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Abstract

Lung cancer is one of the most diagnosed cancers among men and women. Actu-
ally, lung cancer accounts for 13% of the total cases with a 5-year global survival
rate in patients. Although Early detection increases survival rate from 38% to 67%,
accurate diagnosis remains a challenge. Pathological confirmation requires extract-
ing a sample of the lesion tissue for its biopsy. The preferred procedure for tissue
biopsy is called bronchoscopy. A bronchoscopy is an endoscopic technique for
the internal exploration of airways which facilitates the performance of minimal
invasive interventions with low risk for the patient.

Recent advances in bronchoscopic devices have increased their use for minimal
invasive diagnostic and intervention procedures, like lung cancer biopsy sampling.
Despite the improvement in bronchoscopic device quality, there is a lack of in-
telligent computational systems for supporting in-vivo clinical decision during
examinations. Existing technologies fail to accurately reach the lesion due to sev-
eral aspects at intervention off-line planning and poor intra-operative guidance at
exploration time. Existing guiding systems radiate patients and clinical staff, might
be expensive and achieve a suboptimlal 70% of yield boost.

Diagnostic yield could be improved reducing radiation and costs by developing
intevention support systems able to guide the bronchoscope to the lesion. The goal
of this thesis is to develop an image-based navigation system for intra-operative
guidance of bronchoscopists to a target lesion across a path previously planned on
a CT-scan.

We propose a 3D navigation system which uses the anatomy of video bron-
choscopy frames to locate the bronchoscope within the airways. Once the bron-
choscope is located, our navigation system is able to indicate the bifurcation which
needs to be followed to reach the lesion. In order to facilitate an off-line validation
as realistic as possible, we also present two methods for augmenting simulated
virtual bronchoscopies with the appearance of intra-operative videos. Experiments
performed on augmented and intra-operative videos, proves that our algorithm can
be speeded up for an on-line implementation in the operating room.

Key words: lung cancer, bronchoscopy, navigation system,...
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Resumen

El cancer de pulmén es uno de los canceres mas diagnosticados entre hombres y
mujeres. De hecho, el 13 % del total de casos con una tasa de supervivencia de 5
anos son de cancer de pulmén. Aunque la deteccién precoz incrementa la tasa de
supervivencia del 38 % al 67 %, un diagnostico acertado aun es un reto. Para una
confirmacién patoldgica se requiere de la extracciéon de una muestra de tejido para
su biopsia. El procedimiento preferido para la biopsias de tejido pulmonar se llama
broncoscopia. Una broncoscopia es una técnica endoscépica para la exploracién
interna de las vias respiratorias que facilita la realizacién de intervenciones de bajo
riesgo para el paciente.

Avances recientes en broncoscopios han incrementado su uso en diagnésticos
minimamente invasivos e intervenciones como en la extraccién de muestras de
tejido. A pesar de estos avances, hy una falta de sistemas inteligentes que ayuden
decisiones clinicas in-vivo durante los procedimientos. Las tecnologias actuales
fallan en alcanzar ciertas lesiones debido a algunos aspectos en la planificacién
off-line y a un mal guiado durante los procedimientos. Algunos sistemas de guiado
ya existentes radian a pacientes y el equipo clinico, pueden ser muy caros y solo
consiguen un incremento de la eficiencia de hasta el 70 %.

La eficiencia del diagnostico podria mejorarse reduciendo la radiacién y costes
de la intervencion desarrollando sistemas de soporte capaces de guiar el broncos-
copio hasta una determinada lesion. El objetivo de esta tesis es el de desarrollar
un sistema de navegacién para broncoscopias que permita alcanzar una lesién
siguiendo un camino previamente calculado en un CT.

Proponemos un sistema de navegacion que usa informacién anatémica de
imdagenes de broncoscopias para localizar el broncoscopio dentro de las vias respi-
ratorias. Una vez que el broncoscopio es localizado, nuestro sistema de navegaciéon
es capaz de indicar la bifurcacién que se necesita atravesar para alcanzar una
determinada lesién. Para facilitar una validacién off-line tan realista como sea posi-
ble, también presentamos dos métodos para aumentar imagenes de broncosopias
virtuales con apariencia real. Los experimentos realizados tanto en imégenes au-
mentadas como en broncoscopias reales demuestran que nuestro algoritmo puede
acelerarse para ser usado dentro de un quiréfano.

Palabras clave: cdncer de pulmon, broncoscopia, sistema de navegacion,...






Resum

El cancer de pulm6 és un dels cancers més diagnosticats entre homes i dones. En
realitat, el cancer de pulmé representa el 13% del total de casos amb una super-
vivéncia global de 5 anys. Tot i que la detecci6 preco¢ augmenta la supervivencia
del 38% al 67%, el diagnostic precis continua sent un repte. La confirmacié pa-
tologica requereix extreure una mostra del teixit de la lesi6 per a la seva biopsia.
El procediment preferit per a la biopsia del teixit extret s’Tanomena broncoscopia.
Una broncoscopia és una tecnica endoscopica per a I’exploracié interna de les vies
respiratories que facilita el funcionament d’intervencions minimament invasives
amb un baix risc per al pacient.

Els avencos recents en aparells broncoscopics han incrementat el seu ts per
procediments diagnostics i d'intervencié, com ara, el mostreig de biopsia per cancer
de pulmé. Malgrat la millora de la qualitat del dispositiu broncoscopic, hi ha una
manca de sistemes computacionals intel-ligents per donar suport a la decisio clinica
en el moment de la intervencié. Les tecnologies existents no aconsegueixen assolir
lalesié amb precisi6 a causa de diversos aspectes en la planificacié de la intervencié
i un mal guiatge en el moment d’exploracié. Els sistemes de guia existents irradien
els pacients i el personal clinic, podrien ser cars i aconsegueixen un 70

Es podria millorar el rendiment del diagnostic reduint la radiacié6 i els costos
mitjancant el desenvolupament de sistemes de suport a la intevencié capagos de
guiar el broncoscopi a la lesié. L'objectiu d’aquesta tesi és desenvolupar un sistema
de navegaci6 basat en imatges per a l'orientaci6 intraoperatoria dels broncosco-
pistes a una lesi6é objectiu a través d'un recorregut préviament planificat en un
escanner CT.

Proposem un sistema de navegacio en 3D que utilitza 'anatomia dels frames en
els videos de broncoscopia per localitzar el broncoscopi dins de les vies respiratories.
Un cop situat el broncoscopi, el nostre sistema de navegacié pot indicar la bifurcacié
que cal seguir per arribar a la lesié. Per tal de facilitar una validacié el més realista
possible, també es presenten dos métodes per augmentar les broncoscopies virtuals
simulades amb l'aparenca de videos intraoperatoris. Els experiments realitzats
en videos augmentats i intraoperatoris demostren que el nostre algoritme es pot
accelerar per a una implementaci6 en temps real a la sala d’operacions.

Paraules clau: cancer de pulmé, broncoscopia, sistema de navegacio,...
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Lung cancer is one of the most diagnosed cancers among men and women.
Actually, lung cancer accounts for 13% of the total cases with a 5-year global survival
rate in patients. However if lung cancer is detected in early stages of the disease
the survival rate over 5-years increases from 38% to 67% [23]. This implies that
early-stage detection is critical to increse the survival rate. Despite its importance,
early-stage detection is still a challenge in many countries [49] by either financial or
technical problems. Currently, cancer diagnosis can only be achieved by analysis of

tissue sampled on the lesion. Accurate sampling is a challenge in the case of lung
cancer due to the difficulty to reach the lesions (called nodules) for their biopsy.

r
Q0

1.1 Procedures for Lung Cancer Biopsy

Computed tomography (CT) screening programs may significantly reduce the risk
of lung cancer death. Screening programs are based on the detection of small
pulmonary lesions with low dose chest computed tomography (CT) and its patho-
logical confirmation. Pathological confirmation requires extracting a sample of the
lesion tissue for its biopsy. Such sample can only be obtain by either a transthoracic
needle aspiration (TTNA) [18, 26] or an endoscopic examination [3].

TTNA is a diagnostic procedure that is done to determine the cause of an ab-
normality on the lung. After injecting a local anesthetic, a long needle is inserted
into the chest wall, between the ribs, to take a sample of lung tissue for a biopsy.
Ultrasound or computed tomography (CT) are used to guide the needle directly to
the area of the lung where the sample should be taken, as illustrated in figure 1.1
which shows the insertion of the needle into the lungs. Once the biopsy needle has
punctured the target nodule, a sample tissue is taken to further analysis. Although
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Figure 1.1 — Transthoracic needle aspiration procedure. A long needle is inserted
into the chest wall, between the ribs and through the pleura towards the target
nodule. Once the needle punctures the target nodule a sample is taken for further
analysis.

TTNA is a minimally invasive procedure, the insertion of the needle across the
patients’ ribs and pleura is a delicate procedure that can generate pneumothorax in
20% of the cases.

An alternative (also minimally invasive) to TTNA is to perform a bronchoscopic
explorations. A bronchoscopy is an endoscopic technique for the internal explo-
ration of airways which facilitates the performance of minimal invasive interven-
tions with a low risk for the patient. Bronchoscopic procedures are performed
routinely, with about 261 millions of interventions around the world per year. Bron-
choscopes are slender, tubular devices with a small electric light and a camera
mounted on the tip of them. Bronchoscopes are inserted into the airways through
the nose or mouth and allow the examination of airways for assessment of abnor-
malities like bleeding, inflammation or tumors. The tube of the bronchoscope has a
hole called working channel that allows the insertion of miniaturized surgical instru-
ments (like clamps or aspiration needels) for minimally invasive interventions such
as tissue sampling for biopsy. Figure 1.2 (a) shows a bronchoscopy procedure. It
can be seen how the bronchoscope is introduced into the lungs through the mouth
in order to reach a specific lesion. The whole procedure is rendered in monitors
which are used by the doctors to explore the airways and guide the bronchoscope
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(b) Rigid bronchoscope (c) Flexible bronchoscope

Figure 1.2 — Illustration of a bronchoscopy procedure and tools.

to the target lesion.

There are several kinds of bronchoscopes ranging from rigid metal tubes with
attached lighting devices to flexible optical fiber instruments with real time video
equipment. Rigid bronchoscopes [6] like the one shown in Figure 1.2 (b) are rigid,
straight, hollow metal tubes available in several sizes. Its purpose is to provide access
to the airways. The external diameter of a rigid bronchoscope varies from 2 to 14
mm, wall thickness ranges from 2 to 3 mm, and length varies from a very short tube
(for pediatric cases) to a long or extra-long tube (for adults). Rigid bronchoscopes
can be used for either diagnostic or therapeutic reasons. Modern use is almost
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exclusively for therapeutic indications such as retrieving inhaled foreign objects.

Flexible bronchoscopes [9] like the one shown in Figure 1.2 (c) have a fiberoptic
system that transmits an image from the tip of the bronchoscope to the opposite end.
Since they are long and thin, they allow patients to breathe during the intervention.
In addition, they permit access to deeper bronchi. Therefore,flexible bronchoscopes
are the preferred choice for both diagnostic and therapeutic procedures such as
tissue sampling for biopsy.

A main difficulty for biopsy sampling is the navigation through the airways to
reach the lesion. Conventional bronchoscopic diagnostic procedures are visually
guided using radiating fluoroscopy and render a suboptimal 34% of positive results
for lesions < 2 cm [10]. New endoscopy (like electromagnetic navigation) tech-
niques are expensive, require either manual intervention or special gadgets, only
increase diagnostic yield to 70%, and still radiate the patient. The 30% undiagnosed
pulmonary lesions need CT follow-up or futile surgery procedures such as thoraco-
scopies, which induces patient anxiety, radiation exposure, invasive surgery along
with associated pain, disability and rarely death.

Diagnostic yield could be improved reducing radiation and costs by developing
intervention support systems able to guide the bronchoscopist to the lesion. De-
spite the improvement in endoscopic device quality, there is a lack of intelligent
computational systems for supporting in-vivo clinical decision during examina-
tions. Existing technologies fail to accurately reach the lesion due to several aspects
at intervention off-line planning and intra-operative difficulties at exploration time.

At planning, CT imaging is used in bronchoscopy to create a planning of the
intervention in a methodology known as Virtual Bronchoscopy (VB) [21]. Virtual
bronchoscopic navigation systems [49] are used to reconstruct computed tomogra-
phy (CT) data into three dimensional representations of the tracheobronchial tree.
The reconstruction of the bronchial tree is used to compute the shortest path across
brochial levels to each target nodule. Current Virtual Bronchoscopy systems [2]
ignore bronchoscope mechanical constraints and bronchi breathing deformations
and, thus, cannot provide information on whether the target nodule is reachable or
not in practice.

Figure 1.3 illustrates the main functionalities of a Virtual Bronchoscopic system.
Figure 1.3 shows the 3D reconstruction of the shortest path to the lession (left)
and the virtual navigation (right) simulating the bronchoscopy exploration. The
path to the target nodule is also indicated with a solid line inside the reconstructed
volume in the lower part of Figure 1.3 (a)). The reconstruction of the 3D anatomy as
well as the location of the lesion is obtained from the CT scan (shown in the upper
images of Figure 1.3 (a)). The lesion is shown in the enlarged region enclosed by
the red square. To help brochoscopist during exploration time, VBs also displays a
simulation of the planned navigation indicating at each bronchial level the branch
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Segmented
lesion

(a) Virtual bronchoscopy planning. (b) Virtual bronchoscopy guidance.

Figure 1.3 - Virtual bronchoscopy system for biopsy intervention guidance. At the
planning stage, the volume and the centerline of the airways is extracted from a
CT which is used to plan the actual intervention (a). At the intervention stage, the
direction to follow at each bifurcation is shown in order to guide the bronchoscopist
to reach the target lesion (b).

that needs to be followed (Figure 1.3 (b)).

Even with a pre-planned route extracted from a CT, bronchoscopists need to
reproduce such a route by visual identification of bronchial levels and branch orien-
tation in the intra-operative bronchoscopy video. Even for expert bronchoscopists
it is difficult to reach a lesion due to the lung’s anatomical structure. There are
up to 21 bronchial levels with a branching geometry which has large intra-subject
variability from the 4th level on. Besides, the projection of bronchi have a circular
symmetrical geometry which makes difficult their proper identification in case that
there is a rotation between VB navigation and the actual exploration. A rotational
misalignment is common in order to reach some of the lungs lobes such as the supe-
rior lobes. Therfore, the further the lesion is, the hardest is for the bronchoscopists
to reach it. Despite the improvement in endoscopic device quality, there is a lack of
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intelligent computational systems for supporting in-vivo clinical decisions during
bronchoscopic examinations. To assess the navigated path, bronchoscopists use
a technique called fluoroscopy (Figure 1.4 (b)) to obtain real-time X-ray images of
the lungs. Aside from errors arising from visual interpretation, fluoroscopy implies
repeated radiation for, both, clinical staff and patients [55]. Protocols relying on
fluoroscopy have a diagnostic yield around 40%, last 20 min per intervention and
require 5-10 min of repetitive patient and medical staff radiation.

