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"The real hero is always a hero by mistake;
he dreams of being an honest coward like everybody else."

— Umberto Eco, Travels in Hyperreality

"The true formula of atheism is not God is dead
even by basing the origin of the function of the father upon his murder,

Freud protects the father – the true formula of atheism is God is unconscious"
—Jacques Lacan, The Four Fundamental Concepts of Psychoanalysis

Mary: It’s circular. You exist to continue your existence. What’s the point?
John: What’s the point of your existence?
Mary: To feel. ’Cause you’ve never done it, you can never know it. But it’s as vital as
breath. And without it – without love, without anger, without sorrow – breath is just
a clock ticking.

— Equilibrium (2002)

Dedicat als meus pares, Javier i Elisabet
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Abstract

Humans move their eyes in order to learn visual representations of the world. These
eye movements depend on distinct factors, either by the scene that we perceive
or by our own decisions. To select what is relevant to attend is part of our survival
mechanisms and the way we build reality, as we constantly react both consciously
and unconsciously to all the stimuli that is projected into our eyes. In this thesis we
try to explain (1) how we move our eyes, (2) how to build machines that understand
visual information and deploy eye movements, and (3) how to make these machines
understand tasks in order to decide for eye movements.

(1) We provided the analysis of eye movement behavior elicited by low-level
feature distinctiveness with a dataset of 230 synthetically-generated image patterns.
A total of 15 types of stimuli has been generated (e.g. orientation, brightness, color,
size, etc.), with 7 feature contrasts for each feature category. Eye-tracking data was
collected from 34 participants during the viewing of the dataset, using Free-Viewing
and Visual Search task instructions. Results showed that saliency is predominantly
and distinctively influenced by: 1. feature type, 2. feature contrast, 3. temporality
of fixations, 4. task difficulty and 5. center bias. From such dataset (SID4VAM),
we have computed a benchmark of saliency models by testing performance us-
ing psychophysical patterns. Model performance has been evaluated considering
model inspiration and consistency with human psychophysics. Our study reveals
that state-of-the-art Deep Learning saliency models do not perform well with syn-
thetic pattern images, instead, models with Spectral/Fourier inspiration outperform
others in saliency metrics and are more consistent with human psychophysical
experimentation.

(2) Computations in the primary visual cortex (area V1 or striate cortex) have
long been hypothesized to be responsible, among several visual processing mech-
anisms, of bottom-up visual attention (also named saliency). In order to validate
this hypothesis, images from eye tracking datasets have been processed with a
biologically plausible model of V1 (named Neurodynamic Saliency Wavelet Model
or NSWAM). Following Li’s neurodynamic model, we define V1’s lateral connections
with a network of firing rate neurons, sensitive to visual features such as brightness,
color, orientation and scale. Early subcortical processes (i.e. retinal and thalamic)
are functionally simulated. The resulting saliency maps are generated from the
model output, representing the neuronal activity of V1 projections towards brain
areas involved in eye movement control. We want to pinpoint that our unified com-
putational architecture is able to reproduce several visual processes (i.e. brightness,
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chromatic induction and visual discomfort) without applying any type of training or
optimization and keeping the same parametrization. The model has been extended
(NSWAM-CM) with an implementation of the cortical magnification function to
define the retinotopical projections towards V1, processing neuronal activity for
each distinct view during scene observation. Novel computational definitions of
top-down inhibition (in terms of inhibition of return and selection mechanisms),
are also proposed to predict attention in Free-Viewing and Visual Search condi-
tions. Results show that our model outpeforms other biologically-inpired models
of saliency prediction as well as to predict visual saccade sequences, specifically
for nature and synthetic images. We also show how temporal and spatial char-
acteristics of inhibition of return can improve prediction of saccades, as well as
how distinct search strategies (in terms of feature-selective or category-specific
inhibition) predict attention at distinct image contexts.

(3) Although previous scanpath models have been able to efficiently predict
saccades during Free-Viewing, it is well known that stimulus and task instructions
can strongly affect eye movement patterns. In particular, task priming has been
shown to be crucial to the deployment of eye movements, involving interactions
between brain areas related to goal-directed behavior, working and long-term mem-
ory in combination with stimulus-driven eye movement neuronal correlates. In our
latest study we proposed an extension of the Selective Tuning Attentive Reference
Fixation Controller Model based on task demands (STAR-FCT), describing novel
computational definitions of Long-Term Memory, Visual Task Executive and Task
Working Memory. With these modules we are able to use textual instructions in
order to guide the model to attend to specific categories of objects and/or places in
the scene. We have designed our memory model by processing a visual hierarchy of
low- and high-level features. The relationship between the executive task instruc-
tions and the memory representations has been specified using a tree of semantic
similarities between the learned features and the object category labels. Results
reveal that by using this model, the resulting object localization maps and predicted
saccades have a higher probability to fall inside the salient regions depending on
the distinct task instructions compared to saliency.

Key words: saliency, eye movements, attention, visual cortex, horizontal connec-
tions, visual search, free-viewing, psychophysics, firing rate, neural networks
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Resum

Els éssers humans mouen els ulls per tal d’aprendre representacions del món.
Aquests moviments coulars depenen de diferents factors, tant per la escena que
percebem com per decisions pròpies. Seleccionar allò que és rellevant atendre
forma part dels nostres mecanismes de supervivència i la manera de construir la
realitat, ja que constantment reaccionem tant conscient com inconscientment a
tots els estímuls que es projecten als nostres ulls. En aquesta tesi intentaré explicar
(1) com movem els ulls, (2) com fer màquines que entenguin la informació visual
i executar moviments oculars, i (3) com fer que aquestes màquines entenguin
tasques per tal de decidir per aquets moviments oculars.

(1) Hem analitzat del comportament dels moviments oculars provocat per les
diferències de característiques de baix nivell amb una base de dades d’imatges com-
posada per 230 patrons generats sintèticament. S’han generat un total de 15 tipus
d’estímuls (p.e. orientació, brillantor, color, tamany, etc.), amb 7 contrastos per cada
categoría de característica. Les dades de 34 participants s’han pogut col·leccionar
a partir d’un seguidor ocular durant la visualització de la base de dades, amb les
tasques d’Observació Lliure i Cerca Visual. Els resultats han mostrat que la saliency
és predominantment i distinctivament influenciada per: 1. el tipus de característica,
2. el contrast de característiques, 3. la temporalitat de les fixacions, 4. la dificultat
de la tasca i 5. l’esbiaixament central. A partir d’aquesta base de dades (SID4VAM)
hem computat una comparació dels models de saliency testejant el seu rendiment
utilitzant patrons psicofísics. El rendiment dels models s’ha evaluat detallant la
influència de la inspiració i la consistència amb els resultats de la psicofísica. El
nostre estudi revela que els models en l’estat de l’art en saliency basats Deep Le-
arning no tenen bon rendiment amb patrons sintètics, contràriament, els models
d’inspiració Espectral/Fourier en superen el rendiment i són més consistents amb
la experimentació psicofísica.

(2) Les computacions de l’escorça visual primària (area V1 o escorça estriada)
s’han hipotetitzat com a responsables, entre altres mecanismes de processament
visual, de l’atenció visual bottom-up (o també anomenada saliency). Per tal de
validar aquesta hipòtesi, s’han processat diferents bades de dades d’imatges amb
seguidor ocular a partir d’un model biològicament plausible de V1 (anomenat Neu-
rodyamic Saliency Wavelet Model o NSWAM). Seguint el model neurodinàmic de
Li, hem definit les connexions laterals de V1 amb una xarxa de neurones firing
rate, sensitives a característiques visuals com la brillantor, el color, la orientació
i la escala. Els processos subcorticals inferiors (i.e. retinals i talàmics) s’han mo-

v



delitzat funcionalment. Els mapes de saliency resultats s’han generat a partir de
la sortida del model, representant l’activitat neuronal de V1 cap a les arees del
cervell involucrades en el control dels moviments oculars. Fa falta destacar que
la nostra arquitectura unificada és capaç de reproduir diferents processos de la
visió (i.e. inducció de brillantor, cromàtica i malestar visual) sense aplicar cap tipus
d’entrenament ni optimització i seguint la mateixa parametrització. S’ha extès el
model (NSWAM-CM) incluint una implementació de la magnificació cortical per
tal de definir les projeccions retinotòpiques cap a V1 per cada visualització de la
escena. També s’ha proposat la inhibició top-down (en termes d’inhibició de retorn
i mecanismes de selecció) per tal de predir l’atenció tant en Observació Lliure com
Cerca Visual. Els resultats han demostrat que el model supera en rendiment a
altres models biològicament inspirats per a la predicció de saliency i sequències de
saccades, en concret en imatges de sintètiques i de natura. Mostrem també com
les característiques espaials i temporals de la inhibició de retorn poden millorar la
predicció de les saccades, i també les diferents estratègies de cerca (en termes de in-
hibició selectiva de característica o de categoría) per predir la atenció en contextos
diferents.

(3) Tot i que els models de scanpath anteriors han demostrat eficaçment la
predicció de saccades en Observació Lliure, cal destacar que tant l’estímul com les
instruccions de la tasca poden afectar notablement els patrons de moviment ocular.
En particular, el priming de tasca és crucial per a la execució de moviments oculars,
involucrant interaccions entre arees cerebrals relacionades amb la conducta orien-
tada a la meta, memòria de treball i de llarg termini en combinació amb les zones
neuronals responsables de processar els estímuls. En l’últim estudi, hem proposat
d’extendre el Selective Tuning Reference Fixation Controller Model, basat en ins-
truccions de tasca (STAR-FCT), describint noves definicions computacionals de la
Memòria de Llarg Termini, l’Executiu de Tasques Visuals i la Memòria de Treball per
a la Tasca. A partir d’aquests mòduls hem sigut capaços d’utilitzar instruccions tex-
tuals per tal de guiar el model a dirigir la atenció a categoríes específiques d’objecte
i/o llocs concrets de la escena. Hem disenyat el nostre model de memòria a partir
de una jerarquía de característiques tant d’alt com de baix nivell. La relació entre
les instruccions executives de la tasca i les representacions de la memòria s’han
especificat utilitzant un arbre de similaritats semàntiques entre les característiques
apreses i les anotacions de categoría d’objecte. Els resultats en comparació amb
la saliency han mostrat que utilitzant aquest model, tant els mapes de localització
d’objecte com les prediccions de saccades tenen major probabilitat de caure en les
regions salients depenent de les instruccions.

Paraules clau: saliency, moviments oculars, atenció, escorça visual, connexions
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Resumen

Los seres humanos movemos los ojos para tal de aprender las representaciones
del mundo. Estos movimientos oculares dependen de diferentes factores, tanto de
la escena que percibimos como por decisiones propias. Seleccionar todo aquello
que es relevante a atender forma parte de nuestros mecanismos de supervivencia
y nuestra manera de construir la realidad, ya que constantemente reaccionamos
tanto consciente como inconscientemente a todos los estímulos que se proyectan a
nuestros ojos. En esta tesis intentaré explicar (1) cómo movemos los ojos, (2) cómo
hacer máquinas que entiendan la información visual y ejectuar los movimientos
oculares, y (3) cómo hacer que estas sean capaces de entender tareas para tal de
decidir por estos movimientos oculares.

(1) Hemos analizado del comportamiento de los movimientos oculares provoca-
do por las diferencias de características de bajo nivel con una base de datos de 230
patrones generados sintéticamente. Se han generado un total de 15 tipos de estímu-
lo (p.e. orientación, brillo, color, tamaño, etc.), con 7 contrastes por cada categoría
de característica. Se obtuvieron los datos de 34 participantes a partir de un seguidor
ocular durante la visualización de la base de datos, con las tareas de Observación
Libre y Búsqueda Visual. Los resultados han mostrado que la saliency es predomi-
nante y distintamente influenciada por: 1. el tipo de característica, 2. el contraste
de las características, 3. la temporalidad de las fijaciones, 4. la dificultad de la tarea
y 5. el sesgo central. A partir de esta base de datos (SID4VAM), hemos computado
una compración de los modelos de saliency testeando su rendimiendo utilizando
patrones psicofísicos. El rendimiento de los modelos se ha evaluado detallando la
influencia de su inspiración y la consistencia con los resultados de la psicofísica.
Nuestro estudio revela que los modelos del estado del arte en saliency basados en
Deep Learning no tienen buen rendimiento con patrones sintéticos, contrariamen-
te, los modelos de inspiración Espectral/Fourier superan en rendimiento y són más
consistentes con la experimentación psicofísica.

(2) Las computaciones de la corteza visual primaria (area V1 o corteza estriada)
se hipotetizaron como responsables, entre otros mecanismos de procesamiento
visual, de la atención visual bottom-up (también nombrada saliency o saliencia).
Para tal de validar esta hipótesis, se han procesado diferentes bases de datos de
imágenes con seguidor ocular a partir de un modelo biológicamente plausible de
V1 (nombrado Neurodynamic Saliency Wavelet Model o NSWAM). Siguiendo el mo-
delo de Li, hemos definido las conexiones laterales de V1 con una red de neuronas
firing rate, sensitivas a características visuales como el brillo, el color, la orientación
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y la escala. Los procesos subcorticales inferiores (i.e. retinales y talàmicos) se han
modelizado funcionalmente. Los mapas de saliency resultates se generaron a partir
de la salida del modelo, representando la actividad neuronal de V1 hacia los correla-
tos cerebrales involucrados en el control de los movimientos oculares. Hace falta
destacar que nuestra arquitectura unificada es capaz de reproduir diferentes pro-
cessos de la visión (i.e. inducción de brillo, cromática y malestar visual) sin aplicar
ningun tipo de entrenamiento ni optimización y siguiendo la misma parametriza-
ción. Se ha extendido el modelo (NSWAM-CM) incluyendo una implementación
de la magnificación cortical para definir las proyecciones retinotópicas hacia V1
dada cada visualización de la escena. También se ha propuesto definir la inhibición
top-down (en términos de la inhibición de retorno y mecanismos de selección)
para tal de predecir la atención tanto en Observación Libre como en Búsqueda
Visual. Los resultados han mostrado que el modelo supera en rendimiento a otros
modelos biológicamente inspirados para la predicción de saliency y secuencias de
sacadas, en concreto con imágenes sintéticas y de naturaleza. Hemos mostrado
también como las características espaciales y temporales de la inhibición de retorno
pueden mejorar la predicción de las sacadas, y también las diferentes estrategias de
selección (en términos de inhibición selectiva de característica o de categoría) para
predecir la atención en diferentes contextos.

(3) Aunque los modelos de scanpath anteriores han demostrado predecir eficaz-
mente las sacadas en Observación Libre, hace falta destacar que tanto el estímulo
como las instrucciones de la tarea pueden afectar notablemente los patrones de
movimiento ocular. En particular el primado de tarea es crucial para la ejecución
de movimientos oculares, involucrando interacciones entre areas cerebrales rela-
cionadas con la conducta orientada a la meta, la memoria de trabajo y de largo
plazo en combinación con los correlatos neuronales responsables de procesar los
estímulos. En el último estudio, hemos propuesto extender el Selective Tuning
Reference Fixation Controller Model, basado en instrucciones de tarea (STAR-FCT),
describiendo nuevas definiciones computacionales de la Memoria a Largo Plazo,
el Ejecutivo de Tareas Visuales y la Memoria de Trabajo para la Tarea. A partir de
estos módulos hemos sido capaces de utilizar instrucciones textuales para tal de
guiar el modelo a dirigir la atención en categorías específicas de objeto y/o zonas
concretas de la escena. Hemos diseñado nuestro modelo de memoria a partir de
una jerarquía de características tanto de alto como bajo nivel. La relación entre las
instrucciones ejecutivas de la tarea y las representaciones de la memoria se han es-
pecificado utilizando un árbol de similaridades semánticas entre las características
aprendidas y las anotaciones de categoría de objeto. Los resultados en comparación
con la saliency han demostrado que utilizando este modelo, tanto los mapas de
localización de objeto como las predicciones de scadas tienen mayor probabilidad
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de caer en las regiones salientes dependiendo de las instrucciones.

Palabras clave: saliency, movimentos oculares, atenció, corteza visual, conexio-
nes horitzontales, búsqueda visual, observación libre, psicofísica, firing rate, redes
neuronales
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1 Introduction

1.1 Visual Perception and the Brain

Human perception could be defined as the interpretation of the world through
human senses. In these terms, one can say that what we see (perception) is not the
same as what there is (physically), as we are limited by our nervous system. It leads
to some visual effects coined with the term "illusion" (see Figure 1.1 and [284]). We
are able to perceive and recognize from simple shapes (lines, squares, circles...)
to complex shapes (objects, faces...) and they can only be perceived in particular
conditions of luminance and spectral range. Their characterization describe our
feature descriptions of the world, which is done by neuronal computations in our
brain. Modern Gestalt psychology [158, 349] tried to explain these phenomena
(by grouping visual descriptions), describing several perceptual principles or laws:
Proximity, Similarity, Closure, Symmetry, Continuity and Common Fate (see Chapter
2). These laws establish that spatial organization of visual elements in the scene
can lead to different percepts.

One of the main tasks that the human visual system has to solve is to detect
and identify visual objects in a scene. Object discriminability and recognition can
depend on numerous factors, such as scene illumination, how light is reflected to
every single object in the scene (determining distinct perceived luminance and
chromaticity for each object) and how objects are located in the scene. Human
percepts can be measured with psychophysical experimentation [90], where human
decisions and behavior (sensation magnitude) are compared to the physical proper-
ties of the viewed stimuli (stimulus intensity). Accounting for these effects there is
the case of brightness induction, where changes in perceived brightness of a visual
target are due to the luminance of its surrounding area. From this statement, we
can perceive a visual target and the surrounding area with similar/equal brightness
(assimilation) or different (contrast). These brightness differences can induce a
change in the perceived brightness of the central area (Fig. 1.1A) where two grey
patches are perceived distinctively whilst being with same brightness. Similarly, the
HVS perceives the chromatic properties of a visual target depending on the chro-
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maticities of its surrounding area. This phenomena is named chromatic induction.
This effect is observable on Fig. 1.1B, where the central ring from the reference stim-
ulus (left) appears to be “greener" than the central ring from the test (right), which
appears to be “bluer". Besides these effects, it is known that specific visual patterns
(Fig. 1.1C) can cause discomfort, malaise, nausea or even migraine [174, 240]. The
spatial properties of visual elements that compose the scene (whether are dense
or sparse) and their relative contrast energy (due to its orientation, luminance,
chromatic and spatial frequency distributions) can generate hyperexcitability in V1,
a possible cause of visual discomfort for certain images.

A B C

Figure 1.1 – (A) Brightness induction from the White effect [353]. The left/right grey
patch is surrounded by black/white vertical stripes, which induces to perceive a
darker/brighter square patch. (B) Example of chromatic induction from Monnier
& Shevell’s concentric ring stimuli [207]. Both the left and right central rings are
the same color surrounded by red and purple rings. The left ring, in contact with a
red inducer, is perceived as greener, while the right ring, in contact with a purple
inducer is perceived as bluer. (C) Discomfortable image, credit by Nicholas Wade
[340].

1.1.1 Main Theories in Visual Attention

Human vision has evolved in order to be more ecologically efficient in our living
environments (our ancestors survived in nature environments). In other words, the
brain adapts to the environment accounting for its limited processing capacity. The
efficient coding and information theory explain this issue as if the visual system
discriminates or discards redundant information [15, 225, 290, 384]. Conversely,
relevant information is filtered or selected in order to be later processed by higher
areas in the brain. In that regard, we differently process information related to the
locations where we look (overt) that from the ones that we do not look (covert) [246].
This distinction can easily be observed by focusing to a particular place in the visual
field (e.g. looking at your thumb with your arm stretched forward [177]). Vision
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away from the central visual field appears to be blurry [303], whereas in the center
of view there is full resolution (see Figure 1.2). Given these premises, one could say
that the scene context and fixation locations can affect perception of what we are
looking at.

Figure 1.2 – Example of foveal vision. Left: Original Image. Middle: Blurred image
simulating para/perifoveal vision. Right: Illustration of foveal regions in the retina.

In order to decide where to look1, several human brain mechanisms determine
location and time of fixations, as well as amplitude and velocity of saccades [61, 161].

Feature Integration Theory [320] establishes that when searching visual fea-
tures (e.g. a target with a different orientation, color or size with respect a set
of distractors), finding conspicuous objects is efficiently done (in parallel or pre-
attentively). Conversely, in conjunctive search (where a set of distractors have
similar combinations of features with respect to the target) it required a serial
"binding" step (observing each visual element at a time).

Figure 1.3 – Examples of Feature and Conjunctive Search (Left-Middle) stimuli.
Finding the Red "T" in Feature Search (green) is easier than for the case of Conjunc-
tive Search (see Reaction Times, Right), as we need less fixations to find the target.
Adapted from [99]

.

Guided Search model [365] considers that selection mechanisms depend not

1Lecture from Zhaoping Li: https://www.youtube.com/watch?v=i2u-5ll5ByA
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only on the stimulus itself (bottom-up) but also on decisions of the user (top-down),
ranking each feature separately upon stimulus guidance. These two factors (bottom-
up and top-down) are thought to compete [84] in order to guide visual attention,
selecting those features with higher probability (or priority) [88].

Koch & Ullman [157] came up with the hypothesis that neuronal mechanisms
involved in Selective Visual Attention generate a unique "master" map from visual
scenes, coined with the term "saliency map". In that regard, we tend to move our
eyes towards regions that appear to be visually conspicuous or distinct in the scene.

The Selective Tuning hypothesis [326] instead suggested that exist multiple
saliency maps, which are selected or biased by higher areas in the brain by gating
relevant information in each processing level.

The concept of how the human visual system forms a unique priority map
(saliency for bottom-up and relevance for top-down) is still an unsolved problem.
In summary, eye movements are known to be influenced by saliency, scene context,
the task or priming and the internal state of the subject. In this thesis we will discuss
how neurons in the cortex are connected and we propose how they could process
visual information in order to produce eye movements.

1.1.2 Human Visual System

The human visual system (HVS) is the part of the brain that gives us the capacity
to see, in other words, to be able to determine ’what’ things are and ’where’ they
are [110, 333]. Through distinct stages of processing, the HVS is responsible of
understanding visual input since the light is projected to the retina, transformed to
sensory signals and later processed by the cortex. These steps [108, Chapter 2] can
be summarized as:

• Reception & Transduction: Retinal Photoreceptors (RP), namely rods and
cones, absorb the light that falls onto the retina (corresponding to Long,
Medium and Short wavelengths of human visible spectrum).

• Encoding & Transmission: Retinal Ganglion Cells (RGC) extract chromatic
opponencies from RP signals (red-green, blue-yellow and light-dark) at dis-
tinct center-surround polarities (ON/OFF-center) and transmits this infor-
mation to the Lateral Geniculate Nucleus (LGN) through the optic nerve.

• Perception & Cognition: Signals from Parvo-, Konio- and Magno-cellular
pathways in LGN are projected to receptive fields in the primary visual cortex
(V1 or striate cortex). Neurons in V1 will recurrently process this early visual
information and send it to extrastriate ventral (what) and dorsal (where)
pathways for higher order processing.
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Figure 1.4 – Functional and Anatomical illustration of the HVS from [152, Chap-
ter 25].

Initial neurophysiological experiments [136, 137] discovered that neurons in V1
are sensitive to several properties of the visual stimulus (with electrical single-unit
recordings of cat and monkey striate cortex), such as orientation, color, scale, etc.
These described our first understanding of how the cortex processes low-level visual
features. Cells in V1 receive information from LGN which define their receptive
field (RF) activity. It is known that for an ON-center/OFF-surround cell, firing rate is
maximal when ON stimulus is located in the center of the neuron RF, and supressed
when ON stimulus is located in the surrounding region [348, Chapter 30][200, 299].

Figure 1.5 – Left: Experimental setup from Hubel & Wiesel [136, 137], adapted
from [250, Chapter 11]. Neuronal spikes (right panel) from cat’s striate cortex
appear to be higher for neurons with specific sensitivity to vertical line orientations
given the presented stimulus (left panel). Right: Contrast Sensitivity Function
given sinusoidal grating stimuli [341, Chapter 5]. An ON-center/OFF-surround cell
(simulating RGC sensitivities) with constant size responds distinctively to gratings
of distinct spatial frequencies.

The HVS encodes retinal information from retinal ganglion cells (RGC) as
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Figure 1.6 – Left: Visual areas involved in eye movement control, from [350]. Right:
Projections from Retina to V1, adapted from [294].

Magno-, Parvo- and Konio-cellular pathways to LGN [Figure 1.6-Right][47, 148, 152,
212, 294]. Cells in LGN transmit ON/OFF activity for each of these chromatic oppo-
nencies (light vs dark, red vs green and blue vs yellow) towards specific layers in the
primary visual cortex (or striate cortex, V1). Each layer in V1 processes activity from
these single cell opponencies in a recurrent manner, given intra-cortical (intra-layer
and lateral) and inter-cortical interactions. Feedforward and feedback projections
from V1 towards other areas in the brain will determine which percepts and actions
will be done upon the scene. More specifically, the superior colliculus (SC) [44, 350]
receives activity from distinct cortical areas (V1-V6, LIP, FEF and DLPFC) to trigger
voluntary and involuntary eye movements Figure 1.6-Left. Acknowledging the roles
of areas that project to SC, locations for fixations depend on the visual representa-
tions elucidated by the perceived stimuli, its relation to previously perceived stimuli
and its importance with respect to the subject [243, 244, 245, 264].

1.2 Computational Modeling

1.2.1 Visual Hierarchies and Biological inspiration

Some of the challenges in computer vision has been to reproduce perception and
tasks performed by humans [124, 156, 164]. Computational models of visual cortex
are inspired by simple and complex cell mechanisms [58, 122, 187, 291]. Simple
cells are usually modeled as linear filters (either using difference of gaussians or
gabor-like filters) to represent retinal center-surround responses [263] and V1 re-
ceptive field selectivity to orientations at different spatial scales [37], allowing to
represent activity as a pyramid of low-level feature maps. Complex cells are found
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to combine projections from afferent simple cells, acting as a "pooling" mechanism
of the aforementioned low-level features. Receptive fields in higher areas of cortex
are bigger and respond to different combinations of features. Arising from that
principle, several models of the cortex defined vision as a feedforward mechanism,
coined with the term "visual hierarchy".

Fukushima’s Neocognitron [100] and Poggio’s HMAX [198, 262, 287][Figure 1.7]
were the first general hierarchical models, representing the HVS as a chain of pool-
ing mechanisms in order to obtain higher complexity and detail at higher stages
of the architecture. HMAX abled to process mid- and high-level visual feature
computations, and served for multiple purposes in computer vision (from invari-
ant image recognition [288, 289], shape and texture perception[312, 346] to visual
search [334]). However, the HVS is largely known to have both intra-layer (connec-
tions between cells in same layer, also named lateral or horizontal connections),
inter-layer (connections between cells in different layers), feedforward and feedback
connections (Figure 1.6-Right). It makes feedforward-only architectures unable
to explain biological and perceptual principles of the brain, making vision yet an
unsolved problem [126, 271, 314].

Figure 1.7 – Representation of HMAX computations (Right) and its association with
function in cortex (Left)[288]

Other models such as the Grossberg’s LAMINART[114] and Bednar’s Cortical
Maps [9] proposed to emulate some of these connectivities. Connectivities in
LAMINART are constrained by the definition of the architecture, whereas Bednar’s
model self-organizes from input images. However, the complexity of the visual
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cortex makes hard to cope implementations of the HVS working with real images
and several tasks simultaneously.

Computer vision solved some of the aforementioned problems for real world
scenarios, by combining both image processing and machine learning techniques.
In line with the efficient coding principle, the statistical relationship between com-
paring an image patch and a feature basis [191, 315] (e.g. a gabor function or a
sparse representation) can define to some extent how objects are quantified by
cortical receptive fields [94, 225, 260]. A way to compute this kind of relationship
is to obtain a feature map by convolving the image and the kernel basis that best
represents each patch of the scene/object that is desired to be computed. How-
ever, the key factor here is to define this pattern. One way to do that is to train
a model by learning its prediction error with respect the ground truth for each
task (supervised) or either uniquely using the data that is available to the model
(unsupevised). That principle was used in Artificial Neural Networks (ANN), by
processing the input signal in a set of nodes in a feedforward manner and back-
propagating errors [273] by weighting each node in the architecture. AlexNet [163]
was one of the main architectures that combined these type of computations (con-
volutions, ANNs and backprop) with real images (also known as Convolutional
Neural Networks or CNNs). It outpeformed previous computer vision techniques
(as well as human performance in some tasks [104]) for a large variety of fields, and
is considered one of the precursors of "Deep Learning" [176, 376][111, Chapter 9]
and its latest architectures [6]. CNN architectures are said to work as the brain
because some of their computations are to some extent inspired by biological mech-
anisms [16, 21, 118, 197] (i.e. "convolution" resembling visual feature basis filtering,
"pooling" resembling complex cell integration, "rectification" resembling neuronal
activation functions and "normalization" by resembling divisive normalization
found in cortex). However, we suggest that these type of feedforward architectures
cannot solve the vision problem and and simulate the brain 2 because they have:

• No relation of architecture with physiology

• No feedback connections

• No top-down control

• No foveation

Furthermore, they are unable to reproduce:

• Dynamics of visual pathways (alpha, beta and gamma oscillation bands)

2Seminar from Simon Thorpe: https://www.youtube.com/watch?v=jKM3S5tMMYo
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• Temporal dependency of feature processing

• Psychophysical results

Moreover, the usage of supervision in feedforward architectures require a large
number of images to correctly generalize for each concrete task (requiring as well
the ground truth for each case), which is an unsolvable problem if we desire to
build machines to see and understand the world as a human. In contrast, the HVS
does not require that much number of examples for learning objects. As stated
in the previous section, humans have ecologically adapted to their environment
(considering here that the task of survival contains all the other tasks), knowing
"what" things are and "where" things are. This latter problem is constrained by our
attention, namely, our eye movements. In the next section we will explain the main
computational approaches to predict this phenomena.

1.2.2 State of the art in saliency and scanpath modeling

Visual salience can be defined as “the distinct subjective perceptual quality which
makes some items in the world stand out from their neighbors and immediately
grab our attention" [143]. In order to understand how visual information is predom-
inantly selected for controlling eye movements, several studies proposed different
approaches. Previous theory from Koch & Ullman [157] proposed a computational
framework in which visual features are integrated to generate a saliency map. These
visual features are projected to V1 and later processed distinctively on the ven-
tral (“what") and dorsal (“where") streams. These connections are projected to
the superior colliculus (SC), which would generate either top-down (relevance) or
bottom-up (saliency) control of eye movements by combining neuronal activity
from distinct brain areas to a unique map (priority map) [88][350]. Given these
distinct levels of processing, a set of computational models are proposed in order
to reproduce eye movement behavior. Itti et al. introduce a biologically-inspired
model [142]Figure 1.8-Left in which low-level features are extracted using linear
DoG filters, their conspicuity is calculated using center-surround differences (in-
spired by V1’s simple cell computations) and integrated (pooled to the SC as a
master saliency map) using winner-take-all (WTA) mechanisms.

Although computations of existing saliency models seem to mimic HVS mecha-
nisms, complexity of scenes make eye-movement behavior hard to predict. Bruce
& Tsotsos model [50][Figure 1.8-Right] offered a semi-supervised mechanism to
account for relevant information of the scenes in combination with the bottom-up
computations of V1, predicting eye movement behavior at distinct scene contexts.
Given the basis of these models, a myriad of computational models, both with artifi-
cial and biological inspiration [150][41][379][257], have implemented distinct ways
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Figure 1.8 – Left: IKN [142] extracts feature maps with DoG, then computes center-
surround differences and integrates them to the saliency map with WTA. Right:
AIM [50] instead convolves the image with kernels that maximize visual information
(through ICA of patches from a set of 3600 natural images) and estimates the joint
likelihood to obtain the saliency map.

to predict human eye movements obtaining better performance on its predictions
[256][43][46][53]. By processing global and/or local image fatures for calculating fea-
ture conspicuity, these models are able to generate a master saliency map to predict
human fixations (Table 1.1). Taking up Judd et al. [150] and Borji & Itti’s [41] reviews,
5 general categories of model inspiration follow similar saliency computations:

(C) Cognitive/Biological: Saliency is usually generated by mimicking HVS neu-
ronal mechanisms or either specific patterns found in human eye movement
behavior. Feature extraction is generally based on Gabor-like filters and its
integration with WTA-like mechanisms.

(I) Information-Theoretic: These models compute saliency by selecting the
regions that maximize visual information of scenes.

(P) Probabilistic: Probabilistic models generate saliency by optimizing the prob-
ability of performing certain tasks and/or finding certain patterns. These
models use graphs, bayesian, decision-theoretic and other approaches for
their computations.

(F) Spectral/Fourier-based: Spectral Analysis or Fourier-based models derive
saliency by extracting or manipulating features in the frequency domain (e.g.
spectral frequency or phase).

(D) Machine/Deep Learning: These techniques are based on training existing
machine/deep learning architectures (e.g. CNN, RNN, GAN...) by minimizing
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Table 1.1 – Description of saliency models.

