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SUMMARY 
 

The gut commensal microbiota is known to play a crucial role in maintaining intestinal 

homeostasis. Alterations in the microbial community composition, also known as 

dysbiosis, may put health status in risk and increase susceptibility to diseases. Although 

several diseases have been related to shifts in the gut microbiome composition, it is still 

uncertain whether those alterations are the cause or consequence of the disease.  

Inflammatory bowel disease (IBD) is a chronic inflammatory disease with periods of 

active and inactive inflammation that constitutes to an important health problem. It is 

divided in two subtypes: Crohn’s disease (CD) and ulcerative colitis (UC) that present 

similar symptoms but different clinical manifestations. IBD has been widely associated 

with an alteration of the gut microbiome composition. Nevertheless, there is no clear 

consensus on the microbial pattern characteristic of the disorders. Main discordances 

between studies are related to differences between UC and CD. Some previous 

publications indicate that UC microbial composition is very similar to healthy and differs 

from CD whereas others consider both subtypes as a unique entity and find high 

alterations in UC and CD microbial composition in comparison with the microbiome of 

healthy individuals.  

The aim of this thesis was to characterize the dysbiosis in a Spanish IBD cohort to 

evaluate to which extend the gut microbiome composition and function could be 

differentiated between CD and UC and whether microbiome data could be used as 

diagnostic and prognostic tools. For this purpose, we analyzed fecal samples of healthy 

individuals, CD (affected in the ileum) and UC patients using two different 

methodologies: 16S rRNA gene (or 16S rDNA) and shotgun (short genomic fragments) 

sequencing.  

As expected, we observed the presence of dysbiosis in IBD. Furthermore, we showed 

that microbial composition and function alterations were different for CD and UC, with 

greater dysbiosis in CD than in UC and with UC resembling more to a healthy state. 

Functional findings also confirmed this higher dysbiosis in CD than in UC and revealed 
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genes implicated in metabolism pathways and in immune diseases in higher abundance 

in CD compared with healthy individuals and UC.  

Although 16S rDNA and shotgun data did not detect differences in the dysbiosis in CD 

and UC in a consistent manner, both methodologies allowed the classification of IBD 

subtypes in a similar proportion. Future studies should validate these results using other 

patient cohorts such as colonic CD or recently diagnosed patients before the application 

of these techniques as diagnostic tools in clinical practice.  



       RESUMEN 

xxi 
 

RESUMEN 
 

La microbiota intestinal desempeña un papel crucial en el manteniendo la homeostasis 

intesitnal. Alteraciones en la composición microbiana, también conocidas como 

disbisosis, pueden poner en peligro el estado de salud e incrementar el riesgo a padecer 

una enfermedad. Aunque muchas enfermedades se han asociado a cambios en la 

microbiota intestinal, todavía se desconoce si dichas alteraciones son la causa o la 

consecuencia de las patologías.  

La enfermedad inflamatoria intestinal (EII) es una enfermedad inflamatoria crónica que 

se caracteriza por periodos de inflamación y constituye un problema de salud dado. La 

EII presenta dos subtipos: enfermedad de Crohn y colitis ulcerosa, con síntomas 

similares pero diferentes manifestaciones clínicas. La EII se ha relacionado ampliamente 

con cambios en la microbiota intestinal. A pesar de los múltiples estudios que existen, 

no hay un claro consenso en el perfil microbiano asociado a la enfermedad. Las 

principales discordancias se dan entre las diferencias asociadas a enfermedad de Crohn 

y la colitis ulcerosa. Algunos investigadores han demostrado que la composición 

microbiana en colitis ulcerosa es muy similar a la de individuos sanos y ambas difieren 

de la composición de enfermos de Crohn. En cambio, otros investigadores han visto que 

las diferencias de colitis ulcerosa y Crohn respecto a sanos son muy similares por lo que 

consideran ambos subtipos como una única enfermedad (EII).  

El principal objetivo de esta tesis es determinar la disbiosis en una cohorte de EII 

española para evaluar hasta qué punto las funciones y composición microbiana difieren 

entre Crohn y colitis y si los datos de microbioma podrían emplearse como herramientas 

de diagnóstico. Para ello, analizamos muestras fecales de sanos, enfermos de Crohn y 

enfermos de colitis usando dos metodologías: secuenciación del gen 16SARNr (o 16S 

ADNr) y secuenciación por fragmentación del genoma.  

Como se preveía, observamos la presencia de disbiosis en EII. Además, vimos que las 

alteraciones en composición microbiana y funciones eran diferentes para Crohn que 

para colitis, mostrando una mayor disbiosis en Crohn que en enfermos de colitis 

ulcerosa y con colitis mostrando un patrón muy similar a la microbiota de individuos 
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sanos. Los resultados funcionales encontrados en esta tesis confirman la mayor disbiosis 

descrita en pacientes de Crohn en comparación con pacientes de colitis ulcerosa en 

composición microbiana. Estos individuos presentan una mayor cantidad de genes 

principalmente asociados a metabolismo y enfermedades inmunes que los enfermos de 

colitis ulcerosa y sanos.  

A pesar de que los datos de 16S ADNr y secuenciación por fragmentación no detectaron 

las mismas diferencias entre Crohn y colitis, ambas metodologías permitieron la 

clasificación de los distintos subtipos de EII con una proporción similar. Más estudios 

son necesarios para validar los resultados de esta tesis en otras cohortes de pacientes 

que incluyan Crohn localizado en colon o pacientes recién diagnosticados que no hayan 

sido sometidos a tratamiento antes de la aplicación de estas metodologías como 

herramientas diagnósticas en clínica.  
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1. Microbiota 

Microbial communities, also known as microbiota, are multi-species collections of 

microorganisms that cohabit together in the same environment interacting with each 

other and are essential in the earth’s ecosystem and the human body (Segata et al. 

2013). In both cases, they are needed for important functions such as material 

degradation or nutrients absorption. Each individual of these microbial communities 

carries 500000 non-redundant genes (Qin et al. 2010) to develop those functions.  

In nature, isolated microorganisms are rarely found as they tend to interact with each 

other to maintain the ecosystem. Members of microbial communities depend on each 

other and on the host. There are microorganism-microorganism and microorganism-

host interactions in all environments. In these interactions, both members exchange 

molecular and genetic information (Braga, Dourado, and Araújo 2016).    

One of the most crowded microbial communities is the human body. Microorganisms 

inhabit the human body and comprise more than 100 trillion microbes distributed along 

different locations of the body such as the skin, the gastrointestinal tract, the vagina or 

the respiratory system (Sender, Fuchs, and Milo 2016). In the human body, the densest 

microbial community is set in the gut (Ley et al. 2009). Gut microbial community, also 

known as gut microbiota, contains a quantity of microbes that accounts for more than 

ten-fold the number of cells in the whole body (Bäckhed et al. 2005; Turnbaugh et al. 

2007) that is composed of more than 1013 human cells (Savage 1977).  

 

1.1  Gut Microbiota 

Gut microbiota comprises all bacteria, archaea and eukarya that coexist along all the 

gastrointestinal tract (GIT) starting from the oral cavity, through the esophagus, the 

stomach, small and large intestine until the rectum. Gut microbiota was firstly reported 

by the father of the microscope, Antonie van Leeuwenhoek, who described the presence 

of “strange little animals” using a microscope (Toledo-Pereyra 2009) his own stool and 

characterized the known species Giardia spp. in presence of diarrhea (Rajilić-Stojanović 

and de Vos 2014).  
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The composition of the intestinal microbiota in the GIT sections depends on the oxygen 

availability, pH, temperature and tissue structure (Booijink et al. 2010; Jenkinson and 

Lamont 2005). The vast majority of gut microbiota inhabits the human colon due to 

favorable conditions (Ley, Peterson, and Gordon 2006; Turnbaugh et al. 2007).  

The gut microbiota is not yet completely characterized since it is composed by bacterial 

species still unknown that has not been identified. A recent database published called 

Culturable Genome Reference (CGR) has shown a better resolution in the description of 

the gut microbiome being able to identify approximately 70% of the microbial sequences 

in a sample (Zou et al. 2019).  Intestinal microbiota mainly consists of two bacterial phyla 

independently of the geographical location (Figure 1), Bacteroidetes and Firmicutes, 

which contribute for more than 90% of microorganisms present in the gut (Ley et al. 

2009; Qin et al. 2010; Wexler and Goodman 2017). Less dominant phyla include 

Proteobacteria, Actinobacteria, Fusobacteria and Verrucomicrobia phyla (Eckburg et al. 

2005; Hayashi, Sakamoto, and Benno 2002). Although there is a quite stable gut 

microbiota composition at phylum level specially in middle-aged individuals, at lower 

taxonomical levels there are greater changes depending on age, way of delivery, 

medication, use of antibiotics, diet, physical activity and genetic host factors (Odamaki 

et al. 2016; Palmer et al. 2007; Shin et al. 2016; de Souza and Fiocchi 2016; Yatsunenko 

et al. 2012). 

Viruses, archaea and eukaryotes (mainly fungi) also play an important role in the GIT. 

Gut viruses, known as gut virome, target eukaryotic host cells, bacteria or even archaea 

but it is mainly composed of bacteria-infecting phages also called bacteriophages. Those 

bacteriophages show higher abundance in early stages of life what has been associated 

with the continuous reshaping of gut microbiota in the first years (Lim et al. 2015). Gut 

virome is a novel field compared with gut bacteriome but, although little is known of 

these microorganisms, microscopy technologies have shown that the predominant viral 

order is Caudovirales that encompasses most of the known phages (Carding, Davis, and 

Hoyles 2017). Nowadays, the development of new techniques is improving the 

characterization of the gut virome (Milani et al. 2017).  



  INTRODUCTION
  

5 
 

 

Figure 1. Global distribution of human gut microbiota abundances at phylum and genus level 

(From Wexler et al., Nature Microbiology 2017). Each pie represents the composition at phylum 

and genus level from the different countries and sample sizes. Bacteroides and Firmicutes 

account for more than 90% of the microbial composition in almost all geographical localizations.   

 

Gut mycobiome accounts for approximately between 0.03 and 0.1% of the gut 

microbiota and is mainly composed of Candida sp. according to cultivation and non-

cultivation techniques (Z. K. Wang et al. 2014). However, there is a lot of taxa variability 

among studies showing instability in time and between individuals (Hillman et al. 2017). 

As for gut virome, functions of the gut mycobiome are not well understood but it has 

been seen that they have an impact in the gastrointestinal function and contribute to 

digestive diseases (Z. K. Wang et al. 2014).  

Archaea also contributes to a small proportion to the gut microbiota. Despite its low 

relative proportion, the most important Archaea genera in the gut, Methanobrevibacter, 

plays an important role in the GIT by its contribution to the production of methane. In 

the recent years, advances in culture independent techniques have allowed the 

identification of high diversity of archaea in the gut microbiota (Gaci et al. 2014; Hillman 

et al. 2017).  

Gut microbiota can be considered as an additional organ that communicates with the 

host and is able to develop functions that the host cannot perform by itself. It is involved 
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in energy consumption, storage and chemical transformation among others (Bäckhed et 

al. 2005). Moreover, it is involved in health and disease status due to its influence in 

nutrition, protection against pathogens and immune function of the host (Maslowski 

and MacKay 2011; O’Hara and Shanahan 2006). It plays an important role in the 

digestion of specific food substances that otherwise could not be degraded such as 

dietary carbohydrates (fiber) (Marchesi et al. 2016). Gut microbiota helps the host to 

absorb and metabolize these nutrients and, in return, it lives and replicates in a nutrient 

enriched niche provided by the host (Hooper, Midtvedt, and Gordon 2002). In the last 

few years, interest in studies relating gut microbiota to brain functions, known as 

microbiota-gut-brain (MGB) axis, has strongly grown suggesting that it could influence 

stress response, behavior, cognition and brain chemistry and development (Cryan et al. 

2012; Scriven et al. 2018; Zhu et al. 2017). Interactions in this MGB axis are bidirectional 

meaning that not only the gut microbiota can affect brain function, but also the brain 

can affect the gut microbiota indirectly by modifying their niche with alterations in 

intestinal motility or directly by secreting molecules in the gut (Carabotti et al. 2015; 

Rhee, Pothoulakis, and Mayer 2009).  

 

1.2  Microbiota in health and disease 

Interest in identifying the role of the gut microbiota in the health of the host has grown 

over the last decade in different fields. Furthermore, current high-throughput 

sequencing technologies provide information about gut microbiota composition and 

functions with a substantial decrease in prices and higher resolution than some years 

ago. Considering all these improvements of the techniques and the increasing interest 

in the gut microbiota in the last years, the development of important research projects 

with big cohorts in this field has grown.  

 

1.1.1 International projects 

In the United States in the 2000s, the Human Microbiome Project (HMP) was designed 

to deeply characterize and understand how microbiome affects human health. This 
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project consists of two phases. Firstly, HMP tended to describe human microbiota from 

different body sites (nasal passages, oral cavity, skin, gastrointestinal tract, and 

urogenital tract) from 300 healthy subjects trying to determine if there was a healthy 

core microbiota. Secondly, the ongoing project of the HMP involves 3 different cohorts 

(pregnancy and preterm birth, onset of inflammatory bowel disease (IBD) and onset of 

type 2 diabetes) to investigate how the human microbiome can contribute to disease 

status (https://hmpdacc.org/, (Turnbaugh et al. 2007)). 

Meanwhile, in Europe, another project was gaining importance. Metagenomics of the 

Human Intestinal Tract (METAHIT) project focused on analyzing only microbial 

communities from the gut. This community contains high concentrations of microbes 

resulting in an ecosystem of high interest to study. The aim of this project is to 

investigate how microorganisms in the gut can contribute to health status. 

(http://www.metahit.eu/index.php?id=234, (Qin et al. 2010)). 

 

1.1.2 Dysbiosis 

High diversity and richness are commonly associated with health status. When a 

disbalance, called dysbisosis, appears in the microbial community composition and/or 

function of an individual, it can lead to a disease status (Ni et al. 2018)). Many studies 

investigating diseases in Western countries have associated dysbiosis with 

environmental factors and Western way of life in which the use of antibiotics is well 

established (Mosca, Leclerc, and Hugot 2016). Intestinal disorders such as IBD or Irritable 

Bowel Syndrome (IBS) have been clearly linked with alterations in the gut microbiota 

(Gevers 2015; Hall et al. 2017; Moustafa et al. 2018; Pascal et al. 2017; Pozuelo et al. 

2015; Sokol et al. 2017) but also non-intestinal disorders such as metabolic, autoimmune 

and neurological disorders (Clarke et al. 2012; Qin et al. 2012; La Rosa et al. 2018; 

Santiago et al. 2016). 

Whether gut microbiota is the cause or consequence of the disorders is still unresolved. 

In the specific case of obesity, animal models have demonstrated that gut microbiota 

play an important role in the disease. Ridaura et al. transplanted fecal microbiota from 

adult twins discordant for obesity into germ free mice that were fed with a low-fat 

https://hmpdacc.org/
http://www.metahit.eu/index.php?id=234
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mouse diet. This study resulted in the transmission of high body and fat mass together 

with a metabolism typical from an obese mouse (Ridaura et al. 2013). In the case of 

digestive disorders such as IBD, animal models have also shown the implication of gut 

microbiota in the development of the illness. Ni et al. showed in mice models of 

spontaneous colitis, T-bet−/−RAG−/− ulcerative colitis (TRUC) mice, that germ free animals 

did not develop ulcerative colitis. However, colitis requires not only the presence of 

microorganisms but also an inflamed environment (Ni et al. 2017). Nevertheless, to 

elucidate whether the gut microbiota acts as a cause or a consequence of different 

disorders, more studies are needed.   

 

2. Analyses of the gut microbiome 

Fecal and intestinal tissue samples could be used a proxy to characterize the gut 

microbiome. Collection of fecal samples is a non-invasive technique and represents the 

easiest way to obtain samples. The main drawback of fecal samples is that they may not 

be representative of all the gut microbial composition. According to previous studies, it 

has been shown that fecal microbiota differs from microbiota adhered to the mucosal 

surface with less Proteobacteria (Carstens et al. 2018; Durbán et al. 2011). On the other 

hand, tissue samples comprise rectum or ileal biopsies collected after colonoscopies or 

colonic resections and effluent or mucosal samples obtained after bowel 

transplantations (Booijink et al. 2010; Gevers 2015). Collecting these types of samples 

involves invasive techniques for the host and need a bowel preparation before 

intervention except for the rectum biopsies (Gevers 2015). Due to the difficulty to obtain 

biopsies from the small intestine, microbiota from this section of the GIT remains poorly 

characterized (Booijink et al. 2010).  

Studies of the gut microbiota have evolved over the years. Traditionally, those studies 

used culture methods, however, although this technique is still applied, it is used for 

microbiota interactions and not for characterization. New techniques have appeared to 

overcome the limitations of culture. These new approaches focus on bacterial DNA 

present in samples to determine microbial composition and potential functions. 
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2.1  Culture dependent techniques 

Gut microbiota has been traditionally characterized using culture techniques that are 

based in the capacity of microorganisms to grow and replicate in an environment with 

optimal conditions and nutrients (Rajilić-Stojanović and de Vos 2014). In the 1970s 

Moore and Holdeman demonstrated that the gut microbiota was composed by at least 

50% of strictly anaerobic bacteria (Moore and Holdeman 1974). This discovery made 

researchers to be very careful when working with culture methods to maintain an 

oxygen-deprived environment.  

In the 1990s-2000s, high-throughput technologies showed that between 60% to 80% of 

the gut microbiota had not grown in culture (Hooper et al. 2002). The reason that was 

proposed to explain this lack of growth was the inadequate environmental conditions 

and absence of suitable nutrients and medium (Cryan et al. 2012; Hayashi et al. 2002; 

Langendijk et al. 1995; Suau et al. 1999). Researchers working with culture had to take 

several points into account when interpreting their results; 1) the number of phenotypic 

characteristics and biochemical reactions to test was limited, 2) the number of 

microorganism that could grow in culture was restricted and 3) microorganisms that 

grow in culture could act differently in medium than in their natural niche as they might 

be involved in co-operational networks with other members of the gut microbiota. 

Consequently, nowadays, culture techniques are rarely used for microbial 

characterization, but they are still used for antibiotic resistance studies, species 

isolation, growth factors production or gut microbiota dynamics among others (D’hoe 

et al. 2018; Rashid et al. 2015; Zhang et al. 2015).  

 

2.2  Culture independent techniques 

New methods have appeared to overcome the limitations generated by culture 

techniques. Currently, most common methods for microbiome characterization are 

Next Generation Sequencing Techniques (Clooney et al. 2016). The cost of these 
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methodologies has decreased in the last few years boosting microbiome studies (J 

Gregory Caporaso et al. 2012) (Figure 2).  

 

 

Figure 2. Sequencing cost over the last decade. (From 

https://www.genome.gov/sequencingcosts). Cost of high throughput sequencing 

methodologies have exponentially decreased in the last few years contributing to a raise in the 

studies of microbiome.  

 

Next generation sequencing techniques used in gut microbiome analyses are targeted-

sequencing and shotgun sequencing on microbial DNA or RNA. In most studies, 

targeted-sequencing approaches focus on bacterial 16S rDNA gene that is used to 

describe taxonomical composition in samples. On the other hand, DNA shotgun 

sequencing methods identify potential genes to make an exhaustive analysis and 

observe not only the taxonomical composition but also gene composition (Hillmann et 

al. 2018; Jovel et al. 2016). This approach allows the identification of gut microbial 

https://www.genome.gov/sequencingcosts
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potential functions in the GIT, however, not all these genes are active at the time of 

sampling. To avoid this problem and determine which functions are expressed, we use 

metatranscriptomics. Metatranscriptomics is based in RNA shotgun sequencing to 

identify active genes and quantify their expression at sampling time. There are other 

‘omics’ that are also used to study the human gut microbiome (Segata et al. 2013). 

Metaproteomics studies all proteins present in a sample. Metabolomics is responsible 

for identifying metabolites, chemical substances present in the samples (Figure 3). 

These metabolites can be associated with the gut microbiota in two different ways: on 

the one hand, the presence of one metabolite can promote the growth of specific 

species whereas on the other hand that species can produce that metabolite (Franzosa 

et al. 2019).  

 

2.2.1 Targeted-sequencing methods 

Targeted-sequencing methods involve the amplification of marker genes by Polymerase 

Chain Reaction (PCR) to taxonomically describe a microbial community. Marker genes 

are orthologous groups of genes with known localization that are used to differentiate 

between taxonomical groups and its heritability is easy to follow. The selection of 

marker genes is a critical decision as the precision of microbial detection depends on 

their capacity to differentiate members of a microbial community. Marker genes vary 

depending on the microorganisms that are been analyzed. In the case of bacteria and 

archaea, 16SrDNA is a widely marker gene used over the last 30-40 years (Woese and 

Fox 1977) and has been described as a good source of information for bacterial evolution 

together with 18rDNA gene for fungi (Fox, Pechman, and Woese 2018).  

16S rDNA gene is a highly conserved gene of about 1500 nucleotides (nts) that is only 

present in the small subunit of bacterial and archaeal ribosomes. 16S rDNA gene 

contains several conserved regions that flank nine hyper-variable regions (V1-V9) that 

differ between species. Conserved regions allow the use of universal primers to detect 

all bacteria present in a sample whereas hypervariable regions determine which bacteria 

is being detected (Figure 4).  
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Figure 3. Different methods to study the microbiota: identification techniques for gut 

microbiota have evolved in the last few years to improve the detection of gut microbiota. 

Culture techniques can only provide information of approximately 20% to 50% (Wexler and 

Goodman 2017) of the gut microbiota but they are still in use to characterize bacteria and 

determine possible interactions between them. To improve this percentages of detection, new 

techniques have been developed based on DNA (metagenomics), RNA (metatranscriptomics), 

proteins (metaproteomics) and metabolites (metabolomics). In metagenomics, researchers use 

targeted or non-targeted methodologies to determine composition or both composition and 

potential genes, respectively. Metatranscriptomics, metaproteomics and metabolomics identify 

which genes and functions are active at the time of sampling but not the genetic potential of the 

sample.  
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Figure 4. E. coli 16S rDNA gene structure. Conserved regions are represented in light grey and 

variable regions in different colors. Figure adapted from 

http://rna.ucsc.edu/rnacenter/xrna/xrna_gallery.html. Conserved regions are present in all 

bacteria and allow the design of universal primers that amplify all bacteria present in a sample. 

Hypervariable regions differ between bacterial species and allow the classification of microbiota 

in different phylogenetic categories. 

 

In the last 30 years, 16SrDNA sequencing has become the prevalent mechanism used to 

analyze microbiota from the GIT and other environments. The main issue to consider is 

which hypervariable region is most appropriate to obtain a taxonomic profile closest to 

the reality. Studies have shown that V4 region in different environments contributes to 

a better approximation of the microbial composition in a sample (Zhang et al. 2018; Zhao 

et al. 2013).  Sequencing with universal primers results in millions of sequences that 

correspond to bacteria and archaea in microbial communities. All these 16S rDNA 

sequences are then stored in several databases such as GreenGenes 

http://rna.ucsc.edu/rnacenter/xrna/xrna_gallery.html
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(http://greengenes.secondgenome.com/), SILVA Ribosomal RNA database 

(https://www.arb-silva.de/) or Ribosomal Database Project (RDP) 

(https://rdp.cme.msu.edu/  databases.   

Sequencing techniques have evolved in the last years showing important advances in 

sequencing platforms. Nowadays, most researchers in the microbiome filed use the 

Illumina MiSeq or HiSeq technology that provides millions of raw reads after quality 

filtering than older platforms such as Sanger, PacBio, Ion Torrent PGM or Roche 454 GS 

FLX Titanium platforms (Allali et al. 2017).  In addition, several tools for analyzing 16S 

rDNA sequences have been developed such as QIIME (Quantitative Insights Into 

Microbial Ecology) (Navas-Molina et al. 2013), mothur (Schloss et al. 2009), UPARSE 

(Edgar 2013), DADA2 (Callahan et al. 2016), MetaAmp (Dong et al. 2017) or ANCHOR 

(Gonzalez, Pitre, and Brereton 2019). In general, most of these tools are based in the 

clustering of raw sequences into operational taxonomic units (OTUs) following different 

clustering algorithms. They classify each OTU as a bacterial species and generate 

abundances tables that are used to compute alpha (species present in an ecosystem) 

and beta (species differences between ecosystems) diversity and differential bacterial 

abundances.  

Targeted approaches are also used not only for identifying, but also for quantifying 

microbial DNA. Techniques such as real-time quantitative PCR (qPCR) are based on the 

amplification of a targeted marker gene. Depending on the primers used for the qPCR, 

this technique allows the detection and quantification of total bacteria, in the case of 

using universal primers, or of a specific group of species if primers specific to a certain 

group are utilized (Bartosch et al. 2004; Carey et al. 2007).  

 

2.2.2 Shotgun sequencing 

Shotgun sequences of the genomic DNA present in a sample rather than focusing on a 

specific gene is an approach based on the fragmentation of all the DNA extracted and 

the sequencing of these small fragments that will be later assembled to build bigger 

genomic fragments or entire bacterial genomes. Shotgun sequencing allows the 

identification of most entities present in the microbiome (bacteria, archaea, eukaryotes 

http://greengenes.secondgenome.com/
https://www.arb-silva.de/
https://rdp.cme.msu.edu/
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and viruses) and does not focus only on a specific group as targeted-sequencing. 

Another advantage of shotgun sequencing is that this technique reaches deeper 

taxonomic levels providing information at species level whereas 16S rDNA sequencing 

only reaches genera level with high precision. Moreover, shotgun sequencing provides 

not only taxonomical information but also allows functional identification. The main 

drawbacks of shotgun sequencing are its elevated cost in money and time for running 

the sequence analyses, exceeding by far those of 16S rDNA sequencing (Barko et al. 

2018) (Figure 5). 

 

 

Figure 5. Comparison between 16S rDNA targeted sequencing and shotgun sequencing of a 

fecal sample. Metagenomic approaches focus their analyses on DNA extracted from a sample. 

There are two basic methods: 1) Targeted gene amplification that focalizes in just one gene, in 

this case, 16S rRNA gene which is adequate to identify bacteria and 2) Shotgun sequencing which 

is based in the fragmentation of all the DNA present in a sample and assembly of these 

fragments to reconstruct genomic fragments or whole genomes. Although the cost in money 

and processing time together with storage space of 16S target gene amplification constitute the 

pros of this technique, the possibility to reach species level in the analyses is very restricted. 

Furthermore, 16S gene amplification methodology can only give compositional information and 

make a prediction of possible functions associated to microorganisms detected. Shotgun 

sequencing also allows the identification of other entities different from bacteria that are not 

restricted to the 16S rRNA gene sequencing.  
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Similar to the bioinformatics workflow used in the 16S rRNA analysis, several pipelines 

have been developed for the analyses of bacterial sequences from shotgun sequencing 

data mainly coming from Next generation sequencing (NGS) platforms (Lam et al. 2011). 

HUMAnN (HMP Unified Metabolic Analysis Network) (Abubucker et al. 2012; Franzosa 

et al. 2018), MOCAT (Metagenomic Analysis Toolkit) (Kultima et al. 2012, 2016), MG-

RAST (Keegan, Glass, and Meyer 2016) or MEGAN (MEtaGenome Analyzer) (Huson et al. 

2007) are pipelines widely used for the metagenomic analyses starting from a quality 

control of usually paired-end raw reads and returning abundance tables of genes 

annotated with functional databases such as KEGG (Kyoto Encyclopedia of Genes and 

Genomes) (Kanehisa et al. 2016) or eggNOG (evolutionary genealogy of genes: Non-

supervised Orthologous Groups) (Huerta-Cepas et al. 2016).  

 

3. IBD 

Intestinal bowel disease (IBD) is an immune mediated chronic inflammatory disease 

which causes a substantial economic burden on the healthcare system. IBD can affect 

different sections of the gastrointestinal tract causing ulceration of the intestinal 

mucosa and encompasses two main subtypes with different clinical manifestations: 

Crohn’s disease (CD) and ulcerative colitis (UC). IBD usually appears during young 

adulthood and is characterized by periods of inactive (remission) and active 

inflammation (relapse) (Dalal and Chang 2014).  

CD can affect any section of the GIT from the mouth to the anus, but it is commonly 

present in the ileocecal section (Figure 6). Inflammation in CD can appear 

asymmetrically and segmented in all intestinal layers so there can be several transmural 

inflamed areas separated by healthy portions (Laass, Roggenbuck, and Conrad 2014). CD 

patients are classified according to the Montreal classification considering the age of 

diagnosis and the localization and behavior of the disease in five subtypes: ileocolitis 

(affects the ileum and the colon), ileitis (only in the ileum), gastroduodenal Crohn’s 

disease (affects the stomach and the duodenum), jejunoileitis (jejunum) and Crohn’s 

colitis (only affects the colon) (Satsangi et al. 2006; Silverberg et al. 2005). Relapse 
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periods in CD occur in most CD patients with percentages of 53%, 85% and 90% at 1, 5 

and 10 years, respectively (Aniwan, Park, and Loftus 2017).  

 

 

Figure 6. Inflammation areas in Crohn’s diasease (CD) and ulcerative colitis (UC). IBD is 

characterized by periods of active (relapse) and inactive (remission) gastrointestinal 

inflammation. CD patients can present inflammation in any section of the gastrointestinal tract 

from the mouth to the anus whereas patients with UC only present inflammation in the colon 

region.  

 

UC consists on localized and symmetric inflammation in the colon and affects in 95% of 

the cases the rectum (Figure 6). UC affects equally women and men and may appear at 

any age. Inflammation appears in the mucosal layer of the colon starting in the rectum 

and expanding in circles (Dalal and Chang 2014). Depending on the extent and severity 

of the inflammation, we can distinguish four types of UC: proctitis (limited to the anus 

and rectum), proctosigmoiditis (affecting the rectum and the sigmoid colon), left-sided 

colitis (begins in the rectum and extends to the splenic flexure) and pan-ulcerative colitis 

(affects the entire colon). Many patients present long periods of remission but the 

probability of not suffering a relapse in two years is close to 20%, while this percentage 

is reduced to 5% in periods of 10 years (Ghosh, Shand, and Ferguson 2000).  
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3.1  Prevalence and incidence 

The incidence of both subtypes of IBD, CD and UC, has increased in the last few years in 

the Western areas including North America, Europe, Australia and New Zealand with 

high incidence of 10 to 30 cases per 100,000 individuals and a prevalence of 0.5% of the 

total population (Aniwan and Park 2017). Newly developing industrialized areas in which 

IBD had been rarely described such as India or Thailand incidence has importantly grown 

with values of 1.4 per 100,000 in 2011 (Cosnes and Cortot 2011; Kaplan 2015; Loddo and 

Romano 2015) (Figure 7). 

  

 

Figure 7. IBD incidence map.  (From Kaplan et al., Nature Reviews Gastroenterology and 

Hepatology 2015). Low or blue areas corresponds to annual incidence less than 4 cases per 105 

individuals, intermediate or yellow values correspond to incidence of 5-10 IBD cases per 105 

individuals and finally, red or high areas refer to IBD incidence of more than 10 cases per 105 

individuals. More industrialized areas such as North America, Europe or Australia show high and 

medium incidence of IBD. However, newly developing countries such as South Africa, India or 

China still present low number of IBD cases but they have been increasing for the last few years. 

 

Considering both subtypes of IBD, both prevalence and incidence are higher in UC than 

in CD in Western and emerging populations (Ananthakrishnan 2015; Aniwan and Park 
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2017; Molodecky et al. 2012). Although IBD is still rare in Africa and South America, some 

cases have been reported in Nigeria showing a small increase in incidence (Ukwenya et 

al. 2011). These new diagnosed IBD patients coincide with the creation of a unit of 

gastroenterology equipped with diagnostic tools, suggesting that the growth in IBD 

cases may not be due to an increase in the number of patients but to a better diagnosis.  

 

3.2  Etiology 

The etiology of IBD is related to several factors that cannot individually explain the origin 

of the disease (Figure 8).  Genetic susceptibility, stress, pollution, smoking, physical 

activity, medication together with other extrinsic factors cooperate together in the 

onset and progression of the gastrointestinal disorder (Abraham, Ahmed, and Ali 2017; 

Aniwan et al. 2017).   

 

 

Figure 8. Etiology of IBD. The mechanism of IBD is not completely understood. There is a 

combination of several factors: genetics, environment, immunity and microbiome. They all 

contribute to the development of the disease. Among the environmental factors, smoking habit, 

stress or diet have been seen to have an important effect on the disease. 
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Over the years, different genetic factors have been associated with IBD. There are more 

than 200 risk loci associated to IBD (Momozawa et al. 2018). A great majority of the 

detected loci are linked to IBD while only a few of them are specific to UC or CD 

(Abraham et al. 2017; Liu et al. 2015). The high number of common loci indicates that 

they share common inflammatory pathways. However, specific loci can explain clinical, 

endoscopic and histologic differences found in patients (Ramos and Papadakis 2019).  

Smoking is the most widely studied extrinsic factor in IBD. Active smoking is positively 

associated with CD. Conversely, it may act as a protection in UC (Harries, A. D., Baird, A. 

& Rhodes 1982; Mahid et al. 2006). Nevertheless, Jones et al. studied passive smoking 

and did not find any correlation with IBD development in children that were exposed to 

tobacco during their childhood (Jones et al. 2008).  

Dietary factors have also been associated with IBD. Typical diets from Western countries 

characterized by low quantities of fiber, high in animal fat and sugar increase the risk of 

IBD (Ananthakrishnan 2015; Lewis and Abreu 2017). Researchers have shown that these 

diets are related to a decrease in microbial diversity or dysbiosis, which promotes the 

susceptibility to IBD (Chiba, Nakane, and Komatsu 2019).  

Stress and depression are important disorders that affect Western populations and have 

been also studied as risk factors for IBD. Several studies have shown that IBD patients 

have a higher tendency to suffer from depression (Nowakowski, Chrobak, and Dudek 

2016; Walker et al. 2008) which correlates with inflammation (Mittermaier et al. 2004). 

Moreover, depression can also worsen the development of the disease. However, the 

use of antidepressants that reduce the production of inflammatory cytokines have an 

impact in reducing the possibilities to develop IBD (Frolkis et al. 2018) In the case of 

stress, different studies in animal models have demonstrated that stress has a relation 

in both development and reactivation of the inflammation (Singh, Graff, and Bernstein 

2009).  
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3.3  Symptomatology, diagnosis and treatment 

IBD symptoms include diarrhea and abdominal pain together with blood in feces that 

can generate anemia leading to chronic fatigue in patients (Gasche et al. 2004). IBD is 

considered as a systemic disorder because its symptoms do not appear only in the 

intestine but also in other parts of the body. IBD can present dermatological, oral, 

ophthalmological and muscoeskeletal manifestations among others so it can affect 

every single organ in the body. The presence of extraintestinal manifestations (EIM) 

differ between adult and pediatric patients (Jang, Kang, and Choe 2019). It is important 

to distinguish which are those EIM to select the most appropriate treatment.  

Furthermore, in many cases, IBD patients suffer from anxiety and bad mood contributing 

to disease worsening, which may lead to flares (Jordan, Hayee, and Chalder 2018). IBD 

symptoms constitute an important burden for the patients. They limit working 

capacities and welfare of the affected population constituting an important handicap 

for their life and driving to important indirect health-care costs. On the other hand, IBD 

also generates high direct health-care costs including hospitalization, surgeries, medical 

care or medicines (Kaplan 2015). 

IBD diagnosis requires several tests and procedures such as blood tests and imagine and 

endoscopic procedures. Endoscopy is crucial to differentiate IBD from other disorders 

and to discriminate the two main subtypes of IBD. Endoscopies are also involved in the 

follow up of disease activity and treatment response. The main drawback of endoscopies 

is the invasive feature of the technique that also requires a bowel preparation (Spiceland 

and Lodhia 2018).  

Current therapeutics in IBD focus on improving the quality of life of patients and lead to 

clinical remission of the disease. In most serious cases, surgery is even considered. In 

the past few years, treatments for IBD have not suffered many modifications and their 

use varies according to the type and severity of the disease. Oral aminosalicylates such 

as sulfasalazine or mesalazine are topical anti-inflammatory drugs that reduce gut 

inflammation when they are in contact with the mucosa. Both corticosteroids and 

immunomodulators acts as regulators of the immune system response reducing cellular 

production of inflammatory substance and reducing immune system activity, 
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respectively, to reduce intestinal inflammation (Abraham et al. 2017; Aniwan and Park 

2017).  

The implication of the gut microbiota in IBD development has led to the use of targeted 

therapeutic methods suitable for its modification. Clinicians usually prescribe antibiotics 

in IBD during infectious complications (Sartor 2004). Antibiotics such as metronidazole 

and ciprofloxacin have also shown good effectiveness as primary treatment for Crohn’s 

disease. Metronidazole together with ornidazole contribute to prevent post-surgical 

relapse of the disease (Hammer 2011). Antibiotics also showed high effectiveness for 

treating pouchitis (Cohen et al. 2019). In general, the use of antibiotics focuses on 

decreasing the invasion of aggressive bacteria and reducing their proliferation in the 

lumen.  

Probiotics are also used as a treatment for IBD. Probiotics are viable bacteria that have 

beneficial activities for the gut and have three possible ways of action in the intestine: 

alteration of immunoregulation, inhibition of pathobionts or strengthening the function 

of the mucosal and epithelial barrier (Hammer 2011). Several clinical trials have shown 

that probiotics are useful for treating active IBD and for preventing inflammation periods 

showing good results in pouchitis and UC more than in CD (Sartor 2004).  