1.2 Goal of the thesis

The goal of this PhD work is to develop an image-based navigation system for
intra-operative guidance of bronchoscopists to a target lesion across a path
previously planned on a CT-scan.

1.3 Existing guiding systems for bronchoscopy biopsy

During the past years, several technologies have been developed for off-line plan-
ning the best path to a lesion and on-line guiding the bronchoscopist through the
planned path. Existing systems can be splitted into purely image-based navigation
systems and systems using specific tools that provide additional information helpful
in the guidance process such as electromagnetic navigation systems.
Electromagnetic Navigation Bronchoscopy [19] (ENB) is a medical procedure
designed to localize and guide both bronchoscope and bronchoscopic tools through
the bronchial tree by means of electromagnetic waves. ENB consist of two stages:
planning and navigation. Figure 1.4 (c) shows an electromagnetic navigation proce-
dure At planning stage, ENB uses CT virtual bronchoscopy to mark target locations
and plan paths to reach target nodules within the lungs. At navigation stage, pa-
tients are placed on the magnetic navigation board and bronchoscopists navigate
the sensor probe and extends the working channel to the desired target location.
Sensor probes return 5-DoF positions which in combination with the CT virtual
bronchoscopy allow bronchoscopists to navigate through the lungs to reach the
target lesion. Once at the target position, bronchoscopists locks the extended work-
ing channel in place and the steerable sensor probe is removed. The extended
working channel provides access to the target lesion for standard bronchoscopic
tools or catheters. The main disadvantage of electromagnetic navigation systems
is that these specific gadgets increase the costs of interventions limiting it use to
resourceful entities. In addition, they might not be accurate enough due to interfer-
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ences between the electromagnetic waves and human tissues and lack of rotational
information.

Image-based navigation systems try to put into correspondence video-bronchoscopy
images and CT virtual bronchoscopy images (Figure 1.4 (a)) using multimodal regis-
tration techniques most of the times. Such registration method optimize a virtual
bronchoscope pose (rotation and position) in a 3D CT volume. For each virtual
bronchoscope pose, 2D projections are generated using render techniques and
these images are compensated with intra-operative images to obtain the pose of
the virtual camera that is closest to the scope tip pose.

aemann P e

W -® -+ WRAW  EHEXEET WA

(b) Fluoroscopy procedure. (c) Electromagnetic navigation

Figure 1.4 — Existing techniques supporting guidance during a bronchosopic pro-
cedure. commercial image-based guidance system, (a), standard radiating fluo-
roscopy, (b) and electromagnetic navigation system, (c).
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Image registration techniques are prone to fail, specially in case of large motion,
to a suboptimal solution given by a local minima. To reduce the impact of local
minima and surgical artefacts, most methods compute an initial affine transforma-
tion. In [33], the initial transformation is computed using SIFT feature matches and
epipolar constraints. A main inconvenience is that SIFT matching require detec-
tion of accurate feature points assuming textured images with singular points like
corner or junctions. However, medical scans of anatomical structures are usually
textureless volumes with smooth level sets. In particular, in the case of endoscopic
videos, SIFT features might correspond to specular shines introduced by the camera
lighting. Thus, they move along with the scope and should not be used to match
images because they illuminate points that correspond to different anatomical sites.
Other systems replace SIFT feature matches by optical flow [39] or Kalman filtering
[41] in order to estimate a rough first bronchoscope position by applying dynam-
ical models. In any case, the initial affine transformation it is refined applying
an intensity-based image registration algorithm. The main disadvantages of such
methods is that they are very time consuming and can lead to a mismatch when
images are obscured by blood or mucus and bronchi are deformed by patient’s
coughing.

The synchronization of simulated navigation with the actual intra-operative
video at interventional time is such a chanllenge that there is not any comercial
software able to provide a solution clinically valid yet. Currently, the only product
available on the market is the Lung Point pltaform [12]. Lung Point (See Figure
1.4 (a)) is an image-based navigation commercial system which helps to localize
a target lesion at intervention time. Given a pre-computed CT scan, the system
displays two images during intervention: the live intervention video (left image in
Figure 1.4 (a)) and CT-VB showing the pathway to follow to reach the target nodule
(right image in Figure 1.4 (a)). The system aligns the virtual images with the images
from the bronchoscopy video by manual synchronization. Once the two images
are synchronized, Lung Point calculates the position of the bronchoscope in the
airway and overlays the pathway to the target on the bronchoscopic video image.
The main disadvantages of Lung point are that it is extremely expensive and the
image-based synchronization is not powerful enough to automatically navigate
through the whole path. It requires a second doctor who corrects the position of
the virtual bronchoscope which increases both intervention cost and waiting lists.

Recent approaches are starting to use techniques, like Simultaneous Locali-
zation and Mapping (SLAM), that are well-known in other aplication areas such
as robotics or advanced driver-assistance systems (ADAS). SLAM constructs and
updates a 3D map of an unknown environment while at the same time keeps track
of the camera location. For the construction of the 3D maps it is necessary to find
matches between consecutive frames. Existing SLAM methods used in ADAS and
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robotics use SIFT-based matchings which implies that images need to be textured
so that similar feature points can be found in every frame. In this context, ORBSLAM
[40] achieves great performance with respect to other state-of-the-art monocular
SLAM approaches because it has adapted feature detectors to the specific surgical
conditions of endoscopic interventions. In particular, it uses ORB which is a fast
robust local feature detector that fuses FAST keypoint detector and BRIEF descrip-
tor with specific modifications to enhance performance under surgical conditions.
Although the method works in some surgical procedures, like laparoscopic interven-
tions, it is not guaranteed an optimal performance when applied to bronchoscopy
procedures. This follows from the observation that aside textureless bronchoscopic
images, the bronchoscope movements are basically backward and forward along
center lines. Such camera motion, makes monocular SLAM a bad-posed problem
since small errors in the camera pose estimation, introduce large errors in the 3D
estimation.

In recent years, several alternatives to classical intensity-based registration
methods have begun to be explored. These new image-based methods include
Convolutional Neural Networks (CNNs) to compute 3D point clouds from depth
maps learned from images and synchronization based on visual features that can
be identified in, both, CT scans an videos.

Afeasible alternative to cope with mismatches due to images obscured by blood-
/mucus and bronchi deformations is the use of anatomical landmarks. The main
advantages of using anatomical landmarks are that they are more robust to illu-
mination changes than multi-modal registration methods and there is no need of
using huge annotated datasets in order to train complex methods. A previous work
[53] has already proved the capability of anatomical landmarks applied to broncho-
scopic navigation. In that work, center lines are used to detect the route followed
by the bronchoscope and indicating the path that needs to be followed to reach a
target lesion. A weakness of the method is that center lines are extracted frame by
frame from the centers of the airways luminal areas. Adding temporal information
could improve drastically the outcome of such algorithm. Despite of promising
results shown in [53], the method was only proved in virtual environments due to a
lack of robustness under surgical conditions.

In a very recent work [58], CNNs are trained to generate depth maps from
bronchoscopy images. Depth maps allows to generate 3D point clouds that are
registered to the CT volume using Iterative Closest Point (ICP) or similar methods.
By using image depth maps instead of 2D features point matches, the method is
more stable against intensity changes and surgical artifacts.

In spite of the promising results[5, 16, 57] of the use of CNNs in the medical
imaging domain, in particular in navigation systems [58], a main inconvenience
is the limited annotated data available. The quality and quantity of annotations is
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a bottle neck for training CNNs and other state of the art classification methods.
Although fine-tuning of existing CNNs trained with natural images can achieve
better results that handcrafted features [27], the required level of fine-tuning is
highly application dependent with some applications requiring a simplified net-
work architecture be trained from scratch [38]. It follows that some sort of data
augmentation should be applied to complement the available intra-operative data.

1.3.1 Data augmentation for virtual bronchoscopy

Augmenting small datasets is important and challenging. Many approaches apply
simple transformations (like rotation, mirroring and changing contrasts among
others) to the available samples to augment their number at the training stage.
This makes data analysis invariant to such transformations, but the lack of inde-
pendence in the augmented set could limit the amount of new information that
is actually added. Alternatives to this kind of data augmentation could be the use
of either images having similar content or virtual data obtained by computational
simulations.

In the context of health applications, the selection of images having similar
content can be a challenging problem, especially in case of pathological cases or
surgical conditions. Although this could be solved using data augmentation tech-
niques by means of virtual environments, data augmentation using virtual images
is a delicate issue in medical applications. This follows from the observation that
the appearance and content of simulated images are substantially different from
images gathered in interventions so algorithms can not be trained and validated
under true clinical conditions. We consider that to satisfactorily use simulated data
for training, virtual simulations should be augmented to preserve the content and
the appearance of real intervention videos.

A possible way to generate new valid independent samples for training stages
and algorithm verification is to use style transfer techniques. Style transfer [13, 31]
consist in the recomposition of images and texture using the style of a different set
of (style) images. Such techniques have been widely used in applications which
modify an input images into stylized images similar such as well-known painter’s
drawings or into any different domain [24]. This same idea can be used to transform
virtual images into intra-operative images in a smart way so that stylized images do
not loose any content.

State-of-art techniques for style transfer based on CNNs follow an auto-encoder
architecture to transfer into input images the appearance of style images. Existing
techniques can be split into methods transferring style between image pairs and
methods transferring style between image domains. The first group [22, 29, 43]
requires the identification of the style image that best resembles the input image.
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(a) Virtual Image (b) Gramm-based Image

(c) Markov-based Image (d) GAN-based Image

Figure 1.5 - Virtual image stylized with different state-of-art methods.

This is not possible in most of the cases. Such pairs are not available in most
of the medical imaging problem. For that reason, the second group looks for the
transformation that maps the space of input images into the space of stylized images
and, thus, do not require image pairs. In order to do so, a system of two different
neural networks (a generative network and a discriminative one) to obtain stylized
images achieving a compromise between preservation of input image content and
style images texture and appearance is used. The first network is an auto-encoder
that generates stylized images from the input images. The output of this auto-
encoder is the input of a discriminative network that classifies between style and

11
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input images to assess how much stylized images appearance matches the actual
style. This general scheme has several variants concerning, especially, the kind of
loss function used to train the network.

In [17, 25] the generative network minimizes a loss function that includes two
terms. One term (feature reconstruction loss) penalizes that stylized images deviate
in content from input images, while the second one (style reconstruction loss)
measures the similarity between stylized images and style appearance. The feature
reconstruction loss is given by the L, difference between feature maps of input and
stylized images. The style reconstruction loss is given by the Frobenius norm of the
difference between the Gram matrices of the stylized and style images feature maps.
As explained in both works, since Gram matrices encode probabilistic distribution
correlations, minimizing the style reconstruction loss preserves stylistic features
from the style image but does not necessarily preserve its spatial structure (as
illustrated in Figure 1.5 (b)).

This invalidates the use of Gramm metrics for augmentation of simulated data
using interventional images, since the spatial structure of their appearance is
strongly related to anatomical content. This phenomena is illustrated in Figure 1.5
for a bronchoscopic image simulated from a CT-scan using virtual bronchoscopy.
This simulation (shown in Figure 1.5 (b)) has been augmented with the appearance
of the intra-operative image of Figure 1.5 (a)) using [17]. We observe that in the
stylized image shown in Figure 1.5 (c)) dark areas have become bright areas and the
other way around. Thus, any algorithm for anatomy detection or modelling (such
as image-based navigation systems [15, 54]) would fail.

Other approaches like [30] are based on deep Markovian models and transform
images locally instead of globally. To do so, feature maps are split into patches
which are the input of the classifier that discriminates between real and virtual
appearances. Like [17, 25] the loss function also includes a content regularization
term to preserve the spatial structure of images. However, the fact that style is
locally transferred also leads to a loss of anatomical content in style images.

New approaches such as [61] use Generative Adversarial Networks (GANs) in
order to transform images from one domain A (like virtual simulations) into a
domain B (like interventional videos). The novelty of [61] is that a cyclic term is
added in order to make the domain transfer bijective (A — B — Aand B— A —
B). Although, the method also adds a regularization term to preserve the spatial
structure of the stylized virtual images, content information is still lost as shown in
Figure 1.5 (d). Figure 1.5 (d) shows the augmentation of Figure 1.5 (a) using GANSs.
The image has no illumination artifacts and looks quite real but the main anatomy
of Figure 1.5 (a) has been significantly distorted. This alteration of anatomical
content invalidates GAN for clinical use. Figure 1.5 (c) shows the image in Figure 1.5
(a) augmented using [25]. We observe that, although, the main anatomy is prserved
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like in Figure 1.5 (b), the augmented image presents some artificial shines and
shadows.

1.4 Contributions of this thesis

This thesis contributes to image-based navigation systems and data augmentation
in medical imaging in the following aspects:

¢ Contribution 1: A navigation system based on bronchi anatomical land-
marks.

The anatomy of airways can be represented using a tree data structure with
nodes bronchi branching points. At the planning stage, such structure is
obtained from CT scans using the branching structure of the skeleton of
the segmented airways. This provides a static representation of the global
anatomy of each patient. In bronchoscopy videos, airways anatomical struc-
ture is encoded in a collection of luminal regions with centers corresponding
to airways centerline. Luminal regions of different bronchial levels projected
onto the same reference results in a hierarchy of regions that matches the
global anatomy of the patient. This hierarchy is represented in a tree data
structure constructed dynamically by computing and tracking anatomical
landmarks from in-vivo intra-operative bronchoscopic procedures. The dy-
namical tree is matched to the anatomical structure of the lung extracted from
a CT in order to locate the bronchoscope inside the lungs. Once the bron-
choscope is located, our navigation system is able to indicate the bifurcation
which needs to be followed to reach the lesion.

Figure 1.6 illustrates the whole pipeline of the proposed navigation systems.
In the top section of Figure 1.6, a set of anatomical landmarks are detected
in a videobronchoscopy frame. The set of landmarks is processed and the
anatomical hierarchy is encoded in a tree structure. The bottom left section
of Figure 1.6 shows how the anatomical hierarchy is tracked across the whole
videobronchoscopy in order to build dynamically an on-line interventional
tree. Finally, the bottom right section of Figure 1.6 describes how the online
exploration tree is put in correspondence with tree representing the whole
airways anatomy and the planned path.

In this work we contribute to the extraction of the exploration intra-operative
path from the analysis of videobronchoscopy frames in the following aspects:

13
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Figure 1.6 — Pipeline of the proposed navigation system.

- Contribution 1.1: Extraction of bronchial anatomical structure in sin-
gle videobronchoscopy frames. We have improved the method pre-
sented in [51] by developing a video processing algorithm that dynami-

14
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cally extracts stable anatomical landmarks from bronchoscopic images.
Such extracted anatomical landmarks encode the local structure of the
bronchial tree in the image. For each frame, a hierarchy of the projected
luminal regions is extracted and codified in a tree structure

— Contribution 1.2: On-line exploration tree construction. The bronchial
path followed during a bronchoscopic exploration is encoded using a
binary tree dynamically constructed from the hierarchy of anatomical
landmarks. The hierarchy is extracted for each of the frames of the
intervention and it is tracked along the whole sequence in order to en-
dow temporal consistency. Temporal consistency allows us to build an
on-line exploration tree which represents the path followed during the
intervention. We call the tree on-line exploration tree and it represents
the bronchial bifurcations observed during the intervention.