Model Authors Year Inspiration Type
C I P F D G L

IKN Itti et al.[142, 145] 1998 3 3 3
AIM Bruce & Tsotsos [50] 2005 3 3 3

GBVS Harel et al.[119] 2006 3 3 3
SDLF Torralba et al. [316] 2006 3 3 3

SR & PFT Hou & Zhang[131] 2007 3 3
PQFT Guo & Zhang[116] 2008 3 3

ICL Hou & Zhang [132] 2008 3 3 3 3
SUN Zhang et al. [380] 2008 3 3
SDSR Seo & Milanfar [286] 2009 3 3 3 3

FT Achanta et al.[2] 2009 3 3
DCTS/SIGS Hou et al.[130] 2011 3 3

SIM Murray et al.[209] 2011 3 3 3
WMAP Lopez-Garcia et al.[188] 2011 3 3 3 3

AWS Garcia-Diaz et al.[102] 2012 3 3 3
CASD Goferman et al.[107] 2012 3 3 3 3 3 3
RARE Riche et al.[259] 2012 3 3 3
QDCT Schauerte et al.[279] 2012 3 3
HFT Li et al.[182] 2013 3 3
BMS Zhang & Sclaroff [377] 2013 3 3

SALICON Jiang et al.[147, 313] 2015 3 3
ML-Net Cornia et al.[75] 2016 3 3

DeepGazeII Kümmerer et al.[168] 2016 3 3
SalGAN Pan et al.[230] 2017 3 3

ICF Kümmerer et al.[168] 2017 3 3 3
SAM Cornia et al.[77] 2018 3 3

NSWAM Berga & Otazu [26] 2018 3 3 3

Inspiration: { C : Cognitive/Biological, I : Information-Theoretic, P : Probabilistic, F : Fourier/Spectral, D :
Machine/Deep Learning} Type: {G: Global, L: Local}

the error of predicting fixations of images from existing eye tracking data or
labeled salient regions.

Whether proposed computational saliency models resemble eye-tracking data,
it is questionable to consider that these predictions accurately and specifically rep-
resent saliency [51][23]. While the current concept of saliency maps is to predict
probabilities of specific spatial locations as candidates of eye movements, it is also
crucial to understand how to predict individual fixations or saccade sequences
(also named "scanpaths"). Scanpath predictions can be done through probabilistic
measures of saccade amplitude statistics. These followed a similar heavy-tailed
distribution similar to a Cauchy-Levy one (in reference to random walks or "Levy
flights", minimizing global uncertainty) [48], with highest probability of fixations at
a low saccade amplitude. This procedure was implemented in Boccignone & Fer-
raro’s scanpath model[39], using saliency from IKN. Later, LeMeur & Liu[202][Figure
1.9] proposed a more biologically plausible approach, accounting for oculomotor
biases and inhibition of return effects. Latest scanpath model (STAR-FC) from
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Wloka et al. [357][Figure 1.10] included an excentricity-dependent foveation mech-
anism reproducing retinal acuity [345], then cropped the fovea center in order to
process low-level saliency and high-level saliency for central and peripheral maps
respectively.

Figure 1.9 – Pipeline from LeMeur et al.’s scanpath prediction model [202], from
[201]. By combining the saliency map (from GBVS [119]) with Saccade Amplitude
and Orientation statistics, as well as a simulation of Inhibition of Return is able to
predict saccade sequences.

Figure 1.10 – Pipeline from Wloka et al.’s Selective Tuning Attentive Reference
Fixation Controller model, from [357]. It follows previous architecture by Tsotsos et
al. [327], with inhibition of return mechanisms and distinct saliency computations
for central and peripheral fields, joined to the priority map as targets for fixations.
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Part IPsychophysics
of visual attention

Measuring eye movement behavior.





2 Psychophysical evaluation of individual low-
level feature influences in visual attention

Visual attention is the cognitive capacity of efficiently selecting relevant visual in-
formation from a scene. Researchers record eye movements in psychophysical
experiments using eye-tracking technology as means of identifying overt atten-
tional cues around fixation points, [161]. Registered data of different subjects
show different patterns of eye movement depending on reflexive, goal-directed or
contextually-specific influences [270]. This suggests the existence of two types of
general influences in the Human Visual System (HVS), combining both bottom-up
and top-down processing [84][172][73][93][350]. Bottom-up processing of low-level
visual features takes place in the early stages of the HVS, namely, when the nervous
system efficiently extracts the basic information of the scene and processes it in the
visual cortex. When higher areas of the brain are involved is when the top-down
processing occurs, by taking into account internal state of the subject (task, mental
state, experiences, etc.).

2.1 Problem Statement

The limits on the prediction capability of saliency models [Chapter 1.2.2] arise
as a consequence of the evaluation from previous datasets, that do not account
contextual, perceptual, temporal and task-related biases.

2.1.1 Contextual Relevance

One of the properties that guide visual attention is the contextual relevance of the
observed scene [229][68][123][235][339][140][81]. Semantically-relevant content
or specific high-level features can generate endogenous attentional guidance. For
instance, looking at a website promotes specific eye movement patterns that differ
from looking at a nature scene image; different scanpath patterns can also be found
in eye-tracking experiments while humans observe indoor, outdoor and synthetic
images. In most datasets for saliency modeling, observers perform free-viewing
tasks with real images labeled in specific scene context categories (either faces,
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cars...), without taking full account of the top-down priors influenced by the context
of the image with respect to feature contrast [355][43], which could bias both feature
localization and discrimination difficulty [228][337][366].

2.1.2 Contrast Relevance

Eye movement behavior is influenced not only by content and stimulus context,
but also by the human perceptual capabilities for distinct contrast adaptation and
discrimination [218][238][242][196][120]. Other perceptually-relevant factors could
also be related either to the lighting conditions used in each experiment, the starting
point of view when perceiving stimuli, etc. The evaluation of relative distinctiveness
between features at distinct regions of the image is needed to be done in order to
analyze each image according to its spatial properties and feature specificities. This
suggests that each image promotes distinct saliency.

2.1.3 Temporal Relevance

Eye movements have been shown to have temporal influences, varying its behavior
upon viewing time or number of fixations (e.g. showing decreasing saccade am-
plitude, increasing fixation duration [98][8] or higher inter-participant differences
[306][269]), suggesting the idea that saliency influences more early saccades than
late viewing saccades [234][306][381][386]. Most saliency predictions based on eye
tracking data do not evaluate the temporal relevance in relation to the saliency
elicited by the scene, being for most cases, evaluated spatially across all fixations.

2.1.4 Task Relevance

Alfred Yarbus’ seminal work revealed differences in eye movement patterns [373]
caused by certain top-down influences such as previous experience, motivation
and other endogenous factors. Distinctive studies have also concluded that task
priors are decisive in that respect [52][213][307][64] [113][40]. Goal-directed tasks
proved to be able to condition eye movement behavior enhancing visual atten-
tion processing [246][149][138][170]. That might suggest that visual search tasks
could minimize such eye-movement patterns produced by endogenous top-down
mechanisms [129][360], by increasing induced attention towards salient targets
(combining both saliency and relevance to influence eye guidance towards these
regions). Thus, for all tasks, there is an induced top-down processing that tune
overall visual priority when recording eye-movements [123] [149][83], given both
exogenous and endogenous influences. Such design puts forward that there could
be a better computational estimation of saliency if such task-related influences
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were focused uniquely on the regions that pop-out on the scene.

2.1.5 Center bias

Eye movement datasets built for the assessment of saliency models tend to be
center biased, not only because of scene framing (photographies tend to focus the
salient region in the center of view) but also because of the specific task and stimuli,
whereof top-down modulatory constraints are enough to prevent attentional shift,
giving a trend to promote center biases [45][192][338][71][269], not only in oculo-
motor terms but also in tendencies in experimentation of eye movement behavior.
As aforementioned, bottom-up and top-down processing of the stimuli will depend
on the feature characteristics from the scene. If these are simpler, the contextual in-
fluence will be lower, making the indicators of saliency easier to analyze [305][338].
There will be an endogenous top-down attentional modulation whether the stimu-
lus is cued or uncued. For concrete salient stimuli, facilitating attentional guidance
by inducing specific endogenous cues could enable the selection of specific regions
of interest in order to prevent the aforementioned factors that generate these center
biases.

2.2 Objectives

Acknowledging the aforementioned problems on capturing bottom-up visual saliency,
we have decided to create a dataset with synthetic images, lacking the presence of
high-level features, promoting saliency uniquely elicited from low-level features
(providing as well a synthetic image generator code). An alternative evaluation of
saliency proposed, by measuring eye movements upon low-level feature distinctive-
ness and their temporality. Fixations and saccades will be evaluated individually
with the corresponding stimuli on free-viewing and visual search tasks, with differ-
ent feature types and distinct target-distractor feature contrasts.

In order to vary the level of saliency of specific features in a scene, a parametriza-
tion of the distinctiveness between a specific item and a set of distractors or its
surrounding background is needed. By parameterizing feature contrast, it is possi-
ble to analyze feature search efficiency, its accordance with the Weber Law, and the
effects in which search asymmetries apply. Using synthetic images in eye-tracking
experiments, the complexity of the image features is reduced by minimizing any
top-down contextually-related effect, putting forward an easier and more accurate
evaluation of eye movement behavior. By modeling stimulus areas of interest for
selected pop-out targets, it it possible to test participants performance on landing
inside salient regions and their eye movement patterns (in the extent of fixation
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duration and saccade amplitude) for distinct feature contrasts, and their temporal
evolution. This will allow us to observe whether low-level features influence visual
attention in a distinct manner.

Previous experiments that perform psychophysical tests (see Table 3.1) evaluat-
ing human visual performance on distinct low-level features (iLab USC [145], UCL
[385], VAL Harvard [367] and ADA KCL [300]) show that the distinctiveness between
a specific region and the rest of distinct regions of an image progressively increases
the level of saliency in relation to feature contrast. However, the presence of much
less relevant features distorts the overall distinctiveness of a specific region with
respect to the rest, thus, affecting to the bottom-up visual guidance towards the
salient region. With the aforementioned datasets, feature contrast and stimulus
conditions has been parametrized with search tasks (using the button trigger for
calculating search reaction times) but no eye tracking experimentation has been
done.

For few eye movement datasets that contain synthetic images (MIT[151] and
CAT2000 [42]), no parametrization of feature type or contrast was done. Contrary
to other saliency datasets [54], in this study it is possible to evaluate each of these
factors individually and exclusively eye movement data is being used for calculating
search performance for better accuracy. We will test the following hypotheses:

1. Performance on salient region localization could show differences upon vary-
ing the type of features present in our stimuli.

2. If feature contrast is the main factor that contributes to saliency, performance
on localization of salient regions should correlate with feature contrast, spe-
cially for stimuli that require a serial ‘binding’ step.

3. Acknowledging that saliency is usually evaluated across all fixations on eye
tracking experimentation, if a temporal bias exists and is increasing, it is
highly possible that the first fixations show higher saliency index than the late
ones.

4. If performance on salient region localization with free viewing tasks is lower
for stimuli with higher contrast compared to visual search tasks, it will mean
that fixations on free viewing tasks are highly guided by endogenous attention.

5. Previous datasets used for saliency prediction do not show how their center
biases affects saliency. We will show how eye movement patterns influence
the center bias for this dataset and if the bias increases or decreases across
viewing time and feature contrast.

Our objective is to allow computer vision researchers to reproduce these influ-
ences when modeling eye-movement prediction algorithms. Here we present a
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dataset in which we evaluate through free-viewing tasks the influence of the fea-
tures that affect the spatial properties of an image (from the perception of Corners,
Segments, Contours and Grouping) and how the relative distinctiveness from a
search target is more salient with respect to a set of distractors that differ from
specific low-level features (color, orientation, size...). Analyzing low-level features
individually would allow us to see which features generate more agreement on
saliency measures and are localized faster, in that manner, to allow their modeling
according to their distinct neuronal mechanisms. This study can be used for a
more plausible and specific saliency modeling given the presented eye-movement
patterns, also extrapolable to the analysis of the interactions between these features
or to study specific cases of high-level features in future studies.

2.3 Stimuli

A total of 33 types of stimuli were generated, corresponding to 15 distinct feature
evaluations (5 of them using free-viewing tasks and 10 for visual search tasks) at
distinct conditions. During free-viewing experiments, we evaluated how spatial
properties influence saliency, namely, the capabilities of humans for detecting
corners, segmenting and detecting contours as well as localizing groups of objects
according to their similarity and spatial distribution (Table 2.1). This will give some
insight of how rapidly humans reflexively perceive and bind spatial properties from
the features of an image. In visual search tasks, we evaluated the speed in detecting
specific features and the amount of saliency produced by target-distractor feature
contrast characteristics. In that aspect, stimulus were generated with features that
pop-out based on their dissimilarities in orientation, color and size. Besides, we
also analyzed influences of the guidance prompt from the amount of distractors
on the scene, their configuration as well as the influence of background lightness,
color and roughness (Table 2.2).

Stimulus design was was inspired by Spratling’s experiments [300], by generating
synthetic images similar to the ones from Li and May’s psychophysical experiments
[385]. Most stimuli items had a size of 1.5 deg, occupying a region of 2.5 deg includ-
ing the spacing between distractors. In that manner, stimulus had an available grid
of 10×13 distractors. Distractors were black (l sY = 0,0,0), and background was
plane white (l sY = 0.6548,0.0175,1). We used Spratling’s code and we adapted it in
order to also use any distractor shape, displacement and chromatic parameteriza-
tion.

Ψ(x) = {
x −1

N −1
| x ∈ N }, (2.1)
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Ψ(x, v) = {v ·Ψ(x)}, (2.2)

Ψ(x,mi n,max) = {Ψ(x,mi n)∪Ψ(x,max) |x is odd}. (2.3)

The parameters of the generated stimuli were set according to "N = 7" contrast
values (ranging from 0 to 1), using the Weber’s law uniform fraction in order to set
discrete target-distractor evaluation "x = 1...N " for the psychometric functionΨ.
For each stimulus type on our experimentation, parameters are set according to
specific values ofΨ(x). We have the expression in Equation 2.1 and 7 contrast values
in order to have extreme contrast values (no contrast and maximum contrast) with
"Ψ(1) = 0" and "Ψ(7) = 1" as well as a middle value with "Ψ(4) = 0.5", making the
difference between the second lower contrast and the second maximum contrast at
the same distance from the extreme contrast values |Ψ(2)−Ψ(1)| = |Ψ(7)−Ψ(6)|. In
that manner we provide a psychometric function with a constant slope (Weber’s
uniform fraction). Absolute values of contrast can be adjusted to fit a specific value
of "v" asΨ(x, v) (Equation 2.2). For cases that we had higher and lower contrasts
with respect the target and overall distractors we adjusted the values for maximum
and minimum range of the psychometric functionΨ(x,mi n,max) as the union of
odd values for both sets ofΨ(x,mi n) andΨ(x,max) in order to acquire the same
set of contrast values (Equation 2.3).

Acknowledging that each stimulus was distributed according to different con-
trasts depending on the evaluation parameter, each stimulus was categorized as
easy and hard depending on the assigned contrast (half of them as easy for higher
contrasts, and half of them as hard for the case of lower contrasts, with a specific
case with minimum or no contrast). One of our interests was to evaluate how low-
level features modify the spatial layout between the features on a scene, therefore
its spatial properties, affecting visual saliency (in this case with free-viewing ex-
perimentation). In order to accurately evaluate low-level feature distinctiveness,
visual search tasks were performed, having a search target with a specific low-level
contrast with respect to a set of distractors. The stimulus design corresponding
distinctively to each feature and task will be explained as follows.

Free-viewing task stimuli

First, we wanted to evaluate the spatial relevance of certain regions of an image. For
this stimuli, visual selection cannot be focused on a unique region due to the size
and/or spatial organization of the elements in the image. Humans have a limited
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central vision, namely, they need several fixations over the whole region in order
to attend to all of the relevant regions in detail. In that aspect, each of the spatial
properties will guide attention towards a single or several spots depending on the
analyzed feature. With this type of stimuli it is be able to see the temporal and spatial
performance of perceiving boundaries due to corner sharpness, segment angle and
spacing as well as preemption and grouping [254, 255, 368], effects induced by
distractor continuity, proximity and similarity. These preattentive effects are not
equally processed in the visual system in the same way as shown for parallel visual
search [361]. Task was separate for the aforementioned perceptual phenomena
with respect to searching for a specific feature, stimuli described on Section 2.3.

Table 2.1 – Description of the generated stimuli for the experiment using the free-
viewing task. Stimulus have been divided in "Stimulus type" according to the type
of feature or effect that is analyzed and "Stimulus subtypes" for the cases that there
are presented distinct conditions using the same feature contrast. The total number
of elements has been selected according to the stimulus characteristics, preserving
similar spatial properties to the ones presented on the literature.

# of stimuli Stimulus type Stimulus subtypes Parametrized Feature Contrast Total # of elements
7 Corner Angle (1) Sharpness Orientation 1

14 Segmentation by Angle (2)
Single

Segment Orientation
10×13 (130)

Superimposed 20×26 (520)
7 Segmentation by Spacing (3) Bar Length and Spacing 10×13 (130)
6 Contour Integration (4) Bar Continuity 10×13 (130)

14 Perceptual Grouping (5)
Similar

Distractor Proximity ∼40
Dissimilar

Corner Angle (1) Troncoso et al’s psychophysical experimentation found that
corner salience was higher on sharp corners than on shallow corners or edges [323,
324]. This effect could be explained by ON-center receptive field behavior towards
corner stimuli [263], being sharp corners the ones that produce higher neuronal
activity. Original stimuli from Troncoso’s experiment was used, generating corners
with a dark-to-white gradient and an upwards angle, corresponding to corner angles
of 180,135,105,75,45,30 and 15 º (shown in Figure 2.1). The horizontal alignment
of the corner was randomized in order to prevent oculomotor anticipation.

Visual Segmentation Distinctiveness between two homogeneous regions creates
higher neural activity near region boundaries than away from them [185, 186]. In
this section is described how an illusory boundary is generated by varying two
segment characteristics. This effect is distinct from the concepts of edge or bound-
ary detection (terms used as well in the image segmentation literature) or contour
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15º 30º 45º 75º 105º 135º 180º

Figure 2.1 – Examples of corner angle slopes (with the sharper at 15 º and the
smoother at 180 º) for dark-to-bright gradient stimuli with upwards angles.

integration. This phenomena proves that illusory boundaries pop-out due to the
perceptual breakdown of homogeneity. Here it is studied the influence of angle
contrast between these two segments (creating a salient boundary dependent on
the segments angle) with an homogeneous single set of bars as well as with super-
imposed bars. Here is also analyzed the influence of bar spacing and length on
detecting the illusory boundary between these two segments.

Segmentation by Angle (2) Visual angle contrast between two segments can
induce edge detection and therefore visual saliency towards that illusory edge
[222, 369, 385]. The resulting saliency would increase with respect to angle contrast
from the two segments on the region that separates them [300]. It is a distinctive
effect from orientation feature detection upon a set of distractors, that is described
on Orientation Contrast (12), Distractor Heterogeneity (13), Distractor Linearity
(14) and Distractor Categorization (15).

Φ(v, a) = {|arcsin(Ψ(1...N , v))+a|}, (2.4)

∆Φ(v, a,b) = mi n{|b −Φ(v, a)| , 180−|b −Φ(v, a)|}, (2.5)

The psychometric values for determining angle values are defined as Φ(v, a).
Here "v" is the incremental factor for adjusting the maximum angle for our set
Ψ(x, v) and "a" is the starting angle value for our bar orientation (Equation 2.4).
The angle contrast between a specific angle "b" and our set of anglesΦ(v, a) can be
computed with ∆Φ(v, a,b), considering that our bar orientations have upwards and
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downwards contrast for its comparison (due to its symmetry), contrast is calculated
as the minimum from the differences from two quadrants in which these bars can
be oriented (Equation 2.5).

Stimuli was based on Spratling’s visual segmentation, using 2 sets of bars (shown
in Figure 2.2(a,b)) oriented respectively using anglesΦ(1,0) and "b = 90", forming
a relative contrast of ∆Φ(1,0,90). For the case of superimposed bars, we have
created a composite of the same bars adding a bar tilted at 45 º with respect to each
segment. Here are accounted the contrasts between the new superimposed bars
and the original segment ∆Φ(1,45,90). The location of the vertical segment was
randomized on the horizontal axis for each stimulus.

Segmentation by Distance (3) Texture discrimination was shown to vary ac-
cording to the spacing and length of the texture elements [221, 300], making it
harder as element spacing increases (as when segment elements decrease in length
or size). Visual segments were modeled using 2 sets of bars, oriented respectively at
45 º and −45 º (a relative angle contrast of 90 º). Here we question how bar length is
able to generate a specified distance at the center of the illusory segment. Segment
spacing was calculated as the euclidean distance from the end of the first segment
bar to the beginning of the second segment bar, with values of 0 to 2.5 deg (shown
in Figure 2.2(c)), corresponding respectively to a bar length of 1 to 3.6 deg deg in
the horizontal axis.

(a) (b) (c)

Figure 2.2 – Examples for visual segmentation stimuli. (a) Corresponds to the
segmentation by angle with a single segment and (b) to superimposed segments
(with both cases with an orientation contrast of ∆Φ=90 º. In (c) segmentation is
done distinctively (by changing bar length), using bars oriented at 45 and −45 º with
a bar length of 1 deg and a segment spacing of 2.5 deg.

Perceptual organization Perceptual organization has been previously investi-
gated and promoted by Gestalt principles, guided by proximity, similarity, continu-
ity, and closure properties of objects [57, 94, 158, 272, 349]. Here are described two
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effects related to perceptual organization, parametrized upon the aforementioned
principles.

Contour Integration (4) Continuity within set of features in a scene is able to
generate the perception of a contour [125], considering that a larger set of collinear
bars facilitate its detection. Accounting for saliency being influenced by contour
integration [78, 183, 300], a set of stimuli was created with a grid of randomly
oriented and equidistant bars and a collinear contour (Figure 2.3(a)). Contours
were generated with a length of 3,5,7,8,9 and 10 collinear bars, corresponding to
7.5 to 25 deg.

Perceptual Grouping (5) Adding up to the basis of the previous section, we
have also studied the relation between perceptual grouping principles and visual
attention. According to the literature, the spatial layout can facilitate or prevent
contextual cueing [34, 72], in particular, the lower the proximity between a number
of randomly distributed objects and a group, the higher the saliency on the grouping
region [19, 20, 221, 261]. Given that, here the analysis is on the influence of proximity
and similarity among objects in a specific spatial organization. To do so, there were
generated a set of shapes, randomly distributed and located at specific distances to
a group, with similar and dissimilar shapes Figure 2.3(b,c). The proximity parameter
was the euclidean distance between the group centroid and the rest of distractors,
forming a wider gap between the distractors and the group as we increase distance,
parametrized as Ψ(1...N ,2.5,7.5). Stimulus shapes were set to be symmetric in
order to prevent orientation-variant guidance, with squares as the main shape for
both group and distractors in the case of similar object condition, whereas in the
case of dissimilar condition were selected triangle shapes for the distractors and
squares for the group.

(a) (b) (c)

Figure 2.3 – Examples of distinct perceptual organization effects, eliciting Contour
Integration (a) formed by 10 collinear bars (corresponding to 25 deg) and Perceptual
Grouping for similar (b) and dissimilar shapes (c) with respect a group set at a
distance of 7.5 deg from the rest of distractors
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Visual Search task stimuli

Visual search tasks were performed with another set of stimuli. In this case, a unique
target item with a specific size was used. In that manner, it is possible to change
either the amount of distractors, their spatial configuration, the target-distractor
feature contrast and background properties of the stimulus. Most target elements
overall occupied a small area of interest in order to able to be preserve same fovea-
dependent capabilities for each type of stimuli used with this type of task. Hence,
using this experimentation we can observe which features pop-out faster and more
often (in parallel or "effortlessly"). As small regions away from central vision cannot
be detected as in the case of bigger regions shown on Section 2.3, the guidance
towards the salient target (distinctive from the rest of distractors) minimizes other
type of guidance promoted from endogenous factors.

Table 2.2 – Description of the generated stimuli for the experiment using the Vi-
sual Search task. The total number of elements has been selected according to
the amount of distractors presented on the scene acknowledging that one of the
elements is presented to be the search target.

# of stimuli Stimulus type Stimulus subtypes Parametrized Feature Contrast Total # of elements

28 Feature Search (6)

Feature

Distractor number 3 to 35
Conjunctive

Feature-absent
Conjunctive-absent

14
Search Asymmetries (7) Bar presence

Scale and Distractor number 35 to 520
Bar absence

14 Noise/Roughness (8)
Higher deviation

Surface Roughness 1
Lower deviation

28 Color Contrast (9)

Red target and Unsaturated Background

Distractor Saturation 34
Red target and Oversaturated Background
Red target and Unsaturated Background

Blue target and Oversaturated Background

14 Brightness Contrast (10)
Light Background

Distractor lightness 34
Dark Background

7 Size Contrast (11) Target Size 34
7 Orientation Contrast (12) Target Orientation 34

21 Distractor Heterogeneity (13)
Homogeneous

Target Orientation 10×13 (130)Tilted-right
Flanking

28 Distractor Linearity (14)

Linear

Target Orientation 10×13 (130)
Nonlinear at 10º of slope
Nonlinear at 20º of slope
Nonlinear at 90º of slope

21 Distractor Categorization (15)
Steep

Target Orientation 10×13 (130)Steepest
Steep-right

Feature and Conjunctive Search (6) Feature search increases probability and
efficiency of saccading towards a specific search target on scene observation due
to its unique distinctiveness. The information span processed by the HVS varies
depending on the amount of feature distractors to be processed [121, 218, 227,
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237, 321, 364, 365]. Given that premise, the amount of objects in a scene would
imply a variation of the difficulty towards searching a specific target for the case
of serial search (distorting human’s sustained attention), but not for the case of
parallel search. Previous experiments show that difficulty on visual search is higher
with a conjunction of distractors with different image features (such as size, color
or orientation). In case distractors vary only by a unique feature, the difficulty of
the task would not be as evident as the other case [97, 211, 317, 362]. In order to
reproduce feature and conjunctive search, target was a red bar oriented at 45 º. For
the feature search case, distractors were green and set at 45 º (Figure 2.4). On the
case of conjunctive search, half of distractors were green and set at 45 º and the
other half were red and oriented at −45 º.

(a) (b) (c) (d)

Figure 2.4 – Examples used for feature and conjunctive search. Here are presented
the cases of having a red target oriented at 45 º and 34 distractors randomly dis-
placed around the scene. For the feature search case (a), all of the distractors are
distinct in color (green). For the conjunctive search case (b), 50 % of the distractors
are distinct in color (green) and the rest are distinctive in orientation (at an orienta-
tion of −45 º). The same cases (c) and (d) are shown but without the presence of the
target.

The position of the items was randomised, with a set size ofΨ(1...N ,2,34), the
amount of distractors ranged from 2 to 34 distractors. Both search conditions
without the presence of the target was introduced in order to see if the effects are
also reproduced for the case of reporting absence of target. The design of feature
and conjunction search has been defined as keeping similar difficulty between the
two conditions, preserving identical targets and displaying each conjunction of
distractors maximally dissimilar from each other [251].

Search Asymmetries (7) Search asymmetries between two different type of stim-
uli happen when a specific target of type "a" is found efficiently among distractors
of type "b", but not in the opposite case (searching for "b" among distractors of
type "a") [121, 319, 320, 363]. Clear evidence was found for plain circles crossed by
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a vertical bar (Figure 2.5) at a scale of 5 deg), showing that it was easier to find a
circle with a vertical bar among plain circles than vice versa [300, 363].

(a) (b)

Figure 2.5 – Example of stimulus types in which search asymmetries can apply. The
context of circles (b) facilitates the search of a superimposed bar compared to the
reverse case (a).

The same type of stimuli was selected (with both conditions: searching a circle
crossed by vertical bar among plain circles and searching a plain circle among circles
crossed by a vertical bar) filling a grid of distractors according to a specific scale
and randomizing the position of the target. The scale values wereΨ(1...N ,1.25,5),
between 1.25 and 5 deg, changing the amount of items to be presented, being in
each case from 35 to 520 elements corresponding to arrays of 5×7, 6×8, 8×10,
10×13, 15×20 and 20×26 objects.

Noise/Roughness (8) For most synthetic stimuli we have considered uniform and
plain backgrounds with homogeneous illumination, but in this case the influence
of continuous textured background would increase or reduce search time required
to detect a specific target depending on the amount of noise present in the scene.
Clarke et. al. [69, 70, 226] showed that the higher the level of background texture
noise of a scene, the higher the level of difficulty of the search task. They represented
the background surface as a height map by parameterizing an isotropic and random-
phase noise 1/ f β (being "β" the frequency roll-off magnitude factor of the inverse
discrete Fourier transform of the height map and "σRMS " the deviation of the
roughness noise height). The surface was obtained by rendering the height map
according to the Lambert’s Cosine Law model using a constant light source with
slant of 60 º and tilt equal to 90 º. Given these previous experiments, each stimulus
was a rough surface considering β as the contrast valueΨ(1...N ,1.5,1.8) with two
distinct conditions by using deviations of σRMS = 0.9 and 1.1. A similar target of
Clarke’s experimentation was used (Figure 2.6) with a circular shape and a vertical
gradient background corresponding to the height of the surface and a diameter of
0.78 deg (half of size corresponding to the rest of target items of this study, adjusted
for preventing too low RT differences between distinct contrasts).
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(a) (b)

Figure 2.6 – Two examples of a rough surface with β= 1.8 using height deviations of
(a) σRMS = 0.9 and (b) σRMS = 1.1

Distractor similarity When an object is dissimilar to the rest of objects in a scene,
the search of that object is more efficient. That phenomenon is called target-
distractor similarity, and has been found to occur when parameterizing specific
features such as color, shape or size [86, 359].

Color Contrast (9) In this section the chromatic properties of distractors are
changed, as well as the background of the stimuli Figure 2.7. As shown in previous
experiments [7, 17, 79, 87], color varies spatial and temporal patterns of eye move-
ments, affecting both localization and discrimination of objects. Besides, search
asymmetries happen at different background conditions [210, 268].

∆S1,2 = |S1 −S2|,
∆L1,2 = |L1 −L2|,

(2.6)

α= arctan(
∆LT,B

∆ST,B
), (2.7)

θ = (90−α)(Ψ(1...N )), (2.8)

28



2.3. Stimuli

(a) (b)

(c) (d)

Figure 2.7 – Examples of the 4 conditions at maximum contrast of ∆SD,T =1, repre-
senting the values of Saturation and Lightness on each particular stimuli for each
target and background configuration (showing as well the "l" and "s" chromaticities
in the lsY space [189] at 400 nm). In (a) and (b) there are represented the stimulus
for grey (unsaturated) and red (oversaturated) background respectively. Similarly,
but for blue targets, are represented the cases for both background conditions in (c)
and (d).

β= (90−α)(1−Ψ(1...N )) ≡ 90−θ−α≡ arctan(
∆SB ,D

∆LB ,D
), (2.9)

∆SD,T = |ST −SD | ≡ |∆SB ,T −∆SB ,D | ≡ |∆SB ,T − (∆SB ,D · t an(β))|, (2.10)

SD =
{

ST −∆SD,T if ST > SB

SB −∆SD,T otherwise
(2.11)

Taking into account these experiments, we wanted to analyze if these search
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Figure 2.8 – Representation of HSL values for distinct distractors (D), background
(B) and search target (T).

asymmetries are present when varying saturation of distractors with respect to a
search target. We will see if these differences between distractor and search target
are affected by changing background saturation at distinct target and distractor
hue (using the HSL color space). A set of stimulus was generated with circular
shaped items with a similar displacement to Rosenholtz experiment. Stimulus
was sorrounded with a vertical padding equal to the presented background in
order to prevent monitor-related luminance gradients. Contrast values can be
calculated according to the saturation differences between the search target (T)
and distractors (D). Two background (B) conditions were defined, corresponding to
Grey (achromatic and unsaturated), and Red (chromatic and oversaturated) colors.
At isoluminant (LD,T =0.75) and isohue conditions (HD,T =0 º for red and HD,T =240 º
for blue distractors), a representative measure of color contrast between the target
and distractors can be computed. This measure was named θ, being the angle
between the search target and distractors, with the background as the vertex of the
intersection. Same trigonometrical properties can apply using the same diagram
plotting B,T and D relationships at distinct quadrants (acknowledging that in our
case T is oversaturated for both conditions).

In Equation 2.6, is represented the absolute difference in lightness and sat-
uration between two distinct conditions. In Figure 2.8 there are the angles that
comprise the saturation and lightness contrast between our stimulus objects. Each
of these angles represent respectively to the triangles formed by B-T (α), B-D (β)
and D-T (θ), being α constant for constant background and target (Equations 2.7,
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2.8 and 2.9). Most importantly, θ represents the angle comprising the available
contrast between the distractor and the target. Given these angle calculations, it is
possible to represent the∆SD,T as the absolute saturation difference between D and
T (Equation 2.10), calculated by the parametrization of β using our psychometric
functionΨ(1...N ). That absolute saturation difference will define the criterion for
our distractor saturation SD as shown in Equation 2.11. There were generated 4
experimental conditions corresponding to unsaturated and saturated background
and red or blue hue. The value of θ is equivalent for saturated and unsaturated
background, corresponding to values of 0,9,18,35,44 and 53 º, producing saturation
differences (∆SD,T ) of 0,0.121,0.246,0.528,0.728 and 1.

Brightness Contrast (10) According to previous studies, searching a bright tar-
get is harder as luminance of distractors increase [220, 238, 300], with a distinct
response with respect to chromatic stimuli [210]. Conversely, salience increases for
a dark target when luminance of distractors is increased. It was parametrized as the
lightness contrast and stimuli was modeled using the HSL color space, considering
an achromatic (unsaturated) and isohue relationship between search target, dis-
tractors and background, using the same type of stimuli as in Color Contrast (9).
Here the target is gray (LT = 0.5) and background is bright (LB = 1) or dark (LB = 0).
In order to parametrize the contrast for this stimuli, we used the absolute lightness
difference between search target and distractors. In Figure 2.9 theta value is 0 º for
all cases, at 0 saturation, the lighness axis is parametrized.

