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Notation

In general, boldface upper-case letters denote matrices (A), boldface lower-case let-
ters denote column vectors (a), and italics denote scalars (a).

loga Base a logarithm.

lna Natural logarithm.

exp(.) Exponential function.

a � b a is much less than b.

a ≈ b a is approximately equal to b.

AT Transpose of matrix A.

A−1 Inverse of matrix A.

diag(A) Main diagonal of matrix A.

I Identity matrix.

â Estimation of the vector a.

a Mean of the values of the vector a.

‖a‖ Euclidean norm of a.

xk Value of vector x at the kth time instant.

x0:k Values of vector x from time instant 0 to time instant k.

N(µ, σ2) Gaussian distribution with mean µ and variance σ2.

N(x;µ, σ2) Gaussian distribution of variable x with mean µ and variance σ2.

∼ Distributed as. Used to make equivalences between random variables
and the PDFs that generate them.

E[.] Statistical expectation.

Var[.] Statistical variance.
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Abstract

Indoor positioning systems have been widely studied in the last decade due to the

need of humans for them especially in the large building such as malls, airports, hos-

pitals...etc. Still, there is no suitable precise indoor positioning system which can be

implemented for different indoor environments and situations. We should mention

military urban and emergency situations. In military urban and emergency response

operations, the time is a crucial issue, and a precise positioning system with a clear

indoor covering is a highly prerequisite tool to enhance safety. It should be seamless,

low, frugal, power efficacious, low cost and supply less meter-level accuracy.

In emergency scenarios, we don’t have enough flexibility and time to install all

anchor nodes in a proper situation that may help to obtain an appropriate accuracy

for locating a mobile station, but command centers require observing their opera-

tional forces, and rescuers demand to detect potential victims to perform proper care.

The most common users for these situations are the firefighters, police, military, and

civilians. The main goal of this Ph.D. dissertation is to create an accurate indoor posi-

tioning (IP) system that could be used in different indoor environments and situation,

especially for the emergency situation. So, we create this system through different

steps as explained below.

First, we have considered the study of different radio technologies to choose the

suitable radio technology called Ultra wide band (UWB) radio technology. The rea-

sons of selection the UWB and the commercial device that implements such technology

are explained in details in chapters 3 and 4.

Afterward, due to some impacts of the UWB in indoor environments (see chapters

4 and 5), we continue the study of NLOS identification and mitigation methods. In

these chapters, we create two different NLOS identification and mitigation methods
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using a commercial UWB device experimentally. The first method used two param-

eters extracted from the UWB device to identify the propagation channel and map

information of the building that the method is experimentally done in it to mitigate

the NLOS channel. The second method of NLOS identification and mitigation used

three parameters extracting from the UWB device to be an input set of the Fuzzy logic

technique used to identify the propagation channels. In this identification method, it is

not only to identify the prorogation channel to NLOS and LOS but also to divide the

NLOS channel into hard and soft channels. Then, we created a database that includes

the three parameters and the distance Bias to mitigate the NLOS channel for obtaining

an accurately estimated distance to be used for creating an accurate IP system.

Finally, with the aim of applying our designs to mass market applications, we move

to create a novel IP system using the UWB technology called anchor selection (AS).

In this technique, we focus on using fewer sensors (anchor nodes) to locate a mobile

station under harsh circumstances such as scenarios where the installation area of

the anchor nodes is narrow and/or the installation time should be very short. The

proposed approach is based on grouping anchor nodes in different sets and evaluating

the positioning error of each of these groups by means of a novel mean squared error

(MSE)-based methodology. A virtual node approach is also proposed to consider the

case where position must be computed with only two anchor nodes.
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1. Introduction

1.1 Motivation

To present location information of persons and devices, indoor positioning systems

(IPS) have been designed. For user applications, the position information enables

location-based protocols, and therefore, personal networks (PNs) are destined to reach

the users’ requirements and interconnect users devices equipped with different commu-

nications technologies in different places to form one network. Nowadays, the evolution

of IPs enables the creation of indoor location-based services which build applications

on top of the knowledge of the position. Different examples of this kind of services

are the location of objects stored in a warehouse, the tracking of equipment inside a

hospital, the guidance of people inside buildings with reduced visibility due to smoke,

among others like the guidance of people inside airports or the development of assisted

living systems for elderly care. IPs, obtaining a sufficient precisely indoor positioning

method, robust with the changes in the environmental conditions, adequate for ex-

panded areas, and simple as possible is a difficult task.

Several methods such as fingerprinting technique and geometric approaches (such

as trilateration and triangulation) utilizing distinct technologies have been presented.

Based on these methods, different IPs are on the market to present indoor location-

based services (ILBS) [1]. However, none of these commercial IPs is adequate to

overcome the problem of emergency responders location [2], as all solutions require

in advance measurements, calibration, configuration, and deployment. In emergency

scenarios, command centers require observing their operational forces, and rescuers

demand to detect potential victims to perform a proper care. The most common users

1



Chapter 1 . 1.1 Motivation

for these situations are the firefighters, police, military, and civilians.

For 2020, the predicted market value of indoor location services is the US 10 billion

[3]. Therefore, there is an interest need in developing IPs that can be easily scaled

to mass market applications and deployed in millions of buildings in the world. The

current way to minimize the cost of the systems is to implement the wireless infras-

tructures that are already deployed for communications as landmarks for positioning.

Among the plenty of existing technologies for communications (WiFi, LTE Bluetooth,

wireless sensor networks (WSN), the ultra-wideband (UWB), ...). UWB signal is con-

sidered one of the most precise approaches because it can provide location estimates

with centimeter-level accuracy [4]. It is widely used for ranging estimation and creating

an indoor positioning system. Although, WSNs are also commonly implemented due

to its key role on the internet of the things (IoT) and the future of smart cities. In

similar, the microelectromechanical systems (MEMS) provide low-cost inertial sensors

that can also estimate the position of a pedestrian without the need for any infrastruc-

ture in the building.

There is a continuous increase in interest in positioning information in the last

decades. A high number of applications has been found by the development of the

Global Positioning System (GPS), first for military operations (e.g. in weapon guid-

ance, target tracking, attitude determination, aircraft stabilization), then for civilian

uses. The spectacular decrease in size and cost of the most modernistic GPS receivers

has permitted this technology to enter in the consumer electronics market, and this

system is currently widely implemented for personal navigation. However, while GPS is

used in a satisfactory way in open space, it attends considerable problems inside build-

ings in which the true accuracy, typically about several tens or hundreds of meters, is

significantly lower than that achievable in open space (in the order of about one meter

or some centimeters). In fact, for the GPS system, Indoor environments pose singular

challenges due to their particular properties. The existence of walls, heterogeneous ob-

2



Chapter 1 . 1.1 Motivation

stacles, and the complexity of the physical characteristics of these environments cause

severe multipath propagation. Typically, due to reflection, scattering, and diffraction

of the signals transmitted from the wireless sensors (WS) with the surrounding environ-

ment, the received signal is composed of tens or hundreds or relevant paths very closely

spaced to each other. For civilian applications, the bandwidth of the GPS signal is only

about 2 MHz, so the different multipath components are usually totally overlapping

each other, and it appears highly problematic to precisely detect the Time of Arrival

(TOA) of the direct path arriving from the sensors, which includes the beneficial infor-

mation to determine the positioning, especially considering that the direct path often

is not the strongest one. Furthermore, in indoor environments, it is particularly, that

it would be possible to significantly gain by the availability of highly accurate posi-

tion information. Higher accuracy is demanded in the smaller environment scale and

also the larger number of possible applications which can profit from accurate indoor

positioning information to motivate the interest towards this issue. In addition to the

conventional seamless indoor-outdoor personal navigation, which has been the first ap-

plication to demand solutions to the ”indoor positioning bottleneck” experienced by

GPS, several other emerging areas are currently exacting for sub-meter positioning.

Localization in radio frequency (RF) communication network could be divided into

range-free and range-based techniques [5]. The most common range-free method is

a radio signal strength indication (RSSI). A theoretical or experimental model of the

signal propagation in this method is translated into position or distance estimations

[6], [7]. The range based methods are according to distances measurements between

transceivers utilizing the time of arrival (TOA), time difference of arrival (TDOA) or

tow way ranging time of flight (TWR-TOF) [8]. In the following chapter, we briefly

explain the two ranging approaches aforementioned above.

3



Chapter 1 . 1.2 Objectives

1.2 Objectives

This thesis concentrates on indoor positioning applications using UWB radio signals.

It provides a contribution to the study of indoor positioning systems for pedestrians

from an experimental perspective. We designed IPs based on the UWB radio signal

from wireless networks that can be used with the current commercial technologies.

Our study starts with the indoor positioning applications such as creating different

methods of identification propagation channels based on UWB signal in the different

indoor environment. Then, creating an indoor positioning system using a mean square

error (MSE) evaluation method and weighted least squared method (WLS). Therefore,

it is consumed that the reader of this manuscript is familiar with the general theory of

wireless communications. However, despite the fact that the implementation of ultra-

wideband signal (UWB) for indoor positioning system gains a considerable interest

both from industry and from research, we think that not all the readers might have

this specific background knowledge. For this reason, this chapter presents an overview

of the main motivations, requirements, and challenges which arise when implementing

UWB signals for indoor positioning applications, prior to introducing the main original

contributions and outline of this thesis.

1.3 Outline

The design of indoor positioning systems and NLOS identification and mitigation algo-

rithms and the metric implemented to measure the goodness of our system will be the

error committed during a series of experimental tests are the objective of this Ph.D.

dissertation.

Chapter 2 provides a review of the state of the art of indoor positioning systems

with special concentration to the methods based on the UWB systems involving NLOS

and LOS identification methods.
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Chapter 1 . 1.3 Outline

Chapter 3 presents a general overview of the UWB technology then focusing on

the commercial device used in this work which is DW 1000 and presents all concepts

and specification of this device.

Chapter 4 is devoted to the study of the NLOS identification and mitigation

method. In this contribution, we created a novel technique to identify the propagation

channel using a commercial UWB device called DW 1000. In this work, we evident

that we can reach a ranging accuracy with estimated distance error less than 60 cm in

a harsh environment.

Chapter 5 continues with the study of the NLOS and LOS identification and mit-

igation methods. In this work, a novel method to precisely obtain ranging accuracy

with an error of the estimated distance less than 20 cm in hard NLOS environment is

created. In this method, the Fuzzy logic control is implemented to identify the propa-

gation channel not only for NLOS and LOS channel but also int hard NLOS and soft

NLOS.

Chapter 6 presents a novel contribution of building an indoor positioning system

in a harsh environment having an emergency situation. This system is named anchor

selection (AS). The idea of this system is to install n anchor nodes in a small area

then select (n̂ < n) only the nodes having better received power. Then, we will obtain

different anchor nodes groups. The MSE in positioning accuracy is estimated for every

possible subset in order to select the best possible combination. The AS algorithm can

obtain less than 0.5 m2 of MSE of positioning with less installation time and a number

of wireless sensors in a harsh environment.

Chapter 7 concludes this Ph.D. dissertation with a summary and discussion of

the obtained results. Some suggestions for future work in the field are also outlined.

5
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1.4 Research contributions

The study of indoor positioning systems in emergency situations from an experimental

point of view based on the use of all the systems designed with nowadays commercial

technologies is the main contribution of this thesis. Next, the details of research con-

tributions in each chapter are presented.

Chapter 4

This chapter addressing the design of a nonline of sight and line of sigh identification

and mitigation method created in an indoor environment when a walking human car-

rying an UWB device and moving inside a corridor facing different obstructions such

as wall and office furniture. This work has been published in the IPIN 2016 conference.

• Abbas Albaidhani, Antoni Morell, Jose Lopez Vicario,” Ranging in UWB us-

ing commercial radio modules: experimental validation and NLOS mitigation”,

IEEE, IPIN conference, pp. 1-7, 2016.

Chapter 5

The main results of this chapter addressing the design of an NLOS identification and

mitigation method using the Fuzzy logic control. In this work, it is not only to identify

the propagation channel into NLOS or LOS but also is to identify which type of NLOS:

hard NLOS or soft NLOS. This method is a robust method and presents a confident

ranging accuracy.

• Abbas Albaidhani, Antoni Morell, Jose Lopez Vicario,” NLOS identification and

mitigation method using Fuzzy logic”, submitted to Transactions on Emerging

Telecommunication Technologies, Wiley, pp 1-9, February 2019.

6



Chapter 1 . 1.4 Research contributions

Chapter 6

A novel algorithm using UWB low coast commercial devices to create an indoor posi-

tioning (IP) system is the main result of this chapter. The IP system is named anchor

selection (AS). In this system, we created and mathematically derived a novel MSE

to evaluate the positioning accuracy computed by a different group of anchor nodes.

Then, select the group having less MSE and relocate the tag position using the WLS

algorithm.

• Abbas Albaidhani, Antoni Morell, Jose Lopez Vicario,” Anchor selection for

UWB”, Transactions on Emerging Telecommunication Technologies, Wiley, 1-

17, March 2019.
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2. State of the art

For outdoor positioning, It is widely agreeable that GPS is the de facto standard and

tracking application. However, while GPS is utilized in a pleasing way in open space, it

attends considerable problems inside buildings in which the actual accuracy, typically

between some tens meters is significantly lower than that achievable in open space (in

the order of a few meters). Anyway, for indoor scenarios, there is no considerable and

satisfied system.

Therefore, significant study effort has been concentrated on this topic. Indoor

positioning systems have been intended for providing information about the position

of a person or object inside a building. These systems could be characterized into three

groups:

* Network based systems: For wireless location finding, Wireless networking

devices model the main infrastructure implemented. A location finding system

should have the ability to seamlessly implement both cellular and WLANs for

location finding by roaming between the networks. These systems use the in-

formation of the wireless signals to estimate the position of the user carrying a

wireless device.

* Inertial navigation based systems: Inertial navigation systems are self con-

tained, non-radiating, non-jammed, dead-reckoning navigation systems which

provide dynamic information through direct measurements They utilize self con-

tained sensors that compute the motion of the user and estimate its position

corresponding to the initial point without the necessity of a physical infrastruc-

ture deployed in the building.

8



Chapter 2 . 2.1 Network based systems

Figure 2.1: Anchor Beacon Propagation Phase [9].

* Hybrid systems: In order to improve the estimation of position, these systems

combine two or more different methods. Figure 2.1 presents a complete classifi-

cation of IPS containing references to noteworthy works.

Note: The hybrid systems are excluded from the classification because they have

lots of possible combinations of IPs.

2.1 Network based systems

To determine the location of a mobile user by measuring its signal parameters when re-

ceived at the network base stations (BSs), Network-based location technology depends

on several existing networks (either cellular or WLAN). The BSs measure the signals

transmitted from a mobile station (MS) and relay them to a central site for further

processing and data fusion to provide an estimate of the MS location in this technol-

ogy. A significant advantage of network-based techniques is that the MS is not involved

in the location-finding process; thus, the technology does not require modification to

9



Chapter 2 . 2.1 Network based systems

existing handsets. We can characterize the network based IPS systems depending on

the information acquired from the wireless signals into two groups :

i) range-based localization and ii) Range-free localization methods.

Range-free localization technique is the cost effective technique because it does not

require sensors to be equipped with any hardware, but uses less information than range

based algorithm. One of the range free methods is a centroid algorithm, where the

position information of the references sent out to neighbor nodes at periodic intervals.

The position of the unknown node is then estimated to be the centroid of the reference

nodes. Alternatively, Range-based localization assumes that the inter-node distances

can be accurately measured by special ranging hardware. The location of a node is

computed respectively to other nodes in its vicinity in range-based localization. Range

based schemes utilize various algorithms to first determine distances between nodes

(range) to (a number of) their neighbors and then compute location using geometric

principles in range-based localization.

2.1.1 Range-free localization

Acknowledging that the cost of hardware required by range-based solutions may be

inappropriate in relation to the required location precision. In sensor networks, re-

searchers have researched alternate which is the range-free solutions to the localization

problem. These range-free solutions implement only regular radio modules as basics

for localization. In this subsection, we briefly explain the key characteristics of some

state-of-the-art range free localization algorithms.

• Centroid Localization: N. Bulusu and J. Heidemann [10] proposed a range-

free, proximity-based, coarse grained localization algorithm, that utilizes anchor

beacons, containing location information (xi,yi), for estimating node position.

A node estimates its location after receiving these beacons using the following

10



Chapter 2 . 2.1 Network based systems

centroid formula:

(x̂, ŷ) = (
x1 + x2 + ....xN

N
,
y1 + y2 + ....yN

N
) (2.1)

Where, x̂, ŷ denote the estimated coordinated of the node and N denotes the

total number of the anchor beacons. The distinguished advantage of this cen-

troid localization scheme is its simplicity and ease of implementation. In a later

publication [11], N. Bulusu raises his work by presenting a novel density adap-

tive algorithm (HEAP) to place additional anchors to minimize estimation error.

Because HEAP requires additional data dissemination and incremental beacon

deployment, other schemes, under consideration, only use ad hoc deployment.

Another algorithm of the range free localization explained in the next item is

presented by [12] named DV-Hop localization.

• DV-Hop localization: DV-Hop localization utilizes a mechanism similar to

classical distance vector routing. In this algorithm, one anchor sends a beacon

to be submerged during the network containing the anchors’ position with a

hop-count parameter initialized to one. Each receiving node keeps the minimum

counter value per anchor of all beacons it receives and disregards those beacons

with higher hop-count values. Beacons are submerged outward with hop-count

values increased at every intermediate hop. During this technique, all nodes in the

network (including other anchors) obtain the shortest distance, in hops, to every

anchor. For the purpose of converting hop count into the physical distance, the

system estimates the average distance per hop without range-based techniques.

Anchors apply this operation by obtaining location and hop count information

for all other anchors inside the network. The average single hop distance is then

estimated by anchor i implementing the equation 2.2 below.

Hopsizei =

∑√
(xi − xj)2 + (yi − yj)2

sum(hi)
(2.2)
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Where, (xj ; yj) denotes the location of anchor j, and hi is the distance, in hops,

from anchor j to anchor i. Once computed, anchors send the estimated Hop Size

information out to the nearby nodes. Once a node can compute the distance

estimation to more than three anchors in the plane, it implements triangulation

(multilateration) to estimate its location.