¢ Contribution 2: Augmentation of virtual images with intra-operative ap-
pearance.

We present a two-stage algorithm for the augmentation of virtual endoscopic
images using intra-operative videos based on convolutional neural networks.
First, we use cycleGAN in a multi-objective optimization scheme to obtain
pairs of virtual and intra-operative style images that share some content
information. The content and appearance of these image pairs are blended
using a siamese u-net architecture that modulates skip connections by a
measure of neuron activation content.

A general overview of our proposed algorithm for augmenting of virtual bron-
choscopy images with intra-operative appearance can be seen in Figure 1.7.
In the top section of Figure 1.7, the GAN architecture used to generate aug-
mented virtual images is presented. The network is trained using adversarial
training. During training, a two-terms loss is optimized. The bottom left
section of Figure 1.7 plots the Pareto front. Pareto front is a technique used in
multi-objective optimization problems to automatically select the epoch with
the best trade-off between the loss terms of the adversarial training. GAN
architecture generates images with intra-operative appearance but it changes
the content of the image. To cope with this effect, an extra step, presented
in the bottom right part of Figure 1.7, to blend the content and appearance
of these image pairs using a siamese u-net architecture that modulates skip
connections by a measure of neuron activation content.

The contributions of our work are the following:
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Figure 1.7 — Pipeline of the proposed method for augmenting virtual bronchoscopy
images with intra-operative appearance.

- Contribution 2.1: A multi-objective approach for Generative Adver-
sarial Networks. A main challenge with GANs [46] is the selection of
the epochs most suitable for a given problem. Due to the oscillating
behavior of adversarial training, most of the cases this is done manu-
ally, which leads to subjective errors depending on the observer. In this
work, we propose a multi-objective optimization approach based on
the Pareto front [37] to select the epoch achieving the best compromise
between content preservation and style transfer.

- Contribution 2.2: A siamese u-net network (Content-net) for blend-
ing content and appearance of image pairs. We introduce an auto-
encoder with siamese encoders and skip connections to the decoder.
Skip connections are modulated by a measure of the information accord-



1.4. Contributions of this thesis

ing to the type of information filters respond to. Modulation is used to
fine tune the amount of virtual anatomical content and intra-operative
appearance of final simulations. This way we can produce images with
several degrees of interventional artifacts from the same pair of images
obtained from multi-objective GANs.

The remains of this thesis are structured as follows: Chapter 2 details the algo-
rithms to generate virtual bronchoscopy images with intra-operative appearance.
Chapter 3 is dedicated to explain in detail the 3D navigation system, including the
extraction of bronchial anatomical structure from videobronchoscopy is, as well
as, the matching between a pre-planned path tree and an on-line exploration tree.
Chapter 4 reports the experiments and validation performed in the algorithms de-
veloped in previous chapters (Chapter 2 and Chapter 3). Finally, Chapter 5 closes the
thesis by exposing the main conclusions that can be extracted along with sketching
the opened future lines of research.
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ages with intra-operative appearance

In order to obtain realistic data useful for data augmentation and validation of
machine learning and image processing methods, simulations should resemble
intra-operative recordings. We consider that style transfer could be used to endow
virtual endoscopic images with the content and texture of intra-operative videos
using modern techniques for artistic style transfer.

The main difference between artistic style transfer and realistic simulations of
endoscopic procedures is that in the latter, stylized images should preserve the
structure of simulated data. This comes from the fact that style structure encodes
the anatomical content of the image and, thus, it should be preserved. Therefore,
the spatial structure of style target images should be similar to match the content
of input images if such data has to be used for data augmentation or ground truth
generation.

In this chapter, we present a method for the generation of endoscopic images
using intra-operative video data. Our strategy is a two stage method based on CNNs
that maps virtual images to the intra-operative domain preserving their anatom-
ical content. In a first stage, pairs of virtual and intraoperative images sharing
anatomical content using GANSs are generated. We propose a multi-objective opti-
mization based on Pareto front strategy for selecting GAN epochs ensuring the best
compromise between content preservation and style transfer of virtual images and
intra-operative images. In a second step, the content and appearance of such pairs

A Augmentation of virtual bronchoscopy im-
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Figure 2.1 — Pipeline of our proposed method for augmenting of virtual bron-
choscopy images with intra-operative appearance.

are blended using a siamese u-net architecture trained to modulate the amount
of content and texture that is taken from each pair. The pipeline of our proposed
algorithm is illustrated in Figure 2.1.

This chapter is organized as follows. Section 2.1 explains the multi-objective
approach for selection of cycleGAN epochs achieving the best trade-off between the
different terms of the cycleGAN loss function. Section 2.2 is dedicated to improve
the compromise between content preservation and style transfer given by cycleGAN.
Section 2.2 defines Content-net architecture, as well as, the functions for blending
content and appearance of the image pairs obtained from our multi-objective
cycleGAN.



2.1. Multi-Objective Generative Adversarial Networks

2.1 Multi-Objective Generative Adversarial Networks

Given two domains Virtual and Real, the main goal is to learn two (bijective)
mapping functions from one domain onto the other one:

G;:Virtual — Real G,:Real— Virtual 2.1)

with the map composition G(G,) and G,(G,) being the identity on each domain.
Following [61], maps are given by auto-encoders trained to optimize:

l(Gr, GI/!DT)DU) = lGAN(Gl/, Gr;Dr;Dv; Vy R) + A[cyc(Gv» Gr) (22)

for R={r,r € Real}, V ={v,v € Virtual} two sets of, respectively, real and virtual
images. The term £gan measures how good are G,, G, transferring images from
one domain to the other one and is expressed as:

[GAN(GV,Gr,Dr,DV,V,R) :eGAN(GryDr;R» V)+'€GAN(GUvDU)R) V)

€6aN(Gr, D, R, V) = D, (r)? + (D1 (G () — 1)
€6aN(Gy, Dy, R, V) = D, (1)% + (D, (G, (1)) — 0)?

for D, and D, two adversarial discriminative networks trained to distinguish be-
tween real, r, and transformed virtual, G, (v), images and viceversa. The term £ cyc
is a "cycle consistency loss" introduced to force mappings to be bijective:

Leye(Gr, Gy) =11Gy(Gr (1) — VIl +IGr(Gy (1) = 71]h

for ||-||; the L! norm.
The minimization problem is given by adversarial training as:

G}, G, = argmin | argmax (G, Gy, Dy, Dy) 2.3)
Gr,Gy Dy,Dy

This way, G; and G, are optimized so that G,, G, minimize while the adversarial
D,, D, maximize it (Equation 2.2). Thus, adversarial training can be considered
as an optimization problem that searches for the discriminators (D, and D,) that
maximize the term £gan and the mapping functions (G, and G,) that minimize the
full objective including the maximal term #gan.

These conditions (minimize while maximizing at the same time) might be in
conflict considered into a single optimization process. Such a conflict is prone to
introduce an oscillating behavior of, both, the solution and the objective function
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Figure 2.2 - Profile of /¢, and Iy loss functions during GAN training stage. Such
GAN was trained for transforming images from VB simulation images (Virtual)
and intra-operative images (Real).

in a gradient descent iterative scheme. The oscillatory behavior hinders the con-
vergence of cycleGAN training stage and invalidates the use of most stop criteria
[62, 63] for single optimization problems for the selection of GANs epoch, since
they assume smooth convergence to the solution.

Figure 2.2 illustrates the oscillatory behavior in cycleGAN losses curing training.
We plot the two losses terms (Igan and I;. that are combined in Equation 2.2),
as well as, the global loss I combining the two terms. We observe that the partial
losses Igan and Iy are not comparable in terms of either magnitude or behavior
(increasing, decreasing) across training epochs. Therefore, the magnitude sum /
presents an oscillatory behavior which prevents the training stage to converge in
the sense of numerical methods. This oscillation implies that cycleGAN generates
random mapping functions every single epoch since the loos function does not
decrease towards a global solution.

The unstable behavior across epochs is illustrated in Figure 2.3. Figure 2.3 shows
three different virtual images augmented using four consecutive epochs. It can be
appreciated that augmented images anatomical structure and image appearance
are completely different for consecutive epochs. In particular, they might have
luminal areas not present in the original virtual image (like in the first raw of Epoch
105), as well as, absent lumens of virtual images (like in the last raw of Epochs 105



2.1. Multi-Objective Generative Adversarial Networks

Virtual image Epoch 104 Epoch 105 Epoch 106 Epoch 107

®

Figure 2.3 — Collection of augmented images for consecutive epochs.

and 107).

A main inconvenient of the lack of convergence in an iterative numeric schema
is that the selection of the optimal iteration (epoch) has to be manually adjusted for
each problem since no stabilization stopping criteria can be satisfactory applied.
This is a main inconvenient for the systematic application of cycleGAN (GANs
in general) since such optimal epoch is highly dependent on the training set. In
order to provide a numeric criteria for the automatic selection of cycleGAN optimal
epochs, we propose to consider adversarial training of Equation 2.2 as a multi-
objective optimization [37] problem. Therefore, We propose to consider separately
the optimization of each of the terms in the objective function £ which allows to
pose adversarial training as the following multi-objective optimization problem:

G}, Gy =argming ¢ (Lcyc, €GAN) =

. 2.4
argming_ (Leye(Gr,Gy),argmaxy, p €6an(Gy, Gr, Dy, D)) @4

Since a multi-objective optimization problem involves the optimization of mul-
tiple objective functions, there does not exist, in general, a solution simultaneously
minimizing all of them. The expected situation is to have a set of solutions that
outperform in any of the objectives without degrading the other ones. These domi-
nating solutions is called Pareto front and is defined as the set of solutions, xp, such
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Figure 2.4 - Pareto front of cycle-GAN 2-objective optimization.

that:

Vxsuchthat £;(x) < €;(xp)Vie{l,2,...,k}
3jefl,2,..,k} €j(xp) < £;(x)

being £1,...,#} the set of functions to be optimized. In our case ¢ = ¢y, and
lr=0gan.

The condition of the Pareto front can be used to select cycleGAN epoch as
follows. Let G* := (G’f,G’lﬁ) be the transformation maps at the k-th epoch and
GP = (GP! )ﬁv ’i be the set of epochs belonging to the Pareto front. Such Pareto maps

can be iteratively computed from the values of the objective functions as:

GP':= argmin(£cyc(GY)) (2.5)
G! eD;

for D, the set of maps for all epochs and D;, i > 2, the set of maps dominating
GP~!. In our case, G' € D; if it satisfies the following conditions:

1. Leye(G') > Leyc(GP'™)
2. £an(G) < £Gan(GP'™1)
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Figure 2.4 shows the Pareto front associated to the two-objective problem
given by (Equation 2.4) with the dashed lines enclosing the region that includes
the set of epochs that dominate a given GPI~!. The pairs of function values
(Leye(GPY), £6an(GPY)), GP' € GP, given by the two objectives evaluated at the
Pareto front are shown in solid squares joined with a solid line. The set of Pareto
epochs achieve the best trade-off between the two objective functions and, thus,
are equivalent from the point of view of the GAN. The epoch from the Pareto front
best suited for augmentation of virtual endoscopic images is selected as the one
that minimizes the L?-difference:

In order to select the epoch from the Pareto front best suited for a given problem,
it is necessary to define a cost objective function measuring the adequacy of a GAN
to the application specific requirements. In our case, since the anatomical content
of virtual images should be preserved, our cost function for the final selection of
the Pareto map is given by the L2-norm of their difference:

Lcont = mean(||v—G,(v)|l2) + mean (||r — G, (r)ll2)
veV TeER

for || - ||, the L2-norm and mean, mean the average values for the training set of
veV reRr

virtual, V, and real images, R. The epoch selected, G}, is the one in the Pareto front
achieving the minimum value of €¢ont:

G} = (G;,G}) = argmin €con(G})) 2.6)
Gp

We will note the images transformed by these maps by v* := G} (v) and r* := G}, ().

2.2 Content-Net

The proposed content-net (labelled C) is an auto-encoder with siamese encoders
(one for each image domain) that have skip connections to the decoder in order to
blend content and style of image pairs. Siamese encoders follow a VGG-19 architec-
ture. These are build using the first three convolutional blocks with two max pooling
as shown in the sketch of Figure 2.5. The first block consist of 2 convolutional layers
with 64 filters. Each convolutional layer is followed by a ReLU layer. The second
block follows the same architecture as the first block but each convolutional layer
consist of 128 filters. Finally, the third block consist of 4 convolutional layers with
256 filters. As in the first two blocks, each of the convolutional layers is followed by a
ReLU layer. In addition to the convolutional and ReLU layers, there is a max pooling
layer at the end of the first and the second block. Each max pooling between the
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first and the second and the second and the third block is computed with a window
size and a stride of two pixels. We decided to use only three convolutional networks
since all the texture that we want to transfer is removed after two max pooling.
Content-net architecture is sketched in Fig.2.6.

In order to selectively blend the content of one image with the appearance of the
other one, skip-connections are weighted by a function, namely p, that quantifies
the amount of content that filters respond to. Feature maps of the first siamese
encoder are weighted with p, while its sister encoder are weighted with 1 — p. This
way each siamese encoder contributes with either image content (first siamese
encoder) or appearance (second siamese encoder).

The contrastive loss function that content-net minimizes is given by a content
loss, €cont, defined as:

Leont =lv—C(v, v)l2 + V" = C(v™, V)lI2 (2.7)

for v and v* an image pair produced by our multi-objective cycleGAN and C(v, v*),
denoting the output of content net with v, v* being inputs of, respectively, the first
and second siamese encoders.

The function p weighting skip-connections is learned from a training set of intra-
operative images by comparing the input image to the activation of each neuron
in an encoder trained to yield the identity map. The similarity measure chosen to
compare input images to its neuron activations is their mutual information [45].
Mutual information compares the correlation between random variables and is

Conv. Block 1

64 Output Filters
Conv. Block 2

— — 128 Output Filters
Conv. Block 3

) () () 256 Output Filters

Input — — —

—J

@ convolutional layer (] RelU layer () MaxPooling layer

Figure 2.5 - VGG-19 architecture followed by siamese encoders.



2.2. Content-Net

av, v*)

1-p

Figure 2.6 — Content-net Architecture used for blending image pairs.

used in multimodal registration to compare images with equal content but different
appearance. If W;; and b;; indicates the weights and bias of the j-th convolutional
layer of the i-th block, the input X and output Y of the convolutional layer is given
by:

Y, j=WijXij-1+Dbi; 2.8)

Therefore, if X denotes the random variable of the input and Y the random variable
of the output of a convolutional layer, then their mutual information, 1(X,Y) is
given by:

px,y)
I(X,Y)= (x, )10 (—) (2.9
erXyeZyp o8 p)py)

where log denotes the natural logarithm, p(x, y) is the joint probability function of
X and Y, and p(x) and p(y) are the marginal probability distribution functions of
X and Y, respectively. Mutual information measures the independence between
the two random variables X, Y. In particular, a value close to 0 indicates that input
image and activations do not share information. Meanwhile, in case of sharing
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Figure 2.7 — Examples of mutual information distributions for convy; and convy;
VGG layers.

content, X and Y would be dependent and I would be equal to the input image
entropy.

