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Abstract

Remote sensing hyperspectral data have hundreds or thousands of spectral components from very
similar wavelengths. To store and transmit it entails excessive demands on bandwidth and on on-
board memory resources, which are already strongly restricted. This leads to stop capturing data or
to discard some of the already recorded information without further processing. To alleviate these
limitations, data compression techniques are applied. Besides, sensors’ technology is continuously
evolving, acquiring higher dimensional data. Consequently, in order to not jeopardize future space
mission’s performance, more competitive compression methods are required.

Regression Wavelet Analysis (RWA) is the state-of-the-art lossless compression method regard-
ing the trade-off between computational complexity and coding performance. RWA is introduced
as a lossless spectral transform followed by JPEG 2000. It applies a Haar Discrete Wavelet Trans-
form (DWT) decomposition and sequentially a regression operation. Several regression models
(Maximum, Restricted and Parsimonious) and variants (only for the Maximum model) have been
proposed.

With the motivation of outperforming the latest compression techniques for remote sensing
data, we began focusing on improving the coding performance and/or the computational complexity
of RWA. First, we conducted an exhaustive research of the influence of replacing the underlying
wavelet filter of RWA by more competitive Integer Wavelet Transforms (in terms of energy com-
paction). To this end, we reformulated the Restricted model, reducing the execution time, increasing
the compression ratio, and preserving some degree of component-scalability. Besides, we showed that
the regression variants are also feasible to apply to other models, decreasing their computational
complexity while scarcely penalizing the coding performance. As compared to other lowest- and
highest-complex techniques, our new configurations provide, respectively, better or similar compres-
sion ratios.

After gaining a comprehensive understanding of the behavior of each operation block, we de-
scribed the impact of applying a Predictive Weighting Scheme (PWS) in the Progressive Lossy-to-
Lossless (PLL) compression performance. PLL decoding is possible thanks to the use of the rate
control system of JPEG 2000. Applying this PWS to all the regression models and variants of RWA
coupled by JPEG 2000 (PWS-RWA + JPEG 2000) produces superior outcomes, even for multi-class
digital classification. From experimentation, we concluded that improved coding performance does
not necessarily entail better classification outcomes. Indeed, in comparison with other widespread
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techniques that obtain better rate-distortion results, PWS-RWA + JPEG 2000 yields better clas-
sification outcomes when the distortion in the recovered scene is high. Moreover, the weighted
framework presents far more stable classification versus bitrate trade-off.

JPEG 2000 may be too computationally expensive for on-board computation. In order to obtain
a cheaper implementation, we render results for RWA followed by another coder amenable for on-
board operation. This framework includes the operation of a smart and simple criterion aiming
at the lowest bitrates. This final pipeline outperforms the original RWA + JPEG 2000 and other
state-of-the-art lossless techniques by obtaining average coding gains between 0.10 to 1.35 bits-per-
pixel-per-component.

Finally, we present the first lossless/near-lossless compression technique based on regression in
a pyramidal multiresolution scheme. It expands RWA by introducing quantization and a feedback
loop to control independently the quantization error in each decomposition level, while preserving
the computational complexity. To this end, we provide a mathematical formulation that limits the
maximum admissible absolute error in reconstruction. Moreover, we tackle the inconvenience of
proving the huge number of possible quantization steps combinations by establishing a quantization
steps-allocation definition. Our approach, named NLRWA, attains competitive coding performance
and superior scene’s quality retrieval. In addition, when coupled with a bitplane entropy encoder,
NLRWA supports progressive lossy-to-lossless/near-lossless compression and some degree of embed-
dedness.
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Resumen

Los datos hiperespectrales capturados por teledetección cuentan con cientos o miles de componentes
espectrales de similares longitudes de onda. Almacenarlos y transmitirlos conlleva una demanda
excesiva en ancho de banda y memoria, ya de por sí bastante limitados, que pueden dar lugar
a descartar información ya capturada o a dejar de capturarla. Para paliar estas limitaciones, se
aplican algoritmos de compresión. Además, la tecnología de los sensores evoluciona continuamente,
pudiéndose adquirir datos con mayores dimensiones. De ahí que, para no penalizar el funcionamiento
y rendimiento de futuras misiones espaciales, se necesitan desarrollar métodos de compresión más
competitivos.

Regression Wavelet Analysis (RWA) es el método de compresión sin pérdidas más eficiente en
relación a la complejidad computacional y al rendimiento de codificación. RWA se describe como una
transformada espectral sin pérdida seguida de JPEG 2000. Ésta aplica un nivel de descomposición de
la transformada discreta de onda Haar y una regresión. Hay varios modelos de regresión (Maximum,
Restricted y Parsimonious) y variantes (solo para Maximum).

Inicialmente, nos centramos en aumentar el rendimiento de codificación y/o reducir la com-
plejidad computacional de RWA para diseñar técnicas de compresión más competitivas. Primero,
investigamos en profundidad la influencia que tiene el reemplazar el filtro de RWA por transformadas
más eficientes en cuanto a la compactación de energía. Para ello, redefinimos el modelo Restricted,
reduciendo el tiempo de ejecución, incrementando el ratio de compresión, y preservando un cierto
grado de escalabilidad por componente. Además, mostramos que las variantes de regresión se pueden
aplicar a todos los modelos de regresión, disminuyendo así su complejidad computacional sin ape-
nas penalizar el rendimiento de codificación. Nuestras nuevas configuraciones proporcionan ratios
de compresión mayores o bastante competitivos con respecto a otras técnicas de menor y mayor
complejidad.

Tras ello, describimos el impacto que tiene el aplicar un esquema de pesos predictivo (PWS) en
el rendimiento de compresión cuando se decodifica de forma progresiva desde con-pérdida hasta sin-
pérdida (PLL). La aplicación de estos pesos a todos los modelos de regresión y variantes de RWA con
JPEG 2000 (PWS-RWA + JPEG 2000) mejora los resultados del esquema original (RWA + JPEG
2000). Por otro lado, vemos que un mejor rendimiento de la codificación no implica necesariamente
mejores clasificaciones. De hecho, en comparación con otras técnicas que recuperan la escena con
mayor calidad, PWS-RWA + JPEG 2000 provee de mejores clasificaciones cuando la distorsión en
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la recuperación es elevada.
Para obtener una implementación de más baja complejidad computacional, presentamos resulta-

dos de RWA acompañada de un codificador que se puede ejecutar a bordo. Además, con un sencillo
criterio de decisión conseguimos tasas de bits más bajas, mejorando al esquema original y otras
técnicas de compresión sin pérdidas al obtener ganancias de codificación promedio entre 0,10 y 1,35
bits-por-píxel-por-componente.

Finalmente, presentamos la primera técnica de compresión sin-pérdida/casi-sin-pérdida basada
en un sistema piramidal que aplica regresión. Para ello, ampliamos RWA introduciendo cuantización
y un algoritmo de retroalimentación para controlar independientemente el error de cuantificación
en cada nivel de descomposición, al mismo tiempo que preservamos la complejidad computacional.
Proporcionamos también una ecuación que limita el máximo error en valor absoluto admisible en
la reconstrucción. A su vez, evitamos probar la gran cantidad de combinaciones posibles de pasos
de cuantificación mediante el desarrollo de un esquema de asignación de pasos. Nuestra propuesta,
llamada NLRWA, logra obtener un rendimiento de codificación muy competitivo y recuperar la
escena con mayor fidelidad. Por último, cuando el codificador por entropía se basa en planos de bits,
NLRWA puede proporcionar una compresión progresiva desde con-pérdida hasta sin-pérdida/casi-
sin-pérdida y cierto grado de integrabilidad.
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Chapter 1

Introduction

1.1 Remote sensing data

Remote sensing refers to the non-physical contact acquisition of information, spe-
cially from a large distance. Nowadays, satellite’s imaging sensors collect hyperspec-
tral scenes (images) with high 2D spatial resolutions. These enormous volumes have
hundreds or thousands of very correlated spectral components (bands), providing a
wealth of spectral information very convenient for Earth Observation’s applications,
such as appraisals of climate changes, for farming or military purposes, or to give
support when natural disasters strike.

1.2 Bandwidth and on-board storage capacity

Spaceborne and sounding interferometer sensors’ technology evolves continuously
to improve nowadays applications’ performance and meet users’ needs. This places
excessive demands on bandwidth and on on-board storage capacity, e.g.,

1. Met-Op satellite can only transmit data to ground stations on Earth at a rate
of 1.5 Mb/s, while the recording rate is of at most 45 Mb/s [1];

2. IASI sensor on the Met-Op satellite acquires close to 20 GB daily [2], while the
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2 CHAPTER 1. INTRODUCTION

on-board storage capacity on this satellite is 24 Gbit.

Although downlink transmission rates and on-board memory resources have increased
during the years, they are still strongly constrained. This leads to stop capturing data,
or discarding already recorded data without further processing. Data compression be-
comes therefore imperative to alleviate these limitations and fulfill the space missions’
requirements. Note that compression is also beneficial for on-the-ground storage and
dissemination.

1.3 Remote sensing data compression techniques
Due to the large spectral redundancy in hyperspectral scenes, remote sensing data
compression methods that decorrelate the spectral dimension have proven to yield the
most efficient coding performances [3]. These techniques aim at lossless, near-lossless
or lossy recovery according to the loss of fidelity permitted in reconstruction.

• Lossless compression ensures perfect recovery at the price of low compression
ratios, close to 2:1.

• Near-lossless coding aims at higher compression ratios than lossless methods
by allowing some loss of fidelity in reconstruction. They bound the l∞-norm
-equivalently, the peak absolute error (PAE) or maximum absolute distortion
(MAD)- via setting an error tolerance value Λ, guaranteeing thus some image
quality control. This user-specified parameter Λ sets the maximum admissible
absolute error so that PAE ≤ Λ.

• Lossy compression enables high compression ratios at the expense of allowing
uncontrolled loss in decoding.

Several compression techniques for remote sensing data can be found in the lit-
erature. However, the technical evolution of the optical and sounding interferometer
instruments, and the constantly limited downlink bandwidth unveil an insufficient on-
board storage capacity, and the on-the-ground dissemination is also contested. Under
such a scenario, more innovative and updated compression techniques are required.
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This thesis stems from the aim of improving the coding performance of nowadays
compression techniques for remote sensing data, without barely penalizing or even
decreasing the computational complexity. With this motivation, first an exhaustive
study of the state-of-the-art compression techniques is conducted.

1.3.1 State-of-the-art review

To compress an image a transform- or a prediction-based approach is normally pur-
sued. The first one compacts the energy of a scene into a few components, while the
second computes the estimation of a pixel’s value from previous processed pixels, and
entropy-encodes the prediction error afterwards. We first concentrated on the lossless
compression techniques.

For lossless compression, these methods usually perform a Lifting Scheme [4] or
some rounding/calculation to operate with integer values. Some lossless coding pro-
posals apply a 3D spatio-spectral transform [5, 6, 7]. Others use first a 1D spectral
transform to later decorrelate the 2D spatial domain [7, 8]. Discrete Wavelet Trans-
forms (DWTs) are the most widespread transforms due to their minor computational
cost, short execution time, and component-scalability, i.e., to retrieve a scene compo-
nent, only some, but not all, of the remaining transformed components are needed.
Despite all these strengths, they do not remove the statistical dependencies in the
spectral domain as Karhunen-Loève Transform (KLT) does. KLT is optimal for decor-
relating Gaussian sources [9, 10], and usually yields high compression ratios. However,
it is data-dependent and requires every transformed component to retrieve any single
scene coefficient. Moreover, and in contrast to common DWTs, KLT focuses on the
2nd order moments, letting aside higher orders that may be meaningful, is computa-
tionally high demanding, and entails a non-negligible side information, in particular
for scenes with a large number of spectral bands. Consequently, for hyperspectral
scenes KLT results to be computationally unattainable and inefficiently-performing.
Several approaches have come to light to overcome some of its drawbacks, which also
try to minimize the coding performance decline [11]: some conduct a spectral sub-
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sampling method [7], others extract the transformed coefficients from a single scene
to apply them afterwards to the remaining scenes of the same corpus [12], and finally,
another group of techniques employ a divide-and-conquer strategy, e.g., through mul-
tilevel clusterization [13] or through multiple applications of pairwise KLT [14]. The
last technique accomplishes to reduce the KLT computational cost and large mem-
ory requirements, while procuring competitive compression ratios and a reasonable
component-scalability.

Since higher degree of statistical independence usually means higher efficiency in
coding performance, wavelet transforms may give rise to inefficient results. Nowa-
days, several techniques that obtain competitive coding outcomes at considerably
lower computational complexity than KLT have been published. An examples is
Multiband Context-based Adaptive Lossless Image Coding (M-CALIC) [15] which is
one of the most renowned methods for lossless hyperspectral data compression. It
incorporates a multiband spectral predictor, and optimized parameters and quanti-
zation thresholds into CALIC [16] and its 3D extension (3D-CALIC) [17], improving
their performance. In its turn, M-CALIC utilizes CALIC as spatial compression en-
gine. CALIC uses a nonlinear adaptive predictor, context-templates, which consider
only encoded pixels from the two previous immediately preceded rows, quantiza-
tion, and an entropy encoder conditioned on a large number of contexts, instead of
on conditional error probabilities. 3D-CALIC includes a simple spectral predictor
that considers one band as reference to estimate the current one. It is very efficient
compressing multispectral data but not hyperspectral scenes. To enhance its coding
performance, a more sophisticated spectral predictor is required, as the included in
M-CALIC.

Another technique that entails minor complexity is the one proposed by the Con-
sultive Committee for Space Data Systems (CCSDS) in 2012, the standard CCSDS-
123.0-B-1 [18]. It can be computed on-board and is formed by an adaptive linear
predictor, a mapper function, and an entropy encoder. It exploits the redundancy
within the nearby 3-D spatio-spectral neighbor pixels. Years later, a modification
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of CCSDS-123.0-B-1 was published [19], henceforth named as CCSDS-123-AC. It
deploys the CCSDS-123.0-B-1’s predictor and mapper, and includes a lightweight
contextual arithmetic encoder. This coder defines a context model and computes the
probabilities that will be later used by a fixed-length arithmetic encoder. CCSDS-
123-AC improves the performance of CCSDS-123.0-B-1 and of M-CALIC.

Up to now, other prediction-based techniques, in particular based upon recursive
least-squares, [2, 20, 21, 22, 23] have been proposed. Among them, references [20, 21,
22, 23] perform extensive and time-consuming algorithms to aim at competitive esti-
mations. Results of these techniques have only been reported for scenes recorded by
the Airbone Visible/Infrared Imaging Spectrometer (AVIRIS) instrument. For this
corpus, they outperform the coding performance of CCSDS-123-AC at the expense
of higher complexity. The remaining technique, Regression Wavelet Analysis (RWA)
coupled with JPEG 2000 [2] (where JPEG is the acronym of the Joint Photographic
Experts Group), yields compression ratios close to those of [20, 21, 22, 23] at lower
computational resources consumption. RWA is straightforward and fast-computing,
partly thanks to avoiding any adaptive-iterative scheme application. RWA also attains
superior coding performance than CCSDS-123-AC, DWT-based, and also KLT-based
techniques, becoming the state-of-the-art lossless prediction-based technique regard-
ing the trade-off between computational cost and coding performance.

RWA benefits from its minor side information requirements and low complexity. It
is a lossless transform that applies a DWT and solves an ordinary least-squares [24]
problem per DWT decomposition level. The first operation is conducted by the
integer Haar S-Transform, whereas the second predicts the wavelet details from the
wavelet approximations of the same decomposition level. This procedure is iteratively
computed until the highest possible wavelet level. After that, the prediction error is
encoded and stored/transmitted, significantly reducing the statistical relationships
the DWT can not remove. In all the publications related to RWA [2, 25, 26, 27], this
second stage is carried out through three regression models: Maximum, Parsimoniuos
and Restricted, and two variants of the Maximum model: Fast and Exogenous.
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Though RWA has always been coupled with the compression standard JPEG
2000 [28], other coders could be used. JPEG 2000 is well-known for obtaining excel-
lent lossless and lossy performance in terms of Mean Squared Error (MSE), but is
not always appropriate for on-board computation. In spite of this, it can gradually
refine the quality retrieval of the reconstructed scene until no loss in recovery exists.
This type of coding is known as Progressive Lossy-to-Lossless (PLL) compression.
Generally, lossy pipelines apply quantization, an entropy encoder on the quantized
signal, and a rate control allocation stage afterwards. The PLL compression is pos-
sible by using the rate control allocation stage. In fact, [25] provides rate-distortion
curves of RWA when followed by JPEG 2000. On the other hand, applying uniform
scalar quantization is one of the simplest manners to introduce loss when encoding
a signal, and therefore, to increase the compression ratio. This scheme maps each
element value into a particular value within a delimited subset of disjoint intervals.
For near-lossless compression, applying quantization in a feedback loop allows for
controlling the error via a maximum error tolerance value Λ. There are three near-
lossless coding modalities: prediction-based techniques followed by quantization and
lossless compression, two-stage near-lossless coders, and prequantization before loss-
less coding.

In short, remote sensing compression techniques decorrelate the spectral dimen-
sion of hyperspectral data. They are capable of yielding lossless, near-lossless and
lossy recovery depending on the error allowed in reconstruction. Normally, they are
transform- or prediction-based methods. The first group is greatly influenced by the
trade-off between efficiency and complexity. The second usually yields better coding
performance for lossless compression. Regression Wavelet Analysis is a state-of-the-
art lossless transform that combines both modalities, i.e., it computes first a discrete
wavelet transform, and then a prediction of the wavelet details. Several publications
of RWA can be found in the literature. However, results are only reported for lossless
or progressive lossy-to-lossless coding, when using Haar-DWT at the highest decom-
position level, and when followed by JPEG 2000.
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1.4 Contributions of the thesis

At the beginning of the thesis, our main focus consisted in providing novel coding
techniques that outperform the lossless state-of-the-art compression field. To this
end, we extended RWA to improve its coding performance, reduce its computational
cost, and prove its applicability in nowadays remote sensing applications. Later, we
expanded our research beyond our initial aspiration, and succeeded in developing the
first near-lossless compression technique based on regression, specially in a multireso-
lution scheme. Therefrom, this technique gives rise to a new near-lossless compression
category: near-lossless compression based on regression in a pyramidal framework.
The contributions can be found published in several journals on the remote sensing
data compression area:

• Sara Álvarez-Cortés, Naoufal Amrani, and Joan Serra-Sagristà, “Low com-
plexity regression wavelet analysis variants for hyperspectral data
lossless compression," International Journal of Remote Sensing, vol. 39, no.
7, pp. 1971–2000, Sep. 2017, DOI: 10.1080/01431161.2017.1375617 [29].

• Sara Álvarez-Cortés, Naoufal Amrani, Miguel Hernández-Cabronero, and Joan
Serra-Sagristà, “Progressive lossy-to-lossless coding of hyperspectral
images through regression wavelet analysis," International Journal of Re-
mote Sensing, vol. 39, no. 7, pp. 2001–2021, Jul. 2017, DOI: 10.1080/01431161.
2017.1343515 [30].

• Sara Álvarez-Cortés, Joan Bartrina-Rapesta, and Joan Serra-Sagristà, “Mul-
tilevel split regression wavelet analysis for lossless compression of re-
mote sensing data," IEEE Geoscience and Remote Sensing Letters, no. 99,
pp. 1–5, Jul. 2018, DOI: 10.1109/LGRS.2018.2850938 [31].

• Sara Álvarez-Cortés, Joan Serra-Sagristà, Joan Bartrina-Rapesta, and Michael
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Marcellin, “Regression wavelet analysis for near-lossless remote sens-
ing data compression," Submitted in Apr. 2019 to IEEE Transactions on
Geoscience and Remote Sensing.

1.5 Organization of the thesis

The organization of the thesis is briefly described next:

Chapter 2 discusses publication [29]. In this manuscript, we present an ex-
haustive evaluation when replacing Haar-DWT by usually more competitive, but a
bit more complex transforms, the reversible IWT 5/3 and IWT 9/7M. To this ef-
fect, we change the cubic polynomial formulation that defines the Restricted model
of RWA to a first-order equation, preserving some degree of component-scalability.
In order to decrease even more the computational cost, while barely penalizing the
coding performance, we propose new variants for the Restricted and Parsimonious re-
gression models. Computational complexity is assessed in Floating-point Operations
(FLOPs) and execution time. We also study the influence of varying the number of
RWA decomposition levels in the coding performance. Moreover, we disclose dynamic
range, precision, and entropy distributions in bits-per-spectral-component (bpppc) of
a scene in the transform domain, and appraise the coding performance of our ap-
proaches in bpppc, Shannon entropy, Pearson’s correlation, mutual information and
energy terms. Finally, an extensive comparison against state-of-the-art techniques,
based upon recursive least-squares, and other widespread methods, has been supplied
too, highlighting the competitive performance of RWA.

Chapter 3 presents our paper [30] in which an in-depth assessment of the Pro-
gressive Lossy-to-Lossless RWA (PLL-RWA) coding process is conducted. We cover
the beneficial use of applying a Predictive Weighting Scheme (PWS) [25] not only for
Maximum and Exogenous-Maximum as in [25], but also for the Restricted model and
the different variants presented in [29]. For comparison purposes, we provide results
of M-CALIC and competitive lossless spectral transforms followed by JPEG 2000.



1.5. ORGANIZATION OF THE THESIS 9

We also evaluate the effect of varying the wavelet transform (Haar-DWT, IWT 5/3
and IWT 9/7M) of the first operation block in the PLL-RWA scheme. The benefits of
the PWS are explained investigating the bitrate distributions per transformed spec-
tral component according to a global target bitrate. Finally, PWS-RWA + JPEG
2000 [25] is assessed for multi-class digital classification, suggesting that this frame-
work yields superior performance.

Chapter 4 describes publication [31]. RWA is coupled for the first time with
a coder other than JPEG 2000. Here, we describe a novel technique. It consists of
applying RWA followed by the on-board affordable coder CCSDS-123-AC. As a side
remark, RWA + JPEG 2000 achieves its highest coding performance when applying
the highest number of RWA decomposition levels [29]. In contrast, computing the
highest level in our approach, RWA + CCSDS-123-AC, does not necessarily give rise
to the best coding performance, helping to decrease the computational complexity.
To further improve the coding gain, we introduce a strategy, named Multi-Level Split
RWA (MLS-RWA), to select the optimal number of RWA levels to apply. Our pro-
posal MLS-RWA + CCSDS-123-AC obtains coding gains even higher than 1 bpppc
with respect to nowadays highly-performing techniques.

Chapter 5 includes our last manuscript, submitted to IEEE Transactions on
Geoscience and Remote Sensing (TGRS) journal in April 2019. It introduces the
first near-lossless compression technique based on regression, specially in the pyra-
midal multiresolution RWA. Besides, our novel technique, named near-lossless RWA
(NLRWA), provides exactly the same lossless outcomes as the original RWA. We also
propose a smart criterion that is independent of the image to process. It selects a
unique quantization steps combination, avoiding thus to solve a slow multivariate
optimization problem that iteratively tries every possible combination. Apart from
that, NLRWA can be coupled with any entropy coder. Here, NLRWA is presented
followed by JPEG 2000. NLRWA + JPEG 2000 can afford progressive lossy-to-
lossless/near-lossless compression, and produces competitive compression ratios and
superior reconstructed scene’s quality.



10 CHAPTER 1. INTRODUCTION

Chapter 6 synthesizes the results presented in previous chapters.

Chapter 7 brings forward the conclusions of the contributions of this thesis.
Finally, some insights of the future work are also introduced.
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Low Complexity Regression Wavelet Analysis
Variants for Hyperspectral

Data Lossless Compression

Sara Álvarez-Cortés, Naoufal Amrani, and Joan Serra-Sagristà

Universitat Autònoma de Barcelona

Abstract—The evolution of the optical and of the sound-
ing interferometer instruments along with the increase of the
spaceborne storage capacity allow for the acquisition of large
data volumes. However, the strongly limited downlink bandwidth
unveils an insufficient on-board storage capacity, and the on-the-
ground storage and dissemination are also contested. In these sce-
narios, data compression techniques are demanded. We discuss
here the Regression Wavelet Analysis (RWA) spectral transform,
introducing novel variants that lead to an improved lossless
coding performance. A comprehensive comparison with state-
of-the-art remote sensing data compression techniques shows
the competitive behavior of RWA in terms of lossless coding
performance (yielding lower bit-rates), computational complexity
(requesting lower execution time) and other signal measurements
(decreasing energy, mutual information and entropy). Experi-
mental results are performed on uncalibrated and calibrated data
from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),
from Hyperion instrument and from Infrared Atmospheric
Sounding Interferometer (IASI).

Index Terms—Lossless compression, Hyperspectral data com-
pression, Regression Wavelet Analysis, Regression models, Dis-
crete Wavelet Transforms.

I. INTRODUCTION

Remote-sensing refers to the non-physical contact acqui-

sition of information. Thanks to the enhancement of the

spaceborne optical and sounding interferometer instruments

and to the increase of the on-board storage capacity, data

with high spectral sampling and high spatial resolution can be

recorded by on-board satellites. As an example, the Infrared

Atmospheric Sounding Interferometer (IASI) on the Met-

Op satellite captures orbits with 8,359 spectral components,

generating close to 20 GB daily. These hyperspectral data

provide a wealth of spectral information, leading to a better

understanding and a more precise characterisation and aware-

ness of short and long condition changes of the environment,

atmosphere and global surface. However, the transmission of

this large amount of data poses a challenging problem, as

the satellite download channel capacity is very restricted; for

instance, the Met-Op satellite records data at a rate of 45 Mb

s−1, but can only transmit to Earth ground stations at 1.5 Mb

s−1. Moreover, although the on-board storage capacity has in-

creased during the last decades, it is not enough to store all the

information satellite instruments retrieve. Data compression

techniques are crucial for an efficient on-board storage and

Emails: {Sara.Alvarez, Naoufal.Amrani, Joan.Serra}@uab.cat

downlink transmission. Compression is also beneficial for on-

the-ground storage and dissemination of remote sensing data.

Hyperspectral data scenes have hundreds or thousands

of spectral components of similar wavelengths, resulting in

scenes with high spectral redundancy. The decorrelation along

the spectral dimension is then essential for a competitive

coding performance. Some compression techniques exploit

the data-redundancy by applying a 3D spatio-spectral trans-

form (Tang and Pearlman, 2006; Fowler and Rucker, 2007).

Other techniques apply first a 1D spectral transform followed

by a 2D spatial transform, using the most suitable transform

for each dimension (Penna et al., 2007; Zhang, Fowler, and

Liu, 2008). For the first step, Discrete Wavelet Transforms

(DWTs) are commonly used due to their computational sim-

plicity and short execution time. However, they do not yield

statistical independence in the spectral domain as Karhunen-

Loève Transform (KLT) does. KLT is optimal for decorrelating

Gaussian sources (Jolliffe, 2002; Effros, Feng, and Zeger,

2004); it even compacts much better the energy. Neverthe-

less, it is a data-dependent transform (requiring a unique

computation for every scene) that entails a non-negligible

side information and a high computational complexity. In

fact, for hyperspectral scenes with a very large number of

spectral components, it is computationally unfeasible to resort

to KLT as spectral transform. The high complexity stems

from the computation of the covariance matrix, the eigenvalues

calculation and the matrix factorization. Additionally, KLT is

not a component-scalable transform, i.e., to retrieve a single

data component, all the remaining transformed components

are required.

On one hand, KLT focuses on the covariance matrix, letting

aside higher order moments, while DWTs assess higher order

moments. On the other hand, hyperspectral scenes are not

necessarily Gaussian signals neither in the spectral nor in

the spatial dimension (Camps-Valls et al., 2011). On this

basis, higher order moments may be meaningful. However,

DWTs do not aim at the largest statistical independence

among coefficients and therefore some dependence remains

in the transformed domain. Since higher degree of statisti-

cal independence usually means higher efficiency in coding

performance, wavelet transforms may give rise to inefficient

results.