Additionally, not only the function of probiotics has been studied in IBD but also the 

function of prebiotics. Prebiotics are substances that can be ingested and favor the 

growth of beneficial microorganisms. Small studies with prebiotics have been done on 

UC patients showing a small decrease of inflammation in cases of mild to moderate UC 

(Mitsuyamat, Toyonaga, and Sata 2002).  

Another alternative treatment is fecal microbial transplantation (FMT). The success of 

the treatment of Clostridium difficile infection with FMT has driven to the study of FMT 

as a possible therapeutic strategy for IBD. Several clinical trials have shown that the 

efficacy of this treatment for IBD is more modest than for Clostridium difficile infection 

and that it may depend on many variables including the composition of the stool donor. 

The importance of the diversity in the donor sample is leading to the concept of the 

“FMT super-donor” that would provide better results in FMT than others (Wilson et al. 

2019). A recent study compiled all the studies that have been made in FMT and IBD 
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(Paramsothy et al. 2017). Although response of IBD patients to FMT is variable, 

summarizing the 53 studies, Paramsothy and colleagues showed that FMT was more 

efficient in CD patients than in UC when inducing a remission. They also showed that 

FMT with oral administration by infusion improved remission better than lower 

gastrointestinal tract administration in UC (Paramsothy et al. 2017)  

 

3.4  Physiopathology 

Numerous genomic studies have identified human candidate genes involved in the 

development of inflammatory processes (Momozawa et al. 2018). Among all these 

genes, the most promising ones encode proteins for the recognition and the 

presentation of the bacterial antigens and the coordination of innate and adaptative 

responses of immune system (Cho 2008). These findings suggest that the immune 

response to pathogens, especially bacterial, would be disrupted in IBD. Moreover, many 

environmental risk factors (smoking, appendicitis, etc.) as previously explained, may also 

participate in this immune dysfunction (Legaki and Gazouli 2016).  

The intestinal barrier protects the body from potential threats. It consists of a bacterial 

biofilm, a layer of mucus and the intestinal epithelium, where specific cells providing the 

innate immune defenses (dendritic cells, Paneth cells, macrophages and neutrophils) 

are found. In IBD, each of these defenses is altered. The number of globet cells secreting 

the mucins, that which constitute the protective mucus of the intestinal epithelium, is 

decreased in IBD. In addition, the use of DNA chips has revealed a decrease in the 

expression of genes encoding mucins in the ileum and colon of patients (Moehle et al. 

2006). The cohesion of the intestinal mucosa is ensured by the cellular junctions of the 

epithelial cells of the intestine. However, the proteins forming the tight junctions of the 

enterocytes (occluding, cadherins and catenins) have been found in decreased amount 

in IBD (Hill et al. 2004). Epithelial cells are also the first line of defense against invasion 

by pathogenic organisms, they can identify the bacterial pathogenic components by 

their receptors to extracellular bacterial peptides TLR (toll-like receptor) and 

intracellular NOD2 (or NOD2/CARD15 for nucleotide-binding oligomerization 

domain/caspase-activating recruitment domain 15) (Ramos and Papadakis 2019). Then, 
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they produce antimicrobial peptides (β-defensins HBD) and express MHC molecules to 

initiate the adaptative immune response of the mucosa. In IBD patients these signaling 

pathways are impaired and induce altered microbial peptide production and innate 

immune response (Figure 9).  

 

 

Figure 9. Gut physiology in a healthy and an IBD conditions.  (From Ramos et al., Mayo clinic 

proceedings 2019). IBD is characterized by and abnormal activity of the immune response and 

genetic expression combined with environmental factors. In IBD, the mucosal layer is formed by 

epithelial cells with disrupted activity due to the decrease presence in tight junctions, to the 

reduced production of antimicrobial products. In IBD there is an uncontrolled activation of 

different types of T-cells that migrate to inflamed tissues.   

 

Abnormalities in the innate immune response disrupt antigen recognition and 

presentation of the effector cells. When IBD is active, there is an imbalance between the 

number of effector T cells (Th) and regulatory T cells (Treg). In Crohn’s disease, Th1 

lymphocytes, characterized by a high production of IL-2, IFNγ (interferon) and Th17, that 

predominate (Bamias et al. 2003; Fujino et al. 2003). Conversely, in UC, patients’ mucosa 
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is infiltrated mainly by atypical Th2 lymphocyte that characterize the production of IL-5, 

IL-13 and TGFβ (transforming growth factor) (Targan and Karp 2005) (Figure 9).  

 

4. IBD and gut microbiota 

Although the origin of IBD is not completely clear, several studies, both in human and 

animal models, have demonstrated a strong correlation between gut microbiota and the 

onset and progression of IBD. Nowadays, the most recent model suggests that IBD is the 

result of an inappropriate immune response to microbiota in individuals with genetic 

susceptibility (Abraham et al. 2017; Sartor 2006; Weingarden and Vaughn 2017). CD and 

UC share several common clinical signs and symptoms. However, at the microbiome 

level, dysbiosis appears to differentiate the two IBD subtypes (Andoh et al. 2011; de 

Souza and Fiocchi 2016).  

First evidences showing that gut microbiota was related to IBD appeared in animal 

models of colitis which revealed that shifts in the composition of Lactobacillus sp. 

together with other factors preceded colitis development. Colitis attenuated after 

driving Lactobacillus sp. to normal concentrations (Madsen et al. 1999).  

As mentioned above, culture-based methods constitute a bottleneck in the study of gut 

microbiota. Most commensal bacteria do not grow in culture so genomic approaches 

have been an important advance in the study of dysbiosis in CD and UC overcoming the 

limitation of culture techniques. First approaches to identify the association between 

IBD and gut microbiota used classical techniques such as single strand conformation 

polymorphism together with cloning experiments and qPCR or temporal temperature 

gradient gel electrophoresis of 16S rDNA. In these studies, investigators found an 

association between CD and an alteration in the gut microbial composition showing 

higher quantities of Enterobacteria in CD than in healthy (Seksik et al. 2003). They also 

observed a reduced diversity in UC compared with healthy controls showing a 

percentage of dysbiosis higher in comparison with CD (Ott et al. 2004). 

New molecular techniques such as DNA amplification, cloning and sequencing of 16S 

rRNA gene applied in the early 2000s in intestinal microbiota studies already 
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demonstrated the advantages of those techniques over culture identifying more that 

50% of novel species (Hayashi et al. 2002; Manichanh et al. 2006) The arrival of 

metagenomics has boosted research associating microbiome alterations and IBD (Seksik 

et al. 2003; Tamboli 2003). Many studies have used targeted metagenomics with 16S 

gene whereas the use of shotgun sequencing techniques is less common but increases 

each day. 

Manichanh et al. published one of the first fecal metagenomic library based on the 

cloning of bacterial genomic fragments of 40 kb obtained from 6 healthy controls and 6 

CD patients. Then, using this library, they screened and sequenced the 16S rRNA gene 

and showed a reduced diversity in CD patients compared to healthy controls, in 

particular in the Firmicutes phylum (Manichanh et al. 2006). More concretely, 

Clostridium leptum, from Clostiridiales order, was found in less proportion in CD patients 

than in healthy controls, which validated a previous study using amplified and cloned 

rRNA gene libraries in CD patients and healthy volunteers (Mangin et al. 2004). In this 

line, other studies identified a reduction of Clostridiales such as Faecalibacterium 

prausnitzii in ileal (Baumgart et al. 2007) and in colonic (Martinez-Medina et al. 2006) 

mucosal tissue of patients with CD. This result suggests that a deficiency of the 

bacterium may be a marker of CD independently of the localization of the disease.  

Active and inactive periods of IBD may be associated with differential gut microbial 

abundance. Sokol et al. studied these shifts with real-time qPCR targeting the 16S rRNA 

gene in fecal samples from a cohort of CD patients in remission and relapse, UC patients 

in remission and relapse and patients with infectious colitis (n = 57) and healthy controls 

(n = 27). Clostridium leptum (with Faecalibacterium prausnitzii as its main 

representative), Clostridium coccoides and Bifidobacterium were significantly less 

abundant in active IBD (UC and CD) and infectious colitis compared with healthy controls 

again confirming a dysbiosis in CD patients and confirming previous studies described 

(Sokol et al. 2009).  

Until now, most studies have analyzed association between gut microbiota and IBD 

without segregating the disease into two subtypes. However, Gophn and colleagues 

used cloning and sequencing techniques of the 16S rRNA gene in healthy, UC and CD 

individuals and showed that there were not differences between healthy volunteers and 



  INTRODUCTION
  

27 
 

UC patients whereas CD patients presented higher quantities of Proteobacteria and 

Bacteroidetes and lower abundances of Clostridia (Gophna et al. 2006). Moreover, the 

authors took inflamed and non-inflamed mucosal tissues from the same IBD participant 

and showed that there were no significant differences in the gut microbiota of both 

areas. This finding implies that microbial community composition may not be the direct 

cause of inflammation what agrees with a more recent study by Forbes and colleagues 

(Forbes, Van Domselaar, and Bernstein 2016). However, other studies have shown 

microbial differences between inflamed and non-inflamed tissues (Walker et al. 2011).  

IBD symptoms in children vary extensively and may consist of minor extra intestinal 

manifestations, which makes the diagnosis very difficult. Some studies of gut microbiota 

in IBD pediatrics’ stool and mucosal samples have been implemented to find changes in 

microbial composition that could help in the challenging and late diagnosis. Papa et al. 

developed a tool for diagnosis named SLiME, that was able to differentiate between 

pediatric patients with IBD from other patients with similar symptoms using fecal 

samples with a sensitivity of 80.3% and a specificity of 69.7% but was not sufficient to 

replace endoscopy (Papa et al. 2012). Moreover, analyzing 16S rRNA pyrosequencing 

data, they saw that alterations in active IBD included increased proportions of 

Enterobacteriales and reduction of Subdogranulum or Butyricicoccus both from the 

Clostridiales order. This result is in accordance with studies in adults. Segregating the 

two subtypes of IBD in mucosal tissue of another children cohort has demonstrated that 

reductions in bacterial alpha diversity only varied in CD and not in UC. However, and 

disagreeing with previous studies, increment on Faecalibacterium prausnitzii was 

described for CD (Hansen, Richard K. Russell, et al. 2012). Using Illumina MiSeq 16S rRNA 

sequencing, a more recent technology, in mucosal and stool samples collected from a 

pediatric CD cohort, defined dysbiosis associated with CD. The alteration was 

characterized by an increased abundance of Enterobacteriaceae, Pasteurellaceae, 

Veilloneallaceae and Fusobacteriaceae families and decreased proportions of 

Erysipelotrichales, Bacteroidales and Clostridiales (Gevers 2015). For a deeper 

taxonomical classification of the gut microbiota, Gevers et al. selected a subset of stool 

samples and applied shotgun sequencing with Illumina HiSeq2000 platform. Species 

found increased in CD corresponded to bacteria known to contribute to dysbiosis in IBD 
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residing in the mucosa such as Escherichia coli, or Fusobacterium nucleatum (Mirsepasi-

Lauridsen et al. 2019; Palmela et al. 2018; Strauss et al. 2011) or in the oral microbiota 

as Haemophilus or Veillonella (Kim et al. 2013).  Enrichment of Ruminococcus gnavus in 

IBD, especially in active IBD, has also been described (Hall et al. 2017). As previously 

described, many studies have been performed in pediatric IBD cohorts showing shared 

and unshared results. Although there is an agreement in some bacteria associated to 

IBD in those studies, there is also a lack of consistency between results what could be 

associated to the unstable microbial composition at early ages (Odamaki et al. 2016).  

As previously mentioned, higher resolution techniques are needed for a deeper 

characterization of the composition of gut microbiota, but also for determining potential 

functions of those microorganisms. Shotgun sequencing together with metabolomic 

technique have recently described clear differences between healthy controls and CD 

patients whereas UC patients tend to show fewer differences with the healthy 

volunteers metabolically, functionally and compositionally (Franzosa et al. 2019).  

Although gut microbiota in IBD has been widely studied, other microorganisms different 

from bacteria have not been extensively characterized. Analyses of 16S rRNA sequences 

do not provide information about neither viruses nor fungi so other techniques such as 

18S rRNA sequencing or shotgun sequencing are necessary to fulfill this objective.  

Recent studies in enteric virome in IBD samples have shown alterations in both forms of 

the disorder with an important increase of Caudovirales bacteriophages (Norman et al. 

2015) whereas other studies reported higher proportions of Caudovirales in CD 

compared to UC but both higher than in healthy volunteers in a pediatric cohort 

(Fernandes et al. 2019).  

Mycobiome, or fungal microbiome, in IBD has been suspected to contribute to its 

pathogenesis for many years. One example of this hypothesis is driven by Card9 or 

Dectin-1 genes among others which are IBD-associated genes and are related to immune 

response to fungi infection (Richard et al. 2015). High-throughput technologies have 

been applied to study the fungal content in gut microbiota in IBD patients showing an 

important fungal dysbiosis in IBD. Sokol el al. found a reduction of fungal diversity in UC 

and non-ileal CD patients defined by higher values of the ratio Basidiomycota-
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Ascomycota (Sokol et al. 2017). They also showed that IBD and more concretely IBD in 

flare was associated with a reduction of Saccharomyces cerevisiae previously shown to 

reduce colitis in mice (Sivignon et al. 2015) and with an increase in Candida albicans.  

In summary, both targeted and non-targeted metagenomic approaches have 

contributed to elucidate whether gut microbiota differs between healthy controls and 

IBD patients. In general, patterns of dysbiosis follow a similar trend in most of the 

studies, however, there are still discrepancies. The proposal of decreased diversity in 

IBD patients is a common tendency whereas there are clear doubts regarding the 

differences between CD and UC. Butyrate producing bacteria such as Faecalibacterium 

prausnitzii or Clostridium leptum, both from Firmicutes phylum, which are essential in 

the gut microbiota of human are reduced in IBD patients reducing the quantity of one 

of the main butyrate sources in the gut (Kumari, Ahuja, and Paul 2013; Manichanh et al. 

2006; W. Wang et al. 2014) (Table 1).
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Table 1. Summary of previous findings in microbial composition and functionality in IBD 

Paper Methodology 
Disorder of the 

samples 

Type of 

samples 

Increased compared 

with HC 

Decreased compared 

with HC 

Mangin et al 2004 16S rRNA cloning & 

sequencing 

CD Stool Escherichia coli 

Bacteroides vulgatus 

Clostridium leptum 

Gophna et al 2006 16S rRNA cloning & 

sequencing 

UC & CD Mucosa Proteobacteria (CD) 

Bacteroidetes (CD) 

Clostridia (CD) 

 

Manichanh et al 

2006 

16S rRNA cloning & 

sequencing 

CD Stool  Firmicutes 

Clostridiales 

Clostridium leptum 

Clostridium coccoides 

Martínez-Medina 

et al 2006 

16S rRNA PCR DGGE UC & CD Mucosa Clostridium spp (CD) 

Escherichia coli (CD) 

Ruminococcus torques (CD) 

Faecalibacterium prausnitzii (CD) 

 

Baugmart et al 

2007 

16S rDNA QPCR, 

sequencing & FISH 

CD Mucosa Escherichia coli Clostridiales 

Sokol et al 2009 16S rRNA QPCR UC & CD Stool  Firmicutes 
Clostridium leptum 
Clostridium coccoides 
Faecalibacterium prausnitzii 
Bifidobacteria 

Papa et al 2012 16S rRNA sequencing UC & CD Stool Escherichia-Shigella 

(active disease) 

Porphyromonadaceae 

Rikenellaceae 
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Paper Methodology 
Disorder of the 

samples 

Type of 

samples 

Increased compared 

with HC 

Decreased compared 

with HC 

Coryneobacteriaceae 

(active disease) 

Kumain et al 2013 16S rRNA FISH UC Stool  Clostridium coccoides 

Clostridium leptum 

Gevers et al 2014 16S rRNA sequencing 

(Illumina) 

Shotgun metagenomics 

sequencing 

CD Stool & mucosa Enterobacteriaceae 

Pasteurellacaea 

Veillonellaceae 

Fusobacteriaceae 

Erysipelotrichales 

Bacteroidales 

Clostridiales 

Sokol et al 2016 16S rRNA sequencing 

ITS2 sequencing 

UC & CD Stool Basidiomycota/Ascomycota 

ratio 

Candida albicans 

Saccharomyces cerevisiae 

Moustafa et al 

2018 

Shotgun metagenomics 

sequencing 

UC & CD Stool Proteobacteria Bacteroidetes 

Firmicutes 

Franzosa et al 2018 Shotgun metagenomics 

sequencing 

Metabolomics 

UC & CD Stool Metabolites associated to 

Escherichia coli 

Oxidative stress associated 

enzymes 
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Gut microbiota along with host genetics, host immunity and environmental factors plays 

an important role in the development and perpetuation of IBD. Although previous 

studies have demonstrated the presence of dysbiosis in CD and UC patients compared 

to healthy controls, no clear consensus on the microbial profiles characteristic of the 

diseases have been proposed. Moreover, many studies have disagreed in the level of 

dysbiosis in UC compared to healthy state and have reported main differences between 

healthy controls and IBD but not between UC and CD. 

In this thesis, we first hypothesize that different methodologies (16S rRNA and DNA 

shotgun sequencing) used to characterize these alterations should be consistent and 

equivalent.  Then, we hypothesize that taxonomic and functional alterations occur in the 

gut microbiota between healthy controls and IBD patients and that differences could be 

found between CD and UC patients. Moreover, we believe that the differences between 

CD, UC and healthy would be such that we can design a diagnostic and prognostic tool 

for at least one of the two IBD subtypes. Finally, we believe that the compositional and 

functional analyses of fecal samples at the DNA level would provide an understanding 

of the physiopathology of IBD and its subtypes.  
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MAIN OBJECTIVE 

The main objective of this thesis was to describe differences in microbiome alterations 

(dysbiosis) between Crohn’s disease and ulcerative colitis. To characterize the 

microbiome composition in large set of fecal samples (more than 2000), we used the 

16S rRNA gene sequencing technique and to recover functional understanding of the 

gut microbiome in a subset of the large cohort, we used a more expensive technique, 

the DNA shotgun (short DNA fragments) sequencing technique.  

 

SECONDARY OBJECTIVES 

This study aims to: 

a) Characterize the microbial composition and functions in fecal samples that 

differentiates IBD from healthy individuals with 16S rRNA data.  

b) Compare 16S rDNA data with shotgun data and determine whether both 

techniques are consistent for IBD. 

c) Define the fecal microbiome associated to severity of the disease. 

d) Develop an algorithm to classify IBD samples based on 16S rDNA data and 

another one based on shotgun data.  
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1. Ethics statement 

In this study, we analyzed our own unpublished data and validated our results with other 

unpublished as well as published data. Our unpublished data were obtained from two 

different cohorts: Spanish IBD, Spanish UC and Belgian CD cohorts. Published data from 

different cohorts were also recovered from our own server or through public databases: 

our Spanish IBS cohorts (NCBI-SRA accession number: PRJNA268708) (Pozuelo et al. 

2015), UK healthy twin (European Nucleotide Archive (ENA) accession numbers: 

ERP006339 and ERP006342) (Goodrich et al. 2014), French IBD (Sokol et al. 2017) and 

German anorexia (Misra and Klibanski 2016) cohorts) for 16S rDNA sequencing and 

American IBD cohort (Franzosa et al. 2019) for metagenomics. Protocols for the 

unpublished Spanish IBD, Spanish UC and the Belgian CD cohorts were submitted and 

approved by the local Ethical Committee of the University of Vall d’Hebron in Barcelona 

(Spain) and by the University Hospital Gasthuisbert in Leuven (Belgian), respectively. All 

participants gave written informed consent for their participation in the study.  

 

2. Study design 

In the Spanish IBD cohort, we recruited 34 patients with CD and 33 patients with UC for 

a follow-up study of one year, 65 healthy relatives (36 and 29 CD and UC relatives, 

respectively) with a follow-up of 3 months and 40 healthy non-related controls without 

follow-up. Inclusion criteria for patients were UC and CD diagnosis confirmed by 

histology and endoscopy, clinical remission for at least 3 months defined by the 

validated CD activity index (CDAI) for CD and the colitis activity index (CAI) for UC, a 

stable maintenance therapy (amino-salicylates, azathioprine or no drug) and previous 

history of at least three clinical recurrences in the past 5 years. In the case of healthy 

controls (HC), the inclusion criteria consisted of not having previous history of chronic 

disease. We collected clinical parameters (tobacco use, medical treatment) and 

diagnostic criteria (location and behavior of CD or extension of UC) at inclusion and 

during the follow-up. Clinical recurrence was defined by a value of 4 or higher for CAI 

and higher than 150 for CDAI. Exclusion criteria for this study were pregnancy or breast-
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feeding, severe concomitant disease involving the liver, heart, lungs or kidneys and 

treatments with antibiotics in the last previous 8 weeks.  

Patients were subjected to a follow-up of one year during which they gave samples every 

3 months until relapse or until the end of the year whereas controls had a follow-up of 

3 months giving one sample at the beginning and one at the end of the period. We 

collected a total of 419 fecal samples from 132 participants (65 HC and 67 IBD patients) 

at different time points for microbiome analyses. The 419 stool samples also include 

samples from CD and UC patients that showed flare during the study and provided a 

fecal at the time of recurrence. 

On the one hand, all these 419 samples were analyzed for 16S rRNA method for 

taxonomical profiling. On the other hand, we selected a subset of samples for shotgun 

sequencing to generate a functional profiling. We selected a total of 178 samples that 

included 62 samples of healthy CD and UC-relatives at baseline and 126 samples from 

patients with IBD from a total of 64 patients (34 UC and 30 CD).  

In the Belgian cohort, we included 55 patients with CD undergoing curative ileocecal 

resection at the University Hospital Leuven. We collected a total of 195 fecal samples at 

four time points before surgery and during postoperative follow-up (baseline, 1, 3 and 

6 months after surgery) for microbiome analyses.  

We used the Spanish UC cohort as validation of our results, and it enrolled long 

remission UC patients who provided samples at baseline and after taking probiotics. 

However, we only analyzed basal samples to avoid a possible effect of the probiotic in 

gut microbiota. 

Published cohorts are described in the chapter Population description from the Results 

section.  

 

3. Sample collection 

After deposition of fecal matter, volunteers homogenized their feces with a spatula and 

immediately froze them in their home freezer at -20oC. They then brought the frozen 

samples in a freezer pack to the laboratory where we stored them at -80oC until further 
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processing. We performed aliquots of 250mg on solid CO2 (dry ice) to maintain the 

frozen status of the sample to avoid the degradation of nucleic acids.   

 

4. DNA extraction from fecal samples 

Before starting the extraction procedure, we weighted 800mg of 0.1mm Zirconia/Silica 

beads, previously sterilized with UV, in tubes. We added in each tube 250µl of 4M 

guanidine thiocyanate, 40µl of 10% N-lauroylsacorsine and 500µl of 5% N-

lauroylsarcosine and incubated at 70oC for 1 hour to chemically lyse the samples. To 

ensure the cell wall disruption of gram-positive bacteria and avoid introducing a bias in 

the recovery of all bacteria (Santiago et al. 2014), we performed a mechanical disruption 

using a Beadbeater (Biospec Products). We added Poly Vinyl Poly-Pyrrolidone (PVPP) in 

multiple washing steps to precipitate and discard aromatic molecules such as aromatic 

molecules nucleic debris, cellular debris or proteins. To clear lysates, we performed an 

enzymatic digestion of RNA. Resulting DNA from previous step was precipitated and 

ethanol-purified. We resuspended pure DNA in 200µl Tris-EDTA buffer (Figure 10).  

 

 

Figure 10. Extraction method. All the steps performed in the manual protocol for the extraction 

of DNA are summarized to better understand the process.  
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5. 16S rRNA gene amplification  

In order to profile the microbiome composition, we amplified by PCR the hyper variable 

region (V4) of bacterial and archaeal 16S rRNA gene. The 5’ ends of the forward 

(V4F_515_19) and reverse (V4R_806_20) primers targeting the V4 region of 16S gene 

were tagged with specific sequences for Illumina® MiSeq Technology (Table 2). 12 base-

paired Golay codes were specified downstream of the reverse primer sequence 

(VV4R_806_20) to allow multiplex identification of individual samples (J. Gregory 

Caporaso et al. 2012; Navas-Molina et al. 2013).  

 

Table 2. Primers used for 16S rRNA gene amplification of Illumina MiSeq sequencing 

PRIMER 

TYPE 
SEQUENCE 5’ → 3’ ILLUMINA FLOWCELL – BARCODE – ADAPTER – LINKER – V4 REGION 

Forward AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGTGTGCCAGCMGCCGCGGTAA 

Reverse 
CAAGCAGAAGACGGCATACGAGATXXXXXXXXXXXXAGTCAGTCAGCCGGACTACHVGGGTWT

CTAAT 

 

We then ran standard PCR using 0.75 units of Taq polymerase (AmpliTaq Gold, Life 

Technologies®) and 20pmol/µl of the forward and reverse primers (IDT Technologies®) 

in a final volume of 50µl in a Mastercycler gradient (Eppendorf®) at 94oC for 3 minutes, 

followed by 35 cycles of 94oC for 45 seconds, 50oC for 60 seconds 72oC for 90 seconds 

and finally, a cycle of 72oC for 10 minutes.   

 

6. Agarose gel and purification 

We performed a 1% agarose gel stained with ethidium bromide and ran it in 1x Acetate 

EDTA (TAE) buffer. 5µl of PCR product were mixed with 6x loading dye (0.25% 

bromophenol blue, 0.25% xylene cyanol FF, 30% glycerol in water) and placed in wells 

of solidified agarose gel along with 100bp DNA Molecular Weight Marker XIV (Roche®) 

at about 90-100V for 35-45 minutes to visualize the amplicon bands in a Gel Doc XR+ 
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system (Bio-Rad®). We confirmed PCR amplification by the appearance of amplicon 

bands. Absence of bands could be explained by the presence too little genomic template 

DNA in the sample or by the presence of PCR inhibitors present in the sample. In the 

latter, we diluted the genomic DNA as an attempt to get rid of inhibitors.  

After the amplification of the targeted gene was confirmed, we purified the 

corresponding PCR products using the QIAquick PCR Purification Kit (Qiagen) according 

to manufacturer’s instructions and further quantified them using a NanoDrop ND-1000 

Spectophotometer (Nucliber®).  

 

7. Illumina sequencing 

The sequencing process is described in Illumina website 

(https://www.illumina.com/documents/products/techspotlights/techspotlight_sequen

cing.pdf)  and consists of:  

“Sequencing templates are immobilized on a proprietary flow cell surface designed to 

present the DNA in a manner that facilitates access to enzymes while ensuring high 

stability of surface bound template and low non-specific binding of fluorescently 

labelled nucleotides. Solid-phase amplification creates up to 1,000 identical copies of 

each single template molecule in close proximity (diameter of one micron or less).” 

“Sequencing by synthesis technology uses four fluorescently labelled nucleotides to 

sequence the tens of millions of clusters on the flow cell surface in parallel. During each 

sequencing cycle, a single labelled deoxyribonucleoside triphosphate (dNTP) is added to 

the nucleic acid chain. The nucleotide label serves as a terminator for polymerization, so 

after each dNTP incorporation, the fluorescent dye is imaged to identify the base and 

then enzymatically cleaved to allow incorporation of the next nucleotide. Since all four 

reversible terminator-bound dNTPs (A, C, T, G) are present as single, separate molecules, 

natural competition minimizes incorporation bias. Base calls are made directly from 

signal intensity measurements during each cycle which greatly reduces raw error rates” 

(Figure 11). 

 

https://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf
https://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf
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Figure 11: Illumina sequencing technology (Adapted from www.illumina.com) 

http://www.illumina.com/
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7.1  16S rRNA sequencing 

For 16S rRNA amplicons, we prepared pools of equally concentrated samples (240ng of 

DNA per sample) that were later diluted to 2nM. Then, denatured templates were 

further diluted to 5ρM and subsequently combined to give an 85% 16S rRNA gene 

amplicon library and 15% PhiX control pool. We performed sequencing with Illumina 

MiSeq technology, as described in section Illumina sequencing, at the genomics core of 

the Autonomous University of Barcelona (UAB, Spain). We received single end 

sequences that were later analyzed.  

 

7.2  DNA shotgun sequencing (or metagenomic sequencing) 

Extracted genomic DNA were sent to Beijing Genomics Institute (BGI) where the shotgun 

pair-end sequencing was performed with Illumina HiSeq technology following Illumina 

standards.  

 

8. Database preparation for 16S rRNA analyses 

We performed 16S rRNA analyses combining the Greengenes (version gg_13_8) and the 

PATRIC (Pathosystems Resource Integration Center) databases. The Greengenes 

database contains 16S rRNA gene annotated sequences from Bacteria and Archaea and 

the PATRIC database is composed of all known pathogens, many of which are not 

present in Greengenes.  

To combine the Greengenes release gg_13_8 and the PATRIC databases, we extracted 

the 16S rRNA sequences and their taxonomical annotation from the annotated genomes 

in PATRIC avoiding different strains of the same bacterial species. We formatted both, 

sequences and taxonomical annotation from PATRIC, to QIIME compatible files. Finally, 

we combined the obtained PATRIC files with the Greengenes database into a single 

database. Due to annotation differences in both databases, we found repetitions in 

some genera. To fix this problem, we changed taxonomical annotation for those 

repeated genera using PATRIC annotation as it was the most recent one.  
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9. 16S rRNA sequences analyses 

9.1  Automatization of the analyses 

We developed an automatization system, written in python (v.2.7.6), to run the 

command lines proposed by the QIIME pipeline (v.1.9.1) for all the steps needed for the 

16S rRNA sequence analyses. For analyzing and organizing the data, the script calls 

QIIME (v.1.9.1), biom package and a perl script. The automatization script requires as 

input single-end raw reads fastq files from the Illumina MiSeq sequencing platform and 

a metadata file with variables for correlating clinical data with microbiome data and for 

comparing groups of subjects. Using just a single command, the script finally returns 

bacterial abundance tables, alpha and beta diversity results, PCoA and rarefaction 

figures and basic statistical tests for differential abundance presence between several 

groups. The python script we implemented could work in parallel using all the available 

CPUs of the computer at the same time reducing the time of analysis. All the steps 

included in the automatization of the analysis are described below (Figure 12).  

 

9.2  Upstream analyses 

The first step of the analysis consisted of assessing the quality of the sequences provided 

by the sequencing platform using the FastQC software. Then, we verified whether the 

metadata contained all necessary information such as sample identifiers, barcodes, 

primer sequences, time points, sample status, information about symptoms, treatments 

and other clinical information of interest. 

We performed all the remaining steps of the upstream analyses using the QIIME (v.1.9.1) 

pipeline following the guidelines proposed by Navas and colleagues (Navas-Molina et al. 

2013). We made a demultiplexing step to remove barcodes together with the linker 

primer sequence from all raw sequences and assign each read back to its sample with 

the correspondence barcode-sampleID. We also performed a quality filtering step in 

which we removed sequences with a quality Phred score smaller than 20, a threshold 

commonly used in the microbiome field.  
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Figure 12. QIIME 1.9 workflow. (Adapted from (Navas-Molina et al. 2013)). The upstream steps 

include all processes that lead to the obtention of an OTU table and a phylogenetic tree. They 

include the preprocessing of raw reads, OTU clustering, taxonomical assignment and 

phylogenetic tree construction. Downstream processes encompass all the steps used for the 

interpretation of the results with alpha and beta diversities and visualizations. 
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In order to cluster sequences into Operational Taxonomic Units (OTUs) also named 

molecular species based on sequence similarity of 97%, we utilized the USEARCH v5.2 

clustering tool, a de novo method (Edgar 2010). During the clustering step, we also 

removed chimera sequences with UCHIME, following Edgar recommendations (Edgar et 

al. 2011).  

We assigned taxonomy using the Basic Local Alignment Search Tool (BLAST) algorithm 

using our combination of Greengenes (gg_13_8 release) and PATRIC databases 

generated as previously described.  

We aligned representative sequences using PyNAST against the Greengenes template 

alignment. We need this step to build phylogenetic tree using FastTree.  

Finally, we generated an OTU table that contains all the OTUs with their predicted 

taxonomy and abundances for each sample.  

 

9.3  Downstream analyses 

We performed downstream analyses including diversity analyses and statistical tests 

with QIIME 1.9.1 and R programming with 3.4.3 version for 16S rRNA sequences. We 

utilized biom program to convert tables between biom and txt format. We assigned 

numbers to unknown species to avoid collapsing possible novel species into one. Finally, 

we summarized the OTU table into different taxonomic levels from phylum to species.  

 

9.3.1 Diversity 

We rarefied OTU tables to perform diversity analyses to normalize and overcome cases 

in which samples have different number of sequences. In this case, we rarefied the OTU 

table at 6760 sequences per sample and were able to keep 2045 samples, which 

accounted for 115.5 million of reads used in further analyses.  

To estimate microbial richness and evenness of sample, also known as alpha diversity, 

we calculated Chao1 and Shannon indexes respectively using QIIME (Chao et al. 2006; 

Hughes et al. 2001).  
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Between-samples diversity or beta diversity was computed using the weighted and 

unweighted UniFrac and the Bray Curtis methods to generate distance matrices that 

were later utilized for clustering samples in hierarchical cluster trees with Unweighted 

Pair Group Method with Arithmetic mean (UPGMA) and Principal Coordinate Analyses 

representations (PCoA) using QIIME.  

 

10.  Shotgun sequencing analyses 

10.1 Upstream analyses 

We used HUMAnN2 (Franzosa et al. 2018) pipeline for the analyses of shotgun 

sequencing. HUMAnN2 evolved from HUMAnN pipeline (Abubucker et al. 2012) to 

improve accuracy and time of analyses. First, we performed a quality filtering of the raw 

reads and human sequences removal with FASTX toolkit. We then combined the files 

high quality sequences of both pairs into a single file because HUMAnN2 does not 

consider that sequencing provided paired reads.  

We then introduced the unique fastq file of high-quality reads into HUMAnN2 pipeline 

that performs the following four steps: 1. Identification of known species using marker 

genes to obtain a compositional profiling and reduce databases in the following steps 

with MetaPhlAn2 tool (Truong et al. 2015) and the ChocoPhlAn pangenome database 

(Huang et al. 2014); 2. Nucleotide-mapping of all raw reads against the identified species 

pangenomes with Bowtie2; 3. Translated-search of those reads that have not mapped 

with known species pangenomes against a protein database, UniRef90 using DIAMOND; 

4. Gene family and pathway abundances profiling, HUMAnN2 provides a stratification 

of the contribution of each bacteria to the specific gene family or pathway (Figure 13). 

During the Bowtie2 step two samples from CD patients provided errors, so we removed 

them and worked with 176 samples instead of 178. 

We annotated the results obtained from UniRef90 with KEGG (functional database) 

(Kanehisa et al. 2016) using HUMAnN2 resources. In summary, we obtained taxonomical 

abundance tables from MetaPhlAn2, pathway abundances tables with MetaCyc 
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identifiers, functional abundance table from KEGG and gene abundance tables with 

UniRef50 information.  

 

 

Figure 13. HUMANn2 workflow. (From Franzosa et al. 2018) HUMANn2 makes a first mapping 

against marker genes to detect species pangenomes. It constructs a personalized database with 

the pangenomes identified in the previous step and performs a nucleotide-search to find 

potential genes. Finally, those reads that have not mapped are tested against a protein database 

(UniRef90). HUMANn2 gives a genes abundance table stratified by species contribution. 

 

10.2 Downstream analyses 

We processed abundance tables with R packages. We computed alpha diversity 

Shannon and chao1 indexes with vegan and fossil packages, respectively. For beta 

diversity, we applied Bray-Curtis index using vegan package.  

 

11. Statistics for diversity, differential abundance and correlation analyses 

For each bacterium, we checked normality of data distribution with Shapiro-Wilk test 

(Shapiro and Wilk 1965). As bacterial abundances showed non-parametric distribution 

we performed the Kruskal Wallis one way analysis of variance (Kruskal and Wallis 1952) 

for comparisons between more than two groups and independent data (i.e. CD, UC and 

HC at basal timepoint), Friedman test (Friedman 1937) for more than three groups for 

paired data (i.e. CD samples from same individuals at different timepoints), Mann-

Whitney U test (Mann and Whitney 1947) for two groups for independent data (i.e. 

remission and relapse at last timepoint of CD patients) and Wilcoxon signed rank test 

(Wilcoxon 1945) for two groups for paired data (i.e. basal timepoint in remission and 
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relapse sample from the same patient). In all these analyses, we corrected for multiple 

comparisons using the false discovery rate (FDR) multiple testing correction considering 

corrected p-values lower than 0.05 significant.  

Alpha diversity showed normal distribution, therefore comparisons between groups 

were done with Student’s t-test and Bonferroni correction for multiple comparisons. We 

used Adonis test to compare between groups for beta diversity. We also compared beta 

diversity obtained from basal samples to other timepoints using the mixed-design 

ANOVA model, a repeated measures analysis of variance.   

To detect associations between bacteria and clinical information, we computed 

Spearman’s rank correlation coefficient. 

 

12.  IBD classifier 

We created a classifier to discriminate between CD and non-CD samples. We used 

artificial intelligence (AI) that is currently being used across a number of sectors, 

including healthcare and bioinformatics. We compared three state-of-the-art machine 

learning algorithms, random forest (Breiman 2001), AdaBoost (Kégl 2013) and XGBoost 

(Chen and Guestrin 2016) which are easy to interpret to obtain the best classifier. These 

algorithms learn from existing data and use their acquired knowledge to classify new 

samples. We used these methods to create an application that can determine whether 

a specific sample with a known microbial composition corresponds to a CD patient or 

not. For the implementation, we used python 2.7 and sklearn package. 

