F ckCA

+
1

128
chl1 cFCA −

1

128
chl2 cF (8CF − 3CA)− 1

32
chl4 cF

+
1

24
dhl4 (8CF − 3CA) +

1

6
dhl5 −

1

24
dhl6 (4CF − 3CA)

− 1

12
dhl8 (2CF − CA)− 1

24
dhl10(11CA − 12β0)

]
, (2.92)

ν
d

dν
dhl11 =

α

π

[
CF (2CF − CA)

(
1

64
chl2 cF −

1

12
dhl4

)
− 1

6
dhl7 CF

−1

6
dhl9 CF +

1

2
dhl11β0

]
. (2.93)

Note that, as we previously advanced, dhl1 does not satisfy reparametrization invariance8.
However, we will see later on that it does not contribute to the running of the gauge-
independent chromopolarizabilities. The RGEs of the remaining Wilson coefficients dhli ,
with i, j > 11, have the structure

ν
d

dν
dhli =

α

π
Aijd

hl
j . (2.94)

and, for this reason, they are NLL.

8See Sec. 2.5.3 and App. B.3 for a more detailed discussion about this issue.
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2.5.2 Anomalous dimensions of 1/m3 heavy-gluon operators

Let us consider the 1/m3 heavy-gluon operators. Firstly, for the pure gluonic sector, we
have that cg1 is NLL, so we will neglect it in the following.

The running of the unphysical set of Wilson coefficients, Eq. (2.64), is determined from
the topologies drawn in Fig. 2.3. From these, we generate all possible diagrams up to order
1/m3 by considering all possible vertices to the appropriate order in 1/m and/or kinetic
insertions, which correspond to the expansion of the non-static heavy quark propagator.
Note that diagrams of lower order than 1/m3 also must be considered, at least those that

depend on the energy, as the use of the heavy quark EOM, E = ck
p2

2m
, adds extra powers

of 1/m. This generates around 420 diagrams (without taking into account permutations
and crossing) in both cases: the elastic scattering with a transverse gluon and, similarly,
with a longitudinal gluon.

In the case of scattering with a transverse gluon, for diagrams proportional to 1/m3

operators, only irreducible ones need to be considered. Note that this is not true for the
case of scattering with a longitudinal gluon because the Coulomb vertex does not add extra
powers of 1/m. When one considers diagrams proportional to iterations of 1/m2 and/or
1/m operators one also has to consider reducible diagrams in both cases. One has to keep in
mind that Taylor expanding reducible diagrams in the energy can produce non-local terms
which cancel at the end of the calculation and all divergences can be absorbed by local
counterterms that correspond to operators of the Lagrangian9. It is also worth mentioning
that we find that the sum of all reducible diagrams whose sub-irreducible one-loop diagram
is 1/m or below (1/m2 or below in the case of the scattering with a longitudinal gluon)
cancel with the renormalization of the tree level reducible diagrams. Therefore, non-local
terms coming from expanding these diagrams in the energy vanish at all orders in the
expansion.

Let us consider the calculation of the one transverse gluon exchange, which has a pecu-
liarity which deserves a comment. This calculation allows us to determine the anomalous
dimensions of c4, cM , cW1 , cW2 , cp′p and cS. The necessary topologies to produce the di-
agrams are shown in Fig. 2.4. They produce around 100-120 diagrams without counting
inverted ones. Note that there are only irreducible diagrams in this case. What is inter-
esting in this calculation is that one obtains a spin-dependent structure which does not
look like any structure of the spin-dependent 1/m3 operators, i.e. the 1/m3 vertices with a
single transverse gluon. So at first sight, it would look like a problem, since the divergence
proportional to this structure could not be absorbed by any operator in the theory, leading
one to suspect that there might be operators missing. However, this is not the case. The
explanation is the following: in principle, one would consider cS as an O(1/m2) operator.
Nevertheless, the vertex with an external transverse gluon is proportional to k0, so it be-
comes O(1/m3) after using the heavy quark EOM. Once we use it, the resulting structure
is the one that could not be absorbed by the 1/m3 operators. Therefore, in order properly
renormalize the theory and to determine the running of cS through the calculation of the

9If we only compute irreducible diagrams we would need a larger number of operators, in particular
those that vanish on shell.
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Figure 2.3: Topologies contributing to the anomalous dimensions of the Wilson coefficients
associated to 1/m3 heavy-gluon operators in QCD. The double-line represents the heavy fermion,
whereas the curly line represents either a transverse or a longitudinal gluon. Both external
gluons are transverse or longitudinal depending on the kind of scattering we are considering. All
diagrams are generated from these topologies by considering all possible vertices up to O(1/m3).
Tree level diagrams should be understood to be multiplied by Wilson coefficient, field and strong
coupling counterterms.

one transverse gluon exchange, one must consider this operator10 as an O(1/m3) operator.

10The operator proportional to cS responsible to the one transverse gluon exchange.
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Only in this way is the correct running of cS (expected from reparametrization invariance)
obtained. So everything must be made physical, meaning put on shell, in order to arrive
to proper results. Note that the running of cS will appear also in the determination of the
running of Wilson coefficients at higher orders in 1/m if it is done through the calculation
of the one transverse gluon matrix element of a heavy quark, because the heavy quark
EOM has corrections in 1/m. In particular, it will appear at O(1/m5). This is important
to keep in mind in future calculations. Another important aspect of the calculation is
that it allows us to determine the running of cM independently of cA2 . The result is in
agreement with the one obtained from the two transverse gluon exchange, which in turn is
in disagreement with reparametrization invariance.

Figure 2.4: Topologies contributing to the one transverse gluon exchange. All diagrams are
generated from these topologies by considering all possible vertices up to O(1/m3). While the
external gluon is transverse, internal gluons must be understood as either longitudinal or trans-
verse.

Since we work in the massless limit, diagrams proportional to dhli do not depend on the
specific light fermion, so the result of each of them has to be multiplied by the number of
light fermions nf .

The RGEs for the unphysical set Eq.(2.64), in the Coulomb gauge, read
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c4 = 0 , (2.95)
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ν
d

dν
cW2 =

α

π

[
7

12
cW1CA +

13

12
cW2CA −

1

4
cB1CA −

1

8
cB2CA +

1

24
cp′pCA

− 5

24
cSckCA −

1

6
cScFCA −

1

12
cF c

2
k(16CF + 3CA)

+
7

8
c2
F ckCA − TFnf

(
8

3
dhl6 −

8

3
dhl8 +

16

3
dhl10

)]
, (2.102)

ν
d

dν
cB1 =

α

π

[
1

6
cW1CA +

1

6
cW2CA + cB1CA −

1

3
cB2CA +

7

12
cp′pCA

+
1

12
cSckCA −

1

4
cScFCA +

7

6
cF c

2
kCA +

7

6
c2
F ckCA

+
3

2
c3
FCA − TFnf

(
8

3
dhl6 − 8dhl8 +

32

3
dhl10

)]
, (2.103)
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ν
d

dν
cB2 =

α

π

[
cW2CA −

1

2
cB1CA +

7

6
cB2CA −

4

3
cSck(4CF + CA)− 1

6
cScFCA

+
4

3
cF c

2
k(2CF − CA) +

2

3
c2
F ckCA −

3

2
c3
FCA

−TFnf
(

16

3
dhl6 +

16

3
dhl8

)]
, (2.104)

ν
d

dν
cp′p =

α

π

[
1

2
cp′pCA −

1

2
cSckCA + cF c

2
kCA

]
. (2.105)

Note that, as we previously advanced, cM does not satisfy reparametrization invariance11.

2.5.3 Anomalous dimensions of physical quantities

Previously, in Sec. 2.5.1 and Sec. 2.5.2, we found the running of the Wilson coefficients
associated to the 1/m3 HQET Lagrangian operators including spectator quarks. However,
it is well known from the analysis done in Sec. 2.4 that Eqs. (2.96, 2.98, 2.101-2.103) are
not physical. The gauge dependence of these RGEs imply that Eqs. (2.83, 2.88, 2.90, 2.92)
are also gauge dependent.

The aim of this section is to find the RGEs of the gauge-independent combinations of
Wilson coefficients. For the heavy-gluon operators, these combinations were found in Sec.
2.4. So the next step, is to compute the RGEs for the the known physical quantities c4,
cA1 , c̄A2 = cA2 − 4cM , cA3 , cA4 c̄W = cW1 − cW2 , c̄B1 = cB1 − 2cW1 , cB2 and cp′p. They read

ν
d

dν
c4 = 0 , (2.106)

ν
d

dν
cA1 =

α

π

[
1

2
cA1CA −

11

48
c̄A2CA − c4CA −

1

24
cScFCA +

1

3
c3
k(16CF + 11CA)

+
3

2
c3
FCA +

73

24
c2
F ckCA −

16

3
dhl2 TFnf

]
, (2.107)

ν
d

dν
c̄A2 =

α

π

[
− cA1CA +

11

12
c̄A2CA + 8c4CA +

1

6
cScFCA −

8

3
c3
k(8CF + 7CA)

−3c3
FCA −

43

6
c2
F ckCA +

64

3
dhl2 TFnf

]
, (2.108)

11See Sec. 2.5.3 and App. B.3 for a more detailed discussion about this issue.
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ν
d

dν
cA3 =

α

π

[
− 1

2
cA1CA −

11

48
c̄A2CA −

11

24
cA4CA −

1

24
cScFCA −

3

2
c3
FCA

+
73

24
c2
F ckCA +

16

3
dhl2 TFnf −

32

3
dhl3 CATFnf

]
, (2.109)

ν
d

dν
cA4 =

α

π

[
cA1CA +

11

12
c̄A2CA +

11

6
cA4CA +

8

3
c4CA −

17

6
cScFCA −

8

3
c3
kCA

+3c3
FCA −

31

6
c2
F ckCA −

64

3
dhl2 TFnf +

128

3
dhl3 CATFnf

]
, (2.110)

ν
d

dν
c̄W =

α

π

[
1

2
c̄WCA +

1

2
cSckCA − cF c2

kCA

]
= 0 , (2.111)

ν
d

dν
c̄B1 =

α

π

[
3

2
c̄B1CA + c̄WCA −

1

12
cB2CA +

1

2
cp′pCA −

1

2
cSckCA +

1

12
cScFCA

+
1

3
cF c

2
k(8CF + 11CA)− 7

12
c2
F ckCA +

3

2
c3
FCA +

8

3
d̄hl8 TFnf

]
, (2.112)

ν
d

dν
cB2 =

α

π

[
− 1

2
c̄B1CA − c̄WCA +

7

6
cB2CA −

4

3
cSck(4CF + CA)− 1

6
cScFCA

+
4

3
cF c

2
k(2CF − CA) +

2

3
c2
F ckCA −

3

2
c3
FCA −

16

3
d̄hl8 TFnf

]
, (2.113)

ν
d

dν
cp′p =

α

π

[
1

2
cp′pCA −

1

2
cSckCA + cF c

2
kCA

]
= ν

d

dν
cF . (2.114)

The last equality in Eqs. (2.111,2.114) can be easily deduced by using relations between
Wilson coefficients imposed by reparametrization invariance (ck = 1, cS = 2cF − 1 and
cp′p = cF − 1) [28]. In general, we find that reparametrization invariance is satisfied
(c4 = 1, cW1 − cW2 = 1, cp′p = cF − 1 and dhl4 = −chl2 /16) even with the inclusion of
spectator quarks, but this is not true for 2cM = cD − cF and dhl1 = chl1 /16 (See Sec. 2.5.1
and Sec. 2.5.2). This leads us to think that these two relations depend on the gauge, and
that in particular, they are satisfied in covariant or Feynman-like gauges, but they are not
in gauges that break Lorentz invariance, like the Coulomb gauge. Instead, we propose the
following relation between these Wilson coefficients: 2cM + 16dhl1 = cD + chl1 − cF , which
is satisfied in both, the Feynman and the Coulomb gauges. If we define a new physical
quantity d̄hl1 ≡ cM + 8dhl1 , the previous relation can be written as 2d̄hl1 = c̄hl1 − cF . Since c̄hl1

and cF are well known to be gauge-independent, also d̄hl1 must be. We must understand
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the proposed relation as an ansatz, so it should be demonstrated more rigorously. It is
quite remarkable that if we determine cM in the Feynman gauge using 2cFG

M = cFG
D − cF

(the superscript refers to quantities in the Feynman gauge) and compute dhlFG
1 in the

Feynman gauge through the relation d̄hl1 = cFG
M + 8dhlFG

1 (where d̄hl1 has been computed
in the Coulomb gauge, but it is supposed to be a gauge-independent quantity) we find12

that dhlFG
1 = chlFG

1 /16, which strengthens our argument that these two relations are gauge
dependent, satisfied in the Feynman gauge, and that the truly gauge invariant relation
that reparametrization invariance should obtain is 2d̄hl1 = c̄hl1 − cF .

Let us find the physical combinations involving the Wilson coefficients of the heavy-
light operators. On the one hand, from Eqs. (2.106-2.110) we learn that dhl2 and dhl3 are
physical quantities because they appear in the running of physical quantities and they
do not combine with each other. Note that the RGE of d̄hl1 = cM + 8dhl1 only depends
on physical quantities and on d̄hl1 itself (see Eq. (2.115)). This, together with the relation
2cM+16dhl1 = cD+chl1 −cF which is satisfied in both, the Coulomb and the Feynman gauges,
makes us to think that this quantity is gauge-independent, since the right hand side of the
equation is well-known to be gauge-independent. Also note that nor dhl1 , neither d̄hl1 appear
in the running of the chromopolarizabilities, so they are not necessary to determine their
running. On the other hand, from Eqs. (2.111-2.114), we learn that d̄hl8 = dhl6 + dhl8

must be physical, as it appears in the running of physical combinations. Indeed, since the
running of dhl6 and dhl8 can not be written in terms of gauge-independent quantities13, d̄hl8

must be a physical combination, whereas dhl6 and dhl8 alone are gauge dependent. The gauge
independence of the RGE for d̄hl8 also implies the existence of another physical combination,
d̄hl10 = 8dhl6 +8dhl10−cW1 , whose running also depends only on physical quantities, as expected.
The running of these two physical combinations also depends on dhl4 and dhl5 , which happen
to be gauge-independent, as their running only depends on physical quantities and on
themselves, and they do not combine with any gauge dependent quantity in the running of
gauge-independent combinations. In particular, dhl4 satisfies reparametrization invariance
(dhl4 = −chl2 /16) [44]. The Wilson coefficients dhl7 , dhl9 and dhl11 do not mix with cp′p, c̄W ,
c̄B1 , cB2 , d

hl
4 , dhl5 , d̄hl8 and d̄hl10, so they are not necessary to determine their running. Since

they do not appear in known physical quantities we do not dare to talk about their gauge
dependence. The RGEs for the physical set of heavy-light Wilson coefficients read

ν
d

dν
d̄hl1 =

[
13

12
d̄hl1 CA +

1

2
c4CA −

7

24
cScFCA −

4

3
c3
k(CF + CA)

+
13

24
c2
F ckCA

]
α

π
, (2.115)

12See App. B.3 for a detailed discussion.
13If one assumes that dhl6 and dhl8 are gauge-independent, their RGEs can be written only in terms of

cW1 and dhl10, which should combine in a gauge-independent way. However, the combination in the RGEs
of dhl6 and dhl8 is different. Therefore, this possibility must be discarded.
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ν
d

dν
dhl2 =

[
dhl2

(
4

3
CF −

17

12
CA +

β0

2

)
− 1

4
chl3 ck −

1

16
chl2 cFCA

− (8CF − 3CA)

(
− 1

96
c̄A2 +

1

16
c4 +

1

48
cScF −

5

48
c3
k

− 5

24
ckc

2
F +

1

16
c̄hl1 ck

)]
α

π
, (2.116)

ν
d

dν
dhl3 =

[(
4

3
CF +

β0

2

)
dhl3 − CF (CA − 2CF )

(
− 1

48
c̄A2 −

1

48
cA4

+
1

8
c4 +

1

24
cScF −

5

24
c3
k −

5

12
ckc

2
F +

1

8
c̄hl1 ck

)]
α

π
, (2.117)

ν
d

dν
dhl4 =

α

π

[
− 1

4
dhl4 (3CA − 2β0) + (8CF − 3CA)

(
1

32
c̄W +

1

16
cp′p

+
1

64
cSck −

1

32
cScF −

5

32
cF c

2
k +

5

64
c2
F ck

)]
= −ν d

dν

chl2

16
, (2.118)

ν
d

dν
dhl5 =

α

π

[
1

2
dhl5 β0 + CF (2CF − CA)

(
− 1

16
c̄W −

1

8
cp′p

− 1

32
cSck +

1

16
cScF +

5

16
cF c

2
k −

5

32
c2
F ck

)]
, (2.119)

ν
d

dν
d̄hl8 =

α

π

[
− 1

96
cB2CA +

1

4
dhl4 (8CF − 3CA) + dhl5 +

1

12
d̄hl8 (16CF − 17CA + 6β0)

+
1

32
d̄hl10CA −

1

64
cSckCA +

1

96
cScFCA +

5

32
cF c

2
kCA −

5

48
c2
F ckCA −

1

64
c̄hl1 cFCA

− 1

16
chl2 ck(8CF − 3CA) +

3

64
chl2 cF (8CF − 3CA)− 1

4
chl4 ck +

3

16
chl4 cF

]
, (2.120)

ν
d

dν
d̄hl10 =

α

π

[
− 1

24
cB2CA + 3dhl4 (8CF − 3CA) + 12dhl5 +

2

3
d̄hl8 (8CF − 15CA + 3β0)

+
35

24
d̄hl10CA +

13

24
c̄WCA −

1

48
cp′pCA −

5

24
cSckCA +

1

16
cScFCA

+
1

12
cF c

2
k(16CF + 15CA)− 2

3
c2
F ckCA +

1

16
c̄hl1 cFCA

+
1

16
chl2 cF (8CF − 3CA) +

1

4
chl4 cF

]
, (2.121)
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ν
d

dν
dhl7 =

α

π

[
− 2

3
dhl4 CF (2CF − CA) +

1

6
dhl7 (5CF + 3β0) +

5

6
dhl9 CF

− 1

32
chl2 cFCF (2CF − CA)

]
, (2.122)

ν
d

dν
dhl9 =

α

π

(
1

6
dhl4 CF (2CF − CA) +

1

2
dhl7 CF +

1

2
dhl9 (CF + β0)

+
1

8
chl2 ckCF (2CF − CA)− 1

16
chl2 cFCF (2CF − CA)

)
, (2.123)

ν
d

dν
dhl11 =

α

π

(
− 1

12
dhl4 CF (2CF − CA)− 1

6
dhl7 CF −

1

6
dhl9 CF +

1

2
dhl11β0

+
1

64
chl2 cFCF (2CF − CA)

)
. (2.124)

As before, the last equality in Eq. (2.118) can be easily deduced by using relations between
Wilson coefficients imposed by reparametrization invariance. It it quite remarkable that
the RGEs depend only on gauge-independent combinations of Wilson coefficients: c̄A2 , c̄W ,
c̄B1 , c̄

hl
1 , d̄hl1 , d̄hl8 and d̄hl10. This is a very strong check, as at intermediate steps we get

contributions from cD, cM , cA2 , cW1 , cW2 , cB1 , c
hl
1 , dhl1 , dhl6 , dhl8 and dhl10 which only at the

end of the computation arrange themselves in gauge-independent combinations. Note that
we include the Wilson coefficients dhl7 , dhl9 and dhl11 despite of we do not know if they are
physical or not. We do so because we will solve also these RGEs in the next section, as it
can be useful in the future.

2.5.4 Anomalous dimensions: The QED limit with nf = 0

In this section we analyze the purely Abelian case of QED without spectator effects. To do
this, we just need to take the appropriate limit of the results found in Sec. 2.5.2 i.e. to take
CF = 1, CA = 0 and nf = 0. Note that the operators proportional to cA3 , cA4 , cB1 and cB2

do not appear now. The diagrams that contribute are obtained from the topologies drawn
in Fig. 2.3 and Fig. 2.4 disregarding the non-Abelian ones. The result is the following

c4,B = c4 , cM,B = cM + c3
k

2

3

α

π

1

ε
, cA1,B = cA1 − c3

k

8

3

α

π

1

ε
, cA2,B = cA2 + c3

k

40

3

α

π

1

ε
,

cW1,B = cW1 +
4

3
cF c

2
kCF

α

π

1

2ε
, cW2,B = cW2 +

4

3
cF c

2
kCF

α

π

1

2ε
, cp′p,B = cp′p , (2.125)

where the subscript B stands for the bare Wilson coefficients, whereas the renormalized
Wilson coefficients do not have associated subscript. The first and second lines of Eq.
(2.125) are Wilson coefficients associated to spin-independent and spin-dependent opera-
tors, respectively. We obtain the following RGEs
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ν
d

dν
c4 = 0 , ν

d

dν
cM = −c3

k

4

3

α

π
, ν

d

dν
cA1 = c3

k

16

3

α

π
, ν

d

dν
cA2 = −c3

k

80

3

α

π
,

ν
d

dν
cW1 = −4

3
cF c

2
kCF

α

π
, ν

d

dν
cW2 = −4

3
cF c

2
kCF

α

π
, ν

d

dν
cp′p = 0 . (2.126)

This result is in agreement with the explicit SL results given in Refs. [33, 34], where the
calculation was done in the Feynman gauge. This is not that strange; for instance, the
running of cD in QED happens to be equal in the Coulomb and Feynman gauges (see the
discussion in Ref. [3]). The analysis done in Sec. 2.4 suggests that the physical objects are
still c̄A2 and c̄W , though. It is important to mention that, in order to determine the running
of cM and cA2 separately from the scattering of a heavy fermion with a transverse photon,
we had to consider the photons to be off shell; otherwise, we could not have distinguished
the Feynman rule of cM and cA2 but only of the physical quantity c̄A2 . In QED, this
seems to be fine. However, the running of cM can be obtained from the one transverse
photon exchange independently if we work on shell or off shell. For QCD, working off
shell produces divergences that can not be absorbed by the operators of the Lagrangian,
so a more extensive basis of operators would be needed. That is the main reason we have
worked on shell.

In the QED case, the obtained results are in agreement with the reparametrization in-
variance relations given in Ref. [28], since c4, c̄W and cp′p do not renormalize (reparametriza-
tion invariance fixes c4 = 1, c̄W = 1 and cp′p = cF − 1, and cF does not run at one loop in
QED), and the relation 2cM = cD − cF is satisfied.

2.5.5 LL running: solution and numerical analysis

In this section we solve the RGEs for the physical quantities found in Sec. 2.5.3. We
only solve these because they are the combinations that always will appear in observables,
whereas the RGEs found in Sec. 2.5.1 or Sec. 2.5.2 may depend on the gauge, and as a
consequence, will never appear alone in observables. These RGEs can be written compactly
by defining a vector

A = {cA1 , c̄A2 , cA3 , cA4 , d
hl
2 , d

hl
3 , c̄B1 , cB2 , d

hl
5 , d̄

hl
8 , d̄

hl
10, d

hl
7 , d

hl
9 , d

hl
11} . (2.127)

Note that we do not include the RGEs of c4, cp′p, c̄W and dhl4 because their solution
can be easily found using the reparametrization invariant relations given in Refs. [28, 44],
for which their RGEs are in agreement. The Wilson coefficient d̄hl1 is nor included because
it can be obtained from the new relation 2d̄hl1 = c̄hl1 − cF . Note that d̄hl1 and dhl4 can be
determined analytically using the analytic expressions of c̄hl1 , chl2 and cF [32] (see App. B.2).
Therefore, we will not give explicit expressions for any of them. As pointed out in Sec.
2.5.3, we do not know if the Wilson coefficients dhl7 , dhl9 and dhl11 are physical or not, but we
will solve their RGEs anyway. The RGEs are simplified to the single equation

ν
dA

dν
=
α

π
(MA + F(α)) . (2.128)
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The matrix M and the vector F follow from the RGEs given in Sec. 2.5.3. As it can
be seen, the matrix M is not diagonal, so there is a mixing between the different Wilson
coefficients which lead to a coupled system of differential equations. The only dependence
of Eq. (2.128) with the energy scale is through the strong coupling α. Therefore, in order
to solve the system, it is more convenient to write Eq. (2.128) in terms of a derivative
with respect to the strong coupling instead of with respect to the soft scale ν. Since we
are only interested in the LL running, it is enough to take the one-loop β-function i.e. the
LL running of the strong coupling α,

ν
dα

dν
≡ β(αs) = −2α

{
β0

α

4π
+ · · ·

}
, (2.129)

which leads to the well-known solution

α(ν) =
α(m)

1 + α(m) β0
2π

ln
(
ν
m

) , (2.130)

where

β0 =
11

3
CA −

4

3
TFnf , (2.131)

and nf is the number of dynamical (active) quarks i.e. the number of massless quarks. In
this approximation, the Eq. (2.128) can be simplified to

dA

dα
= − 2

β0α
(MA + F(α)) . (2.132)

It is more convenient to define a new variable z ≡
(
α(ν)
α(m)

) 1
β0 ' 1− 1

2π
α(m) ln( ν

m
) in order

to obtain more compact results. In terms of z the equation above reads

dA

dz
= −2

z
(MA + F(z)) . (2.133)

In order to solve Eq. 2.133, we need the tree level initial matching conditions at the
hard scale νh, which is taken to be equal to the heavy quark mass m. On the one hand,
for the heavy-gluon operators, they have been determined in Ref. [28] and read ck = cF =
cD = cS = c4 = cA1 = cW1 = cB1 = 1 and cM = cA2 = cA3 = cA4 = cW2 = cp′p = cB2 = 0.
Note that the matching coefficients of the kinetic term are protected by reparametrization
invariance (ck = c4 = 1 to any order in perturbation theory) [45]. Nevertheless, even if
we set them to one when solving the RGEs, we have kept them explicit in the RGEs for
tracking purposes. On the other hand, there is no tree level contribution to the Wilson
coefficients associated to heavy-light operators14, so their initial matching conditions are
chli = 0, i = 1, . . . 4 and dhli = 0, i = 1, . . . , 11. The Wilson coefficients ck, cF , cS = 2cF − 1,
c4 = 1, cp′p = cF − 1, c̄W = 1, c̄hl1 , chl2 , chl3 , chl4 and dhl4 = −chl2 /16 are needed with LL

14The initial matching conditions of the chli and dhli are O(α) unless the operators can be generated at
tree level. This is not the case with the basis we consider, but it is if one eliminates the Darwin operator
cD i.e. if we work in terms of c̄hl1 .
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accuracy. They can be found in Refs. [8, 28, 32]. We summarize their expressions in Sec.
B.2.

After solving the RGEs we obtain the LL running of the physical combinations of
Wilson coefficients associated to the 1/m3 operators of the HQET Lagrangian. For the
case without massless fermions (nf = 0), we obtain analytic results. They read

cA1 =
75

17
z−3CA − 29

3
z−2CA − z−CA

11

+

(
64CF√
157CA

+
42184

561
√

157
+

1780

561

)
z−

1
12(17+

√
157)CA

+

(
− 64CF√

157CA
− 42184

561
√

157
+

1780

561

)
z

1
12(
√

157−17)CA , (2.134)

c̄A2 = −216

17
z−3CA + 34z−2CA +

2z−CA

11
+

128

11
+

256CF
11CA

−
(

640CF

11
√

157CA
+

128CF
11CA

+
29720

187
√

157
+

3096

187

)
z−

1
12(17+

√
157)CA

+

(
640CF

11
√

157CA
− 128CF

11CA
+

29720

187
√

157
− 3096

187

)
z

1
12(
√

157−17)CA , (2.135)

cA3 =

(
32CF
11CA

+
344

55

)
z−

11CA
3 − 75

17
z−3CA +

88

15
z−2CA +

23z−CA

11
− 38

11
− 32CF

11CA

−
(

64CF√
157CA

+
42184

561
√

157
+

1780

561

)
z−

1
12(17+

√
157)CA

+

(
64CF√
157CA

+
42184

561
√

157
− 1780

561

)
z

1
12(
√

157−17)CA , (2.136)

cA4 = −
(

128CF
11CA

+
1376

55

)
z−

11CA
3 +

216

17
z−3CA − 64

5
z−2CA − 24z−CA

11
− 64

11
− 128CF

11CA

+

(
640CF

11
√

157CA
+

128CF
11CA

+
29720

187
√

157
+

3096

187

)
z−

1
12(17+

√
157)CA

+

(
− 640CF

11
√

157CA
+

128CF
11CA

− 29720

187
√

157
+

3096

187

)
z

1
12(
√

157−17)CA , (2.137)

c̄B1 = − 86

123
− 32CF

123CA
−
(

25

9
+

16CF
9CA

)
z−CA + z−2CA − 15z−3CA

+

(
3040

369
− 5077

369

√
2

5
+

376CF
369CA

− 928CF
369CA

√
2

5

)
z

1
6

(−16+
√

10)CA

+

(
3040

369
+

5077

369

√
2

5
+

376CF
369CA

+
928CF
369CA

√
2

5

)
z−

1
6

(16+
√

10)CA , (2.138)

43



cB2 = −24

41
− 192CF

41CA
+

(
11

3
+

32CF
3CA

)
z−CA + z−2CA + 18z−3CA

+

(
−1358

123
+

64

41

√
2

5
+

298

123

√
10− 368CF

123CA
+

8CF
123CA

√
2

5

)
z

1
6

(−16+
√

10)CA

+

(
−1358

123
− 64

41

√
2

5
− 298

123

√
10− 368CF

123CA
− 8CF

123CA

√
2

5

)
z−

1
6

(16+
√

10)CA . (2.139)

After the inclusion of light fermions, the solution of the RGEs is numerical. We show the
result for nf = 4 light fermions where α(m) has nf active light flavours

cA1 = 1.08839× 10−9 +
5.9421

z9.
− 3.66729× 10−19
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z14.5556
− 5.9421

z9.
+

12.652

z8.33333
− 3.44328

z7.99055
+

1.45822

z6.83333

+
1.5325608× 10−21

z41/6
+

0.621007

z6.83333
− 5.10498

z6.5
+

5.522246× 10−21

z13/2
+

1.500000

z6

−6.68835

z6.
+

1.500000

z3
− 7.55227

z3.
+

10.0312

z2.87467
+

4.58085

z1.02367
, (2.142)
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dhl9 = −0.006752 +
0.0000479

z11.888889
− 1.5783 · 10−24

z11.333333
− 1.9232 · 10−22

z9.5
− 0.009862

z9

+
0.036600

z8.333333
+

1.504 · 10−22

z8.24892
− 0.067979

z6.833333
+

1.89125 · 10−24

z6.549986

+
0.019841

z6
+

0.05322

z3.833333
+

9.7377 · 10−22

z3.577865
− 0.025117

z3
, (2.152)
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Note that, if we are interested in the solution of the gauge dependent quantities in the
Coulomb gauge, we just must solve the RGEs given in Sec. 2.5.1 and Sec. 2.5.2. Notice
that the running of cA2 and dhl1 can be obtained in the Feynman gauge by using the
expression of cM determined from the reparametrization invariance relation given in Ref.
[28].

The SL results can be found analytically by solving the RGEs of Sec. 2.5.3 taking the
tree level values of the Wilson coefficients that appear and considering α as a constant,
α(m). They can also be obtained by expanding the above solutions in powers of α(m). We
obtain
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d̄hl10 = −1 +

(
4

3
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π
ln
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+O(α2) , (2.164)

dhl7 = O(α2) , (2.165)

dhl9 = O(α2) , (2.166)

dhl11 = O(α2) . (2.167)

It is important to realise that the SL does not depend on nf . Note that d̄hl8 and dhli , for
i = 7, 9, 11, are zero at the level of the SL. This means that the first contribution will be
of O(α2 ln2(ν/m)) and, as a consequence, their running is expected to be small compared
to the other Wilson coefficients because the SL dominates the expansion in the strong
coupling, α(m).

In Figs. 2.5, 2.6 and 2.7 we plot the results obtained in this section applied to the bottom
heavy quark case, illustrating the importance of incorporating large logarithms in heavy
quark physics. Only physical combinations and specific combinations that appear in phys-
ical observables are represented. For instance, in heavy quarkonium physics applications
like the N3LL spectrum and the N2LL running of the Wilson coefficient of the electromag-
netic current we observe that only the combinations c̃A2 ≡ 2cA1 + c̄A2 , c̃A4 ≡ 2cA3 + cA4

appear [5]. For the Compton scattering discussed in Sec. 2.4, we observe that cA1,3 , and
again c̃A2,4 , appear. We remind that those can be understood as linear combinations of the
chromopolarizabilities of the heavy quark. The combination c̃B1 = c̄B1 + cB2 also appears
in the Compton scattering. We run the Wilson coefficients from the heavy quark mass to
1 GeV for zero and four massless fermions. For illustrative purposes, we take mb = 4.73
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GeV and α(mb) = 0.215943.
Concerning the numerical analysis of the spin-independent operators, we observe that

the effect due to the logarithms is very large in most cases. This is due to very large
coefficients multiplying the logarithms (even in the Abelian limit the coefficient is quite
large). We also observe that the LL resummation is basically saturated by the SL in all
cases except for cA4 and c̃A4 . For most cases, the incorporation of light fermions plays a
minor role. Let us discuss in more detail every Wilson coefficient. We observe that cA1

changes from 1 to -2 after running. The resummation of logarithms introduces a change
of approximately 0.2, with respect to the SL result, after running. The case of c̄A2 is
even more dramatic, it goes from 0 to 10, and the resummation of logarithms introduces
a change after running of 0.5 with respect to the SL result. The change after running of
cA3 is more moderate, even though certainly sizable, and so is for cA4 . They change from
0 to −0.2 and −0.05 (even though there is a maximum at 0.35), respectively. For cA3 , the
resummation of large logarithms introduces a change after running of 0.12 with respect to
the SL result. For cA4 the resummation of logarithms happens to be very important since
its behaviour is not saturated by the SL. It is interesting to note that the running of c̃A2

is smaller than the running of c̄A2 , but still rather large; it changes by nearly a factor of 3.
The qualitative behaviour of c̃A4 is similar to cA4 , and it changes from 0 to roughly −0.3
after running. Comparatively, the running of dhl2 and dhl3 is much smaller (they go from 0 to
−0.036 and −0.015, respectively) confirming that spectator quarks associated corrections
are subleading numerically. In these cases, the resummation of logarithms introduces a
change after running of around 0.006 and 0.001 with respect to the SL result, respectively.
Spectator quark effects in heavy-gluon operators introduce a change after running of 0.2,
1, 0.03, 0.35, 0.4, 0.16 to cA1 , c̄A2 , cA3 , cA4 , c̃A2 and c̃A4 , respectively, with respect to the
LL result with nf = 0.