• Geometric Grid Overlaying (GGO): GGO algorithm consumes that a node

is able to transmit a radio signal with a fixed range (r). Thus, it supposes that

the anchor node transmits radio signal in two power levels, which associated

with two radio range r1 and r2 respectively (r1 < r2). To represent the possible

region that a normal node could reside in, GGO denotes a ring-belt region as

B(Cj, rm, rn), where Cj is the anchor position, and rn and rm are the outer and

inner radii of the radio range. When a mobile node receives a message from an

anchor, it will select the one with the minimum hop count. After recording the

anchor’s position information, the mobile node updates the hop count and re

propagates the packet to its neighbors. With the anchor’s information, the node

can estimate its possible location region according to the following rules:

1. At both transmission power levels, the region of a mobile node is B(Cj , 0,

r1) if it is reached by an anchor Cj.

2. A mobile node region is B(Cj , r1, r2) when it can only be reached at the

second power level.

3. If the mobile node n hops away from the anchors, then its region is B(Cj,

r2, n× r). The mobile node is able to estimate a region based on the rules

aforementioned above for each received beacon packet. If a mobile node

is reached by multiple anchors, the intersection area of all single estimates

(from each anchor) is expressed as the final region of the normal node.

• Approximate Point-in-triangulation Test (APIT) The APIT method is

based on the triangles created by reached anchors. It randomly selects three of

them and examines if it (i.e., the normal node) is inside the triangle region created

12
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by those three anchors when a mobile node is arrived by a set of anchor nodes.

The node can have a set of possible triangles it may stay in when all combina-

tions have been implemented. By intersecting these triangles, a possible smaller

area will represent the final estimation. Because of the node has no knowledge

of its own position, the one difficult aspect of this method is the Position in Tri-

angle (PIT) test. To help the test, the authors of [13] implement neighborhood

information. The algorithm assumes that if two nodes have the ability to receive

signals from the same transmitter, the node obtaining the stronger signal (with

higher energy) is closer to that transmitter. Based on this assumption, the au-

thors in [13] point out that if no neighbors of the normal node are simultaneously

farther from or closer to all three anchor nodes, the normal node can assume that

it is inside the triangle. The PIT test is able to work in most situations except

for some special cases, which would result in the following:

1. The edge effect: when the mobile node is close to the edge of the triangle.

2. The col-linear effect: when the mobile node and some of its neighbors reside

on the same line.

An example from [13] is presented in Figure 3 below. Figure 2.2 (a) and (b) present

two normal situations where mobile node (M) estimates its position with anchor nodes

A, B and C. Figure 2.2 (c) presents the edge effect, where M wrongly considers it is

outside of the triangle because one neighbor (node 3) is away from all the anchors. The

collinear effect is shown in figure 2.2 (d) shows, where M estimates itself within the

triangle because none of its neighbors is away from or closer to the anchors. Likely,

it is found that this error is relatively small, and in worst cases, the occurrence is less

than 14 %.

2.1.2 Range-based localization

Range-based methods depend on absolute distance from transmitting to receiving sen-

sors. The accuracy of such estimation is subject to the communication through the
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Figure 2.2: Eight APIT examples [13].

transmission media, embracing environment and supported hardware. From wireless

signals, different ways exist to extract geometric information. The most common ways

are the methods that rely on the propagation time of the signal between the transmit-

ter and the receiver, the angle of arrival (AoA) or the received signal strength.

In the next items, we briefly explain the concepts of each class of the methods

analyzing its advantages and disadvantages.

1. Time based localization methods In dynamic environments, Time-based

localization methods can be useful, where the advantage of the Received Signal

Strength (RSS) fingerprint based methods can be bounded. Time-based local-

ization methods are not easily affected by such changes. Moreover, time-based

methods do not require the construction of fingerprinting databases as RSS-based

methods do. Moreover, the practical implementation of Real-Time Location Sys-

tems (RTLS) based on network packet time-based methods by using only off-the-

shelf equipment is a challenging task. Typically, time-based localization methods

can be divided into two main categories:
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i) Hardware-based localization, ii) Software-based localization [14].

The first category refers to time-based methods implementing customized or mod-

ified hardware for localization purposes [15, 16, 17]. The second category is based

on localization methods which are simply software based without using any spe-

cialized hardware or hardware amendment [18, 19, 20, 21, 22, 23].

Time-based localization algorithm is the travel time of a radio signal from a

single transmitter to a remote single receiver. Also, it is known as a time of

arrival (ToA) or time of flight (ToF). It measures the distance d between an

anchor node and a mobile station. Equation 2.3 shows the one way ToA which

requires highly accurate synchronization of sender and receiver clocks.

dij = 4τ × c (2.3)

Where, 4τ = t2 − t1 and c denote the ToA and the propagation speed respec-

tively. To overcome the synchronization problem, two-way ranging (TWR) is

applied when the sender sends a message to the receiver, the start of the ranging

transaction commences. Then, the receiver waits for a known measure of time

and sends a reply back to the sender. the distance is computed as presented in

equation 2.4 below.

dij =
(t4 − t2)− (t3 − t1)

2
× c (2.4)

Figure 2.3 depicts the one way and two ways ToA.

Once the distances between the mobile node and reference nodes are computed,

we use any localization methods such as latration methods to compute the mobile

position. Lateration methods compute the position of a user as the intersection

of different circles with center the anchors position and radius the estimated

distance as depicted in Figure 2.4.For a two dimensional position estimation, it

is necessary to estimate the distance to at least three anchor nodes. Another

technique that could overcome the synchronization problem is named the time
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Figure 2.3: a- one way ToA, b and c Two way ToA (TWR).

Figure 2.4: Lateration method concept.
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difference of arrival (TDoA). The TDoA of a signal can be estimated by two

general methods.

a. From two receivers, They produce a relative TDoA then Subtract ToA mea-

surements or

b. Employing cross-correlation techniques in which the received signal at one

base station is correlated with the received signal at another base station.

To overcome the synchronization problem in ToA, arrival time difference

of the signal at the receivers is required. The difference of arrival time of

the signal removes some of the errors in ToA estimates commonly to all

receivers. For additional improvement of the accuracy of the target position

estimate, the cross-correlation algorithm can be implemented for the TDoA

estimation techniques. In the following section, a general model for TDoA

estimation is developed and the techniques for TDoA estimation are pre-

sented.

A conventional model for the two dimensional position location estimation of

a target utilizing three fixed known positions of the target enabled receivers

is developed. In this method, locating the target in two dimensions requires

four reference receivers, when one of them should be near to the transmitter

and assumed to be the first to receive the transmitted signal. The relation-

ship between the range difference and the TDoA between receivers is given

by equation 2.5.

Rij = dij × c = Ri −Rj (2.5)

Where, di,j is the TDoA between receivers i and j and c is the signal propagation

speed.

The TDoA estimation, in the absence of noise and interference, restricts the pos-
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sible source locations to a hyperboloid of revolution with the receivers at the foci.

Fig.2.5 below presents a two dimensional representation of the target using Hy-

perbolic position location system. The main technology used for the time based

localization techniques is the UWB signal. UWB is considered one of the most

precise approaches because it can provide location estimates with centimeter-level

accuracy [24]. It is widely used for ranging estimation and creating an indoor

positioning system. In the indoor environment, the propagation channels could

be divided into a line of sight (LOS) and an nonline of sight (NLOS). Also, the

NLOS could be divided into soft NLOS and hard NLOS depending on the at-

tenuation of the radio signal. In the UWB signals, it is possible to transmit and

detect very short pulses permitting for high accuracy of positioning because of the

accurate calculation of signal delays. In an indoor environment, the propagation

path length is not always a good indicator of the ranging between a sender and

receiver. Thus, these systems are predominately bounded to the LOS conditions

[25]. It precisely measures the distance in the LOS channel but suffers in the

NLOS channel, and the error in distance measurements is significantly high [26,

27] which impacts the positioning accuracy. In this Ph.D. dissertation, we focus

on building a precise IP system using UWB technology with a concentration on

the NLOS identification and mitigation techniques. Therefore, in the next sec-

tion, we present a literature survey of the related works implemented in the last

decade.

2. Angle based localization methods To compute the position of the receiver,

Angle based localization methods utilize the angle of arrival (AoA) of a signal.

As shown in figure 2.6, the sensors measure AoA by two common ways [28].

a. At the sensor nodes, a sensor array is implemented and array signal process-

ing techniques are utilized. In this situation, each sensor node consists of

two or more individual sensors (microphones for acoustic signals or anten-

nas for RF signals). The locations of these sensors are known with respect

to the node center. A four-element, Y-shaped, microphone array is shown
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Figure 2.5: Intersection of Hyperboloid represents target in two dimensional plane [24].

Figure 2.6: AoA estimation methods. (a) AoA is estimated from the ToA differences
among sensor elements embedded in the node; a four-element Y-shaped array is shown.
(b) AoA can also be estimated from the RSS ratio RSS1/RSS2 between directional
antennas [28].
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in figure 2.6 (a). From the differences in arrival times, the AoA is esti-

mated for a transmitted signal at each of the sensor array elements. The

estimation is similar to time-delay estimation discussed in the section on

ToA measurements but generalized to the case of more than two array ele-

ments. When the impinging signal is narrow-band (the bandwidth is much

less than its center frequency), then a time delay τ relates to a phase delay θ

by θ = 2πfcτ where fc is the center frequency. Narrow-band AoA estimators

are often formulated based on phase delay [29, 30].

b. The second approach implements the RSS ratio between two (or more) di-

rectional antennas located on the sensor [see Figure 2.6 (b)]. Two directional

antennas pointed in different directions, such that their main beams over-

lap, can be used to estimate the AoA from the ratio of their individual RSS

values.

Both AOA approaches need multiple antenna elements, which can contribute

to sensor device cost and size. For more details, please refer to [31].

The main impact of AoA based approaches is the incremental in the cost

of the system because of the additional hardware, as these systems need for

arrays of sensors or antennas. Furthermore, if the AoA is computed based

on the ToF of the wireless signals, inaccuracies in the clocks of the devices

impinge in the accuracy of the position estimations.

3. RSS based localization localization based on the RSS doesn’t require for spe-

cialized hardware. Thus, it is an interesting low-cost solution for the localization

problem [31, 32]. Under the log-normal shadowing and log-distance path loss

model (L), the path loss between the ith anchor node and the unknown mobile

position, Li, can be modeled depending on the following radio propagation path

loss model (in dBm) [33, 34].

Li = L0 + 10γlog10
‖x− ai‖

d0

+ vi (2.6)
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i=1......N, where N denote the total number of the anchor nodes.

Where, L0, γ, x, a, d0, and v denote the path loss value at a short reference dis-

tance, path loss exponent, mobile station , anchor node, reference distance, and

the lognormal shadowing term modeled as a zero-mean Gaussian random vari-

able with variance (σ2), ie., vi v N(0;σ2). This model was validated by different

measurement results [35, 36].

Depending on the relationship Li(dBm) = 10× log10(PT

Pi
), where, Pi denotes the

RSS measured by the ith anchor, and PT denotes the transmission power of the

unknown position of a target, it is very simple to observe that the localization

problem can be formulated by the path loss instead of the RSS [37, 38]. Based on

equation 2.6, the ML estimator is found by solving the nonlinear and non convex

LS problem.

x̂ = argminx

N∑
i=1

(10× γlog10
‖x− ai‖

d0

− (Li − L0))2 (2.7)

As an example of the RSS, the author of [39] implemented an array of passive

anchor nodes and collected the noisy RSS measurements from radiating source

nodes in the WSN, which they use to estimate the target positions. They imple-

mented the maximum likelihood (ML) estimator, since the ML-based solutions

have particular importance due to their asymptotically optimum performance.

However, the ML estimator needs the minimization of a non convex objective

function which may have multiple local optima, thus making the search for the

globally optimal solution hard. For solving this difficulty, they derived another

non convex estimator, which approximates the ML one for small noise. Then,

the new estimator is relaxed using efficient convex relaxations that are based on

second order cone programming (SOCP) and semi definite programming (SDP)

in the case of non cooperative and cooperative localization, respectively, for both

cases of known and unknown source transmit power.
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Another example of an RSS based localization system is proposed by [40], where

authors implement the correlation between the RSS samples in nearby locations

to fit several path loss models relying on the position of the user and therefore

adapt to changes of the propagation model between areas of the same building.

As we mentioned in the time based localization methods, the TWR measurements

have been simply obtained in wireless local area network (WLAN) systems using

a simple device such as a printed circuit board [41]. Even though, TWR sys-

tems circumvent the problem of clock synchronization between nodes, the main

drawback of this approach is the need for double signal transmission in order

to perform a single measurement [42]. The drawback in the TWR was solved

using a symmetric double sided algorithm (SDS-TWR) [43] used in the device

implemented in this thesis. In chapter 3, We briefly explain the UWB technology

and the device used in this thesis.

In the following section, we present concepts of inertial based systems and works

related to them.

2.2 Inertial based systems

Inertial-based systems are systems based on sensors measuring angular velocity and

linear accelerations. The measurements are performed using a combination of gyro-

scopes and accelerometers often referred to as an inertial measurement unit (IMU)

[44]. To obtain the translation and rotation related to the last known position, the

measurements are integrated. predominately, The inertia-based systems are combined

with beacon-based systems such as GPS in research to transact with this drift. Other

proposed systems taking advantage of geometrical features, resulting in an inertia-

based system combined with map-based systems. the inertial sensors (i.e. gyroscopes

and accelerometers), magnetometers and barometers are different from other technolo-
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gies that acquired external reference signals. They are completely self-contained and

can be seamlessly used in indoor/outdoor environments. The lack is that inertial sen-

sors provide only short-term accuracy but experience from the accuracy degeneration

with time [45]. The behavior of the vertical errors (i.e. the roll and pitch) can be

controlled by the accelerometer measurements. However, the heading error will be in-

creased when there is no additional useful information [46]. Magnetometers are able to

support the heading estimation through sensing the Earth’s magnetic field. However,

the local magnetic field is liable to interference from man-made infrastructures when

a subject moves into indoor or urban environments [47], which makes magnetometer

measurements incorrect. When current sensors-based commercial products mounted

on foot, The normal accuracy is 1 % of distance traveled [48] and 4 % - 8 % of dis-

tance traveled when there is no requirement of the location and attitude of the device

on the human body [49]. The three main Inertial based systems are i) Simultane-

ous Location and Mapping (SLAM), ii) Strapdown systems, and iii) Step and heading

systems (SHS). In the following statements, we present some contribution examples

done in previous years. An approach of the SLAM technique is presented by [50] when

they applied SLAM technique used in robotics to a mobile device, which is equipped

with both inertial sensors and the IEEE 802.15.4 a Chirp Spread Spectrum (CSS) ra-

dio, to obtain locations of pedestrians in an indoor environment. They defined the

state vector [xn, yn, βn] to represent the current state of the pedestrian q at n times in

two-dimensions, is calculated as shown in equation 2.8.

qn =


xn−1 + ∆Dn−1 − cos(β − 1)

yn−1 + ∆Dn−1 − sin(β − 1)

βn

 (2.8)

βn denotes heading angle of the pedestrian and ∆Dn−1 denotes the odometric dis-

tance which is measured from the magnetometer, and ∆ is estimated from the three-

axis accelerometer. Due to the accumulative errors, estimating the odometric distance

from integration of sensing data is practically very hard. They, therefore, estimate the
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odometric distance as shown in equation 2.9.

∆Dn−1 = ns × ls (2.9)

Where, ns and ls denote the number of steps and side length respectively. The number

of steps is computed using synthetic acceleration vector of a three axis accelerometer.

A peak detection algorithm [51] is implemented to state the candidate points of

user stepping. The positions of a pedestrian are computed by equation 2.8 using the

IMU sensor. The authors proofed that using only the IMU, the position error is about

13 m after moving a distance of 100 m. The new step of this algorithm is to locate a

moving target using inertial sensors equipped in a mobile device. Since the obtained

data from the inertial sensor has noise, the system keeps a number of particles to

represent probable pedestrian position rather than a single position, as shown in Fig

8. A particle containing the pedestrian position in two-dimensional space at time t is

represented as pit and estimated using equation 2.10.

Figure 2.7: Particles of pedestrian position [50]
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pt
i =

xt−1
i + (dt + δi)cos(at + ϑ2)

yt−1
i + (dt + δi)sin(at + ϑ2)

 (2.10)

The error of the distance is Gaussian noise with mean and standard deviation of error

distribution utilizing step counting. According to the characteristic of the magnetome-

ter sensor noted in [52], the angle error is measured as presented by equation 2.11.

ϑ = ϑbias + ϑguassian (2.11)

Where, ϑbias is the bias error and ϑguassianis zero-mean Gaussian noise. It is observed

from this experiment that the measured distance is rarely shorter than the actual dis-

tance, and the negative error is less than 1 m. Positive error, which is caused by

multipath signal propagation, may reach to the maximum communication range.

The following section presents several works related to the works presented in this

PhD dissertation.

2.3 Literature survey

As we mentioned in section 2 of this chapter about the two main Indoor positioning

systems; the inertial based and network based systems. In this Ph.D. dissertation, we

constraint on building an IP system in an indoor environment using network based,

especially, the time based method based on (UWB) radio technology. UWB technology

has been identified as an ideal candidate to provide positioning information in these

environments in the last years. The implementation of sub-nanosecond duration UWB

pulses with several GHz of bandwidth presents the unique possibility of distinguishing

the different multipath components which compose the received signal and of accu-

rately estimating its Time of Arrival (TOA), which includes the relevant information

for positioning. In this way, centimeter level accuracy can be obtained, even in mul-

tipath rich indoor environments. The UWB technology will provide a good result of
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positioning accuracy when we are able to identify the environments(propagation chan-

nels) and therefore, we can build our IP system accurately with very few centimeters

error. So, the survey will be divided into NLOS identification methods and indoor

positioning systems using UWB technology.

2.3.1 NLOS identification and mitigation methods

In 2018, Dae-Ho Kim [53] presented another method to identify the NLOS and LOS

channels in a different indoor environment. The author enhanced the technique used in

[86] by adding different types of the direct path of the UWB signal to experimentally

evaluate it if it comes through a LOS or NLOS (hard and soft) channel. In this work,

only an NLOS and LOS identification method is created.

