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ABSTRACT 

 

The Near Infrared Spectroscopy (NIRS) is an analytical technique based on the interaction of 

electromagnetic radiation in the wavelength range 780-2500 nm and matter. The NIR spectrum 

can be considered as a “fingerprint” of each chemical compound or mixture of them, which 

contains absorption bands that are the result of overtones and combinations of the fundamental 

vibrations observed in the Mid-Infrared region. Additionally, NIRS of solids is sensible to the 

scattering effect caused by physical characteristics of the samples, therefore provides simultaneous 

sensitivity to chemical and physical changes of solids. Because of NIR spectra show broad and 

overlapped bands makes it necessary the use of Chemometrics, which implies the application of 

statistical and mathematical methods to such spectral data, for achieving the maximal extraction 

and collection of useful information from it. The general objective of this doctoral thesis is 

developing analytical methods based on NIRS for monitoring pharmaceutical and biotechnological 

processes and for the control of illicit drugs. The following conditions have been considered i) 

extended active pharmaceutical ingredient (API) concentration ranges during granulation and 

tableting using the process spectrum (PS), ii) on-site identification of new psychoactive substances 

(NPS) during police seizing procedures with hand-held and bench-top instruments and iii) inline 

monitoring of the production of recombinant Lipase B from Candida antarctica in Pichia pastoris 

using Glycerol as carbon source. 

i) Extended API concentration ranges during granulation and tableting using the PS 

The PS is a methodology for preparing calibration sets by adding the changes due to the 

manufacturing process to NIR spectra of samples prepared at the laboratory, using an algebraic 

procedure. The PS has successfully included the process contributions during modelling in the 

central point of API concentration values of diverse formulations, however the properties of this 

methodology at extreme points of API concentration ranges have not been studied yet. For 

evaluating such properties, in this work the PS was applied to samples in the range of ± 30% of a 

nominal API value. Results have shown that the PS performance can be affected by API 

concentration changes in the studied range, and classical pre-treatments are not enough to 

overcome this condition. 
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ii) Comparison of the performance of bench-top and hand-held NIR instruments concerning the 

identification of NPS 

The NPS are 'legal highs' with molecular differences regarding the structures of illicit controlled 

drugs, whose emergence have expanded the current synthetic drugs market in a very important 

way. The feasibility of using portable NIRS instruments for the fast identification of NPS have 

been previously demonstrated, however, their performance has not been faced to the performance 

of bench-top instruments. Results presented in this thesis expose that, even when models 

developed using data from NIRS miniaturized instruments are limited in performance regarding 

those developed using data provided by bench-top instruments, classification models of NPS based 

on data from hand-held instruments can be useful to make real-time and on-site decisions that can 

be confirmed later using high performance analytical instrumentation.  

iii) Inline monitoring of the production of recombinant Lipase B from Candida antarctica in 

Pichia pastoris using glycerol as carbon source. 

The use of new constitutive promoters and recycled carbon sources in the recombinant production 

of industrial proteins, such as lipases, in the cell factory Pichia pastoris is advantageous for 

improving production yields and minimizing the cost of the culture medium. The capabilities of a 

NIR spectrometer with fiber optic coupling for immersion of a transflectance probe were employed 

for the inline monitoring of the cultivation mentioned in the headline. Quantitative models have 

been developed for Biomass, Total protein, Nitrogen and Activity, which have demonstrated better 

prediction capability during the feed batch stage than during the batch stage. Predictions of 

glycerol values has been probably affected by the formation of hydrogen bonds in the aqueos 

medium. 

  



 

 

5 

Table of content 

ABSTRACT .............................................................................................................................................. 3 

OBJECTIVES ........................................................................................................................................... 7 

1. Introduction ........................................................................................................................................... 8 

1.1 An historical perspective ................................................................................................................. 8 

1.2 Physical fundamentals................................................................................................................... 17 

1.3 Acquisition modes ........................................................................................................................ 26 

1.4 Instrumentation ............................................................................................................................. 30 

1.5 Data analysis ................................................................................................................................. 36 

1.6 General advantages and disadvantages of the technique .............................................................. 48 

1.7 Applications of NIRS .................................................................................................................... 49 

1.8 References ..................................................................................................................................... 66 

2. Performance of the Process Spectrum calculated at extreme API concentration values in the inclusion 

of the process variability of pharmaceutical solids manufacturing into calibration sets of samples 

prepared at the laboratory ....................................................................................................................... 75 

2.1 Introduction ................................................................................................................................... 75 

2.2 Experimental ................................................................................................................................. 77 

2.3 Results and discussion .................................................................................................................. 78 

2.4 Conclusions ................................................................................................................................... 87 

2.5 References ..................................................................................................................................... 87 

3. Comparison of the performance of bench-top and hand-held Near infrared instruments concerning the 

identification of new psychoactive substances ....................................................................................... 89 

3.1 Introduction ................................................................................................................................... 89 

3.2 Experimental ................................................................................................................................. 91 

3.3 Results and discussion .................................................................................................................. 97 

3.4 Conclusions ................................................................................................................................. 108 



 

 

6 

3.5 References ................................................................................................................................... 108 

4. Inline monitoring of recombinant production of Lipase B from Candida antarctica in Pichia pastoris using 

glycerol as carbon source .......................................................................................................................... 111 

4.1 Introduction ................................................................................................................................. 111 

4.2 Materials and methods ................................................................................................................ 114 

4.3 Feasibility study .......................................................................................................................... 117 

4.4 Results and discussion ................................................................................................................ 125 

4.5 Conclusions ................................................................................................................................. 140 

4.6 References ................................................................................................................................... 140 

5. Annex 1 ................................................................................................................................................. 144 

 

 

 

  



 

 

7 

OBJECTIVES 

 

The general objective of this thesis is the development of analytical methods for monitoring 

pharmaceutical and biotechnological processes and for controlling illicit drugs. The analytical 

technique that has been applied in all the cases is the Near Infrared Spectroscopy, with three 

different sample presentation modes: off-line, on-site and in-line. The analysis of the data acquired 

has involved the use of chemometrical methods both for classification and quantification purposes. 

Three works have been settled to achieve this general goal:  

1. Development of quantitative models based on partial least squares (PLS) regressions for 

the study of the performance of the process spectrum (PS) at extreme concentration values 

of active pharmaceutical ingredient (API) in pharmaceutical solid preparations. 

2. Development of spectral libraries for identification of new psychoactive substances (NPS) 

using NIRS data both from hand-held and bench-top instruments 

3. Development of quantitative models based on PLS regressions for the prediction of 

concentrations and activity values of five analytes during the production of a protein 

(Lipase B) from the constitutive promoter Candida antarctica in the yeast Pichia pastoris 

using Glycerol as carbon source. 
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1. Introduction 

1.1 An historical perspective 

The establishment of the International System of Units (Le Système International d'Unités, SI), 

during the French Revolution, mid XVII century, opened the door to the valorisation of 

standardized measurements. This was one of the results of the Industrial Revolution in Europe, 

which pointed out the age of modern science, especially in chemistry and physics. The SI allowed 

scientific activities became more precise. Standard reference models of metric units were made, 

and in consequence, it was required that measuring devices employed for trade and commerce 

were regularly checked for accuracy against official standard versions. At the same time, efforts 

for connecting the definitions of the base units to more universally stable properties, were made 

[1]. 

This early work on standardization drove important advances in analytical chemistry and its 

increased impact on society. However, the most relevant progresses were achieved during the 

Instrumental Revolution, in the two decades between 1955 and 1975, when the analytical 

profession was transformed by technological developments. During that period, it is possible to 

find advances in analytical chemistry applied to very diverse needs. The reason for that was the 

more accurate and precise measurements that became available. According to De Galan, the 

development and improvement of the instruments for such measurements have been the result of 

the contributions by four major professional groups, who together have brought the analytical 

chemistry to its current capability: the inventors, the instrument makers, the analytical chemists 

and the clients [2]. 

The inventor, who made the discoveries of natural phenomena, who many times is not aware about 

its analytical potential at the time of the achievement, starts the chain. The second contributors are 

the instrument makers, who convert the often rudimentary academic prototype of the novel 

technique into a reliable device. A team generally completes this task, where the key is the close 

cooperation between engineers and salesmen. Engineers design the instrument and salesmen 

collect and transfer insights from their customers before and after purchase. The speed by which 

the instrumental techniques reached the market varies significantly from one technique to another, 

and depends on diverse factors [2]. 
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Next, are the analytical chemists, the customers of the instrument makers, who adapt the 

instruments to their needs. From the beginning of the Industrial Revolution, the main challenges 

for analytical chemistry have been the reduction of the detection limits and the analysis time, 

therefore, these have been the focus of the efforts of analytical chemists from that time on. 

Additionally, the Instrumental Revolution increased the range of available techniques, and 

expanded the profession from the largely inorganic classical analysis into the domains of the 

organic chemist and, in recent years, the biochemist. Nowadays it is possible to measure almost 

any analyte in almost every kind of matrix, fact that has been aided by the push of technology. 

This great progress has also followed a clear trend: substituting the classical absolute analysis, 

based on analyte-specific chemical reactions, by instrumental methods, which are all relative. 

These new methods require a calibration with known standards to convert a physical signal into a 

chemical concentration. This fact has promoted the rising of new terminology and concepts, 

particularly in the industrial field, government and statutory regulations. The definition of concepts 

and procedures devoted to ensuring the traceability of analytical measurements has been prompted 

to involve the new capabilities of analytical chemistry into the industry [2]. 

Finally, there is the client, the ultimate receiver of the data provided by analytical laboratories. The 

clients describe the requirements of new analytical methodologies; they are the ones who outline 

the conditions under what the analytical chemists must work. Therefore, the feedback obtained 

from the clients is fundamental for advances in analytical chemistry [2], as the example provided 

by Near Infrared Spectroscopy illustrates bellow. 

1.1.1 The development of Near Infrared Spectroscopy (NIRS) 

a) The inventors 

Even when it is an undisputed fact that the United Kingdom pioneered the Industrial Revolution 

in Europe, the fundamental position of the analytical chemistry did not receive enough attention 

in Britain, regarding other main branches of chemistry, during the XIX century. At that time, 

academic analytical chemistry was not as widely established in Britain as elsewhere in the world. 

However, the number of British contributions to analytical chemistry up to the mid−nineteenth 

century is quite important. Particularly in the field of spectroscopy, the number of contributors is 

remarkable over this period [3]. These series of contributions started in 1800, with the insights of 

William Friedrich Wilhelm Herschel, a German musician, teacher and astronomer whom born in 
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Hannover, on November 15th 1738. W. Herschel became the astronomer of the King George III of 

the United Kingdom of Great Britain and Ireland in 1782. He settled in Britain after participating 

in the battle of Hastenbeck, during the War of the Seven Years [4].  

Many historians have indicated Herschel as the discoverer of the infrared radiation. The paper 

entitled “Experiments on the refrangibility of the invisible rays of the sun”, read in London on 

April 24th 1800 [5], describes the study completed by W. Herschel on the temperatures of diverse 

zones of the spectrum. This study allowed the detection of the infrared radiation by means of 

differences in the temperatures of the visible and invisible zones of the spectrum [4]. Figure 1, is 

a reproduction of the illustration presented by Hershel in the mentioned paper. 

 

Figure 1. Reproduction of the illustration employed for William Herschel for the exposition of his results on the 

article “Experiments on the Refrangibility of the visible Rays of the Sun”. Taken from reference [5], content 

downloaded from 158.109.55.24 on Thu, 14 Feb 2019 17:41:49 UTC. 
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Even though, it is important to keep in mind that the contribution of Herschel was based on the 

work of the physicist Isaac Newton, who proved over one hundred years before, that white light 

was made of a mixture of colours that could be separated by a prism. Newton referred to this 

phenomenon as the spectrum. The efforts of Newton also found antecedents on the theories that 

earlier scholars of the XIII century stated, which indicated that colours of rainbow were caused by 

sunlight reflecting through droplets of water [6].  

On the other hand, some historians date the discovery of infrared radiation in 1777, based on the 

concept of radiant heat proposed by Carl Scheele in the famous treatise in which he presented the 

discovery of the oxygen. Afterwards, Marc-Auguste Pictet reported an experiment with two 

parallel mirrors, in which invisible radiation was reflected from one mirror to the other, which 

generated an increment of temperature in the focused mirror. This effect became stronger when 

the tip of the thermometer was blackened. The work of Pictet was published in Geneva in 1790, 

but seemingly remained unknown to those who later developed the infrared spectroscopy 

technique [7]. 

b) The instrument makers 

In any case, after the experiment of Herschel, infrared radiation remained as an object of research 

instead of a research tool, until the instrument makers became involved in the process. The first on 

the list of these contributors is Leopoldo Nobili, who reported in 1829 the thermopile, an early 

infrared detector. Macedonio Meloni, who found that rock salt was much more transparent to 

infrared radiation than glass, extended the range of the thermopile. This insight allowed Meloni to 

make better prisms for the detectors. Afterwards, the progress of the infrared techniques slowed in 

the next years, until the 1840s, when Samuel Langley presented a more precise heat detector named 

bolometer. The bolometer enabled the measurement of the relatively weak grating spectra and the 

determination of wavelengths in the infrared ranges by means of a sensitive resistance thermometer 

connected with a galvanometer. This fact allowed accurate measurement of absolute wavelengths. 

Until this point, the research on infrared radiation remained in the domain of physics, because they 

were the only ones with the required knowledge of the infrared phenomenon and its complex 

instrumentation. Over the period from 1880 to 1892, pioneer papers on spectroscopy point to the 

utility of infrared spectra on research on functional groupings in organic molecules. One of these 

articles was cited by William Coblentz in 1905, when he took up spectral identification of organic 



 

 

12 

compounds and provide the first experimental evidence of the relation between molecular structure 

and spectral characteristics of substances. His equipment consisted of a rock-salt prism mounted 

on a mirror spectrometer, with a lamp before the collimator slit and a sensitive radiometer, instead 

of the bolometer. The contribution of Coblentz provided three main conclusions: i) the 

configurations between atoms in a molecule are reflected in the spectrum; ii) an increase in 

molecular weight does no lead to a shift of the absorption maximum; and iii) certain absorption 

frequencies remain constant for molecular groups even in the presence of other groups in the same 

molecule. These were the fundamentals for a wide variety of analytical uses of infrared 

spectroscopy.  

However, the experiments of Coblentz did not lead to an increment of chemical analyses on the 

same lines, probably because the understanding of chemists about the physical bases of 

spectroscopy at that time were not enough to face this task [7]. By this time, investigations of 

molecular structure by means of infrared spectra began to appear slowly, while theoretical physics 

experienced the emergence of conceptual issues on the interaction between matter and radiation. 

In the 1920s, the development of quantum mechanics, prompted by Max Planck, opened the door 

to the determination of the vibrational frequencies. Based on the work of Planck, the vibrational 

energy levels of molecules were developed. A limited group of symmetrical molecules of low 

molecular weight outlined the starting scenarios. The arrival of Raman spectroscopy supported the 

refining of the process, enabling the use of the two techniques together in the study and 

interpretation of the energetics of simple molecules in terms of their rotational and vibrational 

behaviour. Unfortunately, these preliminary efforts were not enough to understand the vibrational 

bands of heavy, complex and asymmetric molecules [7].  

c) The analytical chemists and clients 

The challenge of complex asymmetric molecules was faced by a collaborative group created 

between the US National Bureau of Standards (NBS) -where Coblentz was an active researcher- 

and graduated students of the Johns Hopkins University in Baltimore. Scientists of NBS were 

interested in infrared radiation for complementing the identification of hydrocarbons in their 

systematic study of the chemical composition of petroleum. The Johns Hopkins researchers had 

the objective of understanding the infrared radiation in terms of molecular structure and theoretical 

chemistry. Findings of this collaborative group prompted the American Petroleum Institute (API) 
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to apply the technique systematically in a study of chemical composition of petroleum. This was 

the base for the work published by F. Rose in 1938, which brought two new important ideas: iv) 

different structural groups of hydrocarbons have absorption maxima at different frequencies; and 

v) a given grouping has a constant absorption intensity at each of its characteristic frequencies [8]. 

From that time, the infrared spectroscopy became a fast and reliable tool for monitoring complex 

organic reactions.  

However, this important impulse was mainly dedicated to the region of the mid infrared, MIR 

(2500-16,000 nm), due to the higher amplitude of the fundamental vibrations collected in this 

region, compared to the low amplitude of vibrations acquired in the near infrared region, NIR 

(700-2500 nm). Indeed, when the World War II started, mid infrared spectroscopy had a firmly 

domain of the major chemical and petroleum companies. In the universities, few groups of 

physicists dedicated to theoretical chemistry used the technique, but organic chemists were not 

interested in completing the delicate and labour-intensive calibrations and adjustments that the 

technique still required. Because of that, the early evolution of the technique took place at the 

industry, which could afford the time and money required to use it. At this point, the most 

experienced company in production of optical devices for the industry, Perkin Elmer, became the 

most relevant instrument maker for the technique. Perkin Elmer made the first compact and mass-

produced infrared instrument. This fact contributed to the standardization of mid infrared 

spectroscopy and its diffusion in petroleum refining. 

Because these early instruments manufactured by Perkin Elmer were focused on combining the 

mid infrared region and the visible region, the near infrared remained ignored until the mid-1950's, 

when Wilbur Kaye, presented three articles, using Beckman Instruments. The effort of Kaye 

served as a base for the description of NIRS as a technique able of provide relevant structural 

information [9]. Furthermore, in 1954, the Applied Physics Corporation (Monrovia, California), 

presented a double bean spectrometer designed to operate over the wide spectral range of 

ultraviolet, visible and near infrared wavelengths (185-870 nm), the Cary 14. The Cary 14 was the 

successor of the Cary 11, the first commercially available ultraviolet visible spectrophotometer 

[9]. 

However, at that time, the motivation for the construction of the instruments remained far from 

considering the whole vibrational spectral region. Therefore, the emergence of NIRS into the 
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analytical world was delayed until the 1960's when Karl Norris, a researcher of the U.S. 

Department of Agriculture, built a low-cost monochrometer using a piece-interference filter, useful 

to vary the wavelength in a simple way [10]. In this sense, and according to the structure proposed 

by De Galan, besides the earlier efforts of Coblentz, Karl Norris was the first analytical chemist 

implicated in the development of the NIRS, and the Department of Agriculture of the USA the 

first client who provide feedback for the enhancement of the technique. 

The initial efforts of Norris were dedicated to the identification of wheat flour and the measurement 

of moisture using transmission as acquisition mode. Since the measurement in transmission mode 

required the use of carbon tetrachloride (for the sample to become transparent and allow the 

measurement with the still very raw instrument) the application of the technique into the food 

industry was not possible due to the health hazard of this solvent. This was the reason why Norris 

made internal changes in the instrument to measure diffuse reflected radiation instead of 

transmitted radiation using the same wavelengths. Afterwards, new improvements were added by 

the coupling of the NIR spectrometer to a computer where a software was developed to collect and 

analyse NIRS transmission and diffuse reflection data in the range 400 – 2600 nm [10]. 

Because of differences in the particle size of whole wheat, Norris and its collaborators noticed 

differences in their initial spectra and realized that these differences were due to surface 

reflectance. To overcome this difficulty, they developed an interactance probe for separating the 

source fibres from the collecting fibres by means of a thin metal strip. This improvement allowed 

the measurement of fat content through the human skin [11]. The NIR spectrometer that Norris et 

al. assembled was unique; therefore, it attracted scientists from all over. Figure 2, shows a picture 

this instrument. 
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Figure 2. Reproduction of picture of the first NIR instrument developed by Norris et al. for moisture 

measurement of wheat flour. Taken from reference [10] (doi:10.1016/j.trac.2010.01.003). 

These scientists later contributed in spreading the knowledge of NIRS and developing new 

applications around the world. Canada was the first country to guarantee the protein content of 

wheat using NIRS in substitution of the Kjeldahl method in the 1970s. In September 1973, the first 

results of this “real world” application of NIRS were presented at the American Association of 

Cereal Chemists conference in St. Louis, MO, USA. The same year, an instrument named 

“Automated Digital Analyzer”, was the first NIRS instrument that allowed the adjustment of 

optimum wavelengths ranges. Phill Williams was at that time Chemist-in-charge of Protein-testing 

of the Canadian Grain Research Laboratory (GRL) Kjeldahl laboratory, and supported the 

transition to the new instrument. The “Automated Digital Analyzer” was digital computer tracked, 

and it worked without a break, 24 hours-a-day, 7 days-a- week until 1992. Over this period, this 

instrument completed about 11 million tests for protein and moisture, without once breaking down 

[10]. This fact represented remarkable savings in laboratory spences, as well as an important 

reduction of Kjendals reactives wastes. 

Afterwards, diverse companies as Neotec, Technicon, Tecator (now Foss Analytics) expanded and 

enhanced the NIRS instruments in such a way that for 2010, around a 90% of the wheat world-

wide was sold on the basis of protein testing by whole-grain NIR spectrometers. Additionally, over 

this period, the applications of NIRS to pharmaceutical requirements began to be explored with 

successful and increasingly more expansive results. 
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d) Evolution of the presentation of the sample to the instrument 

Most of the current industrial applications of NIRS have been developed based on off-line 

measurements on raw materials and finished products for quality control purposes. However, it is 

worth mentioning that technique traced by itself the “Five eras” described by Callis et. al. for the 

evolution of the Process Analytical Chemistry (PAC): off-line, at-line, on-line, in-line and non-

invasive eras [12]. The PAC involves many diverse analytical techniques, but NIRS is probably 

one of the most representative of this concept. In fact, currently, the five eras of its development 

are described as diverse possibilities of instrumental configuration for NIRS, because depending 

on the application, one or more of these ways of presentation of the sample to the instrument can 

be useful for solving customised analytical needs. 

The off-line configuration requires a starting sampling procedure for collection of a set of samples 

to be analysed in a laboratory facility, in a location different to the process plant. At-line 

configurations are related to the analysis inside of the process plant, because the instrument is 

installed there; however, the sample is analysed out of the process line. Therefore, the sampling 

procedure is still required. On-line measurements are those completed over samples taken from a 

process line, analysed by means of loops or lines specially created for the analysis with NIRS, 

which later return the sample to the process. In-line measurements are achieved using probes 

specially developed for immersion in process reactors or manufacturing lines. Finally, non-

invasive measurements are completed using accessories designed for applications were the 

instrument acquires the spectra by means of a transparent window or directly over the product, 

depending on the process conditions. This last kind of configuration is particularly useful for solid 

samples and is the most representative of PAC applications of NIRS. 