For 16S rRNA data, we trained our AIs with a set of samples from the Spanish IBD cohort. 

We performed a grid search over reasonable ranges in order to tune the parameters of 

each algorithm. We have measured the goodness of their performance as Area Under 

the Curve (AUC) that is the standard metric for classification problems. Moreover, we 

performed 5-fold-cross validations to assess overfitting. We used the best performing 

algorithm to explore the features (i.e. the species) that better discriminate between CD 

and non-CD. We created a classifier to discriminate between CD and non-CD samples.  
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In metagenomics, we trained the algorithms with data from our Spanish IBD cohort and 

tested them with the American cohorts already described.  

 

13.  Fecal calprotectin assay 

Fecal calprotectin (FC) is a marker of intestinal inflammation.  We measured this protein 

in a subset of the Spanish cohort with a commercial ELISA (Calprest; Europistal SpA, 

Trieste, Italy) following the manufacturer’s instructions. We read optical densities at 

405nm with the microplate ELISA reader (Multiskan EX; Thermo Electron Coporation, 

Helsinki, Finland). We tested samples in duplicate and results were computed from a 

standard curve and expressed as µg/g stool. 



  
   

 
 

 

 

 

 

RESULTS 

 





  RESULTS
   

59 
 

1. Population description 

For our discovery cohort we enrolled 172 participants (40 healthy controls non-related 

to the patients (HnR), 34 patients with CD, 33 patients with UC and 36 and 29 healthy 

relatives (HRs) of the CD (HR(CD)) and UC (HR(UC)) patients, respectively). We 

characterized their gut microbial communities in a longitudinal study. HRs were first-

degree relatives from which we did not have information on whether they were living 

in the same house of the patient at the period of sampling. 

Number of samples per individual differed in the three groups of the study. Non-related 

healthy controls (HnR) provided a single time point fecal sample whereas HRs provided 

two samples 3-months apart. In the case of patients with CD and UC, they provided fecal 

samples 3-months apart over a 1-year follow-up. When patients with IBD developed a 

recurrence, they provided a fecal sample just after the onset and stopped giving fecal 

samples for the study. During the 1-year follow-up, 13 patients with CD (38%) and 18 

patients with UC (54%) developed recurrence. In total, we collected 419 fecal samples 

for microbiome analyses (Table 3).  

 

Table 3. Summary table of discovery cohort. Spanish IBD cohort of 419 fecal samples from 

healthy controls, CD and UC patients.  

 Basal Interval Last TP 
Last TP 

Remission 

Last TP 

Relapse 

HnR 40 - - - - 

HR 65 - 57 - - 

CD 34 73 - 20 13 

UC 32 52 - 14 18 

 

To validate our results of 16S rDNA sequencing for CD we used a CD Belgian cohort. With 

the collaboration of Professor Severine Vermeire, we recruited 55 CD patients who 

underwent ileocecal resection at the University Hospital Leuven. They provided samples 

before surgery and during a postoperative follow-up at 1, 3 and 6 months after surgery. 
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In total, we collected 195 fecal samples (Table 4) that were extracted and analyzed with 

the 16S rRNA protocol described in the Methods section.  

 

Table 4. Summary of all cohorts used for 16S and shotgun analyses. 

Cohort Number of samples Baseline Other TimePoints 

Discovery cohort: IBD Spain    

  HnR  40 40  

  HR (CD) 64 36 28 

  HR (UC) 58 29 29 

  CD 140 34 106 

  UC 116 32 84 

Validation cohort    

CD Belgium    

  CD 195 55 140 

UC Spain    

  UC 41 41  

IBS Spain    

  IBS 202 125 77 

IBD France    

  HC 38 38  

  CD 146 146  

  UC 86 86  

Healthy UK    

  HC 1041 1041  

German anorexia    

  HC 59 59  

  Anorexia 99 99  

American IBD cohort    

  HC 34 34  

  CD 68 68  

  UC 53 53  

Dutch IBD cohort    

  HC 22 22  

  CD 20 20  

  UC 23 23  
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In the case of UC, we used a Spanish validation cohort that consisted of 41 UC patients 

(Table 4) who provided samples at baseline and after taking probiotics. However, we 

only analyzed basal samples to avoid a possible effect of the probiotic in gut microbiota. 

These samples were also extracted and analyzed with the 16S rDNA sequencing protocol 

described in the Methods section.  

We performed characteristics comparisons between the CD Spanish and Belgian cohorts 

and between the UC Spanish discovery and validation cohorts with the chi square (χ2) 

test for categorical variables and the t-test for continuous variables. We set significant 

differences with p-values smaller than 0.05. In the discovery cohort, patients with CD 

showed inflammation mostly in the ileum (L1, 35%) and in the ileocolon (L3, 64,7%) 

(Table 5). In UC, the distribution of disease behavior at sampling was: proctitis (E1, 

27.3%), left-sided colitis (E2, 33.3%) and pancolitis (E3, 39.4%) (Table 6).  

Previous studies have demonstrated that there is an association between smoking habit 

and IBD (Thomas et al. 2000). In this regard, we analyzed the connection between 

smoking habit and severity of the disease (remission (REM) and recurrence (REL)) using 

the χ2 test. We did not find any link between being smoker or ex-smoker and disease 

severity. 

To validate our discovery, together with the Belgian CD and Spanish UC cohorts, we also 

used already published IBD and non-IBD cohorts (Table 4). We analyzed sequences 

obtained from an IBD cohort enrolled in France. This cohort consisted of 38 HC 

individuals, 146 CD and 86 UC patients (Sokol et al. 2017). Each patient provided one 

fecal sample. The differences with our IBD cohorts were that the V3-V5 region (instead 

of the V4) of the 16S rRNA gene was used for PCR amplification and sequences were 

generated using the Ion Torrent sequencing platform (instead of a MiSeq platform).  

We also used sequence data from 3 non-IBD cohorts of V4 16S rDNA MiSeq sequencing: 

an IBS cohort already published by our group (Pozuelo et al. 2015) that consisted of 202 

fecal samples from 125 IBS patients who provided two fecal samples 3-months apart; an 

anorexia German cohort of 99 patients and 59 healthy individuals (Misra and Klibanski 

2016) and a British cohort of 1041 fecal samples from 977 healthy twins (Goodrich et al. 

2014).  
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Table 5. Baseline clinical characteristics of the patients with CD and UC 

Baseline clinical characteristics CD Spanish 

cohort (n = 34) 

CD Belgian cohort 

(n = 55) 

Comparison 

between  

cohorts (p 

value) 

Male/female (%) 13/21 (38.2/6.7) 29/26 (52.8/47.2) 0.201 

Median (IQR) age at surgery (years) or at 

sample collection 

34 (18-58) 41.3 (26.5-52.9) 0.141 

Median duration of disease (IQR) at surgery 

(years) or at sampling 

6.5 (0-28) 15.7 (4.1-27.1) 0.0002 

Maximum disease location (Montreal 

classification) 

  0.682 

    L1 ileal (%) 12 (35) 18 (34)  

    L2 colonic (%) 0 (0) 0 (0)  

    L3 ileocolonic (%) 22 (64.7) 35 (66)  

    L4 isolated upper disease (%) 2 (5.8) 2 (3.8)  

Disease behaviour at surgery (Montreal 

classification) 

  0.009 

    B1 non-stricturing, non-penetrating (%) 3 (8.8) 2 (3.8)  

    B2 stricturing (%) 22 (64.7) 21 (39.6)  

    B3 penetrating (%) 5 (14.7) 30 (56.6)  

    p perianal disease (%) 3 (8.8) 15 (28.3)  

Active smoking at surgery (%) 10 (29.4) 16 (30.2) 0.012 

Medication at surgery or at sampling    

    Mesalamine–sulfasalazine (%) 4 (11.8) 4 (7.5) 0.012 

    Corticosteroids (%) 2 (2.9) 10 (18.9) 0.183 

    Immunosuppressants (%) 14 (41.1) 12 (22.6) 0.087 

    Anti-TNF (%) 12 (23.5) 7 (13.2) 0.023 

    Antibiotics (%) 0 (0) 9 (16.9) 0.033 

    Methotrexate 1 (2.9)   

    Other 10 (29.4)   

    None 1 (2.9)   
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Table 6. Baseline clinical characteristics of the patients with CD and UC 

 

 

 

UC Spanish 

cohort 1 (n=33) 

UC Spanish 

cohort 2 (n=41) 

Comparison 

between  

cohorts (p 

value) 

Male/female (%) 9/24 (27.2/72.7) 17/24 (41.4/58.5) 0.595 

Median (IQR) age at sample collection 43 (24-62) 43 (24-68) 0.500 

Median duration of disease (IQR) at sampling 9 (1-23) 10 (1-34) 0.392 

Disease behavior at sampling   0.208 

E1 proctitis 9 (27.3) 18 (43.9)  

E2 left sided colitis 11 (33.3) 10 (24.4)  

E3 pancolitis 13 (39.4) 13 (31.7)  

Medication at sampling    

Mesalamine (%) 11 (24) 26 (63.4) 0.021 

Corticosteroids (%) 2 (6) 0 0.617 

Immunosuppressants (%) 8 (24) 0 0.026 

Other 2 (6) 3 (7.3) 0.708 

None  2 (4.8)  

 

For DNA shotgun data, we used a subset of the discovery cohort of 178 samples 

composed by 64, 30 and 32 samples of healthy controls, CD and UC patients respectively 

at basal time and 21 (11 remission (REM), 10 relapse (REL)) and 31 (14 REM, 17 REL) 

samples at the timepoint of the follow-up for CD and UC patients, respectively (Table 7). 

We compared our results with a published cohort of 155 American individuals (68 CD 

patients, 53 UC patients and 34 non-IBD controls) and 65 samples from Dutch 

participants (20 CD patients, 23 UC patients and 22 healthy controls) (Table 4) (Franzosa 

et al. 2019). 

 

Table 7. Sample size per group in shotgun sequencing analyses 

 Basal Last TP Remission Last TP Relapse 

HC 64 - - 

CD 30 11 10 

UC 32 14 17 
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To measure the IBD activity in the discovery cohort, we used the fecal calprotectin (FC), 

a marker of inflammation. The effectiveness of this marker was assessed on a subset of 

174 fecal samples from the discovery cohort provided by 122 participants. We measured 

FC at baseline and either after 1-year in remission or at recurrence for patients with CD 

and UC and at baseline for healthy individuals. In the case of remission, FC was 

significantly higher than in the HRs but lower than in the cases of recurrence (Figure 14). 

Calprotectin concentration did not differ between CD and UC patients, either in 

remission nor in relapse. With these results, we concluded that FC is an inadequate 

maker to differentiate UC from CD.  

 

 

Figure 14. Calprotectin biomarker of inflammation. Calprotectin was measured in the stool of 

healthy relatives of CD (HR[CD]) and UC (HR[UC]) patients, and in the stool of patients with CD 

and UC at baseline (TP0) and after 1-year in remission (RM) and at recurrence (RC). The Mann-

Whitney test was used to compare differences between groups
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2. Compositional differences in gut microbiota in IBD patients using 16S 

rRNA sequencing technique 

We analyzed a total of 2056 fecal samples from the discovery (Spanish IBD cohort) and 

the validation cohorts (Belgian CD, Spanish UC, Spanish IBS, German anorexia and British 

healthy cohorts), using the 16S rRNA gene analyzed by the bioinformatics tool QIIME 

1.9. From the 2056 samples, after quality filtering we obtained a total of 115.5 million 

of high-quality sequences with a number of reads ranging from 1 to 223,896 per sample. 

We obtained the OTU table and rarefied at 6760 reads per sample, removing samples 

with less than 6750 reads and keeping 2029 samples for further analyses. In these 

analyses we could not include the French cohort due to technical differences, but we 

analyzed it separately obtaining a total of 8.5 million high-quality sequences for 232 

patients with IBD (146 CD and 86 UC) and 38 healthy controls (HC) following the protocol 

described in the section.  

 

2.1  CD is more dysbiotic than UC 

To evaluate the stability of the fecal microbiome of patients with UC and CD, we 

analyzed the IBD Spanish cohort at five timepoints (baseline and 3, 6, 9, 12), using the 

weighted UniFrac distance, a metric used for comparing microbial community 

composition between samples. The higher the UniFrac index obtained, the higher the 

distance between samples. Patients with CD, but not with UC, showed higher UniFrac 

distances between time-point samples compared with their HRs (Mann Whitney test, p 

= 0.01) over the one-year follow-up. This result indicates that there is a higher instability 

in CD microbiome compared with healthy controls. Contrarily, UC patients presented a 

more stable microbiome composition over time even compared with their healthy 

relatives (Mann-Whitney test, p = 0.015). Furthermore, we also compared the UniFrac 

distances obtained between baseline samples and the rest of samples collected at later 

time points using a mixed-design ANOVA model, a repeated measures analysis of 

variance. The results also showed that the microbiome of patients with CD was 
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significantly more unstable than that of patients suffering from UC (mixed ANOVA, p < 

0.001) along time (Figure 15). 

 

 

Figure 15. Microbiome stability. Unweighted UniFrac distances were calculated between different time 

periods for healthy relatives HR(CD) (relatives of patients with CD), HR(UC) (relatives of patients with UC) 

and patients with CD and UC (3M, 3 months; 6M, 6 months; 9M, 9 months; 12M, 12 months). CD-RC and 

UC-RC refer to samples collected during recurrence of the disease. At 3-month interval, patients with CD 

and UC presented significant differences in their UniFrac indexes compared with their HR (Mann-Whitney 

U test, *p = 0.01). We compared the UniFrac indexes obtained between samples collected at baseline and 

each other time points using the mixed-design ANOVA model and found that the microbiome of patients 

with CD was significantly more unstable than that of patients with UC (mixed-ANOVA, p < 0.001). 
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We compared the microbial composition between the groups using a multivariate 

analysis of variance (NPMANOVA test) on distance matrices (Bray-Curtis, weighted and 

unweighted UniFrac). Overall, the microbial community of the two groups of controls 

(relatives (HR) and non-relatives (HnR)) were not significantly different from each other 

(p = 0.239 for weighted UniFrac distance and p = 0.134 for Bray-Curtis distance). 

Nonetheless, we found differences in two genera: Collinsella was more abundant in 

healthy IBD relatives than non-relatives (Mann-Whitney test, FDR < 0.0001) whereas an 

unknown Peptostreptococcaceae was more abundant in HnR than in HRs (FDR < 0.0001).  

Considering all samples, the microbiome of patients with CD differed significantly from 

that of healthy controls (relatives and non-relatives (Healthy or HC)) (NPMANOVA test; 

FDR < 0.0015) based on both UniFrac (weighted and unweighted) and Bray-Curtis 

distnces. However, the microbiome of patients with UC differed from that of HC only 

based on weighted UniFrac distance metrics (FDR = 0.009) and not on Bray-Curtis and 

unweighed UniFrac distances. These results validate the lower degree of dysbiosis of the 

UC microbiome compared with CD. Patients with CD and UC also showed a significant 

difference in their global microbiome composition (NPMANOVA test, FDR = 0.0015 for 

weighted UniFrac distances and FDR = 0.003 for unweighted UniFrac and Bray Curtis 

distances) (Figure 16).  
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Figure 16. Dysbiosis in patients with IBD. Microbiome clustering based on unweighted (A) and weighted 

(B) UniFrac distances and Bray-curtis distances (C) Principal Coordinate Analysis. Significant differences 

were observed between healthy (combining HnR, healthy relatives HR(CD) and HR(UC)) and patients with 

CD (NPMANOVA test; FDR = 0.0015 for weighted UniFrac distances and FDR = 0.003 for unweighted and 

Bray-Curtis distances). Only differences with weighted UniFrac distances were observed between UC 

patients and healthy individuals (FDR = 0.009).  

 

To determine the alpha-diversity of each group, we computed Chao1 and Shannon 

indexes. The Chao1 index estimates the richness whereas the Shannon index estimates 

richness and evenness. CD patients showed lower microbial diversity compared with the 

two control groups (t-test, FDR < 2 x 10-6) for both indexes. We did not find differences 

between UC and control groups (t-test, FDR = 0.44 and FDR = 0.2 for Shannon and Chao1 

indexes respectively) (Figure 17). We did not find differences between remission and 

relapse last timepoints of each subtype of IBD nor between basal and last timepoints. 

These findings indicate that alpha-diversity may not be a useful biomarker of IBD 

severity.  
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Figure 17. Dysbiosis in patients with IBD. Microbial richness was calculated based on the Chao1 

index (A) and microbial richness and evenness on the Shannon index (B). Using the Student’s 

test, the microbiome of patients with CD presented significantly lower richness and evenness 

than healthy controls (HnR, HR(CD) and HR (UC)) and UC patients, but patients in remission and 

in recurrence (CD.REM.Last vs CD.REL.Last and UC.REM.Last vs UC.REL.Last) did not present 

significant differences *p < 0.05.  

 

To determine associations between microbiome and IBD subtypes, we used OTU 

(Operational Taxonomic Unit, or molecular species) table, which displays the relative 

abundance of each OTU for each sample and performed the analyses at different 

taxonomical levels from phylum to genera. We identified 7 phyla that significantly 

differed between HC, UC and CD (Kruskal-Wallis test, FDR < 0.05).  CD showed higher 

abundance of Proteobacteria and Fusobacteria (FDR = 4.56 x 10-6 and FDR = 0.0003 

respectively) and lower abundance of Euryarchaeota, Lentisphaerae, Tenericutes and 

Verrucomicrobia (FDR = 0.0006, FDR = 0.005, FDR = 1.4 x 10-5 and FDR = 0.03, 

respectively) compared with HC. In the case of UC, only two phyla (Lentisphaerae and 

Verrucomicrobia) have a higher proportion in HC (FDR = 0.02 and FDR = 0.001, 

respectively). Four phyla were significantly different between UC and CD. Fusobacteria 

and Proteobacteria (FDR = 5.81 x 10-5 and FDR = 6.44 x 10-6, respectively) were more 

frequent in CD whereas Actinobacteria and Tenericutes were in higher relative 

abundance in UC (FDR = 0.002 and FDR = 0.003, respectively) (Figure 18).  
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Figure 18. Dysbiosis in patients with IBD at phylum level. Taxonomic differences were detected 

at phylum level between HC and CD (A), CD and UC (B) and UC and HC (C) using pairwise Mann-

Whitney tests (corrected p values; false discovery rate < 0.05) on significantly different phyla 

from Kruskal-Wallis tests. 

 

We reported eleven genera enriched in patients with CD compared with HC whereas 29 

genera were found in higher abundance in HC. Only 8 genera were in higher abundance 

and two in lower abundance in patients with UC compared with HC. Alteration of CD 

and UC with respect to healthy controls accounted for 40 genera versus 10, respectively 

(Figure 19). These results also suggest that dysbiosis is greater in CD than in UC patients 

at different taxonomical levels.   
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Figure 19. Dysbiosis in patients with IBD at genus level. Taxonomic differences were detected 

at genus level between HC and CD (A), CD and UC (B) and HC and UC (C) pairwise Mann-Whitney 

tests (corrected p values; false discovery rate < 0.05) on significantly different genera from 

Kruskal-Wallis tests. 

 

In order to find microbial signatures of recurrence, we compared the fecal microbiome 

in samples of UC and CD patients at recurrence of the illness with those of patients that 

remained in remission after 1 year of follow-up using the non-parametric Kruskal-Wallis 

test. We did not find significant differences between these two groups in any of the IBD 

subtypes. This result suggests that either the recurrence status is not associated with 

additional alterations of the microbial composition or that the 16S rRNA data are 

insufficient to detect differences between recurrence and remission status.  

Moreover, in order to determine the predictive value of recurrence in these patients, 

we used the Spanish IBD and the Belgian CD cohorts. For the Spanish IBD cohort, we 

compared baseline fecal samples of those patients who developed recurrence later (n = 

13 for CD and n = 18 for UC) with basal samples of those who remained in remission 

after 1 year of follow-up (n = 21 for CD and n = 15 for UC). We did not find predictive 

biomarkers of recurrence either for CD nor UC using Kruskal-Wallis test.  In the case of 

the Belgian cohort, composed by CD patients with more severe conditions such that they 

required an intestinal resection, we evaluated the predictive value of recurrence 
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performing Kruskal-Wallis test on the fecal samples that were collected before surgery 

comparing patients based on their Rutgeerts scores obtained 6 months after surgery. 

The results showed that patients who developed a recurrence after the surgery 

(Rurgeerts score of i3 and i4, n = 28) harbored a higher relative abundance of 

Streptococcus (p = 0.002, FDR = 0.17) than those who remained in remission (Rutgeerts 

score of i0 and i1, n = 26) at baseline. These results suggest that the relative abundance 

of Streptococcus before surgery could be a good predictive value of CD recurrence.  

 

2.2 Relation between microbiome, smoking habit and clinical data 

We studied the association between the relative abundance of all the groups of bacteria 

and the smoking habit using the Mann-Whitney test. CD patients contained an unknown 

genus of the Peptostreptococcaceae family that was in a higher proportion in smokers 

(FDR = 0.006) whereas non-smokers showed higher quantities of Eggerthella lenta 

(Table 8).   

In UC, smokers presented greater abundance of Butyricimonas, Prevotella and 

Veillonellaceae (FDR < 0.04). On the other hand, non-smokers showed higher proportion 

of Clostridiaceae and Bifidobacterium adolescentis (FDR < 0.03).  

We investigated a potential link between the localization of CD and extension of UC 

(obtained by Montreal classification) with the relative abundance of determined 

bacterial species, as suggested by Vermeire and colleagues (Vermeire, Van Assche, and 

Rutgeerts 2006). Mann-Whitney test identified more presence of Enterococcus faecalis 

and an unknown species of the family Erysipelotrichaceae in stool samples when the 

disease was localized in the ileum instead of in the ileocolon. We used the Kruskal-Wallis 

test to correlate disease behavior with microbial community composition and found that 

proctitis presented association with higher proportions of an unknown Clostridiales, 

Clostridium, an unknown Peptrostreptococcaceae and Mogibacteriaceae (FDR < 0.05) in 

stool (Table 9, Table 10). We did not find any type of correlation between any microbial 

groups and treatment.  
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Table 8. Relative abundance of microbial genera associated with smoking habit in UC and CD. 

Mann-Whitney test (FDR < 0.05) for UC (Prevotella, Butyricimonas, Bifidobacterium adolescentis, 

Clostridiaceae and Vellionellaceae) and CD (unknown Peptostreptococcaceae, Eggerthella 

lenta).  

 UC CD 

SMOKING HABIT SMOKERS N-SMOKERS SMOKERS N-SMOKERS 

Unknown Peptostreptococcaceae 0.000000 0.000081 0.000275 0.000009 

Prevotella 0.133849 0.046244 0.000403 0.020871 

Butyricimonas 0.000126 0.000242 0.000037 0.000079 

Eggerthella lenta 0.000202 0.000073 0.000018 0.000070 

Bifidobacterium adolescentis 0.002345 0.036023 0.001375 0.005323 

Clostridiaceae 0.001361 0.007342 0.032509 0.002131 

Velllionellaceae 0.009328 0.004139 0.000843 0.002920 

 

 

Table 9. Relative abundance of microbial genera associated with localization of CD. Mann-

Whitney test (FDR < 0.05). 

SITE OF DISEASE - CD L1 L3  

Unknown Erysipelotrichaceae 8.633E-03 2.244E-02  

Enterococcus faecalis 2.017E-04 4.034E-05  

 

 

Table 10. Relative abundance of microbial genera associated with extension of UC. Kruskal-

Wallis test (FDR < 0.05). 

SITE OF DISEASE - UC E1 E2 E3 

Mogibacteriaceae 0.00235 0.00114 0.00071 

Unknown Clostridiales 0.06815 0.05187 0.02447 

Clostridium 0.00903 0.00051 0.00062 

Unknown 

Peptostreptococcaceae 

0.00020 0.000000 0.000002 
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2.3 Microbial marker discovery 

Our comparisons of the microbiome composition of CD, UC and HC revealed that 

Faecalibacterium together with an unknown genus of Peptostreptococcaceae, 

Anaerostipes, Methanobrevibacter and an unknown genus of Christensenellaceae were 

more abundant in HC and UC and almost absent or did not appear in CD. In the case of 

Fusobacterium and Escherichia, we found higher abundance of these genera in CD 

patients, but it was almost absent in UC patients and HC. Finally, Collinsella was found 

mostly in UC cases so it allowed the discrimination between UC and CD. Based on these 

findings, we developed an easy-to-use algorithm to discriminate CD and non-CD samples 

based on eight genera with differences between CD and UC and between CD and HC 

identified previously. We developed our algorithm in basal samples from HnR, HR, CD 

and UC (40, 65, 34 and 33 respectively) individuals from the Spanish IBD cohort. The 

algorithm retains samples that do not contain Faecalibacterium or unknown genus of 

Peptostreptococcaceae, Anaerostipes and unknown genus of Christensenellaceae or 

contains Fusobacterium and Escherichia but not Collinsella and Methanobrevibacter 

(Figure 20).  

 

Figure 20. Microbial marker discovery. Eight bacterial genera showed potential to discriminate 

between HC (unrelated HnR and related HR) and patients with CD and UC in the discovery 

cohort: 65 HC, 33 UC patients and 34 CD patients.  
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Table 11. Contingency table for the discovery cohort of the algorithm.  

 

  Conditions 

  CD non-CD Total 

Predicted 

CD 
81 

(76.42%) 
17 98 

non-CD 25 
141 

(87.94%) 
166 

 Total 106 158 264 

 

We validated the algorithm using different digestive disorders cohorts. To evaluate the 

sensitivity of the markers, we utilized the CD Belgian cohort of 54 CD patients recruited 

at the University Hospital Leuven (Belgian CD cohort). We applied our algorithm to a 

total of 193 fecal samples and obtained an overall sensitivity of 69.43%.  To analyze the 

specificity of the biomarker proposed, we used the Spanish UC cohort already described 

composed by 41 UC patients that were enrolled at the University Hospital Vall d’Hebron 

and provided one sample before probiotic intake. We tested our algorithm proposed 

and obtained a specificity of 90.24%. We also tested the specificity of the technique on 

three non-IBD published cohorts of digestive disorders and healthy individuals. We used 

the already described Spanish IBS, the German anorexia and the British (twin pairs) 

cohorts. IBS is a disease that shares symptoms with CD, which may include abdominal 

pain, cramps, constipation and diarrhea. Due to their common characteristics, a 

biological marker could be useful to distinguish both diseases and avoid unnecessary 

endoscopies. We applied our algorithm to 202 fecal samples collected from 125 IBS 

individuals. Out of 202 samples with IBS we could identify 22 as CD samples what 

corresponds to only a 10.89% of false positives and a specificity of 89.11%. Anorexia 

samples are part of a study that was designed to detect dysbiosis in patients with 

anorexia compared with HC and evaluate the changes in microbiome after a weight gain 

in the same patients (Mack et al. 2016). As demonstrated in this previous study, anorexia 

is associated with shifts in the composition of the gut microbiota. To evaluate whether 

dysbiosis is similar in anorexia and CD, we tested our algorithm in these samples. For 
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this purpose, we analyzed a total of 99 stool samples from anorexia patients from which 

the algorithm detected 2 samples as being CD showing therefore a specificity of 97.98%. 

We finally tested the algorithm with 1016 and 59 healthy control samples from the 

British and German anorexia cohorts, respectively. Regarding the healthy twin pairs, it 

was originally designed to evaluate how the host genetic variation shapes the gut 

microbiome. Our algorithm falsely identified as CD only 77 samples out of the 1016 

throwing a specificity of 92.42%. Overall, in the validation cohort, we analyzed a total of 

193 CD samples and 1417 non-IBD samples throwing a sensitivity of 69.43% and a 

specificity of 92.45% (Table 12).  

 

Table 12. Confusion table for the validation cohort. It includes the Belgian CD cohort, the 

Spanish UC cohort, the Healthy UK cohort, the Spanish IBS cohort and the German anorexia 

cohort.  

  Conditions 

  CD non-CD Total 

Predicted 

CD 
134 

(69.43%) 
107 241 

non-CD 59 
1310 

(92.45%) 
1369 

 Total 193 1417 1610 

 

 

Figure 21 shows the profile of the 8 microbial species that were included in the algorithm 

and used in the validation dataset of 1610 fecal samples from different diseases: HC, CD, 

UC, IBS and anorexia. This heatmap clearly confirms that CD is characterized by a 

different abundance profile of the eight microbial biomarkers compared with the other 

disease groups. This result is also confirmed by a separate clustering based on the 

unweighted UniFrac PCoA representation (Figure 22).  

Previous tests described in this study were done on 16S rDNA MiSeq sequencing of the 

fragment V4. To evaluate the reproducibility of the algorithm with other techniques 
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such as the V3-V5 variable region of the 16S rRNA gene (instead of V4) and the Ion 

Torrent sequencing platform (instead of Illumina MiSeq), we collaborated with the 

Professor Harry Sokol who provided us with a French IBD cohort. We thus tested the 

accuracy of the algorithm on 232 stool samples (146 CD, 86 UC and 38 HC). Our 

algorithm showed a sensitivity of 60% and a specificity of 94.8% in this data. Moreover, 

we noticed that this dataset did not carry any sequences belonging to the genus 

Collinsella and a very low abundance of Methanobrevibacter, which in our algorithm 

allow the differentiation between UC and CD, which can explain the decrease in 

sensitivity. The low sensitivity of the algorithm in this cohort could be either due to a 

different geographical sampling of more probably to different technical approaches. The 

good sensitivity obtained with the Belgian cohort (69.43%) points to a technical issue.  

 

 

Figure 21. Microbial marker validation. Eight bacterial genera showed potential to discriminate between 

CD and non-CD in the validation cohort of 1610 samples: HC (n = 1075), CD (n = 193), UC (n = 41), IBS (n = 

202) and anorexia (n = 99). Each blue bar represents the presence of each microbial group for each 

subject. Participants in each group are underlined with a specific color code (blue = all healthy controls, 

red = CD, yellow = UC, green = IBS and purple = anorexia). The plot was performed using an R script on 

relative abundance of the eight bacterial genera. The gradient color for the bars corresponds to white = 

absent, clear blue = low abundance and dark blue = high abundance.  
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Figure 22. Unweigthed UniFrac Principal Coordinate Analysis representation of the various 

groups of subjects. Significant differences were found between CD and HC, UC, IBS and anorexia 

(NPMANOVA test, p < 0.001). NPMANOVA is a non-parametric multivariate test of variance. 

 

Table 13. Contingency table in the validation cohort from France 

  Conditions 

  CD non-CD Total 

Predicted 

CD 
88 

(60.27%) 
30 118 

non-CD 58 
94 

(75.81%) 
152 

 Total 146 124 270 
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2.4  IBD classifier 

As we have already demonstrated, differences in microbial composition can be used to 

classify IBD patients according to their phenotype. We decided to use artificial 

intelligence (AI) to obtain a classifier with a better performance of this classification on 

our samples. To obtain the best classifier, we trained three AI algorithms: Random 

Forest (RF), AdaBoost and XGBoost in OTU abundance tables. We evaluated the 

performance of the classifier with a five-cross validation in the Spanish IBD cohort and 

between cohorts training the classifier in the Spanish IBD cohort and validating on the 

independently Belgium CD, Spanish UC, German Anorexia, Spanish IBS and UK cohorts. 

Although all algorithms performed better than the microbial marker previously 

proposed to distinguish between CD and non-CD samples, we obtained the best results 

with RF model with an area under de curve (AUC) of 0.96 (Figure 23 A) for our cross 

validation showing sensitivity and specificity values of 80% and 93.9%, respectively 

(Table 14). The classifier established a combination of Faecalibacterium and 

Eubacterium as the best features to distinguish CD samples from non-CD samples. The 

independent validation with the CD Belgian, UC Spanish and non-IBD cohorts used 

provided an AUC of 0.99 (Figure 23 B) and even higher values than the five-cross 

validation for sensitivity and specificity of 94.8% and 99.5% (Table 15).  

 

 

Figure 23. ROC curves for cross-validation and independent validation of Random Forest 

classifier.  
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Table 14. RF classifier for predicting CD (five-cross-validation). 

  Conditions 

  CD non-CD Total 

Predicted 

CD 
112 

(80%) 
17 129 

non-CD 28 
262 

(93.9%) 
290 

 Total 140 279 419 

 

 

Table 15. RF classifier for predicting CD (independent validation). 

  Conditions 

  CD non-CD Total 

Predicted 

CD 
183 

(94.8%) 
7 190 

non-CD 10 
1410 

(99.5%) 
1420 

 Total 193 1417 1610 
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3. Compositional and functional microbiome in IBD using DNA shotgun 

sequencing (or shotgun metagenomics) 

We hypothesized that using both compositional and functional information from 

shotgun data (sequences of random DNA fragments) will provide us more insights in the 

pathophysiology of IBD than using 16S data. 

We randomly selected a subset of 178 samples (out of 379 samples from UC, CD and 

related healthy individuals) from the Spanish IBD cohort to perform DNA shotgun 

sequencing (Table 7). The random selection of a subset of the cohort was motivated by 

the high sequencing const and more time-consuming analyses of the shotgun data 

compared to the 16S rRNA data.  

We obtained paired-end fastq files per sample with a mean of 34,564,409.47± 

12,059,962.07 paired reads that we analyzed using the bioinformatics pipeline 

HUMAnN2 (Franzosa et al. 2018) following the standard process proposed by their 

developers and described in the Methods section of the present work.  

 

3.1  Dysbiosis in IBD using DNA shotgun sequencing 

As we did with 16S data, we investigated the differences between CD, UC, HC and 

evaluated the stability in time for both remission and relapse status.  

We used the Bray-Curtis index, a metric to compare microbial composition between two 

different communities, on strain level abundance tables. Here, we did not use UniFrac 

distance as we did for 16S because it requires phylogenetic information, that we cannot 

generate using shotgun sequences since they could not be aligned being random DNA 

sequences. Using a multivariate analysis of variance on Bray-Curtis distance matrices, 

the NPMANOVA test, we saw that patients with CD at all timepoints significantly differed 

from UC patients and healthy controls (NPMANOVA test; p = 0.0015) (Figure 24 A). 

Nevertheless, UC patients did not significantly differ from healthy controls. We also 

compared the two different status of the disease, remission and relapse, in both 
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subtypes of IBD. Neither in UC nor in CD we were able to significantly differentiate 

samples between inactive or active disease status (Figure 24 B).  

 

 

Figure 24. Dysbiosis in patients with IBD with shotgun data. PCoA computed from Bray-Curtis 

distance matrices from strain abundance tables of IBD patients and healthy individuals. Gut 

microbiome separates samples of CD patients with those of UC patients and HC (A). However, it 

is not able to evaluate the disease severity (B).  

 

We computed the mean Bray-Curtis distance between each patient sample and all 

healthy samples to validate the differences seen in Figure PCOA. We saw that CD 

samples showed higher distances with healthy controls than UC, but these differences 

were not significantly different (Error! Reference source not found.). We did not observe 

significant differences between remission and relapse status. So far, taking into account 

these observations at the composition level using shotgun data, we validated our 

previous findings using 16S data. 

We also used the Bray-Curtis index to assess the stability over time for CD and UC, but 

we could not do it for healthy controls because for economical limitation only the 

baseline sample for each individual was sequenced. We did not identify higher instability 

in CD samples than in UC patients; activeness of the disease neither contributes to 

higher instability. This lack of differences between CD and UC contrast with what we 

found using 16S data, which could be attributed to a smaller sample size. 
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Figure 25. Stability in time associated with activity of the disease. Bray-curtis beta diversity 

distance between basal and last timepoints splitted by activeness of the disease, show that there 

are not significant differences between CD and UC, nor between remission and recurrence 

status.  

 

We calculated alpha diversity with Shannon and Chao1 indexes to determine microbial 

diversity per group. Considering samples at all timepoints, CD showed lower α diversity 

than healthy controls for both indexes (t-test, FDR < 10-7), however, UC did not differ 

from HC (Figure 26). This result is in accordance with 16S rDNA sequencing.  

We compared alpha diversity between different timepoints and disease’s activeness to 

determine whether disease’s activeness was associated with the microbial diversity in 

CD and UC patients. We only found a significant decrease of chao1 alpha diversity index 

in the last timepoint of UC between remission and relapse status (t-test, FDR = 0.03). 

This decrease in alpha diversity in active disease of UC was not significant for Shannon 

diversity index (Figure 27), which suggests that only richness and not evenness was 

associated with the disease severity.  
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Figure 26. Alpha diversity in the different subtypes of IBD. (A) Chao1 and (B) Shannon indexes 

for alpha diveristy showed a decrease in alpha diversity for CD samples in comparison with UC 

patients and healthy individuals (t-test, FDR < 107).  