Concerning the numerical analysis of spin-dependent operators, we observe that the
effect due to the logarithms is large in general (not for QED though, where the only
physical combination that appears, c̄W , does not run). This is because the coefficients
multiplying the logarithms are large, in particular, those that multiply the non-Abelian
color factor CA. We also observe that the LL result is saturated by the SL in all cases
except in the combination c̄B1 +cB2 . In general, the incorporation of spectator effects plays
a minor role. Let us discuss in more detail every Wilson coefficient. We observe that c̄B1

changes from -1 to -2.25 after running. The case of cB2 is rather similar, it goes from 0 to
1.4 after running. In general, the effect due to the resummation of logarithms is not quite
large, but certainly sizable. It introduces a change of approximately 0.3-0.4 with respect to
the SL result after running. For the combination c̄B1 + cB2 the effect is very small. It goes
from -1 to -0.99 even though it has a maximum of -0.95. In this case, the resummation of
logarithms is important because the behaviour is not saturated by the SL. The inclusion
of spectator quarks slightly changes the running of c̄B1 and cB2 , but that change is small
(of approximately 0.1 after running, with respect to the LL result with nf = 0), so the
effect induced by them is numerically subleading. However, the effect induced by the
spectators tends to get away the curve from the SL one, so it makes the resummation of
large logarithms more important. The change in combinations that appear in Compton
scattering, like c̄B1 + cB2 is sizable, but even smaller than before. It changes by 0.02 after
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Figure 2.5: Running of the Wilson coefficients associated to the 1/m3 spin-independent opera-
tors: cA1 , c̄A2 , cA3 , cA4 , dhl2 , dhl3 , 2cA1 + c̄A2 and 2cA3 + cA4 , applied to the bottom heavy quark
case. The continuous line is the LL result with nf = 4, the dotted line is the LL result with
nf = 0, and the dashed line is the SL result (it does not depend on nf ).
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running with respect to the LL result with nf = 0. Concerning the Wilson coefficients
associated to heavy-light operators, we find that their running is small but sizable in some
cases. The running is saturated by the SL in dhl5 and d̄hl10. In particular, dhl5 changes from
0 to 0.006. In that case, the resumation of logarithms happens to be unimportant. In
the case of d̄hl10, which runs from −1 to −1.042, the resummation of logarithms roughly
introduces a difference of 0.015 at 1 GeV, with respect to the SL value. The resummation
of logarithms happens to be qualitatively very important for d̄hl8 , dhl7 , dhl9 and dhl11, even
though their running is small, because their behaviour is not saturated by the SL result.
They go from 0 to 8.2 ·10−4, −3 ·10−5, −1.5 ·10−4 and −5 ·10−5, respectively, after running
at approximately 1.5 GeV.
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Figure 2.6: Running of the Wilson coefficients associated to the 1/m3 spin-dependent operators:
c̄B1 , cB2 , c̄B1 + cB2 , dhl5 , d̄hl8 and d̄hl10, applied to the bottom heavy quark case. The continuous
line is the LL result with nf = 4, the dotted line is the LL result with nf = 0 and the dashed
line is the SL result (it does not depend on nf ).
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Figure 2.7: Running of the Wilson coefficients associated to the 1/m3 spin-dependent operators:
dhl7 , dhl9 and dhl11, applied to the bottom heavy quark case. The continuous line is the LL result
with nf = 4 and the dashed line is the SL result (it does not depend on nf ).

2.6 Comparison with earlier work

The LL running of the Wilson coefficients associated to the 1/m3 operators of the HQET
Lagrangian was first addressed in Refs. [29, 33, 34]. For the case without light fermions,
expressions for the anomalous dimension matrix and explicit expressions for the Wilson
coefficients with SL accuracy are given. We find that these results are mutually inconsis-
tent, as the anomalous dimension matrix produces different expressions for the SL results,
compared to the explicit SL expressions written in these references (except for c

(3)
12 ).

The basis of operators these results were obtained from is different from the basis used
in this thesis, so in order to compare our results, we have to change the operator basis.
This is done via field redefinitions, which at the order we are working in, is equivalent to
using the full EOMs to order 1/m. To this purpose, we start with the HQET Lagrangian
in a general frame15, Eq. (8) in Ref. [28]

15We take this opportunity to correct a misprint in the term proportional to cp′p, where the minus sign
appearing there should be a plus sign in order to reproduce the Lagrangian Eq. (6) and Eq. (7) in Ref.
[28].
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Qv , (2.168)

where Dµ
⊥ = Dµ − vµv · D and σαβ = i

2
[γα, γβ]. We use the EOMs of this Lagrangian at

O(1/m) to move terms of the 1/m and 1/m2 operators to 1/m3 operators, as well as, to
remove terms of the 1/m3 operators, which are sent to higher orders in 1/m. The EOMs
read

Q̄v(iv ·D) = ck
1

2m
Q̄vD

2
⊥ + cF

g

4m
Q̄vσαβG

αβ , (2.169)

(iv ·D)Qv = ck
1

2m
D2
⊥Qv + cF

g

4m
σαβG

αβQv . (2.170)

Once done, we write every operator of the physical operator basis16 given in Refs. [33, 34] as
a combination of the operators of Eq. 2.168. To this purpose it is necessary to write the field
strength tensor in terms of covariant derivatives through the relation Gµν = − i

g
[Dµ, Dν ].

We obtain the following relations between the Wilson coefficients of the 1/m3 operators in
the two basis

16In Refs. [33, 34] the HQET Lagrangian is defined as

LHQET = Q̄v(iv ·D)Qv +

∞∑
n=1

1

(2m)n

∑
i

c
(n)
i O

(n)
i , (2.171)

where c
(n)
i are the Wilson coefficients associated to the dimension D + n operators, O(n)

i , which can be
found in the same references.
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c
(3)
1 = −2cM +

1

2
cA2 + ckc

2
F + cScF , (2.172)

c
(3)
2 = c4 + 2cM − c3

k − cDck , (2.173)

c
(3)
3 = 2cM + cA1 − ckc2

F − cScF , (2.174)

c
(3)
4 = −4cM − cA1 + ckc

2
F + cScF , (2.175)

c
(3)
12 =

1

12
cA3 , (2.176)

c
(3)
13 =

1

12
cA4 , (2.177)

c
(3)
5 = −cB2 − ckc2

F − cScF , (2.178)

c
(3)
6 = −cW1 − cp′p + c2

kcF +
1

2
cDcF +

1

2
cSck , (2.179)

c
(3)
7 = 2cW2 − 2cp′p − cB1 + ckc

2
F + cScF , (2.180)

c
(3)
8 = −cW1 − cp′p + c2

kcF +
1

2
cDcF +

1

2
cSck , (2.181)

c
(3)
9 = −cB1 + ckc

2
F + cScF , (2.182)

c
(3)
10 = cp′p + cB1 − ckc2

F − cScF , (2.183)

c
(3)
11 = cp′p + cB1 − ckc2

F − cScF . (2.184)

Where Eqs. (2.172-2.177) are Wilson coefficients associated to spin-independent operators

and Eqs. (2.178-2.184) to spin-dependent ones. Note that c
(3)
6 = c

(3)
8 and c

(3)
10 = c

(3)
11 . This

is to be expected since it is well-known from Ref. [28] that there are five spin-dependent
operators and five different Wilson coefficients, whereas in Refs. [33, 34] there are seven
operators and seven different Wilson coefficients. Thereby, one must find that two Wilson
coefficients have to be equal to another two. We also find the following relations between
the Wilson coefficients of 1/m and 1/m2 operators

c
(1)
1 = ck , c

(1)
2 = cF , c

(2)
1 = −cD , c

(2)
2 = cS . (2.185)

With these relations, we can think about reproducing the anomalous dimension matrix
given in Ref. [33] from our results. However, this is not possible for all the entries, as
some of the Wilson coefficients are gauge dependent and the computation in Ref. [33] was
done in the Feynman gauge, whereas we performed it in the Coulomb gauge. For the spin-
independent case, this is not a problem, since all gauge dependence comes from cD and cM ,
which are known at LL in the Feynman gauge (cD is known and cM is determined from
the reparametrization invariance relation 2cM = cD− cF , which is satisfied in the Feynman
gauge). The spin-dependent case is different, though, because the gauge dependent Wilson
coefficients in the Ref. [28] basis are not known in the Feynman gauge with LL accuracy.

For the spin-dependent ones, we could only determine the anomalous dimensions for c
(3)
5

and c
(3)
7 , which are gauge-independent. However, it is not worthwhile because it is a bit
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cumbersome due to c
(3)
6 = c

(3)
8 and c

(3)
10 = c

(3)
11 , which makes ambiguous some of the entries

of the anomalous dimension matrix. Instead, we compute it only for the spin-independent
operators: O1−4,12,13. We obtain (we use the same ordering and notation that in Ref. [33])

γ̂
(3)A
l =



−11/12 0 11/24 −11/24 11/288 −11/72
−4 0 1 −1 0 −2/9
−3 5/6 5/6 −5/3 1/12 −7/18
−7/2 5/6 4/3 −13/6 1/24 −11/36

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 11/24 −11/6



, (2.186)

γ̂
(111)A
l =


16/3 0 −5/2 7/3 0 0

0 0 0 0 0 0
3 −2/3 −11/6 5/3 −1/4 1/2

3/2 0 −3/2 3/2 1/8 −1/4

 , (2.187)

γ̂
(111)F
l =


32/3 0 −8/3 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (2.188)

γ̂
(12)A
l =


4 −5/6 −3/2 2 0 2/9
0 0 0 0 0 0
0 0 0 0 0 0

5/6 1/3 −1/12 −1/4 1/144 11/36

 , (2.189)

γ̂
(12)F
l =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (2.190)

On the one hand, in all matrices except the last one, we find discrepancies with the entries
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given in the Appendix of Ref. [33]. The differences do not follow a clear pattern. On the
other hand, remarkably enough, our anomalous dimension matrix produces the same SL
expressions as those given in Table II of Ref. [34] (note that the expression for c

(3)p
1 is

different from the one it can be found in Table I of Ref. [33]).
It is also interesting (and the only possibility to compare the spin-dependent operators)

to make the comparison backward and compute the RGEs for physical quantities in our
basis from the anomalous dimension matrix given in Refs. [33, 34]. To do this, one needs
the inverse relations between the Wilson coefficients in the two bases

cM = −1

2
(c

(3)
3 + c

(3)
4 ) , (2.191)

c4 = c
(3)
2 + c

(3)
3 + c

(3)
4 + c

(1) 3
1 − c(1)

1 c
(2)
1 , (2.192)

cA1 = 2c
(3)
3 + c

(3)
4 + c

(1)
1 c

(1) 2
2 + c

(1)
2 c

(2)
2 , (2.193)

c̄A2 = 2c
(3)
1 − 2c

(1)
1 c

(1) 2
2 − 2c

(2)
2 c

(1)
2 , (2.194)

cA3 = 12c
(3)
12 , (2.195)

cA4 = 12c
(3)
13 , (2.196)

cp′p = c
(3)
9 + c

(3)
10 , (2.197)

cW1 = −c(3)
6 − c

(3)
9 − c

(3)
10 + c

(1) 2
1 c

(1)
2 −

1

2
c

(2)
1 c

(1)
2 +

1

2
c

(2)
2 c

(1)
1 , (2.198)

cW2 =
1

2
c

(3)
7 +

1

2
c

(3)
9 + c

(3)
10 , (2.199)

cB1 = −c(3)
9 + c

(1)
1 c

(1) 2
2 + c

(2)
2 c

(1)
2 , (2.200)

cB2 = −c(3)
5 − c

(1)
1 c

(1) 2
2 − c(2)

2 c
(1)
2 . (2.201)

Concerning the Wilson coefficients of the spin-independent operators, and for the gauge
invariant combinations we have computed, the following RGEs are obtained

ν
d

dν
c4 =

α

π

[
CA

(
1

3
cDck −

5

6
c2
F ck −

1

6
c3
k

)
− 8

3
c3
kCF

]
, (2.202)

ν
d

dν
cA1 =

α

π

[
CA

(
− c4 +

1

2
cA1 −

11

48
c̄A2 +

121

24
c2
F ck −

37

24
cF cS + 0c3

F

)
+

(
11

3
CA +

16

3
CF

)
c3
k

]
, (2.203)

ν
d

dν
c̄A2 =

α

π

[
CA

(
8c4 − cA1 +

11

12
c̄A2 −

67

6
c2
F ck +

19

6
cScF + 0c3

F

)
+

(
− 56

3
CA −

64

3
CF

)
c3
k

]
, (2.204)
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ν
d

dν
cA3 =

α

π
CA

[
− 1

2
cA1 −

11

48
c̄A2 −

11

24
cA4 −

3

2
c3
F +

73

24
c2
F ck −

1

24
cF cS

]
, (2.205)

ν
d

dν
cA4 =

α

π
CA

[
8

3
c4 + cA1 +

11

12
c̄A2 +

1

6
cA4 − 3c3

F −
31

6
c2
F ck −

8

3
c3
k −

17

6
cF cS

]
. (2.206)

where numbers in bold indicate a discrepancy with respect to our results. Note that the
anomalous dimension matrix given in Ref. [33] yields different RGEs as those we found in
Sec. 2.5.3 (nor even the running of c4 is zero, neither gauge-independent) and also different
SL expressions as those we found in Eqs. (2.154-2.157), except for Eq.(2.156). Contrarily,
the SL results given in Table II of Ref. [34] yield results in agreement with our SL results
in Eqs. (2.154-2.157). We also observe that the running of cM obtained from Refs. [33, 34]
(which we do not display explicitly) agrees with the result predicted by reparametrization
invariance (in the Feynman gauge).

Concerning the Wilson coefficients of the spin-dependent operators, firstly note that the
anomalous dimension matrix displayed in Ref. [33] gives c

(3)
6 6= c

(3)
8 . This already disagrees

with our results and with the explicit SL results given in Table II of that reference. We
continue with the comparison nonetheless. We take the expression for c

(3)
6 , which is the

one which minimizes the discrepancies. The RGEs read

ν
d

dν
cp′p =

α

π

[
CAcF c

2
k +

1

2
CAcp′p −

1

2
CAcSck

]
, (2.207)

ν
d

dν
c̄W =

α

π

[
1

6
CAcDcF −

5

12
CAc

3
F −

3

4
CAc

2
F ck −

1

12
CAcF c

2
k −

4

3
CF cF c

2
k

−1

4
CAcSck +

1

2
CAc̄W

]
, (2.208)

ν
d

dν
c̄B1 =

α

π

[
3

2
CAc̄B1 −

1

12
CAcB2 −

1

3
CAcDcF +

5

6
CAc

3
F +

35

12
CAc

2
F ck +

11

6
CAcF c

2
k

+
16

3
CF cF c

2
k +

1

2
CAcp′p −

17

12
CAcF cS + 1CAcSck + CAc̄W

]
, (2.209)

ν
d

dν
cB2 =

α

π

[
− 1

2
CAc̄B1 +

7

6
CAcB2 −

4

3
CAc

2
F ck −

4

3
CAcF c

2
k +

8

3
CF cF c

2
k +

4

3
CAcF cS

−4

3
CAcSck −

16

3
CF cSck − CAc̄W + 0c3

F

]
, (2.210)

where, as before, numbers in bold indicate a discrepancy with respect to our results. In
general, we find disagreement for all RGEs (even in QED) except for Eq. (2.207), which
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satisfies reparametrization invariance. Conceptually, the disagreement with Eqs. (2.208-
2.209) is important, since they do not depend only on physical combinations of Wilson
coefficients due to the explicit appearance of cD, which is gauge dependent. In addition,
Eq. (2.208) does not satisfy reparametrization invariance.

On the contrary, it is remarkable that using the SL results given in Table II of Ref. [34]
one finds agreement with the SL results for the physical quantities we have computed, i.e
with Eqs. (2.160,2.161). Nevertheless, we find disagreement for the unphysical quantities
cM , cA2 , cW1 , cW2 and cB1 (whose SL results are not presented explicitly, but they can be
easily obtained from the RGEs of Sec. 2.5.2). If we trust the explicit SL results presented
in this reference, this is a clear indication these Wilson coefficients are gauge dependent.

Spectator effects in HQET up to O(1/m3) were already studied in Ref. [29]. However,
no anomalous dimension matrix was given, but only SL results. At this level, we can
compare our results with the ones given in that reference after changing the operator basis.
For the spin-independent heavy-light operators we find that c

(3l)o
3− = 8dhl2 and c

(3l)s
3− = 8dhl3 .

Such results disagree with Eqs. (2.158-2.159) by a factor of two. The first thing we observe
concerning the spin-dependent heavy-light operators is that, in Ref. [29], it is stated that
they change the SL results of the spin-dependent heavy-gluon sector found previously
in Ref. [33]. That is strange, because the initial matching condition of the heavy-light
operators is zero at tree level, and therefore, they should not change the SL expressions.
After a more detailed comparison, taking the SL results given in Ref. [29] and using Eqs.
(2.197-2.201) to change the operator basis, we find that, for physical combinations, the
results remain unchanged and are still in agreement with ours and with what we find in this
thesis (that the SL remain unchanged after including spectators). Concerning the running

of the spin-dependent heavy-light operators, we find that c
(3h)o
7+ = c

(3h)o
7− = 8dhl4 . The first

equality is already in disagreement with Ref. [29], and for the explicit SL results given in it,

only the term proportional to CF agrees with ours. We also find that c
(3h)s
7+ = c

(3h)s
7− = 8dhl5 ,

which leads to agreement between the SL expression presented in Ref. [29] and ours.
Also the given results for dhl7 , dhl9 and dhl11, whose SL result is zero, are in agreement

with ours. We find that c
(3l)o
6− + c

(3l)o
7− = 8d̄hl8 , which also agrees. Finally, we find that

d̄hl10 = c
(3l)o
6 − (c

(3h)o
7+ − c

(3h)o
7− )/2 − cFG

W1
(where cFG

W1
is the Wilson coefficient cW1 evaluated

in the Feynman gauge, whose SL expression was found in Ref. [33]), for which we find

disagreement. It is worth mentioning that a change of sign in the SL of c
(3l)o
6 plus the

condition c
(3h)o
7+ = c

(3h)o
7− , expected to reproduce dhl4 correctly, would lead to agreement.

This also would imply a change of sign in the SL expression of c
(3l)o
7− .

2.7 Loop integrals UV pole

Loop integrals in the Coulomb gauge are presumably more difficult than in any other
covariant gauge where several computational tools have been developed. In particular,
the integrals we face have the difficulty that they are explicitly non-relativistic i.e. they
can not be written in a covariant way. As a consequence, an splitting between the energy
and d-momentum integrals occurs. Note that there is no problem in using dimensional
regularization (indeed it is what we formally use throughout the thesis) to regulate the
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integrals, but the standard techniques for solving them, like the introduction of Feynman
parametrization, are not feasible. This makes the exact solution of the integrals very
difficult to achieve. However, since we are only interested in the UV pole or the logarithm
(both are connected) of the integrals, we can introduce a hard cutoff and expand the
integrals for high loop momentum compared to external momenta and energies, while
keeping only logarithmically divergent terms (terms with superficial degree of divergence
D = 0). Once we solve the integrals for these terms, we find a logarithm which is the same
one would obtain in dimensional regularization. The construction of the pole one would
obtain in dimensional regularization is then straightforward. Let us make these statements
quantitative by computing an example which can be solved exactly, too. The integral we
aim to compute is

I = g4

∫
ddq

(2π)d
|q|
(
δkl − qkql

q2

)∫
dq0

2π

1

(q0)2 − q2 + iηg

1

q0 − E1 − iηq
1

q0 − E ′1 − iηq
.

(2.211)
Firstly, let us compute the exact solution. Integrating over q0, we obtain

I = −ig
4

2

∫
ddq

(2π)d

(
δkl − qkql

q2

)
1

|q| − E1 − iηq
1

|q| − E ′1 − iηq
. (2.212)

The remaining integral can be solved by changing to d-dimensional spherical coordinates
and integrating over the solid angle and over |q|. However, in order to do that, we must
have an scalar integral. To this purpose, it is enough to realise that the tensor structure
of the solution is I = Aδkl. Therefore, the only thing that remains to be determined is the
global factor A given by the following scalar integral

A = −ig
4

2

d− 1

d

∫
ddq

(2π)d
1

|q| − E1 − iηq
1

|q| − E ′1 − iηq
. (2.213)

By changing to spherical coordinates and integrating over the solid angle, we find that

A = −ig
4

2

d− 1

d

2πd/2

Γ(d/2)

∫ ∞
0

d|q|
(2π)d

|q|d−1

(|q| − E1 − iηq)(|q| − E ′1 − iηq)
, (2.214)

or, written in terms of ε (d = 3 + 2ε),

A = −ig
4

2

2 + 2ε

3 + 2ε

2π3/2+ε

Γ(3/2 + ε)

1

(2π)3+2ε

∫ ∞
0

d|q| |q|2+2ε

(|q| − E1 − iηq)(|q| − E ′1 − iηq)
. (2.215)

The integral over |q| can be computed with Mathematica. The solution reads

A = −ig
4

2

2 + 2ε

3 + 2ε

2π3/2+ε

Γ(3/2 + ε)

1

(2π)3+2ε

π((−E1 − iηq)2+2ε − (−E ′1 − iηq)2+2ε)

(−E1 + E ′1) sin(2πε)
. (2.216)

Adding and subtracting ν2ε and expanding around ε = 0, it gives
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A =
ig4

2
ν2ε

(
E1 + E ′1

6π2ε
+
E2

1 ln
(
−E1−iηq

ν

)
− E ′21 ln

(
−E′

1−iηq
ν

)
3π2(E1 − E ′1)

+ . . .

)
+O(ε) . (2.217)

The counterterm should be chosen in such a way that it cancels the UV divergence, so

δA = − ig4

12π2ε
ν2ε(E1 + E ′1) . (2.218)

However, as we commented previously, the exact solution is not always available and we
must find an alternative way to extract the UV pole. To do so, we focus in the high
energy behaviour of the integral, and expand around zero external momenta and energies,
while keeping the loop momentum and energy of the same order q0 ∼ |q|, and much larger
than the external ones. In order to make the expansion valid, we will have to integrate
in a region where such expansion holds. In other words, we will have to introduce two
hard cutoffs to fix the integration regime: an upper or UV cutoff ΛUV, and a lower or IR
cutoff ΛIR. We will only pay attention to the UV, and the IR is only introduced to make
sense of the integral. The cutoff is introduced in the integral over the modulus of the loop
momentum, which is where the divergence in four dimensions comes from. The expansion
is done with the aim of finding all terms which are logarithmically divergent in the UV i.e.
those terms with zero superficial degree of divergence. For the q0 integral summation and
integration commute, so we expand at the very beginning. Since the superficial degree of
divergence of the integral is D = 1, we only need to expand to first order (note that, as
higher order terms are considered in the expansion, more IR the integral becomes). Thus

IUV = g4(E1 + E ′1)

∫
d3q

(2π)3
|q|
(
δkl − qkql

q2

)∫
dq0

2π

1

(q0)2 − q2 + iηg

1

(q0 − iηq)3
. (2.219)

Integrating over q0, we obtain

IUV = −ig
4

2
(E1 + E ′1)

∫
d3q

(2π)3

(
δkl − qkql

q2

)
1

|q|3
. (2.220)

Like before, we realise that the integral has the tensor structure I = AUVδ
kl, and the

problem reduces to the computation of the following scalar integral

AUV = −ig
4

3
(E1 + E ′1)

∫
d3q

(2π)3

1

|q|3
, (2.221)

which changing to spherical coordinates and integrating over the solid angle, gives

AUV = − ig
4

6π2
(E1 + E ′1)

∫ ΛUV

ΛIR

d|q| 1

|q|
, (2.222)

and finally,

AUV = − ig
4

6π2
(E1 + E ′1) ln

(
ΛUV

ΛIR

)
, (2.223)
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from where it can be identified that the logarithm of ΛUV is the logarithm of ν appearing
in Eq. (2.217) or, likewise, it is the logarithm that appears if we expand Eq. (2.218)
around ε = 0. Since we know the exact solution, the counterterm can be determined by
just identifying ν ↔ ΛUV in Eq. (2.218), obtaining

δA = − ig4

12π2ε
(E1 + E ′1)Λ2ε

UV . (2.224)

Note that the scaling with the UV cutoff is Λ2ε
UV because the integral has non-integer mass

dimension M2ε. This is a general fact which will allow us to reconstruct the counterterm
from the logarithm of ΛUV. Therefore, provided the solution (the logarithmic term) of a
Feynman integral where hard cut-offs have been introduced

I ≡ −γ ln

(
ΛUV

ΛIR

)
, (2.225)

the counterterm will always be reconstructed as follows

δI = − 1

2ε
γΛ2ε

UV , (2.226)

where γ is defined just as the term multiplying the logarithm. Since we can identify
ν ↔ ΛUV, the counterterm we would obtain from a calculation in dimensional regularization
would be

δI = − 1

2ε
γν2ε . (2.227)
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Chapter 3

Non-Relativistic Quantum
Chromodynamics (NRQCD)

3.1 Heavy Quarkonium, QQ̄

Since the simultaneous discovery of the J/ψ particle (charmonium cc̄) in 1975 [46, 47] at
SLAC and the Brookhaven National Laboratory, and three years later of the Υ particle
(bottomonium bb̄) [48] in Fermilab, the study of non-relativistic bound states made of
two heavy quarks, heavy quarkonium for short, has proven to be very important for our
understanding of the strong interactions, as its nature falls in the interplay between the
perturbative and non-perturbative regime of QCD. Moreover it opened the possibility to
study a non-relativistic picture in the framework of QCD. Such a picture became even
more relevant with the discovery of the Bc (b̄c) and B̄c (bc̄) bound states in 1998 [49].

The interaction between the two heavy quarks in the bound state is understood in two
assymptotic regions: the very short distance region, described by a Coulomb-like 1/r (plus
relativistic corrections) interaction potential, and the very long distance region, described
by a linear in r interaction potential, being r the separation between the two heavy quarks.
Whereas perturbation theory is successful to the description of the potential at very short
distances, it completely fails to describe the potential as soon as we move away from the
very short distance regime, since QCD becomes non-perturbative.

A crucial aspect of heavy quarkonium is that its physics is characterized by three
widely separated scales: the hard scale m, which is the heavy quark mass, the soft scale
|p| ∼ mv, which is the relative momentum between the two heavy quarks (or the inverse
Bohr radius), and the ultrasoft scale E ∼ mv2, which is the typical binding energy of the
system, being v the heavy quark velocity. Since the system is non-relativistic (v � 1), the
following hierarchy between the different scales is expected: m � mv � mv2. Moreover,
by definition of heavy quark, its mass m � ΛQCD, the hadronization scale. Therefore,
processes happening at the scale m can be described using perturbation theory due to the
asymptotic freedom of QCD. However, the scales |p| and E may or may not be accessible
to perturbation theory. The appearance of all these scales makes the quantitative study of
heavy quarkonium extremely difficult.

In the present work we will focus our attention in the perturbative part of the heavy
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quarkonium interaction. We have to say that, even for the perturbative contributions,
it took some time to find a way to incorporate radiative corrections systematically due
to UV divergences in the non-relativistic approach, based on the use of the Schrödinger
equation, and due to technical difficulties in the relativistic one, based on the Bethe-
Salpeter formalism [50]. A new approach was proposed by Caswell and Lepage [25] and
Bodwin, Braaten and Lepage [26]. It consisted in a reformulation of QCD in terms of an
EFT made of quarks and gluons describing fluctuations below the hard scale m, and where
fluctuations above the scale m are encoded in the Wilson coefficients of the theory. That
effective theory was called NRQCD. However, NRQCD only takes advantage of the fact
that m� |p|, E, ΛQCD, but it forgets about all other scale separation, and this generates
important problems. Despite of the fact that this new theory provided a framework to treat
UV divergences, it presents several complications: NRQCD is inconsistent in dimensional
regularization, there are not well-defined counting rules and it is not possible to sum
large logarithms of v. Consistent calculations are only possible in cut-off schemes which
are well-known to be troublesome specially if one wants to compute radiative corrections
beyond one loop. As a conclusion, the theory was found to be not completely optimised
to systematically incorporate radiative corrections in bound state calculations.

The solution came by taking advantage of the full scale separation characterizing heavy
quarkonium. The NRQCD framework was rewritten in terms of a Schrödinger theory,
where the dominant binding of the QQ̄ pair is described by the well-known non-relativistic
Schrödinger equation with the non-Abelian version of the Coulomb potential, and where
higher order corrections such as v-suppressed potentials and retardation effects can be
computed separately as perturbations. That was the born of a new EFT called pNRQCD,
devised by Pineda and Soto [1]. The new theory turns up to have well-defined counting
rules in v and it is formulated in dimensional regularization.

3.2 NRQCD vs HQET

HQET and NRQCD are EFTs devised to describe the interaction of one heavy quark of
mass m and of two heavy quarks of mass m1 and m2, respectively, which are almost on shell.
If we compare two HQET Lagrangians (one for each heavy quark appearing in the NRQCD
Lagrangian) with the NRQCD Lagrangian, we find that both EFTs look identical as far
as the form of the Lagrangian operators is concerned, except for the fact that in NRQCD
there are four fermion operators. However, these two EFTs are not equivalent, and not
only for this reason. On the one hand, HQET is thought to describe hadronic properties
as far as the momentum transferred is pµ ∼ ΛQCD � m. Therefore, the expansion in
HQET is an expansion in powers of ΛQCD/m. On the other hand, NRQCD is applied
to bound state systems formed by two non-relativistic heavy quarks, a QQ̄ bound state.
The NRQCD Lagrangian also has an expansion in 1/m, but in this case, the momentum
transferred is of order mv, and the energy transferred of order mv2, where v is the relative
velocity between the two heavy quarks in the center of mass frame. Therefore, the small
expansion parameter in NRQCD is v. The basic difference between HQET and NRQCD
can be seen from the first two terms in the effective Lagrangian,
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L = Q†(iD0)Q+Q†
D2

2m
Q . (3.1)

In HQET, the first term is of order ΛQCD and the second term is of order Λ2
QCD/m, so the

second term is subleading and it can be eliminated in a first approximation. In NRQCD
both terms are of order mv2 instead and, therefore, the second term can not be eliminated.
As a consequence, the propagators of both EFTs are different. In HQET the propagator
is i/(k0 + iη), whereas in NRQCD the it is i/(k0 − k2/2m+ iη).

Since the HQET propagator is m independent, in the matching calculation of QCD
with HQET, the contribution of a graph to a given order is completely determined by the
power of the mass of every operator. The power counting is manifest in the Lagrangian.
Differently, the matching calculation in NRQCD is more subtle. Due to the form of the
NRQCD propagator, we cannot compute matching corrections using it, since the v power
counting breaks down (see Refs. [28, 51]). The counting in v is not manifest in the
Lagrangian anymore. Instead, the matching conditions for NRQCD should be computed
using the HQET power counting, by expanding in powers of pµ/m. The same applies to the
computation of the renormalization group improved Wilson coefficients of the Lagrangian.
After the HQET Lagrangian has been computed, it can be used for computing bound state
properties using the NRQCD velocity power counting rules. That is the reason why we
will use the results obtained in Ch. 2 to Ch. 4.

3.3 NRQCD Lagrangian

In the previous chapter we studied aspects of the dynamics of a heavy quark interacting
with gluons and light quarks. Such dynamics is described by the HQET Lagrangian. That
Lagrangian is indeed one of the main ingredients of the NRQCD Lagrangian, aimed to
describe bound states made of two non-relativistic heavy quarks.

Important to present work is that the Wilson coefficients of the NRQCD Lagrangian
[25, 26] are instrumental in the determination of the Wilson coefficients of the pNRQCD La-
grangian. Since the aim of this thesis is to compute the N3LL heavy quarkonium spectrum
relevant to S-wave spin-independent states, we only include those NRQCD Lagrangian
operators relevant to that analysis.

The HQET Lagrangian up to O(1/m3) can be found in Ref. [28], and including light
fermions, though in a different basis, in Ref. [29]. In the present dissertation, we use
the basis and notation from Ref. [35], which also includes massless fermions. That is
precisely the basis given is Ch. 2. In Ref. [35] one can find the resummed expressions of
the Wilson coefficients with LL accuracy for the 1/m3 spin-independent operators. For the
spin-dependent 1/m3 operators, not relevant to this program, the LL running can be found
in Refs. [36, 37]. How these results were obtained is described in Ch. 2. Note that there
are not purely gluonic operators of dimension seven, neither four heavy-fermion operators
of dimension seven [52].

Concerning the O(1/m4) NRQCD Lagrangian operators, not all of them are needed for
the purposes of this thesis, but only some few operators. For the heavy-gluon sector, the
complete set of operators was written for QED in Ref. [44] and for QCD in Ref. [53] (in
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the last case without light fermions). Of those we can neglect most. We do not need the
spin-dependent 1/m4 operators, nor terms proportional to a single B, neither terms with
two (either B or E) terms. The reason is that we only need O(1/m4) tree level potentials.
Therefore, we can take all relevant operators from the QED case generalized to QCD.
Following the notation of Ref. [44], the relevant O(1/m4) HQET Lagrangian operators are

δL(4)
Q = c

(1)
X1g

Q†[D2,D · E + E ·D]Q

m4
+ c

(1)
X2g

Q†{D2, [∇ · E]}Q
m4

+c
(1)
X3g

Q†[∇2,∇ · E]Q

m4
+ · · · , (3.2)

and similarly for the antiquark. The dots stand for terms that one can trivially see do
not contribute to the S-wave spin-independent spectrum at N3LL, either because they
involved the emission of two gluons or because they are spin-dependent, so in principle,
we need three new coefficients. Nevertheless, we will see in the next chapter that only
cX1 contributes to the running of the spin-independent delta-like potential. Still, we will
compute any tree level potential proportional to cX1, cX2 and cX3.

The fact that we need cX1, one of the Wilson coefficients of the 1/m4 heavy-gluon oper-
ators of the HQET Lagrangian, could make it necessary to consider the Wilson coefficients
of the 1/m4 heavy-light operators as well (light-light operators are subleading for the same
reason they are at O(1/m3)), as they may enter through RG mixing. Fortunately, this is
not the case, since cX1 can be determined by reparametrization invariance [44]

32c
(i)
X1 =

5Z

4
− c(i)

F + c
(i)
D , (3.3)

where one should take Z = 1 for QCD. Note that it depends on cD, so indeed c
(i)
X1 is

gauge dependent. Nevertheless, we will see in Sec. 4.5.3 of Ch. 4 that it always combines
with cM to produce gauge invariant combinations. This indeed is a nontrivial check of
the computation. Note also that the above coefficient has an Abelian term, so it can be
checked with QED computations.

Finally, we consider the heavy four-fermion sector of the O(1/m4) Lagrangian. They
generate local or quasilocal potentials, which do not produce divergent potential loops.
The same happens for the potentials generated by cX2 and cX3. Therefore, in both cases,
such potentials do not generate contributions to the heavy quarkonium mass at N3LL, and
we can neglect them. Consequently, we have the LL running of all the necessary Wilson
coefficients of the O(1/m4) NRQCD Lagrangian operators.

Summarizing, the NRQCD Lagrangian we need is the following

LNRQCD = LQ1χc,2 + LHQET(Q→ Q1,m→ m1) (3.4)

+LHQET(Q→ χc,2, g → −g, T a → (T a)T ,m→ m2) , (3.5)

where LHQET is given by the sum of Eq. (2.21) and Eq. (3.2), Q1 is a non-relativistic heavy
quark field of mass m1 represented by a Pauli spinor, χc,2 = −iσ2χ∗2 is a non-relativistic
heavy anti-quark field of mass m2 also represented by a Pauli spinor, (T a)T stands for
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the transposed matrix of T a, and the change T a → (T a)T only applies to the matrices
contracted to the heavy quark color indices. The rest of the definitions are as in Sec. 2.3.
Finally, The four heavy fermion operators to O(1/m2) are given by

LQ1χc,2 = − dss
m1m2

Q†1Q1χ
†
c,2χc,2 +

dsv
m1m2

Q†1σ1Q1χ
†
c,2σ2χc,2 (3.6)

− dvs
m1m2

Q†1T
aQ1χ

†
c,2(T a)Tχc,2 +

dvv
m1m2

Q†1T
aσ1Q1χ

†
c,2(T a)Tσ2χc,2 . (3.7)

3.4 Matching QCD with NRQCD

In this section we compute the matching of the 1/m2 spin-independent four fermion op-
erators of the NRQCD Lagrangian with the QCD Lagrangian at one loop order and for
two quarks of different masses. The reason we do not consider the equal mass case is
for simplicity, since for different masses annihilation type diagrams are not possible. This
problem was already addressed in Ref. [15] for both, equal and different masses, but we
compute it here as an illustrative example. As mentioned in Sec. 3.2, the matching must
be done as in HQET. The section has two purposes, to give a pedagogical and detailed
explanation of how the matching between QCD and NRQCD is performed, and also to
set up the problem for a future two loop computation which could help to find the miss-
ing contribution of the NLL soft running of the Wilson coefficient D̃

(2)
d associated to the

spin-independent delta-like potential (see Sec. 4.4.2 and Sec. 4.5.1). To this last purpose,
it should be enough to compute the divergent part of the two loop diagrams appearing in
the matching calculation.