The PAC, nowadays also named process analytical technology (PAT), pretends to provide 

qualitative and quantitative information about a chemical process, with the aim of optimizing the 

use of energy, time and raw materials [12]. The early origins of this idea was a specialized form 

of at-line, real-time analysis in 1937, according to a British Intelligence Operations Subcommittee 

Report, which exposed that Germans used specialized instrumentation for process control in their 

chemical industry [13]. PAT is valuable because allows the availability of updated information for 

the opportune decision making about process variables, that the natural delays of off-line 

measurements makes hard. Informed and opportune process changes are key for optimizing safety, 
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quality, and production cost efficiency, aspects of relevant impact for all the industries.  

Based on this fact, recent developments on NIRS instrumentation have been devoted to the design 

and manufacturing of probes and accessories for in-line and non-invasive process measurements, 

as well as the reduction of the size of the instruments. Such progresses have been supported on 

advances on interferometers and dispersive monochromators, the diode-array detectors and the 

new perspective provided by the Raman spectroscopy in the 1990s.  

Unfortunately, the most important milestone in the reduction of the size of the NIRS instruments 

was a tragic situation. Portable and handheld optical spectrometers, started to have a relevant 

presence in the market with the destruction of the World Trade Center (New York City), on 

September 11th, 2001. The urgent demands for screening, detection and identification of 

explosives, hazardous materials among other chemical substances, compelled the fast development 

of these instruments[14].  

Currently available small NIRS spectrometers can be roughly classified intro three groups: 

 Small versions of laboratory spectrometers: transportable instruments oriented to faster 

data acquisition. 

 Process analyzers: for generation and transmission of qualitative or quantitative 

information to a process controller. 

 Dedicated field analyzers (handheld spectrometers): developed for providing answers to 

non-specialists. 

The recent availability of low-cost sensors and other electronic components has led to the 

development of low-cost portable spectrometers [14]. 

1.2 Physical fundamentals 

The region of the electromagnetic spectrum limited by the visible and the microwave regions (700-

111,000 nm) is named the infrared (IR) region. This spectrum is the result of the absorption of 

light by matter and is associated to stretching and bending modes that mainly occur in 

intramolecular covalent bonds of organic molecules, although hydrogen bonding and 

intermolecular interactions can affect it as well. 
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The IR region is divided in three sub-regions:  

 The far infrared (FIR): Located between 16,000 and 111,000 nm. Primarily employed for 

rotational spectroscopy, with wide applications in astrophysics. 

 The mid infrared (MIR): Located between 2,500 and 16,000 nm. Traditionally employed 

for molecular characterization due to the chemical information involved in the sharp of the 

spectral profiles produced. 

 The near infrared (NIR): Located between 700 and 2500 nm. Associated to overtones and 

combination bands of the fundamental vibrations of the MIR region. 

When the MIR radiation interacts with matter, diverse molecular stretching and bending motions 

are induced in the molecules. Such movements depend on the frequencies of the radiation. After 

these fundamental vibrations take place, further overtones and combination bands occur as 

physical consequence of these starting movements [15]. These overtones and combination bands 

constitute the NIR spectrum.   

To understand this phenomenon, it is useful take into account the properties both of the 

electromagnetic radiation and the vibrations in molecules.  

1.2.1 Properties of electromagnetic radiation 

The infrared radiation may be considered as a simple harmonic wave. Therefore, this radiation can 

be defined in terms of the properties of the sine wave and the distance travelled in a complete cycle 

of such sine wave. Any simple wave of radiation undulates interconnecting electric and magnetic 

fields, which interact with matter to generate a spectrum. As any simple harmonic motion, the 

properties of the wave of radiation can be can be defined by: 

𝑦 = 𝐴 sin 𝜃     Equation 1 

where y is the displacement with a maximum value A, and θ is an angle that varies in the range 

from 0 to 2π radians. Therefore, the travelling wave follows a circular path of radius A, describing 

an angle θ = ωt radians, t seconds after passing the maximum point of its vertical displacement: 

𝑦 = 𝐴 sin 𝜔𝑡     Equation 2 

After 2π/ω seconds, the cycle is completed. That means that in one second the undulatory pattern 

is repeated ω/2π times. The expression of the wave regarding the time is known as frequency (𝑣) 
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of the wave. Considering the frequency, the basic equation of the wave movement can be rewritten 

as: 

𝑦 = 𝐴 sin 2𝜋𝑣𝑡     Equation 3 

The undulation also generates horizontal displacement while completing each cycle, which is 

known as the wavelength (λ). Expressing the equation 3 in terms of such displacement, in distance 

instead of time, involves the substitution of t=l/c, where l is the distance covered by the wave in 

time t at velocity c (c is the universal constant for the velocity of light in vacuo). Based on that, 

the wavelength can be defined as: 

𝜆 = 𝒄/𝑣      Equation 4 

The infrared radiation may also be described is in terms of wavenumber (𝑣̅). The wavenumber is 

defined as the reciprocal of the wavelength expressed in centimetres:   

                            𝑣̅ =
1

𝜆
𝑐𝑚−1      Equation 5 

The 𝑣̅ is commonly considered as the number of waves or cycles per centimetre of radiation. 

Conventionally, spectroscopists describe the position of an infrared absorption band in terms of its 

wavenumber, since it is directly proportional to frequency (𝑣 = c𝑣̅) and this unit is more easily 

related to the energy changes associated to transitions between different vibrational states [16]. 

1.2.2 Properties of vibrating molecules 

Even when the wave model was valuable to understand the properties of radiation, it is no longer 

useful to account for the phenomena associated to the absorption or emission of energy in the near 

infrared region. For these processes, it is required to visualize the electromagnetic radiation as a 

stream of discrete particles (photons) with an energy proportional to the frequency of the radiation. 

Based on this view, the NIRS can be considered a consequence of both electronic and vibrational 

transitions.  

In order to understand these transitions, it is important firstly to state that when molecules absorb 

the infrared radiation, this radiation generates vibrations in their individual bonds. Such vibrations 

can be generated in both intra and intermolecular bonds. Each molecular bond can be individually 

considered as a diatomic oscillator, which from the perspective of the harmonic oscillator has a 

potential energy 𝑉 that can be defined as: 
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𝑉 =
1

2
𝑘(𝑟 − 𝑟𝑒) =  

1

2
𝑘𝑥2     Equation 6 

where k is the force constant of the bond, r is the internuclear distance, re is the internuclear 

distance at the equilibrium state and x = (r - re) is the displacement coordinate. The harmonic 

oscillator model describes the vibrational frequency 𝑣 such that the curve for the potential energy 

has a parabolic shape, symmetrical about the equilibrium bond length, re. The definition of 𝑣 is 

described in equation 7: 

𝑣 =
1

2𝜋
√

𝑘

µ
       Equation 7 

where µ is the reduced molecular mass, such that µ =  𝑚1𝑚2 (𝑚1 + 𝑚2)⁄ , and 𝑚1 and 𝑚2 are 

the masses of the nuclei involved in the bond [17]. However, most of the electronic transitions 

exposed in the NIR region are due to d-d transitions, charge-transfer transitions, and π–π transitions 

of conjugated systems of C-H bonds, which are forbidden transitions within the harmonic 

oscillator case. Experimental observations give evidence that molecules are not ideal oscillators. 

The first evidence is that their vibrational energy levels are not equally spaced, as can be seen in 

Figure 3. Therefore, the hot bands do not have exactly the same frequency as the fundamental 

band. The second evidence is that overtone transitions, like 𝑣 = 0 to 𝑣 = 2, 3, 4 and so on, are 

allowed [18]. 

 

Figure 3. Illustration of the energy diagram of vibrational modes calculated as an anharmonic oscillator. 

Adapted from reference [15]. 
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Because of that, it is necessary to introduce the term anharmonicity. The anharmonic behaviour is 

key for understanding NIR spectrum in terms of both intensity and frequency and it can be 

expressed by means of two effects. One of these effects is called the mechanical anharmonicity, 

which is due to the cubic and higher terms of displacement coordinates in the potential-energy 

expression presented in equation 8: 

𝑉 =
1

2
𝑘𝑥2 + 𝑘′𝑥3 + ⋯ 𝑘′ ≪ 𝑘      Equation 8 

Equation 7, is employed in the Schrödinger equation to deduce the energy levels of the allowed 

states of the anharmonic oscillator. The solution has been obtained based on an approximation that 

can be written as: 

𝐺(𝑣) = 𝐸𝑣𝑖𝑏 ℎ𝑐 = 𝑣̅ (𝑣 +
1

2
) − 𝑥𝑒𝑣̅ (𝑣 +

1

2
)

2

⁄  

                         = 𝑣̅ (𝑣 +
1

2
) − 𝑋 (𝑣 +

1

2
)

2

     Equation 9 

where h is the Plank constant, xe is the anharmonicity constant and X = xe. As a consequence of 

equation 8, the energy levels are not equally spaced, as is showed in Figure 1. The other effect 

useful for the expression of the anharmonic oscillator behaviour is named the electrical 

anharmonicity, which is responsible for the appearance of overtones corresponding to transitions 

between energy levels that differ in two or three vibrational quantum number units in the infrared 

spectra. The electrical anharmonicity is due to the effect of square and higher terms in the dipole-

moment expression: 

ε = 𝜀0 + (
𝑑𝜀

𝑑𝑥
)

𝑒
𝑥 + (

𝑑2𝜀

𝑑𝑥2)
𝑒

𝑥2  + ⋯   Equation 10 

where 𝜀 is the energy of each energy level and 𝜀0 the energy at the fundamental level. Based on 

equation 9, it is possible to see that, for the anharmonic oscillator, the frequencies of the overtone 

absorptions are not exactly 2, 3, … times the fundamental absorptions [17].  

Some relevant consequences of the anharmonic behaviour of the near infrared absorption are: 

 The intensity of the bands in the near infrared region is much weaker than the fundamental 

absorption bands in the mid infrared region. 
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 Due to a number of overtones, combination bands and Fermi resonances overlap each other 

in the NIR region; the interpretation of the spectra is not straightforward. 

 Bands associated to functional groups with hydrogen atoms dominate the NIR spectra, 

since the anharmonic constant of an X-H bond is usually high. On the other hand, C=C 

vibration does not generate bands in the NIR region. The information from these bonds is 

obtained by means of combination modes of C-H groups linked with such C=C bond. 

 The shift and intensity changes due to hydrogen bonds and interaction between molecules 

is more important in NIR bands than in MIR bands. 

 For bands associated to the first overtones of the X-H bonds (X = O, N), streaching modes 

of monomeric species exhibit higher intensity regarding the corresponding bands of 

polymeric species [19]. 

The anharmonic behaviour also makes that the NIR spectroscopy currently holds significant 

advantages over MIR and Raman spectroscopy for physical chemistry and molecular science 

investigations. Studies of NIR anharmonicity and vibrational potentials are nowadays fundamental 

for understanding molecular structures, and combination of NIR data and quantum chemical 

calculations support developments on anharmonicity and vibrational potentials. This is probably 

because studying MIR and Raman spectra involves only the description of the dipole moment and 

the polarizability respectively. However, describing the NIR spectra in terms of both intensity and 

frequency comprises the anharmonicity of vibrational potential and nonlinearity in the dipole 

moment function [19]. 

1.2.3 Overtones, combination bands and Fermi resonance 

As has been explained above, overtones and combination modes are the bands exposed in the NIR 

spectrum, therefore, it is important to describe them. The overtones are forbidden transitions in 

harmonic oscillator approximations, whose intensities decrease in an exponential manner with the 

increase in the vibrational quantum number [19]. A valuable analogy for understanding NIR 

overtones is the ringing of a bell, illustrated in Figure 4. When the bell collides with another object, 

the first sounds are loud and highly clear in audible frequencies. These are the fundamental notes 

of the bell sound, with a high amplitude. As the bell is left to vibrate, the sound intensity decreases 

rapidly, and the sound becomes each time gentler. Oscillating sounds only can be heard after the 

fundamentals have declined. These further vibrations are known as the overtones of the 
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fundamental frequencies, and typically occur at integer values of the fundamental vibration. That 

is, if the fundamental vibration occurs at a frequency value f, theoretically, the first overtone occurs 

at 2f, the second overtone at 3f, and so on.  

 

Figure 4. Drawing of changes in the amplitude between fundamental vibration and further overtones in 

the ringing of a bell. Illustration for analogy with overtones observed in the NIR region. Adapted from 

reference [15]. 

When a molecular bond absorbs energy at a fundamental frequency f in the MIR region, then at 

approximately 2f, the first overtone band of the fundamental frequency will occur in the NIR 

region. As with the case of the bell ringing, the overtone frequency has an intensity of 

approximately an order of magnitude less than the fundamental. The following overtones will be 

each time of smaller amplitude by an order of magnitude from the last overtone. Generally, these 

overtone vibrations have low molar absorptivity coefficient regarding the fundamental frequency 

[15]. This is the reason why no sample preparation is required using NIRS, because the intensity 

of the signal is so small that samples do not need to be diluted as is required in the MIR region. 

The molar absorptivity coefficient is a ratio that establishes the absorbance at a particular molar 

concentration of an analyte, using a known pathlength at each wavelength. The correlation between 

these three terms is obtained from the equation 10, which is based on the law of Beer:  

ɛ =
𝐴

𝑐𝑙
       Equation 11 

where ɛ is the molar absorptivity coefficient, A is the absorbance, c is the concentration of the 

analyte, and l is the pathlength. According to the SI, the values for the pathlength should be 

Low amplitude, high energy, low wavelength 

High amplitude, low energy, high wavelength 
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presented in meters, but it is a current general practice to describe it in centimetres. The 

measurement conditions of the analyte, such as solvent, pH and temperature affects the molar 

absorption coefficient [20]. Therefore, when possible, it is a good practice to use single standard 

for determining the molar absorptivity coefficient, instead of assuming the adherence to the law of 

Beer-Lambert, or using literature values [21]. 

The stretching frequencies have a significant contribution to the overtone frequencies in NIR. Even 

though, strong bending vibrations also contribute at this region. Combinations occur when the 

overtones generated in the MIR combine to form bands of higher intensity than would occur from 

the overtone alone, i.e. combinations may be considered as the average frequency of two adjacent 

molecular vibrations in a molecule. In this case, the proximity between atoms is more important 

than the nearness of the energy levels [22]. 

Finally, it is important to highlight in this section that, due to the large number of vibrational energy 

levels in polyatomic molecules (3N-6 energy levels), often two of these levels have practically the 

same energies. This proximity allows the Fermi resonance may occur. When the Fermi resonance 

takes place, the energy levels are subject to a repulsion, moving up one of the levels of energy and 

the other one down, by the same magnitude. The magnitude of the repulsion (i.e. the magnitude of 

the Fermi resonance) is directly proportional to the anharmonicity related to the interacting levels.  

It is difficult to observe the Fermi resonance in the NIR region, because it used to be overlapped 

under the broad overtones and combination bands, however, it is worth mentioning that it is a kind 

of effect that contributes to the bands in the NIR spectrum [22].  

Based on the overtones and combination bands, the region of the NIR spectrum can be divided as 

following: 

1. The first overtone and combination band region: Located between 2000 and 2500 nm. In 

this region, combinations occur between the first overtones of the fundamental bands (at a 

frequency 2f) and typically have the higher molar absorptivity. 

2. The second overtone and combination bands region: Located between 1100 and 2000 nm. 

Involves combination bands strong enough in intensity to generate bands in this region. 
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3. The third and fourth overtones region: Located between 700 and 1100 nm. Usually the 

molar absorptivity of these bands is too small to reveal any combination bands of practical 

use [17]. 

 

Figure 5. Illustration of regions in the NIR spectrum. Spectra of solid samples acquired in reflection 

mode with two instruments of different kind of detectors. 

 

The spectral range available of a particular NIR spectrum depends on the kind of detector used for 

its acquisition. Figure 5, illustrates the above mentioned regions of the NIR spectrum. As can be 

seen, in this graph, two spectra have been required to expose the three regions, due to not all the 

instruments have detectors able to acquire data from the whole NIR region. Therefore, in this case, 

two different instruments have been used.  

Sections 1.3 and 1.4, presents the diverse NIR instruments and their capabilities, among other 

insights on the acquisition of the NIR spectra. 

The first overtone 

and combination 

band region 

The second overtone and combination 

bands region 

The third and fourth 

overtones region 
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1.3 Acquisition modes 

 In the NIR spectral range, the interaction of the radiation with the sample takes places in three 

different ways: reflectance, transmittance and transflectance. These are the three acquisition modes 

available for the technique. In general, the physical state of the sample orientates the selection of 

the acquisition mode, however, depending on the whole analysis conditions, feasibility studies can 

be required for the definition of the proper acquisition mode. The main difference between the 

three acquisition modes is the position of the detector regarding the sample. Figure 4, shows the 

general disposition of the parts of a NIR instrument for the different acquisition modes. 

 

 

Figure 6. General description of instrumental configurations for the different acquisition modes in NIRS: reflectance, 

transmittance and transflectance. 
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In all the cases, the analytical signal obtained is a logarithmic function of the apparent absorbance, 

described in equation 12: 

𝐴𝑖 = 𝑙𝑜𝑔
1

𝑋𝑖
     Equation 12 

where Ai is the absorbance calculated for the ith wavelength of the spectrum, and Xi is the 

reflectance (R) or transmittance (T) of a sample at the ith wavelength. The absorbance is expressed 

on a unitless scale and is represented by the symbol AU (absorbance units). Since the scale is 

logarithmic, each AU represents an order of magnitude less light intensity than the incident light 

source, as is illustrated in Figure 7. This means that each absorbance value represents 10 times less 

light incident on the detector regarding the incident radiation, and an absorbance value of 5 

represents 100,000 times less light detected regarding the incident radiation.  

 

Figure 7. Diagram for illustrating the effect of the logarithmic function of the absorbance. Adapted from 

reference [15].  

 

A general flow for acquiring a spectrum using an NIR instrument typically comprises: 

1. Collection of a dark current (DC) spectrum. This collection is usually completed 

where the light source of the instrument is turned off; therefore, the electronic noise 

of the detector is measured for all the wavelengths. 

2. Collection of a reference spectrum. For transmission mode, this spectrum is the signal 

from the light source without interaction with any sample. For reflectance mode, the 

Sample 
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reference spectrum, the reference spectra is the result of the reflection of the radiation 

from a standard highly reflective material measured for all wavelengths. 

3. Collection of the sample (Sam) spectrum. This action is completed by placing the 

sample in front of the light source and collection the radiation either transmitted 

through or reflected off the sample. 

The resulting raw transmittance or reflectance scan is obtained using the following ratio [15]: 

𝑋𝑖 =  
𝑆𝑎𝑚𝑖−𝐷𝐶𝑖

𝑅𝑒𝑓𝑖−𝐷𝐶𝑖
       Equation 13 

In the case of diffuse reflectance, the apparent absorbance is expressed as Kubelka-Munk units, as 

will be explained bellow. 

1.3.1 Diffuse reflectance measurements 

When the radiation interacts with a solid sample, it can be reflected by specular or diffuse 

reflection. The specular reflectance has been described by Fresnel and is directly proportional to 

the value of the absorption coefficient at a particular incident wavelength. The specular reflectance 

takes place in only one direction (the incidence plane), and it predominates when the penetration 

of the radiation is too small regarding the wavelength, or when the dimensions of the reflectance 

surface are larger than the wavelength incident [23]. On the other hand, the diffuse reflectance is 

a consequence both of absorbance and scattering processes, it takes place in all the directions and 

predominates when the materials of the reflecting surface are weakly absorbent at the incident 

wavelength. The diffuse reflectance is also produced when the penetration of the radiation is larger 

regarding the wavelength [22].  

In general, reflectance measurements involve components from both the specular and the diffuse 

reflection. In NIRS, the components of the specular reflection provide very few information about 

the composition of the sample, then its contribution can be minimized with the position of the 

detector regarding the sample. Conversely, the diffuse reflectance is the responsible of most of the 

useful information acquired using NIRS, therefore this phenomenon is the base of measurements 

using reflectance mode. The diffuse reflectance has been explained by the theory initially exposed 

by Kubelka and Munk in 1931. This theory is based on several assumptions, the most relevant are 

that the incident radiation in a scattering medium undergoes simultaneously absorption and 
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scattering processes. Based on that, the reflected radiation can be described in terms of the 

absorption constant k and the scattering constant s. In the case of matte samples with an infinite 

thickness, the Kubelka-Munk function can be expressed as [22]:  

𝑓(𝑅∞) =  
(1−𝑅∞)2

2𝑅∞
=  

𝑘

𝑠
     Equation 14 

where R∞ is the absolute reflectance of the sample, which is the fraction of incident radiation 

reflected. In practice, the relative reflectance R is used instead of R∞. The R can be defined as the 

ratio between the intensities of radiation reflected by the sample and a standard material. The 

standard used to be a highly stable material, with a large and relatively stable constant of absolute 

reflectance in the NIR region. Some common examples are the Teflon, the Barium sulphate, 

Magnesium oxide, and alumina ceramic plates of high purity. 

Due to the term R can be related to the concentration of the analyte, the equation 14 can generate 

a graph with a slope that include the 1 as a possible solution. Even though, in cases where the 

matrix absorbs or when the absorption bands of the analytes is too intense, the diffuse reflection 

of the samples does not comply the Kubelka-Munk equation and the graph of f(R) vs concentration 

is no longer lineal. Because of that, it is accepted that the equation of Kubelka-Munk, as the law 

of Beer-Lambert, is a limit equation, which can only be applied to absorbing bands of low intensity. 

This is the case of the absorbing bands in NIRS, however, due to it is not possible to isolate the 

absorption of the analyte from the absorption of the matrix –which often absorbs with high 

intensity at the same wavelength of the analyte- deviations of the equation 14 occur [22]. To 

overcome this condition, diverse studies have been advanced, due to the growth in diffuse 

reflectance applications have promoted the progress in the understating of the physics behind the 

phenomenon [24].  