Mutual infomration I(X,Y) is a random variable which is bimodal over the
activations of each layer. This is illustrated in Figure 2.7 which shows the mutual
information distributions for convy; and convi, VGG layers. Being I(X, Y) bimodal,
a thresholding like Otsu [42] allows to split the neurons of the j-th layer into two
groups. These groups represents the amount of content which is preserved between
the input and output of a neuron, either high or low. The function p is given
by the probability that a neuron is classified into the high content set and it is
approximated as the percentage of times each activation is considered above the
Otsu threshold th for a set of training images:

[I(X;,j-1,Yi:,7) > thy

pij = Vi (2.10)

for | -| denoting the cardinality of a set and V the training set.

Figure 2.8 shows a collage of neuron activations for a given intra-operative
image and layer (conv2_1). Neuron activations have been sorted in ascendant
order according to the contribution of appearence from left to right and from top to
bottom. The top left corner represents the neuron which contributes the most to
preserve the content of the input. Contrary, the bottom right neuron represents the
neuron which contributes the least to preserve the content of the input.
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Real image
+ texture

+ texture

Figure 2.8 — Collection of activations for the conv1_2 VGG layer. Activations are
sorted in ascendant order according to the contribution of appearance from left to

right and from top to bottom.
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13 Navigation system based on bronchi
anatomical landmarks

The proposed navigation system is based on the identification in both CT scans
and video-bronchoscopy the identification of anatomical lansmarks describing
airways geometry. To select the best anatomical landmark which allows us to char-
acterize the airway anatomy in in-vivo bronchoscopic images is vital to understand
the airway anatomy of the respiratory system. Airway anatomy can be subdivided
into two different groups:

» The extrathoracic (superior) airway, which includes the supraglottic, glottic,
and infraglottic regions

¢ The intrathoracic (inferior) airway, which includes the trachea, the main-
stem bronchi, and multiple bronchial generations (which have as their main
function the conduction of air to the alveolar surface)

Since doctors just need guiding systems in distal bronchial levels from now on
we will focus on the intrathoracic inferior airway. The lungs are part of the intratho-
racic inferior airway which starts at the trachea. The trachea is a cartilaginous and
fibromuscular tube that extends from the inferior aspect of the cricoid cartilage
(sixth cervical vertebra level) to the main carina (fifth thoracic vertebra level). The
airways divide by dichotomous branching, with approximately 21 generations of
branches from the trachea to the alveoli. The first bronchi to branch from the
trachea are the right mainstem bronchi and the left mainstem bronchi. From there,
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1. Anatomical
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3. CT tree matching

CT tree matching

CT Data

Figure 3.1 - Pipeline of the proposed navigation system.

they branch into narrower and narrower bronchi when advancing to deeper levels
of the bronchial tree.
We claim that identification of bronchial tree key-points in, both, CT scans and
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3.1. Extraction of anatomical structure in single videobronchoscopy frames

videobronchoscopy provides accurate matching between off-line planed path and
the current endoscopic navigation. For navigation purposes, the best anatomical
landmarks are lumen regions since they allow to detect bifurcations which helps to
detect when a bifurcations has been crossed. We present in this chapter our strategy
to detect stable luminal regions which allow accurate registration between CT-scans
and videobronchoscopy procedures. Firstly, the branching airways anatomy is
extracted for each frame. Secondly, the extracted anatomy is tracked across the
sequence to obtain a dynamic representation of the interventional path across
bronchial levels. The on-line interventional path is encoded as a binary tree which
contains all the bifurcations seen during the whole procedure. Finally, the on-
line interventional tree is dynamically matched using edit distance to the tree
representing the whole airways anatomy and the planned path. This matching
allows to keep a record of whether the planned path is being followed during the
intervention and to indicate the next lumen to follow in order to reach the target
lesion.

Figure 3.1 illustrates the whole pipeline of the proposed navigation systems.
In the top section of Figure 3.1, a set of anatomical landmarks are detected in a
videobronchoscopy frame. The set of landmarks is processed and the anatomi-
cal hierarchy is encoded in a tree structure. The bottom left section of Figure 3.1
shows how the anatomical hierarchy is tracked across the whole videobronchoscopy
in order to build dynamically an on-line interventional tree. Finally, the bottom
right section of Figure 3.1 describes how the online exploration tree is put in cor-
respondence with tree representing the whole airways anatomy and the planned
path.

This chapter is organized as follows. Section 3.1 explains the anatomical hierar-
chy extraction from videobroncoscopy frames. Section 3.3 describes the use of such
anatomical hierarchy in order to create an on-line interventional tree representing
the path and branching points seen during the intervention. Section 3.3 also de-
velops the matching between the on-line interventional tree and the pre-planned
path.

3.1 Extraction of anatomical structure in single video-
bronchoscopy frames

The first step to encode the anatomical structure of bronchoscopic images is to find

image region candidates to enclose airways lumens. Extraction of lumen regions

is based on likelihood maps [51] which indicate the probability of a point to be
a lumen centre. In [51], such maps are computed by combining two operators
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(a) Virtual Image (b) V Virtual Image (c) Virtual raw DGA

Figure 3.2 - Graphical explanation of DGA algorithm: Original synthetic image (a);
Corresponding gradient vectors superimposed to the image (b) and resulting DGA
accumulation map (c).

that characterize lumen regions: Directed gradient accumulation (DGA) and Dark
region identification (DRI).

DGA and DRI describe luminal geometry and appearance. They define a 2-
dimensional feature space that characterize several elements of the endoluminal
scene. Pixels with a high value of DRI (dark regions) and DGA (high accumulation of
gradients) are pixels belonging to lumen regions. High DGA and low DRI are pixels
which belong to specular highlights and other bright protruding. Finally, folds and
tracheal rings have low DGA and DRI. Therefore, a classification of the (DRI,DGA)
feature space into these three classes characterize the luminal region. In particular,
the local maxima of the likelihood maps corresponds to the lumen center. In spite
of the good results that the (DGA,DRI) space exhibits for the detection of lumen
centers and region for the main bronchi [52], as deeper levels are reached the main
hypothesis supporting DGA and DRI is not fulfilled.

DGA maps are based on the idea that gradients direction meet in the center of
the center of the lumen. In [51], DGA was calculated as the accumulation of every
gradient directed line that cross each pixel:

DGA(x,y) := > IVI(xo, yo)ll2 (3.1)
3 (x,y)=(x0,y0)+AVI(x9,¥0)

where (xo, yo) + AVI(xp, yo) corresponds to the parametric formulation of a line
through (xy, o) oriented across its image gradient VI(xy, yo), A is the free parameter
of the gradient line equation and |-||, denotes the L, quadratic norm.

The synthetic image in Figure 3.2 (a) illustrates how DGA works. In this example
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(a) Real Image (b) Raw DGA

;

(c) Smoothed DGA (d) Improved DGA

Figure 3.3 - Example of DGA on an intra-operative image: Original intra-operative
image (a); Resulting DGA accumulation map (b); Resulting smoothed DGA accumu-
lation map and resulting improved DGA accumulation map (d).

all gradient vectors are directed from the center of the image (darkest part) to the
brightest external part and, thus, DGA maximum response corresponds to the
center of the image (lumen). Figure 3.2 (c) shows the resulting DGA accumulation
map extracted from 3.2 (a).

In case of perfect circular shapes like trachea, carina and main bronchi, DGA
accumulation has a clear maximum in the center of the circle. However, this does
not hold fro deeper bronchial levels because in case of lateral or distal bronchi the
shape becomes more elliptical or some parts are missing. Since a gradient only
affects to pixels within the same direction of the gradient, DGA likelihood maps
results in a mess of straight lines with a lot of local maxima. The authors in [51]
proposed to smooth DGA using a Gaussian filter before applying it to detect luminal
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Figure 3.4 — Scheme of DGA calculation for a pair of points (x, y) and (x, y'). It is
shown how the pixel (x, y') is affected by a point (x, y) modulated by the angle 6
between the gradient and the vector given by py, and VI(x', y")

structures in intra-operative videos. The intra-operative image in Figure 3.3 (a)
illustrates how DGA is computed and post-processed in case of distal navigation.
While Figure 3.2 (b) shows the raw DGA likelihood map, Figure 3.2 (c) shows the
Gaussian smoothing of raw DGA accumulation map extracted from Figure 3.2 (a).

We propose an improved DGA likelihood map which solves the directionality
of the original DGA. Instead of accumulating pixels within the gradient direction,
all pixels are affected by each gradient modulated by the angle 6(x, y) between the
gradient of the image and the vector given by the current pixel position, (x, y), where
DGA is computed and the position, (x',y), of the pixel where the gradient to be
accumulated is computed. If we note py,, = (x, y) — (x', ) such vector and VI(x', y')
the gradient at (x', y'), then the improved DGA at (x, y) is given by:

2

<VIX,y) pry>
2N I, Y, =

DGA(x,y) = =
V(x’,y’)ze:l(x',y’) ”Vl(x,) y,) ”2 “pxy”Z

= Y (lcosOx, D*IVIE, Y2 (3.2)
V(x',y"elmage

for < -,- > denoting the scalar product and |-||, the quadratic norm.
On the other hand, in [51], a single DRI map was computed convolving images,
I = I(x, y), with a Gaussian isotropic kernel g, with the scale o related to the size of
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Figure 3.5 — Bank of anisotropic oriented Gaussian filters for the modeling of elliptic
luminal regions.

the lumen:
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DRI(x,y):=8o* I = ) *1(x,y) (3.3)

for * the convolution operator. The response to DRI enhances dark values and,
thus, luminal areas.

The formulation of DRI uses a single isotropic Gaussian kernel under the as-
sumption that in central navigation the appearence of the projected airways lumens
are dark circular areas. The use of one single Gaussian kernel limits the extraction
of lumen regions to circular regions of the same size which is not fully sensible in
interventional videos. To model non-circular lateral bronchi and small distal levels,
we compute several likelihood maps using a bank of anisotropic Gaussian filters as
the ones shown in Fig 3.5 with different orientations, 8, and scales 0 = (ox,0). The
improved DRI is given by

goo 1 1

(xz y2
*I: . .
I gosll2 lgeollz 27mox0y,

+
2 2
20% 20y

DRIgg(x,y) := ) x*1(x,y) (3.4)

with g,¢ denoting an anisotropic filter of scale ® = (o0 ) orientated along the
angle 6.
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(c) Accumulated MSER
regions for all likelihood
maps

DRI filters
(a) Original frame n

.@o.- .

(b) Likelihood maps from
the bank of filters

Figure 3.6 — Scheme of the extraction of the anatomical hierarchy from a set of
MSER regions.

The different o are given by the size of the image divided by 16, 18, 20, 22 and 24,
while o, takes the values of o, and 0/3. In addition, each of the anisotropic filter is
rotated by o = {0°,45°,90° and 135°} . Gaussian filters have been normalized by their
L2 norm (||-||) to obtain more uniform responses comparable across different scales
and degrees of anisotropy [32]. The convolution of videobronchoscopy frames with
each one of the filters provides a description of either circular or non-circular
luminal areas that we note by DRIgg

For each of the anisotropic oriented filters, we compute a different likelihood
map given by the classification in the space (DRIgg, DGA). Figure 3.6 shows the
likelihood maps computed by convolving the left-hand side frame, labeled (a), with
the bank of Gaussian filters shown in the left hand side of the image frame. The
corresponding likelihood maps obtained for each of the filters are shown in the
central central column of Figure 3.6 labeled (b).

We observe that by using more and smaller filters likelihood maps are more
sensitive to changes of illumination, highlights and even non-luminal structures.
This results in liklihood maps prone to have non-prominent local maxima with
unstable pattern across video frames. Hence, in order to improve the detection of
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lumen centers, it is mandatory to ignore small local maxima and endow detections
with temporal consistency. To suppress outlying small local maxima, likelihood
maximal regions are computed using maximally stable extremal regions (MSER)
[35]. Maximally stable extremal regions is a method for detection of blobs in images
like the local maxima that characterize lumen regions in our likelihood maps. The
concept of MSER can be explained by thresholding. All the pixels below a given
threshold are ’black’ and all those above or equal are 'white’. Given an image I,
if a sequence of thresholded result images I, is generated where each image I,
corresponds to an increasing threshold t#, first a white image would be seen, then
'black’ spots corresponding to local intensity minima will appear then grow larger.
These "black’ spots will eventually merge, until the whole image is black. The set of
all connected components in the sequence is the set of all extremal regions.

The collection of MSER regions for all likelihood maps, as shown in the most
right image of Figure 3.6 labeled (c), is a set of elliptical regions following a hierarchy
of inclusions that correspond to the projection of airways from different bronchial
levels. We codify the structure of such hierarchy as a binary tree that represents the
anatomical structure of the airways projected in the image. Since each MSER region
should be represented as a node of the tree, we iteratively construct the tree by
keeping a list of root and children regions. First, MSER regions are sorted regarding
their area in ascending order and the first region of the sorted list is added to the
root node list and marked as current root. Then, we iteratively consider the next
region in the sorted list, add it to the root list and update the children list according
to whether the region contains any of the current roots. All roots contained in it are
added in the tree structure as child of the node we are examining and are removed
from the root list.

Algorithm 1 Tree structure pruning

1: procedure PRUNING(f7ee) > tree is sorted by area in descending order
2 for i=length(tree):-1:1 do

3 parent — tree(i).Parent

4 if length(tree(parent).Children) < 1 then > the parent has only one child
5: tree — remove(tree,i) > Node i does not belong to a bifurcation
6 end if

7 end for

8: end procedure

Ideally, we would like that each of the bronchial branches that represents a
lumen region would correspond to a tree node. This is not the case due to the
multiple MSER regions coming from different likelihood maps that lie on a bronchial
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Figure 3.7 - Tree structure from MSER regions.

lumen. This introduces intermediate nodes in the represented MSER hierarchy
that do not actually correspond to a new bronchial level (see Figure 3.7 (c)). In
order to remove them and keep a tree representing the main bronchial anatomy,
the inclusion tree is pruned according to each node adjacency order. Those nodes
having a single child are iteratively removed from the tree, starting by the leafs. The
pseudo-code can be found in Algorithm 1.

Figure 3.7 sketches the main steps in the extraction of the anatomical hierarchy
from a set of MSER region into a binary tree structures. To better illustrate the tree
creation we show a synthetic image (Figure 3.7 (a)) that simplifies the image in
Figure 3.6 (c). The ellipses sorted by area and inclusion shown in Figure 3.7 (b)
produce the tree in Figure 3.7 (c). In this tree, nodes are labeled according to its
branch and its order inside it. Branches of the inclusion tree consist of a set of nodes
which are pruned to obtained one representative ellipse per branch (ellipse with the
highest area). Thus, the final anatomical tree is illustrated in Figure 3.7 (d) which
represents the anatomical structure of airways of the image in Figure 3.7 (a).