(a) (b)

Figure 2.9 – Examples of distinct background conditions, (a) lighter background and
distractors at LD =0.66. (b) Dark background with distractors at LD =0.17. For both
conditions, the lightness of the search target is grey (LT =0.5). Absolute contrast for
these cases is ∆LD,T =0.33.

∆LD,T = |LD −LT | =
{
∆LB ,T (1−Ψ(1...N )) if LT > LB

∆LB ,T (Ψ(1...N )) otherwise
(2.12)
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LD =
{

LT −∆LD,T if LT > LB

LB −∆LD,T otherwise
(2.13)

Lightness differences Equation 2.12 are calculated by ∆LD,T , corresponding
to the absolute difference between target and background lightness (|∆LB ,T |) and
adjusted by our psychometric functionΨ(1...N ) with distinct distractor lightness
values of LD , depending on the absolute background lightness with respect the
target.

Size contrast (11) Dissimilarities in size of objects tend to drive increase or de-
crease search speed when detecting and discriminating salient regions [112, 248,
274, 310]. Here is presented size similarity between symmetric objects (circles,
without loss of generality). Each stimuli was generated with a set of 34 objects
randomly around the scene (Figure 2.10(a)). The search target has a distinct size
with respect to the distractors, with both cases of smaller and bigger sizes with
Ψ(1...N ,1.25,5)=[1.25,1.67,2.08,2.5,3.34,4.17,5]deg, being the size as the parame-
ter that defines the similarity contrast for this case, corresponding to a scaling factor
of 0.5 to 2 with respect to the baseline (2.5 deg).

(a) (b)

Figure 2.10 – Examples for salient targets with dissimilar size (a) and orientation
(b). For (a), the search target has a diameter of 5 deg (a factor of 2 with respect to
the rest of distractors). For (b), the orientation of the target is 90 º with distractors
at 0 º, forming an orientation contrast of ∆Φ=90 º.

Orientation contrast (12) For this setting, varying angle of objects is found to
increase search efficiency when angle contrast is increased [86, 159, 216, 217]. A
set of 34 bars were randomly displaced around the scene and oriented at 0 º, in
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which the search target is an equally-shaped bar oriented at a distinct angle (Figure
2.10(b)). Angle contrast between the search target and the set of distractors was
∆Φ(1,0)=[0,10,20,30,42,56,90]º Equation 2.4.

Distractor Heterogeneity (13) Previous design was to evaluate orientation simi-
larity, given a unique orientation for non-target distractors. Here is presented the
phenomenon of distractor heterogeneity. When several sets of distractors are dis-
similar with respect to the search target, mutual information between the target and
distractors is said to be heterogeneous. In the heterogeneous case, search efficiency
is lower, in other terms, target search is harder [17, 86, 101, 216, 267, 319, 359]. Dis-
tractor orientation heterogeneity, however, can be represented through distinct
configurations, either if the set of distractors are tilted to the same direction or
towards distinct directions. In this experiment, there is an array of bars oriented at
75 º (with a slope of 15 º with respect to the vertical quadrant). From two different
sets of distractors, are defined three conditions according to the distinct orientation
configurations: homogeneous, tilted-right and flanking (Figure 2.11). For the case
of homogeneous distractors, both set of distractors have a unique angle contrast
with respect to the target bar. For the case of tilted-right, both set of distractors
have an angle tilt of 15 and 30 º, φ(1,90,15,30). For the case of flanking, both sets of
distractors have an angle tilt of 15 º and −30 º respectively, having both positive and
negative tilt with respect the search target, φ(1,90,15,−30).

(a) (b) (c)

Figure 2.11 – Examples of distinct distractor angle configurations, corresponding to
(a) Homogeneous, (b) Tilted-right and (c) Flanking.

φ(v, a,c1,c2) = {Φ(v, a,c1),Φ(v, a,c2)}, (2.14)

∆φ(v, a,c1,c2) = {∆Φ(v, a,c1),∆Φ(v, a,c2)}. (2.15)
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For this type of stimuli, is defined the angle contrast from the search target to
two set of distractors, represented as contrasts from the first set "c1" and the second
set "c2" in Equation 2.15, being the maximum angle between distractors and search
target (considering that bars have angle values on two quadrants for each case) as
90 º. Our target angle will have values taken fromΦ(1,90) being parameterized with
contrast values ranging from 0 to 90 º, in order to reveal higher angle contrast values,
as heterogeneous distractors are harder to be identified.

Distractor Linearity (14) Orientation collinearity facilitates visual guidance when
orientation of target differs from its neighbors, making search efficient and in
parallel [216, 217, 359]. Visual guidance is induced by orientation linearity given an
array of bars as defined from the previous stimulus type. Each bar has been oriented
with a specific angle, creating a nonlinear pattern for the whole search array (Figure
2.12). A linear case has also been presented to compare the conspicuity baseline
from the other cases.

(a) (b) (c) (d)

Figure 2.12 – Examples of elicited guidance according to distinct linearity of the
distractors. In (a), distractors are set using the same angle contrast of 90 º with
respect to the target. Conversely, in (b),(c) and (d), nonlinear patterns are set at an
accumulative slope of 10, 20 and 90 º respectively.

ϕ(u,r ow,col ) = u · r ow +u · col , (2.16)

∆ϕ(v,u,r ow,col ) =Φ(v,0)+ϕ(u,r ow,col ). (2.17)

Angle contrast is calculated as the orientation difference from the corresponding
value of nonlinearity pattern "u" at a certain position on the array "row, col" with a
maximum angle contrast with respect to search target (Equations 2.16 and 2.17).

34



2.3. Stimuli

Distractor Categorization (15) Visual search for an oriented bar can be ineffi-
cient with distractors at 2 different orientations [101, 359]. However, it was found
that not all orientations present on an image are equally coded in pre-attentive
vision, different configurations of the orientations of the target and the distractions
lead to different discriminability [318]. Some of these orientation configurations
were categorized as "steep", in which search target is identified more efficiently.
Other categories of heterogeneous distractors presented harder target search and
were dependent on set size. The three categories were modeled, corresponding to
"steep", "steepest", "steep-right" as defined by Wolfe et. al. [361]. By considering
the same orientation contrast between the two sets of angles, target orientation
was parametrized in order to reveal at which orientation contrast is the target to
both types of distractors that form these categories. We have modeled these three
orientation configurations for each distractor pair, corresponding here to −50,50 º
for steep, −30,70 º for steepest, 20,80 º for steep-right (Figure 2.13). There was the
same amount of distractors for each condition as shown for search on Distractor
Heterogeneity (13) and Distractor Linearity (14) in order to uniquely analyze orien-
tation contrast and preserving similar stimulus type conditions. As shown in section
Distractor Heterogeneity (13), the orientation values for each set are computed with
Equation 2.14 and the contrast with respect to the target as Equation 2.15. The
maximum orientation contrast was calculated for all conditions at 40 º (v = 90/40)
considering the interference of bar orientation contrast in all quadrants (between
the target and both distractor orientations). Target angle had psychometric val-
ues of φ(v,90,−50,50) for steep, φ(v,90,−30,70) for steepest and φ(v,90,20,80) for
steep-right.

(a) (b) (c)

Figure 2.13 – Examples of distinct distractor angle configurations, corresponding to
(a) Steep, (b) Steepest and (c) Steep-right.
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2.4 Methods and Procedures

Participants

Thirty four subjects (11 female and 23 male) with normal or corrected-to-normal
vision took part in this experiment. Most participants were postdoc scholars and
PhD students (aged 21–47 years) from non-related fields of study. No economic
compensation for the experiments was given. Participants were allowed to wait
until they were comfortable with the eye tracking experimental setup in case they
had any kind of visual discomfort in between sessions, and they were allowed to
adjust the chair while laying on the chin-rest before the experiment. Participants
had to sign a consent form allowing the anonymous usage of the data captured
during the experiment.

Apparatus

The set of stimulus was presented on a LCD monitor (Samsung SyncMaster HMAQ935729)
of screen size 340x270 m m, a resolution of 1280x1080 px and a refresh rate of 60 Hz.
A color calibrator was used (Xrite i1 Display Pro) in order to set a specific luminance
for the monitor of 160 cd m−2, achieving the CIE Illuminant D65 according to the
ISO 3664:2000 standard condition (and recommended by Adobe RGB 1998 CIE and
ITU-R BT.500-11) with the whitepoint at x=0.313, y=0.329 and a gamma value of
2.2. The light conditions of the room were set using non-direct adjustable light,
measured at 30 lx using a luxmeter (TES1332).

We have used a SMI RED binocular eye tracker with a tracking resolution of
<0.1 deg, gaze position accuracy of <0.5 deg and a sampling rate of 50 Hz, set at
a distance of 600 m m towards the chin-rest (about 40 pixels per degree of visual
angle) and vertically equidistant with respect to the monitor, forming a slope of
19 deg from the horizontal axis. The monitor’s screen was at a vertical distance of
195 m m from the table and the observer’s point of view was adjusted to be centered
towards the screen. Fixation and saccade detection was based on SMI iView X
Event Detector software, capturing fixations at a minimum duration time of 80 m s
and maximum dispersion threshold value of 2 deg and saccades at a peak velocity
threshold of 75 deg/s [275][295, p. 243-247].

Procedure

The experiment was divided in one training and two full sessions. During the train-
ing session each participant performed a visual search task with 4 types of stimulus
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with feature and conjunctive search, combined with present and/or absent search
targets, hence to ensure their good performance in the next sessions. The first
session had a duration of about 20 minutes and was divided in 8 blocks, each one
corresponding to a free-viewing or visual search task. The second session had a
duration of about 25 minutes and was divided in 10 blocks, similar to the first ses-
sion. Each task in a block correspond to a distinct stimulus type (shown in Section
2.3) that was presented in a random order. Stimulus order was also randomized
across blocks (to avoid any stimulus-related priming [162]), and the location of
target distractors was distinct for each case in order to prevent oculomotor biases.

Participants performed two types of tasks: free-viewing and visual search (Figure
2.14). During free-viewing tasks, they were instructed to freely look at the stimuli
during 5000 m s. For the visual search task, they were instructed to look for a specific
target previously shown in an instruction slide. In case they could find the target,
they had to steer their gaze towards it during a dwell time of 1000 m s (the area of
interest was based on the target area with an horizontal and vertical spacing of
1 deg). In case they could not identify the target, they were instructed to press a spe-
cific key. Considering that context was distinct for each block (replicating stimulus
characteristics from previous studies), we decided to do a template target search
task instead of an odd-one-out type of task [13, 311]. Participants had unlimited
time for the visual search tasks, in this case for reporting target identification or
absence. Transitions between stimuli had a duration of 2000 m s (blank transition
without the presence of an onset cue) with a luminance equal to the stimuli in order
to preserve participant’s luminance and chromatic adaptation.

Free-viewing Visual Search

Figure 2.14 – Procedure for the presentation of the stimuli for each task type.

Mean pupil size was recorded to be 2.98 m m diameter for all samples and
there was a standard error of 0.18 m m mm between stimulus type, being almost
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constant throughout the experiment with no significant stimulus-related luminance
imbalance.

A 12 point calibration procedure was performed before each session, in which
participants were instructed to gaze a red dot moving along different directions. The
calibration showed mean deviations for all sessions of σx =0.57, σy =0.75 deg for the
left eye and σx =0.56, σy =0.82 deg for the right eye. Deviations for each participant’s
fixation and saccade data were computed using the data of the participant’s eye
that presented minimum deviation from calibration points in each session. We
did a pilot experiment with 4 participants in order to correctly design the visual
search procedure, thus, to test the final experimental design for trigger timing and
the difficulty of the tasks. That allowed us also to correctly parametrize the variables
corresponding to target-distractor contrast where the target was too hard to identify,
this parametrization will be shown in the next section.

Data Analysis

In order to get the spatial relevance of participant’s eye movements we generated
binary maps from fixation coordinates. Fixation density maps are computed with
a symmetric Gaussian low-pass filtering (with a window size of [6σ x 6σ]) of the
respective binary maps. A value ofσ= 1 deg was used, as recommended by LeMeur
and Baccino [180], corresponding in our case to 40 pixels. The saliency index (SI)
is a measure that relates the energy inside a specific region (that can be manually
selected, such as a pop-out region) and the one outside that region.

SI (St ,Sb) = St −Sb

Sb
. (2.18)

We adapted the metric from Spratling’s work [300] in order to present positive
values as a better representation of the SI (Equation 2.18). The distribution of
fixations inside (St ) and outside (Sb) the area of interest (AOI) will be extracted by
cropping the fixation density map using the mask presented on Figure 2.15.

For evaluating the SI for a specific sample, a binary visual mask of the salient
region (or AOI) needs to be manually created. Given samples at distinct fixation
or saccade number, it is possible to compute gaze-wise SI in order to evaluate the
temporal evolution of that measure. Such metric can provide a gold standard of
spatial performance in terms of how a region pops out with respect to the rest using
fixation density maps from recorded eye movements. In other words, measuring
the SI using the fixation density maps is the same as measuring the distribution
of fixations that have been recorded inside a particular region of an image. Same
parameters of the SI metric are preserved from previous studies [297]. Although
other parameters (such as mask area) could be included to better represent the
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(a) (b) (c)

Figure 2.15 – First row shows a grid with 8×10 circles, in which one of them becomes
salient because of having a superimposed bar. On the second row, the superim-
posed bar is located instead on the rest of circles (distractors). (a) Representation
of the mask, corresponding to the AOI of the search target in green (St ) and the
background in red (Sb). (b) Example of a scanpath of a single participant, repre-
senting each saccade with a green dashed line and each fixation number with a
diameter corresponding to its fixation duration. (c) Superposed density map from
the accumulation of fixations for all participants for such stimuli. The colorbar
represents the probability of the density distribution.

data, this could be a metric to be exploited in future studies.
In order to get the performance of participants on salient region localization, we

recorded the reaction time (RT) on landing inside the AOI. For the free-viewing tasks,
we recorded this RT from the initial fixation until the gaze landed inside the AOI.
Once a fixation was outside the AOI, we recorded the time until the gaze returned to
the AOI, being in this case produced by inhibition of return (IOR) mechanisms. For
the visual search tasks, we recorded in a similar way the first fixation inside the AOI
as well as visual discrimination. For this latter case, dwell fixations were pinpointed
as being inside the AOI during 1000 ms in order to report identification of search
targets. For the cases in which participants could not find the stimulus target, the RT
corresponded to key pressing. We used fixation data for reporting target localization
on both free-viewing and search tasks and the dwelling method for reporting target
identification for visual search tasks. In that way, it is possible to discard non-
representative fixations and saccades that could be present by other methods such
as key trigger, that could imply spatial and temporal deviations with respect to
both visual localization and identification. Given an image where salient regions
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are known, if the SI and the RT reproduce similar results at distinct tasks, feature
contrasts and stimulus types, the SI could provide a way to spatially measure how
salient is an object, considering specific regions as pop-out instead of using fixations
across the whole scene as ground truth. The usage of eye tracking experiments
and regions of interest for calculating localization RT instead of keyboard triggers
reveals a more accurate way for evaluating visual attention, as no temporal delays
are presented from the time since the participants see the search target to report that
they have seen it. That method also allows to prevent them to attend to other regions
outside the experimental source over time, such as looking towards the keyboard,
which can impair their perceptual adaptability (in terms of light sensitivity and
foveation).

2.5 Results

A total of 90,100 fixations were recorded over approximately 30 hours of viewing
time. The mean number of fixations per stimulus was M = 12±1, corresponding
to M = 15±1 for free-viewing (given from 5000 m s of viewing time) and M = 11±1
for visual search task stimulus (given from the total viewing time until the stimulus
trigger, corresponding to target identification). Mean fixation duration was M =
240±1 ms and it was not presenting significant differences from the two types of
tasks. See that both distributions of Fixation Duration (FD) and Saccade Amplitude
(SA) (Figure 2.16) were skewed to lower values with their upper and lower quartiles
at approximately 100 and 300 m s for FD and 2 and 5 deg of SA. We have also plotted
the CDF for both variables and results show that most eye movements (80%) have a
FD of less than 300 m s and SA tend to be shorter than 10 deg.

(a)
(b) (c) (d)

Figure 2.16 – (a) Distribution of Fixation Duration (FD), measured as the absolute
fixation time for all samples upon the probability of fixations. (b) Distribution of
Saccade Amplitude (SA), measured as the absolute euclidean distance between
saccade initiation and saccade landing all samples upon the probability of saccades.
(c,d) Cumulative Distribution Functions for FD and SA.
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The overall number of fixations was larger for images containing less salient
regions, categorized as hard, requiring more fixations for participants in stimulus
with less feature contrast. Localization probabilities were calculated, based on the
scanpaths in which participants’ gaze landed inside the corresponding AOI. Our
results report easiest targets more probable to be localized for both free-viewing
(p=6.2×10−4, Z=3.4, Peas y =0.38, Phar d =0.30) and visual search tasks (p=6.9×10−88,
Z=19.9, Peas y =0.72, Phar d =0.47). After calculating the reaction times for target lo-
calization (landing inside the AOI) and identification (reporting presence of target),
we discarded samples where RT >2σRT . In that manner we could counteract the
impact from oculomotor biases in relation to the localization time with respect
objects with approximately that size. As the search targets were smaller for most
visual search stimuli, hence less dependent to their respective distance from the
stimulus center, we did not discard the respective samples.

2.5.1 Performance upon Feature Type
(1st Hypothesis)

RTs for AOI localization are evaluated for each stimulus type and task respec-
tively. Since overall data do not follow a normal distribution (through lilliefors
test), Kruskal-Wallis tests were performed in order to evaluate task differences for
each contrast difficulty (easy vs hard) as well as differences in RT between distinct
type of stimuli. As feature contrasts follow distinct contrast values, we want to test
if some features have similarities in RT and their interactions. For each stimulus
type, the RT is different given the feature type for both free-viewing (Figure 2.17)
and visual search task stimuli (Figure 2.18).

For the former, there were significant differences (p=1.00 × 10−10, χ̃2=52.7,
Mdn(1)=523, Mdn(2)=615, Mdn(3)=604, Mdn(4)=736, Mdn(5)=684 m s) between
distinct stimulus types RTs, being Corner Angle (1) the fastest stimulus to localize the
salient region and Contour Integration (4) the slowest. For the latter, there were sig-
nificant differences (p=1.11×1074, χ̃2=372, Mdn(6)=782, Mdn(7)=742, Mdn(8)=942,
Mdn(9)=892, Mdn(10)=593, Mdn(11)=787, Mdn(12)=622, Mdn(13)=606, Mdn(14)=676,
Mdn(15)= 952 m s) on RTs for searching salient regions, showing highest perfor-
mance for Orientation Contrast (12) and Distractor Categorization (15) the lowest.
By computing the saliency index from the density maps across all fixations and the
stimulus masks, it is possible to spatially evaluate saliency (in terms of number of
fixations inside the window, represented as a heat map isotropically distributed
using a Gaussian filter) given from each stimulus types.

Similarly, there were significant differences on SI depending on stimulus types
for free-viewing (p=3.5×10−7, χ̃2=36, Mdn(1)=1.69×10−2, Mdn(2)=6.7×10−4, Mdn(3)=1.1×
10−3, Mdn(4)=2.2×10−3, Mdn(5)=1.2×10−3 and visual search (p=4.9×10−6, χ̃2=41,
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(a) (b)

Figure 2.17 – Plots for salient region localization time (a) and saliency index (b)
corresponding to stimulus types of Corner Angle (1), Segmentation by Angle (2),
Segmentation by Distance (3), Contour Integration (4) and Perceptual Grouping (5)

(a) (b)

Figure 2.18 – Plots for salient region localization time (a) and saliency index (b)
corresponding to stimulus types of Feature and Conjunctive Search (6), Search
Asymmetries (7), Noise/Roughness (8), Color Contrast (9), Brightness Contrast
(10), Size Contrast (11), Orientation Contrast (12), Distractor Heterogeneity (13),
Distractor Linearity (14) and Distractor Categorization (15).

Mdn(6)=32×10−3, Mdn(7)=1.4×10−2, Mdn(8)=8.0×10−3, Mdn(9)=1.8×10−2, Mdn(10)=4.0×
10−2, Mdn(11)=1.6×10−2, Mdn(12)=4.0×10−2, Mdn(13)=3.9×10−2, Mdn(14)=3.1×
10−2, Mdn(15)=13×10−3). Stimulus with higher SI for free-viewing task was Corner
Angle (1) and the lower was Visual Segmentation (2-3). For the case of visual search
task stimuli, most salient targets were on stimulus presented on Size (12) and Ori-
entation (13) contrast and the least ones on Noise/Roughness (8) and Distractor
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categorization (12) search.
Given the aforementioned results shown for Figures 2.17 and 2.18, RTs were

lower (faster) for stimuli with higher SI. The reverse case applies for lower RTs.
Target identification (when participats voluntarily report to identify the search
target, as explained in Section 2.4) was shown to be slower than target localiza-
tion (p<1.3×10−111,Z=−22.4, Mdnl ocal i zati on=726, Mdni denti f i cati on=1026 m s),
supporting the literature [274] [219] with an absolute mean time difference of
M=415±203 ms.

Discussion

We can observe that saliency is induced through varying distinct features of the im-
ages. Fixations from participants are shown to localize salient regions significantly
with distinct performance depending on feature type and the amount of fixations
are distributed or spread distinctively across these regions. These aforementioned
observations might be influenced by distinct processing (and correlates) of the
visual features in the HVS.

2.5.2 Performance upon Feature Contrast
(2nd Hypothesis)

Measures of RTs and SI for salient region localization were computed for each stim-
ulus target-distractor contrast. Overall RT data was not normally distributed, but
individual data per stimulus type was normally distributed. Mean RT and error
is represented according to the stimulus contrast as well as its mean SI. Spear-
man’s rank correlation tests show that there was a significant negative correla-
tion between RT and SI (ρRT,SI =−.44, pRT,SI =2.2×10−195), suggesting that SI is a
plausible measure for representing saliency on a particular region (higher SI and
lower RT implies faster localization speed). In that respect both RT and SI were
related to stimulus feature contrast (CT) measurements (shown on Section 2.3
and Figures 2.19,2.20 and 2.21). RT was negatively correlated with respect to CT
(ρC T,RT =−.14, pC T,RT =7.1×10−21). Conversely, SI was correlated with CT ρC T,SI =.05,
pC T,SI =3.4×10−3). These results show that both measurements were satisfying the
Weber Law (RT decreasing with higher CT and SI increasing with respect CT). Indi-
vidual results for correlations between each contrast measurement satisfy for most
cases the aforementioned relationships between CT and RT as well as CT and SI,
presented in Table 2.3.

We have plotted the relationships between RT and CT as well as for SI and CT
in order to see how CT varies localization performance for each stimulus feature
type individually (Figures 2.19,2.20 and 2.21). In these figures we can observe (in
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Table 2.3 – Table of correlations between contrast values (3rd column) with Reaction
Time (4th column), or with Saliency Index (5th column)

Feature type Contrast (CT) ρRT ρSI
(1) Corner Angle Slope(ž) .23* .53*
(2) Segment. Angle Angle,∆Φ(ž) -.33* .11
(3) Segment. Spacing Spacing(deg) .65* -.37*
(4) Contour Integration Length(deg) -.25* -.35*
(5) Perc. Grouping Distance(deg) .29* -.06
(6) Feat. & Conj. Search Set Size(#) .15* -.12*
(7) Search Asymmetries Set Size(#) -.33* -.39*
(8) Noise/Roughness Freq., 1/ f β -.56* .53*
(9) Color Contrast Sat.,∆SD,T -.57* .48*
(10) Brightness Contrast Light.,∆LD,T -.41* .25*
(11) Size Contrast Size(deg) -.55* -.29*
(12) Orientation Contrast Angle,∆Φ(ž) -.18* .05
(13) Distr. Heterogeneity Angle,∆Φ1c (ž) -.04 .17*
(14) Distr. Linearity Angle,∆Φ(ž) -.07 .01
(15) Distr. Categorization Angle,∆Φ1c (ž) -.24* .23*

*: p<.05

relation to Table 2.3) which feature targets are perceived in parallel or require a
serial ’binding’ step.

On (1-5) the Weber law applies for stimulus such as Corner Angle, showing
slower localization on smoother corners than sharper ones. For Visual Segmenta-
tion stimuli, segment localization was faster to be localized when segment angle
had a diagonal segment for both single and superimposed segments (due to its own
corner angle with respect to other segment bars), being single ones with a trend to
be more salient (p=1.2×10−2, χ̃2=6.3). Segments with 1.5 deg of segment distance
and 2.5 deg of bar length showed faster localization rate compared to wider seg-
ments. The Weber law applied as well for contour detection, being larger contours
faster to be localized. For Perceptual Grouping, similar shape distractors showed
slower localization rates as grouping distance is increased (lower proximity), but it
was not so evident for dissimilar distractors, being localized faster and with overall
higher SI. The Weber law did not apply for this case, suggesting that at a certain
proximity distance (about approximately 5.5 deg) participants fixated into several
regions, making them similarly salient. SI results on Corner Angle and Contour
Integration had positive correlations with respect RT (contradicting the general
case). That would be caused by the size of the masks (from stimulus salient objects),
which would be higher for higher stimulus contrasts, with decreasing absolute SI
(bigger masks would require more fixations when considering the same spatial
conditions). In that aspect, SI must be evaluated considering that the size of the
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(1) (2) (3) (4) (5)

Figure 2.19 – Plots of Reaction Times (top row) and Saliency Index (bottom row).
Spearman’s rank correlation tests were performed between RT and SI from each
stimulus type and participant individually, corresponding on each case to Cor-
ner Angle (1): ρ(1)=8.3 × 10−2, p(1)=.43, Visual Segmentation (2,3): ρ(2)=−.22,
p(2)=5.6×10−3; ρ(3)=−5.7×10−4, p(3)=.99, Contour Integration (4): ρ(4)=−5.1×10−2,
p(4)=.61 and Perceptual Grouping (5): ρ(5)=−.13, p(5)=.12. For this cases, we have
discarded samples in which participants had a fixation closer than 5 degrees of
eccentricity from the search target, corresponding to the higher visual acuity of the
fovea [303][341], as the RT calculation could be impaired by center biases.

(6) (7) (8) (9) (10)

Figure 2.20 – Plots of Reaction Times (top row) and Saliency Index (bottom row).
Spearman’s rank correlation tests were performed between RT and SI from each
stimulus type and participant individually, corresponding on each case to Feature
and Conjunction search (6): ρ(6)=−.59, p(6)=4.6×10−36, Search Asymmetries (7):
ρ(7)=−.45, p(7)=3.3×10−9, Noise/Roughness (8): ρ(8)=−.68, p(8)=5.5×10−33, Color
Contrast (9): ρ(9)=−.69, p(9)=1.5×10−72 and Brightness Contrast (10): ρ(10)=−.51,
p(10)=3.4×10−23.
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(11) (12) (13) (14) (15)

Figure 2.21 – Plots of Reaction Times (top row) and Saliency Index (bottom row).
Spearman’s rank correlation tests were performed between RT and SI from each
stimulus type and participant individually, corresponding on each case to Size
Contrast (11): ρ(11)=−.14, p(11)=9.7×10−2, Orientation Contrast (12): ρ(12)=−.41,
p(12)=2.7×10−8, Distractor Heterogeneity (13): ρ(13)=−.57, p(13)=3.5×10−41 and
Distractor Linearity (14): ρ(14)=−.57, p(14)=2.1×10−53 and Distractor Categoriza-
tion (15): ρ(15)=−.66, p(15)=2.9×10−59.

mask is constant, which is not the case for Corner Angle (1) and Contour Integration
(4). These center biases might be one of the reasons for the Weber law appliance
(presenting less agreement on RT and SI continuity upon feature contrast) as en-
dogenous visual guidance can generate higher inter-participant differences. A more
continuous slope for RT and SI observed for stimulus feature contrasts could be
acquired by using an onset cue and a constant distance between the initial fixation
and the stimulus target, but that method could generate oculomotor biases with
respect to the possible positions distinct from the center (that could also vary the
temporality of the fixations with respect to the center distance). An alternative
solution that would partly solve the problem (as distance from the initial fixation
and the stimulus target would still not be totally constant) would be to acquire a
larger amount of observations at distinct randomized regions for each stimulus
contrast and stimulus type [367][368].

Feature search show a faster localization of the target than conjunctive search
(Figure 2.20), with an almost constant RT with respect to set size (features pro-
cessed in parallel). Conjunction search reveal slower localization of stimulus targets
(p=2.5×10−24, χ̃2=104) as we increase distractor number (consequently, features
being shown to be processed in a serial manner), likewise with lower SI. Similarly, re-
porting stimulus absence presented similar response time distributions, presenting
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conjunctive distractors to be more uncertain for reporting absence (p=1.9×10−36,
χ̃2=159) than feature search ones. Searching a target circle among circle distractors
with a superimposed bar show lower performance at increasing scale and set size
(p=6.2×10−33, χ̃2=143), reversely, searching a target circle with a superimposed bar
among circles shows more constant performance, revealing that search asymme-
tries for this case apply. SI also reveals search asymmetries with respect these two
types of stimuli, however, the SI is lower for the former case.

The Weber law is present for the case of background roughness, showing a
decrease in search performance and SI at low beta values (rougher surfaces). Both
conditions of height deviation (σRMS =0.9,1.1) present similar performance with
both metrics, with a trend of better search efficiency for higher RMS values. When
searching a target with higher saturation contrast with respect distractors, both
search performance and SI is higher than with lower saturation contrasts. Back-
ground conditions present a trend to drive search asymmetries, showing faster
localization RTs and SI for unsaturated backgrounds. In that aspect, achromatic
backgrounds presented faster localization for both red (p=3.8× 10−9) and blue
distractors (p=2.1×10−4). SI is shown to be higher for red hue in contrast to blue
hue for search target and distractors. Lightness contrast also conforms with the
Weber law, similarly to saturation contrast but with higher overall performance.
Lighter backgrounds with darker search targets present a trend to have higher SI
with respect to darker backgrounds with lighter salient objects.

Results on size similarity reveal increased search efficiency with respect to size
contrast, with a tendency of perceiving bigger objects as more salient than smaller
ones for both localization time and saliency index as in Figure 2.21. Similarity
on orientation also shows increased search efficiency with respect angle contrast,
with diagonal angles localized faster than vertical or horizontal ones. Orientation
contrast has been found to have high search efficiency, specially with diagonal
angles and homogeneous angle organization for distractors. In contrast, heteroge-
neous set of distractor angles present a lower search efficiency with respect to the
homogeneous ones. Homogeneous distractors were significantly localized faster
for heterogeneity at distinct angle quadrant configurations (flanking) p=1.0×10−9

but not for heterogeneous distractors with angle configurations at the same quad-
rant (tilted-right) p=.63. Another distinct type of orientation-related guidance
is distractor linearity, presenting differences depending on each slope condition
(p=1.3×10−35, χ̃2=165). Non-linear orientation patterns at a slope increment of
20 º present lower search efficiency than the ones at 10 º and 90 º. The latter case
presents a slightly lower search efficiency at vertical or horizontal orientations due
to its similar orientation interactions between the target and one of the distrac-
tor sets. Results suggest that both the amount of distractor sets and each of their
orientation contrasts with respect to search target might be the source of overall
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distinctiveness for non-linear orientation patterns. Results related with orientation
pattern categorization report overall higher SI and a trend for faster localization rate
for steep orientation organization than steepest (p=8.4×10−2) and significant with
respect to steep-right (p=1.2×10−5), confirming that search asymmetries apply for
this case considering that three conditions possess the same orientation contrast
between the two distractor sets.

Discussion

In this study we show that feature contrast is correlated to saliency using distinct
measures and feature types, being saliency higher at higher feature contrasts. By
using visual search tasks and synthetic images, there is a better control of exogenous
cues by reducing endogenously-dependent guidance. It is about to consider that
the SI is a good measure for evaluating saliency for specific areas of interest.

2.5.3 Attention changes nonlinearly over time (3rd Hypothesis)

Values of FD and SA were grouped for each gaze as functions of viewing time. In
Figure 2.22(a,b), during the first 1 to 2 seconds, fixations have a larger duration
for visual search tasks. For the visual search task, fixations have a duration with
a peak at 274 m s during the beginning of the experiment and progressively drop
during the end of the stimulus view to 217 after 5000 m s of viewing time. In free-
viewing tasks, FD remains stable after the first and second fixation at approximately
202 m s. For the SA on both tasks there is a peak for the first saccade between 6.5
and 7 deg. During the first and second gaze, SA drops to a value between 5.5 and
6 deg and increase during 1 second to amplitudes between approximately 6 and
6.5 deg. During the last gazes, after 2 seconds of viewing time, SA progressively
drops during the rest of viewing time. Such behavior occurs similarly for both visual
search and free-viewing cases, these patterns might also be related to endogenous
factors commented previously. These distinct eye movement patterns might be
related to how participants approach targets depending on task priors and show an
overview of how relevant is to account for temporal properties when evaluating eye
movements.

SI was computed using the density maps across fixation number Figure 2.22(c),
it decreases with respect to fixation number, being the first fixations (from the 1st
to the 5th) the ones that have higher SI (accounting for fixations inside the salient
region). Inhibition of return (IOR) mechanisms might be responsible for the afore-
mentioned effects. IOR was present and we believe that it may have influenced both
types of tasks. To know that, mean return saccade time was computed, correspond-
ing to the time spent from the first fixation inside the AOI to the second fixation
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that returned inside the AOI, which was M=16.6±0.9×102 ms, corresponding to
M=14.1±0.5×102 ms for Free-Viewing and M=18.6±1.5×102ms for Visual Search
tasks respectively.

(a) (b) (c)

Figure 2.22 – (a) Temporal evolution (from 0 to 5000 m s) of fixation duration. (b)
Temporal evolution (from 0 to 5000 m s) of saccade amplitude. For both plots,
samples corresponding to free-viewing task fixations and saccades are represented
in red and blue for the case of Visual Search. (c) Mean saliency index upon fixation
number.