To overcome these problems, Regression Wavelet Analysis

(RWA) has been recently proposed (Amrani et al., 2016).



This method provides a coding performance superior to

widespread lossless techniques such as the transform-based

CCSDS-122.1 (CCSDS, 2011), the predictive-based CCSDS-

123.0 (CCSDS, 2012), both developed by the Consultative

Committee for Space Data Systems (CCSDS), and also KLT-

based techniques. It is based on applying first the suboptimal

but simple Haar wavelet filter to decorrelate the spectral

components, and then a regression analysis to significantly

reduce the remaining statistical relationships in the wavelet

domain. This method works as a predictive scheme that

shares some DWT properties like component-scalability and

low complexity. Besides, it reduces the energy and entropy

of the original signal, leading to a representation without

dynamic range expansion. Lossless compression is achieved by

means of a reversible integer mapping of all the transformed

components.

Departing from the original RWA proposal, further improve-

ments can be deployed. Amrani, Serra-Sagristà, and Marcellin

(2017) proposed a variation of the Restricted RWA model,

where the prediction process is modified by computing a

linear mathematical formulation instead of a cubic equation.

However, this variation was proposed for progressive-lossy-to-

lossless compression.

II. PROPOSED SPECTRAL TRANSFORM

This section briefly surveys the main basis of the overall

Regression Wavelet Analysis spectral transform. It relies on

applying in sequence a wavelet transform and a regression

operation. This second step significantly reduces the depen-

dence statistical relations among the wavelet transformed

components. To clarify the functioning of the algorithm,

we first proceed to explain a general multi-resolution DWT

decomposition of a scene.

A. Discrete wavelet transform

Let V0 ∈ R
m×z be a multi-component scene with z spec-

tral components and m spatial samples per component, i.e.,

V0=
[
V0

1, . . . ,V
0
z
]
, with V0

i ∈ R
m×1. A 1D-DWT with one

level decomposition applied along the spectral dimension splits

V j−1 into the approximation components V j and the detail

components W j for 1 ≤ j ≤ J, where J = �log2(z)�:

(DWT)(V j−1,1) =
(
V j,W j) . (1)

The wavelet-transformed scene at the maximum level J is

denoted as:

(DWT)(V0,J) =
(
VJ ,(W j)1≤ j≤J) . (2)

Figure 1(a) shows the cascade decomposition

from V0 to the final transformed scene at level J,

(DWT)(V0,J)=
[
VJ ,WJ ,WJ−1, . . . ,W1

]
. As can be seen,

a DWT is a double convolution process of the signal V0

through the low H and the high G pass filters to obtain the

approximation and the detail components, respectively.

At each level j, the signal V j−1∈Rm×(z·2− j+1) is decomposed

in two spectral-volume halves, the approximation components

V j∈Rm×(z·2− j) and the detail components W j∈Rm×(z·2− j). The

approximation signal V j includes a low-pass version of the

(a) DWT decomposition with J levels

(b) RWA decomposition with J levels

Figure 1 Spectral transforms decomposition schemes.

previous signal V j−1, while the detail components is the in-

formation difference between V j and V j−1. The low and high

decomposition process can be iteratively repeated over the

approximation signal V j, until having only one approximation

component and z−1 detail components (when the maximum

number of decomposition levels J = �log2(z)� is applied).

B. Regression wavelet analysis transform

RWA applies first a DWT followed by a regression operation

to exploit the remaining spectral redundancy that the DWT can

not remove (see Figure 3 to appreciate the lower correlation

and mutual information of the transformed components after

applying a RWA transform, as compared to applying only a

wavelet transform). As RWA was designed for lossless coding,

a lifting procedure is deployed (Calderbank et al., 1997),

producing integer coefficients
(
V j,W j

)
based on a reversible

rounding operation.

Each detail component W j
i ∈ R

m×1 at level j is estimated

from the approximation components at the same level V j ∈
R

m×(z·2− j). This prediction is done through a mathematical

model fi:

Ŵ
j
i = fi(V j). (3)

RWA removes then the estimation, and has to store/transmit

the residual (usually much cheaper) to provide lossless coding:

R j = W j −Ŵ j. (4)

Analogous to Equations 1 and 2, the one level RWA de-

composition can be expressed as (RWA)(V j−1,1) =
(
V j,R j

)
and the RWA at level J as (RWA)(V0,J) =

(
VJ ,(R j)1≤ j≤J

)
.

Figure 1(b) illustrates how this regression model affects only

the detail components at each level, leaving the approximation

components unchanged.

Function fi predicts the conditional mean of each

W j
i ∈Rm×1 from some or all the approximation components

V j∈Rm×(z·2− j).
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In the inverse process, the approximation component at level

j − 1 is obtained by reverting Equation 4 and Equation 1

respectively.

III. REGRESSION WAVELET ANALYSIS TRANSFORM

FEATURES

This section discusses several properties and characteristics

of different models and variants of the Regression Wavelet

Analysis transform.

A. Wavelet filters

In the original proposal, RWA employs Haar-DWT as its

first operation block because of its inexpensive computational

complexity and high component-scalability. However, it yields

suboptimal energy compaction when compared to other DWTs

that employ more components in the transform. Here we

assess the suitability of exchanging Haar-DWT by other more

efficient DWTs like the reversible IWT 5/3 or IWT 9/7M

(integer version of the biorthogonal CDF 9/7).

To produce one approximation and one detail component

in the transformed signal, Haar-DWT uses only 2 coefficients

(scene components), while IWT 5/3 uses, respectively, 5 and

3 coefficients for the low-pass and the high-pass filters, and

IWT 9/7M uses, respectively, 9 and 7 coefficients.

B. Models and variants

To predict each detail component Ŵ
j
i ∈Rm×1, i ∈ I

={1, ...,k=z·2− j} at level j, Equation 3 is differently for-

mulated for the different regression models and variants:

Maximum model, Restricted model, Fast-Maximum vari-

ant, Fast-Restricted variant, Exogenous-Maximum variant and

Exogenous-Restricted variant.

(i) Maximum model: includes all the approximation com-

ponents V j∈Rm×(z·2− j) in the prediction of each detail

component W j
i ∈Rm×1. It is a linear model and the most

general one. It is described as follows:

Ŵ
j
i = β j

i,0 +β j
i,1V j

1 + · · ·+β j
i,kV j

k,
(
V j

i ∈Rm×1
)
. (5)

This model generally corresponds to the most accurate

one in terms of prediction error.

(ii) Restricted model: includes in the prediction of Ŵ
j
i a

subset of approximation components V j
u∈I, where I ⊂

{1, . . . ,n}. This subset of approximation components is

selected in order to maintain the component-scalability of

the DWT filter. Here scalability refers to the number of

transformed components required to reconstruct a single

scene component; the smallest the number, the largest the

scalability of the transform.

When Haar-DWT is the chosen wavelet filter, Restricted

model may be computed as:

Ŵ
j
i = β j

i,0+β j
i,1V j

i +β j
i,2(V

j
i )

2+β j
i,3(V

j
i )

3. (6)

For this filter, only one approximation component V j
i

is involved in the prediction of Ŵ
j
i , but second and

third-order terms are also used to increase the prediction

accuracy without affecting the scalability.

Restricted model when using IWT 5/3 or 9/7M is respec-

tively defined as follows:

Ŵ
j
i = β j

i,0+β j
i,1V j

i−1+β j
i,2V j

i +β j
i,3V j

i+1+β j
i,4V j

i+2
(7)

and

Ŵ
j
i = β j

i,0+β j
i,1V j

i−3+ . . .+β j
i,4V j

i + . . .+β j
i,8V j

i+4. (8)

The regression parameters βββ j for Equations 5, 6, 7 and 8

are computed through a least squares method to minimize

the squared residual length:

argmin
βββ

‖W−βββV‖2. (9)

The parameters βββ j need to be stored/transmitted as side

information for the decoding procedure.

(iii) Fast variant: uses only a subset of m′=ρm spatial sam-

ples (m′	m) to compute the least squares parameters βββ j.

The computational complexity is significantly reduced,

specially for scenes with a large spatial resolution. In gen-

eral, this spatial sub-sampling barely affects the quality

of the estimation step and considerably reduces the cost

of computing the regression parameters βββ .

– Fast-Maximum: applies the aforementioned sub-

sampling to the components included in the Maxi-

mum model (Equation 5).

– Fast-Restricted: applies the aforementioned sub-

sampling to the components included in the Re-

stricted model (Equations 6, 7 and 8 ).

(iv) Exogenous variant: uses fixed regression parameters βββ
j
,

obtained by training a single scene from an instrument

corpus. This can be done since hyperspectral scenes

recorded by the same instrument may have similar sta-

tistical relationships. Coefficients βββ
j

are computed only

once, for a single scene, and are then used for coding the

other scenes in the corpus. Hence, the side information

from the training procedure does not need to be stored.

This variant gives rise to lower computational complexity

and a significant execution time reduction, because the

learning process is performed only once. In addition, it

possibly yields higher compression ratios, because side

information is spared.

– Exogenous-Maximum: relies on applying Equa-

tion 5, but by using fixed parameters to any new

scene recorded by the same instrument. The formu-

lation remains as follows:

Ŵ
j
i =β

j
i,0 +β

j
i,1V j

1+ . . .+β
j
i,kV j

k. (10)

– Exogenous-Restricted: applies Equations 6, 7 and

8 using fixed parameters for the estimation of Ŵ
j
i .

Note that the computation of the fixed regression

parameters is done through the Restricted model,

yielding a reduced computational cost.
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Table I Restricted model’s component-scalability when different wavelet filters are employed as the basis of the RWA first

operation.

Haar-RWA IWT 5/3-RWA IWT 9/7M-RWA{
V j−1

2i

}
Reconst.←−−−− V j

i

{
V j−1

2i

}
Reconst.←−−−−

{
V j

u

}i+2

u=i−1

{
V j−1

2i

}
Reconst.←−−−−

{
V j

u

}i+4

u=i−3

C. Component-scalability

The component-scalability depends on the regression model

and on the wavelet filter used as the basis of the RWA first

operation.

Concerning the regression model, Maximum model has the

worst component-scalability, as all approximation components

in a given wavelet decomposition level are employed for

predicting a particular detail component, meaning that all the

approximation components would be required to invert the

spectral transform. On the other hand, the Restricted model

preserves the highest scalability. For Restricted model using

Haar-DWT, only one low and one high-pass components from

level j are needed to reconstruct one approximation coefficient

at level j−1 (Equation 6).

Concerning the wavelet filter, for a given filter, the number

of approximation V j
i∈Ir

and details W j
i∈Iq

components used

to retrieve an approximation component at a lower level,

V j−1
ri , depends on the number of components employed from

the forward j − 1 level to the j level. Here, Ir and Iq are

sets of components for, respectively, the low and high-pass.

By extension, a set of approximation components from a

higher level (V j
i∈Iri

) is needed to reconstruct the approximation

component V j−1
ri : ⎧⎪⎪⎪⎨⎪⎪⎪⎩

V j−1
r1

}
Reconst.←−−−− V j

i∈Ir1

...
...

V j−1
rt

}
Reconst.←−−−− V j

i∈Irt
.

The scalability relationships for the three reversible wavelet

filters when the Restricted model is applied are given in

Table I.

The reconstruction of V j−1
2i depends also on several detail

components from higher transform levels. Here, we have

only considered the low-pass components, since the regression

model in RWA selects the regressors from the approximation.

D. Computational complexity

The computational cost of RWA is displayed in Fig-

ures 2(a)-2(c) in Floating-Point Operations (FLOPs). These

figures compare the computational complexity of different

RWA regression models and variants for, respectively, un-

calibrated Airborne Visible/Infrared Imaging Spectrometer

(AVIRIS), Hyperion and Infrared Atmospheric Sounding Inter-

ferometer (IASI) scenes. For comparison purposes, we include

the computational complexity of rKLT and Haar-DWT, IWT

5/3 and IWT 9/7M. In the figures, the cost of RWA transform

is plotted in bars with different colors depending of the wavelet

filter used as the basis of RWA: blue, yellow and green are

used for, respectively, IWT 9/7M, IWT 5/3 and Haar-DWT.

Although rKLT usually attains very competitive compres-

sion ratios, it is the most expensive spectral transform. RWA

with the Maximum model is the second most expensive

spectral transform, significantly lower than rKLT. As expected,

Restricted model has a much lower complexity compared to

Maximum model, since only a small set of components are

used as regressors. Fast-Maximum and Fast-Restricted variants

considerably reduce the cost of Maximum and Restricted

model respectively, since the computation and application of

least squares parameters is significantly alleviated. Exogenous

variant offers a slightly lower computational complexity than

Fast, as the computation of the regression parameters is

conducted off-line.

The leverage of the wavelet filter used as the basis of

RWA is also apparent, being due to the number of coefficients

needed to apply the transform. Haar-DWT entails a lower cost

than IWT 5/3, which, in turn, is cheaper than IWT 9/7M.

E. Execution time

Still referring to the computational cost, Table II reports

average execution time when executing all RWA regression

models and variants on an Intel(R) Xeon(R) CPU E5520 @

2.27GHz processor with a single thread. Results for Haar-

DWT, IWT 5/3 and IWT 9/7M as wavelet transforms for the

first RWA operation block are included for all models and

variants.

Exogenous-Maximum variant usually provides the fastest

execution, because the computation of the regression pa-

rameters is performed off-line. It would be expected that

Exogenous-Restricted variant entailed even lower execution

time, but this behavior does not happen because, for each

detail estimation, different approximation components have

to be selected, and this sequential selection prevents a faster

matrix operation.

For Maximum model and its variants, which employ all

components in a wavelet decomposition level to estimate a

detail component, the choice of the wavelet filter dictates the

complexity, with Haar-DWT showing a faster execution time

than IWT 5/3 and IWT 9/7M. For Restricted model and its

variants, IWT 5/3 yields the fastest execution time. IWT 9/7M

is more expensive because it employs more coefficients for the

wavelet decomposition and more components are needed for

the regression. Haar-DWT is here more expensive because the

regression model involves a polynomial of order 3, requiring

to compute the second and third power of an approximation

component.
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(a) AVIRIS scene (224 spectral components and 512 x 680 spatial samples) and ρ = 0.01.

(b) Hyperion scene (242 spectral components and 256 x 3187 spatial samples) and ρ = 0.01.
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(c) IASI scene (8359 spectral components and 764 x 30 x 4 spatial samples) and ρ = 0.1.

Figure 2 Computational cost comparison in FLOPs for different spectral transforms and for three uncalibrated scenes. The

abbreviated terms Max., Rest. and Exog. correspond respectively to the Maximum and Restricted models and the Exogenous

variant.

IV. SIGNAL METRICS FOR THE PERFORMANCE

EVALUATION

Several measurements are considered to appraise the per-

formance of the different regression models and variants

when used as spectral transform, including average bit-rates,

coefficient of determination or squared Pearson’s correlation

coefficient r2, energy percentage E (%), Shannon entropy H
and mutual information.

The squared correlation coefficient r2 of two signals X and

Y is defined as:

r2 =

(
Cov(X,Y)

σXσY

)2

, (11)

where Cov(X,Y) is the covariance matrix of the signals X and

Y, and σX, σY are their standard deviations. The correlation

matrix for a scene with z spectral components is a square

matrix z×z that depicts the correlation in terms of r2 between

each pair of spectral components.

The energy percentage is given by:

E (%) =
∑z

k=1 ∑m
r=1((RWA)

(
V0,J

)
)2

∑z
k=1 ∑m

r=1(V0)2
. (12)

The Shannon entropy, measured in bits, is given by:

H =−
n

∑
i=1

P(vi) log2 P(vi), (13)

where P(vi) defines the probability mass function of vi, and

V =
[
v1, ..,vn

]
is the vectorization of the spatial samples of

each spectral component of the scene and n=zm.
Mutual information can describe linear and non-linear sta-

tistical relationships between variables. It indeed includes

correlation and non-Gaussianity. Therefore, a change in the

mutual information analysis can come from a variation of

the decorrelation and/or the statistical dependencies between

components. Reducing then the correlation usually means a

decrease in the mutual information. In its turn, correlation only

takes into account linear variations. The mutual information

between two variables X and Y is defined as follows:

MI (X,Y) = H (X,Y)−H (X|Y)−H (Y|X), (14)

where H (X,Y) is the joint entropy, and H (X|Y) and

H (Y|X) are the conditional entropies. A Matlab implemen-

tation can be found in Chen (2010).
To illustrate the impact of the regression, Figure 3 displays

the mutual information and the squared correlation coefficient
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Table II Average execution time (in seconds) for several RWA models and variants. The largest number of wavelet

decomposition levels has been applied in all cases.

Average execution time (s)

AVIRIS Hyperion IASI

16-bit
calibrated

scenes

16-bit
uncalibrated

scenes

12-bit
uncalibrated

scenes

16-bit
calibrated

scenes

16-bit
uncalibrated

scenes

16-bit
calibrated

scenes

16-bit
uncalibrated

scenes
Maximum Haar-RWA 69.36 78.19 63.75 198.04 193.75 4413.73 4185.43
Maximum IWT 5/3-RWA 69.68 78.23 63.67 198.88 193.25 4436.06 4188.35
Maximum IWT 9/7M-RWA 73.45 81.89 67.15 209.02 202.09 4561.62 4324.99

Fast-Maximum Haar-RWA 44.96 53.12 39.93 133.12 123.92 1990.50 1819.67
Fast-Maximum IWT 5/3-RWA 45.21 53.38 40.65 133.53 123.21 1999.37 1827.24
Fast-Maximum IWT 9/7M-RWA 48.77 56.83 43.40 142.93 132.76 2139.09 1952.73

Exog.-Maximum Haar-RWA 45.06 53.06 35.57 130.34 124.06 1524.87 1409.92
Exog.-Maximum IWT 5/3-RWA 45.24 53.13 36.27 135.83 129.08 1534.57 1412.13
Exog.-Maximum IWT 9/7M-RWA 46.47 54.05 39.66 135.82 129.01 1670.52 1414.51

Restricted Haar-RWA 90.52 100.19 84.56 229.84 229.62 1136.31 958.21
Restricted IWT 5/3-RWA 73.64 81.74 67.57 197.90 188.12 930.74 784.36
Restricted IWT 9/7M-RWA 102.86 112.17 96.19 286.29 280.28 1317.67 1182.80

Fast-Restricted Haar-RWA 82.63 92.04 75.95 204.21 202.99 1066.73 898.57
Fast-Restricted IWT 5/3-RWA 61.45 69.68 55.63 166.41 153.87 833.97 689.54
Fast-Restricted IWT 9/7M-RWA 76.87 84.67 70.93 215.33 206.08 1142.22 987.39

Exog.-Restricted Haar-RWA 73.58 81.89 66.88 178.56 174.39 1031.30 822.84
Exog.-Restricted IWT 5/3-RWA 67.19 75.84 48.23 200.13 199.42 811.72 824.62
Exog.-Restricted IWT 9/7M-RWA 71.82 79.79 63.20 179.44 176.71 1104.43 829.29

matrices and their average values after transforming uncal-

ibrated AVIRIS Yellowstone03 scene. In all subfigures, the

blue-to-red colormap specifies the low-to-high statistical rela-

tionships (colorbars) and the diagonal coefficients represent the

relation between each component of the scene with itself. The

figure shows that Haar-DWT provides worse average mutual

information and squared correlation than the other two IWT

filters. Although a slight relationship between components can

still be noticed when applying RWA, particularly for the first

and more significant transformed components, the figure points

out a clear benefit over traditional wavelet transforms and

even over the reversible KLT (rKLT). RWA reaches a better

average mutual information measurement and very similar

average squared correlation to rKLT, with a difference of only

6 × 10−4. Outcomes for the other signal measurements are

reported in next section.

V. EXPERIMENTAL RESULTS

In this section we present a comprehensive assessment of

the proposed RWA models and variants when used as spectral

transforms in a coding system for lossless compression.

Figure 4 displays the two main blocks of our coding system.

In the first stage, a 1D transform along the spectral dimension

is applied. In the second stage, JPEG 2000 standard (Taubman

and Marcellin , 2001) is used. Several 1D spectral transforms

are assessed: rKLT, POT, wavelets and RWA with Haar-DWT,

IWT 5/3 and IWT 9/7M as underlying wavelet filters. For the

second block, JPEG 2000 applies a 2D spatial IWT 5/3 with 5

levels for POT, Haar-DWT, RWA Restricted and Parsimonious

Restricted models and their variants and for RWA when

transforming Hyperion scenes. This configuration has been

found to produce the best performance in compression ratio

and energy compaction.
To account for reproducibility, Matlab implementations of

rKLT, Haar-DWT, IWT 5/3 and RWA are publicly available

at Amrani and Serra-Sagristà (2015). IWT 9/7M definition can

be found in CCSDS (2011). The employed software is Matlab

64-bits R2014b for RWA computation and Kakadu v6.0 for

JPEG 2000.
Experimental results are reported for six hyperspectral

scenes corpora from three well-known instruments: airborne

AVIRIS and satellite-borne hyperspectral Hyperion and ultra-

spectral IASI. AVIRIS instrument stores scenes with a bit-

depth of 16 bits per pixel per component (bpppc), except for

two 12 bpppc scenes, Hawaii and Maine. Hyperion and IASI

instruments store scenes with 16 bpppc. AVIRIS, Hyperion

and IASI instruments record scenes with, respectively, 224,

242 and 8,359 (uncalibrated) or 8,461 (calibrated) spectral

components. Table III provides some information of the em-

ployed scenes.

A. Influence of wavelet filters in RWA
Tables IV and VI provide the average bit per pixel per

component (bpppc) when encoding the scenes for each in-
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Figure 3 Mutual information and squared correlation ma-

trices when transforming the uncalibrated AVIRIS Yellow-

stone03 scene. For RWA, the Maximum model with the largest

number of wavelet decomposition levels is applied. Colorbars

indicating the low-to-high range values of mutual information

(average given by MI ) and correlation (average given by r2)

are included.

Scene 1D spectral
transform

JPEG 2000 :
IWT 5/3 +

Bit-plane coding
Code-stream

Figure 4 Pipeline of the coding system: 1D spectral trans-

form followed by JPEG 2000.

Table III Characteristics of scenes from AVIRIS, Hyperion

and IASI instruments used in the experiments. z is the number

of spectral components, y is the height and x is the width.

Corpus Scenes

AVIRIS (Uncalibrated) Yellowstone, sc: 00, 03, 10, 11, 18
z=224, y=512, x=680 Hawaii (x=614) and Maine

AVIRIS (Calibrated) Yellowstone, sc: 00, 03, 10, 11, 18
z=224, y=512, x=680

Hyperion (Uncalibrated) ErtaAle (y=3187)
z=242 Lake Monona (y=3176)
x=256 Mt. St. Helens (y=3242)

Hyperion (Calibrated) Agriculture (y=3129)
z=242 Coral Reef (y=3127)
x=256 Urban (y=2905)

IASI Level 0 (Uncalibrated) L0 1: 20091007093900Z
z=8359 L0 2: 20091007143900Z
y=1528 L0 3: 20100319050300S6
x=60 L0 4: 20120718075700Z

IASI Level 1 (Calibrated) L1 1: 20130816230553Z
z=8461, y=1530, x=60 L1 2: 20130817004753Z

vestigated regression model and variant under different RWA

settings. Table VIII presents bit-rate values of Parsimonious

Haar-Restricted (Amrani, Serra-Sagristà, and Marcellin, 2017)

and for the novel variants Parsimonious Fast-Restricted and

Parsimonious Exogenous-Restricted. Only average values are

reported due to space constraints; however, all scenes within

a particular corpus give rise to similar performance.

Comparing the results for RWA Maximum model with

reversible Haar-DWT, IWT 5/3 or 9/7M wavelet filters as

the underlying transform, we can conclude that the coding

performance seems not to depend much on the wavelet filter.

Even though IWT 5/3 and 9/7M remove the dependencies

better than Haar-DWT (Figure 3), the regression operation

is able to deal with the dependence statistical relationships

regardless of the wavelet filter. As an example, for calibrated

AVIRIS corpus, the average bit-rate when applying 8 spectral

decomposition levels is 3.52, 3.53 and 3.54 for, respectively,

Haar, IWT 5/3 and IWT 9/7M (Table VI).

On the other hand, regarding the Restricted model and its

variants, the wavelet filter used as the basis of the RWA

first operation meaningfully affects the coding performance

(Tables IV and VI). For these cases, IWT 9/7M-RWA obtains

better outcomes than Haar-RWA for uncalibrated and cali-

brated AVIRIS and calibrated IASI scenes. For uncalibrated

IASI scenes, Restricted IWT 9/7M-RWA and variants provide

similar coding performance than Haar-RWA. Presented com-
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Table VI Average RWA bit-rate (in bpppc) for the different corpora. The training process for the Exogenous variants has

been conducted on, respectively, Yellowstone00, Erta Ale, Agriculture, IASI L0 1 and IASI L1 1. ρ parameter is 0.01 for

AVIRIS and Hyperion corpora and 0.1 for IASI corpus.

Wavelet
decomp.

levels

Spectral
wavelet

filter

Mean bpppc
Maximum

Mean bpppc
Fast

Mean bpppc
Restricted

Mean bpppc
Fast-Rest.

Mean bpppc
Exog.-Max.

Mean bpppc
Exog.-Rest.