3.2. Extraction of the on-line exploration tree

3.2 Extraction of the on-line exploration tree

The anatomical structure extracted from single frames is key because it can be
used for creating an on-line exploration tree. The on-line exploration tree encodes
all the bifurcations (called bronchial path) seen during the intervention and the
position inside the airways at any interventional time. The on-line exploration tree
is dynamically constructed from the hierarchy of MSER ellipses extracted from each
video bronchoscopy frame as follows.

The nodes of the on-line exploration tree represent the lumnal regions explored
during the intervention while edges encode the hierarchy of branching levels. For
each node we store luminal anatomical information given by the parameter of the
MSER ellipse representing the luminal region such as the center position, (x,y),
mayor and minor axis, (a, b), and its orientation, §. The anatomical information
also stores the image quadrant, Q, the ellipse is in. Image quadrants are stored
in order to provide guidance instructions indicating the bronchi to follow at each
bronchial level. Finally, we also store a flag (active) indicating whether the node
corresponds to a lumen that is currently being observed in the video frame or it
corresponds to a bifurcation seen in previous frames. A given node is activated
when it has been matched for N, frames and it is deactivated when it has been
lost for Ng, frames. This, we call this extra information, temporal information.
Temporal information allows as to infer the position of the bronchoscope inside the
airways in terms of the current bronchial level the scope is placed at. The sub-tree of
nodes whose variable activeis set to true is called active nodes sub-tree. The active
nodes sub-tree represents the anatomy currently observed in the interventional
video and its root gives the level inside the whole exploration tree.

Figure 3.8 represents the on-line exploration tree at different non-consecutive
frames. The right upper part represents the MSER anatomical hierarchy at a cer-
tain frame i. In frame i, there is only one active lumen represented by Node 1
(x1,y1,a1,b1,01,Q1, active). The left part of the image represent the on-line explo-
ration tree at frame i + 50. In frame i + 50, the active nodes sub-tree consist of three
nodes: Node 2 (X2, 2, az,bs,02,Q2,active), Node 4 (x4, y4, as,bs,04,Q4, active)
and Node 5 (xs, y5, as, bs, 05, Qs, active). Since Node 1 has not been detected for
Np, frames, it is inactive and it does not belong to the active nodes sub-tree. Thus,
the on-line exploration tree is updated and constructed by continuously matching
MSER ellipse hierarchy to the active nodes sub-tree. An important remark is that
the active nodes sub-tree are surrounded by a blue area in which the nodes marked
with a double line indicates the bronchial level the bronchoscope is in.
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Figure 3.8 — On-line exploration tree schema at different frames. The left part of
the image represent the on-line exploration tree at frame i + 50. The right upper
part represents the MSER anatomical hierarchy at frame i. The right lower part
represents the MSER anatomical hierarchy at frame i.

There are three aspects of the exploration tree that must be updated during
intervention time:

1. Anatomical Information. The ellipse parameters (center (xp, yo), axis (a, b)
and orientation #) and its position (quadrant Q) of the active nodes is updated
according to the current image MSER hierarchy.

2. Temporal Information. The activation and deactivation of on-line tree nodes
is updated by tracking the MSER hierarchy across the interventional video.

3. Creation of New Nodes. New nodes representing deeper bronchial levels
not observed in previous frames are created according to changes in MSER
hierarchy.
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Delete

(a) Insertion of node i and f (b) Deletion of node e

Figure 3.9 — Available edit operations to transform Tj in T»>. Insert operation to
transform 7T in T5 (a); Delete operation to transform 7; in 75 (b)

3.2.1 Matching of MSER hierarchy and active nodes sub-tree

In order to update the on-line exploration tree, the active nodes sub-tree is matched
to the MSER hierarchy across the interventional video. To do so, we propose a
modification of the tree edit distance for graph transformation and comparison
[4, 44].

The tree edit distance computes the optimal set of operations that transforms
a tree T into another tree T>. Three edit operations to transform one tree into
another can be applied:

¢ Insert a node between an existing node and a subsequence of consecutive
children of this node. In our problem, the insertion operation is applied when
new deeper lumens appear in the intraoperative video. Figure 3.9 (a) sketches
the transformation of 7} into T> obtained by insertion of nodes & and f as
children of node e.

* Delete a node and connect its children to its parent maintaining the order.

In our case this corresponds to a region which could not be detected in one
frame because the bronchoscope is in a different bronchial level, a sudden
change in the illumination, a collision to the bronchial walls,... Figure 3.9 (b)
sketches the transformation of T; into 7, obtained by deletion of node e.

* Replace the label of a node. This operation does not apply in our case since
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we cannot modified the detected regions.

In order to define a criterion for the selection of the optimal transformation,
each edit operation is assigned a cost which is used to computed the total cost of
the transformation and define a distance between the trees. Therefore, ff we note
N; the set of m; nodes of Tj,

Ni=1{n] e T7") (3.5)
and sim(n{1 , nf) denotes the similarity between nodes n{l € Ny and nf € Np, we

have that:

e Node deletion. A node n{l is removed if sim(n{l, nf) < th for all nl].2 eN,
with ¢h a threshold on minimum similarity.

* Node insertion. Those nodes in 7> that have not been matched to any node
in T, are inserted according to T> tree adjacency.

In our case, the similarity between nodes is given by the overlap between the
ellipses they represent. This overlap is computed using the following equation of
the interior ellipse region that represents a node n:

(xcos(—=0) — ysin(—0)) — xo N (ycos(—=0) — xsin(-0)) — yo <1
a b -

(3.6)

for n = (xo, yo, a, b, 0) the parameters of the ellipse.

We note the left hand side of the above inequality by En(x, y). Thus, the overlap
between two nodes n{l = (x1,y1,a1, b1,01) and néz = (X2, y2, a2, b2,0>) is given by
the following score:

j2 2-/(En; <1)n(Eny <1)|

. i1
sim(ny ,n,"):=Eni(x,y)NEny(x,y) = 3.7
( 1 2) l( J/) 2( .V) |En1<1|+|En2<1| ( )

where |- | indicates the area of an ellipse region.

We note that since Equation 3.6 defines an image mask of the interior of the
ellipse, Equation 3.7 counts the number of pixels within both ellipses over their
total area and, thus, its percentage of overlap. This is known as Volumetric similarity
(V'S) or Volumetric Overlap Error (VOE) [56] and it is a quantity commonly used to
validate shape similarity in the context of medical imaging segmentation [11, 60].
We observe that overlap =1 if there is full overlap between ellipses and overlap = 0
if there is no overlap between them.

Let del(:) represents the cost of deleting a node from the tree and add(-) rep-
resents the cost of inserting a new node to the tree. Given M a matching between
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nodes of T; and T» using the similarity metric and O, the sets of nodes in N; and
N, not appearing in M, the tree edit distance between two trees T; and 7> can be
stated as

d(Tl,T2)=argmin{ Y del(n)+ ) add(nz)} (3.8)

M n1€0; n1€07

Both cost functions are set to 1 if a node is removed or added.

Insert and delete operations of the tree edit distance gives us information about
anatomical changes between frames. Let’s assume the optimal tree edit distance
sequence between two consecutive frames contains the deletion of one node. The
information that we can extract is that one lumen which was present in frame i,

Frame i Framei+1

Remove 1

O 0 o

Figure 3.10 — Example of delete edit operation between anatomical trees of two
consecutive frames.
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it has not been detected in frame i+1. Figure 3.10 illustrates this case. Figure 3.10
simulates that we are approaching to a bifurcation so the main bronchi region is
lost. Therefore, in Figure 3.10, we can see that to transform the tree at Frame i into
the tree at Frame i+1, node number 1 needs to be removed.

The opposite way, the optimal tree edit distance sequence between two con-
secutive frames could contain the insertion of one node. This means that a new
lumen has appeared in the new frame which represents a region of a new bronchial

Framei Framei+1

Insert 4
Insert 5

Figure 3.11 — Example of insert edit operation between anatomical trees of two
consecutive frames.
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level lumen. Figure 3.11 illustrates this example. In Figure 3.11, we can see that to
transform the tree at Frame i into the tree at Frame i+1, nodes number 4 and 5 need
to be added (node 4 and 5 represents new detected luminal tubes in Frame i+1).

3.2.2 On-line exploration tree updating

The anatomical edit distance defined in Section 3.2.1 is used to update the on-line
tree from the MSER hierarchy extracted across the interventional videos, as follows:

* Anatomical information. The anatomical information of active nodes sub-
tree is updated using the center and position of MSER hierarchy ellipses.
Active nodes anatomical information is set to the values of the MSER hierarchy
ellipses they have been matched to according to the anatomical edit distance.

Positional information. The image quadrant the ellipse is in the MSER hier-
archy tree is also updated.

¢ Temporal information. The temporal information is updated according to
the number of frames the node has been matched to MSER hierarchy trees
following the anatomical edit distance. A node in the on-line tree matched to
a MSER hierarchy ellipse is activated if the node has been matched to a node
in the MSER hierarchy for a given number of frame. The same way, a node is
deactivated if it is not matched for Ng, frames.

Figure 3.12 illustrates the update of the on-line exploration tree between consec-
utive frames. The top left and right hand-side of Figure 3.12 shows the active nodes
sub-tree and the MSER hierarchy at frame i and i+1 respectively. The anatomical
information of the associated regions of such trees is shown in the middle section
of Figure 3.12. In such section, dotted lines denote the matches between the active
nodes sub-tree and the MSER hierarchy tree obtained according to the similarity
metric, sim. Then, the bottom section of Figure 3.12 describes how nodes in the
on-line exploration tree are updated at frame i + 1 using the anatomical info of the
MSER hierarchy tree following the matches found.

A very important step of the algorithm is the creation of new nodes representing
deeper bronchial levels not observed in previous frames. When the bronchoscope
approaches a bifurcation, two new children nodes appear in the MSER hierarchy.
These children nodes are also inserted in the active nodes sub-tree as children of
the node matched to its parent in the MSER hierarchy. The anatomical infromation
of the new created nodes is given by the MSER ellipse parameters and the active
lable is set to false. The active label will set to true only when the new nodes have
been matched for N, frames.
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MSER hierarchy tree
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Figure 3.12 - Example of the on-line exploration tree update in consecutive frames.
The left section of the figure contains the active nodes and the MSER hierarchy tree
extracted at frame i. The right section shows how the nodes of the active nodes
sub-tree are updated following the matching and the anatomical info of the MSER
hierarchy tree.

Figure 3.13 illustrate the creation and activation of nodes in the on-line ex-
ploration tree of a sequence of frames approaching a bronchial bifurcation. The
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rd
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Figure 3.13 — Creation and activation of new nodes in the on-line exploration tree.

sequence starts with one single active node representing we are in the intermediate
area of the bronchial tube. In the MSER hierarchy tree at Frame i two new nodes

appear within the already detected region in the on-line exploration tree of Frame i.

Hence, the two new nodes are added in the online-exploration tree in Frame i+1 as
childs of the matched node. After the new nodes have been matched during Np,
frames, they are marked in the on-line exploration tree as active nodes.

The temporal information stored in every node in the tree allows us to detect
the anatomy currently observed in the interventional video. The set of active nodes
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of the interventional videos tells us the position of the bronchoscope within the
bronchi. In particular, the scope of the current bronchial level is the level inside
the whole on-line tree of the active nodes sub-tree root. The sequence of active
nodes sub-tree roots also allows to detect the time the scope enters into a deeper
bronchial level. When the scope approaches a new level, the active sub-tree root
representing the incoming bronchi is deactivated and its two children become
two roots. The moment the scope enters into one of the children bronchi, one of
the roots is deactivated. Therefore, our criteria, for detecting that the scope has
traversed a new level, is an increase in the active nodes sub-tree roots, followed by a
decrease.

This is illustrated in Figure 3.14. The figure starts in an i-nth frame in which a
single lumen is detected in the second bronchial level. This lumen is represented
in the on-line exploration tree at Frame i as an active node. The MSER hierarchy
at frame i contains a lumen with two smaller inside of it. After tracking them for
Np, frames, those lumens are also added to the active nodes sub-tree in Frame
i+ 5. MSER hierarchy tree at Frame i+10 detects two lumens without a common
root. Therefore, we can assume we are getting closer to a bifurcation. After Ng,
frames, this configuration is transferred to the on-line exploration tree at Frame
i+15. Since the bronchoscope keeps moving forward, at some point one of the root
is lost. This is illustrated in the MSER hierarchy tree at Frame i+20. In the next frame,
the on-line exploration tree is updated according to that configuration. The change
of configuration from two roots in the active nodes sub-tree to a single root sub-tree
means the bronchoscope has crossed the bifurcation.

3.3 Matching between CT-planning and on-line explo-
ration tree

At the planning stage, CT imaging is used to create a planning of the intervention
video based on the structure of the airways branching anatomy. Figure 3.15 summa-
rizes our strategy for the codification of airways anatomy from CT-scans. The upper
part of Figure 3.15 illustrates the extraction of airways volume from CT scans. First,
CT scans are segmented to provide a binary volume of airways. Then this volume is
skeletonized to obtain airways centerline which represents the essential branch-
ing anatomy. Airways skeleton branching structure is encoded in a binary tree as
shown in the bottom of Figure 3.15 that contain information about the disposition
of airways in central navigation explorations.

Airways volumes geometrically follow a tubular structure. The centerlines of
such structures correspond to the skeleton of segmented volumes, and they allow
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Figure 3.14 — Videobronchoscopy sequence where new nodes are added to the on-
line intervention tree, the bronchoscope cross a bifurcation. This figures also proves
we can extrapolate the location of the bronchoscope from the on-line exploration
tree.
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the construction of tree-based structures. These tree-based structures encode
branching geometry using nodes and edges. The nodes of the graph correspond to
the skeleton branching points and its edges represent branch connectivity. For each
node in the CT-tree we store its 3D position (x, y, z) in the CT scan and the image
quadrant they would be in, if they were projected during an exploration in central
navigation.

In order to compute bronchi quadrant, we use the same approach as [48] in
order to provide an edge labeling consistent with intra-operative visual information.
In [48], the path is created across the segmented volume and projects the segmented
3D geometry at each traversed bronchial level to obtain a collection of virtual images
of the intra-operative path. The position of the projected bronchi in such virtual
images provides the edge labeling. In order to label the nodes, the trajectory from a
node before a bifurcation v towards the nodes of the next bifurcation (v;_; and
Vk+1) is projected onto the camera frame.

The camera viewpoint is givenby a point of the airways skeleton oriented ac-
cording to the Frenet-Serret frame [20, 59] of the skeleton curve. The Frenet-Serret

Airways 34 i/ Airways simple
e - V-

Image processing Skeletonize process

CT Data Machine learning \ >
Airway volume

' S PraN— Airways 2

encoding

entry point itrachea)

¥ =X
=] yOmaoon
ob (=] <] oD oD
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Airway codified as a binary tree Airway Center line

Figure 3.15 — Process of codification airways as a graph from CT data.
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e,

Figure 3.16 — Node Labelling Procedure: the camera captures an image at distance
dy from vy , projecting lines to children at level k + 1. Image is split into quadrants
to label line segments S1, S2.

frame is the natural reference on the curve associated to its interior geometry. Then,
the projected virtual image is split into four quadrants centered at the projected
position of vg. Since quadrants represent the spatial distribution of airway lumens
in bronchoscopic frames during traversal of bronchial levels, each projected seg-
ment will be labeled according to the quadrant it belongs to. Then for each point of
the projected trajectory, the position of the quadrant they belong to is computed.
For this, the mode and average values are considered. The mode indicates the
predominant quadrant where each segment belongs. When two or three segments
lie on the same quadrant, they are counterclockwise ordered according to their
average.