In order to carry out the matching, we compute the scattering of a heavy quark of
mass m1 with a heavy anti-quark of mass m2 in QCD and in the Feynman gauge. The
necessary QCD Feynman rules are displayed in Sec. C.1. Since there are no derivative
terms in the O(1/m2) four fermion operators, we can expand the matrix element around
zero residual momentum to the zeroth order. In other words, it is enough to compute the
matrix element for the four quarks at rest. This also means that the amputated legs in
a digram only have to be multiplied either by p+ = (1 + γ0)/2 (projector on the particle
at rest subspace) or p− = (1− γ0)/2 (projector on the antiparticle at rest subspace), and
the kinematic factor

√
m/E relating relativistic and non-relativistic normalizations can be

put to one.
It can be seen from the NRQCD Feynman rules of the four fermion operators displayed

in Sec. C.1 that the structure of the spin-independent vertices is proportional to δABδB′A′ ,
whereas the structure of the spin dependent ones is proportional to σABσB′A′ . Therefore,
once the external legs are projected to the particle or the antiparticle sector, IABB′A′ =
IABB′A′(p+)AA(p+)BB(p−)A′A′(p−)B′B′ , the result of any Feynman integral will be always
proportional to these two structures. In other words, the result of any Feynman integral
(to the order of interest) can be written as

IABB′A′ = ISIδABδB′A′ + ISDσABσB′A′ , (3.8)
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where ISI and ISD still have color indices. Since we are only interested in the spin-
independent part, we can multiply by the projectors to the particle and the antiparticle
sectors (p+)BA(p−)A′B′ = [(1 + γ0)BA/2][(1− γ0)A′B′/2]. Thus

IABB′A′
(1 + γ0)BA

2

(1− γ0)A′B′

2
= ISI Tr

(
1 + γ0

2

)
Tr

(
1− γ0

2

)
. (3.9)

Therefore, ISI can be obtained from the expression

ISI =
1

D2
IABB′A′(1 + γ0)BA(1− γ0)A′B′ , (3.10)

where we have considered D-dimensional gamma matrices with D = 4 + 2ε.
Let us go to the computation. For the case of different masses, only two diagrams

contribute. They are shown in Fig. [3.1]. The amplitude for the diagram (1) of Fig. [3.1]
reads

Figure 3.1: QCD diagrams contributing to the Wilson coefficients associated to the 1/m2 four
fermion operators of the NRQCD Lagrangian in the case of two different masses.

(I1)ABB′A′ =

∫
dDq

(2π)D
(−ig)(γµ)CB(T a)γβ

i

q2 + iηg
gµν(−ig)(γν)B′C′(T a)β′γ′

×i(γ
0(−q0 +m1)− γi(−q)i +m1)DC
(−q0 +m1)2 − ~q 2 −m2

1 + iηq
δδγ

×i(γ
0(−q0 −m2)− γi(−q)i +m2)C′D′

(−q0 −m2)2 − ~q 2 −m2
2 + iηq

δγ′δ′

×(−ig)(γρ)AD(T b)αδ
i

q2 + iηg
gρσ(−ig)(γσ)D′A′(T b)δ′α′ . (3.11)

Projecting to the particle and the antiparticle sector correspondingly, we find that
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(I1)ABB′A′ = g4(T bT a)αβ(T aT b)β′α′gµνgρσ

∫
dDq

(2π)D
1

(q2 + iηg)2

×(p+γ
ρ(−γχqχ +m1(1 + γ0))γµp+)AB

q2 − 2m1q0 + iηq

×(p−γ
ν(−γξqξ +m2(1− γ0))γσp−)B′A′

q2 + 2m2q0 + iηq
. (3.12)

Using Eq. (3.10) we find that

I1,SI = g4(T bT a)αβ(T aT b)β′α′
1

D2
gµνgρσ

∫
dDq

(2π)D
1

(q2 + iηg)2

×Tr(γρ(−γχqχ +m1(1 + γ0))γµ(1 + γ0))

q2 − 2m1q0 + iηq

×Tr(γν(−γξqξ +m2(1− γ0))γσ(1− γ0))

q2 + 2m2q0 + iηq
, (3.13)

and computing the traces, we obtain

I1,SI = g4(T bT a)αβ(T aT b)β′α′

∫
dDq

(2π)D
1

(q2 + iηg)2

1

q2 − 2m1q0 + iηq

1

q2 + 2m2q0 + iηq

×[−2q2 + (2−D)(q0)2 + 2(m1 −m2)q0 + 4m1m2] . (3.14)

At this point, it is better to write the integral in a covariant form. In order to do that, we
introduce an auxiliary vector vµ = (1,0), such that q · v = q0. Then, I1,SI can be expressed
as

I1,SI =
1

4
g4({T a, T b}αβ{T a, T b}β′α′ − [T a, T b]αβ[T a, T b]β′α′)

×
∫

dDq

(2π)D
1

(q2 + iηg)2

1

q2 − 2m1q · v + iηq

1

q2 + 2m2q · v + iηq
×[−(2gµν + (D − 2)vµvν)q

µqν + 2(m1 −m2)vµq
µ + 4m1m2] . (3.15)

Similarly, for the diagram (2) of Fig.[3.1] we obtain

I2,SI =
1

4
g4({T a, T b}αβ{T a, T b}β′α′ + [T a, T b]αβ[T a, T b]β′α′)

×
∫

dDq

(2π)D
1

(q2 + iηg)2

1

q2 − 2m1q · v + iηq

1

q2 − 2m2q · v + iηq
×[(2gµν + (D − 2)vµvν)q

µqν − 2(m1 +m2)vµq
µ + 4m1m2] . (3.16)
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Using the master integrals of Sec. C.2, the sum of both diagrams yields

I1,SI + I2,SI =

[
m2

1(m2
2)ε
(

8CFm1m2(−1 + ε− 2ε2) + CA

(
m2

2ε(−3 + 2ε) +m2
1(1 + 2ε)

+3m1m2(1+ε(−1+2ε))
))
−m2

2(m2
1)ε
(

8CFm1m2(−1+ε−2ε2)+CA

(
m2

1ε(−3+2ε)+m2
2(1+2ε)

+3m1m2(1 + ε(−1 + 2ε))
))] i4−3−εg4π−2−ε(3 + 2ε)Γ(−ε)(T a)αβ(T a)β′α′

m2
1(m1 −m2)m2

2(m1 +m2)(−3 + 2ε)(−1 + 2ε)(1 + 2ε)

+
i2−5−2ε(CA − 2CF )CFg

4
(

(m2
1)εm2

2 −m2
1(m2

2)ε
)
π−2−ε(3− ε(1− 4ε(1 + ε))

)
Γ(−ε)δαβδβ′α′

m1(m1 −m2)m2(m1 +m2)(−3 + 2ε)(−1 + 2ε)(1 + 2ε)
.

(3.17)
The amplitude Eq. (3.17) is divergent and needs to be renormalized, i.e. we need to
subtract the divergent part. We do it in the MS renormalization scheme, characterized by
the renormalization scale

ν̄2ε = ν2ε

(
eγE

4π

)ε
. (3.18)

Once the amplitude is renormalized, we can compute dMS
ss and dMS

vs by comparing Eq. (3.17)
with the amplitude in NRQCD

IMS
1,SI + IMS

2,SI = −i d
MS
ss

m1m2

δαβδβ′α′ − i d
MS
vs

m1m2

(T a)αβ(T a)β′α′ , (3.19)

from where we can identify

dMS
ss = −CF

(
CA
2
− CF

)
α2

m2
1 −m2

2

{
m2

1

(
1

3
+ ln

(
m2

2

ν2

))
−m2

2

(
1

3
+ ln

(
m2

1

ν2

))}
, (3.20)

dMS
vs = − 2CFα

2

m2
1 −m2

2

{
m2

1

(
1

3
+ ln

(
m2

2

ν2

))
−m2

2

(
1

3
+ ln

(
m2

1

ν2

))}
+

CAα
2

4(m2
1 −m2

2)

{
3

[
m2

1

(
1

3
+ ln

(
m2

2

ν2

))
−m2

2

(
1

3
+ ln

(
m2

1

ν2

))]
+

1

m1m2

[
m4

1

(
10

3
+ ln

(
m2

2

ν2

))
−m4

2

(
10

3
+ ln

(
m2

1

ν2

))]}
, (3.21)

which is in agreement with Ref. [15].
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Chapter 4

Potential Non-Relativistic Quantum
Chromodynamics (pNRQCD)

4.1 Preliminaries

As it was mentioned in the previous chapter, from all the hierarchy of scales which
characterizes heavy quarkonium, NRQCD only takes advantage of the fact that m �
mv, mv2,ΛQCD. However, if one is interested in describing physics at the scale of the
binding energy E ∼ mv2, then NRQCD still contains degrees of freedom that never will
show up as physical states. These degrees of freedom are soft heavy quarks, light quarks
and gluons. A solution is to integrate out these unphysical degrees of freedom in an EFT
approach. The implementation of this idea was devised by Pineda and Soto in Ref. [1]. It
was the born of a new EFT called pNRQCD.

Two different situations arise depending on the relative size of ΛQCD with respect to
|p| ∼ mv and E:

• The weak coupling regime: if |p| � E & ΛQCD (satisfied for very large masses).

• The strong coupling regime: if |p| & ΛQCD.

The present dissertation is only involved with pNRQCD in the weak coupling regime, that
is the approximation that the b and c quarks are heavy enough. Therefore, the strong
coupling regime (see Ref. [27] for a detailed review) is beyond the scope of this work.

In the weak coupling regime we can integrate out the unphysical degrees of freedom,
with energy of the order of |p|, using perturbation theory. Once done, the Wilson coeffi-
cients of pNRQCD depend on the momentum of the heavy quark p and the heavy antiquark
p′ very often in the combination k = p − p′, the momentum transferred. This produces
non-local terms which can be identified as different contributions to the interaction poten-
tial between the two heavy quarks. These contributions to the potential are relativistic
corrections to the leading Coulomb potential. This feature of pNRQCD is very interest-
ing, as it provides an interpretation of the usual interaction potentials in non-relativistic
quantum mechanics in an EFT framework, as well as it provides a link between QFT and
non-relativistic quantum mechanics, and a Schrödinger-like formulation of QCD. Therefore,
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in this regime, heavy quarkonium can be described with a Schrödinger-like equation with
heavy quarks interacting via the leading interaction potential, the non-Abelian version of
the Coulomb potential, and relativistic corrections to this potential can be implemented as
perturbations as one would do in non-relativistic quantum mechanics. Ultrasoft radiation
is also implemented in the theory. As a consequence, in this regime heavy quarkonium is
very much like positronium.

The particle content of pNRQCD will be quark-antiquark pairs, gluons, and light quarks
with momentum |p| and energy E. For the description of the heavy quark-antiquark pairs
there are two possibilities. We can use a field for the quark and another one for the
antiquark, or we can use a single field representing the quark-antiquark pair. This can be
rigorously achieved in a non-relativistic system because the particle and the antiparticle
numbers are separately conserved. This single field can be decomposed to a color singlet
and color octet components. The representation we use will hardly depend on the kind
of the calculation we aim to do. For instance, in the matching between NRQCD and
pNRQCD we will use the first representation, since it is more smoothly connected to
NRQCD, whereas in the computation of potential loops we will use the latter. Finally, the
computations in pNRQCD are easily implemented in the Coulomb gauge, so we will use it
throughout this chapter.

4.2 Introduction

High order perturbative computations in heavy quarkonium require the use of EFTs, as
they efficiently deal with the different scales of the system. One such EFT is pNRQCD
[1, 27] (for reviews see Refs. [2, 8]). The key ingredient of the EFT is, obviously, its
Lagrangian. At present, the pNRQCD Lagrangian is known with N3LO accuracy [4, 11].

One of the major advantages of using EFTs is that it facilitates the systematic resum-
mation of the large logarithms generated by the ratios of the different scales of the problem.
For the case at hand, we are talking about

• the hard scale (m, the heavy quark mass),

• the soft scale (mv, the inverse Bohr radius of the problem),

• the ultrasoft scale (mv2, the typical binding energy of the system).

At present, the pNRQCD Lagrangian is known with N3LL precision as far as P -wave states
are concerned [6]. For S-wave observables the present precision is N2LL [3]. The missing
link to obtain the complete N3LL pNRQCD Lagrangian is the N3LL running of the delta-
like potentials1. For the spin-dependent case, such precision for the running has already
been achieved in Refs. [12, 13]. Therefore, what is left is to obtain the N3LL result for the
spin-independent delta potential. This is an extremely challenging computation which we
undertake in this thesis [5].

1We use the term ”delta-like potentials” for the delta potential and the potentials generated by the
Fourier transform of lnn k (in practice only ln k).
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It is convenient to describe the energy levels of an nS (l = 0) state by dividing it up
into a spin-independent part called the spin-averaged part and a part dependent on the
spin of the heavy fermions, called the hyperfine splitting part2

E(J, n) = Eaver(n) + S1 · S2Ehfs(n) , (4.4)

where J is the total spin value and S1 and S2 are the spins of the fermion and the anti-
fermion, respectively. The aim of this thesis is to compute Eaver(n) with N3LL precision.
Partial results are obtained, whereas the missing contributions are expected to be small.

The new results we obtain are the following:

• In Secs. 4.4.1 and 4.4.2 we compute the α/m4 and the α2/m3 spin-independent
potentials. These potentials are finite. The expectation value of them produces
energy shifts of O(mα6), which contribute to the heavy quarkonium mass at N4LO.
Nevertheless, since some expectation values are divergent, some of energy shifts are
logarithmic enhanced, i.e. of orderO(mα6 ln( ν

mα
)). Such corrections contribute to the

heavy quarkonium mass at N3LL. These divergences, and the associated factorization
scale ν, get canceled by the corresponding divergence in the spin-independent delta
potential. By incorporating the HQET Wilson coefficients with LL accuracy3 in
the α/m4 and the α2/m3 spin-independent potentials, the divergent structure of the
potential loops determines the piece associated to these potentials to the RGE of the
spin-independent delta potential with N3LL precision.

• In Sec. 4.4.3 we compute the soft α3/m2 contribution to the spin-independent delta-

like potential proportional to c
(1) 2
F , c

(2) 2
F , c̄

(1)hl
1 and c̄

(2)hl
1 . Unlike before, this potential

is divergent. Therefore, for future use, we also give the renormalized expression. The
divergent part produces corrections of O(mα6 ln( ν

mα
)) i.e. of N3LL precision. From

these divergences, we generate in Sec. 4.5.1 the soft contribution to the RGE of the
spin-independent delta potential and resum logarithms with N3LL precision. In order
to reach this accuracy, we need the NLL running of the 1/m and 1/m2 HQET Wilson
coefficients. For cF this is known [55, 56] but not for c̄hl1 . The associated missing term
is of O(Tfnfmα

6 ln(1/α)) and is expected to be quite small. Its computation will be
carried out in future publications. The possible mixing between the soft α3/m2 and
the α2/m3 spin-independent potentials is also quantified in Sec. 4.4.4.

2Another possible definition is to divide it up into a spin-dependent part, called likewise spin-averaged
part, and a part dependent on the total spin, called likewise hyperfine splitting part

E(J, n) = E′aver(n) + S2E′hfs(n) , (4.1)

This definition is adopted, for instance, in Refs. [12, 13, 14]. Using Eq. (A.14) we can easily change from
one definition to the other

E′aver(n) = Eaver(n)− 3

4
Ehfs(n) , (4.2)

E′hfs(n) =
1

2
Ehfs(n) . (4.3)

3These are known at O(1/m) [54], O(1/m2) [31, 32] and O(1/m3) [35].
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The computation of the soft α3/m2 contribution to the spin-independent delta-like

potential proportional to the other NRQCD Wilson coefficients: c
(1) 2
k , c

(2) 2
k , c

(1)
k c

(2)
k ,

dss and dvs will be performed in future publications. The associated contribution
to the running is expected to be small compared to the total running of the heavy
quarkonium potential. We will estimate its size using the result of the running of the
already computed soft contribution.

• The N3LL ultrasoft running of the static, 1/m and 1/m2 potentials was originally
computed in Refs. [57, 58, 59] (see also Refs. [60, 61]). This is enough for P -wave
analyses [6], where such corrections produce a N3LL shift to the energy. Nevertheless,
it is not so for S-wave states, as already noted in Refs. [12, 13] for the case of
the hyperfine splitting. The reason is the generation of singular potentials through
divergent ultrasoft loops. We revisit it in Sec. 4.5.2 and incorporate in Sec. 4.5.3 the
missing contributions needed to have the complete ultrasoft-potential running that
produces N3LL shifts to the energy.

• Finally, in Sec. 4.5.3, we compute the complete potential contribution to the RGE
of the spin-independent delta-like potential with N3LL accuracy, which is the first
nonzero contribution. Solving this equation, we obtain the complete N3LL potential
running of the spin-independent delta potential. By adding everything together, we
obtain the spin-average S-wave mass (spin-independent contribution proportional to
δl0) with N3LL accuracy, except to a missing and already mentioned contribution
which is expected to be small. The N3LL running of the delta potential is also one
of the missing blocks to obtain the complete N2LL RG improved expression of the
Wilson coefficient of the electromagnetic current. This is indeed what is needed to
achieve N2LL precision for non-relativistic sum rules and the t-t̄ production near
threshold. Since the spin-dependent contribution for l 6= 0 (P -wave) and for l = 0
(hyperfine splitting) has already been computed in earlier works [6, 12, 13], we only
consider here terms relevant for the N3LL S-wave spin-average energy. By adding
those results to the S-wave spin-average, the complete N3LL heavy quarkonium spec-
trum is obtained (P -wave and S-wave).

Throughout this thesis we work in the MS renormalization scheme, where the bare and
renormalized couplings are related by (D = 4 + 2ε)

g2
B = g2

[
1 +

g2ν̄2ε

(4π)2
β0

1

ε
+

(
g2ν̄2ε

(4π)2

)2 [
β2

0

1

ε2
+ β1

1

ε

]
+O(g6)

]
, ν̄2ε = ν2ε

(
eγE

4π

)ε
, (4.5)

where

β0 =
11

3
CA −

4

3
TFnf ,

β1 =
34

3
C2
A −

20

3
CATnf − 4CFTnf . (4.6)

being nf the number of dynamical (active) quarks and α = g2ν2ε/(4π). This definition is
slightly different from the one used, for instance, in Ref. [62].
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In the following we will only distinguish between the bare coupling gB and the MS
renormalized coupling g when necessary. The running of α is governed by the β function
defined through

1

2
ν

d

dν

α

π
= ν2 d

dν2

α

π
= β(α) = −α

π

{
β0

α

4π
+ β1

( α
4π

)2

+ · · ·
}
. (4.7)

The coupling α(ν) has nf active light flavours. Note that, with the precision achieved in
this work, we need in some cases the two-loop running of the coupling when solving the
RGEs. Finally, like in Ch. 2, we define

z ≡
(
α(ν)

α(νh)

) 1
β0

' 1− 1

2π
α(νh) ln

(
ν

νh

)
. (4.8)

4.3 pNRQCD Lagrangian

Integrating out the soft modes in NRQCD we end up with the EFT named pNRQCD. The
most general pNRQCD Lagrangian compatible with the symmetries of QCD that can be
constructed with a singlet and an octet quarkonium field, as well as an ultrasoft gluon field
to NLO in the multipole expansion has the form [1, 27]

LpNRQCD =

∫
d3r Tr

{
S† (i∂0 − hs(r,p,PR,S1,S2)) S + O† (iD0 − ho(r,p,PR,S1,S2)) O

}

+VA(r)Tr
{

O†r · gE S + S†r · gE O
}

+
VB(r)

2
Tr
{

O†r · gE O + O†Or · gE
}

−1

4
Ga
µνG

µν a +

nf∑
i=1

q̄i i /D qi , (4.9)

hs(r,p,PR,S1,S2) =
p2

2mr

+
P2

R

2M
+ Vs(r,p,PR,S1,S2), (4.10)

ho(r,p,PR,S1,S2) =
p2

2mr

+
P2

R

2M
+ Vo(r,p,PR,S1,S2), (4.11)

where iD0O ≡ i∂0O − g[A0(R, t),O], PR = −i∇R for the singlet, PR = −iDR for the
octet (where the covariant derivative is in the adjoint representation), p = −i∇r,

mr =
m1m2

m1 +m2

, (4.12)

and M = m1 +m2. We adopt the color normalization

S = S 1lc/
√
Nc , O = OaTa/

√
TF , (4.13)

for the singlet field S(r,R, t) and the octet field Oa(r,R, t). Here and throughout this
thesis we denote the quark-antiquark distance vector by r, the center-of-mass position of
the quark-antiquark system by R, and the time by t.
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Both hs and the potential Vs are operators acting on the Hilbert space of a heavy
quark-antiquark system in the singlet configuration4. Likewise, ho and the potential Vo
are operators acting on the Hilbert space of a heavy quark-antiquark system in the octet
configuration. Both, Vs and Vo can be Taylor expanded in powers of 1/m (up to logarithms).
For the purposes of this thesis we only need to care about hs, so we will not pay too much
attention to ho. Therefore, at low orders we have

Vs = V (0) +
V (1)

mr

+
V

(2)

L2

m1m2

L2

r2
+

1

2m1m2

{
p2, V

(2)

p2 (r)
}

+
V

(2)
r

m1m2

+
1

m1m2

V
(1,1)

S2 (r)S1 · S2 +
1

m1m2

V
(1,1)
S12

(r)S12(r)

+
1

m1m2

V
(2)
LS1

(r)L · S1 +
1

m1m2

V
(2)
LS2

(r)L · S2 +O(1/m3), (4.14)

where S1 = σ1/2, S2 = σ2/2, L ≡ r× p, and S12(r) ≡ 3r · σ1 r · σ2

r2
− σ1 · σ2.

The static potential V (0) is known with N3LL accuracy [57, 58]. The N3LL result for
the spin-independent and momentum dependent 1/m and 1/m2 potentials is also known in
different matching schemes [6, 59, 63]: on-shell, off-shell (Coulomb, Feynman) and Wilson.
In terms of the original definitions used in these papers, and in four dimensions, they read

V (1) = V (1,0)(r) = V (0,1) ≡ −CFCAD
(1)

4r2
, (4.15)

V
(2)

L2

m1m2

≡
V

(2,0)

L2 (r)

m2
1

+
V

(0,2)

L2 (r)

m2
2

+
V

(1,1)

L2 (r)

m1m2

≡ CFD
(2)
2

2m1m2r
, (4.16)

V
(2)

p2

m1m2

≡
V

(2,0)

p2 (r)

m2
1

+
V

(0,2)

p2 (r)

m2
2

+
V

(1,1)

p2 (r)

m1m2

≡ −CFD
(2)
1

m1m2r
. (4.17)

The spin-dependent and momentum-dependent potentials are also known with N3LL pre-
cision [6]. We use the following definitions in this thesis (again we refer to Ref. [6]):

1

m1m2

V
(2)
LS1

(r) ≡
(

1

m2
1

V
(2,0)
LS (r) +

1

m1m2

V
(1,1)
L2S1

(r)

)
≡

3CFD
(2)
LS1

2m1m2

, (4.18)

1

m1m2

V
(2)
LS2

(r) ≡
(

1

m2
2

V
(0,2)
LS (r) +

1

m1m2

V
(1,1)
L1S2

(r)

)
≡

3CFD
(2)
LS2

2m1m2

. (4.19)

More delicate are V
(1,1)

S2 and V
(2)
r , as their running is sensitive to potential loops, which

are more efficiently computed in momentum space. Therefore, it is more convenient to
work with the potential in momentum space, which is defined as follows:

Ṽs ≡ 〈p′|Vs|p〉 . (4.20)

4Therefore, in a more mathematical notation, h → ĥ, Vs(r,p) → V̂s(r̂, p̂). We will however avoid this
notation in order to facilitate the reading.
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Then, the potential reads

Ṽs = −4πCF
αṼ
q2
− p4

(
c

(1)
4

8m3
1

+
c

(2)
4

8m3
2

)
(2π)dδ(d)(q) (4.21)

−CFCAD̃(1) π2

2mr |q|1−2ε

− 2πCF D̃
(2)
1

m1m2

p2 + p′ 2

q2
+
πCF D̃

(2)
2

m1m2

((
p2 − p′ 2

q2

)2

− 1

)

+
πCF D̃

(2)
d

m1m2

−
4πCF D̃

(2)

S2

dm1m2

[Si1,S
j
1][Si2,S

j
2]

+
4πCF D̃

(2)
S12

dm1m2

[Si1,S
r
1][Si2,S

j
2]

(
δrj − d qrqj

q2

)
− 6πCF
m1m2

piqj

q2

(
D̃

(2)
LS1

[Si1,S
j
1] + D̃

(2)
LS2

[Si2,S
j
2]
)
,

where the Wilson coefficients D̃ generically stand for the Fourier transform of the original
Wilson coefficients in position space D. For them, and also for αṼ , we use the power
counting LL/LO for the first nonvanishing correction, and so on.

The potential V
(1,1)

S2 is indeed known with the required N3LL accuracy [12, 13] (one
should be careful when comparing though, as there is a change in the basis of potentials
used there, compared with the one we use here). In terms of D̃

(2)

S2 , it reads

V
(1,1)

S2

m1m2

≡ δ(3)(r)
8πCF D̃

(2)

S2

3m1m2

+
8πCF D̃

(2)

S2

3m1m2

[
− 1

4π
reg

1

r3
− ln νδ(3)(r)

](
k
d

dk
D̃

(2)

S2

) ∣∣∣∣∣
LL

k=ν

, (4.22)

where

− 1

4π
reg

1

r3
≡
∫

d3k

(2π)3
e−ik·r ln k , (4.23)

and we neglect higher order logarithms, as they are subleading.
Finally we consider Vr, which in terms of D̃

(2)
d reads

V
(2)
r

m1m2

≡ V
(2,0)
r (r)

m2
1

+
V

(0,2)
r (r)

m2
2

+
V

(1,1)
r (r)

m1m2

≡ δ(3)(r)
πCF D̃

(2)
d

m1m2

+
πCF
m1m2

[
− 1

4π
reg

1

r3
− ln νδ(3)(r)

](
k
d

dk
D̃

(2)
d

) ∣∣∣∣∣
LL

k=ν

. (4.24)

Unlike all the other potentials, we do not know V
(2)
r with N3LL precision. Presently, only

the N2LL expression is known [3]. This leads us to the main purpose of this chapter, the
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computation of Vr with N3LL accuracy. This is equivalent to obtaining the NLL expression
of D̃

(2)
d . This will require the use of the other Wilson coefficients of the potentials to one

less order, namely LL. Indeed in Eq. (4.21) we have already approximated the Fourier

transform of V
(2)

L2 by its N2LL expression. Otherwise the momentum dependence is more
complicated.

At LL the Wilson coefficients are equal in position and momentum space. We only
explicitly display those that we will need later. For the static potential we have that
αV = αṼ = α at LL. For the rest, we show the results in the off-shell Coulomb (which are

equal to the Feynman at this order) and the on-shell matching schemes, except for D
(2)
LSi

,
which we do not need for the S-wave:

D
(1) LL
CG = D̃

(1) LL
CG = α2(ν) +

16

3β0

(
CA
2

+ CF

)
α2(ν) ln

(
α(ν)

α(ν2/νh)

)
, (4.25)

D
(1) LL
ON = D̃

(1) LL
ON = α2(ν)

[
1− 2CF

CA

m2
r

m1m2

]
+

16

3β0

(
CA
2

+ CF

)
α2(ν) ln

(
α(ν)

α(ν2/νh)

)
,

(4.26)

D
(2) LL
1 = D̃

(2) LL
1 = α(ν) +

(m1 +m2)2

m1m2

2CA
3β0

α(ν) ln

(
α(ν)

α(ν2/νh)

)
, (4.27)

D
(2) LL
S12

= D̃
(2) LL
S12

= α(ν)c2
F (ν) , (4.28)

D
(2) LL

S2 = D̃
(2) LL

S2 = α(ν)c2
F (ν)− 3

2πCF
(dsv(ν) + CFdvv(ν)) . (4.29)

The Eqs. (4.25-4.29) can be trivially written in terms of z defined in Eq. (4.8), and in the
one-loop coupling approximation, using the relation

α(ν)

α(ν2/νh)
= 2− α(ν)

α(νh)
= 2− zβ0 . (4.30)

The above precision is enough for the purposes of this thesis. We now turn to D̃
(2)
d .

Expanding D̃
(2)
d (k, ν) in powers of ln k, we obtain

D̃
(2)
d (k, ν) = D̃

(2)
d (νs, νp, ν

2
p/νh)

∣∣∣∣
νs=νp=ν

+ k
d

dk
D̃

(2)
d (k, ν)

∣∣∣∣
k=ν

ln

(
k

ν

)
+ . . . , (4.31)

where we have made explicit the dependence on the different factorization scales.
So far we have not made explicit the dependence on νh ∼ m. Nevertheless, it will play

an important role later, when solving the RGEs. Therefore, in the following, we use the

notation D̃
(2)
d (νs, νp, ν

2
p/νh)

∣∣∣∣
νs=νp=ν

≡ D̃
(2)
d (νh; ν).

The Wilson coefficient D̃
(2)
d (νh; ν) can be written in several ways: as a sum of the LL

term D̃
(2) LL
d (νh; ν) and the NLL correction δD̃

(2) NLL
d (νh; ν), or as the sum of the initial

condition at the hard scale D̃
(2)
d (νh; νh) ≡ D̃

(2)
d (νh) up to NLO and the pure running

contribution up to NLL δD̃
(2)
d (νh; ν), where δD̃

(2)
d (νh; νh) = 0:

D̃
(2)
d (νh; ν) = D̃

(2)
d (νh) + δD̃

(2)
d (νh; ν) = D̃

(2) LL
d (νh; ν) + δD̃

(2) NLL
d (νh; ν) . (4.32)
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This Wilson coefficient may depend on the matching scheme. Here we mainly consider
the off-shell Coulomb gauge matching scheme. Still, for later discussion, we also give
expressions in the on-shell matching scheme (see Ref. [11] for more details). The LL
running is known [3]:

D
(2) LL
d,CG (ν) = D̃

(2) LL
d,CG (ν) = 2α(ν) +

1

πCF
[dss(ν) + CF d̄vs(ν)]

+
(m1 +m2)2

m1m2

8

3β0

(
CA
2
− CF

)
α(ν) ln

(
α(ν)

α(ν2/νh)

)
, (4.33)

D
(2) LL
d,ON (ν) = D̃

(2) LL
d,ON (ν) = α(ν) +

1

πCF
[dss(ν) + CF d̄vs(ν)]

+
(m1 +m2)2

m1m2

8

3β0

(
CA
2
− CF

)
α(ν) ln

(
α(ν)

α(ν2/νh)

)
, (4.34)

where

d̄vs(ν) =
1

2
πα(ν)m1m2

(
c

(1)
D

m2
1

+
c

(2)
D

m2
2

)
+ dvs(ν) (4.35)

is a gauge invariant combination of NRQCD Wilson coefficients whose LL running can
be found in Refs. [3, 14]. We summarize them in Sec. E.4.1. Again, Eqs. (4.33-4.35)
can be trivially written in terms of z and in the one-loop coupling approximation using
Eq. (4.30). In order to visualize the relative importance of the NLL corrections compared
with the LL term, we plot the latter in Fig. 4.1 in the Coulomb gauge5. For reference, in
these and later figures, we use the following numerical values for the heavy quark masses
and α(νh): mb = 4.73 GeV, α(mb) = 0.216547, mc = 1.5 GeV, α(mc) = 0.348536 and
α(2mbmc/(mb+mc)) = 0.290758. So, νh = mb for bottomonium, νh = mc for charmonium,
and νh = 2mr = 2mbmc/(mb +mc) for the Bc system.

From the LL result, using the νs independence of the potential at LO, one obtains

k
d

dk
D̃

(2)
d,CG

∣∣∣∣∣
LL

k=ν

(νh; ν) = −β0
α2

π
+
α2

π

(
2CF −

CA
2

)
c

(1)
k c

(2)
k (4.36)

+
α2

π

[
m1

m2

(
1

3
Tfnf c̄

hl(2)
1 − 4

3
(CA + CF )c

(2) 2
k − 5

12
CAc

(2) 2
F

)
+
m2

m1

(
1

3
Tfnf c̄

hl(1)
1 − 4

3
(CA + CF )c

(1) 2
k − 5

12
CAc

(1) 2
F

)]
−(m1 +m2)2

m1m2

4

3

(
CA
2
− CF

)
α2

π

[
ln

(
α(ν)

α(ν2/νh)

)
+ 1

]
.

This term contributes to the N3LL energy shift of the spectrum.
Since we know the NLO expression of D̃

(2)
d , we can determine the initial matching

condition. It reads

5Unlike in the other plots, we use here the two-loop running for α, which we compute using the
Mathematica package RunDec. The effect is small.
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Figure 4.1: Plot of Eq. (4.33), the LL running in the off-shell (Coulomb/Feynman) matching

scheme of D̃
(2)
d for different values of nf (0,3,4) and in the SL approximation (in this case only

with nf = 3). Upper panel: Plot for bottomonium with νh = mb. Middle panel: Plot for
charmonium with νh = mc. Lower panel: Plot for Bc with νh = 2mbmc/(mb +mc).

D̃
(2)
d,ON(νh) = α(νh) +

α2(νh)

4π

(
28

9
CA +

4

3
CF −

20

9
TFnf (4.37)

+

(
m1

m2

+
m2

m1

)[
25

18
CA −

10

9
TFnf

])
+

1

πCF

(
dss(νh) + CF d̄vs(νh)

)
,
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D̃
(2)
d,CG(νh) = 2α(νh) +

α2(νh)

4π

(
62

9
CA +

4

3
CF −

32

3
CA ln 2− 28

9
TFnf

+

(
m1

m2

+
m2

m1

)[
−10

9
TFnf +

(
61

18
− 16

3
ln 2

)
CA

])
+

1

πCF

(
dss(νh) + CF d̄vs(νh)

)
. (4.38)

The heavy-gluon Wilson coefficient cD and the four-fermion Wilson coefficients dss and dvs
were computed at one-loop order in Ref. [28] and Ref. [15] respectively, where one can
find the explicit expressions. For practical reasons, we summarize them in Sec. E.4.2.

The NLL correction δD̃
(2) NLL
d (νh; ν) can be conveniently splitted into the following

pieces

δD̃
(2) NLL
d (νh; ν) = D̃

(2) NLO
d (νh) (4.39)

+δD̃
(2) NLL
d,us (νh; ν) + δD̃

(2) NLL
d,s (νh; ν) + δD̃

(2) NLL
d,p (νh; ν) ,

where δD̃
(2) NLL
d,us (νh; ν), δD̃

(2) NLL
d,s (νh; ν) and δD̃

(2) NLL
d,p (νh; ν) stand for the ultrasoft, soft and

potential NLL running of D̃
(2)
d . The second line is zero when ν = νh. The matching

condition D̃
(2) NLO
d (νh) is the O(α2) term of Eq. (4.37) or Eq. (4.38), depending on the

matching scheme. Their numerical values in the Coulomb gauge matching scheme are; for
bottomonium, 0.042, 0.052 and 0.081 for nf=4, 3, and 0 respectively; for charmonium,
0.108, 0.134 and 0.211 for nf=4, 3, and 0 respectively; and for Bc, 0.048, 0.072 and 0.142
for nf=4, 3, and 0 respectively. We nicely observe that these numbers generate small
corrections to the leading order results.

At present, the NLL running is only known for the ultrasoft term [59]:

δD̃
(2) NLL
d,us (νh; ν) =

(m1 +m2)2

m1m2

4π

β0

(
CA
2
− CF

)
α(ν)

{
2

3π
ln

(
α(ν)

α(ν2/νh)

)
a1
α(ν)

4π

+(α(ν2/νh)− α(ν))

(
8

3

β1

β0

1

(4π)2
− 1

27π2

(
CA
(
47 + 6π2

)
− 10TFnf

))}
, (4.40)

where a1 = 31CA/9− 20TFnf/9. This equation can also be conveniently written in terms
of z and in the one-loop coupling approximation using Eq. (4.30). We show the size of
this correction in Fig. 4.2. Note that the ultrasoft contribution to the delta potential
vanishes in the large Nc limit (it is 1/N2

c suppressed). Nevertheless, it quickly becomes
big at relatively small scales because the overall coefficient is large and the ultrasoft scale
quickly becomes small. Finally, note also that part of the ultrasoft correction (proportional
to ln k) is included in Eq. (4.36).