AVIRIS (calibrated)

0 — 7.08 7.08 6.55 6.55 — —

1
Haar 5.27 5.29 5.25 5.25 5.16 5.17

IWT 5/3 5.19 5.20 5.03 5.03 5.08 4.94
IWT 9/7M 5.22 5.23 5.03 5.03 5.11 4.95

5
Haar 3.56 3.58 4.20 4.19 3.56 4.17

IWT 5/3 3.55 3.57 3.76 3.76 3.55 3.74
IWT 9/7M 3.57 3.59 3.72 3.72 3.57 3.70

8
Haar 3.52 3.54 4.19 4.18 3.52 4.16

IWT 5/3 3.53 3.55 3.75 3.75 3.53 3.73
IWT 9/7M 3.54 3.56 3.71 3.71 3.54 3.69

Hyperion (uncalibrated)

0 — 5.11 5.11 5.11 5.11 — —

1
Haar 4.82 4.82 4.66 4.65 4.92 4.70

IWT 5/3 4.80 4.80 4.73 4.73 4.89 4.77
IWT 9/7M 4.81 4.82 4.75 4.75 4.91 4.80

5
Haar 4.54 4.55 4.38 4.38 4.75 4.44

IWT 5/3 4.56 4.57 4.47 4.47 4.77 4.56
IWT 9/7M 4.57 4.58 4.49 4.49 4.78 4.62

8
Haar 4.53 4.54 4.37 4.37 4.75 4.43

IWT 5/3 4.56 4.57 4.47 4.47 4.77 4.56
IWT 9/7M 4.57 4.58 4.49 4.49 4.78 4.62

Hyperion (calibrated)

0 — 6.42 6.42 6.42 6.42 — —

1
Haar 5.74 5.74 5.77 5.77 5.67 5.68

IWT 5/3 5.77 5.77 5.82 5.81 5.70 5.74
IWT 9/7M 5.86 5.86 5.87 5.86 5.79 5.79

5
Haar 5.32 5.33 5.43 5.38 5.32 5.40

IWT 5/3 5.41 5.42 5.50 5.58 5.42 5.57
IWT 9/7M 5.49 5.50 5.58 5.58 5.50 5.58

8
Haar 5.33 5.34 5.44 5.37 5.34 5.41

IWT 5/3 5.42 5.42 5.59 5.58 5.43 5.58
IWT 9/7M 5.49 5.50 5.58 5.58 5.50 5.59

IASI L0 (uncalibrated)

0 — 5.65 5.65 4.18 4.18 — —

1
Haar 3.83 + 0.68 4.04 + 0.68 3.60 + 7.92×10−4 3.60 + 7.92×10−4 3.86 3.60

IWT 5/3 3.77 + 0.68 3.98 + 0.68 3.54 + 9.46×10−4 3.55 + 9.46×10−4 3.80 3.55

IWT 9/7M 3.80 + 0.68 4.01 + 0.68 3.55 + 1.61×10−3 3.55 + 1.62×10−3 3.83 3.55

5
Haar 2.49 + 0.91 2.77 + 0.91 2.95 + 1.53×10−3 2.96 + 1.53×10−3 2.54 2.95

IWT 5/3 2.55 + 0.91 2.81 + 0.91 2.96 + 1.83×10−3 2.97 + 1.83×10−3 2.60 2.96

IWT 9/7M 2.58 + 0.91 2.85 + 0.91 2.95 + 3.13×10−3 2.95 + 3.13×10−3 2.63 2.95

14
Haar 2.40 + 0.91 2.67 + 0.91 2.91 + 1.58×10−3 2.91 + 1.58×10−3 2.44 2.90

IWT 5/3 2.46 + 0.91 2.73 + 0.91 2.92 + 1.89×10−3 2.92 + 1.89×10−3 2.51 2.92

IWT 9/7M 2.49 + 0.91 2.76 + 0.91 2.90 + 3.23×10−3 2.91 + 3.23×10−3 2.54 2.90

IASI L1 (calibrated)

0 — 10.10 10.10 9.26 9.25 — —

1
Haar 8.14 + 0.70 8.37 + 0.70 8.11 + 7.92×10−4 8.10 + 7.93×10−4 8.17 8.11

IWT 5/3 7.95 + 0.70 8.18 + 0.70 7.72 + 9.37×10−4 7.71 + 9.38×10−4 7.99 7.72

IWT 9/7M 7.97 + 0.70 8.20 + 0.70 7.70 + 1.62×10−3 7.70 + 1.62×10−3 8.01 7.70

5
Haar 6.55 + 0.93 6.84 + 0.93 7.18 + 1.53×10−3 7.18 + 1.53×10−3 6.60 7.18

IWT 5/3 6.47+ 0.93 6.76 + 0.93 6.82 + 1.82×10−3 6.82 + 1.83×10−3 6.52 6.82

IWT 9/7M 6.47 + 0.93 6.76 + 0.93 6.74 + 3.14×10−3 6.75 + 3.14×10−3 6.52 6.74

14
Haar 6.41 + 0.93 6.70 + 0.93 7.11 + 1.57×10−3 7.11 + 1.58×10−3 6.46 7.11

IWT 5/3 6.35 + 0.93 6.64 + 0.93 6.75 + 1.88×10−3 6.75 + 1.88×10−3 6.40 6.74

IWT 9/7M 6.35 + 0.93 6.64 + 0.93 6.67 + 3.23×10−3 6.67 + 3.24×10−3 6.40 6.66

11



pression ratios are also higher than those reported in Amrani

et al. (2016) and in Amrani, Serra-Sagristà, and Marcellin

(2017).

B. Coding performance of RWA models, variants and decom-
position levels

For all regression models and variants, and for all wavelet

filters, increasing the number of wavelet decomposition levels

produces an improvement in the coding performance of RWA

approaches, even though the number of regressors at higher

decomposition levels keeps decreasing. Results reported in

Tables IV and VI suggest that Maximum Haar-RWA model at

the highest decomposition level usually gives rise to the lowest

bit-rates at a moderate computational complexity. This is the

case for uncalibrated and calibrated AVIRIS, for uncalibrated

and calibrated Hyperion (5 levels is slightly better than 8 levels

for the calibrated corpus), and for uncalibrated IASI (if side

information is not taken into account). For calibrated IASI,

IWT 9/7M-RWA always outperforms the other wavelet filters.

For uncalibrated Hyperion corpus, the Restricted model and

its variant Fast-Restricted –with ρ = 0.01, based on Haar, and

with the maximum number of decomposition levels–, yield

the lowest bit-rate at an even lower computational complex-

ity and providing excellent component-scalability. Even the

variant Exogenous-Restricted generally performs better than

Maximum. Different to other corpora, the correlation of uncal-

ibrated Hyperion scenes is higher in local regions (Figure 5). In

addition, Restricted, Fast-Restricted and Exogenous-Restricted

benefit more from the 2D IWT 5/3 spatial transform than

Maximum. The difference in bit-rate when applying or not this

spatial transform is higher for Restricted than for Maximum

model.

For IASI instrument, when the side information is taken

into account, Exogenous variant provides the best coding

performance, as the side information can weight up to 0.9
bpppc. In general, the Exogenous variant applied on any

regression model and with any wavelet filter provides a very

similar performance to that obtained by applying the optimal

regression parameters computed on-line. The computational

complexity is also low and no side information is required.

Overall, applying 5 wavelet decomposition levels yields

very similar performance to the case of applying the largest

number of decomposition levels, J = �log2(z)�, in terms of

computational complexity and compression ratio. For instance,

for 12-bit uncalibrated AVIRIS scenes, the entropy is reduced

from 8.82 bits to 2.99 and 2.81 (Table V) for, respectively,

5 and 8 decomposition levels for Haar-RWA. For 16-bit

uncalibrated Hyperion, the bit-rate is 4.54 and 4.53 when

applying, respectively, 5 and 8 levels of Haar-RWA Maximum

model (Table VI).

Beyond coding performance, Figure 5 displays the squared

correlation of different scenes from four of the six scene

corpora. The different nature of the data according to the

instrument and the calibration process, reported in the first

row, is clear. As expected, the correlation coefficient decreases

significantly after the scenes have been spectrally transformed.

RWA Maximum model and Fast variant are able to remove

almost all the correlation, while Restricted model is not as

efficient, due to the reduced number of components employed

for the regression.

When analysing the influence of the calibration process, for

AVIRIS instrument, the calibrated scenes yield lower bit-rates,

while for Hyperion and IASI instruments, the uncalibrated

scenes yield lower bit-rates. Similar observations are found

in Amrani et al. (2016) and Blanes and Serra-Sagristà (2011).

C. Signal measurements results

Tables V and VII present the squared Pearson’s correlation

coefficient, the energy percentage and the Shannon entropy.

Again, only average values are presented, as a similar pattern

is observed for all scenes of a given corpus.

The tables show that these measurements significantly de-

crease when spectrally transforming the scenes at a higher

number of wavelet decomposition levels. Indeed, the energy

percentage may dramatically decrease at one half or even one

quarter when applying only one transform level for, respec-

tively, AVIRIS and Hyperion or IASI instruments. It even

reaches a value lower than 0.4% for the uncalibrated Hyperion

scenes when decorrelating them until only one approximation

component remains. This value is even smaller, 0.006%, when

transforming the uncalibrated IASI corpus for the Maximum

model at 14 Haar-DWT decomposition levels.

For all the scene corpora, the average entropy approximately

decreases by 3 to 6 bpppc when applying RWA at the highest

decomposition level with respect to the original scene.

The squared Pearson’s correlation coefficient measurement

dramatically decreases at the order of four decimal digits for

AVIRIS and calibrated Hyperion and to 0.001 for uncalibrated

Hyperion scenes. For the uncalibrated and calibrated IASI

corpora, it even reaches such negligible values as, respectively,

7.43×10−6 and 4.45×10−5.

Notice that for these signal statistics, the three wavelet

filters yield similar behaviour too. On the other side, although

these measurements for Fast-Restricted are worse than those

achieved by Maximum model, they tend to decrease in a simi-

lar manner. For Fast-Restricted, IWT 9/7M generally produces

the best results because Ŵ
j
i is no longer being estimated from

a polynomial function considering only a single approxima-

tion component of the same level V j
i , as happens for Haar-

DWT, but from a linear combination of several components{
V j

u

}i+4

u=i−3
, yielding more accurate estimations. The modest

complexity of Haar is here replaced by IWT 9/7M for better

compression outcomes.

Figure 6 plots the squared correlation of the uncalibrated

AVIRIS Yellowstone03 scene for different Restricted RWA

configurations: original Haar-RWA (Amrani et al., 2016), its

novel variants Fast and Exogenous, with different wavelet fil-

ters as their first operation block, and for original Parsimonious

model (Amrani, Serra-Sagristà, and Marcellin, 2017), and its

novel variants Fast and Exogenous, also with different wavelet

filters.

The original Parsimonious model is based on a Haar-DWT

and a regression through the Restrictred model, but it employs

three approximation components for computing the regression

12
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Figure 5 Squared correlation coefficient matrices when applying rKLT and Haar-RWA at the highest decomposition level.

Results reported for four scenes of three different instruments. For the Fast variants, spatial sub-sampling parameter ρ is 0.01

for AVIRIS and Hyperion scenes and 0.1 for IASI corpora. The average correlation is denoted with r2.
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Figure 6 Squared correlation coefficient matrices when applying the Restricted and Parsimonious Restricted models and

variants (Fast and Exogenous) with different wavelet transforms as underlying filters at the highest decomposition level.

Results are reported for the uncalibrated AVIRIS Yellowstone03 scene. Note that for the Parsimonious model, each prediction

is conducted taking into account 3 approximation components, and that, for the Fast variants, spatial sub-sampling parameter

ρ is 0.01. The average correlation is denoted with r2.
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Table VII Signal measurements when applying RWA Maximum and Fast-Restricted to the different scene corpora.

Wavelet
decomposition

levels

Spectral
wavelet

filter

Maximum Fast-Restricted

Mean r2 Mean E (%) Mean H Mean r2 Mean E (%) Mean H

AVIRIS (calibrated)
0 — 0.69 100 9.77 0.69 100 9.77

1
Haar 0.17 47.28 7.40 0.19 49.87 7.77

IWT 5/3 0.16 47.75 7.31 0.17 50.25 7.39
IWT 9/7M 0.17 47.63 7.33 0.17 50.13 7.38

8
Haar 7.23×10−4 0.21 3.87 0.07 0.33 5.00

IWT 5/3 7.45×10−4 0.58 3.91 7.34×10−3 0.60 4.17

IWT 9/7M 7.41×10−4 0.54 3.91 3.01×10−3 0.55 4.03

Hyperion (uncalibrated)

0 — 0.27 100 9.57 0.27 100 9.57

1
Haar 0.07 49.89 8.52 0.09 50.10 8.83

IWT 5/3 0.06 50.01 8.46 0.08 50.03 8.71
IWT 9/7M 0.07 49.89 8.48 0.08 49.90 8.68

8
Haar 1.20×10−3 0.39 5.52 0.03 0.91 6.28

IWT 5/3 1.34×10−3 0.37 5.55 0.01 0.40 5.89

IWT 9/7M 1.38×10−3 0.37 5.55 8.22×10−3 0.39 5.80

Hyperion (calibrated)

0 — 0.54 100 9.50 0.54 100 9.50

1
Haar 0.13 44.75 8.12 0.13 49.51 8.27

IWT 5/3 0.13 45.43 8.18 0.13 50.31 8.27
IWT 9/7M 0.13 45.12 8.28 0.13 49.97 8.31

8
Haar 1.01×10−4 0.37 6.28 0.01 0.84 6.71

IWT 5/3 4.01×10−4 0.56 6.29 3.90×10−3 0.81 6.65

IWT 9/7M 8.01×10−4 0.52 6.30 2.33×10−3 0.59 6.49

IASI L0 (uncalibrated)

0 — 0.57 100 8.09 0.57 100 8.09

1
Haar 0.14 26.27 6.37 0.16 49.74 6.83

IWT 5/3 0.14 26.49 6.29 0.14 50.15 6.50
IWT 9/7M 0.14 26.40 6.32 0.14 49.89 6.46

14
Haar 7.43×10−6 6.08×10−3 2.43 0.03 0.10 3.69

IWT 5/3 1.55×10−5 0.01 2.44 5.05×10−3 0.02 2.97

IWT 9/7M 1.53×10−5 0.01 2.47 1.99×10−3 0.02 2.81

IASI L1 (calibrated)

0 — 0.57 100 12.83 0.57 100 12.83

1
Haar 0.14 37.07 10.58 0.16 49.96 11.18

IWT 5/3 0.14 37.16 10.40 0.14 50.07 10.55
IWT 9/7M 0.14 37.12 10.42 0.14 50.02 10.51

14
Haar 5.97×10−5 0.02 6.77 0.05 0.08 8.12

IWT 5/3 4.66×10−5 0.02 6.75 0.04 0.03 7.17

IWT 9/7M 4.45×10−5 0.02 6.74 1.00×10−3 0.03 6.99

parameters in each detail estimation instead of only one

component (for which second and third-order terms were also

used), thus providing a more accurate estimation at a lower

computational complexity.

D. Dynamic range, precision and entropy
Figure 7 provides the dynamic range, precision and en-

tropy per spectral component for uncalibrated AVIRIS Yel-

lowstone03 scene. Measurements are reported for the original

scene and for the Haar-DWT and RWA transforms when ap-

plied along the spectral dimension (left column). The plots dis-

play the higher performance of RWA over traditional wavelet

transforms and the equivalent performance of RWA approach

regardless of the wavelet filter used in the first stage of the

transform (right column). RWA does not expand the dynamic

range, requires less bits of precision and yields a lower entropy

(as also reported in Tables V and VII). Behaviour for all the

other employed hyperspectral scenes is similar.

E. Coding performance comparison against state-of-the-art
techniques

For comparison purposes, bit-rates and execution time of

several state-of-the-art coding techniques are reported (Ta-

ble VIII). Following a chronological order, a brief description

of each of these techniques is depicted next:
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Figure 7 From top to bottom: dynamic range, precision and

entropy of the uncalibrated AVIRIS Yellowstone03 scene and

of its transformed versions when applying different wavelet

filters as the basis of Maximum RWA and applying the Haar-

DWT.

(i) Reversible Karhunen-Loève Transform (rKLT) diagonal-

izes the covariance matrix. It formulates a stochastic

process as an infinite linear combination of orthogonal

functions.

(ii) Haar-DWT is one of the most elementary DWT. It pyra-

midally decorrelates the spectral dimension of hyperspec-

tral scenes by applying a simple Haar wavelet filter.

(iii) Multiband Context-based Adaptive Lossless/Near-

Lossless Image Coding (M-CALIC) (Magli, Olmo,

and Quacchio , 2004) applies an efficient spectral

decorrelation. It is a predictive-based technique that

allows for near-lossless and lossless reconstruction.

(iv) Pairwise Orthogonal Transform (POT) (Blanes and Serra-

Sagristà , 2011) is a transform-based approach inspired

on the KLT but aiming at competitive coding perfor-

mance without the disadvantages the KLT introduces:

high computational cost, lack of component-scalability,

large memory requirements, and difficult implementation.

POT solves these problems by generating multiple com-

positions of two-component instances of the KLT.

(v) The standar CCSDS-123.0 (CCSDS, 2012) tackles on-

board lossless coding of multi-spectral and hyperspectral

scenes. It is based on a causal context-based prediction

and an entropy-coding operations. This entropy-coder

utilizes Golomb power-of-two codes.

(vi) Clustered Differential Pulse Code Modulation with Adap-

tive Prediction Length (C-DPCM-APL) (Mielikainen and

Huang , 2012) exploits the use of an adaptive predic-

tion length method in clustered differential pulse code

modulation (C-DPCM) for lossless compression. The

differences between the predicted and the original values

are sent to the entropy encoder that uses an adaptive range

coder for each cluster.

(vii) Lossless Recursive Least-Squares filtering (RLS) (Song,

Zang, and Chen , 2013) calculates the subtraction of the

average value of 4 neighbour pixels and the current pixel

value. The local differences between the co-locate pixels

with the current pixel in previous components conform

the input signal to the RLS filter. The RLS filter predicts

the value of the current local difference and encodes the

prediction residual by means of an adaptive arithmetic

encoder.

(viii) Clustered Differential Pulse Code Modulation with Re-

moval of Local Spectral Outliers (C-DPCM-RLSO) (Wu

et al. , 2015) removes the local spectral outliers by

enhancing the prediction accuracy of the high-order re-

gression predictor and decreasing the residual values

between the prediction and the original values.

(ix) Lossless Conventional Recursive Least-Squares predictor

(CRLS) (Gao and Guo , 2016) is a spectral domain

predictor that quantifies the optimal number of predic-

tion components twice. CRLS uses 24 neighbour pixels

instead of 4. The technique is adaptive in that it looks for

the best prediction components (A-CRLS). This adapta-

tion is based on an exhaustive search of the number of

components that minimizes the prediction residual.

(x) RWA (Amrani et al., 2016) introduces Maximum and Re-

stricted RWA models with Haar-DWT as the underlying

wavelet transform.

(xi) Parsimonious RWA (Amrani, Serra-Sagristà, and Mar-

cellin, 2017) simplifies Maximum RWA model by select-

ing a finite subset of approximation components when

computing the regression parameters (Restricted model).

It selects a subset of neighbour approximation compo-

nents to predict a detail component. The original version

employs Haar-DWT as the first operation block; here

we provide results also for Parsimonious IWT 5/3-RWA

and Parsimonious IWT 9/7M-RWA. In addition, novel

Fast-Parsimonious and Exogenous-Parsimonious lossless

variants have been investigated.

POT is a line-based transform that generates side informa-

tion for each input scene row. Since both Hyperion and IASI

instruments capture tall and narrow scenes, the side informa-

tion is considerably reduced when rotating the scenes by 90◦.

To provide the best performance possible, the uncalibrated

Hyperion corpus has been rotated 90◦ for all the techniques

but M-CALIC. The calibrated Hyperion corpus is rotated for

all the techniques but M-CALIC, CCSDS-123.0 and RWA. For

POT, IASI corpus has been also rotated.

The C++ software implementation of M-CALIC does not

handle transformed signals with more than 15 bpppc. There-

fore, outcomes for uncalibrated AVIRIS Yellowstone11 and

18, for the calibrated Hyperion corpora and for the uncali-
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brated IASI L0 1 and 2 scenes are not available.

For the assessment of average execution time, rKLT, Haar-

DWT, POT, M-CALIC, CCDSDS-123.0, RWA and variants,

and Parsimonious RWA and variants are computed on an

Intel(R) Xeon(R) CPU E5520 @ 2.27GHz processor with a

single thread.

The average execution time for AVIRIS corpus for recur-

sive least-squares (RLS) filtering, C-DPCM-APL, C-DPCM-

RLSO, CLRS and A-CLRS are taken from the original pa-

pers Wu et al. (2015); Gao and Guo (2016) and Song, Zang,

and Chen (2013). Note that for A-CRLS, the uncalibrated

and calibrated AVIRIS Yellowstone00 scenes have not been

included when computing the average execution time, because

they are used to fix the optimal prediction components for

coding the rest of the scenes in the corpus.

1) AVIRIS scenes: A-CRLS, C-DPCM-APL and C-DPCM-

RLSO (order 85) give rise to the highest coding performance,

however, they demand significant computational resources and

their execution time is too large, requiring, respectively, 5819,

32961 and 3518 seconds for compressing a 16-bit calibrated

AVIRIS scene. Haar-DWT and POT require a short execution

time at the expense of worsening the coding performance.

Maximum RWA outperforms the other techniques for cali-

brated AVIRIS and for 12-bit uncalibrated scenes. Its perfor-

mance lies very close to rKLT for uncalibrated AVIRIS scenes

with a difference of 0.02 bpppc. However, rKLT demands

higher computational complexity. RLS and CRLS obtain simi-

lar bit-rates than RWA but are more expensive. Maximum and

Exogenous-Maximum Haar-RWA yield a highly competitive

coding gain at a very low execution time. The Exogenous

variant secures bit-rates only 0.26, 0.27 and 0.38 higher

than those provided by C-DPCM-RLSO (order 85), the best

performing coding technique, at considerably lower execution

time, namely, respectively, 78.07, 63.43 and 76.31 times faster.

Parsimonious RWA, M-CALIC and CCSDS-123.0 achieve

slightly higher bit-rates at a reasonable computational time.

2) Hyperion and IASI scenes: For calibrated Hyperion

scenes, Maximum RWA outperforms all the state-of-the-art

techniques at a very competitive execution time. For un-

calibrated Hyperion, CCSDS-123.0 provides superior perfor-

mance, close to that achieved by POT and Haar-RWA Fast-

Restricted (Table VI), but demands larger computational com-

plexity.

The RWA Exogenous-Maximum variant encodes the un-

calibrated and calibrated IASI corpora with the lowest bit-

rates at considerably lower execution time than the rest of the

techniques, becoming the best performing technique for scenes

with thousands of spectral components. For these scenes, side

information plays a relevant role in the coding performance,

and Exogenous-Maximum benefits from not having to store/-

transmit it.

VI. CONCLUSIONS

Regression Wavelet Analysis (RWA) is a state-of-the-art

hyperspectral scenes lossless coding method which enables

different regression models. Maximum model yields the finest

prediction accuracy and competitive coding performance, with

a computational cost lower than the cost of reversible KLT,

which uses to provide the best performing coding results. The

Restricted model largely reduces Maximum model computa-

tional complexity with an almost equivalent coding perfor-

mance.

To further reduce the computational cost of RWA, we

present two approaches than can be coupled with the Re-

stricted regression model. Fast-Restricted variant reduces the

complexity by applying a spatial sub-sampling (using only 1%

of the pixels for learning for AVIRIS and Hyperion scenes and

10% for IASI data). Exogenous-Restricted variant fully avoids

the regression computation by employing fixed parameters –

learned over a training scene– for the other scenes of the same

instrument. It also reduces the Exogenous-Maximum com-

plexity by employing less approximation components in the

generation of the predicted details. This last variant may even

imply a better coding performance than Maximum for scenes

with large spectral dimension, for which the side information

related to the regression parameters is not negligible.

Three different choices of reversible wavelet transform have

been investigated: Haar-DWT, IWT 5/3 and 9/7M. Experimen-

tal results suggest that the coding performance of Maximum

and Parsimonious RWA for lossless compression is barely

affected by the underlying wavelet transform, indicating that

regression is able to predict the details from the approximation

components regardless of the wavelet filter.

However, when analysing the Restricted model and its

variants, the wavelet filter used as first RWA operation block

meaningfully affects the coding performance. IWT-RWA may

achieve higher compression ratios than those presented in Am-

rani et al. (2016) at lower execution times. For instance, IWT

5/3-RWA and IWT 9/7M-RWA outperform Haar-RWA for

uncalibrated and calibrated AVIRIS and calibrated IASI instru-

ments, at a very similar computational complexity. IWT-RWA

may obtain lower bit-rates than the Parsimonious model (Am-

rani, Serra-Sagristà, and Marcellin, 2017) at similar complex-

ity too. This is because more approximation components are

considered in each detail prediction. Moreover, the estimation

formulation changes from a cubic equation to a polynomial

of first order. The same happens for their variants Fast and

Exogenous.

To summarize, RWA allows a wide range of variations,

either in the wavelet transform or in the regression model,

that yield an accurate prediction with a reduced computa-

tional complexity and bearable execution time. This tech-

nique provides superior coding performance than other recent

widespread techniques such as, from faster to slower, POT,

RLS, CCSDS-123.0, rKLT and M-CALIC for lossless com-

pression of hyperspectral scenes. RWA also aims at very com-

petitive compression ratios at considerably lower execution

time than other state-of-the-art techniques such as CRLS, A-

CRLS, C-DPCM-RLSO (order 85) and C-DPCM-APL. RWA

is therefore among the most competitive approaches.
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+ Universitat Autònoma de Barcelona
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Abstract—Progressive Lossy-to-Lossless (PLL) coding tech-
niques enable a gradual quality improvement of the recovered
images, starting from a coarse approximation up to a perfect
reconstruction. PLL is becoming a widespread approach in
several scenarios, in particular, for compression of hyperspectral
images. In this paper we assess the suitability of Regression
Wavelet Analysis (RWA) for hyperspectral image progressive
lossy-to-lossless coding. RWA is a recent spectral transform that
combines a wavelet transform with a regression stage, providing
excellent coding performance for lossless compression. When
coupled with a pyramidal predictive weighting scheme, RWA also
yields very competitive coding results for PLL at a low computa-
tional cost. Coding performance is assessed within the framework
of JPEG 2000 standard, comparing RWA against state-of-the-
art spectral transforms, including reversible Karhunen-Loève
Transform (rKLT) and Pairwise Orthogonal Transform (POT).
Comparison with respect to Multiband Context-based Adaptive
Lossless/Near-Lossless Image Coding (M-CALIC) technique is
also provided. Experiments are conducted on uncalibrated and
calibrated hyperspectral images from Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS), satellite-borne Hyperion and
Infrared Atmospheric Sounding Interferometer (IASI) sensors.
Discussion embraces rate-distortion performance, bit-per-pixel-
per-component rate distribution and classification outcome.

Index Terms—Progressive lossy-to-lossless compression, regres-
sion wavelet analysis, predictive weighting scheme, hyperspectral
image compression, image quality recovery.

I. INTRODUCTION

Nowadays sensors record enormous volumes of information

and their data-capture capacity is only further increasing.

Handling this large amount of information poses several

challenging problems, for instance, how to transmit the in-

formation from the satellite to the ground stations on Earth

through a downlink channel with restricted bandwidth. This

limitation may give rise to an insufficient on-board storage

capacity and lead to discarding some of the just acquired

remote-sensing data. Compression techniques can mitigate this

problem and enable efficient on-board and on-land data storage

and transmission.

Several lossless, near-lossless and lossy coding techniques

have been recently introduced. Lossless compression tech-

niques allow for perfect data recovery, usually providing

compression ratios close to 2:1. Near-lossless compression

techniques restrict the –peak-absolute– distortion and enable

(a) Calibrated AVIRIS-Yellowstone03

(b) Uncalibrated Hyperion-Lake Monona

Figure 1 IWT 5/3 and reversible KLT Rate-Distortion curves.

larger compression ratios. Lossy compression techniques allow

an arbitrary compression ratio at the cost of an increased dis-

tortion in the recovered image. Progressive Lossy-to-Lossless

(PLL) is a particular type of lossy compression, where the

recovered quality is gradually refined as the code-stream

is decoded. It is lately attracting a large interest, specially

for hyperspectral image coding. Reviews of PLL coding for

remote-sensing can be found in Ginesu, Giusto, and Pearlman

(2004) and Zhang, Fowler, and Liu (2008).

Remote-sensing data has large spectral redundancy and

removing the statistical relationships along the spectral di-

mension is required for achieving high compression ratios.

Significant differences in coding performance are achieved

for lossless, near-lossless and lossy compression when the

spectral redundancy is exploited (Blanes, Magli, and Serra-
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Sagristà , 2014). Different compression techniques based on

spectral-components decorrelation have thus been designed.

Karhunen-Loève Transform (KLT) is the optimal decorrelating

transform for Gaussian sources (Jolliffe , 2002; Effros, Feng,

and Zeger , 2004). Although neither 1D-spectral nor 2D-spatial

hyperspectral signals are Gaussian (Camps-Valls et al., 2011),

KLT usually yields also very efficient coding performance

when used as a spectral transform. However, it is a linear

data-dependent transform and requires large computational

resources, such so that it even becomes unfeasible for images

with a large number of spectral components (such as images

recorded by IASI sensor, which have more than 8,000 spectral

bands). Several approaches for reducing KLT’s computational

complexity have been proposed, which also try to minimize the

coding performance decline. Some of them are based on sub-

sampling the dataset in the spectral and/or the spatial dimen-

sion, thus computing the covariance matrix on a reduced subset

of coefficients and as a result decreasing the computational

complexity (Penna et al. , 2007). Other approaches reduce

KLT complexity by learning the transform coefficients on a

single image from a particular sensor and applying later the

same learned coefficients (an exogenous transform) to other

images from the same sensor (Barret, Gutzwiller, and Harati,

2011).