 

 

 

Figure 27. Alpha diversity in activeness and time of the disease. (A) Chao1 and (B) shannon 

indexes for alpha diversity did not presented significant differences (t-test, FDR < 0.05) between 

basal and last timepoints nor in activeness of the disease. Only for chao1 index we identified a 

difference between remission and relapse last timepoints for UC with an FDR = 0.03.  
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We identified 5 phyla that were significantly different between HC, CD and UC: 

Proteobacteria (Kruskal-Wallis test, FDR = 0.0001), Ascomycota (Fungi, FDR = 0.0001), 

Euryarchaeota (FDR = 0.006), Fusobacterium (FDR = 0.006) and Verrucomicrobia (FDR = 

0.01). We performed pairwise Mann-Whitney tests to identify the groups that were 

implicated in this variation shown in the tests. Proteobacteria, Fusobacteria and 

Ascomycota were more frequent in CD patients than in healthy controls whereas 

Euryarchaeota was more present in healthy individuals. The main differences between 

CD and UC came from Ascomycota and Proteobacteria showing both higher abundance 

in CD patients than in UC. Finally, UC presented more Verrucomicrobia than healthy 

individuals (Figure 28).   

We determined differences at genus level (Kruskal-Wallis test, FDR < 0.05) and identified 

that healthy individuals were enriched in 23 genera and depleted in 14 genera in 

comparison with CD. Only 8 genera were different between UC and HC with four of them 

enriched in each of the groups. Finally, CD presented a lower abundance in 19 genera 

and higher abundance for 12 genera in comparison with UC (Figure 29). Comparing 

these results with 16S, only 3 out of the 8 genera found in metagenomic sequencing for 

the comparison between UC and HC matched with the genera identified in 16S rDNA 

analyses and only 10 and 8 of the genera significantly different between CD and HC and 

between CD and UC, respectively, in shotgun sequencing were in common with 16S 

rDNA sequencing data (Table 16). Nevertheless, although there were some discordant 

bacteria between 16S and shotgun data, results in both techniques determined that the 

dysbiosis found is higher for CD than for UC. These differences could be due to the 

sample size or the database used to identify bacteria in each approach.  
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Figure 28. Relative abundance in phylum. Significantly different phyla between the three 

groups of the study (Kruskal-Wallis test, FDR < 0.05). (A) CD samples were enriched in 3 genera 

(Ascomycota, Fusobacteria and Proteobacteria) while they were depleted in Euryarchaeota. (B) 

UC and CD only differed in two phyla, Proteobacteria and Ascomycota, both more abundant in 

CD. (C) HC showed higher abundance of Verrucomicrobia than UC.  
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Figure 29. Genera enrichment barplot. Significantly different genera between the three groups 

of the study (CD, UC and HC) (Kruskal-Wallis test, FDR < 0.05) represented by the difference of 

means. (A) 14 genera were more frequent in CD samples while they were depleted in 23 

compared with HC. (B) UC showed higher abundance in 4 genera and lower abundance in 

another 4 genera in comparison with CD. (C) CD was enriched in 12 genera whereas it was 

decreased in 19 genera in comparison with UC.   

 

 

Table 16. Common significantly different genera identified between 16S rDNA sequencing and 

shotgun sequencing per group of comparisons 

CD.HC UC.HC CD.UC 

Ruminococcus Akkermansia Faecalibacterium 

Faecalibacterium Parvimonas Ruminococcus 

Coprococcus Peptostreptococcus Collinsella 

Methanobrevibacter  Coprococcus 

Collinsella  Unknown Ruminococcaceae 

Aldercreutzia  Aldercreutzia 

Unknown Ruminococcaceae  Fusobacterium 

Butyricicoccus  Escherichia 

Fusobacterium   

Escherichia   
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In contrast with 16S rDNA sequencing, shotgun sequencing not only detects significant 

differences at genus level as shown in Figure 28 and Figure 29, but also allows a deeper 

taxonomical analysis and provides information at species and strain levels with high 

resolution. However, strains are not as well characterized as species in databases, more 

than 50% of strains identified in our samples, corresponded to unclassified strains from 

known species. We detected 101 species that were significantly different between the 

three groups (Kruskal-Wallis, FDR < 0.05). Among them, 89 species differed between 

healthy and CD patients at baseline, 57 of these species were enriched in HC whereas 

the 32 remaining species were more present in CD. In contrast, we found only 24 

significant species that were different between UC and HC, 9 were enriched in HC and 

15 were more frequent in UC. Finally, we found 66 species that were significantly 

different between UC and CD, 45 showed higher abundance in UC whereas 21 were 

more frequent in CD (Table 17).   

We checked changes in time for each bacteria and activeness of the disease, but we did 

not find any significant species that was associated with remission or recurrence status 

nor the time between the first and the last samples as previously shown with beta 

diversity with general microbiota. 
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Table 17. List of species that were differentially abundant between HC, UC and CD. FDR column corresponds to FDR correction for Kruskal-Wallis test between 

the three groups. Values represent the difference in abundance for each species between both groups.  In red, species enriched in CD, in blue, species enriched 

in HC and in yellow, species enriched in UC. Blank spaces indicate that those species are not significantly different in that comparison.  

Species FDR CD vs HC CD vs UC UC vs HC 

s__Lachnospiraceae_bacterium_9_1_43BFAA 2.54678E-07 0.001525658 0.001629714 
 

s__Clostridium_clostridioforme 4.60138E-07 0.012749108 0.01300207 
 

s__Clostridium_ramosum 2.00743E-06 0.001327658 0.001394516 
 

s__Coprobacillus_unclassified 3.66713E-06 0.004801805 0.005198389 
 

s__Eubacterium_ventriosum 3.66713E-06 -0.003530593 -0.004889155 
 

s__Ruminococcus_gnavus 8.20768E-06 0.017618718 0.01756636 
 

s__Ruminococcaceae_bacterium_D16 1.67509E-05 -0.000290564 -0.001486498 0.001195934 

s__Pseudoflavonifractor_capillosus 4.16229E-05 -8.53865E-05 -0.000208171 
 

s__Alistipes_shahii 8.05112E-05 -0.004464754 -0.001461131 -0.003003623 

s__Subdoligranulum_unclassified 8.05112E-05 -0.042337421 -0.02218407 
 

s__Eubacterium_eligens 0.000104283 -0.007543927 -0.017331719 0.009787792 

s__Lachnospiraceae_bacterium_4_1_37FAA 0.00016019 0.000397235 0.000404848 
 

s__Parvimonas_micra 0.000262846 
 

-7.02313E-05 6.55047E-05 

s__Peptostreptococcus_stomatis 0.000313722 -2.47781E-05 -0.0004286 0.000403822 

s__Adlercreutzia_equolifaciens 0.000313722 -0.001174414 -0.000392149 
 

s__Fusobacterium_nucleatum 0.000336969 0.003857455 0.003862917 
 

s__Eubacterium_siraeum 0.000336969 -0.007805327 -0.009864828 
 

s__Roseburia_inulinivorans 0.000336969 -0.006035777 -0.005310004 
 

s__Bacteroidales_bacterium_ph8 0.000406363 -0.004015543 -0.00327627 
 

s__Ruminococcus_obeum 0.00043402 -0.002686472 -0.006572371 
 

s__Variovorax_unclassified 0.000471729 7.45198E-06 8.13479E-06 
 

s__Anaerostipes_unclassified 0.000539078 0.002213111 0.002261963 
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Species FDR CD vs HC CD vs UC UC vs HC 

s__Bordetella_unclassified 0.000569039 3.23361E-05 5.23033E-05 
 

s__Dorea_formicigenerans 0.000647955 -0.001769741 -0.008699336 0.006929595 

s__Escherichia_coli 0.000708232 0.07085613 0.074064211 
 

s__Faecalibacterium_prausnitzii 0.000729273 -0.025833881 -0.040705261 
 

__Parabacteroides_goldsteinii 0.001099025 -0.001153757 -0.000622036 
 

s__Subdoligranulum_variabile 0.001099025 -2.53017E-05 -2.89235E-05 
 

s__Odoribacter_splanchnicus 0.00118829 -0.004845641 -0.003296253 
 

s__Ruminococcus_albus 0.001362225 -1.96697E-05 -1.08213E-05 
 

s__Parvimonas_unclassified 0.00136389 
 

-0.000634735 0.000623867 

s__Lachnospiraceae_bacterium_6_1_63FAA 0.001669619 0.000585901 0.000613071 
 

s__Alistipes_finegoldii 0.001825518 -0.001266845 
 

-0.001413508 

s__Eubacterium_rectale 0.001825518 -0.030301502 -0.019291129 
 

s__Ruminococcus_lactaris 0.001877581 -0.005010391 -0.005723355 
 

s__Alistipes_senegalensis 0.002610484 -0.00031664 -0.000170841 
 

s__Blautia_producta 0.00264439 0.007258318 
  

s__Rhodococcus_erythropolis 0.00306888 2.70748E-05 2.78467E-05 
 

s__Achromobacter_unclassified 0.003081414 6.45324E-05 8.55433E-05 -2.10109E-05 

s__Eubacterium_ramulus 0.003081414 -0.001812833 -0.003292219 
 

s__Anaerotruncus_unclassified 0.00317855 -0.000228705 -0.000192458 
 

s__Ruminococcus_bromii 0.003357483 -0.032889746 
 

-0.021373316 

s__Peptostreptococcaceae_noname_unclassified 0.004173372 -0.000306776 -0.000239539 
 

s__Saccharomyces_cerevisiae 0.00451695 0.000110133 0.0001238 
 

s__Roseburia_hominis 0.004584258 -0.001013656 -0.001857237 
 

s__Bacteroides_caccae 0.004685566 -0.006322043 -0.013718996 
 

s__Bacteroides_xylanisolvens 0.005510412 -0.000790266 
 

-0.000622941 

s__Alistipes_indistinctus 0.005510412 -0.000397129 -0.000856244 
 

s__Lachnospiraceae_bacterium_5_1_63FAA 0.006918481 -0.00095075 -0.001959342 
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Species FDR CD vs HC CD vs UC UC vs HC 

s__Oxalobacter_formigenes 0.006992486 -0.000186619 
  

s__Dorea_longicatena 0.006992486 -0.005629347 -0.006502623 
 

s__Anaerococcus_vaginalis 0.008369524 
 

-0.000152576 0.00014908 

s__Coprobacter_fastidiosus 0.008369524 -6.25428E-05 4.37994E-05 
 

s__Bilophila_wadsworthia 0.011325959 -0.000285789 
  

s__Coprococcus_catus 0.013085713 -0.00124144 -0.001455202 
 

s__Paraprevotella_xylaniphila 0.01335504 -0.000357591 -0.000505613 
 

s__Eubacterium_hallii 0.01335504 -0.007464821 -0.011277468 
 

s__Finegoldia_magna 0.01335504 8.13333E-06 
  

s__Dorea_unclassified 0.01381762 0.000159123 0.000280934 
 

s__Morganella_morganii 0.01549547 0.00071114 
  

s__Bilophila_unclassified 0.01569034 -0.001724154 
 

-0.001203461 

s__Desulfovibrio_desulfuricans 0.016901457 -6.73845E-05 
 

-5.84234E-05 

s__Methanobrevibacter_smithii 0.016901457 -0.011754081 
 

-0.010442614 

s__Olsenella_unclassified 0.017571427 -3.26896E-06 -3.68783E-05 
 

s__Proteus_mirabilis 0.018459753 0.000778491 
  

s__Paraprevotella_clara 0.018459753 -0.002334047 -0.000977086 
 

s__Anaerostipes_caccae 0.018459753 1.5298E-05 
  

s__Peptoniphilus_lacrimalis 0.018638608 
  

0.000241972 

s__Lachnospiraceae_bacterium_ICM7 0.018638608 
  

0.000001325 

s__Methanobrevibacter_unclassified 0.019306682 -0.000632284 
  

s__Parabacteroides_merdae 0.019581838 -0.004258583 
  

s__Peptostreptococcus_anaerobius 0.019619006 1.85833E-05 
 

0.001094678 

s__Clostridium_sp_KLE_1755 0.020689721 
 

-0.001498609 0.001113731 

s__Coprococcus_sp_ART55_1 0.020752101 -0.012601066 
  

s__Collinsella_aerofaciens 0.023570962 -0.001700846 -0.003362834 
 

s__Bacteroides_nordii 0.024159051 -0.000107369 -0.000295606 
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Species FDR CD vs HC CD vs UC UC vs HC 

s__Alistipes_putredinis 0.024454209 -0.014168744 
  

s__Coprococcus_comes 0.026261761 -0.002839866 -0.007371941 
 

s__Anaerococcus_obesiensis 0.026607962 
 

-0.00010535 0.000100277 

s__Erysipelotrichaceae_bacterium_2_2_44A 0.026607962 8.79025E-05 
  

s__Akkermansia_muciniphila 0.027442387 
  

-0.005366661 

s__Klebsiella_pneumoniae 0.030269454 0.014472602 0.014544053 
 

s__Butyricicoccus_pullicaecorum 0.033538803 2.04958E-06 9.87933E-05 
 

s__Clostridium_bolteae 0.035699622 0.014056539 
  

s__Bifidobacterium_bifidum 0.036084092 
  

0.00514523 

s__Blautia_hydrogenotrophica 0.036084092 
 

-0.002298767 0.00309153 

s__Blautia_hansenii 0.036084092 0.000192299 0.000217321 
 

s__Lachnospiraceae_bacterium_3_1_46FAA 0.036734636 -0.000285182 
  

s__Streptococcus_australis 0.03694745 -5.31611E-05 -0.00026791 
 

s__Paraprevotella_unclassified 0.03694745 -0.00539116 
  

s__Ruminococcus_flavefaciens 0.03694745 -7.60323E-06 -6.97042E-06 
 

s__Parasutterella_excrementihominis 0.037185353 -0.000414709 
  

s__Burkholderiales_bacterium_1_1_47 0.037185353 -0.000351933 
  

s__Clostridium_citroniae 0.037185353 0.0002662 
  

s__Rhodococcus_qingshengii 0.041900334 2.63333E-06 
  

s__Enterococcus_avium 0.041900334 0.00001985 
  

s__Ruminococcus_callidus 0.042303763 -0.001779332 
  

s__Achromobacter_xylosoxidans 0.042625745 
 

1.59033E-05 
 

s__Aggregatibacter_segnis 0.042705548 
  

4.80938E-05 

s__Clostridiales_bacterium_1_7_47FAA 0.046184373 0.000127018 
  

s__Lachnospiraceae_bacterium_5_1_57FAA 0.047560693 0.000952761 
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3.2 Relation between shotgun microbiome data and smoking and clinical 

data and patients’ characteristics 

As smoking habit has been related to IBD subtypes in literature, we used the Kruskal-

Wallis test to determine if our data validate this association between gut microbiome 

and smoking habit for both IBD subtypes combined. We did not identify any bacteria 

that was associated with any of the three possible status of the smoking habit: Ex-

smoker, non-smoker and active smoker. We also performed the Mann-Whitney test 

considering ex-smokers as non-smokers and compared between non-smokers and 

active-smokers, but we did not find any bacteria that was associated with tobacco use. 

We separated the analyses by IBD subtypes. In this case, we find one bacterium that was 

positively associated with smoking habit in UC, Actinomyces graevenitzii (FDR = 0.03), 

however, in CD we did not identify any bacterium. These findings confirm somehow the 

differences previously reported between CD and UC for smoking habit.  

We then tested association between disease localization and microbiome composition. 

We did not find any bacteria associated with UC extension. For CD localization, we could 

only test the types L1 (ileal CD) and L3 (ileocolonic CD) with Mann-Whitney test due to 

a lack of samples from other localizations (L2 (colonic), and L4 (isolated upper disease)). 

We could not find significant differences, but we identified a tendency (Mann-Whitney 

test, FDR = 0.16) in the orders of Pasteurellales and Bacteroidales to be more present in 

L3 than in L1. Finally, we also checked behavior of UC patients in B2 (stricturing) and B3 

(penetrating) groups and found a trend towards a higher proportion of the order 

Deinococcales in B3 than in B2.  

We performed Spearman correlation to determine whether there were any bacteria 

associated with the continuous values of fecal calprotectin, an inflammation marker. 

Although we identified 3 species (Peptoniphilus harei (r = 0.35), Anaerococcus obesiensi 

(r = 0.37) and Anaerococcus vaginalis (r = 0.39)) that were moderately positively 

correlated with calprotectin. The samples they presented a lot of values close to 0 so 

these results should be considered with caution. BMI was also associated with different 

species. On the one hand it was negatively correlated with unclassified species of 

Eggerthella (r = -0.48) and Flavonifractor plautii (r = -0.34), and on the other hand, it was 
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found positively associated with 2 species (an unclassified species of Paraprevotella (r = 

0.44) and Paraprevotella clara (r = 0.44) (Figure 30).   

We did not perform any type of association with treatment due to the small sample size 

of each group.  

 

 

Figure 30. Microbial correlation with biological and clinical parameters. Spearman correlation 

with continuous variables calprotectin concentration (A) and BMI (B). Calprotectin was 

moderately positively correlated with 3 species but most of the correlation was driven by the 

high quantity of 0 values. BMI was moderately negatively correlated with 2 species and 

positively associated with other 2 species.  
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3.3  Shotgun sequencing and 16S sequencing 

 Although global microbiota composition estimated with 16S rDNA and shotgun 

sequencing clearly separate Crohn’s disease patients from ulcerative colitis patients and 

healthy individuals (Figure 31), not all the individual bacteria implicated were the same 

for both methodologies. Thus, we sought to estimate how much the microbial 

frequencies were equivalent between the two techniques. We identified from phylum 

to genus levels which microbial annotations were common between the two 

methodologies. Our analyses showed that the proportion of common identities 

decreased for more specific taxa (Table 18). At genus level, in 16S rRNA data, common 

microorganisms comprised a mean relative abundance of 0.74 ± 0.16 per sample and in 

shotgun data they contributed to a mean of 0.72 ± 0.14, what suggested that a high 

proportion of microbial composition is detected in the same manner. To further 

evaluate this finding, we performed Pearson correlation analyses between common 

entities in 16S rDNA and shotgun sequencing for all samples at all taxonomical levels, 

from phylum to genus. We determined that correlation values were higher than 0.9 for 

nearly 70% of the samples and over 0.75 for 86% of the samples at phylum level. 

However, correlation was worse at lower taxonomical levels, and, at genus correlation 

values were over 0.9 for nearly 30% of the samples and over 0.75 for 60% of the samples 

(Figure 32).  

The differences in taxonomic annotations between both techniques could be attributed 

to the different databases used. Indeed, each approach required a specific database for 

identifying microorganisms. Thus, we checked if phylum identified only in shotgun 

sequencing data were also present in our 16S data, which is a combination of 

Greengenes and PATRIC databases. Among the shotgun data, we can detect virus and 

fungi phyla, which cannot be detected using 16S, as we originally PCR amplify bacterial 

DNA. For the Bacteria kingdom, 3 out of the 4 phyla identified with shotgun sequencing 

were present in 16S rDNA database. This result suggests that 30% of the microbial 

composition that corresponds to unshared microorganisms may be influenced by the 

sequencing technique.  
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Figure 31. Dysbiosis in IBD in different techniques. PCoA of Bray-Curtis beta diversity distance 

computed from (A) OTU table of all samples analyzed using 16S rDNA data, (B) OTU table from 

commonly selected samples between 16S rDNA and shotgun sequencing analyzed with 16S 

rDNA data and (C) Strain abundance table from all samples analyzed using shotgun sequencing. 

In all cases we found significant differences between CD and UC (NPMANOVA, FDR = 0.0015) 

and CD and HC (NPMANOVA, FDR = 0.0015) but not between UC and HC 

.  

 

Table 18. Common and technique-specific microorganisms at different taxonomical levels 

between 16S rDNA and shotgun sequencing.  

 PHYLUM CLASS ORDER FAMILY GENUS 

COMMON 9 16 23 35 53 

ONLY.16S 4 10 23 47 103 

ONLY.SHOTGUN 6 18 18 56 147 
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Figure 32. Correlation of common bacteria between 16S rDNA and shotgun sequencing. 

Density plots of Pearson correlation values of abundance of common bacteria between 16S 

rDNA sequencing and shotgun sequencing for (A) phylum, (B) class, (C) order, (D) family and (E) 

genus.  

 

 



Marta Pozuelo del Río   

98 
 

3.4  Comparison with another recent shotgun data study 

Another recent IBD-shotgun metagenomic study was published by the groups of Drs. 

Huttenhower and Ramnik (Franzosa et al. 2019). We aimed to compare their findings 

with ours. To do so, we combined our dataset with this already published cohort of IBD 

(Franzosa et al. 2019), which contained American members enrolled in PRISM (the 

Prospective Registry in IBD Study at MGH) and Dutch individuals. We used the species 

abundance table obtained with HUMAnN2 from stool samples of 155 American 

individuals (68 CD patients, 53 UC patients and 34 non-IBD controls) and 65 samples 

from Dutch participants (20 CD patients, 23 UC patients and 22 healthy controls). We 

combined our species abundance table obtained from our cohort of 178 samples (64 

HC, 51 CD and 63 UC) and computed Bray-Curtis beta diversity distance and a 

multivariate analysis of variance on distance matrices with the NPMANOVA tests.  

We analyzed differences between the three groups of the study, HC, CD and UC and 

between studies. In both types of comparison, we detected significantly different 

microbiome (NPMANOVA test, FDR = 0.001 for all tests). Increasing sample size, we still 

detected differences between CD and healthy individuals and CD and UC patients as 

previously shown for the Spanish cohort driven mainly by the first coordinate of the 

PCoA (Figure 33 A). However, we also found differences between HC and UC that we 

could not detect in the Spanish cohort. Moreover, we detected significant differences 

between cohorts, in this case, mainly driven by the second coordinate as shown in the 

PCoA representation (NPMANOVA, FDR = 0.001) (Figure 33 B).  
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Figure 33. Dysbiosis in Spanish, American and Dutch cohorts combined. Differences were 

found between HC, CD and UC (NPMANOVA, FDR = 0.001) (A) and between the three different 

cohorts (NPMANOVA, FDR = 0.001) (B).  

 

3.5  Validation of microbial marker in shotgun sequencing 

In the previous chapter, we developed a microbial signature to identify CD samples 

based on 16S data. We tested whether we could apply the same biomarkers on shotgun 

data. To do so, we selected the genera included in our proposed signature  

(Faecalibacterium, Anaerostipes, Collinsella, Escherichia, Fusobacterium, unknown 

Peptostreptococcaceae and Methanobrevibacter (Figure 34 A)) in the genus abundance 

table from the shotgun data. Notice that one of the genera included in the signature was 

not detected in shotgun data (unknown Christensenellaceae) (Figure 34 B).  

We were able to detect only 20 out of the 51 CD samples showing a sensitivity of 39.22% 

whereas we identified as CD a total of 20 UC and HC samples out of a total of 127 

showing a specificity of 84.25% (Table 19). This result showed that the biomarkers 

proposed for 16S rRNA gene was not valid for shotgun data. Five of those genera were 

detected significantly different also in shotgun sequencing between the three groups 

(Figure 29), however, unknown Peptostreptococcaceae and Anaerostipes were not in 

different abundance.  
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Figure 34. Microbial biomarker proposed to detect CD samples. Heatmaps that represents the 

relative abundance of genera implicated in the microbial marker we proposed for 16S rDNA data 

(A) applied in shotgun data (B). Faecalibacterium, Collinsella and Methanobrevibacter are more 

frequent in HC and UC than in CD whereas Fusobacterium and Escherichia have higher 

abundances in CD.    
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Table 19. Specificity and sensitivity of the 16S rDNA microbial marker on shotgun data.  

  Conditions 

  CD non-CD Total 

Predicted 

CD 
20 

(39.22%) 
20 40 

non-CD 31 
107 

(84.25%) 
138 

 Total 51 127 178 

 

 

3.6  IBD classifier in shotgun sequencing 

As we did with 16S rDNA sequencing data, we tried to improve the performance of the 

microbial marker with machine learning techniques. We trained three different 

methods: Random Forest (RF), AdaBoost and XGBoost with the 178 samples analyzed 

with shotgun sequencing from our Spanish IBD cohort. Then, we validated it with an 

independently cohort recently published dataset from American and Dutch IBD patients 

and healthy individuals. As it happened for 16S rDNA sequencing, the method that best 

performed to classify CD patients versus non-CD was the RF with an AUC of 0.93 (Figure 

35 A). Our 5-cross validation resulted in a sensitivity of 72.5% and a specificity of 95.2% 

(Table 20). The independent validation provided an AUC of 0.75 (Figure 35 B) with 

sensitivity and specificity of 63.6% and 87.1% respectively (Table 21). In this classifier, 

among all the features (species) used, Faecalibacterium prausnitzii was the main 

bacteria involved in the classification in CD and non-CD samples.  
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Figure 35. ROC curves for five-cross-validation (A) and independent validation (B) of Random 

Forest classifier in shotgun sequencing.  

 

Table 20. RF classifier for predicting CD (five-cross-validation) for shotgun sequencing. 

  Conditions 

  CD non-CD Total 

Predicted 

CD 
37 

(72.5%) 
6 43 

non-CD 14 
121 

(95.2%) 
135 

 Total 51 127 178 

 

Table 21. RF classifier for predicting CD (independent validation) for shotgun sequencing. 

  Conditions 

  CD non-CD Total 

Predicted 

CD 
56 

(63.6%) 
17 73 

non-CD 32 
115 

(87.1%) 
147 

 Total 88 132 220 
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3.7  Functional alterations in IBD 

Next, we use the shotgun data to investigate the functional differences between IBD 

subtypes. In this step, two samples failed quality control, so we worked with 176 

samples. Using the HUMAnN2 pipeline, we obtained an abundance table of genes per 

sample with annotation using the UniRef90 database, a functional database (see the 

Methods section page 53). We identified a mean of 32.72%±0.08 of unmapped reads. 

We computed Bray-Curtis distances to determine whether bacterial genes could also 

differentiate between CD, UC and HC. We determined that, as we described with 

taxonomical composition, genes can also differentiate between HC, UC and CD. We 

corroborated our previous findings identifying significant differences using the 

NPMANOVA test (FDR = 0.0015) between CD and HC, CD and UC but not between UC 

and HC (Figure 36 A).  

 

 

Figure 36. PCoA representation of Bray-Curtis distances in UniRef90 genes abundance table. 

(A) We found significant differences with genes between HC and CD and between UC and CD 

(NPMANOVA test, FDR = 0.0015) but not between UC and HC (FDR = 0.564). (B) As identified for 

taxonomical composition tests, we did not find significant differences between remission and 

relapse status for any of the subtypes of IBD.  
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We assessed microbiome changes according to disease activity (remission versus 

recurrence) using the Bray-Curtis distances and the NPMANOVA test and we did not find 

any significant differences between remission and recurrence in the disease for any of 

the IBD subtypes (Figure 36 B).  

Counting the number of non-redundant detected genes has been shown to be useful for 

the investigation of microbiome alteration associated with obesity (Le Chatelier et al. 

2013), where low gene count was linked to obesity. Thus, we determined the 

distribution of gene counts per group of study, HC, UC and CD. We saw that healthy and 

UC patient samples had more genes identified than CD patients (Figure 37). This result 

is in line with the results of alpha diversity analyses that showed higher diversity for UC 

and healthy than for CD patients.  

 

 

Figure 37. Gene count distribution of HC, UC and CD samples. CD samples had a smaller number 

of genes identified with UniRef90 database than UC and healthy individuals.  

 

We annotated the UniRef90 identified clusters with KEGG Orthologous ids (KO ids) and 

functional categories. Among the 67.20% of reads that mapped with genes, we were 

only able to annotate a mean of 10.86% reads with KO ids that constitute a mean of 
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7.31% of the total number of reads. With this amount of information, we individually 

analyzed different levels of functional categories between HC, UC and CD with Kruskal-

Wallis test. Reads that did not mapped with any gene accounted for the most significant 

differences between groups (FDR = 1.75 x 10-6). They were more present in healthy and 

UC than in CD patients. This result may be related to the higher number of genes and 

greater diversity in those groups. On the one hand, we did not identify any functional 

category significantly different between HC and UC. On the other hand, genes associated 

with human diseases, metabolism, organismal systems, genetic information processing, 

and environmental information processing were significantly different between HC and 

CD and between CD and UC, except for genetic and environmental information 

processing for the latter comparison (Figure 38). Deeper levels of functional categories 

showed a gain of 25 functional groups out of 48 in CD in comparison with HC, and of 24 

groups in comparison with UC (Figure 39). Most of the groups related to metabolism 

were affected in CD, only lipid, xenobiotics and nucleotide metabolism were not altered 

in CD.  

We then assessed differences in functional categories between remission and relapse 

status of both IBD subtypes, UC and CD. We did not find significant differences for any 

functional category between both groups of disease activity.  

We analyzed differences in pathways between CD, UC and HC groups with samples from 

basal timepoint. For this purpose, HUMAnN2 generated pathway abundance tables 

annotated with the MetaCyc database. We identified 180 pathways that were 

significantly different between the three groups (Kruskal-Wallis test, FDR < 0.05). Among 

these 180 differentially abundant pathways, 173 differed between HC and CD, 152 

between CD and UC and only 11 were different between UC and HC (Table 22). 

Different bacteria contribute to these pathways. In some cases, just one species is 

responsible for the specific pathway, however, in other pathways, several bacteria are 

involved. HUMAnN2 stratifies the contribution of each species identified to each 

pathway. With this information we observed that when the pathway was more frequent 

in CD, the main contributor to this pathway was Escherichia coli whereas if the pathway 

was more present in UC or HC, the main contributor was Faecalibacterium prausnitzii 

(Figure 40). There were other species also implicated in the differential presence of 
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pathways, but it is important to comment that a high percentage of the reads were 

associated to unclassified bacteria. 

 

 

Figure 38. Most general level of functional categories differentially significant between UC, CD 

and HC.  Significant differences were found between CD patients and UC and HC individuals 

(Kruskal-Wallis test, FDR < 0.05). Only genetic and environmental information processing were 

not significantly different between UC and CD. 
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Figure 39. Functional categories significantly different between HC, UC and CD. Kruskal-Wallis 

test (FDR < 0.05) identified significant differences between CD and UC and CD and HC. No 

significant differences were identified between UC and HC for the 7.31% of reads that were 

assigned to KO ids.  
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Table 22. Significant pathways between HC, UC and CD. Kruskal-Wallis test, 21 lower FDR shown. FDR column corresponds to FDR correction for Kruskal-

Wallis test between the three groups. Values represent the difference in abundance for each pathway between both groups.  In red, pathways enriched in 

CD, in blue, pathways enriched in HC and in yellow, pathways enriched in UC. Blank spaces indicate that those pathwats are not significantly different in that 

comparison.  

 
FDR CD vs HC CD vs UC UC vs HC 

PWY 6590: superpathway of Clostridium acetobutylicum acidogenic fermentation 3,90744E-07 -1,99557E-05 -1,03473E-05 -9,60837E-06 

CENTFERM PWY: pyruvate fermentation to butanoate 3,90744E-07 -1,63419E-05 -8,28179E-06 -8,06015E-06 

ORNDEG PWY: superpathway of ornithine degradation 1,13339E-05 1,45146E-05 1,56961E-05 
 

PWY 5177: glutaryl CoA degradation 5,18047E-05 -3,76187E-05 -4,55392E-05 
 

ARGDEG PWY: superpathway of L arginine: putrescine: and 4 aminobutanoate degradation 9,72264E-05 1,48189E-05 1,59594E-05 
 

ORNARGDEG PWY: superpathway of L arginine and L ornithine degradation 9,72264E-05 1,48189E-05 1,59594E-05 
 

PWY 6891: thiazole biosynthesis II: Bacillus  0,000109226 7,14261E-06 7,73566E-06 
 

AST PWY: L arginine degradation II: AST pathway  0,000109226 1,42823E-05 1,5198E-05 
 

PWY 5138: unsaturated: even numbered fatty acid: beta: oxidation 0,000109226 3,55989E-05 3,91158E-05 
 

PWY 6895: superpathway of thiamin diphosphate biosynthesis II 0,000126441 5,3217E-05 6,29532E-05 
 

PWY 7315: dTDP N acetylthomosamine biosynthesis 0,000177144 -9,74453E-06 -1,13916E-05 
 

PWY 241: C4 photosynthetic carbon assimilation cycle: NADP ME type 0,000177144 1,44685E-05 1,56279E-05 
 

PWY0 1338: polymyxin resistance 0,000177144 3,64182E-05 3,93648E-05 
 

PWY4FS 7: phosphatidylglycerol biosynthesis I: plastidic  0,000178079 6,76858E-05 5,68549E-05 
 

PWY4FS 8: phosphatidylglycerol biosynthesis II: non plastidic  0,000178079 6,76856E-05 5,68555E-05 
 

ENTBACSYN PWY: enterobactin biosynthesis 0,000197023 4,65383E-05 5,05745E-05 
 

PWY0 1533: methylphosphonate degradation I 0,000271262 2,00153E-05 2,14029E-05 
 

PWY 2723: trehalose degradation V 0,000313081 -4,03135E-05 -4,99447E-05 
 

PWY 7456: mannan degradation 0,000313081 1,99064E-05 2,13335E-05 
 

ECASYN PWY: enterobacterial common antigen biosynthesis 0,000313081 1,98453E-05 2,15688E-05 
 

PWY 7409: phospholipid remodeling: phosphatidylethanolamine: yeast  0,000313081 2,26582E-05 2,40709E-05 
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Figure 40. Examples of significantly abundant pathways between HC, UC and CD and their 

species stratification. The first two figures represent pathways that were more frequent in UC 

and HC, the main driver of these pathways is F. prausnitzii whereas in the last two figures, the 

main driver is E. coli and are more present in CD than in UC or HC. Phytate degradation pathway 

also shows the difference between HC and UC mainly driven by A. muciniphila. 
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This doctoral thesis represents one of the biggest studies of IBD patients that combines 

16S rDNA and shotgun sequencing data. In the following lines, I will discuss the main 

topics addressed that include: microbial dysbiosis in IBD, microbiota as a diagnostic tool 

and the comparison between 16S and shotgun sequencing and functional analysis of the 

microbiome in IBD.  

 

Dysbiosis in IBD 

In this study, we reported IBD-associated changes in fecal samples, confirming, clarifying 

and complementing previous studies. We confirmed dysbiosis in IBD samples and we 

found differences between IBD subtypes. Although UC and CD share many 

epidemiologic, immunologic, therapeutic and clinical features and have been studied 

together along the years, we have confirmed that they are two distinct subtypes at the 

microbiome level as demonstrated in other studies in IBD adult cohorts (Andoh et al. 

2011; Forbes et al. 2018).  

Our results showed that CD had lower diversity than UC and healthy whereas UC 

presented similar alpha diversity than healthy individuals, which agrees with previous 

studies in adult and some pediatric cohorts (Forbes et al. 2018; Hansen, Richard K 

Russell, et al. 2012; Shah et al. 2016). However, the difference between IBD subtypes is 

still a subject of debate, as recent pediatric studies have found few differences between 

UC and CD and consider both subtypes of IBD as a unique disease (Knoll et al. 2016; 

Malham et al. 2019; Michail et al. 2012). 

We found ten genera consistent between 16S rDNA and shotgun sequencing to suffer 

changes in CD with respect to healthy. Our findings suggest that the microbiome shifts 

in CD are more associated with a loss of commensal symbionts (beneficial 

microorganisms) than with a gain of pathobionts. Beneficial microorganisms in the IBD 

context include butyrate producing bacteria, such as Faecalibacterium (F. praunitzii) 

(Khan et al. 2012), Methanobrevibacter (M. smithii), Butyricicoccus (B. pullicaecorum) or 

Coprococcus; many species of Ruminococcus (except for Ruminococcus gnavus that was 

enriched in CD patients) that participate in the degradation of cellulose; Aldercreutzia 

(A. equolifaciens), a isoflavone degrader that produces equo, a substance with reported 



Marta Pozuelo del Río   

114 
      

beneficial properties (Sheflin et al. 2017); and Collinsella (C. aerofaciens), a carbohydrate 

degrader. All these genera may interact with the gut immune system to maintain 

homeostasis. Our findings replicate previous results regarding butyrate-producing 

bacteria (Eeckhaut et al. 2013; Takahashi et al. 2016) and Ruminococcus (Hall et al. 2017; 

Takahashi et al. 2016) species. Pathobionts or potential pathogenic microorganisms 

include Fusobacterium (F. nucleatum) or Escherichia (E. coli). Fusobacterium has been 

associated with infections (Huggan and Murdoch 2008) and colorectal cancer (Kostic et 

al. 2012; Leung, Tsoi, and Yu 2015) whereas Escherichia has been related to IBD 

(Darfeuille-Michaud et al. 2004; Wright et al. 2015). Moreover, shotgun sequencing 

identified Saccharomyces cerevisiae (fungi) as more frequent in CD than in healthy 

controls, in accordance with previous microbiome studies based on antibodies 

(Vermeire et al. 2001). This finding contradicts previous research by Sokol and 

colleagues who showed a decrease of S. cerevisiae in CD patients in comparison with 

healthy and UC individuals using quantitative real-time PCR (qPCR) (Sokol et al. 2017). 

Therefore, further studies are needed to elucidate the effects of IBD on fungi.  

Our analyses revealed that dysbiosis in UC was much lower than in CD patients. The 

relative abundance of only three genera were consistently altered in UC in both 

technical approaches. Dysbiosis in UC is probably driven, by the species Akkermansia 

muciniphila, more frequent in healthy individuals and Peptostreptococcus anaerobius 

and two species of Parvimonas, in higher abundance in UC patients, as determined by 

shotgun sequencing. Our finding on the alteration of Akkermansia muciniphila agrees 

with previous studies which also showed higher abundances of this species in healthy 

individuals (Malham et al. 2019; Shah et al. 2016). This bacterium works as a mucin 

degrader (Derrien et al. 2004) in the human gut and has been widely studied. It 

constitutes one of the main symbionts that live in the human gut increasing the function 

of the intestinal barrier (de Vos 2017). Plovier and colleagues showed that A. muciniphila 

contributed to the recovery of health status in obese and diabetic mice, showing its 

capacity for indicating a health metabolism (Plovier et al. 2017). In accordance with our 

study, Masoodi and colleagues described an increase of Parvimonas together with a 

decrease of  Verrucomicrobiales (A. muciniphila phylum) in UC patients (Masoodi et al. 