The authors of [54] implemented an algorithm to identify the propagation channel

and enhance the ranging accuracy. In this method, the received signal strength (RSS)

measurements from the Wifi signal. The authors exploited several statistical features

of the RSS time series and implemented two approaches based on machine learning

and a third based on hypothesis testing to separate LOS-NLOS measurements. This

algorithm of NLOS identification and mitigation are conducted implementing only

RSS from real experiments with mobile devices. The authors’ algorithm is able to

distinguish between LOS and NLOS conditions with an accuracy of around 95 %. Fur-

thermore, the presented techniques improve distance estimation accuracy by 60 % as

compared to previous NLOS mitigation techniques and they obtained an improvement

in distance estimation accuracy of 50 %.

The authors of [55] implemented measurements taken at more than one hundred

points in the considered area. Points are placed randomly but are enforced to areas

which are attainable by the carts. The measurement points are clustered into non-

overlapping clusters, i.e., each point only corresponding to a single cluster. Typically, a

cluster corresponds to a room or a region of a hallway. When two clusters were within
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transmission range, every inter-cluster measurement was collected as well. Overall,

more than one thousand unique point-to-point measurements were implemented. For

each pair of points, different received waveforms and range estimates are recorded,

along with the true range. Then, they create a database which includes 1024 measure-

ments consisting of 512 waveforms captured in the LOS condition and 512 waveforms

captured in the NLOS condition. Their algorithms are non-parametric, and rely on

least-squares support-vector machines (LS-SVM). They describe the features for rec-

ognizing LOS and NLOS situations, followed by a brief introduction to LS-SVM. They

describe how LS-SVM can be implemented for NLOS identification and mitigation in

localization applications, without needing to determine parametric joint distributions

of the features for both the LOS and NLOS conditions. To identify the LOS and

NLOS, they extracted different features : (i) in NLOS conditions, signals are consid-

erably more attenuated and have smaller energy and amplitude due to reflections or

obstructions; (ii) in LOS conditions, the strongest path of the signal typically corre-

sponds to the first path, while in NLOS conditions weak components typically precede

the strongest path, resulting in a longer rise time; and (iii) the root mean-square (RMS)

delay spread, which captures the temporal dispersion of the signals energy, is larger for

NLOS signals. After the mitigation process, 60 % of the cases have accuracy with an

error of less than 1 m.

In [56], Bo You offered an NLOS identification and mitigation method depending

on the RSL and FSL. He stated two different thresholds (α and β) where α and β are

25 % and 10 % respectively. These thresholds are according to DW 1000 user manual

[73]. Then he defined a ratio between the FSL and RSL. If the computed ratio is

higher than the threshold α, the channel is probably to be a LOS. And if the ratio

is lower than the threshold β, the channel is probably to be an NLOS. For an NLOS

ranging error mitigation, they obtained the estimated ranging error experimentally

and removed it from the estimated distance to obtain the mitigated distance. In this

work, the authors did not mention what is the ranging accuracy after the proposed
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method, but they only mentioned the localization accuracy had been increased 50 %

when using the traditional least square localization method with the proposed method

than without it.

The authors of [26] present an NLOS identification and mitigation method based on

signal characteristic analysis and fuzzy theory. In this method, SNR, rais time (RT),

RMS delay spread, kurtosis, and skewness are implemented to identify NLOS. This

algorithm neither needs to build a statistical model nor to build and update a training

database, so that it can be used conveniently for different application scenarios. Exten-

sive experiments were conducted and the results show that the cumulative distribution

function of the ranging error below 0.5 meter is over 90 % when using the proposed

mitigation method, while that without implementing the mitigation method is below

70 %. Also, by using the proposed method, the root mean square error (RMSE) of

the range measurements is reduced from 0.77 to 0.33 meter. However, the capability

of this method is limited to the chosen representative propagation conditions.

2.3.2 Indoor positioning systems

In 2018, Imane Horiya Brahmi [57] presented an indoor positioning system based on a

fuzzy logic approach called Fuzzy-LSE (FLSE). In this work, the authors used the fuzzy

approach for only in the localization phase. Four parameters have been implemented to

be elements of the input set of the fuzzy approach to create an indoor positioning sys-

tem. These parameters are power, LOS value, Noise, and distance. The power element

is an UWB signal power extracted from the Decawave (DW) 1000 device. The LOS

element is identified using the LOS identification method created by Decawave com-

pany [73], which has enhanced by our work presented in IPIN international conference

as shown in chapter 4. The authors claimed that the created system has demonstrated

desirable accuracy improvement when compared to existing algorithms described in

the literature.

In 2017, the authors of [58] presented a modified least squares iterated (MLSI) to

28



Chapter 2 . 2.3 Literature survey

minimize errors and optimize the relationship of anchor nodes and a mobile station.

The MLSI implements the iteration method to reduce the error of the conventional

LS method. That means the MLSI can effectively improve position error rate. When

using four anchor nodes system, the average error is 0.8 m. Moreover, increase anchor

nodes from four to five; the error value is convergence to 0.48 m. The idea of this

approach is to modify the vector of distance measurements used in the main equation

of the conventional linearized LS method by involving the average distance error. Also,

the positioning accuracy might be increased while implementing more number of the

installed anchor nods.

In 2016, Mathias Pelka [59] presented an iterative approach for anchors configura-

tion of a positioning system. He used an anchor node randomly as the origin of the

coordinate system. For the second anchor position, they presumed that the first two

anchors are along one axis and the distance between both anchors is measured. An

initial guess of the remaining anchor positions is generated according to a uniform dis-

tribution. The algorithm iterates for all anchor nodes in the positioning system. Then,

the MSE is computed between the measured and Euclidean distance of the anchor

nodes. The MSE is compared with a threshold which depends on the standard devia-

tion of the distance estimation. If the MSE passes the MSE threshold, the algorithm

dismisses the solution and starts the process again. The positioning problem with a

Taylor expansion combined with a Monte Carlo approach is solved to avoid ambiguity

flip. They obtained a mean positioning error of 0.62 m.

The authors of [60], presented a GDOP assisted nodes selection (GANS) algorithm

for calculating the GDOP value of the current geometric distribution. As the evalu-

ation criteria, sensor nodes contribution to the total GDOP value is adopted. When

The contribution value of the node is higher than the threshold, it will be selected. The

anchor nodes subset, which shares in the localization, will be real-time determined. By

simulation, This approach shows that the GANS algorithm can minimize the energy
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consumption of the system while the accuracy of the positioning system has no clear

loss, and the computational complexity is decreased.

GDOP, Also, is presented by [61], where it is assumed that there is no mobile target

but all anchor nodes will act as mobile units. In that work, 36 nodes are considered

and a positioning accuracy around half meter is obtained.

In 2011, Paula Tarrio [62] presented two weighted least squares methods based on

the standard hyperbolic, and circular positioning algorithms that consider the accuracy

of the different measurements to obtain a better positioning estimation. With a limited

overhead in term of computational cost, these methods present suitable positioning re-

sults and obtain greater robustness to an inaccuracy in channel modeling. The average

errors of the positioning systems created by the proposed algorithms are 3.69 m and

2.56 m.

From the literature aforementioned above and other previous literature that used

the received power of the UWB signal to create an indoor positioning system or NLOS

identification method, we should mention the main drawback of these works which is

the value of the received power when it is estimated by an UWB device. This value

diverges from its true value when the received power is above -85 dBm, which results in

a significant error in the positioning or ranging accuracy [73] (we will provide further

details in Chapter 5). Since, in this dissertation especially chapter 5, we overcome

the problem aforementioned above, so we can conclude that our Ph.D. dissertation

will improve the positioning accuracy in different indoor environments and situations

including the emergency situations when the positioning accuracy for pedestrians can

be enhanced with less than 30 cm error.
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3. An overview of UWB

During this Ph.D. dissertation, we designed two methods of NLOS identification and

mitigation and one IP system using Ultra Wideband (UWB) technology, so having an

overview of it will provide the reader with good comprehensive.

UWB technology has been identified as an ideal candidate to provide position-

ing information in these environments in the last years. The implementation of sub-

nanosecond duration UWB pulses with several GHz of bandwidth presents the unique

possibility of distinguishing the different multipath components which compose the re-

ceived signal and of accurately estimating its Time of Arrival (TOA), which includes

the relevant information for positioning. In this way, centimeter level accuracy can be

obtained, even in multipath rich indoor environments. However, before being able to

fully exploit the potentials of this technology, some issues need first to be addressed:

• UWB signals offer complex propagation phenomena. Due to the large band-

width of these systems, different frequency components show significantly differ-

ent interactions with the environment. For this reason, new propagation models

describing and predicting the interaction of the traveling waves with the sur-

rounding environment are of absolute importance, since the wireless channel is

the first aspect which determines performance limits. However, available UWB

channel models were developed with communications applications in mind, and

they lack relevant information for positioning.

• Similar considerations hold for most of the suggested TOA estimation techniques,

which are usually considered a simple expansion of well known channel impulse

response estimation methods developed for communication applications, in which

the TOA of the received signal comes as a byproduct. These approaches are
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inherently sub-optimal since they do not address the unique UWB properties and

do not concentrate on the relevant information which acquires to be retrieved; in

addition, they can often be hardly utilized, since they have hardware or signal

processing requirements far from what is currently available in the market.

3.1 UWB properties

Nowadays, there is not a union definition of UWB. Conversely, different countries have

proposed, at different times, different definitions of UWB for civilian implementations.

The first official document providing a regulatory body for UWB transmissions was

released by the FCC, the US frequency regulator, in its first report and order dated

February 2002 [63]. Some years later, similar definitions were started to be adopted

in other continents. These rules present some variations among each other, especially

with respect to the bandwidth in which UWB transmissions are permitted in several

countries; however, the basic motivations and described principles of operation are

similar. For this reason, only the FCC regulations will be discussed in the following;

consequently, when in this dissertation, it is necessary to refer to regulatory issues, we

will only consider these rules. The reason for this choice is twofold; first, FCC rules

represent the regulatory body most often implemented and accepted in the scientific

community; second and direct cause of the previous point, FCC provided regulations

already in the early stage of UWB studies, while e.g. in Europe, the final documents

provided by CEPT were issued only in April 2009. While the choice of some numerical

values introduced in this thesis might require to be adapted to fit other regulatory

bodies (e.g. the European ones [64]), the general validity of the proposed work continues

to hold.

3.2 FCC definition of ultra-wideband

In reality, the original distinctive feature for the deployment of UWB radios was their

potential ability to transmit in an unlicensed way very low power over an ultra wide
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portion of the spectrum, allowing this technology to coexist with current and future

licensed wireless systems. For this reason, the FCC does not directly specify any par-

ticular signal format or modulation technique for UWB; on the contrary, it strictly

determines the spectral and emission properties for this technology.

UWB is defined as any wireless system with bandwidth (B), where B > 500 MHz,

or a fractional bandwidth Bf , 2B
fH−fL

> 0.2 where fL and fH are the lower and

upper frequencies of the -10 dBm emission points respectively [63]. Also, the center

frequency(fc) can be derived as fc = fH+fL
2

. The operating band is limited in the por-

tion of the spectrum between 3.1 and 10.6 GHz, provided that the emissions satisfy

given limitations for communication and positioning applications. These limitations

have been defined with the pulse based ultra-wideband approach in mind, and distin-

guish between peak and average power:

• P pk
meas 6 0 dBm in any 50 MHz signal bandwidth

• P av
meas 6 41 dBm in any 1 MHz signal bandwidth

where, P av
meas and P pk

meas are the average and peak measured EIRP power respectively.

Fig. 3.1 presents the FCC mask for the average measured power P av
meas.

3.3 UWB Compatibility with WSN

Due to UWB properties, it is a solid candidate for the Wireless Sensor Network.

Though narrow band transmission schemes under WSN, e.g., DSSS (direct sequence

spread spectrum) are widely implemented and is very effective under 2.4 GHz band

their performance matrix is lesser than the UWB. Major disadvantages of these trans-

mission technologies are statistically explained in Table 3.1.

On the other hand, the UWB signal presents large bandwidth (e.g., 500 MHz plus)

Figure 3.2. It works on a narrow pulse (width around Nano and Pico seconds) and a

huge frequency spectrum (≥500 MHz). By comparing the UWBs properties with the
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sinusoidal carrier-based system, the following are the UWBs advantages.

• Cost: Very Low .

• Power Consumption: Very Low .

• Data Transmission Rate: Very High .

• Probability of Interception: Very Low .

• Space Frequency Spectrum: Superb efficiency .

• Implementation: Easy/Moderate

In the next section, UWB strengths are explained in more detail.

3.4 Strengths of UWB for wireless sensor networks

UWB is a lightweight platform, hence detection and interception of UWB signal (due

to the low ”Tx” power) are relatively complex Figure 3.3. UWB is less complex and

more reliable that makes it very suitable for WSN.

Figure 3.1: FCC mask for the average measured power, for UWB emissions in US [65].
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Table 3.1: UWB vs. Existing Technology Solutions [66]

Technology Standard/Spectrum
Frequency
Band

Advantages Hindrances

Zigbee IEEE 802.15.4
2.4 GHz, 900
MHz

Low Cost,
Power Effi-
cient

Supports
Limited No.
of Nodes.

Wireless
HART

IEEE 802.15.4 2.4 GHz
Widely recog-
nized

Protocol
Compati-
bility issue,
Limited
Nodes sup-
port

Wi-Fi 802.11 a/b/g/n/ac
2.4 GHz, 5
GHz

Higher Data
rate

Power con-
sumption

Bluetooth IEEE 802.15.1 2.4 GHz Low cost

Limited
nodes sup-
port, Power
consumption

UWB IEEE 802.15.6,4a 3.1-10.6 GHz
Low en-
ergy, high
bandwidth

Transceiver
Design

Figure 3.2: Different wireless standards in ISM Bands [66].
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Figure 3.3: UWB pulses (modulated and at Correlator) [67].

3.4.1 Energy efficient, economical and simple transceiver cir-

cuitry

UWB implements narrow pulses and a wide frequency spectrum for the transmission.

So the transceiver part of the node has no conventional circuitry which means no

extra burden on the hardware. Also, simple transceiver architecture of UWB saves

cost, power, and reduces the size of the hardware. Its capability of transmitting high

data rate (for a short distance) makes it a superb choice for real-time multimedia

applications. For example at the unit cost of power consumption of 1 bit under UWB,

it is less than the conventional wireless communication model. Due to these qualities,

UWB is an attractive scheme for modern sensor networks [68].

3.4.2 Spatial capacity and transport mechanism

Spatial capacity is the data intensity of a wireless channel and is crucial in wireless

sensor networks, especially when the network environment is dense and large. When

comparing UWB with the other short distance technologies, UWB provides better
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Figure 3.4: UWB spatial capacity [68].

transport mechanism and spatial capacity per unit area. That is one of the reasons

UWB is considered for complex, dense environments shows the statistical comparison

of UWB and the other related technologies in terms of spatial capacity. Figure 3.4

depicts the UWB spatial capacity.

3.4.3 Multipath splitting ability

For a wireless communication system, the transmission efficiency is a major concern.

The RF (Radio Frequency) signals are continuous, in other words, take a longer pe-

riod than the multipath transmission time in the conventional wireless systems which

impacts the quality of transmission and data rate. Conversely, UWB radio signal has

severely short maintaining time (due to single-period pulses) and very low duty cycle.

For separating the multipath signals as per time, Low duty cycle and short maintaining

time make it accessible. Figure 3.5 depicts three different scenarios of multipath that

are considered. The upright values show a UWB pulse strength (in mV ). The vertical

vertices of each scenario are different, due to the different channel attenuation. The

first graph is with LOS (line-of-sight) and the rest two with NLOS (non-line-of-sight).

By viewing the experiments in various research, results show that the largest observed
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Figure 3.5: Multipath environment (UWB) [67].

fading of the UWB signal is only 5 dBm (in the multipath case). For the same multi-

path case, fading for narrowband radio signal exceeds 15 - 30 dBm.

WSN is usually deployed in complex (extreme) multipath environments in the real

world,. Due to UWBs marvelous ability of ”multipath separation”, it works well with

wireless sensor networks (Even in extreme conditions).

3.4.4 Interference resistance

In UWB, processing gain is observed high which can obtain interference immunity in

UWB. The strength of the signal is almost equal to the white noise as the UWB signals

energy is scattered in wide bands (for the other NB system). UWBs spectral density is

very high, even lower than the usual environmental noise. Its probability of detection is

also very low and almost impossible under pseudo random coding. That makes UWB

an ultimate choice for high security (e.g., military) applications [69]. Besides this, it

also allows band sharing. An excellent solution for the EMF (Electric and Magnetic

Field) problem in severe dense environments.
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3.5 Spectrum challenge

Data transmission by UWB is a striking solution for the wireless sensor network, but

with various implications. Some core challenges in UWB radio technology. Spectrum

Challenge is one of concern. Looking at the possible implementation of technology, the

following are the three possible implementations of UWB.

1- UWB based connectivity to portable nodes (most common household devices like

MP3 players, USB Drives, and digital sensors) is conceivable and under research

for future SMART networks.

2- For the Wireless Universal Serial Bus connectivity with standard computing

nodes (e.g., printers, and scanners), could be utilized.

3- UWB could be a suitable candidate for the next generation Bluetooth technology

devices, such as smart-phones [70]. Spectrum is a major concern because of the

absence of standardized spectrum for all three possible uses.

As UWB emission spreads over a huge frequency bandwidth with limited Giga-

Hertz to operate. It is hard to adopt a solution that is compatible with all wireless

systems. Another concern is compatibility with different services. UWB based

service can create harmful interference to some of the other wireless services. So

the challenge could be how to full fill spectrum demands. This issue needs to

be worked out (especially for hybrid wireless sensor networks). Considering the

SMART world, where spectrum utilization would be a major concern. UWB

licensing is an open question.