The missing terms to obtain the complete NLL running of D̃
(2)
d are then δD̃

(2) NLL
d,s (νh; ν)

and δD̃
(2) NLL
d,p (νh; ν). For δD̃

(2) NLL
d,s (νh; ν) we need the two-loop soft computation6 of D̃

(2)
d

6That is the UV divergent part of the two loop matching between NRQCD and pNRQCD at O(1/m2).
More precisely, the one that gets absorbed in the delta-like potential.
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Figure 4.2: Plot of Eq. (4.40), the NLL ultrasoft running in the off-shell (Coulomb/Feynman)

matching scheme of D̃
(2)
d for different values of nf (0,3,4) and in the SL approximation (in this

case only with nf = 3). Upper panel: Plot for bottomonium with νh = mb. Middle panel:
Plot for charmonium with νh = mc. Lower panel: Plot for Bc with νh = 2mbmc/(mb +mc).

and the associated soft RGE, which we partially obtain in Sec. 4.4.3 and Sec. 4.5.1,
respectively. In Sec. 4.4.4 we discuss the mixing between the α3/m2 and α2/m3 potentials

coming from the use of the EOM in energy-dependent potentials. For δD̃
(2) NLL
d,p (νh; ν) we

need to determine and solve the potential RGE. This requires first the matching between
NRQCD and pNRQCD to higher orders in 1/m, which we do in Sec. 4.4.1 and Sec. 4.4.2,
an extra ultrasoft associated running, which we obtain in Sec. 4.5.2, and obtaining the
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potential RGE, which we do in Sec. 4.5.3.

4.4 Matching NRQCD with pNRQCD: The SI poten-

tial

In this section we compute the potentials whose expectation values produce corrections
to the O(mα6) S-wave spectrum7. This means the O(α/m4), O(α2/m3) and O(α3/m2)
potentials8. Of them, we mostly care about those that produce logarithmic enhanced
contributions to the spectrum. On the one hand, the O(α/m4) and O(α2/m3) potentials
are finite (the soft, potential and ultrasoft contributions to their running are zero), so their
expectation value does not produce logarithmically enhanced corrections. Some of them
can be traced back from the QED computation. We mainly compare with Ref. [64], but
one could also look into Ref. [65] for the equal mass case. Since they are finite, the only way
they can produce logarithmically enhanced corrections is through the divergences generated
when inserting these potentials into potential loops. These divergences get then absorbed
by the O(α3/m2) potential producing logarithmically enhanced corrections. On the other
hand, there is another source of logarithmically enhanced contributions to the spectrum
which is not generated by potential loops, but by the divergent structure of the O(α3/m2)
potential itself i.e. by the divergences appearing in the matching calculation between
NRQCD and pNRQCD. We refer to the running of the O(α3/m2) potential produced by
potential loops as potential running and the one produced by the matching calculation as
soft running. The former case will be discussed in Sec. 4.5.3, whereas the latter in Sec.
4.5.1.

The spin-dependent case was computed in Refs. [12, 13]. Explicit expressions for the
potentials can be found in the Appendix of Ref. [14]. They produced corrections to the
hyperfine splitting, but not to the fine splittings, as shown in Ref. [6].

7An example of how these computations are caried out is given in Sec. D.1
8The expectation value of the O(α5) Coulomb potential and the O(α4/m) potential also contribute to

the spectrum at O(mα6), and their divergences produce logarithmically enhanced corrections. However,
these are only relevant for P -wave states i.e. their contributions are not proportional to δl0, and for this
reason they are not considered. The p6/m5 correction to the kinetic term does not has to be considered
neither, since it does not give ultraviolet divergent corrections
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4.4.1 O(α/m4) potential

From a tree level computation (see topology (a) in Fig. 4.3) we obtain the complete
spin-independent O(α/m4) potential in momentum space:

Ṽtree = −c(1)
D c

(2)
D CF

g2

64m2
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. (4.41)

In this result we have already used the full EOM replacing [66]

(k0)2 → −c(1)
k c

(2)
k

(p2 − p′2)2

4m1m2

. (4.42)

Such (k0)2 terms are generated by Taylor expanding in powers of the transferred energy
k0 the denominator of the transverse gluon propagator.

Not all terms in Eq. (4.41) contribute to the NLL running of the delta potential. The
ones that are local (or pseudolocal) do not contribute, as they do not produce potential
loop divergences, since the expectation values of these potentials are proportional to |ψ(0)|2
and/or analytic derivatives of it (kind of ∇2|ψ(0)|2), which are finite. This happens for
instance for the potentials proportional to c2

D, cX2 and cX3. It is also this fact that allows
us to neglect 1/m4 potentials generated by dimension eight four-heavy fermion operators
of the NRQCD Lagrangian.

As we have incorporated the LL running of the HQET Wilson coefficients, these po-
tentials are already RG improved.

Note that with trivial modifications these potentials are also valid for QED.

4.4.2 O(α2/m3) potential

We now compute the complete set of the O(α2/m3) spin-independent potentials. We show
the relevant topologies that contribute to the α2/m3 potential in Fig. 4.3. By properly
changing the vertices all potentials are generated.
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Figure 4.3: The first diagram is the only topology that contributes to the tree level potential.
Properly changing the vertex and/or Taylor expanding the denominator of the propagators all
potentials are generated. The other diagrams are the general topologies that contribute to the
α2/m3 potential. Again, properly changing the vertices and/or Taylor expanding the denominator
of the propagators, all potentials are generated.

The (b)-type diagrams in Fig. 4.3 do not generate O(α2/m3) potentials in the Coulomb
gauge.
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The (c)-type diagrams in Fig. 4.3 do generate O(α2/m3) potentials. They read
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The (d)-type diagrams in Fig. 4.3 do not generate O(α2/m3) potentials.
The (e)-type diagrams in Fig. 4.3 do generate O(α2/m3) potentials. They read
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The (f)-type diagrams in Fig. 4.3 do generate O(α2/m3) potentials. They read
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The rest of the topologies: (g), (h), (i) and (j), do not contribute. Note that those
topologies include, in particular, the one-loop diagrams proportional to chli or dhli , as they
may produce O(α2/m3) potentials. We find that such contributions vanish.

As we have incorporated the LL running of the HQET Wilson coefficients, these po-
tentials are already RG improved.

Note that with trivial modifications these potentials are also valid for QED.

4.4.3 O(α3/m2) Vr potential

In this section we perform a partial computation of the O(α3/m2) soft contribution to
the Vr potential. The contributions we compute here are those proportional to the HQET
Wilson coefficients c̄
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Using the notation of Ref. [11],
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the bare new result reads
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With obvious changes the same result is obtained for D̃
(0,2)
r,3 . It is worth emphasizing that

this expression vanishes in pure QED. A nontrivial check of this result is that cD and chl1

appear in the gauge invariant combination c̄hl1 = cD + chl1 . Another nontrivial check is that
the counterterm is independent of k and that the 1/ε2 terms comply with the constraints
from RG. This computation has been done in the Feynman gauge (with a general gauge
parameter ξ) in the kinematic configuration p = k and p′ = 0. We also set the external
energy to zero. Not setting it to zero produces subleading corrections (we recall that the
one-loop computation of this contribution has no energy dependence [11]). The result is
shown to be independent of the gauge fixing parameter ξ.

For future computations, it is useful to explain the convention we have taken for the
D-dimensional spin matrices. For the c

(i)
F vertex we typically take a covariant notation σµν

(see for instance Ref. [30]) and project to the particle or the antiparticle sector, depending
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if the external legs are quarks or antiquarks, in order to single out the spin-independent
part, as we did when we computed the one-loop matching of four fermion operators in
Ch. 3. In particular, we can use Eq.(3.10) because the structure of the delta-like potential
is the same that the one of the four fermion vertices. Indeed, in the matching between
NRQCD and pNRQCD, the contribution coming from these operators gets absorbed into
the delta-like potential Wilson coefficient. Basically, the numerator in the loop integrals
becomes:

∼ Tr[(. . .)(1 + γ0)/2] Tr[(. . .)(1− γ0)/2]

Tr[(1 + γ0)/2] Tr[(1− γ0)/2]
(4.59)

Where the dots stand for the numerators of the Feynman integrals coming from the particle
and the antiparticle, respectively, before any projection is carried out. At one-loop, this
procedure gives the same result as using Pauli matrices with the conventions used in Ref.
[11].

Though not directly relevant for this work, we also give the MS renormalized expression
of the bare potential computed above. It will be of relevance for future computations of
the spectrum at N4LO and for decays. The result reads (α = α(ν))
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where we have also included the O(α2) term. Note that this contribution does not mix with

V
(2)
L . Therefore, it really corresponds to the contributions proportional to c

(1)
F and c̄

hl(1)
1 of

D
(2,0)
r , as defined in Ref. [11]. With obvious changes a similar expression is obtained for

D̃
(0,2)

r,MS
(k).

Note that there is a missing term proportional to c
(1) 2
k (c

(2) 2
k ) in D̃

(2,0)
d (D̃

(0,2)
d ) and other
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missing terms proportional to c
(1)
k c

(2)
k , dss and dvs in D̃

(1,1)
d , which are the only contributions

it has. Finally, note that the missing part of the soft term should carefully be computed in
a way consistent with the scheme we have used for the rest of the computation, in particular
for the α2/m3 potential, as a strong mixing (if using the EOMs/field redefinitions) of the
terms proportional to c2

k is expected. In the next section we will see how this mixing takes
place for the terms proportional to c2

F .

4.4.4 Equations of motion

Some of the potentials we have obtained in Sec. 4.4.2 are energy-dependent. If we want to
eliminate such energy dependence, and write an energy independent potential, it can be
achieved by using field redefinitions. At the order we are working, it is enough to use the
full EOM at the leading order, which includes the Coulomb potential. We first consider
Eq. (4.43), which depends on the total energy of the heavy quarkonium and, for this reason,
does not contribute to the running of the delta potential. We next consider Eq. (4.55),

which is the only energy-dependent potential proportional to c
(i) 2
F . Such a potential is

generated by the following interaction Lagrangian:
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c
(1) 2
F

m2
1

∫
d3x1d

3x2(ψ†(i∂0ψ(t,x1))− (i∂0ψ
†)ψ(t,x1))

×
∫

d3k

(2π)3

eik·x

|k|1−2ε
χ†cχc(t,x2)

−CFCA
g4

128

c
(2) 2
F

m2
2

∫
d3x1d

3x2ψ
†ψ(t,x1)

×
∫

d3k

(2π)3

eik·x

|k|1−2ε
(χ†ci∂0χc(t,x2)− (i∂0χ

†
c)χc(t,x2)) . (4.61)

For this Lagrangian one can use the EOMs(
i∂0 +

∇2

2m1

)
ψ(t,x)−

∫
d3x2ψ(t,x)VC(x− x2)χ†cχc(t,x2) = 0 , (4.62)

where VC(x) = −CFα/|x|, and similarly for the other fields. We then obtain

L
Ṽ

(f,9)
1loop

= −CFCA
g4

128

c
(1) 2
F

m2
1

∫
d3x1d

3x2

[
ψ†
(
− ∇2

2m1

ψ(t,x1)

)
+

(
− ∇2

2m1

ψ†
)
ψ(t,x1)

]
×
∫

d3k

(2π)3

eik·x

|k|1−2ε
χ†cχc(t,x2)

−CFCA
g4

64

c
(1) 2
F

m2
1

∫
d3x1d

3x2d
3x3ψ

†ψ(t,x1)VC(x1 − x3)

×
∫

d3k

(2π)3

eik·(x1−x2)

|k|1−2ε
χ†cχc(t,x2)χ†cχc(t,x3) + · · · , (4.63)
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where the dots stand for the analogous contribution for the antiparticle.
The first term in Eq. (4.63) yields the potential we obtain after using the free on-shell

EOMs in Eq. (4.55). It reads

Ṽ
(f,9)

1loop = CFCA
g4

256

(
c

(1) 2
F c

(1)
k

m3
1

+
c

(2) 2
F c

(2)
k

m3
2

)
|k|1+2εp

2 + p′2

k2
. (4.64)

The second term is a six-fermion field term. After contracting two of them9, a new α3/m2

potential is generated. Here we only care about the divergent part because we are only
interested in logarithmically enhanced contributions to the spectrum. It reads

δṼ
(f,9)

1loop =
1

32
C2
FCA

g6k4ε

(4π)2

(
c

(1)2
F

m2
1

+
c

(2)2
F

m2
2

)
1

ε
. (4.65)

It is worth mentioning that this contribution has a different color structure compared to
the one of the purely soft contributions computed in Sec. 4.4.3. It is also π2 enhanced
compared to them. Therefore, one could expect it to be more important than the strictly
purely soft contribution.

Remarkably enough, we will see later that the contributions from Eqs. (4.64) and
(4.65) to the running of the delta-like potential cancel each other in the equal mass case,
but not for different masses. This was to be expected, since in the equal mass case, the
potential can be written in terms of the total energy of the heavy quarkonium, which does
not produce divergences that should be absorbed in the delta-like potential.

It is worth mentioning that this exhausts all possible c
(i)2
F structures that can be gener-

ated. To be sure of this statement, we have to check that the result does not depend on the
gauge. Therefore, we have redone the diagrams proportional to c

(i)2
F (i.e. the associated

contributions to Ṽ
(e,2)

1loop, Ṽ
(f,1)

1loop and Ṽ
(f,9)

1loop ) in the Feynman gauge and have found the same
result.

The other potentials that are dependent on the energy are proportional to c2
k. As before,

these contributions will mix with the α3/m2 purely soft contribution proportional to c2
k,

which we have not computed anyhow. Therefore, in this thesis, we only include the explicit
contribution generated using the free EOMs and postpone the incorporation of the other
contribution to have the full result. The contributions we explicitly include in this thesis
read

9We use {ψ(x), ψ†(y)} = δ(3)(x− y) and {χc(x), χ†c(y)} = δ(3)(x− y).
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Ṽ
(f,3)

1loop = −CFCA
3g4

1024m1m2

(
c

(1) 2
k c

(2)
k

m1

+
c

(1)
k c

(2) 2
k

m2

)
|k|1+2εp

2 + p′2

k2

×
(

2(p2 + p′2)

k2
− 1− (p2 − p′2)2

k4

)
−CFCA

g4

512

(
c

(1) 3
k

m3
1

+
c

(2) 3
k

m3
2

)
|k|1+2εp

2 + p′2

k2

×
(

5p · p′

k2
− 3(p · k)(p′ · k)

k4

)
, (4.66)

Ṽ
(f,5)

1loop = −CFCA
g4

256m1m2

|k|1+2ε

(
c

(1) 2
k c

(2)
k

m1

+
c

(1)
k c

(2) 2
k

m2

)(
3(p2 + p′2)(p · k)(p′ · k)

k6

−2(p4 + p′4)

k4
+

(p2 + p′2)(p · p′)
k4

+
2(p6 + p′6)

k6

−2(p4 + p′4)(p · p′)
k6

)
, (4.67)

Ṽ
(f,8)

1loop = CFCA
g4

512

(
c

(1) 3
k

m3
1

+
c

(2) 3
k

m3
2

)
|k|1+2ε

×
(

2(p6 + p′6)

k6
− (p4 + p′4)(p2 + p′2)

k6
+

p4 + p′4

k4

)
. (4.68)

4.5 NLL running of D̃
(2)
d

In this section we compute the NLL soft and potential running of D̃
(2)
d .

4.5.1 Soft running

From the results obtained in Sec. 4.4.3 we can obtain the O(α3) soft RGE of D̃
(2)
d (the

O(α2) soft RGE can be found in Ref. [3]) proportional to c
(i) 2
F and c

hl(i)
1 . In practice,

such a computation can be understood as getting the NLL soft running of dss +CF d̄vs (see
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Eq. (4.33) or Eq. (4.34)). It reads

νs
d

dνs
(dss + CF d̄vs)

∣∣∣∣
soft

= CFα
2

(
2CF −

CA
2

)
c

(1)
k c

(2)
k (4.69)

+CFα
2

[
m1

m2

(
1

3
Tfnf c̄

hl(2)
1 − 4

3
(CA + CF )[c

(2)
k ]2 − 5

12
CA[c

(2)
F ]2

)
+
m2

m1

(
1

3
Tfnf c̄

hl(1)
1 − 4

3
(CA + CF )[c

(1)
k ]2 − 5

12
CA[c

(1)
F ]2

)]
+CF

α3

4π

[
m1

m2

(
−TFnf

54
(65CA − 54CF )c̄

hl(2)
1 − CA

18
(25CA −

125

3
TFnf )[c

(2)
F ]2

)
+
m2

m1

(
−TFnf

54
(65CA − 54CF )c̄

hl(1)
1 − CA

18
(25CA −

125

3
TFnf )[c

(1)
F ]2

)]
+O(α3) .

The O(α3) stands for terms proportional to NRQCD Wilson coefficients different from

c
(i) 2
F and c

hl(i)
1 . This equation is meant to represent the pure-soft running of the NRQCD

Wilson coefficients. It does not give the full running of D̃
(2)
d , as one should also include

the potential and ultrasoft running. We fix the initial matching condition to zero, since we
only need the initial matching condition of the total potential, which can be added in the
final step, when combining the different contributions.

The strict NLL contribution to the solution of this equation10 reads (the LL is already

10See App. E.5 in order to see a more detailed discussion of how this contribution is computed, as well
as, to find some necessary Wilson coefficients.
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included in Eq. (4.33))

πCF δD̃
(2) NLL
d,s = [dss + CF d̄vs]

NLL = −α2(νh)CF

[(
465C6

A(757m2
1 − 306m1m2 + 757m2

2)

−13824C2
F (2m2

1 − 3m1m2 + 2m2
2)n4

fT
4
F + C5

A

(
5580CF (53m2

1 + 102m1m2 + 53m2
2)

+(−590218m2
1 + 342117m1m2 − 590218m2

2)nfTF

)
− C4

AnfTF

(
34CF (8347m2

1

+38772m1m2 + 8347m2
2)− 3(115117m2

1 − 101466m1m2 + 115117m2
2)nfTF

)
+32CAn

3
fT

3
F

(
81C2

F (70m2
1 − 83m1m2 + 70m2

2)− 4CF (5m2
1 − 459m1m2 + 5m2

2)nfTF

+120(m2
1 +m2

2)n2
fT

2
F

)
− 8C2

An
2
fT

2
F

(
81C2

F (566m2
1 − 563m1m2 + 566m2

2)− 3CF (193m2
1

−17595m1m2 + 193m2
2)nfTF + 2(739m2

1 + 1080m1m2 + 739m2
2)n2

fT
2
F

)
+6C3

AnfTF

(
360C2

F (106m2
1 − 93m1m2 + 106m2

2) + CF (10129m2
1 + 187731m1m2

+10129m2
2)nfTF − 4(2536m2

1 − 4959m1m2 + 2536m2
2)n2

fT
2
F

))
× 1

36m1m2(31CA − 16nfTF )(5CA − 4nfTF )(11CA − 4nfTF )2(2CA − nfTF )

+5CA(m2
1 +m2

2)

(
397C3

A + 48CFn
2
fT

2
F + 11C2

A(33CF − 35nfTF ) + 10CAnfTF (−21CF

+10nfTF )

)
z

1
3

(5CA−4nfTF ) 1

6m1m2(5CA − 4nfTF )(11CA − 4nfTF )2

− 1

468m1m2(11CA − 4nfTF )2

(
1989C3

A(8m2
1 + 3m1m2 + 8m2

2) + 8CFnfTF

(
81CF (6m2

1

+13m1m2 + 6m2
2) + 1240(m2

1 +m2
2)nfTF

)
+ 2CAnfTF

(
CF (−15134m2

1 + 5967m1m2

−15134m2
2) + 3100(m2

1 +m2
2)nfTF

)
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A

(
3978CF (2m2

1 − 3m1m2 + 2m2
2)

−5(2263m2
1 + 351m1m2 + 2263m2

2)nfTF

))
z

2
3

(11CA−4nfTF )

+
2(5CA + 8CF )(m2

1 +m2
2)nfTF (−1327CA + 594CF + 620nfTF )z

31
6
CA− 8

3
nfTF

117m1m2(31CA − 16nfTF )(11CA − 4nfTF )

−CA(m2
1 +m2
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(
15C3

A − 188C2
AnfTF − 2n2

fT
2
F (27CF + 10nfTF ) + CAnfTF (216CF

+137nfTF )

)
z

8
3

(2CA−nfTF ) 1

12m1m2(11CA − 4nfTF )2(2CA − nfTF )

−
5C2

A

(
1− z 1

3
(5CA−4nfTF )

)(
m2

2 ln
(
νh
m1

)
+m2

1 ln
(
νh
m2

))
2m1m2(5CA − 4nfTF )

]
. (4.70)

We do not aim in this thesis to give a full-fledged phenomenological analysis. Still, we
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Figure 4.4: Plot of the NLL soft running due to Eq. (4.70) to δD̃
(2) NLL
d,s for different values of

nf (0,3,4) and in the SL approximation (in this case only with nf = 3). Upper panel: Plot
for bottomonium with νh = mb. Middle panel: Plot for charmonium with νh = mc. Lower
panel: Plot for Bc with νh = 2mbmc/(mb +mc).

compute numerically the running of δD̃
(2) NLL
d,s to see its size. We show the result in Fig.

4.4. The contribution is small compared to the LL, as expected, and it is comparable to
the NLL ultrasoft running.

To this contribution one should also add the contributions generated by the new α3/m2

potentials that appear after using the full EOM. Of those, we only computed the potentials
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Figure 4.5: Plot of the extra contribution to the NLL soft running, δD̃
(2) NLL
d,s , due to Eq. (4.72),

for different values of nf (0,3,4) and in the SL approximation (in this case only with nf = 3).
Upper panel: Plot for bottomonium with νh = mb. Middle panel: Plot for charmonium with
νh = mc. Lower panel: Plot for Bc with νh = 2mbmc/(mb +mc).

proportional to c
(i)2
F and chl1 (the latter happened to be zero). In other words, we must

add the contribution coming from the potential given in Eq. (4.65). This generates a new
contribution to the soft RGE:

νs
d

dνs
(dss + CF d̄vs)

∣∣∣∣
soft

= · · ·+ 1

4
πC2

FCAα
3

(
m2

m1

c
(1) 2
F +

m1

m2

c
(2) 2
F

)
, (4.71)
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where the dots stand for the already computed soft contribution. Its solution reads

δD̃
(2) NLL
d,new =

1

πCF
(dss + CF d̄vs) = −πCACF (m2

1 +m2
2)(1− z−2(CA−β0))α2(νh)

4m1m2(CA − β0)
. (4.72)

We show the size of this new contribution in Fig. 4.5. The soft running will change to
δD̃

(2) NLL
d,s → δD̃

(2) NLL
d,s + δD̃

(2) NLL
d,new .

Let us note that the c2
k terms can also mix with the α2/m3 potentials through field

redefinitions. This contribution could be different for other matching schemes (see the
discussion in Sec. 4.7).

4.5.2 Ultrasoft running

To obtain the complete potential RGE, we also need an extra potential divergence that
is generated by ultrasoft divergences. This term was already computed in Ref. [14] and
applied to the spin-dependent case. Here, we give the full term, which contributes to both,
the spin-dependent and spin-independent terms. It is generated by the following diagram

c
(i)
F

mi

c
(j)
F

mj
︸ ︷︷ ︸

1/(E − V (0)
o − p2/(2mr))

which produces the following ultrasoft RGE

νus
dVS2,1/r3

dνus
=

4CF
3

[
2S1 · S2c

(1)
F (νus)c

(2)
F (νus)

m1m2

− 3

4

(
c

(1)2
F (νus)

m2
1

+
c

(2)2
F (νus)

m2
2

)]

×
(

(Vo − Vs)3 +

(
1

m1

+
1

m2

)
(Vo − Vs)2

2r2

)[
α(νus)

2π

]
, (4.73)

or alternatively (but equivalent at this order)

νus
dVS2,1/r3

dνus
=

4CF
3

[
2S1 · S2c

(1)
F (νus)c

(2)
F (νus)

m1m2

− 3

4

(
c

(1)2
F (νus)

m2
1

+
c

(2)2
F (νus)

m2
2

)]

×Vo(Vo − Vs)2

[
α(νus)

2π

]
. (4.74)

Using that the LL running of cF is independent of the masses (we take the initial matching
condition to be νh for both heavy quarks), its solution reads

VS2,1/r3 =
4CF

3

[
2S1 · S2

m1m2

− 3

4

(
1

m2
1

+
1

m2
2

)]
Vo(Vo − Vs)2D1/r3,S2 , (4.75)
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or

VS2,1/r3 =
4CF

3

[
2S1 · S2

m1m2

− 3

4

(
1

m2
1

+
1

m2
2

)]
DS2,1/r3

×
(

(Vo − Vs)3 +

(
1

m1

+
1

m2

)
(Vo − Vs)2

2r2

)
, (4.76)

where (we use the same notation that in Ref. [14])

DS2,1/r3 =
1

2CA

[(
α(νh)

α(νus)

)2CA/β0

−
(
α(νh)

α(1/r)

)2CA/β0
]
. (4.77)

The potential VS2,1/r3 is singular and will contribute to the potential running of D̃
(2)
d .

When solving the potential RGE we write Eq. (4.77) in terms of z, and in the one-loop
approximation, which can be done trivially.

4.5.3 Potential running

We now have all the necessary preliminary ingredients to obtain the complete potential
RGE. The next step is to compute all potential loops11 that produce UV divergences
that get absorbed in D̃

(2)
d and are at most of O(α3). Since the delta-like potential is of

O(1/m2), we must construct potential loop diagrams of O(αn/m2) with n ≤ 3, describing
the interaction between the two heavy quarks in the bound state through several potentials.
The first nonvanishing contribution to the potential running is indeed of O(α3/m2). To
construct such potential loop diagrams, we must consider the power of α and m of each
potential and take into account that each propagator adds an extra power of the mass in
the numerator. We summarize all kind of diagrams that contribute to the NLL potential
running of D̃

(2)
d in Figs. [4.6-4.9], where VC is the tree level, O(α), Coulomb potential,

Vαr/ms is the O(αr/ms) potential and V1/m3 corresponds to the first relativistic correction
to the kinetic energy, and it is proportional to c4. The UV divergences arising in such
diagrams must be absorbed in the 1/m2 potentials. However, after the computation, we
observe that all divergences are only absorbed by the delta-like potential. It is important to
mention that the iteration of two or more spin-dependent potentials can give a contribution
to D̃

(2)
d , associated to a spin-independent potential.

It is interesting to discuss in more detail which of the novel α2/m3 potentials computed
in Sec. 4.4.2 and Sec. 4.4.4 (we remind that here we use the potentials after using the
free equations of motion, i.e. the expressions in Sec. 4.4.4 for the energy-dependent
potentials) contribute to the running of D̃

(2)
d . The potentials in Eqs. (4.43-4.44) do not

contribute to the running of D̃
(2)
d : Eq. (4.43) does not because it is proportional to a

total derivative, whereas Eq. (4.44) does not because of the following argument: the only
possible potential loop that can be constructed with an O(α2/m3) potential is the iteration
of it with a Coulomb potential. As a consequence, the α2/m3 potential is always applied
to an external momentum. When the high loop momentum limit is taken in the integral

11A detailed example of the computation of a potential loop is given in Sec. E.2.
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Figure 4.6: Divergent diagrams with one potential loop that contribute to the running of D̃
(2)
d

at O(α3).

Figure 4.7: Divergent diagrams with two potential loops that contribute to the running of D̃
(2)
d

at O(α3).

in order to find the UV pole, all these external momenta vanish and all the terms become
proportional to |k|1+2ε. After doing so, and summing all the terms, the overall coefficient is
zero, explaining the fact that they do not contribute. This argument also applies to Ṽ (e,1)

and Ṽ (f,i) (with i = 1 to 6). Contrarily, Ṽ (e,2) and Ṽ (f,7/8/9) do contribute to the running.
Note that Ṽ (f,8) and Ṽ (f,9) were originally dependent on the energy.

Diagrams with V1/m3 in the extremes of a potential loop, i.e. acting over an external
momentum, have not been drawn because they do not produce UV divergences. Similarly,
diagrams with V1/m5 do not produce UV divergences. Then, one can easily convince oneself
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Figure 4.8: Divergent diagrams with three potential loops that contribute to the running of

D̃
(2)
d at O(α3).

Figure 4.9: Divergent diagrams with four potential loops that contribute to the running of D̃
(2)
d

at O(α3).

that there are no diagrams with five or more potential loops contributing to the O(α3)
anomalous dimension of D̃d. The above discussion exhausts all possible contributions.
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The potential RGE, reads
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. (4.78)

The first five lines are generated by potential loops with the α2/m and α/m2 potentials, and
the p4/m3 correction to the kinetic energy (besides the iteration of the Coulomb potential,
accounted for by αV ). The sixth line is the term generated by the potential computed
in Sec. 4.5.2. The last six lines are generated by potential loops with the α2/m3 and
α/m4 potentials (besides the iteration of the Coulomb potential, accounted for again by
αV ). The number of potential loops involved in each term is accounted by mr, since the
heavy quarkonium propagator is the only source of explicit powers of mr and the number
of propagators is equal to the number of potential loops. The Wilson coefficients on the
right hand side must be understood as having an accuracy such that D̃

(2) NLL
d,p is NLL. Note

that, for simplicity, we have already used c
(i)
k = 1 [45] in the heavy quarkonium propagator.
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In this way we can write it in terms of the reduced mass. If we want to recover all the
ck factors we just must replace mr → m1m2/(c

(1)
k m2 + c

(2)
k m1). A part of this equation

was already computed in Ref. [67]. The QED limit of several of these terms can also be
checked with the computations done in Ref. [64].

If one is interested in writing the counterterm it is enough to know that it scales as ν4ε.
Then, since δD̃

(2) NLL
d,pB = δD̃

(2) NLL
d,pR + δpD̃

(2) NLL
d,p , the anomalous dimension, which we show

in Eq. (4.78) is given by

ν
d

dν
δD̃

(2) NLL
d,pR = −ν d

dν
δpD̃

(2) NLL
d,p ≡ γ

δD̃
(2) NLL
d,p

, (4.79)

and the counterterm by

δpD̃
(2) NLL
d,p = −1

4
γ
δD̃

(2) NLL
d,p

1

ε
ν4ε . (4.80)

It is interesting to see that there is a matching scheme dependence of the individual
α2/m3 and α/m4 potentials that cancels out in the sum. In Sec. 4.7 we perform a detailed
proof of this statement. In the above expression the coefficients cA2 , cD, cM and cX1

appear. Note that the last two coefficients are dependent on cD due to reparametrization
invariance, so they are gauge-dependent quantities. From Ch. 2 we know that cA2 is
also gauge dependent. Such gauge dependence should vanish in the final result, since the
Wilson coefficient D̃

(2)
d is directly related with the S-wave heavy quarkonium spectrum,

and indeed, it does. This is actually a strong check of the computation. In Eq. (4.78)
we can approximate αV = α since everything is needed with LL accuracy. Then we can
show that everything can be written in terms of c̄A2 , which is gauge independent (it is an
observable in the low energy limit of the Compton scattering; see the discussion in Sec.
2.4 or in Ref. [35]), and the explicit dependence on cD, cM , cX1 and cA2 disappears12. The

12More precisely, everything can be written in terms of c̄A2
and a new physical quantity c̄X1 ≡ 64cX1 −

cA2
= 5/2− c̄A2

. The expression of c̄X1 in terms of c̄A2
have been obtained using relations between Wilson

coefficients imposed by reparametrization invariance, in particular, the relation 2cFG
M = cFG

D − cF , which we
found to be not satisfied in the Coulomb gauge. However, since c̄X1 is gauge-independent, it can be obtained
in the Feynman gauge using 2cFG

M = cFG
D −cF , which is satisfied in that gauge. The fact that 2cM = cD−cF

is not satisfied in the Coulomb gauge implies that the relation 32cX1 = 5/4− cF + cD is neither satisfied
in that gauge. Indeed, we find that the true gauge independent relation that reparametrization invariance
should obtain is 32cX1 = 5/4− cF + cD + chl1 − 16dhl1 . Since in the Feynman gauge chlFG

1 − 16dhlFG
1 = 0,

then 32cFG
X1 = 5/4− cF + cFG

D is satisfied. A proof of this statement by explicit calculation would reinforce
our argument. However such a proof is left for future research.
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resulting expression reads
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, (4.81)

where we have used Eq. (A.23) in order to write the equation above in a explicitly gauge-

independent way. Note that, for simplicity, we have used c
(i)
k = 1 [45].

From this result one may think that cA3 and cA4 contribute to the Abelian case. Never-
theless, the LO matching condition is zero for these Wilson coefficients, and all the running
vanishes in the Abelian limit. Therefore, there is no contradiction with the pure QED case.

In order to solve Eq. (4.81), we need to introduce the D’s, the Wilson coefficients of
the potentials. The necessary expressions can be found in Sec. 4.3. Note that in those
expressions we have already correlated the ultrasoft factorization scale νus with ν and νh
using νus = ν2/νh. We also do so in Eq. (4.77), where we also set 1/r = ν, consistent
with the precision of our computation. This correlation of scales was first introduced and
motivated in Ref. [68]. We also write the RGE in terms of z. Schematically, if we write
Eq. (4.81) as

ν
d

dν
δD̃

(2) NLL
d,p = F (α(ν)) , (4.82)
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Figure 4.10: Plot of δD̃
(2)NLL
d,p for different values of nf (0,3,4) and in the single log (SL)

approximation (in this case only with nf = 3). Upper panel: Plot for bottomonium with
νh = mb. Middle panel: Plot for charmonium with νh = mc. Lower panel: Plot for Bc with
νh = 2mbmc/(mb +mc).

then, in the one-loop running coupling approximation, and in terms of a derivative with
respect to α, it can be written as

d

dα
δD̃

(2) NLL
d,p = − 2π

β0α2
F (α) , (4.83)

103



and finally, in terms of z as

d

dz
δD̃

(2) NLL
d,p = − 2π

α(νh)

F (z)

z1+β0
. (4.84)

Which is the equation we solve. For nf = 3 or 4 it is not possible to get an analytic solution
of the RGE, more specifically, for the coefficients multiplying the different z functions. Note
that this comes back to the fact that the polarizability Wilson coefficients cA1 , cA2 , cA3

and cA4 cannot be computed analytically. On top of that the resulting expressions are too
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long. Therefore, we only explicitly show the analytic result for nf = 0. It reads
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Finally, in Fig. 4.10, we give the numerical evaluation δD̃
(2) NLL
d,p for different values of

nf . The contribution is sizable, and definitely more important than the soft and ultrasoft
running.
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4.5.4 Potential running, spin-dependent delta potential

Even though it is not relevant for this thesis, we profit to present the potential RGE of
D̃

(2)

S2 in the basis we use in the present work, which is different from the basis used in Ref.
[14]. The final solution is nevertheless the same:

dD̃
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d ln ν
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This equation has slightly changed with respect to Eq. (36) in Ref. [14] because of the

change in the basis of potentials13. In particular, the term proportional to D̃
(2)

S2 changes to

compensate for the fact that D̃
(2)
d is also different, so that the result is the same.

4.6 N3LL heavy quarkonium mass

For the organization of the computation and the presentation of the results we closely
follow the notation of Ref. [6]. In particular, we split the total RG improved potential in
the following way:

V NiLL
s (νh, ν) = V NiLO

s (ν) + δV NiLL
s (νh, ν) , (4.89)

where V NiLO
s (ν) ≡ V NiLL

s (νh = ν, ν). We then split the total energy into the N3LO result
and the new contribution associated to the resummation of logarithms. The spectrum at
N3LO was obtained in Ref. [69] for the ground state, in Refs. [70, 71] for S-wave states,

13The change in the basis of potentials implies the following relations between the Wilson coefficients in
the two basis

D̃
′(2)
S2 = D̃

(2)
S2 , (4.87)

D̃
′(2)
d = D̃

(2)
d − 2D̃

(2)
S2 , (4.88)

where the Wilson coefficients with the primes refer to the basis of potentials given in Ref. [14].
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and in Refs. [72, 73] for general quantum numbers but for the equal mass case. The result
for the unequal mass case was obtained in Ref. [11].