From a practical point of view, an alternative commonly used is the application of the following 

relation between the concentration and the relative reflectance equivalent to the law of Beer-

Lambert: 

𝑙𝑜𝑔
𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑅𝑠𝑎𝑚𝑝𝑙𝑒
= 𝑙𝑜𝑔

1

𝑅𝑠𝑎𝑚𝑝𝑙𝑒
+ 𝑙𝑜𝑔𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 ≈  

𝑎𝑐

𝑠
   Equation 15 

where a is the molar absorptivity of the sample and c is the concentration. For monochromatic 

radiation, the log Rstandard can be considered constant, and the equation can be written as:  
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A = log 
1

R
=  a′c       Equation 16 

where R is the relative reflectance, and a' is a constant of proportionality. Even when this 

expression does not involve the theoretical bases of Kubelka-Munk advances, it provides useful 

results in conditions often employed in diffuse reflectance. 

1.3.2 Transmitance and transflectance measurements 

Similar to the case of diffuse reflectance measurements, in the NIR region this equation can be 

limited by the effects of hydrogen bonds, molecular complexity among other processes. This is the 

reason why the analysis of solid samples using transmission must consider that the radiation can 

undergo diffuse reflectance and in this case log 1/T is no longer representative of the attenuation 

of the radiation by absorption. From a practical point of view, the analysis of solid samples is 

mainly completed using diffuse reflectance and transmission and transflectance acquisition modes 

are employed for liquid and semisolid samples. The transflectance mode is a variation of the of 

the transmission mode. In this case the transmittance is recorded after passing through the sample 

twice (the radiation travels a twice as far pathlength). The second trail is completed thanks to a 

reflector located behind the sample, which generates a second travel of the radiation through the 

sample before reaching the detector. 

1.4 Instrumentation 

The basic internal components of NIR spectrometers are the radiation source, a system of 

wavelength selection, a sample chamber and the detector. Differences in the materials and 

characteristics of each of these parts define the final capabilities of each instrument. The following 

paragraphs details features of these components. 

1.4.1 Radiation source 

In general, there are two kinds of radiation sources employed in NIRS: sources of whole range and 

sources of reduced range. For sources of whole range, the model most commonly used is the 

halogen lamp with Tungsten filament and quartz window. Halogen lamps provide high intensity 

radiation and covers the electromagnetic spectrum of NIRS in a wide range, from 320 to 2500 nm. 

For sources of reduced range, the Light Emission Diodes (LED) lamps are the most commonly 

employed [25], [26]. A LED lamp produces light using one or more LEDs. The LEDs are 
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semiconductors that recombine their electrons with electron holes while the current flows through 

it. The radiation is emitted thanks to the energy released in the form of photons 

(photoluminescence) [27]. The semiconductors more used in NIRS are the GaAs, which emit in 

the range ~ 645-830 nm, and the InGaAs, which provide radiation until ~ 1700 nm. Despite the 

region under 1700 nm exposes only the absorption of the third and fourth overtones, and is limited 

to C-H, O-H and N-H groups, portable and hand-held instruments take advantages of NIR in this 

region for diverse applications. The diverse designs and arrangements of sources of radiation of 

portable NIRS instruments currently available have been carefully reviewed by Crocombe in [14]. 

1.4.2 System of wavelength selection 

Except instruments based on LEDs devices as radiation source, NIR spectrometers require systems 

for selecting a bandwidth smaller than the whole region provided by the lamp. Based on the 

fundamentals of their optics, such systems can be classified as dispersive and nondispersive.  The 

monochromators are the dispersive systems more widely used in NIRS. In general, 

monochromators involve a light inlet, two collimators, a dispersive element and a light outlet. The 

light inlet allows the radiation reaches the first collimator as a tight beam of light. The first 

collimator makes the beams of radiation parallel which each other before the dispersive element. 

Then, the beams are focussed to the light outlet thanks to the second collimator [21]. The 

monochromators are characterized by the dispersive element, which can be a prism or a diffraction 

grating. The diffraction grating is the dispersive element more employed in NIR spectrometers 

[28], probably because of its clear advantage of varying from 3 to perhaps 100 the dispersion of 

the prism materials [29]. The grating diffracts each wavelength of the incident polychromatic 

radiation to diverse angles by means of the streaks of this surface, generating both constructive 

and destructive interferences. The discrete beams that the monochromator produces are 

transformed into a wider range of wavelengths using an engine, which ensures that each time one 

wavelength is focused on the light outlet, sweeping in this way the whole NIR spectral range. 

The set of nondispersive systems of wavelength selection available for NIRS is more diverse. 

There are optic filters, Acusto-Optic Tunable Filters (AOTF), and interferometers. Optic filters are 

semi-transparent elements located between the polychromatic source of radiation and the sample, 

which allow the pass of only certain wavelengths. The simplest optic filters are the absorption 

filters, wherein the selection of the wavelength depends on the constitutive material of the filter 
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[22]. Another kind of filters are the interference filters, also named Fabry-Perot, which are based 

on the optic interference. In these filters, the wavelengths transmitted depend on the refraction 

index of the material and the thickness of the filter. Fabry-Perot filters transmit more radiation than 

absorption filters, with narrower bandwidths [30]. 

The AOTF are based on the interaction of the radiation with sound waves and provide the 

capability of tunning the spectral bandpass electronically. An AOTF has no moving parts and is 

basically a crystal (commonly of TeO2) sensible to acoustic waves, at radiofrequencies (RF), which 

are used to separate a single wavelength from a broadband or polychromatic light. The selection 

of the wavelength depends on the frequency of the RF applied to the crystal and is independent of 

the geometry of the device. Two piezoelectric transductors are located at each side of the crystal 

for transforming the RF into an acoustic signal. When the polychromatic radiation impacts the 

crystal, two beams of monochromatic light polirazed (light waves with vibrations in a single plane) 

are generated, but only one is used with analytical purposes. The wavelength of both beams is the 

same and depends on the speed and frequency of the sound wave, the dimensions and the 

birefringence (double refraction capability) of the crystal. AOTF are fast, provide high wavelength 

reproducibility and robustness, which become these filters suitable for industrial applications [31], 

[32]. 

The interferometers are the systems of wavelength selection of the Fourier Transformed NIR 

spectrometers (FT-NIR). The FT technology provides the possibility of describing any periodical 

signal in the time domain as a sum of sine or cosine signals with variable amplitudes and 

frequencies. Therefore, the sinusoidal electromagnetic waves of the NIR spectrum can be 

expressed using the FT. The interferometers generate a periodic signal at a scale of frequency 

under the audio-frequency (3.5 - 12 kHz), which can be easily related to the electromagnetic wave 

by means of the computational calculation of the FT algorithm, which generates the spectra in the 

frequency domain. The interferometer most often employed is the Michelson interferometer, 

which involves a beam splitter –commonly made of ZnSe or quartz- and two mirrors, one fixed 

and another moving. The two mirrors are initially equidistant to the beam splitter, then, each one 

produces a beam with roughly half of the intensity of the radiation emitted by the radiation source. 

These two beams will recombine at the beam splitter position after been reflected by the mirrors 

by means of a constructive interference, due to both will be in phase [24]. When the moving mirror 
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is shifted toward (-) or away (+) from this position – this shift is called retard, δ - the polychromatic 

radiation undergoes destructive or partially destructive interference as functions of their 

wavelengths and the related distance. Therefore, the detector will register a signal with lower 

intensity. If the moving mirror is shifted by ± δ, regarding the equidistant point, at a constant 

velocity, this retard will produce a periodic signal modulated by the wavelengths of the beam as 

function of time, which is known as interferogram. For recovering the intensities associated to 

each frequency (or wavelength), the FT is applied to such resulting interferogram. 

This process raises three relevant specific strengths of the interferometers: 

 The Fellgett gain, which is associated to the intrisic gain in the signal to noise ratio due to 

the same total measurement time of the FT instrument, which will be sampling the same 

wavelenght n time more than an instrument based on a dispersive design. Because of the 

Fellgett gain, each measurement of the interferogram is in fact a simultaneous measurement 

of all wavelengths in the spectral region, which represents a gain regarding a dispersive 

system of wavelength selection. 

 The Jacquinot gain, which is due to the absence of slits in the interferometer, and results in 

a high power reaching the detector.  

  The Connes advantage, which is based on the use of a laser source with highly accurate 

and precise wavelength, for ensuring the periodic sampling of the interferometer. The 

Connes advantages is produced because of the monochromatic radiation of the laser 

(usually a HeNe laser) that allows the generation of a sinusoidal signal with a fixed 

frequency, at which the data acquisition of the main interferogram, coming from the NIR 

radiation, been retarded for changing and controlling the rate of the moving mirror [24].  

NIR spectrophotometers based on interferometers and FT technology combine most of the best 

characteristics in terms of wavelength precision and accuracy, high signal-to-noise ratio and scan 

speed. Their capability of recording intensities of individual wavelengths in the NIR region 

enhanced their performance even regarding instruments with AOTF [33]. 

Finally, it is worth mentioning the Hadamard masks, which are spatial modulators employed for 

encoding the dispersed radiation and that can be used to improve the signal to noise ratio of 

dispersive instruments, taking advantage of the Fellgett gain. These spatial modulators can be of 
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diverse forms. The most commonly employed are the linear encoders, which consist of a sheet of 

metal containing the slit patter according with a Hadamard matrix, driven by a step motor that 

empowers the encoding of the radiation. The encoded radiation can be later de-dispersed and 

delivered to a single detector by means of a Hadamard transform. The Hadamard transform is an 

algorithm mathematically simpler and computationally less demanding than the Fourier algorithm 

[34]. 

1.4.3 Sample chamber 

Because of the wide variety of states of the matter and presentations in which the samples can be 

analysed using the NIRS, including liquids of diverse viscosities, solids of different sizes and 

shapes, there are diverse accessories that can be used as sample chambers. These can be fixed into 

the spectrometers or coupled to them. The main goal of all of these devices is always the proper 

spectrum acquisition with the minimum handling of the sample. 

Some relevant examples of these parts of the NIR spectrometers, that are employed for the analysis 

of solid samples are the cubets, reflection probes for in-line configurations, custom-built tablet 

holders for the direct analysis of pharmaceutical tablets, among others. For in-line configurations, 

the sample chamber can be suppressed by the disposition of the other parts of the instrument 

(radiation source and detectors). Figure 8, illustrates some examples of devices developed for off-

line (6A) and in-line (6B) analysis of solid samples. 

The cubets are generally made of quartz, material that is transparent to the IR radiation. Cubets are 

useful for analysing both solid and liquid samples. Additionally, for liquid samples, diverse 

accesories have been designed for transflectance measurements. These accessories can locate the 

 

Figure 8. Illustration of devices for the presentation of solid samples to the NIR instrument: A custom-built tablet 

holder for pharmaceutical tablets analysed off-line; B reflection probe for in-line monitoring of solid products. 

Adapted from reference [15] 
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sample in quarz cubets with a reflectance surface in one of the faces or can also be based on fiber 

probes as element of transmission of the incident radiation and reflected radiation. The reflection 

is produced in these cases by a reflectant surface located at known pathlength of the radiation out. 

Fiber probes properly set and fixed, allow fast, direct and reproducible NIR acquisitions of liquid 

and semiliquid samples. 

1.4.4 Detector 

The detectors employed in NIRS are photoelectric. In these detectors, the incident photons affect 

directly to the electronic state of the photosensible material employed for their construction, 

generating an electrical signal, which is the detector answer. The more frequently used is the 

detector of Lead sulfide (PbS), material that is a semiconductor with a proper sensibility in the 

region 1100 – 2500 nm at environmental temperature. For measurements under 1100 nm, detectors 

made of silicon provide a better performance. 

Another kind of detectors are the Focal Point Array (FPA), which are equivalent in the NIR region 

of the Charged-Coupled Devices (CCD), used in the UV spectral region. These multichanel 

detectors allow faster recordings and enhanced signal to noise ratio regarding monocanal detectors. 

However, the use of these kind of detectors is restricted by the fact that their cost is so high as the 

cost of the spectrometer itself [31], [35]. 

A relevant issue regarding the detectors is the disposition in which they are used. For transmitance 

measurements, it is enough locating the detector aligned with the sample and the radiation source. 

On the other hand, for reflectance measurements, particularly of solid samples, the disposition of 

the detector can be modified as much as necessary for optimizing the caption of most of the 

radiation reflected by the sample. Figure 9, illustrates an example of the disposition of detectors 

for diffuse reflection measurements. 
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Figure 9. Disposition of detectors for Diffuse reflectance measurements. Adapted from reference [15]. 

For hand held instruments diverse spectral ranges become reachable, according to the kind of 

detector employed. Single point, arrays detectors of one and two dimensions can provide NIR 

spectra based on diverse vibrations depending on the material that constitute them. The InGaAs 

detectors – significantly more expensive than silicon-based detectors-, employed for Visible or 

Short wave NIR (400 – 1050 nm), provide only vibrational overtones (1000 – 1700 nm). Detectors 

made of extended InGaAs detectors, provide vibrational overtones and combinations bands (1200-

2500 nm), however require the adaptation of a cooling system [14]. 

1.5 Data analysis 

The interpretation of raw NIRS data is not straightforward from its visual inspection. This is the 

reason why using NIRS data implies the use of Chemometrics. Chemometrics can be understood 

as a discipline based on mathematic and statistic tools for collecting and interpreting information 

from chemical systems. Research in Chemometrics denotes diverse methods applicable to 

chemistry. There are tools for the design of experiments, for obtaining useful data from complex 

systems, optimizing experimental parameters, calibrating, signal processing, modelling and 

predicting structure-property relationships, for pattern recognition, among others [10]. 

The concept of Chemometrics was born from applications of mathematical statistics to problems 

of diverse scientific fields, as well as other areas as manufacturing and politics. The Chemometrics 

was prompted by advances in commercial processors in 1970, and it has positioned in the last years 
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as a tool each time more important in Chemistry. Analytical Chemistry is from the very beginning 

the branch where its impact has been more evident.  

According to Professor Luc Massart (Universiteit Brussel, Belgium), the starting date of 

Chemometrics depends on how it is defined. From his point of view, the article published by Bruce 

Kowalski in 1972, using Principal Component Analysis (PCA) for handling archeological data is 

the oldest one related to the modern chemometrical movement, even when it is possible to find 

previous findings that could be related to the area. For example, articles in univariate regression, 

confidence limits and all the types of regression methods. 

According to Professor Svante Wold, (Umeå University, Sweden), with the “Student t-test” 

published by Gosset en 1908, took place the first article of Chemometrics. However, as it is known 

today, with the capability of handling huge amounts of data from many diverse chemical problems, 

started at the end of 1960, with publications of Malinowski, Kowalski, Eisenhour and Jurs, all of 

them in Analytical Chemistry.  

For Professor Bruce Kowalski (University of Washington, USA), it is hard to define an event in a 

particular time for remarking such starting point. Nevertheless, he considers the creation of the 

Chemometrics Society as a major issue in this sense. Based on that, he opines that Chemometrics 

was constituted actually as a field of study when the Chemometrics Society was formed, on June 

10th, 1974 [36].  

Professors Massart, Wold and Kowalski were fundamental actors of the starting of Chemometrics 

[37]–[44]. This is the reason why their views have been considered relevant insights for the topic. 

Wold, who proposed the term Chemometrics in 1972, suggests that from a philosophical point of 

view it is always important to emphasize that a huge part of chemometrical methodology is based 

on a deductive vision of science, in the “indirect method of research” [44]. It is like this because 

statistics, as all the formal sciences, has as its own method the deductive one, which is evidenced 

not only in this application to Chemometrics, but in other areas of chemoinformatics as well [40]. 

Professor Wold, with formation in Statistics, was a frequent reader of Biometrika and the Journal 

of Biometrics, long time before proposing the name of Chemometrics. Because of that, it is easy 

to understand that the name comes from biometrics or psychometrics. In this sense, it is useful to 

highlight that Partial Least Squares regression (PLS), a tool often used nowadays in Chemometrics, 
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was described by P. Horst in 1961 in Psychometrica, where the same author indicated that this 

kind of problems and solutions had been already presented by Hotelling in previous reports [36]. 

Conceptually, biology has a bigger amount of data than chemistry, but smaller than psychology. 

Therefore, psychology had probably the hardest work at the very beggining and that is why 

Biometrics came later. However, why Chemometrics did not come after Psychometrics instead of 

Biometrics still looks as an interesting question.  

Nevertheless, what is clear is that Psychometrics and Biometrics are more qualitative theories than 

Chemometrics. Additionally, it is possible to find a relation with the need of quantitative results in 

the industry, which –along with academy- has provide valuable contributions to the development 

of Chemometrics. Indeed, the industry was the natural place for the application of Chemometrics  

and is still one of its more important drivers [38]. 

One evidence of the industrial support in the development of Chemometrics is that the more 

important windows for sharing knowledge in this field –besides the Journal of Chemometrics and 

Chemometrics and Intelligent Laboratories Systems, bulletins founded and sponsored by the 

Chemometrics Society- are journals focused on industrial applications of Analytical Chemistry. 

Some examples are: Analytica Chimica Acta, Analytical Chemistry, Applied Spectroscopy, 

Technometrics, Journal of Chromatography and the Journal of Chromatography. Recently, also 

specialized journals of pharmaceutics, food, petrochemical, environmental, forensic, among others 

areas are important communication means in this field.  

Currently, the International Chemometrics Society is constituted by representatives from 

Chemometrics Societies from Sweden, Spain, Russia, Norway, Italy, Germany, France, Findland, 

The Netherlands, Denmark, Czech Republic, United Kingdom, Belgium, South Africa, North 

America and Australia. This organization has provided the following definition:  

“Chemometrics is the science of relating measurements made on a chemical system or process 

to the state of the system via application of mathematical or statistical methods.” 

Figure 10, shows the relevant events regarding the historical development of Chemometrics.  



 

 

39 

  

Figure 10. Summary of relevant events in the gestation of Chemometrics in a non-lineal scale. Adapted 

from scheme published by Geladi y Esbensen [37].  

*Francis Galton, Walter Weldon and Karl Pearson were Britain Scientifics that found Biometrics as a 

common interest. All they three accomplished relevant contributions to scientific knowledge and 

institutions of the XX century. One of them was the first Department of Statistics of the Word, founded by 

Pearson at the University College of London in 1911 [11]. 

**Due to native language of Professor Wold was Swedish, the original expression proposed by him was 

Kemometri, which was later translated to English as Chemometrics. 

Multivariate data analysis is the core of Chemometrics, even when the discipline covers a wider 

range of tools. Most of the initial papers in the literature in the 1970s used simple multivariate 

methods (based on univariate methods) to explore complex chemical data sets. Traditionally, one 

or two variables (e.g. the intensity at characteristic wavelengths) were used to characterize a 

sample. However, this procedure had the drawback of requiring the selection of discreet variables, 

which often results in the loss of information and the use of information mixed up in the signal. 

Biometrika (by Galton, Weldon and Pearson)* 1901 

“Student” 1908 

Psycometrika 1936 

Articles on univariate regression, confidence limits and diverse kinds 

of regressions (by authors as Youden, Box and Wilson) 
1948-1951 

Technometrics 1959 

“Kemometri”** 1972 

Chemometrics Society 1974 

First Proceedings Volume 1976 

Chemometrics and Intelligent Laboratory Systems 1986 

Journal of Chemometrics 1987 
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The increment of the number of variables that spectroscopic techniques, such as NIRS, provide, 

lead to difficulties when using univariate methods. This is the reason why the multivariate data 

analysis constitutes an indispensable tool for the NIR spectra. The following sections describe the 

general concepts currently accepted for the particular tools of multivariate analysis employed for 

the development of the research presented in this thesis. 

1.5.1 Stages in the development of multivariate analytical methods based on NIRS data 

In general, both qualitative and quantitative analytical methods based on NIRS data require the 

establishment of models for generating answers and results. The development of such models 

involves several stages that must be completed before applying the models to data of new and 

unknown samples. These stages are: 

a) Selection of the calibration set 

It is required the availability of samples representatives of all the sources of variability that will be 

entailed in the process or system to be studied. Sources of variability are all those parameters that 

can change their magnitudes during the process, generating diverse values or spectral 

characteristics over the range considered. The sources of variability have to be evaluated in each 

particular case, due to they can be very diverse, depending on each analytical case.  

b) Data acquisition 

The proper sampling conditions, presentation of the samples to the spectrometer, acquisition mode 

and instrument configuration need to be evaluated according to each particular case. Chemical and 

physical characteristics of the analyte, the matrix and the intended purpose of the method must be 

stated at this point. Once these settings are established, the data recording can be completed. 

c) Visualization of the data  

Before the application of any mathematical or statistical tool, it is fundamental to ensure the quality 

of the NIRS data to be employed. Visualization with and without data pre-treatments is useful to 

identify erroneous recordings, NIR spectra of samples non representative of the range of variability 

to be studied, among other incidences that must be eliminated from the set that is intended to be 

used during the calibration of the model. These kind of spectra, which are no representative of the 

samples to be studied, are named outliers. Ensuring clear and reliable data can save valuable time 
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and efforts during modelling. For very complex data sets, this step can also require the use of 

exploratory data analysis tools. 

d) Establishment of reference parameters 

Multivariate analytical methods based on NIRS data are always founded on reference data. This is 

the reason why NIRS methods are secondary methods from the analytical point of view, due to 

they require data from concentration methods –also known as primary methods- to calculate their 

results. Therefore, the accuracy and precision of reference methods is quite important for the 

development of new methods based on NIRS. The reference parameters are the starting point of 

the analytical performance of the new method, even when it can be awared that precision can be 

improved using NIRS but accuracy not. 

e) Data pre-treatment 

The use of spectral pre-treatments is most of the times a necessary stage during the development 

of new methods. The objectives of the data pre-treatment are increasing the signal to noise ratio 

and removing information not relevant for modelling and prediction with the NIRS data. The pre-

treatments are mathematical transformations that allow taking advantage as much as possible of 

chemical and physical information of interest from the studied system and eliminating systematic 

errors of the measurements, such as nonlinear instrument responses, shift problems, scattering 

effects, and interfering chemical and physical variations [45]. Each mathematical pre-treatment 

provides a particular outcome on the NIRS data, and their purposes and strategies are diverse. 

Furthermore, the order in which they are applied have an effect on the final result [46]. Even when 

there are general descriptions of the intended purpose of each pre-treatment, the selection of the 

proper pre-treatment(s) and the appropriate combination of them is basically an empiric process 

that needs to be accomplished considering each particular NIRS data set.  