Discussion

The temporal evolution of fixation and saccade behavior reveal distinct patterns of
eye movements upon viewing time , confirming the evidence that visual attention
is an active process and its modeling involving temporality requires further investi-
gation. Scanpath prediction could allow the reproduction of the aforementioned
effects, regarding in that aspect both bottom-up and top-down processing of visual
features that distinctively guide visual attention [39][165][66][202][1][3][344][356][351].
In that aspect, as saliency decreases over time, saliency evaluation measures should
be done in that line.

2.5.4 Task influences perceived attention
(4th Hypothesis)

Distinct eye movement behavior in terms of FD and SA was presented depend-
ing on each task type (Section 2.5.3). Task priors also influenced the localization
performance in relation to feature contrast.

First, Wilcoxon signed-rank tests were performed to evaluate the amount of fixa-
tions between easy and hard targets and was found to be lower for easy than for hard
targets in the visual search task (p=2.1×10−147, Z=−26, Mdneas y =4, Mdnhar d =7),

49



Chapter 2. Psychophysical evaluation of individual low-level feature influences in
visual attention

but there was no difference for the case of the free-viewing task (p=.069, Z=−0.1,
Mdneas y =15, Mdnhar d =16). There were differences in FD between the easy and
hard targets for visual search (p=3.6×10−36, Z=13, Mdneas y =199, Mdnhar d =179
ms), but it was not occurring for free-viewing tasks (p=.57, Z=.57, Mdneas y =199,
Mdnhar d =199 ms). Same phenomena was presented for SA, in which there was
a significant difference depending on the stimulus contrast difficulty for visual
search (p=1.7×10−56, Z=−16, Mdneas y =3.9, Mdnhar d =4.7 deg) but not for the case
of free-viewing (p=.069, Z=−1.8, Mdneas y =3.9, Mdnhar d =4.1 deg). These results
evidence less dependence from low-level feature contrasts for free-viewing tasks
in contrast to visual search tasks, acknowledging that participants are not always
exogenously guided to gaze towards salient regions for free-viewing tasks, namely,
that endogenous factors are prevailing more in this kind of task, making saliency
less accurate spatially and temporally.

Second, we observed the correlations of RT, SI and feature contrast (FC), de-
scribed in Section 2.5.2. Here we define FC asψ values for considering a generalized
feature contrast, as CT values vary between blocks, but FC values do not. For visual
search stimuli, RT was negatively correlated with SI (ρRT,SI =−.59, pRT,SI =.00), FC
was negatively correlated with RT (ρFC ,FC =−.08, pFC ,RT =6.4×10−7) but positively
correlated with SI (ρFC ,SI =.05, pFC ,SI =2.4×10−3). For free-viewing stimuli, there was
a significant negative correlation between RT and SI (ρRT,SI =−.16, pRT,SI =1.2×10−4),
a negative correlation between FC and RT (ρFC ,RT =.26, pFC ,RT =6.5×10−10) but the
relationship with respect feature contrast and SI was non-significant (ρFC ,SI =−.04,
pFC ,SI =.32). Distinct behavior is presented on the regression lines shown in Fig-
ure 2.23 the relationships from RT and SI with respect to CT (here represented
as a unique contrast value, although calculated for each contrast measurement
separately as in Table 2.3) for both tasks.

(a) (b) (c)

Figure 2.23 – Scatter plots of Reaction Time (a), Saliency Index (b) and Distance
from center (c) upon feature contrast (Ψ). We represented the mean of each feature
type separately and we have plotted the regression line for both tasks.
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Discussion

Salient region localization performance varies with respect to feature contrast
depending on the task. Fixation duration and saccade amplitude are affected more
by stimulus contrast on Visual Search than Free-Viewing tasks. Moreover, the center
bias seems to be more present for Free-Viewing tasks. Further analysis of interest
would be the evaluation of absolute task differences in localization performance. In
that respect, we could present the same stimuli with several observations for each
feature contrast and distinct cueing, so that to see the absolute influences from
endogenous guidance for each distinct feature type and contrast.

2.5.5 Center biases are endogenous
(5th Hypothesis)

The center bias was represented by grouping fixations for all samples and repre-
senting the density map shown in Figure 2.25. From such baseline, it is possible to
estimate the mean euclidean distance from every fixation to the baseline center
(DC). This baseline shows increasing spreadity and area with respect to fixation
number and consequently with respect time. In Figure 2.24 there is the DC as a
function of viewing time (centroid was computed as a unique point corresponding
to the initial fixation baseline). From this plot, we can observe that participants
move their eyes away from the center of the stimulus after the first and second
fixation, between 10 and 11 deg. After 2 seconds of viewing time, mean distance
from baseline center is nearly constant for the visual search case but not for the
free-viewing case. For the latter, fixations get become closer to the baseline center
showing increasing patterns of center bias for this task, similarly to SI (Figure 2.22),
which increases during the first fixations and drops on late fixations.

DC was negatively correlated with FD (ρ=−.08, p=3.9×10−134) and positively
correlated with SA (ρ=.08, p=1.4×10−148). Here, short fixations and large saccades
might be eye movement patterns highly related to saliency (as being negatively
correlated to the center bias). By computing the mean per stimulus for the case of
FC, it is possible to compare how DC was affected by feature contrast Figure 2.23c.
For Free-Viewing task, DC was significantly negatively correlated with FC (ρ=−.13,
p=2.6×10−3). For Visual Search task, DC was not significantly correlated with FC
(ρ=−.03, p=.07). Acknowledging that stimulus targets were randomized, feature
contrast was decreasing the center bias (increasing DC) more on Visual Search tasks
than for Free-Viewing tasks, supporting the literature stated in Section 2.1.5.

We have added in Table 2.4 the correlations between DC and FC for each feature
individually. Most cases of singleton search (i.e. 6-15) show a significant negative
correlation between DC and FC, meaning, when the feature contrast is higher, the
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Figure 2.24 – Representation of the center bias as the mean euclidean distance
between fixation localization and the baseline center.

Initial 1st 5th 10th 20th

Figure 2.25 – Representation of the density map for all fixations grouped together
across all stimuli.

center bias is lower.

Discussion

Short saccades and large fixation durations are shown to be correlated with eye
movement behavior related to the center bias. Temporality of fixations show a
non-linear evolution of the center bias, showing more dispersion with respect to
viewing time. Moreover, distance from center In that aspect, saliency would not only
need to be evaluated by adjusting metric performances using metrics that account
for the aforementioned center biases [380][46][33][358][223], but also upon the
importance of temporality on fixation and saccade characteristics, by computing
each metric upon gaze number on each stimulus fixational data. Thus, saliency
metrics should account for feature contrast and minimize the contextual effects in
order to accurately reproduce eye movement behavior.
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Table 2.4 – Table of correlations between Feature Contrast (FC) with Distance from
baseline center (DC)

Feature type ρψ,DC
(1) Corner Angle -.004
(2) Segment. Angle -.32*
(3) Segment. Spacing -.16
(4) Contour Integration .012
(5) Perc. Grouping -.07
(6) Feat. & Conj. Search -.34*
(7) Search Asymmetries .24*
(8) Noise/Roughness -.29*
(9) Color Contrast -.12*
(10) Brightness Contrast .66*
(11) Size Contrast -.31*
(12) Orientation Contrast -.18*
(13) Distr. Heterogeneity .21*
(14) Distr. Linearity -.28*
(15) Distr. Categorization -.03

*: p<.05

2.6 General Discussion

Given the presented results, we emphasize that saliency is influenced by a variety
of factors when observing eye movement behavior. In this study is presented a
dataset considering all the aforementioned factors, by evaluating eye movements
for distinct feature types, contrasts, temporality, task and representing the center
biases. First, scene context (here defined as different feature types) is known to
affect attention with specific performance, significantly determining efficiency of
localizing and/or identifying salient regions. Second, saliency measures are shown
to be correlated to feature contrast and distinctively depending on feature type.
Third, fixation and saccade characteristics are presented to evolve non-linearly over
time, making saliency decrease with respect saccade number and/or viewing time.
Fourth, visual search tasks show higher performance in comparison to free-viewing
on our saliency measurements and they have a higher correlation with respect
saliency and feature contrast. Fifth, the central bias is shown to be correlated to
short saccades and long fixation durations.

Eye movements are a behavioral output that imply processing of both endoge-
nous and exogenous factors, namely, that have both top-down tuning and bottom-
up interactions at different levels of the HVS. Thus, eye movement prediction might
require recurrent processing of information from the ventral and dorsal pathways
of the HVS, generating a unique representation for eye movement control (visual

53



Chapter 2. Psychophysical evaluation of individual low-level feature influences in
visual attention

priority) [172][73][93]. If the unique factor to be evaluated is early saliency, stimulus
in which features are processed fast and in parallel would be more relevant when
evaluating eye movement prediction (showing less inter-participant differences as a
consequence of higher SI), namely, the ones with salient regions that are reflectively
selected and separated from the background (with higher contrasts with respect
the rest of the scene).

Further considerations

Current literature acknowledges that temporal patterns of saccades have been
shown to be fovea-dependent and lately classified as focal and ambient, being
ambient fixations responsible for early saccades (sensitive to peripheral signals) and
the latter for later saccades (being these ones foveal) [331][232][98][89]. Similarly
with saccade latencies, a bimodal latency distribution distinguishes regular from
express saccades [277][280][298][332]. We have to acknowledge that the usage
of an eye tracker with higher sampling rate (e.g. above 250 Hz) would improve
accuracy in this type of experimentation, especially for a possible microsaccadic
analysis. Distinct eye movement behavior is presented to be dependent as well
for saccade length, pupil dilation and eye vergence [247][205][91][343][249]. All of
these factors should be considered in future visual attention modeling considering
their relationships with the two-stream hypothesis [333][18][322][292] in order to
specify the experimental conditions for a better evaluation of uniquely bottom-up
visual attention.

Future work

Future experimentation for low-level feature analysis in eye movements would be to
explore covert attention influences varying some of the presented feature contrasts
at distinct eccentricities [63][62][60]. Another observation of interest would be
the evaluation of task differences in localization performance. In that respect, to
present the same stimuli with several observations for each feature contrast and
distinct cueing would reveal absolute influences from endogenous guidance. Our
study could be extended by analyzing the influence of dynamic scenes on saliency
modeling [175][258] using synthetic videos with both static or dynamic camera.
In that direction, it would be able to see the interaction between low-level visual
features and temporally-variant features. Another remark would be to see the
impact of the target template search in comparison to the odd-one out type of tasks,
in this case, but for stimuli with similar display conditions but distinct feature type.

Physiological evidence could provide an explanation for the low-level feature
processing, including both bottom-up and top-down computations reproducing
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the presented effects not only spatially but temporally. Computations made by the
visual cortex that process these low-level features (in reference to the mechanisms
that respond distinctively to color, orientation and spatial sensitivities as well as
their interactions) might be responsible for most if not all of the effects presented
in this study. Further analysis on mid and high-level features would require further
study in terms of their relation to psychophysical effects on eye movements as well
as their biological foundations [164].
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3 SID4VAM: Synthetic Image Dataset for Vi-
sual Attention Modeling

3.1 Objectives

Visual saliency is a term coined on a perceptual basis. According to this principle, a
correct modelization of saliency should consider specific experimental conditions
upon a visual attention task. The output of such a model can vary for stimulus or
task, but must arise as a common behavioral phenomena in order to validate the
general hypothesis definition from Treisman, Wolfe, Itti and colleagues [145, 321,
365]. Eye movements have been considered the main behavioral markers of visual
attention. But understanding saliency means not only to prove how visual fixations
can be predicted, but to simulate which patterns of eye movements are gathered
from vision and its sensory signals (here avoiding any top-down influences). This
challenge offers eye tracking researchers to consider several experimental issues
(with respect contextual, contrast, temporal, oculomotor and task-related biases)
when capturing bottom-up attention, largely explained by Borji et al. [41], Bruce
et al. [51] and lately by Berga et al. [23]. Computational models advance several
ways to predict, to some extent, human visual fixations. However, the limits of the
prediction capability of these saliency models arise as a consequence of the validity
of the evaluation from eye tracking experimentation. We aim to to provide a new
dataset with uniquely synthetic images and a benchmark, studying for each saliency
model:

1. How model inspiration and feature processing influences model predictions?

2. How does temporality of fixations affect model predictions?

3. How low-level feature type and contrast influences model’s psychophysical
measurements?
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3.2 Previous and current literature

In order to determine whether an object or a feature attracts attention, initial
experimentation was assessing feature discriminability upon display characteristics
(e.g. display size, feature contrast...) during visual search tasks [321, 359, 365].
Parallel search occurs when features are processed preattentively, therefore search
targets are found efficiently regardless of stimulus properties. Instead, serial search
happens when attention is directed to one item at a time, requiring a "binding"
process to allow each object to be discriminated. For this case, search time decrease
with feature contrast or set size (following the Weber Law [92]).

Table 3.1 – Characteristics of eye tracking datasets

A: Real Images

Dataset Task # TS # PP PM DO
Toronto [50] FV 120 20 3

MIT1003 [151] FV 1003 15 3
NUSEF [252] FV 758 25 3

KTH [160] FV 99 31 3
MIT300 [150] FV 300 39 3
CAT2000 [42] FV 4000 24 3

B: Psychophysical Pattern / Synthetic Images

Dataset Task # TS # PP PM DO
iLab USC [145] - ~540 - 3

UCL [385] VS & SG 2784 5 3
VAL Harvard [367] VS 4000 30 3

ADA KCL [300] - ~430 - 3
CAT2000p [42] FV 100 18 3

SID4VAM (Ours) FV & VS 230 34 3 3

TS: total number of stimuli, PP: participants, PM: Parametrization, DO: Fixation data is
available online, FV: Free-Viewing, VS: Visual Search, SG: visual segmentation

More current studies replicated these experiments by providing real images with
parametrization of feature contrast and/or set size (iLab USC, UCL, VAL Hardvard,
ADA KCL), combining visual search or visual segmentation tasks, however not pro-
viding eye tracking data (Table 3.1B). Rather, current eye movement datasets provide
fixations and scanpaths from real scenes during free-viewing tasks. These image
datasets are usually composed of real image scenes (Table 3.1A), either from indoor
/ outdoor scenes (Toronto, MIT1003, MIT300), nature scenes (KTH) or semantically-
specific categories such as faces (NUSEF) and several others (CAT2000). A complete
list of eye tracking datasets is in Winkler & Subramanian’s overview [355]. CAT2000
training subset of “Pattern" images (CAT2000p ) provides eye movement data with
psychophysical / synthetic image patterns during 5 sec of free-viewing. However,
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no parametrization of feature contrast nor stimulus properties is given. A synthetic
image dataset could provide information of how attention is dependent on feature
contrast and other stimulus properties with distinct tasks.

3.3 Dataset

As explained in [Chapter 2], fixations were collected from 34 participants in a dataset
of 230 images 1. Images were displayed in a resolution of 1280×1024 px and fixations
were captured at about 40 pixels per degree of visual angle using SMI RED binocular
eye tracker. The dataset had been splitted in two tasks: Free-Viewing (FV) and
Visual Search (VS). For the FV task, participants had to freely look at the image
during 5 seconds. On each stimuli there was a salient area of interest (AOI). For
the VS task, participants had the instruction to visually locate the AOI, setting the
salient region as the different object. For this task, the trigger for prompting the
transition to next image was by gazing inside the AOI or pressing a key (for reporting
absence of target). We can observe the stimuli generated for both tasks on Figs.
3.1-3.2.

The dataset was divided in 15 blocks, 5 corresponding to FV and 10 to VS. Some
of these blocks had distinct subsets of images (due to the alteration of either target
or distractor shape, color, configuration and background properties), abling a total
of 33 types of stimuli. Each of these blocks was individually generated as a low-level
feature category, which had its own type of feature contrast between the salient
region and the rest of distractors / background. FV categories were mainly based for
analyzing preattentive effects (Fig. 3.1): 1) Corner Salience, 2) Visual Segmentation
by Bar Angle, 3) Visual Segmentation by Bar Length, 4) Contour Integration by Bar
Continuity and 5) Perceptual Grouping by Distance. VS categories were based on
a feature-singleton search stimuli, where there was a unique salient target and a
set of distractors and/or altered background (Fig. 3.2). These categories were: 6)
Feature and Conjunctive Search, 7) Search Asymmetries, 8) Search in a Rough Sur-
face, 9) Color Search, 10) Brightness Search, 11) Orientation Search, 12) Dissimilar
Size Search, 13) Orientation Search with Heterogeneous distractors, 14) Orientation
Search with Non-linear patterns, 15) Orientation search with distinct Categorization.
Stimuli for SID4VAM’s dataset was inspired by previous psychophysical experimen-
tation [300, 359, 385].

Dataset stimuli were manually generated with 7 specific instances of feature
contrast (Ψ), corresponding to hard (Ψh = {1..4}) and easy (Ψe = {5..7}) difficulies of
finding the salient regions. These feature contrasts had their own parametrization
corresponding to the feature differences between the salient target and the rest of

1Download dataset: http://www.cvc.uab.es/neurobit/?page_id=53
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1)

2)

3)

4)

5)

1 2 3 4 5 6 7
hard ←−Ψ −→ easy

Figure 3.1 – Free-Viewing stimuli: 1) Corner Angle, 2-3) Visual Segmentation, 4)
Contour Integration and 5) Perceptual Grouping

distractors (e.g. differences of target orientation, size, saturation, brightness...) or
global effects (e.g. overall distractor scale, shape, background color, background
brightness).2

2Code for generating synthetic stimuli: https://github.com/dberga/sig4vam
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6)

7)

8)

9)

1 2 3 4 5 6 7
hard ←−Ψ −→ easy

Figure 3.2 – Visual Search stimuli: 6) Feature and Conjunctive Search, 7) Search
Asymmetries, 8) Roughness, 9-10) Color and Brightness contrast, 11) Size contrast,
12) Orientation contrast in 13) Heterogeneous, 14) Nonlinear and 15) Categorical
search.
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10)

11)

12)

13)

14)

15)

1 2 3 4 5 6 7
hard ←−Ψ −→ easy
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3.4 Methods and Procedure

Fixation maps from eye tracking data are generated by distributing each fixation
location to a binary map. Fixation density maps are created by convolving a gaussian
filter to the fixation maps, this simulates a smoothing caused by the deviations of
σ=1 deg given from eye tracking experimentation, recommended by LeMeur &
Baccino [180].

Typically, location-based saliency metrics (AUC Judd , AUCBor j i , NSS) increase
their score fixation locations fall inside (TP) the predicted saliency maps. Con-
versely, scores decrease fixation locations are not captured by saliency maps (FN) or
when saliency maps exist in locations with no present fixations (FP). In distribution-
based metrics (CC, SIM, KL), saliency maps score higher when they have higher
correlations with respect to fixation density map distributions. We have to point
out that shuffled metrics (sAUC, InfoGain) consider FP values when saliency maps
coincide with other fixation map locations or a baseline (here, corresponding to
the center bias), which are not representative data for saliency prediction. Pre-
diction metrics and its calculations are largely explained by Bylinskii et al. [55].
Our saliency metric scores and pre-processing used for this experimentation have
been replicated from the official saliency benchmarking procedure [54]. Psychome-
tric evaluation of saliency predictions has been done with the Saliency Index (SI)
[297, 300]([Equation 2.18]. Model evaluations have been divided according to its
inspiration and prediction scores have been evaluated with saliency metrics and in
psychophysical terms.

3.5 Results on predicting fixations

Previous saliency benchmarks [43, 51, 53, 54, 256] reveal that Deep Learning models
such as SALICON, ML-Net SAM-ResNet, SAM-VGG, DeepGazeII or SalGan score
highest on both shuffled and unshuffled metrics. In this section we aim to evalu-
ate whether saliency maps that scored highly on fixation prediction do so with a
synthetic image dataset and if their inspiration influences on their performance.
We present metric scores of saliency map predictions of the whole dataset in Table
3.2 and plots in Fig. 3.3. Saliency metric scores reveal that overall Spectral/Fourier-
based saliency models predict better fixations on a synthetic image dataset.
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Figure 3.3 – Plots for saliency metric scores for SID4VAM dataset
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Image

Humans

AWS

NSWAM

RARE

CASD

GBVS

SDSR

WMAP

HFT

OpenSALICON

SAM-ResNet

Figure 3.4 – Examples of dataset stimuli and saliency map predictions. Only two
models for each inspiration category that presented highest performance with
shuffled saliency metric scores (sAUC and InfoGain) are shown.

Models such as HFT and WMAP remarkably outpeform other saliency models.
From other model inspirations, AWS score higher than other Cognitive/Biologically-
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inspired models, GBVS and CASD outperform other Probabilistic/Bayesian and
Information-theoretic saliency models respectively. For Deep Learning models,
SAMResNet and OpenSALICON are the ones with highest scores. Although there are
present differences in terms of model performances and model inspiration, simi-
larities in model mechanisms can reveal phenomena of increasing and decreasing
prediction statistics. This phenomena is present for Spectral/Fourier-based and
Cognitive/Biologically-inspired models, withwhom all present similar performance
and balanced scores throughout the distinct metric scores. It is to consider that
sAUC and InfoGain metrics are more reliable compared to other metrics (which
the baseline center gaussian sometimes acquires higher performance than most
saliency models). In these terms, models shown on Fig. 4.6 are efficient saliency pre-
dictors for this dataset. We can also point out that models which process uniquely
local feature conspicuity scored lower on SID4VAM fixation predictions, whereas
the ones that processed global conspicuity scored higher. This phenomena might
be related with the distinction of foveal (near the fovea) and ambient (away from the
fovea) fixations, relative to the fixation order and the spatial locations of fixations
[89, 98]. The evaluation of gaze-wise model predictions has been done by grouping
fixations of every instance separately. We have plotted results of the s AUC saliency
metric for each model (Fig. 3.5) and it is observable that model performance de-
crease upon fixation number, meaning that saliency is more likely to be predicted
during first fixations. For evaluating the temporal relationship between human and
model performance (s AUC ), we have performed Spearman’s (ρ) correlation tests
for each fixation and it can be observed that IKN, ICL, GBVS, QDCT and ML-Net
follow a similar slope as the GT, contrary to the case of the baseline center gaussian.
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Table 3.2 – Saliency metric scores for SID4VAM

Model AUCj AUCb CC NSS KL SIM sAUC InfoGain

GT 0.943 0.882 1.000 4.204 0.000 1.000 0.860 2.802
Baseline-CG 0.703 0.697 0.281 0.722 1.577 0.372 0.525 -0.189

IKN 0.686 0.678 0.283 0.878 1.748 0.380 0.608 -0.233
SIM 0.650 0.641 0.189 0.694 1.702 0.357 0.619 -0.148
AWS 0.679 0.667 0.255 1.088 1.592 0.373 0.672 0.013

NSWAM 0.614 0.610 0.136 0.529 1.686 0.335 0.622 -0.150
AIM 0.570 0.566 0.122 0.473 14.472 0.224 0.557 -18.182
ICL 0.737 0.717 0.343 1.100 1.788 0.405 0.624 -0.313

RARE 0.707 0.622 0.204 1.046 1.736 0.444 0.633 -0.158
CASD 0.733 0.669 0.408 1.904 2.395 0.403 0.652 -1.046
GBVS 0.747 0.718 0.400 1.464 1.363 0.413 0.628 0.331
SDLF 0.620 0.607 0.156 0.585 3.954 0.322 0.596 -3.244
SUN 0.542 0.532 0.080 0.333 16.408 0.165 0.530 -21.024
SDSR 0.672 0.665 0.192 0.639 1.904 0.365 0.642 -0.467
BMS 0.677 0.643 0.274 1.143 2.306 0.397 0.627 -0.958
ICF 0.618 0.566 0.141 0.700 3.274 0.306 0.564 -2.300
SR 0.748 0.694 0.420 1.916 1.432 0.431 0.685 0.348

PFT 0.705 0.692 0.398 1.885 2.227 0.377 0.684 -0.893
PQFT 0.701 0.693 0.387 1.774 2.197 0.373 0.684 -0.856

FT 0.521 0.518 0.072 0.331 7.552 0.129 0.517 -8.498
DCTS 0.729 0.724 0.439 2.004 1.363 0.396 0.708 0.337

WMAP 0.729 0.709 0.468 2.136 2.283 0.397 0.709 -0.981
QDCT 0.717 0.706 0.425 1.986 1.677 0.391 0.695 -0.105
HFT 0.771 0.746 0.538 2.161 1.295 0.467 0.682 0.448

SalGAN 0.715 0.662 0.287 0.883 2.506 0.373 0.593 -1.350
OpenSALICON 0.692 0.673 0.284 0.956 1.549 0.375 0.615 0.052

DeepGazeII 0.639 0.606 0.176 0.714 2.023 0.346 0.597 -0.587
SAM-VGG 0.537 0.523 0.026 0.070 11.947 0.216 0.503 -14.954

SAM-ResNet 0.727 0.673 0.305 0.967 2.610 0.388 0.600 -1.475
ML-Net 0.700 0.676 0.283 0.883 2.169 0.373 0.595 -0.837

Cognitive/Biological , Information-Theoretic , Probabilistic , Fourier/Spectral ,

Machine/Deep Learning
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Figure 3.5 – sAUC gaze-wise prediction scores.

3.6 Results on psychophysical consistency

Previous studies [23, 41, 51] found that several factors such as feature type, feature
contrast, task, temporality of fixations and the center bias alternatively contribute
to eye movement guidance. The HVS has specific contrast sensitivity to each stim-
ulus feature, so that saliency models should adapt in the same way in order to be
plausible in psychometric parameters. Here we will show how saliency prediction
varies significantly upon feature contrast and the type of low-level features found in
images. In Fig. 3.6a is found that saliency models increase SI with feature contrast
"Ψ" following the distribution of human fixations. Most prediction SI scores show a
higher slope with easy targets (salient objects with higher contrast with respect the
rest, whenΨ> 4), being CASD and HFT the models that have higher SI at higher
contrasts.
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a)

b)

Figure 3.6 – Results of Saliency Index of model predictions upon Feature Contrast
(a) and Feature Type (b). 69
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Contextual influences (here represented as distinct low-level features that ap-
pear in the image) contribute distinctively on saliency induced from objects that
appear on the scene [140]. We suggest that not only the semantic content that
appears on the scene affects saliency but the feature characteristics do significantly
impact how salient objects are. This phenomena is observable in Fig. 3.6b and
occurs for both human fixations and model predictions, specifically with highest
SI for human fixations in 1) Corner Salience, 6) Feature and Conjunctive Search,
7) Search Asymmetries, 10) Brightness Search, 12) Dissimilar Size Search and 13)
Orientation Search with Heterogeneous distractors. HFT and CASD have highest
SI when GT is higher (when human fixations are more probable to fall inside the
AOI), even outperforming GT probabilities for the cases of 1) and 7). We show in
Fig. 3.7a that overall Saliency Index of most saliency models is distinct when we
vary the type of feature contrast (easy vs hard) and the performed stimulus task
(free-viewing vs visual search). Spectral/Fourier based models outperform other
saliency models also in SI metric. Similarly with saliency metrics shown on previous
subsection, AWS, CASD, BMS, HFT and SAM-ResNet are the most efficient models
for each model inspiration category respectively. It is observable in Fig. 3.7b that
saliency models have higher performance for easy targets, with increased overall
model performance differences with respect hard targets (Fig. 3.7c). Similarly, visual
search targets show lower difficulty (higher SI) to find predicted fixations inside the
AOI than the free-viewing cases (Fig. 3.7d-e).

(a) (b) (c)

(d) (e)

Figure 3.7 – Results of Saliency Index metric scores from dataset model predictions
(a), for easy/hard difficulties (b-c) and Free-Viewing/Visual Search tasks (d-e).
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Also distinct SI curves upon feature contrast are reported, revealing that contrast
sensitivies are distinct for each low-level feature. Spearman’s correlation tests on
Fig. 3.6b show which models correlate with human performance over feature
contrast and which one do so with the baseline (designating higher center biases).
These results show that models such as AWS, CASD, BMS, DCTS or DeepGazeII
highly correlate with human contrast sensitivities and do not correlate with the
baseline center gaussian. Separate results are shown for each feature type in Fig.
3.8, showing distinct performances of predicted saliency maps. Matching human
contrast sensitivities on low-level visual features would be an interesting point of
view to make future saliency models accurately predict saliency as well as to better
understand how the HVS processes visual scenes.

Figure 3.8 – Plots of Saliency Index from saliency models upon feature contrast
for each feature type (mean of all block subcategories for each contrast). 1st row:
Free-Viewing stimuli. 2nd-3rd row: Visual Search stimuli.
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3.7 Discussion

Previous saliency benchmarks show that saliency is efficiently predicted with latest
Deep Learning saliency models. This is not the case with synthetic images. A
possible reason for this is that Machine/Deep Learning models are trained uniquely
with datasets that contain high-level features (i.e. indoor and outdoor real images
with animated and unanimated objects), thus, overfitting this type of contextual
information. Another possibility is that we randomly determined where salient
objects are, making the center bias affect less to our experimentation. With this
benchmark we can evaluate how salient is a particular object by parametrizing its
low-level feature contrast with respect to the rest of distractors and/or background.
Therefore, the evaluation of saliency can be done in these terms, by accounting
for feature contrast it is possible to analyze the importance to the objects that are
easier to detect or that can be detected preattetively. Previous saliency benchmarks
usually evaluate eye tracking data spatially across all fixations, we also propose the
evaluation of saliency across fixations, which is an issue of further study. Future
steps for this study would include the evaluation of saliency in dynamic scenes
[175, 258] using synthetic videos with both static or dynamic camera. This would
allow us to investigate the impact of temporally-variant features (e.g. motion)
over saliency predictions. Another analysis to consider is the impact of the spatial
location of salient features (in eccentricity terms towards the image center), which
might affect each model distinctively. Each of the steps in saliency modelization
(i.e. feature extraction, conspicuity computation and feature fusion) might have a
distinct influence over eye movement predictions. Acknowledging that conspicuity
computations are the key factor for computing saliency, a future evaluation of how
each mechanism contributes to model performance might be of interest.

3.8 Conclusion

Contrary to the current state-of-the-art, we reveal that saliency models are far away
from acquiring HVS performance in terms of predicting bottom-up attention. We
prove this with a novel dataset SID4VAM, which contains uniquely synthetic images,
generated with specific low-level feature contrasts. In this study, we show that over-
all Spectral/Fourier-based saliency models (i.e. HFT and WMAP) clearly outperform
other saliency models when detecting a salient region with a particular conspicu-
ous object. Other models such as AWS, CASD, GBVS and SAM-ResNet are the best
predictor candidates for each saliency model inspiration categories respectively
(Cognitive/Biological, Information-Theoretic, Probabilistic and Deep Learning). In
particular, visual features learned with deep learning models might not be suitable
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for efficiently predicting saliency. Here we pose that saliency detection might not
be directly related to object detection, therefore training upon high-level object
features might not be significatively favorable for predicting saliency in these terms.
Future saliency modelization and evaluation should account for low-level feature
distinctiveness in order to accurately model bottom-up attention. Here we remark
the need for analyzing other factors such as the order of fixations, the influences of
the task and the psychometric parameters of the salient regions.
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Part IIVisual Saliency in V1:
Bottom-up attention

Extracting V1 maps of visually-conspicuous regions in still images.





4 NSWAM: Neurodynamic Saliency WAvelet
Model

Initial hypotheses by Li [183, 383] suggested that visual saliency is processed by
the lateral interactions of V1 cells. Here, pyramidal cells and interneurons in the
primary visual cortex (V1, Brodmann Area 17 or striate cortex) and their horizon-
tal intracortical connections modulate activity in V1. Li’s neurodynamic model
[184] of excitatory and inhibitory firing-rate neurons was able determine how con-
textual influences of visual scenes contribute to the formation of saliency. Here,
interactions between neurons tuned to specific orientation sensitivities served as
predictors of pop-out effects and search asymmetries [185]. Li’s neurodynamic
model was later extended by Penacchio et al. [239] proposing the aforementioned
lateral interactions to also be responsible for brightness induction mechanisms. By
considering neuron orientation selectivity at distinct spatial scales, this model can
act as a contrast enhancement mechanism of a particular visual area depending of
induced activity from surrounding regions.

The model is extended from previous implementation by Pennacchio et al. [239]
in Matlab and C++ 1. Here we describe the main steps in relation to the computa-
tions done to the images: 4.1.1. Feature Extraction, 4.2. Feature Conspicuity and
4.3. Feature Integration. In this section, computations in the early visual pathways
will be represented in line with a stimulus example. Overall model architecture
was inspired by previous work from Murray et al.’s Saliency Induction Model (SIM),
also named Saliency Induction Model (SIM) [209], defining a biologically-inspired
and unsupervised low-level model for saliency prediction. Although it provided a
promising approach for predicting saliency maps, we aim to highlight novel com-
putations of firing rate dynamics in accordance with physiological properties of V1
cells.