Figure 1 displays the coding performance of applying a

reversible KLT (rKLT) and an Integer Wavelet Transform

(IWT) 5/3 on a calibrated and on an uncalibrated image. The

coding performance of rKLT is clearly above that of IWT

5/3 in all bit-rates (except for a short range for Figure 1(b),

where the lifting scheme introduced in rKLT penalizes its

efficiency). The goal of several subsequent coding approaches

is to approximate the coding performance of rKLT at a reduced

computational cost.

Regression Wavelet Analysis (Amrani et al., 2016a) is one

such approach. It has been recently proposed for lossless

coding of hyperspectral images. It achieves lossless coding

performance superior to other widespread methods such as

CCSDS-122.1 (CCSDS , 2012a), based on a spectral transform

followed by a spatial Discrete Wavelet Transform (DWT),

the predictive-based CCSDS-123.0 (CCSDS, 2012b), both

developed by the Consultative Committee for Space Data Sys-

tems (CCSDS), and other KLT-based approximations. RWA

applies an inexpensive Haar-DWT S-transform followed by a

regression analysis to account for the 1D spectral correlation.

The regression analysis removes almost all the remaining

statistical relationships in the wavelet domain. RWA works

2



Table I Lossless RWA formulation.

Forward Backward

(RWA)(V j−1,1) =

⎛⎝V j, R j︷︷
W j−Ŵ j

⎞⎠ V j−1 =(DWT)−1
(
(V j,R j +Ŵ j),1

)

as a predictive scheme preserving some of the DWT features

as component scalability and low complexity.

RWA can be adapted to progressive lossy-to-lossless re-

covery (PLL-RWA) through a pyramidal Predictive Weighting

Scheme (PWS) (Amrani et al. , 2016b). PWS takes into

consideration the predictive contribution of each transformed

spectral component into JPEG 2000 rate-allocation process.

To this end, it progressively attributes higher weights to the

most significant components in the decoding process, while

securing an error propagation minimization. These weights

improve the PLL-RWA recovered quality data. It yields similar

rate-distortion performance to pure lossy techniques at low bit-

rates, and the same coding performance as RWA in the lossless

regime.

In this paper we present an in-depth discussion of the

PLL-RWA coding process. While in Amrani et al. (2016b)

a predictive weighting scheme is proposed for aiming at

better rate-allocation performances and for avoiding the non-

monotonic growth of the Maximum RWA Rate-Distortion

curves, this article presents further experiments and demon-

strates its feasibility in common nowadays applications. In our

approach we cover the beneficial use of applying this PWS not

only for the Maximum regression model but also for the Re-

stricted model and the different variants: Fast-Maximum, Fast-

Restricted, Exogenous-Maximum and Exogenous-Restricted.

For comparison purposes we provide performance assessment

against different widespread state-of-the-art spectral trans-

forms such as reversible KLT (rKLT) and Pairwise Orthogonal

Transform (POT) (Blanes and Serra-Sagristà , 2011) and the

near-lossless and lossless technique M-CALIC (Magli, Olmo,

and Quacchio , 2004). We also assess the effect of varying

the wavelet transform (Haar-DWT, IWT 5/3 and IWT 9/7M)

as the basis of the first operation in the progressive lossy-to-

lossless RWA scheme. The benefits of the predictive weighting

scheme are explained investigating the bit-rate distributions

per transformed spectral component according to a global

target bit-rate. PWS entails that most important transformed

components are sent first, enabling a better image quality

recovery for progressive lossy-to-lossless transmission. This

improved reconstruction capability is illustrated for digital

classification, suggesting that PWS-RWA yields more competi-

tive performance than reversible KLT and Pairwise Orthogonal

Transform, specially for low bit-rates.

II. PROGRESSIVE LOSSY-TO-LOSSLESS CODING

This section briefly surveys the basis of RWA and the

predictive weighting scheme. Notation and rate allocation

across the transformed components in the final code-stream

are also introduced.

A. Regression Wavelet Analysis

RWA applies first a DWT and in sequence a regression

operation. This second stage exploits the remaining spectral

redundancy the DWT can not remove. This lossless coding

method deploys a lifting scheme (Calderbank et al. , 1997),

dealing with integer coefficients
(
V j,W j

)
thanks to a re-

versible rounding operation.

Figure 2 shows the RWA scheme, with H and G being,

respectively, the low and high-pass filters. As can be noticed,

the approximation components remain unchanged during the

whole estimation process. The forward and backward formula-

tion of the one level RWA decomposition of the approximation

components V j−1 are given in Table I. When decoding, the

inverse DWT ((DWT)−1) is applied once the detail com-

ponents W j are estimated and combined with the residuals

variables, R j. In general, the detail components W j
i ∈ R

m×1,
i ∈ I ={1, ...,k=z·2− j}, are estimated from some or all of

the approximation components at level j, V j ∈ R
m×(z·2− j).

These estimations Ŵ j are computed through a least-squares

method (Nocedal, and Wright, 2006) and are involved in the

regression coefficients, βββ , computation. It minimizes the sum

of squares of the distances between the DWT decomposition

details and the estimated ones, i.e.:

argmin
βββ

‖W−βββV‖2. (1)

The parameters βββ j are the regression coefficients. For all the

regression models and variants –but Exogenous– they require

to be stored as side information for the reverse process.

Table II reports the computational cost, in Floating-point

operations (FLOPs), of the different operations involved in a

lossless RWA process.

The prediction of each detail component Ŵ
j
i at level j,

Ŵ
j
i = fi(V j), is differently formulated depending on the used

RWA regression model or variant. Function fi defines the

employed regression model as specified in Table III, both

for computing the regression coefficients and for generating

the estimation details in the RWA reverse procedure. The

Maximum model uses all the approximation components from

V j. It is the most accurate model and stores the regression

coefficients as side information for the decoding procedure.

The Restricted model employs a subset of approximation com-

ponents. This subset is selected to maintain the component-

scalability (number of transformed components required to re-

construct an image component) of the original DWT. The Fast

variant randomly chooses a subset of m′=ρ ·m spatial samples

(m′	m), where ρ corresponds to the subsampling percentage.

Only these samples are used for the least-squares method and,

therefore, for the regression coefficients calculation. Finally,

Exogenous variant uses fixed regression coefficients obtained

through training a single image from a corpus to estimate the

3



Table II Computational complexity of the lossless RWA operations in Floating-point Operations (FLOPs). z and m are the

number of spectral components and spatial samples per component. l corresponds to the wavelet decomposition level and ki
to the number of approximation components involved in each prediction level i.

Operation FLOPs

Haar S-Transform (CHT) 8(1− 1
2l )mz

Regression coefficients calculation (CRC): βββ = (VᵀV)−1VᵀW ∑l
i=1 (2m−1)(ki +1)2+(ki +1)3+( z

2i )(ki +1) [(2m−1)+(2ki +1)]

Estimation generation (CEG): Ŵ = βββV 2∑l
i=1 (2ki −1)m z

2i

Apply and Remove (CAR) 2m(z−1)

Table III Details estimation and component-scalability preservation of the different Haar-based RWA regression models and

variants. Please refer to Table II and to Figure 3 for notation. j is the number of applied wavelet decomposition levels.

Regression type Details estimation Component-scalability

M
o
d
el

s Maximum Ŵ
j
i = β j

i,0 +β j
i,1V j

1 + · · ·+β j
i,kV j

k z(1− 1
2 j )

Restricted Ŵ
j
i = β j

i,0+β j
i,1V j

i +β j
i,2(V

j
i )

2+β j
i,3(V

j
i )

3 j+1

V
ar

ia
n
ts

Fast-Maximum Ŵ
j
i = β ′ j

i,0 +β ′ j
i,1V j

1 + · · ·+β ′ j
i,kV j

k z(1− 1
2 j )

Fast-Restricted Ŵ
j
i = β ′ j

i,0+β ′ j
i,1V j

i +β ′ j
i,2(V

j
i )

2+β ′ j
i,3(V

j
i )

3 j+1

Exogenous-Max. Ŵ
j
i =β

j
i,0 +β

j
i,1V j

1+ . . .+β
j
i,kV j

k
z(1− 1

2 j )

Exogenous-Rest. Ŵ
j
i = β

j
i,0+β

j
i,1V j

i +β
j
i,2(V

j
i )

2+β
j
i,3(V

j
i )

3 j+1

Table IV Computational cost and side information of the different Haar-based RWA regression models and variants. Please

refer to Table II for the notation. ρ is the spatial subsampling percentage.

Regression type Computational cost Side information

M
o
d
el

s Maximum CHT + CRC + CEG + CAR
z2

3 (1− 1
22 j )+z(1− 1

2 j )

Restricted CHT + 4
(

∑l
i=1 4(2m−1)+16+ z

2i−1 (m+3)
)

+ 10mz
(
1− ( 1

2 )
l) + CAR 2z(1− 1

2 j )

V
ar

ia
n
ts

Fast-Maximum � CHT + ρCRC + (1 - ρ)
[
(ki +1)3+ z

2i−1 (ki +1)ki

]
+ CEG + CAR

z2

3 (1− 1
22 j )+z(1− 1

2 j )

Fast-Restricted � CHT + ρCRC + 4 (1 - ρ) (16+ 3z
2i−1 ) + 10ρmz

(
1− ( 1

2 )
l) + CAR 2z(1− 1

2 j )

Exogenous-Max. CHT + 0 + CEG + CAR —

Exogenous-Rest. CHT + 0 + CEG + CAR —

detail components of the other images captured by the same

sensor. The regression coefficients are computed only once,

off-line, and are thus not stored as side information. Tables III

and IV and Figure 3 illustrate these different RWA models and

variants.

Figure 4 displays the coding performance of RWA. For

lossless coding, it achieves perfect data-recovery at bit-rates

close to those obtained by rKLT. However, when adapting it

into a PLL framework (Matlab implementation of RWA plus

JPEG 2000 bit-plane and entropy coders), a staircase shape

appears in the Rate-Distortion curves and the performance

worsens. To procure smooth and monotonously increasing

Rate-Distortion curves, the predictive weighting scheme is

introduced.

B. Prediction Weighting Scheme

The predictive weighting scheme conveys the contribution

of each transformed component to the prediction process

when coupled with a rate-distortion optimization (as conducted

within JPEG 2000 standard). For the data-recovery process,

the existing error in the residuals R j is propagated to the

detail components of the same scale j, (W j =R j +Ŵ j). Since

W j depends on the information contained in V j−1, (W j
i =

V j−1
2i −V j−1

2i−1), the error is also spread to the detail predictions

at the previous level Ŵ j−1, (Ŵ
j
i = fi(V j)). To minimize the

error propagation, the prediction weights enable JPEG 2000

to allocate more bit-rate to the most significant transformed

components, i.e., those of the highest decomposition level,

because of the degree of influence of the error propagation in

the reconstruction. The prediction weights are employed in the
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(a) Calibrated AVIRIS-Yellowstone03 (b) Uncalibrated Hyperion-Lake Monona

Figure 4 Rate-Distortion curves assessing the performance of several spectral transforms: rKLT and RWA built upon Haar-

DWT, IWT 5/3 and IWT 9/7M.

(a) Calibrated AVIRIS-Yellowstone03 (b) Uncalibrated Hyperion-Lake Monona

Figure 5 Rate-Distortion curves assessing the performance of several spectral transforms: rKLT and RWA (Maximum) built

upon Haar-DWT, IWT 5/3 and IWT 9/7M when the Predictive Weighting Scheme is applied.

Post Compression Rate Distortion (PCRD) optimisation within

JPEG 2000, where a convex hull process is applied assessing

the contribution to the distortion reduction of each coefficient

against the bit-rate needed for that coefficient. Assigning larger

weights to most significant transformed components leads to

transmitting first these significant transformed components,

thus better contributing to an improved reconstruction.

From the backward equation in Table I, the prediction of the

details at level j−1 in the inverse RWA process is computed

as:

Ŵ
j−1

i = fi
[
V j−1

]
= fi

[
(DWT)−1

(
V j,Ŵ j +R j

)]
. (2)

By extension to level j−2 and by replacing Ŵ
j−1

i (Equa-

tion 2), the following formulation is derived:

Ŵ
j−2

i = fi

[
(DWT)−1

(
V j−1,Ŵ j−1 +R j−1

)]
=

fi

[
(DWT)−1

(
V j−1, fi

[
(DWT)−1

(
V j,Ŵ j +R j

)]
+R j−1

)]
.

(3)

Reproducing this procedure iteratively until the first de-

composition level, the dependency of Ŵ
j
i with respect to all

the residuals from higher decomposition levels
(
Rk

) j+1≤k≤J

becomes clear. To clarify this, the level one estimated details

are given by:

Ŵ
1

i = fi

[
(DWT)−1

(
V2, fi

[
(DWT)−1 (V3, · · · · · ·

... fi [ (DWT)
−1 (VJ−1 , fi

[
(DWT)−1

(
VJ ,ŴJ +RJ

)]
· · ·

· · ·R3 ) ]+R2 ) ] . (4)

Each residual R j with j>1 is involved into all the

(Ŵk)1≤k≤ j−1 predictions. Notice that the predicted detail

components at level k has z ·2−k components, Ŵk∈Rm×(z·2−k).

Hence, the weighting function takes into consideration the

number of predictions in which R j contributes, and their

relative proportion, u(R j), with respect to the z components

of the image:

u(R j) =

{
∑ j−1

i=1 2−i , if j > 1

0 , if j = 1
. (5)

The Predictive Weighting Scheme assigns a different weight

to each residual component according to the predictive sig-

nificance of each component with respect to the ones at the

previous scales; it is defined as follows:

W (R j) =
1

u(R j)−u(R j−1)
= 2 j−1. (6)
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Finally, the approximation component at the highest

RWA decomposition level J, VJ∈Rm×1, is assigned weight

W (VJ) = 2J .
Figure 5 reflects the benefits of applying this PWS.

Now, smoothly increasing Rate-Distortion curves are obtained.

Moreover, PWS-RWA may yield superior coding performance

than rKLT at a much lower computational complexity.

III. EXPERIMENTS AND RESULTS

This section discloses the Rate-Distortion curves, bit-per-

pixel-per-component (bpppc) distributions according to a fixed

global target bit-rate and different classification measurements

for several spectral transforms: rKLT, POT, PWS-Haar-DWT

and RWA. The near-lossless technique M-CALIC is also

considered.

Image
1D

Spectral
Transform

JPEG 2000 :
Bit-plane & entropy

coding
Code-stream

Figure 6 Pipeline of our coding system: 1D spectral trans-

form followed by JPEG 2000.

Table V Information of the images from AVIRIS, Hyperion

and IASI sensors sets. z is the number of spectral components,

y is the height and x is the width.

Corpus Images
AVIRIS (uncalibrated) Yellowstone, sc: 0, 3, 10, 11, 18
z=224, y=512, x=680 Hawaii (x=614) and Maine

AVIRIS (calibrated) Yellowstone, sc: 0, 3, 10, 11, 18
z=224, y=512, x=680
Hyperion (uncalibrated) ErtaAle (y=3187)

z=242 Lake Monona (y=3176)
x=256 Mt. St. Helens (y=3242)

Hyperion (calibrated) Agriculture (y=3129)
z=242 Coral Reef (y=3127)
x=256 Urban (y=2905)

IASI Level 0 (uncalibrated) L0 1: 20091007093900Z
z=8359, y=1528, x=60 L0 2: 20091007143900Z

IASI Level 1 (calibrated) L1 1: 20130816230553Z
z=8461, y=1530, x=60 L1 2: 20130817004753Z

Figure 6 displays the two main blocks that compose our

system. The first block corresponds to the 1D transform

along the spectral dimension. In our case, this operation is

conducted by either rKLT, POT, PWS-Haar-DWT or RWA.

The second and last operation stage is performed by a plain

JPEG 2000 (Taubman, and Marcellin , 2001), including a bit-

plane and an entropy coding step. The Predictive Weighting

Scheme is inserted within the JPEG 2000 framework through

parameter Cweight in Kakadu implementation. Note that no

spatial transform has been applied.

The employed software is Matlab 64-bits R2014b for the

spectral transforms and Kakadu v6.0 for JPEG 2000. For

reproducibility, the rKLT, Haar-DWT, IWT 5/3 and RWA

codes are publicly available at Amrani and Serra-Sagristà

(2015). IWT 9/7M definition is provided in CCSDS (2012a).

Results of our experiments are reported for six hyperspec-

tral images corpus from three well-known uncalibrated and

calibrated sensors: airborne hyperspectral AVIRIS, satellite-

borne hyperspectral Hyperion and ultraspectral IASI sensors.

For AVIRIS sensor, five scenes with a bit-depth of 16 bits per

pixel per component (bpppc), Yellowstone 00, 03, 10, 11 and

18, and two 12 bpppc images, Hawaii and Maine, are used.

These two sets have 224 spectral components. The Hyperion

sensor records images with 242 spectral components. IASI

sensor records images with 8,359 (uncalibrated) and 8,461

(calibrated) spectral components. Both sensors store images

with 16 bpppc. Table V gives a description of the dimensions

of these images.

A. Predictive Weighting Scheme for Progressive Lossy-to-
Lossless coding

Figure 7 displays the Rate-Distortion curves for different

RWA regression models and variants (Maximum, Restricted,

Exogenous-Maximum and Exogenous-Restricted), illustrating

the benefits of applying the predictive weighting scheme.

These benefits are achieved for all RWA regression models

and variants, and for all images. Comparing the performance

of rKLT and PWS-RWA, the former is superior at low to

medium bit-rates while the latter is superior at medium to

high bit-rates.
Results for Fast-Maximum and Fast-Restricted are not re-

ported for the sake of paper length and because the perfor-

mance in these cases is very similar to, respectively, Maximum

and Restricted models. Fast-Maximum and Fast-Restricted

employ 1% of the total spatial samples for AVIRIS and

Hyperion sensors and 10% for IASI sensor for the regression,

reducing considerably the computational complexity.
The Restricted model performance slightly falls behind

for AVIRIS and IASI corpus. However, for uncalibrated

Hyperion images, which are affected by streaking artefacts,

the Restricted model achieves better image quality values at

lower bpppc (i.e., higher compression ratios), because Haar-

RWA Restricted model applies a polynomial function for the

details prediction while Maximum model relies on a linear

combination of all approximation components.
Figure 8 displays the bit-rate distribution per spectral com-

ponent at different global target bit-rates. These graphics

present the assigned bit-rate to each spectral component in

the transform domain after compressing by fixing an overall

bit-rate. Bit-rate distributions for Maximum and Restricted

models are provided. The influence of the predictive weighting

scheme in the JPEG 2000 rate-distortion allocation is apparent:

comparing the first and second rows, it is noticeable that

PWS entails the assignment of larger bit-rates to the most

significant components, regardless of the regression method.

When no weights are employed, a more uniform bit-rate

distribution among all components is found. The third row

reports the difference in bpppc between applying or not the

PWS. For the two global target bit-rates, the curves depict

positive differences for the first and most significant compo-

nents, and negative differences for the rest. The fourth row

plots the accumulation of encoded bits percentage; again, the

consequences of applying the PWS become obvious.

B. Comparison among state-of-the-art coding techniques
Figure 9 displays the performance produced by two different

coding approaches: the first one is a progressive lossy-to-
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(a)(i) Maximum (calibrated AVIRIS-Yellowstone03) (a)(ii) Maximum (uncalibrated Hyperion-Lake Monona)

(b)(i) Restricted (calibrated AVIRIS-Yellowstone03) (b)(ii) Restricted (uncalibrated Hyperion-Lake Monona)

(c)(i) Exog.-Max. (calibrated AVIRIS-Yellowstone03) (c)(ii) Exog.-Max. (uncalibrated Hyperion-Lake Monona)

(d)(i) Exog.-Rest. (calibrated AVIRIS-Yellowstone03) (d)(ii) Exog.-Rest. (uncalibrated Hyperion-Lake Monona)

Figure 7 Rate-Distortion curves for different RWA regression models and variants when applying or not the Predictive

Weighting Scheme. rKLT performance is included for comparison purposes.
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(b)(i) Maximum Haar-PWS-RWA
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Figure 8 Bit-rate distribution in the transform domain for two different global target bit-rates. First row: distribution when

PWS is not applied. Second row: distribution when PWS is applied. Third row: difference in bit-rate distribution between

applying the PWS and not applying the PWS. Fourth row: accumulative percentage (%) of the encoded bits per spectral

component. Results for Maximum and Restricted regression models over calibrated AVIRIS Yellowstone03 image are reported.
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Table VI Time measurements for different lossless compression methods. Note that here the basis DWT for RWA is the

Haar-DWT.

RWA
(Max.)

+
JPEG 2000

RWA
(Exog.-Max.)

+
JPEG 2000

rKLT
+

JPEG 2000

POT
+

JPEG 2000
M-CALIC

Calibrated
AVIRIS

Yellowstone03

Forward 0:00:50.91’ 0:00:10.79’ 0:02:11.78’ 0:00:12.43’

JPEG 2000 0:00:20.94’ 0:00:21.11’ 0:00:23.17’ 0:00:22.86’ 0:04:19.26’

Backward 0:00:13.58’ 0:00:10.50’ 0:00:59.90’ 0:00:10.46’

Uncalibrated
Hyperion

Lake Monona

Forward 0:02:12.55’ 0:00:22.10’ 0:05:31.37’ 0:00:29.10’

JPEG 2000 0:01:08.15’ 0:01:07.30’ 0:01:08.80’ 0:01:01.84’ 0:11:10.94’

Backward 0:00:35.36’ 0:00:25.35’ 0:03:04.71’ 0:00:24.54’

Calibrated
IASI
L1 2

Forward 1:37:44.72’ 0:05:26.38’ — 0:03:04.49’

JPEG 2000 0:05:49.45’ 0:05:45.81’ — 0:06:25.36’ 1:27:25.34’

Backward 0:14:37.80’ 0:06:02.17’ — 0:01:50.84’

Table VII Indian Pines and Salinas ground truth labeling.

Indian Pines Salinas

Labels
Class

Number
of samples

Class
Number

of samples
0 Background 10776 Background 56975
1 Alfalfa 46 Brocoli (green weeds 1) 2009
2 Corn-notill 1428 Brocoli (green weeds 2) 3726
3 Corn-mintill 830 Fallow 1976
4 Corn 237 Fallow (rough plow) 1394
5 Grass-pasture 483 Fallow smooth 2678
6 Grass-trees 730 Stubble 3959
7 Grass-pasture-mowed 28 Celery 3579
8 Hay-windrowed 478 Grapes (untrained) 11271
9 Oats 20 Soil (vinyard develop) 6203
10 Soybean-notill 972 Corn (senesced green weeds) 3278
11 Soybean-mintill 2455 Lettuce (romaine 4wk) 1068
12 Soybean-clean 593 Lettuce (romaine 5wk) 1927
13 Wheat 205 Lettuce (romaine 6wk) 916
14 Woods 1265 Lettuce (romaine 7wk) 1070
15 Buildings-Grass-Trees-Drives 386 Vinyard (untrained) 7268
16 Stone-Steel-Towers 93 Vinyard (vertical trellis) 1807

(a) Calibrated AVIRIS-Yellowstone03 (b) Uncalibrated Hyperion-Lake Monona

Figure 9 Rate-Distortion curves assessing the performance of several spectral transforms: rKLT, POT and PWS-Haar-RWA

(Maximum). The near-lossless method M-CALIC performance is also reported.
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(a)(i) Global target bit-rate: 1 bpppc (calibrated AVIRIS-
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(a)(ii) Global target bit-rate: 1 bpppc (uncalibrated Hyperion-
Lake Monona)
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Lake Monona)

Figure 10 Bit-rate distribution for two global target bit-rates and three spectral transforms: rKLT, POT and RWA (Maximum).

(a) AVIRIS-Indian Pines (b) AVIRIS-Salinas

Figure 11 Rate-Distortion of M-CALIC, POT, rKLT, PWS-Haar-DWT and PWS-Haar-RWA when applying the Maximum

model.

lossless approach, where either rKLT, POT or PWS-Haar-RWA

are applied as spectral transform, and JPEG 2000 standard is

performed afterwards. The second approach consists of near-

lossless M-CALIC coding technique.

(i) rKLT is a reversible version of KLT. It depicts stochastic

processes as infinite linear combinations of orthogonal

functions combinations and applies a lifting scheme.

(ii) POT is a low complexity version of KLT. It achieves

very competitive performance at lower computational

complexity and memory requirements, and it offers a

high degree of component-scalability.

(iii) M-CALIC is a lossless and near-lossless adapted version

of CALIC coding technique specifically intended for

hyperspectral images, conducting an efficient spectral

decorrelation in the first stage. M-CALIC is not a

progressive lossy-to-lossless technique and no Rate-

Distortion curves can be properly rendered; however,

by fixing a progressive maximum absolute error per

pixel value, we can obtain the image quality at different

compression ratios.

For calibrated AVIRIS Yellowstone image, PWS-RWA out-

performs POT and M-CALIC at all compression ratios. For

Hyperion Lake Monona, PWS-RWA achieves a very compet-

itive performance. For high bit-rates, i.e., close to 2.4 bpppc

and higher, PWS-RWA gives rise to higher Peak Signal-

to-Noise Ratio (PSNR) values than rKLT at considerably
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lower computational complexity. For higher bit-rates, it also

outperforms POT. In other words, PWS-RWA undertakes

slightly better the global target bit-rate relationship for high

bit-rates. For low bit-rates, rKLT outperforms the rest of the

methods. Note that here M-CALIC is computed with its near-

lossless configuration, where the lowest fixed maximum error

per pixel is one. M-CALIC provides perfect data-recovery at

3.98 and 4.92 bpppc for, respectively, the Yellowstone03 and

Lake Monona images (lossless compression, or, equivalently,

maximum allowed error is zero).

By analising their bpppc distribution according to a global

target bit-rate (Figure 10), all the techniques generally assign

more bit-rate to the most significant components. It can also

be noticed that PWS-RWA globally allocates less bit-rate to

the less significant components than POT. However and in

contrast to the rKLT method that distributes the bit-rate in a

monotonic decreasing form, both POT and PWS-RWA show

significant peaks.

Finally, referring to the computational cost, Table VI reports

the running times required for the compared methods when

executed on an Intel(R) Xeon(R) CPU E5520 @ 2.27GHz

processor with a single thread. Measured times correspond to

encoding and decoding images from the three different corpus:

AVIRIS, Hyperion and IASI. Some caution has to be taken

when analysing these execution times: rKLT is implemented

in Java, POT and M-CALIC in C++, and RWA in Matlab; Java

and C++ are known to be considerably faster than Matlab.

In spite of Matlab inefficiency, Exogenous-Maximum RWA is

significant less expensive than other methods such as rKLT

and M-CALIC. Exogenous-Maximum RWA is comparable to

POT for AVIRIS and Hyperion images. For IASI images, the

fastest spectral transform is POT, whose implementation has

been carefully optimised, while rKLT is not able to transform

them.

C. Digital classification

To illustrate the influence the image quality loss has over

widely used applications, we introduce in this section results

for digital land classification. To this end, two AVIRIS images,

Indian Pines (Purdue University , 1992) and Salinas (NASA ,

1998), are classified after they have been compressed through

different PLL coding techniques. Two different classifiers have

been employed: Linear Discriminant Analysis (LDA) (Dwin-

nell, and Sevis , 2010) and linear Support Vector Machines

(SVM) (Neuburger , 2012). Indian Pines represents a land

portion of North-Western Indiana. It has a size of 145 x 145

spatial samples. Here we consider 200 spectral reflectance

bands, as 24 water absorption bands were removed from

the original 224 bands image. This scene is composed by

two-thirds agriculture and one-third forest and other types

of natural vegetation. Some low density housing, buildings,

small roads and a rail line are also visible. Salinas has

been taken over Salinas Valley (California) from a NOAA

Twin Otter flight at low altitude. It has 512 lines by 217

samples at high spatial resolution (3.7 meter pixels). 20 water

absorption spectral bands were also discarded from the 224

spectral components. This image covers land with vegetables,

bare soils and vineyard fields. Table VII enumerates the 16

classes and background with which the ground truths have

been labeled. Notice that for the classification results, the

background samples have not been considered.