The application of mathematical pre-treatments, as well as all the chemometric tools, is enabled 

by the description of NIRS data in matrices. In these matrices the samples are defined in the rows 

and the wavelengths of the spectra in the columns. The pre-treatments used in this thesis can be 

classified in terms of the sense in which they can be calculated, as: 
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Pre-treatments calculated along the rows of samples: 

Standard Normal Variate (SNV): Useful for correcting the scattering effect due to the differences 

of particle size of solid samples [47]. This pre-treatment is based on the correction of the spectrum 

regarding its standard deviation, principle that it has in common with the Normalization and the 

Multivariate Scattering Correction (MSC). The general equation for the SNV pre-treatment can be 

described as: 

𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙−𝑎0

𝑎1
     Equation 17 

where xoriginal corresponds to each individual absorbance value of the spectrum. For SNV, 𝑎0 is 

the average value of the spectrum to be corrected, however for Normalization this term is set equal 

to zero. For SNV, 𝑎1 is the standard deviation of the spectrum of each sample [48]. Calculations 

of MSC involves additionally the average standard deviation and the grand mean of the spectrum, 

which generates results generally similar to SNV, however MSC results can variate depending on 

the characteristics of the data set [49]. 

Derivatives: Due to the derivative of a constant number is equal to zero, the use of derivative on 

NIRS data allow to emphasize the bands where the main differences between the spectra can be 

found. Derivatives remove both additive and multiplicative effects: the first derivative eliminates 

the baseline shifts and the second one eliminates the terms that variate lineally with the wavelength. 

In the most basic method for derivation, the first derivative is calculated as the slope between two 

subsequent point of the spectrum. At that point, the second derivative is estimated by the slope 

between two successive points of the first-order derivative spectrum. However, when this method 

is directly applied to NIRS data, it produces noise inflation. This is the reason why different 

approaches have been developed to avoid the noise inflation in finite differences [48]. The 

approaches most commonly employed were developed by Norris-Williams [50] and by Savitzky-

Golay (more complex algorithm) [51]. Both procedures use smoothing to ensure not reducing too 

much the signal-to-noise ratio in the corrected spectra. 

Ortogonal Signal Correction (OSC): The pre-treatments previously described may remove 

information from the NIRS data that could be correlated to the property to be determined. The 

orthogonal signal correction is a variant of a partial least squares regression that can be used to 

transform a data set as close to orthogonal as possible to a given the expected response. This 
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procedure ensures that the signal correction removes as little information as possible regarding the 

reference values [52]. However, it has to be applied with precaution, because it can generate 

overoptimistic results. 

Pre-treatments calculated along the columns of wavelengths: 

Averaging: Based on the calculation of the average value of the intensities of diverse spectra, with 

the objective of reducing the random noise and/or resolution. 

Mean centring: This is a procedure completed for centring the data regarding each particular set. 

This pre-treatment comprises the calculation of the mean value at each wavelength of the 

calibration set, and the further subtraction of such mean from each point of the corresponding 

column [49]. After this pre-treatment, the mean value is considered the centre of the model and all 

the variables are referred to this centre, keeping the original units. 

Scaling: After the mean centring, the resulting values per column can be divided by the standard 

deviation of each wavelength. This calculation allows that the variance of each variable has the 

value of the unit. 

f) Modelling (construction of the calibration model) 

This stage involves the selection of the parameters and acceptance criteria that describes the 

relation between the analytical signal and the reference value expected. The selected features state 

the called calibration model, which can be empiric or can also be clearly explained for a theoretical 

fundamental. The optimization of the model is achieved by testing diverse chemometrical 

algorithms, data pre-treatments, wavelength ranges, among other variables. 

g) Validation of the model 

After selecting the proper parameters and acceptance criteria, the calibration model must be 

challenged by new samples, with known reference values, but not included in the calibration set 

of data. The prediction of the properties using these new samples are useful to determine the 

analytical features of the NIRS method. In general, the validation of qualitative models is described 

in terms of selectivity (specificity) and robustness. For quantitative models, the validation 

contemplates the linearity, the accuracy (at target level and over the range studied), the 

repeatability, intermediate precision and the robustness. 
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The predictive capability of quantitative models is often evaluated using the Root Mean Square 

Error of Prediction (RMSEP), which evaluates the response of the model based on NIRS data 

regarding the reference method. It can be calculated by: 

RMSEP = √∑ (𝑌𝑖
𝑁𝐼𝑅𝑆−𝑌

𝑖
𝑅𝑒𝑓

)2𝑛
𝑖=1

𝑛
     Equation 18 

where n is the total number of samples, and YNIRS and YRef are the magnitudes of the properties 

predicted by the model and the reference method respectively. 

1.5.2 Qualitative analysis 

The qualitative analysis of NIRS data is based on the comparison of new spectra to spectra 

previously established as reference data. The chemometrical methods employed for such 

comparison are named Pattern Recognition Methods (PRM). The PRM are based on mathematic 

calculations of correlations or distances. Generally, the PRM can be classified as no-supervised 

and supervised. In this thesis, the no supervised method used has been the PCA. The supervised 

methods employed have been the correlation, the Euclidean and Mahalanobis distances and the 

discriminant analysis.  

a) Non-supervised methods 

The exploratory data analysis (EDA) of NIRS data, as well as diverse qualitative and quantitative 

chemometrical methods, take advantage of the Principal Components Analysis (PCA). The PCA 

is probably the most widely known multivariate chemometric technique, because of its usefulness 

for reducing the number of variable of complex data sets and visualizing in a space of 2 or 3 

dimensions, the similarities and differences between unknown samples, and visualization of 

loadings.  

The PCA relates a data matrix to a number of factors, which are calculated taking into account the 

variance of the data set. The interpretation of results of PCA for classification purposes can be 

done by means of the representation of the scores of the samples of a principal component (PC) 

versus the scores of another PC. This graphical representation is known as the scores plot. If there 

is a relationship between the samples, in the scores plot groups of points that can be correlated 

with one or more characteristics of the samples will be displayed [53]. Each PC is described not 

only in terms of the scores of the samples, but also involves information in the loadings, which are 
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related to the NIRS spectra. The loadings are useful to understand the ranges of the spectra that 

have influence on the studied data set. 

Before applying a PCA to NIRS spectra, it is required to complete a mean centring pre-treatment 

of the data, in order to expose systematic variation in variables with small impact in the structure 

of the data and to retain those variables which are more relevant. This transformation also makes 

the distribution of each variable more normal [54]. Afterwards, the samples undergo a 

mathematical transformation of the original data matrix, X, based on the relation: 

𝑿 = 𝑻𝑷𝒕 + 𝑬      Equation 19 

where T represents the scores and have the same number of rows of the original data matrix (the 

total number of samples). Pt are the loadings, and have the same number of wavelengths of the 

original data matrix, and E is the error or noise involved in the matrix. 

b) Supervised methods 

These methods require the initial definition of classes or set of data to which new samples should 

belong, i.e. regarding to which new data have to be compared. For the use of these kinds of methods 

it is necessary the availability of a data set representative of the class that is required to identify. 

This data is used as reference for the comparison of new samples. Some supervised methods are: 

Correlation: The identification is completed by the calculation of the correlation coefficient 

between the spectrum of the new sample and the average spectrum of the class defined during 

modelling. It is required to establish a correlation coefficient threshold in order to evaluate the 

identification results after the calibration of the qualitative model [22]. 

Distances: There are other kind of comparisons that are based on the calculation of the distance 

that represents how different is a sample regarding to another or regarding the point of the space 

that represents a particular class in the model. The Euclidean distance is calculated on the space of 

the wavelengths. In this method, each class is described as a hypersphere, whit a fixed radio. A 

new sample will be identified as belonging to a particular class if it is inside of such radio. 

The Mahalanobis distance is calculated using the covariance matrix. Similarly, the class is defined 

during calibration, but by means of a as an ellipse described from a PCA. The identification of 

new samples is evaluated with respect to the distance to the centre of the ellipse. The main 
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difference between the Euclidean and the Mahalanobis distances is that the Mahalanobis distance 

includes the covariance term in its calculation [55]. 

The most relevant application of supervised methods to NIRS data in this thesis has been related 

to the construction of Spectral libraries. Spectral libraries based on NIRS data are considered 

supervised PRM useful to create classes from set of data characterized by reference techniques. 

The identification of new samples is achieved by the comparison of their spectra with those of all 

the classes that constitute the library. Each library can involve diverse qualitative objectives across 

the whole set of classes, which discrimination can require diverse strategies. The selection of such 

strategies is based on the particular characteristics of each data set. 

Discriminant analysis: These methods are based on discriminant functions that divide the space in 

characteristic regions for each class, creating boundaries between each one of them. The 

discriminant methods most commonly applied to NIRS data are the Lineal Discriminant Analysis 

(LDA) and the Quadratic Discriminant Analysis (QDA) [55]. 

1.5.3 Quantitative analysis 

The quantitative analysis of NIRS data allows to relate the instrumental answer and the chemical 

or physical property to be determined. For this purpose, it is required a representative set of 

samples and reliable reference data. NIRS can provide simultaneously information from diverse 

analytes. This fact has driven the development of calibration methods able to relate multiple 

variables to the property of interest. These are known as the multivariate calibration methods. 

These methods can be classified in terms of their characteristics in lineal and non-lineal methods. 

In the non-lineal methods, the Artificial Neural Networks (ANN) and the non-lineal Partial Least 

Squares (non-lineal PLS) can be found. In the lineal methods, there are tools for completing the 

calculations using the original variables, as the Multivariate Lineal Regression (MLR) and tools 

for calculations based on the reduction of the variability of the data sets. In this last group, the 

Principal Components Regression (PCR) and the Partial Least Squares (PLS) regression can be 

termed. 

In this thesis, the multivariate calibration method employed for quantitative purposes was the PLS 

regression. This strategy was introduced by Wold in 1975, and it has been labelled as “soft 

modelling” due to it does not made a priori assumptions about the model structure. The PLS 
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approach is useful for calibrating complex spectral NIR data with interference effects from other 

factors than those related to the analyte(s) [56].  

The PLS regression makes use of the reduction of variability considering both the NIRS data set, 

X, and the known values of the property studied (obtained from the reference method), Y. The 

objective of this procedure is including most of the relevant information for the prediction of 

properties of new samples in the first components. Because of that, the PLS regression uses both 

the NIRS data and the reference data for the description of new variables, named latent variables, 

factors or components. The first step is also mean centring the data. Then, each of the matrices is 

described in terms of A<K, where K is the number of original variables of the matrix X. This 

makes possible to calculate simultaneously components by: 

𝑿 = 𝑻𝑷𝑻 + 𝑬      Equation 20 

𝒀 = 𝑼𝑸𝑻 + 𝑭      Equation 21 

where the T is the scores matrix, P the loadings, and E the residuals matrices for the NIRS data; 

and the U is the scores matrix, Q the loadings, and F the residuals matrices for the concentrations 

or properties obtained considering the reference method. Therefore, the loadings in the PLS does 

no express only the maximum variability of the samples in the NIR spectra, because they are 

corrected to obtain the maximum predictive capability for the matrix Y. In cases of calculation of 

only one concentration or property of the matrix Y, the algorithm is indicated as PLS1, which can 

be considered as a simplification of the general algorithm, known as PLS2 [56]. 

In the PLS regressions of NIRS data presented in this thesis, the condition of homocedasticity has 

been assumed. The assumption of homocedasticity implies the consideration of non-changes in the 

variance occur across all values of the independent variables (wavelengths). This assumption is 

common to linear regression models calculated using NIRS data. The heterocedasticity is the 

violation of homocedasticity and its presence in data employed for regression models impacts the 

minimization of the residuals, which is the main goal of a PLS regression, the minimum residuals 

as possible. Some strategies can be employed for dealing with the heterocedasticity of data, such 

as weighted least squares regressions. However, it is important to take into account that these 

calculations also require additional assumptions [57]. 
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1.6 General advantages and disadvantages of the technique 

At this point, it is worth remaking the general advantages and challenges of the NIRS technique 

that can be defined from the states described in this chapter. 

As advantages can be outlined the following: 

 Is a non-destructive and non-invasive technique 

 Sample preparation is too simple and sometimes even no required. Minimum sample 

handing both for liquid and solid samples, which allow a huge number of analysis of 

samples for Quality Control purposes. 

 Each analysis represents a very low cost, due to the absence of reactives, solvents among 

other materials required for the application of most of the concentration techniques. This 

fact increases the analytical capability of the laboratory. 

 The technique enables the analysis of diverse analytes with the same spectral acquisition, 

which allows the automatization of several activities. 

 Simultaneous evaluation of physical and chemical parameters of the samples. 

 Since the detection system is simple and have no moving parts, is a technique particularly 

useful for process control procedures. 

 In most of the fields of application of the technique, the accuracy of the technique is 

comparable to the reference techniques, and generally the precision is even better due to 

the no sample preparation requirement. 

Even though, as every analytical technique, the NIRS also faces challenges: 

 The complexity of the NIR signal requires the use of chemometric techniqes for modelling 

the data before identifying and/or quantifying new unknown samples. 

 The calibration process can be challenging, since it is necessary the availability of samples 

for increasing the concentration range as well as other physical and chemical sources of 

variability. 

 It is not possible to analyse new unknown samples with sources of variability different to 

those considered during the calibration. 

 The NIRS provide low sensibility, particularly in diffuse reflectance measurements. This 

fact, in general, constrains the analysis of low concentration analytes. 
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 Since the effect of small optical and electronic differences among similar instruments, the 

transference of calibrations between them is not straightforward. 

1.7 Applications of NIRS 

Based on the advantages and despite the drawbacks previously described, nowadays the NIRS is 

considered a mature technique, broadly applied in the most diverse fields [58]. The first and more 

traditionally encompassed field of application is the food and agro products. Some of the 

applications in agriculture are related -but not restricted- to the classification and quantification of 

different analytes in coffee, wine, fruits, milk, meat, honey, cotton, natural products, cheese, olive 

oil, potatoes, fish, among other applications regarding transgenic cultivations, food safety and 

contaminants [58]. In the fuel industry there also diverse applications particularly interesting from 

the refining perspective, such as predictions of chemical and physical properties of crude oil, 

gasoline, diesel, naphtha, among applications to biofuels [59]. 

In the production of polymers diverse methods for the synthesis monitoring, among other general 

applications can be found [60]. The study of soils has been also benefited by the use of the NIRS, 

which has been employed for estimating diverse characteristics, such as contaminants and organic 

matter content [61]. Applications of NIRS have been also developed in the field of forestry [62], 

wood [63] and paper [64], environmental analysis, including even the wildlife and biodiversity 

research, area in which the NIRS is employed to embrace the biodiversity by means of a broad 

range of ecological and evolutionary analysis [65]. 

Among other fields where NIRS has been able to provide useful answers and solutions, it is 

possible to find the three areas that has been included in the scope of this thesis: control of New 

Psychoactive Substances (NPS), biotechnology and pharmaceutics. Antecedents of the technique 

related to the fields of NPS control and biotechnology are included in the introduction of chapters 

3 and 4, respectively.  

On the other hand, a description of the applications of the technique to the field of pharmaceutics 

has been included as part of the present introductory chapter. It is important to highlight that the 

following section, 1.6.1, (pages 50 to 65) has been prepared as a contribution to the book 

Introduction to Process Analytics for Pharmaceuticals, belonging to the collection Advances in 
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Pharmaceutical Technology, ISBN-10: 1119433029. This book is Edited by J. Rantanen et al, 

and it will be published by Wiley-Blackwell in 2019. 

1.7.1 NIRS applied to the Pharmaceutical industry 

Near Infrared Spectroscopy (NIRS) is an analytical technique based on the interaction between 

electromagnetic radiations in the wavelength range 780-2500 nm and matter. The NIR spectrum 

can be considered as a “fingerprint” of each chemical compound or mixture of them that is 

analysed, which contains absorption bands that are the result of overtones and combinations of the 

fundamental vibrations observed in the Mid-Infrared (MIR) region (wavelength range 2500-6000 

nm). Depending on the location of the detectors regarding the sample, NIR spectra can be acquired 

in reflectance, transmittance and transflectance modes. In general, reflectance detection mode is 

used for solid samples and transmittance and transflectance modes for liquids and gases. 

Additionally, NIRS of solids is sensible to the scattering effect caused by physical characteristics 

of the samples, such as particle size, compaction and polymorphism. This is the reason why it can 

provide not only chemical but also physical information from the same analysis. Therefore, even 

when NIR spectra show broad and overlapped bands –which makes necessary the use of 

Chemometrics for extracting the proper information from them- its simultaneous sensitivity to 

chemical and physical conditions becomes it into an effective process analytical tool for many 

industrial fields. The use of Chemometrics implies the application of statistical and mathematical 

methods to chemical data, with the aim of achieving the maximal collection and extraction of 

useful information from it [66], therefore, its application to NIRS experimental works profits from 

the information obtained from them. One of the most representative examples of the capability of 

the combination of NIRS and Chemometrics, is provided by the NIRS applications to the 

pharmaceutical industry. 

In fact, NIRS has been successfully applied to all the stages of pharmaceutical manufacturing, 

from the very original raw materials to finished products, where the value of its advantageous 

features compared to other concentration techniques has been widely demonstrated [67], [68]. The 

most relevant of these advantages are its very short response time, non-sample preparation 

requirement and non-generation of residual solvents. Furthermore, the availability of fibre-optic 

probes of diverse sizes and characteristics, allows the acquisition of NIR spectra from process units 
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71 

pharmaceutical gel manufacturing process, part 2: Near infrared monitoring of composition and 

physical parameters,” J. Pharm. Sci., vol. 100, no. 10, pp. 4442–4451, Oct. 2011. 

[85] S. Kawata, “Instrumentation for Near-Infrared Spectroscopy,” in Near-Infrared spectroscopy: 

Principles, Instruments, Applications, H.W. Siesler, Y. Ozaki, S. Kawata, and H.M. Heise, Eds. 

Weinheim: Wiley-VCH, 2002, pp. 43–74. 

[86] Z. Shi, R. P. Cogdill, S. M. Short, and C. A. Anderson, “Process characterization of powder blending 

by near-infrared spectroscopy: Blend end-points and beyond,” J. Pharm. Biomed. Anal. J. Pharm. 

Biomed., vol. 47, pp. 738–745, 2008. 

[87] T. De Beer, A. Burggraeve, M. Fonteyne, L. Saerens, J. P. Remon, and C. Vervaet, “Near infrared 

and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes,” 

Int. J. Pharm., vol. 417, no. 1–2, pp. 32–47, Sep. 2011. 
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2. Performance of the Process Spectrum calculated at 

extreme API concentration values in the inclusion of the 

process variability of pharmaceutical solids 

manufacturing into calibration sets of samples prepared 

at the laboratory 

As has been described in section 1.7.1, applications of NIRS in pharmaceutics can be 

found along the whole industry. In this chapter two examples of such applications are 

denoted in depth. The first one is a contribution that describes the criteria and approaches 

involved in the construction of classification models for identification of pharmaceutical 

raw materials. This essay considers the current recommendations of the EMA and Ph. 

Eur. regarding this kind of methods, which are illustrated at each step of the process of 

development of the model, by means of an example based on real samples. This section 

of the thesis is an example of qualitative applications of NIRS and, even when it does no 

consist of any innovative results, it provides a useful and updated compilation about the 

topic. This example has been published during the development of this thesis [1], and can 

be seen in Annex 1. 

The second example is a contribution focused on the performance of an algebraic 

algorithm employed in the construction of calibration sets for quantitative models 

developed for pharmaceutical solids. This work states the capability of the Process 

Spectrum (PS) at extreme concentration values (± 30% of the API nominal value) for the 

inclusion of the process variability into calibration sets created with samples prepared at 

the laboratory, as will be exposed below.  

2.1 Introduction 

Accuracy and robustness are the assessment criteria most resolutely sought during the 

construction of quantitative models based on NIRS data. These criteria are particularly 

relevant if such methods are intended to be used as a process analytical technology (PAT) 

tool in the pharmaceutical industry. Reaching accurate and robust calibrations is highly 

dependent on the data incorporated in the calibration sets during the development of the 

model. The preparation of calibration sets with enough variability can comprise, in many 



 

 

76 

 

cases, the need of a large amount of data with a large variation, something generally 

difficult to obtain in real situations [2]. In fact, this requirement has been indicated as one 

of the main disadvantages of applying NIRS to pharmaceutical process control [2].  

Because of that, many efforts have been done focus on including as much of the 

pharmaceutical process variability into the calibration sets of models based on NIRS. A 

summary of the literature available about this issue from 1987 to 2009 is presented in [3]. 

Since the publication of regulatory considerations on the use of NIRS technique as a PAT 

tool, promoted by the US Food and Drug Administration (FDA) in 2004, and the 

European Medicine Agency (EMA) in 2014, this aspect has been even studied each time 

with more attention. Among the most relevant contributions of 2004, it is possible to find 

those oriented to the use of calibration sets based on samples prepared at the laboratory, 

with expanded concentration range of the analytes of interest, intending to overcome the 

difficulties stated by the narrow range of chemical variability generated by samples 

directly taken from production lines [4]–[6]. However, this strategy by itself did not 

include any information about the physical changes occurred during the process, such as 

granulation, compaction or coating, aspects with proved influence on the accuracy of 

NIRS calibration models [7], [8]. As an alternative to this condition, Blanco et al [4], 

proposed the preparation of mixed calibration sets, joining laboratory and production 

samples with the objective of involving a wider concentration range at the same time than 

physical changes intrinsic to the process [5]. This strategy stands an alternative to the 

generation of samples in pilot plant facilities, which is another proved useful path [9] but 

also a very expensive one.   

Even when these methodologies improved with statistical significance the accuracy of 

the resulting models, the preparation of samples for calibration implied the need of 

laboratory work for the preparation of powder samples, besides over and under dosing of 

production samples. This was one of the motivations for developing the Process Spectrum 

(PS) tool in 2010. The PS allows the incorporation of the physical variability of a 

pharmaceutical process by means of a mathematical algorithm [3]. This strategy includes 

the spectral differences between laboratory and production samples as a vector that can 

be added to powder samples spectra in proportions that can be established based on a 

multiplicative factor m [10]. In 2014, this strategy was compared with advantaged results 

over the mixed calibration sets of laboratory and production samples [11]. Furthermore, 
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in 2015, additional studies were conducted on the selection of the mentioned 

multiplicative factor m,  both for a better understanding of its effect as for the description 

of criteria for selecting it [12]. All these previous efforts have demonstrated the capability 

of the PS strategy for including the process variability of pharmaceutical solids 

manufacturing into calibration sets based on samples prepared at the laboratory. In all 

these contributions the PS have been calculated only at the API nominal concentration 

value. The purpose of the present work is to study the effect of calculating the PS at 

extreme points of a concentration range of ±30 % relative to the nominal API 

concentration value, and to evaluate its advantages and disadvantages in the optimization 

of quantitative PLS models.  