2019). Finally, Peptostreptococcus anaerobius has been recurrently found more 
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frequent in patients with UC and colorectal cancer which agrees with our findings (Fite 

et al. 2013; Furrie et al. 2004; Yang and Jobin 2017).  

Alterations in microbial composition between CD and UC follow a similar pattern than 

between healthy individuals and CD: CD is depleted of commensal symbionts 

(Faecalibacterium, Copropococcus, Ruminococcus, Collinsella and Aldercreuitzia) and 

enriched of few pathobionts (Escherichia and Fusobacterium) in comparison with UC. 

The overall results confirm higher dysbiosis in CD than UC and similar microbial 

composition between UC patients and healthy individuals with small shifts in microbial 

composition as previously described (Gophna et al. 2006).   

Besides the identified common bacteria between both methodologies, other 

microorganisms had different frequencies between the three groups of the study (HC, 

UC and CD) in one of the techniques. For example, shotgun data revealed a lower 

abundance of Eubacterium and Subdoligranulum in CD samples compared to UC and HC, 

in agreement with previous published works (Kaakoush et al. 2012a; Takahashi et al. 

2016). These genera were not either differentially detected nor even detected, 

respectively, by 16S rDNA data. Shotgun sequencing unveiled Bifidobacterium bifidum 

as being more frequent in UC patients in comparison with healthy subjects, however, 

previous studies detected another species of Bifidobacterium, Bifidobacterium breve, in 

higher abundance in UC patients (Franzosa et al. 2019). This result could suggest that 

Bifidobacterium genus are altered in UC (Forbes et al. 2018) although we did not find 

this difference with 16S rDNA sequencing. Therefore, further studies are required to 

clarify these findings. In the case of 16S rDNA data, for which we only worked at genus 

taxonomical level due to the lack of accuracy for the use of 16S sequences at the species 

level, we observed that Prevotella and Oscillospira were enriched in HC and UC 

compared to CD in agreement with previous studies (Douglas et al. 2018; Kaakoush et 

al. 2012b; Masoodi et al. 2019). However, these genera were not differentially detected 

nor even detected, respectively, using shotgun data.  

Functional profiling with KEGG modules of IBD stool samples confirmed greater 

dysbiosis in CD than UC in comparison with healthy individuals. Genes implicated in this 

dysbiosis are mainly associated with a diverse variety of metabolic pathways (such as 

carbohydrates, amino acids or terpenoids), cellular processes and immune diseases. 
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Such genes were enriched in CD samples in comparison with healthy subjects or UC 

patients. Changes in metabolism of cysteine and nucleotides in IBD have been already 

described showing more abundance in UC and CD than in healthy individuals (Morgan 

et al. 2012), however, differences between subtypes of IBD, have not been proposed 

yet. Very few pathways were altered between UC and healthy individuals, this was not 

the case of CD what again confirms the higher dysbiosis in CD. Interestingly, the 

annotation of genes with the MetaCyc pathways database allowed us to detect higher 

abundance of genes involved in metabolic pathways driven by E. coli in CD compared to 

healthy controls and UC, whereas, genes involved in pathways driven by F. prausnitzii 

were more abundant in healthy subjects and UC compared to CD. This is the case of the 

glutaryl-CoA degradation pathway (Figure 40). Glutaryl-CoA is a molecule implicated in 

the pathway from glutarate to butyrate. A lack of genes able to degrade this molecule, 

will end in a reduction of butyrate production (Vital, Howe, and Tiedje 2014). This result 

confirms our results suggesting a lack of butyrate-producing bacteria in CD patients. On 

the other hand, E. coli mainly drives the superpathway of D-glucarate and D-galactarate 

that is more present in CD patients than in UC and healthy subjects. This pathway is part 

of the carbohydrate metabolism and as hypothesized by Miele and colleagues, IBD 

patients poorly absorb polysaccharides which may contribute to increase of specific 

bacteria, such as E.coli, producing malabsorption in the intestine. In this regards, high 

carbohydrate diets are restricted for IBD patients to avoid the overgrowth of these type 

of bacteria (Miele et al. 2018). Among the pathways altered in UC patients in comparison 

with healthy individuals, only one (phytate degradation) out of the eleven detected, was 

driven by differences in A. muciniphila, the main species altered in UC patients. The rest 

of the pathways were associated to unclassified bacteria so further analyses are 

required to figure out which are the species implicated in the differences between 

healthy individuals and UC patients.  

The main limitations of functional and pathway profiling are the lack of annotation of 

genes leading to a possible bias in the interpretation of the results (Li et al. 2014). In our 

study, the information given is based only on 7% of the reads that could be converted 

from genes to functions and pathways, so a great majority of reads could not be mapped 

to a known gene. Moreover, the vast majority of genes were not assigned to known 
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metabolic pathways (41.7% of the total annotated functions), and so the relative 

abundance of pathway-associated functions was quite small, biasing even more the 

analysis at the metabolic level (Li et al. 2014). Therefore, interpretation and conclusion 

on any results of the analyses should be taken with caution. Future work should focus 

on incrementing the functional annotation of genes in these databases.  

Dysbiosis described in this study could be associated with the differences in the level of 

inflammation that characterize each IBD subtype. Stronger alterations of microbial 

composition in CD could be explained by the more severe degree of a transmural 

inflammation detected in CD patients in comparison with UC in which the inflammation 

only affects the mucosa. Finally, both microbiome composition and functional analyses 

pointed out to a greater dysbiosis in CD compared to healthy subjects and UC patients.  

 

Microbiota as a diagnostic tool 

Differences in microbial composition between IBD subtypes opens the door to use 

microbiota as a diagnostic tool for IBD patients. Based on this idea, Guo and colleges 

proposed a combination of F. prausnitzii and F. nucleatum as a microbial biomarker to 

diagnose CD patients (Guo et al. 2019). We propose a more complex combination of 

microbial species based on absence or presence of eight genera to differentiate CD from 

non-CD using fecal samples. Our algorithm showed a good performance in the discovery 

cohort, specially discriminating non-IBD samples. The evaluation of the effectiveness of 

the microbial marker classifying CD in the independent validation cohort worsened, but 

it was more efficient identifying non-CD samples. These findings determine that our 

algorithm is very precise when correctly discarding non-CD samples. We also tested the 

performance of our microbial marker using the French IBD cohort. In this case, we 

obtained lower values of sensitivity and specificity.  

The slightly lower sensitivity of the Belgian cohort could be influenced by the use of all 

samples in the algorithm, independently of time, and by the different conditions of this 

cohort in comparison with the discovery cohort: Belgian CD patients suffer a more 

severe status of the disease and were subjected to an intervention during sample 

collection. Moreover, in the Belgium cohort, all the samples with CD who took 
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antibiotics were detected by the algorithm, suggesting that antibiotics intake prior to 

sampling did not affect detection by the algorithm. The worse performance of the 

microbial marker in the French cohort could be explained by a difference in the 

methodological approach or by the geographical difference between cohorts. The low 

accuracy obtained with the French cohort may point to a limitation of this method as a 

diagnostic tool, as the use of the microbial biomarker we are proposing could be 

restricted to the use of a similar methodology for microbial analyses (the V4 fragment 

of 16S rRNA gene with Illumina MiSeq). In summary, the use of the microbial marker is 

subjected to the cohort heterogeneity and depends on microbial extraction and 

sequencing approaches.  

These results suggest that the microbial marker proposed for IBD is an easy-to-use 

mechanism to classify CD versus non-CD of 16S rDNA (V4 fragment) sequencing fecal 

samples from Illumina MiSeq. However, further experimental designs could be proposed 

to evaluate the extent to which the method used here could be implemented in a 

laboratory.  

To evaluate another molecular technique to classify CD samples, we tested the 

performance of our microbial signature in samples analyzed with shotgun data. We 

obtained a sensitivity of 39% and a specificity of 84%, indicating that an algorithm 

proposed for 16S rDNA sequencing may not be appropriate for shotgun sequencing. A 

possible reason is that each technique detects a different subset of genera. For instance, 

unknown genus of Christensenellaceae, a genus detected in 16S and included in the 

microbial marker, was not even detected in shotgun sequencing. 

To improve the performance of the classification, we developed two new classifiers 

using machine learning: one for 16S rDNA sequencing and another for shotgun 

sequencing. Our classifiers clearly improved the sensitivity and specificity of the 

biomarker providing a good diagnostic tool for CD. The 16S rDNA classifier performed 

even better when applying in other cohorts so this classifier could be tested to be 

published as a diagnostic tool. The shotgun classifier showed lower performance when 

applied in other cohorts, probably due to geographical differences, as suggested in our 

comparison between the Spanish IBD cohort and the American and Dutch IBD cohorts. 

Moreover, the lower performance of shotgun data classification may be consequence 
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of overfitting due to the low number of samples, reducing accuracy when testing other 

cohorts. Previous studies by Papa and colleagues, provided the SLiME classifier that was 

trained on an IBD pediatric 16S rDNA dataset and was able to separate IBD samples from 

non-IBD samples (Papa et al. 2012). Franzosa and colleagues developed a classifier for 

IBD for shotgun sequencing with random forest model. Their random forest model 

provided similar accuracy than our tool and  their classifier was able to differentiate 

between UC, CD and healthy individuals depending on microbiome composition and/or 

metabolites (Franzosa et al. 2019). Franzosa’s classifier also worked worse with their 

Dutch validation cohort, supporting cohort heterogeneity as a limitation of IBD 

classifiers. 

Microbial changes in basal samples from patients that will later develop a recurrence of 

the disease could be used to create an algorithm that predicts a recurrence in time. Sokol 

and colleagues described differences in microbiome between active (recurrence) and 

non-active (remission) IBD with less load of F. prausnitzii in recurrence fecal samples 

(Sokol et al. 2009). In this line, other studies proposed differences between both status 

of the disease with lower proportions of Subdoligranulum or Butyricicoccus in active IBD 

(Papa et al. 2012). However, we did not find differences between both groups of basal 

samples. Moreover, we did not detect variations in the gut microbiome with time and 

disease severity in any IBD subtype using either 16S rDNA or shotgun data. Therefore, 

we were not able to develop a recurrence predictor based on microbiota changes using 

our cohort and methodology. Future studies should investigate further other statistical 

approaches using machine learning tools to analyze these data such as a combination of 

Random Forest and C5.0, method to visualize the classification decision process.   

The microbial biomarker and the machine learning classifier can lead to new non-

invasive diagnostic tools which may be valuable to assess patients with non-specific 

signs and symptoms suggestive of IBD, thereby facilitating clinical decision-making when 

the diagnosis of CD is initially uncertain. Indeed, these tools could be combined with 

either imaging techniques or calprotectin data to confirm diagnosis. Moreover, 

situations in which the diagnosis is uncertain between UC and CD (localized in the colon) 

even with colonoscopy, these tools could help to elucidate whether the sample 

corresponds to one or another subtype of IBD.  
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Comparison of 16S and shotgun sequencing 

Nowadays, many investigators are sceptic about the use of 16S rDNA. This thesis can 

provide guidelines to choose between 16S rDNA sequencing and shotgun sequencing, 

an unresolved topic in metagenomic studies. We compared microbial taxonomic 

assignment from phylum to genera between both techniques and determined that 

although only 17.5% of genera detected were common between both methods, 

however, these common genera constituted more than 70% of the bacterial abundance 

of reads assigned. Moreover, abundances of common bacteria in both methodologies 

were highly correlated. The main microbial species implicated in the differences 

between CD, UC and healthy subjects that have been widely described, corresponded 

to bacteria that were detected in both techniques.  

Both methodologies can be used indistinctly and efficiently to distinguish CD from non-

CD, demonstrating that both techniques may be adequate diagnosis tests. However, the 

cost of 16S rDNA sequencing is much lower than the cost of shotgun sequencing and the 

analyses are less time-consuming so, if the effectiveness of the diagnostic tool is similar, 

16S rDNA will allow the analyses of much more samples in less time and with lower cost. 

Nevertheless, if the objective of the study focuses on detecting a determined species or 

function, shotgun sequencing would be more appropriate. Moreover, if researchers are 

searching for fungus or viruses, shotgun sequencing should be chosen as it allows the 

detection of these microorganisms, whereas 16S rDNA sequencing is specific for 

bacteria.  

The characterization of dysbiosis in IBD has shown that although main bacteria 

implicated in differences between groups are common between shotgun and 16S data, 

other microorganisms were only identified by one or the other technique. At this point, 

we need to deal with two type of results: bacteria detected only in one technique and 

bacteria that was significantly different in one technique but not in the other. The first 

case could be explained by differences in databases such as annotation or lack of 

determined species whereas the second problem suggests that working with only one 

gene instead of working with more than one marker gene as it is the case of MetaPhlAn 

for taxonomic assignation in shotgun sequencing, could produce differences in 
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abundances detected for each bacteria, especially for those that do not differ so much 

between groups.  

 

Limitations and strengths  

This study has several strengths but also limitations. We have worked with a large IBD 

cohort comparing two different approaches, shotgun and 16S rDNA sequencing. Until 

now, studies combining shotgun and 16S rDNA sequencing techniques have focused 

their efforts on finding compositional dysbiosis with 16S rDNA and functional dysbiosis 

with shotgun sequencing, however, to our knowledge, studies have not provided the 

comparison of both techniques.  

Although we are working with a large cohort, we only analyzed CD patients with the 

disease localized in the ileum or ileo-caecal section of the gut. To complete this study, 

the cohort should include patients with CD localized only in colon to confirm that the 

results are extensive to all CD subtypes. Moreover, our cohort lacks IBD adult patients 

recently diagnosed, treatment free. Many of the previous studies of IBD are based on 

pediatric cohorts of recently diagnosed IBD patients, however, to the best of our 

knowledge, none has been performed in adults.  

Validation cohorts used in this thesis by the 16S rDNA approach constitute another 

drawback. Only the French cohort is equivalent to our cohort as it contains healthy, UC 

and CD individuals. However, the samples were processed with a different technique 

than ours, adding another potential source of heterogeneity besides geography. The 

other cohorts used only included CD, UC or healthy individuals, so differences between 

patient’s status is confounded by the cohort. This limitation arose from the lack of 

publicly available cohorts with similar characteristics to ours, which challenged the 

comparison of the results between studies. This problem demonstrates that uploading 

data and clear metadata is very important to improve research, because comparisons 

between cohorts can bring more knowledge about specific diseases. Not only, providing 

data is important, but also standardize techniques of analyses to avoid confounding 

factors as much as possible.  
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A general limitation of most microbial studies is the use of relative abundances of 

bacteria instead of considering absolute values associated with microbial load. 

Vandeputte and colleagues studied how significant differences changed between 

relative and absolute counts, comparing qPCR and flow cytometric loads, between 

healthy and CD individuals. They showed that Bacteroides was significantly different in 

relative counts but not in absolute values whereas Prevotella followed the inverse 

association (Vandeputte et al. 2017) suggesting that depending on the method used, 

interpretation and conclusions could highly differ.  
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The results of the present doctoral thesis, despite the limitations, offer valuable insights 

into the involvement of the microbiota in inflammatory bowel disease, leading to the 

following conclusions: 

1. Alterations of gut microbiota are associated with IBD showing greater dysbiosis 

in Crohn’s disease than in ulcerative colitis at the metagenomic level. Crohn’s 

disease is characterized by a loss of beneficial bacteria such as Faecalibacterium 

prausnitzii, butyrate-producing bacteria, than by an increment of pathobionts 

such as Escherichia coli and Fusobacterium nucleatum whereas ulcerative colitis 

is more similar to healthy individuals with small shifts in the microbial 

community. 

 

2. Microbial composition can distinguish between Crohn’s disease and ulcerative 

colitis which could be used as a diagnostic tool in the future to avoid invasive 

techniques. However, the use of the microbial signature and classifiers proposed 

should be further evaluated on different techniques of fecal sample processing 

in order to standardize and generalize this approach.  

 

3. Shotgun and 16S rDNA sequencing techniques provide similar results for 

classifying IBD subtypes, however, depending on the objective and the budget, 

one method may be more appropriate than the other. Shotgun sequencing 

appears to be more appropriate for microbial identification at strain or species 

levels and functional profiling whereas 16S rDNA data, a much cheaper 

technique, performs efficiently the IBD subtype classification.  

 

4. Functional analyses in IBD provide similar conclusions than microbial 

compositional analyses for both subtypes of the disease. Shifts in genes and 

functions mainly occur in CD whereas UC is similar to healthy individuals. Those 

changes appear in pathways detected in bacteria mainly altered in CD and are 

associated principally to metabolism.  

 

5. Functional profiling is still poorly characterized in all metagenomic analyses and 

we must be cautious about the interpretation of the results. There may be other 
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interesting between-group differences that are hidden in the proportion of 

unknown genes, which might reveal themselves in future re-analyses, 

strengthen by improved gene annotation. 

 

6. Altogether, our study validates and clarifies previous works as for the alteration 

of the gut microbial community of IBD patients and provide new insights in the 

distinction between Crohn’s disease and ulcerative colitis at the taxonomic and 

functional levels. Further studies will be needed to validate our findings and our 

microbial marker to apply it in clinical practice 
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Future efforts in IBD should be focused on finding the main differences between 

inflammation status using other information sources. We did not find differences in 

microbial composition nor in genes composition, however, we are blind about the genes 

that were expressed at the time of sampling. Metatranscriptomics, proteomics and 

metabolomics could be used to elucidate genes, pathways and metabolites that could 

be influencing the inflammation in the gut.  

To apply microbiome as a diagnostic tool as proposed in this thesis, both the microbial 

biomarker and the classifiers should be evaluated in additional cohorts, with other CD 

subtypes, disease localizations, newly diagnosed patients or different geography to test 

the accuracy of the diagnostic tool. Moreover, to try to overcome the geographical 

microbial differences, a classifier could be developed considering several cohorts from 

different precedencies to maximize differences caused by the disease.  

Finally, together with fecal microbiome composition as a potential as diagnostic tool, as 

microbiota changes seem to play an important role in IBD, researchers may center they 

attention on finding a way to restore microbial composition on IBD patients. Fecal 

microbial transplantation has been studied in IBD patients, showing very modest 

response for both IBD subtypes, though may be more efficient in UC than in CD. This 

difference could be explained by the higher dysbiosis of CD patients in comparison with 

UC and the fact that UC patients share a high proportion of microbial composition with 

healthy individuals. Future investigations should focus on in improving FMT techniques 

for IBD patients and find a way to restore Akkermansia muciniphila proportion in UC 

patients or Faecalibacterium prausnitzii in CD patients. However, restoring only gut 

microbiota composition in IBD patients to ameliorate patient’s symptoms may still be a 

great challenge since both the microbiome composition and the host immune system 

are pointed out to be the cause of the disease. Therefore, future study designs should 

include the evaluation of the effect of FMT combined with for instance anti-

inflammatory drugs. 
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A microbial signature for Crohn’s disease
Victoria Pascal,1 Marta Pozuelo,1 Natalia Borruel,1,2 Francesc Casellas,1,2

David Campos,1 Alba Santiago,1 Xavier Martinez,1 Encarna Varela,1

Guillaume Sarrabayrouse,1 Kathleen Machiels,3 Severine Vermeire,3 Harry Sokol,4

Francisco Guarner,1,2 Chaysavanh Manichanh1,2

ABSTRACT
Objective A decade of microbiome studies has linked
IBD to an alteration in the gut microbial community of
genetically predisposed subjects. However, existing
profiles of gut microbiome dysbiosis in adult IBD patients
are inconsistent among published studies, and did not
allow the identification of microbial signatures for CD
and UC. Here, we aimed to compare the faecal
microbiome of CD with patients having UC and with
non-IBD subjects in a longitudinal study.
Design We analysed a cohort of 2045 non-IBD and
IBD faecal samples from four countries (Spain, Belgium,
the UK and Germany), applied a 16S rRNA sequencing
approach and analysed a total dataset of 115 million
sequences.
Results In the Spanish cohort, dysbiosis was found
significantly greater in patients with CD than with UC,
as shown by a more reduced diversity, a less stable
microbial community and eight microbial groups were
proposed as a specific microbial signature for CD. Tested
against the whole cohort, the signature achieved an
overall sensitivity of 80% and a specificity of 94%,
94%, 89% and 91% for the detection of CD versus
healthy controls, patients with anorexia, IBS and UC,
respectively.
Conclusions Although UC and CD share many
epidemiologic, immunologic, therapeutic and clinical
features, our results showed that they are two distinct
subtypes of IBD at the microbiome level. For the first
time, we are proposing microbiomarkers to discriminate
between CD and non-CD independently of geographical
regions.

INTRODUCTION
CD and UC, the two main forms of IBD with a
similar annual incidence (10–30 per 100 000 in
Europe and North America), have both overlapping
and distinct clinical pathological features.1 Given
that these conditions do not have a clear aetiology,
diagnosis continues to be a challenge for physicians.
Standard clinical testing to diagnose CD and UC
includes blood tests and stool examination for bio-
marker quantification, endoscopy and biopsy. The
diagnosis of IBD, particularly CD, can be missed or
delayed due to the non-specific nature of both
intestinal and extra-intestinal symptoms at presenta-
tion. In this regard, non-invasive, cost-effective,
rapid and reproducible biomarkers would be
helpful for patients and clinicians alike.

Dysbiosis, which is an alteration of the gut
microbial composition, has been reported in IBD
over the last 10 years.2–5 Patients with IBD, in par-
ticular patients with CD, are associated with a

Significance of this study

What is already known on this subject?
▸ Microbiome in Crohn’s disease (CD) is

associated with a reduction of faecal microbial
diversity and plays a role in its pathogenesis.

▸ Faecalibacterium prausnitzii and Escherichia
coli, in particular, were found decreased and
increased, respectively, in CD.

▸ No clear comparison between dysbiosis in CD
and in UC has been performed.

▸ Longitudinal study of the intestinal microbiome
in adult patients with IBD has also been poorly
investigated in large cohorts.

What are the new findings?
▸ Dysbiosis is greater in CD than in UC, with a

lower microbial diversity, a more altered
microbiome composition and a more unstable
microbial community.

▸ Different microbial groups are associated with
smoking habit and localisation of the disease
in CD and UC.

▸ Eight groups of microorganisms including
Faecalibacterium, an unknown
Peptostreptococcaceae, Anaerostipes,
Methanobrevibacter, an unknown
Christensenellaceae, Collinsella and
Fusobacterium, Escherichia could be used to
discriminate CD from non-CD; the six first
groups being in lower relative abundance and
the last two groups in higher relative
abundance in CD.

How might it impact on clinical practice in
the foreseeable future?
▸ Considering CD and UC as two distinct

subtypes of IBD at the microbiome level could
help designing specific therapeutic targets.

▸ The microbial signature specific to CD
combined with either imaging techniques or
calprotectin data could help decision-making
when the diagnosis is initially uncertain among
CD, UC and IBS.
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lower microbial α-diversity and are enriched in several groups
of bacteria compared with healthy controls (HC). Using faecal
samples and culture-independent techniques, including qPCR,
T-RFLP, cloning/Sanger, pyrosequencing or Illumina sequencing,
several studies have reported that CD is associated with a
decrease in Clostridiales such as Faecalibacterium prausnitzii
and an increase in Enterobacteriales such as Escherichia coli.6–8

Patients with UC are associated to some extent with a decrease
in microbial diversity; however, no strong dysbiosis has been
reported compared with healthy controls or patients with CD.5

Although many studies have revealed a clear association between
an altered microbiome and IBD, they have not addressed the
differences between CD and UC at the microbiome level nor
have proposed a set of biomarkers that is useful for diagnosis
based on stool samples.9

To deeply characterise the microbiome of UC and CD, we
combined 669 newly collected samples with 1376 previously
sequenced ones, thus building one of the largest cohorts cover-
ing sequence data generated from four countries (Spain,
Belgium, the UK and Germany). Our findings reveal that CD
and UC are two distinct intestinal disorders at the microbiome
level. We also developed and validated a microbial signature for
the detection of CD.

METHODS
Study design
We performed a cohort study (Spanish IBD cohort) to identify
microbial biomarkers for CD and validated the outcome with
several other published and unpublished studies: a Belgian CD
cohort, a Spanish IBS cohort, a UK healthy twin cohort and a
German anorexic cohort. The Belgian CD cohort was part of an
unpublished study, whereas the other cohorts were from pub-
lished research. For the Spanish IBD and Belgian CD cohorts,
the protocols were submitted and approved by the local Ethical
Committee of the University Hospital Vall d’Hebron (Barcelona,
Spain) and of the University Hospital Gasthuisberg in Leuven
(Belgium), respectively. All volunteers received information con-
cerning their participation in the study and gave written
informed consent.

Study population
To study differences in the microbiome composition between
IBD and healthy subjects and between inactive and active
disease (remission vs recurrence), 34 patients with CD and 33
patients with UC were enrolled for a follow-up study in the
Spanish cohort. Inclusion criteria were a diagnosis of UC and
CD confirmed by endoscopy and histology in the past, clinical
remission for at least 3 months—defined by the validated colitis
activity index (CAI) for UC and the CD activity index (CDAI)
for CD,10 stable maintenance therapy (either amino-salicylates,
azathioprine or no drug) and previous history of at least three
clinical recurrences in the past 5 years. HC were without previ-
ous history of chronic disease. At inclusion and during the
follow-up (every 3 months), we collected diagnostic criteria,
location and behaviour of CD, extension of UC, and clinical
data including tobacco use and medical treatment. Clinical
recurrence was defined by a value of 4 or higher for CAI and
higher than 150 for CDAI. Blood samples were collected to
assess ESR, the blood cell count and CRP. Exclusion criteria
included pregnancy or breast-feeding, severe concomitant
disease involving the liver, heart, lungs or kidneys, and treat-
ment with antibiotics during the previous 4 weeks. A total of
415 faecal samples for microbiome analysis were collected from
178 participants (111 HC and 67 patients with IBD) at various

time points (table 1). Patients with CD and UC who showed
recurrence during the study also provided a stool sample at the
time of recurrence.

In the Belgian prospective cohort, 54 patients with CD under-
going curative ileocecal resection of the diseased bowel were
included at the University Hospital Leuven. Originally, patients
with CD were enrolled before ileocecal resection in order to
study early triggers of inflammation and to unravel the sequence
of events before and during the development of early inflamma-
tory lesions. A total of 187 faecal samples were collected at four
time points before and during the postoperative follow-up
period (baseline, 1, 3 and 6 months after surgery) for micro-
biome analysis. Baseline characteristics are shown in table 1.

Faecal microbiome analysis
Sample collection and genomic DNA extraction
Faecal samples collected in Spain and Belgium were immediately
frozen by the participants in their home freezer at −20°C for
the Spanish cohort and cooled (maximum 24 hours) for the
Belgian cohort and later brought to the laboratory in a freezer
pack, where they were stored at −80°C. Genomic DNA was
extracted following the recommendations of the International
Human Microbiome Standards (IHMS; http://www.
microbiome-standards.org).11 A frozen aliquot (250 mg) of each
sample was suspended in 250 mL of guanidine thiocyanate,
40 mL of 10% N-lauroyl sarcosine, and 500 mL of 5%
N-lauroyl sarcosine. DNA was extracted by mechanical disrup-
tion of the microbial cells with beads, and nucleic acids were
recovered from clear lysates by alcohol precipitation. An equiva-
lent of 1 mg of each sample was used for DNA quantification
using a NanoDrop ND-1000 Spectrophotometer (Nucliber).
DNA integrity was examined by micro-capillary electrophoresis
using an Agilent 2100 Bioanalyzer with the DNA 12 000 kit,
which resolves the distribution of double-stranded DNA frag-
ments up to 17 000 bp in length.

High-throughput DNA sequencing
For profiling microbiome composition, the hyper-variable region
(V4) of the bacterial and archaeal 16S rRNA gene was amplified
by PCR. On the basis of our analysis done using Primer
Prospector software,12 the V4 primer pairs used in this study were
expected to amplify almost 100% of the bacterial and archaeal
domains. The 50 ends of the forward (V4F_515_19: 50-
GTGCCAGCAMGCCGCGGTAA -30) and reverse (V4R_806_20:
50- GGACTACCAGGGTATCTAAT -30) primers targeting the 16S
gene were tagged with specific sequences as follows:
50-{AATGATACGGCGACCACCGAGATCTACACTATGGTAAT-
TGT}12 {GTGCCAGCMGCCGCGGTAA}-30 and 50-{CAAGCA
GAAGACGGCATACGAGAT} {Golay barcode} {AGTCAGTCA
GCC} {GGACTACHVGGGTWTCTAAT}-30. Multiplex identi-
fiers, known as Golay codes, had 12 bases and were specified
downstream of the reverse primer sequence (V4R_806_20).13 14

Standard PCR (0.15 units of Taq polymerase (Roche) and
20 pmol/μL of the forward and reverse primers) was run in a
Mastercycler gradient (Eppendorf) at 94°C for 3 min, followed
by 35 cycles of 94°C for 45 s, 56°C for 60 s, 72°C for 90 s and
a final cycle of 72°C for 10 min. Amplicons were first purified
using the QIAquick PCR Purification Kit (Qiagen, Barcelona,
Spain), quantified using a NanoDrop ND-1000
Spectrophotometer (Nucliber) and then pooled in equal concen-
tration. The pooled amplicons (2 nM) were then subjected to
sequencing using Illumina MiSeq technology at the technical
support unit of the Autonomous University of Barcelona (UAB,
Spain), following standard Illumina platform protocols.
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Sequence data analysis
For microbiome analysis, we first loaded the raw sequences into
the QIIME 1.9.1 pipeline, as described by Navas-Molina et al.14

The first step was to filter out low quality sequence reads by
applying default settings and a minimum acceptable Phred score
of 20. Correct primer and proper barcode sequences were also
checked. After filtering, from a total of 2206 faecal samples, we
obtained a total of 115.5 millions of high-quality sequences
with a number of reads ranging from 1 to 223 896 per sample.
We used the USEARCH15 algorithm to cluster similar filtered
sequences into Operational Taxonomic Units (OTUs) based on a
97% similarity threshold. We then identified and removed chi-
meric sequences using UCHIME.16 Since each OTU can com-
prise many related sequences, we picked a representative
sequence from each one. Representative sequences were aligned

using PyNAST against Greengenes template alignment (gg_13_8
release), and a taxonomical assignment step was performed
using the basic local alignment search tool to map each repre-
sentative sequence against a combined database encompassing
the Greengenes and PATRIC databases. The script make_phylo-
geny.py was used to create phylogenetic trees using the FastTree
programme.17 To correctly define species richness for the ana-
lysis of between-sample diversity, known as β diversity, the OTU
table was rarefied at 6760 sequences per sample and kept for
further analysis a total of 2045 samples and 115.5 millions of
reads. Rarefaction is used to overcome cases in which read
counts are not similar in numbers between samples. The sum-
marise taxa table was used to classify taxa from the Domain to
the Species level. To provide community α diversity estimates,
we calculated the Chao1 and Shannon diversity indexes.18 19 To

Table 1 Baseline clinical characteristics of the patients with CD and UC

Baseline clinical characteristics CD Spanish cohort (n=34) CD Belgian cohort (n=53)
Comparison between
cohorts (p value)

Male/female (%) 13/21 (38.2/61.7) 28/25 (52.8/47.2) 0.201
Median (IQR) age at surgery (years) or at sample collection 34 (18 –58) 41.3 (26.5–52.9) 0.141
Median duration of disease (IQR) at surgery (years) or at sampling 6.5 (0–28) 15.7 (4.1–27.1) 0.0002
Maximum disease location (Montreal classification) 0.682

L1 ileal (%) 12 (35) 18 (34)
L2 colonic (%) 0 (0) 0 (0)
L3 ileocolonic (%) 22 (64.7) 35 (66)
L4 isolated upper disease (%) 2 (5.8) 2 (3.8)

Disease behaviour at surgery (Montreal classification) 0.009
B1 non-stricturing, non-penetrating (%) 3 (8.8) 2 (3.8)
B2 stricturing (%) 22 (64.7) 21 (39.6)
B3 penetrating (%) 5 (14.7) 30 (56.6)
p perianal disease (%) 3 (8.8) 15 (28.3)

Active smoking at surgery (%) 10 (29.4) 16 (30.2) 0.012
Medication at surgery or at sampling

Mesalamine–sulfasalazine (%) 4 (11.8) 4 (7.5) 0.012
Corticosteroids (%) 2 (2.9) 10 (18.9) 0.183
Immunosuppressants (%) 14 (41.1) 12 (22.6) 0.087
Anti-TNF (%) 12 (23.5) 7 (13.2) 0.023
Antibiotics (%) 0 (0) 9 (16.9) 0.033
Methotrexate 1 (2.9)
Other 10 (29.4)
None 1 (2.9)

UC Spanish cohort 1 (n=33) UC Spanish cohort 2 (n=41)

Male/female (%) 9/24 (27.2/72.7) 17/24 (41.4/58.5) 0.595
Median (IQR) age at sample collection 43 (24–62) 43 (24–68) 0.500
Median duration of disease (IQR) at sampling 9 (1–23) 10 (1–34) 0.392
Disease behaviour at sampling 0.208

E1 proctitis 9 (27.3) 18 (43.9)
E2 left sided colitis 11 (33.3) 10 (24.4)
E3 pancolitis 13 (39.4) 13 (31.7)

Medication at sampling
Mesalamine (%) 11 (24) 26 (63.4) 0.021
Corticosteroids (%) 2 (6) 0 0.617
Immunosuppressants (%) 8 (24) 0 0.026
Other 2 (6) 3 (7.3) 0.708
None 2 (4.8)

Comparison between cohorts have been performed; the χ2 test was applied to categorical variables, and the t-test was applied to continuous variables; when p<0.05 differences were
considered significant.
CD, Crohn’s disease; TNF, tumour necrosis factor.
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calculate between-sample diversity, weighted and unweighted
UniFrac metrics were applied to build phylogenetic distance
matrices, which were then used to construct hierarchical cluster
trees using Unweighted Pair Group Method with Arithmetic
mean and Principal Coordinate Analysis (PcoA) representations.

Statistical analyses
Statistical analyses were carried out in QIIME and in R. To
work with normalised data, we analysed an equal number of
sequences from all groups. The Shapiro-Wilk test20 was used to
check the normality of data distribution. Parametric normally
distributed data were compared by Student’s t-test for paired or
unpaired data; otherwise, the Wilcoxon signed rank test was
used for paired data and the Mann-Whitney U test for unpaired
data. The Kruskal-Wallis one-way test of variance21 was used to
compare the mean number of sequences of the groups, that is,
that of different groups of patients based on distinct parameters
with that of HC, at various taxonomic levels. The Friedman test
was used for one-way repeated measures of analysis of variance.
We used the mixed-analysis of variance (ANOVA), a mixed-
design ANOVA model, to take into account that repeated mea-
surements are collected in a longitudinal study in which change
over time is assessed. We performed analyses with the non-
parametric multivariate ANOVA (NPMANOVA) called the
adonis test, a non-parametric analysis of variance, to test for dif-
ferences in microbial community composition. We applied
Multivariate Association with Linear Models to find associations
between clinical metadata (age, body mass index (BMI), gender,
smoking habits, medication intake and site of disease) and
microbial community abundance. When possible, the analysis
provided false discovery rate (FDR)-corrected p values.
FDR<0.05 considered significant for all tests.

Faecal calprotectin assay
Faecal calprotectin (FC) was measured as a marker of intestinal
inflammation in a subset of the Spanish participants using a
commercial ELISA (Calprest; Eurospital SpA, Trieste, Italy), fol-
lowing the manufacturer’s instructions. Optical densities were
read at 405 nm with a microplate ELISA reader (Multiskan EX;
Thermo Electron Corporation, Helsinki, Finland). Samples were
tested in duplicate, and results were calculated from a standard
curve and expressed as μg/g stool.

Validation of the microbiomarkers
Investigators interested in testing our algorithm on their own
patient cohort and unable to apply by themselves the described
method are invited to contact us using our dedicated email
(cdmicrobiomarkers@gmail.com) to have their data processed.

RESULTS
CD more dysbiotic than UC
To characterise the microbial community of IBD we enrolled
178 participants (40 HC non-related to the patients, and 34
patients with CD and 33 patients with UC, and 36 and 35
healthy relatives (HR) of the patients with CD and UC, respect-
ively) in a longitudinal study (discovery cohort). HR were
patients’ first-degree relatives. However, information on
whether they were living in the same house as the patients at
the time of sampling was not available. Non-related HC pro-
vided a faecal sample at a single time point, whereas HR pro-
vided two samples within a 3-month interval. Patients with UC
and CD in remission provided samples at 3-month intervals
over a 1-year follow-up. When the patients with IBD developed
recurrence, they provided a faecal sample at the onset. During
the 1-year follow-up, 13 patients with CD (38%) and 18
patients with UC (54%) developed recurrence. A total of 415
samples were collected for microbiome analysis.