First, Figure 11 reports the Rate-Distortion curves when

applying the coding methods based on rKLT, POT, M-CALIC,

PWS-Haar-DWT, and PWS-Haar-RWA (Maximum) to the

images Indian Pines and Salinas. In general, all techniques

show a similar behaviour, with PWS-Haar-RWA yielding, on

average, the best coding performance. However, for digital

classification, improved coding performance might not neces-

sarily imply improved classification performance.

For the multi-class classification application we use the

Linear Discriminant Analysis (LDA) and several linear Sup-

port Vector Machines (SVM) algorithms. LDA is commonly

used in feature and pattern recognition for separating several

classes, objects or events by means of features linear combi-

nations. It is close to KLT in that they both attempt to classify

the data according to linear combinations. Nonetheless, LDA

is more focused on modeling the differences between classes

of a certain data. On the other side, the multi-class SVM

implementation is based on applying as many binary SVMs

as the number of labeled classes for the training process. To

this end, the employed strategy corresponds to one vs. all.

After this, the best label region candidate from training is

assigned to each test features sample set (Neuburger , 2012).

SVMs are supervised learning models with associated learning

algorithms. In this article, both classifiers are trained using

20% of the original image samples of each class.

For multi-class classification, the confusion matrices are

usually assessed and presented. In our case, and for both

images, several samples from different classes are very similar.

For instance, for the Indian Pines image, classes 10, 11 and

12 correspond to some variation of soybean region. For the

Salinas image, there are four different classes that cover let-

tuce. This may conduct to poorer or richer classification results

when analysing each class separately. Besides, specially for the

Indian Pines image, some labeling imbalance effect is strongly

registered. Its class 9 (Oats) has only 20 spatial samples but

other classes such as class 11 (Soybean-mintill) contains 2,455

samples. Because of this, the confusion matrices do not give

rise to a clear conclusion of the classification performance

and we can not deduce which coding technique influences

more the classification labeling outcomes. For a more general

assessment and for better understanding purposes, the F1-

Score and the hits percentage are therefore provided. F1-Score

corresponds to the harmonic mean of precision and recall. The

hits percentage is defined as the total number of true positives

with respect to all the classification outputs. The best value

for these metrics is 100 % and the worst is 0 %.

Figures 12 and 13 plot the micro-average F1-Score and the

hits percentage with respect to all the testing classification

results percentages per image, when encoded at different

target bit-rates. In our case, Indian Pines and Salinas are

composed by classes from respectively 20 to 2,455 and from

916 to 11,271 different number of samples (Table VII). We

compute these metrics once all the total number of true

positives, true negatives, false positives and false negatives for

11



(a)(i) LDA (AVIRIS-Indian Pines) (a)(ii) LDA (AVIRIS-Salinas)

(b)(i) SVM (AVIRIS-Indian Pines) (b)(ii) SVM (AVIRIS-Salinas)

Figure 12 F1-Score for two classifiers: LDA and linear SVM. The assessed coding methods are rKLT, POT, PWS-Haar-DWT,

PWS-Haar-RWA(Maximum) and M-CALIC.

(a)(i) LDA (AVIRIS-Indian Pines) (a)(ii) LDA (AVIRIS-Salinas)

(b)(i) SVM (AVIRIS-Indian Pines) (b)(ii) SVM (AVIRIS-Salinas)

Figure 13 Hits percentage for two classifiers: LDA and linear SVM. The assessed coding methods are rKLT, POT, PWS-

Haar-DWT, PWS-Haar-RWA(Maximum) and M-CALIC.

12



all the predicted classes have been added together. This global

measure tackles better the label imbalance than computing

these measurements per class. Both figures depict a strongly

transitory period, specially for M-CALIC, POT, rKLT and

PWS-Haar-DWT for very low bit-rate (i.e., for reconstructed

images with a large distortion). At low to medium bit-rates,

these techniques achieve overall worse classification results

than PWS-Haar-RWA. This latter technique achieves a rel-

atively good performance even at bit-rates below 1 bpppc.

At high bit-rates, above 3 bpppc, all coding techniques yield

equivalent classification performance.

Concerning the F1-Score and hits percentage curves, a

sawtooth shape can be appreciated in Figures 12 and 13,

mostly for Indian Pines image. For F1-Score, PWS-Haar-RWA

presents the most stable curves evolution, i.e., the F1-Score

variance corresponds to 0.0051 and 0.0023 for respectively the

LDA and the multi-SVM classifiers; in comparison, M-CALIC

compression method leads to variances of, respectively, 0.0576

and 0.0547, and the coding approach based on POT spectral

transform yields variances of, respectively, 0.0235 and 0.0108

. For the hits percentage, PWS-Haar-RWA achieves the best

percentage at all bit-rates. For Salinas image, the performance

for the different approaches is quite similar, with rKLT and

PWS-Haar-RWA yielding, on average, the best outcome.

IV. CONCLUSIONS

The Regression Wavelet Analysis (RWA) adaptation to

a progressive lossy-to-lossless coding technique for hyper-

spectral images gives rise to non-monotonic Rate-Distortion

curves. A predictive scheme is therefore required to achieve

smooth and monotonously increasing curves. This Predictive

Weighting Scheme (PWS) assigns different weights according

to the pyramidal significance of the RWA spectral bands,

thus better driving the JPEG 2000 rate-allocation process. It

considerably improves the coding gain, becoming the most

competitive progressive lossy-to-lossless framework published

to date, while minimizing the error propagation effect.

In this paper, we show that PWS-RWA concentrates the

larger amount of bit-rate into the most significant spectral

components in the recovery process, yielding steady quality

rate-distortion performance, better than other lossy techniques

at low bit-rates and the same coding behaviour in the lossless

regime. PWS-RWA is superior to rKLT spectral transform at

high bit-rates at a significantly lower computational cost. At

low bit-rates, it can outperform other spectral transforms such

as POT and near-lossless coding technique M-CALIC.

The Predictive Weighting Scheme enhances the PLL-RWA

framework regardless of the regression model or variant.

For all of them, Maximum, Restricted, Fast-Maximum, Fast-

Restricted, Exogenous-Maximum or Exogenous-Restricted,

PWS-RWA substantially outperforms the unweighted RWA

approach at all bit-rates.

The effects of lossy compression on nowadays popular

applications such as digital land classification have also

been investigated. Coding techniques such as near-lossless

M-CALIC and other progressive lossy-to-lossless techniques

based on PWS-RWA, rKLT, POT and PWS-Haar-DWT spec-

tral transforms have been proven to be suitable for multi-class

classification, obtaining successful results at medium and high

bit-rates, where the loss in image quality is not abnormally

high. In the case of PWS-RWA, the classification outcomes

are overall better than for the other methods at low bit-rates

and with a lower computational complexity.

To summarize, applying a Predictive Weighting Scheme

to the adapted progressive lossy-to-lossless RWA approach

provides smooth and steady image quality recovery. At the

same time, it outperforms other state-of-the-art methods at

lower computational complexity. PWS-RWA has proven to be

the most competitive compression method for achieving good

classification results at low to medium bit-rates, providing a

smoother performance for both F1-Score and hits percentage

than the other approaches.
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Multi-Level Split Regression Wavelet Analysis for
Lossless Compression of Remote Sensing Data

Sara Álvarez-Cortés, Joan Bartrina-Rapesta, and Joan Serra-Sagristà

Abstract—Spectral redundancy is a key element to be ex-
ploited in compression of remote sensing data. Combined with
an entropy encoder, it can achieve competitive lossless coding
performance. One of the latest techniques to decorrelate the
spectral signal is Regression Wavelet Analysis (RWA). RWA
applies a wavelet transform in the spectral domain and estimates
the detail coefficients through the approximation coefficients
using linear regression. RWA was originally coupled with JPEG
2000. This letter introduces a novel coding approach where
RWA is coupled with the predictor of CCSDS-123.0-B-1 standard
and a lightweight contextual arithmetic coder. In addition, we
also propose a smart strategy to select the number of RWA
decomposition levels that maximizes the coding performance.
Experimental results indicate that, on average, the obtained cod-
ing gains vary between 0.1 to 1.35 bits-per-pixel-per-component
compared with other state-of-the-art coding techniques.

Index Terms—Spectral decorrelation, predictive coding, loss-
less coding.

I. INTRODUCTION

The data acquired by on-board remote sensing sensors is

an unvaluable tool for governments, rescue teams, and aid

organizations to manage infrastructure and natural resources,

to appraise climate changes, or to give support when nat-

ural disasters strike. The data produced by these sensors

is increasing unprecedently in each mission and, therefore,

low-complexity and high-performing lossless compression

techniques are of paramount importance.

Lossless coding techniques exploit the redundancy in the

spatial and spectral dimensions of the scenes, allowing perfect

reconstruction. Several transforms, such as Discrete Wavelet

Transform, Principal Component Analysis (PCA) [1], Pair-

wise Orthogonal Transform (POT) [2] or the most recent

Regression Wavelet Analysis (RWA) [3], can be employed

to take advantage of the spectral redundancy. RWA is a

low-complexity transform that reduces the redundancy still

remaining after the computation of a wavelet transform along

the spectral dimension. In [3] it is shown that RWA followed

by JPEG 2000 [4] (RWA+JPEG2000) usually achieves higher

compression ratios than widespread state-of-the-art lossless

coding techniques such as PCA+JPEG2000, POT+JPEG2000,

M-CALIC [5] and CCSDS-123.0-B-1 [6]. Additionally, in [7],

the performance of RWA+JPEG2000 at several decomposition

Sara Álvarez-Cortés, Joan Bartrina-Rapesta, and Joan Serra-Sagristà are
with the Department of Information and Communications Engineering,
Building Q, Universitat Autònoma de Barcelona, 08193 Cerdanyola del
Vallès, Barcelona, Spain. Tel. + 34 93 581 1861.
This work was supported in part by the Spanish Ministry of Economy and
Competitiveness (MINECO) and by the European Regional Development
Fund (FEDER) under Grant TIN2015-71126-R, by the Catalan Government
under Grant 2017SGR-463 and by Universitat Autònoma de Barcelona under
Grant UAB-PIF-472/2015.

levels for different regression models and variants is evalu-

ated, concluding that, when using all the regressors and the

highest number of decomposition levels, RWA gives rise to

the best coding gain on remote sensing data.

Although JPEG 2000 can achieve high lossless compres-

sion ratios, it is too computationally demanding for remote

sensing sensors. In this regard, the Consultive Committee for

Space Data Systems (CCSDS) published in 2012 the CCSDS-

123.0-B-1 standard (CCSDS-123 in what follows), intended

for lossless coding of multispectral and hyperspectral data

and based on prediction and two different entropy encoders.

Spatial and spectral redundancy is exploited through an adap-

tive linear prediction method that makes use of its nearby

samples within a small three-dimensional neighborhood. The

prediction is sequentially conducted in a single pass, entailing

minor computational complexity.

Despite the affordable computational complexity of

CCSDS-123, it allows to achieve high lossless compression

ratios. Lately, several contributions [8]–[11] have been pre-

sented that surpass its coding performance at the expense of

a higher computational cost. In particular, [10], [11] use a

conventional recursive least-squares technique to predict the

current sample and compute the residual, then the residual

is entropy encoded by an arithmetic encoder. Thus, both

contributions are a trade-off between coding performance

and computational complexity. In 2017, Bartrina-Rapesta et

al. [12] presented a compression technique based on the

CCSDS-123 predictor and followed by a low-complexity

arithmetic coder (CCSDS-123-AC) using a novel and simple

context model that only assesses causal adjacent samples

and inexpensive low-cost bitwise operations for the symbol

probability estimations; on average, it improves CCSDS-123

and M-CALIC by 0.1 and 0.86 bits-per-pixel-per-component

(bpppc), respectively.

This letter presents a novel compression technique based

on RWA that obtains higher compression ratios with lower

computational cost than the original [3]. In our proposal, the

computational cost is reduced by employing a smart strategy

that keeps applying further RWA decomposition levels only if

it provides coding gain. After the smart-RWA is conducted,

the decorrelated signal is encoded with the low complexity

CCSDS-123-AC.

This paper is structured as follows: Section II reviews

RWA transform. Section III introduces our proposed coding

technique. Section IV provides experimental results and dis-

cussion of the achieved results as compared to state-of-the-

art techniques for data captured by different hyperspectral

sensors. Section V brings forward our conclusions.
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II. REGRESSION WAVELET ANALYSIS OVERVIEW

RWA [3] is composed by two sequential operations: a dis-

crete wavelet transform (DWT) –commonly the S-Transform–

and a prediction stage -performed through a linear regression-.

A. Discrete Wavelet Transforms

The DWT operation comprises a pyramidal multi-

resolution decomposition along the 1-D spectral dimension.

Considering a multi-component scene with z spectral compo-

nents and m spatial samples per component, let V0∈ R
m×z

be

V0=
[
V0(1), . . . ,V0(z)

]
, with V0(i) = V0

i∈ R
m×1,

where i={1, ..., z · 2−j} and j={1, ..., J}, J = �log2(z)�.

The original signal V0 is decomposed into the half-resolution

approximation V1 and the half-resolution detail W1 signals.

This process is repeated for Vj−1, yielding Vj∈Rm×(z·2−j)

and Wj∈Rm×(z·2−j) signals. Vj contains a reduced version

of Vj−1 information and Wj retains the detail information,

namely, the difference between Vj−1 and Vj .

The one level DWT decomposition of each Vj−1 can be

expressed as follows:

(DWT)(Vj−1, 1) =
(
Vj ,Wj

)
. (1)

This decomposition is recursively performed in a pyramid

form over Vj , while the detail components W1≤j remain

unchanged. By induction, from V0, the wavelet representation

with J levels is described as follows:

(DWT)(V0, J) =
(
VJ , (Wj)1≤j≤J

)
. (2)

B. Ordinary Least-Squares Method

The second sequential operation of the RWA consists

of a light linear regression aimed to remove the spectral

redundancy that still remains in W1≤j≤J .

At each level j, the regression model estimates each

detail component
(
Ŵj

i∈Rm×(z·2−j)
)

from Vj∈Rm×(z·2−j)

employing an ordinary least-squares (OLS) method [13].

At level j, the estimations can be computed as:

Ŵj
i = fi

[
Vj

i

]
= βj

i,0 + βj
i,1Vj

1 + · · ·+ βj
i,kVj

k, (3)

where βββj correspond to the regression coefficients at level

j, βββj
i∈R(k+1)×1, Vj

i∈Rm×1 and k = z · 2−j is the number

of approximation components employed by the OLS method.

Note that βββj values must be stored as side information for

decoding purposes. The size of the side information amounts

to z2

3 (1− 1
22j )+z(1− 1

2j ) parameters.

Once the predicted signal Ŵj is computed, the residuals

are obtained by subtraction:

Rj = Wj − Ŵj . (4)

Then, assuming that the highest number of decomposition

levels J has been applied, VJ and R1≤j≤J are losslessly

entropy encoded together. At the decoder side, to recover the

signal VJ−1, the approximations VJ and the residuals RJ

are employed. This process is computed in cascade form (for

j = J − 1,. . . , 1). For a more in-detail explanation of RWA

reverse process, see [3].

C. RWA Variants

RWA can be executed on different modes to compute the

estimation Ŵj of the detail components Wj based on the ap-

proximation components Vj : Maximum, Restricted, Fast and

Exogenous variants. The maximum model utilizes all approx-

imation components from Vj for the prediction of each detail

component Wj
i . The restricted model only employs a subset

of components from Vj during the prediction to preserve the

component scalability of the original DWT. The Fast variant

applies a spatial sub-sampling of the approximation compo-

nents only for the regression operation computation. Finally,

as scenes captured by the same hyperspectral sensor may

have similar statistical relationships among their components,

the exogenous variant computes the regression coefficients

only once, for a giving training scene, and employs these

predictions for other scenes captured by the same sensor.

This regression coefficients operation is performed off-line,

not on-board, saving significant computational resources and

execution time. This is a convenient strategy for those scenes

corpora with a very large number of spectral components z.

III. PROPOSED LOW-COMPLEXITY CODING TECHNIQUE

A. RWA with CCSDS-123-AC

Up to now, the RWA output signals VJ and R1≤j≤J

are losslessly entropy encoded with JPEG 2000 bit-plane

and entropy coder machinery [3], [7]. Here we substitute

JPEG 2000 by CCSDS-123-AC [12], which is a coding

technique based on the predictor of CCSDS-123 followed by

a lightweight contextual arithmetic encoder. The performance

of this approach is discussed next.

All the results reported in this letter have been obtained

from 27 hyperspectral scenes1 captured by three different

sensors: the Airborne Visible/Infrared Imaging Spectrometer

(AVIRIS), the Infrared Atmospheric Sounding Interferometer

(IASI) and the Atmospheric Infrared Sounder (AIRS). These

instruments store scenes with a bit-depth of 16 bpppc. Table I

depicts the dimensional information of these scenes together

with the sensor’s names abbreviations, the RWA regression

model or variant and the CCSDS-123-AC’s predictor config-

urations used per each sensor. The average order-0 entropy is

also disclosed.

Regarding the RWA configurations: maximum regression

model is applied for UA and CA scenes and exogenous

variant for UI, CI and AG scenes (Table I). Though the

maximum model attains better prediction, it also needs an

important amount of side information to recover the original

signal. For instance, UI, CI and AG sensors need, respectively,

0.918, 0.939 and 1.249 bpppc for the side information if

maximum variant is employed. The expensive storage of the

side information yields to a more competitive result if using

the exogenous variant. The scenes UI-1, CI-1 and AG-129

have been employed only for the training procedure. Results

are therefore not provided for these three scenes.

Leaning on results of [12] and after conducting an extensive

evaluation, experimental results are produced for the CCSDS-

123 predictor’s parameters reported in Table I -columns 6 and

7-.

1The scenes are available at http://cwe.ccsds.org/sls/docs/sls-dc/123.
0-B-Info/TestData.



3

Table I: SUMMARY OF DATA EMPLOYED FOR THE EXPERIMENTAL RESULTS. FROM LEFT TO RIGHT: THE SENSOR NAME

TOGETHER WITH THE DIMENSIONS OF THEIR RECORDED SCENES, SENSOR’S NAMES ABBREVIATIONS, USED SCENES,

SCENES AVERAGE ORDER-0 ENTROPY, RWA REGRESSION MODEL OR VARIANT, AND MODE AND LOCAL SUM USED BY

THE CCSDS-123-AC PREDICTOR. z IS THE NUMBER OF SPECTRAL COMPONENTS, y IS THE HEIGHT AND x IS THE WIDTH.

Sensors & Dimensions Abbreviation Scenes Order-0 entropy RWA Model or Variant Predictor Mode Predictor local sum
Uncalibrated AVIRIS UA Yellowstone, sc: 00, 03, 10, 11, 18 12.16 Maximum Neighbor Oriented Full Mode

z=224, y=512, x=680

Calibrated AVIRIS CA Yellowstone, sc: 00, 03, 10, 11, 18 9.77 Maximum Neighbor Oriented Full Mode

z=224, y=512, x=680

Uncalibrated IASI Level 0 L0 1: 20091007093900Z

z=8359 UI L0 2: 20091007143900Z 8.12 Exogenous Neighbor Oriented Full Mode

y=1528 L0 3: 20100319050300S6

x=60 L0 4: 20120718075700Z

Calibrated IASI Level 1 L1 1: 20130816230553Z

z=8461 L1 2: 20130817004753Z

y=1530 CI L1 3: 20130817041457Z 12.89 Exogenous Neighbor Oriented Full Mode

x=60 L1 4: 20130817055657Z

L1 5: 20130817073857Z

AIRS Gran AG sc: 9, 16, 60, 126, 129, 151, 182, 193 11.39 Exogenous Neighbor Oriented Reduced Mode

z=1501, y=135, x=90

Table II reports average bit-rates for RWA at 1, 5 and

the highest number of decomposition levels followed by

JPEG 2000 standard (RWA+JPEG2000) and CCSDS-123-AC

(RWA+CCSDS-123-AC). RWA+CCSDS-123-AC coding gain

values with respect to RWA+JPEG2000 are also disclosed in

column 6. It is worth noting that, after RWA computation, two

very different types of data must be processed, the approxi-

mations Vj and the residuals R1≤j . As in JPEG 2000 each

component is encoded independently, the approximations and

residuals can be considered a single signal to be encoded.

However with CCSDS-123 and after computing the RWA,

this consideration does not hold, since, to estimate data from

a certain component, the CCSDS-123 predictor can employ

information from other components or even decomposition

levels. This leads to an incorrect prediction that may pe-

nalize the encoding performance. Consequently, for CCSDS-

123-AC, each RWA decomposed signal (approximation and

details) is separately encoded. In this case, the best results

per each sensor are enhanced in bold. From these results

we can see that: 1) RWA+CCSDS-123-AC almost always

outperforms RWA+JPEG2000 at all levels; 2) the best coding

performance for RWA+JPEG2000 is always obtained when

the highest number of decomposition levels is applied; and

3) RWA+CCSDS-123-AC at the highest decomposition level

does not always yield the lowest bit-rates.

B. Multi-Level Split RWA

As seen above, fixing the number of RWA levels is not

the best strategy when CCSDS-123-AC is harnessed. In

order to obtain the best coding performance, we automati-

cally select the adequate number of decomposition levels for

RWA+CCSDS-123-AC, and we name this proposal as MLS-

RWA+CCSDS-123-AC.

Fig. 1 renders our proposed coding technique when ap-

plying RWA for any regression model or variant. The main

insight of MLS-RWA is to process a new RWA decomposition

level over Vj only if the sum of bit-rates of approximations,

residuals and regression coefficients does not exceed the bit-

rate required to losslessly compress the approximations of the

lower level, i.e., BR(Vj) + BR(Rj) + BR(βββj) < BR(Vj−1).

Table II: AVERAGE BIT-RATES (IN BPPPC) WHEN ENCODING

DIFFERENT SCENES CORPORA (TABLE I) WITH JPEG 2000

AND CCSDS-123-AC AFTER RWA AT 1, 5 AND THE HIGH-

EST NUMBER OF DECOMPOSITION LEVELS. PR CORRE-

SPONDS TO THE NUMBER OF PREVIOUS COMPONENTS THAT

THE CCSDS-123 PREDICTOR USES WHEN ESTIMATING THE

RWA RESIDUAL COMPONENTS. THE BEST RESULTS PER

EACH SENSOR ARE ENHANCED IN BOLD.

RWA RWA
RWA + + Coding
levels JPEG2000 CCSDS-123-AC gains

PR = 0 PR = 3

UA

1 7.86 5.79 5.79 2.07

5 5.87 5.71 5.68 0.19

8 5.83 5.72 5.69 0.14

CA

1 5.27 3.64 3.69 1.63

5 3.56 3.52 3.63 0.04

8 3.52 3.53 3.63 -0.01

UI

1 3.86 2.66 2.77 1.20

5 2.54 2.51 2.75 0.03

14 2.44 2.51 2.77 -0.07

CI

1 8.17 6.54 6.41 1.76

5 6.60 6.38 6.24 0.36

14 6.46 6.37 6.23 0.23

AG

1 5.62 4.15 4.23 1.47

5 4.25 3.99 4.16 0.26

11 4.18 4.01 4.17 0.17

Iteratively, further RWA decomposition levels are applied

until no coding gain exists. The code-streams from the last

applied level are discarded and the process stops. In the

figure, CS and the BR refer respectively to the code-stream

term and bit-rate operation. BR(V0) has been previously

obtained after encoding V0 with CCSDS-123-AC. We use

LZMA [14] as entropy coder for encoding the regression

coefficients. However, another lossless coding technique could

be employed. All the residual and regression coefficients

code-streams, and the approximation coefficients code-stream

at the highest decomposition level that satisfy the condition

are stored together into the final code-stream. For exogenous

variant, the regression coefficients would have been fixed

beforehand and would not be stored into the final code-stream.
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BEGIN
j = 1 RWA

Predictor

CCSDS-123-AC

Predictor

CCSDS-123-AC

Entropy
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code-stream
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βββj

Predictor
configuration

+
Vj−1

Rj

Vj

βββj BR(βββj)

BR(Rj)
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BR(RWAj) < BR(Vj−1)
BR(RWAj)
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END

j = j + 1

Final Code-stream

NO

YESVj

CS{Rj,βββj}

CS{Vj−1}

Final Code-stream

Fig. 1: Proposed coding scheme.

Table III: AVERAGE BIT-RATES (IN BPPPC) FOR PCA+JPEG2000, RWA+JPEG2000, M-CALIC, CCSDS-123, CCSDS-

123-AC AND MLS-RWA+CCSDS-123-AC FOR SCENES OF TABLE I. THE BEST CODING PERFORMANCES OF OUR

PROPOSAL ARE BOLD ENHANCED. THE CODING GAINS WITH RESPECT TO OUR BEST PROPOSAL’S OUTCOMES ARE ALSO

INCLUDED IN PARENTHESES. PR CORRESPONDS TO THE NUMBER OF PREVIOUS COMPONENTS EMPLOYED BY CCSDS-

123-AC’S PREDICTOR STAGE TO ESTIMATE THE RWA RESIDUAL COMPONENTS.

MLS-RWA levels PCA+JPEG2000 RWA+JPEG2000 M-CALIC CCSDS-123 CCSDS-123-AC MLS-RWA+CCSDS-123-AC
PR = 0 PR = 3

UA 4 5.81 (0.14) 5.83 (0.16) 6.06 (0.39) 5.98 (0.31) 5.92 (0.25) 5.69 5.67
CA 4 3.69 (0.17) 3.52 (0.00) 3.86 (0.34) 3.72 (0.20) 3.76 (0.24) 3.52 3.62

UI 6 — 2.44 (-0.07) 2.88 (0.37) 2.88 (0.37) 2.82 (0.31) 2.51 2.75

CI 7 — 6.46 (0.23) 6.88 (0.65) 6.59 (0.36) 6.53 (0.30) 6.36 6.23

AG

4 (sc:16)

5 (sc:126,193)

6 (sc:9,60,151,182)

7.69 (3.70) 4.18 (0.19) 4.34 (0.35) 4.33 (0.34) 4.29 (0.30) 3.99 4.14

Average 5.73 (1.35) 4.48 (0.10) 4.80 (0.42) 4.70 (0.32) 4.66 (0.28) 4.38

MLS-RWA decreases the computational cost by reducing

the number of RWA levels to apply and by replacing JPEG

2000 with CCSDS-123-AC lower complexity encoder. By

applying a lower number of RWA decomposition levels, we

decrease not only the number of floating-point operations,

but also the number of regression coefficients that have

to be computed on-board and stored as side information.

In this work, neither spatial sub-sampling nor a spectral

components selection are proposed to alleviate the complexity

of the regression operation block as explained in [3] and [7],

although MLS-RWA could apply them too. Also, MLS-RWA

could be combined with any other coding system.