3.6 Conclusion

According to the UWB overview aforementioned above, we can conclude that this Ph.D.

dissertation implements a suitable and convenient technology (UWB radio technology)
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for building a prices IP system using commercial existing low coast wireless sensors

that could be implemented for different indoor environments and situations in real life.
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4. Ranging in UWB using commer-

cial radio modules: experimental val-

idation and NLOS mitigation

In this chapter, we begin the study of NLOS identification and mitigation methods.

We concentrate on the UWB radio technology especially low cost commercial devices.

We intended to study the characteristics and specifications of such devices.

Ultra wideband (UWB) wireless transmission has received notable and consider-

able attention in the field of next generation location-aware wireless sensor networks

(WSNs). This trend is due to the large bandwidth of UWB signals contributing

many advantages for positioning, communication, and radar applications: penetra-

tion through obstacles, accurate position estimation, high-speed data transmission,

and a low-cost, low power transceiver. Commercially available UWB radio modules

were evaluated. Such modules have the ability to very precisely measure the time of

arrival of RF signals, range, or localization. The physical layers specify the received

signal strength indicator utilized in the localization technique.

The main impact in the UWB signal is the distance computed from the received

signal due to this distance will absolutely have an error when the UWB signal travels

in an indoor environment through obstacles such as wall and humans. Usually, this

error is a positive Bias in the measured distance when the UWB signal travels through

obstetrical. To identify the propagation channels that the UWB signal travels through

is a confident solution to remove the error from the measured distance. We study a
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device called decawave 1000 (DW 1000); how this it works, what ranging protocol it

uses and etc.

4.1 Introduction

UWB 802.15.4a transceiver technology ideally meets the demands of next generation

wireless sensor networks [71]. IEEE has realized the requirements to standardize UWB

technology for use in personal area networks (PANs) and has committed the IEEE

802.15.4a standard specifying a new UWB physical layer for WSNs [72]. For some

WSN applications, for example tracking a missing firefighter in the interior of a harsh

smoky environment, sensing data without recognizing the sensor location is useless. Lo-

calization is a crucial technique in acquiring the location of data sources within WSNs.

WSNs consist of small so-called sensors armed with environmental power sources, sens-

ing devices, radio, and processor units. The mobile stations can communicate with each

other or with the bay-station. In most situations, the mobile stations are randomly

deployed within fields where the location information is missing. Some localization

systems should be performed on mobile station fields for the location each mobile.

Four signal parameters are taken in the localization technique: received signal

strength (RSS), time of arrival (TOA), time difference of arrival (TDOA), and an-

gle of arrival (AOA)[43]. To attain precise positioning accuracy, IEEE 80215.4a-2007

specifies additional PHYs using impulse radio (IR)-UWB. UWB provides accuracy with

a very small margin of error because it uses a center frequency equal to or greater than

3.5 GHz and a bandwidth of 500 MHz or more. Recent developments in UWB enable

the acquirer of low-cost chips equipped with UWB to very precisely measure distance.

One low-cost commercial UWB module that provides a very precise time of arrival

RF signal with valuable information that may assist in identifying NLOS channels is

Decawave 1000 (DW 1000), Evaluation Kit 1000 (EVK 1000) [73] [74]. Some literature

has already evaluated the performance of such devices but only with fixed stations.
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DW 1000 implements an SDS-TWR-TOA ranging protocol[75] which is explained in

detail in the next section. This protocol is accompanied by some disadvantages be-

cause a device has to wait for a time (replay time). Thus, when the devices move while

the ranging measurements are proceeding, the distance changes over time, and then

the longer ranging delay results in a larger ranging error. An asymmetric double sided

two-way ranging for crystal offset (ADS-TWR) was presented by [76] to reduce ranging

delay.

A novel evaluation is presented in this chapter to examine the DW 1000, EVK 1000,

mounted on a moving human, and how the movement of a human body may affect its

measurements. It also evaluates a novel technique for identifying and mitigating NLOS

claimed from [73] [27] in a harsh environment, which has not yet been evaluated. As

we showed in a later subsection(NLOS identification and mitigation), the technique

committed by [73] does not satisfy all LOS and NLOS probabilities, so we expanded

the NLOS identification technique to add two new conditions to cover all NLOS and

LOS channels probabilities to determine a precise ranging measurement. Our goal will

assist us in ascertaining whether we can utilize DW 1000 to design an indoor localiza-

tion system.

The main contributions of this chapter follow:

• To identify the propagation channel to LOS and NLOS using two parameters

extracted from the DW 1000.

• To mitigate the NLOS Chanel using map information and apply distance en-

hancement by removing the error from the measured distance.

The ranging protocols on IEEE 802.15.4a related to this work are described in detail

in Section 4.2 . Section 4.3 represents the properties of the hardware applied in this

work. In Section 4.4, experiment activities involving moving humans are implemented

in LOS and hard-NLOS environments with different materials, such as different types
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of walls, doors, and chairs. Relevant UWB signals,the signal power in the first path

and the received signal power, are estimated, and NLOS channels are identified and

mitigated. Finally, a conclusion is offered in Section 4.5.

4.2 Ranging protocols on IEEE 802.15.4a related with

this work

Three different ranging protocols have been realized by IEEE 802.15.4a. The first

mandatory protocol is a two-way time of arrival (TW-TOA). The second one, sym-

metric double sided (SDS) TW-TOA, is much more precise and preferred. The last

protocol, private ranging, is designed for systems in which positioning information is

sensitive and has to be secure [27]. The description of the first and second protocols

with the clock drift is explained in the next subsections, respectively.

4.2.1 Tow-way ranging (TWR)protocol with clock drift

In this protocol, shown in Fig 4.1, when device A sends a message to device B, the start

of the ranging transaction commences. Then, device B waits for a known measure of

time and sends a reply back to device A [27]. One of the error sources in the TW-TOA

approach is the clock set off. The crystal oscillators employed in sensor devices (source

or target) are not processed at the exact optimal frequency, resulting in a small positive

or negative offset in the time measurements. With the high speed of light, this small

offset may cause a significant error in ranging [75]. The target node computes the TOF

as

2TOF = tArd − tBrep (4.1)

Due to clock drift, device A estimates TOF by

2T̂OF = (1 + eA)tArd − (1 + eB)tBrep (4.2)
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Figure 4.1: Tow-way ranging (TWR) [75].

Subtracting Eq 4.2 and Eq 4.1 and then dividing the resultant equation by 2, we obtain

T̂OF − TOF = eATOF +
1

2
tBrep(eA − eB) (4.3)

Practically, the trep � TOF , so the dominant error is

1

2
tBrep(eA − eB)

For the practical value of tBrep and frequency offset, the error in the accuracy of the

range is large. Please see Table 4.1.

The more precise algorithm has been implemented in DW 1000 and is explained in
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the following subsection.

Table 4.1: Frequency Offset error using the TWR-TOA protocol [27]

eA − eB
tBrep 2 ppm 20 ppm 40 ppm 80 ppm

100 µs 0.1 ns 1 ns 2 ns 4 s
5 ms 5 ns 50 ns 100 ns 200 ns

4.2.2 SDS-TW-TOA protocol with clock drift

In this protocol, shown in Fig 4.2, the target node sends a second RFRAMEreq to

the source node after receiving the RFRAMErep. Consequently, each node has an

estimate of the round trip time, Trd, and replay time, Trep,. At the final stage, the

source node sends a time stamp, including measured Tred and Trep, to the target node

[27] [75] [76]. Thus, the target node computes TOF as

2TOF = tBrd − tArep (4.4)

The TOF can be constructed by adding equations (4.1) and (4.4)

4TOF = tArd + tBrd − tArrep − tBrep (4.5)

As we explained in subsection A, due to clock drift, device A estimates TOF by

4T̂OF = (1 + eA)(trd − tArep) + (1 + eB)(tBrd − tArep) (4.6)

∆ = tBrep − tArep)

Subtracting Eq 4.6 and Eq 4.5, and then dividing the resultant equation by 4, we

obtain

T̂OF − TOF =
1

2
(TOF (eA − eB)) +

1

4
(∆(eA − eB) (4.7)
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Figure 4.2: SDS ranging protocol [27]

Practically, ∆� TOF , so the dominant error is

1

4
∆(eA − eB) (4.8)

Clearly, as we can ascertain in SDS-TWR, the clock offset is reduced to half that of

TWR. Table 4.1 and Table 4.2 illustrate the clock offset of TWR-TOA and SDS-TWR,

respectively.

Table 4.2: Frequency offset error using the SDS protocol [27]

eA − eB
tBrep − tArep 2 ppm 20 ppm 40 ppm 80 ppm

1 µs 0.0005 ns 0.005 ns 0.01 ns 0.02 s
10 µs 0.005 ns 0.05 ns 0.1 ns 0.2 ns
100 µs 0.05 ns 0.5 ns 1 ns 2 ns

The features of DW 1000 and EVK 1000 are explained in detail in the next section.
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4.3 Hardware

4.3.1 Decawave 1000 (DW 1000)

The DW 1000 is a fully integrated low-power, multichannel single-chip CMOS radio

transceiver that meets the IEEE 802.15.4-2011 UWB standard [73].

• Its ranging accuracy is ∓ 10 cm error using TW-TOA.

• It spans 6 RF bands from 3.5 GHz to 6.5 GHz with a bandwidth ranging from

500 to 900 MHz.

• It supports data rates of 110 kbps and 6.8 Mbps.

• It saves power and extends battery life.

• It has the ability to deal with severe multi-path environments, so it is ideal for

highly reflective RF.

Also, the DW 1000 has features [27] necessary in the localization technique as

written below:

1. Detect the signal from below the noise floor,

2. Extract the direct path signal and any multi-path signals that follow it, and

3. Process the impulse response and timestamp of the first peak in this response

that exceeds a dynamically adjusted detection threshold.

The timestamp of the first peak is reported by the DW 1000 in the impulse response

via registers to which the application software has access. This value can then be

utilized in a variety of different ways to implement location and ranging schemes [77].

The EVK 1000 specifications are explained in the next subsection.
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4.3.2 EVK 1000

EVK1000 consists of a pair of evaluation boards (EVB 1000). Each pair of EVK 1000

boards is configured to run a pre-programmed two-way ranging demonstration appli-

cation. In additional to the features of DW 1000, the EVK 1000 [74] is programmed

to possess the following:

1. It gives the estimated distance after calibration,

2. It estimates the signal power in the first path(FSL)[73], and

3. It estimates the received signal power (RSL)[73]

In this work, two EVK 1000 boards have been implemented to estimate the distance

between a mobile station (walking man) and an anchor node and to extract informa-

tion such as RSL and FSL to ascertain whether it can be utilized in NLOS channel

identification, as described in the next section.

4.4 Experimental activities

This experiment seeks to examine and validate the estimation ranging accuracy of the

commercial module of an UWB transceiver (EVK 1000) mounted on a walking human

for LOS and NLOS channels with distances from 2 m to 45 m in LOS channel and 4

m to 26 m in hard-NLOS in an indoor environment. It also focuses on evaluating the

technique used to identify and mitigate NLOS channels committed by DW 1000 [73],

which has not yet been evaluated.

Also, we expanded the NLOS identification technique by adding two additional

obtained conditions by this experimentation to overcome all LOS and NLOS channel

probabilities. This experiment will assist our future work to sustain a precise position-

ing system in a harsh environment. We implemented two different channel modes, ch2

(4 GHz) and ch3 (4.5 GHz). See Table 4.3 for specifications.
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Table 4.3: channel modes details [74]

ch fc (GHz)
Band
width(MHz)

Data
Rate

PRF
Preamble
length

Preamble
code

2 4 GHz 500 MHz
110
kbps

64 1024 9

3 4.5 GHz 500 MHz
110
kbps

64 1024 9

4.4.1 LOS and NLOS measurements

The measurements were obtained using two FCC-compliant UWB radios obtained from

Decawave. The experiment took place in a 52 m length by 3 m width corridor on the

second floor of the engineering faculty building of the UAB. Tow transceivers (EVK

1000) were used, one placed on a 1.6 meter high tripod and the other transceiver carried

by a moving person. Also, the transceivers should be placed in the Fresnel zone (FZ)

[27]. In the equation 4.9 below, rf is denoted for radius of the first Fresnel zone, λ

is denoted for the wavelength of the radio signal, and the distance between sites is

denoted by d.

rf =
1

2

√
λ.d (4.9)

To ensure no NLOS effects in the two channels, we placed the device within a radius

of 1.5 m around the straight line optical path between the devices, Table 4.4 depicts

the FZ.

Table 4.4: Fresnel Zone(FZ) for ch 2 and ch 3 [27]

ch fc (MHz)
Band
width
(MHz)

FZ radius
bottom cm

FZ radius
top cm

2 3993.6
3774-
4243.2

44.6 42

3 4992.8
4243.2-
4742.4

42 39

The experiment is don in an indoor environment. First, between transceivers, was

a LOS channel. Range, FSL, and RSL were measured 20 times per distance. Twenty-
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three distances were estimated and compared with known distances from 2 m to 45 m.

One transceiver (anchor node) was placed on a 1.6 m high tripod, and the other (mov-

ing target node) was carried by a human while moving. Fig 4.3 illustrates this scenario.

Second, between transceivers, were NLOS channels (through the concert and dif-

ferent types of walls and furniture). The same scenario of LOS was implemented in

a 26 m corridor. A different number and types of walls were involved with different

distances. Fig 4.4 illustrates this scenario.

We calculated the mean, root mean square error, and standard deviation (STD)

of 20 estimated distance of a walking human for each physical distances in LOS and

NLOS channels. Fig 4.5 depicts the standard deviation in LOS and NLOS channels

for the two channel modes (ch2 and ch3). Clearly, we determined that the standard

deviation for both channels (ch2 and ch3) in LOS does not exceed 16 cm. In the NLOS

channel, we observe the standard deviation increased to touch 40 cm for ch3 and less

than 35 cm for ch2.

4.4.2 NLOS identification and mitigation

UWB-decawave 1000 has a very important specification, the ability to distinguish the

direct path of a signal in between other reflective paths, using a receiver detection

threshold. This threshold functions to not only avoid false path detection, due to the

presence of noise, but also to allow optimum direct path detection [78].

Figure 4.3: Direct path through air with no obstruction (LOS).
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Figure 4.4: NLOS through solid cement and brick and concrete walls with reflection.

Figure 4.5: STD for ch2 and ch3 in LOS and NLOS.

Three important aspects should be considered when examining NLOS operation:

• Reduction in direct path detection range due to attenuation of the direct path

signal,

• Reduction in communication range due to overall signal attenuation, and
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Figure 4.6: Average error of each distance in hard-NLOS.

• Time of Flight errors due to differences in the refractive index of the obstructing

material.

a. NLOS identification

Some NLOS channels are implemented in this experiment: different numbers and types

of walls for each distance and different types of office and lab furniture.

We assume to identify NLOS channels given by EVK 1000 as FSL and RSL. These

two parameters are rolling as follows:

1. RSL - FSL ≥ 11 dB considered an NLOS channel.

2. RSL - FSL ≤ 5 dB considered an LOS channel.

The two conditions above committed by [73] were evaluated through our experi-

ment, and we implemented the sensitivity and specificity algorithm to assess the

accuracy of the above conditions, as shown in Table 4.5. The two equations below

express the true position rate (TPR), sensitivity, recall, and true negative rate
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(TNR) and specificity, respectively.

TPR =

∑
TP∑
CP

(4.10)

Where, TP and CP denote true positive and condition positive values respec-

tively.

TNR =

∑
TN∑
CN

(4.11)

Where, TN and CN denote true negative and condition negative values respec-

tively.

And the accuracy equation (ACC)

ACC =

∑
TP +

∑
TN∑

ToTP
(4.12)

Where, ToTP denotes the total population.

The accuracy of the NLOS identification technique is 74 % for ch2 (4 - 26 m)

and 74 % ch3 (4 - 24 m), as shown in Table 4.5 because the two conditions above

do not fully satisfy all LOS and NLOS probabilities (RSL - FSL = 10, 9,8,6). In

this experiment, we made 1000 RSL and FSL measurements of different distances

from 4 m to 26 m in LOS and NLOS (Table 4.7 depicts the FSL and RSL in

LOS and NLOS channels), and then compared with the RSL in the free space

(please see appendix 1: table of receiving signal power from [79]) to add new two

conditions to decide whether LOS or NLOS channel as shown below. In the new

conditions, and because we already have the RSL table in free space, we estimated

the average RSL = -87 dBm, which was taken from EVK 1000 measurements in

LOS and NLOS channel, as a reference to identify NLOS and LOS channel. As

stated below:

3. If RSL - FSL = 6,7,8,9,10 dB and RSL ≤ -87 dBm is considered an NLOS channel

4. If RSL - FSL = 6,7,8,9,10 dB and RSL > -87 dBm is considered an LOS channel

54



Chapter 4 . 4.4 Experimental activities

The two above-created conditions and the selected value of RSL = -87 dBm were

also evaluated by implementing the same algorithm of accuracy used in the first two

conditions. By enforcing the new conditions, we increased the accuracy to 93 % for

ch2 and 97 % for ch3, as shown in Table 4.5. By the four conditions, we covered all

LOS and NLOS channel probabilities.

Table 4.5: Accuracy of NLOS identification algorithm

Channel
mode

distances
(m)

TPR TNR ACC Note

2 4-26 0.636 0.859 0.747
First two condi-
tions

2 4-26 0.261 0.124 0.182
Created two
conditions

2 4-26 0.929 Total Accuracy

3 4-24 0.868 0.644 0.748
First two condi-
tions

3 4-24 0.1074 0.341 0.223
Created two
conditions

3 4-24 0.971 Total Accuracy

b. NLOS mitigation

To implement the NLOS mitigation, we should recognize the area of the experiment.

All information related to this area is important, such as walls, furniture, and human,

and may be interfered to this area. Then, after obtaining all relative information, we

applied a simple equation 4.13 [27], written below, to mitigate the NLOS channels.

The NLOS channels in this experiment are different from each other ranging from two

walls between sites (walking human, and tripod) to four walls, and office furniture was

always involved. The width of walls was between 50 cm and 2.2 m. Each object has a

refractive index. This index reduces the power of the received signal according to the

type of jamming object (wall, human, or water) [27].

d = d̂− w(rii − 1) (4.13)

d= obtained distance, d̂= estimated distance given by EVK 1000, w= width of the
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Figure 4.7: The maximum error in measured distances for ch2 and ch3 in NLOS before
and after mitigation.

total effected walls, and rii= Refractive index is obtained from Table 4.6.