2.2 Experimental 

2.2.1 Samples preparation 

A total of 350 laboratory samples distributed in five concentration levels along the API 

nominal range 7 - 13% w/w were prepared (±30 regarding the nominal value, 10%w/w). 

For this purpose, seven placebo mixtures were set combining lactose (67.5%w/w), 

microcrystalline cellulose (30%w/w), povidone (2%w/w) and magnesium stearate 

(constant at 0.5%w/w). A full factorial design was employed for minimizing collinearity 

between excipients concentrations as much as possible, while spanning their 

concentrations in ±5% (see Table 1). A mechanical shaker was employed to ensure a 

homogeneous blend of the excipients. 

Granulated samples were prepared by spreading 5%w/w of water on separated portions 

of the powder samples, using manual stirring followed by oven dry at 40ºC and 0.1bar, 

during 24 h. The tablets were prepared both from powder and from granulated samples. 

All of them were compressed at 100Mpa using a Perkin-Elmer press. The total amount of 

350 samples is the result of 35 powder samples, 35 granulated samples, 140 tablets 

prepared from powder and 140 tablets prepared form granulated (4 tablets replicates were 

made per sample with the aim of including the variability due to compaction pressure).  

Table 1. Correlation factors of concentrations between the components of the samples 

  API Lactose MCC Povidone 

API 1    

Lactose -0.4 1   

Microcrystalline cellulose -0.3 -0.8 1  

Povidone -0.4 0.2 0.08 1 
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2.2.2 NIR spectra acquisition and chemometrics software 

A FT-NIR spectrometer by FOSS NIRSystems, Inc., model 5000, governed by the 

software Vision 2.51 (Denmark), was used for the spectral data acquisition. Each 

spectrum is the result of an average of 32 scans in the range from 1100 to 2500 nm, with 

wavelength intervals of 2 nm. For powder and granulated, three replicates were acquired 

per sample, with manual stirring between them for guarantying representativeness of the 

whole mixture from the irradiated particles. For tablets, one spectrum of each face was 

acquired. The exploratory analysis, the selection of the calibration sets and the calculation 

of the PLS models was completed using Unscrambler 10.3 from CAMO (Norway). 

2.3 Results and discussion 

2.3.1 Physical differences between the samples expressed in the NIR absorbance 

spectra 

Besides the variations in the intensities of the absorption bands due to chemical changes 

promoted by the diverse compositions of the samples, the resultant spectra of the four 

types of the samples exhibited clear evidences of their physical differences. Figure 1 

shows all the absorbance spectra, naming spectra of powder samples with letter A, spectra 

of granulated samples with letter B, tablets from powder samples with the letter C and 

tablets from granulated with a D. Granulated samples generated spectra with less 

scattering effect regarding the powder samples (in consequence higher registered 

absorbance), because of the increment of the particle size. The compression effect was 

also exposed by a baseline shift between the tablets and the samples of particulates.  

 

a) 

 

 

b) 

 



 

 

79 

 

c) 

 

d) 

 

Figure 1. NIR absorbance spectra of a) powder samples; b) powder and granulated samples; c) 

powder samples and tablets from powder and d) powder and granulated samples and tables 

from granulated. 

The PS vectors were calculated following the equation detailed in [3], PS=Sa-Sb, where 

Sa=spectra after physical change and Sb=Spectra before physical change. Figure 2a) 

presents the plots of the PS obtained from averaged spectra at extreme and centre 

concentration levels of the API concentration range (7, 10 and 13%w/w), using the 

absorbance spectra of the diverse physical changes. PS of granulation effect was 

calculated by subtraction of powder samples spectra from the granulated samples spectra 

(B-A). The PS of compression effect was calculated for the two kind of original samples 

of particulates, i.e. powder and granulated. C-A represents the subtraction of spectra of 

powder samples from tablets prepared from powder samples, and D-B granulated samples 

spectra from spectra of tablets from granulated samples. It is possible to observe several 

differences in the resulting PS at the extreme concentration levels regarding the one 

obtained at the central nominal value.  

Based on the proved capabilities of classical spectral data pre-treatments, such as 

Standard Normal Variate (SNV), for correcting spectral differences due to scattering 

effects, it was tried to calculate the PS also after using this pre-treatment. Figure 2b) 

exposes that, at extreme API concentration values, not all the PS differences can be 

corrected by SNV.  
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a) 

 

b) 

 

Figure 2. Process spectrum calculated at extreme concentrations points of 

the studied range, contrasted with the nominal concentration value 

(10%w/w) a) absorbance; b) after SNV pre-treatment. 

A more detailed perspective of the effect of the API concentration in the PS, can be 

observed in Figures 3 and 4. Figure 3 illustrates the changes in absorbance generated in 

the NIR spectra of powder samples when the PS of granulation is added at three different 

API concentration values (7, 10 and 13%w/w). The PS obtained from compacted samples 

are presented in Figure 4. The differences between the spectra modified by the addition 

of the PS can be observed in the slope of the spectral profile of the set of powder samples, 

which is incremented directly proportional to the increment of the API concentration. 
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A  

B  

C  

 Figure 3. Absorbance NIR spectra of powder samples with and without PS of granulation 

process (PSg), calculated at the API concentrations of: 7%w/w (A);  10%w/w (B); 13%w/w (C). 
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C  

 Figure 4. Absorbance NIR spectra of powder samples and modified samples with PS of 

granulation and compaction processes (PSg+c), calculated at the API concentrations of 7%w/w 

(A); 10%w/w (B); 13%w/w (C). 
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The differences related to the granulation process -increment on the slope of the spectral 

profiles observed in Figure 3- and the additional shift of the whole baseline produced by 

the compaction process illustrated in Figure 4, can be also noticed in Figure 5. This figure 

shows all the PS in absorbance, calculated at five API concentration levels over the whole 

spectral range studied. This figure shows that the concentration of the API provides an 

additional source of variability to the PS, besides the physical changes devoted to the 

manufacturing process which is intended to be represented. 

 

Figure 5. Scores plot of PCA over the whole spectral range (1100-2498 nm) of PS calculated in 

absorbance for all the physical changes studied. Number of samples displayed are organized regarding 

the increment of API concentration (7, 8.5, 10, 11.5 and 13%w/w) inside of each group of samples.  

 

A more detailed view of these results can be found in the scores plot of a PCA of the PS 

calculated, including the distinction between the five levels of API concentration studied, 

as can be seen in Figure 6. This plot exposes the particle size and the compaction pressure 

as the main variability sources for the first two principal components. However, it is also 

possible to observe that the first component (PC1, explaining the 94% of the variability) 

is related to the API concentration. 
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Figure 6. Scores plot of PCA over the whole spectral range (1100-2498 nm) of PS calculated in 

absorbance for all the physical changes studied. Number of samples displayed are organized regarding 

the increment of API concentration (7, 8.5, 10, 11.5 and 13%w/w) inside of each group of samples.  

    

2.3.2 Evaluation of predictive capability of PLS models 

The effect of the API concentration in the PS was also studied regarding the predictive 

capability of PLS models calculated using the powder samples, and subsequently 

modified with the PS at diverse API concentration values. Table 2, shows the errors of 

predictions and the media of residuals of a PLS model constructed using only powder 

samples, in the prediction of the granulated, tablets compacted from powder and tablets 

compacted from granulated. Figure 7, shows the graphic of Explained variance per 

number of factors of this model, obtained using the Gap Derivative (GD) pre-treatment 

of second order, segment size of 1 and the spectral range 1616-2180 nm. It is worth 

mentioning that these model parameters were found after trying the application of 

classical data pre-treatments (SNV, Savitzky-Golay derivatives among others) as well as 

many diverse combinations of them. 

Additionally, Table 2 presents the results obtained from the same model modified by the 

inclusion in the calibration set of the PS at diverse API concentration levels. All the 

PS granulated – powder 

PS tablets from granulated - 

powder 

PS tablets from powder – powder 

PS tablets granulated - granulated 

https://www.linguee.es/ingles-espanol/traduccion/subsequently.html
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models were created using the leave one out strategy of cross-validation (CV), and in all 

the predictions presented in Table 2, 7 PLS factors were employed. 

 

Figure 7. Explained variance per number of PLS factors of the model created using the powder 

samples as calibration set, GD pre-treatment of second order and segment size of 1, in the spectral 

range 1616-2180 nm and using CV. 

 

Table 2. Root mean square error of calibration (RMSEC), prediction (RMSEP) and media of residuals for 

the prediction of granulated and tablets from granulated samples using the calibration set of powder samples 

with and without application of the PS strategy, at different API concentration values. 

Calibration set 
RMSEC 

(%w/w) 
Samples predicted 

RMSEP 

(%w/w) 

𝑿̅ of 

residuals 

Powder 0.17 

Powder 0.02 0.00 

Granulated 0.53 -5.0 

Tablets from powder 0.22 -1.8 

Tablets from granulated 0.48 -4.7 

Powder + PSg at 7%w/w of API 0.14 Granulated 0.16 -0.09 

Powder + PSg at 10%w/w of API 0.16 Granulated 0.16 0.2 

Powder + PSg at 13%w/w of API 0.17 Granulated 0.19 1.2 

Powder + PSg+c at 7%w/w of API 0.01 Tablets from granulated 0.13 -0.1 

Powder + PSg+c at 10%w/w of API 0.02 Tablets from granulated 0.14 -0.5 

Powder + PSg+c at 13%w/w of API 0.02 Tablets from granulated 0.19 1.4 

 

The changes in the trend of residuals obtained from the prediction of the four kind of 

samples when they were predicted using the models indicated in Table 2, are illustrated 

by the plots presented in Figure 8. This figure clearly shows the effect of the API 

concentration at which each PS was calculated. 
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a) 

 

b)  

 

c) 

 

Figure 8. Evolution of residuals in predictions using models created using a) powder samples without 

correction of PS; b) powder samples with PSg at 7, 10 and 13%w/w of API; c) powder samples with 

PSg+c at 7, 10 and 13%w/w of API 
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In Figure 8, the samples are displayed covering the API contents of 7, 8.5, 10, 11.5 and 

13%w/w. Figures 8b and 8c, show the effect of the correction provided by the PS changes 

over the API concentration range. The process variability due to the granulation, included 

by PSg, produced similar residuals when the PSg was calculated at 7 and 10%w/w API 

concentration values, regarding the values obtained when the PSg was calculated at 

13%w/w. This trend can be also observed when the PS was calculated after the 

compaction process. 

2.4 Conclusions 

Due to the NIR spectra can be affected not only by physical, but also by chemical changes 

during the pharmaceutical manufacturing process, the performance of the PS strategy is 

affected by changes in the concentration of the components of solid blends. Based on the 

presented results, it is possible to confirm that the calculation of the PS at the nominal 

API concentration is the most appropriate strategy for quantitative modelling purposes. 

Additionally, these results suggest the possibility of studying the PS as a pre-treatment 

potentially useful for modelling based on samples prepared at the laboratory. A macro for 

the calculation of the simple subtraction of the PS algorithm would be suitable for 

applying to new samples corrections due to the process variability in an fast and reliable 

way. 
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3. Comparison of the performance of bench-top and 

hand-held NIRS instruments concerning the 

identification of new psychoactive substances 

3.1 Introduction 

According to the World Drug Report 2017, issued by the United Nations Office on Drugs 

and Crime (UNODC), the current synthetic drugs market is the most complex and widely 

spread over the recent years. The substances available have expanded considerably, with 

the persistence of traditional drugs and the emergence of new psychoactive substances 

(NPS) every year. The main public health risks of this polydrug phenomenon are outlined 

by the unavailability of scientific information about the NPS -all these compounds are 

introduced into the market without any published in vivo testing even in animal models-, 

the wide variation in both the quantity and effectiveness of their active components and 

the potential combinations that can be used. Between 2009 and 2016, 106 countries and 

territories reported the emergence of 739 different NPS to the UNODC, marketed in many 

different ways, most of them with lower prices than controlled drugs and easier 

accessibility (through internet) [1].  

One of the factors that have made the control of NPS harder are the molecular differences 

that can been found between the structures of illicit controlled drugs and these new 

compounds. NPS encompass a large number of compounds that can describe diverse 

substance classes as synthetic cannabinoids, phenethylamines, cathinones, tryptamines, 

and piperazines. The possibilities of modifying the structure and functionalities of already 

known illicit substances based on such range of molecules are vast [2]. Even when there 

is a core group of around 80 NPS that have been reported every year during 2009-2015, 

and seems to become established in the global market, while some others have 

disappeared, the general trend for NPS has been increasing over the years. Such evolution 

of these synthetic drugs and the important public health risk that they represent, raises the 

need for improved forensic capacity and new approaches for data collection and seized 

samples identification [1]. 

To answer this relevant need, diverse analytical approaches have been developed in recent 

years. Some of them have been focused on the deep characterization of specific NPS 
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structures in products sold as bath salts, potpourri, incense and food of plant origin among 

other presentations. For this purpose, morphological and chemical techniques have been 

employed, as well as DNA references for diverse plant species and the confirmation of 

the MS results by comparison with the Scientific Working Group for the Analysis of 

Seized Drugs (SWGDRUG) mass spectral library [3]. Other contributions have pointed 

to the identification of NPS in seized samples without reference standards using GC/MS, 

LC/HRMS, NMR [4] and optical techniques as ATR-IR and Raman spectroscopies [5]. 

The NIRS has been considered to face this issue as well, due to the relevant reduction of 

time of analysis and sample preparation that it can offer regarding other concentration 

techniques.  

NIRS instruments can generate a “fingerprint” spectrum of each seized NPS, as well as 

characteristic spectra of the pure components employed during NPS manufacturing 

processes. This fact allows the development of classification models based on diverse 

pattern recognition methods using NIR spectra of NPS. This kind of approach have been 

reported in the literature, using both bench-top and more recently, miniaturized NIRS 

instruments. Some examples of published applications of bench-top instruments in this 

field are the identification of illicit controlled drugs as heroin in seized samples [6], [7], 

and amphetamines [8], cellulose and lactose [9] in ecstasy tablets. For seized ecstasy 

tablets, even the concentration of diverse amphetamines have been quantified by means 

of data acquired using both diffuse and transmission acquisition modes, with successful 

validation using new seized samples [10]. Other traditional drugs as cocaine have been 

also detected in seized samples using NIRS and chemometrics [11]. Additionally, 

synthetic molecules belonging to the classes of synthetic cannabinoids and 

phenethylamines have been identified using NIRS and principal components analysis. 

For this purpose, a bench-top instrument was used for recording in the spectral range 1000 

- 2500 nm, and Principal Component Analysis (PCA) allowed the use of the resulting 

data for determining and distinguishing indole and indazole derivatives in emerging 

streets drugs matrices. This work was developed considering 22 synthetic cannabinoids 

and phenethylamines, 9 from pure synthetic standards and 13 from seized samples. In this 

case, the confirmation of the NIRS identification results was done using GC/MS [12].  

More recently, the prediction of the concentration of AKB48 in samples prepared using 

the standard reference substance mixed with herbs have been also reported. In this case, 

the use of herbs allowed the inclusion of some of the complexity of the real matrix [13].  
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The capability of portable NIRS instruments for identification of NPS have been also 

studied for diverse researchers [14], [15]. Tsujikawa et al used a portable instrument -set 

for the spectral range 1400-2400 nm- for constructing a spectral library involving 120 

pure standard drugs and non-psychoactive drugs. This study showed that the effect of the 

particle size can be handled by means of mathematical pre-treatments. The validation of 

the final library was done with 1 real seized sample and 10 samples obtained by internet 

[14]. The second report using portable instruments was completed by Pederson et al, who 

demonstrated the capability of hand-held instruments for identifying NPS with a very low 

rate of misidentification, as well as the ability of completing successful calibration 

transfers between different instruments. Additionally, they were able to identify the 

individual compounds that constituted unknown mixtures of diverse  controlled 

psychotropic substances (such as cocaine, heroin, oxycodone and diazepam) with 

paracetamol, caffeine and lidocaine, by means of the use of the Net Analyte Signal (NAS) 

assessment method [15]. 

Based on the efforts mentioned above, and focused on the demonstration of the strengths 

of hand-held NIRS instruments for enhancing on-site NPS control actions of police 

officers, the aim of this work was to compare the identification capability of bench-top 

and hand-held instruments based on the performance of classification models of NPS. For 

this purpose, the same set of NPS samples was analysed using both instruments, and 

spectral libraries were constructed based on each data set. The performance of both 

instruments is compared in terms of simplicity of the structure of the resulting spectral 

libraries and their selectivity values. 

3.2 Experimental 

3.2.1 Samples 

Samples were seized from 2014 to 2017, by the Spanish law enforcement bodies in police 

raids in Valencia, Spain. The Pharmaceutical Inspection and Drug Control Unit of the 

Ministry of Home Affairs of Spain provided this sample set to the Department of 

Analytical Chemistry, University of Valencia, Spain. These samples were kindly 

provided to the Applied Chemometrics Research Group UAB by the Department of 

Analytical Chemistry, University of Valencia, Spain. Seized samples consisted of fine 

white and yellowish powder placed in different plastic bags, most of them with purity 

over 95%. Classes of the psychoactive substances were amphetamine derivatives (8 
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compounds), cathinones (17 compounds), 2C-family (4 compounds), tryptamines (6 

compounds), synthetic cannabinoids including indazoles, indoles and carbazoles (11 

compounds), quinazolinones (2 compounds), arylcyclohexylamines (2 compounds), 

phenidates (2 compounds), and miscellaneous (3 compounds). Details of employed NPS 

are provided in Table 1. 

No sample preparation was necessary for NIRS measurements. The samples were 

transferred to transparent borosilicate glass vials of 32 mm x 11.6 mm closed with plastic 

tops. The amount of sample varied between 20 and 100 mg, depending on the amount 

available from each seizure case.  

Table 1. Description of the NPS samples analyzed using the bench-top and hand-held NIRS instruments.  

SUBSTANCES STRUCTURE 

MOLECULAR 

WEIGTH 

(g/mol) 

Amphetamine derivatives 

2-FA R2=F 153.2 

3-FA R3=F 153.2 

2-FMA R1’= methyl R2=F 167.2 

4-FMA R1’= methyl R4=F 167.2 

6-APB R3,R4=furan 175.2 

3-methoxymethamphetamine R1’=methyl R3=methoxy 179.3 

3-FEA R1’=ethyl R3=F 181.2 

5-EAPB R1’=ethyl R3,R4=furan 203.3 

Cathinone derivatives                                                                            

Ethcathinone R2’=ethyl R”=methyl 177.3 

3-MMC R2’=methyl R3=methyl R”=methyl 177.3 

4-MMC (mephedrone) R2’=methyl R4=methyl R”=methyl 177.3 

3-FMC R2’=methyl R3=F R”=methyl 181.2 

4-MEC R2’=ethyl R4=methyl R”=methyl 191.3 

4-MeMABP (4-

methylbuphedrone) 

R2’=methyl R4=methyl R”=ethyl 191.3 

4-CMC R2’=methyl R4=Cl R”=methyl 197.7 

Methylone R2’=methyl R3,R4=methyl

enedioxy 

R”=methyl 207.2 
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Butylone R2’=methyl R3,R4=methyl

enedioxy 

R”=ethyl 221.2 

α-PVP R1’,R2’=pyrroli

din 

R”=n-propyl 231.3 

α-PHP R1’,R2’=pyrroli

din 

R”=n-butyl 245.4 

MDPPP R1’,R2’=pyrroli

din 

R3,R4=methyl

enedioxy 

R”=methyl 247.3 

MPHP R1’,R2’=pyrroli

din 

R4=methyl R”=n-butyl 259.4 

MDPV R1’,R2’=pyrroli

din 

R3,R4=methyl

enedioxy 

R”= n-propyl 275.3 

4-MePPP R1’,R2’=pyrroli

din 

R4=methyl R”= methyl  

PV9 R1’,R2’=pyrroli

din 

R”= n-hexyl 309.9 

3,4-MDPHP R1’,R2’=pyrroli

din 

 

R3,R4=methyl

enedioxy 

R”= n-butyl 325.8 

2C-Family                                                                                                       

2C-E R4=ethyl R”=H 209.3 

2C-C R4=Cl R”=H 215.7 

2C-P R4=n-propyl R”=H 223.3 

DOC R4=Cl R”=methyl 229.7 

Tryptamine derivatives 

alpha-Methyltryptamine 

(AMT) 

R”=methyl 174.2 

4-OH-MET R1’=methyl R2’=ethyl R2=hydroxy 218.3 

5-MeO-DMT R1’=methyl R2’=methyl R3=methoxy 218.3 

DPT R1’=n-propyl R2’=n-propyl  244.4 

4-AcO-DMT R1’=methyl R2’=methyl R2=acetoxy 246.3 

5-MeO-MIPT R1’=methyl R2’=iso-propyl R3=methoxy 246.3 

Synthetic cannabinoids (indazole family) 

THJ-2201 R1=5F-pentyl R2=naphthyl 360.2 
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CUMYL-4CN-

BINACA 

R1=4CN-butyl R2=-NH-cumyl 360.2 

ADB-

CHMINACA 

R1=methylcyclohexyl R2=-NH-tert-butyl-carbamoyl 370.2 

5F-ADB R1=5F-pentyl R2=-NH-tert-butyl-methoxycarbonyl 377.2 

5F-NPB-22 R1=5F-pentyl R2=-O-quinolinyl 377.2 

Synthetic cannabinoids (indole family) 

UR-144 R1=pentyl R2=2,2,3,3-tetramethyl- cyclopropyl 311.4 

RCS-4 R1=pentyl R2=4-methoxyphenyl 321.4 

JWH-210 R1=pentyl R2=4-ethylnaphthyl 369.5 

JWH-081 R1=pentyl R2=4-methoxynaphthyl 371.5 

MMB-CHMICA R1=methylcyclohexyl R2=isopropyl-methoxycarbonyl 370.2 

Synthetic cannabinoids (carbazole family) 

MDMB-

CHMCZCA 

R1=methylcyclohexyl R2=-NH-tert-butyl-methoxycarbonyl 434.3 

Quinazolinones 

Etaqualone R1=2-ethyl-phenyl R2=methyl 264.3 

Mebroqualone R1=2-bromo-phenyl R2=methyl 315.2 

Arylcyclohexylamines 

Methoxetamine R1=ketone R’=H R”=ethyl 247.3 

3MeO PCP R1=H R’,R”=cyclohexyl 273.4 

Phenidates 

Ethylphenidate R3=H R4=H R’=ethyl 247.3 

Threo-4-

fluoromethylphenidate 

R3=H R4=F R’=methyl 251.3 
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Miscellaneous 

Methiopropamine 

 

155.3 

3-fluorophenmetrazine 

 

195.2 

Dichloropane (RTI-111) 

 

328.2 

 

3.2.2 NIRS Instruments 

Bench-top instrument: NIR spectrometer from Foss (Denmark), model 5000, fitted with 

a Rapid Content Analyzer model 6500, employed with diffuse reflectance acquisition 

mode in the wavelength range of 1100-2498 nm. Each spectrum was the result of 32 scans 

acquired with a wavelength intervals of 2 nm. The measurements were done in two 

different days by the same analyst. The software Vision, version 2.51 was used for 

controlling the instrument and data acquisition. 