From the RG improved potential one obtains the NiLL shift to the energy levels

ENiLL(νh, ν) = ENiLO(ν) + δERG(νh, ν)
∣∣∣
NiLL

, (4.90)

where the explicit expression for ENiLO(ν) can be found in Ref. [11], and in a different spin
basis in the Appendix B of Ref. [6].

The LO and NLO energy levels are unaffected by the RG improvement, i.e.

δERG

∣∣∣
LL

= δERG

∣∣∣
NLL

= 0. (4.91)

We now determine the variations with respect to the N2LO and N3LO results. We are
here interested in the corrections associated to the resummation of logarithms. In order to
obtain the spectrum at N2LL and N3LL we need to add the following energy shift to the
N2LO and N3LO spectrum:

δERG

∣∣∣
N2LL

= 〈nl|δV N2LL
s (νh, ν)|nl〉 , (4.92)

which was computed in Ref. [3], and

δEnl,RG

∣∣∣
N3LL

= 〈nl|δV N3LL
s (νh, ν)|nl〉+ 2〈nl|V1

1

(EC
n − h)′

δV N2LL
s (νh, ν)|nl〉

+ [δEUS(ν, νus)− δEUS(ν, ν)] (4.93)

Note that 〈nl|δV N3LL
s (νh, ν)|nl〉 includes 〈nl|δV N2LL

s (νh, ν)|nl〉.
δEnl,RG

∣∣∣
N3LL

was computed for l 6= 0 in Ref. [6], and for l = 0, s = 1 in Refs. [12, 13].

To have the complete result for S-wave states, one needs to compute and add the new term
for l = 0

δEnew
n0,RG

∣∣∣
N3LL

= 〈n0|[δV N3LL
r − δV N2LL

r ](νh, ν)|n0〉+ 2〈n0|V1
1

(EC
n − h)′

δV N2LL
r (νh, ν)|n0〉 ,

(4.94)
where

V1 = −CFα
r

α

4π
(2β0 ln(νreγE) + a1) , (4.95)

and δV NiLL
r is the delta-related potential contribution to δV NiLL

s . The new term generated

109



by D̃
(2)
d reads
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∣∣∣
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 , (4.96)

where δD̃
(2) NLL
d is defined in Eq. (4.39). The first three lines are generated by the term

proportional to δ(3)(r). The last two lines are the contribution to the S-wave (l = 0) energy
from the last term of Eq. (4.24). The contribution to the P -wave energy, proportional
to the 1 − δl0 term, is already included in Ref. [6]. Therefore, we do not include it in
the expression above. To this contribution we have explicitly subtracted the fixed order
contribution already included in the N3LO result.

By adding δEnew
n0,RG

∣∣∣
N3LL

to the results computed in these references14 one obtains the

complete result.

4.7 Matching scheme independence

In this section, we study the matching scheme dependence of Eq. (4.81). On the one
hand, the potentials obtained in Sec. 4.4 are computed in the Coulomb gauge. On the
other hand, the potential RGE obtained in Sec. 4.5 is generated by potential loops, which
are independent of the gauge/matching scheme. The matching scheme dependence of

Eq. (4.81) is generated implicitly by the Wilson coefficients of the potentials, such as D̃
(2)
d

or D̃(1), and also explicitly, since we put the explicit expressions for the 1/m3 and 1/m4

potentials obtained in the Coulomb gauge. This last point makes that Eq. (4.81) can only
be used in the Coulomb gauge matching scheme, though with not much effort it could be
written in terms of general structures of the 1/m3 and 1/m4 potentials that would make
it also useful for a computation in a general matching scheme. Nevertheless, since we do
not know the 1/m3 and 1/m4 potentials in other matching schemes, we refrain from doing
so in this thesis. Still, it is worth studying how the differences between different matching
schemes show up in the terms where all the matching scheme dependence is encoded in
the D’s (the first four lines in Eq. (4.81)).

14Note though that one should change 2 = S(S + 1) by S(S + 1) − 3/2 in the result obtained in Refs.
[12, 13] to account for the change of operator basis to the one we use here. One should also change from
the on-shell to the Coulomb basis of potentials in Ref. [6] (this is very easy to do, as the ultrasoft running
is not affected by this transformation).
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At O(mα4) the Coulomb and Feynman matching schemes produce the same potential
but the on-shell scheme does not. At this order, the relation between the Wilson coefficients
of the delta-like and the 1/m potentials in the off-shell Coulomb gauge (equal to the
Feynman gauge at this order) and the on-shell schemes is given by

D̃
(2)
d,CG = D̃

(2)
d,ON + α(ν) , (4.97)

D̃
(1)
CG = D̃

(1)
ON + α2(ν)

2CF
CA

m2
r

m1m2

. (4.98)

At the order we are working in, the Eqs. (4.97,4.98) produce the following difference

between the potential RGEs of D̃
(2)
d in the two matching schemes (for the first four lines

in Eq. (4.81)):

ν
d

dν
(D̃

(2)
d,CG − D̃

(2)
d,ON) = C2

F

m2
r

m1m2

(
−4α2D̃

(2)
1 + α3 − αCA

CF

m1m2

m2
r

D̃
(1)
CG

)
, (4.99)

which does not vanish. This difference can be understood through field redefinitions. After
applying a field redefinition to move from the off-shell Coulomb scheme to the on-shell
scheme, new potentials arise in the latter, which produce a contribution to the potential
RGE such that it cancels the difference given by Eq. (4.99). The field redefinition that
moves from the off-shell Coulomb to the on-shell schemes was already discussed in Refs.
[11, 74]. In the second reference, the discussion was focused on effects to the spectrum
up to O(mα5). We now need to see the logarithmically enhanced differences of O(mα6).
They can be traced back by using the following Hamiltonian in the Coulomb (Feynman)
gauge:

hCG = h(0) + h
(2)
CG + h

(4)
CG , (4.100)

where h(0) ∼ mv2 is the leading order Hamiltonian:

h(0) =
p2

2mr

+ V (0)(r) , (4.101)

the term h
(2)
CG ∼ mv4 is the first relativistic correction to the Hamiltonian, with the explicit

potentials:

h
(2)
CG = −c4

p4

8m3
1

− c4
p4

8m3
2

− CFCAD
(1)

4mrr2
(4.102)
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8πCFD
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3m1m2
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3CF
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L · (D(2)
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S1 +D

(2)
LS2

S2) +
CFD

(2)
S12

4m1m2

1

r3
S12(r̂) ,

and h
(4)
CG ∼ mv6 is the next relativistic correction to the Hamiltonian. Important to

the present discussion are only those potentials which produce logarithmically enhanced
contributions to the spin-average S-wave spectrum, which were computed in momentum
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space in Sec. 4.4. For this reason, we do not display them explicitly. The Hamiltonian hCG

correctly reproduces the O(mα6) spectrum once the Wilson coefficients of the potentials
are known with the necessary precision. For the purpose of the comparison, we can take
the O(α) static potential, so

V (0) = −CF
αVs
r1+2ε

' −CF
Γ(1/2 + ε)

π1/2+ε

α

r1+2ε
. (4.103)

We now consider the field redefinition that transforms hCG into the on-shell Hamiltonian
hON:

U = exp

(
− i

mr

{W(r),p}
)
. (4.104)

W can be determined from the equation:

V
(1)

ON − V
(1)

CG =
2

mr

W · (∇V (0)) . (4.105)

Since the only possible tensor structure of W is W = W (r2)ri, the above equation can be
written as

V
(1)

ON − V
(1)

CG =
2

mr

W (r2)ri · (∇iV (0)) . (4.106)

We then obtain

Wi =
π

2g2
B

CA(D
(1)
CG −D

(1)
ON)

ri

r1+2ε
, (4.107)

and

hON = U †hCGU = hCG + δh = h(0) + h
(2)
CG + δh(2) + h

(4)
CG + δh(4) = h(0) + h

(2)
ON + h

(4)
ON + · · · .

(4.108)
Both Hamiltonians, hCG and hON, must produce the same spectrum because it is an ob-
servable and its value can not depend on how the computation is carried out, in particular,
on the matching scheme. Therefore, δh cannot produce energy shifts, and any change in
the potential RGE when changing from one scheme to another through transformations
like Eqs. (4.97,4.98) has to be compensated among different terms in such a way that the
potential RGE has exactly the same form written in one scheme or another, i.e. that it
is scheme independent. In other words, the change in the spectrum (the potential RGE)

caused by δh(2) must be compensated by the change caused by δh(4). Note that h
(4)
CG does

not contribute to δh, so this piece of the Hamiltonian is not relevant to compute the dif-
ferences between both Hamiltonians to this order. The piece h

(2)
ON = h

(2)
CG + δh(2) produces

the differences reported in Eq. (4.99). Such differences should be eliminated by the piece

h
(4)
ON = h

(4)
CG + δh(4) and indeed, they are. In momentum space δh̃(4) reads
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+ · · · . (4.109)
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Note that the term proportional to |k|1+2ε in the first line gives a contribution to the po-
tential RGE through potential loops. It is equivalent to generating a new α2/m3 potential.
The other two terms in the first line do not contribute to the potential RGE. Looking at the
second line, it is also interesting to see that there is a kind of soft contribution (divergent
α3/m2 potential). The second term in the second line can also be interpreted as a pure-soft
contribution. This brings the interesting observation that even if the potential RGE can
be written in a matching-scheme-independent way, the implicit scheme dependence of the
potentials allows for a mixing with the soft computation (at least in the on-shell scheme).
Finally, for the dots in the third line we refer to extra contributions to δh̃(4), generated by
the field redefinitions, which do not contribute to the running.
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Conclusions

The research carried out in this dissertation has focused on the use EFTs of QCD to
perform high precision calculations of heavy quark and heavy quarkonium properties. The
major aim has been to make a step towards the complete determination of the heavy
quarkonium spectrum with N3LL accuracy. The obtained results will help us to improve our
understanding of the strong interaction, necessary to successfully describe the experiments
presently performed in large accelerator facilities.

In Ch. 2 we have obtained the LL running of the Wilson coefficients associated to the
1/m3 HQET Lagrangian operators, in the Coulomb gauge, including nf massless spectator
quarks. The LL running is also obtained for combinations of Wilson coefficients that
are gauge-independent. These combinations are determined by computing the tree level
Compton scattering at O(1/m3) plus inspecting the RGEs. We find that the RGEs of
physical quantities depend only on gauge-independent quantities, as expected. This is a
very strong check of the computation. For the gauge-independent combinations, the RGEs
have been solved. The solution is presented for the particular case of nf = 4, since the
anomalous dimension matrix can not be diagonalized for a general nf . For this reason,
in the obtained expressions, the coefficients that multiply the different functions of z are
numerical. The Wilson coefficients evaluated at nf = 3 are also used throughout this thesis
despite of they are not presented explicitly. The reason is that they can be computed easily
once the RGEs are known. We also have computed the case of nf = 0 for which we obtain
analytic results. The Wilson coefficients have been computed with SL approximation, too.
These Wilson coefficients include the heavy quark chromopolarizabilities induced by the
strong interactions.

We have performed a numerical analysis of these results. Concerning the SI heavy-gluon
operators, we observe that the running produces a very large effect for the coefficients cA1

and cA2 . For cA3 and cA4 the running is smaller but certainly sizeable. For the combinations
2cA1 +c̄A2 and 2cA3 +cA4 , that appear in physical observables such as the heavy quarkonium
spectrum or the Compton scattering, the running is more moderate but still quite large. For
the spin-dependent heavy-gluon operators, we observe that the running produces a large
effect except for the combination c̄B1 + cB2 , which appears in the Compton scattering,
and whose running is smaller. In general, we conclude that the running produces a very
important effect over the Wilson coefficients, specially over the spin-independent ones.
The resummation of large logarithms introduces relevant corrections with respect to the
SL results, and it is particularly important is those cases where the behaviour is not
saturated by the SL expression. Spectator quark effects are observed to be numerically
subleading with respect to the ones coming from the heavy-gluon sector. However, they
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produce corrections that have to be included formally.
We observe that the relations between Wilson coefficients imposed by reparametriza-

tion invariance are satisfied when they involve gauge independent combinations of Wilson
coefficients. We observe that the relations 2cM = cD−cF [28] and dhl1 = chl1 /16 [44], also im-
posed by reparametrization invariance, are not satisfied in the Coulomb gauge. Assuming
that d̄hl1 = cM + 8dhl1 is gauge independent and that in the Feynman gauge 2cM = cD − cF
is satisfied, we find that dhl1 = chl1 /16 also must be satisfied in that gauge. Therefore, our
results do not contradict reparametrization invariance as long as we work in the Feynman
gauge (and possibly in any covariant gauge). Moreover, we propose a new gauge inde-
pendent relation, 2cM + 16dhl1 = cD + chl1 − cF , which we find to be satisfied in both, the
Coulomb and the Feynman gauge.

We have compared our results with the previous work done in Refs. [33, 34], where the
computation of the LL running of the 1/m3 heavy-gluon operators of the HQET Lagrangian
was considered in the Feynman gauge. For the gauge invariant combinations we have
computed, the anomalous dimension matrix given in Ref. [33] yields different RGEs that
those we found in Sec. 2.5.2, and also yields different SL expressions compared to those
explicitly given in these references. Nevertheless, it is remarkable that we find agreement
with the explicit SL results given in Refs. [33, 34]. If we trust the SL results explicitly given
there, we find a clear indication that the quantities we computed are gauge independent.
Likewise, they are useful to test which Wilson coefficients are gauge dependent. The
inclusion of spectator quarks was considered in Ref. [29] in the Feynman gauge, but only
SL results were presented. For the gauge invariant combinations we have computed, the
SL expressions presented in this reference are in agreement with ours, except for dhl2 , dhl3 ,
dhl4 and d̄hl10.

The Wilson coefficients we find correspond to a set of operators written in a more
standard basis, set by Ref. [28], than the one used previously by Refs. [29, 33, 34], and
they are connected more closely to observables, as the quantities we computed are gauge
independent.

Among the Wilson coefficients we have computed, the ones associated to SI operators
are necessary building blocks for the determination of the pNRQCD Lagrangian with N3LL
accuracy, which in turn is the necessary precision to completely determine the production
and annihilation of heavy quarkonium near threshold with N2LL accuracy and the heavy
quarkonium spectrum with N3LL precision. In the latter case, they enter into the N3LL S-
wave spin average contribution to the spectrum, which we partially compute in this thesis.
The ones associated to spin-dependent operators start to be relevant at higher orders. In
particular, they are necessary ingredients to obtain the pNRQCD Lagrangian with N4LO
and N4LL accuracy, which is the necessary precision to obtain the N4LO and the N4LL
heavy quarkonium spectrum. They also have applications in QED bound states like in
muonic hydrogen.

In order to compute the N3LL S-wave spin average contribution to the spectrum sev-
eral pieces are needed. All of them appear in the same place: the NLL running of the
spin-independent delta-like potential. These pieces are the soft, potential and ultrasoft
contributions to its running. This computation has been addressed in Ch. 4.

Concerning the soft running, we have computed the bare and renormalized O(α3/m2)
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spin-independent delta-like potential proportional to c
(1) 2
F , c

(2) 2
F , c̄

(1)hl
1 and c̄

(2)hl
1 , and ob-

tained and solved the soft RGE. The missing terms to obtain the full result are the NLL
running of c̄hl1 , whose associated missing contribution is of O(Tfnfmα

6 lnα), which is ex-

pected to be quite small, and the piece of the soft running proportional to c
(1) 2
k , c

(2) 2
k ,

c
(1)
k c

(2)
k , dss and dvs. The magnitude of this contribution is estimated to be smaller com-

pared to the potential running, since the soft running is π2 suppressed with respect to
it. It is also expected to be smaller than the complete running of the heavy quarkonium
potential. Even though the contribution from the missing terms is expected to be small, a
detailed phenomenological analysis is postponed to future publications.

Concerning the potential running, we needed the HQET Wilson coefficients computed
in Ch. 2, since they enter into the potentials of pNRQCD. Of all of them, we needed
to compute some which were previously unknown: the spin-independent O(α2/m3) and
O(α/m4) potentials. The computation have been carried out in the Coulomb gauge. We
have obtained the potential RGE of the spin-independent delta-like potential with NLL
accuracy, which is the first nonzero contribution to the potential running. An extra con-
tribution to the potential running with ultrasoft origin has also been included. We have
solved the RGE and obtained, after including the already known ultrasoft running [59],
the complete potential and ultrasoft running of the spin-independent delta-like potential
with NLL accuracy.

We have quantified the mixing between the α3/m2 and the α2/m3 potentials propor-
tional to c2

F , which takes place when using the full EOMs in energy dependent potentials.
More precisely, we have observed that using the full EOMs in energy dependent α2/m2

potentials produces a finite α2/m3 potential (coming from the free EOMs) and a divergent
α3/m2 potential (coming from the Coulomb term in the full EOMs). We have not quanti-
fied the corresponding mixing proportional to c2

k because the soft contribution proportional
to c2

k is missing anyway.
The solution of the RGE is analytic in general. However, for the case of nf = 3, 4,

the coefficients multiplying the different functions of z in the contribution coming from
the potential running are numerical. That is a direct consequence of the fact that, for
nf = 3, 4, we could not find an analytical solution for the coefficients multiplying the
different functions of z in the chromopolarizabilities.

Combining the results we have found in the present dissertation (plus the ones that are
missing) with the results given in Refs. [11, 12, 13] we obtain the S-wave (spin average and
hyperfine splitting) heavy quarkonium mass with N3LL accuracy. After incorporating the
results of Ref. [6], the complete N3LL heavy quarkonium spectrum would be obtained.

The scheme independence of the potential RGE have been studied. By using field
redefinitions we moved from the Coulomb gauge to the on-shell Hamiltonians and we
computed the difference between the potential RGE of the spin-independent delta-like
potential in both schemes.

Finally, we remark that significant parts of the computations we have carried out in
this dissertation are necessary building blocks for a future evaluation of the N4LO heavy
quarkonium spectrum.
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Future prospects

In the present dissertation, the NLL running of the Wilson coefficient associated to the
spin-independent delta-like potential have been completely determined up to two missing
soft contributions. The first one, which is expected to be more important, comes from the
UV divergent part of theO(α3/m2) potential proportional to c

(1) 2
k , c

(2) 2
k , c

(1)
k c

(2)
k , dss and dvs,

which is determined by matching NRQCD with pNRQCD. In principle, this computation
is feasible for the contributions proportional to dss and dvs. The second one, which is
expected to be less important, comes from the need to have the NLL running of the HQET
Wilson coefficient c̄hl1 , which enters into the LL soft running of the spin-independent delta-
like potential. On the one hand, and once we will have determined the NLL soft RGE
proportional to dss and dvs, the c2

k missing term could be extracted from the two-loop
matching of the NRQCD four fermion operators taking advantage of the fact that all the
other terms in the soft RGE are known. Such a computation is starting to be considered.
On the other hand, the NLL running of c̄hl1 is not that important, since it is expected to be
quite small because it is of O(Tfnfmα

6 lnα), and its contribution could even be negligible
in practice. However, it has to be computed formally. In order to determine it, we need
to compute in the framework of HQET to O(1/m2), the two-loop correction to the one
gluon vertex, which allows to determine cD, and the scattering of a heavy quark with a
massless quark, which allows to determine chl1 . Then, the coefficient we need is given by
c̄hl1 = cD + chl1 . In summary, the determination of such contributions is mandatory in order
to perform a complete phenomenological analysis of the N3LL S-wave spin-average heavy
quarkonium spectrum. Once it is determined, the full spectrum will be obtained to this
order, since the other contributions have already been computed in the past.

The complete determination of the NLL running of the spin-independent delta-like
potential is necessary to obtain the Wilson coefficient of the electromagnetic current with
N2LL precision. That is indeed what is needed to achieve N2LL precision for non-relativistic
sum rules and the t-t̄ production near threshold. These computations are also of vital im-
portance for the most accurate determination of some of the Standard Model parameters,
like the masses of the heavy quarks: top, bottom and charm, as well as the strong coupling
constant [10]. Moreover, several of these results can be easily applied to atomic physics
opening the possibility of accurately determining lepton masses, the electromagnetic cou-
pling constant, as well as low energy hadronic constants.

Another interesting computation would be the determination of the O(α2/m3) and the
O(α/m4) potentials in the on-shell matching scheme, define a basis of potentials, and see
how the pNRQCD Lagrangian in the on-shell and in the Coulomb gauge matching schemes
relate with each other via field redefinitions. This would allow us to see how the Wilson
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coefficients of the O(α2/m3) and O(α/m4) potentials transform.
Once the full N3LL heavy quarkonium spectrum will have been obtained, the next goal

will be to obtain N4LO and the N4LL heavy quarkonium spectrum, in other words, the
spectrum at O(mα6) and at O(mα6 +mα7 lnα+ . . .). For instance, the expectation value
of the α2/m3 and the α/m4 potentials contribute to these orders, so we have already got
some results towards this computation.

It also would be interesting to compute the LL running of the 1/m3 HQET Lagrangian
operators in the Feynman gauge in order to strengthen the confidence in the results we have
obtained, in particular, in order to check which Wilson coefficients are gauge dependent,
and which Wilson coefficients and combinations of them are gauge independent. This also
would help to understand why the relations 2cM = cD − cF and dhl1 = chl1 /16 are gauge
dependent. A rigorous prove that the truly gauge independent combination is 2cM+16dhl1 =
cD + chl1 − cF is lacking and should be obtained.

During this thesis we wrote a software to assist the computation of the LL running of
the Wilson coefficients associated to the 1/m3 HQET Lagrangian operators. It would be
interesting to improve that software in order to be able to compute the LL running of the
Wilson coefficients of the 1/m4 operators of the HQET Lagrangian, which was recently
obtained in Ref. [53], since some of them are important to compute the N4LL heavy
quarkonium spectrum (see Eq. (4.41)).
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Appendix A

Conventions and Identities

A.1 Fourier Tranforms

In order to compute the Feynman rules associated to the different Lagrangian operators we
deal with in this thesis, it is useful to fix the convention we use for the Fourier transform
of N variables in Minkowski space

f(x;x1, . . . , xN) =

∫
d4k1

(2π)4
. . .

d4kN
(2π)4

e−ik1(x−x1) . . . e−ikN (x−xN )f̃(k1, . . . , kN) , (A.1)

f̃(k1, . . . , kN) =

∫
d4x1 . . . d

4xN e
ik1(x−x1) . . . eikN (x−xN )f(x;x1, . . . , xN) . (A.2)

For the d-dimensional potentials, the convention for the Fourier transform reads

V (r) =

∫
ddk

(2π)d
e−ik·rṼ (k) , (A.3)

Ṽ (k) =

∫
ddreik·rV (r) . (A.4)

The following d-dimensional Fourier transform which can be found in Ref. [8] proves to be
very useful in the computation carried out in Sec. 4.7

Fn(r) =

∫
ddk

(2π)d
e−ik·r

|k|n
=

2−nπ−d/2

|r|d−n
Γ(d/2− n/2)

Γ(n/2)
. (A.5)

Sometimes we will use the notation k ≡ |k| and r ≡ |r|, indistinctly.

A.2 Quantum Mechanics Notation

Let us fix some Quantum Mechanics conventions and notation, as well as, to summarize
some useful identities. The four-momentum operator is given by
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pµ = i∂µ . (A.6)

The identity operator expressed in terms of position and momentum eigenstates in d-
dimensional space is given by

I =

∫
ddp

(2π)d
|p〉〈p| , (A.7)

I =

∫
ddr|r〉〈r| . (A.8)

Other useful identities are

〈r|p〉 = eip·r , (A.9)

〈p|r〉 = e−ip·r , (A.10)

〈r|r′〉 = δ(d)(r− r′) , (A.11)

〈p|p′〉 = (2π)dδ(d)(p− p′) . (A.12)

It is useful to give the Dirac delta operator expressed as a projector using the position
eigenstates

δ(d)(r) = |r′ = 0〉〈r′ = 0| . (A.13)

Finally, the following relation is used to change the spin basis in which the results are
presented

S1 ⊗ S2 =
1

2
S2 − 3

4
I1 ⊗ I2 , (A.14)

where S1 is the spin operator of the heavy fermion, S2 is the spin operator of the heavy
antifermion and S is the total spin operator of the heavy fermion-antifermion system.

A.3 Quantum Chromodynamics Notation

Let us fix some definitions and conventions in QCD. The covariant derivative is given by

Dµ = ∂µ + igAaµT
a . (A.15)

The field strenght tensor is defined by

Ga
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν . (A.16)

In terms of the four-potential Aµa = (A0 a,Aa), the chromoelectric and chromomagnetic
fields are given by
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Ei = Ei aT a = Gi0 aT a = −∂0A
i aT a − ∂iA0 aT a + igAi bA0 c[T b, T c] , (A.17)

Bi = Bi aT a = −1

2
εijkGjk aT a = εijk∂jA

k aT a − ig

2
εijkAj bAk c[T b, T c] . (A.18)

or, likewise

Ei = −∂0A
i aT a −∇iA0 aT a + igAi bA0 c[T b, T c] , (A.19)

Bi = (∇×Aa)iT a − ig

2
(Ab ×Ac)i[T b, T c] . (A.20)

In QED, the non-Abelian terms do no appear and the generators must be replaced by one
(T a → 1). After doing it, we obtain the electric and magnetic fields expressed in terms of
the four-potential components

Ei = −∂0A
i −∇iA0 , (A.21)

Bi = (∇×A)i . (A.22)

A.4 Mass relations

The following identities are very useful for Sec. 4.5.3 in order to write the potential RGE
in terms of gauge independent combinations of Wilson coefficients, as well as, to make
comparisons with Ref. [64]

mr

(
1

m3
1

+
1

m3
2

)
=

m2
r

m1m2

(
1

m2
1

+
1

m2
2

)
+m2

r

(
1

m4
1

+
1

m4
2

)
, (A.23)

mr

(
1

m3
1

+
1

m3
2

)
=

(
1

m2
1

+
1

m2
2

)
− 1

m1m2

, (A.24)

where m1 is the mass of the heavy fermion, m2 is the mass of the heavy antifermion and
mr = m1m2/(m1 +m2) is the reduced mass of the heavy fermion-antifermion system.

A.5 Feynman parametrization and Feynman integrals

The following standard Feynman integrals in d-dimensional Euclidean space are very useful
[75] ∫

dd`E
(2π)d

1

(`2
E + ∆)n

=
1

(4π)d/2
Γ(n− d/2)

Γ(n)

(
1

∆

)n−d/2
, (A.25)

∫
dd`E
(2π)d

`2
E

(`2
E + ∆)n

=
1

(4π)d/2
d

2

Γ(n− d/2− 1)

Γ(n)

(
1

∆

)n−d/2−1

, (A.26)

∫
dd`E
(2π)d

`4
E

(`2
E + ∆)n

=
1

(4π)d/2
d(d+ 2)

4

Γ(n− d/2− 2)

Γ(n)

(
1

∆

)n−d/2−2

, (A.27)
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∫
dd`E
(2π)d

(`2
E)α

(`2
E + ∆)β

=
1

(4π)d/2
Γ(α + d/2)Γ(β − α− d/2)

Γ(β)Γ(d/2)

(
1

∆

)β−α−d/2
, (A.28)

as well as, the introduction of Feynman parametrization [76]

1

A1A2 . . . An
=

∫ 1

0

dx1

∫ 1

0

dx2 . . .

∫ 1

0

dxn−1

× (n− 1)!xn−2
1 xn−3

2 . . . xn−2

[A1x1 . . . xn−1 + A2x1 . . . xn−2(1− xn−1) + . . .+ An−1x1(1− x2) + An(1− x1))]n
.

(A.29)
The following particular cases appear quite often

1

Aα1A
β
2

=
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

dx
xα−1(1− x)β−1

[A1x+ A2(1− x)]α+β
, (A.30)

1

Aα1A
β
2A

γ
3

=
Γ(α + β + γ)

Γ(α)Γ(β)Γ(γ)

∫ 1

0

dx x

∫ 1

0

dy
(xy)α−1(x(1− y))β−1(1− x)γ−1

[A1xy + A2x(1− y) + A3(1− x)]α+β+γ
. (A.31)
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Appendix B

HQET RG

B.1 HQET Feynman rules

Here we collect the Feynman rules in the Coulomb gauge, coming from the HQET La-
grangian Eqs. (2.19,2.20,2.21), which are necessary for the computation of the LL running
of the Wilson coefficients of the 1/m3 HQET Lagrangian operators. They complement
those that can be found in Ref. [8], which we also include. We also take the occasion to
correct a misprint of Eq. (205) of that reference. The correct Feynman rule is displayed in
Eq. (B.21). The conventions are shown in Figs. B.1,B.2,B.3.

Figure B.1: Conventions for the propagators of the HQET Lagrangian. The double line repre-
sents a heavy quark, the single line a massless quark, and the curly and dashed lines a transverse
and a longitudinal gluon, respectively.

B.1.1 Propagators and Coulomb vertex

Heavy quark propagator:

i

q0 − ck q2

2m
+ c4

q4

8m3 + iηq
δαβδΣΓ (B.1)

Massless quark propagator:

i(/q)AB

q2 + iη
δαβ (B.2)
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Figure B.2: Conventions for the Feynman rules of the HQET Lagrangian. The double line
represents a heavy quark, the single line a massless quark, and the curly and dashed lines a
transverse and a longitudinal gluon, respectively. The subindex m goes from 1 to 11, n goes
from 1 to 4 and hg stands for all subindices of the heavy-gluon Wilson coefficients. Note that,
by four-momentum conservation, k ≡

∑n
i=1 ki = p− p′.

Longitudinal gluon propagator:

iδab

q2
(B.3)

Transverse gluon propagator:
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Figure B.3: Conventions for the Feynman rules of Lg. The curly and dashed lines represent a
transverse and a longitudinal gluon, respectively.

iδab

q2 + iηg

(
δij − qiqj

q2

)
(B.4)

Coulomb vertex:

Va = −ig(T a)αβδΣΓ (B.5)

B.1.2 Gluon self-interaction

V i abc = gfabc(k2 − k3)i (B.6)

V ij abc = gfabcδij(k0
1 − k0

2) (B.7)

V ijk abc = gfabc[δik(k1 − k3)j + δij(k2 − k1)k + δjk(k3 − k2)i] (B.8)

V ijkl abcd = −ig2[fabef cde(δikδjl − δilδjk) + facef bde(δijδkl − δilδjk) + fadef cbe(δikδjl − δijδkl)]
(B.9)

V ijkl abcd = ig2δij(facef bde − fadef cbe) (B.10)
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B.1.3 Light quark-gluon interactions

V = −ig(γ0)AB(T a)αβ (B.11)

V i = ig(γi)AB(T a)αβ (B.12)

B.1.4 Heavy quark-gluon interactions

Proportional to ck

V i ack = ck
ig

2m
(p + p′)i(T a)αβδΣΓ (B.13)

V ij abck
= −ck

ig2

2m
δij{T a, T b}αβδΣΓ (B.14)

Proportional to cF

V i acF = cF
g

2m
(σΣΓ × k)i(T a)αβ (B.15)

V ij abcF
= cF

g2

2m
σk

ΣΓε
ijk[T a, T b]αβ (B.16)

Proportional to cD

VacD = cD
ig

8m2
k2(T a)αβδΣΓ (B.17)

V i abcD
= cD

ig2

4m2
ki2[T a, T b]αβδΣΓ (B.18)

V ij abcD
= cD

ig2

8m2
δij(k0

1 − k0
2)[T a, T b]αβδΣΓ (B.19)

V ij abccD
= cD

ig3

8m2
δij([T a, [T b, T c]]αβ + [T b, [T a, T c]]αβ)δΣΓ (B.20)

Proportional to cS

VacS = cS
g

4m2
σΣΓ · (p ′ × p)(T a)αβ (B.21)

V i acS = −cS
g

8m2
k0(σΣΓ × (p + p ′))i(T a)αβ (B.22)

V i abcS
= cS

g2

8m2
[(σΣΓ × (p + p ′))i[T a, T b]αβ + (σΣΓ × k2)i{T a, T b}αβ] (B.23)
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V ij abcS
= cS

g2

8m2
σk

ΣΓε
kij(k0

2 − k0
1){T a, T b}αβ (B.24)

V ij abccS
= −cS

g3

8m2
σk

ΣΓε
kij({T a, [T b, T c]}αβ − {T b, [T a, T c]}αβ) (B.25)

Proportional to c4

V i ac4 = −c4
ig

8m3
(p2 + p′2)(p + p′)i(T a)αβδΣΓ (B.26)

V ij abc4
= c4

ig2

8m3

(
δij(p2 + p′2){T a, T b}αβ + 4p′ipj(T aT b)αβ + 4pip′j(T bT a)αβ

)
δΣΓ (B.27)

V ijk abcc4
= −c4

ig3

4m3

[
δij
(
(T c{T a, T b})αβp′k + ({T a, T b}T c)αβpk

)
+δjk

(
(T a{T b, T c})αβp′i + ({T b, T c}T a)αβpi

)
(B.28)

+δik
(
(T b{T a, T c})αβp′j + ({T a, T c}T b)αβpj

)]
δΣΓ (B.29)

Proportional to cM

V i acM = −cM
ig

8m3
k2(p + p′)i(T a)αβδΣΓ (B.30)

V ij abcM CG = cM
ig2

8m3

(
δij{T a, T b}αβ(k2

1 + k2
2)− δij[T a, T b]αβ((p + p ′) · (k1 − k2))

)
+4[T a, T b]αβ(pikj1 − ki2p

j)
)
δΣΓ (B.31)

V ijk abccM CG = cM
ig3

8m3

(
[T a, [T b, T c]]αβ(δik(p′ + p)j − δij(p′ + p)k)

+[T b, [T a, T c]]αβ(δjk(p′ + p)i − δij(p′ + p)k)

+[T c, [T a, T b]]αβ(δjk(p′ + p)i − δik(p′ + p)j)

+{T a, [T b, T c]}αβ(2δikkj3 − 2δijkk2 + δjk(k2 − k3)i)

+{T b, [T a, T c]}αβ(2δjkki3 − 2δijkk1 + δik(k1 − k3)j)

+{T c, [T a, T b]}αβ(2δjkki2 − 2δikkj1 + δij(k1 − k2)k)
)
δΣΓ (B.32)
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Proportional to cA1

V ij abcA1
= cA1

ig2

8m3
(δij(k0

1k
0
2 − k1 · k2) + ki2k

j
1){T a, T b}αβδΣΓ (B.33)

V ijk abccA1
= cA1

ig3

8m3

[
(δijkk1 − δikk

j
1){[T b, T c], T a}αβ + (δijkk2 − δjkki2){[T a, T c], T b}αβ

+(δikkj3 − δjkki3){[T a, T b], T c}αβ
]
δΣΓ (B.34)

V i abcA1
= −cA1

ig2

8m3
k0

1k
i
2{T a, T b}αβδΣΓ (B.35)

V ij abccA1
= −cA1

ig3

8m3
δij(k0

1{T a, [T b, T c]}αβ + k0
2{T b, [T a, T c]}αβ)δΣΓ (B.36)

VabcA1
= cA1

ig2

8m3
k1 · k2{T a, T b}αβδΣΓ (B.37)

V i abccA1
= cA1

ig3

8m3
(ki2{T b, [T a, T c]}αβ + ki3{T c, [T a, T b]}αβ)δΣΓ (B.38)

Proportional to cA2

V ij abcA2
= cA2

ig2

16m3
δijk0

1k
0
2{T a, T b}αβδΣΓ (B.39)

V i abcA2
= −cA2

ig2

16m3
k0

1k
i
2{T a, T b}αβδΣΓ (B.40)

V ij abccA2
= −cA2

ig3

16m3
δij(k0

1{T a, [T b, T c]}αβ + k0
2{T b, [T a, T c]}αβ])δΣΓ (B.41)

VabcA2
= cA2

ig2

16m3
k1 · k2{T a, T b}αβδΣΓ (B.42)

V i abccA2
= cA2

ig3

16m3
(ki2{T b, [T a, T c]}αβ + ki3{T c, [T a, T b]}αβ)δΣΓ (B.43)

Proportional to cA3

V ij abcA3
= cA3

ig2

4m3

TF
Nc

(δij(k0
1k

0
2 − k1 · k2) + ki2k

j
1)δabδαβδΣΓ (B.44)