We applied the refractive index (rii) of concrete hollow as an average of the different

type of walls used in the experiment. Table 4.6 is only for ch2, so we applied rii = 1.73.

For ch3, we applied rii = 1.82 as an average obtained from our 1000 measurements of

nine different ranges in different NLOS environments.

Table 4.6: The refractive index of each object [27]

Material
Dielectric
constant

Refractive
index

Notes

Concrete
solid

7.5 2.73

Concrete
hollow

3 1.73

Drywall 2 1.41
Human-
body

51 7.14

Plywood 2 1.41
water 80 8.96 at 4 GHz
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Table 4.7: (RSL) and (FSL) average in LOS and NLOS for ch2 and ch3, 20 measure-
ments of each distance of a walking human

LOS NLOS
D ch2 ch3 ch2 ch3

RSL FSL RSL FSL RSL FSL RSL FSL

2 −79 −82 −79 −82 − − − −
4 −79 −83 −79 −82 −80 −92 −80 −96
6 −80 −84 −79 −82 −82 −100 −83 −101
8 −82 −88 −80 −83 −87 −107 −86 −99

10 −81 −86 −81 −88 −90 −106 −89 −102

12 −83 −89 −81 −85 −92 −111 −90 −99
14 −81 −84 −80 −83 −92 −110 −94 −109
18 −84 −91 −80 −83 −94 −112 −95 −107

22 −81 −83 −81 −83 −97 −112 −99 −112

24 −82 −84 −83 −86 −99 −113 −99 −109
26 −82 −85 −83 −87 −101 −111 − −
30 −87 −97 −85 −90 − − − −
34 −84 −87 −82 −84 − − − −
38 −86 −92 −82 −84 − − − −
42 −87 −92 −84 −87 − − − −
45 −87 −95 −89 −94 − − − −

With this experiment, we evaluated and attempted to validate a commercial low-

cost UWB module in a ranging system for a walking human and evaluated the NLOS

and LOS identification and mitigation technique committed by [27][73] and us. In an

indoor LOS channel, both channels (2 and 3) are able to obtain ranging even further

than 45 m with an error less than 20 cm. In a hard-NLOS channels with multipath

concrete walls or multi-obstructions that severely attenuate the UWB signal propaga-

tion and generate large positive bias in the range estimates, the average distance error

varies from 20 cm to 1.5 m according to how the number and type of walls in each

distance obstructed the UWB signal.

From this experiment, we observed that ch3 cannot read farther than 24 m, while

ch2 can read up to 26 m in hard-NLOS channels; Fig 4.6 and Table 4.8 depict the

hard-NLOS condition. Higher frequencies exhibit better performance than lower fre-

quencies in LOS, while lower frequencies are better than higher frequencies in an NLOS
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Table 4.8: Type and thickness of walls for each distance

D(m)
Wall Num-
ber

Wall type
Total
thickness(m)

Note

4 2
Concrete
hol-
low+Brick

0.5

6 2 = 0.65
Extension in sec-
ond wall

8 2 = 0.65
Extension in sec-
ond wall

10 3 = 1.4
Extension in
second wood+
wood wall

12 3 = 1.3
Extension in sec-
ond wall

14 2 = 0.8
Extension in sec-
ond wall+door

18 3 = 1.4
Extension in sec-
ond wall+door

22-26 4 = 2.2
Extension in sec-
ond and forth
wall + wood wall

environment. Fortunately, the identification and mitigation technique we implemented

performed very well and reduced the maximum error to less than 60 cm in ch2 and 1 m

in ch3; Fig 4.7 illustrates the NLOS mitigation. Also, in this experiment, we observed

that the readings from the transceivers demand a long time (approximately more than

0.15 second) due to the ranging delay for distances farther than 26 m in a hard-NLOS

channel. We compared the obtained results with the results of work presented by [79]

based on inertial measurement units (IMU) and we clearly observed that UWB device

(DW 1000) provides more precisely results than IMU for the same application.

4.5 Conclusion

In this chapter, we practically and realistically evaluated and validated low-coast UWB

module; the EVK 1000 (transceiver) from Decawave 1000 which is capable of measuring

a precise time of arrival employing UWB. We utilized EVK 1000 carried by a human
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to measure its range while moving in an indoor environment for LOS and hard-NLOS

channels applying ch2 (4 GHz) and ch3 (4.5 GHz). It provided the accurate informa-

tion we require to calculate the true distance. We evidenced that human movement

does not affect the EVK 1000 measurements in the the LOS channel and up to 24 m

in the hard-NLOS channel. We also evaluated the new NLOS identification and miti-

gation technique and developed two additional conditions for it to cover all NLOS and

LOS probabilities. The mitigation technique measured distance with an error less than

60 cm in the hard-NLOS channel, which is the main goal of indoor positioning systems.

We summarize that in a hard-NLOS channel, DW 1000, EVK 1000, is dependable

and useful equipment for wireless communication mechanism used to create indoor

positioning systems up to 26 m in distance. For further distances, EVK 1000 showed

difficulty precisely reading the distance of moving targets due to the ranging delay while

implementing SDS-TWR. ADS-TWR minimizes the ranging delay, as we explained in

the introduction section.
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5. NLOS identification and mitiga-

tion method for UWB technology in

indoor environment using Fuzzy logic

control

A novel NLOS identification and mitigation method for UWB radio technology using

the Fuzzy logic (FL) control is presented in this chapter. Most of NLOS identification

for UWB methods depend on the received signal (RSL). But, usually, the estimated

RSL diverges from its true value after (above) -85 dBm. To overcome this problem,

Fuzzy logic is a confident algorithm to be used as we implemented it in this work.

The Fuzzy logic is an approach to computing based on ”degrees of truth” rather than

the usual ”true or false” (1 or 0) Boolean logic on which the modern computer is

based. In this work, we used the DW 1000 (EVK 1000). We extract three important

parameters to be used as the input set for the FL and we range these parameters for

different ranges. As typical, we used the IF-THEN rule to apply then the center of

gravity (CoG) method for defuzzification process for obtaining a confident output to

be used to identify the propagation channels which the UWB signal travels through.

For the mitigation process, we create a database includes information about the input

parameters, propagation channels, and error values in the measured distance.

5.1 Introduction

Nowadays, Indoor positioning sensing systems (IPS) are very popular and important

in different places such as hospitals, airports, malls, factories, and etc. IPS determine
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the position of an object in a physical space continuously and in a real-time. Five

major quality metrics of IPS are exist: (1) precision and accuracy of the system ; (2)

coverage and its resolution; (3) latency in making location updates; (4) buildings infras-

tructure impact; and (5) random errors impacts on the system such as errors caused

by signal interference and reflection [80]. To achieve the quality metrics, we should

obtain a technology with a highly accepted ranging accuracy for indoor positioning

applications. Different technologies in the market try to provide an accepted ranging

accuracy. The accepted ranging accuracy depends on the indoor positioning applica-

tion type. Some applications acquire centimeter positioning accuracy, and others may

need for one-meter level accuracy.

Indoor localization is an emerging technology that demands a theoretical and an-

alytic background. The authors of [81] realize the necessity for the essential study

of the characterization of indoor radio propagation and its effect on the accuracy of

such systems. System design and performance evaluation require a framework for the

success and the growth of this technology. Four areas of challenges in position location

in a mobile environment which are performance, cost and complexity, security, and

application requirements are identified by [82].

For location-based applications, wireless systems in an indoor environment often

operate under non-line-of-sight (NLOS) conditions that may cause ranging errors. A

promising technology for location-aware sensor networks is an Ultra-wide bandwidth

(UWB) transmission due to its robust operation in harsh environments, fine delay reso-

lution, and power efficiency. However, the existence of walls and other obstacles causes

a notable challenge in terms of localization, as they can result in positively biased dis-

tance estimates.

In this chapter, we are interested in the performance challenge because it is corre-

sponding to the positioning accuracy, and we briefly explain it in the text below.
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The most important performance metric is the accuracy of the position information.

Normally, This is reported as an error distance between the estimated location and the

actual mobile location. The report of accuracy should include the confidence interval

or percentage of successful location detection which is called the location precision.

Indoor environments could be distributed as structured or known, semi-structured

and unstructured or unknown depending on the control that the IPS possesses over

them [83], [84].

Of the aforementioned forms of RF technology, UWB is considered one of the most

precise approaches because it can provide location estimates with centimeter-level ac-

curacy [85]. It is widely used for ranging estimation and creating an indoor positioning

system. In the indoor environment, the propagation channels could be divided into a

line of sight (LOS) and non-line of sight (NLOS). Also, the NLOS could be divided

into soft NLOS and hard NLOS depending on the attenuation of the radio signal. In

the UWB signals, it is possible to transmit and detect very short pulses permitting

for high accuracy of positioning because of the accurate calculation of signal delays.

In an indoor environment, the propagation path length is not always a good indicator

of the ranging between a sender and receiver. Thus, these systems are predominately

bounded to the LOS conditions [25]. It precisely measures the distance in the LOS

channel but suffers in the NLOS channel, and the error in distance measurements is

significantly high [86] [27] which impacts the positioning accuracy.

The main contributions of this chapter follow:

• To overcome the main problem in the most UWB commercial devices when esti-

mating the value of the RSL because it diverges from its true value after (above)

-85 dBm as shown in figure 5.1.

• To identify the NLOS propagation channels when using UWB technology in in-
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door environment and divide them into hard and soft to facilitate the mitigation

method for obtaining a precise distance measurement.

• To create a database contains information corresponding to the UWB signal

traveling through LOS and NLOS (hard and soft). So, with this database, we

can enhance the estimated distance without the need for any maps related to the

indoor environment.

The rest of this chapter is organized as follows: Section 5.2 represents the prob-

lem formulation related to the IPS. In Section 5.3, the proposed framework (NLOS and

LOS identification and mitigation method) is presented. Section 5.4 presents the exper-

imental activities implemented in this work. Section 5.5 offered result and discussion.

Finally, a conclusion is presented in section 5.6.

5.2 Problem formulation

As we mentioned in the literature survey section about the main drawback of the

created systems aforementioned above, we overcome this drawback using the FL and

therefore, the accuracy of the NLOS identification method is highly increased compar-

ing with the other methods. Also, The created databases (Tables 5.2 and 5.4) help us

to implement the mitigation process without the need for extra information about the

environment such us maps and enhance the estimated distance achieving a distance

accuracy of less than 20 cm error which is much better than the accuracy achieved by

the other studies.

In this section, we address the problem of the NLOS identification and mitigation

method solved using the proposed method.

We installed two UWB sensors (transmitter and receiver) in three different scenarios

as depicted in figure 5.2. The first scenario presents the LOS channel when the signal

travels between the sensors with a direct path in free space without any obstruction.

The second scenario presents the soft NLOS channel when the signal travels between
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Figure 5.1: Estimated RX level versus true RX level [73].

the sensors with a direct path obstructed by one wall of 30 cm thickness. The last

scenario presents the hard NLOS when the signal travels between the sensors with a

direct path obstructed by two walls of 30 cm thickness of each wall.

In this chapter, first, we identify the propagation channel as LOS, hard NLOS, and

soft NLOS using the Fuzzy logic (FL) method. The input parameters used in the FL

are RSL, FSL, and SNR extracted from the UWB sensor and therefore, the last step of

the proposed method is the mitigation process (distance enhancement) implementing

the databases shown in tables 5.4 and 5.2 to compute the enhanced distance using

equation 5.3 as shown in the proposed framework section.

5.3 Proposed work

In this section, we present briefly the steps of the proposed algorithm which consists

of the NLOS identification and mitigation process of different propagation channels in

an indoor environment.
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Figure 5.2: The proposed scenario.

5.3.1 NLOS identification method

a. The main parameters

The NLOS identification method depends on three parameters; i) estimated power for

just the first path signal (the signal power in the first path FSL), ii) estimated receive

power figure (the received signal power RSL), and iii) signal to noise ratio (SNR),

and they are explained below. These parameters are extracted in this work from the

implemented UWB device (DW 1000 - EVK 1000).

a. The signal power in the first path FSL is computed using the equation 5.1 ac-
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cording to [73].

FSL(dBm) = 10× log10(
F12 + F22 + F32

N2
)− A (5.1)

Where, F1, F2, and F3 denote the First Path Amplitude (point 1), the First

Path Amplitude (point 2), and the First Path Amplitude (point 3) respectively.

All points mentioned above are measured by the DW 1000.

b. The receive signal power RSL is computed using equation 5.2 according to [73].

RSL(dBm) = 10× log10(
217 × C
N2

)− A (5.2)

Where, C, A, and N denote the Channel Impulse Response Power value (CIR),

constant value 113.77 for a PRF (Pulse repetition frequency ) of 16 MHz, or, the

constant value 121.74 for a PRF of 64 MHz, and the Preamble Accumulation

Count value respectively.

c. Signal to noise ratio (SNR (dB)) is computed by the DW 1000-EVK 1000 device.

All parameters mentioned in the items a, b, and c above implemented in this work are

extracted from the UWB device (DW 1000 - EVK 1000) used in this work.

b. Fuzzy logic control

In the NLOS identification method and after obtaining the main parameters explained

above, the main step in the NLOS identification method is the Fuzzy logic control

technique. So, first, we present below an overview of the concept of the Fuzzy logic

control.

Fuzzy logic is a logic process method based on several-valued logic rather than

binary logic (two-valued logic). Two-valued logic overwhelmingly, considers 0 to be

false and 1 to be true. However, fuzzy logic transacts with truth values between 0 and
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1, and these values will be considered as intensity (degrees) of truth. To utilize fuzzy

logic in a real application, we apply the following three steps [87]:

1. Fuzzification: Convert classical data or crisp data into fuzzy data or Membership

Functions (MFs).

2. Fuzzy Inference Process: combine membership functions with the control rules

to derive the fuzzy output.

3. Defuzzification: implement different methods to compute each corresponding out-

put and put them into a table: the lookup table. Pick up the output from the

lookup table according to the current input during an application.

In the following paragraph, we explain briefly the three steps aforementioned above.

Fuzzification: It is the first step in the fuzzy inferencing process. This includes

a domain transformation where crisp inputs are transformed into fuzzy inputs. Crisp

inputs are exact inputs computed by sensors and passed into the control system for

processing, such as pressure, temperature, etc. Each crisp input will be processed

by the Fuzzy inference unit (FIU) get its own group of membership functions or sets

to which they are transformed. within a universe of discourse that holds all relevant

values that the crisp input can possess, this group of membership functions exists. The

next presents the structure of membership functions within a universe of discourse for

a crisp input.

• Degree of membership: The degree to which a crisp value is compatible with

a membership function, the value from 0 to 1, also known as truth value or fuzzy

input.

• Membership function(MF): Defines a fuzzy set by mapping crisp values from

its domain to the sets associated degree of membership.

• Crisp inputs: Distinct or exact inputs to a certain system variable, usually

measured parameters external from the control system, e.g. 6 Volts.
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• Label: A descriptive name used to identify a membership function.

• Scope: Domain, the width of the membership function, the range of concepts,

usually numbers, over which a membership function is mapped.

• Universe of discourse: Range of all possible values, or concepts, applicable to

a system variable.

The fuzzification process maps each crisp input on the universe of discourse, and its

intersection with each membership function is transposed onto the µ axis as illustrated

in the previous figure. These µ values are the degrees of truth for each crisp input and

are associated with each label as fuzzy inputs. These fuzzy inputs are then passed on

to the next step, Rule Evaluation. If-Then rule statements are implemented to create

conditional statements that comprise fuzzy logic. A single fuzzy If-Then rule assumes

the form

IF x is A1 Then y is B1

where A1 and B1 are linguistic variables defined by fuzzy sets on the ranges (i.e. uni-

verse of discourse) x and y respectively. The If-part of the rule ’x is A1’ is called the

antecedent or premise and the Then-part of the rule ’y is B2’ is called the consequent.

Defuzzification: Defuzzification includes the operation of transposing the fuzzy

outputs to crisp outputs. There are several methods to obtain this, however, this ex-

planation is limited to the process implemented in this thesis design.

A method of averaging is implemented here which is known as the Center of Grav-

ity method (CoG), which it is a method of calculating centroids of sets. The output

membership functions to which the fuzzy outputs are transposed are obligated to being

singletons. This is so to limit the degree of calculation intensity in the microcontroller.

The fuzzy outputs are transposed to their membership functions similarly as in fuzzi-

fication. With CoG the singleton values of outputs are calculated using a weighted
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average, illustrated in the next figure. The crisp output is the result and is passed out

of the fuzzy inference system for processing elsewhere.

5.3.2 NLOS mitigation (ranging enhancement)

After identifying the appropriate propagation channel from the NLOS identification

method, the ranging enhancement technique to obtain the best possible ranging ac-

curacy is implemented using equation 5.3 below. More details regarding the distance

enhancement method are explained in the experimental activities section.

d = d̂−Biasavr (5.3)

Where, d, d̂, and Biasavr denote the enhanced distance after the NLOS identification

method, distance extracted from the DW 1000 - EVK 1000, and the average of the Bias

distance computed as explained in the experimental activities section respectively. We

should mention that the device implemented in this experiment has a positive Bias in

the LOS channel [88], and therefore the Bias is also positive in the NLOS channel.

All steps of the proposed framework are explained in algorithm 1.
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Algorithm 1 NLOS identification and mitigation method

1: procedure Extract information
2: FSL, RSL, SNR . Extracted from the EVK 1000
3: end procedure

1: procedure NLOS identification method
2: implement Fuzzy logic control
3: range of Fuzzy input set
4: Fuzzy control rule
5: range of the Fuzzy output set
6: defuzzyfication method . Center of Gravity (CoG)

P =

∑n
i=1Ai × ci∑n

i=1 Ai

7: end procedure

1: procedure NLOS mitigation . Distance enhancement
2: create a database of the average of the extracted information
3: create a database of the average Bias for every propagation channel
4: Find the enhanced distance

d = d̂−Biasavr

5: end procedure

5.4 Fuzzy Logic-based NLOS identification and mit-

igation

In this work, we experimented three different propagation channels as shown in figure

5.2 and explained below:

• We placed Two EVK 1000 as follows:

i) LOS channel: The traveling signal (UWB signal) passes between two wireless

sensors (DW 1000-EVK 1000) through a direct path without any restriction.

ii) Soft NLOS channel: The signal travels through a 30 cm thickness wall.

iii) Hard NLOS channel: The signal travels through two 30 cm thickness walls.