Hand-held instrument: MicroNIR portable spectrometer from JSDU (USA), model 

1700. This device of 45 mm of diameter x 42 mm of height and 60 g of weight, allows 

the acquisition in reflectance mode along the range 908.1-1676.2 nm, with a spectral 

sampling interval of 6.25 nm per pixel (detector of 128 pixels). The software employed 

for controlling the instrument and data acquisition was the IRSE, version 1.3.5. 

Software for spectral libraries development: Opus from Bruker, version 7.5 was 

employed for the construction of both libraries. Previous data visualization and 

adjustment of files format were done using The Unscrambler from Camo, version 10.3 

and PLS Toolbox from Eigenvector, version 8.2.1. 

3.2.3 Methodology 

a) NIRS measurements 

The samples were presented to both NIR spectrometers directly in borosilicate vials, 

without any physical or chemical pre-treatment. Two replicates were recorded per sample 

in two different days by the same analyst. Therefore, from each instrument, 4 replicates 

were available per sample. This data set was divided as follows: those spectra acquired 
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on day one, were employed for preparing the calibration sets and those acquired on day 

two were employed for validation sets.  

The calculation of both spectral libraries was done following the general chemometric 

strategies intended for describing mathematical algorithms and parameters able to classify 

new spectra as similar or different from those included in a calibration set [16], [17]. For 

this purpose, the software OPUS allows the visualization of the original spectra after 

diverse mathematical pre-treatments, as Standard Normal Variate (SNV), first (1D) and 

second (2D) Savitzky-Golay derivatives of second polynomial order -with diverse values 

options for the number of points to be included in the smoothing window calculation-, as 

well as combinations of them. Based on that, the differences between samples in the 

whole spectral range available in each case (1100-2498 nm for the bench-top instrument 

and 908.1-1676.2 nm for the hand-held instrument) were used to create a general main 

structure of both spectral libraries. The selection of the final pre-treatment, spectral range, 

threshold values and discrimination method was done based on the number of confused 

samples generated by each combination of tested algorithms and parameters. The selected 

combination was in both cases the one that generated the smaller number of confused 

samples. For samples whose spectral similarities made the classification only with the 

general structure hard, a further qualification strategy -cascading sub-libraries- was 

employed. 

b) Reference characterization 

Seized samples were characterized by means of high-resolution mass spectrometry 

(HRMS), gas chromatography-mass spectrometry (GCMS) and nuclear magnetic 

resonance (NMR). All these analyses were carried on at the Department of Analytical 

Chemistry, University of Valencia, Spain, by Professor Sergio Armenta and 

collaborators. 

HRMS was conducted with electrospray ionization (ESI) on a TripleTOF™ 5600 

LC/MS/MS System from AB SCIEX (Redwood City, CA, USA). Mass spectra were 

recorded using the direct infusion experiment in the positive ion and high sensitivity mode 

under the following conditions and settings: ion source gas, nitrogen; ion source gas 1 

and 2 pressures, 35 and 35 psi, respectively; curtain gas pressure, 25 psi; source gas 

temperature, 400 °C; ion spray voltage, 5500 V. The AB SCIEX PeakView software was 

employed for data treatment to obtain accurate mass measurements and isotopic patterns. 
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Sample solutions were introduced in the system being dissolved in methanol/10 mM 

ammonium formate in water (80:20 %, v/v) at a flow rate of 0.1 mL/min.  

GC-MS was conducted on a 7890A GC system (Agilent Technologies, Santa Clara, CA, 

USA), equipped with a Zebron ZB-5MS capillary column (30 m × 0.32 mm i.d., film 

thickness 0.25 µm) and a 5975Cinert XL EI/CI MSD triple axis single quadrupole 

detector (Agilent Technologies) was used for the identification of the target compound in 

the sample. Samples were dissolved in acetone and 1 µL solution was injected in the 

splitless mode at 250 °C, employing helium as carrier gas in constant flow mode at 1 

mL/min. Oven temperature program was 150 °C, held for 1 min, increased at a rate of 10 

°C/min up to 250 °C, and finally held 5 min. Transfer line and ion source temperatures 

were 300 and 250 °C, respectively, and an electron voltage at 70 eV was employed for 

electron ionization. Full scan determinations were performed using the range from 40 to 

300 m/z. 

NMR spectra of samples dissolved in CDCl3 were acquired at room temperature on a 

Bruker AVIII spectrometer, equipped with a 5 mm direct probe (Bruker, Billerica, MA, 

USA). The 1H spectra were acquired at 300.13 MHz, 298 K with a direct observation, 30° 

pulse and 16 scan, and TRAF resolution enhancement was applied without line 

broadening. Chemical shifts (δ ppm) were referenced to tetramethylsilane.  

3.3 Results and discussion 

The main difference between the data sets obtained from the two different instruments is 

the spectral range. As can be seen in Figures 1A and 1B, the bench-top instrument enables 

more NIRS overtones and combination bands than the hand-held instrument, because of 

the wider spectral range that its detection system makes available. It can be also be 

observed that the difference in the wavelength intervals employed during the acquisition 

(2nm in the bench-top and 6.25 nm in the hand-held instrument) has a slight effect on the 

final resolution of the spectra. Based on these differences, the main challenge in this work 

was to generate spectral libraries with the same classification target, starting from data 

sets with the same number of samples but different number of variables.  

Furthermore, Figure 1C illustrates the higher absorption intensities in spectra from the 

hand-held instrument than in spectra from the bench-top instrument, by means of the plot 

of spectra from the two instrument for the same sample, 2-FMA. These higher values can 

be understood considering the differences in the radiation sources between the two 
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instruments. The spectral variability between the same families of compounds can be also 

observed in this set of absorbance spectra, which represents the relevant source of 

variability provided by differences in substituents of the molecular structures that define 

each NPS family. However, it is worth mentioning that particularly for cathinone 

derivatives, the similarities of their NIR spectra forced the construction of particular sub-

libraries for classification of samples with slighter molecular differences, as will be 

exposed below. 

 

A 
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C 

Figure 1. NIR absorbance spectra acquired in reflectance mode for all the families of NPS with 

(A) the bench-top and (B) the hand-held instrument. The graph (C) illustrates the differences in 

absorbance intensity and wavelength range for the sample 2-FMA. 

3.3.1 Library constructed using data acquired with the bench-top instrument 

The first level of the library built with the data obtained from the bench-top instrument, 

employed the SNV pre-treatment over the spectral range of 1100-2496 nm and Euclidean 

distance as discrimination method. This general library required the application of the 

cascading strategy, by means of the creation of 6 sub-libraries in the second level of 

discrimination, and one sub-library in the third level. The requirement of these additional 

qualification levels was driven by the similarities found both between samples of the same 

families of compounds and between families with structural similarities. 

B 
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Figure 2, illustrates an example of the absorbance spectra acquired using the bench-top 

NIR for samples of the same family of compounds. This set of samples shows the 

similarities of combination bands and overtones due to vibrations of common bonds from 

the main structural framework of amphetamines (aromatic ring and N-H bond of 

secondary aliphatic amine), as well as the differences provided by their diverse 

substituents at R1’, R2, R3 and R4. Figure 2, also makes evident the relevant effect of the 

electronegativity of the halogen substituent in the definition of the aromatic overtones in 

the range 2100 - 2500 nm. 

 

Figure 2. Absorbance NIR spectra of some of the amphetamine derivatives analysed using the bench-

top instrument. 

 

Even when SNV pre-treatment emphasized the differences between similar spectra, the 

Factorization algorithm, based on the calculation of Mahalanobis distances, was required 

for discrimination of confused samples by means of the sub-libraries described in Table 

2.  Figure 3 encompasses the scores plots of such sub-libraries, displaying the selected 

factors in each case. 

 

 

 

 

 

6-APB R3, R4 = furan 

2-FMA R1' = methyl; R2 = F 

4-FMA R1' = methyl; R4 = F 

2-FA R2 = F 

3-FA R3 = F 
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Table 2. Description of parameters of the sub-libraries created for discrimination of samples ambiguously 

identified in the first level of the model developed for the data obtained using the bench-top instrument. 

The number of smoothing points selected for derivative pre-treatments was 9 in all the cases. 

 

Families of samples 

involved  

Sub-

cascading 

level 

Spectral 

range (nm) 

Data pre-

treatment 
Included samples Threshold 

 (A) Cathinone 

derivatives- 

cannabinoids 

2 1626-2402 2D + SNV  

4-MePPP  0.01 

JWH-081 0.01 

(B) Amphetamine 

derivatives-

miscellaneous  

2 1598-2470 2D + SNV 

2-FA 0.001 

2-FMA 0.001 

Methiopropamine 0.0007 

(C) Cathinones 2 1744-2118 1D + SNV 

4-MMC 0.0004 

3-MMC_v1 0.003 

3-MMC_v2 0.0005 

(C') Cathinones 3 1896-2124 1D + SNV 
3-MMC_v1 0.3 

4-MMC 0.03 

(D) Cathinone 

derivative-T22 
2 1120-2484 1D + SNV 

Methylone 0.02 

T22 0.002 

(E) Miscellaneous- 

indole cannabinoids  
2 1100-2498 1D 

3-

fluorophenmetrazine 
0.02 

MMB-CHMICA 0.007 

(F) Tryptamine 

derivatives                                                                                
2 1100-2498 1D 

α-PVP 0.3 

Butylone 0.02 
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Figure 3. Scores plots of the sub-libraries created in the library constructed using data acquired with 

the bench-top instrument, for discriminating between (A) 4-MePPP and JWH-081; (B) 2-FA, 2-FMA 

and Methiopropamine; (C) 4-MMC, 3-MMC_v1 and 3-MMC_v2; (C') 4-MMC and 3MMC_v1 

(created inside of sub-library C); (D) Methylone and T22; (E) MMB-CHMICA and 3-

fluorophenmetrazine; (F) α-PVP and Butylone. 
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As can be seen in Table 2 and Figure 3, in this case, the cathinone derivatives were the 

compounds that required more efforts for reaching a suitable classification model. Besides 

the fact of been the family with the higher number of samples in the studied set, relevant 

differences between the NIR spectral profile of 3-MMC samples motivated the creation of 

two separated groups: 3-MMC_v1 and 3-MM_v2. The final “_v” has been employed to 

indicate that different sources of variability were detected in this sample set, and the 

numbers 1 and 2 were employed for distinction between them. These differences could be 

explained by different places and dates of seizing. The discrimination between these two 

sources of variability was possible using the bench-top NIRS instrument. 

The spectral library constructed allowed the unambiguous identification of all the samples 

analysed. The validation of the whole library was completed based on the selectivity (S) 

values calculated by the Opus software. The S is obtained by means of the ratio of the 

distances of the average spectra D and the sum of the radii of the closer clusters (thresholds, 

T1 and T2), according the equation:  

𝑆 =
𝐷

(𝑇1+𝑇2)
       Equation 1 

The values of S are useful to understand the capability of the classification model for 

avoiding confusions between similar samples. The interpretation of S can be done as:  S 

< 1: overlapping; S = 1: cluster in contact, but without any sample in the area that is in 

contact; 1 < S < 2 cluster separated by the minimum possible distance; S ≥ 2 cluster broadly 

separated [18]. The selectivity of the library after applying the complete cascading strategy, 

expressed in percentages of S, regarding all the groups involved in the model was of 1.7% 

for 1 < S < 2 and 98.3% for samples with S ≥ 2. 

3.3.2 Library constructed using data acquired with the hand-held instrument 

Because of the reduced spectral range available from the portable instrument, regarding the 

range available from the bench-top instrument, more confusions were found in this case 

from all the evaluated combinations of discrimination methods, data pre-treatments and 

thresholds. This spectral set also required a derivative pre-treatment besides the SNV for 

the description of the general structure, to emphasize the differences acquired with the 

miniaturized instrument. Additionally, it was required a more branched cascading structure 

than the one created for the library of the bench-top instrument, as will be showed below. 

This can be understood considering the lack of bands characteristics of aromatic rings in 
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the missing spectral range (1670-2500 nm). After assessing many diverse combinations, 

the one able to uniquely identify all the samples studied was the one created using the 2D 

with 9 points of smoothing window, followed by a SNV pre-treatment, in the spectral range 

of 908-1676 nm and with Euclidean distance as discrimination method. Afterwards, two 

sub-libraries internally subdivided were required. Table 3, describes the details of the 

internal structure of the spectral library built with data acquired using the hand-held 

instrument.  

Table 3. Description of parameters of sub-libraries created for discrimination of samples ambiguously 

identified in the first level of the library developed using the data obtained with the portable instrument.  

Families of 

samples involved 

Sub-

cascading 

level 

Spectral 

range 

(nm) 

Data pre-

treatment 
Included samples Threshold 

(A) Cathinone 

derivatives-

Miscellaneous 

2 
1069-

1236 
1D (9 pts)  

3-FMC 0.09 

3-

fluorophenmetrazin

e 

0.02 

Butylone 0.2 

Methylone_v1 0.2 

Methylone_v2 0.09 

Methylone_v3 0.02 

(A') Cathinone 

derivatives 
3 908-1676 SNV 

Methylone_v2 0.03 

Methylone_v3 0.2 

(B) Amphetamines-

Cathinones-

Arylcyclohexyldam

ines 

2 
1069-

1205 

1D (9pts) + 

SNV 

2-FMA, 4-FMA 0.06 

3-MMC_v1 0.4 

4-MEC 0.03 

4-MePPP 0.3 

Etylphenidate 0.03 

MDPV 0.4 

Methoxetamine 0.03 

-PHP 0.02 

T5 0.008 

PV9 0.05 

3-FEA 0.01 

Threo-4-

fluoromethylphenid

ate 

0.09 

T31 0.02 

T33 0.01 

T34 0.007 

3-

methoxymethamph

etamine 

0.02 

4-MeMABP 0.04 

Ethcathinone 0.03 

4-MePPP 0.09 

3-MMC_v2 0.06 

3-MMC_v3 0.1 

3 
1075-

1261 
1D (9pts) 

2-FMA, 4-FMA 0.08 

3-MMC_v1 0.3 
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The sub-libraries created in the case of the data acquired using the hand-held instrument 

were also based on the Factorization method. Figure 4 shows the scores plots obtained with 

the parameters described in Table 4, with the corresponding factors selected in each case. 

 

(B') 
Amphetamines-

Cathinones-

Arylcyclohexyldam

ines  

3-MMC_v2 0.06 

3-MMC_v3 0.1 

4-MEC 0.2 

4-MePPP 0.4 

Methoxetamine 0.07 

4-MeMABP 0.1 

Etcatinone 0.1 

T31 0.09 

(B'') Cathinone 

derivatives 
4 

1100-

1212 

2D (13pts) + 

SNV 

3-MMC_v1 0.4 

3-MMC_v3 0.6 

4-MEC 0.05 

4-MePPP 0.3 
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Figure 4. Scores plots of the five sub-libraries created after the first level of discrimination of the 

model developed using the data from the hand-held instrument. These sub-libraries were required for 

solving confusions between samples described in Table 4. Letters in this figure corresponds to those 

written before the names of the families in Table 4. 

 

It can be observed that spectra of 3-MMC showed three sets of samples with differences 

that were not possible to overcame using the available data pre-treatments. Additionally, 

the Methylone showed also three sets of differenced samples in the data acquired with the 

hand-held NIRS instrument. This fact, joined to the similarities of samples from families 

of Amphetamines, Cathinones and Arylcyclohexyldamines in the spectral range provided 

for this instrument, compelled the generation of a library more branched than the one 

developed from the data acquired using the bench-top instrument. 
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The selectivity of the library after applying the complete cascading strategy, expressed in 

percentages of S, regarding all the groups involved in the model, was of 1.6% of S=1, 

23.2% of 1 < S < 2 and 75.2% of S ≥ 2. 

3.3.3 Comparison of classification models 

The main difference between the classification models developed from data acquired using 

the two instruments are the branches of the structure generated in each case. The library 

generated from the data acquired with the bench-top NIRS instrument required 6 sub-

libraries at the second level of the structure for solving ambiguities between two or three 

samples in the worst case, and only one of these sub-libraries required an internal sub-

library for solving confusions between two samples. The spectral library constructed using 

the data acquired with the hand-held instrument required 2 sub-libraries in the second level 

of the structure for solving ambiguities between 6 and 21 samples. In the case of the second 

of these sub-libraries, two more internal sub-libraries were required for a final 

unambiguous identification of all the samples involved.  

The second relevant difference is related to the percentage of samples classified with S 

values over 2. High distances between clusters is one of the aspects that define the 

robustness of classification models. For the studied set of NPS samples, the percentage of 

samples with S > 2 is higher for the model developed using data acquired with the bench-

top NIRS instrument than for the one created using data from the hand-held instrument. 

Additionally, the model developed using data acquired with the hand-held instrument 

displays a 1.6% of samples with clusters in contact, which is not observed in the model of 

the bench-top instrument. Having clusters in contact is not a desirable situation in 

classification models, however, complex data sets, as the one created by NPS analysed in 

a reduced spectral range, can show this kind of situations. The most important in these 

cases is to demonstrate that none of the samples included into the models is in such 

overlapping area. Table 4, summarizes all the differences found between the two spectral 

libraries developed. 

Table 4. Comparison of classification models constructed with data acquired with the bench-top and hand-

held NIRS instruments. 

Assessment criteria Bench-top instrument Hand-held instrument 

Discrimination method Euclidean distance Euclidean distance 

Spectral range 1100-2498 nm 908-1676 nm 

Data pre-treatment required in level 1 SNV 2D (9pts) + SNV 
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Number of samples confused in level 

1 
13 23 

Number of sub-libraries in level 2 6 2 

Number of sub-libraries in level 3 1 2 

Number of sub-libraries in level 4 - 1 

Percentage of S < 1 - - 

Percentage of S = 1 - 1.6 

Percentage of 1 < S < 2 1.7 23.2 

Percentage of S > 2 98.3 75.2 

 

Even though the spectral library generated using data acquired with the bench-top 

instrument shows better values of the assessment criteria of the identification models, 

considering the important reduction of time of detection of illicit drugs that the on-site 

analysis with the hand-held NIRS instrument can provide, the obtained results confirm that 

portable instruments could be a valuable tool for early classification of NPS samples during 

police seizing procedures. Information provided by both instruments can be 

complementary. The initial identification can be done on-site using the hand-held 

instrument and such results can be later confirmed and tuned in a short analysis using the 

bench-top instrument at the laboratory.  

3.4 Conclusions 

Even when models developed using data from NIRS miniaturized instruments are limited 

in performance regarding those developed using data provided by bench-top instruments, 

classification models of NPS based on data from hand-held instruments can be useful to 

make real-time and on-site decisions that can be confirmed later using high performance 

analytical instrumentation. 
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4. Inline monitoring of recombinant production of 

Lipase B from Candida antarctica in Pichia pastoris 

using glycerol as carbon source 

4.1 Introduction  

The basidiomyceteous yeast Candida anctartica (C. anctartica), produces two different 

lipases, named A and B. Both lipases are catalysts highly stable in an immobilized form, 

but it has been demonstrated that Lipase B tolerates important variations in experimental 

conditions, maintaining particularly efficient biocatalyzing properties. The most relevant 

of these properties is probably the high degree of substrate regio and enantioselectivity 

for a great number of different organic reactions, many of them nowadays commercially 

scaled up. Because of that, Lipase B has been extensively used in the resolution of racemic 

alcohols, amines and acids, as well as in the preparation of optically active compounds 

from meso reactants. Optically pure compounds can be certainly difficult to obtain by 

alternative routes and some of them have an important synthetic value. Lipase B has been 

also intensively used as a regioselective catalyst to selectively acylate different 

carbohydrates [1].  

Recently, the conditions for the obtention of Lipase B by its recombinant production in 

Pichia pastoris (P. pastoris) -yeast newly named aka komagataella phaffii- has been 

enhanced [2]. P. pastoris is a high cell density expression system, probably one of the 

most promising protein expression systems [3]. High cell density yeast expression 

systems have been increasingly applied to manufacturing human and mammalian 

proteins, among other reasons, because of their extremely rapid process dynamic [4]. 

Following this trend, P. pastoris system combines a high growing speed on simple media 

and important eukaryotic features such as glycosylation. Therefore, P. pastoris provides 

high expression levels in an economical and ease of manipulate system, able to perform 

complex post-translational modifications. Two types of production are possible for this 

yeast: inductive and constitutive. Although the last one provides less product, it has the 

advantage of circumvent the need of methanol use which is a hazard when aiming the 

scale up of the process[5]. 
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The over or under feeding of P. pastoris systems can have serious consequences on the 

formation/stability of its products. This fact turns the multianalyte real-time monitoring 

up to be a persistent requirement for this kind of system, even when real-time monitoring 

tools have been desirable to the bioprocess monitoring world from very earlier efforts [6]. 

Advances in this task has been meet by means of the development of analytical methods 

based on in-situ sensors [4]. Such in-situ sensors have to fulfil very particular 

requirements, the most relevant are: 

 Long-term corrosion stability and biological inactivity. 

 Capability of maintaining the asepsis of the process. 

 Reaching a wide detection range of the target parameters for covering all their 

changes during the process. 

 Production of a fast response to enable opportune corrective action procedures 

 Preserving the integrity and calibration after sterilization conditions (high 

temperatures and pressures different from ambient air pressure) [7], [8]. 