V ijk abccA3
= cA3

g3

4m3

TF
Nc

fabc
[
δik(k1 − k3)j + δjk(k3 − k2)i + δij(k2 − k1)k

]
δαβδΣΓ (B.45)
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V i abcA3
= −cA3

ig2

4m3

TF
Nc

k0
1k

i
2δ
abδαβδΣΓ (B.46)

V ij abccA3
= cA3

g3

4m3

TF
Nc

δijfabc(k0
1 − k0

2)δαβδΣΓ (B.47)

VabcA3
= cA3

ig2

4m3

TF
Nc

k1 · k2δ
abδαβδΣΓ (B.48)

V i abccA3
= −cA3

g3

4m3

TF
Nc

fabc(k3 − k2)iδαβδΣΓ (B.49)

Proportional to cA4

V ij abcA4
= cA4

ig2

8m3

TF
Nc

δijk0
1k

0
2δ
abδαβδΣΓ (B.50)

V i abcA4
= −cA4

ig2

8m3

TF
Nc

k0
1k

i
2δ
abδαβδΣΓ (B.51)

V ij abccA4
= cA4

g3

8m3

TF
Nc

δijfabc(k0
1 − k0

2)δαβδΣΓ (B.52)

VabcA4
= c

(1)
A4

ig2

8m3

TF
Nc

k1 · k2δ
abδαβδΣΓ (B.53)

V i abccA4
= −c(1)

A4

g3

8m3

TF
Nc

fabc(k3 − k2)iδαβδΣΓ (B.54)

Proportional to cW1

V i acW1
= −cW1

g

8m3
(p2 + p′2)(σΣΓ × k)i(T a)αβ (B.55)

V ij abcW1
= −cW1

g2

8m3
[(σk

ΣΓε
kij(p2 + p′2)− (σΣΓ × k1)ikj1 + ki2(σΣΓ × k2)j)[T a, T b]αβ

−((σΣΓ × k1)i(p + p′)j + (p + p′)i(σΣΓ × k2)j){T a, T b}αβ] (B.56)

V ijk abccW1
= cW1

g3

8m3
σm

ΣΓ

(
εmjk

(
{T a, [T b, T c]}αβ(p + p′)i − [T a, [T b, T c]]αβ(k2 + k3)i

)
+εmki

(
{T b, [T c, T a]}αβ(p + p′)j − [T b, [T c, T a]]αβ(k1 + k3)j

)
+εmij

(
{T c, [T a, T b]}αβ(p + p′)k − [T c, [T a, T b]]αβ(k1 + k2)k

)
−εmriδjk{T a, {T b, T c}}αβkr1 − εmrjδik{T b, {T c, T a}}αβkr2

−εmrkδij{T c, {T a, T b}}αβkr3
)

(B.57)
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Proportional to cW2

V i acW2
= cW2

g

4m3
(p · p′)(σΣΓ × k)i(T a)αβ (B.58)

V ij abcW2
= −cW2

g2

8m3
[((σΣΓ × k2)jki2 − (σΣΓ × k1)ikj1 − 2σk

ΣΓε
kij(p · p′))[T a, T b]αβ

+((σΣΓ × k1)i(p + p′)j + (p + p′)i(σΣΓ × k2)j){T a, T b}αβ] (B.59)

V ijk abccW2
= −cW2

g3

4m3
σl

ΣΓ

(
− εlij([T a, T b]T c)αβkk − εlki([T c, T a]T b)αβkj

−εljk([T b, T c]T a)αβki + εlij{T c, [T a, T b]}αβpk + εlki{T b, [T c, T a]}αβpj

+εljk{T a, [T b, T c]}αβpi − εlrjδki(T aT bT c + T cT bT a)αβk
r
2

−εlrkδij(T aT cT b + T bT cT a)αβk
r
3 − εlriδjk(T bT aT c + T cT aT b)αβk

r
1

)
(B.60)

Proportional to cp′p

V i acp′p = cp′p
g

8m3
σΣΓ · (p + p′)(p× p′)i(T a)αβ (B.61)

V ij abcp′p
= cp′p

g2

16m3

{[
((p + p′)× k1)iσj

ΣΓ + σi
ΣΓ((p + p′)× k2)j

+εijk(k1 − k2)k(σΣΓ · (p + p′))
]
{T a, T b}αβ +

[
(k1 × k2)iσj

ΣΓ + σi
ΣΓ(k1 × k2)j

−εijk(kk(σΣΓ · k) + 2((σΣΓ · p)p′k + (σΣΓ · p′)pk))
]
[T a, T b]αβ

}
(B.62)

V ijk abccp′p
= cp′p

g3

8m3

[
(εljkσi

ΣΓpl + εijk(σΣΓ · p))(T a[T b, T c])αβ

+(εljkσi
ΣΓp′l + εijk(σΣΓ · p′))([T b, T c]T a)αβ

+(εlikσj
ΣΓpl − εijk(σΣΓ · p))(T b[T a, T c])αβ

+(εlikσj
ΣΓp′l − εijk(σΣΓ · p′))([T a, T c]T b)αβ

+(εlijσk
ΣΓpl + εijk(σΣΓ · p))(T c[T a, T b])αβ

+(εlijσk
ΣΓp′l + εijk(σΣΓ · p′))([T a, T b]T c)αβ

−(εljkσi
ΣΓ − εlijσk

ΣΓ)kl2(T aT bT c + T cT bT a)αβ

+(εlikσj
ΣΓ + εljkσi

ΣΓ)kl3(T bT cT a + T aT cT b)αβ

−(εlijσk
ΣΓ + εlikσj

ΣΓ)kl1(T cT aT b + T bT aT c)αβ

]
(B.63)

132



Proportional to cB1

VabcB1
= −cB1

g2

8m3
σΣΓ · (k1 × k2)[T a, T b]αβ (B.64)

V i abcB1
= −cB1

g2

8m3
k0

1(σΣΓ × k2)i[T a, T b]αβ (B.65)

V ij abcB1
= cB1

g2

16m3

(
εijk(σΣΓ · k1)kk2 + εijk(σΣΓ · k2)kk1 + σi

ΣΓ(k1 × k2)j

+σj
ΣΓ(k1 × k2)i − 2σk

ΣΓε
kijk0

1k
0
2

)
[T a, T b]αβ (B.66)

V i abccB1
= −cB1

g3

8m3
((σΣΓ × k2)i[T b, [T a, T c]]αβ + (σΣΓ × k3)i[T c, [T a, T b]]αβ) (B.67)

V ij abccB1
= cB1

g3

8m3
σk

ΣΓε
kij(k0

1[T a, [T b, T c]]αβ − k0
2[T b, [T a, T c]]αβ) (B.68)

V ijk abccB1
=− cB1

g3

8m3

{(
εijkσΣΓ · k1 − εljkσi

ΣΓkl1
)

[T a, [T b, T c]]αβ

−
(
εijkσΣΓ · k2 − εilkσj

ΣΓkl2
)

[T b, [T a, T c]]αβ

+
(
εijkσΣΓ · k3 − εlijσk

ΣΓkl3
)

[T c, [T a, T b]]αβ
}

(B.69)

Proportional to cB2

VabcB2
= −cB2

g2

8m3
σΣΓ · (k1 × k2)[T a, T b]αβ (B.70)

V i abcB2
= −cB2

g2

8m3
k0

1(σΣΓ × k2)i[T a, T b]αβ (B.71)

V ij abcB2
= −cB2

g2

8m3
σk

ΣΓε
kijk0

1k
0
2[T a, T b]αβ (B.72)

V i abccB2
= −cB2

g3

8m3
((σΣΓ × k2)i[T b, [T a, T c]]αβ + (σΣΓ × k3)i[T c, [T a, T b]]αβ) (B.73)

V ij abccB2
= cB2

g3

8m3
σk

ΣΓε
kij(k0

1[T a, [T b, T c]]αβ − k0
2[T b, [T a, T c]]αβ) (B.74)
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B.1.5 Heavy quark-light quark interactions

Proportional to chli

V = chl1

ig2

8m2
δΣΓ(T a)αβ(T a)δγ(γ

0)BA (B.75)

V = −chl2

ig2

8m2
σi

ΣΓ(T a)αβ(T a)δγ(γ
iγ5)BA (B.76)

V = chl3

ig2

8m2
δΣΓδαβδδγ(γ

0)BA (B.77)

V = −chl4

ig2

8m2
σi

ΣΓδαβδδγ(γ
iγ5)BA (B.78)

Proportional to dhl1

V = −dhl1

ig2

m3
(T a)αβ(T a)δγ(γ

i)BA(p + p′)iδΣΓ (B.79)

V i b = dhl1

ig3

m3
{T a, T b}αβ(T a)δγ(γ

i)BAδΣΓ (B.80)

Proportional to dhl2

V = −dhl2

ig2

m3
(T a)αβ(T a)δγ(γ

0)BA(k0
1 − k0

2)δΣΓ (B.81)

Vb = −dhl2

ig3

m3
(T a)αβ{T a, T b}δγ(γ0)BAδΣΓ (B.82)

Proportional to dhl3

V = −dhl3

ig2

m3
δαβδδγ(γ

0)BA(k0
1 − k0

2)δΣΓ (B.83)

Vb = −dhl3

2ig3

m3
δαβ(T b)δγ(γ

0)BAδΣΓ (B.84)

Proportional to dhl4

V = −dhl4

ig2

m3
(γ0γ5)BA(T a)αβ(T a)δγσΣΓ · (p + p′) (B.85)

V i b = dhl4

ig3

m3
(γ0γ5)BA(T a)δγ{T a, T b}αβσi

ΣΓ (B.86)
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Proportional to dhl5

V = −dhl5

ig2

m3
(γ0γ5)BAδαβδδγσΣΓ · (p + p′) (B.87)

V i b = dhl5

2ig3

m3
(γ0γ5)BAδδγ(T

b)αβσ
i
ΣΓ (B.88)

Proportional to dhl6

V = dhl6

ig2

m3
(γ0γ5)BA(T a)αβ(T a)δγσΣΓ · (k1 − k2) (B.89)

V i b = dhl6

ig3

m3
(γ0γ5)BA{T a, T b}δγ(T a)αβσi

ΣΓ (B.90)

Proportional to dhl7

V = dhl7

ig2

m3
(γ0γ5)BAδαβδδγσΣΓ · (k1 − k2) (B.91)

V i b = dhl7

2ig3

m3
(γ0γ5)BA(T b)δγδαβσ

i
ΣΓ (B.92)

Proportional to dhl8

V = dhl8

ig2

m3
(γiγ5)BA(T a)αβ(T a)δγσ

i
ΣΓ(k0

1 − k0
2) (B.93)

Vb = dhl8

ig3

m3
(γiγ5)BA{T a, T b}δγ(T a)αβσi

ΣΓ (B.94)

Proportional to dhl9

V = dhl9

ig2

m3
(γiγ5)BAδαβδδγσ

i
ΣΓ(k0

1 − k0
2) (B.95)

Vb = dhl9

2ig3

m3
(γiγ5)BA(T b)δγδαβσ

i
ΣΓ (B.96)

Proportional to dhl10

V = dhl10

g2

m3
(T a)αβ(T a)δγ(γ

i)BA(σΣΓ × k)i (B.97)

V i b = dhl10

g3

m3
(γj)BA[T a, T b]δγ(T

a)αβε
ijkσk

ΣΓ (B.98)
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Proportional to dhl11

V = dhl11

g2

m3
δαβδδγ(γ

i)BA(σΣΓ × k)i (B.99)

B.2 Resummed Wilson coefficients of the 1/m and

1/m2 operators with LL accuracy

In order to solve the RGEs of Sec. 2.5, we need the resummed expressions of the Wilson
coefficients associated to the 1/m and 1/m2 operators of the HQET Lagrangian with LL
accuracy. They can be found in Refs. [8, 28, 32], but summarize them in the following for
practical reasons

cF (ν) = z−CA , (B.100)

c̄hl1 (ν) = z−2CA +

(
20

13
+

32CF
13CA

)
(1− z−13CA/6) , (B.101)

chl2 (ν) = (8CF − 3CA)

(
1

2β0 − 7CA

(
z−2CA − z−β0+

3CA
2

)
(B.102)

− 2

2β0 − 5CA

(
z−CA − z−β0+

3CA
2

)
− 3

2β0 − 3CA

(
1− z−β0+

3CA
2

))
,

chl3 (ν) = 0 , (B.103)

chl4 (ν) =

(
1− 1

N2
c

)(
1

2β0 − 4CA
(z−2CA − z−β0)− 1

β0 − CA
(z−CA − z−β0)− 3

2β0

(1− z−β0)
)
.

(B.104)
The other Wilson coefficients we need are known from reparametrization invariance [28]
relations. They read ck = c4 = 1, cS = 2cF − 1, cW1 − cW2 = 1, cp′p = cF − 1 and
dhl4 = −chl2 /16.

B.3 About the problem with reparametrization in-

variance

Reparametrization invariance [28] obtains relations between Wilson coefficients by impos-
ing Lorentz invariance as a symmetry of the HQET Lagrangian. Since this is done without
assuming any particular gauge, the obtained relations should be, in principle, gauge inde-
pendent. However, in Sec. 2.5 we found that the relations imposed by reparametrization
invariance 2cM = cD − cF and dhl1 = chl1 /16 are violated at LL when the computation is
done in the Coulomb gauge, proving that these two relations indeed depend on the gauge.
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In order to solve this problem, a new gauge invariant relation was proposed in Sec.
2.5.3 by adding the two relations which are not satisfied in the Coulomb gauge but that
are supposed to be in some particular gauge (we will see later on that in the Feynman gauge
they are satisfied). The motivation to add these two equations is to make it to appear c̄hl1 ,
which is well-known to be gauge independent. The new relation 2cM +16dhl1 = cD+chl1 −cF ,
or likewise, 2d̄hl1 = c̄hl1 − cF implies that d̄hl1 must be also gauge independent. It can be
shown that the proposed relation is satisfied in both, the Coulomb gauge, and the gauge
where the two ”problematic” relations are satisfied.

In this section we want to show that, assuming that d̄hl1 (obtained in a Coulomb gauge
computation) is gauge independent, and that in the Feynman gauge 2cFG

M = cFG
D − cF

is satisfied1, we can obtain dhlFG
1 and see that it satisfies reparametrization invariance,

dhlFG
1 = chlFG

1 /16.
Firstly, let us summarize the RGEs of the unphysical quantities cD, chl1 , cM and dhl1 in

the Coulomb gauge. They read

ν
d

dν
cCG
D =

[
11

6
chlCG

1 CA +
11

6
cCG
D CA −

5

6
c2
FCA −

8

3
c2
kCA −

8

3
c2
kCF −

1

2
chlCG

1 β0

]
α

π
, (B.105)

ν
d

dν
chlCG

1 =

[
− 3

4
chlCG

1 CA −
3

4
cCG
D CA +

3

4
c2
FCA + c2

kCA +
1

2
chlCG

1 β0

]
α

π
, (B.106)

ν
d

dν
cCG
M =

[
7

6
cCG
M CA+

1

2
c4CA−

1

3
cScFCA−

1

6
c3
k(8CF+11CA)− 1

12
c2
F ckCA+

16

3
dhlCG

1 TFnf

]
α

π
,

(B.107)

ν
d

dν
dhlCG

1 =

[
1

4
(2β0−3CA)dhlCG

1 −CA
(

1

96
cCG
M −

1

192
cScF −

1

16
c3
k−

5

64
ckc

2
F

)]
α

π
. (B.108)

From these equations it can be seen that 2cCG
M 6= cCG

D − cF and dhlCG
1 6= chlCG

1 /16. We can
also obtain the RGEs of the physical quantities c̄hl1 and d̄hl1 , which read

ν
d

dν
c̄hl1 =

[
13

12
CAc̄

hl
1 −

20

12
CAc

2
k −

32

12
CF c

2
k −

1

12
CAc

2
F

]
α

π
, (B.109)

ν
d

dν
d̄hl1 =

[
13

12
d̄hl1 CA +

1

2
c4CA −

7

24
cScFCA −

4

3
c3
k(CF + CA) +

13

24
c2
F ckCA

]
α

π
. (B.110)

We also need the RGEs of cD and c̄hl1 in the Feynman gauge. They were computed in Ref.
[32], and read

1At the level of the SL, it has been proven in Refs. [28, 33, 34].
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ν
d

dν
cFG
D =

[
1

3
CAc

FG
D −

(
1

6
CA +

8

3
CF

)
c2
k −

5

6
CAc

2
F +

2

3
Tfnfc

hlFG
1

]
α

π
, (B.111)

ν
d

dν
chlFG

1 =

[
3

4
CAc

FG
D −

3

2
CAc

2
k +

3

4
CAc

2
F −

(
3

4
CA −

1

2
β0

)
chlFG

1

]
α

π
. (B.112)

What it remains to be computed are the RGEs of cM and dhl1 in the Feynman gauge.
Firstly, we compute cFG

M assuming that the relation 2cFG
M = cFG

D − cF is satisfied. Thus,
from the new relation 2d̄hl1 = 2cFG

M + 8dhlFG
1 = c̄hl1 − cF proposed in Sec. 2.5.3 we can

compute dhlFG
1 . The RGEs of these two Wilson coefficients in the Feynman gauge read

ν
d

dν
cFG
M =

[
1

6
CAc

FG
D −

1

12
(CA + 16CF )c2

k −
5

12
CAc

2
F −

1

4
cFCA +

1

3
Tfnfc

hlFG
1

]
α

π
,

(B.113)

ν
d

dν
dhlFG

1 =

[
13

96
d̄hl1 CA +

1

16
c4CA +

13

192
cFCA −

5

32
CAc

3
k +

3

64
c2
F ckCA

− 1

48
CAc

FG
D −

1

24
Tfnfc

hlFG
1

]
α

π
. (B.114)

If we compare the running of dhl1 with the running of chl1 in the Feynman gauge (obviously
assuming 2cFG

M = cFG
D − cF and dhlFG

1 = chlFG
1 /16) we find that

ν
d

dν
(16dhlFG

1 − chlFG
1 ) = 0 , (B.115)

so everything is consistent, the relations 2cM = cD−cF and dhl1 = chl1 /16 are satisfied in the
Feynman gauge, but not in the Coulomb gauge. The correct gauge-independent relation is
16dhl1 + 2cM = cD + chl1 − cF , since it involves truly gauge independent quantities, d̄hl1 and
c̄hl1 .

Possibly, the source of the problem is that we have to include heavy-light operators when
imposing reparametrization invariance in order to arrive to gauge-independent quantities.
Otherwise, part of the Lagrangian is missing, and gauge dependencies arise. In particular,
imposing Lorentz invariance only in the heavy-gluon sector does not guarantee that the
obtained relations between Wilson coefficients are gauge-independent. Contrarily, it seems
that the imposition of Lorentz invariance in the heavy-gluon and the heavy-light sectors
separately, fixes somehow a particular gauge or class of gauges for which the relations
2cM = cD − cF and dhl1 = chl1 /16 are satisfied. A rigorous proof of this statement is beyond
the scope of this work, and it is left for future investigation.
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B.4 HQET Master Integrals

In this section we display the integrals needed for the calculation of the LL running of
the HQET Wilson coefficients. We always integrate first over the energy. The following
integrals appear

I(n,m) ≡
∫
dq0

2π

1

((q0)2 − q2 + iηg)n(q0 − iηq)m
= − i

Γ(n)

d(n−1)

dq0

(
1

(q0)m(q0 + |q|)n

)
q0=|q|

,

(B.116)

I(0, 1) =

∫
dq0

2π

1

q0 − iη
=
i

2
, (B.117)

where n,m ∈ N. Later, we integrate over the d-momentum (d = 3 + 2ε). The following
logarithmically divergent integrals appear

I =

∫
ddq

(2π)d
1

|q|3
→ 1

4π2

1

ε
ν2ε , (B.118)

I ij =

∫
ddq

(2π)d
qiqj

|q|5
→ 1

12π2

1

ε
δijν2ε , (B.119)

I ijkl =

∫
ddq

(2π)d
qiqjqkql

|q|7
→ 1

60π2

1

ε
(δikδjl + δijδkl + δilδjk)ν2ε , (B.120)

I ijklmn =

∫
ddq

(2π)d
qiqjqkqlqmqn

|q|9
→ 1

420π2

1

ε

(
δij(δklδmn + δkmδln + δknδlm)

+δik(δjlδmn + δjmδln + δjnδlm) + δil(δjkδmn + δjmδkn + δjnδkm)

+δim(δjkδln + δjlδkn + δjnδkl) + δin(δjkδlm + δjlδkm + δjmδkl)
)
ν2ε ,(B.121)

I ijklmnrs =

∫
ddq

(2π)d
qiqjqkqlqmqnqrqs

|q|11
→ 1

3780π2

1

ε

(
δis(δjr(δknδlm + δkmδln + δklδmn)

+δjn(δkrδlm+δkmδlr +δklδmr)+δjm(δkrδln+δknδlr +δklδnr)+δjl(δkrδmn+δknδmr +δkmδnr)

+δjk(δlrδmn + δlnδmr + δlmδnr)) + δir(δjs(δknδlm + δkmδln + δklδmn)+

δjn(δksδlm + δkmδls + δklδms) + δjm(δksδln + δknδls + δklδns) + δjl(δksδmn + δknδms + δkmδns)

+δjk(δlsδmn+δlnδms+δlmδns))+δin(δjs(δkrδlm+δkmδlr+δklδmr)+δjr(δksδlm+δkmδls+δklδms)

+δjm(δksδlr + δkrδls + δklδrs) + δjl(δksδmr + δkrδms + δkmδrs) + δjk(δlsδmr + δlrδms + δlmδrs))

+δim(δjs(δkrδln + δknδlr + δklδnr) + δjr(δksδln + δknδls + δklδns) + δjn(δksδlr + δkrδls + δklδrs)

+δjl(δksδnr+δkrδns+δknδrs)+δjk(δlsδnr+δlrδns+δlnδrs))+δil(δjs(δkrδmn+δknδmr+δkmδnr)
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+δjr(δksδmn+δknδms+δkmδns)+δjn(δksδmr+δkrδms+δkmδrs)+δjm(δksδnr+δkrδns+δknδrs)

+δjk(δmsδnr+δmrδns+δmnδrs))+δik(δjs(δlrδmn+δlnδmr+δlmδnr)+δjr(δlsδmn+δlnδms+δlmδns)

+δjn(δlsδmr + δlrδms+ δlmδrs) + δjm(δlsδnr + δlrδns+ δlnδrs) + δjl(δmsδnr + δmrδns+ δmnδrs))

+δij(δks(δlrδmn+δlnδmr+δlmδnr)+δkr(δls]δmn+δlnδms+δlmδns)+δkn(δlsδmr+δlrδms+δlmδrs)

+ δkm(δlsδnr + δlrδns + δlnδrs) + δkl(δmsδnr + δmrδns + δmnδrs))

)
ν2ε , (B.122)

I ijklmnrstu =

∫
ddq

(2π)d
qiqjqkqlqmqnqrqsqtqu

|q|13
→ 1

41580π2

1

ε

(
δmnδlrδksδjuδiv+δlnδmrδksδjuδiv

+δlmδnrδksδjuδiv + δmnδkrδlsδjuδiv + δknδmrδlsδjuδiv + δkmδnrδlsδjuδiv + δlnδkrδmsδjuδiv

+δknδlrδmsδjuδiv + δklδnrδmsδjuδiv + δlmδkrδnsδjuδiv + δkmδlrδnsδjuδiv + δklδmrδnsδjuδiv

+δlmδknδrsδjuδiv + δkmδlnδrsδjuδiv + δklδmnδrsδjuδiv + δmnδlrδjsδkuδiv + δlnδmrδjsδkuδiv

+δlmδnrδjsδkuδiv + δmnδjrδlsδkuδiv + δjnδmrδlsδkuδiv + δjmδnrδlsδkuδiv + δlnδjrδmsδkuδiv

+δjnδlrδmsδkuδiv + δjlδnrδmsδkuδiv + δlmδjrδnsδkuδiv + δjmδlrδnsδkuδiv + δjlδmrδnsδkuδiv

+δlmδjnδrsδkuδiv + δjmδlnδrsδkuδiv + δjlδmnδrsδkuδiv + δmnδkrδjsδluδiv + δknδmrδjsδluδiv

+δkmδnrδjsδluδiv + δmnδjrδksδluδiv + δjnδmrδksδluδiv + δjmδnrδksδluδiv + δknδjrδmsδluδiv

+δjnδkrδmsδluδiv + δjkδnrδmsδluδiv + δkmδjrδnsδluδiv + δjmδkrδnsδluδiv + δjkδmrδnsδluδiv

+δkmδjnδrsδluδiv + δjmδknδrsδluδiv + δjkδmnδrsδluδiv + δlnδkrδjsδmuδiv + δknδlrδjsδmuδiv

+δklδnrδjsδmuδiv + δlnδjrδksδmuδiv + δjnδlrδksδmuδiv + δjlδnrδksδmuδiv + δknδjrδlsδmuδiv

+δjnδkrδlsδmuδiv + δjkδnrδlsδmuδiv + δklδjrδnsδmuδiv + δjlδkrδnsδmuδiv + δjkδlrδnsδmuδiv

+δklδjnδrsδmuδiv + δjlδknδrsδmuδiv + δjkδlnδrsδmuδiv + δlmδkrδjsδnuδiv + δkmδlrδjsδnuδiv

+δklδmrδjsδnuδiv + δlmδjrδksδnuδiv + δjmδlrδksδnuδiv + δjlδmrδksδnuδiv + δkmδjrδlsδnuδiv

+δjmδkrδlsδnuδiv + δjkδmrδlsδnuδiv + δklδjrδmsδnuδiv + δjlδkrδmsδnuδiv + δjkδlrδmsδnuδiv

+δklδjmδrsδnuδiv + δjlδkmδrsδnuδiv + δjkδlmδrsδnuδiv + δlmδknδjsδruδiv + δkmδlnδjsδruδiv

+δklδmnδjsδruδiv + δlmδjnδksδruδiv + δjmδlnδksδruδiv + δjlδmnδksδruδiv + δkmδjnδlsδruδiv

+δjmδknδlsδruδiv + δjkδmnδlsδruδiv + δklδjnδmsδruδiv + δjlδknδmsδruδiv + δjkδlnδmsδruδiv

+δklδjmδnsδruδiv + δjlδkmδnsδruδiv + δjkδlmδnsδruδiv + δlmδknδjrδsuδiv + δkmδlnδjrδsuδiv

+δklδmnδjrδsuδiv + δlmδjnδkrδsuδiv + δjmδlnδkrδsuδiv + δjlδmnδkrδsuδiv + δkmδjnδlrδsuδiv

+δjmδknδlrδsuδiv + δjkδmnδlrδsuδiv + δklδjnδmrδsuδiv + δjlδknδmrδsuδiv + δjkδlnδmrδsuδiv

+δklδjmδnrδsuδiv + δjlδkmδnrδsuδiv + δjkδlmδnrδsuδiv + δmnδlrδksδiuδjv + δlnδmrδksδiuδjv

+δlmδnrδksδiuδjv + δmnδkrδlsδiuδjv + δknδmrδlsδiuδjv + δkmδnrδlsδiuδjv + δlnδkrδmsδiuδjv

+δknδlrδmsδiuδjv + δklδnrδmsδiuδjv + δlmδkrδnsδiuδjv + δkmδlrδnsδiuδjv + δklδmrδnsδiuδjv
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+δlmδknδrsδiuδjv + δkmδlnδrsδiuδjv + δklδmnδrsδiuδjv + δmnδlrδisδkuδjv + δlnδmrδisδkuδjv

+δlmδnrδisδkuδjv + δmnδirδlsδkuδjv + δinδmrδlsδkuδjv + δimδnrδlsδkuδjv + δlnδirδmsδkuδjv

+δinδlrδmsδkuδjv + δilδnrδmsδkuδjv + δlmδirδnsδkuδjv + δimδlrδnsδkuδjv + δilδmrδnsδkuδjv

+δlmδinδrsδkuδjv + δimδlnδrsδkuδjv + δilδmnδrsδkuδjv + δmnδkrδisδluδjv + δknδmrδisδluδjv

+δkmδnrδisδluδjv + δmnδirδksδluδjv + δinδmrδksδluδjv + δimδnrδksδluδjv + δknδirδmsδluδjv

+δinδkrδmsδluδjv + δikδnrδmsδluδjv + δkmδirδnsδluδjv + δimδkrδnsδluδjv + δikδmrδnsδluδjv

+δkmδinδrsδluδjv + δimδknδrsδluδjv + δikδmnδrsδluδjv + δlnδkrδisδmuδjv + δknδlrδisδmuδjv

+δklδnrδisδmuδjv + δlnδirδksδmuδjv + δinδlrδksδmuδjv + δilδnrδksδmuδjv + δknδirδlsδmuδjv

+δinδkrδlsδmuδjv + δikδnrδlsδmuδjv + δklδirδnsδmuδjv + δilδkrδnsδmuδjv + δikδlrδnsδmuδjv

+δklδinδrsδmuδjv + δilδknδrsδmuδjv + δikδlnδrsδmuδjv + δlmδkrδisδnuδjv + δkmδlrδisδnuδjv

+δklδmrδisδnuδjv + δlmδirδksδnuδjv + δimδlrδksδnuδjv + δilδmrδksδnuδjv + δkmδirδlsδnuδjv

+δimδkrδlsδnuδjv + δikδmrδlsδnuδjv + δklδirδmsδnuδjv + δilδkrδmsδnuδjv + δikδlrδmsδnuδjv

+δklδimδrsδnuδjv + δilδkmδrsδnuδjv + δikδlmδrsδnuδjv + δlmδknδisδruδjv + δkmδlnδisδruδjv

+δklδmnδisδruδjv + δlmδinδksδruδjv + δimδlnδksδruδjv + δilδmnδksδruδjv + δkmδinδlsδruδjv

+δimδknδlsδruδjv + δikδmnδlsδruδjv + δklδinδmsδruδjv + δilδknδmsδruδjv + δikδlnδmsδruδjv

+δklδimδnsδruδjv + δilδkmδnsδruδjv + δikδlmδnsδruδjv + δlmδknδirδsuδjv + δkmδlnδirδsuδjv

+δklδmnδirδsuδjv + δlmδinδkrδsuδjv + δimδlnδkrδsuδjv + δilδmnδkrδsuδjv + δkmδinδlrδsuδjv

+δimδknδlrδsuδjv + δikδmnδlrδsuδjv + δklδinδmrδsuδjv + δilδknδmrδsuδjv + δikδlnδmrδsuδjv

+δklδimδnrδsuδjv + δilδkmδnrδsuδjv + δikδlmδnrδsuδjv + δmnδlrδjsδiuδkv + δlnδmrδjsδiuδkv

+δlmδnrδjsδiuδkv + δmnδjrδlsδiuδkv + δjnδmrδlsδiuδkv + δjmδnrδlsδiuδkv + δlnδjrδmsδiuδkv

+δjnδlrδmsδiuδkv + δjlδnrδmsδiuδkv + δlmδjrδnsδiuδkv + δjmδlrδnsδiuδkv + δjlδmrδnsδiuδkv

+δlmδjnδrsδiuδkv + δjmδlnδrsδiuδkv + δjlδmnδrsδiuδkv + δmnδlrδisδjuδkv + δlnδmrδisδjuδkv

+δlmδnrδisδjuδkv + δmnδirδlsδjuδkv + δinδmrδlsδjuδkv + δimδnrδlsδjuδkv + δlnδirδmsδjuδkv

+δinδlrδmsδjuδkv + δilδnrδmsδjuδkv + δlmδirδnsδjuδkv + δimδlrδnsδjuδkv + δilδmrδnsδjuδkv

+δlmδinδrsδjuδkv + δimδlnδrsδjuδkv + δilδmnδrsδjuδkv + δmnδjrδisδluδkv + δjnδmrδisδluδkv

+δjmδnrδisδluδkv + δmnδirδjsδluδkv + δinδmrδjsδluδkv + δimδnrδjsδluδkv + δjnδirδmsδluδkv

+δinδjrδmsδluδkv + δijδnrδmsδluδkv + δjmδirδnsδluδkv + δimδjrδnsδluδkv + δijδmrδnsδluδkv

+δjmδinδrsδluδkv + δimδjnδrsδluδkv + δijδmnδrsδluδkv + δlnδjrδisδmuδkv + δjnδlrδisδmuδkv

+δjlδnrδisδmuδkv + δlnδirδjsδmuδkv + δinδlrδjsδmuδkv + δilδnrδjsδmuδkv + δjnδirδlsδmuδkv

+δinδjrδlsδmuδkv + δijδnrδlsδmuδkv + δjlδirδnsδmuδkv + δilδjrδnsδmuδkv + δijδlrδnsδmuδkv

+δjlδinδrsδmuδkv + δilδjnδrsδmuδkv + δijδlnδrsδmuδkv + δlmδjrδisδnuδkv + δjmδlrδisδnuδkv
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+δjlδmrδisδnuδkv + δlmδirδjsδnuδkv + δimδlrδjsδnuδkv + δilδmrδjsδnuδkv + δjmδirδlsδnuδkv

+δimδjrδlsδnuδkv + δijδmrδlsδnuδkv + δjlδirδmsδnuδkv + δilδjrδmsδnuδkv + δijδlrδmsδnuδkv

+δjlδimδrsδnuδkv + δilδjmδrsδnuδkv + δijδlmδrsδnuδkv + δlmδjnδisδruδkv + δjmδlnδisδruδkv

+δjlδmnδisδruδkv + δlmδinδjsδruδkv + δimδlnδjsδruδkv + δilδmnδjsδruδkv + δjmδinδlsδruδkv

+δimδjnδlsδruδkv + δijδmnδlsδruδkv + δjlδinδmsδruδkv + δilδjnδmsδruδkv + δijδlnδmsδruδkv

+δjlδimδnsδruδkv + δilδjmδnsδruδkv + δijδlmδnsδruδkv + δlmδjnδirδsuδkv + δjmδlnδirδsuδkv

+δjlδmnδirδsuδkv + δlmδinδjrδsuδkv + δimδlnδjrδsuδkv + δilδmnδjrδsuδkv + δjmδinδlrδsuδkv

+δimδjnδlrδsuδkv + δijδmnδlrδsuδkv + δjlδinδmrδsuδkv + δilδjnδmrδsuδkv + δijδlnδmrδsuδkv

+δjlδimδnrδsuδkv + δilδjmδnrδsuδkv + δijδlmδnrδsuδkv + δmnδkrδjsδiuδlv + δknδmrδjsδiuδlv

+δkmδnrδjsδiuδlv + δmnδjrδksδiuδlv + δjnδmrδksδiuδlv + δjmδnrδksδiuδlv + δknδjrδmsδiuδlv

+δjnδkrδmsδiuδlv + δjkδnrδmsδiuδlv + δkmδjrδnsδiuδlv + δjmδkrδnsδiuδlv + δjkδmrδnsδiuδlv

+δkmδjnδrsδiuδlv + δjmδknδrsδiuδlv + δjkδmnδrsδiuδlv + δmnδkrδisδjuδlv + δknδmrδisδjuδlv

+δkmδnrδisδjuδlv + δmnδirδksδjuδlv + δinδmrδksδjuδlv + δimδnrδksδjuδlv + δknδirδmsδjuδlv

+δinδkrδmsδjuδlv + δikδnrδmsδjuδlv + δkmδirδnsδjuδlv + δimδkrδnsδjuδlv + δikδmrδnsδjuδlv

+δkmδinδrsδjuδlv + δimδknδrsδjuδlv + δikδmnδrsδjuδlv + δmnδjrδisδkuδlv + δjnδmrδisδkuδlv

+δjmδnrδisδkuδlv + δmnδirδjsδkuδlv + δinδmrδjsδkuδlv + δimδnrδjsδkuδlv + δjnδirδmsδkuδlv

+δinδjrδmsδkuδlv + δijδnrδmsδkuδlv + δjmδirδnsδkuδlv + δimδjrδnsδkuδlv + δijδmrδnsδkuδlv

+δjmδinδrsδkuδlv + δimδjnδrsδkuδlv + δijδmnδrsδkuδlv + δknδjrδisδmuδlv + δjnδkrδisδmuδlv