Reproducing other effects

Here we present a novel neurodynamic model of visual attention and we remark
its biological plausability as being able to simultaneously reproduce other effects
such as Brightness Induction [239], Chromatic Induction [65] and Visual Discom-

1Code can be downloaded from https://github.com/dberga/NSWAM
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Chapter 4. NSWAM: Neurodynamic Saliency WAvelet Model

fort [241] effects. Brightness and Chromatic induction stand for the variation of
perceived lightness and color of a visual target depending on luminance and/or
chromatic properties of its surrounding area respectively. Thus, a visual target can
be perceived as being different (contrast) or similar (assimilation) to its physical
properties by varying its surrounding context. Visual scenes are projected to the
retinal photoreceptors (RP), processed by retinal ganglion cells (RGC), and later
projected from lateral geniculate nucleus (LGN) pathways towards V1 receptive
fields (RF). From that, the output of V1’s neuronal activity (coded as firing-rates),
after several cycles of excitatory-inhibitory V1 interneuron interactions, is used
as predictors of induction and saliency respectively. These responses will act as a
contrast enhancement mechanism, which for the case of saliency, are integrated
towards projections in the superior colliculus (SC) for eye movement control. There-
with, our model has also been able to reproducte visual discomfort, as relative
contrast energy of particular region on a scene is found to produce hyperexcitability
in V1 [174, 240], one of possible causes of producing certain conditions such as
malaise, nausea or even migraine. Previous neurodynamic [66, 67, 82, 115, 193] and
saliency models [41, 379] are able to reproduce attention processes and predict eye
movements [53] but are uniquely presented to work for that specific task. On behalf
of model biological plasusibility on V1 function and its computations, we present a
unified model of V1 able to predict attention from real and synthetic color images
while mimicking physiological properties of the neural circuitry stated previously.

4.1 Feature Extraction

4.1.1 From Images to Sensory Signals: Retinal computations

The HVS perceives to light at distinct wavelengths of the visual spectrum and sep-
arates them to distinct channels for further processing in the cortex. First, RP
(corresponding to rod and cone cells) are photosensitive to luminance (rhodopsin-
pigmented) and color (photopsin-pigmented) [141, 296]. Mammal cone cells are
photosensitive to distinct wavelengths between a range of ∼ 400–700nm, corre-
sponding to three cell types, measured to be maximally responsive to Long (L,
λmax ' 430nm), Medium (M, λmax ' 530nm) and Short (S, λmax ' 560nm) wave-
lengths respectively [302]. RP signals are received by RGC midget, bistratified and
parasol cells forming an opponent process [294] ("Red vs Green", "Blue vs Yellow",
and "Light vs Dark" respectively). In order to simulate these chromatic and light
intensity opponencies using digital images, we transformed the RGB color space to
the CIELAB (Lab or L∗a∗b∗) space (including a gamma correction of γRGB =1/2.2).
L∗, a∗ and b∗ channels represent [181] a cubic color space combining RGB value
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opponencies (+L=lighter, −L=darker, +a=reddish, −a=greenish, +b=yellowish and
−b=blueish) as exemplified in Figure 4.1.

L∗ = R +G +B ,

a∗ = R −G

L∗ ,

b∗ = R +G −2B

L∗ .

(4.1)

All RGB pixel values of processed images are previously corrected with γ= 1/2.2.

Image RGB components

L* (M-) a* (P-) b* (K-)

Figure 4.1 – Example of CIELAB components of color opponencies given a sample
image, corresponding to L∗ (Intensity), a∗ (Red-Green) and b∗ (Blue-Yellow).

Later, receptive fields in RGC [294] are activated in a center-surround fashion,
receiving ON-OFF responses, being connected to horizontal (H-cell) and bipolar
cell (B-cell) upstream circuitry. B-cells are hyperpolarized (OFF) or depolarized
(ON) according to RP activity. In conjunction, H-cells send excitatory (center) and
inhibitory feedback (surround) to RP. Midget (R-G), bistratified (B-Y) and parasol
(L-D) RGC signals are sent through the optic nerve towards Parvo- (P-), Konio- (K-)
and Magno-cellular (M-) pathways in LGN.
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4.1.2 Hypercolumnar organization in the brain

RGC center-surround responses are sent to LGN and projected to V1 cells. V1’s
cortical hypercolumns encode similar features of orientation-selective cells at dif-
ferent spatial frequencies. Simple cells found in V1 RFs (layers 4 & 6) are sensitive to
center-surround responses at distinct orientations, whereas complex cells (found in
layers 2/3, 5 & 6) overlap ON and OFF regions, and can be modeled as a combination
of simple cell responses. Parvo- (P- or β), Konio- (K- or γ) and Magno-cellular (M-
or α) pathways send signals separately towards distinct layers of the striate cortex
(correspondingly projecting to 4Cβ & 6 from "P-", 2/3 & 4A from "K-" and 4Cα & 6
from "M-" cell pathways) for parallel and recurrent processing in V1.

V1 cell sensitivities to distinct orientations [137] and spatial frequencies [190]
are usually modeled as Gabor filters. Since Gabor transforms cannot be inverted to
obtain the original image, we used the à trous algorithm, which is an undecimated
discrete wavelet transform (DWT) [109][301, Chapter 6]. This decomposition allows
to perform an inverse, where the basis functions remain similar to Gabor filters. We
propose biologically plausible computations for extracting multiple orientations
and multiscale feature representations of from V1’s receptive field (RF) hypercolum-
nar organization (Fig. 4.2). The wavelet approximation planes cs,θ (s for scale and θ
for orientation) are computed by convolving the image with the filter hs .

cs,h = cs−1 ⊗hs ,

cs,v = cs−1 ⊗h′
s .

(4.2)

The filter hs is obtained from hs−1 by doubling its size, i.e. hs = ↑ hs−1, where ↑
means upsampling by introducing zeros between the coefficients. The filter (hs ) for
the first scale is

h1 = 1

16

[
1 4 6 4 1

]
This filter can be also transposed (h′

s ) to obtain distinct approximation orientation
planes cs,h and cs,v . From these approximation planes, we can obtain the wavelet
coefficients ωs,θ at distinct scales and orientations:

ωs,h = cs−1 − cs,h ,

ωs,v = cs−1 − cs,v ,

ωs,d = cs−1 − (cs,h ⊗h′
s +ωs,h +ωs,v ),

cs = cs−1 − (ωs,h +ωs,v +ωs,d ).

(4.3)

Here, ωh , ωv and ωd correspond to the coefficients with “horizontal", “vertical"
and “diagonal" orientations. Initial c0 = Io is obtained from the CIE L*a*b* compo-
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nents (o = L∗, a∗,b∗) and cn corresponds to the residual plane of the last wavelet
component (e.g. s = n). The inverse transform is obtained by integrating wavelet
coefficients ωs,θ and residual planes cn :

I ′o =
n∑

s=1,θ=h,v,d
ωs,θ+ cn . (4.4)

Considering that for every image, M ×N is the size of the feature map (resized to
N ≤ 128), wavelet coefficient scales are defined to model the spatial frequency sensi-
tivities (s = 1..S), where S = blog2(N /8)c+2. From these equations, three orientation
selectivities can be extracted, corresponding to horizontal (θh ' {0±30||180±30}º),
vertical (θv ' {90±30||270±30}º) and diagonal (θd ' {45±15||135±15||225±15||315±
15}º) angles. For the case of scale features, sensititivies to size (in degree of visual
angle) correspond to 2s0(s−1)/{pxva}, where "pxva" is the number of pixels for each
degree of visual angle according to experimentation (approximately between 35
and 40 px), and s0=8, is the minimum size of the wavelet filter (h0) defining the first
the scale frequency sensitivity.

Figure 4.2 – Representation of wavelet coefficients (ωi soθ), in conjunction with
the output of "a-trous" wavelet transform applied to components (o = L∗, a∗,b∗)
shown in Figure 4.1.
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4.2 Feature Conspicuity

4.2.1 Computation of lateral Interactions in V1 cells

Li’s hypotheses suggest that V1 computations are responsible of generating a
bottom-up saliency map[183, 383]. These hypotheses state that intracortical inter-
actions between orientation-selective neurons in V1 are able to explain contextually-
dependent perceptual effects present in pre-attentive vision [184, 185, 186, 382, 385,
386], relative to contour integration, visual segmentation, visual search asymme-
tries, figure-ground and border effects, among others. Pop-out effects that form the
saliency map are the result of horizontal connections in V1, that interact with each
other locally and reciprocally. These connections are formed by excitatory cells
and inhibitory interneurons [105, 347], processing information from pyramidal
cell signals in layers of V1. Spatial organization of these cells accounts for selec-
tivity in their orientation columns, their RF size and axonal field localization. The
aforementioned interactions between orientation-selective cells was defined by
Li’s model [184] of excitatory-inhibitory firing-rate neural dynamics, later extended
by Penacchio et al. [239]. Here, contrast enhancement or suppression in neural
responses emerge from lateral connections as an induction mechanism. Latest
implementation done by Berga & Otazu [26] for saliency prediction used colour
images, where chromatic (P-,K-) and luminance (M-) opponent channels were
individually processed in order to compute firing-rate dynamics of each pathway
separately. With cortical magnification, each gaze can significantly vary contextual
information and therefore the output of the model (we started the first view at
the center of the image). Our excitatory-inhibitory model is described in Table
5.1. Horizontal connections (lateral and reciprocal) are schematized in Figure 4.3
and Table 5.1C, where excitatory cells have self-directed (J0) and monosynaptic
connections (J) between each other, whereas dysynaptically connected through
(W ) inhibitory interneurons. Axonal field projections follow a concentric toroid of
radius ∆s = 15×2s−1 and radial distance ∆θ (accounting for RF size ds and radial
distance β). Membrane potentials of excitatory (ẋi sθ) and inhibitory (ẏi sθ) cells
are obtained with partial derivatives defined in Table 5.1D, composed by a chain
of functions that consider firing-rates (obtained by piece-wise linear functions gx

and g y ) and membrane potentials from previous membrane cycles (modulated by
αx , αy constants), current lateral connection potentials (J and W ) and spread of
inhibitory activity within hypercolumns (ψ). Background inputs (Inoi se and Inor m)
correspond to a simulation of random noise and divisive normalization signals (i.e.
accounting for local nonorientation-specific cortical normalization and nonlineari-
ties). Further details of model equations and parameters are specified in Table 5.1
and [239, Supporting Information S1].
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Figure 4.3 – Left: Representation of cortical hypercolumns with scale and orien-
tation selectivity interactions. Right: Model’s intracortical excitatory-inhibitory
interactions, membrane potentials (orange "ẋ" for excitatory and yellow "ẏ" for
inhibitory) and connectivities ("J" for monosynaptic excitation and "W " for dysy-
naptic inhibition).

Input signals (I t
i ;soθ) have been defined as the wavelet coefficients (ωt

i soθ), split-
ted between ON and OFF components (representing ON and OFF-center cell signals
from RGC and LGN) depending of the value polarity (+ for positive and − for nega-
tive coefficient values) from the RF. These signals are processed separately during
10τ (τ= 1 membrane time = 10ms; τ≡ 10 cycles), including a rest interval (empty
input) of 3τ to simulate intervals between each saccade shift. The model output
has been computed as the firing-rate average gx of the ON and OFF components
(M(ωt+

i soθ) and M(ωt−
i soθ)) during the whole viewing time, corresponding to a total of

10 membrane time (being the mean of gx for a specific range of t ). By combining the
outputs of all components (Equation 4.5), we can describe the changes of the model
(resulting from the simulated lateral interactions of V1) with respect the original
wavelet coefficients ωt

i soθ, which alternatively defines the contrast enhancement
seen on the brightness and chromatic induction cases. Our result (S t

i ;o) will define
the saliency map as an average conspicuity map or feature-wise distinctiveness
(RF firing rates across scales and orientations for each pathway). In our previous
work [65, 239, 241], the final model output is obtained by combining the model
result with the wavelet coefficients (M(ωt

i so)ωt
i so) instead. Considering that for

every image, M × N is the size of the feature map (resized to N ≤ 128), wavelet
coefficient scales are defined to model the spatial frequency sensitivities (s = 1..S),
where S = bl og2(N /8)c+2. Top-down selection can be introduced to the model as

83



Chapter 4. NSWAM: Neurodynamic Saliency WAvelet Model

an inhibitory control (Ic ) mechanism, further explained in Table 5.1E and in the
Section 5.3.

Ŝt
i ;o =

ns∑
s=1..S;θ=h,v,d

M(ωt+
i soθ)+

ns∑
s=1..S;θ=h,v,d

M(ωt−
i soθ)+ ci , (4.5)
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Figure 4.4 – Firing rates plotted for 10 membrane time (100 iterations) accounting for neurons (ON+OFF
values) inside a specific region (1st col.). Mean firing rates for all scales (Spatial Frequency Dynamics, 2nd
col.), orientations (Orientation Selectivity Dynamics, 3rd col.), and color channels (Chromatic Opponency
Dynamics, 4th col.).

4.3 Feature Fusion/Integration

4.3.1 Generating the saliency map in the Superior Colliculus

Latest hypotheses about neural correlates of saliency [336, 352] state that the supe-
rior colliculus is responsible of encoding visual saliency and to guide eye movements
[281, 350]. Acknowledging that the superficial layers of the SC (sSC) receive inputs
from the early stages of visual processing (V1, retina), the SC selects these as the root
of bottom-up activity to be selected in the intermediate and deep layers (iSC, dSC).
In accordance to the previous stated hypotheses[183, 383], saccadic eye movements
modulated by saliency therefore are computed by V1 activity, whereas recurrent and
top-down attention is processed by neural correlates in the parieto-frontal cortex
and basal ganglia. All these projections are selected as a winner-take-all mecha-
nism in SC[183, 185] to a unique map, where retinotopic positions with the highest
activity will be considered as candidates to the corresponding saccade locations.
These activations in the SC are transmitted to guide vertical and horizontal saccade
visuomotor nerves [128].

The behavioral quantity of the unique 2D saliency map has been defined by
computing the inverse of the previous processes using the model output for each
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pathway separately. Retinotopic positions have been transformed to coordinates in
the visual space using the inverse of the cortical magnification function (Equation
5.2). Output signals (V1 sensitivities to orientation and spatial frequencies) are
integrated by computing the inverse discrete wavelet transform to obtain unique
maps for each channel opponency (Equation 4.4). A unique representation (Equa-
tion 4.6) of final neuronal responses for each pathway (P-, K- and M- as a∗, b∗ and
L∗) is generated with the euclidean norm as in Murray et al.[208, 209] model. The
resulting map is later normalized by the variance (Equation 4.7) of the firing rate
[383, Chapter 5]. This map represents the final saliency map, that describes the
probability distribution of fixation points in certain areas of the image. In addition
to this estimation, the saliency map has been convolved with a gaussian filter simu-
lating a smoothing caused by the deviations of σ= 1 deg given from eye tracking
experimentation, recommended by LeMeur & Baccino [180].

Ŝi =
√

Ŝi ;a∗ + Ŝi ;b∗ + Ŝi ;L∗ , (4.6)

zi (Ŝ) =
Ŝi −µŜ

σŜ
, (4.7)

4.4 Evaluation Metrics for Saliency

Fixations and saccades are captured using eye-tracking technology. Eye movement
data is combined across all fixations from participants’ data, being represented as
binary maps (called fixation maps), according to the fixation localizations in the
visual space for each corresponding image, or as density distributions (alternatively
named density maps) from these fixations considering eye-movement localization
probabilities (Figure 4.6). Fixation density maps are computed accordingly from
fixation maps with a gaussian filter [180].

Prediction scores are calculated using spatially-dependent metrics [55][54]
which compare either fixation maps or fixation density maps to saliency map pre-
dictions from the models (AUC, CC, NSS, KL and SIM). Essentially, these metrics
assign a score considering true positive (TP) values for the saliency predictions
inside the locations from the fixation maps (or higher correlations with respect to
density maps) and false positive (FP) values for the reverse cases. Other metrics
compare saliency maps with a baseline set of other image fixation maps in order to
prevent behavioral tendencies such as center biases, which are not representative
data for saliency prediction. Similarly, a baseline gaussian of all images is used
(InfoGain) for minimizing center biases on prediction scores.
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A B C

D E F G

Figure 4.5 – (A) Example Image. (B) Mask of salient region. (C) Fixation density
map (GT). (D,E,F,G) Predicted saliency map given z(Ŝi ;L∗ ), z(Ŝi ;a∗ ), z(Ŝi ;b∗ ) and
z(Ŝi ) respectively. (E) Results of prediction metrics from these saliency maps. z(Ŝ)
corresponds to our model’s saliency prediction (NSWAM).

4.5 Results

4.5.1 Predicting human eye movements

We have computed the saliency maps2 for images from distinct eye-tracking datasets,
corresponding to 120 real scenes (Toronto) [50], 40 nature scenes (KTH) [160], 100
synthetic patterns (CAT2000Pat ter n)[42] and 230 synthetic images with specific fea-
ture contrast (SID4VAM) [23]. We have computed these image datasets with deep
supervised artificial saliency models that specifically compute high-level features
(OpenSalicon [135][313], DeepGazeII [171], SAM [76], SalGan [230]), and models
that extract low-level features, corresponding to the cases with artificial (SUN [380],
GBVS [119]) and biological inspiration (IKN [142], AIM [49], SSR [286], AWS [102]
and SIM [209]). The Saliency WAvelet Model (SWAM) and Neurodynamic SWAM

2Code for model evaluations can be downloaded from https://github.com/dberga/saliency
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4.5. Results

(NSWAM) corresponds to our model excluding or including lateral interactions
shown in 4.2.

Image GT IKN AIM SWAM SIM NSWAM
(Ours) (SWAM+CS&eCSF) (Ours)

Figure 4.6 – Examples of saliency maps from Itti et al. (IKN), Bruce & Tsotsos (AIM),
Saliency WAvelet Model (SWAM), Murray et al.’s model (SIM) and our Neurodynamic
model (columns 3 to 7, respectively), corresponding to images with distinct contexts
(column 1). We also show the density distribution of fixations given by the eye-
tracking experimentation (column 2).
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hoja1

Página 1

method ↑CC ↑NSS ↑SIM ↑sAUC ↑InfoGain
Humans 0.969 0.954 1.000 3.831 0.000 1.000 0.903 2.425

 H
IG

H
-L

E
V

E
L OpenSalicon 0.821 0.771 0.522 1.655 1.113 0.429 0.716 0.232

DeepGazeII 0.850 0.768 0.595 1.877 0.997 0.483 0.717 0.422

0.850 0.725 0.612 1.955 2.420 0.516 0.666 -1.555

0.569 0.543 0.055 0.158 11.972 0.214 0.506 -15.522
SalGan 0.858 0.816 0.629 1.898 0.986 0.510 0.716 0.387

  
  

  
 L

O
W

-L
E

V
E

L

SUN 0.694 0.682 0.242 0.755 1.589 0.290 0.645 -0.499
GBVS 0.817 0.803 0.487 1.431 1.168 0.397 0.632 0.077
SSR 0.765 0.756 0.364 1.084 1.355 0.340 0.700 -0.174
AWS 0.773 0.761 0.401 1.229 1.322 0.352 0.714 -0.106
AIM 0.727 0.716 0.292 0.883 1.612 0.314 0.663 -0.580
IKN 0.794 0.782 0.421 1.246 1.248 0.366 0.650 -0.024
SIM 0.754 0.744 0.317 0.951 1.486 0.302 0.705 -0.369
SWAM (Ours) 0.728 0.716 0.287 0.868 1.492 0.305 0.654 -0.378
NSWAM (Ours) 0.706 0.694 0.257 0.764 1.604 0.278 0.631 -0.552

↑AUC
Judd

↑AUC
Borji ↓KL

SAM
RESNET

SAM
VGG

Table 4.1 – Results for prediction metrics with Toronto dataset [49], corresponding
to real (indoor and outdoor) images.

hoja1

Página 1

method ↑CC ↑NSS ↑SIM ↑sAUC ↑InfoGain
Humans 0.902 0.850 1.000 2.038 0.000 1.000 0.822 1.415

 H
IG

H
-L

E
V

E
L OpenSalicon 0.634 0.611 0.300 0.452 0.780 0.541 0.556 -0.278

DeepGazeII 0.648 0.618 0.362 0.578 0.678 0.559 0.588 -0.104

0.660 0.599 0.371 0.570 3.125 0.508 0.548 -3.643

0.525 0.525 0.058 0.074 8.800 0.354 0.501 -11.836
SalGan 0.655 0.626 0.391 0.581 1.666 0.544 0.560 -1.554

  
  

  
 L

O
W

-L
E

V
E

L

SUN 0.535 0.532 0.083 0.132 0.804 0.512 0.526 -0.303
GBVS 0.649 0.638 0.351 0.505 0.711 0.563 0.533 -0.177
SSR 0.575 0.573 0.172 0.270 0.778 0.525 0.557 -0.260
AWS 0.587 0.583 0.210 0.329 0.851 0.511 0.581 -0.362
AIM 0.572 0.568 0.179 0.274 0.918 0.523 0.552 -0.509
IKN 0.617 0.611 0.274 0.403 0.714 0.547 0.551 -0.173
SIM 0.587 0.584 0.201 0.311 0.745 0.531 0.573 -0.212
SWAM (Ours) 0.601 0.596 0.231 0.346 0.749 0.529 0.574 -0.221
NSWAM (Ours) 0.598 0.593 0.230 0.345 0.711 0.536 0.565 -0.168

↑AUC
Judd

↑AUC
Borji ↓KL

SAM
RESNET

SAM
VGG

Table 4.2 – Results for prediction metrics with KTH dataset [160] subset of uniquely
nature images.

Our results show that our model has a trend to acquire other saliency models
performance, with an emphasis on outperforming previous Murray’s SIM model for
the cases of KTH, CAT2000 and SID4VAM (Tables 4.2, 4.3 and 4.4), corresponding to
nature and synthetic images, as well as showing stable metric scores for distinct con-
texts (similarly as AWS and GBVS). NSWAM outperforms other biologically-inspired
models (IKN, AIM, SSR, SWAM & SIM) specially for metrics that account for center
biases. These center biases are qualitatively present even for images where the
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hoja1

Página 1

method ↑CC ↑NSS ↑SIM ↑sAUC ↑InfoGain
Humans 0.895 0.826 0.890 2.335 0.265 0.736 0.623 0.777

 H
IG

H
-L

E
V

E
L OpenSalicon 0.651 0.621 0.220 0.603 1.526 0.357 0.555 -1.092

DeepGazeII 0.611 0.561 0.157 0.467 1.932 0.325 0.547 -1.657

0.766 0.711 0.518 1.356 1.747 0.456 0.546 -1.444

0.625 0.581 0.123 0.320 8.581 0.322 0.508 -11.262
SalGan 0.751 0.714 0.417 1.080 1.720 0.430 0.553 -1.384

  
  

  
 L

O
W

-L
E

V
E

L

SUN 0.549 0.539 0.068 0.193 5.860 0.280 0.526 -7.237
GBVS 0.759 0.717 0.399 1.056 1.113 0.430 0.561 -0.503
SSR 0.592 0.582 0.118 0.318 1.760 0.334 0.568 -1.432
AWS 0.604 0.594 0.209 0.609 1.521 0.339 0.595 -1.077
AIM 0.570 0.565 0.118 0.332 5.323 0.301 0.544 -6.490
IKN 0.701 0.692 0.323 0.828 1.267 0.382 0.562 -0.724
SIM 0.586 0.578 0.120 0.336 1.614 0.328 0.566 -1.225
SWAM (Ours) 0.617 0.602 0.180 0.503 1.484 0.335 0.571 -1.029
NSWAM (Ours) 0.588 0.584 0.139 0.383 1.471 0.326 0.571 -1.017

↑AUC
Judd

↑AUC
Borji ↓KL

SAM
RESNET

SAM
VGG

Table 4.3 – Results for prediction metrics with CAT2000 dataset [42] training subset
(Pattern) of uniquely synthetic images.

hoja1

Página 1

method ↑CC ↑NSS ↑SIM ↑sAUC ↑InfoGain
Humans 0.943 0.882 1.000 4.204 0.000 1.000 0.860 2.802

 H
IG

H
-L

E
V

E
L OpenSalicon 0.692 0.673 0.284 0.956 1.549 0.375 0.615 0.052

DeepGazeII 0.640 0.634 0.177 0.630 1.685 0.336 0.618 -0.150

0.727 0.673 0.305 0.967 2.610 0.388 0.600 -1.475

0.537 0.523 0.026 0.070 11.947 0.216 0.503 -14.954
SalGan 0.715 0.662 0.287 0.883 2.506 0.373 0.593 -1.350

  
  

  
 L

O
W

-L
E

V
E

L

SUN 0.542 0.532 0.080 0.333 16.408 0.165 0.530 -21.024
GBVS 0.747 0.718 0.400 1.464 1.363 0.413 0.628 0.331
SSR 0.672 0.665 0.192 0.639 1.904 0.365 0.642 -0.467
AWS 0.679 0.667 0.255 1.088 1.592 0.373 0.672 0.013
AIM 0.570 0.566 0.122 0.473 14.472 0.224 0.557 -18.182
IKN 0.686 0.678 0.283 0.878 1.748 0.380 0.608 -0.233
SIM 0.650 0.641 0.189 0.694 1.702 0.357 0.619 -0.148
SWAM (Ours) 0.639 0.618 0.177 0.682 1.799 0.340 0.601 -0.281
NSWAM (Ours) 0.614 0.610 0.136 0.529 1.686 0.335 0.622 -0.150

↑AUC
Judd

↑AUC
Borji ↓KL

SAM
RESNET

SAM
VGG

Table 4.4 – Results for prediction metrics with SID4VAM dataset [23] with synthetic
images.

salient region is conspicuous Fig. 4.6, rows 8 & 9. Saliency models that compute
high-level visual features are shown to perform better with real image scenes (Table
4.1). However, the image contexts that lack of high-level visual information should
be more representative indicators of saliency, due to the absence of semantically
or contextually-relevant visual information (nature images), or to be characterized
to uniquely contain low-level features (synthetic images) presenting clear pop-out
spots to direct participants fixations (which would cause lower inter-participant dif-
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ferences and therefore lower center biases). Although AWS and GBVS perform better
on predicting fixations at distinct contexts, we remark the plausibility of our unified
design for modeling distinct HVS’ functionality. NSWAM shows a new insight of
applying a more biologically plausible computation of the aforementioned steps.
First, we transform image values to color opponencies, found in RGC. Second, we
model LGN projections to V1 simple cells using a multiresolution wavelet transform.
Third, conspicuity is computed with a dynamical model of the lateral interactions
of V1. Fourth, these channels are integrated to a unique map which will represent
SC activity. Using a neurodynamic model with firing-rate neurons allows a more
detailed understanding of the dependency of saliency on lateral connections and a
potential further study in terms of single neuron dynamics using real image scenes.

4.5.2 Psychophysical measurements

Acknowledging that the HVS processes information according to the context, hu-
man performance on detecting a salient object on a scene may also vary according
to the visual properties of such object. With a synthetic image dataset [23] a specific
analysis of how each individual feature influences saliency can be done. In this
study we will show how fixation data is predicted when varying feature contrast,
concretely on parametrizing Set Size, and Brightness, Color, Size and Orientation
contrast between a target salient object Fig. ??B and the rest of distractors (feature
singleton search). In this section a set of psychophysical stimuli will be displayed
with its parametrization of set size or feature contrast and its sAUC in comparison
to other biologically-inspired saliency models.

The shuffled AUC (sAUC) is the metric we used for our psychophysical experi-
mentation. It computes the area under ROC considering TP as fixations inside the
saliency map, similarly to the AUC. However, this metric does not evaluate FP at
random areas of the image but instead uses fixations inside other random images
from the same dataset over several trials (10 by default). This metric gives a more
accurate evaluation of predicted maps with respect human fixations but penalizing
for higher model center biases (which are or can be present for distinct images in
the ground truth).

Brightness differences

Differences in brighness are major factors for making an object to attract attention.
Thus, a bright object is less salient as luminance of other objects increase (Fig. 4.7).
Conversely, a dark target in a bright background will be more salient as distractors
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have higher luminance [238][218]. NSWAM processes luminance signals separately
from chromatic ones using the L* channel (feature conspicuity from a distinctively
bright object upon a dark background will be processed similarly to a dark object
upon a bright background). We compare sAUC metrics for both conditions and
NSWAM is shown to acquire similar performance to SIM and SWAM, with higher
sAUC than IKN Fig. 4.8,A-B, specially for stimulus with higher contrasts (∆LD,T >
.25). Results on sAUC for NSWAM correlates with brightness contrast, for both cases
of bright (ρ = .941, p = 1.6×10−3) and dark (ρ = .986, p = 4.7×10−5) background.

A

B

0 0.08 0.17 0.25 0.33 0.41 0.5

Figure 4.7 – Array of synthetic stimuli representing distinct brightness contrasts
(HSL luminance differences) from target and distractors (∆LD,T ) with (A) bright
background (LT = 0.5,LB = 1,LD = 0.5..1) and conversely, with (B) dark background
(LT = 0.5,LB = 0,LD = 0..0.5). Rows below A,B correspond to NSWAM’s predicted
saliency maps.
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A

B

Figure 4.8 – Results of sAUC upon brightness contrast on a luminance singleton
(∆LD,T ) with a (A) bright and (B) dark background.

Color differences

Color changes spatial and temporal behavior of eye movements, influencing how
conspicuous are specific objects on a scene [87][17]. Similarly to previous section,
here we vary the chromaticity of the background, which can alter search efficiency
[210][79]. In this section, we used stimuli similar to Rosenholtz’s experimentation
[268], with red and blue singletons for achromatic or oversaturated backgrounds Fig.
4.9. Here, chromatic contrast is defined as the HSL saturation differences (∆SD,T )
between a salient target and the rest of distractors.

Similarly to Fig. 4.7, NSWAM has similar sAUC to SIM for all background condi-
tions (Fig. 4.10,A-D). Achromatic backgrounds contribute to salient object detec-
tion by increasing sAUC of the pop-out singleton. That effect is present for visual
search results and our saliency prediction. Results comparing target search fixation
maps and sAUC show distinct performance upon saturation contrast depending
on background conditions. Cases which stimulus background was achromatic,
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A

B

C

D

0 0.121 0.246 0.368 0.528 0.728 1

Figure 4.9 – Chromatic stimuli upon saturation contrast (∆SD,T ) between a red
target (HT = 0ž) and an (A) unsaturated, grey background or an (B) oversaturated,
red background. Other cases (C,D) present a blue target (HT = 240ž) with same
background properties to (A) and (B) respectively. Rows below A-D correspond to
NSWAM’s predicted saliency maps.

distinct from the feature singleton, had higher correlation than with oversaturated
background. For the cases of grey (achromatic) background, there is a correlation
between sAUC results for our model and ∆SD,T with a red (ρ = .864, p = 1.2×10−2)
and blue (ρ = .944, p = 1.4×10−3) target singleton. However, when background
color is oversaturated red and targets are either red (ρ = .106, p = .82) or blue
(ρ = .483, p = .27), then saturation contrast do not correlate with sAUC.
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A

B

C

D

Figure 4.10 – Results of sAUC upon saturation contrast (∆SD,T ) on a red singleton
with (A) achromatic or (B) oversaturated red background, or either a blue singleton
with (C) achromatic or (D) oversaturated red background.
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Size contrast

Feature distinctiveness with feature singletons have been tested by varying set size,
object orientation and/or color. Here is tested how object size affects its saliency,
previously tested with visual search experimentation [112][310][248]. A set of 34
symmetric objects (with a dark circle shape) are distributed randomly around the
image Fig. 4.11, preserving equal diameter. One of the circles is defined with
dissimilar size, either with higher or lower diameter with respect the rest (which are
defined with a diameter of 2.5deg). Performance for NSWAM’s sAUC improves with
size dissimilarity. When the diameter of the dissimilar circle is higher, sAUC is higher
for that particular region. For the highest scaling factor (when the dissimilar object
is bigger), NSWAM has higher sAUC compared to previous biologically-inspired
models (Fig. 4.12). Plus, there is a significant correlation between circle diameter
and our model’s results of sAUC (ρ = .955, p = 8.3×10−4).

1.25 1.67 2.08 2.5 3.34 4.17 5

Figure 4.11 – Examples of circle distractors with equal diameter (ØD =2.5deg), con-
taining a salient one with dissimilar size (ØT =1.25..5deg) with respect the rest. In
lower row there are NSWAM’s predicted saliency maps.

Figure 4.12 – sAUC results for Size Contrast stimuli.

95



Chapter 4. NSWAM: Neurodynamic Saliency WAvelet Model

Orientation contrast

Using a similar setting, varying angle of objects is found to increase search efficiency
when angle contrast is increased [86][217][216]. A total of 34 bars were oriented
horizontally and randomly displaced around the scene (Fig. 4.13). The dissimilar
object for this case is a bar oriented with an angle contrast with respect the rest
of bars of ∆Φ(1,0)=[0,10,20,30,42,56,90]º. Although results of sAUC show that
NSWAM overperforms SIM’s saliency maps, IKN is best for capturing orientation
distinctiveness (Fig. 4.14). In NSWAM, 3 types of orientation selective cells are
modeled, corresponding to the orientation for the wavelet coefficients (θ = h, v,d).
A higher number of orientation selective cells would provide a higher accuracy,
specially for diagonal angles (here we only provide θ = d for 45/135º combined).
By modeling orientation selective cells with 2D Gabor and Log-Gabor transforms
[179][95][102] it would be possible to correctly build an hypercolumnar organization
with a higher number of angle sensitivities.

0 10 20 30 42 56 90

Figure 4.13 – An oriented bar with an orientation contrast of∆Φ= 0..90 with respect
to a set of bars oriented at ΦD = 0. In lower row there are NSWAM’s predicted
saliency maps.

Figure 4.14 – sAUC results for Orientation Contrast stimuli.
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We have to acknowledge that for this experimentation, distractors have been set
with same horizontal configuration. Specific connectivity interactions [11] between
orientation dissimilarities needs to be defined in order to reproduce orientation-
dependent visual illusions and conspicuousness under heterogeneous, nonlinear
and categorical angle configurations (seen to be done by V2 cells [10]), which are
previously known to distinctively affect visual attention [217][216][101].