In view of these characteristics, optical and spectroscopic techniques can be the base of 

non-invasive in-situ sensors with a huge potential for this kind of processes. This is 

basically due to its non-analyte consumption, non-sampling step and no further reagents 

necessity. For most of the optical and spectroscopic probes, sterilization conditions are 

easy to overcome because no other internal installations than optical windows are 

required in their inner arrangements. Additionally, spectroscopic methods do not show 

any time delay, therefore they can provide information at real-time [9]. Among other 

techniques as Raman spectroscopy and Optical Density (OD), one of the techniques that 

have been applied to bioprocesses monitoring, including P. pastoris cultivations, is Near 

Infrared Spectroscopy (NIRS) [10]. Applications of NIRS to bioprocesses monitoring can 

be found on diverse microbial processes, insect cell and animal cell cultures [4]. The 

evolution of such applications started with more simple systems, tracked under anaerobic 

conditions and low agitation, to derive to more complex systems with vigorous aeration 

and agitation [9]. The common pathway for developing analytical methods for 

bioprocesses monitoring based on NIRS starts with at-line or on-line (bypass or ex-situ) 

measurements which are later adapted to more challenging in-line (in-situ) conditions 

[11]. Most of the research reports in this field display studies based on only one mode of 

NIRS data acquisition, selected considering the particular physical characteristics of the 
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system. In such cases, specific analyte models have been built both for the entire process 

data [8] and for segments of the data in accordance with the process evolution time (which 

is related to changes in the spectral response) [12]. Some common aspects of these 

previous studies are: low to moderate Biomass levels (Biomass concentration range 0-16 

g/L), relatively simple matrices (soluble media, frequently chemically defined) and no 

complex changes in the physical characteristics of the process fluid over the process 

evolution. In general, from the spectroscopic point of view, the application of NIRS to 

very high cell density systems (Biomass concentration range 40-100 g/L) is much more 

challenging, due to the significant effect on the spectral data of the diffuse reflection of 

radiation generated by solid particles of Biomass. Nevertheless, some previous studies 

have demonstrated the feasibility of using NIRS for on-line monitoring of processes that 

employed P. pastoris as expression system, which faced the complex changes in the 

physical characteristics produced in the medium [4], [13], [14].  

A valuable advantage of spectroscopic techniques (absorbance or transmittance 

measurements) compared to simple OD measurements, is the possibility of obtaining 

more information of the process, in addition to Biomass concentration. Even when 

Biomass concentration is one of the most critical measurements in bioprocesses [7], 

substrate and product(s) concentrations, among other parameters, are also desirable 

results of an analytical method for in-line monitoring of a biotechnological process. NIRS 

provides key overtones and combination bands in these kind of processes that can be 

correlated to O-H bonds of alcohols, C-H bonds of aliphatic and aromatic carbon 

compounds, as well as N-H bonds of proteins [15].  

Based on the previously mentioned contributions, and considering that, to  the best 

knowledge of the authors, none totally in-line monitoring method based on NIRS for P. 

pastoris expression systems has been reported so far, the objective of this work is to 

develop an analytical method based on NIRS for the in-line monitoring of the 

concentrations of Biomass, Total protein, Glycerol and Nitrogen as well as the Lipolitic 

activity, during the recombinant production of Lipase B from C. anctartica in P. pastoris 

using Glycerol as carbon source. For this purpose, the first step was to complete a 

feasibility study focused on two aspects: assessing the capabilities of the technique for 

the specific system to be studied and selecting the proper acquisition mode of the 

instrument. Afterwards, the development of the quantitative models was sequentially 
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addressed by means of three different sets of samples that encompassed the chemical and 

physical variability of the bioprocess from a minimum to a high level of inclusion. 

4.2 Materials and methods 

4.2.1 Bioprocess inoculation and evolution 

a) Microorganism 

The microorganism used in this study was the wild-type yeast strain P. pastoris X-33, 

previously modified by inserting the vector pPGKΔ3_PRO_LIPB, for constitutive 

expression of recombinant lipase B of C. antarctica (rLipB). The lipase gene was 

synthesized by the EpochBiolabs in pBKSII vector, using codon optimization for P. 

pastoris. The gene was subcloned in the plasmid pPGKΔ3_PRO using the enzymes XhoI 

and NotI generating the vector pPGKΔ3_PRO_LIPB that presents the rLipB under 

control of the PGKΔ3 promoter and a signal peptide α-factor with optimized codons. 

Besides, the vector has Sh ble gene as selective mark toward zeocin [2]. The carbon 

source for this microorganism was glycerol. 

b) Batch medium 

Batch medium used contain per liter: 2.0 g citric acid, 12.4 g (NH4)2HPO4, 0.022 g 

CaCl2.2 H2O, 0.9 g KCl, 0.5 g MgSO4.7 H2O and 4.6 ml PTM1 trace salts solution (6.0 g 

CuSO4.5 H2O, 0.08 g NaI, 3.0 g MnSO4. H2O, 0.2 g Na2MoO4.2 H2O, 0.02 g H3BO3, 0.5 

g CoCl2, 20.0 g ZnCl2, 65.0 g FeSO4.7 H2O, 0.2 g biotin and 5.0 ml H2SO4). The initial 

carbon source varies according to 0h of each cultivation, pH was maintained at 7.0 with 

NH4OH 15%, temperature at 30°C and atmospheric pressure. 

c) Fed-batch medium (starting around 20h) 

Fed medium used contain per liter: 550 g glycerol, 10 g KCl, 6.45 g MgSO4.7 H2O, 0.35 

g CaCl2.2 H2O and 12 ml PTM1 trace salts solution.  

d) Process variables 

An applikon Biobundle  bioreactor, with 2 L working volume was used. Dissolved 

oxygen (DO) was maintained at 30% by a cascade control changing stirring between 500-

1000 rpm and aeration between 0-1vvm, a mix of compressed air and pure oxygen was 

provided manually, when needed. Temperature was maintained at 30°C and the working 

pH was controlled at 7 with 15% v/v NH4OH. Anti-foam was added during the process 

as necessary. 
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Figure 1. (A) General representation of the reactor and conditions of the cultivation process with the 

in-line connection of the NIRS fiber optic probe; (B) picture of the reactor during a process run. 

4.2.2 Analytical monitoring 

a) Reference Methods per analyte 

Biomass concentration:  Optical density at 600 nm in a Hach lange GmbH – DR3900 

spectrophotometer. The relationship with dry cell weight (DCW) was: DCW (g/L)= 

0.3068*abs [16]. 

Glycerol concentration: HPLC equipment from HP 1050 liquid chromatograph (Dionex 

Corporation, Sunnyvale, CA, USA) using an ICSep ICE COREGEL 87H3 column 

(Transgenomic Inc., Omaha, NE, USA) The temperature was maintained at 40°C using 
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as the mobile phase sulfuric acid solution 0.0032 M at flow rate of 0.5 ml/min. The sample 

volume injected was 20 µL. The Glycerol concentration was determined as the mean of 

triplicates, Relative Standard Deviation (RSD) <1%. 

Total protein concentration: Bradford method [17]. Total protein was determined as the 

mean of triplicates, RSD < 2%. 

Nitrogen concentration: Methodology described by [18], [19]. Ammonium sulfate was 

used as the standard. Nitrogen concentration was determined as the mean of triplicates, 

RSD < 2%. Nitrogen data provided refers to ammoniac salts present in the medium and 

added by pH control. 

Lipolitic activity: Titrimetric method, by means of a hydrolysis reaction with 56 mM 

tributyrin at 40°C and pH 7, using a pHstat [20]. The titrating reagent employed was a 

0.06 mM solution of NaOH. One unit of lipolytic activity (U) is defined as the quantity 

of enzyme needed to catalyse the production of 1 μmol butyric acid (volumetric analysis) 

per minute under the assay conditions. The activity was determined as the mean of 

triplicates, RSD < 10%. 

Additional analysis related to the stability of rLipB at different pH and temperature 

ranges, as well as the substrate specificity and further characterization of rLipB were done 

following the methodologies described by [2]. 

All the reference values were determined by personnel of the School of Chemical 

Engineering of the Universitat Autònoma de Barcelona, properly trained for such 

purpose. 

b) NIRS instruments 

Feasibility study: The instrument employed for preliminary evaluations was a NIR 

spectrometer from Foss (Denmark), model 5000, fitted with a Rapid Content Analyzer 

model 6500, used in reflectance and transflectance acquisition modes. Each spectrum was 

the result of 32 scans acquired with a spectral resolution of 10 ± 1 nm and a data interval 

of 2 nm, in the wavelength range from 1100 to 2498 nm. For acquisitions in reflectance 

mode, a quartz cell of 4 cm of diameter was employed, and for transflectance mode a 

reflector of gold with 1 mm of path length was added. All the spectral data was acquired 

at room temperature. The software Vision, version 2.51 was employed for the data 

acquisition. 
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Models development: For offline and inline measurements, the equipment employed 

was a FT-NIR spectrometer from Bruker (Billerica, MA, USA) model Matrix F, with 

fiber optic coupling for immersion probe and a TE-InGaAs detector. The fiber optic probe 

was steam-sterilizable and its acquisition mode Transflectance, with a path length of 10 

mm. Each spectrum was acquired as an average of 512 scans with wavenumber intervals 

of 16 cm-1, in the spectral range from 12000 to 4300cm-1. Off-line measurements were 

conducted at room temperature. In-line measurements were acquired at 30°C and every 3 

minutes over the entire process experiences recorded using this data collection mode. The 

software Opus, version 7.5 was employed for the data acquisition.  

NIRS data analysis (development of the models or modelling) was made based on 

principal component analysis (PCA) and partial least squares (PLS) regressions, 

accomplished using Unscrambler from CAMO, version 10.3, and Solo, from Eigenvector 

Incorporated, version 8.2.1. 

4.3 Feasibility study 

Previous contributions state that the presence of water is not an impediment for using 

NIRS as a monitoring tool for bioprocesses [21]. Due to the changes that intermolecular 

hydrogen bonds of water undergo by the presence of O-H and N-H bonds from alcohols 

and protein molecules, combination and overtone bands of the NIR spectrum of water are 

modified. However, considering that due to the important dipolar moment of the O-H 

bond, water is a strong absorber in the Infrared region -including the NIR- a feasibility 

study was set for assessing the advantages and disadvantages of applying NIRS to the 

particular conditions of the process intended to be studied. Additionally, since the 

progressive increment of solid particles of Biomass in the liquid medium over the process 

evolution, the selection of the appropriate acquisition mode required, in this case, a 

previous evaluation, due to such increment has remarkable light scattering effects on the 

NIRS data. This fact prompted the second objective of this preliminary study: the 

selection of the appropriate acquisition mode. The development of this task considered 

previous reports on NIRS methodologies for at-line, on-line and in-line monitoring of 

bioprocesses, and those results pointed out that data collection is a relevant issue for 

generating the best possible models for this kind of applications. Regarding this aspect, it 

is important to indicate that Arnold et al. overcame the changes in viscosity observed 

during the advance of a process comprising a filamentous microorganism (Streptomyces 
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fradiae), by segmenting the spectral data based on the physical characteristics of the 

matrix, which allowed more accurate PLS models for prediction of tylosin concentrations 

using at-line NIRS measurements [22]. On the other hand, Crowley et al. proposed the 

use of two acquisition modes for the also at-line monitoring of a recombinant Pichia 

pastoris fed-batch bioprocess. They used the transmission acquisition mode for the first 

part of the process (when the concentration of Biomass comprised the range 0-64 g/L) 

and the reflectance acquisition mode for monitoring the second part of the process 

(Biomass concentration 64-80 g/L) [4]. Alternatively, Finn et al. avoided the dominance 

of the whole matrix spectrum by Biomass increment using filtrate samples and semi-

synthetic filtrate samples. This strategy favoured the development of at-line monitoring 

methods for successful quantification of ethanol and glucose in a Saccharomyces 

cerevisiae fed-batch bioprocess [23]. Additionally, Tamburini et al. developed on-line 

and in-line NIRS methods for monitoring homolactic (using Lactobacillus casei) and 

heterolactic (using Staphylococcus xylosus, Lactobacillus fermentum and Streptococcus 

thermophilus) cultivations. In this work they state the successful application of 

reflectance acquisition mode for the homolactic process (Biomass concentration 0-16 

g/L) and the transflectance mode for the heterolactic process (Biomass concentration 0-

16 g/L, but heavy aeration and agitation conditions). The choice of an aerobic bioprocess 

was made particularly for investigating the effect on the spectral signal of heavy aeration 

and agitation conditions, which showed that both factors have  a clear impact on the 

NIRS data [8]. It is worth mentioning that all these contributions are based on the use of 

NIRS instruments with lower analytical features (filters or LED systems) than the 

instrument intended to be used for the present work, a Fourier transform (FT)-NIR 

spectrometer.  

FT-NIR spectrometers are based on the use of a permanently aligned interferometer, 

capable of recovering the intensities of individual wavelengths in the NIRS region with 

the best characteristics currently available in terms of wavelength precision and accuracy, 

signal to noise ratio and scan speed [24]. Based on these characteristics, the acquisition 

mode was studied to ensure taking as much advantage as possible of this instrument 

capabilities. This feasibility study was based on the analysis of samples prepared at the 

analytical laboratory, with the objective of creating a set of spectral data able to show the 

relationships between changes in Biomass and Glycerol concentrations and absorbance 

and wavelength values. The strategies followed for preparing those samples were doping 
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with Glycerol and dilution with batch medium of two samples from a bioprocess 

monitored both with the reference methods and NIRS off-line measurements. Due to the 

cultivation studied involved two different stages: a batch stage and a fed-batch stage, the 

first of the samples employed for this preliminary study was taken at the end of the batch 

stage (20.5 h), and the second one at the end of the fed-batch stage (66.5 h). Both 

identification times are counted from the inoculation starting point, which is taken as 0 h. 

With the aim of generating samples with known concentrations of Glycerol at diverse 

Biomass concentration levels, both samples were divided into two portions. The first 

portion was doped by sequential addition of Glycerol in the range 0-52 g/L for the sample 

taken at 20.5 h and 0-48 g/L for the sample taken at 66.5 h. This concentration range was 

established based on the real concentration values of Glycerol that could be needed to 

monitor during the cultivation processes. Changes in Glycerol concentration are of 

particular interest due to the fact that the growing of P. pastoris is clearly controlled by 

the presence or absence of such carbon source [2], as was mentioned before.  

The second portion of the samples was diluted first by sequential addition of batch 

solution in the Biomass concentration range of 20-10 g/L for the sample taken at 20.5 h 

and 90-46 g/L for the sample taken at 66.5 h. The NIRS data acquisition was done as soon 

as the doping or diluting substance was added to the corresponding portion of the samples. 

Finally, the portions of the samples diluted with batch solution were also doped with 

Glycerol, but in this case in a wider concentration range: 0-92 g/L of Glycerol for the 

sample diluted at 10 g/L of Biomass and 0-91 g/L of Glycerol for the sample diluted at 

46 g/L of Biomass. The entire process of samples preparation and spectra acquisition was 

completed at room temperature. Scheme 1, summarizes the sample preparation procedure 

for this feasibility study: 
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Scheme 1. Flow followed for the preparation of samples for the feasibility study. 

 

Figure 2, shows the effect on the NIRS absorbance data at room temperature of diluting 

the samples with batch medium –i.e. Biomass concentration decreasing- in reflectance 

mode (Figure 2A) and transflectance mode (Figure 2B). As can be observed, the presence 

of Biomass particles can be clearly detected by the technique. The effect in absorbance 

of those solid particles is more remarkable in the baseline shift of the spectra acquired in 

reflectance mode than in those acquire in transflectance mode. However, considering that 

the drift of the instrument is the same in both measurements, using reflection as 

acquisition mode provides spectra of samples with Biomass concentration under 20 g/L 

with a high level of noise in the range 1400 – 2500 nm. The spectra resulting from the 

analysis using transflectance mode show less noise over the whole spectral range and 

provides a profile with less baseline effect driven by Biomass concentration, and more 

representative of the water spectrum profile. This is probably due to the reflector of gold 

employed to return the diffuse reflectance of the particles of Biomass to the detector. 

Additionally, spectra acquired using transflectance illustrate a distribution of the intensity 

of absorbance units -in the ranges 1496-1892 nm and 2130-2368 nm- directly 

proportional to the Biomass increment, as can be seen in Figure 2B. 
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Figure 2. NIR spectra of samples diluted with batch solution. Sample taken at 20.5 h diluted in the range 

20-10 g/L and sample taken at 66.5 h diluted from 90-46 g/L, acquired in (A) reflectance and (B) 
transflectance modes. 

The effect of doping with Glycerol on samples with different Biomass concentrations at 

room temperature and without changes in other process variables was studied by means 

of results shown in Figure 3.  

  

Figure 3. NIR spectra of sample of 10 g/L of Biomass doped with Glycerol in the range 0-92 g/L, 

sample of 20 g/L of Biomass doped with Glycerol in the range 0-52 g/L, sample of 46 g/L of Biomass 

doped with Glycerol in the range 0-91 g/L and sample of 90 g/L of Biomass doped with Glycerol in the 

range 0-92 g/L; acquired in (A) reflectance and (B) transflectance modes. 

The effect on the NIRS data of changes in the Biomass concentration previously observed 

was confirmed with this new set of samples. Nevertheless, the spectral data acquired using 
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the transflectance mode showed not only a better signal to noise ratio over the whole 

recorded spectral range, but also provided a particular band in the range 2232-2340 cm-1, 

which was not detected before. Figure 4, shows a zoom of this area, where can be 

observed that the increment of the absorbance intensity is directly proportional to the 

concentration of Glycerol, at least at these conditions of minimum variability in the 

system. 

 

Figure 4. Spectra of sample of 10 g/L of Biomass doped with Glycerol in the range 0-92 g/L, sample 

of 20 g/L of Biomass doped with Glycerol in the range 0-52 g/L, sample of 46 g/L of Biomass doped 

with Glycerol in the range 0-91 g/L and sample of 90 g/L of Biomass doped with Glycerol in the range 

0-92 g/L, acquired in transflectance mode, with zoom in the range 2232-2340 nm. 

A PCA of the absorbance data acquired by means of the two acquisition modes, displayed 

in a clearer way the differences described before. Even when the first principal component 

is dominated by the Biomass concentration in both cases (Figure 5), in the scores plot of 

the data acquired in transflectance mode it is possible to observe the distribution of the 

samples along the second component according to the Glycerol concentration (Figure 

5B). 
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Figure 5. Scores plots of PCA of NIRS data in absorbance of samples recorded in 

(A) reflectance and (B) transflectance acquisition modes. 
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Based on these results, and as a final tool for supporting the selection of the acquisition 

mode, PLS regressions were calculated for Biomass and Glycerol using the data from the 

two acquisition modes. For Biomass, it was possible to build a model from the reflectance 

data using the whole spectral range, i.e. 1100-2500 nm, and without any mathematical 

spectral data pre-treatment. This model required 2 latent variables (LV) or PLS factors 

for explaining a high percentage of the variability (over 97 %), generated a root mean 

square error of calibration (RMSEC) of 5.16 g/L and a coefficient of determination of the 

regression, R2 = 0.97. It was also possible to build a model based on the transflectance 

data using the same spectral range and none data pre-treatment, that required 2 factors 

also, but generated a RMSEC of 4.36 g/L and a R2 of 0.98.  

Additionally, for Glycerol the same calculations were done. In this case, it was necessary 

to create two different models for the data acquired in reflectance, because it was not 

possible to obtain a linear correlation between the spectral data and the reference values 

available for this analyte in the entire concentration range of interest for Biomass. The 

data pre-treatment employed in this case was the second derivative Savitzky-Golay (2D) 

followed by the standard normal variate (SNV), in the spectral range of 1100-1290 nm, 

the very first part of the spectra, where the signal to noise ratio is still in a proportion 

useful to obtain valuable information. The model created for the concentration of Biomass 

of 20 g/L had a RMSEC of 1.89 g/L and a R2 of 0.98. The model created for the 

concentration of Biomass of 90 g/L had a RMSEC of 1.72 g/L and a R2 of 0.99. In both 

cases the first factor explained the maximum percentage of the variability of the studied 

data. On the other hand, using the data acquired using the transflectance mode, it was 

possible to calculate one unique regression for Glycerol over the whole concentration 

range of interest for Biomass. The data pre-treatment in this case was 2D (with 11 points 

of smoothing window, the value employed over the whole work for derivative pre-

treatments), using the spectral range of 2220-2320 nm, and also only one factor was 

required for the calculation. Table 1 recapitulates the results of PLS calculations of this 

feasibility study. 
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Table 1. Figures of merit of the preliminary PLS regressions constructed with the data from the feasibility 

study. 

Analyte 

Reflectance Transflectance 

LV PT 
SR 

(nm) 

RMSEC 

(g/L)  
R2 

L

V 
PT 

SR 

(nm) 

RMSEC 

(g/L)  
R2 

Biomass (g/L) 2 None 
1100-

2500 
5.16 0.97 2 None 

1100-

2500 
4.36 0.98 

Glycerol (g/L) 

at 20 g/L of 

Biomass 

1 2D+SNV 
1100-

1290 
1.89 0.98 

1 2D 
2220-

2320 
2.89 0.97 

Glycerol (g/L) 

at 90 g/L of 

Biomass 

1 2D+SNV 
1100-

1290 
1.72 0.99 

LV: Latent Variables (PLS factors); PT: Data Pre-treatment; 2D: Second Derivative Savitzky-Golay; SNV: 

Standard Normal Variate; SR: Spectral Range; RMSEC: Root Mean Square Error of Calibration 

expressed; R2: Coefficient of determination for the PLS regression. 

Based on these results, it is possible to state that: (1) off-line NIR spectral changes due to 

changes in Biomass in the concentration range of 10-90 g/L and Glycerol in the 

concentration range 0-92 g/L at room temperature; (2) it can also be used for calculating 

preliminary PLS regressions models for both analytes. Under the studied conditions, 

spectra in reflectance and transflectance acquisition modes are useful for determination 

of Biomass in the mentioned ranges. However, for the determination of Glycerol, the 

transflectance mode enables a simpler modelling strategy. 