Using the weighted UniFrac distance, a metric used for com-
paring microbial community composition between samples, we
evaluated the stability of the microbiome of patients with UC
and CD over time, comparing samples at baseline with the fol-
lowing time points: 3, 6, 9 and 12 months. Over a 3-month
interval, patients with CD, but not patients with UC, showed
higher UniFrac distances compared with Healthy relatives (HR)
(Mann-Whitney test, p=0.01), thereby indicating a higher
instability of the CD microbiome compared with controls
(figure 1). Conversely, patients with UC presented a more stable
microbiome than their relatives (Mann-Whitney test, p=0.015).
Furthermore, over 1-year follow-up, we compared the UniFrac
distances obtained between samples collected at baseline and the
rest of the time points using the mixed-design ANOVA model, a
repeated measures analysis of variance. The results showed that
the microbiome of patients with CD was significantly more
unstable than that of patients with UC (mixed-ANOVA,
p<0.001).

We performed a multivariate analysis of variance on distance
matrices (weighted and unweighted UniFrac) using the
NPMANOVA test. The microbial community of the two groups
of controls (relatives (HR) and non-relatives (HC)) were not sig-
nificantly different from each other (p=0.126 for weighted and
unweighted UniFrac distances), except for one genus. Collinsella
was more abundant (Kruskal-Wallis test, 52×10−5 vs 1.7×10−5;
FDR=1.6×10−5) in HR compared with HC. Conversely, the
microbiome of patients with CD and UC was significantly differ-
ent from that of controls (relatives and non-relatives (All-HC))
(NPMANOVA test; p=0.001 for weighted and unweighted

Figure 1 Microbiome stability. Unweighted UniFrac distances were
calculated between different time periods for healthy relatives HR(CD)
(relatives of patients with CD), HR(UC) (relatives of patients with UC),
and patients with CD and UC (3M, 3 months; 6M, 6 months; 9M,
9 months; 12M, 12 months). CD-RC and UC-RC refer to samples
collected during recurrence onset. At 3-month interval, patients with
CD and UC presented significant differences in their UniFrac indexes
compared with their HR (Mann-Whitney U test, *p=0.01). We
compared the UniFrac indexes obtained between samples collected at
baseline and the rest of the time points using the mixed-design ANOVA
model and found that the microbiome of patients with CD was
significantly more unstable than that of patients with UC
(mixed-ANOVA, p<0.001). CD, Crohn’s disease.
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Figure 2 Dysbiosis in patients with IBD. (A) Microbiome clustering based on unweighted (left) and weighted (right) Principal Coordinate
Analysis-UniFrac metrics. Significant differences were observed between all controls (All-HC, combining HC, healthy relatives HR(CD) and HR(UC))
and patients with CD (NPMANOVA test; p=0.001 for weighted and unweighted UniFrac indexes) and between all controls and patients with UC
(NPMANOVA test, p=0.001 for unweighted and p=0.004 for weighted UniFrac). Microbial richness was calculated based on the Chao1 index (B, left)
and microbial richness and evenness on the Shannon index (B, right). Using the Student’s t-test, the microbiome of patients with CD presented
significantly lower richness and evenness than healthy controls (HC, HR(CD), and HR(UC)) and patients with UC, but patients in remission and in
recurrence (CD-RC and UC-RC) did not present significant differences. *p<0.05. (C) Taxonomic differences were detected between HC and UC and
between HC and CD using Kruskal-Wallis test (corrected p values; false discovery rate <0.01). CD, Crohn’s disease; NPMANOVA, non-parametric
multivariate analysis of variance.
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UniFrac distances for CD; p=0.001 for unweighted and
p=0.004 for weighted UniFrac distances for UC) (figure 2A).
Patients with CD and UC also showed a significant difference in
their microbiome (NPMANOVA test, p=0.001 for weighted
and unweighted UniFrac distances). Patients with CD but not
patients with UC showed a lower microbial α diversity com-
pared with the two groups of controls (p<0.05), as reflected by
the Chao1 and Shannon indexes (figure 2B).

At baseline, six genera were enriched in patients with CD
compared with 12 in HC (FDR<0.003). While only two genera
were enriched in patients with UC compared with one in HC
(FDR<0.03), thereby suggesting that dysbiosis is also greater in
CD than in patients with UC at the taxonomic level, with a sig-
nificant overall alteration in 18 genera versus 3, respectively
(figure 2C). In order to uncover microbial signatures of recur-
rence, we used the Kruskal-Wallis test to compare the faecal
samples of patients with UC and CD at the time of recurrence
with those of patients who remained in remission after 1 year of
follow-up. We did not find significant differences. Furthermore,
in order to discover the predictive value of recurrence in
patients with CD and UC, using the same test, we compared the
baseline faecal samples of those who developed recurrence later
on (n=13 for CD and n=18 for UC) with those who remained
in remission after 1 year of follow-up (n=21 for CD and n=15
for UC). The results did not reveal any biomarker predictive of
recurrence either for CD or UC.

Our results indicate that a loss of beneficial microorganisms is
more associated with patients with CD than a gain of more patho-
genic ones. The beneficial microorganisms include those involved
in butyrate production such as Faecalibacterium,22

Christensenellaceae, Methanobrevibacter and Oscillospira. Our
findings confirm the results of many other studies reporting the
lower relative abundance of Faecalibacterium in patients with CD
and also show that this genus is not missing in patients with UC,
thus making it a useful marker to discriminate patients with CD
from patients with UC. Christensenellaceae, Methanobrevibacter
and Oscillospira have been correlated with subjects with a low

BMI (<25),23–25 and they may interact with the gut immune
system to maintain homeostasis. Potential pathogenic microorgan-
isms, termed pathobionts, include Fusobacterium and Escherichia.
The former is associated with infections26 and colorectal
cancer27 28 and the latter with IBD.8 29

Relation between microbiome, smoking habit and clinical
data
Previous works have shown that smoking habit is associated
with IBD.30 Therefore, we tested the link between smoking and
disease severity (remission and recurrence) using the χ2 test. We
found no link between being a smoker or ex-smoker and disease
severity. We then studied the association between relative abun-
dance of groups of bacteria and smoking habit using the
Kruskal-Wallis test. In patients with CD, a genus belonging to
Peptostreptococcaceae was present in a higher proportion in
smokers (FDR=0.006), while Eggerthella lenta was found in a
higher proportion in non-smokers (see online supplementary
material 1). In patients with UC, we observed that smokers pre-
sented a greater abundance of Butyricimonas, Prevotella and
Veillonellaceae (FDR<0.04), while non-smokers had a higher
proportion of Clostridiaceae and Bifidobacterium adolescentis
(FDR<0.03). We also examined the link between the relative
abundance of groups of bacteria and disease localisation for CD
and extension for UC (obtained by the Montreal classifica-
tion).31 In patients with CD, the disease was localised mostly in
the ileum (L1, 35%) and in the ileocolon (L3, 64.7%). The
Mann-Whitney test revealed that Enterococcus faecalis and an
unknown species belonging to Erysipelotrichaceae were more
abundant in stool when the disease was localised in the ileum
than in the ileocolon. In patients with UC, the distribution of
disease behaviour at sampling was as follows: proctitis (E1,
27.3%), left-sided colitis (E2, 33.3%) and pancolitis (39.4%).
Using the Kruskal-Wallis test, we correlated disease behaviour
and microbial community composition and found that proctitis
was associated with a greater relative abundance of an unknown
Clostridiales, Clostridium, an unknown Peptostreptococcaceae
and Mogibacteriaceae (FDR<0.05) in stool. Finally, we did not
find any relation between the medication use (table 1) and
microbiome composition.

Microbial marker discovery
The effectiveness of FC to measure IBD activity was assessed on
a subset of faecal samples (from the discovery cohort) provided
by 122 participants (figure 3). For patients with CD and UC,
FC was measured at baseline and either after 1-year in remission
or at recurrence. During remission, FC was significantly higher
in patients with CD and UC than in their HR and significantly
higher during recurrence than during remission (figure 3).
However, FC concentration did not differ between patients with
CD and UC, either during remission or at recurrence, making
them useless to discriminate the two disorders.

Groups of microbes that presented most significant differences
between CD and UC and between CD and HC using the
Kruskal-Wallis (FDR<0.05) test were selected to develop an algo-
rithm with the potential to discriminate CD and non-CD
(figure 4A). This algorithm retains samples that: “do not contain
Faecalibacterium, or Peptostreptococcaceae;g, Anaerostipes and
Christensenellaceae;g or contain Fusobacterium and Escherichia but
not Collinsella and Methanobrevibacter”. Faecalibacterium, an
unknown genus of Peptostreptococcaceae, Anaerostipes,
Methanobrevibacter and an unknown genus of Christensenellaceae
were abundant in HC and UC and absent or almost absent in CD
ones, while Fusobacterium and Escherichia were abundant in

Figure 3 Calprotectin: biomarker of inflammation. Calprotectin was
measured in the stool of healthy relatives of CD (HR(CD)) and UC (HR
(UC)) patients, and in the stool of patients with CD and UC at baseline
(TP0) and after 1-year in remission (RM) and at recurrence (RC). The
Mann-Whitney test was used to compare differences between groups.
CD, Crohn’s disease.
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patients with CD and almost absent in HC and UC. Collinsella,
which was found mostly in UC cases, allowed us to discriminate
between UC and CD. With these eight genera, we implemented the
algorithm to identify patients with CD.

Using this algorithm, we first tested its performance on the
rest of our sample set collected 3 months after baseline from
relatives of HC (167 samples), and 3, 6, 9 and 12 months after
baseline for patients with IBD (135 samples for CD and 135 for
UC). We obtained an average of 77.7% of true positives for CD
detection and an average of 7.3% and 12.8% of false positives
for the detection of HC and UC, respectively (table 2).
Therefore, the diagnostic accuracy for distinguishing patients
with CD from HC and from patients with UC was 85.1% and
82.4%, respectively. Of the 34 patients with CD, the median
duration of the disease at sampling was 6.5 years. For four
patients, the diagnosis of the disease was made the same year as

the sampling, and the algorithm was able to detect three of
them (75%).

We validated our method with several unpublished and pub-
lished data. To evaluate the sensitivity of the markers, we ana-
lysed a cohort of 54 patients with CD recruited at the
University Hospital Leuven (Belgian CD cohort). Microbial
DNA extraction, 16S rRNA gene amplification and sequencing
and data analysis were performed in our laboratory in Spain.
We generated about 5.2 million high-quality sequence reads for
the 187 samples. We applied our algorithm to the whole cohort
and identified an overall sensitivity of 81.8% of the samples as
being CD (true positive) (table 2). Furthermore, to evaluate the
predictive value of recurrence, we performed a Kruskal-Wallis
analysis of the faecal samples collected before surgery, compar-
ing patients on the basis of their Rutgeerts scores obtained
6 months after surgery. The results showed that patients who

Figure 4 Microbial marker discovery and validation. Eight bacterial genera showed potential to discriminate between HC (unrelated HC) and
patients with CD and UC in the discovery cohort: 34 HC, and 33 patients with UC and 34 patients with CD (A) and in the validation cohort of 2045
faecal samples from HC (n=1247), CD (n=339), UC (n=158), IBS (n=202) and anorexia (n=99) (B). Each blue bar represents the presence of each
microbial group for each subject. Participants in each group are underlined with a specific colour code (blue=all HC; red=CD; yellow=UC; green=IBS
and purple=anorexia). The plot was performed using an R script on relative abundance of the eight bacterial genera. The gradient of colours for the
bars corresponds to white=absent, clear blue=low abundance and dark=high abundance. (C) Unweighted UniFrac Principal Coordinate Analysis
representation of the various groups of subjects: HC=unrelated healthy controls, CD, Crohn’s disease, Significant differences were found between CD
and HC, UC, IBS and anorexia (NPMANOVA test, p<0.001). NPMANOVA, non-parametric multivariate analysis of variance.
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developed postoperative recurrence (with a Rutgeerts score of i3
and i4, n=28) harboured a higher relative abundance of
Streptococcus (p=0.002; FDR=0.17) than those who remained
in remission (with a Rutgeerts score of i0 and i1, n=26). This
result suggests that the presence of Streptococcus in stool
samples before surgery is a predictive marker of future
recurrence.

To evaluate the specificity of the markers to detect CD versus
UC, we analysed a cohort of 41 patients with UC enrolled at
the University Hospital Vall d’Hebron (Spanish UC cohort). The
study was part of a European project (MetaHIT; http://www.
metahit.eu) and included patients with UC in long-term remis-
sion. Clinical information is shown in table 1. We extracted and
sequenced the faecal microbiome at baseline (ie, collected
before any intervention), generating 1.5 million sequence reads
and tested our algorithm on this dataset. We obtained a specifi-
city of 95.1% for the detection of CD versus UC (table 2). We
also tested the specificity of our algorithm on several non-IBD

published datasets, namely on IBS, subjects with anorexia and
healthy subjects. IBS and CD may present common symptoms,
including abdominal pain, cramps, constipation and diarrhoea,
and a simple method that distinguishes CD from IBS could also
help reducing unnecessary endoscopies. Therefore, we applied
our algorithm to the faecal samples of 125 subjects previously
diagnosed with IBS. The sequence data were obtained from a
recently published study.32 Of the 125 patients with IBS, the
algorithm identified seven as being CD, thus showing only 5.6%
of false positives and a specificity of 94.4% (table 2).

The algorithm was then tested against a set of 1016 faecal
samples collected at King’s College (London) from a cohort of
977 healthy twin individuals23 and against 158 faecal samples
obtained from HC and patients diagnosed with anorexia.33

Comprising healthy female adult twin pairs from the UK, the
former study was originally designed to evaluate how host
genetic variation shapes the gut microbiome. Our algorithm
detected 75 out of 1016 samples (7.3% of false positive) as

Table 2 Detection of CD markers in HC, CD, UC, IBS, subjects with anorexia

Cohort Number of samples Detected % detected 95% CI*

Discovery cohort: IBD Spain
HC* 40 2 5 0.6 to 16.9
HC-CD_Baseline* 36 3 8.3 1.8 to 22.5
HC-CD_3M* 27 0 0 0 to 12.8
HC-UC_Baseline* 35 5 14.3 4.8 to 30.3
HC-UC_3M* 29 1 3.4 0.1 to 17.8
CD-Baseline† 34 27 79.4 62.1 to 91.3
CD-3M† 32 24 75 56.6 to 88.5
CD-6M† 27 22 81.5 61.9 to 93.7
CD-9M† 21 15 71.5 47.8 to 88.7
CD-12M† 21 17 81 58.1 to 94.6
UC-Baseline* 33 4 12.1 3.4 to 28.2
UC-3M* 26 2 7.7 0.9 to 25.1
UC-6M* 20 3 15.0 3.2 to 37.9
UC-9M* 17 2 11.8 1.5 to 36.4
UC-12M* 17 3 17.6 3.8 to 43.4
Validation cohort
CD Belgium

CD-Baseline† 54 39 72.2 58.4 to 83.5
CD-1M-AS† 44 37 84.1 69.9 to 93.4
CD-3M-AS† 42 35 83.3 68.6 to 93.0
CD-6M-AS† 47 42 89.4 76.9 to 96.5

UC Spain
UC* 41 2 4.9 0.6 to 16.5

IBS Spain

IBS-Baseline* 125 7 5.6 2.3 to 11.2
IBS-3M* 77 12 15.6 8.3 to 25.6

IBD France‡
HC* 38 2 5.3 0.6 to 17.7
CD† 146 88 60.3 51.9 to 68.3
UC 86 28 32.6 22.8 to 43.5

Healthy UK
HC 1017 75 7.4 5.8 to 9.2

Patients with anorexia
AN 158 9 5.6% 2.6 to 10.5

*False positive (1-specifity).
†Sensitivity (true positive).
‡The authors of this previous work used a different region of the 16S rRNA gene (V3–V5 instead of V4; the other cohorts were analysed using V4) and a different sequencing platform
(Ion Torrents).
12M, 12 months; 1M-AS, 1 month after surgery; 3M, 3 months; 3M-AS, 3 months after surgery; 6M, 6 months; 6M-AS, 6 months after surgery; 9M, 9 months; CD, Crohn’s disease; HC,
healthy controls; HC-CD, relatives of CD; HC-UC, relatives of UC.
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being CD, thus showing a specificity of 92.7%. The second
study was designed to address dysbiosis in patients with anor-
exia compared with HC and to evaluate the shift in the micro-
bial community after weight gain in patients with anorexia.34 As
shown in this study, anorexia is associated with an alteration of
gut microbiome composition. In order to evaluate whether
changes occur in the gut community as a result of a condition
other than IBD, we tested the algorithm on this anorexic
cohort. Our tool detected 9 false positives out of 158 samples,
thus showing a specificity of 94.3%.

Figure 4B illustrates the profile of the 8 microbial markers in
the whole dataset of 2045 faecal samples from the various con-
ditions: HC, CD, UC, IBS and anorexia. The results clearly con-
firmed that CD is characterised by a different abundance profile
of the eight markers compared with the other groups, as also
shown by a separate clustering based on the unweighted UniFrac
PcoA representation (figure 4C).

To test the accuracy of the method, we also applied it to a set
of recently published data recovered from a French cohort of
IBD subjects5 although those authors used a different method to
analyse the microbial community compared with our approach.
In that case, they addressed a different variable region of the
16S rRNA gene (V3–V5 instead of V4) and a different sequen-
cing platform (Ion Torrent sequencing instead of Illumina
Miseq). In that study, Sokol et al characterised the microbiome
of 235 well-phenotyped patients with IBD and 38 HC. In spite
of the technical differences, we re-ran the analysis using their
raw sequence data and our sequence analysis protocol (see the
Methods section). Using our quality control criteria, we recov-
ered 8.5 million high-quality sequences for 232 patients with
IBD (146 CD and 86 UC) and the 38 HC. Our method showed
an accuracy of 64% for the prediction of CD versus UC (60%
sensitivity and 68% specificity) and of 77% for the prediction
of CD versus HC (60% sensitivity and 94.8% specificity),
respectively. Moreover, we noticed that this dataset does not
carry any sequences belonging to the genus Collinsella and a
very low abundance of Methanobrevibacter, which in our algo-
rithm allow the differentiation between UC and CD.

CONCLUSION
Although UC and CD share many epidemiologic, immunologic,
therapeutic and clinical features, our results from the microbial
community analysis confirmed that they are two distinct sub-
types of IBD at the microbiome level. Based on the comparison
of the microbial community between HC and CD and between
HC and UC, we determined, for the first time, a non-invasive
test and evaluated its potential clinical utility as a screening
marker for CD in adults. We first tested its performance on the
Spanish IBD cohort used as the discovery cohort and validated
its sensitivity on a newly enrolled Belgian CD cohort. The
overall IBD cohort comprised new-onset patients with CD and
IBD in remission or with active disease. We evaluated its specifi-
city on a healthy UK twin cohort and on several cohorts of
patients with non-IBD. The test showed a sensitivity of about
80% for CD, using the Spanish and Belgian cohorts, and a spe-
cificity of 94.3%, 94.4%%, 89.4% and 90.9% of CD detection
versus HC, and patients with anorexia, IBS and UC, respectively.
Furthermore, all the samples from the Belgian patients with CD
who took antibiotics were detected by the algorithm, thereby
suggesting that antibiotics intake prior to sampling did not
affect detection by the algorithm. Nevertheless, the overall sen-
sitivity of 80% obtained with the Spanish and Belgian cohorts
could have been inflated as a result of the fact that we applied
the algorithm to the samples independently over time. Another

limitation of our analysis is that the higher accuracy of 85.4%,
to detect CD versus UC, obtained using the Spanish cohort
compared with the 60% with the French cohort could be
explained by a difference in the methodological approach. The
low accuracy obtained with the French data may point to a limi-
tation of this method as a diagnostic tool, as the laboratories
analysing the patient’s microbiome should apply the method
used in this study. This finding also demonstrates the importance
of the development and use of standardised methods to analyse
the microbiome. Further experimental designs could be pro-
posed to evaluate the extent to which the method used here
could be implemented in a laboratory.

The rapid gathering of information on the human gut micro-
biome, which is the collective genomes of the gut microbiota,
has been possible thanks to the following: advances in culture
techniques, thus allowing a full picture of the microbial diversity
present in a biological sample; the development of new sequen-
cing technologies, which led to an exponential decrease in
sequencing costs and the emergence of powerful bioinformatics
tools to analyse sequence data. Together, these developments
have allowed us to perform the microbiome analysis of a faecal
sample for less than 150 euros on a small scale and in 1 day. On
a larger scale the cost could be significantly reduced.

The non-invasive diagnostic tool described herein may be
valuable when assessing patients with non-specific signs and
symptoms suggestive of IBD, thereby facilitating clinical
decision-making when the diagnosis of CD is initially uncertain.
Indeed, this tool could be combined with either imaging techni-
ques or calprotectin data to confirm diagnosis.
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ABSTRACT Whether the interaction between the gut microbiota and the immune
response influences the evolution of cirrhosis is poorly understood. We aimed to in-
vestigate modifications of the microbiome and the immune response during the
progression of cirrhosis. Rats were treated with carbon tetrachloride (CCl4) to induce
cirrhosis. We then assessed microbiome load and composition in stool, ileocecal con-
tents (ICCs), mesenteric lymph nodes (MLNs), blood, and ascitic fluids (AFs) at 6, 8,
and 10 weeks or ascites production and measured cytokine production in MLNs and
blood. The microbiome of MLN, blood, and AF showed a distinct composition com-
pared to that of stool and ICCs. Betaproteobacteria (Sutterella) were found associated
with the appearance of a decompensated state of cirrhosis. Microbial load increased
and showed a positive correlation with the relative abundance of pathobionts in the
MLN of decompensated rats. Among several genera, Escherichia and “Candidatus Ar-
thromitus” positively correlated with elevated levels of systemic proinflammatory cy-
tokines. “Candidatus Arthromitus,” a segmented filamentous bacteria, was detected
in ICC, MLN, and AF samples, suggesting a possible translocation from the gut to
the AF through the lymphatic system, whereas Escherichia was detected in ICC, MLN,
AF, and blood, suggesting a possible translocation from the gut to the AF through
the bloodstream. In the present study, we demonstrate that microbiome changes in
distinct intestinal sites are associated with microbial shifts in the MLNs as well as an
increase in cytokine production, providing further evidence of the role the gut-liver-
immunity axis plays in the progression of cirrhosis.

IMPORTANCE Cirrhosis severity in patients was previously shown to be associated
with progressive changes in the fecal microbiome in a longitudinal setting. Recent
evidence shows that bacterial translocation from the gut to the extraintestinal sites
could play a major role in poor disease outcome and patient survival. However, the
underlying mechanisms involving the microbiota in the disease progression are not
well understood. Here, using an animal model of cirrhosis in a longitudinal and mul-
tibody sites setting, we showed the presence of a distinct composition of the micro-
biome in mesenteric lymph nodes, blood, and ascitic fluid compared to that in feces
and ileocecal content, suggesting compartmentalization of the gut microbiome. We
also demonstrate that microbiome changes in intestinal sites are associated with
shifts in specific microbial groups in the mesenteric lymph nodes as well as an in-
crease in systemic cytokine production, linking inflammation to decompensated cir-
rhosis in the gut-liver-immunity axis.

KEYWORDS cirrhosis complication, bacterial translocation, decompensated cirrhosis,
proinflammatory response
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Cirrhosis is defined as the presence of fibrosis and regenerating nodules in the liver
due to various causes such as alcohol, hepatitis viruses, metabolic syndrome, or

immune dysfunction. Cirrhosis can lead to portal hypertension and liver insufficiency
and their related complications, such as ascites, infections, hepatic encephalopathy,
hepatorenal syndrome, variceal bleeding, and acute-on-chronic liver failure (ACLF) (1).
Before the development of complications, patients are considered to have “compen-
sated cirrhosis,” and when complications develop, they are considered having “decom-
pensated cirrhosis,” which has a poorer prognosis than the compensated stage (2).

Patients with cirrhosis present alterations in their fecal microbiome composition
compared to that of healthy individuals, which could be of oral origin of some
potentially pathogenic species (3, 4). The cross talk between the gut microbiome and
the immune system may contribute to the development of health complications, which
therefore may lead to the evolution from compensated to decompensated stages (5, 6).

The intestinal microbiota, which harbors bacteria, archaea, and eukarya, is known to
play a pivotal role in the development of the host immune system and in the
maintenance of host intestinal homeostasis by modulating immune responses to
pathogens and by maintaining the integrity of intestinal barrier functions (7). Com-
mensal bacteria are transported from the intestines by dendritic cells (DCs) through the
lymphatic system to the mesenteric lymph nodes (MLNs), which form part of the
gut-associated lymphatic tissue (GALT) and act as the first line of immune defense
against pathogens from the intestines (8–10). In the MLNs, bacteria are maintained at
low levels by the host mucosal immune system (11). The translocation of bacteria into
MLNs has been investigated in other disorders, including Crohn’s disease and ulcerative
colitis (12, 13), where a distinct microbial community composition was observed
between the two inflammatory disorders.

Patients with cirrhosis present alterations in the gut microbiota, intestinal permea-
bility, and immune response, leading to bacterial translocation, which is the paracellular
passage of bacteria from the intestinal lumen through the intestinal wall to the MLNs
or other sites (10, 11, 14–16). Bacterial translocation then activates the gut-liver-
immune axis, which stimulates the induction of proinflammatory cytokines, further
perpetuating increased intestinal permeability and thus bacterial translocation (17).
Pathogen-associated molecular patterns (PAMPs), such as the endotoxin lipopolysac-
charide (LPS) found on the cell membranes of Gram-negative bacteria, bind to pattern
recognition receptors (PRRs) such as Toll-like receptors (TLRs), causing an induction of
proinflammatory cytokines such as tumor necrosis factor alpha (TNF-�) and interleukin
6 (IL-6), which tend to be elevated in patients with cirrhosis (18). MLNs also produce
TNF-� in response to bacterial translocation, especially in patients with ascites (9, 18,
19). Ascites is a common complication in advanced cirrhosis that is associated with a
high mortality rate and is caused by portal hypertension, leading to fluid accumulation
in the abdomen. It has been hypothesized that elevated TNF-� production causes
hemodynamic disturbances, leading to splanchnic vasodilatation through nitric oxide
synthesis stimulation. This could contribute to altered intestinal barrier function, re-
sulting in bacterial translocation (9, 20), which has been frequently observed in cirrhotic
patients with ascites. Additionally, ascites has been shown to increase the susceptibility
of host bacterial infection (17), likely due to the fact that TNF-� has been shown to
loosen tight junction proteins of intestinal epithelial cells, perpetuating bacterial trans-
location and subsequently an inflammatory response (10).

Bajaj et al. showed that cirrhosis severity in patients was associated with progressive
changes in the gut microbiome in a longitudinal study (5). In fact, recent evidence
showed that bacterial translocation from the intestines could play a major role in poor
disease outcome and patient survival (21, 22). However, the underlying mechanisms
that involve the gut microbiota in the disease progression are not well understood.

Therefore, the aims of this study were to (i) investigate the spatial and temporal
changes of the composition of the microbiome in a cirrhosis rat model, (ii) evaluate
changes of the microbiome related to the progression of cirrhosis, and (iii) assess the
immune modulation by the microbiome detected in extraintestinal sites.
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RESULTS

We studied 15 control rats at weeks 6 (n � 5), 8 (n � 5), and 10 (n � 5), 25
CCl4-treated rats sacrificed at weeks 6 (n � 9), 8 (n � 8), and 10 (n � 8) of CCl4 cirrhosis
induction that were considered rats under induction of cirrhosis or compensated
CCl4-treated rats, and 19 CCl4-treated rats when they developed ascites that were
considered rats with decompensated cirrhosis. The scores of liver damage in the
different groups were the following. All control rats showed score 0; in week-6 rats, six
rats had scores of 2 and three had scores of 1. In week-8 rats, six rats had scores of 2
and two had scores of 1. In week-10 rats, seven rats had scores of 2 and one had a score
of 1. In ascitic rats, 14 rats had scores of 2 and five had scores of 3 (P � 0.048 for
week-10 rats, P � 0.019 for week-8 rats, and P � 0.007 for week-6 rats). Bacterial
cultures were negative in all control rats, week-6 rats, and week-8 rats and were positive
in two week-10 rats (both in MLNs) and in five ascitic rats (P � 0.05 between ascitic rats
and control rats). These five ascitic rats presented a total of nine positive cultures: in
MLNs in four rats, in livers and spleens in three rats, and in ascitic fluid in two rats.
Isolated bacteria were Escherichia coli in all rats with positive cultures, except one ascitic
rat in which Enterococcus spp. grew.

Compartmentalization of microbial communities. To assess the existence of a
compartmentalized microbiome (meaning a specific microbial community at different
body sites), we compared the microbiome compositions of various body sites from all
rats of the study: intestinal sites such as feces (F) and ileocecal content (ICC) and
extraintestinal sites such as MLN, blood, and ascitic fluid (AF). Feces and ICC specimens
from control rats presented similar microbial communities (P � 0.44; permutational
multivariate analysis of variance [PERMANOVA] test) (Fig. 1AB) dominated by Firmicutes
(means of 61% and 78%, respectively), Bacteroidetes (means of 35% and 20%, respec-
tively), Actinobacteria (means of 1% and 0.04%, respectively), and Proteobacteria (means
of 0.3% and 0.4%, respectively). The microbiome of MLN, blood, and AF showed a
distinctive composition compared to that of feces and ICC (P � 0.0001; PERMANOVA
test) (Fig. 1A). MLNs and blood displayed similar microbial communities (P � 0.616;
PERMANOVA test) dominated by Firmicutes (48% and 50%, respectively), Bacteroidetes
(43% and 37%, respectively), Proteobacteria (3% and 2%, respectively), and Actinobac-
teria (3% and 5%, respectively) (Fig. 1B). A comparison between control and CCl4-
treated rats in the different body sites showed significant differences.

Longitudinal study: evolution of cirrhosis and microbiome modification. To
evaluate the evolution of the microbiome in parallel with the progression of cirrhosis,
rats were sacrificed to collect ICC, MLNs, and blood at different time points (6, 8, and

FIG 1 Spatial microbial community compositions in control and CCl4-treated rats. (A) Weighted principal coordinate analysis (PCoA) UniFrac metrics (taxonomic
clustering). (B) Relative abundance at the phylum level; n � 23 for stool, n � 59 for ICC, n � 46 for MLN, n � 57 for blood, and n � 15 for AF.

Microbiome Associated with Cirrhosis Complications

January/February 2019 Volume 4 Issue 1 e00278-18 msystems.asm.org 3

https://msystems.asm.org


10 weeks after the initiation of CCl4 treatment and at ascites development for the
CCl4-treated group and at matched time points for the control group). For the collec-
tion of samples, groups of animals were sacrificed at different time points. We found
significant changes in the microbiome compositions in ICC and MLN samples that were
associated with the progression of cirrhosis.

In the ICC samples, CCl4-treated rats showed an increase in Betaproteobacteria
(P � 0.01, q � 0.098) and Erysipelotrichia (P � 0.001, q � 0.012; Kruskal-Wallis test) at
weeks 6 and 8 of CCl4 treatment in comparison to control rats (Fig. 2A). At week 10,
both groups of bacteria significantly decreased compared to that at weeks 6 and 8.
When rats developed ascites, Erysipelotrichia almost disappeared, whereas Betaproteo-
bacteria increased again. Both groups of bacteria were absent in control rats. At the
genus level, Sutterella and Coprococcus increased (P � 0.001, q � 0.02; Kruskal-Wallis
test) in decompensated rats compared to that in controls (Fig. 2B). At 6, 8, and 10 weeks
after the initiation of CCl4 treatment, rats without ascites presented an intermediate
relative abundance of all these genera. The Allobaculum genus belonging to the
Erysipelotrichia family is known as a potentially beneficial bacterial group (23) and
showed an increase in the compensated CCl4-treated rats but disappeared when they
presented ascites (P � 0.0002, q � 0.018; Kruskal-Wallis test). These results suggest that
groups of potentially beneficial bacteria, such as Allobaculum, attempted to outcom-
pete pathogenic ones in the ileocecum such as Sutterella, which belongs to Betapro-
teobacteria. However, Allobaculum seemed to be unable to outcompete Sutterella in the
ICC when rats presented ascites. Additionally, “Candidatus Arthromitus,” a genus from
the Firmicutes phylum, showed high relative abundance only in decompensated rats
compared to that in compensated CCl4-treated rats and control rats (P � 0.023,
q � 0.15; Kruskal-Wallis test) (Fig. 2C).

In MLN samples from decompensated rats (with ascites), only one bacterial genus,
“Candidatus Arthromitus,” showed a significantly high relative abundance compared to
that from control and compensated CCl4-treated rats (P � 0.0002, q � 0.019; Kruskal-
Wallis test) (Fig. 3A and B). “Candidatus Arthromitus” was identified in 26% (4 of 15) of
the AF samples, in only 5% of blood samples (4 of 73), and was not found in stool
samples (Fig. 3C).

In feces, Coprococcus, Sutterella, and Allobaculum showed some differences in their
relative abundances between the three groups of rats (controls, compensated, and
decompensated), but none of the differences were significant (q � 0.2; Kruskal-Wallis
test). In blood samples, the Spirochaetes phylum was found in a high proportion in the
decompensated group compared to that in the two other groups (P � 0.001, q � 0.035;
Kruskal-Wallis test).

Using the weighted UniFrac distance, a metric used to compare microbial commu-
nity compositions between samples, we compared the stability of the microbiome in
ICC, MLN, and blood samples from rats under induction of cirrhosis without ascites
(compensated CCl4-treated rats) with that from rats with ascites (rats with decompen-
sated cirrhosis). We observed a decreased stability of the microbiome composition of
rats with ascites in blood samples (P � 0.04; Mann-Whitney test) (see Fig. S1 in the
supplemental material), but the difference was not significant in ICC and MLN samples.

Microbial load. To complement our findings on relative abundance of the se-
quenced 16S rRNA genes, we evaluated the microbial load using real-time quantitative
PCR of the 16S rRNA genes. Microbial load, as measured by 16S rRNA gene quantitative
PCR (qPCR), was significantly higher in the MLNs from cirrhotic decompensated rats
than from control rats (P � 0.008; Mann-Whitney test), positively correlated with the
relative sequence abundance of Proteobacteria (� � 0.673, P � 0.002; Spearman test),
and negatively correlated with the relative abundance of Bacteroidetes (� � �0.637,
P � 0.004; Spearman test) (Fig. 4).

Correlation between microbiome and cytokine levels. The progression toward
decompensated cirrhosis is associated with a high production of proinflammatory
cytokines, such as TNF-�, IL-17, and IL-6, as well as anti-inflammatory cytokines such as

Santiago et al.

January/February 2019 Volume 4 Issue 1 e00278-18 msystems.asm.org 4

https://msystems.asm.org


FIG 2 Microbial groups in ileocecal contents (ICC) samples involved in the severity of cirrhosis. (A) Temporal taxonomic differences between controls and
CCl4-treated rats. Two classes of bacteria, Erysipelotrichia (P � 0.001, q � 0.012) and Betaproteobacteria (P � 0.01, q � 0.098), presented significantly different
relative abundances over time between the control and the CCl4-treated groups. Statistics were performed using the Kruskal-Wallis test. (B) Taxonomic
differences between controls and CCl4-treated rats with ascites and CCl4-treated rats before development of ascites. Two bacterial genera, Coprococcus
(P � 0.0001, q � 0.011) and Sutterella (P � 0.0005, q � 0.014), were found in higher relative abundances in CCl4-treated rats than in control rats. Two bacterial
genera, Desulfovibrio (P � 0.002, q � 0.025) and Ruminococcus (P � 0.0007, q � 0.013), were found in higher relative abundances in control rats than in
CCl4-treated rats. Allobaculum was found in higher relative abundance (P � 0.0004, q � 0.013) only in compensated CCl4-treated rats, and “Candidatus
Arthromitus” (P � 0.023, q � 0.15) was in higher relative abundance in decompensated cirrhotic rats. Statistics were performed using the Kruskal-Wallis test.
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FIG 3 Detection of “Candidatus Arthromitus” in spatial and temporal settings. (A) “Candidatus Arthromitus” was found in higher relative abundance
in mesenteric lymph nodes of decompensated rats (P � 0.0002, q � 0.018). (B) “Candidatus Arthromitus” was found in 72% (13 of 18) of mesenteric
lymph node samples of decompensated rats. (C) “Candidatus Arthromitus” was detected in ileocecal content (ICC), mesenteric lymph node (MLN),
blood, and ascitic fluid (AF) samples but not in feces (F). 6W, 6 weeks; 8W, 8 weeks; 10W, 10 weeks.
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IL-10 (24, 25). Using enzyme-linked immunosorbent assays (ELISAs), we measured
serum and MLN levels of these cytokines. To evaluate a possible correlation between
the inflammatory status and the microbial community composition, we used Spearman
correlation tests to associate levels of the proinflammatory cytokine IL-17 in MLNs and
the ratios of systemic IL-6/IL-10 and systemic TNF-�/IL-10 with the relative abundance
of microbial groups in MLNs. Ratios between pro- and anti-inflammatory cytokines have
been extensively used as biomarkers to associate an immune response with the
characteristics of multiple pathologies, including liver disease. The use of ratios reduces
significantly the individual variability of single cytokine production. We found a positive
correlation between the IL-6/IL-10 ratio and the relative abundance of Escherichia
(� � 0.79, P � 9.2e�5; Spearman test) and positive correlations between the TNF-�/
IL-10 ratio and the relative abundances of Escherichia (� � 0.57, P � 0.01; Spearman
test) and “Candidatus Arthromitus” (� � 0.72, P � 0.001; Spearman test) (Fig. 5A). Since
each microorganism provides a particular array of PAMPs to signal the immune system,
the final result is not necessarily a generalized increase of pro- or anti-inflammatory
cytokines. In the particular case of “Candidatus Arthromitus,” the association of one
ratio but not the other (both having in common IL-10) implies that this microorganism
is more involved in the production/regulation of TNF than of IL-6. We also found
positive correlations between levels of IL-17 and several different microbial genera,
such as those belonging to Proteobacteria (Pseudomonas, Burkholderia and Sutterella)

FIG 4 Quantification of the microbiota by real-time PCR on the 16S rRNA gene and correlation with microbiome composition. (A) Microbial
load in ileocecal content (ICC) samples was higher in decompensated cirrhotic rats than in control and compensated CCl4-treated rats and was
significantly higher in the mesenteric lymph nodes (MLNs) of decompensated cirrhotic rats than in control rats (P � 0.008; Mann-Whitney test).
In both ICCs and MLNs: n � 8 for controls (CTL), n � 8 for compensated CCl4-treated rats, n � 7 for decompensated cirrhotic rats. (B) Spearman
correlation between microbial load and relative abundance of Bacteroidetes (� � �0.637, P � 0.004) and between microbial load and relative
abundance of Proteobacteria (� � 0.673, P � 0.002) in the MLNs.
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and “Candidatus Arthromitus,” and negative correlations between levels of IL-17 and
Parabacteroides and Coprococcus (Fig. 5B). “Candidatus Arthromitus” and Escherichia
were both detected in ICC, MLN, and AF samples, but only Escherichia was detected in
blood samples from rats (Fig. 6).