Visual Asymmetries

Search asymmetries appear when searching target of type “a" is found efficiently
among distractors of type “b", but not in the opposite case (i.e. searching for "b"
among distractors of type “a") [320][363]. Previous studies pointed out this this
concept when searching a circle crossed by a vertical bar among plain circles and
searching a plain circle among circles crossed by a vertical bar). Using these two
configurations, we filled a grid of distractors according to specific scales (Fig. 4.15).
Scale values (s = [1.25,1.67,2.08,2.5,3.33,4.17,5]deg) change the amount of items,
with arrays of 5×7, 6×8, 8×10, 10×13, 15×20 and 20×26 objects. In Fig. 4.8
our model is not only more efficient than other biologically-inspired models upon
dissimilar sized objects but also on detecting conspicuous objects at distinct scales,
accounting for lower or larger amount of distractors.

A

B

20×26 15×20 12×16 10×13 8×10 6×8 5×7

Figure 4.15 – Stimuli with distinct set sizes corresponding to search asymmetries
present on a (A) salient circle crossed by a vertical bar among other circles and
a (B) salient circle among other circles crossed by a vertical bar. Rows below A,B
correspond to NSWAM’s predicted saliency maps.
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A

B

Figure 4.16 – Results of sAUC upon varying scale and set size of (A) an array of circles
and a salient one crossed by a vertical bar and (B) an array of circles crossed by a
bar and a salient circle.

sAUC for NSWAM showed to correlate for a conspicuous circle crossed by a
vertical bar among circles (ρ = .83, p = 2.1×10−2) but not for a conspicuous circle
among circles crossed by a vertical bar (ρ = .15, p = .75).

4.6 Conclusion

In this work, we hypothesize that low-level saliency is likely to be associated by
the computations of V1. For such, we proposed a neurodynamic model of V1’s
lateral interactions, processing each channel separately and acquiring firing rate
dynamics from real image simulations. Here we have to pinpoint three statements
in agreement with our findings:

• First, our model of the lateral interactions in V1 has a trend to acquire state-of-
the-art results on human eye fixations, specifically, with natural and synthetic
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images.

• Second, our model improves results for biologically-inspired saliency models
and it is consistent with human psychophysical measurements (tested for
Visual Asymmetries, Brightness, Color, Size and Orientation contrast). Adding
up to the stated hypothesis, our model presents highest performance at
highest contrast from feature singleton stimuli (where salient objects pop-out
easily).

• Three, we remark the model plausibility by mimicking HVS physiology on its
processing steps and being able to reproduce other effects such as Brightness
Induction [239], Color Induction [65] and Visual Discomfort [241], efficiently
working without applying any type of training or optimization and keeping
the same parametrization.

Other biologically plausible alternatives that predict attention using neurody-
namic modeling [184][82][67] do not provide a unified model of the visual cortex
able to reproduce these distinct tasks simultaneously, and specifically, using real
static or dynamic images as input. We suggest that V1 computations work as a
common substrate for several tasks simultaneously. Although latest hypotheses
about the SC confirm that saliency is processed in the SC and not by the visual
cortex, corresponding to a distinct, feature-agnostic saliency map [336][352], we
claim the importance of the mechanisms of V1 to be responsible for computing
distinctiveness between the stated low-level features, which might conjunctively
contribute to the generation of saliency [185][183][372]. However, modeling the
computations of the pathways from the RGC to the SC would be of interest for a
more integrated and complete model of eye-movement prediction, seeing the roles
of the distinct projections to the SC and their computations, alternatively involved
in the control of eye movements.
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Part IIIVisual Scanpaths and Relevance:
Top-down attention

Extracting saccade sequences given any task.





5 NSWAM-CM: Cortical Magnification and
Feedback Connections

Latest work from Berga & Otazu [26] has shown that the same model (without
changing its parametrization) is able to predict saliency using real and synthetic
color images. We propose to extend the model providing saliency computations
with foveation, concerning distinct viewpoints during scene observation (mapping
retinal projections towards V1 retinotopy) as a main hypothesis for predicting
visual scanpaths. Furthermore, we also test how the model is able to provide
predictions considering recurrent feedback mechanisms of already visited regions,
as well as from visual feature and exemplar search tasks with top-down inhibition
mechanisms.

5.1 Cortical Magnification mechanisms in the brain

The human eye is composed by RP but these are not homogeneously or equally
distributed along the retina, contrarily to digital cameras. RP are distributed as
a function of eccentricity with respect the fovea (or central vision)[303]. Fovea’s
diameter is known to comprise ∼5deg of diameter in the visual field, extended by
the parafovea (∼5-9deg), the perifovea (∼9-17deg) and the macula (∼17deg). Cen-
tral vision is known to provide maximal resolution at ∼1deg of the fovea, whereas
in periphery (∼60-180- deg) there is lower resolution for the retinotopic positions
that are further away from the fovea. These effects are known to affect color, shape,
grouping and motion perception of visual objects (even at few degrees of eccentric-
ity), making performance on attentional mechanisms as eccentricity-dependent
[60]. Axons from the nasal retina project to the contralateral LGN, whereas the ones
from the temporal retina are connected with the ipsilateral LGN. These projections
[342] make the left visual field send inputs of the LGN towards the right hemifield
of V1, similarly for the case of the right visual field to the left hemifield of V1. We
have modeled these projections with a cortical magnification function [283][383,
Section 2.3.1] using 128 mm of simulated cortical surface. The visual space is trans-
formed to a cortically-magnified space (with its correspondence of millimeter for
each degree of visual angle) with a logarithmic mapping function. The pixel-wise
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cartesian visual space is transformed to polar coordinates in terms of eccentricity
and azimuth for a specific foveation instance, then transformed to coordinates in
mm of cortical space (see an example in Figure 5.1).

⇒

⇒

⇒

W =λ l og (r eiΦ+e0), (5.1)

Z = e(W /λ) −e0. (5.2)

Figure 5.1 – Left: Examples of applying the cortical magnification function (trans-
forming the visual space to the cortical space) at distinct views. Right: Illustration of
how polar coordinates (Z-plane) of azimuthΦ= (1,2,3,4,5) in the left visual field at
distinct eccentricities r = (d ,c,b, a) are transformed to the cortical space (W-plane)
in mm (X and Yi axis values), adapted from [283]. Equations 5.1 & 5.2 express the
monopole direct and inverse cortical mapping transformations (parameters set as
λ= 12mm and e0 = 1deg [383, Section 2.3.1]).

Acknowledging that the visual space for digital images is represented with either
a squared or rectangular shape, we computed the continuation of cortical coor-
dinates by symmetrically mirroring existing coordinates of the image with their
correspondence of visual space outside boundaries in the cortical space. In that
manner, we exclude possible effects of zero-padding over recurrent processing
while preserving 2D shapes for our feature representations. For this case, these
responses can be minimized by the inverse and repeating the same process at
specific interaction cycles. Schwartz’s mapping has been applied over the wavelet
coefficients represented in Figure 4.2, as basis functions are convolved in the visual
space, later magnified to the cortical space for representing V1 signals. These sig-
nals will serve as input to excitatory pyramidal cells, projected to their respective
iso-orientation domains at distinct RF sizes.
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Table 5.1 – Overview of the model, following Nordlie et. al.’s format [215]. Further explanation
for model variables and parameters is in [239, Supporting Information S1].

A Model Summary
Populations Four: excitatory (x), inhibitory (y)
Topology –
Connectivity Feedforward: one-to-all, Feedback: one-to-all,

Lateral: all-to-all (including self-connections)
Neuron model Dynamic rate model
Channel models –
Synapse model Piece-wise linear synapse
Plasticity –
Input External current in lower (I ) or higher (Ic ) cortical areas and random noise (I0)
Measurements Firing-rate (gx and g y )

B Populations
Name Elements Size
x Sigmoidal-like neuron Kx = M ×N ×Θ×S = 64×128×3×8
y Sigmoidal-like neuron Ky = Kx

C Connectivity
Name Source Target Pattern
Jxx x x Excitatory, toric, all to all, non-plastic
J0 x x Excitatory, constant J0 = 0.8
Wx y x y Inhibitory, toric, all to all, non-plastic
Wy x y x Inhibitory, toric, all to all, non-plastic

D Neuron and Synapse Model
Name V1 neuron
Type Dynamic rate model
Synaptic
dynamics

J[i sθ, j s′θ′] =λ(∆s )0.126e(−β/ds )2−2(β/ds )7−d2
s /90 (5.3)

W[i sθ, j s′θ′] =λ(∆s )0.14(1−e−0.4(β/ds )1.5
)e−(∆θ/(π/4))1.5

(5.4)

Membrane
potential

ẋi sθ =−αx xi sθ − g y (yi sθ)− ∑
∆s ,∆θ 6=0

ψ(∆s ,∆θ)g y (yi s +∆sθ +∆θ)

+ J0g (xi sθ)+ ∑
j 6=i ,s′ ,θ′

J[i sθ, j s′θ′]gx (x j s′θ′ )+ Ii sθ + I0,
(5.5)

ẏi sθ =−αy yi sθ − gx (xi sθ)+ ∑
j 6=i ,s′ ,θ′

W[i sθ, j s′θ′]gx (x j s′θ′ )+ Ic (5.6)
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E Input
Type Description
Sensory
(bottom-up)

Input to excitatory neurons, I t
i ;o =ωt

i soθ

Control
(top-down)

Input to inhibitory interneurons, Ic = 1.0+ Inoi se + Iv s + Ii or

F Measurements

Mean Firing-rate of excitatory neurons for τ=10 membrane time (M(ωp=[+,−]
i soθ )).

After integrating the cortical mapping, the network of NSWAM-CM is in total
composed of 1.18×6 neurons (accounting for 3 opponent channels, both ON/OFF
polarities and RF sizes of 128×64×3×8).

5.2 Generating Saccade Sequences

We have defined the higher active neurons (Equation 5.7) as the locations for sac-
cades in the visual space (i,j) by decoding the inverse of the cortical magnification
(Equation 5.2) of their respective retinotopic position ("i " neuron at X,Yi).

M AXW (X ,Y i ) = ar g max(Ŝ) → M AXZ (r,Φ) → M AXV (i , j ), (5.7)

In Figure 5.2 we schematize the pipeline of the model, summarized in 8 proce-
dures:

1. Transform RGB components to the CIE Lab space. [Chapter 4.1.1]

2. Extract orientation features at distinct scales with the DWT. [Chapter 4.1.2]

3. Feature maps are foveated with a log-polar cortical mapping transform (initial
fixation set by default at the center of the image). [Chapter 5.1]

4. Firing rates are obtained with neurodynamical model of horizontal connec-
tions in V1. [Chapter 4.2]

5. Firing rates from feature maps are integrated to a unique map (with a inverse
transform from previous methods) to select next fixation point. [Chapter
4.3][Chapter 5.2].

6. Activity from highest retinotopic position is set as an Inhibition of Return
mechanism for future fixations (step 3). [Chapter 5.3.2]

7. Top-down selection can be introduced to the model as an inhibitory signal
from coefficients of learned categories [Chapter 5.3.1]
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8. Memory formations have been learned from wavelet coefficient statistics
(chromatic opponency, scale and orientation), given images and segmenta-
tion masks [Chapter 5.3.1]
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Figure 5.2 – Diagram illustrating how visual information is processed by NSWAM-
CM, including a brain drawing of each bottom-up and top-down attention mecha-
nisms and their localization in the cortex (bottom-right).

5.3 Attention as Top-down inhibition

An additional purpose of our work is model of attentional mechanisms beyond
pre-attentive visual selection. Instead of analyzing the scene serially, the visual
brain uses a set of attentional biases to recognize objects, their relationships and
their importance with respect the task, all given in a set of visual representations.
Similarly to the saliency map, the priority map can be interpreted as a unique
2D representation for eye movement guidance formed in the SC, here including
top-down (not guided by the stimulus itself) and recurrent information as visual rele-
vance. This phenomena suggests that executive, long-term and short-term/working
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memory correlates also direct eye movement control[173, 245, 350]. Previous hy-
potheses model these properties by forming the priority map through selective
tuning [326, 327]. Selective tuning explains attention mechanisms as a hierarchy
of winner-take-all processes. This hypothesis suggests that attention is focused
with spatial inhibition at each layer of processing, creating selection, restriction
and suppression through inhibition of certain locations, task-irrelevant cues and
previously seen locations. Latest hypotheses [4] confirm that striate cortical activity
gain can be modulated by SC responses, additional modulations arise from pulvinar
to extrastriate visual areas. By simulating the formetly mentioned executive and
recurrent activity as top-down inhibition in our model, we are able to perform
task-specific visual selection (VS) and inhibition of return (IoR) mechanisms.

5.3.1 Top-down selection

Goal-directed or memory-guided saccades imply executive control mechanisms
that account for task requirements during stimulus perception. The dorsolateral
prefrontal cortex (DLPFC) is known to be responsible for short-term spatial memory,
to retrieve long-term memory signals of object representations (through projections
towards the para- and hippocampal formations) as well as to perform reflective
saccade inhibition, among other functions. These inhibitory signals, later projected
to the frontal eye field (FEF) are able to direct gaze during search and smooth
pursuit tasks [243, 245, 278] (also suggested to be crucial for planning intentional or
endogenously-guided saccades), where its signals are sent to the SC. Latest studies
[372] put forward that V1 influences both saliency and top-down learning during
visual detection tasks. By feeding our model with inhibitory signals (Ic shown in
Figure 4.3 and Table 5.1E) we can simulate top-down selection at each level of visual
processing. In this case, a new term I{v s} is added to the top-down inhibition of
our cortical signals that will be projected to the SC during each gaze (similarly to a
boolean selection of specific features [134]). This term is modulated with a constant
factor α{v s}. In this implementation, we can perform distinct search tasks such
as feature search (by manually selecting the features, or selecting features with
maximal responses, asΩ=M AXp,s,o,θ(ω)), exemplar and categorical object search
(by processing the mean of responses ω̂ from wavelet coefficients of a single or
several image samples. These would serve as RF activations to be stored as weights
in our low-level memory representations) that will be used as inhibitory modulation
for the task execution:

I{v s} =α{v s} ·
M AXp,s,o,θ(ω) , feature-selective

(
N∑

i=1
ωpsoθ)/N ,category-specific

(5.8)
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5.3.2 Inhibition of Return

During scene viewing, saccadic eye movements show distinct patterns of fixations
[89], directed by exploratory purposes or either towards putting the attentional
focus on specific objects in the scene. For the former case, the HVS needs to ig-
nore already visited regions (triggering anti-saccades away from these memorized
regions) during a period of time before gazing again towards them. This phenom-
ena is named inhibition of return [106], and similarly involves extracting sensory
information and short-term memory during scene perception. As mentioned be-
fore, DLPFC is responsible of memory-guided saccades, and this function might be
done in conjunction with the parietal cortex and the FEF. The parietal areas (LIP
and PEF)[38, 243, 245] are known to be responsible of visuospatial integration and
preparation of saccade sequences. These areas conjunctively interact with the FEF
and DLPFC for planning reflexive visually-guided saccades. Acknowledging that
LIP receives inputs from FEF and DLPFC, the role of each cannot be disentangled
as a unique functional correlate for the IoR. Following the above and similarly to
the previous section, we have modeled return mechanisms as top-down cortical
inhibition accounting for previously-viewed saccade locations. Thus, we added an
inhibition input I{I oR} at the start of each saccade, which will determine our IoR
mechanism:

I g ,t=0
{I oR} = ar g max(Ŝ)ůG(M AXV (x, y))+ I g−1

{I oR},

I g ,t>0
{I oR} =α{I oR}(I t−1

{I oR})
10τ∏
i=1

e l og (β{I oR})/τ.
(5.9)

This term is modulated with a constant power factor α{I oR} and a decay factor
β{I oR}, which in every cycle will progressively reduce inhibition. The spatial region
of the IoR has been defined as a gaussian function centered to the previous gaze (g),
with a spatial standard deviation dependent on a specific spatial scale and a peak
with an amplitude of the maximal RF firing rate. Inhibitory activity is accumulated
to the same map and can be shown how is progressively reduced during viewing
time (Fig. 5.10). Alternatively illustrated in Itti et al.’s work [142], the IoR can be
applied to static saliency models by substracting the accumulated inhibitory map
to the saliency map during each gaze (Ŝ − I g

{I oR}).

5.4 Evaluation metrics for Scanpaths and Visual Search

Saliency metrics, largely explained by Bylinskii et al. [55], usually compare model
predictions with human fixations during the whole viewing time, regardless of
fixation order. In our study is also represented the evolution of prediction scores for
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each gaze. For the case of scanpaths, we evaluated saccade sequences by analyzing
saccade amplitude (SA) and saccade landing (SL) statistics. These are calculated
using euclidean distance between fixation coordinates (distance between saccade
length for SA and distance between locations of saccades for SL).

Initial investigations on visual attention [320, 365] during visual search tasks for-
mulated that reaction times of finding a target (defined in a region of interest/ROI)
among a set of distractors are dependent on set size as well as target-distractor
feature contrast. In order to evaluate performance on visual search, we utilised two
metrics that account for the ground truth mask of specific regions for search and
the saliency map (in this context, it could be considered as a "relevance" map) or
predicted saccade coordinates (from locations with highest neuronal activity). We
have used the SI metric for calculating how well a saliency (or object search) map
falls inside a particular ROI. For the case of saccades in visual search, we considered
to calculate the probability of fixations inside the ROI (PFI).

5.5 Results for predicting Saliency

Saliency predictions have been computed from initial biologically-inspired saliency
models for comparison. Our model has been computed without (NSWAM) and with
foveation (NSWAM-CM), as a mean of cortically-mapped saliency computations
through a loop of 1, 2, 5 and 10 saccades. The tasks performed for these mostly
consist of freely looking at each image during 5000 ms, looking at the "most salient
objects" or searching for specific objects of interest. We have selected these datasets
to evaluate prediction performance at distinct scene contexts. Indicators of psy-
chophysical consistency of the models has been presented, evaluating prediction
performance upon fixation number and feature contrast. Visual search perfor-
mance has been evaluated by computing predictions of locating specific objects of
interest.

Based on the shuffled metric scores, traditional saliency models such as AIM
overall score higher on real scene images (Fig 5.3), scoring s AUC AI M =.663, and
In f oGai nI K N =.024. For the case of nature images (Fig 5.4), our non-foveated and
foveated versions of the model (NSWAM and NSWAM-CM) scored highest on both
metrics (In f oGai nN SW AM =.168 and s AUCN SW AM−C M10=.567). As mentioned be-
fore, fixation center biases are present when the task and/or stimulus do not induce
regions that are enough salient to produce bottom-up saccades. Nature scene im-
ages lack of semantic (man-made) information that might contribute to top-down
guided eye movements and inter-participant differences, in contrast to real image
scenes [140]. Adding to that, in real images (Toronto and KTH), which contain dense
image representations, there are no concrete places for saliency. This phenomena
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is seemingly presented in our models’ saliency maps from 1st to 10th fixations (Figs.
5.3-5.4, rows 5-8), where salient regions are presented to be less evident across
fixation order.

Model sAUC InfoGain

Human Fix. .904 2.42

IKN [142] .649 -.024*

AIM [49] .663* -.579

NSWAM .631 -.552

NSWAM-CM1 .636 -.818

NSWAM-CM2 .644 -.738

NSWAM-CM5 .650 -.701

NSWAM-CM10 .655 -.692

Figure 5.3 – Saliency metrics for Toronto (Bruce & Tsotsos [50]) Eye Tracking Dataset

Model sAUC InfoGain

Human Fix. .822 1.41

IKN [142] .551 -.172

AIM [49] .552 -.509

NSWAM .565 -.168*

NSWAM-CM1 .564 -.227

NSWAM-CM2 .566 -.213

NSWAM-CM5 .566 -.211

NSWAM-CM10 .567* -.209

Figure 5.4 – Saliency metrics for KTH (Kootra et al’.s [160]) Eye Tracking Dataset
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Model sAUC InfoGain

Human Fix. .623 .777

IKN [142] .562 -.724*

AIM [49] .544 -6.49

NSWAM .567* -1.01

NSWAM-CM1 .561 -1.24

NSWAM-CM2 .563 -1.14

NSWAM-CM5 .565 -1.09

NSWAM-CM10 .567* -1.07

Figure 5.5 – Saliency metrics for C AT 2000Pat ter n (Borji & Itti [42]) Dataset

Model sAUC InfoGain

Human Fix. .860 2.80

IKN [142] .608 -.233

AIM [49] .557 -18.2

NSWAM .622* -.149

NSWAM-CM1 .617 -.204

NSWAM-CM2 .622* -.164

NSWAM-CM5 .620 -.139

NSWAM-CM10 .618 -.131*

Figure 5.6 – Saliency metrics for SID4VAM (Berga et al. [22]) Eye Tracking Dataset

In synthetic image patterns (C AT 2000P ), both of our model versions outper-
forms other models s AUCN SW AM ,N SW AM−C M =.567. Center biases are present in
such dataset (see Fig. 5.5, "Human Fix." heatmaps), seemingly reproduced by IKN
in the illustration (In f oGai nI K N =-.724). Quantitatively, these tendencies should
not be likely to be considerable as indicators of saliency. Even if shuffled metrics try
to penalize for these effects, systematic tendencies cannot be discarded from model
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evaluations (these are particular for each dataset task and stimulus properties). For
the case of SID4VAM dataset (Fig. 5.6), salient regions are labeled with specific
feature type and contrast, and fixation patterns present lower center biases (due to
mainly being based a singleton search type of task with a unique salient target). Our
model presents highest scores on both metrics (s AUCN SW AM ,N SW AM−C M2=.622
and In f oGai nN SW AM−C M10=-.131).

In Figs. 5.3-5.6 are compared the average score per gaze of human fixations and
saliency model predictions. It can be observed that prediction scores for all models
decrease as a function of gaze number. Scores of probability density distributions
of human fixations (in comparison to fixation locations) decrease around 10% the
sAUC after 10 saccades. This decrease of performance is not reproduced by any
of the presented models, instead, most of them show a flat or slightly increasing
slopes for the case of sAUC scores and logarithmically increasing scores for InfoGain.
NSWAM and NSWAM-CM present similar results upon fixation number.

Figure 5.7 – sAUC and InfoGain scores for each relative target-distractor feature
contrast

In SID4VAM, stimuli are categorized with specific difficulty (according to the
relative target-distractor feature contrast). With these, we computed the score for
each relative contrast instance (Ψ) in Fig. 5.7. Ideal conditions (following the Weber
law) determine that if there is less difficulty for finding the salient region (higher
target-distractor contrast), saliency will be focused on that region. Conversely,
fixations would be distributed on the whole scene if otherwise. After computing
each low-level stimulus instance with the presented models and evaluating results
with the same metrics, our saliency model (NSWAM and NSWAM-CM) presents
better performance than AIM and IKN while increasing score at higher feature
contrasts.
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Discussion

Quantitatively, systematic tendencies in free-viewing (center biases, inter-participant
differences, etc.[306]) should not be likely to be considered as indicators of saliency.
Although shuffled metrics try to penalize for these effects, benchmarks do not com-
pensate for these tendencies from model evaluations (these are particular for each
dataset task and stimulus properties). Acknowledging that first saccades determine
bottom-up eye movement guidance [8, 381], it is a phenomenon also present in our
experimental data (in terms of the decrease of performance with respect fixation
region probability compared to fixation locations). In that aspect, evaluating first fix-
ations with more importance could define new benchmarks for saliency modeling,
similarly with stimuli where feature contrast in salient objects is quantified. Ideal
conditions (following the Weber law) determine that if there is less difficulty for
finding the salient region (higher target-distractor contrast), saliency will be focused
on that region. Conversely, fixations would be distributed on the whole scene if
otherwise. Our model presents better performance than other biologically-inspired
ones accounting for these basis.

5.6 Results for predicting Scanpaths

Illustration of scanpaths from datasets presented in previous section were com-
puted with scanpath models in Fig. 5.8. Scanpaths are predicted by NSWAM-
CM during the first 10 saccades, by selecting maximum activity of our model
for every saccade. We have plotted our model’s performance in addition to Boc-
cignone&Ferraro’s, LeMeur&Liu’s and STAR-FC predictions (Fig. 5.9). Saccade
statistics show an initial increment of saccade amplitude, decreasing as a function
of fixation number. Errors of SA and SL (∆SA and ∆SL) are calculated as absolute
differences between model predictions and human fixations. Values of ∆SL appear
to be lower and similar for all models during initial fixations.

In our study is also represented the evolution of prediction scores for each gaze.
For the case of scanpaths, we evaluated saccade sequences by analyzing saccade
amplitude (SA) and saccade landing (SL) statistics. These are calculated using
euclidean distance between fixation coordinates (distance between saccade length
for SA and distance between locations of saccades for SL). Prediction errors are
shown to be sustained or increasing for CLE and NSWAM-CM (maybe due to their
lack of processing higher level features, experimental center biases, etc.). Errors
on ∆SA predictions are lower for LeMeur&Liu’s and STAR-FC models, retaining
similar saccades (except for synthetic images of SID4VAM). Although these errors
are representative in terms of saccade sequence, we also computed correlations
of models’ SA with GT (ρSA). In this last case, NSWAM-CM presents most higher
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Figure 5.8 – Examples of visual scanpaths for a set of real (1st row), nature (2nd
row) and synthetic (3rd row) images. Model scanpaths correspond to CLE [39],
LeMeurN atur al , LeMeurF aces , LeMeurLand scapes [202], STAR-FC[357] and NSWAM-
CM (ours).

correlation values for Toronto, Kootstra and CAT2000P (ρSATor onto=-.38, p=.09;
ρSAK T H =.012, p=.96; ρSAC AT 2000P =.28, p=.16) than other models. Most of them
seem to accurately predict SA for SID4VAM (which contains mostly visual search
psychophysical image patterns), with ρSA between .7 and .8.

Our scanpath model tend to predict eye movements with large mean saccade
amplitudes {M(S A)Tor onto=7.8±3.5; M(S A)K T H =13±6.1; M(S A)C AT 2000P =15.7±6.7;
M(S A)SI D4V AM =15.7±6.9 deg}, whereas human fixations combine both short and
large saccades {M(S A)Tor onto=4.6±1; M(S A)K T H =6.7±.5; M(S A)C AT 2000P =5.1±.9;
M(S A)SI D4V AM =5.8±1.5 deg}. In that aspect, our prediction errors might arise from
not correctly predicting focal fixations.

We simulated the inhibition factor for all datasets by substracting the inhibi-
tion factor I{I oR} to our models’ saliency maps (NSWAM+IoR). After computing
prediction errors in SA and SL for a single sample (Fig. 5.11-Top), best predictions
seem to appear at decay values of β{I oR} between .93 and .98, which corresponds
to 1 to 5 saccades (similarly explained by Samuel & Kat [276] and Berga et al. [22],
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Toronto KTH CAT2000P SID4VAM

Figure 5.9 – 1st row: Prediction errors in Saccade Landing (∆SL) for real indoor/out-
door (Toronto), nature (KTH) and synthetic (CAT2000P and SID4VAM) image
datasets. 2nd row: Prediction errors in Saccade Amplitude (∆SA) on same datasets.
3rd row: Correlations of Saccade Amplitude (ρSA) with respect human fixations.

where takes from 300-1600 ms for the duration of the IoR, corresponding to 1 to
5 times the fixation duration). For the case of the σ{I oR}, lowest prediction error
(again, both in SA and SL) is found from 1 to 3 deg (in comparison, LeMeur & Liu
[202] parametrized it by default as 2 deg). Results on ∆SA statistics have similar /
slightly increasing performance until (β{I oR} <1) a single fixation time, decreasing
at highest decay β{I oR} ≥5th saccade. For ∆SL values, errors in datasets such as
KTH and SID4VAM are decreased at higher decay. For the latter, ∆SA errors are
shown to decrease progressively at highest decay values (β{I oR} ≥.93). Lastly, when
parametrizing the spatial properties of the IoR, saccade prediction performance is
highest at lower size (with a near-constant error in SA and SL increasing about 1
deg for σ{I oR}=1 to 8 deg on all datasets).
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β=0 β=.5 β=.93 β=1

σ=1 deg σ=2 deg σ=4 deg σ=8 deg

Figure 5.10 – Left: Evolution of inhibition factor for 100 mem.time (about 1000 iter-
ations), corresponding approximately to performing 10 saccades to the model (top).
Spatial representation of the IoR with distinct size (bottom). Right: Examples of
scanpaths varying IoR decay factor (top, σ{I oR}=2 deg, β{I oR}={0, .5, .9,1}) or varying
distinct IoR size (bottom, σ{I oR}={1,2,4,8} deg,β{I oR}=1).

Figure 5.11 – Statistics of scanpath prediction (∆SA and∆SL) by the parametrization
of IoR decay (β{I oR}) and IoR size (σ{I oR}) in a single sample (top row, from image
scanpaths in Fig. 13) and saliency datasets (bottom row).

Discussion

Our model predictions on SA correlate better (i.e. obtain higher ρS A values) than
other scanpath models (in terms of how SA evolves over fixations), however, pre-
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diction errors are higher in both SL and SA. We believe that these errors are caused
by incorrectly predicting locations of fixations, but not for failing on predictions
of the saccade sequence per se. These locations are mainly influenced by system-
atic tendencies in free-viewing (derived by center biases and/or focal fixations in
a particular region of the image). Cortical magnification mechanisms might be
responsible for processing higher saliency at regions outside the fovea, generating
tendencies of uniquely capturing large saccades. These can be solved by processing
high-level feature computations near the fovea, which would increase the probabil-
ity of fixations at lower SA. We have to hesitate that first fixations are long known for
being determinants of bottom-up attention [8, 22]. Instead, higher inter-participant
differences [306] and center biases [269] increase as functions of fixation number,
suggested as worse candidates for predicting attention. These parameters appear to
specifically affect each stimuli differently (and accounting that each stimulus may
convey specific semantic importance between each contextual element), which
may relate to top-down attention but not to the image characteristics per se. We
also want to stress the importance of foveation in our model. This is a major proce-
dure for determining saccade characteristics (including oculomotor tendencies)
and saliency computations, as it determines current human actions during scene
visualization. The decrease of spatial resolution at increasing eccentricity provides
the aforementioned properties, innate in human vision and invariant to scene
semantics.

Adding an IoR mechanism has been seen to affect model activity and therefore
scanpath predictions. In Fig. 5.10-Left we show how our inhibition factor (I{I or })
decreases over simulation time in relation to the parametrized decay β{I oR}, as well
as the projected RF size with respect the gaussian parameter σ{I oR}. These variables
(decay and size) affect either location of saccades and its sequence, modulating
firing rate activity to already visited locations. It is shown in Fig. 5.10-Right that
the initial saccade is focused on the salient region and then it spreads to a specific
location in the scene, not repeating with higher value of inhibition decay or field
size. In the next section we show how our model can preproduce eye movements
beyond free-viewing tasks by modulating of inhibitory top-down signals.

5.7 Results on feature and categorical search

Comparison of results for NSWAM with bottom-up only and with top-down in-
hibition present higher scores for both SI and PFI (Fig. 5.12) using top-down
inhibition (NSWAM+VSM and NSWAM+VSC ). Here, there is an increase of fixa-
tions inside the ROI: ∆(PF I )V SM '1% and ∆(PF I )V SC '6% for real object search
and almost equal to saliency for synthetic image patterns, ∆(PF I )V SM '0% and
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Synthetic Pattern Search Object Search

Figure 5.12 – Statistics of Saliency Index (top row) and Probability of Fixations
Inside the ROI (bottom row) for synthetic image patterns (left) and salient object
detection regions from real image scenes (right).

∆(PF I )V SC '1%. The SI is also seen to increase for both cases, with differences of
∆(SI )V SM =3.8×10−4 and∆(SI )V SC =5.9×10−4 for object search and∆(SI )V SM =3.1×
10−4 and ∆(SI )V SC =1.3×10−5 for psychophysical pattern search. Saliency metrics
of sAUC and InfoGain (with Toronto’s eye tracking dataset) increase with the search-
based strategy {∆(s AUC )V SM =.018, ∆(s AUC )V SC =.003; ∆(In f oGai n)V SM =.002,
∆(In f oGai n)V SC =.035}.

Free-viewing fixations are seemingly predicted with similar performance in com-
parison with NSWAM predictions (Fig. 5.3). Saliency metrics are similar or increas-
ing with respect NSWAM for feature singleton search fixations {∆(s AUC )V SM =3.6×10−3,
∆(s AUC )V SC =2.9×10−3;∆(In f oGai n)V SM =4.1×10−2,∆(In f oGai n)V SC =9.4×10−4},
but decrease for the case of free-viewing {∆(s AUC )V SM =-12×10−3, ∆(s AUC )V SC =-
8.7×10−3; ∆(In f oGai n)V SM =-13.7×10−2, ∆(In f oGai n)V SC =-3.3×10−2}.

We illustrated results of PFI and SI (Fig. 5.15) in relation to relative target-
distractor feature contrast for cases of Brigthness, Color and Size differences, as
well as the Set Size for searching a certain target patterns (i.e. a circle superposed by
an oriented bar). After computing SI for each distinct psychophysical stimuli, we
can see in Figs. 5.14-5.15 that our model performs best for searching differences
with stimuli where there are differences in brightness, color, size and/or superim-
posed singletons, rather than for the case of different combination of orientations,
specially with heterogeneous, nonlinear or categorical angle configurations.
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Image Mask NSWAM NSWAM+V SM NSWAM+V SC

"Telephone"

"Banana"

"Bag"

"Bottle"

"Traffic"

"Lamp"

Figure 5.13 – Search instances with a specific ROI (Mask) based on a category/word exemplar.
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Figure 5.14 – Performance on visual search evaluated on each distinct low-level
feature, stimulus instances are from SID4VAM’s dataset [23].