The labeling process is described in the visual scheme shown in Figure 3.16.
Figure 3.16 shows an outline of airways and a navigation path with its branching
nodes labeled. The figure also displays a camera positioned at distance dy from
the node v , and the segments S1, S2 colored in red and green respectively. The
rectangular images show the simplified scene projected over the complete airway
anatomy. The most left image is split into four colored quadrants: Q;=red, Q»=green,
Qs=yellow, Q4=blue, to illustrate that S; lies in Q; and S in Q- .

The planned path is given by sequence of nodes of the "Dijkstra" distance
[8] between the root and the node closest to the biopsy point. Planning and on-
line exploration paths are matched using the sequence of quadrants of the nodes
representing each path. The navigation path is given by the sequence of active root
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Figure 3.17 — Labeling of airways tree nodes in such a way that the branch to follow
is identified into intra-operative bronchoscopy according to [48].

@)

nodes of the on-line exploration tree. We recall that according to our hierarchical
definition of the anatomical structure, if the local anatomical tree structure is a
single rooted tree, we can extrapolate that we are in the top/middle section of the
bronchi. In addition, when our local anatomical tree structure is a set of two trees
each of them with one root, we interpret that the bronchoscope is in the bottom
part of a bronchi next to a bifurcation. Each of the roots represents the lumens of
the bifurcation.

Figure 3.18 illustrates schematically how our proposed navigation system works.
In this recreation we will assume we want to follow the path defined in Figure
3.17. An example of labeled airways graph is shown in Figure 3.17. A navigation
path across airways can be given by the sequence of the navigated bronchial levels
labeled in such a way that the branch to follow is identified in the intra-operative
bronchoscopy videos. In Figure 3.17, a navigation path has been highlighted. In
order to reach the endpoint of such a path, at each bifurcation we only need to
follow the direction of lumens detected at quadrants Q, Q2, Qs3, and Qs respectively.
The navigtion system starts in carina and the bronchoscope moves forward until it
reaches the first bifurcation. Regarding the first bifurcation in the navigation path,
the first direction to follow is Q; so lumen detected in Q; is highlighted to indicate
the intervention should continue that way. The procedure follows until the second
bifurcation in which the direction is Q2. Q3 is the direction to be followd in the third
bifurcation. Finally the direction for the last bifurcation according to our navigation
path is Q3. Therefore after crossing the last bifurcation we are in the target bronchi.
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Figure 3.18 — Recreation of an intervention in our navigation system. When the

bronchoscope approach a bifurcation the system provides the direction according

to the pre-planned route.
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¥ Results

In this chapter the experimental setups and the results for each of the algorithms
developed within this thesis are presented. Experiments have been grouped follow-
ing the same structure of the main chapters of this thesis. First, Section 4.1 explains
the validation of data augmentation for two different kind of images, synthetic
virtual broncoscopy images and CT-scan images. In addition, the validation of the
navigation system based on bronchi anatomical landmarks is also described in
Section 4.2.

4.1 Validation of data augmentation

This section addresses data augmentation in two different applications. Data aug-
mentation for virtual bronchoscopy with intra-operative appearance and data
augmentation for CT-scans from patient anatomy segmentations. Each of the ap-
plication has been tested for two kind of images, synthetic images and images
generated using simple graphical primitives. On the one hand, Section 4.1.1 shows
the results for synthetic virtual bronchoscopy images and segmentation of CT-scans.
On the other hand, in order to demonstrate the generalization of the previous mod-
els, they were tested on images generated using simple graphical primitives. Such
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(a) VB Image (b) Augmented VB Image (c) Real Image
(d) CT-scan segmentation (e) Augmented CT-scan seg- (f) Real CT-scan
mentation

Figure 4.1 - Virtual, augmented and real images for both VB and CT-scans domains.

generalization tests are illustrated in Section 4.1.2.

4.1.1 Augmentation from synthetic data

This section shows the results of the augmentation of synthetic virtual bronchoscopy
images with intra-operative appearance and the augmentation of CT-scans from
patient anatomy segmentations. Figure 4.1 illustrates and example of the image do-
mains and the augmented image for both types of synthetic images. The first row of
Figure 4.1 shows an example of the augmentation of synthetic virtual bronchoscopy
images with intra-operative appearance. Figure 4.1 (a), (b) and (c) illustrates a
Virtual Bronchsocopy images, an augmented Virtual Bronchoscopy images and
an image with intra-operative appearance respectively. Similarly, the second row
of Figure 4.1 shows an example of the augmentation of CT-scans from patient
anatomy segmentations. Figure 4.1 (d), (e) and (f) shows a CT-scan segmentation,
an augmented CT-scan segmentation and a real CT-scan respectively.
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Virtual bronchoscopy with intra-operative appearance

Our method has been used to simulate realistic bronchoscopic interventions. Vir-
tual bronchoscopies defining the Virtual domain were generated using [47] from
CT scans acquired with an Aquilion ONE (Toshiba Medical Systems, Otawara, Japan).
Scans were selected from 10 patients in the CPAP study [7] conducted at Hospital
Bellvitge (Barcelona, Spain). For each scan, we simulated 4 paths, one for each
main lung lobule (left and right upper lobes; left and right lower lobes). Intra-
operative videos defining the Real domain were acquired also at Hospital Bellvitge
(Barcelona, Spain) during biopsy interventions using an Olympus Exera III HD
Ultrathin videobronchoscope (6 videos) and CAO diagnostic procedures using a
Olympus Exera III HD Therapeutic videobronchoscope (4 videos).

Methods were trained on 4 CT anatomies (16 virtual bronchoscopies) and video
recordings from 3 ultrathin explorations and 2 diagnostic procedures. The remain-
ing data were left for validation and testing. The multi-objective cycleGAN was
trained from scratch using the whole training set. After 200 epochs, our multi-
objective approach selected epoch 50 as the one achieving the best compromise
between intr-operative appearance and preservation of virtual anatomical con-
tent. Content-net was fine-tuned on the set of intra-operative recordings from an
auto-encoder trained to yield the identity map on the Real domain. The weighting
function p was also learned from the latter auto-encoder.

We performed two diferent experiments which evaluates the quality of the en-
hanced virtual images in terms of intra-operative appearance and preservation of
each patient’s anatomy acquired by CT scans. For comparison purposes, simula-
tions were also enhanced using the 200th epoch network, labelled GAN200, and
the network achieving the least value of the cost defined in (Equation 2.2), labelled
GANLeast. This last network corresponded to the 21st epoch of cycleGAN training.

¢ EXP 1: Intra-operative appearance in augmented virtual bronchoscopy
images
For the first experiment, we trained a network, D, to discriminate between
real and virtual images. This network was evaluated on the test sets of real
images and virtual images enhanced using the proposed method, GAN200,
and GANLeast.

For each enhancing method, D, values were compared to the ones obtained
by the test real images to assess their similarity in appearance. Main analysis
was performed using a Student T-test for unpaired data. We computed p-
values and 95% confidence interval (CI) for the difference. A p-value < 0.05
was considered statistically significant.

Table 4.1 summarizes statistics for the comparison of appearances. For each
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enhancing method, we report p-values, 95% Cls of the difference with real im-
age and descriptive statistics (mean and standard deviation (SD)) of D, values.
According to T-tests, none of the methods has an appearance significantly
different from intra-operative videos (p-value> 0.05) with all discrimination
values D, in similar ranges comparable to the values achieved by the test set
of real images (mean=0.90 and SD=0.11).

Method | Descriptive T-test
mean SD | p-val 95% CI
ContentNet 0.88 0.11 | 0.305 (-0.023,0.073)
GAN200 0.91 0.08 | 0.576 (-0.057,0.032)
GANLeast 0.91 0.09 | 0.438 (-0.065,0.028)

Table 4.1 — D, Statistics for Assessment of Intra-operative Appearance.

Fig 4.2 shows representative images of virtual bronchoscopies enhanced
using our method (Figure 4.2 (a)), the 200th epoch network (Figure 4.2(b))
and the least cost one (Figure 4.2(c)). For each case, we show two consecutive
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(b) GAN200

(c) GANLeast

Virtual Enhanced

Virtual

Figure 4.2 — Virtual bronchoscopy enhanced using ContentNet, (a), 200th epoch
network, (b) and the least cost one, (c).
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frames of the enhanced virtual sequence which should be very similar in
appearance and content. GANLeast images have sudden dark artifacts, while
GAN200 yields highly unstable images that do not always match the original
anatomy. ContentNet provides a stable appearance in images which are the
most consistent with the original anatomical content of virtual images.

EXP 2: Preservation of patient’s anatomy in augmented virtual bronchoscopy

images.

For the second experiment, we applied the lumen center detector from Chap-
ter 3 to ContentNet, GAN200, GANLeast and the non-enhanced original vir-
tual images to verify that original lumen position and structure is preserved.
The center detector was applied using two different sets of parameters, one
learned on interventional videos and the other one learned on simulated bron-
choscopies. Interventional parameters were used on enhanced images, while
simulation parameters were applied to original virtual images. Detections
were plot on original virtual images and shown to 2 independent observers
for the identification of false detections and missed centres. Inspired in crowd
sourcing strategies [34], to statistically compare our tracker, ground truth was
produced by intersecting the experts’ annotations as illustrated in Figure 4.3
and used to compute precision and recall.

Scores obtained for ContentNet, GAN200, GANLeast were compared to the
ones obtained for virtual non-enhanced images using a Student T-test for

True Positives x False Positives False Negatives

a) Observer 1 b) Observer 2 ¢) Consensus

Figure 4.3 — Manual Annotation of Tracked Centres.
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paired data. As in the first experiment, we computed p-values and 95% confi-
dence intervals and a p-value < 0.05 was considered statistically significant.

Table 4.2 and 4.3 summarize statistics for Prec and Rec reported as in Table
4.1. ContentNet outperforms the two cycleGAN, both, in terms of precision
and recall.

The recall of GAN200 and GANLeast is under 0.75 and is significantly lower
(p-value < 0.01) than the recall obtained for the non-enhanced virtual images.
This drop in the recovery of the original anatomical structure indicates that
enhanced images systematically distort the anatomical content. ContentNet
recall is almost equal to the one obtained in virtual images with a difference
less than 0.04, which shows that it consistently preserves the anatomical
content along the sequence.

Concerning precision, ContentNet averages are a bit higher (p-value=0.025
and CI=(-0.1150, -0.0082)) than the average precision of original virtual im-
ages. This might be attributed to artifacts in the segmentation of distal airways
that are prone to introduce shadows in virtual sequences resembling the ap-
pearance of luminal distal areas. Such shadowing artifacts do not appear
in intra-operative videos and, thus, they are significantly reduced in Con-
tentNet enhanced images. In fact, ContentNet precision ranges (0.94 + 0.09)
are closer to the full precision of intra-operative videos [54] than ranges for

Method | Descriptive T-test

mean SD | p-val 95% CI
ContentNet 094 0.09 | 0.025 (-0.1150, -0.0082)
GAN200 0.89 0.15 | 0.695 (-0.0719, 0.0487)
GANLeast 0.84 0.19 | 0.265 (-0.0332, 0.1148)

Table 4.2 — Precision Statistics for Assessment of Anatomical Content.

Method | Descriptive T-test

mean SD | p-val 95% CI
ContentNet 0.90 0.14 | 0.939 (-0.0384,0.0413)
GAN200 0.70 0.24 | <0.01 (0.1400, 0.3559)
GANLeast 0.73 0.24 | <0.01 (0.1081, 0.3058)

Table 4.3 — Recall Statistics for Assessment of Anatomical Content.
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Figure 4.4 — Detected lumens on virtual bronchoscopy enhanced using our method
(ContentNet), 200th epoch network (GAN200) and the least cost one (GANLeast).

|| Enhanced |

Virtual

virtual images ( 0.8843 +0.1364). Finally, precision average ranges for GAN200
and GANLeast compares to virtual images precision which indicates that they
present some kind of artifact (like the shadows of the images shown in Fig
4.2) that intra-operative videos do not have.

Fig 4.4 shows two representative examples of lumens detected on images
enhanced with each method. Lumen centers are shown in blue points on,
both, original virtual images and the enhanced ones. In the top case, GAN200
and GANLeast enhanced images miss the bottom branch. In the bottom case,
in spite of a slight deviation in the location of its center, GANLeast succeeds in
keeping the upper branch, while GAN200 enhancement has such a distorted
anatomy that none of the original virtual branches can be identified. The
proposed ContentNet preserves the virtual anatomy in both cases and, thus,
all branches are properly detected.

CT-scans from patient anatomy segmentations

For this experiment we trained a cycleGAN on a set of 11 chest CT volumes (defining
the Real domain) and their segmentation (defining the Virtual domain) of the
main lung structures. CT scans were acquired in inspiration with an Aquilion ONE
(Toshiba Medical Systems, Otawara, Japan) using slice thickness and interval of
0.5 and 0.4 mm respectively. Segmentations included the body, lungs, pulmonary
vessels and airways and were computed using an own-designed software. Each
volume (original CT scan and its segmentation) was uniformly sampled in 250 short
axis planes covering the whole volume of lungs for training cycleGAN from scratch.

A total of 10 CT-scans segmentation have been inspected in order to prove the
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Pareto Front for Simulation of Chest CT Scans
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O

i i i i i
0.12 0.14 0.16 0.18 02 0.22
costCycle

Figure 4.5 — Pareto front for CT-scans.

improvement of the automatic epoch selection using the Pareto front epochs. In
this case, we have selected 2 epochs not belonging to the Pareto front, one (epoch
92) far from it, another one (epoch 53) close to it. The epochs selected on the Pareto
front are the boundary ones (196, 29, which is the one achieving the minimum value
of (Equation 2.2)) and the epoch (43) closest to epoch 53.

Figure 4.5 plots the two cost functions for all epochs with the Pareto epochs
in black crosses. The epochs selected for these experiment are shown in squares,
green ones for epochs on the Pareto front, red ones, otherwise.

Figure 4.6 shows a mosaic of representative segmentations and their augmenta-
tion using these 5 epochs. The epochs selected for these experiment are shown in
squares, green ones for epochs on the Pareto front, red ones, otherwise. Images gen-
erated with epochs not belonging to the Pareto front present different artifacts, like
a stripe pattern (epoch 92), lack of texture in lungs (epoch 53) and bright structures
in the body (epoch 53). Meanwhile, images generated with Pareto epochs keep a
stable appearance similar to the one of a chest CT scan.