4.4 Results and discussion 

As a consequence of the feasibility study, transflectance was employed as acquisition 

mode. The development of the models was done by the progressive study of the sources 

of variability of the process and their successive inclusion in PLS regressions. For this 

aim, a succession of three steps was traced in this work. The first step, involved modelling 

using only samples prepared at the analytical laboratory (not from a cultivation 

experiment), which included only part of the chemical variability of the process and 

minimized as much as possible the real physical and chemical variability. At this point, 

preliminary PLS models were calculated for Biomass and Glycerol. The second step was 

the partial inclusion of the process variability into such models by means of NIRS data 

obtained from bioprocess monitored off-line. The final step encompassed the 

development of models for prediction of the concentration of four analytes -Biomass, 

Glycerol, Total protein and Nitrogen- and one process parameter -Lipolitic activity- based 
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on NIRS data acquired in-line. Results of these three steps are discussed in the next 

headlines. 

4.4.1 Samples prepared volumetrically 

The most basic chemical variability of the process was studied by means of the volumetric 

preparation of samples at key concentrations of the main analytes: Glycerol, Biomass and 

Total protein. Syringes of ± 0.1 mL of precision were employed for creating two sets of 

samples from stock solutions of Biomass at 200 g/L, Glycerol at 100 % v/v and Total 

protein at 1000 mg/L. These sets of samples will be labelled as laboratory samples in the 

subsequent. Both sets of laboratory samples had five fixed concentrations of Biomass in 

common: 0, 25, 50, 75 and 100 g/L. One set of the samples comprised nine different 

concentrations of Glycerol at each Biomass concentration level (0, 5, 10, 15, 20, 25, 30, 

35 and 40 g/L of Glycerol). The other one, comprised four concentrations of Total protein 

per Biomass concentration level (75, 150, 225 and 300 mg/L of Total protein). Both sets 

of samples were useful for assessing the capabilities of the FT-NIRS for detecting changes 

of main interest chemicals during P. pastoris cultivation processes using Glycerol as 

carbon source, in conditions of minimized physical and chemical variability. 

Additionally, these samples allowed the evaluation of the most appropriate acquisition 

features of the instrument. After testing diverse average scans numbers and resolution 

values, these parameters were set at 512 scans per spectra and 16 cm-1 respectively. 

Laboratory samples were analysed with the FT-NIRS instrument described for model’s 

development, using the off-line arrangement, i.e. by submerging the probe into plastic 

tubes that contained the samples. 

Figure 6, shows the changes in the spectral profile over the sequential increment of 

Biomass and Glycerol concentrations. The most relevant changes in this case are those 

related to the baseline shift generated by the presence of solid particles of Biomass, which 

is clearly remarked by the comparison with samples prepared in absence of this analyte. 

Additionally, the first and second O-H overtones bands (7000 and 5000 cm-1 respectively) 

show differences that can be attributed to changes in the intermolecular interactions of 

hydrogen bond that take place as soon as the Glycerol concentration increases in the 

solution.  
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Figure 6. NIRS absorbance spectra of samples volumetrically prepared with Glycerol and Biomass 

stock solutions. 

Spectral changes of Laboratory samples prepared with diverse concentrations of Total 

protein had a more random and unclear spectral trend than those observed in the samples 

prepared with Glycerol, possibly due to the range of concentrations studied, which was 

noticeable lower. However, for both sets of samples, preliminary PLS models were 

constructed, with the aim of evaluating their performance in the prediction of samples 

from the process. The lack of sources of variability in these initial regressions was evident 

during such evaluation, producing RMSEP tremendously high (data not shown). 

4.4.2 Inclusion of data collected off-line 

A total of eleven cultivations were run during this study. For all of them, reference values 

were determined based on a sampling procedure enabled by an outlet of the reactor 

especially prepared for such purpose (as indicated in Figure 1B), and following the 

methodologies described in section 1.2.2.2, NIRS measurements were acquired off-line 

for the first eight of these processes and in-line for the last three. In the case of off-line 

analyses, the NIRS data was recorded from the same test tubes taken for the monitoring 

of the process evolution using the reference methods. It was done once more by 

immersing the transflectance probe into the plastic tubes.  
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The NIRS data of the last three processes was recorded totally in-line, as will be explained 

in the next section. What is important to describe at this point is the general profile of the 

process variables studied, as well as their changes over the process evolution. According 

to the Glycerol addition strategy, the eleven cultivation processes can be classified in one 

pulse, two pulses and sequential pulses processes. Table 2 displays the different values of 

the carbon source incomes and Biomass production for all the cultivations considered.  

Table 2. Classification of the cultivations according to the strategy employed for Glycerol addition. 

cultivation ID 
G-b 

(g/L) 
G-fb (g/L) 

B 

(g/L) 

Strategy of 

Glycerol addition 

NIRS data 

collection 

FJ1702 35 55 45 

Exponentially fed Off-line 

FJ1703 and 

FJ1705 
35 145 90 

FJ1707 35 165 100 

FJ1706 and 

FJ1708 
40 140 90 

FJ1711 40 245 140 

FJ1704 and 

FJ1713 
82 90 50 

Two pulses 

Off-line 

In-line 

FJ1715 40 140 60 In-line 

FJ1714 75 4 pulses, range 5-25 68 Sequential pulses In-line 

ID: Identification Code; B: Maximum concentration of Biomass reached in the process; G-b: Glycerol 

added in the batch stage; G-fb: Glycerol added in the fed-batch stage. 

Figure 7, shows an example of the evolution of each one of the three different Glycerol 

addition strategies studied, as a guide for the understanding of the general trends of the 

process variables. These graphics were created from reference values. 
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A

 

C

 

E

 

B

 

D

 

F

 

Figure 7. Examples of process variables evolution for strategies of (A) and (B) one pulse, (C) and (D) 
two pulses and (E) and (F) sequential pulses of Glycerol addition. 

 

Due to the NIRS data acquired off-line was recorded from samples taken from the reactor 

for monitoring by reference methods, the number of spectra available for cultivations 

recorded off-line (from FJ1702 to FJ1711) is in the range 10-16 spectra per process. 

Figure 8, shows an example of the absorbance NIRS data obtained for a cultivation with 

two pulses of Glycerol (FJ1704). In this figure it is possible to observe the progressive 

baseline shift attributed to the increment of Biomass concentration in a succession with 

more changes than those observed during the study of the samples volumetrically 

prepared at the laboratory (Figure 6). By this fact, these series of spectra show the 

complexity of the chemical changes that take place during the cultivation process and 

which were not included in the first set of laboratory samples. Those variability sources 

are reflected mainly in the changes of intensity of the absorbance bands at 9000, 7000, 

5800 and 5000 cm-1 (related to C-H, O-H and N-H vibrations). 
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Figure 8. Example of the NIRS data acquired off-line from a process completed with Glycerol 

addition in two pulses of Glycerol (FJ1704). 

New PLS regressions were calculated by including into the models created with the 

samples volumetrically prepared, the NIRS data acquired off-line from samples produced 

during the first eight cultivations. For most of the analytes, results were far from the 

minimum proper performance of a good prediction model, even during internal 

assessment for calibration. Due to the goal of the study was developing an analytical 

method robust enough for the monitoring of cultivations following all the possible 

strategies of Glycerol addition and considering as much of sources of variability as 

possible, this labour was done considering data from bioprocess executed using both 

exponentially fedand two pulses of Glycerol addition strategies (samples from the 

sequential addition of Glycerol were not included because only one experience like this 

was run, and it was recorded in-line). With this objective in mind, samples prepared 

volumetrically were taken out of calibration sets of the first models created, and new 

models were developed for Glycerol and Total protein, based only on NIRS data acquired 

off-line. Only in one exercise of Biomass and Total protein modelling, it was possible to 

keep the laboratory samples data with the data acquired off-line in the same calibration 

set. The task of finding the appropriate data pre-treatment and spectral range was off 

course harder this time than in the first attempt. Particularly for Glycerol it was difficult 

to find a useful combination of parameters during modelling. Table 3, describes the 

characteristics of the models developed using the NIRS data acquired off-line.  
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Table 3. Figures of merit of PLS models developed based on NIRS data acquired off-line from cultivations 

run following the exponentially fed and two pulses of Glycerol addition strategies. 

Analyte LV PT SR (cm-1) R2 CR RMSEC 

Biomass (g/L) 5 SNV 11987-7791 0.96 5-100 6 

Glycerol (g/L) 6 SNV 7413-5539 0.996 0-75 1 

Total protein (mg/L) 2 OSC 9311-5639 0.995 0-300 5 

LV: Latent Variables (PLS factors); PT: Data Pre-treatment; SNV: Standard Normal Variate; 

OSC: Orthogonal Signal Correction; SR: Spectral Range; R2: Coefficient of determination for 

the PLS regression; CR: Concentration Range; RMSEC: Root Mean Square Error of 

Calibration. CR and RMSEC are expressed in the concentration units of the corresponding 

analyte. 

The performance of these models was assessed by the prediction of NIRS data acquired 

in-line: two experiences following the two pulses strategy (FJ1713 and FJ1715) and one 

experience following the sequential addition of Glycerol during the fed-batch stage 

(FJ1714). The results of predictions are displayed in Figure 9. It can be observed that the 

general trend of the process profile outlined by the NIRS predictions was similar to those 

outlined by the reference values. However, very important bias which still had to be 

overcome. Solving such bias error was the objective of the next part of the work. 
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Figure 9. Biomass, Glycerol and Total protein evolution over processes monitored in-line. Values 

predicted by models calculated with NIRS data acquired off-line are plotted in grey, and red points 

represent reference data. Figures (A), (D), (G), (C), (F) and (I) show predictions of cultivations run 

with the strategy of addition of two pulses of Glycerol. Figures (B), (E) and (H) display results for the 

strategy of sequential addition of 4 pulses of Glycerol during the fed-batch stage. 

4.4.3 Inclusion of data collected in-line 

The NIRS data acquired in-line, by the immersion of the probe directly into the 

bioprocessing reactor, compress the biggest complexity and number of spectra of this 

work. Its inclusion in the calibration sets was the last and most critical step for the 

optimization of the models. For the three processes recorded under this condition, the 

transflectance probe was immersed in the reactor from the very beginning of the 

cultivation. Indeed, it was included in the system before the sterilization process, previous 

of course to the inoculation. The total amount of spectra employed for modelling from 

the in-line measurements was 875 for FJ1713, 639 for FJ1714 and 977 for FJ1715. The 

time between each acquisition was set at 3 minutes for all the three experiments, by means 

of the advanced acquisition window of the Opus software. Therefore, differences in the 

final amounts of spectra are related to the total of hours that each process required to be 

completed. Figure 10, presents an example of the absorbance spectra acquired during the 

cultivation run following the strategy of sequential addition of Glycerol during the fed-

batch stage (FJ1714). 
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Figure 10. Absorbance NIRS data acquired in-line every 3 min, during the cultivation of sequential 

addition of Glycerol during the fed-batch stage. 

An exploratory analysis of the NIRS data acquired in-line confirmed that Biomass 

concentration was the main source of variability of the process. Figure 11, displays a 

scores plot of a PCA of the NIRS data of FJ1714 after SNV pre-treatment. Changes along 

the first component axe (which explains the 95.49% of the variability of the system) 

follow the progressive increment of Biomass concentration observed in this cultivation.  

On the other hand, samples are also widely distributed along the projection of the second 

component of the scores plot presented. This fact indicates that other complex chemical 

changes (as simultaneous variations on substrate and metabolites concentrations) as well 

as physical changes (bubbles, foam, mechanical agitation, increment of solid particles in 

the medium) produce variability that can definitely be detected by NIRS. The generous 

amount of data provides detailed evidence of NIR spectral changes during the process.  
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Figure 11. Scores plot of FJ1714 after SNV data pre-treatment. 

The data recorded using the in-line approach was initially included into the models 

developed using the off-line data collection methodology. The assignation of reference 

values to NIR individual spectra was completed using the sampling times and the NIRS 

acquisition times, considering the inoculation as time 0 h. Once more, the lack of 

variability in the methods developed using only off-line data was reflected in modelling 

difficulties using simultaneously data collected both off-line and in-line. PLS regressions 

shown two trends, clearly different between the two kinds of data collection: off-line and 

in-line. Keeping in mind that the goal of the study was the development of methods robust 

enough for the in-line monitoring of P. pastoris cultivations, data collected off-line was 

excluded of the calibration sets. Afterwards, new models considering only data collected 

in-line, were constructed. The accuracy of such models was evaluated as the root mean 

standard error of prediction (RMSEP) for the points with reference values available 

(internal validation). As external validation feature, the standard deviation (SD) of the 

predictions of spectra without reference values -which were not included into the 

calibration set- was employed as a criterion for the selection of the final models. Such SD 

results were obtained multiplying by 2 the deviation value generated per spectrum by the 

Unscrambler 10.3, after challenging the models using the Prediction task. 
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The first attempt done considering only data collected in-line in the calibration sets was 

done considering all the three data sets together. Table 4, summarizes the results for this 

experience in the fed batch stage of the cultivations (after 20.5h). The small amount of 

reference values available during the batch stage was a factor that made hard finding 

appropriate calibration features during this section of the process. Since the amount of 

reference values available from the batch stage was the same for all the cultivations 

studied (only one point), results have the same trend of poor predictive capability in this 

period for all the models. Because of this fact, all the errors of prediction displayed in this 

work are calculated using values after 20.5 h. Figure 12, illustrates these results for the 

bioprocess with sequential addition of glycerol.  

Table 4. Figures of merit of models created considering the two kind of Glycerol addition strategies 

together. 

Analyte LV PT 
SR  

(cm-1) CR RMSEC 
RMSEP 

A 
SD A 

RMSEP 

B 
SD B SEL 

Biomass 

(g/L) 
3 2D 

7590-

6078 
5-75 3 33 10-20 8 7-17 0.8 

Total 

protein 

(mg/L) 

6 1D 
8925-

5515 
7-485 11 16 

46-

120 
9 48-102 11 

Glycerol 

(g/L) 
5 RN 

7413-

5492 
2-138 7 69 40-80 15 10-20 - 

Nitrogen 

(g/L) 
4 

2D+ 

SNV 

11987-

4296 
6-15 1 1 2-4 1 3-7 0.27 

Activity 

(U/L) 
7 None 

11987-

4296 

3000-

45000 
2100 2919 

5000-

7500 
2000 

5000-

10000 
580 

LV: Latent Variables (PLS factors); PT: Data Pre-treatment; 1D: First Derivative Savitzky-Golay; 2D: Second 

Derivative Savitzky-Golay; RN: Range Normalization; SNV: Standard Normal Variate; SR: Spectral range; 

CR: Concentration Range; RMSEC: Root Mean Square Error of Calibration; RMSEP: Root Mean Square 

Error of Prediction SD: Standard Deviation; A: set of cultivations with addition of glycerol in two pulses; B: 

cultivation with sequential addition of glycerol; SEL: Standard Error of Laboratory (SD of reference methods). 

CR, RMSEC, RMSEP as well as SD are expressed in the corresponding units per analyte. 

Figure 12, also shows that the bias error previously found between the values predicted 

for NIRS data collected in-line and the reference values, decreased in an important ratio 

by the creation of calibration sets considering only data collected in-line. This can be 

understood considering the sources of variability that are present during the process with 

relevant impact into the NIRS data. Some of these sources are the 30°C of temperature 

(higher than the temperature for off-line measurements), the eventual formation of foam, 

the permanent and intense agitation inside of the reactor (500-1000 rpm) as well as the 
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aeration of the system (between 0-1 vvm). All these factors have a proved effect on the 

NIRS data, as has been previously demonstrated [8].  

 
 

  

 

Figure 12. Biomass, Glycerol, Total protein, Nitrogen and Lipolitic activity 

evolution over bioprocess completed using the sequential addition of Glycerol 

(FJ1714), using models described in Table 4 (calculated using data from 

cultivations with different strategies of Glycerol addition during the calibration). 

Values predicted from NIRS data are plotted in grey, and red points represent 

reference data. 

Nevertheless, high SD values were found for predictions of models constructed using 

together all the data collected in-line (mixing different Glycerol addition strategies). To 

study the effect of the Glycerol addition strategy on modelling the NIRS data, new models 

were calculated considering two different data sets, generated from splitting the available 
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data sets regarding the strategies of Glycerol addition employed. Table 5, presents the 

results for these final models.  

The main improvement reached using the split data was the simplification of the models, 

which was evidenced by the reduction of the number of PLS factors required for 

calibrations and predictions reported in Table 5, compared to those in Table 4. This aspect 

is particularly interesting in the case of the Biomass models. The number of PLS factors 

required for the model constructed using the in-line data from bioprocess with the two 

strategies of Glycerol addition together, was 3. However, when models for Biomass were 

calculated with the split data, the number of factors required for the model created with 

data from cultivations where Glycerol was added in two pulses (FJ1713 and FJ1715), 

increased to 6, while decreased to 2 for the model calculated with the data from the 

sequential addition of Glycerol during the fed-batch stage (FJ1714). These values allow 

to deduce that the complexity of the NIRS data from cultivations where the Glycerol is 

added only in two pulses is higher to the complexity of data from processes where the 

addition of Glycerol is done sequentially. 

Additionally, for Total protein, Nitrogen and Lipolitic activity, the ranges of the SD 

calculated based on the prediction of samples acquired in-line and excluded during 

calibration, were also lower than those obtained using the two strategies of Glycerol 

addition together.  

Table 5. Figures of merit of models calculated using the data collected in-line split according to the 

strategy of Glycerol addition. 

 
Biomass 

Total 

protein 
Glycerol Nitrogen 

Lipolitic 

activity 

Calibration set 
Data from FJ1713 and FJ1715 correlated to reference values 

Validation set 
All the data from FJ1713 excluded during modelling 

SEL 
0.8 g/L 11 mg/L - 0.27 g/L 580 U/L 

LV 6 2 5 2 2 

Data pre-

treatment 2D 1D 2D+SNV 2D+SNV None 

Spectral range 

(cm-1) 

7590-

7035 
9320-5415 

11987-

4296 

11987-

4296 
11987-4296 
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Biomass 

Total 

protein 
Glycerol Nitrogen 

Lipolitic 

activity 

Range of 

prediction 
5-75 g/L 

119-289 

mg/L 

10-50 

g/L 
8-14 g/L 

13000-

45000 U/L 

RMSEC 3 g/L 14 mg/L 6 g/L 0.3 g/L 781 U/L 

RMSEP 15 g/L 5 mg/L 7 g/L 0.7 g/L 1553 U/L 

SD of NIRS 

prediction 

20-50 

g/L 
25-27 mg/L 

80-120 

g/L 

1.5-2.5 

g/L 

5000-75000 

U/L 

Calibration set Data from FJ1714 correlated to reference values 

Validation set All the data from FJ1714 excluded during modelling 

LV 2 2 2 3 3 

Data pre-

treatment 
2D 1D 2D+SNV 2D+SNV None 

Spectral range 

(cm-1) 

7845-

6078 
8925-5515 

8007-

6502 

11987-

4296 
11987-4296 

Range of 

prediction 
5-75 g/L 

119-289 

mg/L 

10-50 

g/L 
8-14 g/L 

13000-

45000 U/L 

RMSEC 3 g/L 1 mg/L 2 g/L 0.15 g/L 1517 U/L 

RMSEP 4 g/L 5 mg/L 2 g/L 0.8 g/L 3010 U/L 

SD of NIRS 

prediction 

10-30 

g/L 
7-22 mg/L 20-40 1.5-4 g/L 

3045-10105 

U/L 

LV: Latent Variables (PLS factors); SEL: Standard Error of Laboratory (average of Standard Deviation 

of reference values); 1D: First Derivative Savitzky-Golay; 2D: Second Derivative Savitzky-Golay; SNV: 

Standard Normal Variate; SD: Standard Deviation; RMSEC: Root Mean Square Error of Calibration; 

RMSEP: Root Mean Square Error of Prediction; SD of NIRS: SD calculated multiplying by 2, the values 

of deviation from the task of prediction of Unscrambler 10.3. 

 

Figure 13, illustrates the predictive capability of models calculated using in-line data 

from the cultivation with the strategy of addition of Glycerol by sequence of pulses 

(FJ1714), for the prediction of those spectra excluded during the calibration. These 

models achieved the better performance in the study presented. However, it is clear that 

further external validations with new data obtained using the same collecting conditions 

as well as the same cultivation conditions and Glycerol adding strategy, are necessary 

to evaluate the robustness of these models. Sampling for generating more reference 
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values during the batch stage, would also provide useful data for enhancing the 

predictive capability of these models. 

In the particular case of Glycerol, the error in the prediction was still too high regarding 

the concentration range that was intended to be controlled. Because of that, this model is 

not considered useful for the in-line process monitoring approach. The models calculated 

for the Biomass, Total protein and Nitrogen concentration, and Lipolitic Activity, can be 

used as a tool for monitoring the general trend of the process, always bearing in mind the 

SD found for each of them.  
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Figure 13. Biomass, Glycerol, Total protein, Nitrogen and Lipolitic activity evolution over cultivation 

completed using the sequential addition of Glycerol (FJ1714), using models described in Table 5 

(using only data from FJ1714). Values predicted from NIRS data are plotted in grey, and reference 

data is represented by red points. 

4.5 Conclusions 

Transflectance is the acquisition mode that enables the simpler instrumental conditions 

for in-line monitoring of the recombinant production of Lipase B from C. anctartica in 

P. pastoris using Glycerol as carbon source. Using a FT-NIR spectrometer with fiber 

optic transflectance probe, it was possible to develop models for the in-line monitoring 

over the fed-batch stage of Biomass, Total protein, Nitrogen and Lipolitic Activity in the 

ranges of interest. The models calculated for Glycerol produced prediction values with a 

standard deviation higher than the concentration range of interest. The most important 

source of variability for NIRS data collected from the mentioned bioprocess system is the 

Biomass concentration. However, agitation, foaming, temperature and aeration are also 

sources of variability that can impact the predictive capability of the models. 

Consequently, the development of more accurate methods based on NIRS requires as 

much data collected in-line as possible, as well as an increased number of reference values 

over all the stages of the process (both from the batch and the fed-batch stages). Finally, 

it was found that the predictive capability of the models is affected by the strategy 

employed for the addition of the carbon source to the system.  
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A. Y. Miró Vera and M. Alcalà Bernàrdez, “Near-Infrared Spectroscopy in Identification of 

Pharmaceutical Raw Materials,” Encyclopedia of Analytical Chemistry. John Wiley & Sons, 

Ltd, pp. 1–19, 2017. 
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