Discussion

Overall results show that features computed by the top-down approach seem-
ingly performs better in visual search than saliency, both considering features with
maximal cortical activity (NSWAM+V SM ) and average statistics of low-level fea-
tures (NSWAM+V SC ). When searching real objects, results in SI are higher for
NSWAM+VSC (considering that dataset ROIs are selected from objects that are al-
ready salient). We suggest that considering scene statistics perform better when
searching contextually complex exemplars. Here the combination of features could
be implicit when processing image ROI average characteristics but not when us-
ing maximal activations, qualitatively shown in Fig. 5.13. The fact that SI scores
are lower for free-viewing tasks in pop-out stimuli might be caused from influ-
ences of the center bias, presenting more fixations near the center in free-viewing
[22]. Search in psychophysical image patterns is significatively more efficient in SI
when selecting maximal feature activations (NSWAM+V SM ). Regarding that aspect,
exemplar and categorical search for objects in real image scenes would require
computations with a higher number of features [32, 198] (which would represent in
more detail each cortical cell sensitivity).
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NSWAM

NSWAM-VSM

NSWAM-VSC

NSWAM

NSWAM-VSM

NSWAM-VSC

NSWAM

NSWAM-VSM

NSWAM-VSC

NSWAM

NSWAM-VSM

NSWAM-VSC

Figure 5.15 – Performance on visual search examples with a specific low-level feature contrast (for Brightness,
Color or Size) and Set Size. We represented 7 instances ordered by search difficulty of each feature sample.
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General Discussion

Current implementation of our V1 model is based on Li’s excitatory-inhibitory firing
rate network [184], following previous hypotheses of pyramidal and interneuron
connectivity for orientation selectivity in V1 [105, 347]. To support and extend this
hypothesis, distinct connectivity schemas (following up V1 cell subtype character-
ization) [114, 178] could be tested (e.g. adding dysynaptic connections between
inhibitory interneurons) to better understand V1 intra-cortical computations. Fur-
thermore, modeling intra-layer interactions of V1 cells [294] could explain how
visual information is parallely processed and integrated by simple and complex
cells[198], how distinct chromatic opponencies (P-,K- and M-) are computed at
each layer [148], and how V1 responses affect SC activity (i.e. from layer 5) [214].
Testing contributions of each of these chromatic pathways (at distinct single/dou-
ble opponencies and polarities), as well as distinct fusion mechanisms regarding
feature integration, would define a more detailed description of how visual features
affect saliency map predictions.

Previous and current scanpath model predictions could be considered to be
insufficient due to the scene complexity and numerous factors (such as the task
specificity, scene semantics, etc.) simultaneously involved in saccade program-
ming. These factors increase overall errors on scanpath predictions, as systematic
tendencies increase over time[22, 88, 269, 306], making late saccades difficult to
predict. In that aspect, in free-viewing tasks (when there is no task definition),
top-down attention is likely to be dependent on the internal state of the subject.
Further understanding of high level attentional processes have only been approx-
imated through statistical and optimization techniques with fixation data. It has
also been later observed that fixations during free-viewing and visual search have
distinct temporal properties. This could explain that saliency and relevance are
elicited differently during viewing time. Latest literature on that aspect, discern two
distinct patterns of fixations (either ambient or focal) where subjects first observe
the scene (possibly towards salient regions), then focus their attention on regions
that are relevant to them[89], and these influences are mainly temporal. Its mod-
elization for eye movements in combination with memory processing is still under
discussion. Current return mechanisms have long been computed by inhibiting
the regions of previous fixations (spatially-based), nonetheless, IoR could also have
feature-selective properties[133] to consider.

We suggest that not all fixations should have the same importance when eval-
uating saliency predictions. Nature and synthetic scene images lack of semantic
(man-made) information, which might contribute to the aforementioned voluntary
(top-down guided) eye movements [140]. Acknowledging that objects are usually
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composed by the combination of several features (either in shape, color, etc.), we
should analyze if low-level features are sufficient to perform complex categorical
search tasks. Extrastriate computations could allow the usage of object represen-
tations at higher-level processing, introducing semantically-relevant information
and several image samples per category. Cortical processing of extrastriate areas
(from V2 and V3) towards temporal (V4 & IT) and dorsal (V5 & MT) pathways [348,
Section II][294] could represent cortical activity at these distinct levels of processing,
modeling in more detail the computations within the two-stream hypothesis (what
& where pathways). Color, shape and motion processing in each of these areas
could generate more accurate representations of SC activity[350], producing more
complex predictions such as microsaccadic and smooth pursuit eye movements.

Future Work

Current and future implementations of the model are able to process dynamic
stimuli as to represent attention using videos. By simulating motion energy from V1
cells and MT direction selective cells [383, Section 2.3.5], would allow our model
to reproduce object motion and flicker mechanisms found in the HVS. Moreover,
foveation through more plausible cortical mapping algorithms [282] could provide
better spatial detail of the cortical field organization of foveal and peripheral retino-
topic regions and lateralization, currently seen to reproduce V1/V2/V3 physiological
responses. Adding to that, hypercolumnar feature computations of geniculocor-
tical pathways could be extended with a higher number of orientation and scale
sensitivities with self-invertible 2D Log-Gabor filters [95]. In that regard, angle
configuration pop-out effects and contour detection computations [10, 11] can be
done by changing neuron connectivity and orientation tuning modulations.

We aim in future implementations to model the impact of feedback in cortico-
cortical interactions with respect striate and extrastriate areas in the HVS. Some
of these regions project directly to SC, including the intermediate areas (pulvinar
and medial dorsal) and basal ganglia[243, 245, 350]. Our current implementation
can be extended with a large scale network of spiking neurons [146], also being
able to learn certain image patterns through spike-timing dependent plasticity
mechanisms[85]. With such a network, the same model would be able to perform
both psychophysical and electrophysiological evaluations while providing novel
biologically-plausible computations with large scale image datasets.
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Conclusion

In this study we have presented a biologically-plausible model of visual attention by
mimicking visual mechanisms from retina to V1 using real images. From such, com-
putations at early visual areas of the HVS (i.e. RP, RGC, LGN and V1) are performed
by following physiological and psychophysical characteristics. Here we state that
lateral interactions of V1 cells are able to obtain real scene saliency maps and to
predict locations of visual fixations. We have also proposed novel scanpath compu-
tations of scene visualization using a cortical magnification function. Our model
outperforms other biologically inspired saliency models in saliency predictions
(specifically with nature and synthetic images) and has a trend to acquire similar
scanpath prediction performance with respect other artificial models, outperform-
ing them in saccade amplitude correlations. The aim of this study, besides from
acquiring state-of-the-art results, is to explain how lateral connections can predict
visual fixations and how these can explain the role of V1 in this and other visual
effects. In addition, we formulated projections of recurrent and selective attention
using the same model (simulating frontoparietal top-down inhibition mechanisms).
Our implementation of these, included top-down projections from DLPFC, FEF
and LIP (regarding visual selection and inhibition of return mechanisms). We have
shown how scanpath predictions improve by parametrizing the inhibition of return,
with highest performance at a size of 2 deg and a decay time between 1 and 5 fixa-
tions. By processing low-level feature representations of real images (considering
statistics of wavelet coefficients for each object or feature exemplar) and using them
as top-down cues, we have been able to perform feature and object search using the
same computational architecture. Two search strategies are presented, and we show
that both the probability to gaze inside a ROI and the amount of fixations inside
that ROI increase with respect saliency. In previous studies, the same model has
been able to reproduce brightness [239] and chromatic [65] induction, as well as ex-
plaining V1 cortical hyperexcitability as a indicator of visual discomfort [241]. With
the same parameters and without any type of training or optimization, NSWAM is
also able predict bottom-up and top-down attention for free-viewing and visual
search tasks. Model characteristics has been constrained (in both architecture and
parametrization) with human physiology and visual psychophysics, and can be
considered as a simplified and unified simulation of how low-level visual processes
occur in the HVS.
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6 Modeling task on attention (Ongoing Work)

6.1 Visual Priming

Presenting a stimulus can facilitate or inhibit processing of subsequent stimulus,
this phenomena is called perceptual priming. Likewise, task priming refers to the
change of perceptual and cognitive outcome when observing a stimulus after pre-
senting a task. This is easily observable in the "Monkey Business Illusion", 1 also
named "change blindness" or "inattentional blindness" [293], where presenting the
task "Count how many times the players wearing white pass the basketball" makes
most participants unable to detect a gorilla walking in front of the scene. Alfred
Yarbus’ seminal work [373][Figure 6.1] explained these effects for the case of eye
movement control. Both task and perceptually-relevant information interplay as
effects biasing image recognition and decision-making [103, 155, 375][56, Chapter
3.12]. On that regard, our HVS modulates visual attention, learning and visual
working memory [59, 162] upon previous knowledge [329, 354]. Acknowledging
that stimulus have both visual and semantical characteristics, conscious and uncon-
scious percepts might be facilitated or inhibited (becoming supraliminal or sublim-
inal) by certain image characteristics [14, 253]. Our attentional mechanisms select
either the regions or features of the scene based on the task to perform [117, Chap-
ter 7], the context (visual and semantic relationships) [12, 35, 127, 224, 229][166,
Chapter 8] and prior knowledge [329, 354]. Acknowledging that while viewing a
scene there is both saliency (bottom-up) and relevance (top-down), selection for
locations of fixations need to be biased upon the aforementioned priors. The con-
cept of priming can be included as a mechanism of Selective Tuning hypothesis
[326][325, Chapter 7], such modeling will be presented in this chapter.

1Inattentional blindness: https://www.youtube.com/watch?v=vJG698U2Mvo
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Figure 6.1 – Unexpected Visitors painting, by Ilya Repin. This picture elicits eye
movement patterns according to distinct task specifications, represented as 1."Free
examination"; 2."Estimate the material circumstances of the family in the picture";
3."Give the ages of the people"; 4."Surmise what the family had been doing before
the arrival of the ’unexpected visitor’"; 5."Remember the clothes worn by the peo-
ple"; 6."Remember the position of the people and objects in the room"; 7."Estimate
how long the ’unexpected visitor’ had been away from the family". From [373].

6.2 Objectives

In this work we propose to model an architecture to enable tuning of attentional
processing mechanisms to adapt vision given specific task instructions. We plan to
provide a computational basis of processing object representations and locations
for fixations according to stimulus characteristics and task-specific priming [52, 308,
373]. Navalpakkam & Itti [213] defined one of the first architectures that combine
both visual and symbolic representations for attention. Later models [153] used
"Bag of Words" of Shape and Color representations for learning class attention maps.
Although its sound approach on predicting several tasks simultaneously, it was not
yet implemented to work with real images, and its mechanisms are not inspired on
a biological basis. For that, the task definition is to be integrated with the Selective
Tuning Attentive Reference (STAR) Model [Figure 6.2-Left][327], presented to work
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for predicting saccade sequences with real image datasets [357]. The objectives for
this model include:

1. To provide low- and high-level feature basis for the visual memory represen-
tations

2. To define a hierarchical lexico-semantic memory explaining the task specifi-
cation

3. Determine influences of task over fixations (including memory, covert and
overt attention)

6.3 STAR-FCT: Selective Tuning Attentive Reference -
Task-based Fixation Controller

Our proposed implementation of methods in Long Term Memory (mLTM), Task
Working Memory (tWM) and Visual Task Executive (vTE) [Figure 6.2-Right] are in-
spired by the Cognitive Programs architecture [328][325] by extending STAR Fixation
Controller [327, 357], proposing functionally plausible definitions for reproducing
human attentional processes in the brain.

6.3.1 Symbolic Representations: Understanding the Task

The task can be processed as a symbolic graph regarding lexical and semantical
characteristics of the sentence, determining which objects, actions and locations
are relevant and their importance with respect to the task. Here we integrated an
ontology-based semantic similarity procedure from Wu & Palmer [370] that relates
words with "is a" relationships in a common taxonomy (similarly to Navalpakkam
& Itti’s model [213]), defined by:

W U P (a,b) = 2∗depth(LC S(a,b))

depth(a)+depth(b)
,

depth(a) = mi npath(r oot , a),

(6.1)

where "a" and "b" are the words to compare, the "depth" is defined as the distance
of the word with respect to the taxonomy "root" and the "LCS" or Least Common
Subsummer is the most concrete taxonomical ancestor that subsumes both terms.
Semantic similarity measures [199, 285][Equation 6.1] can relate learned words of a
particular model (i.e. classification weights for categories/classes) with respect the
words specified on the task (here using WordNet database [204]). This procedure
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Figure 6.2 – Illustration of STAR architecture including the integration of task defini-
tion modules (*). Here the image is blurred and cropped using a retinal transform
[345], processed by a hierarchy of features representing low-level (Peripheral map)
and high-level saliency (Central map). Fixations are predicted from WTA-like mech-
anisms from the Priority Map, which depends on previous fixations (Fixation History
Map) and other Working Memory biases.

can able to make the model generalize to some extent to any class (whether or not
exists in training data), abling to weight the map for the semantically-closest class
with respect each one of the task.

6.3.2 Visual Representations: Low- and High-level features

Low- and high-level visual feature representations can be obtained both by comput-
ing features given the selected task categories. The STAR-FC scanpath model [357]
uses low-level saliency from AIM [50] for computing peripheral map and high-level
saliency from SALICON [135] ) for computing the central map. Our aim is to define
a set of methods that would allow to tune the hierarchical representations of periph-
eral and central attentional maps respectively. On the one hand, low-level features
can be processed from sparse dictionaries (e.g. feature basis from LogGabors [95],
ICA from features that maximize visual information [50], features that resemble V1
receptive fields [260], AlexNet first convolutional layers [96], etc.), being tuned using
sparse coding [94, 191]. On the other hand, high-level features can be obtained from
class activations from distinct layers of convolutional neural network models [387]
(in that regard, previous STNet [36] and Priming Neural Networks [265] have already
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shown to work in the context of object localization, detection and segmentation).
Our current implementation of high-level features has been performed using deep
CNNs (e.g. VGG16, VGG19, ResNet50, etc.) pretrained on ImageNet.

Figure 6.3 – Left: Pipeline of the vTE. On the one side, the image is processed by
either A1 (CNN architecture) or A2 (sparse dictionary) to obtain a distinct feature
maps. On the other side, the sentence is parsed to a specific word embeddings, its
semantic similarity with the learned classes will serve to weight the visual represen-
tations. Right: A1: Illustration of class activation maps at distinct layers of a CNN,
from [387]. A2: Schematic representation of sparse coding procedure (obtaining
sparse coefficients given a dictionary) from [191]. Each of the feature basis from the
dictionary are convolved with the image and weighted (using the coefficients) to
obtain class-relevant maps.

6.4 Results on predicting object attention

We have processed PASCAL-S dataset (containing 850 images) and selected the
respective 20 annotations from PASCAL VOC 2010. Here we present some examples
from sentences “Look for ...” with the respective classes to each annotation. We have
calculated the Saliency Index (SI) [23, 297, 300][Equation 2.18] for comparing the
region detection masks and the task working memory maps. Figure 6.4 shows some
results for salient object detection given a "Look for..." task for specific categories of
objects. Results on SI show that vTE is able to detect objects with better accuracy for
the first alternative (A1: Class Activation Maps from VGG16bl ock5_pool ), compared
to AIM saliency maps and A2 (Sparse Codes from AIM InfoMax dictionary). The
presented results are preliminary and STAR-FCT is under implementation process,
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more details about future results are detailed in Sections 6.5.1-6.5.2.

"potted plant"

"horse"

"cow"

"potted plant" "horse" "cow"

Figure 6.4 – Top: Three examples of the task "Look for..." given 3 categories (potted
plant, horse and cow) with the corresponding salient region masks (2nd column),
AIM saliency maps (3rd column, green), tWM maps with VGG16bl ock5_pool (4rd col-
umn, orange), tWM maps with sparse coding with AIM information maximization
dictionary (5th column, yellow). Task Working Memory maps have been obtained
from the output of vTE [Figure 6.3-Left]. Bottom: Quantitative results of SI for the
three category instances.

6.5 Future Work

We plan to include a grammar mechanism to process lexical characteristics of the
task sentence (i.e. using imperative english [169, Chapter 2][236][Figure 6.5]), test-
ing as well semantic similarity strategies [199] and word embeddings (e.g. word2vec
[203]). Good performance upon complex tasks would include mapping verbs to a
vocabulary of actions (localization bias), for both local (specific parts of objects) and
global/contextual (on the whole image) guidance [144, Section 4]. Other category
weighting strategies could be used by including physiological data from images in
the same semantic taxonomy [139]. All these strategies integrated in STAR-FCT can
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be evaluated by comparing with fixations in image captioning and visual search
data.

Figure 6.5 – Left: Example of how an Imperative English Command (in ANTLR
grammar[236]) is able to be parsed to an intermediate representation for the sen-
tence "Look at the red centre box between two rectangles", from [169]. Right:
Example of image caption and the lexical relationship between words, from [74].

6.5.1 Evaluating task and attention with Image Captions

We plan to evaluate scanpaths from STAR-FC with fixation data, object localization
and image captions (e.g. masks and captions from Microsoft COCO and fixations
from LSUN17 challenge [135]) or question answering experiments [80], defining a
new baseline towards robust computations of visual attention and task priming.
We could demonstrate how task can improve detection (compared to no-task) by
tuning perception of certain objects, showing how and when are they memorized
(accounting for inhibition of return mechanisms) and which visual features are
involved.

Attention models [335, 371] based on sequential architectures (i.e. RNN &
LSTM [206, 304]) tried to predict image captions by training images with word
sequences, by learning the statistical relationship between image representations,
words and their sequence. We aim in future work to also evaluate distinct attention
strategies and class-wise object attention (e.g. STNet [36], Priming Neural Networks
[265]) with our symbolic representations of the sentence, abling to test which CNN
arquitectures [6] work best and at which convolutional layers our working memory
maps provide better performance in the STAR-FCT architecture.

6.5.2 Evaluating STAR-FCT for Visual Search

A main task to test with new task module could be to assess how good is the model
on performing visual search tasks. According to the specification of the feature
to be searched in the visual hierarchy, the model would require to efficiently bias
the priority of some features over others. In order to do so, we will use a set of
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psychophysical pattern images (e.g. according to specific color, orientation and
spatial frequency). The model would need to, improve the performance (in terms of
saccade sequence error with respect to the target centroid and number of fixations
inside the search target region) in comparison to the model without task demands.
Such procedure could allow to see how well it performs parallel and serial processing
of features (for the case of feature and conjunctive search).

Color Orientation
Color &

Orientation

Figure 6.6 – Synthetic image patterns, representing feature (columns 1 and 2) and
conjunctive search (column 3). Orange circles depict examples of possible fixations
without the task-specific pull and yellow represents the selectively tuned from the
task relevance. Adapted from [213].

Another search task to perform is object localization given task demands such
as "Look at the handicap sign." or "Where is the handicap sign?". The model would
need to parse the input text of the task demands, generate a task graph with its
relations and to output the relevance of these categories, finally biasing their priority
with respect to other objects in the scene.
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Figure 6.7 – Object localization example for the task "Look for the Handicap Sign".
Orange marker represent random locations that appear to be salient. The yellow
marker represent where the model should fixate upon the task demands. Adapted
from [213].
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7 Conclusions

7.1 Summary and Contribution

We focus this thesis in understanding visual attention, in concrete, how eyes move
while observing scenes and how our brain processes these signals. In this thesis we
have proposed to design biologically plausible algorithms mimicking attentional
mechanisms found in the HVS, that both best represent responses in brain and try
to generalize for different scenarios. In this thesis we have conducted experimen-
tation in eye movements with human participants, designed models for saliency
prediction, visual search and influences of task. Final conclusions and the list of
contributions for each chapter are summarized below:

Chapter 2 - Previous theories explaining how humans attend to visual objects usually
test performance (pressing a button upon detection) while searching for
visual targets. In our psychophysical experimentation, we explicitly tested
this with eye tracking technology using pop-out stimuli (given a salient target
and a set of distractors). We parametrized difficulty (as low-level feature
contrast) for detecting objects for free-viewing: (1) Corner Angle, (2-3) Visual
Segmentation, (4) Contour Integration and (5) Perceptual Grouping; and
visual search conditions: (6) Feature and Conjunctive Search, (7) Search
Asymmetries, (8) Roughness, (9-10) Color and Brightness contrast, (11) Size
contrast, (12) Orientation contrast in (13) Heterogeneous, (14) Nonlinear and
(15) Categorical search. Results showed:

1. Eye movements are dependent on feature context (i.e. features that
compose the scene)

2. Saliency depends on feature contrast (i.e. differences between features)

3. Fixation patterns vary temporally (i.e. first fixations according to saliency
and late ones to relevance)

4. Tasks are able to modulate attention and difficulty of finding salient
objects (i.e. in Visual Search is easier than Free-Viewing)
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5. Center biases also vary on time and task (i.e. are specially found in late
fixations from Free-Viewing)

Chapter 3 Eye movement datasets for saliency comparison tend to use real images and
do not parametrize for how salient objects are. We have generated a dataset
(SID4VAM) of synthetic images, including fixations in free-viewing and visual
search for pop-out psychophysical pattern stimuli. With such dataset, we
have labeled each stimuli with a specific difficulty based on feature contrast,
abling to observe how saliency models perform on predicting fixations as well
as how are they able to locate the salient object. We have also provided detail
about temporality of predicted fixations and their relationship with the center
bias. From SID4VAM we have computed a benchmark that challenges the
state of the art in saliency modeling and provides some concepts that should
be accounted when computing saliency metrics:

1. Contrary to current hypotheses, saliency models based on Deep Learn-
ing (e.g. SALICON and DeepGazeII) do not perform well on predicting
saliency, these are outperformed by ones from other inspiration, spe-
cially by Spectral/Fourier inspiration (e.g. HFT and WMAP)

2. Model performance is highly dependent on low-level feature type and
contrast

3. Model performance changes upon fixation number (i.e. temporality of
fixations)

Chapter 4 - The main basis of our work has been to modelize early visual pathways of
the HVS responsible of saliency. In our NSWAM model, we have functionally
represented activity from retinal and LGN signals using real images. To do
that, we transformed the image to chromatic opponencies transforming im-
age RGB to CIE Lab space and then simple cell responses for each opponency
with a self-invertible discrete wavelet transform. These signals have been
fed to a network of firing rate neurons simulating lateral/horizontal connec-
tions in V1. Through WTA-like mechanisms from these neuronal activity
we generate a unique saliency map. This novel approach not only explain
saliency computations but also has shown that the same model of V1 is able
to simultaneously reproduce (using the same parametrization and without
applying any training or optimization procedure) Brightness [239] and Chro-
matic Induction [65] as well as Visual Discomfort [241]. By testing NSWAM,
we can hypothesize the following:

1. Horizontal/lateral connections in V1 could be responsible for the com-
putation of saliency, specially for low-level features
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2. NSWAM has a trend to acquire state of the art results for saliency, spe-
cially for scenes that lack top-down/contextual influences (i.e. nature
and synthetic images)

3. Our model also presents highest performance at highest contrast from
feature singleton stimuli (where salient objects pop-out easily) com-
pared with other biologically inspired models

Chapter 5 - We extended the NSWAM saliency model to predict scanpaths (NSWAM-
CM) in addition to feedback connections. We been able to provide detail
of low-level feature processing during several fixations, and we observed
that executive and early visual processes interplay in both bottom-up and
top-down attention. A cortical log-polar mapping has been added in order
to provide distinct views of the scene, improving results on saliency and
providing statistics of saccade sequences. Despite its plausability with brain
physiology, cortical magnification mechanisms are not commonly used in
the computer vision community. Moreover, we have modeled a simulation
of inhibition of return and top-down feedback mechanisms, abling to tune
the model to perform better both in free-viewing as well as in feature and
categorical search. After testing NSWAM-CM, we can conclude:

1. Cortical Magnification allows to compute distinct views of the image,
abling to generate scanpaths and several saliency maps. These compu-
tations have shown to improve the previous model predictions.

2. Our model has higher correlation on saccade amplitude compared to
other models when predicting visual scanpaths

3. Inhibition of Return mechanisms have shown to improve scanpath
predictions, specially when it is parametrized at 1-3 deg of visual angle
and a duration of 1-5 times the average fixation time.

4. Top-down feedback can be computed as an inhibitory signal using the
same model, abling it to tune the model for feature and categorical
search tasks, improving results with respect saliency.

Chapter 6 - Attention towards objects in a scene depend both on on the presented scene
and the task to perform. We have extended the Selective Tuning Attentive Ref-
erence Fixation Controller model able to predict saccade sequences for a task,
defined as a sentence. In that regard, we have proposed several mechanisms
able to compute low- and high-level features (using pre-trained CNNs and
Sparse Dictionaries) as well as to map the words of the sentence weight visual
representations. With these implementations:
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1. Deep Learning with CNNs provide better accuracy for generating task
working memory maps compared to Sparse Codes of low-level feature
dictionaries.

2. Semantic similarity measures are able to determine relationships be-
tween categories and representations of features that do not necessarily
need to be pre-trained.

We have evaluated current results with salient object localization, and we
propose to evaluate the model for predicting fixations in visual search as well
as with image captions.

7.2 Future Perspective

This dissertation can been divided in three parts. First, to understand eye move-
ment psychophysics. Second, to model saliency and scanpaths using biologically
plausible mechanisms. Third and last, to provide learning methods for tuning
attention for visual search and complex task commands. Here we provide some
ideas that would extend our work:

Psychophysics: In this work we investigated psychophysical properties of eye move-
ments for low-level feature synthetic image patterns. Current work could
be extended by repeating the experimentation for free-viewing conditions
(for pop-out stimuli in visual search) in order to understand how task affects
low-level feature contrast. Similar psychophysical experimentation could
also be done for videos, testing dynamic features such as flicker or motion.
Moreover, we could test the influences of pupil size upon search performance
given available data (acknowledging that higher pupil size is more related
to covert/peripheral attention, whereas lower pupil size is for the case of
overt/focal [195]). Another experimentation of interest would be to test the
relationship between Gestalt properties (e.g. symmetry [5, 160]) and saliency.
This concept could be joined with design principles of "visual weights" and
"balance" in art, in addition to aesthetic judgements, abling to test algorithms
for predicting best matches in photographic composition.

Saliency and Attention: Even though computational models differ in mechanisms of saliency, we
believe pre/post-processing stages can have a big impact on prediction scores
[55, 167]. A benchmark testing distinct feature extraction (e.g. DoG, Wavelets,
Gabors, Log-Gabors, etc.), fusion (WTA, max-likelihood, inverse, etc.) and
normalization (e.g. by energy, by range, etc.) mechanisms could specifically
test best low-level saliency algorithms. Further tests with high-level feature
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computations could be done by generating a dataset with superimposed
objects1 [266] in real scenes (including image captions to provide detail about
context and meaning of scenes). This could be set as a baseline to test gener-
alization of current models for several tasks (i.e. in predicting classification,
segmentation, captioning, saliency, scanpaths, visual search, etc.).

Multi-task Networks: We plan to extend the NSWAM/NSWAM-CM model by integrating feed-
forward and feedback mechanisms (simulating intra- and inter-cortical path-
ways in striate and extrastriate areas) in a multilayer model of the visual
cortex. This could be implemented using Spiking Neural Networks [146, 309],
which lately showed promising results on classification tasks while preserving
biologically-plausible learning mechanisms (i.e. spike-timing dependent plas-
ticity or STDP [194]). Latest transfer learning techniques [231, 330, 374, 378]
try to simultaneusly solve problems at distinct domains, but these are not
able to retain previous learned features when learning new tasks (b/c catas-
trophic forgetting) [154]. In that domain, novel Lifelong/Continual learning
algorithms [233] need to be proposed to better design architectures able to
generalize for distinct tasks simultaneously, something that humans actively
perform in our living environments. We would be interested to explore how
the brain retains long-term memory formations, as well as how attention,
semantic and category embeddings can affect learning and transferability in
neural networks.

7.3 Scientific work

7.3.1 Abstracts in National and International Conferences

– David Berga and Xavier Otazu (2016) A Multi-Task Neurodynamical Model of
Lateral Interactions in V1: Visual Saliency of Colour Images. 39th European
Conference on Visual Perception (ECVP) 2016. [24]

– David Berga and Xavier Otazu (2017) Neurodynamical evidence of gaze pre-
diction decrease with saccade number. 40th European Conference on Visual
Perception (ECVP 2017). [25]

– David Berga, Calden Wloka and John K. Tsotsos (2019) Modeling task influ-
ences for saccade sequence and visual relevance prediction. 19th Annual
Meeting of the Vision Sciences Society (VSS 2019). [32]

1Demo from Amir Rosenfeld: https://www.youtube.com/watch?v=qcm3lL4PCC4
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– David Berga and Xavier Otazu (2019) Computations of top-down attention by
modulating V1 dynamics. MODVIS 2019: Computational and Mathematical
Models in Vision. [29]

– David Berga and Xavier Otazu (2019) Computations of inhibition of return
mechanisms by modulating V1 dynamics. 28th Annual Computational Neu-
roscience Meeting (CNS*2019). [27]

– David Berga and Xavier Otazu (2019) Computational modeling of visual at-
tention: What do we know from physiology and psychophysics?. 8th Iberian
Conference on Perception (CIP 2019).[28]

– David Berga, Xavier Otazu, Xosé R. Fdez-Vidal, Víctor Leborán and Xosé M.
Pardo (2019) Measuring bottom-up visual attention in eye tracking experi-
mentation with synthetic images. 8th Iberian Conference on Perception (CIP
2019). [31]

– David Berga, Xavier Otazu, Xosé R. Fdez-Vidal, Víctor Leborán and Xosé M.
Pardo (2019) Generating synthetic images for visual attention modeling. 40th
European Conference on Visual Perception (ECVP 2019). [25]

7.3.2 Journal Publications and Conference Proceedings

– David Berga, Xosé R. Fdez-Vidal, Xavier Otazu, Víctor Leborán and Xosé
M. Pardo (2019) Psychophysical evaluation of individual low-level feature
influences on visual attention. Vision Research 154:60-79. [23]

– David Berga and Xavier Otazu (2018) A Neurodynamic model of Saliency
prediction in V1. arXiv preprint arXiv:1811.06308. Under Review in IEEE
Transactions on Image Processing. [26]

– David Berga, Xosé R. Fdez-Vidal, Xavier Otazu and Xosé M. Pardo (2019)
SID4VAM: Synthetic Image Dataset for Visual Attention Modeling. Under
Review in International Conference in Computer Vision (ICCV) 2019.

– David Berga and Xavier Otazu (2019) Modeling Bottom-Up and Top-Down
Attention with a Neurodynamic Model of V1. arXiv preprint arXiv:1904.02741.
Under Review in PLOS Computational Biology. [30]
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[193] Mateja Marić and Dražen Domijan. A neurodynamic model of feature-based
spatial selection. Frontiers in Psychology, 9, mar 2018.

[194] Timothée Masquelier and Simon J. Thorpe. Unsupervised learning of visual
features through spike timing dependent plasticity. PLoS Computational
Biology, 3(2):e31, 2007.

[195] Sebastiaan Mathôt, Lotje van der Linden, Jonathan Grainger, and Françoise
Vitu. The pupillary light response reveals the focus of covert visual attention.
PLoS ONE, 8(10):e78168, October 2013.

[196] K. C. McDermott, G. Malkoc, J. B. Mulligan, and M. A. Webster. Adaptation
and visual salience. Journal of Vision, 10(13):17–17, nov 2010.

[197] N. V. Kartheek Medathati, Heiko Neumann, Guillaume S. Masson, and Pierre
Kornprobst. Bio-inspired computer vision: Towards a synergistic approach
of artificial and biological vision. Computer Vision and Image Understanding,
150:1–30, September 2016.

[198] David A. Mély and Thomas Serre. Towards a theory of computation in the
visual cortex. In Computational and Cognitive Neuroscience of Vision, pages
59–84. Springer Singapore, oct 2016.

[199] Lingling Meng, Runqing Huang, and Junzhong Gu. A review of semantic
similarity measures in wordnet. International Journal of Hybrid Information
Technology, 6(1):1–12, 2013.

[200] W H Merigan and J H R Maunsell. How parallel are the primate visual path-
ways? Annual Review of Neuroscience, 16(1):369–402, March 1993.

161



Bibliography

[201] Olivier Le Meur, Antoine Coutrot, Zhi Liu, Adrien Le Roch, Andrea Helo,
and Pia Rama. Computational model for predicting visual fixations from
childhood to adulthood. CoRR, abs/1702.04657, 2017.

[202] Olivier Le Meur and Zhi Liu. Saccadic model of eye movements for free-
viewing condition. Vision Research, 116:152–164, nov 2015.

[203] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space, 2013.

[204] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and
Katherine J. Miller. Introduction to WordNet: An On-line Lexical Database*.
International Journal of Lexicography, 3(4):235–244, 12 1990.

[205] Kenichiro Miura, Kazuyo Suehiro, Miyuki Yamamoto, Yasushi Kodaka, and
Kenji Kawano. Initiation of smooth pursuit in humans. Experimental Brain
Research, 141(2):242–249, nov 2001.

[206] Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. Recur-
rent models of visual attention, 2014.

[207] Patrick Monnier and Steven K. Shevell. Chromatic induction from s-cone
patterns. Vision Research, 44(9):849–856, apr 2004.

[208] N. Murray, M. Vanrell, X. Otazu, and C. A. Parraga. Low-level spatiochromatic
grouping for saliency estimation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(11):2810–2816, nov 2013.

[209] Naila Murray, Maria Vanrell, Xavier Otazu, and C. Alejandro Parraga. Saliency
estimation using a non-parametric low-level vision model. In CVPR 2011.
IEEE, jun 2011.

[210] Allen L. Nagy. Interactions between achromatic and chromatic mechanisms
in visual search. Vision Research, 39(19):3253–3266, oct 1999.

[211] Ken Nakayama and Gerald H. Silverman. Serial and parallel processing of
visual feature conjunctions. Nature, 320(6059):264–265, mar 1986.