+δjkδnrδisδmuδlv + δknδirδjsδmuδlv + δinδkrδjsδmuδlv + δikδnrδjsδmuδlv + δjnδirδksδmuδlv

+δinδjrδksδmuδlv + δijδnrδksδmuδlv + δjkδirδnsδmuδlv + δikδjrδnsδmuδlv + δijδkrδnsδmuδlv

+δjkδinδrsδmuδlv + δikδjnδrsδmuδlv + δijδknδrsδmuδlv + δkmδjrδisδnuδlv + δjmδkrδisδnuδlv

+δjkδmrδisδnuδlv + δkmδirδjsδnuδlv + δimδkrδjsδnuδlv + δikδmrδjsδnuδlv + δjmδirδksδnuδlv

+δimδjrδksδnuδlv + δijδmrδksδnuδlv + δjkδirδmsδnuδlv + δikδjrδmsδnuδlv + δijδkrδmsδnuδlv

+δjkδimδrsδnuδlv + δikδjmδrsδnuδlv + δijδkmδrsδnuδlv + δkmδjnδisδruδlv + δjmδknδisδruδlv

+δjkδmnδisδruδlv + δkmδinδjsδruδlv + δimδknδjsδruδlv + δikδmnδjsδruδlv + δjmδinδksδruδlv

+δimδjnδksδruδlv + δijδmnδksδruδlv + δjkδinδmsδruδlv + δikδjnδmsδruδlv + δijδknδmsδruδlv

+δjkδimδnsδruδlv + δikδjmδnsδruδlv + δijδkmδnsδruδlv + δkmδjnδirδsuδlv + δjmδknδirδsuδlv

+δjkδmnδirδsuδlv + δkmδinδjrδsuδlv + δimδknδjrδsuδlv + δikδmnδjrδsuδlv + δjmδinδkrδsuδlv

+δimδjnδkrδsuδlv + δijδmnδkrδsuδlv + δjkδinδmrδsuδlv + δikδjnδmrδsuδlv + δijδknδmrδsuδlv

+δjkδimδnrδsuδlv + δikδjmδnrδsuδlv + δijδkmδnrδsuδlv + δlnδkrδjsδiuδmv + δknδlrδjsδiuδmv

+δklδnrδjsδiuδmv + δlnδjrδksδiuδmv + δjnδlrδksδiuδmv + δjlδnrδksδiuδmv + δknδjrδlsδiuδmv
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+δjnδkrδlsδiuδmv + δjkδnrδlsδiuδmv + δklδjrδnsδiuδmv + δjlδkrδnsδiuδmv + δjkδlrδnsδiuδmv

+δklδjnδrsδiuδmv + δjlδknδrsδiuδmv + δjkδlnδrsδiuδmv + δlnδkrδisδjuδmv + δknδlrδisδjuδmv

+δklδnrδisδjuδmv + δlnδirδksδjuδmv + δinδlrδksδjuδmv + δilδnrδksδjuδmv + δknδirδlsδjuδmv

+δinδkrδlsδjuδmv + δikδnrδlsδjuδmv + δklδirδnsδjuδmv + δilδkrδnsδjuδmv + δikδlrδnsδjuδmv

+δklδinδrsδjuδmv + δilδknδrsδjuδmv + δikδlnδrsδjuδmv + δlnδjrδisδkuδmv + δjnδlrδisδkuδmv

+δjlδnrδisδkuδmv + δlnδirδjsδkuδmv + δinδlrδjsδkuδmv + δilδnrδjsδkuδmv + δjnδirδlsδkuδmv

+δinδjrδlsδkuδmv + δijδnrδlsδkuδmv + δjlδirδnsδkuδmv + δilδjrδnsδkuδmv + δijδlrδnsδkuδmv

+δjlδinδrsδkuδmv + δilδjnδrsδkuδmv + δijδlnδrsδkuδmv + δknδjrδisδluδmv + δjnδkrδisδluδmv

+δjkδnrδisδluδmv + δknδirδjsδluδmv + δinδkrδjsδluδmv + δikδnrδjsδluδmv + δjnδirδksδluδmv

+δinδjrδksδluδmv + δijδnrδksδluδmv + δjkδirδnsδluδmv + δikδjrδnsδluδmv + δijδkrδnsδluδmv

+δjkδinδrsδluδmv + δikδjnδrsδluδmv + δijδknδrsδluδmv + δklδjrδisδnuδmv + δjlδkrδisδnuδmv

+δjkδlrδisδnuδmv + δklδirδjsδnuδmv + δilδkrδjsδnuδmv + δikδlrδjsδnuδmv + δjlδirδksδnuδmv

+δilδjrδksδnuδmv + δijδlrδksδnuδmv + δjkδirδlsδnuδmv + δikδjrδlsδnuδmv + δijδkrδlsδnuδmv

+δjkδilδrsδnuδmv + δikδjlδrsδnuδmv + δijδklδrsδnuδmv + δklδjnδisδruδmv + δjlδknδisδruδmv

+δjkδlnδisδruδmv + δklδinδjsδruδmv + δilδknδjsδruδmv + δikδlnδjsδruδmv + δjlδinδksδruδmv

+δilδjnδksδruδmv + δijδlnδksδruδmv + δjkδinδlsδruδmv + δikδjnδlsδruδmv + δijδknδlsδruδmv

+δjkδilδnsδruδmv + δikδjlδnsδruδmv + δijδklδnsδruδmv + δklδjnδirδsuδmv + δjlδknδirδsuδmv

+δjkδlnδirδsuδmv + δklδinδjrδsuδmv + δilδknδjrδsuδmv + δikδlnδjrδsuδmv + δjlδinδkrδsuδmv

+δilδjnδkrδsuδmv + δijδlnδkrδsuδmv + δjkδinδlrδsuδmv + δikδjnδlrδsuδmv + δijδknδlrδsuδmv

+δjkδilδnrδsuδmv + δikδjlδnrδsuδmv + δijδklδnrδsuδmv + δlmδkrδjsδiuδnv + δkmδlrδjsδiuδnv

+δklδmrδjsδiuδnv + δlmδjrδksδiuδnv + δjmδlrδksδiuδnv + δjlδmrδksδiuδnv + δkmδjrδlsδiuδnv

+δjmδkrδlsδiuδnv + δjkδmrδlsδiuδnv + δklδjrδmsδiuδnv + δjlδkrδmsδiuδnv + δjkδlrδmsδiuδnv

+δklδjmδrsδiuδnv + δjlδkmδrsδiuδnv + δjkδlmδrsδiuδnv + δlmδkrδisδjuδnv + δkmδlrδisδjuδnv

+δklδmrδisδjuδnv + δlmδirδksδjuδnv + δimδlrδksδjuδnv + δilδmrδksδjuδnv + δkmδirδlsδjuδnv

+δimδkrδlsδjuδnv + δikδmrδlsδjuδnv + δklδirδmsδjuδnv + δilδkrδmsδjuδnv + δikδlrδmsδjuδnv

+δklδimδrsδjuδnv + δilδkmδrsδjuδnv + δikδlmδrsδjuδnv + δlmδjrδisδkuδnv + δjmδlrδisδkuδnv

+δjlδmrδisδkuδnv + δlmδirδjsδkuδnv + δimδlrδjsδkuδnv + δilδmrδjsδkuδnv + δjmδirδlsδkuδnv

+δimδjrδlsδkuδnv + δijδmrδlsδkuδnv + δjlδirδmsδkuδnv + δilδjrδmsδkuδnv + δijδlrδmsδkuδnv

+δjlδimδrsδkuδnv + δilδjmδrsδkuδnv + δijδlmδrsδkuδnv + δkmδjrδisδluδnv + δjmδkrδisδluδnv

+δjkδmrδisδluδnv + δkmδirδjsδluδnv + δimδkrδjsδluδnv + δikδmrδjsδluδnv + δjmδirδksδluδnv

+δimδjrδksδluδnv + δijδmrδksδluδnv + δjkδirδmsδluδnv + δikδjrδmsδluδnv + δijδkrδmsδluδnv
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+δjkδimδrsδluδnv + δikδjmδrsδluδnv + δijδkmδrsδluδnv + δklδjrδisδmuδnv + δjlδkrδisδmuδnv

+δjkδlrδisδmuδnv + δklδirδjsδmuδnv + δilδkrδjsδmuδnv + δikδlrδjsδmuδnv + δjlδirδksδmuδnv

+δilδjrδksδmuδnv + δijδlrδksδmuδnv + δjkδirδlsδmuδnv + δikδjrδlsδmuδnv + δijδkrδlsδmuδnv

+δjkδilδrsδmuδnv + δikδjlδrsδmuδnv + δijδklδrsδmuδnv + δklδjmδisδruδnv + δjlδkmδisδruδnv

+δjkδlmδisδruδnv + δklδimδjsδruδnv + δilδkmδjsδruδnv + δikδlmδjsδruδnv + δjlδimδksδruδnv

+δilδjmδksδruδnv + δijδlmδksδruδnv + δjkδimδlsδruδnv + δikδjmδlsδruδnv + δijδkmδlsδruδnv

+δjkδilδmsδruδnv + δikδjlδmsδruδnv + δijδklδmsδruδnv + δklδjmδirδsuδnv + δjlδkmδirδsuδnv

+δjkδlmδirδsuδnv + δklδimδjrδsuδnv + δilδkmδjrδsuδnv + δikδlmδjrδsuδnv + δjlδimδkrδsuδnv

+δilδjmδkrδsuδnv + δijδlmδkrδsuδnv + δjkδimδlrδsuδnv + δikδjmδlrδsuδnv + δijδkmδlrδsuδnv

+δjkδilδmrδsuδnv + δikδjlδmrδsuδnv + δijδklδmrδsuδnv + δlmδknδjsδiuδrv + δkmδlnδjsδiuδrv

+δklδmnδjsδiuδrv + δlmδjnδksδiuδrv + δjmδlnδksδiuδrv + δjlδmnδksδiuδrv + δkmδjnδlsδiuδrv

+δjmδknδlsδiuδrv + δjkδmnδlsδiuδrv + δklδjnδmsδiuδrv + δjlδknδmsδiuδrv + δjkδlnδmsδiuδrv

+δklδjmδnsδiuδrv + δjlδkmδnsδiuδrv + δjkδlmδnsδiuδrv + δlmδknδisδjuδrv + δkmδlnδisδjuδrv

+δklδmnδisδjuδrv + δlmδinδksδjuδrv + δimδlnδksδjuδrv + δilδmnδksδjuδrv + δkmδinδlsδjuδrv

+δimδknδlsδjuδrv + δikδmnδlsδjuδrv + δklδinδmsδjuδrv + δilδknδmsδjuδrv + δikδlnδmsδjuδrv

+δklδimδnsδjuδrv + δilδkmδnsδjuδrv + δikδlmδnsδjuδrv + δlmδjnδisδkuδrv + δjmδlnδisδkuδrv

+δjlδmnδisδkuδrv + δlmδinδjsδkuδrv + δimδlnδjsδkuδrv + δilδmnδjsδkuδrv + δjmδinδlsδkuδrv

+δimδjnδlsδkuδrv + δijδmnδlsδkuδrv + δjlδinδmsδkuδrv + δilδjnδmsδkuδrv + δijδlnδmsδkuδrv

+δjlδimδnsδkuδrv + δilδjmδnsδkuδrv + δijδlmδnsδkuδrv + δkmδjnδisδluδrv + δjmδknδisδluδrv

+δjkδmnδisδluδrv + δkmδinδjsδluδrv + δimδknδjsδluδrv + δikδmnδjsδluδrv + δjmδinδksδluδrv

+δimδjnδksδluδrv + δijδmnδksδluδrv + δjkδinδmsδluδrv + δikδjnδmsδluδrv + δijδknδmsδluδrv

+δjkδimδnsδluδrv + δikδjmδnsδluδrv + δijδkmδnsδluδrv + δklδjnδisδmuδrv + δjlδknδisδmuδrv

+δjkδlnδisδmuδrv + δklδinδjsδmuδrv + δilδknδjsδmuδrv + δikδlnδjsδmuδrv + δjlδinδksδmuδrv

+δilδjnδksδmuδrv + δijδlnδksδmuδrv + δjkδinδlsδmuδrv + δikδjnδlsδmuδrv + δijδknδlsδmuδrv

+δjkδilδnsδmuδrv + δikδjlδnsδmuδrv + δijδklδnsδmuδrv + δklδjmδisδnuδrv + δjlδkmδisδnuδrv

+δjkδlmδisδnuδrv + δklδimδjsδnuδrv + δilδkmδjsδnuδrv + δikδlmδjsδnuδrv + δjlδimδksδnuδrv

+δilδjmδksδnuδrv + δijδlmδksδnuδrv + δjkδimδlsδnuδrv + δikδjmδlsδnuδrv + δijδkmδlsδnuδrv

+δjkδilδmsδnuδrv + δikδjlδmsδnuδrv + δijδklδmsδnuδrv + δklδjmδinδsuδrv + δjlδkmδinδsuδrv

+δjkδlmδinδsuδrv + δklδimδjnδsuδrv + δilδkmδjnδsuδrv + δikδlmδjnδsuδrv + δjlδimδknδsuδrv

+δilδjmδknδsuδrv + δijδlmδknδsuδrv + δjkδimδlnδsuδrv + δikδjmδlnδsuδrv + δijδkmδlnδsuδrv

+δjkδilδmnδsuδrv + δikδjlδmnδsuδrv + δijδklδmnδsuδrv + δlmδknδjrδiuδsv + δkmδlnδjrδiuδsv
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+δklδmnδjrδiuδsv + δlmδjnδkrδiuδsv + δjmδlnδkrδiuδsv + δjlδmnδkrδiuδsv + δkmδjnδlrδiuδsv

+δjmδknδlrδiuδsv + δjkδmnδlrδiuδsv + δklδjnδmrδiuδsv + δjlδknδmrδiuδsv + δjkδlnδmrδiuδsv

+δklδjmδnrδiuδsv + δjlδkmδnrδiuδsv + δjkδlmδnrδiuδsv + δlmδknδirδjuδsv + δkmδlnδirδjuδsv

+δklδmnδirδjuδsv + δlmδinδkrδjuδsv + δimδlnδkrδjuδsv + δilδmnδkrδjuδsv + δkmδinδlrδjuδsv

+δimδknδlrδjuδsv + δikδmnδlrδjuδsv + δklδinδmrδjuδsv + δilδknδmrδjuδsv + δikδlnδmrδjuδsv

+δklδimδnrδjuδsv + δilδkmδnrδjuδsv + δikδlmδnrδjuδsv + δlmδjnδirδkuδsv + δjmδlnδirδkuδsv

+δjlδmnδirδkuδsv + δlmδinδjrδkuδsv + δimδlnδjrδkuδsv + δilδmnδjrδkuδsv + δjmδinδlrδkuδsv

+δimδjnδlrδkuδsv + δijδmnδlrδkuδsv + δjlδinδmrδkuδsv + δilδjnδmrδkuδsv + δijδlnδmrδkuδsv

+δjlδimδnrδkuδsv + δilδjmδnrδkuδsv + δijδlmδnrδkuδsv + δkmδjnδirδluδsv + δjmδknδirδluδsv

+δjkδmnδirδluδsv + δkmδinδjrδluδsv + δimδknδjrδluδsv + δikδmnδjrδluδsv + δjmδinδkrδluδsv

+δimδjnδkrδluδsv + δijδmnδkrδluδsv + δjkδinδmrδluδsv + δikδjnδmrδluδsv + δijδknδmrδluδsv

+δjkδimδnrδluδsv + δikδjmδnrδluδsv + δijδkmδnrδluδsv + δklδjnδirδmuδsv + δjlδknδirδmuδsv

+δjkδlnδirδmuδsv + δklδinδjrδmuδsv + δilδknδjrδmuδsv + δikδlnδjrδmuδsv + δjlδinδkrδmuδsv

+δilδjnδkrδmuδsv + δijδlnδkrδmuδsv + δjkδinδlrδmuδsv + δikδjnδlrδmuδsv + δijδknδlrδmuδsv

+δjkδilδnrδmuδsv + δikδjlδnrδmuδsv + δijδklδnrδmuδsv + δklδjmδirδnuδsv + δjlδkmδirδnuδsv

+δjkδlmδirδnuδsv + δklδimδjrδnuδsv + δilδkmδjrδnuδsv + δikδlmδjrδnuδsv + δjlδimδkrδnuδsv

+δilδjmδkrδnuδsv + δijδlmδkrδnuδsv + δjkδimδlrδnuδsv + δikδjmδlrδnuδsv + δijδkmδlrδnuδsv

+δjkδilδmrδnuδsv + δikδjlδmrδnuδsv + δijδklδmrδnuδsv + δklδjmδinδruδsv + δjlδkmδinδruδsv

+δjkδlmδinδruδsv + δklδimδjnδruδsv + δilδkmδjnδruδsv + δikδlmδjnδruδsv + δjlδimδknδruδsv

+δilδjmδknδruδsv + δijδlmδknδruδsv + δjkδimδlnδruδsv + δikδjmδlnδruδsv + δijδkmδlnδruδsv

+δjkδilδmnδruδsv + δikδjlδmnδruδsv + δijδklδmnδruδsv + δlmδknδjrδisδuv + δkmδlnδjrδisδuv

+δklδmnδjrδisδuv + δlmδjnδkrδisδuv + δjmδlnδkrδisδuv + δjlδmnδkrδisδuv + δkmδjnδlrδisδuv

+δjmδknδlrδisδuv + δjkδmnδlrδisδuv + δklδjnδmrδisδuv + δjlδknδmrδisδuv + δjkδlnδmrδisδuv

+δklδjmδnrδisδuv + δjlδkmδnrδisδuv + δjkδlmδnrδisδuv + δlmδknδirδjsδuv + δkmδlnδirδjsδuv

+δklδmnδirδjsδuv + δlmδinδkrδjsδuv + δimδlnδkrδjsδuv + δilδmnδkrδjsδuv + δkmδinδlrδjsδuv

+δimδknδlrδjsδuv + δikδmnδlrδjsδuv + δklδinδmrδjsδuv + δilδknδmrδjsδuv + δikδlnδmrδjsδuv

+δklδimδnrδjsδuv + δilδkmδnrδjsδuv + δikδlmδnrδjsδuv + δlmδjnδirδksδuv + δjmδlnδirδksδuv

+δjlδmnδirδksδuv + δlmδinδjrδksδuv + δimδlnδjrδksδuv + δilδmnδjrδksδuv + δjmδinδlrδksδuv

+δimδjnδlrδksδuv + δijδmnδlrδksδuv + δjlδinδmrδksδuv + δilδjnδmrδksδuv + δijδlnδmrδksδuv

+δjlδimδnrδksδuv + δilδjmδnrδksδuv + δijδlmδnrδksδuv + δkmδjnδirδlsδuv + δjmδknδirδlsδuv

+δjkδmnδirδlsδuv + δkmδinδjrδlsδuv + δimδknδjrδlsδuv + δikδmnδjrδlsδuv + δjmδinδkrδlsδuv
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+δimδjnδkrδlsδuv + δijδmnδkrδlsδuv + δjkδinδmrδlsδuv + δikδjnδmrδlsδuv + δijδknδmrδlsδuv

+δjkδimδnrδlsδuv + δikδjmδnrδlsδuv + δijδkmδnrδlsδuv + δklδjnδirδmsδuv + δjlδknδirδmsδuv

+δjkδlnδirδmsδuv + δklδinδjrδmsδuv + δilδknδjrδmsδuv + δikδlnδjrδmsδuv + δjlδinδkrδmsδuv

+δilδjnδkrδmsδuv + δijδlnδkrδmsδuv + δjkδinδlrδmsδuv + δikδjnδlrδmsδuv + δijδknδlrδmsδuv

+δjkδilδnrδmsδuv + δikδjlδnrδmsδuv + δijδklδnrδmsδuv + δklδjmδirδnsδuv + δjlδkmδirδnsδuv

+δjkδlmδirδnsδuv + δklδimδjrδnsδuv + δilδkmδjrδnsδuv + δikδlmδjrδnsδuv + δjlδimδkrδnsδuv

+δilδjmδkrδnsδuv + δijδlmδkrδnsδuv + δjkδimδlrδnsδuv + δikδjmδlrδnsδuv + δijδkmδlrδnsδuv

+δjkδilδmrδnsδuv + δikδjlδmrδnsδuv + δijδklδmrδnsδuv + δklδjmδinδrsδuv + δjlδkmδinδrsδuv

+δjkδlmδinδrsδuv + δklδimδjnδrsδuv + δilδkmδjnδrsδuv + δikδlmδjnδrsδuv + δjlδimδknδrsδuv

+δilδjmδknδrsδuv + δijδlmδknδrsδuv + δjkδimδlnδrsδuv + δikδjmδlnδrsδuv + δijδkmδlnδrsδuv

+ δjkδilδmnδrsδuv + δikδjlδmnδrsδuv + δijδklδmnδrsδuv
)
ν2ε . (B.123)

Note that all these integrals are zero in dimensional regularization because they are scale-
less. Instead, they are evaluated by introducing a hard cutoff. After the logarithm is
found, the UV pole is reconstructed. The replacement rule we indicate corresponds to
the counterterm necessary to cancel the UV divergence that would appear in dimensional
regularization if we would not have expanded over external momenta and energies.

B.5 Color Algebra and gamma matrices

B.5.1 Color Algebra

We will use the Gell-Mann matrices as a representation of the infinitesimal generators
of the special unitary grup SU(3). The Lie algebra of this group has dimension eight
and, therefore, it has a set of eight linearly independent generators, which we write as
T a, with a = 1, . . . , 8. These Lie algebra elements satisfy the following commutation and
anticommutation relations

[T a, T b]αβ = ifabc(T c)αβ , (B.124)

{T a, T b}αβ =
1

Nc

δabδαβ + dabc(T c)αβ , (B.125)

where fabc and dabc are antisymmetric and symmetric structure constants, respectively.
The normalization is the following

Tr[T aT b] = TF δ
ab , (B.126)

and the color factors are

CA = Nc , (B.127)
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CF = TF
N2
c − 1

Nc

, (B.128)

TF =
1

2
. (B.129)

For QCD, CA = Nc = 3 and CF = 4/3. The following relations, which can be found in
Ref. [76], are necessary to rewrite the color structure appearing in the HQET diagrams we
compute as the one of appearing in the Feynman rules given in Sec. B.1

(T aT a)αβ = CF δαβ , (B.130)

(T bT aT b)αβ = −TF
Nc

(T a)αβ =

(
CF −

CA
2

)
(T a)αβ , (B.131)

fabcfdbc = CAδ
ad , (B.132)

dabb = 0 , (B.133)

dabcddbc =

(
Nc −

4

Nc

)
δad = (8CF − 3CA)δad . (B.134)

Particularly, we computed the following relations that are difficult to find in the literature
and that turned out to be very important for the computation of diagrams appearing in
the scattering of a heavy quark with a gluon

(T c{T a, T b}T c)αβ =

(
CF −

CA
2

)
{T a, T b}αβ + TF δ

abδαβ , (B.135)

(T c[T a, T b]T c)αβ =

(
CF −

CA
2

)
[T a, T b]αβ , (B.136)

(T cT aT bT c)αβ =

(
CF −

CA
2

)
(T aT b)αβ +

TF
2
δabδαβ , (B.137)

and the following ones which typically show up in the computation of diagrams appearing
in the scattering of a heavy quark with a light quark

{T a, T b}αβ{T a, T b}δγ = −2CF (2CF − CA)δαβδδγ + (8CF − 3CA)(T a)αβ(T a)δγ , (B.138)

{{T a, T b}, T b}αβ = (4CF − CA)(T a)αβ , (B.139)

[T a, T b]αβ[T a, T b]δγ = −CA(T a)αβ(T a)δγ . (B.140)
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B.5.2 Properties of the gamma matrices

The gamma matrices or Dirac matrices are a set of conventional matrices with certain
anticommutation relations such that ensure they generate a matrix representation of the
Clifford algebra. In general, there are several representations for the gamma matrices and
in those cases we need to specify it, we will use the Dirac representation. These relations
are standard, and read

{γµ, γν} = 2gµνI4 , (B.141)

{γ5, γ
µ} = 0 , (B.142)

with
(γ0)2 = I4 , (γi)2 = −3I4 . (B.143)

The following standard traces of gamma matrices are needed for the computation of the
scattering of a heavy and light quarks

Tr(γµγν) = 4gµν , (B.144)

Tr(γµγνγσγρ) = 4(gµνgσρ − gµσgνρ + gµρgνσ) , (B.145)

Tr(γµγνγργσγ5) = −4iεµνρσ , (B.146)

Tr(γµγνγβγαγγγρ) = 4gγρ(gµνgβα − gµβgνα + gµαgνβ)− 4gαρ(gµνgβγ − gµβgνγ + gµγgνβ)

+4gβρ(gµνgαγ − gµαgνγ + gµγgνα)− 4gνρ(gµβgαγ − gµαgβγ + gµγgβα)

+4gµρ(gνβgαγ − gναgβγ + gνγgβα) , (B.147)

Tr(γµγνγργσγαγβγ5) = −4i(gµνερσαβ−gµρενσαβ+gρνεµσαβ−gαβεσµνρ+gσβεαµνρ−gσαεβµνρ) .
(B.148)

We define ε123 = 1 and ε0123 = −ε0123 = 1, so the relation between the three dimensional
Levi-Civita symbol in euclidean space with its four dimensional counterpart in Minskowski
space is ε0ijk = εijk. Also the following relations are useful to compute the three-fermion
loop

C−1γµC = −(γµ)T , (B.149)

C−1γ5C = (γ5)T , (B.150)

where C is the charge conjugation operator.
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B.5.3 Some algebraic relations

The following Levi-Civita symbol contraction identities have been very useful

εijkεimn = δjmδkn − δjnδkm , (B.151)

εjmnεimn = 2δij , (B.152)

εijkεijk = 6 . (B.153)

The contraction of the Levi-Civita symbol with three vectors and the contraction of Eq.
(B.151) with four vectors give rise to the following useful properties

a · (b× c) = b · (c× a) = c · (a× b) , (B.154)

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) . (B.155)

Other, less common in the literature, relations involving cross products can be obtained
by contracting the following expressions containing three Levi-Civita symbols and three
vectors

εijk(c× (a× b))k , (B.156)

akblcmεrkl(εnimεnjr + εnjmεnir) , (B.157)

akblcmεrkl(εnimεnjr − εnjmεnir) . (B.158)

The obtained relations are the following

ci(a× b)j − cj(a× b)i = (b · c)akεijk − (a · c)bkεijk , (B.159)

2δijc·(a×b) = ai(b×c)j+aj(b×c)i−bi(a×c)j−bj(a×c)i+ci(a×b)j+cj(a×b)i , (B.160)

ci(a× b)j − cj(a× b)i = −ai(b× c)j + aj(b× c)i + bi(a× c)j − bj(a× c)i . (B.161)

These relations are crucial to write the spin-dependent part of the one-loop scattering of
a heavy quark with a transverse gluon in terms of the structures of the spin-dependent
vertices of the HQET Lagrangian.

149



Appendix C

Matching QCD with NRQCD

C.1 QCD and NRQCD Feynman rules

In this section we summarize the Feynman rules necessary for the computation carried out
in Sec. 3.4. For QCD, we do not display all of them, but only the ones we need.

Heavy quark propagator:

i(/p+m)AB

p2 −m2 + iηq
δαβ (C.1)

Gluon propagator (Feynman gauge):

igµνδ
ab

q2 + iηg
(C.2)

Quark-gluon vertex:

− ig(γµ)AB(T a)αβ (C.3)

The needed NRQCD Feynman rules are the ones associated to the 1/m2 four fermion
operators. They are shown in Fig. [C.1]

Figure C.1: NRQCD Feynman rules of the 1/m2 four fermion operators.
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C.2 QCD Master Integrals

The following master integrals are necessary for the computation carried out in Sec. 3.4

I(n;m1,m2) =

∫
dDq

(2π)D
1

(q2 + iηg)n
1

q2 − 2m1q · v + iηq

1

q2 + 2m2q · v + iηq

=
i

(4π)2

(
−1

m2
1m

2
2

)n
1

m1 +m2

(
m1(m2

2)n
(
m2

1

4π

)ε
+ (m2

1)nm2

(
m2

2

4π

)ε)
×Γ(n− ε)Γ(1− 2n+ 2ε)

Γ(2− n+ 2ε)
, (C.4)

Iµ(n;m1,m2) =

∫
dDq

(2π)D
qµ

(q2 + iηg)n
1

q2 − 2m1q · v + iηq

1

q2 + 2m2q · v + iηq

=
1

2

i

(4π)2

(−1)n

m1 +m2

(
− (m2

1)1−n
(
m2

1

4π

)ε
+ (m2

2)1−n
(
m2

2

4π

)ε)
× Γ(n− ε)Γ(3− 2n+ 2ε)

(−1 + n− ε)Γ(3− n+ 2ε)
vµ , (C.5)

Iµν(n;m1,m2) =

∫
dDq

(2π)D
qµqν

(q2 + iηg)n
1

q2 − 2m1q · v + iηq

1

q2 + 2m2q · v + iηq
(C.6)

=
1

2

i

(4π)2

(−1)n

m1 +m2

(
(m1)3−2n

(
m2

1

4π

)ε
+ (m2)3−2n

(
m2

2

4π

)ε)
× Γ(4− 2n+ 2ε)

(−3 + 2n− 2ε)Γ(4− n+ 2ε)
(gµνΓ(−1 + n− ε)− 2Γ(n− ε)vµvν) .

C.3 Traces in D dimensions

In Sec. B.5.2 we gave some properties of the gamma matrices in four dimensions. However,
in the computation of Sec. 3.4 we are interested in the full D-dimensional result, so these
properties must be rewritten in D = 4 + 2ε dimensions. The necessary ones read

Tr(γµγν) = Dgµν , (C.7)

Tr(γµγνγσγρ) = D(gµνgσρ − gµσgνρ + gµρgνσ) , (C.8)

Tr(γµγνγβγαγγγρ) = D[gγρ(gµνgβα − gµβgνα + gµαgνβ)− gαρ(gµνgβγ − gµβgνγ + gµγgνβ)

+gβρ(gµνgαγ − gµαgνγ + gµγgνα)− gνρ(gµβgαγ − gµαgβγ + gµγgβα)

+gµρ(gνβgαγ − gναgβγ + gνγgβα)] . (C.9)
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Appendix D

Matching NRQCD with pNRQCD

D.1 Matching NRQCD with pNRQCD: An example

In Sec. 4.4 the O(α/m4), O(α2/m3) and O(α3/m2) potentials are presented. These po-
tentials happen to contribute to the O(mα6) heavy quarkonium spectrum. In this section,
we give a particular example of the one-loop matching calculation to O(α2/m3) between
NRQCD and pNRQCD. In the matching procedure, NRQCD Green functions in the kine-
matical situation E, p0, p′0 ∼ mv2 and |p|, q0, q, p′ ∼ mv are matched to interaction
potentials in pNRQCD. These counting rules give a well defined and systematic way of
computing the potentials that contribute, for instance, to the heavy quarkonium spectrum
at a given order, and they allow us to determine to which order in v a given potential
contributes. Moreover, the leading contribution to the binding energy of the bound state
is given by

E(n) = −C2
F

mrα
2

2n2
, (D.1)

which is obtained by solving the Schrödinger equation with the leading Coulomb potential.
In addition, the binding energy of a non-relativistic bound state is of the order of the
ultrasoft scale mrv

2, and we can identify that v ∼ α/n. For the lower levels of heavy
quarkonium, the counting v ∼ α is a good approximation. We will take this counting from
now on and throughout this thesis. As an example, let us do the counting for the Coulomb
potential i.e. let us see to which order it contributes to the spectrum

ṼC ∼
α

k2
∼ α

m2α2
⇒ VC ∼ d3kṼC ∼ m3α3 α

m2α2
∼ mα2 , (D.2)

which is in agreement with Eq. (D.1). The O(α2/m3) interaction potential contributes to
order

Ṽα2/m3 ∼ α2

m3
|k| ∼ α2

k2

|k|3

m3
⇒ Vα2/m3 ∼ mα6 , (D.3)

where we have used the counting of the Coulomb potential to determine the counting of
Vα2/m3 quite fastly. The same applies for all the other potentials. The term |k| could be
a more complicated function of the external and transfered momentum, but the power
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counting is the same. Likewise, it can be seen that the O(α/m4) and O(α2/m3) potentials
also contribute to the spectrum at O(mα6).

The diagram we have chosen as an example, which is shown in Fig.[D.3], happens to be

irrelevant for the computation of the potential running of D̃
(2)
d because the O(α2/m3) con-

tribution turns out to be zero, but it has all the ingredients that can appear in the matching
calculation, so it is a good pedagogical diagram. In addition, it gives an O(α2/m2) contri-
bution which we also compute. During the calculation, we use the non-static heavy quark
propagator and expand it to the necessary order1. Also energy dependent propagators are
expanded to the necessary order. The computation is carried out in the center of mass
frame of the heavy quark-antiquark pair.

As explained in Ref. [8], NRQCD Green functions are splitted in two contributions
corresponding to the two kinematical situations where the loop energy is either soft (q0 ∼
mv) or ultrasoft (q0 ∼ mv2). In the former case, green functions can be associated to a
local in time, but not in space, interaction potential. The green functions are then matched
to potential terms in pNRQCD. In the latter case, green functions can not be associated
to a local in time potential, and that contribution corresponds to the usual iteration of
potentials in non-relativistic quantum mechanics, which we refer in this thesis as potential
loops.

Let us look closer to Fig. [D.3]. The loop diagrams on the left are NRQCD four-fermion
diagrams, whereas the ones on the right are the same kind of diagrams in pNRQCD.
Since the same diagram exists in both theories one has to subtract to the diagrams of the
underlying theory, the ones of the EFT. The remainder, if there is any, can be absorbed
in a new non-local in space term (interaction potential) in the EFT. This new interaction
potential can be finite, but also IR or UV divergent. In the former case, the divergences are
typically cancelled by the ultrasoft, and in the latter, they are absorbed by the counterterms
of the potentials determining their anomalous dimensions. Both kind of diagrams must be
considered to be in the kinematical situation E, p0, p′0 ∼ mv2 and |p|, q0, q, p′ ∼ mv, so
note that the pNRQCD diagrams are not potential loops. The effect that subtracting these
pNRQCD diagrams has is to regulate the NRQCD diagrams by eliminating the contribution
of the heavy quark propagator poles that have already been included in potential loops,
and that in NRQCD diagrams produce a kind of IR divergences called pinch singularities
(±iη poles).

Before going to the particular one-loop calculation, we need the tree level matching
due to a longitudinal gluon exchange shown in Fig. [D.1], and due to a transverse gluon
exchange with two ck vertices shown in Fig. [D.2]. The matching will be carried out in the
off-shell Coulomb gauge matching scheme. From Fig. [D.1] we have that

− ig(T a)αβ
i

k2
ig(T a)β′α′ = −iṼC . (D.4)

Therefore

− iṼC = (T a)αβ(T a)β′α′
ig2

k2
. (D.5)

1Another option is to use the static heavy quark propagator and consider corrections coming from the
expansion of the non-static one as kinetic insertions. Both options are equivalent.
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Figure D.1: Tree level 1/m0 matching between NRQCD and pNRQCD due to a longitudinal
gluon exchange. The vertex comes from the 1/m0 heavy-gluon operator of the NRQCD La-
grangian. It gives the leading interaction potential between the two heavy quarks, the Coulomb
potential.