• Propagation distances range between 2 m and 22 m. The first Fresnel zone in

the vicinity of TX and RX is not blocked.

• Measuring the estimated distance, the RSL, FSL, and SNR for 1000 times to
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create the database depicted in table 5.4.

Next, we introduce the Fuzzy Logic (FL) based strategy to find out a distance correction

Biasavr from the input data RSL, FSL and SNR.

5.4.1 NLOS identification

The goal in our Fuzzy Logic approach is to output a score of P that helps in identifying

the type of channel as depicted in Table 5.2. We consider three input values: SNR,

RSL and dif = FSL-RSL.

The first step in our Fuzzy Logic is the input fuzzification. The range of each tuple

as follows:-

i) RSL = [-98 dBm -78 dBm],

ii) SNR = [-18 dB 1 dB], and

iii) dif = [-25 dB 1 dB].

The input fuzzy sets for dif , SNR and RSL are depicted in figures 5.3, 5.4, and

5.5, respectively. After the input fuzzification, the fuzzy rules applied to each input

parameter are explained in the Fuzzy IF-THEN rules as shown in table 5.1. The fuzzy

rule applied in this approach is the IF-THEN rule. All rules fire to some extent in a

fuzzy system or in other words, they fire partially. If the antecedent is true to some

degree of membership, then the consequent is also true to that same degree. A fuzzy

rule can have multiple antecedents, for example from table 5.1:

IF SNR has a value of high (for example between -5 dB and 1 dB), the RSL has a

value of low, and FSL has a low value, Then the output of the FL (P ) will be Rather

Low which means close to the NLOS channel. The Fuzzy Logic rules were explained

as in table 5.1.

The output set of FL is divided into different ranges of the propagation channel types

as shown in figure 5.6.

The last step of the FL is the defuzzification process. The output of the Fuzzy

71



Chapter 5 . 5.4 Fuzzy Logic-based NLOS identification and mitigation

Table 5.1: Fuzzy IF-THEN rule

Rule RSL dif SNR P

1 Low Low Low Very Low

2 Low Low Medium Low

3 Low Low High
Rather
Low

4 Low Medium Low
Rather
Medium

5 Low Medium Medium Medium

6 Low Medium High
Very
medium

7 Low High Low
Rather
Medium

8 Low High Medium Medium

9 Low High High
Very
Medium

10 Medium Low Low
Rather
Low

11 Medium Low Medium
Low
Medium

12 Medium Low High
Rather
Medium

13 Medium Medium Low
Rather
Medium

14 Medium Medium Medium Medium

15 Medium Medium High
Very
Medium

16 Medium High Low Medium

17 Medium High Medium
Very
Medium

18 Medium High High High

19 High Low Low
Rather
Medium

20 High Low Medium Medium

21 High Low High
Rather
High

22 High Medium Low Medium

23 High Medium Medium
Very
Medium

24 High Medium High High

25 High High Low
Rather
High

26 High High Medium High

27 High High High Very High
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Figure 5.3: The degree of the membership function of the dif (input) parameter.

Figure 5.4: The degree of the membership function of the SNR (input) parameter.
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Figure 5.5: The degree of the membership function of the RSL (input) parameter.

Figure 5.6: The degree of the membership of the output sets.
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Figure 5.7: The output of the Fuzzy system (P ) for LOS channel.

Figure 5.8: The output of the Fuzzy system (P ) for soft NLOS channel.

75



Chapter 5 . 5.4 Fuzzy Logic-based NLOS identification and mitigation

Figure 5.9: The output of the Fuzzy system (P ) for hard NLOS channel.

system (P ) is defuzzified implementing the CoG defuzzification method as expressed

in equation 5.4. P are unit-less value, and we created a metric of its range. This metric

is as follows:

LOS: P > 56, hard NLOS: P = [30 - 41], and soft NLOS: P = [42 - 57]. Figures

5.7, 5.8, and 5.9 depict the output of the Fuzzy system (P ) as shown below. According

to the P (equation 5.4) metric, we will be able to identify the propagation channel into

LOS or hard and soft NLOS. The horizontal coordinate in the figures aforementioned

above presents the number of the points (index of the receiver) ranged between 2 m

and 22 m tested in this experiment, and the vertical coordinate presents the output of

the Fuzzy system (P ).

P =

∑n
i=1Ai × ci∑n

i=1 Ai
(5.4)

Where, P , A, c, and n = 27 denote the Fuzzy system output, the subarea of the

input system, and the centroid of the subarea, and the total number of the subareas

respectively. After the determination of the type of the propagation channel, the NLOS

mitigation method (distance enhancement) is implemented as explained below.
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Table 5.2: Type of the propagation channel corresponding to the range of P and Bias
value

Range
of P

channel
type

Bias
value m

25-35
Very
hard
NLOS

1.3

36-39
hard
NLOS

0.8

40-42
Rather
hard
NLOS

0.5

43-44
Very
soft
NLOS

0.5

45-51
Soft
NLOS

0.3

52-55
Rather
soft
NLOS

0.15

≥ 56 LOS 0

5.4.2 NLOS mitigation

The idea of distance enhancement is to obtain the best possible ranging accuracy. To

reach this goal, we experimentally created a database of the measured distance in dif-

ferent types of propagation channels (LOS, soft NLOS, and hard NLOS). This database

also includes the average Bias, RSL, FSL, and SNR of the measured distance computed

for every channel as shown in table 5.4, and therefore, we divide the aforementioned

channels into three probabilities, rather (low), medium, and very(high) as shown in

table 5.2. Then, applying equation 5.3 is to obtain the final result of the enhanced

measured distance.

5.5 Result and discussion

In this section, we present the results of the proposed NLOS identification and miti-

gation method of the UWB signal in an indoor environment obtained experimentally
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Table 5.3: Accuracy of NLOS identification algorithm compared to the methods crated
by [86] and [56]

Channel
mode

distances (m) TPR TNR ACC Note

2 4-20 0.897 0.983 0.929
[59] algo-
rithm

2 4-20 0.761 0.891 0.826
[90] algo-
rithm

2 4-20 0.989 0.998 0.990
Proposed
algorithm

Figure 5.10: The average of ranging error in a hard NLOS channel for the proposed
method (Red curve) and the methods created by [86] (Green curve) and by [56] (yellow
curve).

using the FL. After obtaining the result of the NLOS identification method, we tested

the sensitivity and specificity metrics to assess the accuracy of the proposed NLOS

identification method. Table 5.3 shows the identification accuracy of the proposed

method and the method created by [86] and [56]. The two equations, 5.5 and 5.6,

below express the true positive rate (TPR), sensitivity, recall, and true negative rate

(TNR), specificity, respectively.
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Figure 5.11: The average of ranging error in a soft NLOS channel for the proposed
method (Red curve) and the methods created by [86] (Green curve) and by [56] (yellow
curve).

Figure 5.12: The relative error of the enhanced distance and real distance in a hard
NLOS channel for the proposed method (Red curve) and the methods created by [86]
(Green curve) and by [56] (yellow curve).
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Table 5.4: Distance measurement where, d, and Av denote the real distance and the
average of the distance Bias respectively

LOS SNLOS HNLOS
d
(m)

RSL
(dBm)

dif
(dB)

SNR
(dB)

Bias
(m)

RSL
(dBm)

dif
(dB)

SNR
(dB)

Bias
(m)

RSL
(dBm)

dif
(dB)

SNR
(dB)

Bias
(m)

2 −78.97−2.17 0.6 0.09 − − − − − − − −
4 −79.22−4.23 0.3 0.08 −79.8 −4.24 −5.3 0.19 − − − −
6 −79.81−4.85 −0.3 0.02 −85.85−3.25 −6.5 0.26 − − − −
8 −79.83−3.27 0.28 0.05 −90.66−5.41 −11 0.27 −87.3 −17.89−7.3 1.33

10 −79.39−2.46 0.2 0.05 −94.76−7.84 −15 0.11 −86.83−21.98−11 0.74

12 −79.72−1.36 −0.3 0.01 −96.60−8.23 −17 0.10 −91.38−17.29−11.8 0.58
14 −79.75−1.38 −0.2 −0.01 −93.18−4.24 −13 0.50 −92.54−9.11 −13.1 1.00
16 −79 −2.33 0.00 0.08 −91.07−6.01 −11.6 0.35 −89.42−12.56−9.6 0.94

18 −80.53−0.88 −1.00 0.02 −90.24−4.72 −11 0.24 −89.2 −17.19−9.5 0.48

20 −80.78−2.70 −1.3 0.70 −88.81−5.18 −9 0.50 −89.70−16.49−9.3 0.69
22 −81.37−1.37 −1.9 0.11 − − − − − − − −
Av
Bias

− − − 0.05 − − − 0.3 − − − 0.82

Figure 5.13: The relative error of the enhanced distance and real distance in a soft
NLOS channel for the proposed method (Red curve) and the methods created by [86]
(Green curve) and by [56] (yellow curve).
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TPR =

∑
TP∑
CP

(5.5)

Where, TP and CP denote true positive and condition positive values respectively.

TNR =

∑
TN∑
CN

(5.6)

Where, TN and CN denote true negative and condition negative values respectively.

And the accuracy equation (ACC) shown in equation 5.7 is

ACC =

∑
TP + TN∑
ToTP

(5.7)

Where, ToTP denotes the total population. Then, we implemented the relative error

(average of 1000 times) expressed in equation 5.8 and the average error of the enhanced

distance to assess the ranging accuracy.

Er =
di(n) − r

r
× 100% (5.8)

Where, r, d, and n denote the real distance, enhanced distance, and the total number

of the enhanced distance respectively.

For the NLOS mitigation process, we compute the average and relative error of the

enhanced distance in hard and soft NLOS channels, and then compared the Empirical

cumulative distributed function (ECDF) of the results with the ECDF of the results of

the NLOS mitigation methods created by [86] and [56] as shown in figures 10, 11, 12,

and 13. Figures 10 and 12 present the average of ranging error in a hard NLOS channel

and it is clear from these figures that the distance error for the proposed algorithm is

around 20 cm. Figures 11 and 13 present the rational error of the enhanced distance

and it is clear from these figures for the proposed algorithm is between 1 and 2 %.

It is clear from the result of the proposed method that the proposed algorithm
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has 99 % of an accuracy of NLOS identification approach and a relative error of the

enhanced estimated distance approximately below 1.3 % in 99 % of the cases whereas

the methods in [86] and [56] have 92 % and 82 % of an accuracy of NLOS identification

approach and relative error of the enhanced estimated distance around 8 % and 14 %

respectively in 99 % of the cases.

5.6 Conclusion

In this chapter, a novel method is implemented to overcome the main limitation of

UWB signal in a harsh indoor environment which is the ranging accuracy and to solve

the main drawback that effects the ranging accuracy in the previous work aforemen-

tioned in the literature Survey section. The identification and mitigation algorithm

using Fuzzy logic control decision and the information extracted from the UWB com-

mercial device is a confident method that provides a very high acceptable NLOS identi-

fication method about 99 % and ranging accuracy with less than 20 cm of average error

of the distance. In average, The NLOS identification method and the raging accuracy

obtained in this work is higher among other identification and mitigation techniques

in the market.
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6. Anchor selection for UWB in-

door positioning

In this chapter, we extend the study of the NLOS identification and mitigation methods

to study the IPS comprehensively. To build an accurate IP system that can be suitable

for different indoor environments and situations including emergency is a challenging

task. But, in this chapter, we present a novel IP system called anchor selection (AS)

that we can confidently advise it to be used for different indoor applications. Also, The

AS system implements the UWB technology in an indoor environment having a harsh

condition in part of it.

6.1 Introduction

On the positioning accuracy, the geometric distribution of anchor nodes in wireless

sensor networks (WSN) has notable impacts. To select the optimum node combina-

tion, conventional methods that depend on geometric dilution of precision (GDOP)

demand to spend time on calculating every possible combination of nodes. In military

urban and emergency response operations, the time is a crucial issue, and a precise

positioning system with a clear indoor covering is a highly prerequisite tool to enhance

safety. It should be seamless, low, frugal, power efficacious, low cost and supply less

meter-level accuracy.

Localization in radio frequency (RF) communication network could be divided into

range-free and range-based techniques [89]. The most common range-free method is a

radio signal strength indication (RSSI). The theoretical or experimental model of the

signal propagation in this method is translated into position or distance estimations
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[6], [7]. The range based methods are according to distances measurements between

transceivers utilizing the time of arrival (TOA), time difference of arrival (TDOA) or

tow way ranging time of flight (TWR-TOF) [8].

Of the aforementioned forms of RF technology, ultra wideband (UWB) signal is

considered one of the most precise approaches because it can provide location esti-

mates with centimeter-level accuracy [89]. It is widely used for ranging estimation and

creating an indoor positioning system. In the indoor environment, the propagation

channels could be divided into a line of sight (LOS) and nonline of sight (NLOS). Also,

the NLOS could be divided into soft NLOS and hard NLOS depending on the atten-

uation of the radio signal. In the UWB signals, it is possible to transmit and detect

very short pulses permitting for high accuracy of positioning because of the accurate

calculation of signal delays. In an indoor environment, the propagation path length is

not always a good indicator of the ranging between a sender and receiver. Thus, these

systems are predominately bounded to the LOS conditions [25]. It precisely measures

the distance in the LOS channel but suffers in the NLOS channel, and the error in

distance measurements is significantly high [27] [86] which impacts the positioning ac-

curacy.

In this chapter, we address the UWB indoor positioning in different environments

and scenarios such as an emergency scenario using the AS algorithm.

Our approach helps to avoid installing all anchors in a proper way and just dis-

tribute them randomly to reduce the installation time, and the cost of using a high

number of sensors and could be used to precisely locate a mobile station with an error

ranges from 10 cm to 50 cm in any environments. It is implemented experimentally

using UWB technology.

In this chapter, the contributions are as follow
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• Obtaining of the MSE of the IPS when linearized LS is adopted as the trilateration

solution.

• Development of an anchor selection (AS) strategy to mitigate the positioning

error induced by the least accurate distance measurements.

• For using the MSE to evaluate the positioning accuracy of the two anchor group,

addition of a virtual node to employ the linearized LS in the case where ambiguity

is resolved by additional information.

In Section 6.2, the system model is presented. MSE computation in linearized

LS is presented in section 6.3. Section 6.4 presents AS algorithm. Experimental and

evaluation activities are presented in section 6.5. Section 6.6 presents results and

discussion related to the experimental activities. Finally, section 6.7 offers a conclusion.

6.2 System model

In this chapter, some problems of UWB technology in indoor environments aforemen-

tioned in the introduction section likely solved. We create an IP system using MSE

to online evaluate the accuracy of the positioning system of a mobile station created

using different anchor groups (n̂ groups) installed in the environment then selecting

the anchor group having better positioning accuracy to relocate the mobile station.

The proposed system consists of a number of wireless sensors created using UWB

technology. It consists of n anchor nodes installed randomly and one mobile station

moving around. Figure 6.1 depicts the proposed model when n anchor nodes in the

network and only n̂ < n optimum anchor node is selected to compute the mobile

position (see section 6.4 for details). To fit with different situations and one of them

is the emergency situation, we took into consideration some constraints may exist in

such scenarios, such as the anchor nodes were randomly distributed to reduce the

installation time. Also, the installation area should be narrow and not very suitable to

distribute the anchor nodes in a proper way, and the mobile station has been restricted
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Figure 6.1: The system model that has n number of anchor nodes and one mobile
station(should be in any direction in the plane). and distance measurements have
different errors. The yellow line denotes the n̂ = 2, 3, ... < n selected anchor nodes.

to move through a harsh environment. Then, we use the linearized LS to locate the

mobile station and evaluate the positioning accuracy by implementing the proposed

MSE, and a proposed algorithm named AS is used to select the anchor group providing

the best positioning accuracy and relocate the mobile with the selected group using

the WLS method. The linearized LS and WLS are implemented to avoid the initial

guess point and the iteration that should be used in the non-linear LS method, so the

computation time of the mobile location is reduced. Also, the proposed MSE will be

computed with less complexity in the linearized LS. Estimating a positioning node in

two-dimensions acquires range information from at least three anchors. In this model

and for simplicity, we provide an analysis of two dimensional localization. Let h = [x; y]

presents the mobile station position in Cartesian coordinates x and y. Also, Ai = [xi; yi]

denotes Anchor nodes positions. i = 1, ....n̂ denotes the index of the anchor node and

n̂ denotes the number of the entire optimum anchor nodes. Then, we can compute the

Euclidean (real) distance (r) between h and A in a generic way as shown in Eq. 6.1.

r2
i = ||xi − x||2 = (xi − x)2 + (yi − y)2 (6.1)
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A localization algorithm should be applied once the distances (r) to different anchor

nodes are measured to calculate the position of the mobile node. The simplest and

most common positioning algorithm that has been used for RSS-based localization is

the hyperbolic positioning algorithm [20, 21]. As we explained above, r denotes the

real distance and let denote the measured distance extracted from the sensor as r̂ then

the error is computed as presented in Eq. 6.2.

ε =
n∑
i=1

(ri − r̂i) (6.2)

The estimated position can be calculated as shown in Eq. 6.3. iteratively by imple-

menting a straight gradient method for an example.

ĥ =

x̂
ŷ


k+1

=

x̂
ŷ


k

− α

 ∂ε
∂x

∂ε
∂y


x=x̂k,y=ŷk

(6.3)

Where α is a scalar selected to minimize ε. Also, x̂ and ŷ the estimated coordinates of

the MS.

In this method, an initial value of the position estimation is needed. To convert

this nonlinear into a linear problem, the hyperbolic positioning algorithm is used by

implementing least square method [62] as we presented in the next subsection.

6.2.1 LS linearization

To linearize the LS solution, one of the equations in the group of the equations in Eq.