As shown in Figure 4.6, images from Pareto epochs present a spatial continuity
which is not present in non-Pareto epochs. It is important to mention that the GAN
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Figure 4.6 — Generated CT virtual scans for 3 representative CT segmentations (basal,
mid and distal): images from Pareto front epochs in green frame and images from
non-Pareto epochs in red one.
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which transforms CT segmentations into augmented images with CT appearance
and viceversa has been trained with transversal images of CT-scans. In order to
prove the stability of the Pareto front epochs, some coronal and sagittal slices are
shown.

Figure 4.7 shows a mosaic of representative augmented coronal CT-scans slices
for Pareto and non-Pareto epochs. Pareto epochs are shown in squares, green ones

Coronal slice

Figure 4.7 — Augmented coronal CT-scans slices for Pareto and non-Pareto epochs.
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Sagittal slice

Figure 4.8 - Augmented sagittal CT-scans slices for Pareto and non-Pareto epochs.

for epochs on the Pareto front, red ones, otherwise. The real CT slice correspondent
to the augmented one is shown in a blue square. We can see that in pareto epochs
(epoch 29, epoch 43 and epoch 196) there is continuity in the slices even though it
was trained for transversal slices. We can also see that for non-pareto epochs (epoch
53 and epoch 92), there is not continuity due to some strip and square patterns in
the image.
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The same experiment for sagittal slices were performed. Figure4.8 shows a
mosaic of representative augmented sagittal CT-scans slices for Pareto and non-
Pareto epochs. Image frame colors are like in Figure 4.7. As in Figure 4.7, we can see
that in pareto epochs (epoch 29, epoch 43 and epoch 196) there is continuity in the
slices while in non-pareto epochs (epoch 53 and epoch 92) there is not.

4.1.2 Augmentation from graphical primitives

This section shows the results of the augmentation of virtual bronchoscopy images
with intra-operative appearance and the augmentation of CT-scans both from
images generated with graphical primitives. We call such images sketch images.
The goal of these experiments is to prove the generalization of the GANs trained in
Section 4.1.1.

Figure 4.9 illustrates and example of the image domains and the augmented

(a) Sketch Image (b) Augmented Image (c) Real Image

(d) Sketch Image (e) Augmented Image (f) Real Image

Figure 4.9 — Virtual, augmented and real images for both VB and CT-scans from
sketch domains.
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Pareto Front for Simulation of Videobronchoscopy
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Figure 4.10 — Pareto front for Intra-operative virtual bronchoscopies.

image for both types of generated images. The first row of Figure 4.9 shows an
example of the augmentation of a generated virtual bronchoscopy sketch images
with intra-operative appearance. Figure 4.9 (a), (b) and (c) illustrates a Virtual
Bronchsocopy sketch images, an augmented Virtual Bronchoscopy images and an
image with intra-operative appearance respectively. Similarly, the second row of
Figure 4.9 shows an example of the augmentation of CT-scans from sketches. Figure
4.9 (d), (e) and (f) shows a CT-scan sketch segmentation, an augmented CT-scan
segmentation and a real CT-scan respectively.

Video bronchoscopy data augmentation from graphical primitives

In order to validate our proposal, we generated 10 sequences using sketches of
airways in bronchoscopic frames. Sketches of airways were produced using elliptical
shapes of different sizes and eccentricity and considering several configurations in
number and disposition in the image. For each configuration, a sequence of affine
transformations was applied to simulate bronchoscopic navigation.

Figure 4.10 plots the two cost functions for all epochs with the 35 Pareto epochs
in black crosses. The epochs selected for these experiment are shown in squares,
green ones for epochs on the Pareto front, red ones, otherwise. We have selected 2
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Figure 4.11 — Generated intra-operative virtual bronchoscopies for 3 representative
sketch sequences: images from Pareto front epochs in green frame and images from
non-Pareto epochs in red one.

epochs not belonging to the Pareto front, one (epoch 80) far from it, another one
(epoch 70) close to it. The epochs selected on the Pareto front are the boundary
ones (199, 21, which is the one achieving the minimum value of (Equation 2.2)) and
the epoch (122) closest to epoch 70.

Figure 4.11 shows a mosaic of representative sketches and their augmentation
using the 5 epochs. For each sketch, we show consecutive frames to check the sta-
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bility of the augmented images. Images obtained from Pareto epochs have a green
frame, red otherwise. As it can be seen, the appearance of images generated with
Pareto front epochs are more stable and keep better texture. Also brightness, color
and the shape of holes are more realistic. Epoch 21 artifacts on image boundary
and lack of texture can be attributed to an early stage of cycleGAN training. It is
worth noticing that images generated with epochs not belonging to the Pareto front
(like epoch 80) present an unstable anatomy with new holes that were not in the
sketches.

CT scans augmentation from graphical primitives

A total number of 10 anatomical sketches were generated using 3D graphical prim-
itives for each lung structure. Body was modelled with a cylinder, lungs with el-
lipsoids and, both, vessels and airways were modelled as tubular structures with
several branching levels. The thickness of the tubes was set depending on the level
to account for different lumen sizes. To endow sketches with more realistic geom-
etry, the cardiac and abdominal cavities were also modelled using ellipsoids. The
ranges for primitives sizes were statistically learned from segmented CTs. For each
sketched anatomy 250 short axis planes were sampled for testing.

In this case, the Pareto front had 7 epochs. As in the previous experiment, we
selected the Pareto boundary epochs (196 and the least cost 29), two epochs not
belonging to the Pareto front (epoch 92 far from it and epoch 53 close to it) and the
Pareto epoch (43) closest to epoch 53. Figure 4.12 shows a mosaic of representative
sketches and their augmentation using these 5 epochs. Image frame colors are like
in fig.4.11. As before, images generated with epochs not belonging to the Pareto
front present different artifacts, like a stripe pattern (epoch 92), lack of texture in
lungs (epoch 53) and bright structures in the body (epoch 53). Meanwhile, images
generated with Pareto epochs keep a stable appearance similar to the one of a chest
CT scan.

4.2 Validation of navigation system based on bronchi
anatomical landmarks

This section addresses the validation of our navigation system based on bronchi
anatomical landmarks. Section 4.2.1 is dedicated to analyze the extraction of
bronchial anatomical hierarchy in single videobronchoscopy frames. The next
section, Section 4.2.2, shows the accuracy of the on-line exploration tree extraction.
Finally, the last section, Section 4.2.3, proves the capabilities of our navigation
systems for guiding purposes in augmented virtual bronchoscopy videos.
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Basal Mid Distal

Figure 4.12 — Generated CT virtual scans for 3 representative sketches: images from
Pareto front epochs in green frame and images from non-Pareto epochs in red one.
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Wall focus || Bubbles || Blood || Blurring |

Figure 4.13 — Challenges in anatomical landmark extraction: wall focus, bubbles,
blood, blurring.

4.2.1 Extraction of bronchial anatomical structure in single video-
bronchoscopy frames

Our method has been applied to 8 sequences extracted from 3 ultrathin bron-
choscopy videos performed for the study of peripheral pulmonary nodules at Hos-
pital de Bellvitge. Videos were acquired using an Olympus Exera III HD Ultrathin
videobronchoscope. We have split the 8 sequences into proximal (up to 6th division)
and distal (above 6th) sets to compare also the impact of the distal level. The maxi-
mum bronchial level achieved in our ultrathin explorations was within 10th and
12th, which is in the range of the maximum expected level reachable by ultrathin
navigation. Sequences contain bronchoscope collision with the bronchial wall,
bubbles due to the anaesthesia and patient coughing, blood and blurred images.
Such phenomena are illustrated in Figure 4.13.

For each sequence, we sampled 10 consecutive frames every 50 frames. Such
frames were annotated by 2 clinical experts to set false detections and missed cen-
tres. Like in Subsection 4.1.1, to statistically compare our tracker, ground truth was
produced by intersecting the experts’ annotations as illustrated in fig.4.3. Ground
truth sets were used to compute precision (Prec) and recall (Rec) for each set of
consecutive frames. These scores are taken for all such sets in distal and proxi-
mal fragments for statistical analysis. We have used a Wilcoxon test data to assess
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Proximal Distal Total
Prec [1.0,1.0] [1.0,1.0] [1.0,1.0]
Rec | [0.84,0.99] | [0.91,0.98] | [0.90,0.97]

Table 4.4 — Average precision and recall confidence intervals for region tracking.

significant differences and confidence intervals, CI, to report average expected
ranges.

Table 4.4 reports Cls for each set of consecutive frames score at proximal, distal
and all together (both proximal and distal) levels. According to these results, it

Figure 4.14 — Frames of tracked regions at proximal and distal levels.
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is worth noticing that the proposed method always has a 100% of precision and
a recall over 84%. We can see that Recall at proximal levels is a bit smaller than
recall at distal levels. This is due to more frames with collisions at proximal levels
that distort the likelihood model (see Discussion Section). Even so, proximal and
distal levels present non-significant differences between them (p — val > 0.8 fora
Wilcoxon test).

Figure 4.14 shows regions tracked in consecutive frames selected at distal and
proximal levels. It is worth noticing the capability of our strategy to capture most
distal and lateral bronchi without introducing false positives.

4.2.2 Extraction of the on-line exploration tree in intra-operative
videos

The extraction of the on-line exploration tree has been tested on 8 interventional
videos. Videos were collected from four different patients. For each patient 2 videos
with different paths were recorded.

In order to validate the extraction of the on-line exploration tree, each of the
interventional videos were inspected and the ground truth tree with all the bronchi
seen across the video was created. Both trees were compared to compute the
precision and recall of the on-line exploration tree.

Experiments FP | FN | Num. Nodes
Patient 1 - Video1 | 2 0 27
Patient 1 -Video2 | 6 2 21
Patient 2 - Video1 | 0 0 17
Patient2 - Video2 | 0 2 11
Patient3 - Video1l | 0 2 11
Patient 3 - Video2 | 0 2 19
Patient 4 - Video1 | 8 2 15
Patient4 - Video 2 | 4 0 11

Table 4.5 — TN, FN and total number of nodes for the on-line exploration tree
extraction.

Table 4.5 reports the total number of nodes in the ground truth, as well as, the
number of false positive (FP) and false negative (FN) nodes in the on-line explo-
ration tree extracted for each patient and exploration. Table 4.6 reports CIs for the
average precision and recall. CIs indicate that our algorithm detects most of the
bronchi in the explorations. In terms of precision, our algorithm has more vari-
ability since the number of FP is highly dependent on either patient or physicians.
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Figure 4.15 — Robustness of the on-line exploration tree creation.

For example, some patients produce bubbles during the exploration. In case of
the doctors, they don’t perform the explorations in the same way. Inexperience
physicians perform explortions very smoothly due to their lack of experience while
very experienced physicians perform the exploration abruptly because they are
used to perform such procedures. These abrupt changes ruin our algorithm since
sudden changes in position leads to failures in the matching step of the algorithm.

Precision Recall
(66.80%,98.43%)] | [84.71%,100.0%]

Table 4.6 — Precision and recall statistics for the on-line exploration tree extraction.

It is worth to notice that even when the local anatomical structure changes at
some frames, the current scope of the bronchoscope is not affected. Since the scope
of the bronchoscope is determined by the roots of the available nodes sub-tree, as
long as these nodes are not affected, the navigation system remains unaffected.

Figure 4.15 shows the robustness of the on-line exploration tree creation. The
sequence start with a frame in which only one lumen has been detected in the
left-hand side image. In such frame, the root node of the active nodes sub-tree
indicates that the bronchoscope is in the second bronchial level. After a few frames
in the middle image of Figure 4.15, two new lumens are added as children of the
root of the active nodes sub-tree. in the right-hand image of Figure 4.15 we can
see that as the bronchoscope moves forwards changes in illumination, bubbles or
blood cause that the children of the root node are not detected anymore. However,
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since the root of the active nodes sub-tree remains the same, the on-line exploration
tree indicates that the bronchoscope is still in the second bronchial level.

4.2.3 Matchingbetween CT-planning and on-line exploration tree
in augmented sequences

We have compared the matching between the CT-planning and the on-line explo-
ration path in augmented virtual bronchoscopies with intra-operative appearance.

Virtual bronchoscopies were generated using an own developed software from
CT scans acquired for four different patients with an Aquilion ONE (Toshiba Medi-
cal Systems, Otawara, Japan) using slice thickness and interval of 0.5 and 0.4 mm
respectively. For each Virtual bronchoscopy of a patient, four virtual explorations
were generated, covering the four main lobes: left and right upper lobes, noted LUL,
RUL, and left and right lower lobes, noted LLL, RLL. These paths were performed us-
ing central navigation without rotation around the scope. In addition, explorations
were considered with paths reaching between the sixth and twelfth bronchial level.
Each virtual explorations was augmented according to the algorithms explained in
Chapter 2 and the ground truth for comparison purposes was extracted following
the same approach as [48].

We have compared the quality of the retrieved paths extracted from the on-line
exploration tree using Section 3.3 (on-line paths) against the paths using method
in [54]. For each exploration, the path followed by the truth camera positions
was compared to the path extracted from both algorithms. The metrics used for
the comparison of both methods are True Positives Nodes (TPN) and True Path
Representations (TPR). For a given exploration, a node is considered to be a TPN if
its label coincides with the GT node label. The number of consecutive TPN achieved
from the 1st node divided by the path node length defines TPR. We have used a
T-test to detect significant differences across methods and ClIs at significance a =
0.05 to report average TPN and TPR ranges.

On-line path Paths from [54] p-val
TPN | [78.06%,94.43%] | [71.07%,80.95%] | 0.0235
TPR | [47.31%,85.28%] | [54.25%,74.82%] | 0.8086

Table 4.7 — Comparison of TPN and TPR at proximal and distal levels.

Table 4.7 reports Cls for average TPN and TPR percentages for both methods
and p-values of the T-test for the difference. The detection rate of the correct bifur-
cations along the whole path (TPN) is significantly different with a CI for the differ-
ence equal to [1.44,19.03]. This improvement is due to the fact that the proposed
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Figure 4.16 — Ternary bifurcation in an augmented bronchoscopy image. The image
was generated from a virtual bronchoscopy extracted from a CT-scan of a real
patient.

algorithm not only detects luminal regions but it also encodes the hierarchy rela-
tionships between them. Hierarchy relationships allow to increase the robustness
when luminal regions are not detected in some frames. Concerning the percentage
of correct paths reached from the trachea (TPR), there are not significant differences
with a CI for the difference equal to [-16.39,20.92]. Although, our algorithm outper-
forms the approach from [54] in terms of TPN, there are not significant differences
due to the TPR metric itself. Given a path with all the bifurcations but the first one
correct, the TPR value is 0 since there is none correct value starting from the trachea.
Both methods use binary trees to encode the path followed during the intervention
but this does not hold for some ternary bifurcations. Such ternary bifurcations
appear in the proximal levels leading to low TPR values for both methods.

Figure 4.16 shows a ternary bifurcation in an augmented image. This images
was generated from CT-scan data of a real patient. Although in general, bronchial
trees can be represented by a binary tree, there are a few exceptions where some bi-
furcation are ternary. Figure 4.16 illustrates clearly a ternary bifurcation but ternary
bifurcations are very challenging since there is a lot of intra-observer variability
when ground truth is generated.