DISCUSSION

In this study, we showed that microbiome changes in distinct intestinal sites are
associated with microbial shifts in the MLNs as well as an increase in cytokine produc-
tion that correlated with disease progression in rats with experimental cirrhosis. The
main results of the present work are the characterization of the sequential changes of
the microbiome in the progression of cirrhosis and, in particular, the cross talk between
the microbiome and the host immune system using a rat model in a longitudinal and
multibody sites study setting.

Loss of intestinal barrier function, dysbiosis, and systemic immune dysfunction
characterize cirrhosis (17). Bacterial translocation is a result of a loss of intestinal barrier
function and is considered a biomarker for cirrhosis progression and decompensation,
in which intestinal bacteria travel by paracellular transport through the permeable
epithelial cells to the portal vein, the liver, and systemic circulation, causing an
inflammatory response (10). It has been demonstrated that microorganisms are also

FIG 5 Correlations between proinflammatory cytokines and relative abundances of genera in MLNs. (A) Positive Spearman correlations were found between
the ratio of systemic IL-6/IL-10 and Escherichia and between the ratio of systemic TNF-�/IL-10 and Escherichia and “Candidatus Arthromitus.” (B) Spearman
correlations between IL-17 levels measured in mesenteric lymph nodes (MLNs) and relative abundances of genera detected in MLNs.
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transported by dendritic cells from the intestines to the MLNs via the lymphatic system
(11, 26, 27). Comparing the compositions of intestinal and extraintestinal body sites, our
findings suggest a loss of barrier function in which a specific microbial community,
particularly Proteobacteria and Actinobacteria, was transported from the intestine to
MLNs, blood, and AF, which caused an induction of proinflammatory cytokines such as
TNF-�, IL-6, and IL-17 in rats. This inflammatory response was associated with disease
progression and decompensation with ascites formation.

It has been suggested that dysbiosis, which is the unfavorable shift in the microbiota
community structure that compromises microbe-host homeostasis, is a major driver of
cirrhosis and is also a major contributor to bacterial translocation to MLNs in cirrhosis
animal models (10, 28). In the present study, we found more microbiome alterations in
ICC than in fecal samples of rats with decompensated cirrhosis. This suggests that ICC
samples may be more appropriate than fecal samples to detect microbiome compo-
sition alterations with smaller cohorts. This is in line with previous studies in patients
suggesting that dysbiosis in advanced cirrhosis mainly occurs in upper areas of the
intestine such as the ileum (10) as well as with the finding that microbiota analyses in
fecal samples do not accurately represent dysbiosis in sigmoid mucosal samples
obtained by biopsy during sigmoidoscopy (29). In the present study, ICC samples from
CCl4-treated rats showed an attempt of beneficial groups of bacteria, such as Erysip-
elotrichia, to outcompete potential pathobionts such as Sutterella, which belongs to
Betaproteobacteria. A pathobiont is defined as a symbiont that under certain circum-
stances becomes a pathogen (30). This compensation failed when liver damage and
inflammation increased and rats developed ascites, a condition associated with an
increase of inflammatory markers, an increase in the relative abundance of Escherichia
in all sample types except in stool, and an increase in the load of Proteobacteria in
MLNs.

Bajaj et al. (5) characterized the composition of the fecal microbiome in patients
with compensated and decompensated cirrhosis and also evaluated the stability of the
microbiome composition at two time points within an interval of 6 months. Our
findings confirmed their claim that the level of dysbiosis in stool samples was associ-
ated with cirrhosis progression, whereas a relatively stable microbiome composition
over time was associated with stable disease. Additionally, the use of an animal model
allowed us to unravel the possible cross talk between the microbiome in MLNs and the
immune system that was confirmed through a correlation analysis between microbial
genera identified in MLNs and levels of proinflammatory cytokines such as TNF-�, IL-6,
and IL-17 in MLNs or blood. Moreover, our results are congruent with a comprehensive
study that analyzed 29 different cytokines from 522 cirrhotic patients, indicating that
systemic inflammation is likely the underlying cause of decompensation and acute-on-
chronic liver failure in cirrhosis (8). Finally, our findings are supported by the recent

FIG 6 Detection of 16S sequences of Escherichia in rat samples. ICC, ileocecal content; MLN, mesenteric lymph
node; AF, ascitic fluid; F, feces.
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work of Muñoz et al. (6) that also demonstrated the appearance of a proinflammatory
immune response driven by gut dysbiosis in decompensated cirrhosis.

We also observed a positive correlation between the abundance of Escherichia,
which belongs to the Proteobacteria phylum, in MLNs and proinflammatory cytokines,
confirming the results of previous studies using culture techniques and PCR of the 16S
rRNA gene and making Escherichia a potential biomarker for cirrhosis progression (31).
We have further demonstrated that an increase in overall microbial load was associated
with an increase in Proteobacteria in the MLNs of decompensated cirrhotic rats com-
pared to that in controls and in compensated CCl4-treated rats, suggesting an increase
in Proteobacteria not only in relative abundance but also in absolute amount.

Furthermore, we observed that “Candidatus Arthromitus,” a genus from the Firmi-
cutes phylum that positively correlated with IL-17 levels, was found in higher abun-
dance in the MLNs of rats with decompensated cirrhosis than in control rats and
compensated CCl4-treated rats. This genus was detected in all sample types except
feces, which again confirms that the use of stool samples would not have led to the
detection of this genus in a decompensated state. “Candidatus Arthromitus” is a
segmented filamentous bacterium (SFB) that can induce multiple adaptive immune
responses, especially in Th17 cells in the small intestinal lamina propria of mice (32, 33).
Th17 cells that produce the effector cytokine IL-17 are potent inducers of tissue
inflammation and have been associated with the pathogenesis of many immune-
mediated diseases (34). Therefore, “Candidatus Arthromitus” might play an important
role in inducing inflammation, which may lead to a decompensated state. This genus
is also well known to be refractory to in vitro culture techniques (35, 36), which explains
why it has not been uncovered in previous studies using traditional culture techniques.
This genus, which was not detected in feces and in only few blood samples, might have
reached the MLNs via the lymphatic system after possible translocation in the upper
regions of the gastrointestinal (GI) tract, such as the ileocecal region. Escherichia,
differently from “Candidatus Arthromitus,” was detected in all sample types, including
in all blood samples, suggesting that its translocation to AF might be via the blood-
stream.

Since this work was performed on animals, we may not be able to extrapolate all the
findings to cirrhotic patients, particularly in terms of the involvement of specific genera
such as “Candidatus Arthromitus,” as the microbiome might present differences in its
composition. However, our study should pave the way for the search for an equivalent
genus to “Candidatus Arthromitus” in humans that is involved in inducing inflammation
in cirrhotic patients. Also, the limited numbers of animals per group might be the
reason why we did not find significant changes in fecal samples after multiple testing
correction but rather a trend, compared to that of previous findings in human fecal
samples (4, 37). Another limitation of our study might be the use of a unique liver
disease animal model, as different etiologies might lead to different changes in the
microbiome as shown by Fouts et al. (38). However, although different microbial groups
might be involved in the progression of cirrhosis depending on the animal model used,
our study mainly focused on the sequential changes in the microbiome in distinct
intestinal sites and their association with inflammation in an advanced stage of
decompensated cirrhosis. This limitation may apply to any animal models used to
understand human disease.

In conclusion, our study confirmed previous studies showing that the alterations in
the gut microbial community involved an increase of the ratio of pathobionts to
beneficial bacteria (39) and also showed that this reflects dysbiosis present in extraint-
estinal sites such as MLNs, where direct cross talk between the microbiota and the
immune cells takes place.

MATERIALS AND METHODS
Experimental design. (i) Animals. Male Sprague-Dawley rats weighing 35 to 49 g were purchased

from Harlan Laboratories (Indianapolis, IN, USA) and provided by Research Models and Services Produc-
tion (Udine, Italy). After the rats were weaned from their mothers, they were fed a rodent chow diet
(2018S; Teklad, Madison, WI, USA). After 1 week of quarantine, all animals were placed in individual cages
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and kept at a constant room temperature of 21°C, exposed to a 12-h light:12-h dark cycle and allowed
free access to water and rodent chow (A04; SAFE, Augy, France). One week later, phenobarbital
(1.5 mmol/liter) (Luminal; Kern Pharma, Barcelona, Spain) was added to the tap water given to all animals.
There was no contact between rats via water, chow, or feces.

(ii) Induction of cirrhosis and study groups. Cirrhosis was induced as previously described (40).
When rats reached a weight of 200 g, they were administered weekly doses of CCl4 (Sigma-Aldrich, St.
Louis, MO., USA) intragastrically using a sterile pyrogen-free syringe (ICO plus 3; Novico Médica, S.A.,
Barcelona, Spain) with an attached stainless-steel animal feeding tube (Popper and Sons, New Hyde Park,
NY, USA) without anesthesia. The first dose of CCl4 was 20 �l, and subsequent doses were adjusted on
the basis of changes in weight 48 h after the previous dose. When rats presented ascites, the dose of CCl4
was maintained at 40 �l.

We designed different groups of CCl4-treated rats for which laparotomy and sample collection were
performed at four different time points: after 6, 8, and 10 weeks of the first dose of CCl4 and when ascites
was suspected by the increase in abdominal girth and confirmed by paracentesis. A control group of rats
not treated with CCl4 was also included, and samples were collected at the same three time points (6,
8, and 10 weeks) as for the cirrhotic group.

Paracentesis was performed under air anesthesia with isoflurane (Forane; Abbott, Madrid, Spain)
under sterile conditions, and approximately 0.1 ml of ascitic fluid was removed. One week later, a
laparotomy was carried out.

(iii) Laparotomy. Laparotomy was carried out on all CCl4-treated rats and on control rats at weeks
6, 8, and 10 or when ascites was suspected. For laparotomy, rats were anesthetized with 10 mg/kg
xylazine (Rompun; Bayer, Kiel, Germany) and 50 mg/kg ketamine (Ketolar; Parke-Davis, Madrid, Spain)
under sterile conditions. In brief, the abdominal fur was removed with a depilatory cream (Deliplus;
Mercadona, Spain) and the skin was sterilized with iodine (Curadona; Lainco, Spain). The abdomen was
then opened via a 4-cm median incision, and the remaining fluid was removed.

Biological sample collection. The sequence of sample collection at laparotomy was stool (before
laparotomy), MLN, blood, liver spleen, and ileocecal content (ICC). Samples from CCl4-treated and control
rats were stored frozen at �80°C until microbiome analysis. Blood and MLN samples were also used for
cytokine analysis.

Bacterial cultures. We inoculated samples of homogenized mesenteric lymph nodes, ascitic fluid,
pleural fluid, spleens, and livers on Columbia blood agar, Columbia CNA agar, and the chromogenic
medium CPS ID3 (bioMérieux, Marcy-l’Étoile, France). Cultures were incubated for 48 h at 37°C in an
aerobic atmosphere. The isolated bacteria were presumptively identified according to their pattern of
growth and morphology (41).

Liver damage. Histological liver damage was evaluated by hematoxylin-eosin and Masson’s
trichrome staining of 4-�m slices from paraffin blocks. A single expert pathologist blindly classified the
liver samples according to a semiquantitative score: 0, normal; 1, fibrosis with porto-portal fibrous tracts;
2, regeneration nodules with thin complete fibrous tracts; and 3, regeneration nodules with thick and
complete fibrous tracts (41).

Cytokine measurement. TNF-�, IL-6, and IL-10 cytokines were determined in blood samples and
IL-17 in MLNs by enzyme-linked immunosorbent assays (ELISAs) according to the manufacturer’s
protocols (eBiosciences). Results are expressed as picograms per milliliter in blood samples and the ratio
of picograms of IL-17 per milligram of total protein. Limits of detection were 30 pg/ml for TNF-�, IL-6, and
IL-17 and 15 pg/ml for IL-10.

Microbiome analysis. (i) Genomic DNA extraction. All biological specimens were processed for
genomic DNA extraction using protocols previously described by Santiago et al. (42) for low biomass
samples such as MLN, blood, and AF and a protocol recommended by the International Human
Microbiome Standard for stool samples (http://www.microbiome-standards.org/).

(ii) 16S rRNA genes gene sequencing. To prepare the DNA for sequencing, we amplified a fragment
of the 16S rRNA gene by PCR using universal primers targeting the V4 hypervariable region as previously
described (43). Amplicons were then purified using the QIAquick PCR purification kit (Qiagen, Barcelona,
Spain), quantified using a NanoDrop ND-1000 spectrophotometer (Nucliber), and then pooled in equal
concentrations. The pooled amplicons (2 nM) were then subjected to sequencing using Illumina MiSeq
technology at the technical support unit of the Autonomous University of Barcelona (UAB, Spain)
according to standard Illumina platform protocols.

(iii) Microbiome composition analysis. To analyze the microbiome composition, we first loaded
the raw sequences into the QIIME 1.9.1 pipeline, as described by Navas-Molina et al. (44). Low-quality
sequence reads were filtered out by applying default settings and a minimum Phred score of 20.
From the filtering step and a total of 214 samples, we obtained a total of 2.5 million high-quality
sequences with an average number of reads of 11,899. We used the USEARCH algorithm to cluster
similar filtered sequences into operational taxonomic units (OTUs) based on a 97% similarity
threshold. We then identified and removed chimeric sequences using UCHIME. Representative
sequences were selected and aligned using PyNAST against Greengenes template alignment
(gg_13_8 release), and a taxonomical assignment step was performed using the basic local align-
ment search tool to map each representative sequence against a combined database encompassing
the Greengenes and PATRIC databases.

For � diversity analysis, we rarefied to 1,046 sequences per sample when comparing all samples
simultaneously. When analyzing only low-biomass samples, we rarefied them at 1,046 sequences per
sample and at 9,396 sequences per sample when analyzing stool and ICC samples. Rarefaction is
used for cases in which read counts are not similar in numbers between samples. Weighted and
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unweighted UniFrac metrics were applied to build phylogenetic distance matrices, which were then
used to construct hierarchical cluster trees using a principal-coordinate analysis (PCoA) represen-
tation.

(iv) Microbial load assessment. To quantify microorganisms, the extracted genomic DNA was used
to amplify the V4 region of the 16S rRNA gene by quantitative real-time PCR (qPCR) using the following
primers: V4F_517_17 (5=-GCCAGCAGCCGCGGTAA-3=) and V4R_805_19 (5=-GACTACCAGGGTATCTAAT-3=).
To calibrate the qPCR reactions, calculated amounts of a linearized plasmid containing the V4 region of
the 16S rRNA gene were used. Plasmid concentration was measured using a NanoDrop ND-1000
spectrophotometer (Nucliber), and the number of plasmid copies was calculated from the plasmid’s
molecular weight. To extrapolate the bacterial number in each sample, serial dilutions of the plasmid
were amplified. The qPCR was performed with the 7500 Fast Real-Time PCR system (Applied Biosystems)
using optical-grade 96-well plates. The PCR was performed in a total volume of 25 �l using the Power
SYBR green PCR master mix (Applied Biosystems) containing 100 nM each of the universal forward and
reverse primers. The reaction conditions for amplification of DNA were 50°C for 2 min, 95°C for 10 min,
and 40 cycles of 95°C for 15 s and 60°C for 1 min. All reactions were performed in triplicates, and mean
values were calculated. This experiment was also duplicated to ensure accuracy. Mean values from both
experiments were taken into account. Data were analyzed using Sequence Detection Software version
1.4, supplied by Applied Biosystems.

Statistical analysis. We performed statistical analyses under QIIME and R. We used the D’Agostino-
Pearson test to check for the normality of the data distribution. Parametric normally distributed data
were compared by Student’s t tests for paired or unpaired data; otherwise, the Wilcoxon signed rank test
was used for paired data and the Mann-Whitney U test for unpaired data. Qualitative variables were
analyzed by Fisher’s exact test. The Kruskal-Wallis one-way test of variance was used to compare the
mean numbers of sequences from different unpaired groups of subjects at various taxonomic levels, the
Wilcoxon test was used when comparing only 2 groups. We performed analyses with the nonparametric
multivariate ANOVA (PERMANOVA) called the Adonis test to test for differences in microbial communities
using the UniFrac metrics. We performed Spearman tests to evaluate correlations between microbiome
composition and biological parameters such as cytokine levels. When possible, the analysis provided
false discovery rate (q)-corrected P values (q values). A q value of �0.05 was considered significant for
all tests.

Ethics approval. The study was approved by the Animal Research Committee at the Institut de
Recerca of Hospital de la Santa Creu i Sant Pau (Barcelona) and by the Department of Agriculture,
Livestock and Fisheries of the Generalitat de Catalunya (Departament d’Agricultura, Ramaderia i Pesca).
Animal care complied with the criteria outlined in the Guide for the Care and Use of Laboratory Animals
(Committee for the Update of the Guide for the Care and Use of Laboratory Animals Institute for
Laboratory Animal Research Division on Earth and Life Studies, Washington, DC, USA).

Data availability. Sequence data have been deposited in the NCBI database under accession
number PRJNA448565.
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SUMMARY

Background
Prebiotics have been shown to reduce abdominal symptoms in patients
with functional gut disorders, despite that they are fermented by colonic
bacteria and may induce gas-related symptoms.

Aim
To investigate changes in the metabolic activity of gut microbiota induced
by a recognised prebiotic.

Methods
Healthy subjects (n = 20) were given a prebiotic (2.8 g/day HOST-G904,
HOST Therabiomics, Jersey, Channel Islands) for 3 weeks. During 3-day
periods immediately before, at the beginning and at the end of the adminis-
tration subjects were put on a standard diet (low fibre diet supplemented
with one portion of high fibre foods) and the following outcomes were mea-
sured: (i) number of daytime gas evacuations for 2 days by means of an event
marker; (ii) volume of gas evacuated via a rectal tube during 4 h after a test
meal; and (iii) microbiota composition by faecal Illumina MiSeq sequencing.

Results
At the beginning of administration, HOST-G904 significantly increased the
number of daily anal gas evacuations (18 � 2 vs. 12 � 1 pre-administra-
tion; P < 0.001) and the volume of gas evacuated after the test meal
(236 � 23 mL vs. 160 � 17 mL pre-administration; P = 0.006). However,
after 3 weeks of administration, these effects diminished (11 � 2 daily
evacuations, 169 � 23 mL gas evacuation). At day 21, relative abundance
of butyrate producers (Lachnospiraceae) correlated inversely with the
volume of gas evacuated (r = �0.52; P = 0.02).

Conclusion
The availability of substrates induces an adaptation of the colonic micro-
biota activity in bacterial metabolism, which produces less gas and associ-
ated issues. Clinical trials.gov NCT02618239.
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INTRODUCTION
Prebiotics, by definition, induce beneficial effects by
selectively influencing colonic microbiota.1 They serve as
selective substrates for microbiota gut metabolism.2

The effect of fibre on functional intestinal symptoms
is controversial.3 We recently showed that a diet rich in
non-absorbable, fermentable residues in the short term
increased intestinal gas production and induced digestive
symptoms, such as flatulence, abdominal bloating and
distension,4 whereas a low-residue diet improved symp-
toms in patients with abdominal bloating and flatulence.5

Good evidence of the clinical benefits of reducing fer-
mentable foodstuffs has been provided by a series of
studies using diets low in fermentable oligosaccharides,
monosaccharides, disaccharides and polyols
(FODMAP).6–8

In contrast to the potential effect of low-residue diets
on symptoms, some specific prebiotics, despite being fer-
mented by microbiota, have been shown to improve
these types of symptoms. Specifically, a clinical trial with
the prebiotic HOST-G904 demonstrated a clinical benefit
in patients with irritable bowel syndrome.9 A very ele-
gant controlled trial in healthy university students
showed that around the time of final exams, stress was
associated with diarrhoea, indigestion and abdominal
pain, and galactooligosaccharide supplementation
reduced this stress-induced gastrointestinal dysfunc-
tion.10.

We hypothesised that prebiotic administration initially
activates the fermentative metabolism of colonic micro-
biota, increasing gas production, and that this early effect
is later followed by an adaptation of the microbiota with
a reduction in net gas production. Our aim was to assess
the effect of HOST-G904,9 on microbiota gas production
at initial exposure and then following continuous admin-
istration for a period of potential adaptation. To this
end, we designed a proof-of-concept study in healthy
subjects.

MATERIALS AND METHODS

Participants
Twenty-six healthy subjects without gastrointestinal
symptoms or history of gastrointestinal disorders partici-
pated in the study: 20 subjects participated in the main
study, and six subjects, as a control group, in an ancil-
lary study (Table 1). All participants were instructed to
fill out a clinical questionnaire based on Rome III criteria
to rule out functional gastrointestinal disorders (no
symptom ≥2 on a 0–10 scale) and to confirm normal

bowel habits. This questionnaire has been previously
shown to discriminate patients from healthy sub-
jects.4, 5, 11–14 Antibiotic, but not pre- or probiotic con-
sumption during the previous 2 month was an exclusion
criterium. Subjects gave written informed consent to par-
ticipate in the study. The protocol, including the external
control study, was approved by the Institutional Review
Board of University Hospital Vall d0Hebron and was reg-
istered with ClinicalTrials.Gov [NCT02618239].

Experimental design
Participants consumed a prebiotic (2.8 g/day HOST-
G904, HOST Therabiomics, Jersey, Channel Islands) for
3 week. For three 3-day periods, pre-administration (day
�2 to 0), at the early administration period (day 1–3)
and the late administration period (day 19–21), different
outcomes (see below) were measured (evaluation
periods).

Diet
During the study participants consumed their habitual
diet except during the evaluation periods when the diet
was standardised, as follows. During the evaluation peri-
ods, subjects were instructed to consume a low fibre
diet5 restricted to the following foodstuffs: (i) meat, fish,
fowl and eggs; (ii) salad; (iii) rice, pasta and bread; (iv)
dairy products and (v) strained orange juice, tangerine,
pears, apples and berries. This low-residue diet was com-
plemented with one portion per day of the following:
whole crackers, lentils, chickpeas, beans, peas, artichoke,
Brussels’ sprouts, banana, peach or prunes; the portion
size of each specific foodstuff was adjusted to contain
12 g fibre. For the rest of the administration period, the
participants consumed their usual diet. For the duration
of the study, fermented dairy products and any tablets,
pills or food supplements containing pre-or probiotics
were not allowed (Figure 1). During the 3-day evaluation
periods, participants were instructed to fill out a diary
specifying the foods they consumed, to assess compliance
with the diet and to calculate dietary intake.15–17

Table 1 | Demographic data

Main study Ancillary study

Age range, year 18–54 25–35
Women/men, n 12/8 5/1
BMI range, kg/m2 19–26 22–27
Bowel movements/week,
mean � S.E.

8 � 1 8.5 � 1.2

Bristol score, mean � S.E. 3.6 � 0.2 3.8 � 0.3
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Outcomes
The following data were collected during the 3-day eval-
uation periods before, at the beginning and at the end of
administration.

Daily symptom questionnaire. During the 3 day of each
evaluation period, the participants were instructed to fill
out daily questionnaires that included the following
parameters: (i) subjective sensations of flatulence (de-
fined as anal gas evacuation), abdominal bloating (pres-
sure/fullness), abdominal distension (sensation of girth
increment), borborygmi and abdominal discomfort/pain
using 0–10 analogue scales; (ii) digestive well-being using
a 10-point scale graded from +5 (extremely pleasant sen-
sation/satisfaction) to �5 (extremely unpleasant sensa-
tion/dissatisfaction) and mood on similr scale graded
from +5 (very positive) to �5 (very negative). This ques-
tionnaire has been previously used and was shown sensi-
tive to detect effect of dietary interventions in different
populations.4, 5, 14, 18

Number of anal gas evacuations. The number of anal
gas evacuations was measured during the day using an
event marker (Hand Tally Counter No 101, Digi Sport
Instruments, Shanggiu, China). Participants were
instructed to carry the event marker during the day and
register each passage of anal gas. To facilitate compli-
ance, anal gas evacuations were only registered during
the last 2 day of each evaluation period. This method
has been previously used with reproducible and consis-
tent results4, 5; furthermore, studies measuring the num-
ber of gas evacuations by an event marker and
continuously recording anal gas evacuations have shown
a very good correlation (r > 0.95; P < 0.05).19–22

Microbiota composition. Faecal samples were collected
on the last day of each evaluation period, i.e. immedi-
ately before and on the third and 21st day of

administration (60 samples in total). After collection and
homogenisation, the samples were immediately frozen by
the participants in their home freezers at �20 °C and
later brought to the laboratory in a freezer pack, where
they were stored at �80 °C.

Genomic DNA extraction: A frozen aliquot (250 mg) of
each sample was suspended in 250 lL of guanidine thio-
cyanate, 0.1 M Tris (pH 7.5), 40 lL of 10% N-lauroyl
sarcosine and 500 lL 5% N-lauroyl sarcosine. DNA was
extracted by mechanical disruption of microbial cells
with beads, and recovery of nucleic acids from clear
lysates was achieved by alcohol precipitation, as previ-
ously described.23 An equivalent of 1 mg of each sample
was used for DNA quantification using a NanoDrop
ND-1000 Spectrophotometer (Nucliber, Madrid, Spain).

High-throughput DNA sequencing: For profiling the
microbiome composition, the hyper-variable region (V4)
of the bacterial and archaeal 16S rRNA gene was ampli-
fied by PCR. On the basis of our analysis performed
using PrimerProspector software,24 the V4 primer pairs
used in this study were expected to amplify almost 100%
of the bacterial and archaeal domains. The 50 ends of
the forward (V4F_515_19: 50-GTGCCAGCAMGCCGCG
GTAA-30) and reverse (V4R_806_20: 50-GGACTACCAG
GGTATCTAAT-30) primers targeting the 16S gene were
tagged with specific sequences as follows: 50-{AATGAT
ACGGCGACCACCGAGATCTACACTATGGTAATTGT}
{GTGCCAGCMGCCGCGGTAA}-30 and 50-{CAAGCAG
AAGACGGCATACGAGAT} {Golay barcode} {AGTCA
GTCAGCC} {GGACTACHVGGGTWTCTAAT}-30. Mul-
tiplex identifiers, known as Golay codes, had 12 bases and
were specified downstream of the reverse primer sequence
(V4R_806_20).25 Standard PCR (0.75 units of Taq poly-
merase (Roche, Barcelona, Spain) and 20 pmol/lL of the
forward and reverse primers) was run in a Mastercycler
gradient (Eppendorf, Madrid, Spain) at 94 °C for 3 min,

Study days

Pre-administration

Diet -Habitual
-Standard

Symptom questionnaire

Gas collection test

Stool sampling

Daytime gas evacuations

Administration

Figure 1 | Experimental design.
All participants completed the
main study (n = 20) and were
included for analysis. Note the
colour code: pre-
administration in blue, early
administration red, and late
administration period green.
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followed by 35 cycles of 94 °C for 45 s, 56 °C for 60 s,
72 °C for 90 s, and a final cycle of 72 °C for 10 min.
Amplicons were purified using a QIAquick PCR Purifica-
tion Kit (Qiagen, Barcelona, Spain), quantified using a
NanoDrop ND-1000 Spectrophotometer (Nucliber,
Madrid, Spain), and then pooled in equal concentrations.
Pooled amplicons (2 nM) were then subjected to sequenc-
ing using Illumina MiSeq technology in the technical sup-
port unit of the Autonomous University of Barcelona
(UAB, Spain) following standard Illumina platform
protocols.

Sequence analysis: Sequences obtained from the 60
faecal samples after the sequencing step were analysed
with QIIME (Quantitative Insights Into Microbial Ecol-
ogy) 1.9.126 using an in-house script that performs
upstream and downstream analyses. Low-quality raw
sequences with a Phred score of less than 20 were
removed from the analysis. Each read was assigned
back to its corresponding sample during a demultiplex-
ing step and barcodes were removed from the
sequences. After filtering, we obtained a total of
2 460 589 high-quality sequences. The USEARCH
(Ultra-fast Sequence Analysis)27 tool was used to clus-
ter similar sequences into Operational Taxonomic
Units (OTUs) or taxa based on a 97% similarity and
to remove chimeric sequences with the UCHIME
(Ultra-fast Chimeric search) algorithm. From each of
these OTUs, one representative sequence was selected
and then aligned using PyNAST (Python Nearest
Alignment Space Termination tool) against a Green-
genes template alignment from the most recent version
of the database (gg_13_8). Then, a taxonomical assign-
ment step was performed using the basic local align-
ment search tool (BLAST) to map each representative
sequence against a combined database encompassing
the Greengenes and PATRIC (Pathosystems Ressource
Integration Center) databases. A phylogenetic tree using
the FastTree programme and an OTU table were built.
To avoid false positive OTUs, we eliminated those that
did not represent at least 0.2% of the sequences in at
least two samples. The final OTU table was rarefied at
15396 sequence reads per sample. Rarefaction is used
to overcome cases in which read counts were not
similar between samples.

Quantification of Bifidobacterium: To assess Bifidobac-
terium genus quantification, the extracted genomic
DNA was used to amplify the 16S rRNA gene by
quantitative real-time PCR (qPCR) using the following

specific primers Bifgenus_F: 50-TGG CTC AGG ATG
AAC GCT G-30 and Bifgenus_R: 50-TGA TAG GAC
GCG ACC CCA T-30 and TaqMan MGB probe
(FAMTM dye-labeled): 50-CAT CCG GCA TTA CCA-
30. To calibrate the qPCR reactions, we used calculated
amounts of extracted DNA from three isolated Bifi-
dobacterium species (B. breve, B. longum and B. infan-
tis). Serial dilutions of the pooled DNA were amplified
(copy number ranging from 25 to 2.5 9 106) to
extrapolate the bifidobacterial number in each sample.
The qPCR was performed with the 7500 Fast Real-
Time PCR System (Applied Biosystems, Barcelona,
Spain) using optical-grade 96-well plates. The PCR
reaction was performed in a total volume of 25 lL
using the TaqMan Universal PCR Master Mix (Applied
Biosystems), containing 300 nM of each primer and
100 nM of MGB probe. The reaction conditions for
amplification of DNA were 50 °C for 2 min, 95 °C for
10 min, and 40 cycles of 95 °C for 15 s and 60 °C for
1 min. All reactions were performed in triplicate and
mean values were calculated Data were analysed using
Sequence Detection Software version 1.4, supplied by
Applied Biosystems.

Response to a probe meal. The day following each eval-
uation period, participants reported to the laboratory
after an overnight fast and the response to a probe meal
was evaluated. The probe meal consisted of a ham omelet
(100 g), 46 g of white bread, 10 g of butter, 25 g of jam
and 200 mL of fruit juice (a 400 Kcal caloric content,
350 mL of total volume, 1.5 g of fibre). The first dose of
HOST-G904 was administered after the first collection
test; in the other two sets (early and late administration
period) HOST-G904 was administered with the probe
meal.

Anal gas evacuation: The volume of gas evacuated per
anus was measured for 4 h after the probe meal, as pre-
viously described.4, 28, 29 In brief, gas was collected using
a rectal balloon catheter (20 F Foley catheter, Bard, Bar-
celona, Spain) connected via a gas-tight line to a baro-
stat, and the volume was continuously recorded. The
intrarectal balloon was inflated with 5 mL of water to
prevent anal gas leaks.

Abdominal symptoms: Perception of abdominal sensa-
tions was measured every 30 min during the 4-h gas
collection period using the same scales as described
above: 0–10 scales for scoring abdominal bloating
(pressure/fullness), abdominal distension (sensation of
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girth increment), borborygmi and abdominal discom-
fort/pain; �5 to + 5 scales for scoring digestive well-
being and mood.

Girth measurement: The method has been previously
described.30 Briefly, a non-stretch belt (48-mm wide)
was placed over the umbilicus. The belt had a metric
tape with marks at 1 mm intervals fixed over it. The
overlapping ends of the belt were adjusted carefully by
two elastic bands to ensure that the belt was in con-
stant contact with the abdominal wall. Girth measure-
ments down to the one-millimetre level were taken
without manipulation by the investigator at 30-min
intervals during the study. Previous studies validated
the reproducibility of the measurements and the sensi-
tivity of this method to consistently detect small varia-
tions in girth induced by various experimental
conditions.12, 30–33 Changes in girth during the infusion
period were compared to the measurements during the
basal period.

Ancillary study: external control group
In the control group (see Participants) HOST-G904 was
administered at the same dose (2.8 g/day) for 2 weeks
while participants consuming their usual diet (see Exper-
imental design). The number of anal gas evacuations
(see above) was measured during daytime before admin-
istration (day 0), and on day 2, 3, 5, 7, 12 and 15 during
administration.

Statistical analysis
Microbiota analysis. The Shapiro–Wilk test was used to
check the normality of the data, and pairwise compar-
isons were made between the study groups with the
non-parametric Kruskal–Wallis one-way analysis of vari-
ance test, which compares means between groups. A
false discovery rate (FDR) of corrected P-values was
taken into account to consider the significance of the
results.

Overall comparisons. The means (�S.E.) of the variables
measured were calculated. The Kolmogorov–Smirnov test
was used to check the normality of the data distribution.
Parametric normally distributed data were compared by
Student’s t-test for paired or unpaired data; otherwise,
the Wilcoxon signed-rank test was used for paired data
and the Mann–Whitney U test for unpaired data. The
association of parameters was analysed using linear
regression analysis.

RESULTS

Study flow and dietary intake
All participants included in the study (n = 26) com-
pleted the protocols (main or ancillary study) and were
included for analysis. Participants reported adherence to
study instructions. Based on the diaries, dietary intake
during each 3-day evaluation period was calculated, and
mean daily intake during the three evaluation periods
was similar (Table 2).

Symptoms and gas volume
Pre-administration. Before administration, participants
tolerated the standardised diet (Table 2) without a signif-
icant perception of abdominal symptoms, except for a
mild-sensation of flatulence. Interestingly, participants
scored a positive sensation of digestive well-being and
positive mood (Figure 2). Using the event marker, a
mean of 12 � 1 daytime anal gas evacuations was
recorded (Figure 3). During the 4-h gas collection period
after the probe meal, subjects evacuated 160 � 17 mL of
gas (Figure 4) without reporting a significant perception
or abdominal distension (Figure 5); the scores of abdom-
inal sensation, well-being and mood were similar to
those recorded in diaries on previous day.

Early administration period. At the beginning of the
HOST-G904 administration, no changes in abdominal
sensations, well-being or mood were detected (Figure 2),
but a clear effect on colonic gas production was
observed. Indeed, on the standard diet (Table 2) the
number of daytime gas evacuations increased by
39 � 9%; up to 18 � 2 daytime evacuations (P < 0.001
vs. pre-administration), and the effect was already pre-
sent on the 2nd day of administration (Figure 3).

Table 2 | Daily dietary intake during evaluation periods

Study periods: HOST-G904 administration

Before Early phase Late phase

GOS*, g 0.17 � 0.04 0.19 � 0.03 0.19 � 0.03
Fructans, g 2.8 � 0.3 2.9 � 0.2 2.6 � 0.2
Fibre, g 18.4 � 0.4 18.4 � 0.4 18.8 � 0.4
Carbohydrates, g 292 � 9 292 � 9 286 � 7
Lipids, g 47 � 1 46 � 1 48 � 1
Proteins, g 86 � 2 83 � 2 86 � 2

Data are means of 3 day in each evaluation period.

* Galacto-oligosaccharides.
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Likewise, the volume of gas collected after the probe
meal increased by 64 � 16%; up to 236 � 23 mL
(P = 0.006 vs. pre-administration) (Figure 4), but this
did not affect sensation scores measured during the gas-
collection period after the probe meal (Figure 5).

Late administration period. After 3 weeks of HOST-
G904 administration, on the standard diet the abdominal
sensation were not significantly different than before
administration (Figure 2). After 3 weeks of administra-
tion, the number of anal gas evacuations on the standard
diet (Table 2) significantly decreased as compared to the
early administration period (P = 0.001) and returned to
the pre-administration level (11 � 2 daytime evacua-
tions; P = 0.351 vs. pre-administration) (Figure 3). The
same adaptive effect was observed on the volume of gas
evacuated after the probe meal (169 � 23 mL; P = 0.002
vs. early administration; P = 0.733 vs. pre-administration)
(Figure 4).