6.1 is selected as a reference equation and subtract it from all other equations in the

system. For simplicity, we state A1 as a reference node having x1 = y1 = 0, so

r2
1 = x2 + y2 (6.4)
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Then the linearization problem will be as in Eq. 6.5.

r2
1 − r2

i = x2 + y2 − ((xi − x)2 + (yi − y)2) (6.5)

Where, i = 1..........n

By modifying Eq. 6.5, we obtain Eq. 6.6 as written below

x2
i + y2

i + r2
1 − r2

i = 2xxi + 2yyi (6.6)

Then converting Eq. 6.6 to matrix notation, we can obtain

A =



2x2 2y2

2x3 2y3

...
...

2xn 2yn



b =



x2
2 + y2

2 + r2
1 − r2

2

x2
3 + y2

3 + r2
1 − r2

3

...

x2
n + y2

n + r2
1 − r2

n


=



b2

b3

...

bn


Where, r1 denotes the real distance between the reference node and mobile station and

ri denotes the distance between the mobile station and all nodes except the reference.

Finally, the mobile station coordinates h will be computed as shown in Eq. 6.7.

h =

x
y

 = (ATA)−1AT b (6.7)

As mentioned in Eq. 6.7, at least three distance measurements will be needed to obtain

a solution using the LS method. However, it is not always installing more anchor nodes

in the network means that we obtain a good IP system. In some cases, we could have

a better positioning system with only two anchor nodes as shown in figure 6.2. So, the
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Figure 6.2: Two and three anchor nodes having different distance error to the mobile
station when the localization system with two anchor nodes provides better accuracy.

solution presented in this work is to involve virtual anchor nodes in the LS method

instead of the worst measured distance. With two anchor nodes, only two equations are

available to guess the x and y coordinates. However, two equations provide two possible

solutions and, if we know how to resolve the ambiguity by some extra information such

as to locate the mobile position using three anchor nodes then replacing the node that

provides worst distance estimation by the virtual distance so the LS could be used for

unifying the MSE method for group two or more anchor nodes. The next subsection

explains the virtual distance.

6.2.2 Virtual distance

As stated before, The two anchor nodes system could be in some states provide better

positioning accuracy. Such a system also will be involved in the MSE and the AS
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Figure 6.3: Virtual node and its distance to the mobile station.

algorithms using the virtual node. Thus, we can unify the proposed MSE to extend

the selection of anchor node by also selecting two anchor nodes system. Figure. 6.3

depicts the creation of the virtual distance dv and all variables mentioned in Eq. 6.8.

The Virtual node could be fixed in any place in the space. Then, it is computed using

the triangle rules as shown below.

dv =
√
d2

1 + d2
ava1 − 2d1dava1cos(θ) (6.8)

Where, θ could be β − A1 or β + A1 according to the mobile station position located

previously.

β = cos−1(
d2
a1a2 + d2

ava1 − d2
ava2

2da1a2dava1

)

and

A1 = cos−1(
d2
a1a2 + d2

1 − d2
2

2da1a2d1

)

The next section presents the MSE derivation.
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6.3 MSE computation in linearized LS

In this section, the MSE is achieved by the linearized LS solution explained in subsec-

tion 1 of section 6.2 when the true value of the mobile position is unknown.

In this work, the solution of LS method is considered for the best linear unbiased esti-

mator (BLUE) when n anchor nodes distributed in an environment to locate a mobile

station as aforementioned in the anchor selection section. The MSE could be written

in a generic way as shown in Eq. 6.9

MSE = E

{∥∥∥ĥ− h∥∥∥2
}

= E
{
ĥT ĥ

}
− 2E

{
ĥT
}
h+ hTh (6.9)

Where h and ĥ denote the real and estimated position of the MS respectively. Also,

Eq. 6.7 in section 6.2 can be split into two parts as shown below:

The first part of Eq. 6.7 ((ATA)−1) is only deterministic data (the coordinates of

the anchor nodes) and therefore, implementing matrix operation to it, we obtain a new

matrix of 2 by 2 as shown below when we denoted it as V .

V =

v11 v12

v21 v22


where,

v11 = 0.25
(y2

2 + y2
3 + ...y2

n)

(y2
2 + y2

3 + ...y2
n)(x

2
2 + x2

3 + ...x2
n)− (x2y2 + x3y3 + ...xnyn)2

v12 = −0.25 (x2y2 + x3y3 + ...xnyn)

(y2
2 + y2

3 + ...y2
n)(x

2
2 + x2

3 + ...x2
n)− (x2y2 + x3y3 + ...xnyn)2
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v22 = 0.25
(x2

2 + x2
3 + ...x2

n)

(y2
2 + y2

3 + ...y2
n)(x

2
2 + x2

3 + ...x2
n)− (x2y2 + x3y3 + ...xnyn)2

and v21 = v12

Also implementing matrix operation to the second part of Eq. 6.7 (AT b) will be

AT b =


n∑
i=2

2xibi

n∑
i=2

2yibi

 (6.10)

Where, bi = x2
i + y2

i + r2
1 − r2

i

Then, the Eq. 6.7 in section 6.2 is rearranged to be

h =


v11

n∑
i=2

2xibi+ v12

n∑
i=2

2yibi

v21

n∑
i=2

2xibi+ v22

n∑
i=2

2yibi

 (6.11)

To start solving Eq. 6.9, we solve each part of it individually then combine them. First

and for simplicity, let us denote the first, second , and third part of it as:

p1 = E
{
ĥT ĥ

}

p2 = E
{
ĥT
}
h

p3 = hTh

So, Eq 6.9. could be rewritten as

MSE = p1− 2p2 + p3 (6.12)

So, we solve every part of Eq. 6.12 separately then collect them to obtain the final
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mathematical expression of the derived MSE. First, we start with p3,

p3 =

[
v11

n∑
i=2

2xibi+ v12

n∑
i=2

2yibi

]2

+

[
v21

n∑
i=2

2xibi+ v22

n∑
i=2

2yibi

]2

Furthermore, only the first part of p3 is solved because the second part is similar and

the difference is only with v values which is constant. The first and second part of it

are denoted by p31 and p32 respectively and starting to solve p31

p31 = v2
11

[ n∑
i=2

2xibi

]2

+ 2v11v12

n∑
i=2

2xibi

n∑
i=2

2yibi

+v2
12

[ n∑
i=2

2yibi

]2

Second, the other parts (p1 and p2) in Eq. 6.12 are computed. So, b should be

changed to b̂.

b̂ =



x2
2 + y2

2 + d̂1

2
− d̂2

2

x2
3 + y2

3 + d̂1

2
− d̂3

2

...

x2
n + y2

n + d̂1

2
− d̂n

2


Where, b̂i = x2

i + y2
i + d̂1

2
− d̂i

2
,

d̂1 = r1 + e1 → d̂1

2
= r2

1 + 2e1r1 + e2
1

and, d̂i = ri + ei → d̂i
2

= r2
i + 2eiri + e2

i Then substituting d̂1

2
and d̂i

2
in b̂, to

obtain

b̂ =



x2
2 + y2

2 + r2
1 + 2e1r1 + e2

1 − r2
2 + 2e2r2 − e2

2

x2
3 + y2

3 + r2
1 + 2e1r1 + e2

1 − r2
3 + 2e3r3 − e2

3

...

x2
n + y2

n + r2
1 + 2e1r1 + e2

1 − r2
n + 2enrn + e2

n


Now, let denote
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b̄i = e2
1 − e2

i + 2r1e1 + 2riei. Then, the expectation value of b̂ is written as

E
{
b̂
}

= E

{


b2 + b̄2

b3 + b̄3

...

bn + b̄n


}

In Eq. 6.12, the difference between p1 and p3 is only the notation of the expectation

value which is expressed in p1. Thus, solving p1 will be in the same way of solving p3

with taking into account the expectation notation. Also, we denote the first part of p1

as p11 and the second part p12. For the similarity in p11 and p12, we solve only p11.

p11 = v2
11E

{[ n∑
i=2

2xi(bi + b̄i)
]2
}

+2v11v12E

{
n∑
i=2

2xi(bi + b̄i)
n∑
i=2

2yi(bi + b̄i)

}

+v2
12E

{[ n∑
i=2

2yi(bi + b̄i)
]2
}

Now, we analyze

v2
11E

{[ n∑
i=2

2xi(bi + b̄i)
]2
}

to obtain

v2
11E

{[ n∑
i=2

2xi(bi + b̄i)
]2
}

= v2
11

[ n∑
i=2

2xibi

]2

+2v2
11

n∑
i=2

xibiE
{ n∑

i=2

2xib̄i

}
+v2

11E

{[ n∑
i=2

2xib̄i

]2
}
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Also, by the same way, we obtain

v2
12E

{[ n∑
i=2

2yi(bi + b̄i)
]2
}

= v2
12

[ n∑
i=2

2yibi

]2

+2v2
12

n∑
i=2

2yibiE
{ n∑

i=2

2yib̄i

}
+V 2

12E

{[ n∑
i=2

2yib̄i

]2
}

The last part needed to analyze is

2v11v12E

{
n∑
i=2

2xi(bi + b̄i)
n∑
i=2

2yi(bi + b̄i)

}
=

2v11v12

n∑
i=2

2xibi

n∑
i=2

2yibi + 2v11v12E
{ n∑

i=2

2xibi

n∑
i=2

2yib̄i

}
+2v11v12E

{ n∑
i=2

2yibi

n∑
i=2

2xib̄i

}
+2v11v12E

{ n∑
i=2

2xib̄i

n∑
i=2

2yib̄i

}

Then using the same way, we can find p32 and p12 and compute

p32 + p31 = p3

p12 + p11 = p1

Finally, compute the last part of Eq. 6.12, p2 and split it into two parts which

will be denoted p21 and p22 respectively, also, we can compute one of them. We are
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computing p21.

p21 = v2
11

[ n∑
i=2

2xibi

]2

+ v2
11E
{ n∑

i=2

2xibi

n∑
i=2

2xib̄i

}
+2v11v12

n∑
i=2

2xibi

n∑
i=2

2yibi

+v11v12E
{ n∑

i=2

2yibi

n∑
i=2

2xib̄i

}
+v11v12E

{ n∑
i=2

2xib̄i

n∑
i=2

2yib̄i

}
+v2

12

[ n∑
i=2

2yibi

]2

+ v2
12E
{ n∑

i=2

2yibi

n∑
i=2

2yib̄i

}

After solving the p22, we will have

p22 + p21 = p2

Then, The performance in terms of MSE achieved (Eq. 6.13) is

MSE =


v2

11 + v2
21

v2
12 + v2

22

2v11v12 + 2v21v22


T



E
{[ n∑

i=2

2xib̄i
]2}

E
{[ n∑

i=2

2yib̄i
]2}

E
{ n∑

i=2

2xib̄i

n∑
i=2

2yib̄i

}


(6.13)

To implement the proposed MSE method, we should clarify that the only input

variable of the MSE function is the real distance (r). But, in a real experiment when

we don’t have it, we implement a proper NLOS identification and mitigation method

created by [86]. In addition to the aforementioned method of NLOS identification, we

created a database as shown in table 6.1 to estimate the average distance error in hard

and soft NLOS and LOS propagation channels to enhance the measured distance as
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Figure 6.4: Values of the proposed MSE and matlab functions.

shown in Eq. 6.14 below.

ŕ = r̂ − ε(e) ' r (6.14)

Where, ŕ, r̂, ε(e), and r denote the approximated real distance, measured distance, the

average distance error, and the real distance respectively. So, the approximated real

distance (ŕ) is used in the MSE method instead of the real distance (r) and also used

in all positioning methods used in this work.

6.4 Anchor selection (AS)

The proposed IP system which is an online selection of a group of two anchor nodes or

more up to n̂ anchor nodes using MSE evaluation method is explained below.

For a generic scenario of IP system dealing with UWB signal, we may install n

nodes in the WSN and we could select n̂ < n using the RSL. In this work, we consider

a real environment with 6 UWB sensors covering an area of 9 m2: one sensor as a tag

and the remaining five sensors installed as anchor nodes. According to our experience,

positioning accuracy is not significantly improved when a large number of anchor nodes
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Figure 6.5: Rational error between the derived and matlab MSE functions.

is available and usually 4 to 6 anchor nodes provides a good compromise. Then, the 5

nodes are clustered into different groups according to the combination algorithm. So

the total number of groups =
(
n̂
2

)
+
(
n̂
3

)
+ ....+

(
n̂
n̂

)
.

Where, n and n̂ are the total number of the anchor nodes installed in the entire network

and the total number of selected anchors (in this work n̂ = 5) installed to build the

positioning system.

The RSL is extracted from the UWB device (DW 1000 - EVK 1000) used in this

work. It indicates the level of the received signal power provided by an anchor node

[30]. It is chosen in this work as criteria to select the optimum anchor nodes (n̂) se-

lected for the combination process. The total number of the anchor nodes used in this

work (5 anchor nodes) is not large, and it is not so important, and therefore it does

not depend on how large the network (n anchor nodes).

Also, every group should have a reference node. We locate the mobile station using

the conventional LS method then evaluate the positioning accuracy of each group of

anchor nods using the derived MSE and select the group having less MSE and remov-
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ing all other anchor groups from the positioning system to relocate the mobile station

using WLS algorithm. The algorithm 1 depicts the steps of the proposed algorithm.

The next section provides the experimental results of the LS, WLS, and MLSI

(before anchor selection), and AS localization algorithms.

Algorithm 2 Anchor Selection (AS)

1: procedure Anchor group . Create different anchor node groups
2: n̂← n . The total anchor nodes
3: for i = 2 to n̂ do
4: Anchor group=

(
n̂
i

)
5: m =

∑n̂
i

(
n̂
i

)
. the total anchor groups

6: end for
7: end procedure

1: procedure LS . Locate the mobile station

ĥ = (ATA)−1AT b̂

2: end procedure

1: procedure MSE . Compute MSE for each group
2: for i = 1 to m do

MSE = E

{∥∥∥ ˆh(i)− h(i)
∥∥∥2
}

3: end for
4: end procedure

1: procedure AS . Select the group having minimum MSE
2: for i = 1 to m do

MSE = min

{
MSE(i)

}
3: end for
4: end procedure

1: procedure WLS
. Compute the variance of the estimated distance
. Relocate the Mobile station

ĥ = (ATW−1A)−1ATW−1b̂

2: end procedure
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6.5 Experimental and evaluation activities

In this section, we provide experimental results obtained with a commercial UWB

device (DW 1000 - EVK 1000). The DW 1000 is a fully integrated low-power, multi-

channel single-chip CMOS radio transceiver that meets the IEEE 802.15.4-2011 UWB

standard [73].

Before starting with the experimental activities, we start with the evaluation process

of the derived MSE and an overview of the WLS and MLSI methods as explained in

the next items.

6.5.1 Evaluation of the derived MSE and an overview of WLS,

MLSI, and GDOP

The items below explain the process of the evaluation method used for evaluating the

derived MSE and provides an overview of the WLS and MSLI methods used to be

compared with the proposed IP system (AS).

• Evaluation of the derived MSE

After computing the MSE, it is compared with MSE Matlab function using a

rational error as shown in Eq. 6.15 to ensure the accuracy of the mathematical

derivation. Figures 6.4 and 6.5 show the value of the derived MSE compared to

MSE Matlab function of a mobile positioning for 14 different mobile positions

and the rational error between them respectively.

E =
MSEdir −MSE

MSE
100% (6.15)

Where, E, MSEdir, and MSE denote the rational error, proposed MSE, and

MSE of matlab function respectively.

• Weighted least square (WLS).
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To validate the anchor selection system model, it is compared to the conventional

LS and also, to the WLS and MLSI algorithms created by [62] and [58] respec-

tively. A short overview of the WLS and MLSI algorithms is presented below.

The liner equation in Eq. 6.7 could be solved implementing a weighted least-

square estimator as shown in Eq.16 below. The weights implemented in the

WLS algorithm is adjusted taking into account the inverse of the variance of the

corresponding distance measurements [62]. The DW 1000 (EVK 1000) device

provides 8 distance measurements per second and therefore, we calculate and

update the variance every one second and calculate the matrix of it (W ) which is

the covariance matrix of vector b̂ as aforementioned below, then using the inverse

of it in the final equation of the WLS as shown in Eq. 6.16.

W = 

var(ŕ1
2) + var(ŕ2

2) var(ŕ1
2)... var(ŕ1

2)

var(ŕ1
2) var(ŕ1

2) + var(ŕ3
2)... var(ŕ1

2)

...

var(ŕ1
2) var(ŕ1

2)... var(ŕ1
2) + var(ŕn

2)


Where, var(r̂1

2) denotes the variance of a squared estimated distance between

the reference node and mobile station, and var(r̂i
2) denotes variance of a squared

estimated distance between all other nodes and the mobile station.

b̂ =



x2
2 + y2

2 + ŕ1
2 − ŕ2

2

x2
3 + y2

3 + ŕ1
2 − ŕ3

2

...

x2
n + y2

n + ŕ1
2 − ŕn2


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ĥ =

x̂
ŷ

 = (ATW−1A)−1ATW−1b̂ (6.16)

Presuming that the distance measurements b̂i to different nodes are independent

and xi and yi are constant.

• Modified least square iteration (MLSI) method.

The MLSI method has the same mathematical expression of the conventional

LS (Eq. 6.7) with modifying the distance vector (b̂) by involving the average

distance error to it as shown below.

First, let ε(e1) and ε(ei) denote the average distance error between the MS and

the reference node and the average distance error between the MS and the rest

of the entire anchor nodes respectively where i = 2, ....n = Then:

b̂i = x2
i + y2

i + ŕ1
2 − ŕi2 + ε(e1)− ε(ei)

Or

b̂ =



x2
2 + y2

2 + ŕ1
2 − ŕ2

2 + ε(e1)− ε(e2)

x2
3 + y2

3 + ŕ1
2 − ŕ3

2 + ε(e1)− ε(e3)

...

x2
n + y2

n + ŕ1
2 − ŕn2 + ε(e1)− ε(en)


.