IV. DISCUSSION AND RESULTS

Table III reports the lossless coding performance in aver-

age bit-rate for PCA+JPEG2000, RWA+JPEG2000, CCSDS-

123, M-CALIC, CCSDS-123-AC coding techniques -which

are competitive coding techniques-, and our approach MLS-

RWA+CCSDS-123-AC. For CCSDS-123 and CCSDS-123-

AC coding techniques, 3 previous components are used in

the prediction process. The entropy encoder used for CCSDS-

123 is the sample adaptive, which is the entropy coder

that attains higher lossless compression ratios. For CCSDS-

123-AC and when encoding approximation coefficients with

our approach, the number of prediction components is set

to 3 too, because, as with the original image components,

the approximation components are still highly correlated in

the spectral domain. For MLS-RWA+CCSDS-123-AC, the

best performance of the predictor is achieved with different

configurations depending on the sensor, as higher or lower

statistical relationships can still remain within the residual

components after RWA computation. Therefore, and only for

our proposal, we report outcomes when 0 and 3 previous

components are employed for predicting the residuals. The

best coding performance is enhanced in bold. Our proposal’s

best coding gains with respect to each coding technique

are reported within parenthesis. The last row reports the

average of each coding technique; MLS-RWA+CCSDS-123-

AC average value is computed only using the best results.

Comparing with coding techniques based on transforms,

such as PCA+JPEG2000 and RWA+JPEG2000, we can ob-

serve that our proposal yields significant lower bit-rates

for all the sensors, except for CA and UI scenes when

applying RWA+JPEG2000. For CA scenes, no improvement

is achieved, while an average loss of only 0.07 bpppc is

produced for UI sensor. As mentioned, MLS-RWA+CCSDS-

123-AC entails also a decrement of the computational cost.

For CA and UI, our proposal only computes 6 and 14 RWA

decomposition levels, letting aside 130 and 14 components for

which neither a Haar-DWT nor a regression operation to esti-

mate the details need be performed. On average, code-stream

size reductions of, respectively, 23.56% and 2.23% between
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our proposal and PCA+JPEG2000 and RWA+JPEG2000 are

achieved. Results for PCA+JPEG2000 are not provided for

UI and CI scenes due to their large number of spectral com-

ponents, which makes unfeasible the PCA computation, as

the covariance matrix and eigenvalues calculation, the matrix

factorization and the amount of side information become

prohibitive. For AG sensor, PCA’s average side information

requires 3.71 bpppc, yielding a final bit-rate of 7.69 bpppc.

M-CALIC and CCSDS-123 achieve quite competitive re-

sults at low computational complexity too, for instance,

CCSDS-123 is, on average, about 0.1 bpppc worse than

CCSDS-123-AC. However, our low complexity proposal

MLS-RWA+CCSDS-123-AC improves, on average, by about

8.75%, 6.80%, and 6.00% as compared to M-CALIC,

CCSDS-123 and CCSDS-123-AC, respectively.

Comparing with recently published coding techniques

based on conventional recursive least-squares (and adaptations

thereof) for uncalibrated and calibrated AVIRIS scenes, the

best results reported in [10] are, respectively, 5.57 and 3.29

bpppc, while the best results reported in [11] are, respectively,

5.55 and 3.31 bpppc. These results are, respectively, about 0.1

and 0.2 bpppc better than those of MLS-RWA+CCSDS-123-

AC, which is reasonable due to the trade-off between coding

performance and computational complexity of [10] and [11].

V. CONCLUSIONS

This paper introduces a lossless coding technique that

provides superior coding performance than state-of-the-art

coding techniques at low computational complexity. It is

based on Regression Wavelet Analysis (RWA) followed by

a recently presented Lightweight Contextual Arithmetic en-

coder prepended by CCSDS-123 prediction (CCSDS-123-

AC). RWA removes the spectral redundancy by computing

a Discrete Wavelet Transform and, in sequence, a light

regression operation to estimate the detail coefficients from

the approximation coefficients.

Different to what happens when coding RWA code-streams

with JPEG 2000, applying the highest number of RWA

decomposition levels with CCSDS-123-AC does not imply

the best coding performance. To provide lower bit-rates, we

developed a smart strategy to properly select the number of

RWA decomposition levels that affords the highest coding

gain, named Multi-Level Split RWA (MLS-RWA). By de-

creasing the number of levels and by replacing JPEG 2000

by a light arithmetic coder, our proposal also reduces the

computational cost of the original RWA+JPEG200 approach.

Extensive experimental results over 27 hyperspectral scenes

from 5 corpus sensors have been performed, indicating

that MLS-RWA followed by CCSDS-123-AC outperforms

CCSDS-123.0, M-CALIC, PCA+JPEG2000, CCSDS-123-AC

and RWA+JPEG2000, and provides significant average coding

gains of 0.32, 0.42, 1.35, 0.28 and 0.10 bits-per-pixel-per-

component (bpppc), respectively, for lossless compression.

Our approach yields very competitive results even when RWA

is computed only for a single decomposition level. In this

case, an average coding gain of at least 1.74 bpppc over

RWA+JPEG2000 is obtained.
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Abstract—Regression Wavelet Analysis (RWA) is one of the
current state-of-the-art lossless compression techniques for re-
mote sensing data. This paper presents the first regression-
based near-lossless compression method. It is built upon RWA, a
quantizer, and a feedback loop to compensate the quantization
error. Our near-lossless RWA (NLRWA) proposal can be followed
by any entropy coding technique. Here, NLRWA is coupled with
a bitplane-based coder that supports progressive decoding. This
successfully enables gradual quality refinement and lossless and
near-lossless recovery. A smart strategy for selecting the NLRWA
quantization steps is also included. Experimental results show
that the proposed scheme outperforms state-of-the-art lossless
and near-lossless compression methods in terms of compression
ratios and quality retrieval.

Index Terms—lossless and near-lossless compression, progres-
sive lossy-to-lossless/near-lossless coding, regression wavelet anal-
ysis, remote sensing data compression.

I. INTRODUCTION

SATELLITES carry on-board hyperspectral sensors that

collect enormous volumes of data, with large spectral

and spatial resolutions. Recording this information places

excessive demands on bandwidth and on on-board storage

capacity, meaning that part of the data could go uncaptured, or

that part of the acquired data could be immediately discarded

without further processing. Data compression has proven to

be a convenient means to mitigate these issues, and meet the

requirements of space missions. Different remote sensing data

compression techniques provide lossless, lossy, and/or near-

lossless recovery.

Lossless coding ensures perfect reconstruction at the price

of low compression ratios. Multiband Context-based Adaptive

Lossless Image Coding (M-CALIC) [1] is one of the most

renowned methods. It is a context-based adaptive system that

uses a nonlinear predictor. In 2012, the Consultive Committee

for Space Data Systems (CCSDS) proposed the standard

CCSDS-123.0-B-1 [2], which is formed by a predictor, a

mapper function, and an entropy encoder. It entails minor

computational cost and exploits the redundancy within 3-D
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the European Regional Development Fund (FEDER) under Grant RTI2018-
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spatial and spectral neighborhoods of pixels. During the last

decade, techniques based upon recursive least squares methods

have been presented [3]–[7]. Among them, Regression Wavelet

Analysis (RWA) [3] yields the best coding performance trade-

off concerning compression ratio and computational cost.

Lossy techniques enable high compression ratios at the ex-

pense of allowing loss in decoding. Commonly, lossy pipelines

apply quantization prior to an entropy encoder, and a rate

control allocation stage afterwards. Lossy wavelet-based tech-

niques, such as JPEG 2000 [8], are well-known for attaining

excellent performance in terms of mean squared error (MSE).

Unfortunately, it does not provide any guarantees on the error

incurred by individual pixels. Other major lossy contribu-

tions [9]–[11] extend the CCSDS-123.0-B-1 framework. The

fast and lightweight rate control algorithm of Valsesia et al. [9]

achieves comparable or better coding performance than [10]

and [11], while decreasing the computational complexity.

Near-lossless compression aims at higher compression ra-

tios than lossless methods by allowing some loss of fidelity

in reconstruction. They bound the l∞-norm -equivalently, the

peak absolute error (PAE) or maximum absolute distortion

(MAD)- via setting an error tolerance value Λ. This user-

specified parameter sets the maximum admissible absolute

error so that PAE ≤ Λ provides a guaranteed bound on the

error incurred by individual pixels. Near-lossless compression

is used in remote sensing applications such as appraisals of

climate changes, natural resources and disasters, and also for

farming and military purposes.

Near-lossless techniques can be classified into: prediction-

based coding followed by quantization; and two-stage near-

lossless coders.

Prediction-based followed by quantization techniques com-

pute first a prediction of a pixel’s value from previously

encoded pixels. They provide near-lossless compression by

introducing a quantization feedback loop and by including

the corresponding reconstruction function in the coder. M-

CALIC provides near-lossless compression and is one of the

most relevant techniques in this category. Other prominent

techniques are the two near-lossless adaptations of the lossless

compression standard CCSDS-123.0-B-1, henceforth referred

to as NLCCSDS-123 [12], and CCSDS-123-AC [13]. Both

NLCCSDS-123 and CCSDS-123-AC rely on the predictor

and mapper of CCSDS-123.0-B-1. CCSDS-123-AC includes

a lightweight contextual arithmetic encoder that defines a

context model and computes the probabilities that will be

used by a fixed-length arithmetic encoder. CCSDS-123-AC

improves the performance of both NLCCSDS-123 and M-
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CALIC, thus becoming the state-of-the-art in this compression

modality.

Two-stage near-lossless coders generally include a first

stage that generates a lossy reconstructed scene (image),

whereas the second stage quantizes the difference between the

reconstructed and the original scene and finally encodes the

quantized signal with an entropy encoder. The performance

of this strategy strongly depends on the distortion introduced

in the lossy stage. Methods such as [14] and [15] do not

include any selection criterion to determine the lossy bitrate.

Other methods such as [16], [17] and [18] achieve competitive

coding performance after using computationally expensive

iterative approaches to identify the optimal lossy bitrate. The

embedded two-stage near-lossless coder [18] yields the state-

of-the-art compression performance in this category.

This paper presents a low-complexity approach that con-

stitutes the first near-lossless technique based on regression

in a pyramidal multiresolution scheme. It is based on RWA

and 1) yields the same lossless performance as the original

RWA; 2) employs a novel and low-cost strategy to select the

quantization steps for near-lossless reconstruction; and 3) can

be followed by any entropy coder. Here, we report results

when employing JPEG 2000. This allows progressive lossy-to-

lossless/near-lossless transmission, while minimizing the error

propagation and optimizing both signal-to-noise ratio (SNR)

and PAE performance.

The paper is organized as follows: Section II introduces

our novel near-lossless scheme. Section III describes the

mathematical derivation that allows us to control the PAE, and

puts forward a smart criterion for selecting the quantization

steps. Section IV presents experimental results and provides

comparison to other state-of-the-art techniques. Finally, Sec-

tion V brings forward our conclusions.

II. NEAR-LOSSLESS REGRESSION WAVELET ANALYSIS

Regression Wavelet Analysis [3] exploits the correlation of

a scene in the spectral dimension. It is composed of two

sequential blocks: a simple integer Haar Discrete Wavelet

Transform (DWT) followed by a regression operation. This

second block is performed through an Ordinary Least-Square

(OLS) method which predicts the Haar wavelet details from

the Haar approximations of the same decomposition level.

The two blocks are repeated pyramidally, level by level,

from the first to the highest possible decomposition level

L = �log2(z)�, where z denotes the number of spectral

components of the original scene.

As explained in detail below, our near-lossless RWA (NL-

RWA) adaptation begins by applying Haar-DWT at the high-

est decomposition level (first operation). The approximation

and detail components at this level constitute the input sig-

nal for the regression (second operation). After the regres-

sion/prediction computation, the difference between the orig-

inal Haar wavelet details and their predictions is obtained.

The result is known as the residuals. The residuals are then

quantized (third operation) and then dequantized and passed

through one level of inverse Haar wavelet transform (fourth

operation). The resulting approximations form the input to

V0

z

y

x

1

W1
1

W1
k

V1
1

V1
k

V1

W1 W1

W2

V2

Figure 1: Left: original scene V0 with z spectral compo-

nents, and x · y spatial samples. Right: first and second

DWT decomposition levels, i.e., respectively DWT(V0, 1) =(
V1,W1

)
, and DWT(V1, 1) =

(
V2,W2

)
or, equivalently,

DWT(V0, 2) =
(
V2,W2,W1

)
, where k = z · 2−1.

the linear regression for the next lower level. Computation

proceeds from the second to the fourth operation iteratively

from level L − 1 down to level 1. A detailed explanation is

provided next.

A. First operation: Integer Haar Discrete Wavelet Transform

Let us consider a scene V0∈Rm×z with z spectral compo-

nents and m = x·y spatial samples, where z is a power of two

(a suitable boundary handling procedure is used otherwise),

V0=
[
V0(1), . . . ,V0(z)

]
and V0(i) = V0

i∈Rm×1. An

integer Discrete Wavelet Transform (DWT) decomposition

level on the original scene is denoted as

DWT(V0, 1) =
(
V1,W1

)
. (1)

Here, V1∈Rm×(z·2−1) and W1∈Rm×(z·2−1) refer, respec-

tively, to the half-resolution DWT approximation and detail

components at the first decomposition level. A second de-

composition level can be computed on the approximation

components V1, maintaining the details W1 unchanged. After

the second decomposition level, the transformed scene is

composed of the approximations V2 at the second level and

the details from the first W1 and second W2 levels. This

process is iteratively applied until level L. The application of

L decomposition levels to the original scene V0 is denoted as

DWT(V0, L) =
(
VL, (Wj)1≤j≤L

)
. (2)

See Fig. 1 for a graphical explanation.

In order to secure perfect reconstruction, a lifting

scheme [19] is employed. The Haar-DWT that considers this

scheme corresponds to the Haar S-Transform, and its forward

equations at level j are

Forward:
{

Wj
i = Vj−1

2i −Vj−1
2i−1

Vj
i = Vj−1

2i−1 + � 1
2W

j
i �,

(3)

where i ∈ I = {1, .., z · 2−j} corresponds to the spectral

component.
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Figure 2: From left to right and from top to bottom, the NLRWA coding process is rendered for the decomposition level j
and after the Haar S-Transform application, i.e., from the second operation to the fourth. All these stages are computed by the

coder, which obtains the details prediction signal Ŵj in the second operation and employs it in the fourth operation.

B. Second operation: Ordinary Least-Squares Method
An Ordinary Least-Squares [20] problem (OLS) is solved to

obtain the prediction of the details at level j, Ŵj . It consists

of a regression operation that minimizes the sum of the squares

of the distances between the original and the predicted details:

argmin
βββj

‖Wj − Ŵj‖2. (4)

The OLS is solved by applying a regression model. Two

regression models are considered here: Maximum and Parsi-

monious.
The Maximum model [3] delivers the most accurate predic-

tions, but uses all the k=z·2−j approximation components at

each level j to predict each detail component. The predicted

detail component i at level j, Ŵj
i , is computed as

Ŵj
i = βj

i,0 + βj
i,1V

j
1 + · · ·+ βj

i,kV
j
k. (5)

The regression coefficients βββj need to be stored and transmit-

ted as side information (SI), which amounts to z2

3 (1− 1
22j ) +

z(1− 1
2j ) [3].

The Parsimonious model [21] does not employ all the

z·2−j approximation components at level j to obtain the

regression coefficients, but, at most, 2r + 1. r is a natural

number and specifies the number of previous and subsequent

spectral neighbors of the component i considered by the

OLS operation. The SI size is thus smaller. Specifically,

the number of βββj
i involved in each prediction equates to

min{(2r + 2), (z·2−j + 1)}.
For both models, the regression coefficients βββj are com-

puted for each individual scene.
Next, the prediction residuals are computed as

Rj = Wj − round(Ŵj). (6)

The predictions Ŵj are rounded to operate with integer

values.

C. Third operation: USDZ Quantization

Each component i of the residuals at each level j, Rj
i ,

is quantized with a Uniform Scalar Dead-Zone Quantizer

(USDZQ), which delivers a symmetric behavior around 0. Let

cji be a coefficient of component i of the residuals at level j.

The quantized coefficient is obtained as follows:

c̃ji = USDZQ
(
cji
)
= sign(cji )

⌊
|cji |
Δj

i

⌋
. (7)

Δj
i refers to the quantization step for component Rj

i , and sign
is a function that extracts the sign value of coefficient cji .

Analogously, the dequantized coefficient can be described

as cji . The dequantization is computed as

cji = USDZQ−1
(
c̃ji
)
= Δj

i c̃ji . (8)

Let R
j

i be the dequantized residual component i at level j

and let R
j

be the set of dequantized residual components at

level j.

D. Fourth operation: Reconstruction of Details

Let the same quantization step be applied for all the com-

ponents within a decomposition level j, i.e., ∀i, Δj
i = Δj . If

it is greater than 1, the dequantized residual components will

contain errors due to the quantization process.

Since only the dequantized residuals R
j

i will be available in

the decoder, the reconstructed details W
j

i are computed using

R
j

i as

W
j
= R

j
+ round(Ŵj). (9)

The reconstructed details W
j

are used both in the encoder

and decoder as input signal to the inverse wavelet transform
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to derive the approximation components at the next Haar-DWT

level j − 1,

Ṽj−1 = DWT−1
(
(Ṽj ,W

j
), 1

)
. (10)

ṼL−1≤j≤1 refers to the reconstructed approximation compo-

nents of each decomposition level j. These components differ

from the original approximations because of the quantization

error.

Following the NLRWA notation, the inverse Haar S-

Transform equations are:{
Ṽj−1

2i−1 = Ṽj
i − � 1

2W
j

i �
Ṽj−1

2i = W
j

i + Ṽj−1
2i−1.

(11)

Ṽj−1 is fed back into the system to produce the regression

coefficients at level j−1 (Eq. 4). Fig. 2 graphically represents

the whole NLRWA procedure for level j.

III. RECONSTRUCTION ERROR CONTROL

This section introduces how NLRWA controls the peak

absolute error. In addition, a smart strategy to select the quan-

tization steps is proposed. By using this criterion, competitive

compression ratios and scene quality retrieval are obtained.

A. Peak Absolute Error Restriction

In this section, we show that NLRWA can control the largest

absolute error to a tolerance value Λ. Let v0p,b represent the

pixel of the scene V0 located at position (p, b), where 1 ≤
p ≤ m and 1 ≤ b ≤ z, p corresponds to the spatial sample

and b to the spectral component (band) location. Denote the

reconstructed scene after applying NLRWA by Ṽ0, and let

ṽ0p,b be the pixel of the recovered scene at the same location.

Then, the error is limited to

Λ ≥ PAE = ||V0 − Ṽ0||∞ = max
p,b

|v0p,b − ṽ0p,b|. (12)

Lemma 1. For NLRWA, Λ is equal to

Λ =
L∑

j=1

⌊1
2
Δj

⌋
. (13)

This equation depicts the largest possible cumulative error

introduced by the quantization stage in the final reconstruction.

Proof: let the error in the quantized residual be denoted by

εR
j
i = R

j

i − Rj
i . Examination of the USDZQ reveals that

−(Δj − 1) ≤ εR
j
i ≤ (Δj − 1). Thus,

|εR
j
max| = max

i
|εR

j
i | = max

i
|Rj

i −Rj
i | ≤ Δj − 1. (14)

From Eq. 6, the recovered details at level j (Eq. 9) are then

W
j

i = Rj
i + εR

j
i + round(Ŵj

i ) = Wj
i + εR

j
i .

In the reverse Haar S-Transform, for odd indexed compo-

nents (Eq. 11), the approximations are reconstructed as

Ṽj−1
2i−1 = Ṽj

i −
⌊
1
2

(
Wj

i + εR
j
i

)⌋
=

⎧⎪⎪⎨⎪⎪⎩
Ṽj

i −
(⌊

1
2W

j
i

⌋
+
⌊
1
2εR

j
i

⌋
+ 1

)
, if Wj

i and εR
j
i are odd,

Ṽj
i −

(⌊
1
2W

j
i

⌋
+
⌊
1
2εR

j
i

⌋)
, otherwise.

(15)

Comparing the original approximation components with

the reconstructed approximation components, for odd com-

ponents, the produced error is

δj−1
2i-1 =

⎧⎪⎪⎨⎪⎪⎩
−
⌊
1
2εR

j
i

⌋
− 1, if Wj

i and εR
j
i are odd,

−
⌊
1
2εR

j
i

⌋
, otherwise.

(16)

A similar analysis for even indexed components yields

δj−1
2i =

⎧⎪⎪⎨⎪⎪⎩
⌊
1
2εR

j
i

⌋
+ 1, if Wj

i is even and εR
j
i is odd,

⌊
1
2εR

j
i

⌋
, otherwise.

(17)

Now, the largest distortion in the reconstructed approxima-

tion components happens when the error in the reconstructed

residuals is the largest at all levels j. In such a case, for even

Δj values, εR
j
max will be odd, and vice versa. In summary, the

highest possible absolute error can be expressed as

|δj−1
max | = max

i
|δj−1

i | ≤

⎧⎪⎪⎨⎪⎪⎩
⌊
1
2 (Δ

j − 1)
⌋
+ 1, if Δj even,

⌊
1
2 (Δ

j − 1)
⌋
, if Δj odd.

(18)

The maximum possible error in the residuals at level j
contributes to the error as

λj =
⌊1
2
Δj

⌋
. (19)

By induction, and after applying NLRWA iteratively from

level L down to level 1, the PAE in the reconstructed scene

is limited by the error tolerance value, derived as

Λ =
L∑

j=1

λj =
L∑

j=1

⌊1
2
Δj

⌋
. �

We note that other integer DWT could be used instead of

Haar wavelet transform in the first operation of NLRWA [22].

For such a case, Eq. 13 should be adapted accordingly.

B. Quantization Steps Selection Criterion

The number of combinations of quantization step sizes that

fulfill Eq. 13 is given by

N =

min{Λ,L}∑
m=1

2m

(
L

m

) (
Λ− 1

m− 1

)
(20)

(see [23]), which depends on the number of the highest

decomposition level L and on the error tolerance value Λ. This

combinatorial number grows rapidly as L and Λ increase, such
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that assessing the coding performance for every combination

becomes unattainable.

Now, considering Eq. 13, odd quantization steps yield

better performance than even quantization steps. If only odd

quantization steps are considered, the possible combinations

are reduced to (see [23])

NoddΔ =

(
Λ + L− 1

L− 1

)
. (21)

Despite this reduction, exhaustive search over every possible

combination is still prohibitive for reasonable values of L and

Λ.

Rather, a heuristic selection criteria is proposed. It prior-

itizes the introduction of distortion into the residuals of the

lowest decomposition levels (the less significant components

in reconstruction), achieving therefore higher compression

ratios and preserving better the signal’s quality retrieval. Recall

that the quantization steps of the residuals at level j are the

same (Δj
i = Δj , ∀i). Given Λ fixed by the user, an odd value

is assigned to the quantization step at level j according to:

Δj = 2

⌈
Λ + 1

2j
+

1

2

⌉
− 1. (22)

As an example, for a scene where L=8 wavelet decomposi-

tion levels have been applied, the quantization steps for Λ=10,

[R8,R7,R6,R5,R4,R3,R2,R1] are [1,1,1,1,3,3,7,11]; for

Λ=25, [1,1,1,3,5,7,13,27]; for Λ=50, [1,1,3,5,7,13,27,51].

The proposed strategy may not necessarily secure the best

rate-distortion results. However, it attains a very competitive

coding performance, is independent of the processed scene,

and is computationally efficient.

IV. EXPERIMENTAL RESULTS

Experimental results of our embedded coding framework,

NLRWA coupled with JPEG 2000, are reported in comparison

to state-of-the-art prediction-based followed by quantization

techniques, in comparison to the state-of-the-art two-stage

near-lossless coding technique, and in comparison to the best

performing rate control algorithm that enables lossy and near-

lossless recovery. Scenes used in the experiments are available

at [24].

A. Coding Pipeline

Our proposed coding method applies NLRWA through a

Matlab implementation, and then JPEG 2000 compresses

the NLRWA transformed data through Kakadu software. Al-

though our framework uses JPEG 2000, other coders could

be used [25]. Here, JPEG 2000 is employed mostly because

of its scalability capability, competitive lossy and lossless

performance, and capacity of providing progressive refinement

of the scene’s quality retrieval.

To obtain smooth and steady increasing rate-distortion

curves with JPEG 2000, the predictive weighting scheme

(PWS) [26] is applied. It attributes pyramidal weights accord-

ing to the significance of the NLRWA spectral components in

the reconstruction [27].

For our NLRWA approach, Maximum or Parsimonious

regression model is selected depending on the number of

spectral components of the original scene: Maximum model

for scenes where L ≤ 8, and Parsimonious model otherwise.

Notwithstanding, other models, such as Restricted, or variants,

e.g., Fast-Maximum or Fast-Restricted, can be selected. For a

more detailed description, see [22].
The side information for NLRWA can be encoded by

any entropy coder. Results are reported when applying

LZMA [28].

B. Prediction-based followed by Quantization Coders Com-
parison

Table I presents an extended study of NLRWA + JPEG

2000 coding performance in comparison with CCSDS-123-

AC, NLCCSDS-123 and M-CALIC, for different Λ values.
Experimental results are presented for 26 scenes from

different hyper- and ultraspectral sensors with a bit-depth

of 16 bpppc (bits-per-pixel-per-component): calibrated and

uncalibrated AVIRIS (referred to as CA and UA, respec-

tively), calibrated Hyperion (CH), filtered uncalibrated Hype-

rion (FUH), uncalibrated IASI (UI), and AIRS Gran (AG).

The scenes from the uncalibrated Hyperion (UH) corpus are

filtered [29], [30] to remove the streaking artifacts along one

of the spatial dimensions [31]. These artifacts appear because

of the pushbroom sensor nature, and they should be dealt with

for a better scene information assessment and visualization.
NLRWA applies the Maximum regression model for

AVIRIS and Hyperion scenes and Parsimonious for the rest.

Here, NLCCSDS-123 employs its sample-adaptive encoder for

lossless and near-lossless coding, when Λ = 1, and block-

adaptive for the rest of near-lossless results. The predictor of

both NLCCSDS-123 and CCSDS-123-AC considers 3 previ-

ous spectral components, and their mode and local sum are

selected depending on the corpus. The neighbor oriented mode

has been used for AVIRIS, AIRS and IASI sensors, and the

column oriented predictor configuration for Hyperion sensor.

The local sum applied in prediction is full mode only when

processing the AVIRIS and IASI corpus scenes. The reduced

mode is set for the rest.
The C++ M-CALIC software implementation does not

handle transformed signals with more than 15 bpppc. Due to

the dynamic range extension, no results can be obtained for

the CH corpus. In contrast, NLRWA induces a dynamic range

expansion of only, at most, 1 bit in the detail components. This

avoids severe inconveniences in systems that support only a

limited bit-depth [32].
Table I reports coding performance measured in bitrate and

quality. For lossless coding (Λ = 0), our approach is superior.

That is, it yields the lowest rate of any of the compared meth-

ods. For near-lossless coding, the best coding performance in

terms of bitrate is provided by CCSDS-123-AC, while our

approach is competitive for most error tolerance values Λ and

for most sensors. Concerning quality, as measured by SNR,

our approach is always the best performing, with increasingly

larger differences as Λ grows.
Fig. 3 depicts a crop of a component of a CA scene. For a

fair visual comparison, first we encode the scene for different
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Table I: Average lossless (Λ = 0) and near-lossless (Λ > 0) compression results for several prediction-based techniques and

our proposal, NLRWA + JPEG 2000. For all of them, USDZQ has been used for near-lossless. The best results are enhanced

in bold. The coding gains of our method with respect to the other three techniques are included within parentheses. A positive

difference means that our approach is better.