It is worth noting that, since in the Coulomb gauge the longitudinal gluon (the time
component of the vector potential) has an energy-independent propagator, the interac-
tion associated with the exchange of it corresponds to an instantaneous potential. From
Fig.[D.2] we have that

Figure D.2: Tree level 1/m2 spin-independent matching between NRQCD and pNRQCD due
to a transverse gluon exchange. The vertex comes from the 1/m spin-independent heavy-gluon
operator of the NRQCD Lagrangian, which is proportional to ck.

c
(1)
k

ig

2m1

(p + p′)i(T a)αβ
i

k2

(
δij − kikj

k2 + iηg

)
c

(2)
k

−ig
2m2

(−p− p′)j(T a)β′α′ = −iδṼtree , (D.6)

− iδṼtree = −c(1)
k c

(2)
k

ig2

m1m2

(T a)αβ(T a)β′α′
1

(k0)2 − k2 + iηg
pipj

(
δij − kikj

k2

)
. (D.7)
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Note that, due to the energy dependence of the transverse gluon propagator, the above
expression have to be expanded and it contributes to the spectrum at different orders of
mα. In particular, it contributes to all orders in mα4+2n, with n ∈ Z+. Expanding up to
the order of interest (mα6)

− iδṼtree = c
(1)
k c

(2)
k

ig2

m1m2

(T a)αβ(T a)β′α′
1

k2

(
1 +

(k0)2

k2

)
pipj

(
δij − kikj

k2

)
, (D.8)

where we removed the iη prescription because it will not be necessary even when we
will introduce this potential inside the pNRQCD loops, since there will not be energy
dependence in the denominator, and therefore, no pole in the complex energy plane. At
this point, we can start the computation of the one loop diagrams shown in Fig.[D.3].
Schematically we have

Figure D.3: One-loop contribution to the O(α3/m2) matching between NRQCD and pNRQCD
due to a longitudinal and a transverse gluon exchange. Diagrams above are NRQCD ones,
whereas diagrams below are pNRQCD ones. The one-loop pNRQCD diagrams regulate the pinch
singularities of the NRQCD diagrams. The transverse and longitudinal gluon exchange vertices
come from the 1/m spin-independent and 1/m0 heavy-gluon operators of the NRQCD Lagrangian,
respectively.

I1 + I2 = Ip1 + Ip2 − iδṼ1loop . (D.9)

Let us begin with I1
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I1 =

∫
dDq

(2π)D
c

(1)
k

ig

2m1

(p + q)i(T a)γβ
i

(p− q)2 + iηg

(
δij − (p− q)i(p− q)j

(p− q)2

)
×c(2)

k

−ig
2m2

(−p− q)j(T a)β′γ′(−ig)(T b)αγ
i

(q− p′)2
(ig)(T b)γ′α′

i

q0 + iηq

× i

E1 + E2 − q0 + iηq
. (D.10)

Introducing the change of variables Q = q− p the integral can be simplified to

I1 = c
(1)
k c

(2)
k

g4

m1m2

(T bT a)αβ(T aT b)β′α′pipj
∫

ddQ

(2π)d

(
δij − QiQj

Q2

)
1

(Q + k)2

×
∫
dq0

2π

1

(q0 − E1)2 −Q2 + iηg

1

q0 + iηq

1

q0 − E1 − E2 − iηq
. (D.11)

By Taylor expanding following the hierarchies described at the beginning of the section
and up to O(mα6), I1 takes the form

I1 = c
(1)
k c

(2)
k

g4

m1m2

(T bT a)αβ(T aT b)β′α′pipj
∫

ddQ

(2π)d

(
δij − QiQj

Q2

)
1

(Q + k)2
(D.12)

×
∫
dq0

2π

1

(q0)2 −Q2 + iηg

1

q0 + iηq

1

q0 − iηq

(
1 +

2q0E1

(q0)2 −Q2 + iηg
+
E1 + E2

q0 − iηq

)
.

Now let us compute the diagram in the EFT (pNRQCD), Ip1 . The amplitude can be written
as

Ip1 =

∫
dDq

(2π)D
(−iṼ (o)

tree)
i

q0 + iηq

i

E1 + E2 − q0 + iηq
(−iṼC) , (D.13)

or explicitly, as

Ip1 =

∫
dDq

(2π)D
c

(1)
k c

(2)
k

ig2

m1m2

(T a)γβ(T a)β′γ′
1

(q− p)2

(
1 +

(q0 − E1)2

(q− p)2

)
pipj (D.14)

×
(
δij − (q− p)i(q− p)j

(q− p)2

)
i

q0 + iηq

i

E1 + E2 − q0 + iηq
(T b)αγ(T

b)γ′α′
ig2

(q− p′)2
.

Doing the change Q = q− p, the integral can be written as

Ip1 = −c(1)
k c

(2)
k

g4

m1m2

(T bT a)αβ(T aT b)β′α′pipj
∫

ddQ

(2π)d

(
δij − QiQj

Q2

)
1

Q2

1

(Q + k)2

×
∫
dq0

2π

(
1 +

(q0 − E1)2

Q2

)
1

q0 + iηq

1

q0 − E1 − E2 − iηq
. (D.15)
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Finally, expanding up to the desired order, we obtain

Ip1 = −c(1)
k c

(2)
k

g4

m1m2

(T bT a)αβ(T aT b)β′α′pipj
∫

ddQ

(2π)d

(
δij − QiQj

Q2

)
1

Q2

1

(Q + k)2

×
∫
dq0

2π

1

q0 + iηq

1

q0 − iηq

(
1 +

(q0)2 − 2q0E1

Q2
+
E1 + E2

q0 − iηq

(
1 +

(q0)2

Q2

))
. (D.16)

The quantity I1 − Ip1 must be pinch singularity free, and the integral over q0 can be com-
puted. Before the q0 integral is performed I1 − Ip1 is given by

I1 − Ip1 = c
(1)
k c

(2)
k

g4

m1m2

(T bT a)αβ(T aT b)β′α′pipj
∫

ddQ

(2π)d

(
δij − QiQj

Q2

)
1

Q2

1

(Q + k)2

×
∫
dq0

2π

1

q0 + iη

1

q0 − iη
1

(q0)2 −Q2 + iη

(
(q0)2 +

E1 + E2

q0 − iη
(q0)4

Q2

)
, (D.17)

where we have used that antisymmetric functions integrated over symmetric integration
limits vanish. Note that we have also removed the scaleless integral (

∫
dq0/2π) that ap-

peared. A priori, such integral is ill-defined, so we have to regulate it by extrapolating
the q0 integral to d′ = 1 + 2ε dimensions. The resulting integral is scaleless and vanishes
in dimensional regularization. Integrating by residues we find that the term proportional
to E1 + E2 vanishes, so there is no O(α2/m3) contribution to the potential, but only an
O(α2/m2) contribution. After integrating over q0 the following d-momentum integral is
left

I1 − Ip1 = −c(1)
k c

(2)
k

ig4

2m1m2

(T bT a)αβ(T aT b)β′α′pipj
∫

ddQ

(2π)d

(
δij − QiQj

Q2

)
1

|Q|3
1

(Q + k)2
.

(D.18)
Analogously, for I2 − Ip2 , we find

I2 − Ip2 = −c(1)
k c

(2)
k

ig4

2m1m2

(T bT a)αβ(T aT b)β′α′p′ip′j
∫

ddQ

(2π)d

(
δij − QiQj

Q2

)
1

|Q|3
1

(Q + k)2
.

(D.19)
Therefore, the contribution to the O(α2/m2) potential is given by

δṼ1loop = c
(1)
k c

(2)
k

g4

2m1m2

(T bT a)αβ(T aT b)β′α′(pipj + p′ip′j)

×
∫

ddQ

(2π)d

(
δij − QiQj

Q2

)
1

|Q|3
1

(Q + k)2
, (D.20)

which an be expressed in terms of the master integrals of Sec. D.2 as
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δṼ1loop = c
(1)
k c

(2)
k

g4

2m1m2

(T bT a)αβ(T aT b)β′α′(pipj + p′ip′j)
(
δijI1(1, 3/2)− I ij1 (1, 5/2)

)
.

(D.21)
In d = 3 + 2ε dimensions and projecting to the singlet sector using the relations of Sec.
D.3, Eq. (D.21) gives

δṼ1loop = c
(1)
k c

(2)
k

g4

2m1m2

1

8π
√
π

1

(4π)ε
C2
F (pipj + p′ip′j)|k|−2+2ε (D.22)

×
[
− Γ(2− ε)Γ(1/2 + ε)Γ(1 + ε)

Γ(5/2)Γ(3/2 + 2ε)

kikj

k2

+Γ(1− ε)Γ(ε)

(
Γ(1/2 + ε)

Γ(3/2)Γ(1/2 + 2ε)
− Γ(5/2 + ε)

(3 + 2ε)Γ(5/2)Γ(3/2 + 2ε)

)
δij
]
.

By Taylor expanding to O(ε0) we obtain

δṼ1loop = c
(1)
k c

(2)
k

g4

6m1m2

1

π2
C2
F |k|−2+2ε

[
1

2

(
1

ε
+ 1 + γE − ln(π)

)
(p2 + p′2)

−(p · k)2 + (p′ · k)2

k2

]
+O(ε) . (D.23)

As it can be seen, this contribution to the potential is divergent. That divergence has IR
origin, since the superficial degree of divergence of Eq. (D.20) is D = −2, and it is not
absorbed by any Wilson coefficient of the potential, but it is cancelled by the ultrasoft [66]
instead. Afterwards, the resulting contribution to the O(α2/m2) potential is finite.

D.2 NRQCD Master Integrals

The following d-momentum master integrals are needed to carry out the matching between
NRQCD and pNRQCD, in particular, to compute the O(α2/m3) potential presented in
Sec. 4.4.2:

I1(α, β) ≡
∫

ddQ

(2π)d
1

(Q± k)2αQ2β
(D.24)

=
Γ(α + β − 3/2− ε)Γ(3/2− α + ε)Γ(3/2− β + ε)

(4π)3/2+εΓ(α)Γ(β)Γ(3− α− β + 2ε)
|k|−2α−2β+3+2ε ,

I i1(α, β;±k) ≡
∫

ddQ

(2π)d
Qi

(Q± k)2αQ2β

= ∓ 1

8π
√
π

1

(4π)ε
Γ(α + β − 3/2− ε)Γ(3/2− α + ε)Γ(5/2− β + ε)

Γ(α)Γ(β)Γ(4− α− β + 2ε)

×|k|−2α−2β+3+2εki , (D.25)
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I ij1 (α, β) ≡
∫

ddQ

(2π)d
QiQj

(Q± k)2αQ2β

=
1

8π
√
π

1

(4π)ε
1

Γ(α)Γ(β)Γ(5− α− β + 2ε)
|k|−2α−2β+5+2ε

×
(

Γ(5/2 + ε)Γ(α + β − 5/2− ε)Γ(5/2− α + ε)Γ(5/2− β + ε)

(3 + 2ε)Γ(3/2 + ε)
δij

+Γ(α + β − 3/2− ε)Γ(3/2− α + ε)Γ(7/2− β + ε)
kikj

k2

)
, (D.26)

I ijk1 (α, β;±k) ≡
∫

ddQ

(2π)d
QiQjQk

(Q± k)2αQ2β

= ∓ 1

8π
√
π

1

(4π)ε
1

Γ(α)Γ(β)Γ(6− α− β + 2ε)
|k|−2α−2β+5+2ε

×
(

1

2
Γ(α + β − 5/2− ε)Γ(5/2− α + ε)Γ(7/2− β + ε)

×(kkδij + kjδik + kiδjk) + Γ(α + β − 3/2− ε)Γ(3/2− α + ε)

×Γ(9/2− β + ε)
kikjkk

k2

)
, (D.27)

I ijkl1 (α, β) ≡
∫

ddQ

(2π)d
QiQjQkQl

(Q± k)2αQ2β

=
1

8π
√
π

1

(4π)ε
1

Γ(α)Γ(β)Γ(7− α− β + 2ε)
|k|−2α−2β+7+2ε

×
(

1

4
Γ(α + β − 7/2− ε)Γ(7/2− α + ε)Γ(7/2− β + ε)

×(δijδkl + δikδjl + δilδjk)

+
1

2
Γ(α + β − 5/2− ε)Γ(5/2− α + ε)Γ(9/2− β + ε)

1

k2
(δijkkkl + δikkjkl

+δilkjkk + δjkkikl + δjlkikk + δklkikj)

+Γ(α + β − 3/2− ε)Γ(3/2− α + ε)Γ(11/2− β + ε)
kikjkkkl

k4

)
. (D.28)

Also the following q0 integrals are very useful

I2 =

∫
dq0

2π

1

q0 + iη
= − i

2
, (D.29)

I3 =

∫
dq0

2π

1

(q0)2 −Q2 + iηg

1

q0 + iηq
=
i

2

1

Q2
, (D.30)

I4 =

∫
dq0

2π

1

(q0)2 −Q2 + iηg

1

(q0)2 − (Q− k)2 + iηg

1

q0 + iηq
= − i

2

1

(Q− k)2Q2
. (D.31)
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D.3 Color structure

Since we are only interested in observable heavy quarkonium, i.e. in heavy quarkonium in
a color singlet state, we are only interested in the color singlet potential, which describes
the interaction between the two heavy quarks inside the bound state without changing
the color of the bounded system2. Therefore, we need to project the potential to the
singlet sector |s〉 = 1√

Nc
δαα′ (〈s|= 1√

Nc
δββ′). The following projections are necessary to

that purpose

〈s|δαβδβ′α′ |s〉 = 1 , (D.32)

〈s|(T a)αβ(T a)β′α′|s〉 = CF , (D.33)

〈s|(T aT b)αβ(T aT b)β′α′|s〉 = CF

(
CF −

CA
2

)
, (D.34)

〈s|(T bT a)αβ(T aT b)β′α′ |s〉 = C2
F , (D.35)

〈s|fabc(T a)αβ(T bT c)β′α′|s〉 =
i

2
CFCA , (D.36)

〈s|fabc{T b, T c}αβ(T a)β′α′|s〉 = 0 . (D.37)

2Contrarily, heavy quarkonium in an octet state brings color charge, and therefore, it is not observable
as an asymptotically free state. The interaction potential between two heavy quarks in a color octet state
is the interaction potential projected to the octet state. Heavy quarkonium in a singlet state can also
interact with ultrasoft gluons and with octet quarkonium fields as intermediate steps. However, this kind
of interactions are accounted in the ultrasoft.
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Appendix E

pNRQCD RG

E.1 Feynman Rules of pNRQCD

In Fig.[E.1], we display the pNRQCD Feynman rules needed for the calculation of the

potential running of D̃
(2)
d . A more complete set of Feynman rules can be found in Refs.

[2, 8].

Figure E.1: pNRQCD Feynman rules needed for the calculation of the potential running of

D̃
(2)
d . Above the QQ̄ singlet propagator and below the iteration of a perturbative interaction

potential. Hats over quantities mean we are dealing with operators.

E.2 NLL Potential Running of D̃
(2)
d : An Example

In this section, we give an example of the computation of a potential loop contributing
to the NLL potential running of D̃

(2)
d , as well as, we determine its contribution to the

potential RGE. In general, there are one-loop and two-loop contributions at O(α3). The
master integrals relevant for the complete calculation are summarized in Sec. E.3.

The potential running is the contribution to the full running (soft, potential and ul-
trasoft) coming from potential loops, which is equivalent to non-relativistic quantum me-
chanics perturbation theory. Potential loops correspond to the region of NRQCD green
functions where the loop energy is of the order of the ultrasoft scale. More precisely, when
E, p0, p′0, q0 ∼ mv2 and |p|, |p|′, |q| ∼ mv. The anomalous dimension is determined from
the UV divergences arising in diagrams of heavy quark-antiquark pairs interacting through
different order in α and m interaction potentials, that are treated as perturbations. There-
fore, we are only interested in the UV pole, i.e. the 1/ε, of these diagrams. Unlike in Ch.
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4, we will keep hats in the present section to symbolize we are dealing with operators in
order to make it more clear for an unexperienced reader.

Let us go into the computation. Firstly, let us explicitly write the Coulomb and delta-
like potentials in momentum space, as they are the ones we will use in this example. They
are given by

ṼC = −CF
g2
Vs

k2
, (E.1)

Ṽd = CF
πD̃

(2)
d

m1m2

, (E.2)

respectively. We also need to fix the normalization, which is given by the diagram shown
in Fig.[E.2]. The amplitude reads

Figure E.2: Potential loop of a single 1/m2 potential. It fixes de normalization.

− iA0 = 〈p′|(−i)V̂d|p〉 = −iṼd = −iCF
πD̃

(2)
d

m1m2

, (E.3)

where we used that the object 〈p′|V̂ |p〉 = Ṽ is the Fourier transform of the d-dimensional
potential in position space i.e. it is the d-dimensional potential in momentum space. As an
example, we consider a two-loop calculation which consists in the iteration of the potentials
shown in Fig.[E.3]. Let us compute first the potential loops with the Coulomb potential
applied to external momenta. On the one hand, we have that −iA3 = −iA1(p ↔ p′), so
we only need to compute one of them. On the other hand, −iA1 is given by

Figure E.3: Potential loop that contributes to the O(α3) potential anomalous dimension of D̃
(2)
d

consisting in the iteration of two 1/m2 potentials and one Coulomb potential.
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−iA1 = 〈p′|(−i)V̂d
i

E − p̂2

2mr
+ iη

(−i)V̂d
i

E − p̂2

2mr
+ iη

(−i)V̂C |p〉

= −4im2
r〈p′|V̂d

1

p̂2 − 2mr(E + iη)
V̂d

1

p̂2 − 2mr(E + iη)
V̂C |p〉 . (E.4)

Note that every propagator adds an extra power of mr. Introducing identities in terms of
momentum eigenstates we can write the amplitude as the following two-loop integral

−iA1 = −4im2
r

∫
ddq

(2π)d

∫
ddq′

(2π)d
〈p′|V̂d|q〉

1

q2 − 2mr(E + iη)
〈q|V̂d|q′〉

× 1

q′2 − 2mr(E + iη)
〈q′|V̂C |p〉 . (E.5)

Using that Ṽ = 〈p′|V̂ |p〉, we find

−iA1 = 4iπ2C3
Fg

2
VsD̃

(2) 2
d

m2
r

m2
1m

2
2

∫
ddq

(2π)d

∫
ddq′

(2π)d
1

q2 − 2mr(E + iη)

× 1

q′2 − 2mr(E + iη)

1

(q′ − p)2
. (E.6)

Always that we arrive at this stage we make a delicate step. We set all the external
momenta p and p′ equal to zero. This step can only be justified if all the integrals are UV,
and then killing the external momentum does no ruin the regulation of any IR divergence,
and also if the two integrals are together logarithmically divergent. This is so because the
appearance of an external momentum lowers the superficial degree of divergence, making
it more and more IR. Therefore, if the integral is logarithmically divergent, the appearance
of an external momentum would make it IR instead of UV. In that case, we can set all
the external momenta to zero and all the divergences can be absorbed in the delta-like
potential. Contrarily, if the superficial degree of divergence is such that the integrals are
UV and power-like, then this step would not be justified, as the appearance of a factorized
external momentum is necessary to make the integral logarithmically divergent. In that
case, the integrals would contribute to the potential running of all other spin-independent
1/m2 potentials. Fortunately, by explicit calculation, we see that this is not the case
and that all the integrals satisfy both previous conditions. Therefore only the delta-like
potential gets potential running. Note that the regulator of the integrals is the term
−2mr(E + iη) coming from the singlet propagator. Thus

−iA1 = 4iπ2C3
Fg

2
VsD̃

(2) 2
d

m2
r

m2
1m

2
2

∫
ddq′

(2π)d
1

q′2(q′2 − 2mr(E + iη))

∫
ddq

(2π)d
1

q2 − 2mr(E + iη)

= 4iπ2C3
Fg

2
VsD̃

(2) 2
d

m2
r

m2
1m

2
2

IPL(1, 1)IPL(0, 1) , (E.7)
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where IPL(1, 1) and IPL(0, 1) are master integrals defined in Sec. E.3.1. These two integrals
are not divergent. Therefore, −iA1 does not contribute to the running. For the same reason
−iA3 neither contributes. The other possible contribution is the one with the Coulomb
insertion between the two delta-like potentials. For this case, the amplitude reads

− iA2 = 〈p′|(−i)V̂d
i

E − p̂2

2mr
+ iη

(−i)V̂C
i

E − p̂2

2mr
+ iη

(−i)V̂d|p〉 . (E.8)

By introducing identities in terms of momentum eigenstates and consequently writing the
amplitude in terms of momentum space potentials, we find the following expression for the
amplitude

−iA2 = 4iπ2C3
Fg

2
VsD̃

(2) 2
d

m2
r

m2
1m

2
2

∫
ddq

(2π)d
1

q2 − 2mr(E + iη)

×
∫

ddq′

(2π)d
1

(q′ − q)2(q′2 − 2mr(E + iη))

= 4iπ2C3
Fg

2
VsD̃

(2) 2
d

m2
r

m2
1m

2
2

IPL(0, 1, 1, 0, 1), (E.9)

where the two-loop integral IPL(0, 1, 1, 0, 1) is defined and evaluated in Sec. E.3.2. The
amplitude is finally given by

− iA2 = − i

16
C3
Fg

2
VsD̃

(2) 2
d

m2
r

m2
1m

2
2

1

ε
(−2mr(E + iη))2ε +O(ε) , (E.10)

which is divergent. This divergence gets absorbed in the spin-independent delta-like po-
tential, more particularly into its Wilson coefficient D̃

(2)
d . The counterterm that cancels

the UV divergence above is given by

δD̃
(2)
d = − 1

16π
C2
Fg

2
VsD̃

(2) 2
d

m2
r

m1m2

1

ε
ν4ε . (E.11)

Its contribution to the potential RGE of D̃
(2)
d can be obtained from the relation

ν
d

dν
D̃

(2)
d,R = −ν d

dν
δD̃

(2)
d , (E.12)

since D̃
(2)
d,B = D̃

(2)
d,R + δD̃

(2)
d . Therefore

ν
d

dν
D̃

(2)
d = C2

FαVsD̃
(2) 2
d

m2
r

m1m2

. (E.13)

Let us stress that Eqs. (E.11,E.13) are nor the complete counterterm neither the complete
RGE despite of the notation of Ch. 4, and they must be understood in this section as the
contributions coming from the potential loops we have computed.
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E.3 Potential Loop Master Integrals

In this section, we summarize the integrals that appear in the potential loops we compute
to determine the potential running of D̃

(2)
d in Sec. 4.5.3. All the integrals can be computed

using the standard technique of Feynman parametrization and the master integrals given
in Sec. A.5. In general, we are only interested in the divergent part of the integrals, since
we only want to compute the potential anomalous dimension of D̃

(2)
d .

E.3.1 One-loop Master Integrals

The general structure of the one-loop integrals that appear is the following

IPL(α, β) ≡
∫

ddq

(2π)d
1

(q2)α(q2 − 2mr(E + iη))β
(E.14)

=
1

(4π)3/2+ε

Γ(α + β − 3/2− ε)Γ(3/2− α + ε)

Γ(β)Γ(3/2 + ε)
(−2mr(E + iη))−α−β+3/2+ε .

These particular cases in which the integral above is divergent appear in the calculation

IPL(1/2− ε, 1) = − 1

8π2ε
(−2mr(E + iη))2ε +O(ε) , (E.15)

IPL(−1/2− ε, 2) = − 1

8π2ε
(−2mr(E + iη))2ε +O(ε) . (E.16)

Also the particular cases IPL(1, 1), IPL(0, 1) and IPL(−1, 2) appear. All of them are finite
and do not contribute to the anomalous dimension.

E.3.2 Two-loop Master Integrals

The general structure of the two-loop integrals that appear is the following

IPL(α, β, λ, σ, ρ) ≡
∫

ddq

(2π)d
1

(q2)α(q2 − 2mr(E + iη))β

×
∫

ddq′

(2π)d
1

[(q′ − q)2]λ(q′2)σ(q′2 − 2mr(E + iη))ρ

=
1

(4π)3+2ε

Γ(α + β + λ+ σ + ρ− 3− 2ε)

Γ(α)Γ(β)Γ(λ)Γ(σ)Γ(ρ)

×(−2mr(E + iη))−α−β−λ−σ−ρ+3+2ε

∫ 1

0

dx x−ρ+1/2+ε(1− x)ρ−1

×
∫ 1

0

dy y−σ−ρ+1/2+ε(1− y)σ−1(1− xy)−λ−σ−ρ+3/2+ε

×
∫ 1

0

dz zα+β−1(1− z)λ+σ+ρ−5/2−ε
∫ 1

0

dwwα−1(1− w)β−1

×
(
z(1− w) +

(1− x)(1− z)

xy(1− xy)

)−α−β−λ−σ−ρ+3+2ε

. (E.17)
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The expression above is rather general but not very powerful, since the integrals over
Feynman parameters can not be computed analytically in the general case. It can not be
computed analytically even in some particular cases. Instead, one can use this expression
and try different techniques to extract the 1/ε, like expanding the term(

z(1− w) +
(1− x)(1− z)

xy(1− xy)

)2ε

, (E.18)

which appears when the integral is logarithmically divergent, to O(ε0). Note that, in those
cases where some argument of the integral is zero or a negative integer, the integral must
be regulated. That can be done by shifting these arguments by a small amount δ and then
taking the limit δ → 0 after doing the integral and before expanding in ε. The following
particular cases in which the integral above is divergent appear in the calculation

IPL(0, 1, 1, 0, 1) = − 1

64π2ε
(−2mr(E + iη))2ε +O(ε) , (E.19)

IPL(−1, 2, 1,−1, 2) = − 1

64π2ε
(−2mr(E + iη))2ε +O(ε) , (E.20)

IPL(−1, 2, 1, 0, 1) = − 1

64π2ε
(−2mr(E + iη))2ε +O(ε) . (E.21)

Also the particular cases

IPL(−1, 1, 1, 1, 1) , IPL(−2, 1, 2, 1, 1) , IPL(0, 1, 2,−1, 1) , IPL(−1, 1, 2, 0, 1) , (E.22)

IPL(1, 1, 1,−1, 1) , IPL(−3, 1, 3, 1, 1) , IPL(1, 1, 3,−3, 1) , IPL(−1, 1, 3,−1, 1) ,

IPL(0, 1, 3,−2, 1) , IPL(−2, 1, 3, 0, 1) , IPL(1, 1,−1, 1, 1) , IPL(−3, 3, 1, 1, 1) ,

IPL(−2, 2, 1, 1, 1) , IPL(−3, 2, 2, 1, 1) , IPL(−1, 2, 2,−1, 1) , IPL(−2, 2, 2, 0, 1) ,

appear. All of them are finite and do not contribute to the anomalous dimension.

E.4 Necessary Wilson coefficients

Here we present some Wilson coefficients needed for the computation of the NLL running
of the Wilson coefficient associated to the spin-independent delta-like potential.

E.4.1 For the plot of the LL running of D̃
(2)
d with the two-loop

running coupling

In order to visualize the relative importance of the NLL corrections compared with the LL
term, we plotted the later in the Coulomb gauge in Sec. 4.3. To this purpose we needed
the LL expressions of the the following NRQCD Wilson coefficients which can be found in
Refs. [3, 14]
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cD(ν)
∣∣∣LL

= cD(νh)
∣∣∣LO

− 1 +
9CA

9CA + 8TFnf

{
− 5CA + 4TFnf

4CA + 4TFnf
z−2CA

+
CA + 16CF − 8TFnf

2(CA − 2TFnf )

+
−7C2

A + 32CACF − 4CATFnf + 32CFTFnf
4(CA + TFnf )(2TFnf − CA)

z
4
3
TFnf− 2

3
CA

+
8TFnf
9CA

[
z−2CA +

(
20

13
+

32CF
13CA

)(
1− z−

13
6
CA

)]}
, (E.23)

dss(ν)
∣∣∣LL

= dss(νh)
∣∣∣LO

+ 4CF

(
CF −

CA
2

)
π

β0

α(νh)(z
β0 − 1) , (E.24)

dvs(ν)
∣∣∣LL

= dvs(νh)
∣∣∣LO

− α(νh)

[
4CF −

3CA
2
− 5

4
CA

(
m1

m2

+
m2

m1

)]
2π

β0

(zβ0 − 1)

−α(νh)

(
m1

m2

+
m2

m1

)
27C2

A

9CA + 8TFnf

π

2β0

{
− 5CA + 4TFnf

4CA + 4TFnf

β0

β0 − 2CA

×(zβ0−2CA − 1) +
CA + 16CF − 8TFnf

2(CA − 2TFnf )
(zβ0 − 1)

+
−7C2

A + 32CACF − 4CATFnf + 32CFTFnf
4(CA + TFnf )(2TFnf − CA)

3β0

3β0 + 4TFnf − 2CA

×(zβ0+4TFnf/3−2CA/3 − 1) +
8TFnf
9CA

[
β0

β0 − 2CA
(zβ0−2CA − 1)

+

(
20

13
+

32

13

CF
CA

)(
(zβ0 − 1)− 6β0

6β0 − 13CA
(zβ0−13CA/6 − 1)

)]}
, (E.25)

where the initial matching conditions are

dss(νh) + CFdvs(νh)
∣∣∣LO

= 0 , (E.26)

cD(νh)
∣∣∣LO

= 1 . (E.27)

Note that, for the unequal mass case, dss(νh)
∣∣∣LO

= 0 and dvs(νh)
∣∣∣LO

= 0 separately, atO(α).

This is not true for the equal mass case, since there is a non-vanishing contribution to the
initial matching conditions at O(α) coming from QCD annihilation diagrams. However,

Eq. (E.26) is satisfied in both cases and it is enough for the evaluation of D̃
(2) LL
d .
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E.4.2 For the numerical evaluation of D̃
(2)
d at NLO

In this section, we summarize the needed expressions of the NRQCD Wilson coefficients
to compute the numerical value of the Wilson coefficient D̃

(2)
d at NLO. They can be found

in Refs. [15, 28]. The label NLO refers to the purely NLO contribution i.e. without the
inclusion of the LO contribution.

Different masses: Bc

dss(νh)
∣∣∣NLO

= −CF
(
CA
2
− CF

)
α(νh)

2

m2
1 −m2

2

[
m2

1

(
ln

(
m2

2

ν2
h

)
+

1

3

)
−m2

2

(
ln

(
m2

1

ν2
h

)
+

1

3

)]
,

(E.28)

dvs(νh)
∣∣∣NLO

= −2CF
α(νh)

2

m2
1 −m2

2

[
m2

1

(
ln

(
m2

2

ν2
h

)
+

1

3

)
−m2

2

(
ln

(
m2

1

ν2
h

)
+

1

3

)]
+
CA
4

α(νh)
2

m2
1 −m2

2

[
3

(
m2

1

(
ln

(
m2

2

ν2
h

)
+

1

3

)
−m2

2

(
ln

(
m2

1

ν2
h

)
+

1

3

))
+

1

m1m2

(
m4

1

(
ln

(
m2

2

ν2
h

)
+

10

3

)
−m4

2

(
ln

(
m2

1

ν2
h

)
+

10

3

))]
, (E.29)

c
(1)
D (νh)

∣∣∣NLO

=
α(νh)

2π
CA −

4α(νh)

15π

(
1 +

m2
1

m2
2

)
TF +

α(νh)

π

(
8

3
CF +

2

3
CA

)
ln

(
m1

νh

)
,

(E.30)

c
(2)
D (νh)

∣∣∣NLO

=
α(νh)

2π
CA −

4α(νh)

15π

(
1 +

m2
2

m2
1

)
TF +

α(νh)

π

(
8

3
CF +

2

3
CA

)
ln

(
m2

νh

)
.

(E.31)

Equal masses: bottomonium/charmonium

dss(νh)
∣∣∣NLO

= − dass
2Nc

− 3dasv
2Nc

−N
2
c − 1

4N2
c

davs−3
N2
c − 1

4N2
c

davv +
2

3
CF

(
CA
2
− CF

)
α(νh)

2 (E.32)

dvs(νh)
∣∣∣NLO

= −dass − 3dasv +
davs
2Nc

+
3davv
2Nc

+

(
4

3
CF +

11

12
CA

)
α(νh)

2 (E.33)

dass

∣∣∣NLO

= α(νh)
2CF

(
CA
2
− CF

)
(2− 2 ln 2 + iπ) (E.34)

dasv

∣∣∣NLO

= 0 (E.35)

davs

∣∣∣NLO

=
α(νh)

2

2

(
−3

2
CA + 4CF

)
(2− 2 ln 2 + iπ) (E.36)
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davv

∣∣∣NLO

= −α(νh)
2

(
TF

(
1

3
nf

(
2 ln 2− 5

3
− iπ

)
− 8

9

)
+ CA

109

36
− 4CF

)
(E.37)

c
(i)
D (νh)

∣∣∣NLO

=
α(νh)

2π
CA − 16d2(νh)

∣∣∣LO

(E.38)

d2(νh)
∣∣∣LO

=
α(νh)

60π
TF (E.39)

Let’s recall that davv

∣∣∣LO

= −πα(νh), whereas dass

∣∣∣LO

= dasv

∣∣∣LO

= davs

∣∣∣LO

= 0.

E.5 Details of the soft RGE

The soft RGE of D̃
(2)
d was displayed in Sec. 4.5.1. It reads

νs
d

dνs
(dss + CF d̄vs)

∣∣∣∣
soft

= CFα
2

(
2CF −

CA
2

)
c

(1)
k c

(2)
k

+CFα
2

[
m1

m2

(
1

3
Tfnf c̄

hl(2)
1 − 4

3
(CA + CF )c

(2) 2
k − 5

12
CAc

(2) 2
F

)
+
m2

m1

(
1

3
Tfnf c̄

hl(1)
1 − 4

3
(CA + CF )c

(1) 2
k − 5

12
CAc

(1) 2
F

)]
+CF

α3

4π

[
m1

m2

(
−TFnf

54
(65CA − 54CF )c̄

hl(2)
1 + #c

(2) 2
k − CA

18
(25CA −

125

3
TFnf )c

(2) 2
F

)
+
m2

m1

(
−TFnf

54
(65CA − 54CF )c̄

hl(1)
1 + #c

(1) 2
k − CA

18
(25CA −

125

3
TFnf )c

(1) 2
F

)]
+CF

α3

4π

[
#c

(1)
k c

(2)
k + #dss + #dvs

]
, (E.40)

where the numbers ”#” are presently unknown. Remember that our aim is to determine
the purely NLL, i.e. theO(α2+α3 lnα+. . .), contribution to the soft running of dss+CF d̄vs.
In order to isolate this correction from the LL part, we start splitting the Wilson coefficients
into their LL and NLL contributions, namely ci = [ci]

LL + [ci]
NLL. We also set to zero the

unknown terms (including the NLL running of c̄hl1 which is also unknown at present, so we
take it with LL precision). Thus
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νs
d

dνs
(dss + CF d̄vs)

∣∣∣∣
soft

= CFα
2

(
2CF −

CA
2

)
(E.41)

+CFα
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[
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)]
.

The Wilson coefficients at LL do not depend on the mass, so

νs
d

dνs
(dss + CF d̄vs)
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soft

= CFα
2

(
2CF −

CA
2

)
+CFα
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− TFnf

54
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−CA
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125
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. (E.42)

Let us writte the RGE above in terms of a derivative with respect to α instead of a
derivative with respect to νs

d

dα
(dss + CF d̄vs)
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= − 1
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8π2
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CFα
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125

3
TFnf )([cF ]LL)2

)]
. (E.43)

Expanding in powers of α and taking only the relevant terms to determine [dss+CF d̄vs]
NLL,

where dss + CF d̄vs = [dss + CF d̄vs]
LL + [dss + CF d̄vs]

NLL, we obtain the following RGE
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, (E.44)

which written in terms of z, reads
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This is precisely the equation we solve to obtain Eq. (4.70).

E.5.1 NLL running of cF

Note that, in order to solve Eq. (E.45), the Wilson coefficients c̄hl1 and cF are needed with
LL and NLL precision, respectively. The expressions with LL precision are summarized in
Sec. B.2. The full NLL running of cF was computed in Ref. [13] and it is given by

c
(i)
F (mi) = z−γ0/2

[
1 +

α(νh)

4π

(
c1 +

γ0

2
ln

(
ν2
h

m2
i

))
+
α(νh)− α(νs)

4π

(
γ1

2β0

− γ0β1

2β2
0

)]
, (E.46)

where

γ0 = 2CA , γ1 =
68

9
C2
A −

52

9
CATFnf , c1 = 2(CA + CF ) . (E.47)

This expression can be splitted into its purely LL and NLL contributions, c
(i)
F (mi) =

[c
(i)
F (mi)]

LL + [c
(i)
F (mi)]

NLL. The purely NLL contribution is given by
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LL (E.48)
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