[212] Jonathan J. Nassi and Edward M. Callaway. Parallel processing strategies of
the primate visual system. Nature Reviews Neuroscience, 10(5):360–372, apr
2009.

[213] Vidhya Navalpakkam and Laurent Itti. Modeling the influence of task on
attention. Vision Research, 45(2):205–231, jan 2005.

162



Bibliography

[214] Hoang L. Nhan and Edward M. Callaway. Morphology of superior colliculus-
and middle temporal area-projecting neurons in primate primary visual
cortex. The Journal of Comparative Neurology, 520(1):52–80, Nov 2011.

[215] Eilen Nordlie, Marc-Oliver Gewaltig, and Hans Ekkehard Plesser. Towards
reproducible descriptions of neuronal network models. PLoS Computational
Biology, 5(8):e1000456, aug 2009.

[216] Hans-Christoph Nothdurft. The conspicuousness of orientation and motion
contrast. Spatial Vision, 7(4):341–363, jan 1993.

[217] Hans-Christoph Nothdurft. The role of features in preattentive vision: Com-
parison of orientation, motion and color cues. Vision Research, 33(14):1937–
1958, sep 1993.

[218] Hans-Christoph Nothdurft. Salience from feature contrast: additivity across
dimensions. Vision Research, 40(10-12):1183–1201, jun 2000.

[219] Hans-Christoph Nothdurft. Salience and target selection in visual search.
Visual Cognition, 14(4-8):514–542, aug 2006.

[220] Hans-Christoph Nothdurft. Salience-controlled visual search: Are the bright-
est and the least bright targets found by different processes? Visual Cognition,
13(6):700–732, apr 2006.

[221] H.C. Nothdurft. Sensitivity for structure gradient in texture discrimination
tasks. Vision Research, 25(12):1957–1968, jan 1985.

[222] H.C. Nothdurft. Texture segmentation and pop-out from orientation contrast.
Vision Research, 31(6):1073–1078, jan 1991.

[223] Antje Nuthmann, Wolfgang Einhäuser, and Immo Schütz. How well can
saliency models predict fixation selection in scenes beyond central bias? a
new approach to model evaluation using generalized linear mixed models.
Frontiers in Human Neuroscience, 11, oct 2017.

[224] Aude Oliva and Antonio Torralba. The role of context in object recognition.
Trends in Cognitive Sciences, 11(12):520–527, December 2007.

[225] Bruno A. Olshausen and David J. Field. Emergence of simple-cell recep-
tive field properties by learning a sparse code for natural images. Nature,
381(6583):607–609, jun 1996.

163



Bibliography

[226] Stefano Padilla, Ondrej Drbohlav, Patrick R. Green, Andy Spence, and Mike J.
Chantler. Perceived roughness of 1/ f β noise surfaces. Vision Research,
48(17):1791–1797, aug 2008.

[227] John Palmer. Attention in visual search: Distinguishing four causes of a set-
size effect. Current Directions in Psychological Science, 4(4):118–123, aug
1995.

[228] John Palmer, Preeti Verghese, and Misha Pavel. The psychophysics of visual
search. Vision Research, 40(10-12):1227–1268, jun 2000.

[229] Stephen E. Palmer. The effects of contextual scenes on the identification of
objects. Memory & Cognition, 3(5):519–526, sep 1975.

[230] Junting Pan, Cristian Canton, Kevin McGuinness, Noel E. O’Connor, Jordi
Torres, Elisa Sayrol, and Xavier and Giro-i Nieto. Salgan: Visual saliency
prediction with generative adversarial networks. In arXiv, January 2017.

[231] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transac-
tions on Knowledge and Data Engineering, 22(10):1345–1359, October 2010.

[232] Sebastian Pannasch, Jens R. Helmert, Katharina Roth, Henrik Walter, and Ann-
Katrin Herbold. Visual fixation durations and saccade amplitudes: Shifting
relationship in a variety of conditions. Journal of Eye Movement Research,
2(2), 2008.

[233] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan
Wermter. Continual lifelong learning with neural networks: A review. Neural
Networks, 113:54–71, May 2019.

[234] Derrick Parkhurst, Klinton Law, and Ernst Niebur. Modeling the role of
salience in the allocation of overt visual attention. Vision Research, 42(1):107–
123, jan 2002.

[235] Derrick Parkhurst and Ernst Niebur. Scene content selected by active vision.
Spatial Vision, 16(2):125–154, jun 2003.

[236] Terence Parr. The definitive ANTLR 4 reference. The Pragmatic Programmers,
Frisco, TX, 2014.

[237] Harold Pashler. Familiarity and visual change detection. Perception & Psy-
chophysics, 44(4):369–378, jul 1988.

164



Bibliography

[238] Harold Pashler, Karen Dobkins, and Liqiang Huang. Is contrast just another
feature for visual selective attention? Vision Research, 44(12):1403–1410, jun
2004.

[239] Olivier Penacchio, Xavier Otazu, and Laura Dempere-Marco. A neurody-
namical model of brightness induction in v1. PLoS ONE, 8(5):e64086, may
2013.

[240] Olivier Penacchio and Arnold J. Wilkins. Visual discomfort and the spatial
distribution of fourier energy. Vision Research, 108:1–7, mar 2015.

[241] Olivier Penacchio, Arnold J. Wilkins, Xavier Otazu, and Julie M. Harris. In-
hibitory function and its contribution to cortical hyperexcitability and visual
discomfort as assessed by a computation model of cortical function. 39th
European Conference of Visual Perception, PERCEPTION, 45(2):51, 2016.

[242] Franco Pestilli, Gerardo Viera, and Marisa Carrasco. How do attention and
adaptation affect contrast sensitivity? Journal of Vision, 7(7):9, may 2007.

[243] C. Pierrot-Deseilligny, R.M. Müri, C.J. Ploner, B. Gaymard, and S. Rivaud-
Péchoux. Cortical control of ocular saccades in humans: a model for motricity.
In Progress in Brain Research, pages 3–17. Elsevier, 2003.

[244] C. Pierrot-Deseilligny, S. Rivaud, B. Gaymard, and Y. Agid. Cortical control of
memory-guided saccades in man. Experimental Brain Research, 83(3), feb
1991.

[245] Charles Pierrot-Deseilligny, Dan Milea, and René Müri. Eye movement con-
trol by the cerebral cortex. Current Opinion in Neurology, 17(1):17–25, feb
2004.

[246] Michael I. Posner. Orienting of attention. Quarterly Journal of Experimental
Psychology, 32(1):3–25, feb 1980.

[247] Claudio M. Privitera, Thom Carney, Stanley Klein, and Mario Aguilar. Analysis
of microsaccades and pupil dilation reveals a common decisional origin
during visual search. Vision Research, 95:43–50, feb 2014.

[248] Michael J. Proulx. Size matters: Large objects capture attention in visual
search. PLoS ONE, 5(12):e15293, dec 2010.

[249] Maria Solé Puig, Laura Pérez Zapata, J. Antonio Aznar-Casanova, and Hans
Supèr. A role of eye vergence in covert attention. PLoS ONE, 8(1):e52955, jan
2013.

165



Bibliography

[250] Dale Purves. Neuroscience. Sinauer Associates, Sunderland, Mass, 2001.

[251] Philip T. Quinlan. Visual feature integration theory: Past, present, and future.
Psychological Bulletin, 129(5):643–673, 2003.

[252] Subramanian Ramanathan, Harish Katti, Nicu Sebe, Mohan Kankanhalli, and
Tat-Seng Chua. An eye fixation database for saliency detection in images. In
Computer Vision – ECCV 2010, pages 30–43. Springer Berlin Heidelberg, 2010.

[253] Thomas Zoëga Ramsøy and Morten Overgaard. Introspection and subliminal
perception. Phenomenology and the Cognitive Sciences, 3(1):1–23, 2004.

[254] Ronald A. Rensink and James T. Enns. Preemption effects in visual search:
Evidence for low-level grouping. Psychological Review, 102(1):101–130, 1995.

[255] Ronald A. Rensink and James T. Enns. Early completion of occluded objects.
Vision Research, 38(15-16):2489–2505, aug 1998.

[256] Nicolas Riche, Matthieu Duvinage, Matei Mancas, Bernard Gosselin, and
Thierry Dutoit. Saliency and human fixations: State-of-the-art and study of
comparison metrics. In 2013 IEEE International Conference on Computer
Vision. IEEE, dec 2013.

[257] Nicolas Riche and Matei Mancas. Bottom-up saliency models for still images:
A practical review. In From Human Attention to Computational Attention,
pages 141–175. Springer New York, 2016.

[258] Nicolas Riche and Matei Mancas. Bottom-up saliency models for videos:
A practical review. In From Human Attention to Computational Attention,
pages 177–190. Springer New York, 2016.

[259] Nicolas Riche, Matei Mancas, Bernard Gosselin, and Thierry Dutoit. Rare: A
new bottom-up saliency model. In 2012 19th IEEE International Conference
on Image Processing. IEEE, sep 2012.

[260] Micah Richert, Dimitry Fisher, Filip Piekniewski, Eugene M. Izhikevich, and
Todd L. Hylton. Fundamental principles of cortical computation: unsuper-
vised learning with prediction, compression and feedback, 2016.

[261] Reuben Rideaux, David R. Badcock, Alan Johnston, and Mark Edwards. Tem-
poral synchrony is an effective cue for grouping and segmentation in the
absence of form cues. Journal of Vision, 16(11):23, sep 2016.

166



Bibliography

[262] Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object
recognition in cortex. Nature Neuroscience, 2(11):1019–1025, November 1999.

[263] R.W. Rodieck. Quantitative analysis of cat retinal ganglion cell response to
visual stimuli. Vision Research, 5(12):583–601, dec 1965.

[264] Edmund Rolls. Memory, attention, and decision-making: a unifying compu-
tational neuroscience approach. Oxford University Press, Oxford New York,
2008.

[265] Amir Rosenfeld, Mahdi Biparva, and John K. Tsotsos. Priming neural networks.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2018.

[266] Amir Rosenfeld, Richard Zemel, and John K. Tsotsos. The elephant in the
room, 2018.

[267] Ruth Rosenholtz. Visual search for orientation among heterogeneous dis-
tractors: Experimental results and implications for signal-detection theory
models of search. Journal of Experimental Psychology: Human Perception
and Performance, 27(4):985–999, 2001.

[268] Ruth Rosenholtz, Allen L. Nagy, and Nicole R. Bell. The effect of background
color on asymmetries in color search. Journal of Vision, 4(3):9, mar 2004.

[269] Lars O. M. Rothkegel, Hans A. Trukenbrod, Heiko H. Schütt, Felix A. Wich-
mann, and Ralf Engbert. Temporal evolution of the central fixation bias in
scene viewing. Journal of Vision, 17(13):3, nov 2017.

[270] Constantin A. Rothkopf, Dana H. Ballard, and Mary M. Hayhoe. Task and
context determine where you look. Journal of Vision, 7(14):16, jul 2016.

[271] Guillaume A. Rousselet, Simon J. Thorpe, and Michèle Fabre-Thorpe. How
parallel is visual processing in the ventral pathway? Trends in Cognitive
Sciences, 8(8):363–370, August 2004.

[272] Edgar Rubin. Figure and Ground. Psychology Press, 1915/2001.

[273] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning rep-
resentations by back-propagating errors. Nature, 323(6088):533–536, October
1986.

[274] Dov Sagi and Bela Julesz. Detection versus discrimination of visual orienta-
tion. Perception, 13(5):619–628, oct 1984.

167



Bibliography

[275] Dario D. Salvucci and Joseph H. Goldberg. Identifying fixations and saccades
in eye-tracking protocols. In Proceedings of the symposium on Eye tracking
research & applications - ETRA ’00. ACM Press, 2000.

[276] Arthur G. Samuel and Donna Kat. Inhibition of return: A graphical meta-
analysis of its time course and an empirical test of its temporal and spatial
properties. Psychonomic Bulletin & Review, 10(4):897–906, dec 2003.

[277] M. G. Saslow. Latency for saccadic eye movement. JOURNAL OF THE OPTI-
CAL SOCIETY OF AMERICA, 57(8), aug 1967.

[278] J.D. Schall. Frontal eye fields. In Encyclopedia of Neuroscience, pages 367–374.
Elsevier, 2009.

[279] Boris Schauerte and Rainer Stiefelhagen. Quaternion-based spectral saliency
detection for eye fixation prediction. In Computer Vision – ECCV 2012, pages
116–129. Springer Berlin Heidelberg, 2012.

[280] P. H. Schiller, J. H. Sandell, and J. H. Maunsell. The effect of frontal eye field
and superior colliculus lesions on saccadic latencies in the rhesus monkey.
Journal of Neurophysiology, 57(4):1033–1049, apr 1987.

[281] Peter H. Schiller and Edward J. Tehovnik. Chapter 9 look and see: how the
brain moves your eyes about. In Progress in Brain Research, pages 127–142.
Elsevier, 2001.

[282] Mark M. Schira, Christopher W. Tyler, Branka Spehar, and Michael Breakspear.
Modeling magnification and anisotropy in the primate foveal confluence.
PLoS Computational Biology, 6(1):e1000651, jan 2010.

[283] E. L. Schwartz. Spatial mapping in the primate sensory projection: Analytic
structure and relevance to perception. Biological Cybernetics, 25(4):181–194,
dec 1977.

[284] Al Seckel. The ultimate book of optical illusions. Sterling Pub. Co, New York,
2006.

[285] Nuno Seco, Tony Veale, and Jer Hayes. An intrinsic information content
metric for semantic similarity in wordnet. In ECAI, 2004.

[286] H. J. Seo and P. Milanfar. Static and space-time visual saliency detection by
self-resemblance. Journal of Vision, 9(12):15–15, nov 2009.

168



Bibliography

[287] Thomas Serre. Hierarchical models of the visual system. In Encyclopedia of
Computational Neuroscience, pages 1–12. Springer New York, 2014.

[288] Thomas Serre, Gabriel Kreiman, Minjoon Kouh, Charles Cadieu, Ulf Knoblich,
and Tomaso Poggio. A quantitative theory of immediate visual recognition.
In Progress in Brain Research, pages 33–56. Elsevier, 2007.

[289] Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and
Tomaso Poggio. Robust object recognition with cortex-like mechanisms.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3):411–
426, March 2007.

[290] C. E. Shannon. A mathematical theory of communication. Bell System Tech-
nical Journal, 27(3):379–423, jul 1948.

[291] Robert Shapley and Michael J. Hawken. Color in the cortex: single- and
double-opponent cells. Vision Research, 51(7):701–717, apr 2011.

[292] Bhavin R. Sheth and Ryan Young. Two visual pathways in primates based
on sampling of space: Exploitation and exploration of visual information.
Frontiers in Integrative Neuroscience, 10, nov 2016.

[293] Daniel J Simons and Christopher F Chabris. Gorillas in our midst: Sustained
inattentional blindness for dynamic events. Perception, 28(9):1059–1074,
September 1999.

[294] Lawrence C. Sincich and Jonathan C. Horton. THE CIRCUITRY OF v1 AND
v2: Integration of color, form, and motion. Annual Review of Neuroscience,
28(1):303–326, jul 2005.

[295] SMI. iViewX System Manual (IVX-2.4-0908). SensoMotoric Instruments
GmbH, 2009.

[296] Samuel G. Solomon and Peter Lennie. The machinery of colour vision. Nature
Reviews Neuroscience, 8(4):276–286, apr 2007.

[297] A. Soltani and C. Koch. Visual saliency computations: Mechanisms, con-
straints, and the effect of feedback. Journal of Neuroscience, 30(38):12831–
12843, sep 2010.

[298] Marc A. Sommer. The spatial relationship between scanning saccades and
express saccades. Vision Research, 37(19):2745–2756, oct 1997.

169



Bibliography

[299] Lothar Spillmann, Birgitta Dresp-Langley, and Chia huei Tseng. Beyond the
classical receptive field: The effect of contextual stimuli. Journal of Vision,
15(9):7, July 2015.

[300] M.W. Spratling. Predictive coding as a model of the v1 saliency map hypothe-
sis. Neural Networks, 26:7–28, feb 2012.

[301] Tania Stathaki. Image fusion : algorithms and applications. Academic
Press/Elsevier, Amsterdam Boston, 2008.

[302] Andrew Stockman, Donald I. A. MacLeod, and Nancy E. Johnson. Spectral
sensitivities of the human cones. Journal of the Optical Society of America A,
10(12):2491, dec 1993.

[303] H. Strasburger, I. Rentschler, and M. Juttner. Peripheral vision and pattern
recognition: A review. Journal of Vision, 11(5):13–13, dec 2011.

[304] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning
with neural networks, 2014.

[305] Benjamin W. Tatler. The central fixation bias in scene viewing: Selecting an
optimal viewing position independently of motor biases and image feature
distributions. Journal of Vision, 7(14):4, nov 2007.

[306] Benjamin W. Tatler, Roland J. Baddeley, and Iain D. Gilchrist. Visual correlates
of fixation selection: effects of scale and time. Vision Research, 45(5):643–659,
mar 2005.

[307] Benjamin W. Tatler, Roland J. Baddeley, and Benjamin T. Vincent. The long
and the short of it: Spatial statistics at fixation vary with saccade amplitude
and task. Vision Research, 46(12):1857–1862, jun 2006.

[308] Benjamin W Tatler, Nicholas J Wade, Hoi Kwan, John M Findlay, and Boris M
Velichkovsky. Yarbus, eye movements, and vision. i-Perception, 1(1):7–27,
January 2010.

[309] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Tim-
othée Masquelier, and Anthony Maida. Deep learning in spiking neural
networks. Neural Networks, 111:47–63, March 2019.

[310] A. Tavassoli, I. van der Linde, A.C. Bovik, and L.K. Cormack. Eye movements
selective for spatial frequency and orientation during active visual search.
Vision Research, 49(2):173–181, jan 2009.

170



Bibliography

[311] Jan Theeuwes. Top-down search strategies cannot override attentional cap-
ture. Psychonomic Bulletin & Review, 11(1):65–70, feb 2004.

[312] A. Thielscher and H. Neumann. A computational model to link psychophysics
and cortical cell activation patterns in human texture processing. Journal of
Computational Neuroscience, 22(3):255–282, November 2006.

[313] Christopher Lee Thomas. Opensalicon: An open source implementation
of the salicon saliency model. Technical Report TR-2016-02, University of
Pittsburgh, 2016.

[314] Simon J. Thorpe and Michel Imbert. Biological constraints on connectionist
modelling. 1989.

[315] Antonio Torralba and Aude Oliva. Statistics of natural image categories.
Network: Computation in Neural Systems, 14(3):391–412, January 2003.

[316] Antonio Torralba, Aude Oliva, Monica S. Castelhano, and John M. Henderson.
Contextual guidance of eye movements and attention in real-world scenes:
The role of global features in object search. Psychological Review, 113(4):766–
786, 2006.

[317] Anne Treisman. Features and objects: The fourteenth bartlett memorial
lecture. The Quarterly Journal of Experimental Psychology Section A, 40(2):201–
237, may 1988.

[318] Anne Treisman. Search, similarity, and integration of features between and
within dimensions. Journal of Experimental Psychology: Human Perception
and Performance, 17(3):652–676, 1991.

[319] Anne Treisman and Stephen Gormican. Feature analysis in early vision:
Evidence from search asymmetries. Psychological Review, 95(1):15–48, 1988.

[320] Anne Treisman and Janet Souther. Search asymmetry: A diagnostic for preat-
tentive processing of separable features. Journal of Experimental Psychology:
General, 114(3):285–310, 1985.

[321] Anne M. Treisman and Garry Gelade. A feature-integration theory of attention.
Cognitive Psychology, 12(1):97–136, jan 1980.

[322] Colwyn B. Trevarthen. Two mechanisms of vision in primates. Psychologische
Forschung, 31(4):299–337, 1968.

171



Bibliography

[323] Xoana Troncoso, Stephen Macknik, and Susana Martinez-Conde. Corner
salience varies linearly with corner angle during flicker-augmented contrast:
a general principle of corner perception based on vasarely’s artworks. Spatial
Vision, 22(3):211–224, may 2009.

[324] Xoana G Troncoso, Stephen L Macknik, and Susana Martinez-Conde. Novel
visual illusions related to vasarely’s ‘nested squares’ show that corner salience
varies with corner angle. Perception, 34(4):409–420, apr 2005.

[325] John Tsotsos. A computational perspective on visual attention. MIT Press,
Cambridge, Mass, 2011.

[326] John K. Tsotsos, Scan M. Culhane, Winky Yan Kei Wai, Yuzhong Lai, Neal
Davis, and Fernando Nuflo. Modeling visual attention via selective tuning.
Artificial Intelligence, 78(1-2):507–545, oct 1995.

[327] John K. Tsotsos, Iuliia Kotseruba, and Calden Wloka. A focus on selection for
fixation. Journal of Eye Movement Research, 9(5):1–34, may 2016.

[328] John K. Tsotsos and Wouter Kruijne. Cognitive programs: software for atten-
tion's executive. Frontiers in Psychology, 5, nov 2014.

[329] E Tulving and D. Schacter. Priming and human memory systems. Science,
247(4940):301–306, January 1990.

[330] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous
deep transfer across domains and tasks. In 2015 IEEE International Confer-
ence on Computer Vision (ICCV). IEEE, December 2015.

[331] Pieter J. A. Unema, Sebastian Pannasch, Markus Joos, and Boris M.
Velichkovsky. Time course of information processing during scene percep-
tion: The relationship between saccade amplitude and fixation duration.
Visual Cognition, 12(3):473–494, apr 2005.

[332] Wieske van Zoest and Mieke Donk. Saccadic target selection as a function of
time. Spatial Vision, 19(1):61–76, jan 2006.

[333] David C. VanEssen and Jack L. Gallant. Neural mechanisms of form and
motion processing in the primate visual system. Neuron, 13(1):1–10, jul 1994.

[334] Rufin VanRullen. Visual saliency and spike timing in the ventral visual path-
way. Journal of Physiology-Paris, 97(2-3):365–377, March 2003.

172



Bibliography

[335] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need, 2017.

[336] Richard Veale, Ziad M. Hafed, and Masatoshi Yoshida. How is visual salience
computed in the brain? insights from behaviour, neurobiology and mod-
elling. Philosophical Transactions of the Royal Society B: Biological Sciences,
372(1714):20160113, jan 2017.

[337] Preeti Verghese. Visual search and attention: A signal detection theory ap-
proach. Neuron, 31(4):523–535, aug 2001.

[338] Benjamin T. Vincent and Benjamin W. Tatler. Systematic tendencies in scene
viewing, 2008.

[339] Melissa L.-H. Võ and John M. Henderson. Object–scene inconsistencies do
not capture gaze: evidence from the flash-preview moving-window paradigm.
Attention, Perception, & Psychophysics, 73(6):1742–1753, may 2011.

[340] Nicholas Wade. The art and science of visual illusions. Routledge & Kegan
Paul, London Boston, 1982.

[341] Brian Wandell. Foundations of vision. Sinauer Associates, Sunderland, Mass,
1995.

[342] Brian A. Wandell, Serge O. Dumoulin, and Alyssa A. Brewer. Visual field maps
in human cortex. Neuron, 56(2):366–383, oct 2007.

[343] C.-A. Wang, S. E. Boehnke, L. Itti, and D. P. Munoz. Transient pupil response is
modulated by contrast-based saliency. Journal of Neuroscience, 34(2):408–417,
jan 2014.

[344] Yixiu Wang, Bin Wang, Xiaofeng Wu, and Liming Zhang. Scanpath estimation
based on foveated image saliency. Cognitive Processing, 18(1):87–95, oct 2016.

[345] A. B. Watson. A formula for human retinal ganglion cell receptive field density
as a function of visual field location. Journal of Vision, 14(7):15–15, jun 2014.

[346] Hui Wei and Zheng Dong. Contour representation and shape matching based
on mechanism of visual cortex. In 2016 International Joint Conference on
Neural Networks (IJCNN). IEEE, July 2016.

173



Bibliography

[347] Michael Weliky, Karl Kandler, David Fitzpatrick, and Lawrence C. Katz. Pat-
terns of excitation and inhibition evoked by horizontal connections in vi-
sual cortex share a common relationship to orientation columns. Neuron,
15(3):541–552, sep 1995.

[348] John Werner and Leo M. Chalupa. The new visual neurosciences. The MIT
Press, Cambridge, Massachusetts, 2014.

[349] M. Wertheimer. Laws of organization in perceptual forms. Harcourt, Brace &
Jovanovitch, London, 1923/1938.

[350] Brian White and Douglas P. Munoz. The Oxford Handbook of Eye Movements.
Oxford University Press, aug 2011.

[351] Brian J. White, David J. Berg, Janis Y. Kan, Robert A. Marino, Laurent Itti,
and Douglas P. Munoz. Superior colliculus neurons encode a visual saliency
map during free viewing of natural dynamic video. Nature Communications,
8:14263, jan 2017.

[352] Brian J. White, Janis Y. Kan, Ron Levy, Laurent Itti, and Douglas P. Munoz.
Superior colliculus encodes visual saliency before the primary visual cortex.
Proceedings of the National Academy of Sciences, 114(35):9451–9456, aug 2017.

[353] Michael White. A new effect of pattern on perceived lightness. Perception,
8(4):413–416, aug 1979.

[354] Gagan S Wig, Scott T Grafton, Kathryn E Demos, and William M Kelley. Reduc-
tions in neural activity underlie behavioral components of repetition priming.
Nature Neuroscience, 8(9):1228–1233, July 2005.

[355] Stefan Winkler and Ramanathan Subramanian. Overview of eye tracking
datasets. In 2013 Fifth International Workshop on Quality of Multimedia
Experience (QoMEX). IEEE, jul 2013.

[356] Calden Wloka, Iuliia Kotseruba, and John K. Tsotsos. Saccade sequence
prediction: Beyond static saliency maps, 2017.

[357] Calden Wloka, Iuliia Kotseruba, and John K. Tsotsos. Active fixation control to
predict saccade sequences. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition. IEEE, jun 2018.

[358] Calden Wloka and John Tsotsos. Spatially binned ROC: A comprehensive
saliency metric. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, jun 2016.

174



Bibliography

[359] J. M. Wolfe. Guided search 4.0: A guided search model that does not require
memory for rejected distractors. Journal of Vision, 1(3):349–349, mar 2010.

[360] Jeremy Wolfe. Attention. Psychology Press, 1998.

[361] Jeremy M. Wolfe. “effortless” texture segmentation and “parallel” visual
search are not the same thing. Vision Research, 32(4):757–763, apr 1992.

[362] Jeremy M. Wolfe. Guided search 2.0 a revised model of visual search. Psycho-
nomic Bulletin & Review, 1(2):202–238, jun 1994.

[363] Jeremy M. Wolfe. Asymmetries in visual search: An introduction. Perception
& Psychophysics, 63(3):381–389, apr 2001.

[364] Jeremy M. Wolfe and Sara C. Bennett. Preattentive object files: Shapeless
bundles of basic features. Vision Research, 37(1):25–43, jan 1997.

[365] Jeremy M. Wolfe, Kyle R. Cave, and Susan L. Franzel. Guided search: An
alternative to the feature integration model for visual search. Journal of
Experimental Psychology: Human Perception and Performance, 15(3):419–
433, 1989.

[366] Jeremy M. Wolfe and Todd S. Horowitz. What attributes guide the deployment
of visual attention and how do they do it? Nature Reviews Neuroscience,
5(6):495–501, jun 2004.

[367] Jeremy M. Wolfe, Evan M. Palmer, and Todd S. Horowitz. Reaction time
distributions constrain models of visual search. Vision Research, 50(14):1304–
1311, jun 2010.

[368] Jeremy M. Wolfe, Ester Reijnen, Todd S. Horowitz, Riccardo Pedersini, Yair
Pinto, and Johan Hulleman. How does our search engine “see” the world?
the case of amodal completion. Attention, Perception, & Psychophysics,
73(4):1054–1064, feb 2011.

[369] S.Sabina Wolfson and Michael S. Landy. Discrimination of orientation-
defined texture edges. Vision Research, 35(20):2863–2877, oct 1995.

[370] Zhibiao Wu and Martha Palmer. Verbs semantics and lexical selection. In
Proceedings of the 32nd annual meeting on Association for Computational
Linguistics -. Association for Computational Linguistics, 1994.

[371] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhutdinov, Richard Zemel, and Yoshua Bengio. Show, attend and tell:
Neural image caption generation with visual attention, 2015.

175



Bibliography

[372] Yin Yan, Li Zhaoping, and Wu Li. Bottom-up saliency and top-down learning
in the primary visual cortex of monkeys. Proceedings of the National Academy
of Sciences, page 201803854, sep 2018.

[373] Alfred L. Yarbus. Eye Movements and Vision. Springer US, 1967.

[374] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transfer-
able are features in deep neural networks? In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 27, pages 3320–3328. Curran Associates, Inc.,
2014.

[375] Laure Zago, Mark J. Fenske, Elissa Aminoff, and Moshe Bar. The rise and fall
of priming: How visual exposure shapes cortical representations of objects.
Cerebral Cortex, 15(11):1655–1665, February 2005.

[376] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolu-
tional networks. In Computer Vision – ECCV 2014, pages 818–833. Springer
International Publishing, 2014.

[377] Jianming Zhang and Stan Sclaroff. Saliency detection: A boolean map ap-
proach. In 2013 IEEE International Conference on Computer Vision. IEEE, dec
2013.

[378] Jianming Zhang and Stan Sclaroff. Exploiting surroundedness for saliency
detection: A boolean map approach. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 38(5):889–902, may 2016.

[379] Liming Zhang and Weisi Lin. Selective Visual Attention. John Wiley & Sons
(Asia) Pte Ltd, mar 2013.

[380] Lingyun Zhang, Matthew H. Tong, Tim K. Marks, Honghao Shan, and Gar-
rison W. Cottrell. SUN: A bayesian framework for saliency using natural
statistics. Journal of Vision, 8(7):32, dec 2008.

[381] L. Zhaoping. Gaze capture by eye-of-origin singletons: Interdependence with
awareness. Journal of Vision, 12(2):17–17, feb 2012.

[382] Li Zhaoping. V1 mechanisms and some figure–ground and border effects.
Journal of Physiology-Paris, 97(4-6):503–515, jul 2003.

[383] Li Zhaoping. Understanding vision : theory, models, and data. Oxford Univer-
sity Press, Oxford, United Kingdom, 2014.

176



Bibliography

[384] Li Zhaoping. From the optic tectum to the primary visual cortex: migration
through evolution of the saliency map for exogenous attentional guidance.
Current Opinion in Neurobiology, 40:94–102, oct 2016.

[385] Li Zhaoping and Keith A. May. Psychophysical tests of the hypothesis of
a bottom-up saliency map in primary visual cortex. PLoS Computational
Biology, 3(4):e62, 2007.

[386] Li Zhaoping and Li Zhe. Primary visual cortex as a saliency map: A parameter-
free prediction and its test by behavioral data. PLOS Computational Biology,
11(10):e1004375, oct 2015.

[387] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Tor-
ralba. Learning deep features for discriminative localization. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June
2016.

177


	Abstract (English/Catalan/Spanish)
	List of figures
	List of tables
	Introduction
	Visual Perception and the Brain
	Main Theories in Visual Attention
	Human Visual System

	Computational Modeling
	Visual Hierarchies and Biological inspiration
	State of the art in saliency and scanpath modeling


	I Psychophysics of visual attention
	Psychophysical evaluation of individual low-level feature influences in visual attention
	Problem Statement
	Contextual Relevance
	Contrast Relevance
	Temporal Relevance
	Task Relevance
	Center bias

	Objectives
	Stimuli
	Methods and Procedures
	Results
	Performance upon Feature Type  (1st Hypothesis)
	Performance upon Feature Contrast  (2nd Hypothesis)
	Attention changes nonlinearly over time (3rd Hypothesis)
	Task influences perceived attention  (4th Hypothesis)
	Center biases are endogenous  (5th Hypothesis)

	General Discussion

	SID4VAM: Synthetic Image Dataset for Visual Attention Modeling
	Objectives
	Previous and current literature
	Dataset
	Methods and Procedure
	Results on predicting fixations
	Results on psychophysical consistency
	Discussion
	Conclusion


	II Visual Saliency in V1: Bottom-up attention
	NSWAM: Neurodynamic Saliency WAvelet Model
	Feature Extraction
	From Images to Sensory Signals: Retinal computations
	Hypercolumnar organization in the brain

	Feature Conspicuity
	Computation of lateral Interactions in V1 cells

	Feature Fusion/Integration
	Generating the saliency map in the Superior Colliculus

	Evaluation Metrics for Saliency
	Results
	Predicting human eye movements
	Psychophysical measurements

	Conclusion


	III Visual Scanpaths and Relevance: Top-down attention
	NSWAM-CM: Cortical Magnification and Feedback Connections
	Cortical Magnification mechanisms in the brain
	Generating Saccade Sequences
	Attention as Top-down inhibition
	Top-down selection
	Inhibition of Return

	Evaluation metrics for Scanpaths and Visual Search
	Results for predicting Saliency
	Results for predicting Scanpaths
	Results on feature and categorical search

	Modeling task on attention (Ongoing Work)
	Visual Priming
	Objectives
	STAR-FCT: Selective Tuning Attentive Reference - Task-based Fixation Controller
	Symbolic Representations: Understanding the Task
	Visual Representations: Low- and High-level features

	Results on predicting object attention
	Future Work
	Evaluating task and attention with Image Captions
	Evaluating STAR-FCT for Visual Search



	IV Clausula
	Conclusions
	Summary and Contribution
	Future Perspective
	Scientific work
	Abstracts in National and International Conferences
	Journal Publications and Conference Proceedings




	Títol de la tesi: Understanding Eye Movements: Psychophysics 
and a Model of Primary Visual Cortex
	Nom autor/a: David Berga Garreta