• Geometric dilution of precision(GDOP)

Geometric dilution of precision (GDOP) has been widely implemented as an ac-

curacy metric for tracking and navigation systems. while high accuracy in a

localization system needs both precise measurement of the range and a good geo-

metric relationship between the mobile device and the measuring points (anchor

nodes), the analysis of GDOP is an essential feature in determining the perfor-

mance of a positioning system. due to our interest in IPS, we should address
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Figure 6.6: The real environment.

some drawbacks that impact the indoor positioning accuracy. First, we should

address that IPS usually have irregular propagation models and barriers that

complicate deployment, making it defy to specify a metric to readily compare

anchor configuration. GDOP is a unit-less quantity which is a function of the

geometry between the target and the beacons, often utilized to estimate the ex-

pected accuracy of GPS due to the location of satellites [90]. GDOP has three

main drawbacks when utilized as a metric for assessing indoor accuracy.

First, Some circumstances cause the standard GDOP metric to expand towards

infinity which makes it difficult to normalize over multiple competing configura-

tions [95].

Second, For a terrestrial system, if the location and number of base stations in

the desired coverage area are not neatly planned, the GDOP effect can become

the dominant factor in limiting the performance of a system [91].

Third, theoretically, the more the nodes involved in the calculation, the lower

the GDOP value of the combination will be, which represents a higher position-

ing accuracy. Also, In the traditional GDOP-based nodes selection algorithm, n

nodes will be selected from m anchor nodes, and therefore in order to select a

subset which has the smallest GDOP, matrix multiplication and inversion should
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be executed for a combination of m to n times [60].

In this chapter, we present an example of GDOP which is presented in [61],

where it is assumed that there is no mobile target but all anchor nodes will

act as mobile units. In that work, 36 nodes are considered and a positioning

accuracy around a half meter is obtained. Also, we compared our algorithm to

[61] algorithm as explained in the result and discussion section. below, we present

the mathematical expression of the algorithm created by [61].

GDOPtotal =
2√
NR

σ∆r,total

σr

Where, NR, ∆r, and σr,total denote total number of the anchor nods, ranging

error, and variance of the range respectively.

σr,total =

√
1 + (

2

NR

+
6

N2
R)× (σ2

r + σ2
B)

σB =
λ

Rmax

√
NR × (NR + 3)

N2
R + 2×NR + 6

Where, σB is the quasi-STD associated with the range bias error.

Table 6.1 presents the values of the parameters aforementioned above used by

[61].

6.5.2 Experimental activities

In this part of the work, different scenarios are created to examine the proposed method

used for a moving target in different directions and distances to the installed anchor

nodes. We randomly installed the anchor nodes as shown in figure 6.7 inside a narrow

squared area of 9 m side within the total moving area of 16 m width and 25 m length.

Figure 6.8 presents scenario 1 for a trajectory of the mobile station created using the

AS, MLSI, and WLS algorithms. Figure 6.10 presents scenario 2 for a different tra-

jectory created by the AS, WLS, and LS. The AS algorithm with a suitable anchor
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Table 6.1: Example of Computed Values Based on Theoretical Expressions [61]

Parameter Value Comments

σr 2 m
Random STD, typical
for indoor system

λ 0.1
Bias parameter, typi-
cal for indoor system

Rmax 30 m
Assumed maximum
radio range

NR 12
Expected nodes in
range

σB 0.72 m
Effective bias error
STD

group for every point in the trajectory. The MLSI with the four and five anchor nodes

group. The WLS and LS algorithms with the group of five anchor nodes for the entire

trajectory. The coordinates of the anchor nodes in the two different scenarios as follows:

Scenario 1 :A1 = (0; 0), A2 = (1;7.8), A3 = (2;7.8), A4 = (2.6; 1.4), and A5 =

(3;1.6) as shown in figure 6.8.

Scenario 2 :A1 = (0; 0), A2 = (2;4.8), A3 = (4;4.8), A4= (7.6; 4.4), and A5 = (3;1.6).

as shown in figure 6.10.

Where Ai denotes the anchor node in the network.

The estimated distances between anchor nodes and the mobile station are extracted

from the EVK 1000 device. To build the proposed IP system by implementing the

AS method, we implemented a proper NLOS identification method [86] and created

table 6.1 to estimate the average distance bias. Then, Eq. 6.14 is used to obtain the

approximated real distance for the proposed MSE to evaluate the positioning accuracy

of different groups of anchor nodes (including the virtual nodes group), and select the

group having the less MSE, then relocated the mobile station with the selected group

using the WLS method. In this work, the distance measurement is extracted from

the EVK 1000. It is a transceiver sensor uses two-way time of flight to compute the

distance between two transceivers, and it is a Bias estimator in a LOS environment
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Figure 6.7: Simulation of the moving target in real environment (one of different sce-
narios) that will be located using different distance measurement affect by different
walls.

according to [88, 92, 93] so we should overcome this issue to cope with the proposed

linear MSE method. So, we applied an algorithm presented by [94] to modify the EVK

1000 having the BLUE specifications in a LOS environment. This algorithm is to place

two EVKs 1000 with 8 m apart in between inside a LOS environment and take at least

400 times of distance measurements then compute the average error between the true

and estimated values then apply Eq. 6.17 below to obtain a new estimated distance

by reprogramming EVK 1000, and Table I shows that modified EVK 1000 is a BLUE

estimator.

eav = dreal − dest

dnew = dest + eav (6.17)

Where, the dreal, dnew, dest, eav, are the real distance, new estimated distance, average

of old estimated distance, and the average of the computed error experimentally for 8

m distance. The transceivers were randomly distributed in the environment presented

in fig. 6.6 as shown in fig. 6.7.

In [86], we estimated the error of a measured distance of a walking human in an

indoor environment having different channel types (LOS, soft NLO, and hard NLOS)
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using UWB technology (DW1000, EVK 1000). The estimated error of the distance

from 2 m to 26 m ranges between 0.3 m to 1.8 m depends on the traveled distance and

number of walls that may affect the measured distance.

In the work presented in this chapter, we restricted the mobile station to move

through one and two concert walls 30 cm width each (soft and hard NLOS channels)

and through LOS channel using channel 2 mode 2 of DW 1000 (EVK 1000) [74, 86].

Also, in [86], the ch 2 mode 2 of EVK 1000 was experimentally validated for obtaining

ranging measurements.

To place a wireless sensor in a network, an area should be taken into consideration

called a Fresnel zone (FZ) around the visual line of sight that radio waves spread out

into after they leave the antenna [27]. The FZ must be clear to avoid the weak in the

signal strength level.

Then, we measured the distances and computed the related average error to elimi-

nate the bias in the distance and compute the approximated real distance used in the

MSE evaluation method.

The ranging measurements are used in different environments (LOS, soft NLOS,

and hard NLOS) for distance ranges from 2 m to 20 m. Table I presents the information

used for the AS algorithm extracted from the modified EVK 1000.

6.6 Results and discussion

In the experimental activity, Different Mobile station trajectories have been created to

measure the estimated distance having different distance errors then the average and

variance of it used for the AS and WLS algorithms are computed.

As mentioned before, we assume a proper NLOS identification method is used to
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Table 6.2: Distance measurement where, r,r̂, and V ar denote the real, estimated, and
variance of distance respectively for LOS, soft NLOS, and hard NLOS channels and
Av denotes the average of the distance Bias

LOS HNLOS SNLOS

r(m) r̂(m)
Bias
(m)

Var
(m2)

r̂(m)
Bias
(m)

Var
(m2)

r̂(m)
Bias
(m)

Var
(m2)

2 2.09 0.09 0.00 − − − − − −
4 4.09 0.09 0.00 − − − 4.20 0.16 0.06
6 6.02 0.02 0.01 − − − 6.3 0.26 0.10
8 8.05 0.05 0.08 9.33 1.33 0.01 8.28 0.27 0.07

10 10.06 0.06 0.00 10.74 0.74 0.08 10.12 0.12 0.11

12 12.000 0.00 0.01 12.59 0.59 0.07 12.10 0.10 0.04
14 14.00 −0.06 0.00 15.00 1.00 0.09 14.505 0.51 0.07
16 16.05 0.05 0.00 16.95 0.95 0.05 16.36 0.36 0.06

18 18.02 0.02 0.00 18.47 0.47 0.12 18.24 0.244 0.10

20 20.07 0.07 0.00 20.70 0.70 0.14 20.50 0.50 0.12
Av
Bias

− 0.052 − − 0.822 − − 0.279 −

extract the average distance bias as shown in Table I used to enhance the approxi-

mated distance computed in Eq. 6.14 to compute the proposed MSE to evaluate the

LS method. For special cases in the NLOS propagation channels, It is observed; when

placing a transceiver opposite to a wall with distance less than 1.3 m, the distance er-

ror increased abnormally to approximately 1 m. This abnormal increment in distance

error is due to the high attenuation of the UWB signal when placing or moving the

sensors close to a wall. This problem should be taken into consideration when using

an NLOS identification and mitigation method.

In this chapter, the results plot trajectories of the mobile node but, at every point

in the trajectory, the position is computed without taking into account node dynamics.

Only, the last known position is used to obtain the estimated distances to the anchors

in order to feed the anchor selection algorithm. The AS is compared to the LS, WLS,

MLSI, and GDOP methods as shown in figure 6.9 which presents the empirical cumu-

lative distribution function (ECDF) of the trajectory presented in scenario 1 (figure

6.8), and figure 6.11 presents the same information provided in figure 6.9 but for the
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Figure 6.8: Scenario 1: simulation of the moving target in real environment (one of
different scenarios) affected by different walls and will be located using AS, MLSI, and
WLS localization algorithm.

scenario 2 (figure 6.10). As we mentioned in the title of figure 6.7, The AS is imple-

mented for different groups of anchor nodes according to the proposed MSE method

and therefore, the points may be located by 2,3,...n̂ anchor nods. But, the WLS and

LS methods are implanted with n̂ anchor nodes.Also, the MLSI and GDOP methods

are implemented with n̂ anchor nodes (in this work n̂ = 5 nodes).

Finally, some accuracy results are provided to have a reference about performance

obtained with GDOP. For instance, the best positioning accuracy obtained in [60] is

around 1 m when 10 anchor nodes are involved in the system. Another example of

GDOP is presented in [61], where it is assumed that there is no mobile target but all

anchor nodes will act as mobile units. In that work, 36 nodes are considered and a

positioning accuracy around a half meter is obtained. For the sake of comparison, we

also include results corresponding to the GDOP strategy proposed in [61] in Fig. 6.9.

In particular, this figure presents the ECDF of MSE of MLSI, WLS, AS, and GDOP

and shows how the technique derived in this work outperforms the other methods.

The result of figures 6.9 and 6.11 experimentally show that the proposed method
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Figure 6.9: Empirical distributed function (ECDF) of AS, MLSI, WLS, and GDOP
methods in scenario 1.

Figure 6.10: Scenario 2: simulation of the moving target in real environment (one of
different scenarios) affected by different walls and will be located using AS, WLS, and
LS localization algorithm.

significantly improves the localization accuracy, reducing the estimation error between

60 % and 95 % on average, compared with the existing approaches. The results pre-

sented in this section clearly show how the AS method is confident in different indoor

scenarios including emergency.
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Figure 6.11: Empirical distributed function (ECDF) of AS, WLS, and LS methods in
scenario 2.

6.7 Conclusion

The cost in term of installation time and the number of wireless sensors in an indoor

environment and precisely locate a moving target are the goals in this chapter. To

obtain this goal, we present a novel algorithm of three steps: i- create online an MSE

using the linearized LS to dynamically evaluate the positioning accuracy of the IP

system created by different groups of anchor nodes. ii- Select the group having the

best accuracy (AS) and relocate the mobile station using the WLS. iii- Involve the

virtual node to enable the LS working with only two anchor nodes when needed for

the MSE. The work done with the experiment phase presents evidence using the AS

can reach an accurate IP system with less than 0.5 m2 of MSE of a positioning and

less installation time and number of wireless sensors in a harsh environment while the

WLS, MLSI, GDOP, and LS algorithms reach more than 3.5 m2, 1.2 m2, 1.4 m2, and 9

m2 of MSE respectively. The proposed method provides a highly accepted localization

accuracy for different scenarios including emergency.
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7. Conclusion and future work

This PhD. dissertation has explored the design of indoor positioning systems from an

experimental perspective by studying IPS that can be implemented with the current

commercial technologies. Moreover, we have focused on the design of IPS that can be

easily scaled to mass market applications by employing network based positioning sys-

tems and widely used wireless networks like the wireless sensor networks, which play a

key role in the context of the internet of the things and its applications to smart cities

and smart buildings.

First, we have considered evaluation and validation for a commercial device of

UWB radio technology to be used for creating an appropriate IP system that could be

suitable to be implemented in different indoor environment and situations especially

emergencies.

Second, we have considered designs of NLOS and LOS identification and mitigation

methods for UWB radio signal. When using UWB radio technology for building an

IP system, the NLOS and LOS identification and mitigation methods play the main

role due to the main impact of the UWB signal when traveling through obstructions

such as walls and human. The main impact of the UWB radio signal is the potential

error in the estimated distance. Two different novel methods to identify the propaga-

tion channels and to mitigate the NLOS channels have been implemented in this thesis.

Finally, we have created a novel IP system called AS to be optimum for different

indoor environments and situations especially emergencies.
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7.1 Conclusions

After motivating this PhD thesis and presenting an overview of the state of the art,

in Chapter 3 we have presented some of the key topics that have been implemented

throughout this dissertation. Specifically, we have revisited the concepts of UWB radio

technology with special attention to the analytic solution provided by the commercial

UWB device called DW 1000 and especially the sub-optimal solution provided by this

device which has been used in every indoor positioning system designed in this work.

Chapter 4 has been devoted to the study of NLOS identification and mitigation

method using UWB radio technology in an indoor environment. Before starting with

the NLOS identification method, we have studied and evaluated the UWB device (DW

1000 - EVK 1000). More precisely, we have focused our attention on the different rang-

ing protocols implemented for UWB technology, and therefore we have deeply studied

the ranging protocol used in this device. We have evaluated this device with two chan-

nel modes (ch2 and ch3).

Also, we have studied the information extracted from this device (FSL and RSL)

to be used as main parameters to identify the propagation channels that the UWB

signal travels through. The NLOS identification method created in this chapter is an

extension of the method created by [74] to overcome the gap of this method. For the

mitigation of NLOS channels and enhance the estimated distance, we have collected

information about the building that the experiment implemented in it such as the map

of this building and types of the wall.

The NLOS identification and mitigation method has been experimentally validated

in two different types of propagation channels (LOS and NLOS) and for a walking hu-

man moving through these channels wheres the NLOS channel has different types and

number of the walls. In this work the accuracy of the NLOS identification method has
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been increased to about 93 % for ch2 and 92 % for ch3. Also, the estimated distance

has been improved to reduce the error to less than 60 cm in the hard-NLOS channel.

In chapter 5 , we have extended and improved the chapter’s 4 work based on

the UWB radio technology. As we mentioned in chapter 5/section 5.2 about the main

impact of the UWB device which the estimated RSL diverges from its true value when

reaching above than -85 dBm. In this chapter, we have overcome the problem afore-

mentioned above using Fuzzy logic control technique. For the NLOS identification

method, we have extracted 3 parameters (RSL, FSL, and SNR) to be used as an input

set of the Fuzzification process.

Also, we have created IF- THEN Fuzzy rule table and give specific ranges for output

sets divided into different types of prorogation channels. In the defuzzification step, we

have used a center of gravity method to extract the Fuzzy output used to identify the

propagation channels. For mitigation method to improve the estimated distance, we

have created a database that includes information about a distance bias corresponding

to the extracted parameters from the UWB device (RSL, FSL, SNR).

This work has been implemented and validated experimentally in the lobby of the

engineering school of UAB university having different prorogation channels(LOS, hard

NLOS, and soft NLOS). In this work, the main drawback of the UWB device has been

eliminated, and the accuracy of the NLOS identification method reaches to about 99

%. Also, the error of the estimated distance has been reduced to about 20 cm in a

harsh indoor environment.

Chapter 6 has been devoted to the study of indoor positioning systems using

UWB radio technology and to design a novel IP system based on a commercial UWB

radio technology convenient to different indoor environments and situations. In this

chapter, we have created an IP system called anchor selection (AS) based on an evalu-
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ation method used for evaluating the positioning accuracy of different groups of anchor

nods installed in a narrow area of 9 m2. These groups consist of 2 anchor nodes to 5

anchor nodes used to locate a mobile station. The evaluation method used in the AS

system is called a mean square error (MSE).

The conventional MSE needs for the true value of the mobile station to be com-

pared with its estimated value. But, in a real experiment, we unable to obtain the

true value and only the estimated value is available. So and for online evaluation of

the positioning accuracy, we have derived mathematically a novel MSE which doesn’t

need for the true value. Then, we have selected the anchor nodes group having the

lower MSE and relocate the mobile station using a WLS algorithm.

Also, The conventional MSE needs for at least 3 anchor nodes to compute the po-

sitioning accuracy, but in this work, we have extended the MSE to have also 2 anchor

nodes by adding a virtual node instead of the anchor node that has more distance error

than other anchor nods in the group of 3 anchor nodes.

The IP system has been experimentally validated in the lobby of the engineering

school of the UAB university which has a soft and harsh environment. The positioning

accuracy obtained in this work has a position error with less than 0.5 m2 of MSE for a

harsh indoor environment. We have proofed experimentally that the AS system could

be confident for different indoor environments having different situations including

emergency.
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7.2 Future work

The work presented in this PhD dissertation can be extended as follows:

• To extend the indoor positioning problem to the cooperative problem where dif-

ferent users cooperate between them to increase the localization accuracy.

• To extend the indoor positioning problem to a hybrid technique using integrated

UWB and the Wi-Fi measurements.

As for the specific problems addressed in each chapter, chapters 4 and 5, some of

possibilities are:

• To improve the ranging accuracy of the UWB device (DW 1000) implementing

the (ADS-TWR) ranging protocol instead of SDS ranging protocol.

• To extend the NLOS identification and mitigation methods combining the Fuzzy

logic technique and map information about the building used for an experiment.

In Chapter 6, we have considered the following extension:

• To extend the indoor positioning problem to different assessment methods where

we can online evaluate the positioning accuracy created by UWB technology

using MSE and GDOP.
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