¥ Conclusions and Future work

5.1 Conclusions

A main limitation of flexible bronchoscopy is the difficulty to determine the correct
pathway to peripheral lesions. Despite all the available tools, the diagnostic yield is
still under 70% and drops for small lesions [36].

Standard guiding protocols such as fluoroscopy have a diagnostic yield around
40%, last 20 min per intervention and require 5-10 min of repetitive patient and med-
ical staff radiation [50]. Existing alternatives like image based systems (LungPoint,
NAVI) or electromagnetic navigation (inReachTM,SPinDrive®) are far from meeting
clinician expectations. Image systems are based on multimodal registration of CT
virtual projections to bronchoscopy frames and require manual intra-operative
adjustments of the guidance system. Electromagnetic systems require specific
gadgets, that alter the operating protocol and increase intervention cost. Aside, they
lack of any correction in orientation changes. In order to cope with such difficulties,
we proposed an image-based navigation system for intra-operative guidance of
bronchoscopists to a target lesion across a previously planned path on a CT-scan.

This thesis contributes in two aspects. The first contribution is related to the
augmentation of synthetic images with intra-operative appearance that can be
used for testing or training complex algorithms that need tons of images. For the
augmentation of virtual endoscopic images, we propose a two-stage algorithm
using intra-operative videos based on Generative Adversarial Networks. In addition,
we use techniques of multi-objective optimization schemes to provide a numeric
criteria for the automatic selection of cycleGAN optimal epochs.
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Furthermore, the second and most important contribution of this thesis is the
development of a navigation system based on anatomical landmarks. By detecting
and tracking anatomical landmarks across the intervention we are able to construct
an on-line exploration tree. A sub-tree of the on-line exploration, active nodes
sub-tree, represents the anatomy currently observed in the interventional video and
its root gives the level inside the whole exploration tree. This allows us to identify
all the bifurcation and properly indicate the pre-planned path that needs to be
followed at intervention.

The main conclusions for the contributions of the augmentation of synthetic
images with intra-operative appearance are:

* Numeric criteria for the automatic selection of GAN optimal epochs. Arti-
facts of cycleGANs images might be partially attributed to the adversarial
training. On one hand, the combination of two loss functions with different
(opposite, indeed) goals (minimization and maximization) introduces an
oscillating behavior across training epochs and, thus, consecutive epochs
might produce very different results. On the other hand, it is not guaranteed
that both losses will have equal influence during training since the magnitude
of one of the two might be predominant in the back-propagation of their
gradients.

The proposed multi-objective approach allows the join optimization of both
losses ensuring equal influence on the cycleGAN, regardless of their magni-
tude or gradient. This way, our multi-objective cycleGAN produces stylized
images that share enough anatomical structure with virtual images as to be
the input for a network blending both image pairs. The weighted skip connec-
tions of ContentNet provide selective blending of the structure and texture of
these image pairs. This allows enhancing the patient specific anatomical con-
tent acquired by CT scans, while keeping an intra-operative appearance. In
this context, it is worth noticing that ContentNet precision and recall ranges
achieved in the detection of airways structure (centers) is very close to the
ranges obtained in intra-operative videos [54].

* Augmentation of synthetic images. We have presented a method for style
transfer that preserves the structure of original input images and, thus, it is
suitable for endowing virtual endoscopy with intra-operative appearance.

Content-net has been compared to state-of-art style transfer methods based
on GANSs. In particular, we chose cycleGAN after 200 epochs and the cycleGAN
achieving the minimum cost. Two experiments were conducted. The first
one assessed whether the appearance of enhanced images compares to intra-
operative videos for their use in classification problems. The 2nd experiment
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assessed whether the anatomical content of the virtual images extracted
from patient’s CT is preserved after their enhancement for their use in image
processing problems.

Results obtained for the first experiment show that, like cycleGAN, Content-
net has an appearance close enough to intra-operative videos as to be clas-
sified real by a discriminative network. This validates our method for data
augmentation in classification problems. The 2nd experiment shows that im-
ages enhanced using both cycleGANs have a significant distortion in anatom-
ical content (see Figure 4.4) and have larger temporal artifacts (see Figure
4.2) in comparison to Content-net. In fact, according to T-tests Content-net
anatomical structure is not no significantly different from original virtual
images extracted from patient’s CT anatomy. This validates our method for
data augmentation in image processing problems.

In summary, two interesting conclusions can be inferred from our experiments.
First, the use of multi-objective optimization strategies can be an effective alterna-
tive to back-propagation for the optimization of adversarial networks and other net-
works relying on multiple loss functions. In this context, the Pareto front condition
could also be adapted for the selection of the most appropriate task in sequential
multi-task learning. Second, the structure of neuron activations can be measured
by the amount of information shared with input images. This measure of their
content provides a description easy to interpret in terms of classical computer vi-
sion. We envision that this could be useful to define more specific and interpretable
representation spaces based on CNNs.

The main conclusions for the contributions of the novel strategy for a broncho-
scopic navigation system based on anatomical landmarks are presented next:

* Extraction of bronchial anatomical hierarchy in single video-bronchoscopy.
Luminal regions of different bronchial levels projected in the image results
in a hierarchy of regions. We have introduced a method that extracts such
anatomical hierarchy from videobronchoscopy frames.

Results in ultrathin bronchoscopy videos indicate high equal performance of
our anatomical hierarchy extractor at proximal and distal levels. Particularly,
there are not any false detections (Prec=1) and the rate of missed lumen
regions is under 16% (Rec > 0.84). Although, non-significant according to
a Wilcoxon test, we can appreciate a slight deviation between proximal and
distal recall. The reason for such bias is that our model does not satisfy the
illumination conditions in carina when collisions happen. This could be
solved by making the likelihood maps less restrictive at proximal levels, but
does not invalidate our system for bronchoscopic navigation. Clinicians need
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guiding systems for distal levels in which we obtain a recall grater than 90%,
at proximal levels, they navigate without any tool just by visually assessing
the path.

We conclude that results are promising enough (see the full exploration at to
encourage the use of anatomical landmarks in a biopsy guidance system. In
Fig. 4.14 we can see 8 sample images from two videos at distal and proximal
level. Images are ordered according to its occurrence in time from left to
right and from up to down. As we can see, at proximal levels the anatomical
structure of bronchi is easy but at distal levels it becomes more complex.

* Extraction of the on-line exploration tree in intra-operative videos. The
robustness of the anatomical landmark extraction allows to accurately detect
the luminal hierarchy of video broncshocopy frames. Such luminal hierarchy
describes key points of the whole anatomical structure of the lungs. The iden-
tification of bronchial tree key-points in CT scans and videobronchoscopy
frames provide accurate matching between planed path and endoscopic
navigation.

By continuously matching the local anatomical hierarchy of single broncho-
scopic frames across the video, we are able to construct an on-line explo-
ration tree. The online-exploration tree encodes the key-points in videobron-
choscopy frames seeing during the whole intervention.

e Matching between CT-planning and on-line exploration tree in augmented
sequences The online-exploration tree encodes the anatomical structure seen
at any time across an interventional video. This means, it also encodes the
path that the bronchoscope followed during the intervention. Hence, the on-
line exploration path can be matched to a previously computed CT-planning
path in order to provide guidance.

We have compared the matching between the CT-planning and the on-line
exploration path in augmented virtual bronchoscopies with intra-operative
appearance. The Results in augmented virtual bronchoscopies shows high
performance estimating the paths followed during interventions. Particularly,
the algorithm correctly detects the bifurcation that needs to be followed in
86% of the total number of bifurcations. This promising results validate our
assumption of a navigation system based on anatomical landmarks without
using neither radiation nor additional gadgets.

Several interesting conclusions can be extracted from the experiments. Our
algorithm detects robustly the anatomical structure in single frames. The robustness
of the anatomical extraction allows to create an on-line exploration tree which
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encodes the position of the bronchoscope and the path followed at any time of
the intervention. By putting into correspondences the on-line exploration path
and the pre-planned CT path we can provide guidance to reach a target lesion.
In summary, experiments shows that anatomical landmarks are stable enough to
provide accurate guidance during bronchoscopic procedures.

5.2 Future Work

As described in previous chapters of this thesis, Medical imaging applications are
challenging for machine learning and computer vision methods, in general, for
two main reasons: it is difficult to generate reliable ground truth and databases are
usually too small in size for training state of the art methods. We have presented an
algorithm for the augmentation of virtual endoscopic images using intra-operative
videos based on convolutional neural networks. Although, it shows promising
results there is still some room for improvement:

¢ Customized virtual bronchoscopies with intra-operative.

In the scope of this thesis we have only use one appearance to transfer to
synthetic images. This limits the use of the algorithm for real purposes. A clas-
sifier could be trained to differentiate between different patient appearance.
The classifier could be an input to the GAN so that it could change the appear-
ance of the output image. This would allow to give virtual bronchosocpies
with intra-operative appearance at intervention time. In addition, since we
can collect depth maps, optical flow, camera position,... we could generate
a virtual bronchoscopy database with different intra-operative appearance
that could be use for navigation testing purposes or for training complex
algorithms which need huge amount of images.

¢ Augmentation of synthetic images with intra-operative appearance using
3D information.

GANSs have proved its efficiency in the generation of new images. In the scope
of this thesis, new images were generated with intra-operative appearance.
However, content of such images was slightly lost so a new step was added in
order to preserve more content in the generated images. Since we use images
from virtual bronchoscopies, there is a lot of additional information such as
depth maps, optical flow that could be used. We could use depth maps in
order to preserve content instead of using L, nor ms which reduce the texture
transferred by the net. Depth maps might be a smart way to preserve content
since content appearance is a huge contribution in the depth estimation.
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The main contribution of this thesis is the development of a navigation system
based on anatomical landmarks. But it is unrealistic to perform bronchoscopy
procedures smoothly. This is translated into wall collisions or sudden movements
backward and forward. Such events might cause our system to loose precision. The
methods proposed in this PhD thesis pave the way for several studies:

e Multi-modal navigation system based on anatomical landmarks.

We have proved that bronchoscopic navigation based on anatomical land-
marks is a good approach to detect and indicate paths to reach alesion. It uses
the detected bifurcations to indicate the path to follow. Therefore, anatomical
landmarks between bifurcation would not been necessary in theory. A multi-
modal navigation system could drastically improve the physician experience
in the operating room. The system could add speech recognition to allow
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Figure 5.1 — Schema of the future multi-modal navigation system. Guidance screen,

(a), gesture/voice recognition, (b), multimedia capture, (c), micro-sensor, (d), bron-
choscope, (e), gpu/fpga, (f).
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the physician to interact with the system without stopping the intervention.
The physician could inform the system that the bronchoscope is at a bifurca-
tion. Then the system would extract the anatomical hierarchy and the path
to follow would be highlighted. The physician could even correct rotation
deviations between the interventional video and the VB to ease the process.

Figure 5.1 shows a proposal for a multi-modal navigation system. Figure 5.1
(a) shows the guidance support system to the physician who can interact with
it by means of either gesture/voice recognition (Figure 5.1 (b)) captured by
multimedia systems, Figure 5.1 (c). In addition, the bronchoscope (Figure
5.1 (e)) will contain a micro-sensor (Figure 5.1 (d)) which allows to detect
bronchoscope rotations. The system will be implemented on gpu/fpga to
fulfill real-time constraints.

* Improve performance of the algorithm.

Although our method is by far not the most time consuming method, the
time for processing a single image makes the algorithm not usable for a real
prototype that can be tested in a real operating room. But even so, we could
use the hierarchy structure of bronchoscopic images using our algorithm
and use it as a ground truth to train a neural network which would make the
whole pipeline usable for real time applications.

* First prototype of a multi-modal navigation system based on anatomical
landmarks.

After a superficial feasibility study of a multi-modal navigation system based
on anatomical landmarks, a first prototype could be build and tested on a real
operating room. This would imply the use of GPU for fast computation and
the definition of protocols which make the prototype acceptable for broad
use in hospitals.

5.3 Scientific Articles

This dissertation has led to the following communications:

5.3.1 Journals

e Enhancing virtual bronchoscopy with intra-operative data using a multi-
objective gan, rennes, france, june 18-21, 2019. International Journal of
Computer Assisted Radiology and Surgery, 14(1):S7, Jun 2019 (Accepted)
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¢ Marta Diez-Ferrer, Debora Gil, Cristian Tebe, Carles Sanchez, Noelia Cubero,
Rosa Lépez-Lisbona, Jordi Dorca, Antoni Rosell, PAP enhanced CT study
group, et al. Positive airway pressure to enhance computed tomography
imaging for airway segmentation for virtual bronchoscopic navigation. Res-
piration, 96(6):525-534, 2018 (Accepted)

* Antonio Esteban Lansaque, Carles Sdnchez Ramos, Agnes Borras, and Deb-
ora Gil Resina. Augmentation of virtual endoscopic images with intra-operative
data using content-nets. bioRxiv, page 658807, 2019 (Submitted)

5.3.2 International Conferences and Workshops

e (Carles Sanchez, Antonio Esteban-Lansaque, Agnes Borras, Marta Diez-Ferrer,
Antoni Rosell, and Debora Gil. Towards a videobronchoscopy localization
system from airway centre tracking. In VISIGRAPP (4: VISAPP), pages 352-359,
2017

* Antonio Esteban-Lansaque, Carles Sdnchez, Agnés Borras, Marta Diez-Ferrer,
Antoni Rosell, and Debora Gil. Stable anatomical structure tracking for video-
bronchoscopy navigation. In Workshop on Clinical Image-Based Procedures,
pages 18-26. Springer, 2016

e A Esteban-Lansaque, C Sanchez, A Borras, M Diez-Ferrer, A Rosell, and D Gil.
Stable airway center tracking for bronchoscopic navigation. 28th Conference
of the international Society for Medical Innovation and Technology, 2016

5.4 Scientific Dissemination

5.4.1 Inthe media

The work of this thesis has lead to scientific dissemination in different media. The
different interviews are listed as follows:

* EI GPS Del Pulmén: Imagen Médica Y Salud Conectada, CVC Outreach, Jan-
uary, 2019

* “En nuestro sistema GPS, usamos IA para localizar y contabilizar los bronquios
que se ven en cada imagen», BigData Magazine, October, 2018

 Tratamientos a medida y cirugia guiada con GPS: el ‘big data’ llega a la medic-
ina, Retina, El Pais, September, 2018



5.4. Scientific Dissemination

¢ EIGPS que ayudard a los médicos a recorrer el cuerpo humano, La Vanguardia,
November, 2017

* How video game tech, AR, and 3D models help these surgeons do their job,
ZDNet, April, 2017

* Un «videojoc» per millorar les broncoscopies, Butlleti RECERCAT, February,
2017

* Videogame Technology And Computer Vision For The Bronchoscope Of Tomor-
row, CVC Outreach, January, 2017

* Broncoscopia en 3D, Catalunya Vanguardista, January, 2017

* Idean un GPS bronquial para la deteccion precoz del cdncer de pulmén, BioTech,
January, 2017

5.4.2 Demos

* Planning and intervention Demo for lung cancer biopsy - http://datasets.cvc.
uab.es/ust/agnesbal/ MWC2019/BronchoX_Demo_MWC/Exe/index.html
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