Average bitrates (bpppc) Average SNR (dB)

Sensor

abbreviation

Number

of scenes

Number

of spectral

components

Average

order-0

entropy (bpppc)

Λ values CCSDS-123-AC NLCCSDS-123 M-CALIC

NLRWA

+

JPEG 2000

CCSDS-123-AC

&

NLCCSDS-123

M-CALIC

NLRWA

+

JPEG 2000

CA 5 224 9.77

Λ = 0 3.66 (0.13) 3.73 (0.20) 4.03 (0.50) 3.53 — — —

Λ = 1 2.45 (-0.03) 2.54 (0.06) 2.87 (0.39) 2.48 59.29 (0.37) 59.29 (0.37) 59.66
Λ = 10 0.58 (-0.13) 0.94 (0.23) 0.88 (0.17) 0.71 42.94 (7.20) 41.38 (8.76) 50.14
Λ = 20 0.35 (-0.13) 0.72 (0.24) 0.53 (0.05) 0.48 37.46 (10.35) 35.38 (12.43) 47.81
Λ = 30 0.26 (-0.13) 0.63 (0.23) 0.40 (0.00) 0.40 34.15 (12.32) 31.84 (14.63) 46.47

UA 3 224 12.13

Λ = 0 5.87 (0.05) 5.95 (0.13) 6.13 (0.31) 5.82 — — —

Λ = 1 4.80 (-0.12) 4.89 (0.03) 5.05 (0.13) 4.92 74.73 (0.06) 74.74 (0.05) 74.79
Λ = 10 1.96 (-0.56) 2.24 (-0.28) 2.22 (-0.30) 2.52 57.09 (4.19) 57.07 (4.21) 61.28
Λ = 20 1.14 (-0.41) 1.46 (-0.09) 1.40 (-0.15) 1.55 51.95 (4.93) 51.65 (5.23) 56.88
Λ = 30 0.83 (-0.27) 1.18 (0.08) 1.05 (-0.05) 1.10 48.90 (5.90) 48.20 (6.60) 54.80

CH 3 242 9.50

Λ = 0 5.36 (-0.02) 5.61 (0.23) — 5.38 — — —

Λ = 1 4.50 (-0.14) 4.75 (0.11) — 4.64 65.63 (0.78) — 66.41
Λ = 10 2.25 (-0.52) 2.54 (-0.23) — 2.77 47.87 (4.82) — 52.69
Λ = 20 1.44 (-0.57) 1.77 (-0.24) — 2.01 42.42 (5.58) — 48.00
Λ = 30 1.05 (-0.53) 1.40 (-0.18) — 1.58 39.27 (5.97) — 45.24

FUH 3 242 9.42

Λ = 0 4.26 (0.21) 4.37 (0.32) 4.28 (0.23) 4.05 — — —

Λ = 1 3.08 (0.05) 3.19 (0.16) 3.10 (0.07) 3.03 59.67 (0.20) 59.67 (0.20) 59.87
Λ = 10 0.73 (-0.20) 1.14 (0.21) 0.61 (-0.32) 0.93 42.73 (5.84) 42.53 (6.07) 48.57
Λ = 20 0.38 (-0.12) 0.79 (0.29) 0.32 (-0.18) 0.50 37.38 (8.46) 36.24 (9.60) 45.84
Λ = 30 0.26 (-0.07) 0.66 (0.33) 0.24 (-0.09) 0.33 34.15 (10.35) 32.23 (12.27) 44.50

UI 4 8359 8.12

Λ = 0 2.82 (0.27) 2.89 (0.34) 2.94 (0.39) 2.55 — — —

Λ = 1 1.53 (0.05) 1.68 (0.20) 1.74 (0.26) 1.48 46.95 (0.65) 46.95 (0.65) 47.60
Λ = 10 0.13 (-0.02) 0.49 (0.34) 0.41 (0.26) 0.15 31.52 (9.06) 28.34 (12.24) 40.58
Λ = 20 0.06 (-0.01) 0.42 (0.35) 0.29 (0.22) 0.07 26.26 (13.38) 21.89 (17.75) 39.64
Λ = 30 0.03 (-0.03) 0.40 (0.34) 0.26 (0.20) 0.06 23.17 (16.26) 18.36 (21.07) 39.43

AG 8 1501 11.39

Λ = 0 4.25 (0.28) 4.31 (0.34) 4.38 (0.41) 3.97 — — —

Λ = 1 3.08 (0.12) 3.13 (0.17) 3.21 (0.25) 2.96 70.73 (0.17) 70.73 (0.17) 70.90
Λ = 10 0.61 (-0.09) 0.98 (0.28) 0.70 (0.00) 0.70 54.16 (5.49) 53.75 (5.90) 59.65
Λ = 20 0.29 (0.03) 0.66 (0.34) 0.36 (0.04) 0.32 49.04 (8.59) 47.97 (9.66) 57.63
Λ = 30 0.20 (-0.04) 0.57 (0.33) 0.26 (0.02) 0.24 45.77 (11.32) 44.27 (12.82) 57.09

Original CCSDS-123-AC NLCCSDS-123 M-CALIC NLRWA + JPEG 2000

PAE: 17 SNR: 41.64 dB PAE: 112 SNR: 26.12 dB PAE: 28 SNR: 35.92 dB PAE: 24 SNR: 49.81 dB

Figure 3: Crops of the spectral component 107 of the calibrated AVIRIS Yellowstone scene 18 (CA-Yellowstone sc18), and

its reconstruction after applying CCSDS-123-AC, NLCCSDS-123, M-CALIC, and our proposal NLRWA + JPEG 2000. In all

cases, the bitrate is about 0.5 bpppc.

error tolerance values and then we choose the encoded scene

that requires a bitrate as close as possible to 0.5 bpppc. It can

be noticed that the crop corresponding to NLRWA + JPEG

2000 conserves better the details and is less noisy.

C. Two-Stage Near-lossless Coders Comparison

Table II reports bitrates and quality (SNR) results for the 9

scenes presented in the original work of Beerten et al. [18] in

comparison with our approach. UA12 refers to the UA sensor

that has stored the scenes with a bit-depth of 12 bpppc.

Both [18] and our approach are embedded techniques that

enable progressive lossy-to-lossless/near-lossless transmission.

Concerning the quality of the reconstructed scenes, given any

error tolerance value Λ, our proposal is always superior, as

happened for the case of comparing against prediction-based

coding techniques.

Concerning the bitrate performance, a cursory glance to

Table II shows the good behaviour of [18] (with the excep-

tion of results for the CH corpus in the lossless regime).

However, [18] applies a Karhunen-Loève-Transform (KLT)

before JPEG 2000 lossy layer. KLT efficiently decorrelates

the spectral dimension of a scene, but entails a high com-

putational complexity and a non-negligible side information.

When processing scenes with a very large number of spectral

components, e.g., the scenes recorded by AIRS or IASI

sensors, KLT results to be computationally untenable. Contrary

to this, our proposal not only provides competitive bitrates at

significantly lower computational complexity, but also benefits
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Table II: Bitrate and SNR results of Fully Embedded Two-Stage Coder [18] in comparison with our proposal, NLRWA + JPEG

2000, at several Λ values. Again, bold font indicates highest coding performance.
Bitrate (bpppc) SNR (dB)

[18] NLRWA + JPEG 2000 [18] NLRWA + JPEG 2000��������Scene
Λ 0 1 5 32 0 1 5 32 1 5 32 1 5 32

UA12-Hawaii 2.45 1.00 0.17 0.07 2.54 1.47 0.46 0.15 51.50 47.44 41.95 53.07 48.19 44.22
UA12-Maine 2.61 1.16 0.23 0.07 2.69 1.61 0.58 0.22 54.87 49.80 40.00 56.46 51.22 46.41

CA-Yellowstone sc00 3.76 2.24 0.70 0.17 3.74 2.70 1.30 0.42 59.04 50.57 42.77 60.56 53.22 46.65
UA-Yellowstone sc00 5.95 4.37 2.54 0.53 6.08 5.19 3.74 1.25 75.00 63.24 52.62 76.30 67.18 55.57

CH-Agricultural 6.11 4.53 2.77 0.84 5.49 4.76 3.60 1.61 65.43 53.83 42.23 67.60 58.42 45.84
CH-Coral Reef 5.80 4.21 2.40 0.60 5.12 4.37 3.19 1.31 61.06 49.87 38.52 63.25 54.16 42.29

CH-Urban 6.14 4.55 2.80 0.88 5.50 4.77 3.60 1.66 66.20 54.60 43.12 68.37 59.21 46.76
UH-Erta Ale 4.54 3.00 1.26 0.11 4.79 3.86 2.44 0.60 57.92 46.75 39.01 59.25 50.42 39.65

UH-Lake Monona 4.64 3.08 1.37 0.16 4.99 4.07 2.66 0.73 59.55 48.33 40.50 60.88 51.97 40.74
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Figure 4: Blue with circles and purple with crosses curves

represent the rate-distortion performance of, respectively, NL-

RWA and [18] with KLT replaced by Haar-DWT.

from its minor side information requirements, so that NLRWA

is applicable also for scenes with more than 8,000 spectral

components.

A fair comparison between NLRWA and the state-of-the-art

method [18] in terms of computational complexity is provided

in Fig. 4, where the rate-distortion curves for both techniques

employ the Haar-DWT. In this case, our approach not only

provides again better quality, but also better bitrate.

D. Lossy Rate Control-based Coders Comparison

Table III depicts bitrate and quality (SNR and PAE) values

of our proposal and of the rate control presented by Valsesia

et al. [9] for all the scenes presented in this last paper.

Notice that [9] only provides end-to-end rate-controlled

outcomes given a prefixed target bitrate, while our approach,

thanks to JPEG 2000’s rate control algorithm, permits progres-

sive decoding of a codestream. In this experiment, several Λ
values have been tested in our approach, choosing those that

provide the closest bitrate to that reported in [9].

NLRWA considers all (Maximum) or several neighbor (Par-

simonious) spectral components per spatial sample as regres-

sors in the prediction stage. Therefrom, it is very suited to

apply when processing scenes with a large number of spectral

components, i.e., for the CA Yellowstone scene 00 (CA-

Yellowstone sc00), the AIRS Gran scene 09 (AG sc09) and

Table III: Bitrate, SNR and PAE results of the rate control

presented by Valsesia et al. [9] and our near-lossless proposal.

The mean of the squared Pearson correlation coefficients of

each scene, r2, is included. z refers to the number of spectral

components.

Scene z r2
[9] NLRWA + JPEG 2000

Bitrate SNR PAE Bitrate SNR PAE

CA-Yellowstone sc00 224 0.65

1.00 44.60 255 0.91 51.28 8
2.00 57.79 25 1.73 55.37 3
3.00 64.10 25 2.69 60.56 1
4.00 71.13 3 3.74 ∞ 0

AG sc09 1501 0.65

1.00 53.86 18 0.96 60.40 7
2.00 63.04 4 1.86 64.53 3
2.99 67.28 3 2.87 70.15 1
4.02 79.25 1 3.90 ∞ 0

CASI-T0477F06-NUC 72 0.44

1.00 41.69 49 0.96 45.80 24
2.00 50.92 7 2.06 51.64 7
3.00 57.64 4 3.05 56.56 3
4.00 62.03 3 4.02 62.45 1

CRISM-sc167-NUC 545 0.40

1.00 44.14 48 1.02 41.07 39
2.00 52.59 7 2.00 48.25 14
3.00 59.37 3 2.97 54.43 6
4.00 64.25 2 4.06 61.61 2

LANDSAT MOUNTAIN 6 0.53

1.00 27.13 10 1.00 21.20 28
2.00 34.17 3 2.03 32.54 4
3.00 39.37 3 3.03 38.74 1
3.73 ∞ 0 4.06 ∞ 0

MODIS-MOD01DAY 14 0.65

1.00 38.70 230 1.11 28.27 491
2.00 49.59 134 2.00 38.09 139
3.00 58.66 17 2.99 46.11 52
4.00 63.90 7 4.02 53.00 20

CASI-T0477F06-NUC. For them, NLRWA + JPEG 2000 is su-

perior in PAE-bpppc and PAE-SNR performance. Conversely,

LANDSAT MOUNTAIN and MODIS-MOD01DAY scenes have

a low number of spectral components. This may lead to higher

prediction errors, penalizing the performance of our approach.

For these two scenes, the quantization steps criterion of

Subsection III-B has been modified, allowing the assignment

of large quantization step values to high decomposition levels.

The CRISM sensor is affected by common artifacts present

in pushbroom sensors. Although a non uniformity calibration

(NUC) has been applied for the CRISM scene, it contains

groups of spectral components still strongly compromised, as

shown by the low mean of the squared Pearson correlation

coefficient (0.40). For this sensor, [9], whose predictor takes

into consideration the correlation between adjacent spatial

samples, outperforms our proposal.

V. CONCLUSION

This manuscript introduces NLRWA, the first near-lossless

compression technique based on regression, in particular, on

the pyramidal multiresolution regression wavelet analysis. It

expands the state-of-the-art lossless compression technique

RWA by introducing quantization and a feedback loop to
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compensate the quantization error. We also provide a smart

criterion, which is independent of the scene, to select a unique

quantization steps combination. This criterion helps avoiding

iterative computations while producing very competitive cod-

ing performances in terms of compression ratio and quality

of the reconstruced scene. NLRWA can be followed by any

entropy coder. Here, NLRWA is coupled with JPEG 2000,

enabling progressive lossy-to-lossless/near-lossless decoding.
Experimental results indicate that NLRWA + JPEG 2000

considerably outperforms rate control-based algorithms in both

bitrate and scene quality reconstruction for scenes with a large

number of spectral components. When comparing with two-

stage near-lossless coders, our approach always yields supe-

rior quality retrieval, and achieves competitive compression

ratios at significantly lower computational cost. With respect

to state-of-the-art prediction-based followed by quantization

techniques such as CCSDS-123-AC, NLCCSDS-123 and M-

CALIC, our approach NLRWA + JPEG 2000 always yields

reconstructed scenes with the highest quality, and obtains

outstanding compression ratios while offering progressive de-

coding and some degree of embeddedness.
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Chapter 6

Results summary

In this chapter, we sum up the results of our proposed variations of Regression
Wavelet Analysis (RWA) for lossless [29, 31] and progressive lossy-to-lossless [30]
compression, and of our near-lossless RWA (NLRWA) proposal. For this last im-
plementation, we provide image quality retrieval outcomes. Our proposals are thor-
oughly compared with state-of-the-art and widespread coding techniques: rKLT +
JPEG 2000, Haar-DWT + JPEG 2000, NLCCSDS-123 [3], POT [14] + JPEG 2000,
M-CALIC [15], CCSDS-123.0-B-1 [18], CCSDS-123-AC [19], RLS [20], C-DPCM-
RLSO [21], CRLS and A-CRLS [22], C-DPCM-APL [23], the embedded two-stage
near-lossless coder [32], and the fast and lightweight rate control version of Valsesia
et al. [33]. We justify our outcomes through coding performance, computational
complexity and signal measurements, provide lossy bitrate distributions per spectral
component for RWA, and prove its feasibility and excellent performance for nowadays
remote sensing applications, such as digital classification.

6.1 Datasets

Experimental results of this thesis are resumed in this chapter for different hyper-
spectral scenes that are available at [34]. They are recorded by several sensors: cal-
ibrated and uncalibrated Airborne Visible/Infrared Imaging Spectrometer -AVIRIS-
(referred to as CA and UA, respectively), calibrated and uncalibrated satellite-borne

63
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Table 6.1: Description of the sensors corpora used in experimentation. y and x refer
respectively to the height and width of the scene.

Sensor Number of Number of
Processed scenes

Avg. order-0
spectral spatial entropy

denotation components samples (bpppc)

CA 224 512 × 677 Yellowstone, sc: 00, 03, 10, 11, 18 9.77

UA 224 512 × 680 Yellowstone, sc: 00, 03, 10, 11, 18 12.16

UA12 224 512 × x Hawaii (H) (x = 614), Maine (M) (x = 680) 8.82

UA-200 200 145 × 145 Indian Pines 11.79

UA-204 204 217 × 512 Salinas 11.59

CH 242 y × 256
Agriculture (A) (y = 3129)

9.50Coral Reef (CR) (y = 3127)
Urban (U) (y = 2905)

UH 242 y × 256
Lake Monona (LM) (y = 3176)

9.57Erta Ale (EA) (y = 3187)
Mt. St. Helens (MSH) (y = 3242)

FUH 242 y × 256
Lake Monona (LM) (y = 3176)

9.42Erta Ale (EA) (y = 3187)
Mt. St. Helens (MSH) (y = 3242)

CI 8461 1530 × 60

L1 1: 20130816230553Z

12.89
L1 2: 20130817004753Z
L1 3: 20130817041457Z
L1 4: 20130817055657Z
L1 5: 20130817073857Z

UI 8359 1528 × 60
L0 1: 20091007093900Z

8.12L0 2: 20091007143900Z
L0 3: 20100319050300S6
L0 4: 20120718075700Z

AG 1501 135 × 90 sc: 9, 16, 60, 126, 129, 151, 182, 193 11.39

CASI 72 1225 × 406 CASI-T0477F06-NUC 10.65

CRISM 545 510 × 640 CRISM-sc167-NUC 10.54

Landsat 6 1024 × 1024 LANDSAT-MOUNTAIN 6.33

MODIS 14 2030 × 1354 MODIS-MOD01DAY 7.99
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Hyperion (CH and UH, respectively), filtered uncalibrated Hyperion (FUH), cali-
brated and uncalibrated Infrared Atmospheric Sounding Interferometer -IASI- (CI
and UI, respectively), Atmospheric Infrared Sounder -AIRS Gran- (AG), Compact
Reconnaissance Imaging Spectrometer for Mars -CRISM-, Moderate Resolution Imag-
ing Spectroradiometer -MODIS-, Compact Airborne Spectrographic Imager -CASI-,
and a scene from the Landsat’s multispectral sensor. The scenes are stored with a
bit-depth of 16 bits-per-pixel-per-component (bpppc), with the exception of Hawaii,
Maine, MODIS-MOD01DAY, and the Landsat’s scene; uncalibrated AVIRIS Hawaii
and Maine scenes (UA12) and MODIS employ 12 bpppc, and the Landsat’s scene is
stored with 8 bpppc. Table 6.1 briefly describes all these scenes. In this table, the
term NUC refers to Non Uniformity Calibration.

We depict results for the original UH corpus for a proper comparison with the
original lossless RWA work. For our NLRWA approach, experiment results are also
provided for this UH corpus after filtering [14, 35]. This procedure removes the streak-
ing artifacts along one of the spatial dimensions [36]. These artifacts appear because
of the pushbroom sensor nature, and they should be dealt with for a better scene
information assessment and visualization.

To illustrate the influence image quality loss has over widely use applications, such
as digital classification, we evaluate two AVIRIS images: Indian Pines and Salinas [37],
stored with a bit-depth of 16 bpppc. Both images cover land with natural vegetation,
bare soils, and vineyard fields. For the first image we consider 200 spectral reflectance
bands, as 24 water absorption components are removed from the original 224 spectral
bands. For Salinas, 20 water absorption spectral components are also discarded from
again a total of 224. The abbreviation name of the sensor is, for each image, UA-200
and UA-204.
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6.2 General pipeline

The two main blocks common in all of our coding systems are displayed in Figure 6.1.
The first block applies a 1D transform along the spectral dimension. The second
corresponds to the entropy encoder. Several 1D spectral transforms are assessed:
reversible KLT (rKLT), Pairwise Orthogonal Transform (POT), DWTs/IWTs, RWA,
and NLRWA. For all of them, results are explained when followed by JPEG 2000 as
the second stage. For such case, a 2D spatial IWT 5/3 with 5 levels is applied in
the lossless regime for POT, Haar-DWT, Restricted and Parsimonious models and
their variants, and for RWA when transforming Hyperion scenes. This is because this
configuration has been found to produce the best performance in compression ratio
and energy compaction. Beyond that, experiments for RWA coupled with CCSDS-
123-AC are also evaluated.

Scene 1D Spectral Transform Entropy encoder Code-stream

Figure 6.1: Pipeline of our coding systems: 1D spectral transform followed by JPEG 2000
or CCSDS-123-AC.

6.3 RWA: regression models and variants

In [2, 25, 26, 27] three regression models (Maximum, Parsimoniuos and Restricted),
and two variants of the Maximum model (Fast and Exogenous) are explained. Maxi-
mum gives rise to the most accurate predictions by using all the wavelet approxima-
tions in each detail component estimation. This model generates z2

3 (1− 1
22j )+z(1− 1

2j )
regression coefficients per decomposition level j, where z corresponds to the number
of spectral components the original scene has. These coefficients are stored as side in-
formation (SI) to be able to reproduce the estimated details in decoding. Maximum’s
SI size and computational cost are reduced by the Parsimonious model. Parsimonious
does not employ all the approximation components at level j to obtain the regres-
sion coefficients, but, at most, 2r + 1. r is the number of previous and subsequent
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spectral neighbors of the component considered in prediction. The SI size is thus
smaller, i.e., the number of regression coefficients involved in each prediction equates
to min{(2r + 2), (z·2−j + 1)}. Conversely, Restricted utilizes a unique approximation
coefficient in a cube polynomial formulation, entailing the need to store 2z(1− 1

2j )
regression coefficients per level j.

Fast and Exogenous variants are developed in order to decrease the complexity and
side information weight of the Maximum model, without barely penalizing its coding
performance. Fast applies a spatial sub-sampling before each prediction. It alleviates
the computational cost, but not the SI requirements, implying the storage of the same
number of regression coefficients. On the other hand, Exogenous computes the Maxi-
mum model off-line to only one scene to extract the regression coefficients. This scene
is used therefore as training image. The coefficients are later employed to process the
rest of the scenes from the same corpus, avoiding thus assessing further predictions
and any side information storage. Thanks to this, Exogenous reforms RWA into a
data-independent method. To reduce even more the complexity, side information,
and memory resources consumption of the Restricted and Parsimonious models, we
assess the variants: Fast-Restricted, Fast-Parsimonious, Exogenous-Restricted and
Exogenous-Parsimonious.

In the original proposal [2], the first operation is conducted by an integer version
of Haar-DWT, the Haar S-Transform. Generally, Haar-DWT is suboptimal compact-
ing the energy when compared to other more complex wavelet transforms such as the
reversible IWT 5/3 and IWT 9/7M (integer version of the biorthogonal CDF 9/7).
With the intention of improving the coding performance, in Chapter 2 we assess the
suitability of exchanging the integer Haar wavelet by these two more efficient IWTs.
To this end, we change the Restricted regression operation from a cubic polynomial to
a linear formulation. Originally, Restricted only used an approximation component of
a decomposition level to predict the same component and level detail. In such a case,
the second and third-order terms are also assessed to enhance the prediction accu-
racy. Instead of this, our regression definitions utilize the approximation components
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required by each IWT to recover a coefficient of the next lower decomposition level.
Notice that for both IWTs, a boundary procedure is applied to the coefficients that
are at the border. Here, the regression in our new IWTs-based RWA (IWTs-RWA)
coding techniques do not take into consideration this boundary process. In other
words, always the same one-degree formulations are applied indiscriminately of the
detail component that is estimated, unless the concerned approximations do not ex-
ist. This enhances the prediction accuracy for the components at the border, having
a higher number of regressors than if the bounding procedure had been taken into
account. For the following experimentations, JPEG 2000 encodes the transformed
coefficients (scene components) after RWA application.

6.3.1 Component-scalability

Here, component-scalability refers to the number of transformed components or co-
efficients required to reconstruct a single scene component; the smallest the number,
the largest the scalability of the transform. It depends on the regression model and
on the wavelet filter used as the basis of the first operation block in the RWA pipeline.

Haar S-Transform employs two approximation coefficients in the forward trans-
form for obtaining a high- (detail) and a low-pass (approximation) components. They
are later utilized to revert the decomposition and obtain the mentioned approxima-
tions. Conversely, IWT 5/3 uses, respectively, 5 and 3 coefficients, and IWT 9/7M,
respectively, 9 and 7 in the forward process. For the inverse transform, IWT 5/3
needs 4 and IWT 9/7M needs 8 approximations.

Concerning the regression model, Maximum has the worst component-scalability
independently of the computed wavelet filter. This is because all the approximation
components per decomposition level are required for predicting a particular detail
component at the same level. Consequently, to recover a transform coefficient of a
lower decomposition level, all the approximations of the current level are required.
On the contrary, the formulation of Restricted changes according to the wavelet used
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in the first operation block, as the degree of component-scalability consequently does.
The original Restricted model employs the Haar S-Transform and one approximation
component in each prediction. In its turns, the reverse Haar S-Transform uses the
same regressor (approximation) and the detail from the same component and level
for recovering an approximation coefficient of the lower level, preserving thus the
highest scalability. For IWT 5/3 and IWT 9/7M, the recovery of the approximation
components of the adjacent lower level depends also on several details from higher
transform levels. Since the regression model in RWA selects the regressors from the
approximations, in Chapters 2 and 3 we have only evaluated the approximation
components dependency. Consistently, if IWT 5/3 and IWT 9/7M are applied before
regression, the OLS problem needs respectively 4 and 8 approximation components,
slightly penalizing the component-scalability.

6.3.2 Computational complexity

With the aim of understanding the decrease in computational cost the new proposed
variants attain, we include in Chapter 2 an exhaustive study of the computational
complexity of the different stages involved in the lossless RWA process (referred here
as Haar-RWA). The analysis is performed by assessing the Floating-point operations
(FLOPs). Then, the computational cost of different Haar-RWA and IWTs-RWA re-
gression models and variants for different uncalibrated scenes is rendered in three bar
graphs. For comparison purposes, this study is also conducted for other transforms
such as rKLT, Haar S-Transform, IWT 5/3, and IWT 9/7M.

As mentioned, rKLT attains very competitive compression ratios. However, it is
the most expensive spectral transform, specially when the number of spectral com-
ponents increases. From our complexity survey, RWA Maximum model entails a
computational cost significantly lower than rKLT, but is the second most expensive
spectral transform. As expected, Restricted model has a much lower complexity when
compared to Maximum. This is because only a small set of components are used as
regressors. Fast variant considerably reduces the cost of their underlying regression



70 CHAPTER 6. RESULTS SUMMARY

model, since the spatial sub-sampling alleviates the computation of least-squares pa-
rameters. Exogenous variant offers a slightly lower computational complexity than
Fast, as the computation of the regression parameters is not performed. The wavelet
used within the RWA pipeline affects the cost because of the number of operations
involved in each transform. It is apparent that Haar-RWA has a lower cost than IWT
5/3-RWA, which, in turn, is cheaper than IWT 9/7M-RWA.

6.3.3 Execution time

As an extension of the computational complexity analysis, we also provide execution
time when computing all the RWA regression models and variants on an Intel(R)
Xeon(R) CPU E5520 @ 2.27GHz processor with a single thread. It is shown that
the computation of the Exogenous-Maximum variant is usually the fastest. Contrary
to expected, Exogenous-Restricted needs larger execution time. This is because the
sequential selection of the approximations involved in each detail prediction prevents
a faster matrix operation. For Maximum model and its variants, the wavelet filter
used in its first operation block influences the complexity. For this model, Haar-RWA
shows faster execution time than IWT 5/3-RWA and IWT 9/7M-RWA. For Restricted
model and its variants, IWT 5/3-RWA yields the fastest execution time. On the other
hand, IWT 9/7M-RWA is slower because it employs more coefficients for the wavelet
decomposition and for the regression operation. Here, Haar-RWA is also slower due
to the calculation of the second- and third- power terms.

6.3.4 Coding performance

The average bitrate (bpppc) for Maximum and Restricted regression models and their
Fast and Exogenous variants are delivered in Chapter 2. Results are reported for
six hyperspectral corpora, for different decomposition levels and underlying wavelet
filters. Only average values are included due to all scenes within a particular corpus
produce similar performance.

For Maximum and its variants very similar coding performance are obtained for
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all the underlying wavelet transforms, i.e., it seems not to depend much on the used
wavelet filter. On the contrary, for the Restricted model and its variants, the ap-
plied wavelet transform meaningfully affects the coding performance. For this model,
IWT 9/7M-RWA almost always outperforms the other wavelet filters when process-
ing AVIRIS and IASI corpora. Consequently, presented bitrates are also lower than
those reported in [2]. For example, for the Yellowstone scenes recorded by the UA
sensor, Restricted Haar-RWA at the highest decomposition level requires 6.44 bpppc,
while IWT 9/7M-RWA under the same considerations needs 5.94 bpppc, producing
an average coding gain of 0.50 bpppc.