Microbial changes during the intervention
Cluster analysis of the microbial profiles in the 60 faecal
samples (three time points per subject) was performed
using the unweighted UniFrac principal coordinates
analysis (PcoA) (Figure 6). Samples of the three time
points clustered together in most subjects, indicating that
intra-individual fluctuations of the microbiota during
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Figure 2 | Symptoms measured by daily questionnaires pre-administration (day �2 to 0, blue), in the early
administration period (day 1–3, red), and in the late administration period (day 19–21, green) (n = 20). Data are
average over each 3-day periods.
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Figure 3 | Number of daytime anal gas evacuations
during the last 2 day of the evaluation periods: pre-
administration, in the early treatment period and the
late administration period (n = 20).
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the intervention were less distinctive than the inter--
individual differences. Changes in composition during
HOST-G904 administration followed different patterns
in different individuals and no significant statistical

differences in specific taxa were found when comparing
day 0 vs. day 3 or day 21 samples in the overall group
of 20 subjects. However, the relative abundance of bifi-
dobacteria increased in 13 subjects with low levels at
baseline, as defined by relative abundance below 0.5% of
total bacteria. In these subjects (n = 13) abundance of
bifidobacteria at day 3 (0.49 � 0.23%) and at day 21
(0.28 � 0.10%) was significantly higher than at day 0
(0.14 � 0.06%; P = 0.042 and P = 0.031, respectively);
values at day 3 and day 21 were not significantly differ-
ent (P = 0.200). The remainder seven individuals with
abundance above 0.5% at baseline showed no significant
changes in bifidobacteria. There were no differences in
gas volumes between subjects who increased bifidobacte-
ria numbers during HOST-G904 consumption (from day
0 to day 21) and those with stable abundance.

Volumes of gas recorded at day 21 correlated inversely
with abundances of Lachnospiraceae (r = �0.52,
P = 0.02), Clostridiaceae (r = �0.41, P = 0.07) and an
unknown clostridiales species (r = �0.45, P = 0.04) in
faecal samples at day 21. In addition, seven subjects har-
bouring methanogens (Methanobrevibacter) also pro-
duced low volumes of gas at day 21, although the
correlation in the whole group (n = 20) was not signifi-
cant due to the fact that in 13 subjects methanogens
were negligible. Figure 7 shows the 3D display of abun-
dances of Methanobrevibacter, Lachnospiraceae and
Clostridiaceae, where the black solid dots represent the 5
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Figure 4 | Volume of gas evacuated in response to
probe meal pre- administration, in the early treatment
period (day 3), in the late administration period (day
21) (n = 20).
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(red), in the late administration period day 21 (green) (n = 20).
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subjects who produced more than 200 mL of gas at day
21. Thus, the five individuals with high gas production
after 21 day prebiotic consumption had low abundance

of the above-mentioned taxa; in contrast, in the remain-
der 15 subjects with low gas production at day 21
(<200 mL), gas production had decreased during the
administration period, and 14 of them showed higher
abundance of methanogens, Lachnospiraceae, Clostridi-
aceae or an unknown clostridiales species (Figure 6).
Finally, Figure 8 shows changes relative to baseline in
gas production and in abundance of the genus Dorea in
faeces. An inverse correlation (r = �0.48, P = 0.03) sug-
gests that increases in Dorea spp. were associated to
reduced gas production by the end of the prebiotic
administration period. Lachnospiraceae, Clostridiaceae
and Dorea species ferment sugars and produce organic
acids.
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Figure 6 | Principal
coordinates analysis of the
microbial profiles in faecal
samples from 20 subjects at 3
time points (day 1, 3 and 21).
Samples from the same
subject (same colour)
clustered together in most
cases, indicating that intra-
individual fluctuations of the
gut microbiota during the
intervention were less
distinctive than the inter-
individual differences.
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Figure 7 | A three-axis plot shows relative abundance
of Methanobrevibacter, Lachnospiraceae and
Clostridiaceae in faecal samples at day 21. The black
solid dots are the samples from five subjects who
produced more than 200 mL of gas at day 21. The
remainder 15 subjects produced less than 200 mL of
gas, and the red dot is a sample with high abundance
of an unknown clostridiales species.
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Figure 8 | Inverse correlation (r = �0.48; P = 0.03)
between changes in gas volume from day 0 to 21, and
changes in the abundance of Dorea spp. from day 0 to
21. Increases in Dorea spp. were associated to reduced
gas production by the end of the prebiotic
administration period.
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Ancillary study: external control group
With participants on their habitual diet, the number of
anal gas evacuations significantly increased at the begin-
ning of HOST-G904 administration and gradually
declined back to the baseline level by 10 day administra-
tion (Figure 9).

DISCUSSION
Our data demonstrate the adaptation of gut microbiota
to the intraluminal environment: increased availability of
HOST-G904 led to a change in microbiota that had
more efficient metabolic routes. High volumes of gas
correlated with low methanogenic populations in some
participants. This may be explained by increases in
hydrogen, which is the usual substrate for gut-derived
methane.34, 35 Conversely, lower gas production was
concomitant with high methanogenic populations, pre-
sumably as hydrogen was converted to methane.

The effect of HOST-G904 administration was tested
with participants on a standardised diet, that is, a diet
low in fermentable residues, as previously tested in our
laboratory,5 but complemented with fixed portions of a
choice of foodstuffs containing equivalent amounts of
fibre that were also previously used in a high-flatulo-
genic diet.4 Under these conditions, the amount of day-
time anal gas evacuations was in the expected range
based on previous data from healthy subjects under
various dietary regimes.4, 5, 36 Similarly, the volume of
gas evacuated per anus measured for 4 h after a low-
residue probe meal fit the anticipated values derived
from previous observations under various experimental

conditions.4, 5, 36 Interestingly, a relatively small supple-
ment with a non-absorbable product (2.8 g/day HOST-
G904) in addition to the dietary fibre intake, initially
produced a marked effect on the microbiota metabolic
activity, as reflected by gas production and as measured
by the number of daytime anal gas evacuations and vol-
ume of gas evacuated after the probe meal. The effect
of HOST-G904 on the microbiota metabolic activity
was already present 24 h after the first administration
without major changes observed 24 h later. The colonic
transit time of inert residues averages 35 h in healthy
subjects37, 38; conceivably, HOST-G904 was consumed
at an earlier stage before reaching the distal colon.

The volume of intestinal gas produced depends in part
on the amount of fermentable residues reaching the
colon and the metabolic pathways used by the micro-
biota to consume them.39 Hence, on the same diet, the
amount of gas produced differs among individuals as a
function of their microbiota profile. A portion of the gas
produced by fermentation is consumed by other pools of
microorganisms in the formation of less oxidised prod-
ucts, a portion is absorbed into the blood and cleared by
breathing, and the rest is evacuated per anus.39 At the
first exposure to HOST-G904, the increase in gas pro-
duction was conceivably related to the availability of sub-
strates. A decrease in anal gas evacuation after
adaptation, that is, a decrease in net gas production,
could be related to the proliferation of microorganisms
using non-fermentative pathways to metabolise the sub-
strates with less gas production and/or to the up-regula-
tion of the gas-consuming activity. Indeed, reduced gas
production was related to the proliferation of methano-
gens that use H2 to reduce CO2 to CH4, reducing the
volume of gas by 1:5.39 Conversely, individuals with low
counts of methanogens and of some specific organic acid
producers exhibited a poor adaptation at the end of the
administration period.

To ensure similar testing conditions within and
between individuals, participants were put on standard-
ised diet during the 3-day evaluation periods before, at
the beginning and at the end of prebiotic administration.
We wish to acknowledge that diet standardisation may
have different effects depending on individuals0 habitual
diet with potential increase or decrease in fibre intake,
and this might interfere with the effect of the prebiotic.
To account for this potential limitation, the prebiotic
was also tested in an external control group of subjects
on their habitual diet and the same response, in terms or
number of anal gas evacuations, was observed. We
acknowledge the inherent limitations and potential bias
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Figure 9 | Control study. Time effect of HOST-G904
administration on number of daytime anal gas
evacuations measured in the ancillary study (n = 6).
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of external controlled trials, and that in the control
group the volume of gas evacuated and microbiota were
not measured.

It is interesting that a relatively small amount of
HOST-G904 relative to the daily dietary fibre intake had
a remarkable effect, initially on microbiota metabolic
activity and subsequently inducing adaptation. Conceiv-
ably, not all fermentable residues have the same capabil-
ity; the power to induce adaptation might be a crude
indicator of prebiotic activity. We based the test dose on
previous studies9; a higher dose might compromise selec-
tivity of fermentation, which is a requirement for prebi-
otic effects. The dose of HOST-G904 that was used
activated microbiota metabolism and increased the num-
ber of anal gas evacuation without inducing abdominal
symptoms in healthy subjects. We cannot ascertain how
this dose would be tolerated by patients with functional
gut disorders, but conceivably, potential symptoms at
first exposure would subside with adaptation. The ancil-
lary study showed that the number of daily anal gas
evacuations started to decrease after 5 day administra-
tion and by 10 day returned to pre-administration level;
it remains to be determined whether symptom adapta-
tion in patients follows the same time pattern.

HOST-G904 has been shown to improve symptoms in
patients,9 which was attributed to beneficial changes in
gut microbiota. Our study in healthy subjects has
potential clinical implications. Indeed, our data would
support advising patients to allow for a period of adapta-
tion before prebiotic effects become apparent.
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Alteration of the serum microbiome 
composition in cirrhotic patients 
with ascites
Alba Santiago1, Marta Pozuelo1, Maria Poca2,3, Cristina Gely2, Juan Camilo Nieto4, 
Xavier Torras2,3, Eva Román2,3,5, David Campos1, Guillaume Sarrabayrouse1, Silvia Vidal4,  
Edilmar Alvarado-Tapias2, Francisco Guarner1,3, German Soriano2,3, Chaysavanh Manichanh1,3 
& Carlos Guarner2,3

The progression of cirrhosis is associated with alterations in the composition of the gut microbiome. 
To assess microbial translocation, we compared the serum microbial composition of patients with 
and without ascites and characterized the ascitic fluid microbiome using 16S rDNA high-throughput 
sequencing data. A complex and specific microbial community was detected in the serum and ascitic 
fluid of patients with cirrhosis but barely detectable in the serum of healthy controls. The serum 
microbiome of patients with ascites presented higher levels of lipopolysaccharide binding protein, 
a marker of microbial translocation, associated with higher diversity and relative abundance of 
Clostridiales and an unknown genus belonging to the Cyanobacteria phylum compared to patients 
without ascites. The composition of the fecal microbiome was also more altered in patients with than 
without ascites, confirming previous studies on fecal microbiome. We propose that alteration of the 
serum and fecal microbiome composition be considered indicators of cirrhosis progression.

Liver cirrhosis is a major cause of global health loss. In this regard, its incidence increased from 676,000 patients 
in 2008 to over 1 million in 20101. It is the final phase of chronic liver disease, in which inflammation is associated 
with dying hepatic cells and fibrosis, leading to poor liver function and portal hypertension. Alterations in the gut 
microbiota, which represents the collective microbial cells present in the digestive tract, or its products, are linked 
to the progression of liver disease and the complications of cirrhosis2. Over the last decade, advances in molec-
ular techniques and bioinformatics, as well as the exponential decrease in the cost of sequencing, have allowed 
comprehensive characterization of the composition and function of the gut microbial community. Using these 
techniques, recent studies on the gut microbiome have demonstrated an alteration of the composition of the stool 
microbial community in cirrhotic patients compared to healthy controls3,4. Furthermore, this level of alteration 
appears to be positively correlated with the severity of the disease5.

More specifically, bacterial translocation has been suspected to play an important role in the pathogenesis 
and complications of cirrhosis. By administering green fluorescent protein (GFP)-labeled Escherichia coli orally 
to cirrhotic rats, Teltschik et al.6 revealed the presence of bacteria not only in the intestinal lumen but also in 
mesenteric lymph nodes (MLNs) and ascites. We also recently described that rat MLNs harbor a high microbial 
diversity7. However, very little is known about the microbiome of extra-intestinal sites such as the systemic circu-
lation and ascitic fluid in patients with cirrhosis.

This study sought to: (a) characterize the microbiome of serum and fecal samples of patients with cirrhosis 
and compare them with those of healthy controls; (b) define the serum microbiome associated with severity of 
liver disease; and (c) identify the microbiome of ascitic fluid.
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Results
Enrollment process.  A total of 60 outpatients with cirrhosis were evaluated. Thirty-three were excluded due 
to treatment with non-absorbable disaccharides and/or antibiotics (n =  11), current alcohol intake (n =  7), hepa-
tocellular carcinoma (n =  5), spontaneous bacterial peritonitis (n =  1), other infections or suspicion of infection 
(n =  3), severe comorbidities (n =  4), or because they were unwilling to participate in the study (n =  2). Therefore, 
a total of 27 patients were included—13 with ascites and 14 without ascites. Seventeen healthy controls were 
included for stool (n =  17) and serum (n =  7) microbiome analysis.

Patient characteristics.  The characteristics of patients are shown in Supplementary Table 1. The main dif-
ferences between the two groups of patients consisted, as expected, of a more advanced liver insufficiency as 
determined by the Child-Pugh score and a higher incidence of previous ascites in patients with than in those 
without ascites. When analyzing other factors that could influence the microbiome composition, we did not find 
statistical differences between the two groups regarding age, body mass index or etiology of cirrhosis. Patients 
without ascites showed a trend towards a lower prevalence of diabetes than those with ascites and they were more 
frequently receiving treatment with beta-blockers or proton pump inhibitors. These differences, however, did not 
reach statistical significance.

No patient in either group presented symptoms, signs at physical examination or analytical data suggesting 
infection. Microbial cultures were negative, and neutrophil count was <250/mm3 in all ascitic fluid samples. 
Therefore, all patients with ascites were considered to have a non-infected ascitic fluid.

Microbiome in stool.  The stool microbiome of 27 patients with cirrhosis was compared to that of 17 healthy 
controls. Alpha-diversity analysis showed that the fecal microbial community of healthy controls presented a 
higher diversity than that of patients with cirrhosis (Fig. 1a). However, the diversity was similar in patients with 
or without ascites (Fig. 1b). Together, these results suggest that a loss of microbial diversity in fecal samples 
is associated with cirrhosis without ascites, but the progression to ascites is not associated with a further loss 
of diversity. Clustering analysis using PCoA and UPGMA methods based on UniFrac metrics showed that the 
stool microbiome of cirrhotic patients clustered separately from that of healthy controls (Fig. 1c,d). At the tax-
onomic level, patients with cirrhosis were depleted of six species (FDR <  0.05; Kruskal-Wallis test): unknown 
Clostridiales, Roseburia faecis, Alistipes putredinis, unknown Oscillospira, unknown Mogibacteriaceae, and 
unknown Dehalobacterium, but were enriched in an unknown Peptostreptococcaceae compared to healthy con-
trols (FDR <  0.05; Kruskal-Wallis test; Fig. 1e). Proteobacteria, at the phylum level, were more abundant in cir-
rhotic patients than in healthy controls but the difference did not reach significance (FDR =  0.42; Kruskal-Wallis 
test). All together, these results confirm previous findings that the microbiome composition of cirrhotic patients 
is altered4.

Cirrhosis can progress to ascites, which is defined as the accumulation of fluid in the peritoneal cavity. 
Interestingly, when we analyzed the stool microbiome of patients with ascites and those without ascites sep-
arately, only the former displayed a significant dysbiosis at the species level, with depletion of unknown 
Ruminococcaceae, Clostridiales and Peptostroptococcaceae, Roseburia faecis and Alistipes putredinis and with 
an enrichment of Veillonella dispar compared to healthy controls (FDR <  0.05; Kruskal-Wallis test; Fig. 1f). For 
several of these species, such as Roseburia faecis, Alistipes putredinis and Veillonella dispar, our findings are in line 
with those of Qin et al.4 and further support the notion that the progression of the disease is associated with a 
greater dysbiosis, as reported by Bajaj et al.5. Patients without ascites presented only a trend towards lower relative 
abundance of unknown Mogibacteriaceae and Alistipes (FDR =  0.053; Kruskal-Wallis test) compared to healthy 
controls.

Microbiome in fluids.  Standard diagnostic microbiological analysis revealed that the serum and ascitic fluid 
samples were negative for bacterial growth. We analyzed the microbiome serum from 7 healthy controls and from 
the 27 patients and ascitic fluid from 11 patients. Analysis of the 16S rRNA gene of such low-biomass samples 
may generate contamination at various steps of the process. Therefore, we applied strict protocols for sample col-
lection, DNA extraction, and PCR amplification. For sample collection, we used gloves and proceeded in sterile 
conditions. For DNA extraction, we used chemicals such as DNA terminator (Biotools, B & M Labs, Spain) to 
degrade any trace of contaminant DNA in laboratory equipment, and we added negative controls (blanks) during 
extraction. During PCR amplification, we used UV to clean consumables and H2O and also added PCR blanks.

The amplicons were analyzed in an electrophoretic gel and their presence was indicated by a DNA band at 
about 400 bp (Supplementary Fig. 1). No DNA band was observed for four control serum samples out of seven, 
one serum sample from patient with ascites and one ascitic fluid sample, or for the negative controls added 
during the extraction (NEG1 and NEG2) and PCR (NEG3) procedures. The PCR amplifications of serum and 
ascitic fluid samples provided a gradient of intensity in the DNA bands, as analyzed in the electrophoretic gel 
(Supplementary Fig. 1), in the following order: healthy control serum <  cirrhotic patients without ascites <  cir-
rhotic patients with ascites <  ascitic fluid, thereby also suggesting a gradient in the microbial load. To remove 
potential false positive OTUs during sequence analysis, we subtracted sequences with abundant taxa generated 
in the blanks from the serum and ascitic fluid samples and applied a more restricted filter to the data obtained 
from samples in order to remove taxa with a low abundance, as specified in the method section. The contami-
nation present in the negative controls was identified as being mostly Proteobacteria (69%) at the phylum level 
and Pseudomonas (30%), Halomonas (18%) and unknown (12%) at the genus level. After this filtering step and 
at a rarefaction of 1000 sequences per sample, we obtained sequence data for 24 out of 27 serum samples from 
patients and for eight out of 11 ascitic fluid samples and no sequence data were recovered from healthy controls. 
Supplementary Fig. 2 shows the taxonomic profiling of the three sample types at the phylum level before and after 
the sequence-filtering step.
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Beta-diversity analysis, which studies the variation in composition between samples, showed a similar micro-
bial composition between serum and ascitic fluid samples. However, the microbial community differed greatly 
between these two sample types and the stools (Fig. 2a), although 89% and 86% of the serum and ascitic fluid 
microbiome was shared with the stool microbiome at the genus level (Supplementary Fig. 3). Euryarchaeota 
(phylum level) was detected only in stool samples and Thermi and Deinococcus-Thermus were detected only in 
ascitic fluid (Fig. 2b). Firmicutes and Bacteroidetes were the two most dominant phyla in the three sample types.

Figure 1.  Fecal microbiome of cirrhotic patients and healthy controls. (a,b) Healthy controls presented 
higher microbial diversity compared to all cirrhotic patients (a) and to patients with and patients without 
ascitic fluid (b) as assessed by the Chao1 index. The two groups of patients with and without ascites were not 
significantly different. (c,d) Unweighted UniFrac PcoA (c) and weighted UniFrac UPGMA (d) clustering 
analysis. Blue: healthy controls; orange: patients without ascites; and red: patients with ascites. (e,f) Relative 
abundance of microbes differentially present at the species level between healthy controls and all cirrhotic 
patients (e) and between healthy controls and cirrhotic patients with ascites (f) (Kruskal-Wallis; FDR <  0.05). 
Analyses were performed on 16 S rRNA V4 region data, obtained from stool samples, rarefied to a depth of 
19,930 reads per sample. Healthy controls (n =  17); patients (n =  27); patients with ascites (n =  13); patients 
without ascites (n =  14); ***P =  0.001; **P =  0.003.
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From serum and ascitic fluid, we detected six and eight groups of microbes at the phylum level, 26 and 28 
groups at the family level, and 36 and 38 groups at the genus level, respectively. At the phylum level, Firmicutes 
(41%), Bacteroidetes (37%) and Proteobacteria (14%) accounted for 92% of the sequence data of the serum 
microbiome, whereas in ascitic fluid Firmicutes (46%), Bacteroidetes (27%), Thermi (10%) and Proteobacteria 
(8%) accounted for 92%. Serum and ascitic fluid were similar in terms of diversity and richness, as assessed by an 
abundance-based richness estimator (Chao1) (Fig. 3a). However, serum specimens of patients with ascitic fluid 
presented a more diverse microbiome (P =  0.008) than those of patients without (Fig. 3b), and a significantly 
higher concentration of lipopolysaccharide binding protein (LBP) (P =  0.02, Mann Whitney test), a marker of 
microbial translocation (Fig. 3c). This observation could be explained by patients with ascites, who are expected 
to have a greater deterioration of the intestinal barrier integrity, also having a higher degree of microbial translo-
cation than those without ascites, thus leading to a higher microbial diversity in serum.

Furthermore, using an UPGMA clustering method of the serum microbiome based on an unweighted UniFrac 
metric, the microbiome of patients with and without ascites clustered separately (Fig. 4a). This result suggests that 
a specific serum microbiome is linked to the presence of ascites.

Taxonomic comparison showed that an unknown group of microbes at the family level, belonging to the 
Clostridiales order, displayed a higher relative abundance in serum of patients with ascites (FDR =  0.03; 

Figure 2.  Fecal, serum and ascitic fluid microbiome. (a) Clustering of samples using unweighted UniFrac 
PcoA representation. (b) Taxonomic composition at the phylum level of the three sample types: Feces, serum, 
and ascitic fluid. Analyses were performed on 16 S rRNA V4 region data, rarefied to a depth of 19,930 reads 
for stool and 1,000 reads for serum and ascitic fluid samples. Green: stool; blue: serum; red: ascitic fluid. 
F.H =  Feces of healthy controls; F.P =  Feces of patients with cirrhosis; S.Q.P =  Serum of patients; AF.P =  ascitic 
fluid of patients. 201 to 215 =  patients without ascites; 101 to 113 =  patients with ascites.
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Kruskal-Wallis test) and another group, Moraxellaceae, showed a lower relative abundance in patients with ascites 
compared to those without (Fig. 4b). Interestingly, this group of bacteria was also found in ascitic fluid samples 
(Supplementary Fig. 4), thereby supporting the notion of translocation from serum to ascitic fluid. At the genus 
and species level, an unknown genus related to Cyanobacteria (FDR =  0.002) was found in higher relative abun-
dance in patients with ascites compared to those without.

Microbial translocation.  In order to study whether the presence of bacterial DNA in ascitic fluid and blood 
derived from the gastrointestinal tract, we counted the taxa common to stool and serum, stool and ascitic fluid, 
and serum and ascitic fluid. For this purpose, we first counted the number of taxa in each sample type, finding 
an average of 397 (SD =  94), 283 (SD =  76) and 97 (SD =  25) taxa in stool, serum and ascitic fluid, respectively. 
By comparing the taxa between samples, we detected on average 37 taxa common to both stool and serum, 20 to 

Figure 3.  Microbial of extra-intestinal sites and marker of translocation. (a) Alpha-diversity of the microbial 
fluid samples as assessed by Chao1 index of diversity. Ascitic fluid (n =  11); Serum of patients with cirrhosis 
(n =  19; instead of 27 due to rarefaction depth with ascitic fluid samples). (b) Higher alpha-diversity of serum 
microbiome of cirrhotic patients with ascites compared to that of patients without (P <  0.05). Analyses were 
performed on 16 S rRNA V4 region data, rarefied to a depth of 1,000 reads per sample. (c) Lipopolysaccharide 
binding protein (LBP) levels as assessed by specific ELISA; serum of patients with ascites (n =  11 available 
samples).

Figure 4.  Serum microbiome of patients with and without ascites. (a) UPGMA clustering based on 
unweighted UniFrac metric of serum samples of cirrhotic patients with and without ascites. (b) Relative 
abundance of microbes or groups of microbes significantly different between serum microbiome of cirrhotic 
patients with and without ascites. Analyses were performed on 16S rRNA V4 region data, rarefied to a depth of 
1,000 reads per sample.
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serum and ascitic fluid, and three to ascitic fluid and stool (Supplementary Fig. 5). These results indicate that the 
three sites share few common microbial taxa and therefore suggest that the microbial taxa present in the serum, 
but not detected in stool, could either take root in extra-intestinal sites such as the lung or the vagina for women 
or were in too low abundance in the stool to be detectable but when they reached the serum, a more appropriate 
environment for their growth, they became detectable.

Discussion
This is the first study to validate the presence of polymicrobial DNA in both the serum and ascitic fluid of patients 
with cirrhosis using high-throughput sequencing techniques. Our findings showed that the microbial commu-
nity in serum and ascitic fluid, although showing more than 80% similarity with that of the stool microbiome at 
the genus level, is specific and complex at the taxa level. Previous studies using a variety of techniques, mainly 
conventional PCR, reported the presence of bacterial DNA in ascitic fluid and/or blood only in up to 30–60% of 
these patients8–11. Moreover, most of the DNA detected in these studies was monomicrobial, identified as being 
Escherichia coli or Staphylococcus aureus8–11. A recent study has reported the characterization of the microbial 
composition of the ascitic fluid of cirrhotic patients12. However, the authors amplified the 16 S gene from only one 
individual out of seven and this individual was positive for Escherichia coli in culture. Using shotgun-sequencing 
technique on two pools of ascitic fluid obtained from three patients, they were able to identify only 0.1% of 
bacterial DNA, for which the majority was identified as being Escherichia. However, according to our findings, 
Escherichia belonging to the Proteobacteria phylum could also be found in the extraction and PCR blanks. We 
therefore recommend that future studies on samples with a low biomass include several blanks and minimize 
the amount of Taq polymerase used during the PCR amplification, since it may contain contaminant DNA. The 
detection of polymicrobial DNA in the serum and ascitic fluid observed in the present study is in line with our 
previous findings in rats, showing a high microbial diversity in MLNs of a model of CCl4-induced liver injury, as 
well as in those of control rats7.

We were unable to analyze the serum microbiome of the seven healthy controls at a sufficient rarefaction 
depth compared to all other samples. Indeed, the presence of DNA bands in the electrophoretic gel after serum 
amplification could be due to the presence of human DNA combined with contaminant DNA during extraction 
and amplification, thus impeding analysis of the microbiome of these samples after filtering out the contaminant 
sequences. As the same method of sample collection and processing was used for patients with cirrhosis, this find-
ing supports that the detection of bacterial DNA in patients with cirrhosis was not caused by contamination. This 
observation suggests that healthy individuals harbor a very low or undetectable microbial load in blood, which is 
in agreement with a recent study demonstrating the presence of a gut-vascular barrier that controls the systemic 
dissemination of bacteria in healthy individuals but not in patients with celiac disease and liver damage13. In cir-
rhotic patients, the similarity of the microbiome composition between serum and ascitic fluid compared to stool 
samples could be due, in part, to the body site selecting only microorganisms capable of growing in a liquid and 
relatively aerobic environment. The differences found in diversity (Chao1 index) and in composition and struc-
ture of the serum microbiome between patients with and without ascites are alterations that are associated with 
cirrhosis progression, thereby validating the assumption of previous studies14.

The decrease in stool microbial diversity and the depletion of several commensal groups of bacteria (unknown 
Ruminococcaceae, Clostridiales and Peptostroptococcaceae, Roseburia faecis and Alistipes putredinis) in patients 
with cirrhosis is also in agreement with the findings of previous studies3,4. However, in contrast to other authors5, 
we did not observe a significant increase in potential pathogenic bacteria such as Enterobacteria, but only a trend 
towards an increase in Proteobacteria or Streptococcaceae. This observation could be explained by a smaller 
sample size and the fact that the patients in our study presented a relatively preserved liver function, as reflected 
by the low Child-Pugh and MELD scores, in comparison with other studies that included groups with more 
advanced liver failure.

Our study presents several limitations such as a small sample size, DNA contamination that may remain after 
sequence curating (despite the multiple precautions to avoid this as mentioned above), and confounding factors. 
To reduce possible confounding factors, we excluded patients with recent alcohol intake and those treated with 
antibiotics or non-absorbable disaccharides. We did not find statistically significant differences between patients 
with and without ascites in other possible confounding factors, such as diabetes and the use of beta-blockers 
or proton-pump inhibitors. However, we cannot exclude that the non-significant differences observed in these 
parameters could have influenced the results reported here.

Despite these limitations, we conclude that serum and ascitic fluid of patients with cirrhosis contain a complex 
and specific microbial community and that our method of low-biomass analysis could be applied to other condi-
tions of gut-vascular barrier failure13. We propose that alteration of the serum and fecal microbiome composition 
be considered indicators of cirrhosis progression.

Methods
Ethical statement.  The study included consecutive outpatients with cirrhosis treated at the Hospital de la 
Santa Creu i Sant Pau, a tertiary care hospital in Barcelona, Spain. The methods conformed to the Declaration of 
Helsinki and Guidelines for Good Clinical Practice in Clinical Trials and were carried out in accordance with the 
Clinical Research Ethics Committee of the Hospital de la Santa Creu i Sant Pau. All experimental protocols were 
approved by the same Ethics Committee. All patients received information concerning their participation in the 
study and gave written informed consent.

Patient information.  Cirrhosis was diagnosed by clinical, analytical, and ultrasonographic findings 
or by liver biopsy. Exclusion criteria were the following: hospitalization in the previous month due to decom-
pensation of cirrhosis; hepatocellular carcinoma or other neoplasia; alcohol intake in the previous 3 months; 
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current infection or overt hepatic encephalopathy; marked symptomatic comorbidities (cardiac, pulmonary, 
renal, untreated active depression); treatment with antibiotics or non-absorbable disaccharides in the previous 
3 months; and life expectancy of less than 6 months. Patients were carefully evaluated to exclude active infection 
when joining the study. Patients were classified into two groups, namely those with ascites and those without. The 
former group consisted of stable patients with refractory ascites attending the day hospital for regular therapeutic 
paracentesis. A group of age- and gender-matched healthy controls was included to compare their stool and blood 
microbiome composition with that of patients with cirrhosis.

Sample collection.  Fecal samples were collected by the patients or controls as previously described15. Blood 
and ascitic fluid samples were collected in sterile conditions by peripheral vein puncture and during therapeutic 
paracentesis, respectively. For patients with cirrhosis, we performed routine blood analysis to assess the degree 
of liver failure, renal function, blood white cell count, and ascitic fluid neutrophil count to rule out ascitic fluid 
infection (spontaneous bacterial peritonitis). Samples of blood and ascitic fluid were cultured in blood culture 
bottles (BactAlert®) to assess for microbial growth. Additional samples of blood and ascitic fluid were collected 
in in SST™  Tubes (BD Vacutainer® ) tubes and 15 ml centrifuge tubes respectively, and frozen at − 80 °C until 
DNA analysis.

Lipopolysaccharide binding protein levels.  Serum was tested for lipopolysaccharide binding protein 
(LBP) concentration to assess exposure to bacteria and their endotoxins as an index of bacterial translocation16,17, 
using specific ELISA (Biometec GmbH, Greifswald, Germany) according to the manufacturer’s instructions. LBP 
was quantified with standard curves provided by the corresponding ELISA kit. The detection limit was 5 ng/mL.

DNA extraction, PCR amplification, and sequencing.  We analyzed the microbiome of samples from 
healthy controls (stool, n =  17; serum, n =  7) and cirrhotic patients (stool, n =  27; serum, n =  27; ascitic fluid, 
n =  11). In order to identify possible contamination in low-biomass samples and subtract the sequences of the 
potentially contaminated DNA generated during the extraction and PCR amplification, we introduced negative 
controls (blanks) during these two technical steps.

A frozen aliquot of fecal sample (250 mg) from each individual (n =  44) was subjected to genomic DNA 
extraction using a previously described method, referred to here as the “Godon” method15,18. Each sample was 
suspended in 250 μ l of guanidine thiocyanate, 0.1 M Tris (pH 7.5), 40 μ l of 10% N-lauroyl sarcosine, and 500 μ l 
5% N-lauroyl sarcosine. DNA was extracted by mechanical disruption of the microbial cells with beads. RNA was 
removed by the addition of 2 μ l of a 10-mg/ml solution of RNAase, and nucleic acids were recovered from clear 
lysates by alcohol precipitation. Twenty-seven and seven serum samples were collected from patients and healthy 
controls, respectively, and subjected to genomic DNA extraction using beads to disrupt the microbial cells fol-
lowed by the QIAamp®  DNA Blood Midi Kit (Qiagen, Madrid, Spain), following the manufacturer’s protocol. We 
obtained 11 ascitic fluid samples (4 ml) from 13 patients. Microbial DNA was extracted using a modified “Godon” 
protocol. In this regard, after a 10-min centrifuge at 14000 rpm, the pellet was subjected to the same procedure as 
the fecal samples. However, the final resuspension of the nucleic acids was carried out with 30 μ l of a Tris-EDTA 
buffer solution.

An equivalent of 1 mg of each sample was used for DNA quantification using a NanoDrop ND-1000 
Spectrophotometer (Nucliber). DNA integrity was examined by micro-capillary electrophoresis using an Agilent 
2100 Bioanalyzer with the DNA 12,000 kit, which resolves the distribution of double-stranded DNA fragments 
up to 17,000 bp in length.

For profiling microbiome composition, the hyper-variable region (V4) of the bacterial and archaeal 
16 S rRNA gene was amplified by PCR. On the basis of our analysis done with Primer Prospector software, 
the V4 primer pairs used in this study were expected to amplify almost 100% of the bacterial and archaeal 
domains. The 5′  ends of the forward (V4F_515_19: 5′ -GTGCCAGCMGCCGCGGTAA-3′ ) and reverse 
(V4R_806_20: 5′ -GGACTACHVGGGTWTCTAAT-3′ ) primers targeting the 16S gene were tagged with 
specific sequences as follows: 5′ -{AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGT}3,15,18  
{GTGCCAGCMGCCGCGGTAA}-3′  and 5′ -{CAAGCAGAAGACGGCATACGAGAT} {Golay barcode} 
{AGTCAGTCAGCC} {GGACTACHVGGGTWTCTAAT}-3′ . Multiplex identifiers, known as Golay codes, had 
12 bases and were specified downstream of the reverse primer sequence (V4R_806_20)19,20.

Standard PCR using 0.75 units of Taq polymerase (Roche) and 20 pmol/μ L of the forward and reverse primers 
was run in a Mastercycler gradient (Eppendorf) at 94 °C for 3 min, followed by 35 cycles of 94 °C for 45 sec, 56 °C 
for 60 sec, 72 °C for 90 sec, and a final cycle of 72 °C for 10 min. Amplicons were first purified using the QIAquick 
PCR Purification Kit (Qiagen, Barcelona, Spain), quantified using a NanoDrop ND-1000 Spectrophotometer 
(Nucliber) and using an Agilent 2100 Bioanalyzer with the DNA 1000 kit, and then pooled in equal concentra-
tion. The pooled amplicons (2 nM) were then subjected to sequencing using Illumina MiSeq technology at the 
technical support unit of the Autonomous University of Barcelona (UAB, Spain), following standard Illumina 
platform protocols.

Sequence analysis.  Sequences obtained from stool, ascitic fluid, and serum, together with negative con-
trols from the extraction and PCR methods, were analyzed with QIIME 1.8.021 using an in-house script. Raw 
sequences of low quality were filtered out with a minimum acceptable Phred score of 20. A demultiplexing step 
was performed to assign back each read to its corresponding sample and to remove barcodes. A total of 3,393,253 
high quality sequences were finally recovered (2,910,686 for feces and 482,567 for serum and asctic fluid samples). 
UCLUST algorithm based on 97% of similarity was used to cluster similar sequences into Operational Taxonomic 
Units (OTUs) or taxa. Representative sequences of each OTU were aligned using PyNAST against Greengenes 
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template alignment (gg_13_8). Chimeric sequences were then identified and removed with ChimeraSlayer. 
Finally, a taxonomical assignment for each OTU was performed with the basic local alignment search tool 
(BLAST) and the combination of two microbial databases (Greengenes and PATRIC). A phylogenetic tree was 
obtained with the FastTree program. The general OTU table was split into various tables in order to individually 
analyze feces, serum, and ascitic fluid samples.

In order to avoid false positive OTUs in stool samples, we eliminated those that did not represent at least 0.2% 
of the sequences. For samples with a low biomass, such as serum and ascitic fluid, we removed the OTUs that did 
not account for at least 0.2% of the sequences in at least 3 samples. Moreover, OTUs detected in negative controls 
were also removed for downstream analyses. Unknown bacteria assigned by BLAST against Greengenes and 
PATRIC databases were additionally checked against the NCBI database, and OTUs identified as from human 
origin were removed from the dataset. The final total, mean, minimum and maximum number of sequences per 
sample type were computed, and OTU tables were rarefied at several rarefaction depths (Supplementary Table 2).

Statistical analyses.  The characteristics of patients with and without ascites were compared using Fisher’s 
exact test for categorical variables and Mann-Whitney test for quantitative variables. For sequence analysis, pair-
wise comparisons were performed using OTU tables generated from each sample type. Samples that contained 
fewer reads than the rarefaction depth were removed for the alpha and beta diversity analyses. The Shapiro-Wilk 
test was used to check normality of the data, and pairwise comparisons were made between the study groups with 
the non-parametric test Kruskal-Wallis one-way analysis of variance, which compares means between groups. 
False discovery rate (FDR) corrected p-values were taken into account to consider significant results. Richness 
provided by alpha diversity was computed with Chao1 index. Sample clustering was performed using UPGMA 
and PCoA methods based on UniFrac metrics.
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