For all the regression and wavelet configurations, applying higher number of
wavelet decomposition levels improves the coding performance, even though the num-
ber of regressors at higher decomposition levels keeps decreasing. Indeed, Maximum
Haar-RWA model at the highest level usually produces the lowest bitrates at a mod-
erate computational complexity. For UH scenes the Restricted model is superior
to Maximum in coding performance, computational complexity, and component-
scalability. For instance, Maximum Haar-RWA at 1, 5, and 8 decomposition levels
requires on average 0.16 bpppc more than Restricted Haar-RWA, and needs all the
approximation components to recover a unique transform coefficient. In general, ap-
plying 5 wavelet levels yields very similar performance to when the largest number of
levels is applied, in terms of both computational cost and compression ratio.

In general, Exogenous variant evaluated to any underlying regression model and
with any wavelet filter achieves a very similar performance to those obtained by ap-
plying the optimal regression parameters on-line, entailing lower computational com-
plexity and no side information to be stored/transmitted. Since the side information
plays a relevant role in the coding performance for scenes with thousands of spectral
components (e.g., for the IASI corpus, side information can suppose up to 0.9 bpppc),
the Exogenous variant provides the best coding outcomes, as side information is not
transmitted.
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6.3.5 Signal measurements results

For a more detailed appraisal of the performance of RWA, we evaluate the evolution-
ary trend of several signal measurements for the same corpora. Results reveal that
the application of any regression model and variant, for all the wavelet filters, entails
very similar behavior, i.e., the average squared Pearson correlation coefficient, energy
percentage, and Shannon entropy dramatically decrease after spectrally transforming
the scenes at the highest number of wavelet decomposition levels. Indeed, they are
significantly lower after transforming only one level, e.g., for UH corpus the energy
percentage decreases to half for all the wavelet filter-based RWA. This value is even
very small, 0.006%, after applying Maximum Haar-RWA at the highest level to UI
corpora. For the rest of IWTs-RWA, the energy percentage is reduced to 0.01%, which
is also very small.

The dynamic range, precision and entropy per spectral component are also as-
sessed after applying RWA with the three wavelet transforms as first operation block.
As rendered in Chapter 2, the distributions follow the same tendency. It is worth
pointing out that RWA induces a dynamic range expansion of only, at most, 1 bit in
the detail components. This prevents severe complications in systems that only work
properly under a limited bit-depth.

6.3.6 Progressive lossy-to-lossless compression

In [25] a Predictive Weighting Scheme (PWS) is applied only for the Maximum re-
gression model and its Exogenous variant, providing smooth increasing rate-distortion
curves. In Chapter 3 we illustrate the clear benefit of considering this PWS for other
models and variants: Fast-Maximum, Fast-Restricted, and Exogenous-Restricted. Af-
ter rendering the rate-distortion curves, we see that those obtained by the regression
variants are very close to those provided by their underlying regression model for
AVIRIS and Hyperion corpora. To apply the PWS gives rise to bitrate-SNR gains for
all bitrates and for all corpora. Indeed, PWS-RWA is superior to rKLT at medium
and high bitrates.
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For learning more about the influence of utilizing these weights in the rate-
distortion allocation system of JPEG 2000, we display the bitrate assigned to each
spectral component after compression. This is accomplished by fixing different global
target bitrates. For instance, for global target bitrates of 1 and 3 bpppc, the effects
are clearly apparent, i.e., it is noticeable that considering the weights entails the
assignment of larger bitrates to the most significant components in reconstruction.
When the PWS is not employed, a more uniform bitrate distribution among all com-
ponents is found. This is also reflected when plotting the difference in bpppc between
applying or not the PWS. For the mentioned two global target bitrates, the curves
depict positive differences for the first and most significant components, and negative
differences for the rest.

6.3.7 Comparison to state-of-the-art techniques

Bitrate and execution time for several state-of-the-art techniques are provided for
comparison purposes. For the AVIRIS scenes, the recursive least-squares-based meth-
ods C-DPCM-RLSO (order 85), A-CRLS, and C-DPCM-APL outperform the coding
performance of RWA. However, they demand significant computational resources.
Furthermore, the performance of RWA lies very close to rKLT for UA scenes with
a difference of only 0.02 bpppc. Nonetheless, rKLT also attains higher computa-
tional complexity. RLS and CRLS obtain similar bitrates than RWA but are again
more expensive too. Hence, Maximum and Exogenous-Maximum RWA implementa-
tions yield very competitive coding gains at a very low execution time. M-CALIC,
CCSDS-123.0-B-1, Parsimonious of RWA with r = 3 usually achieve higher bitrates
at a reasonable computational time.

Regarding results for CH corpus, Maximum RWA outperforms all the state-of-
the-art techniques. On the contrary, for UH CCSDS-123.0-B-1 provides superior
performance, but is slower than RWA. Notice that this standard exploits the 2D spa-
tial domain benefiting from the streaking artifacts that strongly affect the UH corpora.
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Although the Exogenous-Maximum variant is not the fastest when encoding IASI
corpus, it procures the lowest bitrates at considerably low computational complexity,
becoming the best performing technique for scenes with thousands of spectral bands,
as already mentioned (Subsection 6.3.4).

6.4 Digital classification

Multi-class digital classification is today an attractive field of study. This is shown
by the large and extended community of researchers who are currently working on
this topic. Digital classification is applied on images recorded by a wide variety of
sensors. More specifically, classification of remote sensing data is performed to re-
covered scenes that have been previously compressed (for a proper management of
the downlink channel and storage capacities). As mentioned in the introduction of
this thesis, the compression may be lossless, near-lossless and lossy. Lossy recovery
of remote sensing data may present blurred regions or other compression artifacts.
Thence, we examine how the loss in reconstruction impacts on the classification out-
comes in Chapter 3. To this end, we utilize commonly-used classifiers, i.e., a Linear
Discriminant Analysis (LDA) and linear Support Vector Machines (SVMs). Given
a certain data, LDA concentrates more on modeling the differences between classes.
Conversely, multi-class SVM focuses on supervised learning models. It applies as
many binary SVMs as the number of labeled classes considered in the training pro-
cess. Here, one versus all is the followed strategy. Finally, both classifiers are trained
using 20% of the original image samples of each class.

For experimentation, we analyze results for the AVIRIS Indian Pines and Salinas
scenes after being processed by different PLL coding schemes. These frameworks
are: rKLT, POT, PWS-Haar-DWT, and PWS-RWA, all of them coupled with JPEG
2000, and the lossless/near-lossless technique M-CALIC. For PWS-RWA, the used
wavelet and regression model correspond to Haar S-Transform and Maximum. Our
analysis is carried out by measuring the micro-average F1-Score and hits percentage.
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F1-Score describes the harmonic mean between precision and recall. We consider
micro-averaged metrics for most reliable results, which are less penalized by the la-
beling imbalance. The hits percentage is defined as the total number of true positives
with respect to all the classification outputs. The best value for these metrics is 100%
and the worst is 0%.

We demonstrate that superior coding performance might not necessarily imply
better classification results. Then, after rendering bitrate-classification performances
curves, we see that for very low bitrates, i.e., for reconstructed images with a large
distortion, a strongly transitory period may appear. This is less severe for PWS-
RWA + JPEG 2000. Indeed, this technique generally overcomes the rest. In terms
of classification, at low to medium bitrates, the same method achieves overall better
classification. At high bitrates, the distortion is low, obtaining all coding techniques
equivalent classification performance.

6.5 Entropy encoder: CCSDS-123-AC

All the publications in the literature that are related to RWA [2, 25, 26, 27, 29, 30]
employ JPEG 2000 as entropy coder. JPEG 2000 is sometimes too complex for
on-board computation. In such cases, utilizing other coders may alleviate the con-
sumption of computational resources. On this basis, we assess RWA when coupled
with the recently proposed and on-board amenable coder CCSDS-123-AC.

In Chapter 4, we point out that RWA followed by CCSDS-123-AC achieves lower
mean bitrates when compared with the original RWA + JPEG 2000, even when only
one decomposition level is applied, e.g., average gains of 2.07, 1.63, 1.20, 1.76, and
1.47 bpppc for, respectively, UA, CA, UI, CI, AG corpora. Coding RWA codestreams
with JPEG 2000 usually attains its best coding performance when applying the high-
est number of RWA decomposition levels. In contrast, RWA at the highest level does
not necessarily achieve the best compression ratio when encoded with CCSDS-123-
AC. We propose a smart criterion for selecting the optimal number of levels. In other
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words, the number that procures the highest coding gains. This strategy is named
Multi-Level Split RWA (MLS-RWA). Its main insight is to process a new decompo-
sition level only if the sum of bitrates of approximations, residuals and regression
coefficients does not exceed the bitrate required to losslessly compress the approxi-
mations of the lower level. This procedure is iteratively applied until no coding gain
exists. The codestreams from the last assessed level are discarded and the process
stops.

MLS-RWA followed by CCSDS-123-AC outperforms CCSDS-123.0-B-1, M-CALIC,
rKLT + JPEG 2000, CCSDS-123-AC and RWA + JPEG 2000, providing lower aver-
age bitrates, on average, between 0.10 and 1.35 bpppc. In fact, MLS-RWA + CCSDS-
123-AC improves the coding performance of rKLT + JPEG 2000 by, on average, 3.70
bpppc for AG corpus.

6.6 Near-lossless regression wavelet analysis

RWA is a lossless transform that has never been proposed for near-lossless or lossy
implementations. In Chapter 5 we explain our lossless/near-lossless adaptation of
RWA, named NLRWA. It introduces into the RWA framework a quantization step,
and a feedback loop to compensate the quantization error. In this sense, NLRWA is
capable of controlling the peak absolute error (PAE) via a user-specified parameter
Λ. This parameter is known as maximum error tolerance value, and is necessary to
determine the quantization steps value per NLRWA decomposition level.

NLRWA is followed by JPEG 2000 (NLRWA + JPEG 2000) to successfully enable
progressive error minimization, lossless and near-lossless recovery, and some degree
of embeddedness. Moreover, we propose a criterion to select a unique NLRWA quan-
tization steps combination to avoid iteratively testing all the possible ones. Our
methodology produces very competitive coding performances without penalizing the
compression ratio, neither the recovered scene quality. To prove the competitive per-
formance of both, we describe below an extended comparison with state-of-the-art
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and widespread near-lossless techniques and lossy rate control-based coders.
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Figure 6.2: PLL rate-distortion curves for different Λ. Black with squares, red with circles,
and blue with crosses curves represent results for, respectively, our proposal, Q-POT +
JPEG 2000 and Q-rKLT + JPEG 2000.

6.6.1 Prequantization previous lossless compression

Prequantization methods followed by lossless coding are based on computing first
a quantization on the original pixels’ values. Sequentially, they encode the quantized
signal with a lossless compression method. In Chapter 5 no results for this type of
near-lossless compression are described. This is because this strategy is well-known
to perform poorly, specially when Λ is large [38].

To expand the experimental comparison, Figure 6.2 plots rate-distortion curves of
NLRWA + JPEG 2000 together with progressive pipelines built upon prequantiza-
tion and a lossless transform, i.e., here rKLT or POT. The transformed components
compose the input signal for JPEG 2000. In this subsection, these techniques are
called, respectively, as Q-rKLT + JPEG 2000 and Q-POT + JPEG 2000. They are
not pure near-lossless methods, but an adaptation of the techniques presented in [30].
In the case of Q-rKLT + JPEG 2000, and for a fair comparison, a weighting scheme
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is also applied. As expected and clearly concluded from the figure, for large Λ values,
the coding performance of Q-rKLT/POT + JPEG 2000 are far worse than those of
our proposal. Their bitrates are higher and the SNR values are lower. Indeed, the
SNR results dramatically decrease when Λ increases. This behavior already begins
to be apparent at very low Λ, e.g. from Λ equal to 5. For Λ equal to 30, NLRWA +
JPEG 2000 attains the high SNR gains of 14.46 and 12.73 dB for, respectively, the
CA Yellowstone scene 10 and the UH Erta Ale scene, and with respect to first, the
rKLT-, and second, the POT-based systems. Our approach’s average bitrate gains
are also considerably high, 1.49 and 0.50 bpppc.

6.6.2 Prediction-based near-lossless compression

Prediction-based techniques followed by quantization and lossless coding estimate
first a pixel’s value from previous encoded pixels. For near-lossless compression they
introduce a quantization feedback loop and the corresponding reconstruction function
in the coder. Finally, they entropy-encode the quantized prediction error. One of
the most popular prediction-based techniques is the near-lossless adaptation of the
standard CCSDS-123.0-B-1, referred here to as NLCCSDS-123. Other prominent
methods are M-CALIC and CCSDS-123-AC, which apart from lossless coding they
can procure near-lossless compression too.

In Chapter 5, we compare our proposal with these near-lossless techniques for
remote sensing data. In the lossless regime, our approach is superior. For near-lossless
compression, the best coding performance in bitrate is usually provided by CCSDS-
123-AC, while our approach is still competitive for most error tolerance values Λ and
for most sensors. Concerning quality, our approach is always the best performing.

6.6.3 Two-stage near-lossless coders

Two-stage near-lossless compression obtains a lossy reconstructed scene, then quan-
tizes the difference between this reconstructed and the original scene, and sequentially
entropy-encodes this quantized signal. The performance of this strategy strongly
depends on the distortion introduced in the lossy stage. The embedded two-stage
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near-lossless coder of Beerten et al. [32] includes an iterative selection criterion to
determine the optimal amount of lossy bitrate, yielding the best compression ratios
when compared to the rest of the techniques of this category.

Regarding the bitrate performance, a comparison between this technique and our
proposal shows the good behavior of the two-stage coder (with the exception of results
for the CH corpus in the lossless regime). However, it applies the very expensive KLT
in terms of computational complexity and a non-negligible side information. When
processing scenes with a very large number of spectral components, [32] results to be
computationally unfeasible. Contrary to this, NLRWA yields competitive bitrates at
significantly lower computational complexity and superior scene’s quality retrieval.

6.6.4 Lossy rate control-based coders

End-to-end rate control-based systems allow for compressing a codestream to a
bitrate the closest possible to a prefixed target bitrate. Different to JPEG 2000,
this type of techniques do not enable progressive decoding. In the literature, the
state-of-the-art rate control-based technique that provides some guarantees on the
error incurred by individual pixels is the fast and lightweight rate control of Valsesia
et al. [33]. It extends the prediction-based CCSDS-123.0-B-1 framework, and out-
performs previous coding techniques [39, 40] that also permit lossy rate-controlled
outcomes while restricting the maximum distortion simultaneously. Indeed, [33] pro-
vides comparable or better coding performances, and decreases their computational
complexity at the expense of losing some flexibility.

Experimental results give evidence of the superior performance of NLRWA +
JPEG 2000 in comparison to the rate control-based algorithm in bitrate, PAE, and
scene quality reconstruction for scenes with a large number of spectral components.
This occurs specially when statistical relationships are more meaningful in the spectral
than in the 2D spatial domain, as commonly occurs in hyperspectral scenes. For
scenes with a low number of spectral components, or with a low average of the Pearson
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correlation coefficient, [33] usually improves our approach’s outcomes.



Chapter 7

Conclusions

7.1 Summary

Hyperspectral scenes (images) acquired by on-board remote sensing sensors have
hundreds or thousands of very correlated spectral components. They contain a wealth
of spectral information that turns them into a priceless tool for governments, rescue
teams, and aid organizations to deal with natural resources. Remote sensing sensors
generate an unprecedented amount of data, even increasing in each mission. This
poses forthcoming challenges facing the still strongly limited transmission rate and
on-board storage. To cope with these limitations, efficient compression methods are
of paramount importance. Compression techniques may recover the scene perfectly
(lossless), with constrained (near-lossless) or uncontrolled loss (lossy). Compression
is usually provided by transform- or prediction-based techniques. In regards to loss-
less coding, prediction-based usually outperforms transform-based approaches. For
near-lossless compression, prediction-based techniques with quantization also produce
competitive outcomes.

Evidence of the lossless Regression Wavelet Analysis (RWA) competitive perfor-
mance remains more than clear [2, 27, 29], becoming the state-of-the-art lossless
compression technique for hyperspectral scenes regarding the trade-off between com-
putational cost and compression ratio. It is a spectral transform that results from
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the combination of the integer Haar Discrete Wavelet Transform (Haar-DWT) and
a prediction stage conducted through a regression operation. The wavelet used as
the first operation block of RWA meaningfully affects the coding performance for the
Restricted model, but not for Maximum and Parsimonious. In the case of applying
these last two models, the regression is able to maintain the predictions’ accuracy
regardless of the underlying filter. This is because they utilize the same number of
regressors indistinctly of the wavelet used in the RWA pipeline. However, its com-
plexity is slightly increased due to more coefficients are employed by the transform.

On the contrary, for the Restricted model applying other Integer Wavelet Trans-
forms (IWTs-RWA) increases the number of regressors in the prediction stage, usually
outperforming the coding performance of the original RWA (Haar-RWA), and improv-
ing therefore results presented in [2]. Although the cubic formulation of the original
Restricted model is simplified for a first-degree equation, avoiding thus any compu-
tation of second- and third-order terms, the computational cost is scarcely increased.
IWTs employ more coefficients in the transform than Haar-DWT. Besides, IWTs-
RWA do not only use one approximation component in the prediction as the original
model does. IWT 5/3-RWA generates 5 regression coefficients per first-degree equa-
tion prediction while Haar-RWA defines 4 per third-degree formulation, giving rise
to close dimensional matrix operations and to improved times, i.e., Restricted IWT
5/3-RWA is faster than Haar-RWA for the same model. In the cases of IWT 5/3- and
IWT 9/7M-Parsimonious, the computational complexity falls very close to the one
required by our Restricted IWT 5/3- and IWT 9/7M-RWA versions if a low number
of neighbor regressors are evaluated, e.g., respectively 2 and 4.

Regarding the component-scalability, it does not change for the Maximum model.
This is because all the regressors are required to recover a scene component. For
Parsimonious, this scalability depends on the number of regressors evaluated by the
prediction stage and on the used wavelet filter. For Restricted, its scalability is given
only by the filter, which fixes both the number of approximation components em-
ployed in the prediction stage and in the reverse wavelet transform.
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Apart from that, and as expected, for all of the models and variants, applying
the highest decomposition level gives rise to the best coding performance. This is be-
cause the spectral redundancy of a scene is exploited more with every applied RWA
level. In each wavelet subband, the number of coefficients to transform is halved,
significantly reducing the number of very correlated components in each level. In
fact, applying 5 decomposition levels already produces almost the same performance
as when applying all decomposition levels, but the computational cost is slightly lower.

Fast and Exogenous variants normally tend to follow the same behavior as their
subjacent regression model. In other words, they barely penalize the coding perfor-
mance, but reduce the execution times and computational cost. There is an exception
for the Exogenous variant when processing scenes with thousands of spectral compo-
nents. For these images, the side information (SI) is usually very heavy. Exogenous
does not store this SI. On the contrary, for its underlying model this SI’s size con-
tributes into the final bitrate, providing bitrates significantly higher.

When comparing RWA with other state-of-the-art techniques, we show that RWA
provides bitrates close to those of the latest least-squares-based methods, being con-
siderably faster. For the rest of widespread techniques, such as M-CALIC or CCSDS-
123.0-B-1, RWA is generally superior in execution time and compression ratio.

In the absence of a lossy RWA implementation, RWA benefits from the rate control
algorithm of JPEG 2000 to obtain lossy reconstructions and increase the compression
ratio. To avoid stepped and non-monotonic rate-distortion curves, the Predictive
Weighting Scheme (PWS) [25] is applied (PWS-RWA + JPEG 2000). The bitrate
distributions, per spectral component in the transform domain at different global tar-
get bitrates, indicate that the PWS reckons on the predictive contribution of each
transformed spectral component into the rate allocation system. They show that the
most significant transformed components (from a rate-distortion point of view) are
assigned a larger bitrate, thus enabling an improved quality in the recovered scene
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(in terms of mean squared error). This tendency exists indistinctly of the underlying
wavelet filter or regression model, showing that the correction of the stepped evolu-
tion of the rate-distortion curves is achievable for every proposed variant of RWA.

Improved coding performance does not imply enhancement in multi-class classi-
fication. Indeed, classification metrics suggest that when the distortion in the re-
constructed scenes is high, PWS-RWA + JPEG 2000 is superior, and attains a less
severe transitory period. This occurs even when it does not always yield the best
rate-distortion outcomes. For low distortion, the recovered scenes conserve enough
fidelity with respect to the original ones, producing good classification outcomes for
all of the compared compression techniques.

The transform-based standard JPEG 2000 might be too expensive for on-board
satellites operation. Thus, we report results when Maximum and Exogenous-Maximum
RWA are followed by the lightweight coder CCSDS-123-AC, which is a prediction-
based coding technique amenable for on-board implementation. By doing so, we do
not only decrease the computational requests of RWA + JPEG 2000, but also im-
prove its compression ratios. This is possible due to CCSDS-123-AC uses its predictor
to exploit the remaining redundancy in the RWA transformed domain. Conversely,
we only employ the bitplane and entropy encoder of JPEG 2000, but not any extra
spectral and/or spatial transform.

Unlike what happens with RWA + JPEG 2000, RWA + CCSDS-123-AC at the
highest decomposition level does not necessarily ensure the highest compression ra-
tio. After deploying our Multi-Level Split (MLS) criterion to select the number of
levels to apply, our technique (MLS-RWA + CCSDS-123-AC) provides average coding
gains between 0.1 to 1.35 bpppc when compared with rKLT + JPEG 2000, the origi-
nal RWA + JPEG 2000, M-CALIC, CCSDS-123.0-B-1, and CCSDS-123-AC. This is
achieved by assessing the bitrate contribution of the components to encode in each
wavelet subband, and deciding to stop the RWA + CCSDS-123-AC computation if
no gain in coding performance is obtained.
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We propose the first near-lossless technique based on regression in a pyramidal
framework ever-presented. Our approach is named near-lossless RWA (NLRWA),
and expands the lossless implementation of RWA. It is capable of generating the
same lossless outcomes as RWA, and increases the compression ratio at the expense
of allowing some loss of fidelity in reconstruction. We provide a mathematical for-
mulation that limits the maximum absolute distortion in recovery through an error
tolerance value. It only depends on the quantization steps value assigned to each
NLRWA decomposition level, demonstrating that the quantization error introduced
in each level contributes independently into the final peak absolute error.

For NLRWA, the number of quantization steps combinations is huge. We solve
the problem of trying every possible combination by developing a quantization steps
selection definition. It is independent of the scene to process, and selects a unique
combination. This quantization steps-allocation proposal considers the significance
of each transformed component in the reconstruction, by introducing a larger dis-
tortion in the lowest decomposition levels. Our NLRWA codestream is encoded by
JPEG 2000; nonetheless, other coders could be used. NLRWA + JPEG 2000 enables
progressive decoding, while minimizing the error propagation and optimizing both
signal-to-noise-ratio (SNR) and PAE performance simultaneously. This framework
involves some degree of embeddedness. Finally, NLRWA + JPEG 2000 yields com-
petitive coding performance when compared with state-of-the-art near-lossless and
lossy rate control-based techniques, being always superior regarding the scene quality
recovery.

Throughout this thesis, we have performed a thorough study of the lossless
compression state-of-the-art for remote sensing data. Thanks to this, we decided to
focus on Regression Wavelet Analysis (RWA), which is the best performing method
regarding the trade-off between coding performance and computational cost. With the
motivation of providing novel techniques that outperform the state-of-the-art, we have
proposed several extensions and improvements of RWA in terms of coding perfor-
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mance, computational complexity, and execution time. Moreover, we have proven its
excellent performance in multi-class classification for progressive lossy-to-lossless re-
covery. After analyzing in depth the behavior of varying each block of RWA, we devel-
oped its near-lossless adaptation, known as NLRWA. NLRWA is capable of bounding
the peak absolute error in reconstruction, while including, for the first time ever, a
regression operation in a pyramidal multiresolution-based scheme. Although its coding
performance is not always the best, our approach achieves competitive bitrates, while
entailing low computational requirements. NLRWA provides superior scene quality
retrieval. Our results are always compared with the most high-performing techniques,
countering our contributions to the literature.

7.2 Future work

Although this thesis presents improved and novel data compression techniques for
remote sensing applications, more extensive researches and proposals can also con-
tribute to this field of study.

The prediction stage of RWA is conducted through an ordinary least-squares
(OLS) method. This OLS operation minimizes the sum of the squared distances
between a target value and its prediction. Nonetheless, the competitiveness of other
metrics solving this problem has never been tested. Regarding this, reference [41]
applies clustering to introduce an additive term in the regression of the Restricted
model, increasing the prediction’s accuracy and improving bitrates results. In spite
of this, to provide evidence of other learning features-based methods that reduce the
discrepancy between the original and the estimation values is a natural implementa-
tion of RWA.

Besides that, results of RWA when applying a spatial sub-sampling before comput-
ing the regression coefficients have already been published. However, other strategies
for dimensionality reduction may be investigated with the aim of reducing the mem-
ory consumption and floating-points operations.



7.2. FUTURE WORK 87

Moreover, a lossy implementation of Regression Wavelet Analysis has never been
investigated. RWA is composed by two blocks that can be modified to accept some
uncontrolled loss. For instance, the discrete wavelet transform may be replaced by
any floating wavelet to stop operating with integer values. Regarding the regression,
some of the side information may be selectively discarded before storing, handling
the bias in the least-squares problem for successive decomposition levels, or some loss
of information may be introduced into the residuals. In such a case and for further
developing, it should be interesting to remove first the rounding operation performed
on the predictions.

Several high-performing techniques, such as CCSDS-123.0-B-1, exploit both the
2D spatial and 1D spectral resolutions at once (3D-based methods). From our exper-
imentations, we know that for RWA to decorrelate first the 1D spectral dimension to
later exploit the spatial information usually turns out not to be the most competitive
strategy. RWA focuses only on reducing the statistical relationships of the spectral
components and thus, varying the predictor so that the information from neighbor
spatial samples are also considered may lead to enhanced coding performance.

Once assessed the feasibility of RWA to progressive lossy-to-lossless/near-lossless
coding, new frameworks and type of compression can be investigated. For instance,
the quantized residuals of NLRWA from several error tolerance values can be concate-
nated in a unique codestream. Later, this codestream can be progressively decoded
to obtain a rate-distortion curve in which the error incurred by each pixel is bounded
for every reconstruction or, equivalently, for all bitrates. That means, NLRWA code-
stream can be progressively near-lossless-to-lossless/near-lossless decoded. This type
of compression has never been proposed before.

Deep learning is a currently attractive research area, which consists in learning
features according to some data representation structures. At present, it has become
a mainstream field of study, clearly visible through the multiple publications that



88 CHAPTER 7. CONCLUSIONS

have appeared recently. They train specific large datasets of images to obtain the
response parameters whereby producing excellent performance when used on testing
images. Based on the same idea, the Exogenous variant of RWA operates the OLS
problem off-line. Even though there exists a recent publication [42] that contemplates
the possibility of conducting the prediction stage of RWA through convolutional neu-
ral networks (CNN), there are still some gaps and lacks in this research field. Thus,
it would be interesting to see improved deep learning pipelines substituting the OLS
method too.

Satellites cover periodically several orbits along the same areas, capturing the
same regions at same or similar times. This generates enormous volumes of repeated
data. Delving into exploiting the temporal information, in addition to the spectral
and spatial resolutions, may be beneficial to reduce the memory consumption. Indeed,
this line of study gives rise to a new area of investigation.
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